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ABSTRACT  
   

The earliest Eocene marked the appearance of the first North American 

euprimates (adapids, omomyids). Despite the fact that leading hypotheses assert that 

traits involved in food acquisition underlie euprimate origination and early 

diversification, the precise role that dietary competition played in establishing euprimates 

as successful members of mammalian communities is unclear. This is because the degree 

of niche overlap between euprimates and all likely mammalian dietary competitors ("the 

euprimate competitive guild") is unknown. This research determined which of three 

major competition hypotheses – non-competition, strong competition, and weak 

competition – characterized the late Paleocene-early Eocene euprimate competitive guild. 

Each of these hypotheses is defined by a unique temporal pattern of niche overlap 

between euprimates and their non-euprimate competitors, allowing an evaluation of the 

nature of dietary competitive interactions surrounding the earliest euprimates in North 

America.  

Dietary niches were reconstructed for taxa within the fossil euprimate competitive 

guild using molar morphological measures determined to discriminate dietary regimes in 

two extant mammalian guilds. The degree of dietary niche separation among taxa was 

then evaluated across a series of fossil samples from the Bighorn Basin, Wyoming just 

prior to, during, and after euprimate origination. Statistical overlap between each pair of 

euprimate and non-euprimate dietary niches was determined using modified multivariate 

pairwise comparisons using distances in a multidimensional principal component "niche" 

space.  
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Results indicate that euprimate origination and diversification in North America 

was generally characterized by the absence of dietary competition. This lack of 

competition with non-euprimates is consistent with an increase in the abundance and 

diversity of euprimates during the early Eocene, signifying that the "success" of 

euprimates may not be the result of direct biotic interactions between euprimates and 

other mammals. An examination of the euprimate dietary niche itself determined that 

adapids and omomyids occupied distinct niches and did not engage in dietary competition 

during the early Eocene. Furthermore, changes in euprimate dietary niche size over time 

parallel major climatic shifts. Reconstructing how both biotic and abiotic mechanisms 

affected Eocene euprimates has the potential to enhance our understanding of these 

influences on modern primate communities. 
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CHAPTER 1: INTRODUCTION 

The onset of the Eocene (Wasatchian 0 or Wa0; ca. 55.8 Ma) (Fig. 1.1) marked 

the appearance of the first euprimates (“primates of modern aspect”) in North America. 

At this point in their evolution, euprimates had already branched into two distinct clades, 

Adapidae and Omomyidae, but both euprimate families comprised only a single North 

American species: Cantius torresi and Teilhardina brandti, respectively (Gunnell, 2002; 

Smith et al., 2006; Rose et al., 2011, 2012).1,2
 These two clades differed in their dietary 

ecological adaptations, as adapids were larger-bodied and less insectivorous than 

omomyids (Rose et al., 1994; Gunnell, 2002). The radiation of each group during the 

Wasatchian consequently increased euprimate diversity, and the high relative diversity of 

omomyids as compared to adapids, which characterized their evolution throughout the 

Eocene, was already present in the early Wasatchian.  

Throughout the early and middle parts of the Wasatchian (Wa0-Wa4), adapids 

were composed of a single anagenetic lineage, although the number of chronospecies 

referred to this lineage varies among studies (e.g., Gingerich and Schoeninger, 1977; 

O’Leary, 1997; Gunnell, 2002). In the Bighorn Basin, the site of this study, adapids 

                                                 
1 Rose et al. (2011) and Rose et al. (2012) note that the origination of Teilhardina in 
North America likely slightly preceded that of Cantius. 
2 The objective of this study was not to evaluate the systematics of, or phylogenetic 
relationships among, adapid and omomyid species. As discussed in Chapter 4, taxonomic 
assignments of individual specimens included in the analyses herein were derived from 
museum collection labels and published specimen identifications. Although the specific 
classification of early euprimates varies among researchers (e.g., Bown and Rose, 1987; 
O’Leary, 1997; Gunnell, 1997; Gunnell, 2002), there is a consensus regarding general 
patterns, and these are discussed here. 
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underwent a cladogenetic event with the origination3 of Copelemur in Wa5, postdating 

“Biohorizon B” (ca. 54 Ma; Wa4-Wa5 boundary).4 It has been noted that adapids were 

less diverse, although more abundant, than omomyids during the early Eocene (Gunnell, 

2002; Gunnell and Rose, 2002), as low adapid diversity has been attributed to the 

comparatively weak levels of interspecific competition typical of large primates with 

more generalized diets (Gunnell, 2002; Covert, 2004). Omomyidae also began as a single 

anagenetic lineage (species within Teilhardina), although omomyids quickly diversified 

to include several other genera in the early Wasatchian - Anemorhysis, Tetonius, and 

Tetonoides – and continually increased through Wa5 (Gunnell, 1997; Woodburne et al., 

2009a). In addition, within Omomyidae, sub-NALMAs seem to be dominated by a single 

genus – Teilhardina (Wa0-Wa2), Tetonius (Wa3), Pseudotetonius (Wa4), and Absarokius 

(Wa5) (Gunnell, 1997; Fig. 1.1). Early Eocene adapids and omomyids are not likely 

candidates for the first euprimates, most significantly because they represent two, post-

divergence euprimate lineages. However, because adapids and omomyids form the first 

known euprimate communities, and are thus much more abundant and skeletally 

complete than earlier, possibly ancestral euprimate species, they enable an assessment of 

the context in which early euprimates evolved.  

                                                 
3 The three fundamental processes of biogeography are extinction, dispersal (immigration 
and emigration), and speciation; these are alternative responses of a species to its biotic 
or abiotic environment that ultimately affect its biogeographic distribution (Hengeveld, 
1990; Lieberman, 2005; Lomolino et al., 2006). Each of these processes either introduces 
a species to, or eliminates it from, an area, resulting in an origination or extinction, 
respectively – speciation and immigration cause originations, whereas species extinction 
and local extinction through emigration cause extinctions (Lieberman, 2005; Lomolino et 
al., 2006). 
4 The earliest Copelemur specimens in North America derive from southern Wyoming 
and northern Colorado and are dated to Wa4 (Maas and O’Leary, 1996; Gunnell, 2002). 
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Elucidating the adaptive and competitive conditions responsible for the origin and 

diversification of early euprimates is crucial for understanding the course of evolution of 

the entire euprimate clade, yet it is one of the most contested issues in primate 

paleobiology. The two leading euprimate origins hypotheses, the “grasping hypothesis” 

(Sussman, 1991; Bloch and Boyer, 2002) and the “visual predation hypothesis” (Cartmill, 

1972, 1992), assert that “key innovations” involved in food acquisition (e.g., convergent 

orbits or grasping hands) were at the root of the initial euprimate radiation—that is, 

dietary niche was a primary driver of euprimate origination. Because key innovations are 

defined as novel traits that are adaptive (Gould, 1985; Benton, 1987; Erwin, 1992; 

Sudhaus, 2004), these hypotheses assume that euprimates first evolved in one of two 

scenarios: either through the exploitation of an open dietary niche ("absent competition") 

or through competitive exclusion of non-euprimate dietary competitors ("strong 

competition"). However, the role that diet played in establishing euprimates as successful 

members of early mammalian communities has not been explicitly addressed. On the 

other hand, if dietary competition between euprimates and non-euprimates was 

insubstantial ("weak competition"), diet was likely not a driving force in early euprimate 

evolution.  

The Paleocene-Eocene Thermal Maximum, one of the most dramatic peaks in 

global temperatures in the whole of the Cenozoic, is associated with the Paleocene-

Eocene boundary (Rea et al., 1990; Berggren et al., 1998; Fricke et al., 1998; Koch et al., 

2003), and a correlation between this climatic event and mammalian taxonomic turnover 

is well-supported (e.g., Gingerich and Gunnell, 1995; Maas et al., 1995; Wing et al., 

1995; Clyde and Gingerich, 1998; Bowen et al., 2001; Woodburne et al., 2009a). 
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Through the examination of first appearance dates (FADs) of taxa on different continents, 

many studies have suggested that this change in climate allowed a series of large-scale 

migrations, including a late Paleocene northern latitude dispersal of species to North 

America via Europe or Asia (McKenna, 1975; Beard, 1998; Alroy, 1999; Beard and 

Dawson, 1999; Smith et al., 2006; Silcox, 2008), which was likely responsible for the 

high incidence of faunal turnover of North American taxa, including euprimates, in the 

early Wasatchian (e.g., Maas and Krause, 1994; Wing, 1998a; Beard, 2002, 2006, 2008; 

Bowen et al., 2002; Clyde et al., 2005; Fleagle and Gilbert, 2006; Gunnell et al., 2008).  

The Paleocene-Eocene boundary also coincides with the extinction or major 

decline of groups ecologically similar to euprimates, including carpolestids and 

plesiadapids (Krause, 1986; Gunnell, 1998; Maas et al., 1988; Woodburne et al., 2009b). 

However, other euprimate ecological vicars (e.g., microsyopids, paromomyids, 

didelphids, and rodents) persisted through this transition (Gunnell et al., 1995; Gunnell, 

1998; Woodburne et al., 2009b). Shortly after their immigration to North America, 

euprimates greatly diversified, indicating an "invasion radiation" of this clade (Gingerich, 

1981; Bown and Rose, 1987; Gunnell, 1997, 2002). As a result of the dramatic nature of 

the Paleocene-Eocene climatic change and the coincidence of euprimate origination and 

diversification with the decline of some likely euprimate dietary competitors but not 

others, the competitive environment into which these earliest euprimates arrived is not 

clear. Thus, the purpose of this study is to characterize the dietary competitive 

environment in which euprimates arose. 

Competition is defined by niche overlap (Tokeshi, 1999; see Chapter 2); therefore, in 

order to discriminate among these three competitive scenarios (absence of competition, 
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strong competition, or weak competition), it is necessary to determine the degree of 

separation between the dietary niches of euprimates and those of their competitors: 

sympatric small-bodied, arboreal, insectivorous-frugivorous mammals (herein the 

"euprimate competitive guild"). To identify dental morphological variables that can be 

used to reconstruct dietary niches across the entire euprimate competitive guild in the late 

Paleocene and early Eocene, the relationships between dental measures, for which 

correlations with diet have the best empirical support in the literature, and known dietary 

regimes must first be examined within and across extant euprimate competitive guilds. 

Thus, this study has two objectives: The primary objective is to determine which of the 

three specific models of dietary competitive interaction defined the origination and early 

diversification of euprimates in North America. However, in order to complete this 

primary objective, a secondary objective – to identify phylogenetically independent, 

universal relationships between diet and molar morphology in extant euprimate 

competitive guilds – must first be addressed.  
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Fig. 1.1. Geologic timescale used in this study. NALMA = North American Land 
Mammal Age. “Time Interval” refers to the temporal unit of analysis used in this study. 
Time ranges follow Chew and Oheim (2013) and Woodburne (2004). 
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CHAPTER 2: BACKGROUND 

As described in Chapter 1, the context of the origination of euprimates in North 

America in the earliest Eocene and their subsequent diversification in the early-middle 

Wasatchian is critical to understanding the course of euprimate evolution as a whole. This 

requires the evaluation of interactions between euprimates and the other members of the 

mammalian community in which they lived, specifically members of their guild, here 

defined as a group of species that exploit the same resources in a similar manner 

(Simberloff and Dayan, 1991). These biotic interactions include predation, competition, 

and mutualism; although, the latter is rarely found in mammalian communities5 and will 

not be discussed further (Schoener, 1988). On the other hand, competitive interactions 

have the potential to significantly affect the structure of mammalian and primate 

communities (Connell, 1980; Arthur, 1987; Schoener, 1988; Tokeshi, 1997, 1999; 

Schemske, 2009; Chase and Myers, 2011), and from an evolutionary perspective, these 

effects of competition can impact speciation, extinction, changes in diversity and 

abundance, and morphological shifts (e.g., character displacement) in extinct groups 

(Arthur, 1982; Roughgarden, 1983; Janis and Damuth, 1990; Schluter, 1994; Vermeij, 

1994; Sepkoski, 1996; Nosil and Harmon, 2009; Schemske, 2009; although see Benton, 

1983, 1987; Masters and Rayner, 1993, Monroe, 2012).  

For example, a relationship between extinction and diversity has been ascribed to 

the greater number of species interactions that accompanies heightened levels of diversity 

and leads to higher rates of competition (Hutchinson, 1959; Rosenzweig, 1995). Within a 

                                                 
5 In addition, clear criteria for the identification of mutualistic interactions in the 
mammalian fossil record have not been established, and thus such interactions would 
likely not be detected. 
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geographic region, increased diversity reduces the number of individuals per species as 

competition for resources is increased, which can further increase the probability of 

species extinctions (Rosenzweig, 1995). As the onset of the Eocene is characterized by an 

overall increase in faunal diversity in North American sites, the greater occurrence of 

species interactions likely produced higher rates of speciation and extinction. However, 

species responses to both predation and abiotic changes can mimic patterns of 

competition (Janis, 1989; Abrams, 2000; Schweiger et al., 2008); thus, both the abiotic 

and biotic factors that can influence mammalian community structure and composition 

will be discussed. 

ABIOTIC INFLUENCES ON THE EVOLUTION OF EARLY PALEOGENE 

MAMMALIAN COMMUNITIES 

 The abiotic, or physical, environment effects community change via mechanisms 

that are external to the fauna itself and thus not directly regulated by diversity (Brown, 

1988). Climate is the most often cited determinant of biogeographic distributions and is 

inclusive of temperature, rainfall, and seasonality, which are most commonly used to 

reconstruct climatic change in the fossil record (Marshall, 1988; Lieberman, 2000; 

Darlington, 2004). Because many species are adapted to a relatively narrow range of 

environmental parameters, changes in climate force species to react, shifting conditions 

either away or towards species’ optima (Cracraft, 1985; Brown, 1988). This can result in 

adaptation to the new environment (which can be coincident with speciation), dispersal 

(either local or global) to a different environment, or extinction (Rosenzweig, 1995). 

The climate of the late Paleocene and early Eocene has been examined using a 

variety of data sources, including levels of carbon and oxygen isotopes in paleosols and 
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vertebrate fossils, floral morphology, and taxonomic similarity between extant and fossil 

faunal assemblages (Roehler, 1993; Wing and Greenwood, 1993; Fricke et al., 1998; Wilf 

et al., 1998; Wing, 1998a). Initial assessments of early Paleogene climate were based on 

deep-sea core data, but subsequent analyses of terrestrial data demonstrated that, although 

there are slight differences in the intensity and timing of reconstructed climatic patterns, 

the marine and non-marine records generally correlate with each another (Wing et al., 

1991; Wing and Greenwood, 1993; Fricke et al., 1998; Koch et al., 2003). Together, 

these records have indicated that the global temperature was warmer than it is today and 

that mean temperature gradually increased from the onset of the Tiffanian in the 

Paleocene (ca. 60 Ma) through the early Eocene, where it peaked in Wa0 at the 

Paleocene-Eocene Thermal Maximum (PETM, or Eocene Thermal Maximum 1, ETM1) 

and reached a Cenozoic maximum at the Early Eocene Climatic Optimum (EECO) 

between 53 and 52 million years ago (Berggren et al., 1998; Woodburne et al., 2009a; 

Chew and Oheim, 2013; Fig. 2.1).  

Studies of fossil plants and animals of the Western Interior of North America 

have suggested that this region was tropical to sub-tropical during the early Paleogene, 

reflected in the high abundance and diversity of small-bodied mammalian insectivores 

and frugivores and the prevalence of frost-intolerant plants, such as palms, cycads, and 

treeferns (Wing and Greenwood, 1993; Wing, 1998b). Specifically, analyses of isotopic 

18O values of soil carbonate, soil hematite, and enamel – a proxy for mean annual 

temperature – and leaf margin analyses have shown that temperature steadily increased 

from 60 Ma to 55.8 Ma (Wa0), decreased from the end of Wa0 to the end of Wa4 (ca. 

54.3 Ma), and again rose to its highest point at the EECO, with suboptima at the Eocene 
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Thermal Maximum 2 (ETM2 or Hypothermal1, H1) and Hypothermal 2 (H2) in Wa5 

(Alroy et al., 2000; Koch et al., 2003; Wing et al., 2005; Woodburne et al., 2009a; Secord 

et al., 2012; Chew and Oheim, 2013). Data on floral morphology, specifically leaf area, 

indicate that mean annual precipitation generally mirrors broad patterns of mean annual 

temperature in that aridity increased as temperature decreased from Wa0 to Wa4 (Wilf, 

2000; Woodburne et al., 2009a).  

Abrupt increases in mean annual temperature during this time have been linked to 

the depletion of levels of carbon stable isotope-13 (13C) in the oceanic-atmospheric 

system, or negative carbon isotope excursion events (CIEs) (Yans et al., 2006; Secord et 

al., 2012). As such, ´ 13C-levels were relatively high throughout the early Paleogene but 

temporarily plummeted at the Paleocene-Eocene boundary, ETM2, and H2 (Abels et al., 

2012). These dramatic declines in ´ 13C have been attributed to the release of 13C-poor 

(isotopically light) oceanic methane hydrate resulting from underwater volcanic activity 

or changes in oceanic circulation6, which temporarily decrease ´ 13C concentrations in 

marine environments (Rea et al., 1990; Corfield and Norris, 1998; Tripati and Elderfield, 

2005; Abels et al., 2012). This influx of methane hydrate into the global carbon cycle 

increases overall levels of 13C-depleted atmospheric CO2
7, and it has been suggested that 

this mechanism may be responsible for initiating greenhouse effects and associated 

global warming (Rea, 1998; but see Tripati and Elderfield, 2005).  
                                                 
6 However, Beck et al. (1998) suggest that the India-Asia collision and consequent 
Himalayan orogeny increased global carbon levels by decreasing the rate of organic 
carbon burial through the destruction of carbon sinks in continental margins and the 
erosion of organic carbon from marine strata.  
7 Evidence of an atmospheric link in ´ 13C between marine systems and terrestrial soils, 
plants, and animals explains the detection of the CIE in both deep sea and terrestrial 
sediments (Koch et al., 2003).   
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The carbon isotope excursion at the Paleocene-Eocene boundary has thus been 

linked to the PETM, an increase in mean annual temperature of approximately 5-10°C in 

the span of less than 60 kya, concentrated poleward of 40˚ latitude (Beck et al., 1998; 

Berggren et al., 1998; Sloan and Thomas, 1998; Secord et al., 2012). The PETM has been 

associated with a reduction in latitudinal temperature gradients, a decrease in the intensity 

of atmospheric circulation (e.g., wind velocities), a more even latitudinal rainfall 

distribution, and increased continental precipitation (Clyde and Gingerich, 1998; Corfield 

and Norris, 1998; Rea, 1998; Sloan and Thomas, 1998; Wilf, 2000; Wing et al., 2005; 

Yans et al., 2006; McInerney and Wing, 2011; Abels et al., 2012; Secord et al., 2012; 

Kraus et al., 2013; Snell et al., 2013). Such a global climatic event would be expected to 

impact the biota, and the PETM has been correlated with marine planktonic and benthic 

foraminifera extinctions in several regions of the world as well as significant turnover in 

terrestrial faunas (Rea et al., 1990; Berggren et al., 1998; Clyde and Gingerich, 1998; 

Bowen et al., 2001; Gingerich, 2003; Tripati and Elderfield, 2005). In addition, studies 

have shown that mammalian body size was inversely related to temperature during the 

PETM, following the expectations of Bergmann’s rule (Bown et al., 1994; Gingerich, 

2003, 2004; Secord et al., 2012). As such, mammalian dwarfism occurred during Wa0, 

and as the circulation of carbon after its dispersal quickly restored the ´ 13C-level to its 

previous value (accounting for the rapid nature of the excursion), body sizes subsequently 

increased (Clyde and Gingerich, 1998; Secord et al., 2012).  

On the other hand, the carbon isotope excursions linked with ETM2 and H2 do 

not seem to have directly affected faunal turnover, as Biohorizon B, associated with a 

major mammalian turnover event, precedes these hyperthermals (Woodburne et al., 
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2009a; Abels et al., 2012; Chew and Oheim, 2013). However, it has been suggested that 

diversity was lower and mean mammalian body mass was higher during the cooling and 

drying trend from Wa1 to Wa4, further supporting the link between climatic change and 

faunal community structure (Clyde and Gingerich, 1998; Chew and Oheim, 2013; 

although see Woodburne et al., 2009a). 

Climatically driven shifts in the configuration of landmasses also affect species 

distributions, as barriers can be formed and removed through the rise and fall of sea 

levels. In addition, corridors composed of similar habitats can be created and dissolved 

by changes in local and global climatic variables (e.g., the latitudinal expansion of 

tropical habitats) (Lieberman, 2000; Lomolino et al., 2006). In fact, the continental 

structure at the end of the Paleocene and beginning of the Eocene had significant 

consequences for mammalian biogeography at this time, including the distribution of 

euprimates. For example, in addition to euprimates, the onset of the Eocene marked the 

appearance of perissodactyls, artiodactyls, and hyaenodontid creodonts in North America 

(Beard, 1998; Beard and Dawson, 1999; Alroy et al., 2000). 

The early Paleogene was characterized by a remnant geographic division between 

the Laurasian (North America, Europe, and Asia) and Gondwanan (Australia, Africa, 

South America, and India) landmasses, and although the southern continents were largely 

separated from one another, this was not the case in the northern hemisphere (Adams, 

1981; Holroyd and Maas, 1994; Miller et al., 2005; Smith et al., 2006). In fact, evidence 

has shown that mammalian dispersal between Holarctic continents was extensive 

(Russell, 1975; Adams, 1981; Holroyd and Maas, 1994; Miller et al., 2005). For example, 

late Paleocene-early Eocene Beringia has been denoted as a filter bridge, selectively 
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allowing passage of certain taxa but not others, and dispersals of a variety of mammals 

from Asia to North America are well-established (e.g., Simpson, 1968; Beard, 1998, 

2006; Beard and Dawson, 1999). Furthermore, although the Turgai straits separated 

western and eastern Eurasia and there was not a continuous land bridge joining Europe 

and North America, there was enough connectivity among these northern landmasses for 

migrations to occur (McKenna, 1975; Russell, 1975; Adams, 1981; Smith et al., 2006). 

Thus, although it is unclear which circum-Holarctic route was used most frequently by 

early Paleogene mammals, dispersals to North America occurred via both eastern 

(through Beringia) and western (through Greenland) routes (Hooker, 1998; Beard and 

Dawson, 1999). 

 On the other hand, there is a growing consensus that euprimates originated in 

North America via a westward migration (Ni et al., 2005; Smith et al., 2006; Beard, 2008; 

although see Beard and Dawson, 1999; Beard, 2002; Beard, 2006). This stems from the 

biostratigraphic correlation of species of Teilhardina in Asia, Europe, and N. America, 

which has shown that Asian T. asiatica appeared earlier than European T. belgica, which 

itself originated before North American T. brandti and T. magnoliana (Smith et al., 2006; 

Beard, 2008; Rose et al., 2011). As Teilhardina is at the base of the omomyid clade, this 

chronology suggests that primate dispersal from Asia to North America progressed from 

east to west via Europe. A phylogenetic analysis of Teilhardina by Ni et al. (2005) 

further supports this conclusion by noting the affinity of T. asiatica to T. belgica and the 

sister species relationship of T. americana to the T. asiatica-T. belgica clade. This 

dispersal was presumably initiated by the PETM as well, as climatic warming, and the 

associated expansion of subtropical and tropical habitats to higher latitudes, would have 
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allowed dispersal along a Holarctic route from Asia to Europe across the Turgai Straits 

and from Europe to North America (McKenna, 1975; Russell, 1975; Maas and Krause, 

1994; Clyde and Gingerich, 1998; Gunnell, 1998; Alroy et al., 2000; Smith et al. 2006). 

Thus, climatic change was ultimately responsible for the origination of adapids and 

omomyids in North America; however, the possible role that the biotic environment 

played in the evolution of euprimates after their arrival is the topic of the next section. 

BIOTIC INFLUENCES ON THE EVOLUTION OF EARLY PALEOGENE 

MAMMALIAN COMMUNITIES 

Competition, the focus of this section, is defined as a mutually negative 

interaction among species or populations due to the presence of a shared, limited resource 

(Tilman, 1982; Tokeshi, 1997, 1999; Holt, 2009). As such, competitive environments are 

defined by species interactions, and many models of interaction (which include "non-

interactions") at the macroevolutionary level have been described (e.g., Van Valen, 1965; 

Cracraft, 1985; Benton, 1996, Schluter, 1996; Ricklefs, 2010). As noted in Chapter 1, 

competitive interactions in the fossil record are identified via niche overlap, and thus 

these models of interaction are characterized by specific patterns of niche separation or 

overlap between invasive (in this case, euprimate) and incumbent (non-euprimate 

potential competitor) taxa. 

The Ecological Niche 

 The ecological niche, originally proposed by Grinnell (1917a,b), has evolved to 

include several different conceptualizations8, and perhaps one of the most frequently 

                                                 
8 McInerny and Etienne (2012a,b,c) provide an excellent discussion of the profusion of 
niche interpretations. 
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cited is that of the “functional (or Eltonian)” niche, which defines a niche as the 

ecological role, or place, of an organism (or taxon) within its community (Elton, 1927). 

This ecological role can be partitioned into various ecological axes, corresponding to 

particular limited resources in the physical world (i.e., Hutchinson’s “biotope”) 

(Hutchinson, 1978; Arthur, 1987; Colwell and Rangel, 2009; Nosil and Harmon, 2009; 

McInerny and Etienne, 2012b). If these ecological values are instead attributed to the taxa 

themselves, as Hutchinson proposed, and are thus reciprocal to the external environment 

in which they live, overlap of the values of taxa along their ecological axes is a 

precondition of resource competition (Hutchinson, 1959, 1965; Arthur, 1987; Colwell 

and Rangel, 2009; McInerny and Etienne, 2012b). In addition, niches have been 

described as inclusive of the entire range of ecological values and resources a taxon can 

theoretically express or use, respectively (the “fundamental niche”) or as inclusive of the 

actual ecological values a taxon manifests (the “realized niche”) (Patten and Auble, 

1981). In this study, the concept of the Hutchinsonian, realized niche, which is intrinsic to 

a taxon, will be employed. 

Extant mammalian niches have been modelled and characterized in a multitude of 

ways, both conceptually and in practice, and factors such as food resource and substrate 

use and availability, mechanisms of feeding and locomotion, habitat preferences and 

geographic distributions, physiological requirements, and seasonal patterning have been 

considered (Porter and Dueser, 1982; Fleagle and Reed, 1996; Ganzhorn, 1999; Ricklefs, 

2010). The degree of similarity in single or multiple ecological factors has consequently 

been used to resolve the extent to which niche differentiation as a result of competitive 

interactions has influenced community composition.  
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In the mammalian fossil record, niches are defined almost exclusively by 

ecomorphological traits (morphological features closely correlated with ecological 

characteristics), representing the most fundamental elements of a mammalian ecological 

niche – diet, body mass, activity pattern, and locomotion (e.g., Van Valen and Sloan, 

1966; Krause, 1986; Maas et al., 1988; Janis et al., 1994; Van Valkenburgh, 1994; 

Hunter, 1997; Dewar, 2008; Friscia and Van Valkenburgh, 2010). For example, 

ecomorphological characters of extant groups have also been used to generate ecological 

niche spaces, or ecospaces, in order to assign fossil specimens to specific niches (Morlo, 

1999; Prevosti et al., 2013). However, these latter methods are not effective when the 

morphology of fossil species differs substantially from extant analogs or when related 

extant taxa are unknown.  

Alternatively, ecomorphological traits can be used to represent a species’ niche as 

a multidimensional hypervolume positioned within a larger "niche space," in which each 

dimension represents a particular ecomorphological characteristic (Hutchinson, 1957, 

1965). Originally proposed in the primate communities literature by Fleagle and Reed 

(1996), previous studies have employed multivariate dimensionality reduction 

techniques, most commonly principal component or principal coordinates analysis, to 

reconstruct niches as multidimensional individually analyzable units (e.g., Van 

Valkenburgh, 1994; Fleagle and Reed, 1996, 1999; Gilbert, 2005; Friscia and Van 

Valkenburgh, 2010). The use of this niche concept in the evaluation of competitive 

interactions is discussed at the end of this chapter. 

 

 



  17 

The dietary niche. 

Teeth are the point of intersection between an organism and its dietary 

environment, and the identification of mammalian dietary niches in the fossil record 

requires (and almost always incorporates) an understanding of the relationships between 

dietary behavior and dental morphology in extant mammals (e.g. Butler, 1973; Krause, 

1986; Maas et al., 1988; Hunter, 1997; Morlo, 1999; Dumont et al., 2000; Jernvall et al., 

2000; Kirk and Simons, 2001; Strait, 2001; Dewar, 2003; White, 2006; Friscia and Van 

Valkenburgh, 2010). The association between tooth shape and general feeding habits is 

well-supported, and a great deal of attention has been paid to the congruence of 

postcanine, particularly molar, anatomy with dietary repertoire in the mammalian 

literature. As a result, and due to the abundance of these elements in fossil assemblages 

and their importance in fossil taxonomic identification, this study was conducted on first 

and second mandibular molars, which will be the focus of the following discussion.  

Among mammals, a significant amount of variation in molar form can be 

explained by their functional demands, which relate to the material properties of dietary 

items and the corresponding manner in which these items are processed by the 

masticatory system (Kay and Hylander, 1978; Lucas 1979; Strait, 1991, 1997; Lucas and 

Cortlett, 1992; Strait and Vincent, 1998; Evans and Sanson, 2006). In a broad sense, 

crest-shearing, apposition of cusps and basins, and in some taxa, lateral movements along 

cusp tips, are most significant in maximizing the breakdown of food particles, the 

fundamental objective of chewing (Luke and Lucas, 1983; Lucas, 1979, 2006; Ungar, 

2002; Evans, 2003; Evans and Sanson, 2003, 2005). Accordingly, the macroscopic 

structure of features related to these functions varies across the dietary spectrum.  
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For instance, longer, laterally concave, sharper crests, and high, pointed, angular, 

reciprocally concave cusps – i.e., high topographic relief – are thought to increase 

efficiency in piercing and shearing for crack initiation and propagation, respectively, in 

soft, tough diets, characteristic of insectivory (Kay, 1973, 1975b; Kay and Hiiemae, 

1974; Butler, 1983; Kay and Covert, 1984; Lucas and Luke, 1984; Rensberger, 1986; 

Strait, 1991, 1993a,b, 1997; Popowics and Fortelius, 1997; Hiiemae, 2000; Lucas and 

Peters, 2000; Ungar, 2002; Evans, 2003; Evans and Sanson, 2003, 2005; Lucas, 2006; 

Berthaume et al., 2013). In contrast, round, flat, bulbous cusps and large, shallow basins 

– i.e., low topographic relief – are most effective in crushing and grinding either brittle, 

stiff plant material (e.g., seeds, nuts) or plastic, turgid ripe fruit (Butler, 1972, 1983; 

Rensberger, 1973; Kay and Hiiemae, 1974; Seligsohn, 1977; Kay and Covert, 1984; 

Maier, 1984; Yamashita, 1996; Hiiemae, 2000; Lucas and Peters, 2000; Ungar, 2002; 

Evans, 2006; White, 2009). Morphological parameters developed to quantify two- and 

three-dimensional functional aspects of molar form are diverse and have been conducted 

on samples of variable phylogenetic breadth and dietary specificity. Notably, the 

innovative metrics and models developed to characterize overall molar complexity 

without the use of landmarks, and thus reference to cusp and crest homologies (e.g., 

dental topographic analysis, geodesic distance analysis, orientation patch count, relief 

index, Dirichlet normal energy), exhibit significant potential in the ability to reconstruct 

diets in the fossil record (Ungar, 2007; Boyer, 2008; Boyer et al., 2010, 2011, 2012; 

Bunn et al., 2011; Joshi et al., 2011; Godfrey et al., 2012; Evans, 2013; Guy et al., 2013; 

Ledogar et al., 2013). 
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Still, none of these studies have employed dietary classifications that are 

sufficiently fine-grained to compare dietary regimes across entire communities. This is 

particularly important in evaluating dietary competition because dietary niche overlap 

occurs among species within major dietary categories (e.g., frugivory). It is possible that 

current methods are unable to detect associations between molar morphology and dietary 

niches at this level of precision; however, molar measurements designed to encompass 

functionally related aspects of molar form were evaluated in this study to determine if a 

relationship between finer dietary classifications and molar form could be discerned. 

Models of Competitive Interactions 

Much of the previous research on extant primate competition has focused on 

interactions or ecological partitioning within Primates as an isolated group (e.g., Dunbar 

and Dunbar, 1974; Schreier et al., 2009; Nijman and Nekaris, 2010; Ramdarshan et al., 

2012), although primates almost certainly interact with non-primate species (Robinson 

and Redford, 1986; Ganzhorn, 1999). Relatively few studies have recognized the 

importance of examining interactions within guilds and mammalian communities, of 

which primates are only one component (e.g., Smythe, 1986; Shanahan and Compton, 

2001; Sushma and Singh, 2006; Beaudrot et al., 2013b,c). In general, there is support for 

more intense or direct competition among related species, likely due to the effects of 

phylogenetic niche conservatism, or the tendency of closely related species to inhabit 

similar niches due to the shared inheritance of traits from a common ancestor (Wiens, 

2011). However, the influence of competition is not limited to interactions within 

taxonomic groups (Losos, 2008). This is particularly relevant when considering the 

evolutionary history of living communities, during which primate diversity and 
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composition changed over the course of millions of years. Specifically, the ecological 

significance of interactions between primate and non-primate species was likely greater 

during time periods when primates were less diverse and primate communities were 

composed of fewer related species, namely at the origins of major clades (e.g., earliest 

Eocene adapids and omomyids, late Oligocene-early Miocene platyrrhines, European 

early-middle Miocene catarrhines). 

Although competition as a biological process has a strong foundation in 

neoecological studies (e.g., Connor and Simberloff, 1979; Grant, 1986; Elton, 2004; 

Miljutin and Lehtonen, 2008; Calede et al., 2011; Esselstyn et al., 2011; Kamilar and 

Ledogar, 2011), the application of competition theory to fossil communities has been 

relatively limited (Abrams, 1990; Masters and Rayner, 1993). As discussed above, much 

of this disparity lies in the difficulty of defining niche overlap in extinct taxa, which, 

along with inverse patterns of diversity and abundance (the “double-wedge pattern”) and 

similar biogeographical and temporal distributions, is necessary for determining the 

presence of competition in paleocommunities (Cifelli, 1981; Benton, 1990, 1996; 

Rosenzweig and McCord, 1991; Sepkoski, 1996; Van Valkenburgh, 1999, Butler et al., 

2009a,b; see below). For an invasion radiation, such as the origination of euprimates in 

North America, only three main types of competitive interaction are possible: non-

competition, competitive displacement, and competitive coexistence (Benton, 1990). It 

should be noted that the intensity of competition is affected by body size, trophic 

position, and the degree of niche separation between competitors. In this study, 

competitive interactions were examined within a single mammalian guild, minimizing or 

eliminating variation in – and thus the influence of – body mass and trophic position. 
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The first model, non-competition, refers to the absence of incumbent taxa, which, 

if they were present at the point of origination, would be in direct competition with the 

invasive taxon. As a result, the invasive taxon exploits an “empty niche” or “open 

ecospace,” and this scenario can take two forms. Non-replacement (“expansion 

radiation”; Benton, 1990) occurs when an invasive taxon enters a niche that had been 

consistently unoccupied within the community. Post-extinction replacement (Benton, 

1996) (variably referred to as “opportunistic replacement” (Krause, 1986), “incumbent 

replacement” (Rosenzweig and McCord, 1991)) is similar to the model of non-

replacement except that the open niche is newly available due to recent extinctions in the 

community. In other words, ecologically similar incumbent taxa inhabited these niches 

just before the invasive taxon arrived.  

 The second model, competitive displacement (Krause, 1986) (“competitive 

replacement” (Benton, 1987), “taxonomic displacement” (Maas et al., 1988; Schluter and 

McPhail, 1993)), refers to strong competition among taxa. The most common criterion 

for the identification of competition between species in the fossil record is the 

demonstration of the “double-wedge pattern” of diversity or abundance. This pattern 

exhibits an inverse relationship in the diversity or abundance profiles of competing taxa 

(e.g., between invasive and incumbent taxa) (Benton, 1987; Sepkoski, 1996). Thus, if 

competitive displacement occurred between two fossil taxa, the diversity or abundance of 

the more “successful” competitor would have increased as the diversity or abundance of 

the less “successful” competitor decreased. It is also possible that competition may result 

in evolutionary niche divergence or “character displacement,” in which the trait 

morphologies of species diverge in response to competition. In this scenario, temporal 
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morphological change (in this study, molar shape change over time) will occur in the 

invasive or incumbent taxon (or both) such that niche overlap decreases. Thus, 

competition will be reduced and may eventually cease over time (Brown and Wilson, 

1956; Roughgarden and Diamond, 1986; Werdelin, 1996). Furthermore, niche divergence 

may occur in the absence of the double-wedge pattern.  

Of course, competition can also occur within species, producing niche divergence 

between populations, a mechanism for taxonomic diversification (Schluter, 1994; Nosil 

and Harmon, 2009). This “competitive speciation” is a form of sympatric speciation in 

which competition among conspecifics results in disruptive selection (Rosenzweig, 1995; 

Pianka, 2004). In this scenario, diversification is driven by interactions among individuals 

in contrast to other forms of speciation (e.g., allopatric) that do not require mechanisms 

that rely on biotic interactions (Rosenzweig, 1995). This interaction requires that 

“ecological opportunities,” or parts of a habitat that are potentially “useable” by species 

(i.e., open niches), be present in order for competitive speciation to occur (Rosenzweig, 

1995). In addition, as the number of species becomes greater within a community, 

ecological opportunities will decrease, and competitive speciation will diminish. As a 

result, it has been suggested that the speciation rate per species will decrease as diversity 

increases (Rosenzweig, 1995). Rosenzweig (1995) also noted, however, that ecological 

opportunities for one species can derive from other species, predicting a positive 

feedback loop between diversity and speciation (also see Vermeij, 1994). Given the 

increase in euprimate diversity over the course of the Wasatchian within a single site (in 

this study, the Bighorn Basin), niche overlap, and subsequent reconstructions of 

competition, among euprimates will also be examined as a causal factor in their radiation. 
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 As discussed earlier in this chapter, a taxon’s response to predation or climatic 

changes can resemble patterns of competitive displacement in macroecological studies. 

For example, a decrease in the abundance of an incumbent taxon relative to an invasive 

taxon may be the result of the former’s greater susceptibility to a new predation or 

climatic pressure (Janis, 1989; Benton, 1990; Sepkoski, 1996; Abrams, 2000; Schweiger 

et al., 2008). In this case, the observed diversity or abundance pattern or evolutionary 

niche divergence has no bearing on the interaction between the incumbent and invasive 

taxa. However, if it can be demonstrated that changes in the niches or abundance profiles 

of competitors are not correlated with climatic change or predator diversity or abundance, 

it can be concluded that niche shifts are the result of competitive displacement. Finally, it 

has been demonstrated in extant studies that competitive interactions can either be 

mediated or strengthened by an abiotic environmental change that affects both 

competitors (Northfield and Ives, 2013). In both scenarios, either character displacement 

or an inverse pattern of abundance will be evident; however, in the fossil record, the 

relative effects of climatic change on individual taxa that are adapted to similar 

environments (i.e., members of a mammalian guild) cannot be known. Thus, it was 

determined that the most conservative approach to the identification of competitive 

displacement was to consider it as an alternative to climate-induced changes. In other 

words, if climatic change is correlated with taxonomic niche divergence or a double-

wedge pattern, competition was not immediately invoked as the causal mechanism. 

  The third model is competitive coexistence (Tokeshi, 1999) (“diffuse 

competition” (Van Valen, 1980)) in which the invasive and incumbent species occupy the 

same niche (and thus there is the potential for competitive displacement), but neither the 
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double-wedge pattern nor niche divergence is observed. Competitive coexistence has 

been documented in extant studies and has been ascribed to partial niche separation, the 

presence of only intermittent competition such that neither species is permanently 

affected, or sustained low-intensity competition (Van Valen and Sloan, 1966; Connell, 

1980; Abrams, 1986, 1987). 

Competitive Interactions Among Paleogene Mammals 

Most research on competitive biotic interactions in the fossil record has relied 

solely on the detection of inverse patterns of diversity and abundance to infer competition 

over large geographic and temporal scales (e.g., Van Valen and Sloan, 1966; Gould and 

Calloway, 1980; Cifelli, 1981; Van Valkenburgh, 1999; Butler et al., 2009a,b). However, 

there are studies of competition among Paleogene mammals that have additionally 

included an examination of similar resource use and paleogeographic distributions (e.g., 

Krause, 1986; Maas et al., 1988; Hunter, 1997; Morlo, 1999; Dewar, 2003; Friscia and 

Van Valkenburgh, 2010).9 These studies interpreted cases of high levels of 

ecomorphological similarity among fossil taxa, reconstructed via known relationships 

between ecological and morphological traits in related extant mammals, as evidence of 

shared resource use.  

For example, body mass distributions and dental trait correlations have been 

compared among purported competitors to assess similarity in paleobiology, or niche 
                                                 
9 Maas et al. (1988) note that identification of competitive displacement in the fossil 
record requires that competing taxa be geographically separated prior to competition. 
This is based on the supposition that resource limitation should prevent competitors from 
evolving sympatrically. Although changes in resource availability can alter the nature of 
the competitive interaction between sympatric taxa, the scenario required by Maas et al. 
(1998) certainly characterizes the origination of Wa0 adapids and omomyids in North 
America. 
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overlap (Krause, 1986; Maas et al., 1988). In subsequent studies, the representation of 

ecomorphological characteristics as dimensions of a multidimensional niche space, as 

discussed previously, was adopted as a means to identify niche overlap. Using values of 

ecomorphological features, taxa were plotted within a principal component, principal 

coordinate, or non-metric multidimensional scaling (NMDS) space. The occupation of 

similar regions of this space, or visual overlap of reconstructed two-dimensional “niche” 

polygons (akin to Hutchinsonian hypervolumes), among potential competitors was used 

as a proxy for niche overlap, a precondition of competition (Hunter, 1997; Morlo, 1999; 

Friscia and Van Valkenburgh, 2010; see McGowan and Dyke, 2007; Brusatte et al., 2008 

for examples of this method in non-mammalian taxa). However, the lack of an associated 

statistical test makes the identification of niche overlap somewhat ambiguous in cases 

where two-dimensional coordinates or polygons are in close approximation, and this is 

often the case when examining likely competitors, as these are assumed to exhibit similar 

ecomorphologies. In addition, this approach rarely enables an analysis of the total amount 

of variation (i.e., all aspects of the ecological niche) present in the sample because only 

two, or perhaps three, dimensions can be considered simultaneously. A method for 

identifying niche overlap, and thus competitive interactions, that attempts to address 

these restrictions was used in this study and will be described in Chapter 5. 
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Fig. 2.1. Plot of mean annual paleotemperature across the time intervals examined in this 
study. Redrawn and modified from Woodburne et al. (2009a). 
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CHAPTER 3: HYPOTHESES AND PREDICTIONS FOR THE EARLY 

EUPRIMATE COMPETITIVE ENVIRONMENT 

The primary objective of this study was to determine which of three models of 

dietary competitive interaction defined the origination and early diversification of 

euprimates in North America. These competition models are: (1) the absence of dietary 

competition (“non-competition”), (2) the presence of strong dietary competition 

(“competitive displacement”), and (3) the presence of weak, or diffuse, dietary 

competition (“competitive coexistence”). 

Each of these three hypotheses corresponds to a distinct model of competitive 

interaction (outlined in Chapter 2) between invasive (euprimate) and incumbent (non-

euprimate) taxa and is characterized by a unique temporal pattern of dietary niche overlap 

between euprimates and their potential competitors (Fig. 3.1). As such, the following 

hypotheses are mutually exclusive and account for all possible patterns of dietary niche 

overlap over time. In addition to evaluating these hypotheses at the point of euprimate 

origination in North America in Wa0, the model of competitive interaction pertaining to 

the origination, or first appearance date (FAD), of each subsequent euprimate taxon can 

be assessed; thus, in the discussion below, “euprimate” refers to any euprimate taxon 

during the time period examined (Clarkforkian 2-Wasatchian 5; see Fig. 1.1). The 

hypotheses and predictions below are outlined in Table 3.1. 

HYPOTHESIS 1: NON-COMPETITION 

The first hypothesis of this study is that euprimate origination occurred in the 

absence of dietary competition, or non-competition. Non-competition can occur as the 

result of a longstanding absence of taxa occupying the original euprimate niche (non-
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replacement) or as the result of recently available dietary niches due to the extinction of 

species that previously occupied the euprimate dietary niche (post-extinction 

replacement). Non-replacement predicts that during the time interval just prior to the 

euprimate first appearance date (FAD), no non-euprimate dietary niches will overlap the 

dietary niche of later euprimates. Furthermore, at the euprimate FAD, no non-euprimate 

dietary niches will overlap the euprimate dietary niche (i.e., the euprimate niche will be 

exclusive to euprimates). Post-extinction replacement, on the other hand, predicts that 

during the time interval just prior to the euprimate FAD, the dietary niches of one or 

more non-euprimates will overlap the dietary niche of later euprimates; however, at the 

point of the euprimate FAD, these non-euprimates will be absent, and their dietary niches 

will be vacant. 

HYPOTHESIS 2: COMPETITIVE DISPLACEMENT 

The second hypothesis, competitive displacement, states that euprimate 

origination occurred in the presence of direct, strong dietary competition with non-

euprimates. This hypothesis predicts that during the time interval immediately preceding 

and including the euprimate FAD, the dietary niches of one or more non-euprimates will 

overlap the euprimate dietary niche. Following euprimate origination, competitive 

displacement can be identified by either an inverse relationship between euprimate and 

non-euprimate abundance or diversity profiles (the “double-wedge” pattern) or by the 

divergence of euprimate and non-euprimate dietary niches. Moreover, these changes in 

the abundance or diversity profiles or niche divergence will not be associated with 

changes in climate or an increase in predator origination rate or relative predator 

abundance.  
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HYPOTHESIS 3: COMPETITIVE COEXISTENCE 

The third hypothesis is that euprimate origination occurred in the presence of 

dietary competition with non-euprimates, but this competition was weak and not 

sufficiently acute to cause competitive displacement, resulting instead in competitive 

coexistence. In this study, support of this hypothesis could also be evidence of ecological 

niche separation between euprimate and non-euprimate taxa along one or more non-

dietary niche axes. This hypothesis predicts that during the time interval immediately 

preceding and including the euprimate FAD, the dietary niches of one or more non-

euprimates will overlap the euprimate dietary niche. During the time intervals following 

the euprimate FAD, the dietary niches of euprimates and non-euprimates will not 

significantly diverge over time nor will there be a negative correlation between euprimate 

and non-euprimate abundance or diversity profiles. Finally, changes in the abundance 

profiles of euprimates and non-euprimates whose niches overlap will not be associated 

with changes in climate or an increase in predator origination rate or relative predator 

abundance. 

Given that members of the Eocene euprimate competitive guild are at least partly 

arboreal and of generally similar body mass, it is unlikely that predation by a single taxon 

would affect one of these species exclusively. In other words, it would not be expected 

that a predator or group of predators would prey on some guild members and not others. 

However unlikely, this scenario cannot be excluded outright particularly if an increase in 

predator abundance or diversity is negatively correlated with the abundance or diversity 

of a non-euprimate taxon. Thus, predation will be considered post hoc in cases of niche 

overlap between euprimate and non-euprimate taxa.  
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CHAPTER 4: STUDY SAMPLES AND DATA COLLECTION 

Before each of the competition hypotheses outlined in Chapter 3 could be 

evaluated in the early Paleogene euprimate fossil record, it was necessary to establish a 

clear and consistent relationship between molar morphology and diet across extant 

euprimate competitive guilds. Thus, the nature of the diet-dentition association was first 

examined using an extant sample comprising two distinct mammalian guilds, and these 

associations were then used in dietary niche reconstructions of taxa within the fossil 

mammalian sample. The composition of these two samples – extant and fossil – as well 

as the data collection methods applied to them are described here. 

SAMPLE COMPOSITION 

Extant Sample 

 The extant sample comprised first and second mandibular molars (m1 and m2, 

respectively10) of adult individuals derived from two mammalian communities: Balta, 

Peru and the island of Mindanao, Philippines. First mandibular molars were only 

included in a subset of the sample for the purpose of demonstrating the effectiveness of 

either molar in dietary reconstruction (see “Chapter 5, Comparison of First and Second 

Mandibular Molars”). In order to closely approximate natural guilds, and thus capture the 

dietary overlap among sympatric species, these samples were derived from either a small 

biogeographic region (Mindanao, Philippines) or a single locality (Balta, Peru). Both 

samples consisted of relatively small-bodied (less than 5 kg), at least partly arboreal 

species that have diets known to broadly overlap with the primates at these sites (i.e., 

                                                 
10 Herein, the permanent mandibular dentition will be denoted with a lower case letter 
(e.g., m1, m2), and the permanent maxillary dentition with an upper case letter (e.g., M1, 
M2). 
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frugivorous and insectivorous species11). Given the wide taxonomic range of species 

included in this study and the primary importance of creating a diverse sample (both 

taxonomically and dietarily), a minimum number of 6 individuals (3 male, 3 female) per 

species was deemed sufficient to accommodate intraspecies variation. This number is 

comparable to sample sizes used in similar studies of diet-dentition relationships across 

species (e.g., Strait, 1993a; Boyer, 2008; Bunn et al., 2011). However, the importance of 

comparing all possible species from these sites necessarily limited the number of 

specimens and resulted in the inclusion of fewer measured specimens for some species 

(see Appendix 1 and 2). 

The Balta sample is composed of 67 species representing 12 families (N=263) 

(Table 4.1; see Appendix 1), and all specimens were housed at the Louisiana State 

University Museum of Natural Science (Baton Rouge, LA). The Mindanao sample 

comprised 46 species representing 12 families (N=202) (Table 4.2; see Appendix 2), and 

specimens were housed at the Field Museum of Natural History (Chicago, IL) and the 

National Museum of Natural History (Washington, DC). Alpha taxonomy of all 

specimens follows Wilson and Reeder (2005). Only wild-captured specimens with fully 

erupted, relatively unworn permanent dentitions were included. 

 

 

                                                 
11 A single folivorous species, Cynocephalus volans, was included in the Mindanao 
sample. Dermopterans were not excluded from the study sample, as they constitute one of 
two mammalian orders that share a close phylogenetic relationship with primates 
(Euprimates, Scandentia, and Dermoptera compose the grandorder Euarchonta). In 
addition, their inclusion facilitates comparisons of the results presented here with those of 
previous studies of primate diet-dentition relationships, which also incorporated 
scandentians and dermopterans (e.g., Boyer, 2008; Bunn et al., 2011). 
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Fossil Sample 

To best reconstruct true competitive guilds, the fossil sample comprised 

specimens collected from a common geological formation (Willwood Formation) at a 

single site, the Bighorn Basin, Wyoming. This sample was divided into six time intervals 

(see Fig. 1.1; Chapter 6), defined by sub-NALMAs, spanning the time period from 

Clarkforkian (Cf) 2 to Wastachian (Wa) 5 (56.10-53.91 Ma; Lofgren et al., 2004; Chew 

and Oheim, 2013). Communities and guilds cannot be known with absolute certainty in 

the fossil record, but the restriction of the units of analysis in this study to a single 

geological formation at a single site (a proxy for sympatry) and to narrow time intervals 

(a proxy for synchronism) minimizes the effects of time- and geographic-averaging, 

while maintaining adequate sample sizes necessary to test the hypotheses herein.  

Only those taxa with habitat or substrate use similar to euprimates, as 

reconstructed in previous work, were included, as this factor affects the identification of 

direct dietary competition (Krause, 1986; Maas et al., 1988). For those taxa in which 

postcranial, incisor, canine, or premolar morphologies were known, highly derived 

structures previously shown to be indicative of specific dietary adaptations were 

considered. For example, if a taxon’s incisor or postcranial morphology suggested a 

highly specialized diet or method of food procurement such that competition with 

euprimates for dietary resources was likely not substantial, this taxon was excluded as a 

potential significant euprimate competitor and its role in the euprimate dietary 

competitive environment was considered minimal (e.g., apatemyids; see Chapter 6). 

However, due to the fact that behavioral reconstructions of fossil species may be 

incomplete, this criterion was applied conservatively and evaluated post hoc.  
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Specimens were derived from the northern (specifically, the Polecat-Bench-Sand 

Coulee area) and central Bighorn Basin. Due to the geographic-geologic patterning of 

this area, the majority of specimens from Cf2 to Wa0 were derived from localities in the 

northern Bighorn Basin. Unfortunately, the point from which the stratigraphic sections of 

the northern and central Bighorn Basin have been measured (the K-T boundary and base 

of the Willwood Formation, respectively) differs, and as a result, specimens from 

different areas could not be assigned directly to common meter levels. Instead, specimens 

were each designated to a sub-NALMA based on the stratigraphy defined in Gingerich 

and Clyde (2001). For this reason, Wa1 and Wa2 faunas were combined into a single 

group (Wa1-2) to coincide with the stratigraphic correlations outlined in this source. It is 

noted that the biostratigraphy of the central Bighorn Basin has recently been reassessed, 

resulting in a reassignment of stratigraphic levels to sub-NALMAs and Biohorizons 

(Chew, 2005, 2009a). Ideally, analyses of the fossil sample would consider both the 

original and updated stratigraphy of the central Bighorn Basin, and this is a venue for 

future work. As a conservative measure, stratigraphic correlations to sub-NALMAs were 

derived from a single source, Gingerich and Clyde (2001), in an effort to minimize 

variation in stratigraphic comparisons between the northern and central Bighorn Basin 

(and thus between the Cf2-Wa0 and Wa1-Wa5 samples). Due to the scarcity of Cf3 

specimens in the sample collections, Cf2 and Cf3 taxa were consolidated into a single 

Clarkforkian (Cf2-3) temporal group. Finally, although the fossil sample includes 

specimens from Wa5, the highest meter level represented is 490M, 35M below the Wa5-

Wa6 boundary, and almost all Wa5 specimens originated from below 420M. Thus, fossil 
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patterns of niche overlap in Wa5 were interpreted as characteristic of only the first part of 

this sub-NALMA. 

As sub-NALMAs represent varying amounts of time (see Fig. 1.1), one may 

question their use as the temporal unit of analysis (e.g., Alroy, 1996). The objective of 

this study was to understand changes in dietary competition in response to community 

dynamics (including faunal turnover), which are intrinsic to biochronologically defined 

time intervals, such as land mammal ages (Woodburne, 2004). Thus, this temporal 

framework is not inconsistent with the questions asked in this study, but it also does not 

dictate that patterns of niche overlap be associated with sub-NALMA transitions in a 

predictable way; i.e., defining time intervals in this manner is not inevitably circular in 

evaluating changes in competition. This is because sub-NALMAs in the Bighorn Basin 

have not been defined by taxa included in this study nor do they correlate with clear 

peaks in first or last appearance dates (FADs or LADs, respectively) of taxa within the 

euprimate competitive guild (Gingerich and Clyde, 2001; Woodburne, 2004). 

Furthemore, there is no clear association between climatic shifts (as measured by mean 

annual temperature and precipitation) and sub-NALMA transitions with the exception of 

the PETM (Woodburne et al., 2009a; Abels et al., 2012; Chew and Oheim, 2013). 

Finally, the analysis conducted on the fossil sample required the presence of at least three 

specimens per taxon per time interval (see Chapter 5), excluding the application of 

temporal binning at a finer scale. Therefore, the use of sub-NALMAs to differentiate 

mammalian communities was considered one of the broadest possible frameworks within 

which patterns of competition could be interpreted. The implications of the use of this 

temporal zonation will be discussed in Chapter 7. 
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The fossil sample comprised 710 mandibular molar specimens, representing 8 

mammalian orders (Table 4.3; see Appendix 3). The Bighorn Basin sample was housed at 

Johns Hopkins University (Baltimore, MD), the National Museum of Natural History 

(Washington, DC), and the University of Michigan Museum of Paleontology (Ann Arbor, 

MI). Taxonomic assignment of individual specimens was determined from museum 

labels and the published literature, and the latter was preferred when the two sources 

conflicted (see Appendix 4 for references used in species- and genus-level assignments). 

Although species-level classifications were available for most specimens, the variability 

in species assignments across sources was considered too great to result in reliable 

comparisons among taxonomic groups across and within time intervals. This variability is 

not unexpected within fossil assemblages, as species identifications can be based only on 

skeletal or dental anatomy, and skeletal and dental elements are not equally represented 

among specimens. In addition, as extant species concepts cannot be directly applied to 

these fauna, criteria for the identification of fossil species differ among taxonomists 

(Chew, 2005; Rose and Bown, 1993). On the other hand, assignment of specimens to 

genera is generally more stable, and analyses were performed at this taxonomic level 

whenever sample size permitted. Furthermore, congeneric species are unlikely to differ in 

dietary regime; thus, the use of genera was deemed appropriate for this study. Familial 

and ordinal taxonomy follows Rose (2006).  

Due to the limited representation of a selected dental (or skeletal) element in 

species across a fossil assemblage and the large sample necessary to conduct a 

community-wide study of this scale, both m1s and m2s were included in analyses of the 

Bighorn Basin specimens. Although m2s alone composed the extant sample, and thus 
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were the basis for subsequent analyses, the validity of using either molar in the 

discrimination of dietary groups is addressed in Chapter 5 (see “Comparison of First and 

Second Mandibular Molars”). 

MORPHOMETRIC DATA COLLECTION 

Specimen Acquisition 

 The method of data collection using microCT scans required the initial molding 

and casting of all specimens. The postcanine mandibular dentition (left side preferred) of 

each extant specimen and either the first or second mandibular molar of each fossil 

specimen was molded using President Jet Affinis microsystem light-body silicone 

elastomer molding compound (Coltene-Whaledent). Before use of the molding 

applicator, this compound was first applied to the specimens using a soft-bristled, fine-

point paintbrush in order to reduce air bubbles in the molds, particularly in the molar 

basins. The entire surface of each tooth crown was molded (i.e., molds extended onto the 

alveolar bone) to incorporate the cemento-enamel junction (CEJ) of each molar 

specimen.  

The edges of each molded specimen (i.e., the most inferior aspects of the mold 

that were in contact with alveolar bone) were then trimmed using a scalpel and micro-

dissecting scissors to eliminate excess molding material to facilitate cast-pouring. A 

polysiloxane molding putty support (Coltoflax, Coltene-Whaledent) was then built 

around each mold so that the base of each specimen was both flat and weighted. Before 

casting, canned air was sprayed into each mold to remove excess debris. Epoxy resin 

casts of each specimen were produced using Epo-Tek 301-1 and were stained gray to 

facilitate the assessment of specimen quality with a stereomicroscope before scanning. To 
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eliminate bubbles during the casting process, the smallest specimens (possessing molars 

that were less than approximately 1 mm2) were first injected with epoxy using a 27-gauge 

needle. In addition, after the epoxy resin was added to the molds, all molds were spun at 

3000 rpm for 2 minutes in an Allegra 21R, Beckman basket centrifuge. 

Image Acquisition 

 To maximize the number of specimens scanned per session, most of the cast 

surrounding the tooth of interest (i.e., the mandible and the teeth positioned mesially and 

distally) was removed using a handheld rotary saw and burr. Individual molars were then 

glued to 18mm-diameter circular plastic discs, each including two diametrically opposed, 

vertically oriented struts. These discs were stacked 4-6 discs high, resulting in a 

maximum height of either 28mm (for the GE Locus scanner) or 40mm (for the Inveon 

scanner). Disc stacks were scanned using two microCT scanners housed at the University 

of Arizona Cancer Center (Tucson, AZ). Due to equipment availability, all extant 

specimens and Bighorn Basin specimens from sub-NALMAs Wa3-5 were scanned at a 

27.35μm resolution using a Siemens Inveon microCT scanner (5000ms exposure time, 

60kV, 300μA), whereas all Cf2-Wa2 Bighorn Basin specimens were scanned at a 

10.4μm and reconstructed at a 20.8μm resolution using a GE Healthcare eXplore Locus 

SP microCT scanner (9000ms exposure time, 60kV, 90μA) (Fig. 4.1). The inclusion of 

images of different resolutions is addressed in “Measurement Error.” Scan images were 

converted to sequences of 200-400 DICOM files (depending on the size and orientation 

of each disc stack) using Microview 2.1 (for the GE Locus scanner) and Inveon Research 

Workplace (for the Inveon scanner) software. 
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 To reconstruct three-dimensional surfaces from the sequences of DICOM files for 

each scan, individual molars were first cropped from the image stack using ImageJ 

(Schneider et al., 2012). The resulting TIF image stack for each specimen was entered 

into Amira 5.2.0 for image segmentation and surface generation. The “LabelVoxel” 

function and “Image Segmentation Editor” were used to segment each tooth from the 

surrounding negative, or background, space. Optimal threshold values used for 

segmentation were defined as the minimum value of the distribution of voxel values for 

each scan, and these values consistently distinguished voxels of the dental cast from those 

of the surrounding air. Segmented scans were refined using the default values of the 

“Remove Islands” and “Smooth Labels” options. These latter functions do not 

significantly alter the resulting generated surface but remove small artifacts in order to 

recreate a “natural-looking” tooth surface. Three-dimensional volume renderings of each 

tooth were produced using the “SurfaceGen” function (see Fig. 4.2), to which landmarks 

were directly applied. Repeatability of this process is addressed in the section 

“Measurement Error.” Overall, this process of image acquisition is similar to that used in 

previous work (e.g., Boyer, 2008; Bunn et al., 2011). 

Data Acquisition 

 Three-dimensional coordinate landmarks were collected digitally on reconstructed 

molar surfaces in Amira using the “Landmarks” function. The number of landmarks 

differed among species due to variation in the presence or absence of molar cusps and 

crests. In other words, all resulting measurements were calculated for each tooth, but as 

molar structure differs somewhat among clades, the number of points digitized on each 

specimen corresponded to its specific morphology. The full complement of landmarks 
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and semilandmarks collected and the subsets of these landmarks that comprised each 

morphometric measure are outlined in Table 4.4 and illustrated in Fig. 4.3. Homologies 

of molar cusps and crests among species were assessed using published references prior 

to data collection. As the surfaces of all molars were not oriented in the same plane upon 

scanning, the resulting coordinate axes in Amira were independent of tooth orientation. 

That is, measurements that relied on the orientation of a molar in the occlusal plane could 

not be calculated directly. Thus, to create a plane of reference and facilitate consistency 

of landmark placement, a reconstructed occlusal plane was added to the surface image 

using the “ObliqueSlice” function of Amira. 

Landmarks and semilandmarks corresponding to cusp tips and crest lengths, 

respectively, were generally collected in occlusal view, although specimens were rotated 

to ensure correct landmark placement. Landmarks corresponding to cusp height and angle 

measurements were collected in buccal and lingual views, defined by horizontal 

orientation of the occlusal plane. Eight linear, four angular, and two area measurements 

were obtained from the full landmark set (Table 4.5) although the absence of cusps 

resulted in fewer measurements for a subset of species (see Appendices 1 and 2). As 

discussed previously, these measurements are those for which correlations with diet have 

significant empirical support in previous studies (e.g., Kay, 1975b; Kay and Hylander, 

1978; Rensberger, 1986; Janis and Fortelius, 1988; Strait 1993a,b, 2001; Maas and 

Krause, 1994; Gunnell et al., 1995; Hooker, 1998; Hunter, 1997; Seligsohn, 1997; 

Jernvall et al., 2000; Dewar, 2003; White, 2006). Linear and angular measurements12 

                                                 
12 Angular measurements were converted to radians to minimize magnitude differences 
among variable values. 
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were calculated using three-dimensional Euclidean distances and vectors, respectively, 

whereas all area measurements were obtained by projecting the corresponding points 

onto either the occlusal or talonid plane (Table 4.5). However, as the occlusal and talonid 

planes were not aligned with the xyz coordinate system and thus were not parallel to the 

xy plane, it was not possible to directly calculate two-dimensional areas from these 

projected points. Thus, once projected onto the occlusal and talonid planes, the landmarks 

used to calculate area measurements were additionally rotated. This rotation moved all of 

these landmarks together within their coordinate framework such that the relationships of 

the points to one another were maintained. The end result of the rotation was a set of 

landmarks that all possessed equal z-values, which enabled the direct calculation of two-

dimensional molar and talonid basin area from the x- and y-values of each coordinate, as 

the z-component no longer varied among landmarks. The rotation matrix used was: 

+  + 0
+  + + + + + +  + ++ + + + + +

 

where the vector (a,b,c) was orthogonal to the occlusal plane (derived from the cross 

product of two vectors on the occlusal or talonid plane) (Foley et al., 1996). From these 

fourteen original measurements, an additional six summary measurements were derived 

(Table 4.6). All measurement calculations were performed in Excel. 

Measurement Error 

 Measurement error was addressed in a sample of 10 specimens, including both 

fossil and extant species. Extant species included specimens from both the Mindanao and 
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Balta samples. Specimens ranged in two-dimensional molar area from 1.246 mm2 

(Carollia perspicillata) to 17.331 mm2 (Cebus albifrons) and were chosen to encompass 

the variation in molar size represented in the full sample. In addition, the sample was 

selected without reference to the morphology of the specific specimen. For example, 

relative wear was not assessed prior to specimen selection such that the most unworn 

individuals were included in the measurement error analysis. A subset of measurements 

and their corresponding landmarks were re-digitized on each specimen 14 days after 

original data collection, and three-dimensional surface renderings were regenerated for 

each specimen prior to re-digitization. To assess the possibility that differences in image 

resolution and the corresponding microCT scanner affected three-dimensional molar 

reconstruction, original surface renderings of the fossil specimens were derived from 

20.8μm scans (GE Locus scanner), and regenerated renderings were derived from 

27.35μm scans (Inveon scanner). The measurements used for this analysis included 

examples of each type of measurement collected (linear, angular, and area): protoconid 

height, protoconid angle, protocristid length, and molar area. 

 Following White (2000), percent measurement error was calculated by first 

subtracting the mean difference of each trial measurement from the mean of both trials 

(in the case of two measurements, this is equivalent to the absolute value of the difference 

of either trial from the mean) and second, dividing this mean difference by the mean of 

both trials. Values were then converted to percentages to obtain a percent measurement 

error for the four variables. Percent measurement error values for each specimen are 

provided in Table 4.7. Mean percent measurement error for each variable and specimen 

were less than 3.5% and all individual percent measurement error values were less than 
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5%. In addition, percent measurement error does not seem related to size or image 

resolution. However, given that measurements were derived from up to 20 

semilandmarks in the case of molar area (see Table 4.4), these levels of error should be 

noted. 

DIETARY DATA COLLECTION 

Reconstruction of dietary competition in the fossil record first requires an 

understanding of the extent to which competition occurs among extant species within 

broad dietary categories. In this study, an attempt was made to divide each of these 

general dietary groups (e.g., frugivory) into increasingly restricted subsets. Dietary 

parameters collected from the literature included the primary and secondary dietary 

components (i.e., fruit, insects), intake proportions of each significant food resource, 

considering seasonal variation, and specific dietary items (e.g., species of fruit or insect 

eaten). Species were classified into dietary categories based on natural groupings of 

dietary regimes, and quantitative studies, multiple, independent records of congruous 

dietary behavior, and data specific to the study sites were given greater weight in final 

dietary assignments.  

When quantitative data were available for the proportions of dietary items 

consumed, dietary classification was based on primary and secondary dietary resources, 

or those that composed e50% and 25-49% of the diet, respectively. For example, species 

classified as frugivore-insectivores eat primarily fruit (including nectar, pollen, flowers) 

(making up at least 50% of the diet) but also consume a considerable amount of insect 

material (constituting 25-49% of the diet). Similarly, the diets of insectivore-frugivores 

are characterized by at least 50% insect material and at least 25% (but less than 50%) 
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fruit products. Species lacking a dominant dietary component (i.e., no food resource 

contributed to greater than 50% of the diet and major resources comprised near-equal 

proportions of the dietary regime) were categorized as omnivores.  

Although there are no published studies on direct dietary competition among all 

species included in this study, the dietary items consumed within a given dietary category 

significantly overlapped among taxa within each region. For example, ripe Ficus fruit is 

consumed by species of primates, didelphimorphian marsupials, and phyllostomid bats; 

Astrocaryum seeds are eaten by Cebus and Sciurus; and hymenopterans comprise the 

diets of primate, didelphimorphian, emballonurid, molossid, and phyllostomid species. 

Thus, the assigned dietary groups defined dietary overlap as precisely as possible and, as 

a result, comprised species that are most likely to directly compete for food resources. 

 Evaluating the precise dietary regimes of extant taxa can be problematic, as data 

collection methods and the variables recorded vary considerably among published 

studies. Furthermore, the categorical classification of diverse behaviors, such as feeding, 

is inherently oversimplistic. Thus, efforts were made to collate data from a multitude of 

sources. However, this still resulted in incongruent datasets among species, contrasting 

characterizations of diet for individual species among studies, and the lack of quantitative 

data for a portion of the dataset. As a result, categorization of diet is ultimately somewhat 

subjective. Furthermore, it should be noted that the amount of published behavioral 

research on Mindanao species is significantly less than that on species present at Balta. 

To alleviate the effects of these issues, at least in part, species were placed in two 

different dietary groupings: Dietary Group 1, which is the most specific grouping based 

on the data collected, and Dietary Group 2, which combined species with similar dietary 
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attributes into broader classes. Dietary group designations for each species are provided 

in Tables 4.1 and 4.2, and the references from which species data were collected are 

listed in Appendices 5 and 6.   
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Fig. 4.2. Examples of three-dimensional surface renderings using protocol described in text. 
A. Cantius ralstoni. B. Phenacolemur simonsi. C. Sundasciurus philippinensis. D. Tarsius 
syrichta. 
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Fig. 4.3. Example of landmarks digitized in this study. Specimen illustrated is Peradectes 
protinnominatus. Landmark numbers and abbreviations correspond to those in Table 4.4 A. Cusp, 
crest, and talonid basin landmarks. Note that Crest 1 (C1) and the postmetacristid component of 
Crest 5 (C5) are not present in this specimen. B. Buccal cusp height and cusp angle landmarks. 
White dashed line is the estimated location of the cemento-enamel junction (CEJ). C. Lingual 
cusp height and cusp angle landmarks. White dashed line is the estimated location of the CEJ. D. 
Molar area and occlusal plane landmarks on specimen. Black plane is the reconstructed occlusal 
plane. Although not all molar area landmarks are on this plane upon landmark placement, 
allpoints are projected onto the occlusal plane prior to measurement calculation (see text). 
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  Table 4.6. Morphometric measurements derived from mean values of 
measurements listed in Table 4.5. 
Summary Variables Definition 
Mean cusp height Mean of cusp height values for all cusps present 
Mean cusp angle Mean of cusp angle values for all cusps present 
Mean trigonid cusp height Mean of protoconid and metaconid cusp height 
Mean trigonid cusp angle Mean of protoconid and metaconid cusp angle 
Mean talonid cusp height Mean of hypoconid and entoconid cusp height 
Mean talonid cusp angle Mean of hypoconid and entoconid angle height 
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CHAPTER 5: RELATIONSHIP BETWEEN DIET AND MOLAR 

MORPHOLOGY IN EXTANT GUILDS 

To reconstruct dietary niches in fossil taxa, the relationship between dietary 

regime and dental morphology in related extant species must be known. As previously 

discussed in Chapters 1 and 2, the associations between diet and specific aspects of molar 

morphology have been demonstrated for broad taxonomic groups of most mammals (e.g., 

Primates, Chiroptera) (e.g., Strait, 2001; Evans, 2005), but each group has been 

predominantly characterized independently (e.g., Kay, 1975b; Fortelius and Solounias, 

2000; Jernvall et al., 2000; Lazzari et al., 2008; Teaford et al., 2008; White, 2009). 

Consequently, there is no common frame of reference with which to compare diet-

dentition relationships of taxa across the extant euprimate competitive guild, a requisite 

for reconstructing dietary niches of species within the Eocene euprimate competitive 

guild. Thus, the objective of the extant component of this study was to identify 

phylogenetically independent, universal relationships between diet and molar 

morphology within extant euprimate competitive guilds. Specifically, the following 

questions were asked: (1) Do molar morphometrics significantly correlate with diet 

across extant euprimate competitive guilds? (2) If so, which molar measurements (or 

combinations thereof) best reconstruct dietary overlap among species composing extant 

euprimate competitive guilds? 

 Because two distinct extant samples were evaluated (see Chapter 4; Tables 4.1, 

4.2), all analyses were performed on each sample separately as well as on the combined 

extant mammalian sample. As the analysis of all morphometric variables was not 
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possible for the Mindanao sample (see below), separate community analyses allowed for 

an examination of the full variable set in at least one sample.  

For all multivariate analyses, measurement variables were analyzed in three sets 

(Table 5.1), and these sets will be referenced throughout this chapter. Differences among 

the variable sets were based predominantly on the inclusion of individual molar cusps, 

which by extension, influenced the inclusion of corresponding cusp height and angle 

measurements. Variable Set 1 comprised all individual molar measurements, including 

individual cusp heights and angles, from which it was possible to discern whether certain 

variations in cusp morphology within a given dentition corresponded with diet across 

taxa (e.g., whether metaconid height, specifically, was more highly correlated with diet 

than hypoconid height). However, due to the variable molar morphologies that 

characterized the extant sample, particularly the derived morphology of pteropodid bats, 

not all cusps were present in all specimens. Therefore, Variable Set 2, comprising only 

mean measurements, was constructed. In addition, because pteropodid bats do not have a 

clear trigonid-talonid distinction, inclusion of measures of talonid area and trigonid-

talonid relief was not possible for any samples in which these species were incorporated 

(i.e., the Mindanao and combined Balta-Mindanao samples). Consequently, pteropodid 

talonid basin depth was calculated as the depth of the single molar basin. Although they 

possess a highly derived molar morphology, exclusion of the Pteropodidae was not 

possible, as species in this group were the only “frugivores” and “frugivore-nectarivores” 

in the Mindanao sample. Variable Set 3 was created to consider differences between 

trigonid and talonid morphology in those taxa for which a single cusp was absent (e.g., 

sturnirin chiropterans). This third variable set thus allowed the inclusion of taxa with 
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missing data in Variable Set 1 but encompassed morphological features that Variable Set 

2 did not. 

Unless otherwise stated, the ±-level for null hypothesis rejection for all analyses 

was 0.05 and analyses were performed in SAS 9.2. 

ALLOMETRIC EFFECTS AND SIZE ADJUSTMENT 

 Differences in absolute values of molar measurements that are correlated with 

differences in absolute size of the dentition (and thus, the individual) must be considered 

in order to compare species of variable size within and across dietary regimes (Corrucini, 

1987; Jungers et al., 1995). Previous studies of dental morphology have often used ratios 

of dental measures and dimensions of molar size (e.g., molar length and width, 

postcanine length and width, two-dimensional molar area) to scale individual 

measurements (e.g., Kay and Covert, 1984; Jernvall, 1995; Strait, 2001; Evans and 

Sanson, 2005; Boyer, 2008; Boyer et al., 2010, 2011, 2012; Bunn et al., 2011; Godfrey et 

al., 2012; Guy et al., 2013; Jones et al., 2014). However, this approach is only valid if 

proportionality is preserved across molar sizes; i.e., the dental measures (i.e., the ratio 

numerator) scale isometrically with the measure of molar size (i.e., the ratio denominator) 

(Smith, 2005).  

To assess the isometric relationships among variables, logged values of each 

morphometric variable (see Table 4.5) were regressed against logged values of two-

dimensional molar area for all species. There has been some debate as to whether 

ordinary least squares (OLS) or reduced major axis (RMA) regression is more (or 

equally) appropriate for analyses of allometry (e.g., Smith, 1999, 2009; Al-Wathiqui and 

Rodriguez, 2011), so to enable comparisons, both types of regression were performed. In 
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those cases in which isometry characterized the relationship between a variable and molar 

area, these morphometric measures could be confidently scaled using ratio calculations. 

As the goal was to analyze each of the three samples separately (Balta, Mindanao, and 

combined Balta-Mindanao), and considering that variable sets differed among samples, 

the relationship between each variable and molar area was assessed independently for the 

three sample groups. The software RMA 1.17 (Bohonak and van der Linde, 2004) was 

used to conduct reduced major axis regressions, and confidence intervals for the reduced 

major axis slope were derived from a bootstrapped distribution of 10,000 iterations. OLS 

regressions were performed in SAS 9.2. 

The results of both OLS and RMA regressions for the Balta, Mindanao, and 

combined Balta-Mindanao samples are provided in Tables 5.2-5.4. All angular variables 

were uncorrelated with molar area (95% confidence intervals of slope include 0) and thus 

were not scaled for subsequent analyses. Almost all non-angular variables in all three 

samples scaled with isometry. The exceptions are total crest length (Balta and combined 

Balta-Mindanao samples), metaconid height (Balta sample), and talonid basin depth (all 

samples). The 95% confidence intervals of both total crest length and metaconid height 

were slightly positively allometric but approached isometry in at least one of the 

regression models. On the other hand, talonid basin depth was clearly positively 

allometric in all samples. 

Because total crest length, metaconid height, and talonid basin depth scaled with 

positive allometry in at least one sample, a simple ratio of these variables to molar area 

will not yield equivalent size-corrected values. However, as the goal of the extant 

analyses is to identify molar variables that differentiate dietary groups, allometry is 
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problematic only if it exaggerates differences among groups, creating inflated 

discrimination (and thus, lower classification error rates). Thus, it may be more 

appropriate to examine whether allometric relationships differ among dietary groups 

(Kay, 1975a; Gingerich et al., 1982; Jernvall, 1995). For example, if talonid basin depth 

is negatively allometric only in frugivorous species, then for a given size, frugivores will 

have relatively shallower talonid basins than insectivores simply due to this allometric 

relationship. As talonid basin depth is greater in insectivores than frugivores (Butler, 

1972; Kay and Hiiemae, 1974; Seligsohn, 1977; Yamashita, 1996; Evans, 2006; White, 

2009; see Chapter 2), differentiation of these two groups based on a ratio of this trait to 

molar area would be more pronounced than if talonid basin depth was isometric. As a 

result, specimens were classified as “frugivores” and “insectivores” based on their 

primary dietary component (see Chapter 4), and regression analyses were performed on 

each of these two groups separately. True omnivores, for which no primary dietary 

component exists, were (1) classified as insectivores, (2) classified as frugivores, and (3) 

excluded from the analysis, and all three of these analyses produced the same pattern of 

allometric relationships among variables. 

First, the outcomes of separate regression analyses of these two major dietary 

groups, insectivores and frugivores, indicated that the positive allometric signal for total 

crest length in all samples is driven solely by the frugivorous species (Tables 5.5-5.7; 

Figs. 5.1A, 5.2A, 5.3A)13. Based on known differences between insectivore and frugivore 

molar morphology (Butler, 1972; Kay and Hiiemae, 1974; Kay, 1975b; Seligsohn, 1977; 

                                                 
13 This may be the result of the relatively smaller molars of frugivores at a given body 
size (Lucas, 2006). 
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Lucas and Luke, 1984; Strait, 1991, 1993a, 1997; Yamashita, 1996; Evans and Sanson, 

2003, 2005; Evans, 2006; White, 2009; see Chapter 2), positive allometry in this trait is 

expected to produce greater similarity between insectivorous and frugivorous species, 

counter to the example of talonid basin depth described above. Thus, the use of ratios to 

scale this variable would likely not amplify, but instead diminish, the differences among 

dietary groups. This is also the case for the positive allometry characterizing mean cusp 

height in Mindanao frugivores (see Table 6; Fig. 5.2B). On the other hand, talonid basin 

depth is positively allometric in both insectivores and frugivores in the Balta and 

combined Balta-Mindanao samples and in frugivores in the Mindanao sample (Tables 

5.5-5.7; Figs. 5.1C, 5.2C, 5.3B). As a result, talonid basin depth cannot be used in a 

simple ratio with molar area without further analysis of this allometric effect. Finally, the 

presence of positive allometry in metaconid height in the Balta sample is the result of its 

presence in insectivores only (Table 5.5; Fig. 5.1B). Metaconid height is likely the source 

of a positively allometric relationship in insectivore mean trigonid cusp height as well. 

Unlike total crest length, the use of metaconid height in a ratio has the potential to 

exaggerate group differences, as there is evidence that insectivores possess higher cusps 

than frugivores on average (Kay, 1973, 1975b; Rensberger, 1973; Butler, 1983; Kay and 

Covert, 1984; Maier, 1984; Rensberger, 1986; Ungar, 2002; Evans and Sanson, 2003, 

2005; Berthaume et al., 2013). Nonetheless, mean cusp height is isometric with molar 

area, and thus allometry in cusp height should only influence analyses of Variable Set 1. 

However, when allometric relationships are present, it is recommended that 

residual values from the OLS regression line be used to conduct subsequent analyses 

(Smith, 2009). To further evaluate the effects of allometry, the results of discriminant 
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analyses conducted using both residual and ratio data were compared. Species-level 

discriminant analyses for each possible variable set-sample combination were performed, 

and total misclassification (error) rates are provided in Table 5.8.14 

Although a coarse comparison of these two methods of size-adjustment, this 

examination provides the most direct link between choice of scaling measure and 

implications for this study. From Table 5.8, it is clear that error rates are essentially 

unaffected by the scaling measure, and neither residual nor ratio data are consistently 

more effective at discriminating dietary groups. Given this similarity in discriminant 

analysis results, scaling using ratios of a given variable to molar area was preferred when 

the application of these measures to the fossil sample was considered. Because species 

assignments cannot be known with certainty in the fossil record, the products of species 

regression equations, i.e., residuals, cannot be employed in successive analyses of fossil 

taxa with the same confidence as in extant groups. This sample-specific aspect of 

regression residuals contrasts with the repeatability of ratio-scaling. In addition, most of 

the morphometric variables in the extant sample scale with isometry (see Tables 5.2-5.7), 

so it is reasonable to assume that these isometric relationships will be upheld in fossil 

taxa. Furthermore, the positive allometry for total crest length in frugivores will only 

lessen the detection of dietary differences among groups, producing conservative results. 

Finally, the significant positive allometry of talonid basin depth cannot be ignored. 

Discriminant analyses were conducted both including and excluding talonid basin depth 

to determine if the allometric effects of this variable strongly influenced dietary group 

separation. Although ratios will be used to scale all morphometric variables, the possible 

                                                 
14 Discriminant analyses are discussed in more detail later in this chapter. 
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effects of positive allometry in certain variables are acknowledged and will be considered 

in the interpretation of the results. 

COMPARISON OF FIRST AND SECOND MANDIBULAR MOLARS 

 Within a strict comparative framework, reconstructions of fossil behavior (e.g., 

diet) based on morphological structures are restricted to the relationships between 

behavior and the specific skeletal or dental elements examined in the comparative extant 

sample. In the case of the dentition, strong correlations between diet and both first and 

second mandibular molars have been demonstrated in extant mammals, and both m1s and 

m2s have been used in dietary reconstructions of fossil taxa. However, these two 

elements are not often combined in a single sample (e.g., Strait, 2001; Boyer, 2008; Bunn 

et al., 2011), and thus the extent to which m1s and m2s differ in their “dietary signal” 

within a single species or individual is not clear. Unfortunately, analyses of fossil 

communities necessitate large sample sizes, but specimen availability is often limited by 

sampling bias and the fragmentary nature of fossil material. In this study specifically, the 

analysis of dietary niche overlap required a minimum of three specimens per taxon per 

time interval (see “Modified MANOVA: Test Case of Fossil Analysis” below), and 

limiting the sample to second mandibular molars (to allow direct comparisons with the 

results of the extant sample) would have made comparisons impossible.  

In order to determine if the inclusion of both first and second mandibular molars 

in the fossil sample was valid, possible variation in the efficacy of each molar in dietary 

discrimination was evaluated. For this purpose, first and second mandibular molars of 68 

specimens, representing 40 (of the total 46) species from the Mindanao sample, were 

compared (Table 5.9). With the exception of Acerodon jubatus, the exclusion of species 
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from this subsample was based on availability. In the case of Acerodon, the m1 and m2 

morphologies differ considerably, and the assumption that m1 and m2 morphometrics are 

comparable is only realistic when gross morphology is similar. For this reason, in fossil 

taxa exhibiting distinct m1 and m2 morphologies (e.g., carpolestids), only second 

mandibular molars were analyzed. Of the possible measurements described in Chapter 4, 

only four could be obtained from all specimens due to variable molar morphologies: total 

crest length, mean cusp height, mean cusp angle, and talonid basin depth, all of which 

were scaled by molar area (see discussion above).  

 First, paired t-tests were used to directly compare m1 and m2 measurements from 

the same individual. As not all differences between m1 and m2 values were normally  

distributed, the non-parametric Wilcoxon signed-rank test was used. It is known that first 

and second mandibular molars in any specimen are not identical structures (Gingerich 

and Schoeninger, 1979; Ribeiro et al., 2013); therefore, this was considered the most 

conservative approach in evaluating differences between these tooth types. A non-

significant Wilcoxon signed-rank test indicated that m1s and m2s of a given specimen 

could be used interchangeably in further analyses. Although the null hypothesis of no 

difference between m1 and m2 values was not rejected for each of the four variables, the 

fact that results for mean cusp height and mean cusp angle approached significance 

indicated that these features may differ in first and second mandibular molars (Table 

5.10). Differences in mean cusp height and mean cusp angle in m1s as compared to m2s 

were thus further investigated. 

 As stated above, the expectation that m1s and m2s are completely interchangeable 

is not entirely reasonable, as current inhibitory cascade models of dental development 
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demonstrate that the genetic and biochemical patterning of each tooth is not identical, 

although they are non-independent (Jernvall, 1995, 2000; Jernvall and Jung, 2000; Line, 

2001; Kavanaugh et al., 2007; Polly, 2007; Salazar-Ciudad and Jernvall, 2010). In order 

to use a combined m1-m2 sample in dietary discrimination, it is instead only necessary 

for both molars to exhibit the same morphological signal (accounting for size) relating to 

dietary regime. Similarity in the pattern of dietary discrimination for m1s and m2s were 

assessed by contrasting the m1 and m2 results of non-parametric post-hoc Critchlow-

Fligner comparisons of dietary categories for mean cusp angle and mean cusp height. If 

m1 and m2 measurements produced significant differences among the same dietary 

groups, this would suggest that both molars can be used as equivalent dietary indicators, 

validating the substitution of one molar with another in incomplete specimens. Dietary 

Group 2 was used for all pairwise comparisons, which were performed in SPSS v.22. 

The results (Table 5.11) indicated that in both mean cusp height and mean cusp 

angle, the same pairings of dietary groups were found to be significantly different from 

one another regardless of whether m1 or m2 data were used.15 Thus, combining m1 and 

m2 data to identify dietary niche differences appears justified, permitting the inclusion of 

both first and second mandibular molars in the fossil sample analyses.  

PHYLOGENETIC EFFECTS 

 The nonindependence of species as the consequence of phylogenetic relatedness 

in statistical analyses is well-supported (e.g., Felsenstein, 1985; Nunn, 2011). This is of 

particular importance in large comparative samples where the objective is group 
                                                 
15 As predicted by the results of the Wilcoxon signed-rank tests, the pairwise comparisons 
of total crest length and talonid basin depth showed similar findings using m1 and m2 
data. 
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discrimination. In these analyses, genera represented by greater numbers of species (or 

families by greater numbers of genera), all of which may have derived a diet-dentition 

complex from a common ancestor, have an increased potential to impact discriminatory 

classification rules than those with fewer generic or familial representatives. 

Unfortunately, the nature of any community analysis is that one is limited by the 

evolutionary history and resulting phylogenetic structure of that community, in which 

phylogenetic niche conservatism – or the tendency of closely related species to inhabit 

similar niches due to the shared inheritance of traits from a common ancestor – may have 

played a considerable role in community composition (Losos, 2008; Wiens, 2011). In 

addition, diet, molar morphology, or both, may not vary greatly in some clades (e.g., 

rodents) and thus one might suggest that all species within that taxon be considered as a 

single statistical observation. This is particularly problematic for discriminatory analyses, 

as an analytical alternative that accounts for phylogenetic autocorrelation is not yet 

known. Thus, the effects of phylogenetic relatedness were evaluated in association with 

several of the analyses below.  

UNIVARIATE AND MULTIVARIATE NORMALITY 

 Parametric statistical analyses require either univariate (e.g., for ANOVA) or 

multivariate (e.g., for discriminant analysis) normality of the sample data (counter to the 

regression analyses employed above, which require normality of sample residuals). 

Violations of these assumptions were assessed univariately for each morphometric 

variable using the Shapiro-Wilk test for normality and normal probability plots. As 

multivariate normality within groups is an assumption of discriminant analysis, a 

Mardia’s multivariate normality test was performed on each dietary group present in the 
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Balta, Mindanao, and combined Balta-Mindanao samples using all possible variable 

datasets (see Table 5.1). 

 Univariate analyses indicated that not all morphological variables were normally 

distributed, and at least one dietary group in each sample exhibited non-normality in 

multivariate tests. Box-Cox transformations were performed to determine if normality 

could be attained; however, not all of these transformations resulted in normal 

distributions. In addition, the type of transformation (e.g., logarithmic, inverse) differed 

among variables, making it difficult to interpret results based on these transformed data. 

Thus, non-parametric alternatives to all statistical tests were used to analyze the extant 

samples.  

PRINCIPAL COMPONENT ANALYSIS 

Analytical Procedure 

 As a dimension-reduction technique, principal component analysis (PCA) can be 

used as an initial investigative tool to identify patterning within and among samples, in 

this case, dietary groups. Especially relevant to this study, one can examine the degree to 

which members of dietary groups cluster together in multidimensional principal 

component space. These results can then be compared directly to those of the fossil 

Bighorn Basin sample, as principal component analysis forms the basis of the fossil 

analyses. If patterning of species corresponds to diet, the principal component space can 

be viewed as a “dietary niche space” within which each species occupies a particular 

dietary niche (see Chapter 2). Furthermore, interpretation of eigenvectors can establish 

those morphological variables that may be most influential in explaining variation within 

the sample and guide the choice of variables to be applied to the fossil sample. Principal 
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component analyses were performed on all three variable sets of the Balta sample and on 

Variable Set 2* of both the Mindanao and combined Balta-Mindanao samples (see Table 

5.1). To decrease the number of groups presented visually, all analyses were conducted 

using only Dietary Group 2. 

Results 

Balta sample. 

 Plots of the first and second principal components (PC1 and PC2) for Variable 

Sets 1-3 are shown in Figs. 5.4-5.616, and eigenvalue and eigenvector statistics are 

provided in Tables 5.12-5.14. Several important aspects of these results will be discussed. 

First, these plots demonstrate the same overall pattern: the first principal component, 

accounting for the majority (51-56%) of the variation in the sample, separates dietary 

groups from one another. In addition, specimens are not arranged along the first or 

second principal components by molar size (supporting the use of scaling ratios) or 

phylogenetic relatedness (see discussion below). This indicates that the morphological 

variables measured here are related to, and can likely be used to reconstruct, dietary 

regime. Variable loadings on each principal component are consistent among variable 

sets. Specifically, cusp height, cusp angle, talonid basin area, and trigonid-talonid relief 

contribute relatively equally to the first principal component, and loadings are in 

expected directions. For example, low cusp height, large (more obtuse) cusp angle, large 

talonid basin area, and low trigonid-talonid relief are correlated and have the potential to 
                                                 
16 It should be noted that in these analyses, graphical representation of the third principal 
component (explaining ~10-12% of the variation in the sample) does not further clarify 
the general patterns discussed here, and thus are not depicted as part of this section. 
However, see “Modified MANOVA: Test Case of Fossil Analysis” for further discussion 
of PC3.  
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be viewed as a character complex of frugivorous taxa, whereas the opposite relationships 

characterize insectivorous species. This result is compatible with our current 

understanding of diet-dentition relationships; however, total crest length  

and talonid basin depth are relatively unimportant in explaining variation along this axis. 

Instead, these latter variables are most significant in creating separation along PC2, and 

thus are valuable in dietary discrimination, but perhaps less so than other measures.  

Second, despite a general dietary pattern, there is significant overlap among some 

dietary categories. In particular, the insectivore-frugivore group is completely contained 

within, and therefore does not appear distinct from, the insectivores. Omnivorous taxa 

also do not form a distinct group, although they seem to partially bridge the gap between 

frugivorous and insectivorous species. However, the few omnivorous species examined 

here align most closely with insectivorous taxa, and this may be the result of 

phylogenetic relatedness (see Fig. 5.7 and discussion below). Distinctions between 

omnivores and other dietary groups will be explored further in the following analyses.  

Third, the relative positions of groups generally fit a continuous dietary 

arrangement. In other words, the transition from negative to positive values of PC1 can 

be viewed as a gradation from insectivory to frugivory in the overall dietary niche space, 

matching the direction of variable loadings on this component (see above). For example, 

frugivore-insectivores trend towards the negative aspect (“insectivory end”) of the non-

carolliine frugivore spectrum (see Fig. 5.4). However, although they appear distinct from 

frugivore-insectivores, hard-object frugivores are also present in this general region, and 

frugivore-nectarivores span the principal component space between the insectivore and 
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frugivore groups. An examination of the variable loadings on the first two principal 

components provides some explanation for this pattern.  

With regard to the hard-object frugivores (FH), their displacement within the 

frugivore group may relate to allometric relationships among the morphometric variables. 

All “FH” taxa have relatively large molars, and it is possible that the positive allometry of 

talonid basin depth and total crest length may exaggerate the magnitude of these traits 

such that they appear more “insectivore-like,” although it is noted that these two variables 

have low loadings on PC1. Based on feeding habits, it might be expected that frugivore-

nectarivores would possess the shortest and least angular molar cusps, but an examination 

of their morphology indicates that this is not always the case. All of the frugivore-

nectarivores in this study are chiropterans, and it is possible that relatively taller and more 

angular cusps and greater trigonid-talonid relief in these nectarivorous taxa 

(Glossophagini and Lonchophyllini) are the result of inheritance from an insectivorous 

ancestor combined with the relaxation of constraints on chewing (Freeman, 1995). 

However, the published dietary accounts of these taxa conflict enormously, and the 

dominant categorization was chosen for these taxa (see Appendix 5 for reference list). 

This approach may have been inappropriate, and these species may best be classified as 

omnivorous, as some accounts indicated the presence of insect-feeding (see Appendix 5). 

In this case, the intermediate placement of these specimens within the “dietary niche 

space” is in accordance with their dietary habits. This highlights the continued need for 

more detailed and quantitative behavioral studies of many of the taxa included in this 

sample. Nonetheless, as no reconstructed nectarivorous taxa are included in the fossil 

sample, the relationship of this dietary group to others is not a major concern, although it 
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should be noted that, with the exception of sturnirins, the most frugivorous frugivore-

nectarivores (see Fig. 5.5), the FN group is largely distinct in principal component space. 

Because the goal of this study is to best differentiate specific dietary regimes, these 

patterns of overlap will be further examined in subsequent analyses, designed to probe 

more precisely into morphological differences among dietary groups. 

Mindanao sample. 

 In general, the patterning of dietary groups in the principal component plot and 

the variable loadings of the Mindanao sample are comparable to those of the Balta 

sample (Fig. 5.8; Table 5.15). However, there are a few notable exceptions. First, and 

almost certainly due in part to the inclusion of fewer variables, both total crest length and 

talonid basin depth have greater contributions to PC1. Second, frugivore-nectarivores are 

no longer positioned between the frugivore and insectivore groups but are instead 

embedded, in addition to hard-object frugivores, within the frugivore cluster. Thus, 

compared to the Balta sample, dietary niche differentiation within frugivory appears 

diminished, if not absent, in the Mindanao sample. Third, folivorous specimens, not 

present in the Balta sample, cluster with insectivores (particularly faunivores17), as might 

be expected given the similar, though not identical, food material properties of leaves and 

insect chitin (Hiiemae, 2000).  

Finally, both the first and second principal components are involved in dietary 

separation. Although PC1 accounts for 68% of the variation, it seems that this variable 

mainly separates largely frugivorous and insectivorous (and to an extent, folivorous) 
                                                 
17 It is not possible to discern whether the close proximity of faunivores (in this sample, 
tarsiers) to folivores (dermopterans) is the result of diets involving similar food material 
properties or phylogenetic relatedness. 
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groups. It is not possible to establish if this lack of dietary differentiation is related to the 

sample itself (e.g., perhaps these measurements are only applicable to tritubercular or  

quadricuspate molars, the dominant molar morphology of the Balta sample), but it is 

likely that differences between trigonid and talonid morphology, not captured in this 

analysis, are strongly related to dietary preference. 

Combined Balta-Mindanao sample. 

 The results of the combined Balta-Mindanao sample (Table 5.16; Fig. 5.9) share 

aspects of both the individual Balta and Mindanao analyses. Again, this combined sample 

requires the use of a diminished variable set, which as discussed in the previous section, 

may decrease dietary group discrimination. First, it is important to recognize that the 

general dietary patterning demonstrated by each sample individually remains present, 

despite increased phylogenetic diversity within the combined sample. Second, both the 

first (on which total crest length, mean cusp angle, and talonid basin depth are most 

heavily loaded) and second (for which mean cusp height is most highly correlated) 

principal components affect dietary group separation. Third, the frugivore group clearly 

occupies the largest area of the principal component space, and a closer examination 

reveals a distinction between frugivorous pteropodid and phyllostomid chiropterans. If 

diet-dentition relationships are preserved in this study, it is posited that at least two types 

of frugivory may be represented in this sample. Although not conclusive, published 

studies seem to indicate the greater consumption of fruit juices than fruit pulp in 

pteropodids as compared to phyllostomids (see Appendix 6), and flat, rimmed pteropodid 

molars are particularly well-equipped to extract juice from fruit tissue (Lucas, 1979). This 

hypothesis certainly requires further study, and it is equally plausible that the highly 
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derived nature of pteropodid molars is unsuitable for morphological comparative studies 

of this kind. For this reason, highly derived molars (e.g., those of multituberculates) were 

excluded from the fossil sample, and this will be discussed further in Chapter 6. 

Phylogenetic Patterning 

Principal component analysis provides an additional opportunity to detect 

phylogenetic patterning if present among the data. For the sake of clarity, this will only 

be discussed for the Balta sample, but the Mindanao and combined Balta-Mindanao 

samples exhibit congruent patterns. Based on Fig. 5.7, which displays both taxonomic 

and dietary assignments of each specimen, it is clear that there is a relationship between 

evolutionary relatedness and diet within taxonomic groups; i.e., closely related taxa 

occupy similar dietary niches. As discussed previously in this chapter, this is not 

necessarily surprising if some degree of phylogenetic niche conservatism is present. 

However, the location of each taxonomic group within the larger “niche space” is 

compatible with its dietary regime. There are exceptions (e.g., frugivorous 

didelphimorphians, which are separated from other frugivores and are instead positioned 

near their more insectivorous relatives), but in the group that is most diverse in diet, the 

phyllostomids, the diet-dentition relationship eclipses dental similarity based on common 

phyllostomid ancestry. This, of course, does not eliminate the potential effects of multiple 

dependent statistical observations due to phylogenetic autocorrelation, as is evidenced by 

the fact that all carolliines cluster separately from other frugivores. However, it does 

indicate that if the morphological features examined here are used to reconstruct dietary 

niche overlap, taxonomic designations and phylogenetic relationships will not conceal the 

larger niche patterns. 
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Phylogenetic Principal Component Analysis 

 The method of phylogenetic principal component analysis (phylogenetic PCA) 

allows researchers to investigate relationships among multiple traits while accounting for 

the phylogenetic relationships among the taxa that possess them. Although this analysis is 

akin to a non-phylogenetic principal component analysis in that significance values 

cannot be attributed to the relationships among taxa or traits, they allow for comparison 

with the principal component analysis results presented above. Phylogenetic PCAs were 

conducted in R v.2.15 using the phytools package, and the species-level phylogenetic tree 

used in these analyses was obtained from Bininda-Emonds et al. (2007). Several species 

were excluded mainly due to unavailable phylogenetic data; however, congeneric species 

were used where possible (see Table 5.17 for these exceptions). Analyses were performed 

on the Balta, Mindanao, and combined Balta-Mindanao samples using species mean 

morphometric data, and plots of the first two principal components are shown in Figs. 

5.10-5.12. Figures 5.10 and 5.11 illustrate that the phylogenetic PCA results for both the 

Balta and Mindanao samples generally resemble those of the non-phylogenetic PCAs. In 

both plots, a division between “frugivores” and “insectivores” (broadly defined) along the 

first principal component is still present, and omnivores remain closely aligned with 

insectivorous taxa. In the Balta sample, carolliines continue to form a distinct group in 

even greater association with insectivorous species, highlighting their unique molar 

morphology even when phylogenetic relatedness is considered. In addition, Balta 

frugivore-insectivores and insectivore-frugivores are positioned at the borders of the 

frugivore and insectivore groups, respectively, consistent with their mixed dietary 

regimes. 
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 An examination of the combined Balta-Mindanao plot, on the other hand, 

demonstrates that a phylogenetic signal may be present in the data. Along the second 

principal component analysis, there is a separation along the x-axis between Balta and 

Mindanao species within the insectivore (I) and frugivore (F) groups (Fig. 5.12). As 

frugivores and insectivores in the Balta and Mindanao samples comprise species in 

mostly non-overlapping taxonomic groups (see Tables 4.1 and 4.2), this separation may 

be interpreted as phylogenetic in nature. However, an examination of the remaining 

dietary groups indicates that this pattern actually characterizes the entire combined 

sample, as the Balta and Mindanao specimens almost exclusively possess positive and 

negative values, respectively, along PC2. Given the variable phylogenetic relationships 

among taxa between these two communities, this division appears to supersede any 

phylogenetic distinction between the samples and instead seems to establish a difference 

between the mammalian guilds themselves. This result is surprising and certainly an area 

for further exploration. Nonetheless, for the purposes of this study, it is most notable that 

despite these community-level differences, even when both the Balta and Mindanao 

samples are considered together, there is still dietary distinction across the first principal 

component. Overall, this latter result is consistent with a non-phylogenetically 

autocorrelated relationship between molar form and diet and supports the use of the 

molar variables examined here as indicators of dietary regime across a diverse 

mammalian sample. 
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KRUSKAL-WALLIS TEST AND POST-HOC COMPARISONS 

Analytical Procedure 

 Discriminant analysis is only appropriate when significant differences among 

groups have been demonstrated (Khattree and Naik, 2000). As Kruskal-Wallis one-way 

analysis of variance (ANOVA) tests the null hypothesis that at least two group means are 

different, this analysis was conducted on each variable in the Balta, Mindanao, and 

combined Balta-Mindanao samples for both dietary groupings. All variables significantly 

differentiated at least two groups for all three samples, even when a strict Bonferroni 

correction was applied (Tables 5.18-5.20).18 Thus, discriminant analysis is an appropriate 

method to examine dietary differentiation. As the results of a Kruskal-Wallis test only 

indicate a difference between at least two (and not necessarily all) group means, 

Critchlow-Fligner non-parametric post-hoc comparisons were conducted. All pairwise 

comparisons were performed using Dietary Group 1 and Dietary Group 2, and these were 

performed in SPSS v.22. Finally, box plots of variable values for all dietary groups 

within each sample were used to provide visual representations of the results of these 

comparisons (Figs. 5.13-5.15). 

Results 

The principal results of the pairwise comparisons using both Dietary Group 1 and 

Dietary Group 2 categorizations correspond closely with one another in each sample and 

will be discussed together. Due to the number of pairwise comparisons involved, the 

                                                 
18 The only exception is talonid basin depth in the Balta sample, which becomes non-
significant when strict Bonferroni correction is applied. 
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combined Balta-Mindanao sample is not discussed, but the results mirror those of the 

individual samples. 

Balta sample. 

 Overall, the pairs of dietary groups that differed consistently across variables 

contrasted an insectivorous and a frugivorous group (Tables 5.21 and 5.22). In other 

words, groups with low or no discrimination were members of the same larger 

“frugivore” or “insectivore” classes (e.g., FH and F within “frugivores”). Therefore, the 

further division of dietary categories within “frugivory” and “insectivory” in Dietary 

Group 1 did not provide additional discrimination, as this level of categorization appears 

too specific to capture the diet-dentition relationships studied here. Interestingly, 

however, this pattern is upheld in comparisons of frugivore-insectivores and insectivore-

frugivores, which were significant in most cases. 

 All variables appeared to perform equally well at detecting group differences, 

with the exception of total crest length and talonid basin depth, which identified many 

fewer significant comparisons. However, these latter variables did identify significant 

differences between groups within the “frugivorous” class, and when additionally 

considering both the PCA and Kruskal-Wallis results, these two variables may still be 

important in the separation of dietary niches. Nonetheless, within this larger pattern, there 

is variation in the performance of individual variables. For instance, protoconid and 

metaconid height, the trigonid cusps, discriminated more pairs than entoconid and 

hypoconid height, the talonid cusps (Tables 5.21, 5.22; Figs. 5.13B-E). In addition, each 

of these variables, as well as the individual cusp angle variables, differentiated different 

sets of dietary groups such that, for every cusp, a ranking of groups based on variable 
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values would vary slightly (Tables 5.21, 5.22; Figs. 5.13B-E, G-J). Of note is the fact that 

the frugivore-insectivore group aligns with the other frugivorous groups when protoconid 

and hypoconid height, the buccal cusps, are examined but with the insectivorous groups 

in a comparison of metaconid and entoconid height (Figs. 5.13B-E). Thus, consideration 

of each cusp separately may lead to overall greater discrimination among dietary groups. 

Finally, for each morphometric variable, the range of values representing the frugivorous 

groups always exceeds that of the insectivorous groups, and in several variables (e.g., 

talonid basin area, total crest length), this variation is considerably greater in frugivores 

(Figs. 5.13A-R). This may indicate that the frugivore niche is also diverse and possibly 

comprises smaller niche components, in which species may or may not compete. Niche 

overlap within dietary categories, particularly frugivores, will be discussed further below. 

Mindanao sample. 

As in the Balta sample, only comparisons of a member of the “frugivore” class 

with a member of the “insectivore” or “folivore” class (Tables 5.23 and 5.24) were 

consistently significant across the variable set. With the exception of talonid basin depth, 

each variable demonstrates a clear distinction between these two groups (Figs. 5.14A-D). 

Furthermore, the morphometric variables were again unable to differentiate among the 

narrower dietary classifications of Dietary Group 1. In contrast to the discussion above, 

that the overall results of the Mindanao sample, with many fewer variables, are similar to 

those of the Balta sample suggests that a subset of the total variable set may be sufficient 

to reconstruct dietary niches at the level characterized by Dietary Group 2. 
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DISCRIMINANT ANALYSIS 

Analytical Procedure 

 Discriminant analysis is a multivariate data reduction and discrimination 

technique that constructs classification rules designed to maximize group separation. This 

method additionally allows assessment of the efficacy of these classification rules, and 

thus ultimately the dataset, in group discrimination through the use of posterior 

probabilities, where individuals are assigned to groups based on the discriminant 

functions, and misclassification rates are calculated.19 In the present study, this analysis 

can be applied to determine the strength of the diet-dentition relationship through the 

examination of error classification rates of each dietary group. If misclassification rates 

are low, these morphological variables (or a subset thereof) can be used to reconstruct 

distinct dietary niches. 

 Due to the multivariate non-normality of the dataset, the non-parametric k-

nearest-neighbor method of discriminant analysis was used. Rather than formulating 

classification rules from the distance of observations to group means, this method 

establishes group assignment based on the distance of an observation to its nearest 

neighbors. Specifically, the group membership of each nearest neighbor is determined, 

and based on the prior probabilities of each of these groups, the posterior probability of 

the observation of interest is derived. In the case of a tie, the observation is assigned to 

“Other.” 

                                                 
19 Although error rates using posterior probabilities will always be biased downward, the 
use of unbiased cross-validation to estimate error rates is not recommended, as it requires 
exceptionally large datasets and eliminates a subset of the overall sample for use in 
constructing the discriminant functions (Khattree and Naik, 2000). 
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 Discriminant analyses were conducted on both Dietary Groups 1 and 2 for 

Variable Sets 1-3 of the Balta sample and Variable Set 2* of the Mindanao and combined 

Balta-Mindanao samples. However, as demonstrated in the post-hoc comparisons, dietary 

discrimination at the resolution of Dietary Group 1 appears inaccessible to the 

morphological variable sets. Thus, the few additional dietary categories in Dietary Group 

1 were those most commonly misclassified, and the error rate using this classification 

was slightly higher. Beyond this, however, the overall results using the two dietary  

groups were very similar, and these were compared for Variable Set 1 of the Balta sample 

to illustrate this point (Tables 5.25-5.28). Discriminant analyses were also run without the 

inclusion of talonid basin depth, as this variable was previously identified as significantly 

positively allometric (see Tables 5.33-5.35, 5.38, 5.41). Comparison of error rates and 

posterior probabilities in all samples and using all variable sets indicates that this variable 

does not greatly affect the outcomes of dietary group discrimination and thus can likely 

be used in further analyses without a substantial impact on the results. Finally, because 

there is no known standard of acceptable error rate in discriminant analysis, and akin to 

many other data reduction techniques, misclassification rates must be viewed in the 

context of other analyses (e.g., Kruskal-Wallis). For comparison of these results to other 

studies, see Semprebon et al. (2004), Wallace (2006), Pilbrow (2007), Boyer (2008), 

Deane (2009), Bunn et al. (2011), and Godfrey et al. (2012).20   

 

 

                                                 
20 Published overall error rates and individual reclassification rates vary widely, but the 
results of the discriminant analyses presented here are within the range of previous 
studies. 
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Results 

 Balta sample. 

 Although the use of a greater number of variables in Variable Set 1 does provide 

the best discrimination (error rate of 0.09 for Dietary Group 1 and 0.06 for Dietary Group 

2), overall error rates for the three variable sets are roughly alike (Tables 5.27, 5.29, 

5.31). This lends further support for the use of a reduced, less autocorrelated variable set 

in the fossil sample analyses and demonstrates that the chosen morphometric variables 

are useful dietary discriminators. The posterior probabilities of each dietary group range 

from 83% to 98%; however, members of the omnivore group are consistently 

misclassified (Tables 5.27, 5.29, 5.31). As mentioned previously, the diet of this group is 

notoriously difficult to categorize based on its dental morphology. The highest omnivore 

reclassification rate is the result of using Variable Set 1, which might be cause to pursue 

the application of this set of variables in further analyses. The reason for the affinity of 

omnivorous taxa with insectivore-frugivores, the group into which they are most often 

misclassified, is unclear, and perhaps is sample-specific. Regardless, this indicates that 

dietary reconstructions based on these molar variables will likely omit the omnivore 

component of the dietary niche space.  

On the other hand, when misclassified, specimens of each non-omnivore group 

align with groups of similar diets (Tables 5.28, 5.30, 5.32). For example, insectivores are 

most commonly misclassified into the insectivore-frugivore group and frugivores into the 

FH, FI, or FN categories, but these misclassifications are rare. Misclassified individuals 

span the range of molar size and represent equal proportions of the higher taxonomic 

groups; i.e., misclassification does not appear associated with size or phylogenetic 
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affinity. Species represented by few specimens (i.e., the larger didelphimorphians) are 

continually misclassified, but the molar morphology of this group also appears 

phylogenetically conserved (see Fig. 5.7).  

 Mindanao sample. 

 The overall error rate of this sample (0.08), which included only 4 variables, is 

comparable to that of the Balta sample in which Variable Set 1, the largest variable set, 

was employed (Table 5.36). However, a closer examination of the error rates of each 

dietary group shows that misclassification of frugivore-nectarivores and omnivores is 

significantly higher. In addition, it does not seem that the presence of the folivorous 

specimens in the Mindanao sample resulted in the misclassification of other group 

members as folivores. Still, as the dietary categories of these two groups do not 

completely overlap, it is difficult to determine how the absence of frugivore-insectivores 

and insectivore-frugivores may have influenced the Mindanao results. 

 Misclassified observations again span the sample molar size and phylogenetic 

spectrums, and as evidenced by the posterior probabilities, tree shrews, the sole 

omnivorous taxon in this sample, are most often allocated to the incorrect group (Table 

5.37). Akin to the problematic dietary categorization of Balta frugivorous-nectarivous 

chiropterans, there is also evidence that insectivory may be dominant to frugivory in the 

feeding habits of “omnivorous” Philippine tree shrews (Heaney et al., 2006). However, 

even in this case, scandentians would likely be grouped with insectivores as no other 

insectivore-frugivores are present in the Mindanao sample. Alternatively, this may simply 

be another example of the complications involved in identifying omnivores from molar 

attributes. 
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 Combined Balta-Mindanao sample. 

 Given the taxonomic and dietary diversity of the combined Balta-Mindanao 

sample, the similarity of these results to those of the individual samples, the low overall 

error rate (0.17), and the relatively high posterior probabilities of almost all dietary 

groups validate the strength of the molar morphometric variables as valuable 

discriminators of dietary regime within frugivorous and insectivorous niches (Table 

5.39). In this combined sample, certain taxonomic and dietary groups are consistently 

misclassified, notably the folivorous dermopterans, omnivorous scandentians, 

omnivorous phyllostomids, and hard-object frugivorous Peruvian rodents (Table 5.40). 

The inability of the molar measures to correctly classify dermopterans may be a result of 

the dearth of folivorous taxa in the sample, as colugos are the only folivores included. As 

in almost all other analyses, omnivores pose a considerable problem and are rarely 

identified correctly. The interpretation and identification of the omnivorous niche with 

regard to the fossil analyses will be discussed below. The misclassification of the 

Peruvian sciurids is surprising, as they appear to occupy the central area of the FH niche, 

and this may demonstrate the ambiguity of dietary assignment in regions of partial 

overlap among the “frugivorous” niches. 

Discriminant Analysis at Multiple Taxonomic Levels 

To ascertain the effects of phylogeny on the primary analysis of the extant 

sample, discriminant analyses were performed at varying taxonomic levels. It should be 

noted that statistical analyses of samples of variable numbers of observations can alter 

results due to sample size alone, and the nature of this demonstration dictates that sample 

sizes will decrease as higher taxonomic levels are analyzed. However, if results are 
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generally consistent across hierarchical taxonomic groupings, this suggests that 

phylogenetic autocorrelation is not magnifying the relationship between molar 

morphology and dietary regime in more abundant higher taxa. 

 Alpha taxonomy of all species follows Wilson and Reeder (2005) and taxonomic 

groupings are listed in Table 5.42. All possible variable set-sample combinations were 

employed, and taxonomic groupings were as inclusive as each sample allowed. The main 

restriction regarding taxonomic groups was the requisite of discriminant analysis that all 

dietary groups include at least 2 observations. Thus, Dietary Group 2 (see Chapter 4), the 

broader of the two dietary categories was used, but even at the subfamilial level, only two 

dietary groups (“I” and “F”) comprised more than two members in the Mindanao sample. 

As the objective of this exercise was to eliminate multiple observations evolutionarily 

derived from the same diet-dentition ancestral condition, taxa within a subfamily or 

family classified into different dietary groups were considered independent observations 

(e.g., insectivorous and frugivous phyllostomids were analyzed separately). 

 Although somewhat limited in number, the analyses for which sufficient data 

were available suggest that relationships between molar morphology and dietary regime 

are maintained when lower-level taxa are subsumed into more inclusive groups (Table 

5.43). However, the significant reduction in error rate for certain higher taxonomic levels 

is concerning, suggesting that the consideration above, in which sample size may 

significantly affect results, is notable. In general, error rates increase in higher-level 

groups, although (with the exception of Variable Set 2 of the Balta sample) most rates are 

less than 0.25. In particular, Variable Set 3 performs rather consistently at all taxonomic 

levels. Despite the fact that this type of analysis of the effect of phylogeny is not 
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definitive, until a well-supported option that considers phylogenetic relationships in 

discriminant analysis is readily available, one can only consider the possible effects of 

phylogenetic relatedness post hoc on the results presented here. 

MODIFIED MANOVA: TEST CASE OF FOSSIL ANALYSIS 

As discussed in Chapter 2, a statistical test that can identify overlap among N-

dimensional niches, as they have been defined and evaluated in previous ecological 

research, has the potential to produce more hypothesis-driven, probability-based 

assessments of ecological similarity across multiple niche axes, which can allow for a 

more complete and quantitative evaluation of competition in the fossil record. 

Furthermore, this analysis does not require knowledge of the nature of the dietary niche 

(i.e., the actual diet) of each group but only whether dietary niches overlap, which is 

particularly advantageous in the study of fossil taxa with no extant analogs. The method 

described below was used to analyze dietary niche overlap within the fossil sample, but it 

was additionally applied to a portion of the extant sample, the majority of the Balta 

species (Table 5.44), as a test case in which dietary regimes were known. Both the effect 

of dimensionality in testing overlap of niche hypervolumes and the interpretation of 

patterns of niche overlap among the Balta taxa, specifically the efficacy of specific molar 

measures in the reconstruction of dietary niche overlap within fossil communities, were 

explored. 

Methodological Description 

 A principal component analysis (PCA) was first performed on all individual 

specimens using Variable Set 3 in order to reconstruct dietary niches; however, in 

general, the raw data for this method can consist of any unit of analysis (e.g., species 
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means). N principal components (PCs) can be used in the subsequent analysis of niche 

overlap, and the number of PCs varied among comparisons (see below). The resulting 

multidimensional principal component space is representative of a multidimensional 

niche space in which all possible niches represented in the sample are contained, and 

these niches are defined by the relationships among molar morphological variables. In 

this space, each specimen has a multidimensional point, or “niche coordinate.” This 

model of niche reconstruction is most applicable to the evaluation of competition in fossil 

specimens, for which true niches are unknown, and therefore is dependent on previously 

demonstrated relationships between morphological characters and ecological niches of 

extant taxa.  

The niche of any group of specimens (e.g., specimens contributing to a particular 

taxonomic group, site, or temporal unit) can be evaluated within this overall niche space, 

and these groupings are the basis for the analysis of niche overlap. These niches in 

principal component space can be represented visually as “hypervolumes”: for example, 

convex hull polygons (in two dimensions) and confidence ellipsoids (in three 

dimensions) (Figs. 5.16 and 5.17). However, the subsequent test of niche overlap does 

not require that niches be circumscribed in this way, as it only considers the distribution 

of points in the predefined groups. Furthermore, although useful illustrative tools, 

graphical representations of niche space including fewer dimensions than the total 

number considered in the full analysis can be misleading, as they do not incorporate 

variation or separation along these additional, and potentially ecologically important, 

axes (see “Comparing Dimensionality in Patterns of Niche Overlap”). 
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The method of dietary niche overlap described here is a modified non-parametric 

multiple analysis of variance (MANOVA) derived from Anderson (2001). This analysis 

constructs an F-statistic calculated using sums of squares of distances among “niche 

coordinates” in multidimensional principal component space. Specifically, SSB (variance 

between groups), is the sum of squared distances between each niche coordinate and the 

centroid of the entire sample, and SSW (variance within groups) is the sum of squared 

distances between each niche coordinate within a group and the centroid of that group. 

To simplify the resulting algorithm, the sums of squared interpoint distances (equivalent 

to the sums of squared distances between individual points and their centroids) and the 

consequent calculation of SSB using SST (total variance within both groups combined) 

was preferred (Anderson, 2001) (Table 5.45). 

Using this approach, the resulting value of the F-statistic will be higher when the 

variance between groups is greater than the variance within groups, indicating group 

separation. Thus, the null hypothesis of this analysis states that groups occupy 

statistically similar positions in the multivariate principal component space, the 

ecological interpretation of which is the presence of niche overlap, a requisite of 

competition. Consequently, rejection of the null hypothesis signifies the lack of overlap 

between niches. As the null distribution of this F-statistic is not identical to that of the 

parametric Fisher’s F-statistic, a permutation test was used to calculate the p-value for 

each comparison. In this test, group identification is randomly reassigned to each 

individual, and the F-statistic is recalculated (F*). Statistical significance was assessed by 

determining whether the observed F-value is within the upper 5% of the permuted 

distribution (Manly 1997; Anderson, 2001). Randomization also enables the application 
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of this method to small samples, as hypervolumes need only be defined by a minimum of 

three coordinates, a condition present in several reconstructed niche hypervolumes within 

the fossil sample (see Tables 4.3, 6.4-6.8). These analyses were performed in SAS 9.2 

(see Appendix 7 for associated program).  

Comparing Dimensionality in Patterns of Niche Overlap 

 Dietary niches were reconstructed for each of the seven dietary categories 

represented in the sample, and niche overlap among dietary groups using the first two, 

three, and five principal components, or niche axes, were contrasted. In this analysis, 

each niche axis represented a component of molar morphology, correlated with dietary 

differences, and thus was interpreted as an aspect of the dietary niche. The first two and 

three niche axes were examined to facilitate direct comparisons with previous studies, 

which have typically considered either two or three dimensions in niche reconstruction. 

Niches defined by five principal components were used to account for the vast majority, 

cumulatively contributing to 95%, of the variation in the study sample. Although the 

additive variation decreases with each subsequent principal component, variation left 

unaccounted for with two, or even three, dimensions can be considerable in some 

samples and therefore has the potential to contain important ecological information. The 

specific effects of dimensionality are sample-dependent, but an example of the degree to 

which additional niche axes can potentially influence patterns of niche overlap will be 

investigated here. 

As discussed earlier in this chapter, a plot of the first and second principal 

components (Fig. 5.16) reveals: (1) clear separation among some groups (F-I, FH-I, F-O, 

FH-O, F-IF, and FH-IF), (2) clear overlap among other groups (I-O, I-IF), and (3) some 
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degree of overlap among the remaining dietary groups. If we assume then that the molar 

characters are sufficient proxies for aspects of the dietary niche, these results indicate that 

(1) the dietary niches of F and FH are distinct from those of O, IF, and I, (2) there is 

dietary niche overlap between the pairs I-O and I-IF (at least when considering these two 

niche axes), and (3) the rest of the dietary niches may or may not overlap. Thus, outside 

of an explicit statistical framework, it is difficult to determine the degree of overlap 

among the niches in (3). As mentioned previously, overlap is difficult to assess visually, 

and in fact, the results indicate that only the I, IF, and O groups and the FH and FI groups 

significantly overlap (Table 5.46). 

Addition of the third dimension (Fig. 5.17) demonstrates that the orientation of 

the hypervolumes, and thus their three-dimensional shapes, differ along this third niche 

axis. For example, the F, O, and I niche spaces are more elongate along the third principal 

component (i.e., the ranges of third principal component values are greater) than the 

remaining niches. This is consistent with the variable loadings on the third principal 

component, which contrasts trigonid-talonid relief and crest length, on the one hand, with 

talonid basin depth on the other (see Table 5.14). These variations on the “typical” diet-

dentition relationships seem to characterize subsets of specimens within each dietary 

group. For example, insectivorous noctilionid bats and certain genera of frugivorous 

phyllostomid bats exhibit relatively low trigonid-talonid relief and long crest lengths, 

respectively, compared to other species within their dietary groups. The values of PC3 

also demonstrate niche separation in ways not evident from considering the first two 

principal components alone. For example, the FI group appears to occupy a higher 

position along the third niche axis as compared to the FH group, further defining the 
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nature of niche overlap, or lack thereof, between these three-dimensional niche spaces. 

The results of the MANOVAs indicate that this third dimension includes some 

information important in dietary niche differentiation, as p-values for the I-IF and I-O 

comparisons approach significance (p=0.09, p=0.14, respectively) (Table 5.46). 

However, separation among the I, IF, and O niches is not achieved even when three niche 

axes are considered. It is only when five dimensions are included in the analysis that all 

seven dietary niches are non-overlapping (Table 5.46). It should be noted that if 

significance levels are adjusted for multiple comparisons, the IF and O hypervolumes 

remain overlapping again highlighting the problematic nature of the “omnivorous” 

dietary category. 

Overall, these analyses establish that the identification of niche overlap can be 

ambiguous and graphical representations can be misleading without an associated 

statistical test. Furthermore, the results of this study emphasize the importance of 

accounting for most, if not all, of the variation within a sample, as known dietary niches 

were not completely differentiated when only two or three dimensions were examined. 

Although it is possible that the first two or three niche axes will accommodate a large 

percentage of the variation within a sample, a thorough comparison of niche 

hypervolume overlap must investigate the complexity of the niche space in multiple 

dimensions. As indicated here, the variables (or variable combinations) critical to the 

separation of similar niches – the regions of ecospace in which competition may be 

especially prevalent – may only explain a small amount of variation in the entire multi-

niche sample, and thus in the ecospace as a whole. 
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Comparing Patterns of Reconstructed Niche Overlap to Known Dietary Regimes 

Five-dimensional niches were constructed for each genus, and analyses of 

hypervolume overlap were conducted. If the eight molar measurements of Variable Set 3 

are appropriate indicators of diet, as the previous results of this chapter suggest, then 

overlap of hypervolumes will be restricted to those genera classified in the same dietary 

group. In other words, only comparisons of genera assigned to different dietary categories 

are expected to result in significant F-values. This result will support the use of genus-

level hypervolumes in the reconstruction of frugivorous, frugivorous-nectarivorous, hard-

object frugivorous, frugivorous-insectivorous, insectivorous, insectivorous-frugivorous, 

and omnivorous dietary niches in the fossil record. Accordingly, overlap of reconstructed 

hypervolumes of fossil genera would indicate dietary niche overlap as defined by 

occupation of the same dietary group. However, it should be noted that this is the strictest 

interpretation of this analysis, as true dietary niches of living species may be distinct even 

within these refined dietary classifications.  

In accordance with the results discussed previously in this chapter, these analyses 

supported a strong relationship between the molar variables and diet, specifically 

demonstrating that there was a clear distinction between the “insectivorous” niche 

(comprising the I and IF niches) and the “frugivorous” niche (including the F, FH, FI, FN 

niches). It is within these larger groups that the morphological variables were less 

consistent at reconstructing expected niche overlap patterns – genera grouped in the same 

dietary category exhibited niche separation, while niches of genera grouped in different 

dietary categories were shown to overlap. This indicates that the mapping of molar 
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morphology onto dietary niches is more complex than the principal component analysis, 

ANOVA, and discriminant analysis results might suggest.  

Overall, approximately 82% of all comparisons produced the expected outcome 

(niche overlap among genera of similar diets and niche separation among genera with 

different diets), but the results of the inter- and intra-dietary group comparisons 

contrasted significantly. Comparisons between genera from different dietary categories 

yielded a high number of outcomes in the expected direction; i.e., there were relatively 

few instances of niche overlap (~7%) (Table 5.47). However, niche overlap between 

genera within dietary categories was also low, particularly within frugivores, broadly 

defined; ~29% of comparisons yielded non-significant F-values (Table 5.47). Due to the 

high number of pairwise comparisons, significance levels were not adjusted for all 

analyses, but strict Bonferroni adjustment of intra-dietary group comparisons did reverse 

this pattern (~66% of comparisons were non-significant) (Table 5.47). Further adjustment 

would lead to extremely low alpha values, which was deemed inappropriate for an 

accurate interpretation of the results. The significance of these results is discussed below 

(“Reconstruction of Dietary Niche Overlap”). 

CONCLUSIONS 

 At the beginning of this chapter, two questions, designed to investigate the utility 

of extant diet-dentition relationships in reconstructing dietary niche overlap in the fossil 

euprimate competitive guild, were posed. Based on the preceding results, these questions 

will each be addressed in order to provide the context for the analysis of the fossil sample 

in Chapter 6. 
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Association of Molar Measurements with Diet 

Overall, the results of the extant sample highlight the validity of the use of these 

molar measurements in dietary reconstruction, as they consistently identified dietary 

group differences and discriminated among dietary niches. Despite this identification of 

useful diet-dentition relationships, dental morphology was not an exact predictor of diet, 

particularly when considering the narrow dietary regimes examined here. In particular, 

the omnivore niche is especially problematic. Due to their variable dietary habits, the 

omnivore classification has presented issues in dietary categorization in previous studies 

(e.g., Boyer, 2008; White, 2009; Bunn et al., 2011; Godfrey et al., 2012), as it has been 

difficult to identify morphological features that are unique to this dietary class. This 

suggests that the term “omnivorous” may be a simple, uniform descriptor for diets that 

vary widely among taxa. Furthermore, the dentition of these species may be adapted to a 

dominant or more critical (e.g., scarce) dietary resource (Kay and Covert, 1984; Altmann, 

2009). The similarity between omnivorous and insectivorous molar morphologies in this 

study is unclear, particularly as the omnivorous taxa span three mammalian orders. Thus, 

although possible, the difficulty in identifying a specific omnivorous niche does not 

appear to be sample-specific. This poses a significant problem for the analysis of fossil 

species, in which dietary niches are unknown. At this point, the only possible 

interpretation of the fossil analyses with regard to this issue is to acknowledge that some 

instances of niche overlap of taxa with an “insectivore-like” molar morphology may 

erroneously place non-competing species within the same dietary niche. 

 As discussed in Chapter 4, individual competitive guilds were chosen for this 

study because they closely approximate true community-level competition by including 
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species that are known to interact and whose fundamental niches overlap both spatially 

and temporally. However, the finite dietary and morphological breadth of individual 

communities incorporates only a portion of the variation exhibited in extant mammals, 

and thus different communities, with different taxonomic compositions and levels of 

diversity, may yield alternative conclusions. On the other hand, molar features have been 

demonstrated consistently as proxies of dietary behavior (see Chapter 2), and the 

congruence of the results of both communities analyzed here support the assumption that 

these morphological variables sufficiently capture the association between molar form 

and dietary regime across the euprimate competitive guild. 

Reconstruction of Dietary Niche Overlap 

Given that the diet-dentition relationship has been broadly established, the ability 

to reconstruct dietary niche overlap within communities must then be considered. The 

results of the modified MANOVA best speak to this issue and can be interpreted in three 

ways. First, it is possible that our ability to reconstruct dietary niches within broad dietary 

categories (i.e., insectivory or frugivory) using molar morphology needs further 

refinement. In general, this is undoubtedly so, but given the limitations of reconstructing 

diet in the fossil record, it is possible that this level of precision may not significantly 

increase with future research, at least of molar form alone. For example, consumption of 

different fruits (or insects) may be associated with subtle differences in molar 

morphology, as the six phyllostomid frugivorous bats studied here rely on figs to varying 

degrees. Nonetheless, within the general framework of known diet-dentition 

relationships, variation in the proportionality of different food items (with their 

accompanying potential diversity of material properties) is relatively unstudied and may 
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be inaccessible via dental macro-morphology (Ungar, 2004, 2009). Furthermore, this 

study does not account for the non-molar dentition, and the integration of the entire 

dental suite (in conjunction with cranial and postcranial anatomy) is certainly integral to 

the reconstruction of a complete account of dietary behavior.  

 Second, however, if one accepts that the level of accuracy of these methods of 

dietary reconstruction are sufficient given the constraints of morphology-based analyses, 

then the results emphasize the importance of considering variation within larger dietary 

niches. In other words, there might be different ways for a “frugivore” to be a 

“frugivore.” For instance, the frugivores included here supplement their diets with insects 

to different degrees, and within frugivory itself, variable amounts of ripe fruits, pollen, 

nectar, and flower parts may be eaten (see Appendix 4). This conclusion warrants further 

behavioral studies of the extent to which direct and indirect competition occurs among 

extant species sharing dietary resources and whether dental morphology reflects this 

process in any way. Additionally, increasing our knowledge of species’ dietary niches 

within their communities, and how these niches are defined and classified, may resolve 

some of this disassociation. The difficulty in living communities, of course, is that we are 

observing the end results of millions of years of biotic interactions, culminating in 

possible equilibrium communities where competition and niche differentiation are at their 

minimum and maximum, respectively. 

 Third, as the value of dental morphology in the systematics of fossil taxa is well-

known, by defining groups taxonomically in the genus-genus comparisons, the results 

may simply be reinforcing phylogenetic patterning within dietary categories when it is 

present. On the other hand, as the number of overlapping niches within dietary groups 
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differs, these results may suggest that the strength of the phylogenetic, as compared to the 

ecological or functional, signal may be variable across dietary niches. 

Therefore, one may ask if an examination of dental morphology at this level of 

detail is too specific to reconstruct dietary niches and their potential overlap in fossil taxa, 

and as a result, if we are constrained to general categories in defining shared food 

resource use among members of paleocommunities. Based on the results described 

above, it is clear that we can begin to make inferences of dietary niche overlap among 

taxa as long as we understand the limitations of doing so and take a conservative 

approach. Most importantly, if niche comparisons using the protocol presented here 

reveal very low significance values (i.e., high p-values), it is highly likely that niche 

overlap was present. These results can then be interpreted in conjunction with patterns of 

diversity and abundance and other aspects of the ecological niche (e.g., habitat use, 

activity pattern, substrate preference) to make the most informed decision regarding the 

likelihood (and impact) of competitive interactions among fossil species. These will all 

be considered in the subsequent chapters. 

 Finally, despite non-overlapping sets of dietary groups, the same morphological 

variables differentiated among dietary groups across both extant samples. However, when 

it could be used, Variable Sets 1 and 3 performed better overall than the reduced set of 

variables composing Variable Set 2. Although all taxa within the fossil sample possess 

molar morphologies that enable calculation of the variables in Variable Set 3, this is not 

true of Variable Set 1. Thus, to maximize the inclusion of multiple molar forms, Variable 

Set 3 was used in the analysis of the fossil sample. 
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Figure 5.1. Scaling of variables identified as allometric in the Balta sample. Gray 
circles are “frugivore” individuals; gray line is the RMA regression line for frugivores 
only. Black circles are “insectivore” individuals; black line is the RMA regression line 
for insectivores only. Black dotted line is the RMA regression line for the entire sample 
(“frugivores” and “insectivores” combined). Slopes correspond to Tables 5.2 and 5.5. 
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Figure 5.2. Scaling of variables identified as allometric in the Mindanao sample. 
Gray circles are “frugivore” individuals; gray line is the RMA regression line for 
frugivores only. Black circles are “insectivore” individuals; black line is the RMA 
regression line for insectivores only. Black dotted line is the RMA regression line for the 
entire sample (“frugivores” and “insectivores” combined). Slopes correspond to Tables 
5.3 and 5.6.  
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Figure 5.3. Scaling of variables identified as allometric in the combined Balta-
Mindanao sample. Gray circles are “frugivore” individuals; gray line is the RMA 
regression line for frugivores only. Black circles are “insectivore” individuals; black line 
is the RMA regression line for insectivores only. Black dotted line is the RMA regression 
line for the entire sample (“frugivores” and “insectivores” combined). Slopes correspond 
to Tables 5.4 and 5.7.  
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Q.  

R.  
Figure 5.13. Box plots of each variable for Dietary Group 2 of the Balta sample. Angle 
values are in radians. Dietary codes are: FN=Frugivore-nectarivore, FH= Hard-object frugivore, 
F=Frugivore, FI=Frugivore-insectivore, O=Omnivore, IF=Insectivore-frugivore, I=Insectivore. 
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A.  
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C.  

D.  
Figure 5.14. Box plots of each variable for Dietary Group 2 of the Mindanao sample. 
Angle values are in radians. Dietary codes are: FN=Frugivore-nectarivore, FH= Hard-
object frugivore, F=Frugivore, O=Omnivore, I=Insectivore, Fo=Folivore. 
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D.  
Figure 5.15. Box plots of each variable for Dietary Group 2 of the combined Balta-
Mindanao sample. Angle values are in radians. Dietary codes are: FN=Frugivore-
nectarivore, FH= Hard-object frugivore, F=Frugivore, FI=Frugivore-insectivore, 
O=Omnivore, IF=Insectivore-frugivore, I=Insectivore, Fo=Folivore. 
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Figure 5.17. Graphical representation of dietary niches within a three-dimensional 
dietary niche space based on a plot of 95% confidence interval contour ellipsoids of 
the seven dietary groups. Note that the omnivore and insectivore-frugivore niches are 
contained within the insectivore niche. 
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Table 5.9. Specimens included in comparative analysis of m1 and 
m2 morphology. 
Specimen Species Dietary Group 2 
FMNH 147830 Alionycteris paucidentata F 
FMNH 148093 Alionycteris paucidentata F 
FMNH 166461 Dyacopterus rickarti F 
FMNH 146670 Megaerops wetmorei F 
FMNH 142602 Ptenochirus jagori F 
FMNH 146673 Ptenochirus jagori F 
FMNH 146688 Ptenochirus minor F 
FMNH 146689 Ptenochirus minor F 
FMNH 144748 Pteropus hypomelanus F 
NMNH 462182 Pteropus hypomelanus F 
FMNH 144759 Pteropus pumilus F 
FMNH 144745 Pteropus speciosus F 
FMNH 144747 Pteropus speciosus F 
FMNH 33701 Pteropus vampyrus F 
FMNH 87410 Pteropus vampyrus F 
FMNH 67747 Exilisciurus concinnus FH 
FMNH 92784 Exilisciurus concinnus FH 
FMNH 66302 Harpyionycteris whiteheadi FH 
FMNH 87440 Petinomys crinitus FH 
FMNH 87442 Petinomys crinitus FH 
FMNH 67750 Sundasciurus philippinensis FH 
FMNH 87455 Sundasciurus philippinensis FH 
FMNH 146608 Cynopterus brachyotis FN 
FMNH 146613 Cynopterus brachyotis FN 
FMNH 41354 Eonycteris robusta FN 
FMNH 56558 Eonycteris robusta FN 
FMNH 146653 Macroglossus minimus FN 
FMNH 56443 Rousettus amplexicaudatus FN 
FMNH 56446 Rousettus amplexicaudatus FN 
FMNH 56504 Cynocephalus volans Fo 
FMNH 56521 Cynocephalus volans Fo 
FMNH 146966 Crocidura beatus I 
FMNH 80360 Crocidura beatus I 
FMNH 60850 Hipposideros cervinus I 
FMNH 142613 Hipposideros coronatus I 
FMNH 80447 Hipposideros diadema griseus I 
FMNH 80452 Hipposideros diadema griseus I 
FMNH 190052 Hipposideros obscurus I 
FMNH 56689 Hipposideros obscurus I 
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Table 5.9, Cont'd. 
Specimen Species Dietary Group 2 
FMNH 190112 Kerivoula pellucida I 
FMNH 168892 Megaderma spasma I 
FMNH 190036 Megaderma spasma I 
FMNH 166475 Miniopterus australis I 
FMNH 61086 Miniopterus australis I 
FMNH 61083 Miniopterus schreibersii I 
FMNH 61209 Miniopterus schreibersii I 
FMNH 168939 Miniopterus tristis I 
FMNH 145542 Miniopterus tristis I 
FMNH 113460 Myotis macrotarsus I 
FMNH 145546 Myotis muricola I 
FMNH 167382 Otomops formosus I 
FMNH 167240 Otomops sp. I 
FMNH 145548 Philetor brachypterus I 
FMNH 147068 Philetor brachypterus I 
FMNH 142614 Pipistrellus javanicus I 
FMNH 61230 Rhinolophus arcuatus I 
FMNH 61231 Rhinolophus arcuatus I 
FMNH 146701 Rhinolophus inops I 
FMNH 148122 Rhinolophus inops I 
FMNH 61222 Rhinolophus rufus I 
FMNH 1111 Scotophilus kuhlii I 
FMNH 56654 Scotophilus kuhlii I 
FMNH 56639 Taphozous melanopogon I 
FMNH 56642 Taphozous melanopogon I 
FMNH 56759 Tarsius syrichta I 
NMNH 282761 Tarsius syrichta I 
FMNH 166476 Urogale everetti O 
FMNH 61418 Urogale everetti O 
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Table 5.10. Results of Wilcoxon signed-rank test comparing m1 and m2 
measurements. 
Measurement Mean Difference S Statistic p-Value 
Total crest length -0.057 -85 0.599 
Mean cusp height -0.010 -287 0.073 
Mean cusp angle -0.038 -312 0.056 

Talonid basin depth 0.003 39 0.810 
 
 
 
 

Table 5.11. Results (p-values) of Critchlow-Fligner post-hoc multiple 
comparisons of Dietary Group 2 using m1 and m2. Significant results are bolded. 

Groups 
Compared 

Mean Cusp 
Height (m1) 

Mean Cusp 
Height (m2) 

Mean Cusp 
Angle (m1) 

Mean Cusp 
Angle (m2) 

F vs FH 1.000 1.000 1.000 1.000 
F vs FN 1.000 1.000 1.000 1.000 
F vs Fo 0.089 0.145 1.000 1.000 
F vs I <0.001 <0.001 <0.001 <0.001 
F vs O 0.145 0.108 0.903 0.615 
FH vs FN 1.000 1.000 1.000 1.000 
FH vs Fo 1.000 1.000 1.000 1.000 
FH vs I 0.052 0.056 0.001 0.001 
FH vs O 1.000 1.000 0.924 0.406 
FN vs Fo 0.178 0.253 1.000 1.000 
FN vs I <0.001 <0.001 <0.001 <0.001 
FN vs O 0.271 0.196 0.216 0.075 
Fo vs I 1.000 1.000 0.863 1.000 
Fo vs O 1.000 1.000 1.000 1.000 
I vs O 1.000 1.000 1.000 1.000 
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Table 5.17. Species excluded or exchanged for 
congeners in the phylogenetic tree used in the 
phylogenetic principal component analyses. 
Original Species Species in Phylogeny 
Dyacopterus rickarti Dyacopterus spadiceus 
Ectophylla macconnelli Ectophylla alba 
Eonycteris robusta Eonycteris spelaea 
Hipposideros ater Excluded 
Lophostoma silvicolum Excluded 
Marmosa quichua Excluded 
Philander mcilhennyi Excluded 
Rhinolophus arcuatus Excluded 
Sturnira lilium Excluded 
Sturnira tildae Excluded 
Tonatia minuta Tonatia bidens 
Tonatia saurophila Excluded 

 
 

Table 5.18. Results of Kruskal-Wallis analysis of each variable in the 
Balta, Peru sample. With strict Bonferroni correction, ±=0.002. 

Dietary Group 1 Dietary Group 2 

Variable F-Value p-Value F-Value p-Value 
Total crest length 4.456  <.001 5.240  <.001 
Protoconid height 49.068  <.001 64.396  <.001 
Metaconid height 14.385  <.001 18.492  <.001 
Entoconid height 34.330  <.001 45.237  <.001 
Hypoconid height 48.620  <.001 64.938  <.001 
Mean cusp height 47.817  <.001 62.680  <.001 
Hypoconid angle 37.486  <.001 30.189  <.001 
Protoconid angle 65.121  <.001 87.039  <.001 
Metaconid angle 40.451  <.001 53.741  <.001 
Entoconid angle 13.359  <.001 16.779  <.001 
Mean cusp angle 62.345  <.001 82.451  <.001 
Talonid basin area 13.583  <.001 12.980  <.001 
Talonid basin depth 3.087 0.002 3.051 0.007 
Trigonid-talonid relief 42.247  <.001 42.143  <.001 
Trigonid cusp height 43.212  <.001 56.053  <.001 
Trigonid cusp angle 63.781  <.001 85.226  <.001 
Talonid cusp height 73.187  <.001 95.013  <.001 
Talonid cusp angle 23.639  <.001 30.651  <.001 

 
  



  154 

Table 5.19. Results of Kruskal-Wallis analysis of each variable 
in the Mindanao, Philippines sample. With strict Bonferroni 
correction, ±=0.013. 

Dietary Group 1 Dietary Group 2 
Variable F-Value p-Value F-Value p-Value 
Total crest length 32.299   <.001 28.227   <.001 
Mean cusp height 47.416   <.001 65.260   <.001 
Mean cusp angle 324.107   <.001 443.700   <.001 
Talonid basin depth 20.407   <.001 26.844   <.001 

 
 

Table 5.20. Results of Kruskal-Wallis analysis of each variable 
in the combined Balta-Mindanao sample. With strict Bonferroni 
correction, ±=0.013. 

Dietary Group 1 Dietary Group 2 
Variable F-Value p-Value F-Value p-Value 
Total crest length 7.257 <.001 8.989 <.001 
Mean cusp height 58.145 <.001 98.370 <.001 
Mean cusp angle 21.530 <.001 28.204 <.001 
Talonid basin depth 9.819 <.001 11.710 <.001 
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Table 5.21. Results (p-values) of Critchlow-Fligner pairwise comparisons of all Balta 
dietary groups using Dietary Group 1. Significant results are bolded. 

Groups 
Compared 

Total Crest 
Length 

Protoconid 
Height 

Metaconid 
Height 

Entoconid 
Height 

Hypoconid 
Height 

F vs FH 0.225 1.000 1.000 0.003 1.000 
F vs FI 1.000 1.000 <0.001 <0.001 1.000 
F vs FIFH 1.000 1.000 1.000 1.000 1.000 
F vs FN 0.002 1.000 1.000 0.123 1.000 
F vs I 1.000 <0.001 <0.001 <0.001 <0.001 
F vs IF 0.188 <0.001 <0.001 <0.001 <0.001 
F vs N <0.001 1.000 0.839 0.002 1.000 
F vs O 0.341 0.004 <0.001 <0.001 0.003 
FH vs FI 1.000 1.000 0.005 0.103 1.000 
FH vs FIFH 1.000 1.000 1.000 1.000 1.000 
FH vs FN 1.000 1.000 1.000 1.000 1.000 
FH vs I 0.253 <0.001 1.000 0.414 <0.001 
FH vs IF 1.000 <0.001 0.006 1.000 <0.001 
FH vs N 1.000 1.000 1.000 1.000 1.000 
FH vs O 1.000 0.001 0.010 1.000 0.532 
FI vs FIFH 1.000 1.000 1.000 1.000 1.000 
FI vs FN 0.755 1.000 <0.001 0.001 1.000 
FI vs I 1.000 <0.001 0.001 1.000 <0.001 
FI vs IF 1.000 0.001 1.000 0.450 0.002 
FI vs N 0.014 1.000 0.295 0.269 1.000 
FI vs O 1.000 0.343 1.000 1.000 1.000 
FIFH vs FN 1.000 1.000 1.000 1.000 1.000 
FIFH vs I 1.000 1.000 1.000 1.000 1.000 
FIFH vs IF 1.000 1.000 1.000 1.000 1.000 
FIFH vs N 1.000 1.000 1.000 1.000 1.000 
FIFH vs O 1.000 1.000 1.000 1.000 1.000 
FN vs I 0.004 <0.001 1.000 0.001 0.118 
FN vs IF 1.000 <0.001 <0.001 0.371 0.511 
FN vs N 1.000 1.000 1.000 1.000 1.000 
FN vs O 1.000 0.012 <0.001 0.200 1.000 
I vs IF 0.276 1.000 <0.001 1.000 1.000 
I vs N <0.001 0.001 1.000 1.000 <0.001 
I vs O 0.370 1.000 0.001 1.000 0.224 
IF vs N 0.057 0.004 0.864 1.000 0.002 
IF vs O 1.000 1.000 1.000 1.000 1.000 
N vs O 1.000 0.918 0.588 1.000 1.000 

No. Groups 
Discriminated 

5 13 13 8 9 
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Table 5.21, Cont'd. 

Groups 
Compared 

Mean Cusp 
Height 

Hypoconid 
Angle 

Protoconid 
Angle 

Metaconid 
Angle 

Entoconid 
Angle 

F vs FH 1.000 1.000 0.276 1.000 1.000 
F vs FI 1.000 1.000 1.000 1.000 1.000 
F vs FIFH 1.000 1.000 1.000 1.000 1.000 
F vs FN 1.000 <0.001 1.000 1.000 1.000 
F vs I <0.001 <0.001 <0.001 <0.001 <0.001 
F vs IF <0.001 <0.001 <0.001 <0.001 <0.001 
F vs N 1.000 1.000 1.000 1.000 1.000 
F vs O <0.001 <0.001 <0.001 <0.001 0.168 
FH vs FI 1.000 1.000 1.000 1.000 1.000 
FH vs FIFH 1.000 1.000 1.000 1.000 1.000 
FH vs FN 1.000 0.000 0.463 1.000 1.000 
FH vs I <0.001 <0.001 <0.001 <0.001 <0.001 
FH vs IF <0.001 <0.001 <0.001 <0.001 <0.001 
FH vs N 1.000 1.000 1.000 1.000 1.000 
FH vs O 0.001 0.015 <0.001 <0.001 0.015 
FI vs FIFH 1.000 1.000 1.000 1.000 1.000 
FI vs FN 1.000 0.001 1.000 1.000 1.000 
FI vs I 0.028 0.001 <0.001 0.304 <0.001 
FI vs IF 0.024 0.025 <0.001 0.001 0.002 
FI vs N 1.000 1.000 1.000 1.000 1.000 
FI vs O 0.993 0.416 0.007 0.003 0.263 
FIFH vs FN 1.000 1.000 1.000 1.000 1.000 
FIFH vs I 1.000 1.000 0.267 1.000 1.000 
FIFH vs IF 1.000 1.000 0.442 0.906 1.000 
FIFH vs N 1.000 1.000 1.000 1.000 1.000 
FIFH vs O 1.000 1.000 0.927 0.787 1.000 
FN vs I <0.001 1.000 <0.001 <0.001 <0.001 
FN vs IF <0.001 1.000 <0.001 <0.001 <0.001 
FN vs N 1.000 0.001 1.000 1.000 1.000 
FN vs O 0.001 1.000 0.004 <0.001 0.015 
I vs IF 1.000 1.000 1.000 0.208 1.000 
I vs N 0.001 0.001 <0.001 0.004 <0.001 
I vs O 1.000 1.000 1.000 0.697 0.746 
IF vs N 0.001 0.040 <0.001 <0.001 0.092 
IF vs O 1.000 1.000 1.000 1.000 1.000 
N vs O 0.208 0.661 0.014 <0.001 1.000 

No. Groups 
Discriminated 

13 13 15 14 11 
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Table 5.21, Cont'd. 

Groups 
Compared 

Mean Cusp 
Angle 

Talonid 
Basin Area 

Talonid 
Basin Depth 

Trigonid-
Talonid 

Relief 

Trigonid Cusp 
Height 

F vs FH 1.000 1.000 1.000 1.000 1.000 
F vs FI 1.000 1.000 0.001 1.000 1.000 
F vs FIFH 1.000 1.000 1.000 1.000 1.000 
F vs FN 1.000 0.436 0.015 1.000 1.000 
F vs I <0.001 <0.001 1.000 <0.001 <0.001 
F vs IF <0.001 <0.001 0.104 <0.001 <0.001 
F vs N 1.000 0.211 1.000 0.003 1.000 
F vs O <0.001 0.003 0.274 <0.001 <0.001 
FH vs FI 1.000 1.000 1.000 1.000 1.000 
FH vs FIFH 1.000 1.000 1.000 1.000 1.000 
FH vs FN 0.471 1.000 1.000 1.000 1.000 
FH vs I <0.001 0.001 1.000 <0.001 <0.001 
FH vs IF <0.001 <0.001 1.000 <0.001 <0.001 
FH vs N 1.000 0.196 0.931 <0.001 1.000 
FH vs O <0.001 0.009 1.000 <0.001 <0.001 
FI vs FIFH 1.000 1.000 1.000 1.000 1.000 
FI vs FN 1.000 0.177 1.000 1.000 1.000 
FI vs I <0.001 1.000 0.005 <0.001 0.069 
FI vs IF <0.001 1.000 1.000 <0.001 0.004 
FI vs N 1.000 1.000 0.003 0.024 1.000 
FI vs O 0.015 1.000 1.000 <0.001 0.188 
FIFH vs FN 1.000 1.000 1.000 1.000 1.000 
FIFH vs I 1.000 1.000 1.000 0.175 1.000 
FIFH vs IF 1.000 1.000 1.000 0.111 1.000 
FIFH vs N 1.000 1.000 1.000 0.572 1.000 
FIFH vs O 1.000 1.000 1.000 0.120 1.000 
FN vs I <0.001 <0.001 0.080 <0.001 <0.001 
FN vs IF <0.001 <0.001 1.000 <0.001 <0.001 
FN vs N 1.000 0.002 0.046 0.005 1.000 
FN vs O 0.063 <0.001 1.000 <0.001 <0.001 
I vs IF 1.000 1.000 0.580 1.000 1.000 
I vs N <0.001 1.000 1.000 1.000 0.011 
I vs O 1.000 1.000 0.727 1.000 1.000 
IF vs N <0.001 1.000 0.270 1.000 <0.001 
IF vs O 1.000 1.000 1.000 1.000 1.000 
N vs O 0.012 1.000 0.245 1.000 0.064 

No. Groups 
Discriminated 

14 9 5 16 12 
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Table 5.21, Cont'd. 
Groups 
Compared 

Trigonid 
Cusp 

Angle 

Talonid 
Cusp 

Height 

Talonid 
Cusp  

Angle 

No. Variables 
Resulting in 

Discrimination 

% Variables 
Resulting in 

Discrimination 
F vs FH 1.000 1.000 1.000 0 0.00 
F vs FI 1.000 0.016 1.000 4 22.22 
F vs FIFH 1.000 1.000 1.000 0 0.00 
F vs FN 1.000 1.000 1.000 3 16.67 
F vs I <0.001 <0.001 <0.001 16 88.89 
F vs IF <0.001 <0.001 <0.001 16 88.89 
F vs N 1.000 0.378 1.000 3 16.67 
F vs O <0.001 <0.001 0.001 14 77.78 
FH vs FI 1.000 1.000 1.000 1 5.56 
FH vs FIFH 1.000 1.000 1.000 0 0.00 
FH vs FN 1.000 1.000 1.000 0 0.00 
FH vs I <0.001 <0.001 <0.001 14 77.78 
FH vs IF <0.001 0.001 <0.001 15 83.33 
FH vs N 1.000 1.000 1.000 1 5.56 
FH vs O <0.001 1.000 0.004 13 72.22 
FI vs FIFH 1.000 1.000 1.000 0 0.00 
FI vs FN 1.000 0.732 1.000 3 16.67 
FI vs I 0.002 0.119 <0.001 12 66.67 
FI vs IF <0.001 1.000 0.003 12 66.67 
FI vs N 1.000 1.000 1.000 3 16.67 
FI vs O 0.002 1.000 0.183 5 27.78 
FIFH vs FN 1.000 1.000 1.000 0 0.00 
FIFH vs I 1.000 1.000 1.000 0 0.00 
FIFH vs IF 0.447 1.000 1.000 0 0.00 
FIFH vs N 1.000 1.000 1.000 0 0.00 
FIFH vs O 0.629 1.000 1.000 0 0.00 
FN vs I <0.001 <0.001 <0.001 14 77.78 
FN vs IF <0.001 <0.001 <0.001 13 72.22 
FN vs N 1.000 1.000 1.000 4 22.22 
FN vs O <0.001 0.046 0.002 12 66.67 
I vs IF 1.000 1.000 1.000 1 5.56 
I vs N <0.001 0.001 <0.001 13 72.22 
I vs O 1.000 0.648 1.000 1 5.56 
IF vs N <0.001 0.035 0.019 11 61.11 
IF vs O 1.000 1.000 1.000 0 0.00 
N vs O <0.001 1.000 0.745 4 22.22 
No. Groups 
Discriminated 

15 11 13     
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Table 5.23. Results (p-values) of Critchlow-Fligner pairwise comparisons of all Mindanao 
dietary groups using Dietary Group 1. Significant results are bolded. 
Groups Compared Total Crest 

Length 
Mean Cusp 

Height 
Mean Cusp 

Angle 
Talonid 

Basin Depth 
No. Variables 
Resulting in 

Discrimination 
F vs FH 1.000 1.000 1.000 0.993 0 
F vs FHFo 1.000 1.000 1.000 1.000 0 
F vs FN 1.000 1.000 1.000 1.000 0 
F vs Fo <0.001 0.401 <0.001 <0.001 3 
F vs I <0.001 <0.001 <0.001 <0.001 4 
F vs IFa 0.436 0.152 0.002 <0.001 2 
F vs IH 0.944 <0.001 <0.001 1.000 2 
F vs N 1.000 1.000 1.000 1.000 0 
F vs O <0.001 <0.001 <0.001 0.240 3 
FH vs FHFo 1.000 1.000 1.000 1.000 0 
FH vs FN 1.000 1.000 1.000 0.465 0 
FH vs Fo <0.001 1.000 0.424 1.000 1 
FH vs I <0.001 0.075 0.950 1.000 1 
FH vs IFa 0.030 1.000 1.000 1.000 1 
FH vs IH 0.066 1.000 1.000 1.000 0 
FH vs N 1.000 1.000 1.000 0.302 0 
FH vs O <0.001 0.333 1.000 1.000 1 
FHFo vs FN 1.000 1.000 1.000 1.000 0 
FHFo vs Fo 0.001 0.437 0.001 0.001 3 
FHFo vs I 0.001 <0.001 <0.001 1.000 3 
FHFo vs IFa 1.000 0.204 1.000 0.144 0 
FHFo vs IH 1.000 0.001 0.938 1.000 1 
FHFo vs N 1.000 1.000 1.000 1.000 0 
FHFo vs O 0.001 <0.001 0.010 1.000 3 
FN vs Fo 0.004 0.545 <0.001 <0.001 3 
FN vs I 0.010 <0.001 <0.001 0.004 4 
FN vs IFa 1.000 0.273 0.296 <0.001 1 
FN vs IH 1.000 <0.001 0.068 1.000 1 
FN vs N 1.000 1.000 1.000 1.000 0 
FN vs O 0.003 0.001 0.001 0.142 4 
Fo vs I 1.000 1.000 1.000 0.021 1 
Fo vs IFa 1.000 1.000 1.000 1.000 0 
Fo vs IH 0.149 1.000 0.988 <0.001 1 
Fo vs N <0.001 0.027 <0.001 <0.001 4 
Fo vs O 1.000 1.000 1.000 0.619 0 
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Table 5.23, Cont'd. 
Groups 
Compared 

Total Crest 
Length 

Mean Cusp 
Height 

Mean Cusp 
Angle 

Talonid 
Basin Depth 

No. Variables 
Resulting in 

Discrimination 

I vs IFa 1.000 1.000 1.000 1.000 0 
I vs IH 0.816 1.000 1.000 0.569 0 
I vs N <0.001 <0.001 <0.001 0.012 4 
I vs O 1.000 1.000 1.000 1.000 0 
IFa vs IH 1.000 1.000 1.000 0.033 1 
IFa vs N 0.072 0.012 0.072 0.001 2 
IFa vs O 1.000 1.000 1.000 1.000 0 
IH vs N 0.161 <0.001 0.018 1.000 2 
IH vs O 0.128 1.000 1.000 1.000 0 
N vs O <0.001 <0.001 <0.001 0.112 3 

No. Groups 
Discriminated 17 14 15 14   

 
 

Table 5.24. Results (p-values) of Critchlow-Fligner pairwise comparisons of all 
Mindanao dietary groups using Dietary Group 2. Significant results are bolded. 
Groups 
Compared 

Total Crest 
Length 

Mean Cusp 
Height 

Mean Cusp 
Angle 

Talonid Basin 
Depth 

No. Variables 
Resulting in 

Discrimination 
F vs FH 1.000 1.000 0.105 0.426 0 
F vs FN 1.000 1.000 1.000 1.000 0 
F vs Fo <0.001 0.134 <0.001 <0.001 3 
F vs I <0.001 <0.001 <0.001 <0.001 4 
F vs O <0.001 <0.001 <0.001 0.080 3 
FH vs FN 1.000 1.000 0.280 0.042 1 
FH vs Fo <0.001 0.193 <0.001 0.001 3 
FH vs I <0.001 <0.001 <0.001 1.000 3 
FH vs O <0.001 <0.001 0.004 1.000 3 
FN vs Fo <0.001 0.015 <0.001 <0.001 4 
FN vs I <0.001 <0.001 <0.001 <0.001 4 
FN vs O <0.001 <0.001 <0.001 0.009 4 
Fo vs I 0.564 1.000 1.000 0.003 1 
Fo vs O 1.000 1.000 1.000 0.206 0 
I vs O 0.493 1.000 1.000 1.000 0 

No. Groups 
Discriminated 9 7 9 8   
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Table 5.27. K-nearest-neighbor discriminant analysis of Variable Set 1 of the 
Balta sample using Dietary Group 2 assignments. Correct reclassifications are 
bolded. 
Original 
Group Classified Group 

F FH FI FN I IF O Other Total 
F N 86 0 1 0 0 0 0 1 88 
  % 97.73 0.00 1.14 0.00 0.00 0.00 0.00 1.14 100.00 
FH N 0 17 1 0 0 0 0 0 18 
  % 0.00 94.44 5.56 0.00 0.00 0.00 0.00 0.00 100.00 
FI N 0 0 11 0 0 0 0 1 12 
  % 0.00 0.00 91.67 0.00 0.00 0.00 0.00 8.33 100.00 

FN N 0 0 1 20 1 0 0 0 22 
  % 0.00 0.00 4.55 90.91 4.55 0.00 0.00 0.00 100.00 
I N 0 0 0 0 53 1 1 0 55 
  % 0.00 0.00 0.00 0.00 96.36 1.82 1.82 0.00 100.00 
IF N 0 0 0 0 2 35 1 0 39 
  % 0.00 0.00 0.00 0.00 5.13 92.31 2.56 0.00 100.00 
O N 0 0 0 0 0 4 11 0 15 
  % 0.00 0.00 0.00 0.00 0.00 26.67 73.33 0.00 100.00 
Total N 86 17 14 20 56 41 13 2 249 
  % 34.54 6.83 5.62 8.03 22.49 16.47 5.22 0.80 100.00 
Priors   0.353 0.072 0.048 0.088 0.221 0.157 0.060 
Error Rate 0.023 0.056 0.083 0.091 0.036 0.077 0.267   0.060 
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Table 5.29. K-nearest-neighbor discriminant analysis of Variable Set 2 of the Balta 
sample using Dietary Group 2 assignments. Correct reclassifications are bolded. 

Original 
Group 

Classified Group 
F FH FI FN I IF O Other Total 

F N 83 1 1 2 0 0 0 1 88 
  % 94.32 1.14 1.14 2.27 0.00 0.00 0.00 1.14 100.00 
FH N 1 15 1 1 0 0 0 0 18 
  % 5.56 83.33 5.56 5.56 0.00 0.00 0.00 0.00 100.00 
FI N 0 1 10 0 0 0 0 1 12 
  % 0.00 8.33 83.33 0.00 0.00 0.00 0.00 8.33 100.00 
FN N 0 0 0 35 0 0 0 1 36 
  % 0.00 0.00 0.00 97.22 0.00 0.00 0.00 2.78 100.00 

I N 0 0 0 0 48 5 0 2 55 
  % 0.00 0.00 0.00 0.00 87.27 9.09 0.00 3.64 100.00 
IF N 0 0 0 0 1 35 0 3 39 
  % 0.00 0.00 0.00 0.00 2.56 89.74 0.00 7.69 100.00 
O N 0 0 0 0 1 4 6 4 15 
  % 0.00 0.00 0.00 0.00 6.67 26.67 40.00 26.67 100.00 
Total N 84 17 12 38 50 44 6 12 263 
  % 31.94 6.46 4.56 14.45 19.01 16.73 2.28 4.56 100.00 
Priors   0.335 0.068 0.046 0.137 0.209 0.148 0.057 
Error Rate 0.057 0.167 0.167 0.028 0.127 0.103 0.600   0.118 
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Table 5.31. K-nearest-neighbor discriminant analysis of Variable Set 3 of the 
Balta sample using Dietary Group 2 assignments. Correct reclassifications are 
bolded. 

Original 
Group 

Classified Group 
F FH FI FN I IF O Other Total 

F N 87 0 0 1 0 0 0 0 88 
  % 98.86 0.00 0.00 1.14 0.00 0.00 0.00 0.00 100.00 
FH N 0 15 1 0 0 0 0 2 18 
  % 0.00 83.33 5.56 0.00 0.00 0.00 0.00 11.11 100.00 

FI N 0 0 11 0 0 0 0 1 12 
  % 0.00 0.00 91.67 0.00 0.00 0.00 0.00 8.33 100.00 
FN N 0 1 0 33 1 0 0 1 36 
  % 0.00 2.78 0.00 91.67 2.78 0.00 0.00 2.78 100.00 
I N 0 0 0 0 50 2 0 3 55 
  % 0.00 0.00 0.00 0.00 90.91 3.64 0.00 5.45 100.00 
IF N 0 0 0 0 3 31 3 2 39 
  % 0.00 0.00 0.00 0.00 7.69 79.49 7.69 5.13 100.00 
O N 0 0 0 0 0 4 7 4 15 
  % 0.00 0.00 0.00 0.00 0.00 26.67 46.67 26.67 100.00 
Total N 87 16 12 34 54 37 10 13 263 
  % 33.08 6.08 4.56 12.93 20.53 14.07 3.80 4.94 100.00 

Priors   0.335 0.068 0.046 0.137 0.209 0.148 0.057 
Error Rate 0.011 0.167 0.083 0.083 0.091 0.205 0.533   0.110 
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Table 5.33. K-nearest-neighbor discriminant analysis of Variable Set 1 
(excluding talonid basin depth) of the Balta sample using Dietary Group 2 
assignments. Correct reclassifications are bolded. 
Original 
Group 

Classified Group 

F FH FI FN I IF O Other Total 

F N 92 0 0 0 0 1 0 1 94 
  % 97.87 0.00 0.00 0.00 0.00 1.06 0.00 1.06 100.00 
FH N 1 16 1 0 0 0 0 0 18 
  % 5.56 88.89 5.56 0.00 0.00 0.00 0.00 0.00 100.00 
FI N 0 1 10 0 0 0 0 1 12 
  % 0.00 8.33 83.33 0.00 0.00 0.00 0.00 8.33 100.00 
FN N 0 1 1 18 1 0 0 1 22 
  % 0.00 4.55 4.55 81.82 4.55 0.00 0.00 4.55 100.00 
I N 0 0 0 0 50 3 1 1 55 
  % 0.00 0.00 0.00 0.00 90.91 5.45 1.82 1.82 100.00 
IF N 0 0 0 0 1 34 1 3 39 
  % 0.00 0.00 0.00 0.00 2.56 87.18 2.56 7.69 100.00 

O N 0 0 0 0 0 3 12 0 15 
  % 0.00 0.00 0.00 0.00 0.00 20.00 80.00 0.00 100.00 
Total N 93 18 12 18 52 41 14 7 255 
  % 36.47 7.06 4.71 7.06 20.39 16.08 5.49 2.75 100.00 
Priors   0.369 0.071 0.047 0.086 0.216 0.153 0.059 
Error Rate 0.021 0.111 0.167 0.182 0.091 0.128 0.200   0.090 
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Table 5.34. K-nearest-neighbor discriminant analysis of Variable Set 2 
(excluding talonid basin depth) of the Balta sample using Dietary Group 2 
assignments. Correct reclassifications are bolded. 
Original 
Group 

Classified Group 
F FH FI FN I IF O Other Total 

F N 92 1 0 1 0 0 0 0 94 
  % 97.87 1.06 0.00 1.06 0.00 0.00 0.00 0.00 100.00 
FH N 1 11 2 1 0 0 0 3 18 
  % 5.56 61.11 11.11 5.56 0.00 0.00 0.00 16.67 100.00 
FI N 1 1 9 0 1 0 0 0 12 
  % 8.33 8.33 75.00 0.00 8.33 0.00 0.00 0.00 100.00 
FN N 0 2 1 30 0 0 0 3 36 
  % 0.00 5.56 2.78 83.33 0.00 0.00 0.00 8.33 100.00 
I N 0 0 0 0 43 7 0 5 55 
  % 0.00 0.00 0.00 0.00 78.18 12.73 0.00 9.09 100.00 
IF N 0 0 0 0 3 29 0 7 39 
  % 0.00 0.00 0.00 0.00 7.69 74.36 0.00 17.95 100.00 

O N 0 0 0 0 4 2 6 3 15 
  % 0.00 0.00 0.00 0.00 26.67 13.33 40.00 20.00 100.00 
Total N 94 15 12 32 51 38 6 21 269 
  % 34.94 5.58 4.46 11.90 18.96 14.13 2.23 7.81 100.00 
Priors   0.349 0.067 0.045 0.134 0.204 0.145 0.056 
Error Rate 0.021 0.389 0.250 0.167 0.218 0.256 0.600   0.182 
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Table 5.35. K-nearest-neighbor discriminant analysis of Variable Set 3 
(excluding talonid basin depth) of the Balta sample using Dietary Group 2 
assignments. Correct reclassifications are bolded. 

Original 
Group 

Classified Group 
F FH FI FN I IF O Other Total 

F N 86 0 0 1 0 0 0 1 88 
  % 97.73 0.00 0.00 1.14 0.00 0.00 0.00 1.14 100.00 
FH N 1 12 2 2 1 0 0 0 18 
  % 5.56 66.67 11.11 11.11 5.56 0.00 0.00 0.00 100.00 

FI N 0 0 11 0 0 0 0 1 12 
  % 0.00 0.00 91.67 0.00 0.00 0.00 0.00 8.33 100.00 
FN N 1 4 1 26 0 0 0 4 36 
  % 2.78 11.11 2.78 72.22 0.00 0.00 0.00 11.11 100.00 
I N 0 0 0 0 50 3 0 2 55 
  % 0.00 0.00 0.00 0.00 90.91 5.45 0.00 3.64 100.00 
IF N 0 0 0 0 3 30 4 2 39 
  % 0.00 0.00 0.00 0.00 7.69 76.92 10.26 5.13 100.00 
O N 0 0 0 0 1 7 6 1 15 
  % 0.00 0.00 0.00 0.00 6.67 46.67 40.00 6.67 100.00 
Total N 88 16 14 29 55 40 10 11 263 
  % 33.46 6.08 5.32 11.03 20.91 15.21 3.80 4.18 100.00 

Priors   0.335 0.068 0.046 0.137 0.209 0.148 0.057 
Error Rate 0.023 0.333 0.083 0.278 0.091 0.231 0.600   0.160 
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Table 5.36. K-nearest-neighbor discriminant analysis of Variable Set 2* of 
the Mindanao sample using Dietary Group 2 assignments. Correct 
reclassifications are bolded. 
Original 
Group 

Classified Group 
F FH FN Fo I O Other Total 

F N 45 0 1 0 0 0 1 47 
  % 95.74 0.00 2.13 0.00 0.00 0.00 2.13 100.00 
FH N 0 20 0 0 0 0 1 21 
  % 0.00 95.24 0.00 0.00 0.00 0.00 4.76 100.00 

FN N 3 0 15 0 0 0 1 19 
  % 15.79 0.00 78.95 0.00 0.00 0.00 5.26 100.00 
Fo N 0 0 0 7 2 0 0 9 
  % 0.00 0.00 0.00 77.78 22.22 0.00 0.00 100.00 
I N 0 0 0 0 96 1 0 97 
  % 0.00 0.00 0.00 0.00 98.97 1.03 0.00 100.00 
O N 0 0 0 0 6 3 0 9 
  % 0.00 0.00 0.00 0.00 66.67 33.33 0.00 100.00 
Total N 48 20 16 7 104 4 3 202 
  % 23.76 9.90 7.92 3.47 51.49 1.98 1.49 100.00 
Priors   0.233 0.104 0.094 0.045 0.480 0.045 
Error Rate 0.043 0.048 0.211 0.222 0.010 0.667   0.079 
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Table 5.38. K-nearest-neighbor discriminant analysis of Variable Set 2* 
(excluding talonid basin depth) of the Mindanao sample using Dietary 
Group 2 assignments. Correct reclassifications are bolded. 
Original 
Group 

Classified Group 
F FH FN Fo I O Other Total 

F N 43 1 1 0 0 0 2 47 
  % 91.49 2.13 2.13 0.00 0.00 0.00 4.26 100.00 
FH N 1 19 1 0 0 0 0 21 
  % 4.76 90.48 4.76 0.00 0.00 0.00 0.00 100.00 

FN N 3 0 13 0 0 0 3 19 
  % 15.79 0.00 68.42 0.00 0.00 0.00 15.79 100.00 
Fo N 0 0 0 6 3 0 0 9 
  % 0.00 0.00 0.00 66.67 33.33 0.00 0.00 100.00 
I N 0 0 0 0 94 2 1 97 
  % 0.00 0.00 0.00 0.00 96.91 2.06 1.03 100.00 
O N 0 0 0 0 4 5 0 9 
  % 0.00 0.00 0.00 0.00 44.44 55.56 0.00 100.00 
Total N 47 20 15 6 101 7 6 202 
  % 23.27 9.90 7.43 2.97 50.00 3.47 2.97 100.00 
Priors   0.233 0.104 0.094 0.045 0.480 0.045 
Error Rate 0.085 0.095 0.316 0.333 0.031 0.444   0.109 
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Table 5.39. K-nearest-neighbor discriminant analysis of Variable Set 2* of the 
combined Balta-Mindanao sample using Dietary Group 2 assignments. Correct 
reclassifications are bolded. 
Original 
Group 

Classified Group 

F FH FI FN Fo I IF O Other Total 
F N 126 1 0 3 0 1 0 0 4 135 
  % 93.33 0.74 0.00 2.22 0.00 0.74 0.00 0.00 2.96 100.00 
FH N 3 29 0 2 0 0 0 0 5 39 
  % 7.69 74.36 0.00 5.13 0.00 0.00 0.00 0.00 12.82 100.00 

FI N 0 2 9 0 0 0 0 0 1 12 
  % 0.00 16.67 75.00 0.00 0.00 0.00 0.00 0.00 8.33 100.00 
FN N 4 0 0 44 0 1 0 0 6 55 
  % 7.27 0.00 0.00 80.00 0.00 1.82 0.00 0.00 10.91 100.00 
Fo N 0 0 0 0 3 4 0 0 2 9 
  % 0.00 0.00 0.00 0.00 33.33 44.44 0.00 0.00 22.22 100.00 
I N 0 0 0 0 0 139 3 4 6 152 
  % 0.00 0.00 0.00 0.00 0.00 91.45 1.97 2.63 3.95 100.00 
IF N 0 0 0 0 0 5 31 1 2 39 
  % 0.00 0.00 0.00 0.00 0.00 12.82 79.49 2.56 5.13 100.00 
O N 0 0 0 0 0 7 5 6 6 24 
  % 0.00 0.00 0.00 0.00 0.00 29.17 20.83 25.00 25.00 100.00 

Total N 133 32 9 49 3 157 39 11 32 465 
  % 28.60 6.88 1.94 10.54 0.65 33.76 8.39 2.37 6.88 100.00 
Priors   0.290 0.084 0.026 0.118 0.019 0.327 0.084 0.052 
Error Rate 0.067 0.256 0.250 0.200 0.667 0.086 0.205 0.750   0.168 
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Table 5.41. K-nearest-neighbor discriminant analysis of Variable Set 2* (excluding 
talonid basin depth) of the combined Balta-Mindanao sample using Dietary Group 2 
assignments. Correct reclassifications are bolded. 
Original 
Group 

Classified Group 

F FH FI FN Fo I IF O Other Total 
F N 133 3 0 1 0 0 0 0 4 141 
  % 94.33 2.13 0.00 0.71 0.00 0.00 0.00 0.00 2.84 100.00 
FH N 2 29 2 3 0 0 0 0 3 39 
  % 5.13 74.36 5.13 7.69 0.00 0.00 0.00 0.00 7.69 100.00 

FI N 0 1 8 0 0 0 0 0 3 12 
  % 0.00 8.33 66.67 0.00 0.00 0.00 0.00 0.00 25.00 100.00 
FN N 5 2 1 41 0 0 0 0 6 55 
  % 9.09 3.64 1.82 74.55 0.00 0.00 0.00 0.00 10.91 100.00 
Fo N 0 0 1 0 0 5 0 0 3 9 
  % 0.00 0.00 11.11 0.00 0.00 55.56 0.00 0.00 33.33 100.00 
I N 0 0 1 1 0 129 8 3 10 152 
  % 0.00 0.00 0.66 0.66 0.00 84.87 5.26 1.97 6.58 100.00 
IF N 0 0 0 0 0 3 32 0 4 39 
  % 0.00 0.00 0.00 0.00 0.00 7.69 82.05 0.00 10.26 100.00 
O N 0 0 0 0 0 8 3 7 6 24 
  % 0.00 0.00 0.00 0.00 0.00 33.33 12.50 29.17 25.00 100.00 

Total N 140 35 13 46 0 145 43 10 39 471 
  % 29.72 7.43 2.76 9.77 0.00 30.79 9.13 2.12 8.28 100.00 
Priors   0.299 0.083 0.025 0.117 0.019 0.323 0.083 0.051 
Error Rate 0.057 0.256 0.333 0.255 1.000 0.151 0.180 0.708   0.195 
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Table 5.42. Composition of taxonomic groupings used in discriminant analysis to 
evaluate phylogenetic effects. For diet codes of species and genera, see Tables 4.1 and 4.2; 
all diet codes correspond to Dietary Group 2 in these tables. Diet codes in parentheses indicate 
subdivisions of subfamilies or families based on varying diets. 

Taxonomic Level 
BALTA MINDANAO COMBINED 

Taxa Diet Taxa Taxa Diet 
Taxonomic Group 1 All specimens All specimens All specimens 

Taxonomic Group 2 All species All species All species 

Taxonomic Group 3 All genera All genera All genera 

Taxonomic Group 4 Aotinae FI   Aotinae FI 
  Callicebinae FH   Callicebinae FH 
  Callitrichinae FI   Callitrichinae FI 
  Calouromyinae F   Callosciurinae FH 
  Carollinae F   Calouromyinae F 
  Cebinae O   Carollinae F 
  Didelphinae (IF) IF   Cebinae FIFH 
  Didelphinae (O) O   Crocidurinae I 
  Emballonurinae FN   Didelphinae (IF) IF 
  Molossinae I   Didelphinae (O) O 
  Myotinae I   Emballonurinae I 
  Noctilionininae I   Hipposiderinae I 
  Phyllostominae (I) I   Kerivoulinae I 
  Phyllostominae (IF) IF   Megadermatinae I 
  Phyllostominae (O) O   Minopterinae I 
  Pitheciinae FH   Molossinae I 
  Saimiriinae FI   Myotinae I 
  Sciurinae I   Noctilionininae I 
  Eptesicini I   Phyllostominae (I) I 
  Glossophagaini FN   Phyllostominae (IF) IF 
  Lasiurini I   Phyllostominae (O) O 
  Lonchophyllini FN   Pitheciinae FH 
  Stenodermatini F   Pteropodinae (F) F 
  Sturiniri FN   Pteropodinae (FN) FN 
      Rhinolophinae I 
      Saimiriinae FI 
      Sciurinae FH 
      Taphozoinae I 
      Tarsiinae I 
      Tupaiinae O 
      Vespertilioninae I 
      Eptesicini I 
      Glossophagaini FN 
      Lasiurini I 
      Lonchophyllini FN 
      Stenodermatini F 
        Sturiniri FN 
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Table 5.42, Cont'd. 

Taxonomic Level 
BALTA MINDANAO COMBINED 

Taxa Diet Taxa Taxa Diet 
Taxonomic Group 5 Aotinae FI   Aotinae FI 
  Callicebinae FH   Callicebinae FH 
  Callitrichiniae FI   Callitrichinae FI 
  Calouromyinae F   Callosciurinae F 
  Carollinae F   Calouromyinae F 
  Cebinae FH   Carollinae F 
  Emballonurinae I   Cebinae FH 
  Molossinae I   Crocidurinae I 
  Myotinae I   Didelphinae O 
  Noctilioninae I   Emballonurinae I 
  Phyllostominae I   Glossophaginae FN 
  Pitheciinae FH   Hipposiderinae I 
  Saimiriinae FI   Kerivoulinae I 
  Sciurinae FH   Megadermatinae I 
  Stenodermatinae F   Minopterinae I 
  Vespertilioninae I   Molossinae I 
      Myotinae I 
      Noctilionininae I 
      Phyllostominae I 
      Pitheciinae FH 
      Pteropodinae F 
      Rhinolophinae I 
      Saimiriinae FI 
      Sciurinae FH 
      Stenodermatinae F 
      Taphozoinae I 
      Tarsiinae I 
      Tupaiinae O 
        Vespertilioninae I 
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Table 5.12, Cont'd. 

Taxonomic Level 
BALTA MINDANAO COMBINED 

Taxa Diet Taxa Taxa Diet 
Taxonomic Group 6 Aotidae FI   Aotidae FI 
  Cebidae (FH) FH   Cebidae (FH) FH 
  Cebidae (FI) FI   Cebidae (FI) FI 
  Didelphidae (F) F   Didelphidae (F) F 
  Didelphidae (IF) IF   Didelphidae (IF) IF 
  Didelphidae (O) O   Didelphidae (O) O 
  Emballonuridae (I) I   Emballonuridae I 
  Marmosidae IF   Hipposideridae I 
  Molossidae I   Marmosidae IF 
  Noctilionidae I   Megadermatidae I 
  Phyllostomidae (F) F   Molossidae I 
  Phyllostomidae (I) I   Noctilionidae I 
  Phyllostomidae (IF) IF   Phyllostomidae (F) F 
  Phyllostomidae (O) O   Phyllostomidae (FN) FN 
  Pitheciidae FH   Phyllostomidae (I) I 
  Sciuridae FH   Phyllostomidae (IF) IF 
  Vespertilionidae I   Phyllostomidae (O) O 
      Pitheciidae FH 
      Pteropodidae (F) F 
      Pteropodidae (FN) FN 
      Rhinolophidae I 
      Sciuridae FH 
      Soricidae I 
      Tarsiidae I 
      Tupaiidae O 
        Vespertilionidae I 
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Table 5.43. Total misclassification rates of discriminant analyses at varying 
taxonomic levels. Composition of taxonomic groups is provided in Table 5.42. 
Inclusiveness of groups increases from Group 1 to Group 6. 

Taxonomic Level of Analysis 

Sample 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 
Group 

6 
Balta, Variable Set 1 0.060 0.078 0.171 <0.001 
Balta, Variable Set 2 0.118 0.197 0.357 0.333 0.333 0.529 
Balta, Variable Set 3 0.110 0.136 0.238 0.167 <0.001 0.235 
Mindanao, Variable Set 2* 0.079 0.136 0.167 
Combined, Variable Set 2* 0.168 0.232 0.343 0.244 0.121 0.393 
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Table 5.44. Species in the Balta sample used in the modified MANOVA. Dietary 
group assignments correspond to Dietary Group 2 (see Table 4.1). 

Taxon N 
Dietary 
Group 

Taxon N 
Dietary 
Group 

CHIROPTERA   CHIROPTERA, CONT'D. 

Emballonuridae   Phyllostomidae, Cont'd. 
Rhynchonycteris naso 3 I Uroderma bilobatum 6 F 
Saccopteryx bilineata 6 I Uroderma magnirostrum 5 F 
Saccopteryx leptura 2 I Vampyressa bidens 3 F 
Molossidae   Vampyressa pusilla 5 F 
Molossops abrasus 1 I Vampyrodes caraccioli 1 F 
Molossops greenhalli 1 I Vespertilionidae 
Molossus molossus 2 I Eptesicus brasiliensis 2 I 
Noctilionidae   Eptesicus furinalis 2 I 
Noctilio albiventris 5 I Lasiurus borealis 2 I 
Phyllostomidae   Lasiurus ega 3 I 
Anoura caudifer 6 FN Myotis albescens 6 I 
Anoura geoffroyi 2 FN Myotis riparius 3 I 
Artibeus cinereus 6 F Myotis simus 2 I 
Artibeus concolor 1 F DIDELPHIMORPHIA 
Artibeus literatus 5 F Didelphidae 
Artibeus obscurus 5 F Didelphis marsupialis 1 O 
Artibeus planirostris 6 F Gracilianus agilis 1 IF 
Chiroderma villosum 6 F Philander mcilhennyi 2 O 
Choeroniscus minor 2 FN Philander opossum 6 O 
Ectophylla macconnelli 6 F Marmosidae 
Glossophaga soricina 6 FN Marmosa murina 4 IF 
Lonchophylla thomasi 6 FN Marmosa quichua 2 IF 
Lophostoma silvicolum 5 IF Marmosops noctivagus 2 IF 
Macrophyllum macrophyllum 6 I Metachirus nudicaudatus 3 IF 
Micronycteris megalotis 3 IF Micoureus demerarae 6 IF 
Micronycteris nicefori 1 IF PRIMATES 
Mimon crenulatum 4 I Aotus trivirgatus 3 FI 
Phyllostomus elongatus 6 IF Callicebus moloch 3 FH 
Phyllostomus hastatus 6 O Cebus albifrons 2 FH 
Platyrrhinus brachycephalus 6 F Pithecia monachus 3 FH 
Platyrrhinus helleri 6 F Saguinus imperator 6 FI 
Platyrrhinus infuscus 2 F Saimiri boliviensis 2 FI 
Tonatia minuta 1 IF RODENTIA 

Tonatia saurophila 5 IF Sciurus ignitus 4 FH 
Trachops cirrhosus 6 I Sciurus spadiceus 6 FH 
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Table 5.45. Formulae used in the non-parametric MANOVA employed to test for niche 
overlap. 

(1) SS = d  

 

(2) SS = d  
 

(3) SS = SS SS  
 

(4) F = ( )( )  

 
SSW: variance within groups, SSB: variance between groups, SST: total variance within both 
groups combined. 
(1) dij is the distance between observations (or niche coordinates) k=1,…,Na and observation 
m=1,…,Na in group a, where Na is the number of observations in group a. 
(2),(4) N is the total number of observations in the group comparison (i.e., the total number of 
“niche coordinates” in both groups combined), dij is the distance between observation (or niche 
coordinate) i=1,…,N and observation j=1,…N, and a is the number of groups. Thus, this analysis 
can be applied to multiple groups, but only paired comparisons were considered here. 
 
 
  



  192 

Table 5.46. Results (p-values) of pairwise MANOVAs of the seven 
dietary groups included in this study. Non-significant values (±=0.05), 
corresponding to niche overlap, are bolded. 

  N FI IF O FN I FH 

F 
2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

FI 
2 <0.001 <0.001 <0.001 <0.001 <0.001 
3 <0.001 <0.001 <0.001 <0.001 0.002 
5   <0.001 <0.001 <0.001 <0.001 <0.001 

IF 
2 0.134 <0.001 0.508 <0.001 
3 0.180 <0.001 0.092 <0.001 
5     0.026 <0.001 <0.001 <0.001 

O 
2 <0.001 0.352 <0.001 
3 <0.001 0.140 <0.001 
5       <0.001 <0.001 <0.001 

FN 
2 <0.001 <0.001 
3 <0.001 <0.001 
5         <0.001 <0.001 

I 
2           <0.001 
3 <0.001 
5           <0.001 
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CHAPTER 6: DIETARY NICHE OVERLAP OF EUPRIMATES AND NON-

EUPRIMATES IN THE EARLY PALEOGENE OF NORTH AMERICA 

The evaluation of the dietary competitive environment of the first euprimates in 

North America (and thus the test of the hypotheses outlined in Chapter 3) requires that 

the specific patterns of dietary niche overlap between euprimates and non-euprimates 

first be determined. The measurements associated with Variable Set 3 were collected on 

each euprimate and non-euprimate fossil specimen following the results of Chapter 5, and 

a single principal component analysis was then performed on the measurements 

associated with all specimens across the entire time range of the sample (Cf2 to Wa5). 

The resulting principal component space thus characterizes the multidimensional dietary 

niche space of the euprimate competitive guild from Cf2-3 to Wa5 and encompasses all 

euprimate and non-euprimate niches throughout this time. This allows dietary niches to 

be directly compared both within and across time intervals, as temporal patterns of niche 

overlap must be known to evaluate the three competition hypotheses of interest here (see 

Chapter 3). Thus, the modified MANOVA described in Chapter 5 was used, first, to 

assess whether the dietary niche of each euprimate taxon significantly overlapped those 

of each non-euprimate taxon within each of the six time intervals (Cf2-3, Wa0, Wa1-2, 

Wa3, Wa4, and Wa5), and second, to evaluate whether the dietary niche of each 

euprimate taxon overlapped those of the non-euprimate taxa present in the preceding time 

interval. For example, the dietary niche of Wa0 adapids was compared to other Wa0 non-

euprimate taxa as well as all non-euprimate taxa present in Cf2-3. Patterns of overlap 

among the niches of euprimate genera and families were also reconstructed to examine 

the evolution of the euprimate dietary niche during the early Paleogene of North 
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America. Wherever possible (i.e., when at least three specimens per taxon per time 

interval were present; see Chapter 5), the genus was used as the taxonomic unit of 

analysis. However, genera were grouped into families if this “minimum number of 

specimens” requirement was not met, and families were grouped into orders or 

supraorders if familial groupings produced inadequate sample sizes.  

As discussed in Chapters 2 and 3, niche divergence – the product of a shift (or 

shifts) in niche position and overlap – may be the result of changes in the physical 

environment or selective predation rather than competitive interactions (Janis, 1989; 

Morgan et al., 1995; Abrams, 2000; Schweiger et al., 2008). Because each time interval is 

associated with 1-2 sub-NALMAs in this study, each temporal bin encompasses tens, or 

hundreds, of thousands of years. Consequently, specimens considered coeval in the 

following analyses (i.e., assigned to the same time interval), fall within a range of 

stratigraphic levels and thus vary in absolute age. For this reason, associations between 

niche shifts and environmental change can be difficult to evaluate, as current climatic 

reconstructions show fluctuations in mean annual temperature and precipitation within 

sub-NALMAs (e.g., Koch et al., 2003; Secord et al., 2012). Furthermore, habitat 

variability (e.g., distance from basin centers) can be present even within single 

stratigraphic units, thus increasing the heterogeneity of abiotic variables even in highly 

temporally controlled samples (Gunnell, 1997; Gunnell and Bartels, 2001). In addition, 

these reconstructions vary depending on the evidence from which they are derived (e.g., 

isotopic signatures obtained from fossil material or paleosols) (Fricke et al., 1998; Koch 

et al., 2003; see Chapter 2). Thus, the association of climatic variables with niche shifts 

will be based mainly on reconstructed large-scale climate change, for example, those 
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attributed to carbon isotope excursions, and general climatic trends based on data 

gathered from the Bighorn Basin and surrounding areas. As a result of data availability, 

trends in taxonomic diversity and abundance of both euprimate competitive guild 

members and their potential predators are instead based on cumulative data from sites 

across the Western Interior. As described in Chapter 3, predation will only be considered 

as an alternative to competition or climatic change when patterns of niche overlap 

coincide with a significant change in the diversity or composition of the predator guild.  

OVERALL PATTERN OF DIETARY NICHE OVERLAP BETWEEN 

EUPRIMATES AND NON-EUPRIMATES 

 The results of the principal component analysis of all specimens across all time 

periods are provided in Table 6.1, and specimen values on the first two principal 

components for each time interval are plotted in Figs. 6.1-6.6. An examination of the 

eigenvalues indicates that the first six principal components cumulatively contribute to 

approximately 94% of the variation, and thus, the values of PC1-PC6 were used in the 

subsequent MANOVA comparisons (as per Chapter 5). For the fossil sample as a whole, 

the first eigenvector demonstrates that variables related to the trigonid, particularly 

trigonid cusp angle, have the greatest weight, although both talonid cusp height and angle 

also possess high loadings on PC1. As predicted, cusp height and angle variables are 

inversely related; i.e., “sharper,” more acute cusps are associated with greater cusp 

heights, and “duller” cusps are associated with lower cusp heights. Unlike the extant 

Balta sample (the only sample in which Variable Set 3 was analyzed and thus the only 

sample which can be directly compared with the fossil sample), in which total crest 

length had a minimal influence on PC1, this variable is more significant in the fossil 
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analysis. However, similar to the Balta sample, talonid basin depth (in addition to talonid 

basin area) has the least effect on the first principal component. 

 The second principal component reveals a relationship between long crests and 

large, deep talonid basins, on the one hand, and a short trigonid coupled with low 

trigonid-talonid relief, on the other. Eigenvectors are consistent with the distribution of 

dietary niches within the two-dimensional principal component (dietary niche) space, as 

there is a morphological gradation from the top left to the bottom right quadrants of the 

plot. In other words, taxa with tall, sharp cusps, small basins, short crest lengths, and high 

trigonid-talonid relief (e.g., peradectids and palaeoryctids) are located in the bottom right 

quadrant, whereas taxa with low, bulbous cusps, large basins, long crest lengths, and low 

trigonid-talonid relief (e.g., rodents), are positioned in the top left quadrant of the 

principal component space. Those taxa located in the central area of the plot indicate 

more generalized molar morphologies and include euprimates and most plesiadapiforms. 

Changes in the position of the guild-wide niche hypervolume (i.e., the niche 

including all specimens) through time were examined by calculating distances between 

niche centroids in adjacent time intervals (Table 6.2). These calculations indicate that the 

position of the guild-wide dietary niche does shift slightly among time intervals. The 

greatest displacement in centroid location is between the Wa1-2 and Wa3 time intervals 

and involves a major shift in the dietary niches of many taxonomic groups, particularly 

rodents, plesiadapiforms, peradectids, and omomyids (Table 6.2). Conversely, the 

positions of the soricomorphan and leptictid niches change the least during this transition. 

The boundary between Wa1-2 and Wa3 is not clearly linked to a specific climatic event 

or increase in predator diversity (Wilf, 2000; Woodburne, 2009a; Chew and Oheim, 
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2013), and thus the reason for this guild-wide displacement is not clear. However, this 

transition will be discussed within the context of the euprimate niche and euprimate 

competitive interactions in this and the subsequent chapter. In addition, although the 

positions of individual dietary niches relative to one another and within the overall 

dietary niche space do not vary considerably over the time period examined, there are 

slight positional shifts among taxa, indicating evolutionary change in the dietary niches 

of this mammalian guild. 

 Temporal changes in the size of the guild-wide, six-dimensional dietary niche 

were evaluated using three measures: (1) absolute “hypervolumetric size,” or the 

“volume” of the multi-dimensional “space” occupied by each niche, (2) relative 

hypervolumetric size, or the percentage of the total niche space (including all time 

intervals) filled by the niche from a single time period, and (3) mean distance of 

individuals from niche centroids (see Tables 6.3, 6.15). Calculations of hypervolumetric 

size were performed in MATLAB R2012a. The strength of the association of niche size 

with time, where each time interval was defined by the midpoint of its range in millions 

of years, was evaluated using non-parametric Spearman rank correlation coefficients; 

these analyses were conducted in SPSS v.22. As the absolute hypervolumetric sizes of 

the multidimensional niches for each time interval appeared to be positively correlated 

with sample size, relative size was assessed using a weighted percentage, designed to 

account for sample size variation (Table 6.3). Results of two-tailed correlation analyses 

indicate a near-significant decrease in relative hypervolumetric niche size (r=0.771, 

p=0.072) and mean distance from niche centroid (r=0.771, p=0.072) across time 

intervals, which suggests a “narrowing” of the guild-wide niche space through time, 
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particularly from Wa1-2 to Wa5 (Table 6.3). Because the ordinal and familial diversities 

are near-equal for all time periods21, it is unclear whether this collapse in niche size is the 

result of increased similarity among taxa or a consequence of decreased diversity or 

morphological (and presumably dietary) variation within higher-level taxa.22 However, it 

is interesting to note that the niche expansion from Cf2-3 to Wa0 and its subsequent 

contraction from Wa1-2 to Wa5 broadly parallels reconstructions of mean annual 

temperature and precipitation during this time, if adjusted for a slight temporal lag in the 

faunal response to this change (see Chapter 2; Alroy et al., 2000). A more detailed 

exploration of this phenomenon as it relates to the euprimate clade is discussed in the last 

section of this chapter as well as in Chapter 7. 

 The results of the pairwise MANOVAs are presented in Tables 6.4-6.13. Overall, 

the consistently low p-values between euprimate and non-euprimate taxa reveal that 

euprimate niches rarely overlapped with those of other groups, suggesting that Paleogene 

euprimates in North America engaged in minimal dietary competition. Those instances of 

potential competition between euprimates and specific non-euprimate taxa are illustrated 

in Fig. 6.7 and are discussed in detail in the next section. However, it is important to note 

that the results of the test case of the modified MANOVA using the extant Balta sample 

described in the previous chapter suggest this analysis might not accurately detect dietary 

competition among taxa whose reconstructed niche hypervolumes do not statistically 

                                                 
21 Although generic diversity changes among time intervals, it does not decrease from 
Cf2-Wa5. Sample diversity is greatest during Wa1-2 and Wa3 (31 genera) and includes 
20-23 genera during the remaining time intervals. 
22 The calculation of a six-dimensional niche volume requires at least six six-dimensional 
points; thus, the hypervolume of the niches of individual taxa within a time interval could 
not be calculated in most cases. 
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overlap. In other words, some niche comparisons may represent “false negatives” such 

that a significant test statistic (indicating a lack of overlap) may mask true niche overlap 

and possible competition between taxa; i.e., there may be a high level of type I error in 

the analysis. Thus, although occurrences of niche overlap (non-significant results) 

between euprimates and non-euprimates likely characterized true dietary competition in 

the past, it is possible that those non-euprimate taxa whose niches do not overlap with 

euprimates (and thus are not considered below) also played a role in the dietary 

competitive environment of the earliest euprimates. The implications of these “false 

negatives” will be considered in Chapter 7. 

INSTANCES OF NICHE OVERLAP BETWEEN EUPRIMATES 

AND NON-EUPRIMATES 

Euprimate Origination (Cf2-3 to Wa1-2) 

 The following sections describe instances of dietary niche overlap between Wa0 

and Wa1-2 euprimates and Cf2-3 to Wa1-2 non-euprimate taxa. As described above, both 

niche overlap between euprimates and non-euprimates in preceding time intervals and 

overlap between euprimates and non-euprimates within coincident time intervals are 

considered (see Chapter 3). At the point of euprimate origination (Wa0), both adapids 

and omomyids consist of a single genus: Cantius and Teilhardina, respectively. Although 

Wa1-2 does mark the initial divergence of the omomyid lineage, this time interval is 

included in this section because overlap between Wa1-2 omomyids and soricomorphans 

spans both Wa0 and Wa1-2.  
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Wa0 Adapidae-Cf2-3 Plesiadapidae. 

Although plesiadapids and adapids are not present during the same time interval, 

their dietary niches overlap asynchronously: the Cf2-3 plesiadapid niche occupies a 

statistically similar position to that of Wa0 adapids (p=0.096; Table 6.4). The consequent 

ecological interpretation of this pattern is that during Cf2-3, plesiadapids occupied the 

same dietary niche that adapids would subsequently inhabit upon their arrival in North 

America in the earliest Wasatchian. However, it is not possible to examine coeval overlap 

between these two taxa because plesiadapids essentially become extinct in the Bighorn 

Basin at the end of the Clarkforkian (Gunnell et al., 1993; Maas et al., 1995; Gingerich, 

2003, 2004). Thus, at the temporal resolution employed herein, this scenario is consistent 

with non-competition between adapids and plesiadapids; i.e., adapids entered the Bighorn 

Basin mammalian community in the absence of their potential plesiadapid dietary 

competitor and invaded the resultant open dietary niche. Despite the fact that, based on 

the analysis of niche overlap alone, it is not possible to discriminate between this latter 

scenario and a situation in which adapids outcompeted plesiadapids over a very short 

period of time at the onset of the Wasatchian, prior studies of plesiadapid abundance and 

diversity demonstrate that this taxon had long been in decline prior to euprimate 

origination (Maas et al., 1988; Gunnell, 1998; Woodburne et al., 2009a). Of course, it is 

possible that an already waning plesiadapid population was driven to extinction by the 

appearance of adapids, but previous research has suggested that this outcome was 

inevitable despite euprimate invasion23 (Maas et al., 1988). Thus, in accordance with 

                                                 
23 Euprimate origination is also coincident with the onset of the Paleocene-Eocene 
Thermal Maximum, which may have played a role in plesiadapid extinction. 
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previous conclusions, competition between plesiadapids and euprimates was likely either 

absent or of minimal consequence to either group (Maas et al., 1988). The results of this 

study further demonstrate the significance of the plesiadapid decline to euprimate 

origination, as these two groups likely would have engaged in dietary competition had 

plesiadapids been abundant in the earliest Wasatchian. 

 Wa0 Omomyidae-Cf2-3 Apatemyidae 

 Like adapids and plesiadapids, dietary niche overlap between omomyids and 

apatemyids is not coincident, as the dietary niches of Wa0 omomyids overlap those of 

only Clarkforkian, and not Wa0, apatemyids (p=0.069; Table 6.4). From Cf2-3 to Wa0, 

there was a shift in the dietary niche of apatemyids such that niche overlap, and thus 

competition, with omomyids did not occur in the earliest Wasatchian or at any point 

thereafter. An examination of the distance between the centroids of the apatemyid and 

omomyid niche hypervolumes over time reveals that niche separation is lowest between 

Cf2-3 apatemyids and Wa0 omomyids, increases between Wa0 apatemyids and 

omomyids, and does not decrease to the original level at any point thereafter (Table 6.4). 

Again, it is possible that omomyids and apatemyids were briefly in competition in the 

earliest Wasatchian; however, a consideration of the overall biology of these two groups 

and their broader ecological niches suggests that significant dietary competition did not 

occur. For instance, the autapomorphies of apatemyids include enlarged incisors, the 

lower of which are procumbent, and elongated second and third manual digits (McKenna, 

1963; Gingerich and Rose, 1982; von Koenigswald et al., 2005; Gunnell et al., 2008). 

The dietary behavioral reconstructions based on these traits suggest that apatemyids 

engaged in bark-gnawing and insect-probing, using their large incisors and long, thin 
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fingers, respectively, as do extant aye-ayes and the phalangeroid marsupial, Dactylopsila, 

with which they are convergent (McKenna, 1963; von Koenigswald et al., 2005; Silcox et 

al., 2011). Given this highly specialized dietary behavior, a significant difference in the 

method of food procurement between apatemyids and euprimates greatly reduces the 

probability that these two groups competed for the same limited resources. Thus, 

although it is possible that apatemyids and omomyids consumed similar food items and 

consequently evolved similar molar morphologies, they likely occupied distinct realized 

dietary niches and consequently did not engage in a strong competitive interaction. 

In the absence of competition with omomyids, several other factors may have 

caused a shift in the apatemyid niche at the Clarkforkian-Wasatchian boundary. First, 

because the majority of Cf2-3 apatemyid specimens are derived from Cf2, combining the 

Cf2 and Cf3 sub-NALMAs into a single time interval may have conflated a more gradual 

niche shift across the Clarkforkian, creating the appearance of a single, abrupt change. On 

the other hand, molar morphological variation between the two apatemyid genera 

represented in the sample may explain the difference in apatemyid niche position, as the 

generic composition of the apatemyid sample changes from Cf2-3 (in which only 

Labidolemur is present) to Wa0 (in which only Apatemys is present).24 However, it is 

possible that this shift instead indicates true biological change; for example, competition 

between apatemyids and another taxon or taxa could have resulted in niche divergence, 

which subsequently altered the position of the apatemyid dietary niche. Alternatively, 

perhaps the increase in carnivorans, specifically miacids, influenced apatemyid evolution 

                                                 
24 Although Apatemys originates in the Bighorn Basin in Wa0 (Gingerich, 1982; 
Woodburne, 2009a), Labidolemur does not become extinct at the end of the Clarkforkian; 
it is simply absent from the Wa0 time period in this sample. 
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either through direct predation or predation on apatemyid competitors (Gunnell et al., 

1995; Maas et al., 1995; Abrams, 2000; Woodburne, 2009a). Finally, the Clarkforkian-

Wasatchian boundary was also coincident with the onset of the Paleocene-Eocene 

Thermal Maximum (PETM or Eocene Thermal Maximum 1, ETM1) and associated 

Carbon Isotope Excursion (CIE), which involved a rapid fluctuation in mean annual 

temperature, mean annual precipitation, and soil aridity (Clyde and Gingerich, 1998; 

Wing et al., 2005; Yans et al., 2006; McInerney and Wing, 2011; Abels et al., 2012; 

Secord et al., 2012; Kraus et al., 2013; Snell et al., 2013; see Chapter 2). Thus, this 

dramatic climatic change may have caused a transition in the dietary behavior, dental 

morphology, or both, of apatemyids during that interval of time.25 Regardless, the 

presence of a new apatemyid genus in the Wasatchian (Gingerich, 1982; Woodburne et 

al., 2009a), and the correlated increase in the diversity of apatemyids at the Cf3-Wa0 

boundary (Woodburne et al., 2009a), support the association of this time period with 

evolutionary transition in this group. 

Wa0 Omomyidae-Cf2-3 Erinaceomorpha. 

The dietary niche of Wa0 omomyids also overlaps that of Clarkforkian 

erinaceomorphans (p=0.339; Table 6.4). The centroid distance between the niches of 

these two groups is at its minimum when the niches of Cf2-3 erinaceomorphans and Wa0 

omomyids are compared, and the distance between erinaceomorphans and omomyids 

within each time interval increases from Wa0 to Wa4 (although results of the correlation 

analyses are non-significant; r=-0.800, p=0.200; Table 6.14). Given the lack of dietary 

                                                 
25 Gingerich (1982) notes that the appearance of Apatemys chardini in Wa0 may be the 
result of an immigration event, possibly from Europe, linked to climatic change at the 
Paleocene-Eocene boundary. 
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niche overlap and increased niche divergence between omomyids and erinaceomorphans 

from Wa0 to Wa4, it is unlikely that erinaceomorphans competed with euprimates at the 

time of the euprimate origination. However, the decreased centroid distance and presence 

of niche overlap between omomyids and erinaceomorphans in Wa5 suggests that 

competition with erinaceomorphans may have had an impact on early euprimate 

evolution, and this will be discussed further below. 

As was the case with Wa0 apatemyids, the shift in the erinaceomorphan dietary 

niche in the earliest Wasatchian, if not the result of competition with euprimates, could be 

dependent solely on sample composition, as in this sample, the generic composition of 

Clarkforkian and Wa0 erinaceomorphans is non-overlapping (e.g., Macrocranion 

originated in Wa0). In addition, although there is no clear change in erinaceomorphan 

diversity at the Paleocene-Eocene boundary (Woodburne et al., 2009a), it is again 

possible that interspecific competition with non-euprimate taxa, an increase in predator 

diversity, or climatic change in the earliest Wasatchian caused displacement of the 

erinaceomorphan dietary niche. 

Wa0-Wa1-2 Omomyidae-Wa0 Soricomorpha. 

The dietary niche of Wa0 soricomorphans overlaps both the niche of the single 

Wa0 omomyid genus (Teilhardina) (p=0.055) and the niches of each Wa1-2 omomyid 

genus (Anemorhysis: p=0.205, Tetonius: p=0.057, Teilhardina: p=0.101; Tables 6.4-6.5). 

However, (1) the lack of overlap between Wa1-2 Omomyidae as a whole and Wa0 

soricomorphans and (2) the variation in p-values among comparisons of individual Wa1-

2 omomyid genera and Wa0 soricomorphans suggest that overlap with soricomorphans 

occurs within a specific part of the Wa1-2 omomyid niche hypervolume. In other words, 
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when all omomyids are considered, there are likely a substantial number of omomyid 

individuals distanced from the soricorphan specimens such that the value of SSB is larger 

in the Omomyidae-Soricomorpha comparison than in comparisons of soricomorphans 

and individual omomyid genera. Because Tetonius and Anemorhysis are not present 

before Wa1-2, divergence between the centroids of the omomyid and soricomorphan 

niches can only be assessed for all omomyids combined. These results show increased 

niche divergence between soricomorphans and omomyids from Wa0 to Wa3; i.e., from 

the point of euprimate origination through the last time interval for which comparisons 

can be made (Table 6.14).26 A comparison of the displacement of soricomorphan and 

omomyid niche centroids through time reveals that the shift in the soricomorphan niche 

was greater than that of omomyids from Wa0 to Wa1-2 (see Table 6.2). In addition, the 

results of the modified MANOVA indicate that the niches of Wa0 and Wa1-2 omomyids 

overlap and that the niches of Wa1-2 omomyids overlap with those of Wa0 but not Wa1-

2 soricomorphans (Tables 6.5, 6.9); this is consistent with minimal euprimate niche 

positional change across the Wa0-Wa1-2 boundary. Thus, the niche divergence between 

omomyids and soricomorphans from Wa0 to Wa1-2 seems to be due mainly to a shift in 

the soricomorphan niche. 

Although the dietary niches of Clarkforkian soricomorphans and Wa0 euprimates 

do not overlap, this pattern of initial niche overlap between euprimates and 

soricomorphans at the time of euprimate origination (i.e., Wa0) and subsequent niche 

divergence in successive time intervals is generally consistent with the presence of strong 

                                                 
26 No soricomorphans are represented in the study sample after Wa3. 
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competition between these two groups. However, it is possible that changes in the abiotic 

environment were responsible for this niche divergence rather than competitive 

interaction. The end of the Wa0 sub-NALMA is associated with the termination of the 

Carbon Isotope Excursion such that mean annual precipitation increased and mean annual 

temperature decreased across the Wa0-Wa1-2 boundary (Fricke et al., 1998; Wilf, 2000; 

Wing et al., 2005; Woodburne et al., 2009b; Abels et al., 2012; Chew and Oheim, 2013). 

Thus, rather than strong competition, the initial divergence in soricomorphan and 

omomyid niches may have been the result of a soricomorphan response to a shift in 

climate associated with the end of the Paleocene-Eocene Thermal Maximum (PETM). 

Alternatively, the fact that only the niche of Wa0 (rather than later) soricomorphans 

overlaps that of euprimates might indicate that the occupation of the euprimate niche by 

soricomorphans in Wa0 was the consequence of the warmer, drier climate present during 

that specific sub-NALMA, i.e., the PETM. This same time period has also been 

associated with molar morphological change, specifically size, in other Bighorn Basin 

mammals (Bown et al., 1994; Gingerich, 2003, 2004; Yans et al., 2006; Chew, 2009b; 

Secord et al., 2012), demonstrating the effects that this climatic event likely had on 

mammalian biology (see Chapter 2). 

Finally, soricomorphans are typically reconstructed as terrestrial mammals, as this 

group includes shrews, moles, and their relatives, and thus it is possible that a difference 

in substrate use greatly minimized, if not precluded, instances of shared food resource use 

by euprimates and soricomorphans. Consequently, even if climatic change was not 

responsible for the shift in the soricomorphan niche after Wa0, dietary competition with 

euprimates may yet have been absent.  
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Euprimate Radiation (Wa3 to Wa5) 

The following sections detail instances of dietary niche overlap between 

euprimate genera and families and non-euprimate groups in Wa3, Wa4, and Wa5. For 

those occurrences of niche overlap within the Wa5 time interval, further evidence is 

needed to support either the hypothesis of strong or weak competition, as these models 

require that patterns of niche overlap be examined after the point of initial overlap. 

Therefore, as discussed below, it is necessary to extend these analyses into later time 

intervals (e.g., Wa6, Wa7) in order to fully evaluate some of the instances of possible 

euprimate-non-euprimate competition described in the following sections.27 

Wa3 Anemorhysis-Wa3 Microsyopidae. 
 
The dietary niches of a single genus of omomyid, Anemorhysis, and microsyopids 

overlap within a single sub-NALMA, Wa3 (p=0.065; Table 6.6). This result is 

unexpected, as overlap occurs only during this time interval, and the composition of the 

microsyopid sample does not change markedly from Wa1-2 to Wa3.28 If dietary niche 

overlap between Anemorhysis and microsyopids truly occurred (although see below), 

then it appears to be the result of niche convergence. As discussed above, the transition 

from Wa1-2 to Wa3 is correlated with the greatest displacement of both the microsyopid 

and omomyid niche centroids, resulting in a minimum distance between the centroids of 

                                                 
27 Although Tetonius, Tetonius-Pseudotetonius, and Pseudotetonius compose a single 
anagenetic lineage, these three “genera” are considered separately in the following 
analyses. This was done in an attempt to minimize variation within the operational 
taxonomic units (OTUs). As demonstrated in the last section of this chapter, this division 
of the Tetonius-Pseudotetonius lineage does not affect the resulting pattern of niche 
overlap either among euprimate genera or between euprimate and non-euprimate groups. 
28 The major difference in sample composition between Wa1-2 and Wa3 Microsyopidae 
is the presence of a greater number of Microsyops specimens in Wa3.  
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microsyopids and Anemorhysis in Wa3. This distance then increases in Wa4 (see Table 

6.14). Although no major climatic event (e.g., rapid spike or drop in temperature) is 

associated with the Wa2-Wa3 or Wa3-Wa4 boundaries, perhaps the overall increase in 

aridity and decline in mean annual temperature during this time limited food resources 

and restricted microsyopids and Anemorhysis to a similar region of the dietary niche 

space in Wa3 (Fricke et al., 1998; Wilf, 2000; Woodburne et al., 2009a, 2009b; Chew 

and Oheim, 2013). Consequently, this niche space co-occupation could have resulted in 

competition between these two taxa, thus driving their niches apart.29 Although this 

pattern of niche convergence followed by divergence does not directly coincide with any 

of the three models of competitive interactions described in Chapter 3, the increase in 

centroid distance between the Anemorhysis and microsyopid niches and the decrease in 

microsyopid diversity between Wa3 and Wa4 (the “double-wedge pattern”) (Woodburne 

et al., 2009a) could be indicative of strong competition between these taxa. 

However, if the Wa3 microsyopids are divided into two groups of genera (the 

larger microsyopids, Arctodontomys and Microsyops, and the diminutive genus, 

Niptomomys), the niches of these groups do not overlap with the niche of Anemorhysis 

(or any other omomyid) (Anemorhysis-Arctodontomys+Microsyops: p<0.001; 

Anemorhysis-Niptomomys: p=0.014; Table 6.6). As a result, it seems that the dietary 

niche of Anemorhysis is positioned between these two groups of microsyopids such that 

the Anemorhysis niche is encompassed by (and in a relatively vacant region of) the total 

                                                 
29 Although the stratigraphic range of Anemorhysis extends into Wa6, it is only 
represented through Wa4 in this sample (Bown and Rose, 1987; Chew, 2005). 
Unfortunately, only two Wa4 specimens of Anemorhysis are present in the sample and 
thus can only be included in analyses of niche divergence and not of niche overlap. 
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bimodal microsyopid niche space. This lack of niche overlap at the genus level highlights 

potential issues that can arise from using varying taxonomic groupings in niche 

comparisons, and this will be considered in Chapter 7.  

Wa5 Copelemur-Wa4 Plagiomenidae. 

The adapid genus, Copelemur, originates in the Wa5 time interval, and its 

reconstructed dietary niche overlaps that of Wa4 plagiomenids (p=0.078; Table 6.8). 

However Wa4 is the last time period during which plagiomenids are present in the 

Bighorn Basin and surrounding areas until the middle Eocene, when a new plagiomenid 

genus appears in the Uintan (Maas et al. 1995; Gingerich and Clyde, 2001; Gingerich, 

2003; Chew, 2009a; Woodburne et al., 2009a). As such, plagiomenids and Copelemur 

were asynchronous and could not have occupied the same dietary niche concurrently, 

eliminating the possibility of dietary competition between these groups. In fact, this 

pattern of niche overlap between a non-euprimate and a euprimate taxon, in which the 

extinction of the non-euprimate precedes the euprimate origination event, closely 

resembles that of Cf2-3 plesiadapids and Wa0 adapids. Due to the sparse plagiomenid 

sample throughout the early part of the Wasatchian, changes in the distances between the 

adapid and plagiomenid niches over time cannot be established. For example, it is unclear 

whether the dietary niches of adapids and plagiomenids converged from Wa0 to Wa4, or 

whether this allochronic overlap was simply the result of the dramatic shift in the location 

of the adapid niche centroid between Wa4 and Wa5 (Table 6.2). However, similar to the 

decrease in abundance and diversity of plesiadapids before the arrival of adapids in North 

America in Wa0, plagiomenid diversity had also been declining since the Clarkforkian 

(i.e., prior to the origination of Copelemur) (Woodburne et al., 2009a). Thus, these results 
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are most consistent with euprimates moving into the recently vacated dietary niche of 

plagiomenids following their extinction; i.e., the model of non-competition. 

Wa5 Copelemur-Wa4-5 Paromomyidae. 

The dietary niche of Copelemur overlaps that of both Wa4 and Wa5 paromomyids 

(p=0.053 and p=0.100, respectively; Table 6.8). Although the niche of Copelemur does 

overlap that of Wa5 Cantius (p=0.403; Table 6.12), there is no niche overlap between 

Wa4 or Wa5 paromomyids and either the niches of Wa5 Cantius or all Wa5 adapids 

combined (Wa4 Paromomyidae-Wa5 Cantius: p<0.001; Wa5 Paromomyidae-Wa5 

Cantius: p=0.002; Wa4 Paromomyidae-Wa5 Adapidae: p<0.001; Wa5 Paromomyidae-

Wa5 Adapidae: p<0.001; Table 6.8). In conjunction with the fact that the niches of Wa5 

adapids (including Copelemur) do not overlap the niche of Wa4 adapids (Table 6.12), 

this indicates that the Copelemur niche is uniquely positioned within both the Wa4 and 

Wa5 adapid dietary niche spaces. Furthermore, this suggests that the paromomyid dietary 

niche overlaps with only a portion of the overall adapid niche, coincident with the niche 

of Copelemur specifically. A consideration of Figs. 6.6 and 6.12 illustrates that even in 

two dimensions, within Adapidae, there are a greater number of Copelemur than Cantius 

specimens in close proximity to paromomyids. 

Over the course of the Wasatchian, the distance between the centroids of the 

paromomyid and adapid niches generally decreases, indicating that the niches of these 

taxa slowly converged during this time. As mean annual temperature and mean annual 

precipitation decreased during this period (Fricke et al., 1998; Wilf, 2000; Woodburne et 

al., 2009a,b; Chew and Oheim, 2013), it is possible that this convergence was the result 

of a gradual decline in food resources. Paromomyid species diversity remained 
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essentially unchanged throughout the Wasatchian (Gunnell, 1998; Woodburne et al., 

2009a), but Ignacius, one of only two genera in the paromomyid sample, becomes extinct 

at around 240M in the central Bighorn Basin (corresponding to Wa3 in this study) (Maas 

et al., 1995; Silcox et al., 2008), which may have altered the overall niche space inhabited 

by paromomyids in Wa4 and Wa5. However, statistically significant niche overlap 

between euprimates and paromomyids was not detected until the major shift in adapid 

niche position between Wa4 and Wa5, coincident with the emergence of Copelemur. As 

a result, niche overlap between Copelemur and paromomyids does seem to indicate 

dietary competition between these two taxa. On the other hand, it is important to note that 

paromomyids and adapids differed substantially in size, as reconstructed body masses 

indicate that Copelemur may have been at least four times as large as the largest 

paromomyid (Bloch et al., 2007; Fleagle, 1999). Thus, this high degree of body size 

separation may be inconsistent with the presence of a strong competitive interaction 

between these taxa (Krause, 1986; Maas et al., 1988). Regardless, because the fossil 

sample only incorporates specimens from Cf2 to Wa5, an examination of the results of 

this overlap, and thus the associated competitive model, requires niche reconstructions of 

both taxa in Wa6. Therefore, given the available data, it is not possible to determine the 

extent to which dietary niche overlap or competition occurred between adapids and 

paromomyids.  

Wa5 Adapidae-Wa5 Microsyopidae. 

The dietary niche of Wa5 Microsyopidae overlaps that of Wa5 Copelemur 

(p=0.273) as well as all Wa5 adapids combined (Copelemur and Cantius) (p=0.055; 

Table 6.8). However, the niches of Copelemur, Cantius, and both genera combined 
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(Adapidae) do not overlap those of the individual microsyopid genera (Niptomomys and 

Microsyops) when each is considered separately (Copelemur-Niptomomys: p=0.006; 

Copelemur-Microsyops: p=0.018; Adapidae-Niptomomys: p<0.001, Adapidae-

Microsyops: p=0.001; Table 6.8). This incidence of overlap between euprimates and non-

euprimates, as was also the case for Wa3 Anemorhysis and Microsyopidae, appears to be 

the result of combining the niches of two distinct lineages of microsyopids (Gunnell, 

1985), neither of which individually overlaps with adapids, into a single dietary niche 

that spans the adapid niche space. The distribution of Wa5 microsyopids in two 

dimensions illustrates that specimens of Niptomomys (with relatively low values on PC1) 

form a cluster distinct from that of Microsyops (with relatively high values on PC1), each 

of which is positioned on either side of the adapid niche (Fig 6.6). In addition, given the 

relative size differences between Wa5 adapids and Niptomomys (Gingerich, 1986; 

Gunnell, 1989; Rose et al., 1993; Jones et al., 2014) as well as the derived anterior 

microsyopid dentition (Gunnell 1985, 1989), competition between these taxa is not likely. 

However, even if one assumes that adapids and the larger microsyopids did compete for 

dietary resources, it is not possible to test whether niche overlap is the result of strong or 

weak competition (or possible climatic change; see “Wa5 Omomyidae-Wa5 

Erinaceomorpha”) without evaluating the dietary niches of these taxa in Wa6 (and later). 

Wa5 Omomyidae-Wa5 Erinaceomorpha. 

 The dietary niche of Wa5 omomyids overlaps that of Wa5 erinaceomorphans 

p=0.060; Table 6.8). Because so few specimens represent each of the four Wa5 omomyid 

genera (Absarokius, Anemorhysis, Steinius, and Arapahovius), it is not possible to 

determine if the Wa5 erinaceomorphan niche overlaps all or merely a subset of the 
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omomyid genera included in this time period. Furthermore, given the high species and 

generic diversity of erinaceomorphans, the taxonomic instability of species, genera, 

families, and even the group “Erinaceomorpha” (Novacek et al., 1985; Rose, 2006; 

Gunnell and Bloch, 2008), and the relatively low representation of each erinaceomorphan 

genus in the fossil sample, it is difficult to ascertain if niche overlap between 

erinaceomorphans and omomyids is the result of overlap involving a single 

erinaceomorphan genus, family, or the group as a whole.  

 The distance between the erinaceomorphan and omomyid niche centroids 

increases from Wa0 to Wa4, but sharply decreases between Wa4 and Wa5. The Wa5 

omomyid niche overlaps with that of Wa4 omomyids, but the generic composition of 

Omomyidae changes significantly from Wa4 to Wa5, as the Tetonius-Pseudotetonius 

lineage is replaced by several new omomyid genera (Bown and Rose, 1987). There is 

evidence that the mean annual temperature began to increase at the end of Wa4 or 

beginning of Wa5, as temperatures continued to climb, culminating in the Early Eocene 

Climatic Optimum in Wa7 (Bown et al., 1994; Fricke et al., 1998; Wilf, 2000; 

Woodburne et al., 2009a,b; Chew and Oheim, 2013). In addition, Wa5 is associated with 

Eocene Thermal Maximum 2 (ETM2) (Abels et al., 2012; Chew and Oheim, 2013), 

although most Wa5 specimens included in this sample correspond to the earlier part of 

Wa5, preceding this hypothermal event. Thus, erinacemorphan-omomyid niche overlap 

in Wa5 may have either resulted in competition or may be an indirect effect of associated 

climatic change. Furthermore, it should be noted that too few erinaceomorphan 

specimens are present in both the Wa3 and Wa4 samples to evaluate niche overlap. This 

allows for the possibility that omomyids and erinaceomorphans competed prior to Wa5, 
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suggesting that erinaceomorphans may have been a significant omomyid dietary 

competitor during the early Paleogene. To evaluate any of these possibilities, however, 

the erinaceomorphan sample must be expanded to examine niche overlap in time 

intervals both prior and subsequent to Wa5, which the current sample does not allow.  

Finally, it is important to consider that the relatively few postcranial specimens 

assigned to erinaceomorphan taxa suggest that many of these taxa may have been 

predominantly terrestrial (von Koenigswald et al., 1992; Storch, 1996; Smith et al., 2002; 

Gunnell and Bloch, 2008). If further evidence of substrate use in erinaceomorphans 

indicates high levels of terrestriality, this may diminish the likelihood of dietary 

competition between erinaceomorphans and euprimates regardless of whether niche 

overlap is identified in later time intervals (i.e., Wa6 and later). As was the case for the 

other instances of dietary niche overlap between euprimates and non-euprimates in Wa5, 

erinaceomorphan-omomyid overlap during this final time period is likewise identified as 

a potentially important interaction, necessitating further consideration, in the 

reconstruction of early euprimate dietary competition. 

THE EUPRIMATE DIETARY NICHE 

 From Wa0 to Wa5, the dietary niches of adapids and omomyids remain distinct 

with the distance between the adapid and omomyid niche centroids reaching a maximum 

in Wa4 (Tables 6.9-6.12). In addition, adapids and omomyids do not concurrently overlap 

the niche of a non-euprimate group (Fig. 6.7). Even in the case of microsyopids, with 

whom omomyids and adapids potentially competed in Wa3 and Wa5, respectively, these 

events were separated by several hundred thousand years. As such, the patterns of 

overlap between both adapid and omomyid niches and those of non-euprimates, and thus 
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the potential competitive interactions that each euprimate clade encountered, also differ. 

Consequently, not only was the euprimate dietary niche heterogeneous within each time 

interval, but it also changed throughout the course of the earliest Paleogene. 

 Both in terms of absolute (all euprimates only) and relative (all euprimates and 

omomyids) hypervolumetric size (see explanation in “Overall Pattern of Dietary Niche 

Overlap Between Euprimates and Non-Euprimates”), dietary niche sizes of omomyids 

and euprimates as a whole decrease from Wa0 to Wa5 (Euprimates(absolute size): 

r=0.900, p=0.037; Euprimates(relative size): r=1.000, p<0.001; Omomyidae(absolute 

size): r=0.800, p=0.119; Omomyidae(relative size): r=1.000, p<0.001; Table 6.3; Figs. 

6.8-6.15). The adapid niche also decreases in size from Wa0 to Wa4 but subsequently 

broadens in Wa5, although this pattern is not statistically significant (r=0.800, p=0.200; 

Table 6.3; Figs. 6.14-6.15). This signifies that euprimates occupied a much larger 

percentage of the guild-wide dietary niche space upon their origination in North America 

than during almost all subsequent time intervals examined; i.e., the euprimate dietary 

niche generally contracted over time. Furthermore, the mean distances of omomyid and 

adapid specimens from their niche centroids similarly decrease from Wa0 to Wa4 

(Adapidae: r=1.000, p<0.001; Omomyidae: r=0.800, p=0.200) and increase from Wa4 to 

Wa5 (although mean centroid distances of all euprimate specimens combined decreases 

from Wa0 to Wa5 (r=0.900, p=0.037)) (Table 6.15; Fig. 6.16). With the exception of the 

peak of the Carbon Isotope Excursion (CIE) in Wa0, mean annual precipitation and 

temperature decreased from Wa0 to Wa4 and increased from Wa4 to Wa5 (Wilf, 2000; 

Woodburne et al., 2009a,b; Chew and Oheim, 2013; see Fig. 2.1).  
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This near-parallel pattern between niche expansion and contraction, on the one 

hand, and changes in temperature, on the other, suggests that there may be a link between 

early Paleogene climate and the euprimate (at least adapid) dietary niche. On the other 

hand, dietary niche sizes of euprimates may have changed in response to competition (or 

the lack thereof) with non-euprimates, and this will be discussed further in Chapter 7. 

In addition to an overall decrease in the size of euprimate niches, the patterns of 

niche overlap among euprimate genera and comparisons of distances between niche 

centroids in adjacent time intervals suggest that the position of the euprimate dietary 

niche within the guild-wide niche space also shifted through time. First, if one simply 

considers the first two niche axes, it appears that the niches of both adapids and 

omomyids are shifting in a similar direction, away from the original (Wa0) niche (at least 

from Wa0 to Wa3) (Figs. 6.17-6.21; see Fig 6.13). In fact, the distance between the 

overall euprimate Wa0 niche centroid and the centroid of the niche in each subsequent 

time interval is greatest in Wa3 (although the distance between the Wa0 and Wa4 

centroids is almost equivalent) (Table 6.15; Figs. 6.17-6.21). Relative to their 

corresponding Wa0 dietary niche centroids, the niche centroids of both adapids and 

omomyids are furthest from their Wa0 starting points in Wa4, at which time the niches of 

both adapids and omomyids move towards the Wa0 niche position in Wa5 (Table 6.15; 

Figs. 6.17-6.21). Results indicate that the greatest shift in the adapid niche occurred 

between Wa4 and Wa5, whereas that of the omomyid niche was coincident with the 

transition from Wa1-2 to Wa3 (see Table 6.2). This asynchronicity is consistent with 

separate evolutionary trajectories for the adapid and omomyid niches. An examination of 

the distance between the adapid and omomyid niche centroids for each time interval, a 
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proxy for the degree of niche separation, demonstrates that this distance remains fairly 

constant from Wa0 to Wa3, dramatically increases in Wa4, and subsequently drops to its 

minimum value in Wa5 (Table 6.15; Fig. 6.22). 

 The analyses of niche overlap among adapid and omomyid genera provide further 

detail regarding the above patterns. First, within the adapid and omomyid niches, almost 

all synchronous omomyid or adapid genera overlap with one another; the sole exception 

is the lack of niche overlap between Tetonius and Teilhardina in Wa1-2 (see Tables 6.9-

6.12). Perhaps not surprisingly, this indicates that although the euprimate niche is 

heterogenous, the dietary niches of each major group of euprimates (adapids and 

omomyids) are much less so. Second, there is much greater overlap among omomyid 

niches across time intervals than among adapid niches. In omomyids, the dietary niches 

corresponding to the Wa0 and Wa1-2 time intervals overlap one another as do the three 

niches from Wa3 to Wa5 (see Table 6.13). In other words, there appears to be a 

distinction between the early (Wa0 and Wa1-2) and later (Wa3-Wa5) omomyid niches. 

This is consistent with the shift in omomyid niche centroid location between Wa1-2 and 

Wa3, as discussed above, as well the reduced number of instances of overlap among Wa3 

and Wa1-2 omomyid genera (see Table 6.2, 6.10; Figs. 6.9, 6.10, 6.13). In contrast, only 

the adapid niches of Wa0 and Wa1-2 and those of Wa3 and Wa5 significantly overlap 

(Table 6.15). Taken together with the patterns of centroid location discussed previously, 

the adapid niche seems to shift in one direction from Wa1-2 to Wa3 and from Wa3 to 

Wa4 but reverses direction between Wa4 and Wa5, such that the location of the Wa5 

adapid niche is similar to that of the niche in Wa3 (see Table 6.2; Figs. 6.8-6.13). 
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Altogether, these results indicate that the evolutionary course of the euprimate 

dietary niche is the consequence of distinct patterns, and likely distinct processes, that 

were occurring within each of the two main euprimate groups: adapids and omomyids. 

Possible explanations for the changes in the adapid and omomyid, and thus euprimate, 

dietary niches discussed above will be examined within the context of the euprimate 

dietary competitive environment in the following chapter. 
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Fig. 6.15. Plot of the relative hypervolumetric size of adapid and omomyid six-
dimensional niches for each time interval. Values on the y-axis represent percentage of 
the total guild-wide niche space. 
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Fig. 6.16. Plot of the mean distances of adapid and omomyid individuals from their 
respective group centroids for each time interval. 
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Fig. 6.21. Plot of the six-dimensional distances between the Wa0 hypervolume 
centroids of adapids and omomyids and the centroids of each subsequent time 
interval .  
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Fig. 6.22. Plot of the six-dimensional distances between the hypervolume centroids 
of adapids and omomyids for each time interval.  
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Table 6.2. Distances between dietary niche centroids of adjacent time intervals for 
each major taxonomic group. Bolded values represent the largest change in centroid 
location (i.e., the greatest distance between centroids) for each taxon. 

  Cf2-3-Wa0 Wa0-Wa1-2 Wa1-2-Wa3 Wa3-Wa4 Wa4-Wa5 
ALL TAXA 0.690 0.537 1.393 0.395 0.471 
Adapidae --- 0.761 1.160 1.184 1.453 
Omomyidae --- 0.820 1.592 0.224 0.575 
Euprimates --- 0.674 1.675 0.263 0.808 
Apatemyidae 2.555 1.316 1.161 2.345 1.682 
Peradectidae 1.574 2.075 2.675 1.947 2.065 
Paleoryctidae 4.116 1.806 2.409 --- --- 
Erinaceomorpha 1.981 1.033 2.969 3.488 2.090 
Soricomorpha 0.824 1.040 0.829 --- --- 
Leptictidae 2.737 1.124 0.802 2.520 2.545 
Microsyopidae 1.683 2.060 2.536 1.453 1.688 
Paromomyidae 1.232 1.317 1.375 0.833 1.049 
Plagiomenidae --- --- --- 1.349 --- 
Rodentia 0.350 0.607 2.480 0.399 0.623 
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Table 6.3. Hypervolumetric size and Spearman rank correlation coefficients of 
niche size with time for all taxa within the euprimate competitive guild, 
euprimates, adapids, and omomyids. Correlations of adapid absolute and relative 
niche sizes with time include only Wa0 to Wa4 values.  

Guild Euprimates Adapids Omomyids 

Cf2-3 

Abs. Vol. Size 310.022 

-- -- -- 
Rel. Vol. Size 9.192 
Wtd. Rel. Size 12.814 
N 85 

Wa0 

Abs. Vol. Size 433.545 7.75 0.934 0.873 
Rel. Vol. Size 12.854 14.82 8.237 6.565 

Wtd. Rel. Size 15.081 21.53 11.532 9.905 
N 101 39 20 19 

Wa1-2 

Abs. Vol. Size 792.249 7.89 1.887 0.456 
Rel. Vol. Size 23.489 15.09 16.647 3.428 
Wtd. Rel. Size 15.905 15.00 12.598 4.913 
N 175 57 37 20 

Wa3 

Abs. Vol. Size 409.069 3.68 0.151 0.883 
Rel. Vol. Size 12.128 7.04 1.334 6.639 
Wtd. Rel. Size 9.777 5.87 1.966 3.884 
N 147 68 19 49 

Wa4 

Abs. Vol. Size 232.337 2.04 0.025 0.402 
Rel. Vol. Size 6.888 3.91 0.223 3.022 

Wtd. Rel. Size 7.489 4.61 0.446 2.548 
N 109 48 14 34 

Wa5 

Abs. Vol. Size 76.768 0.62 0.178 0.002 
Rel. Vol. Size 2.276 1.19 1.570 0.011 
Wtd. Rel. Size 2.869 1.69 1.373 0.040 
N 94 40 32 8 

TOTAL 
Abs. Vol. Size 3372.900 52.273 11.334 13.301 
N 711 252 122 130 
Mean N 118.500 56.667 28.000 28.667 

r (Abs.) 0.600 0.900 0.800 0.700 
p (Abs.) 0.208 0.037 0.200 0.118 
r (Rel.) 0.771 1.000 0.800 1.000 
p (Rel.)   0.072 <0.001 0.200 <0.001 
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Abbreviations are as follows: Abs. Vol. Size.=Absolute volumetric size, Rel. Vol. 
Size=Relative volumetric size as a percentage, Wtd. Rel. Size=Relative volumetric 
size weighted by sample size, N=sample size, Mean N=mean sample size across all 
time intervals, r,p(Abs.)=Spearman rank correlation coefficient and p-value of Abs. 
Vol. Size with the midpoint of each time interval (following Woodburne (2004) and 
Chew and Oheim (2013); see Fig. 1.1), r,p(Rel.)=Spearman rank correlation 
coefficient and p-value of Wtd. Rel. Size with the midpoint of each time interval. 
Relative volumetric size was calculated as the percentage of the absolute volumetric 
size across all time intervals that is occupied by the niche within a given time 
interval for each taxonomic group (e.g., euprimates): e.g., [(Cf2-3 Abs. Vol. 
Size)/(Total Abs. Vol. Size)]*100. Wtd. Rel. Size was calculated as follows: [((Abs. 
Vol. Size)*(Mean N/N))/(Total Abs. Vol. Size)]*100.  
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Table 6.4. Significance (p-values) of pairwise comparisons of the niches of Wa0 
euprimates and those of Cf2-3 and Wa0 non-euprimates using the modified 
MANOVA. Non-significant values (i.e., those that indicate niche overlap) are 
bolded. For those higher taxa that include genera with greater than 3 specimens, 
comparisons were made at both the familial and generic levels. 

Wa0 Adapidae 
(Cantius) 

Wa0 Omomyidae 
(Teilhardina) 

Cf2-3 Apatemyidae 0.008 0.069 
Cf2-3 Plagiomenidae <0.001 <0.001 
Cf2-3 Peradectidae <0.001 <0.001 
Cf2-3 Erinaceomorpha 0.001 0.339 
Cf2-3 Soricomorpha <0.001 0.036 
Cf2-3 Carpolestidae <0.001 0.009 
Cf2-3 Ignacius 0.004 <0.001 
Cf2-3 Phenacolemur 0.005 0.001 
Cf2-3 Paromomyidae 0.002 <0.001 
Cf2-3 Plesiadapidae 0.096 <0.001 
Cf2-3 Acritoparamys <0.001 <0.001 
Cf2-3 Paramys <0.001 <0.001 
Cf2-3 Paramyidae <0.001 <0.001 
Wa0 Apatemyidae <0.001 <0.001 
Wa0 Mimoperadectes <0.001 <0.001 
Wa0 Peradectes <0.001 0.002 
Wa0 Peratherium <0.001 0.002 
Wa0 Peradectidae <0.001 <0.001 
Wa0 Palaeoryctidae <0.001 <0.001 
Wa0 Erinaceomorpha <0.001 0.010 
Wa0 Soricomorpha <0.001 0.055 
Wa0 Microsyopidae 0.002 0.003 
Wa0 Ignacius 0.006 <0.001 
Wa0 Phenacolemur 0.025 0.001 
Wa0 Paromomyidae 0.004 <0.001 
Wa0 Paramyidae <0.001 <0.001 
Wa0 Cylindrodontidae 0.004 0.005 
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CHAPTER 7: THE EARLY EUPRIMATE DIETARY COMPETITIVE 

ENVIRONMENT OF NORTH AMERICA 

 The primary objective of this study was to determine which of three specific 

models of dietary competitive interaction, as outlined in Chapter 3, characterized the 

origination and early diversification of euprimates in North America, as defined by 

patterns derived from the Bighorn Basin, Wyoming. These competitive models are: (1) 

the absence of dietary competition (non-competition), (2) the presence of strong dietary 

competition (competitive displacement), and (3) the presence of weak, or diffuse, dietary 

competition (competitive coexistence). Overall, the results of this study suggest that, 

within the “euprimate competitive guild,” there was minimal dietary niche overlap 

between euprimates and non-euprimates. Specifically, few pairwise comparisons using 

the modified MANOVA resulted in non-significant p-values, indicating potential 

competition. At face value, this reveals that dietary competition was not ubiquitous 

during early adapid and omomyid evolution in North America. However, the euprimate 

dietary niche was not unique within this mammalian community, as nine instances of 

niche overlap between euprimates and non-euprimates were identified and described in 

Chapter 6. These periods of overlap – clustered around the origination of euprimates in 

North America, at the onset of the Eocene, and towards the end of the time period 

examined, in the middle Wasatchian – will be discussed separately below. 

Euprimate Origination (Wa0 to Wa1-2) 

 Of the four identified cases of niche overlap between euprimates and non-

euprimates during the early Wastachian, three can be excluded from a discussion of the 

euprimate dietary competitive environment. First, as the dietary niches of Wa0 omomyids 
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and Cf2-3 erinaceomorphans do not concurrently overlap, a competitive interaction 

between these taxa at the point of euprimate origination can be ruled out. Second, as 

discussed in Chapter 6, apatemyids likely did not directly compete for dietary resources 

with euprimates, or at least not to a significant extent. For example, interspecies 

competition with aye-ayes, with which apatemyids are convergent, is expected to be low 

as a result of the aye-aye’s unique set of morphological dietary adaptations and resulting 

distinct niche within its community (Petter, 1977; Grime and Pierce, 2012). Given the 

similar molar morphologies of apatemyids and omomyids, as found in this study, and 

thus an inferred similarity in consumed food items, generally speaking, it is possible that 

the highly adaptive behavior and morphology of apatemyids excluded omomyids from 

certain dietary resources (e.g., invertebrates located in the trunks or larger branches of 

trees), thereby influencing the evolution of the omomyid dietary niche, perhaps towards a 

greater reliance on terminal branch feeding (of insects, flowers and fruit, or both) 

(Rasmussen, 1990; Sussman, 1991, 2013; Bloch and Boyer, 2002; Ravosa and Savakova, 

2004; Orkin and Pontzer, 2011). Unfortunately, the precise impact of such a scenario on 

either taxon is unknowable in the fossil record (barring the discovery of stomach 

contents), if it was present at all. Apatemyids have been previously suggested as potential 

omomyid competitors (Gunnell, 2002), and the results of this study highlight that the 

dietary ecospaces of these taxa may only have been separated by a single (albeit critical) 

niche dimension: method of food procurement. Third, although the pattern of niche 

overlap between omomyids and soricomorphans from Wa0 to Wa3 is consistent with a 

hypothesis of strong competition via niche divergence, this divergence is associated with 

a period of directional climatic change. Consequently, strong competition between these 
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taxa cannot be exclusively supported. On the other hand, niche overlap between 

Clarkforkian plesiadapids and adapids is a clear example of non-competition, specifically 

post-extinction replacement. Thus, the arrival of adapids in North America occurred in 

the absence of dietary competition, and this niche was occupied exclusively by a single 

anagenetic adapid lineage until the diversification of adapids in the middle Wasatchian.  

 Based on the results of this study as they correspond to the competition models 

outlined in Chapter 3, euprimate origination in North America was generally 

characterized by the absence of dietary competition with non-euprimate members of their 

guild. In addition, adapids and omomyids did not engage in dietary competition (as 

supported by the lack of adapid-omomyid niche overlap) during this time. This has 

several implications for the evolution of euprimates and their mammalian dietary guild as 

a whole. First, it indicates, at least in terms of dietary competition, that euprimates did not 

competitively exclude non-euprimate taxa within their guild. In other words, the presence 

of euprimates did not negatively impact the abundance or diversity or drive shifts in the 

niche spaces of non-euprimate taxa. Conversely, a lack of competition with non-

euprimates is consistent with an increase in the abundance and diversity of euprimates 

themselves, signifying that the “success” of euprimates does not appear to be the result of 

a direct biotic interaction between euprimates and other mammals. As such, the suite of 

key anatomical features possessed by adapids and omomyids upon their origination in 

North America conferred an advantage insofar as they helped to reduce the potential 

negative effects of competition (e.g., decreased abundance and diversity, increased 

likelihood of extinction) with incumbent species, interactions which typically result in the 
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extinction or decline of the invasive species (in this case, euprimates) (the “incumbent 

advantage”; Alroy, 1996; Ivany, 1996). 

Euprimate Radiation (Wa3 to Wa5) 

 From Wa1-2 through Wa4, there is only one example of synchronous niche 

overlap between a euprimate and non-euprimate taxon: Wa3 Anemorhysis and Wa3 

Microsyopidae. However, the lack of overlap between Anemorhysis and individual 

microsyopid genera significantly diminishes the likelihood of, if not rejects, a true 

competitive interaction. Thus, a lack of competition between euprimates and non-

euprimates appears to extend from the early Wasatchian (Wa0) to the late middle 

Wasatchian (end of Wa4), at which point the incidence of niche overlap between 

euprimates and non-euprimates increases.  

The transition from Wa4 to Wa5 is not associated with a major shift in the guild-

wide niche as whole (for instance, the greatest change in the centroid location of this 

niche is between Wa1-2 and Wa3); however, the overall size of this niche (as measured 

by weighted relative hypervolumetric size and mean distance of individuals from the 

niche centroid; see Chapter 6) is at its minimum in Wa5. As described in Chapter 6, this 

decrease in niche size is possibly linked to the decrease in mean annual temperature and 

precipitation from Wa1-2 to Wa4, granting a slight time lag in the faunal response to this 

abiotic change. In this scenario, limited food availability associated with the climatic shift 

may have resulted in niche contraction within the guild through Wa4. When the 

euprimate dietary niche subsequently expanded in Wa5, the prior guild-wide contraction 

increased the likelihood of euprimate-non-euprimate niche overlap, specifically between 

omomyids and erinaceomorphans, on the one hand, and adapids and paromomyids on the 
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other (MacArthur and Levins, 1967; Giller, 1984; Grant, 1986; Keddy, 2001; Van der 

Putten et al., 2010; Nakazawa, 2013).30 However, as discussed in Chapter 6, the 

inadequate erinaceomorphan sample sizes in Wa3 and Wa4 prevent an identification of 

the specific point at which these niches began to overlap, suggesting the time of overlap 

may have been earlier. In contrast, the increase in niche overlap between adapids and 

paromomyids in Wa5 is due exclusively to the diversification of adapids. In fact, in this 

study, the only example of coincident adapid-non-euprimate niche overlap involves the 

single non-Cantius genus, Copelemur (if the Wa5 Adapidae-Wa5 Microsyopidae 

interaction is excluded; see Chapter 6). Specifically, the origination of Copelemur31 in the 

Bighorn Basin (either through dispersal from the south or via cladogenesis; O’Leary, 

1997; Gunnell, 2002) is associated with both non-competition (with plagiomenids) and 

possible strong competition (with paromomyids). However, as noted in Chapter 6, the 

difference in reconstructed body size between paromomyids and the much larger adapid, 

Copelemur, may have diminished competition between these taxa (Fleagle, 1999; Bloch 

et al., 2007). 

                                                 
30 The association between niche contraction and resource limitation is well-documented 
within species; however, the extent to which this concept can be applied to entire guilds 
is less clear (although see Grossnickle and Polly, 2013). Thus, it is possible that the guild-
wide niche contraction was the result of an alternate mechanism. 
31 It is recognized that some researchers have excluded the Bighorn Basin specimens 
identified as Copelemur feretutus from the genus Copelemur (e.g., Gunnell, 2002; 
Gunnell et al., 2008). If these specimens are members of a distinct, non-Cantius genus, 
then the impact on this study is simply a matter of nomenclature. However, if these 
specimens belong to an additional species of Cantius, then the analyses herein have 
identified an instance of overlap involving an adapid species (rather than genus), albeit a 
species not included in the anagenetic Cantius lineage of Wa0-Wa4. In either case, 
adapid-non-euprimate niche overlap was identified, and the resulting potential for 
competition between these taxa is the subject of this discussion. 
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Still, if erinaceomorphans and omomyids, on the one hand, and paromomyids and 

Copelemur, on the other, are true examples of competition (and if erinaceomorphan-

omomyid competition does not begin prior to Wa5), it is interesting that the competitive 

environments of both adapids and omomyids changed at the same time, coincident with a 

niche expansion in both groups (see below for further discussion). Our current 

understanding of competition theory and evidence that these competitive interactions 

took place so long after the origination and establishment of euprimates within their 

communities (i.e., the lack of niche overlap until Wa5) propose that: (1) taxa within the 

euprimate competitive guild were forced to narrow their niches in response to climatic 

change and associated limitation of food resources from Wa0 to Wa4 and (2) upon a 

change in climate in Wa5, euprimates responded by expanding their dietary niche to 

exploit newly available resources, resulting in niche overlap with non-euprimates 

(MacArthur and Levins, 1967; Giller, 1984; Abrams, 1986, 1987; Grant, 1986; Keddy, 

2001; Chase and Liebold, 2003). Unfortunately, the hypotheses of competition examined 

here require that patterns of niche overlap be evaluated in time intervals following the 

original point of overlap and thus cannot be explored fully here (see Chapter 3). As such, 

these new instances of niche overlap between euprimates and non-euprimates in Wa5 

either led to strong competitive interactions, whose effects are not yet observable so close 

to the onset of competition, or they resulted in weak dietary competition, allowing taxa to 

remain in the same dietary niche space over time. The effect that either scenario may 

have had on euprimate evolution in the late Wasatchian and Bridgerian is certainly an 

area for future study. 
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The Euprimate Dietary Niche 

 The results presented here demonstrate the differentiation of the euprimate dietary 

niche between adapids and omomyids, consistent with previous dietary reconstructions of 

these taxa (e.g., Covert, 1985; Rose, 1995; Gunnell, 2002; Jones et al., 2014). Although 

the specific changes (e.g., changes in niche size and centroid locations) within the adapid 

and omomyid niches over time are not identical, the dietary niches of adapids and 

omomyids exhibit two major patterns of change that broadly mirror one another and, in 

part, the guild as a whole (Table 7.1; see Tables 6.4; 6.15). First, the sizes of the adapid 

and omomyid dietary niches decreased from Wa0 to Wa4 and increased from Wa4 to 

Wa5.32,33 The contraction of the euprimate dietary niche from Wa0 to Wa4 (possibly 

linked to niche specialization in a limited resource environment34) runs counter to the 

expectations of a successful invasion radiation, particularly one that is shortly followed 

by diversification, as occurred in omomyids (Schluter, 2000; Ricklefs, 2010; although see 

Erwin, 1992; Bailey et al., 2013). However, as discussed above, this niche contraction, in 

concert with the subsequent expansion in Wa5, tracks climatic reconstructions during this 

time, as mean annual temperature and precipitation decreased from Wa0 to Wa4 and 

temperature increased from Wa4 to Wa5 (Wilf, 2000; Woodburne et al., 2009a,b; Chew 

                                                 
32 Statistical tests were not performed on differences between adapid and omomyid niche 
sizes and not all correlations between niche size and time were significant (although most 
were), likely as a result of the low number of niches included (i.e., the presence of 
relatively few data points for analysis). Thus, the discussion here considers only general 
trends in niche size over time, and it is granted that subsequent analyses may alter these 
conclusions.  
33 However, the relative weighted hypervolumetric size (but not mean distance of 
individuals from the mean centroid) of omomyids decreased from Wa4 to Wa5. 
34 However, this would not explain the contraction of the guild-wide niche, as it would 
not be expected that niche specialization would result in niche convergence among taxa 
(Grime and Pierce, 2012; Pfennig and Pfennig, 2012). 
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and Oheim, 2013). This is somewhat distinct from the guild-wide pattern of niche size, in 

which niche contraction extended into Wa5, and euprimates may have been better able 

and quicker to respond to periods of climatic change than the other taxa included in this 

study (yet this seems unlikely among taxa within a mammalian guild). Alternatively, 

specific non-euprimate taxa could be driving the contraction of the guild-wide niche from 

Wa4 to Wa5, masking a niche expansion across the remaining taxa, including euprimates.  

An increase in temperature in Wa5 is further associated with an increase in adapid 

diversity and a shift in omomyid generic composition, which may have proximately 

caused the niche expansion from Wa4 to Wa5. On the other hand, climatic change may 

ultimately still be responsible, as new adapid and omomyid species could have derived 

from allopatric speciation events associated with colder, drier climates prior to Wa5 (e.g., 

increased habitat patchiness) or as the result of newly opened portions of the ecological 

niche space (dietary or non-dietary) in Wa5. In either case, overall, these temporal 

changes in euprimate niche size are best fit to climatic patterns; thus, perhaps an abiotic 

mechanism (rather than a response to non-euprimate biotic interactions35) is responsible 

for these shifts in the size of the euprimate dietary niche in the early-middle Wasatchian.  

Second, there is a distinction between the position of the early (Wa0-2) and later 

(Wa3-5) dietary niches of both adapids and omomyids. For omomyids, this transition is 

                                                 
35 The response of euprimates to biotic interactions was considered less likely as there 
were no instances of niche overlap between euprimate and non-euprimate taxa during the 
period of niche contraction. In addition, the expansion of the omomyid and adapid niches 
in Wa5 is only correlated with the extinction of plagiomenids, which should not have 
affected omomyids (although see Footnote 33). To further evaluate this hypothesis, the 
relative sizes of non-euprimate niches within the guild would need to be compared with 
those of euprimate niches through time. In this analysis, an inverse relationship between 
euprimate and non-euprimate niche size would be expected. 
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clear cut: the niches of Wa0 and Wa1-2 are distinct from those of Wa3-5. As no climatic 

event or significant change in guild composition coincides with the transition between 

Wa2 and Wa3, the cause of this distinction is unclear. Moreover, the separation among 

the (Wa0 and Wa1-2), Wa4, and (Wa3 and Wa5) niches of adapids, also does not appear 

to be patterned with any variables examined in this study. It is possible that these patterns 

of niche position: (1) relate to the movement of niches of specific non-euprimate taxa, (2) 

are associated with other (non-dietary) aspects of the euprimate ecological niche, or (3) 

are the result of changes in the sample size and composition of euprimates within each 

time interval. Regardless, the shifts in euprimate niche position and lack of detected 

competition associated with these shifts suggest that the euprimate niche changed its 

position within a specific, limited region of the guild-wide niche space. Furthermore, as 

this space was exclusive to euprimates during each time interval (excepting Wa5), the 

corresponding lack of niche overlap with non-euprimates may have allowed for greater 

variance in niche location within this limited region (Giller, 1984; Keddy, 2001; Bolnick 

et al., 2007; Pfennig and Pfennig, 2012).  

Within the adapid and omomyid dietary niches, the niches of almost all coeval 

genera overlap. This suggests that adapid and omomyid diversification was not driven by 

dietary differentiation or changes in molar morphology. However, if early-middle 

Wasatchian euprimate genera within their respective families had similar diets, as 

suggested in previous research (e.g., Covert, 1985, 1986; Maas and O’Leary, 1996; Strait, 

2001; Gunnell, 2002), this observation contrasts with the results presented in Chapter 5, 

in which dietary niche overlap was examined within an extant mammalian guild. 

Comparisons of the reconstructed niches of extant genera indicated that most of the 
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niches within dietary groups did not overlap. This suggests that either the modified 

MANOVA used has a high type I error rate or that the molar morphological measures 

included do not closely align with dietary regime (discussed further below). However, the 

niche overlap structure of an extant community is the product of millions of years of 

species interactions, including competitive exclusion, the result of which is minimal 

niche overlap even among members of the same dietary group (Grant, 1972; Connell, 

1980; Grant and Schluter, 1984; Roughgarden and Diamond, 1986; Schoener, 1988; 

Dayan and Simberloff, 1989, 1994, 2005; Schluter, 2000; although see Connor and 

Simberloff, 1979). This latter interpretation may explain the greater amount of overlap 

among the niches of adapid and omomyid genera in the early Eocene, a time when 

euprimates had recently joined the mammalian community in North America and when 

euprimate diversification had just begun.  

Finally, adapids and omomyids seem to have divided up their respective niche 

spaces to different degrees. The weighted relative hypervolumetric size of adapids is 

greater than that of omomyids in Wa0, Wa1-2, and Wa5, and the mean distance of 

individuals from the adapid niche centroid is greater than that of omomyids in Wa1-2 and 

Wa5. In these latter two time intervals, the number of omomyid genera was greater than 

the number of adapid genera despite the smaller size of the omomyid niche. This 

indicates that during these times, the dietary niches of individual omomyid genera were 

likely smaller than those of adapid genera and may have been associated with a greater 
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degree of dietary niche specialization (Gunnell, 2002; Bolnick et al., 2007, 2010; Agashe 

and Bolnick, 2010; Pfennig and Pfennig, 2012; although see Giller, 1984).36,37 

FUTURE RESEARCH 

 These results naturally lead to many further lines of inquiry, and several avenues 

for future research will be discussed here. First, the application of alternative methods of 

capturing diet-related variation in molar form across extant mammalian guilds has the 

potential to demonstrate a closer association between molar morphology and dietary 

regimes than the measures employed here. Use of these methods could thus produce 

different reconstructions of dietary niche structure within the Eocene euprimate 

competitive guild. For instance, as discussed in Chapter 2, recent quantitative measures 

such as dental topographic variables (slope, relief, angularity), orientation patch count, 

and Dirichlet normal energy (Ungar, 2007; Boyer, 2008; Boyer et al., 2010, 2011, 2012; 

Bunn et al., 2011; Joshi et al., 2011; Godfrey et al., 2012; Evans, 2013; Guy et al., 2013; 

Ledogar et al., 2013), may exhibit a greater ability (either individually or jointly) to 

reconstruct diets among species in fossil communities.  

 Second, in this study, dietary niches were reconstructed using only molar 

measures, whereas incisor, canine, and premolar morphologies are certainly informative 

regarding dietary behavior among fossil taxa. The inclusion of additional tooth types, as 

well as other aspects of a taxon’s ecological niche (e.g., feeding and locomotor behaviors, 

substrate preferences, activity pattern), will enable a more complete evaluation of niche 

                                                 
36 See Whitlock (1996) for an alternative explanation of inverse relationships between 
diversity and niche size. 
37 As stated in Chapter 6, the calculation of hypervolumetric size was not possible for 
individual genera, as this calculation required at least six individuals per genus. 
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overlap and competitive interactions. These expanded niche reconstructions have the 

potential to either preclude competition between taxa whose dietary niches overlap or to 

identify niche overlap along other ecological niche axes between taxa whose dietary 

niches did not overlap (see Jones et al., 2014). 

 Third, as in any fossil analysis, these results are dependent on the sample 

composition and size and the unit of time employed. Although competitive interactions 

occur at the level of the population (whose best approximation in the fossil record is the 

species), species-species comparisons were not possible in the fossil sample due in part to 

small sample sizes. As a result, the patterns observed herein potentially (1) veil 

competitive interactions within higher taxa (genus or family) and (2) conflate competitive 

interactions among species within genera or families due to the combined inclusion of 

species in a single niche. Only increased numbers of specimens can alleviate these issues, 

but, given the relative rarity of certain groups within North American Eocene fossil 

assemblages, it may not be possible to substantially increase the specimen numbers for 

each taxon within the euprimate competitive guild.38 Similarly, it is unlikely that shorter, 

more refined temporal units can be used, as the length of the time interval in these 

analyses is also dependent on sample size (see Chapter 5). However, different 

classifications of time (e.g., equal time bins, the sub-NALMA revision of Chew (2005)) 

may affect observed patterns of niche overlap and thus the identification of taxa which 

may have engaged in competitive interactions during this time. 

                                                 
38 Nonetheless, even a small increase in the sample sizes of certain taxa excluded in these 
analyses (but known to be present during the time intervals evaluated) (e.g., picrodontids, 
micromomyids) would allow the evaluation of niche overlap using the modified 
MANOVA. 
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 Fourth, species outside the euprimate competitive guild (as defined here) certainly 

affected taxa within the guild. Communities are comprised of numerous, interacting 

guilds, and a complete characterization of the euprimate competitive environment will 

include all (mammalian and non-mammalian) community members. For instance, 

although likely less significant, dietary competition between euprimates and non-guild 

members (e.g., arctocyonids) could still have influenced the structure and position of 

dietary niches within the community-wide and guild-wide niche spaces. Furthermore, 

non-mammalian predators were not considered in the evaluation of the effects of 

predation on changes in the positions of niches or the abundance and diversity of 

euprimate and non-euprimate taxa. Yet, avian predators surely influenced the structure of 

the small-bodied, arboreal mammals that comprised the euprimate competitive guild, as 

studies of similar extant guilds suggest (e.g., Goodman et al., 1993; Mitani et al., 2001; 

Granzinolli and Motta-Junior, 2006). Thus, the inclusion of these taxa is critical to a full 

understanding of euprimate competition in the early Eocene. 

 Fifth, if the analysis of extant dietary niches using the modified MANOVA 

outlined in Chapter 5 demonstrates a bias towards low, significant p-values (indicative of 

niche differentiation), then competitive interactions between early Eocene euprimates and 

non-euprimates may have been more frequent than the present results suggest. In other 

words, some of the numerous significant p-values identified in euprimate-non-euprimate 

niche comparisons may be false negatives (see Chapter 5), masking niche overlap (and 

competition) in the fossil sample. A further examination of niche overlap patterns in 

living communities is needed in order to determine the extent to which the observed 

extant niche structure (i.e., minimal overlap among niches within a dietary group) holds. 



  272 

On the other hand, the extant analysis consequently demonstrated that non-significant 

MANOVA results were highly indicative of actual niche overlap between taxa. Thus, it is 

reasonable to assume that the instances of niche overlap identified and evaluated here are 

true examples of competitive interactions within the Eocene euprimate guild. 

 Finally, this study only included members of the euprimate competitive guild at a 

single site in North America, the Bighorn Basin. This site was chosen for its taxonomic 

diversity, abundant euprimate sample, and high stratigraphic resolution; however, the 

inclusion of non-Bighorn Basin fossil material will enable an assessment of the 

universality of the patterns identified in this study. Furthermore, complementing the 

fossil sample herein with specimens from additional sites in the Western Interior has the 

ability to produce a regional assessment of the euprimate competitive environment as it 

changed through the middle Eocene. 

Overall, the major results of this study can be summarized as follows: (1) a lack 

of dietary competition characterized the origination and early diversification of the 

earliest euprimates in North America (consistent with current prevailing hypotheses of 

euprimate origins); (2) the dietary niches of adapids and omomyids remained distinct 

throughout the early-middle Wasatchian; (3) changes in euprimate dietary niche size over 

time parallel major climatic shifts from Wa0 to Wa5; and (4) the dietary niches of 

euprimate genera within a given time interval consistently overlap within each family 

(Adapidae and Omomyidae), contrasting with the niche structure observed in a living 

community and underscoring that the pattern of dietary niches in this Eocene euprimate 

competitive guild may represent only the beginnings of a dynamic process that altered the 

structure of this “species assemblage” for millions of years. It is these same abiotic and 
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biotic processes that still influence, and will continue to influence, the composition and 

structure of mammalian guilds and communities of both the present and future. 
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Table 7.1. Summary of changes in niche position and size of adapid and omomyid 
niches for each transition between time intervals. Measures of niche position and size are 
those discussed in Chapter 6. For the MANOVA pairwise comparisons, “NE,” or “not 
equal,” indicates a shift in the adapid or omomyid niche. For all other measures, a directional 
shift (i.e., the change from a '+' to a '-' in subsequent transition points) indicates the presence 
of a shift in niche position or size. Parentheses indicate weak changes between time intervals. 
Note that the majority of shifts in niche size and position in both adapids and omomyids are 
coincident with the transition between Wa4 and Wa5 (Wa4-Wa5).  
      Wa0-

Wa1-2 
Wa1-2-

Wa3 
Wa3-
Wa4 

Wa4-
Wa5 

NICHE 
POSITION 

MANOVA Pairwise 
Comparisons 

Adapidae = NE NE NE 
Omomyidae = NE = = 

Adapid-Omomyid 
Centroid Distance = = +  

Distance From Wa0 
Centroid 

Adapidae + +  
Omomyidae + +  

NICHE 
SIZE 

Relative 
Hypervolumetric Size 

Adapidae (+)   + 
Omomyidae     

Mean Distance from 
Centroid 

Adapidae ( )  = + 
Omomyidae   = + 
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APPENDIX A  

MEAN VALUES OF UNSCALED MORPHOMETRIC MEASURES OF 

BALTA, PERU SPECIES.  
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Linear measures are in mm, area measures are in mm2, and angular measures are in 
radians. Measurements that could not be taken due to the lack of a feature in a 
species (e.g., absence the hypoconid) are denoted by '---.' 

Species 
Molar      
Area 

Protoconid 
Height 

Metaconid 
Height 

Entoconid 
Height 

Anoura caudifer 0.666 0.729 0.459 0.398 
Anoura geoffroyi 0.747 0.548 0.642 0.491 
Aotus trivirgatus 10.439 1.976 2.243 1.982 
Artibeus cinereus 1.547 0.590 0.558 0.409 
Artibeus concolor 2.077 0.820 0.850 0.559 
Artibeus literatus 4.867 1.021 1.256 0.753 
Artibeus obscurus 3.832 0.999 1.032 0.635 
Artibeus planirostris 5.229 1.210 1.279 0.743 
Callicebus moloch 11.062 2.095 2.106 1.901 
Caluromys lanatus 5.028 2.001 1.334 1.140 
Carollia brevicauda 0.938 1.030 0.531 0.337 
Carollia castanea 0.765 1.024 0.485 0.286 
Carollia perspicillata 1.107 1.116 0.579 0.302 
Cebus albifrons 19.614 2.730 2.790 2.081 
Chiroderma villosum 4.660 1.362 1.235 1.016 
Choeroniscus minor 0.344 0.238 0.292 0.295 
Didelphis marsupialis 24.013 4.325 3.688 2.582 
Ectophylla macconnelli 1.659 0.686 0.625 0.421 
Eptesicus brasiliensis 1.520 1.540 0.757 0.737 
Eptesicus furinalis 1.479 1.412 0.643 0.677 
Glossophaga soricina 0.567 0.670 0.439 0.347 
Gracilianus agilis 1.340 1.259 0.813 0.665 
Lasiurus borealis 0.730 1.095 0.468 0.455 
Lasiurus ega 1.473 1.491 0.698 0.739 
Lonchophylla thomasi 0.486 0.539 0.431 0.366 
Lophostoma silvicolum 2.724 2.006 1.085 0.843 
Macrophyllum macrophyllum 1.220 1.084 0.574 0.556 
Marmosa murina 1.826 1.417 0.918 0.738 
Marmosa quichua 1.974 1.374 0.938 0.708 
Marmosops noctivagus 2.609 1.677 1.269 0.888 
Metachirus nudicaudatus 5.437 2.409 1.951 1.447 
Micoureus demerarae 3.264 1.984 1.335 1.072 
Micronycteris megalotis 1.452 1.410 0.686 0.577 
Micronycteris nicefori 1.165 1.179 0.619 0.419 
Mimon crenulatum 2.884 2.110 1.040 0.925 
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Species 
Molar      
Area 

Protoconid 
Height 

Metaconid 
Height 

Entoconid 
Height 

Molossops abrasus 3.245 2.356 1.031 1.005 
Molossops greenhalli 1.783 1.841 0.779 0.888 
Molossus molossus 2.017 1.886 0.743 0.747 
Myotis albescens 0.723 0.998 0.458 0.475 
Myotis riparius 0.838 1.114 0.535 0.583 
Myotis simus 0.916 1.225 0.572 0.596 
Noctilio albiventris 2.923 1.714 0.905 0.895 
Philander mcilhennyi 9.922 2.939 2.471 1.759 
Philander opossum 7.222 2.756 2.085 1.520 
Phyllostomus elongatus 4.328 2.652 1.222 1.074 
Phyllostomus hastatus 6.155 2.831 1.499 1.265 
Pithecia monachus 15.103 2.428 2.514 2.081 
Platyrrhinus brachycephalus 2.267 0.736 0.557 0.506 
Platyrrhinus helleri 2.234 0.610 0.455 0.462 
Platyrrhinus infuscus 5.731 1.294 1.070 1.047 
Rhynchonycteris naso 0.624 0.730 0.346 0.375 
Saccopteryx bilineata 1.782 1.657 0.741 0.746 
Saccopteryx leptura 1.121 1.313 0.495 0.597 
Saguinus imperator 4.581 1.361 1.513 1.275 
Saimiri boliviensis 6.624 1.550 1.926 1.587 
Sciurus ignitus 4.199 0.957 0.957 0.938 
Sciurus spadiceus 7.490 1.274 1.374 1.163 
Sturnira lilium 1.478 0.664 0.590 0.525 
Sturnira tildae 1.738 0.697 0.665 0.487 
Tonatia minuta 1.321 1.591 0.768 0.600 
Tonatia saurophila 2.787 2.088 1.076 0.753 
Trachops cirrhosus 3.905 2.490 1.385 1.203 
Uroderma bilobatum 2.756 0.941 0.830 0.565 
Uroderma magnirostrum 2.131 0.859 0.699 0.503 
Vampyressa bidens 1.911 0.790 0.833 0.616 
Vampyressa pusilla 1.491 0.662 1.030 0.709 
Vampyrodes caraccioli 5.015 1.172 1.122 0.886 
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Species Hypoconid 
Height 

Mean Cusp 
Height 

Crest    
Length 

Hypoconid 
Angle 

Anoura caudifer 0.537 0.531 2.665 1.939 
Anoura geoffroyi 0.502 0.546 2.551 1.924 
Aotus trivirgatus 1.971 2.043 11.989 2.313 
Artibeus cinereus 0.555 0.528 4.821 2.686 
Artibeus concolor 0.699 0.732 7.200 2.926 
Artibeus literatus 0.976 1.001 9.482 2.751 
Artibeus obscurus 0.823 0.872 8.504 2.700 
Artibeus planirostris 0.951 1.046 11.135 2.729 
Callicebus moloch 2.081 2.046 12.430 2.274 
Caluromys lanatus 1.727 1.551 6.857 1.724 
Carollia brevicauda 0.674 0.643 1.989 2.576 
Carollia castanea 0.667 0.615 1.905 2.411 
Carollia perspicillata 0.729 0.681 2.131 2.372 
Cebus albifrons 2.397 2.500 16.144 2.202 
Chiroderma villosum 1.086 1.119 10.872 2.137 
Choeroniscus minor 0.253 0.269 1.548 2.504 
Didelphis marsupialis 2.865 3.365 14.099 2.017 
Ectophylla macconnelli 0.521 0.563 3.729 2.872 
Eptesicus brasiliensis 1.202 1.059 4.253 1.386 
Eptesicus furinalis 1.147 0.970 3.706 1.436 
Glossophaga soricina 0.447 0.476 1.983 2.042 
Gracilianus agilis 0.805 0.886 4.197 1.700 
Lasiurus borealis 0.763 0.695 3.104 1.441 
Lasiurus ega 1.106 1.009 4.289 1.400 
Lonchophylla thomasi 0.421 0.440 1.982 2.367 
Lophostoma silvicolum 1.502 1.359 5.460 1.356 
Macrophyllum macrophyllum 0.837 0.763 3.902 1.508 
Marmosa murina 0.959 1.008 4.613 1.572 
Marmosa quichua 0.937 0.989 4.711 1.671 
Marmosops noctivagus 1.346 1.356 5.860 1.615 
Metachirus nudicaudatus 1.781 1.897 8.743 1.816 
Micoureus demerarae 1.511 1.476 6.387 1.652 
Micronycteris megalotis 1.059 0.933 3.833 1.339 
Micronycteris nicefori 0.845 0.765 3.565 1.796 
Mimon crenulatum 1.667 1.435 5.994 1.360 
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Species Hypoconid 
Height 

Mean Cusp 
Height 

Crest    
Length 

Hypoconid 
Angle 

Molossops abrasus 1.794 1.547 7.379 1.403 
Molossops greenhalli 1.467 1.244 5.865 1.075 
Molossus molossus 1.459 1.209 5.768 1.293 
Myotis albescens 0.703 0.658 2.929 1.370 
Myotis riparius 0.822 0.763 3.313 1.251 
Myotis simus 0.946 0.835 3.572 1.169 
Noctilio albiventris 1.516 1.258 6.903 1.590 
Philander mcilhennyi 2.230 2.350 11.335 1.710 
Philander opossum 1.742 2.026 9.187 1.740 
Phyllostomus elongatus 2.068 1.754 7.320 1.316 
Phyllostomus hastatus 2.198 1.937 7.825 1.402 
Pithecia monachus 2.367 2.348 15.517 2.393 
Platyrrhinus brachycephalus 0.673 0.618 6.229 2.699 
Platyrrhinus helleri 0.625 0.538 6.110 2.759 
Platyrrhinus infuscus 1.172 1.146 10.321 2.626 
Rhynchonycteris naso 0.571 0.505 3.230 1.157 
Saccopteryx bilineata 1.252 1.099 5.634 1.271 
Saccopteryx leptura 0.939 0.836 4.136 1.528 
Saguinus imperator 1.151 1.325 7.443 2.362 
Saimiri boliviensis 1.306 1.592 9.874 2.589 
Sciurus ignitus 0.990 0.961 6.004 2.547 
Sciurus spadiceus 1.288 1.275 7.797 2.607 
Sturnira lilium --- 0.593 3.865 --- 
Sturnira tildae --- 0.616 4.179 --- 
Tonatia minuta 1.193 1.038 3.304 1.717 
Tonatia saurophila 1.492 1.352 5.103 1.512 
Trachops cirrhosus 1.735 1.703 6.921 1.744 
Uroderma bilobatum 0.744 0.770 7.288 2.534 
Uroderma magnirostrum 0.648 0.677 5.973 2.807 
Vampyressa bidens 0.637 0.719 6.414 2.563 
Vampyressa pusilla 0.618 0.755 5.928 2.393 
Vampyrodes caraccioli 1.197 1.095 9.186 2.738 
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Species Protoconid 
Angle 

Metaconid 
Angle 

Entoconid 
Angle 

Mean Cusp 
Angle 

Anoura caudifer 1.617 1.963 2.074 1.898 
Anoura geoffroyi 1.679 2.200 2.223 2.007 
Aotus trivirgatus 2.271 1.851 2.354 2.197 
Artibeus cinereus 2.285 2.140 2.502 2.403 
Artibeus concolor 2.347 2.308 2.412 2.498 
Artibeus literatus 2.344 2.157 2.418 2.418 
Artibeus obscurus 2.009 1.973 2.312 2.248 
Artibeus planirostris 2.106 2.332 2.243 2.352 
Callicebus moloch 2.369 1.963 2.300 2.227 
Caluromys lanatus 1.403 1.492 2.615 1.808 
Carollia brevicauda 2.275 1.989 2.506 2.336 
Carollia castanea 2.133 2.356 2.732 2.408 
Carollia perspicillata 2.033 2.049 2.697 2.288 
Cebus albifrons 2.328 2.073 1.987 2.147 
Chiroderma villosum 1.688 1.535 1.823 1.771 
Choeroniscus minor 2.804 2.480 2.518 2.577 
Didelphis marsupialis 1.357 1.112 1.966 1.613 
Ectophylla macconnelli 2.150 2.238 2.484 2.436 
Eptesicus brasiliensis 1.186 1.200 1.469 1.310 
Eptesicus furinalis 1.363 1.539 1.739 1.519 
Glossophaga soricina 1.935 1.981 2.178 2.034 
Gracilianus agilis 1.305 1.173 1.919 1.524 
Lasiurus borealis 1.097 1.309 1.660 1.377 
Lasiurus ega 1.192 1.479 1.513 1.396 
Lonchophylla thomasi 1.973 2.111 2.206 2.164 
Lophostoma silvicolum 1.274 1.258 1.844 1.433 
Macrophyllum macrophyllum 1.355 1.595 1.706 1.541 
Marmosa murina 1.196 1.020 1.807 1.399 
Marmosa quichua 1.286 1.127 1.779 1.466 
Marmosops noctivagus 1.234 0.959 1.215 1.271 
Metachirus nudicaudatus 1.293 1.133 1.626 1.467 
Micoureus demerarae 1.215 1.101 1.778 1.437 
Micronycteris megalotis 1.258 1.264 1.991 1.463 
Micronycteris nicefori 1.103 1.739 2.014 1.663 
Mimon crenulatum 1.141 1.297 1.528 1.331 
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Species Protoconid 
Angle 

Metaconid 
Angle 

Entoconid 
Angle 

Mean Cusp 
Angle 

Molossops abrasus 1.264 1.691 1.818 1.544 
Molossops greenhalli 1.021 1.378 1.425 1.225 
Molossus molossus 1.191 1.389 1.528 1.350 
Myotis albescens 1.225 1.395 1.573 1.391 
Myotis riparius 1.017 1.443 1.536 1.312 
Myotis simus 0.893 1.276 1.304 1.160 
Noctilio albiventris 1.316 1.990 2.079 1.744 
Philander mcilhennyi 1.349 1.047 2.068 1.543 
Philander opossum 1.256 1.106 1.934 1.509 
Phyllostomus elongatus 1.147 1.221 1.769 1.363 
Phyllostomus hastatus 1.307 1.267 1.976 1.488 
Pithecia monachus 2.535 2.126 2.477 2.383 
Platyrrhinus brachycephalus 2.133 2.207 2.263 2.326 
Platyrrhinus helleri 2.560 2.350 2.305 2.494 
Platyrrhinus infuscus 2.615 2.232 2.163 2.409 
Rhynchonycteris naso 1.031 2.005 1.739 1.483 
Saccopteryx bilineata 1.139 1.456 1.786 1.413 
Saccopteryx leptura 1.062 1.503 1.876 1.492 
Saguinus imperator 2.266 2.209 2.619 2.364 
Saimiri boliviensis 2.200 1.679 2.170 2.159 
Sciurus ignitus 2.444 1.934 2.539 2.366 
Sciurus spadiceus 2.761 2.464 2.627 2.615 
Sturnira lilium 2.213 2.382 2.712 2.436 
Sturnira tildae 2.425 2.404 2.753 2.528 
Tonatia minuta 1.414 1.257 2.069 1.614 
Tonatia saurophila 1.333 1.370 2.246 1.615 
Trachops cirrhosus 1.377 1.224 1.589 1.483 
Uroderma bilobatum 2.137 2.196 2.309 2.294 
Uroderma magnirostrum 2.321 2.501 2.559 2.547 
Vampyressa bidens 2.072 1.743 2.109 2.122 
Vampyressa pusilla 2.029 1.666 2.281 2.093 
Vampyrodes caraccioli 2.117 1.782 1.998 2.159 

 

  



  319 

Species Talonid 
Basin Area 

Talonid 
Basin Depth 

Trigonid-
Talonid Relief 

Anoura caudifer 0.290 0.131 0.389 
Anoura geoffroyi 0.293 0.138 0.344 
Aotus trivirgatus 4.347 0.683 0.616 
Artibeus cinereus 0.692 0.129 0.366 
Artibeus concolor 1.149 0.270 0.399 
Artibeus literatus 2.522 0.265 0.641 
Artibeus obscurus 2.060 0.223 0.626 
Artibeus planirostris 3.469 0.276 0.633 
Callicebus moloch 4.562 0.460 0.606 
Caluromys lanatus 1.835 0.272 1.016 
Carollia brevicauda 0.212 0.050 0.252 
Carollia castanea 0.153 0.041 0.271 
Carollia perspicillata 0.258 0.043 0.309 
Cebus albifrons 6.769 0.603 0.563 
Chiroderma villosum 2.215 0.361 0.288 
Choeroniscus minor 0.132 0.037 0.238 
Didelphis marsupialis 6.836 0.740 2.401 
Ectophylla macconnelli 1.050 0.207 0.264 
Eptesicus brasiliensis 0.468 0.183 0.607 
Eptesicus furinalis 0.392 0.147 0.561 
Glossophaga soricina 0.180 0.092 0.350 
Gracilianus agilis 0.462 0.232 0.600 
Lasiurus borealis 0.204 0.089 0.439 
Lasiurus ega 0.415 0.190 0.598 
Lonchophylla thomasi 0.161 0.089 0.301 
Lophostoma silvicolum 0.833 0.218 0.746 
Macrophyllum macrophyllum 0.422 0.130 0.470 
Marmosa murina 0.526 0.247 0.688 
Marmosa quichua 0.547 0.265 0.634 
Marmosops noctivagus 0.871 0.260 0.970 
Metachirus nudicaudatus 1.909 0.383 1.408 
Micoureus demerarae 1.013 0.330 0.933 
Micronycteris megalotis 0.370 0.174 0.447 
Micronycteris nicefori 0.378 0.145 0.466 
Mimon crenulatum 0.876 0.243 0.750 
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Species Talonid 
Basin Area 

Talonid Basin 
Depth 

Trigonid-
Talonid Relief 

Molossops abrasus 1.028 0.269 0.812 
Molossops greenhalli 0.700 0.235 0.630 
Molossus molossus 0.695 0.251 0.641 
Myotis albescens 0.217 0.115 0.416 
Myotis riparius 0.258 0.110 0.459 
Myotis simus 0.305 0.126 0.486 
Noctilio albiventris 1.043 0.453 0.335 
Philander mcilhennyi 3.208 0.699 1.570 
Philander opossum 2.374 0.507 1.614 
Phyllostomus elongatus 1.411 0.299 0.958 
Phyllostomus hastatus 1.761 0.342 1.000 
Pithecia monachus 7.503 0.648 0.312 
Platyrrhinus brachycephalus 1.198 0.267 0.307 
Platyrrhinus helleri 1.102 0.251 0.196 
Platyrrhinus infuscus 3.697 0.710 0.586 
Rhynchonycteris naso 0.212 0.045 0.376 
Saccopteryx bilineata 0.607 0.155 0.645 
Saccopteryx leptura 0.339 0.082 0.551 
Saguinus imperator 1.515 0.393 0.408 
Saimiri boliviensis 2.624 0.472 0.537 
Sciurus ignitus 2.111 0.323 0.350 
Sciurus spadiceus 3.268 0.417 0.423 
Sturnira lilium 0.872 0.227 0.045 
Sturnira tildae 1.027 0.202 0.083 
Tonatia minuta 0.359 0.168 0.538 
Tonatia saurophila 0.808 0.237 0.731 
Trachops cirrhosus 1.022 0.197 1.023 
Uroderma bilobatum 1.638 0.231 0.556 
Uroderma magnirostrum 1.213 0.155 0.462 
Vampyressa bidens 1.052 0.410 0.246 
Vampyressa pusilla 0.850 0.343 0.298 
Vampyrodes caraccioli 2.917 0.480 0.657 
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APPENDIX B  

MEAN VALUES OF UNSCALED MORPHOMETRIC MEASURES OF 

MINDANAO, PHILIPPINES SPECIES.   
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Linear measures are in mm, area measures are in mm2, and angular measures are in 
radians. Measurements that could not be taken due to the lack of a feature in a 
species (e.g., absence the hypoconid) are denoted by '---.' 

Species Molar    
Area 

Protoconid 
Height 

Metaconid 
Height 

Entoconid 
Height 

Acerodon jubatus 21.365 3.003 2.870 --- 
Alionycteris paucidentata 0.366 0.286 --- --- 
Coelops hirsutus 0.622 1.080 0.382 0.378 
Crocidura beatus 1.351 1.462 0.816 0.680 
Cynocephalus volans 13.255 3.102 2.739 2.117 
Cynopterus brachyotis 1.103 0.632 0.628 --- 
Dyacopterus rickarti 3.024 1.002 0.997 --- 
Emballonura alecto 1.037 1.182 0.537 0.594 
Eonycteris robusta 1.398 0.536 0.487 --- 
Exilisciurus concinnus 1.143 0.540 0.597 0.532 
Haplonycteris fischeri 2.150 0.557 0.523 --- 
Harpyionycteris whiteheadi 4.253 1.504 1.367 --- 
Hipposideros ater 1.099 1.267 0.606 0.529 
Hipposideros cervinus 1.377 1.414 0.717 0.540 
Hipposideros coronatus 2.515 1.956 0.897 0.675 
Hipposideros diadema griseus 5.610 3.096 1.510 1.109 
Hipposideros obscurus 2.045 1.732 0.752 0.632 
Kerivoula pellucida 1.087 1.108 0.496 0.561 
Macroglossus minimus 0.488 0.203 --- --- 
Megaderma spasma 2.846 2.212 1.299 0.843 
Megaerops wetmorei 0.613 0.494 0.443 --- 
Miniopterus australis 0.748 1.156 0.497 0.514 
Miniopterus schreibersii 1.253 1.467 0.615 0.616 
Miniopterus tristis 2.047 1.879 0.771 0.751 
Myotis macrotarsus 1.613 1.427 0.696 0.715 
Myotis muricola 0.700 1.016 0.472 0.518 
Otomops formosus 2.036 1.616 0.837 0.828 
Petinomys crinitus 13.472 2.098 2.182 1.683 
Philetor brachypterus 0.994 1.188 0.528 0.607 
Pipistrellus javanicus 0.925 1.150 0.548 0.661 
Ptenochirus jagori 2.102 1.011 0.865 --- 
Ptenochirus minor 1.644 0.777 0.762 --- 
Pteropus hypomelanus 7.808 2.147 1.939 --- 
Pteropus pumilus 4.475 1.421 1.469 --- 
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Species Molar    
Area 

Protoconid 
Height 

Metaconid 
Height 

Entoconid 
Height 

Pteropus speciosus 7.165 2.024 1.769 --- 
Pteropus vampyrus 11.884 2.224 2.025 --- 
Rhinolophus arcuatus 1.935 1.722 0.923 0.705 
Rhinolophus inops 3.185 2.092 1.040 0.797 
Rhinolophus rufus 4.857 2.631 1.340 0.949 
Rhinolophus virgo 1.442 1.423 0.721 0.609 
Rousettus amplexicaudatus 2.734 0.857 0.845 --- 
Scotophilus kuhlii 2.038 2.195 1.046 0.820 
Sundasciurus philippinensis 6.036 1.577 1.953 1.374 
Taphozous melanopogon 2.291 1.844 0.947 0.847 
Tarsius syrichta 6.290 2.216 1.831 1.165 
Urogale everetti 6.856 2.976 2.039 1.434 
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Species Hypoconid 
Height 

Mean Cusp 
Height 

Crest 
Length 

Hypoconid 
Angle 

Acerodon jubatus --- 2.937 15.483 --- 
Alionycteris paucidentata --- 0.286 0.856 --- 
Coelops hirsutus 0.795 0.659 2.799 1.273 
Crocidura beatus 1.092 1.012 4.027 1.462 
Cynocephalus volans 2.876 2.708 14.151 1.475 
Cynopterus brachyotis --- 0.630 2.985 --- 
Dyacopterus rickarti --- 1.000 4.884 --- 
Emballonura alecto 0.899 0.803 3.658 1.319 
Eonycteris robusta --- 0.512 3.379 --- 
Exilisciurus concinnus 0.625 0.574 2.697 2.595 
Haplonycteris fischeri --- 0.540 4.460 --- 
Harpyionycteris whiteheadi --- 1.355 2.584 --- 
Hipposideros ater 0.716 0.780 3.448 1.794 
Hipposideros cervinus 1.004 0.919 4.001 1.475 
Hipposideros coronatus 0.905 1.108 5.201 2.119 
Hipposideros diadema griseus 2.299 2.004 7.100 1.596 
Hipposideros obscurus 1.175 1.073 4.519 1.541 
Kerivoula pellucida 0.847 0.753 3.639 1.341 
Macroglossus minimus --- 0.203 1.037 --- 
Megaderma spasma 1.537 1.473 4.429 1.747 
Megaerops wetmorei --- 0.469 2.174 --- 
Miniopterus australis 0.885 0.763 3.383 1.149 
Miniopterus schreibersii 1.129 0.957 3.956 1.105 
Miniopterus tristis 1.396 1.199 5.103 1.267 
Myotis macrotarsus 1.099 0.985 3.940 1.065 
Myotis muricola 0.665 0.668 2.930 1.185 
Otomops formosus 1.227 1.127 4.729 1.152 
Petinomys crinitus 2.150 2.028 11.639 1.953 
Philetor brachypterus 0.908 0.808 4.037 1.248 
Pipistrellus javanicus 0.903 0.816 3.393 1.451 
Ptenochirus jagori --- 0.938 4.137 --- 
Ptenochirus minor --- 0.770 3.577 --- 
Pteropus hypomelanus --- 2.043 7.672 --- 
Pteropus pumilus --- 1.445 5.719 --- 
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Species Hypoconid 
Height 

Mean Cusp 
Height 

Crest 
Length 

Hypoconid 
Angle 

Pteropus speciosus --- 1.896 7.488 --- 
Pteropus vampyrus --- 2.124 9.604 --- 
Rhinolophus arcuatus 1.301 1.163 4.383 1.484 
Rhinolophus inops 1.628 1.389 5.353 1.434 
Rhinolophus rufus 1.932 1.713 6.824 1.557 
Rhinolophus virgo 1.079 0.958 3.923 1.545 
Rousettus amplexicaudatus --- 0.851 5.117 --- 
Scotophilus kuhlii 1.541 1.400 4.179 1.636 
Sundasciurus philippinensis 1.520 1.606 7.497 2.223 
Taphozous melanopogon 1.452 1.272 6.029 1.292 
Tarsius syrichta 1.850 1.766 8.948 1.862 
Urogale everetti 2.369 2.205 9.930 1.444 
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Species Protoconid 
Angle 

Metaconid 
Angle 

Entoconid 
Angle 

Mean Cusp 
Angle 

Acerodon jubatus 2.709 2.646 --- 2.677 
Alionycteris paucidentata 2.794 --- --- 2.794 
Coelops hirsutus 1.086 1.446 1.847 1.413 
Crocidura beatus 1.136 1.310 1.831 1.435 
Cynocephalus volans 1.191 1.061 1.245 1.243 
Cynopterus brachyotis 2.617 2.685 --- 2.651 
Dyacopterus rickarti 2.693 1.936 --- 2.314 
Emballonura alecto 1.044 1.497 1.736 1.399 
Eonycteris robusta 3.019 3.001 --- 3.010 
Exilisciurus concinnus 2.451 2.643 2.720 2.602 
Haplonycteris fischeri 2.803 2.811 --- 2.807 
Harpyionycteris whiteheadi 1.882 1.771 --- 1.912 
Hipposideros ater 1.235 1.447 1.395 1.468 
Hipposideros cervinus 1.253 1.420 1.764 1.478 
Hipposideros coronatus 1.223 1.798 1.976 1.779 
Hipposideros diadema griseus 1.250 1.426 1.852 1.531 
Hipposideros obscurus 1.288 1.399 2.020 1.562 
Kerivoula pellucida 1.761 2.147 1.827 1.769 
Macroglossus minimus 2.761 --- --- 2.761 
Megaderma spasma 1.473 1.293 2.048 1.640 
Megaerops wetmorei 2.727 2.764 --- 2.746 
Miniopterus australis 1.060 1.414 1.466 1.273 
Miniopterus schreibersii 1.003 1.244 1.293 1.161 
Miniopterus tristis 1.135 1.354 1.454 1.302 
Myotis macrotarsus 1.530 1.152 1.330 1.269 
Myotis muricola 0.899 1.626 1.407 1.279 
Otomops formosus 1.192 1.246 1.470 1.265 
Petinomys crinitus 2.296 2.019 2.368 2.159 
Philetor brachypterus 1.208 1.590 1.387 1.358 
Pipistrellus javanicus 1.090 1.380 1.420 1.335 
Ptenochirus jagori 2.763 2.843 --- 2.803 
Ptenochirus minor 2.812 2.893 --- 2.852 
Pteropus hypomelanus 2.858 3.032 --- 2.945 
Pteropus pumilus 2.763 2.734 --- 2.749 
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Species Protoconid 
Angle 

Metaconid 
Angle 

Entoconid 
Angle 

Mean Cusp 
Angle 

Pteropus speciosus 2.642 2.698 --- 2.670 
Pteropus vampyrus 2.712 2.813 --- 2.762 
Rhinolophus arcuatus 1.104 1.204 1.824 1.404 
Rhinolophus inops 1.201 1.313 1.802 1.438 
Rhinolophus rufus 1.289 1.432 1.784 1.515 
Rhinolophus virgo 1.095 1.457 1.832 1.482 
Rousettus amplexicaudatus 2.705 2.612 --- 2.658 
Scotophilus kuhlii 1.239 1.266 1.736 1.469 
Sundasciurus philippinensis 2.228 2.083 2.635 2.292 
Taphozous melanopogon 1.071 1.288 1.603 1.314 
Tarsius syrichta 1.178 1.311 1.839 1.547 
Urogale everetti 1.215 1.113 1.591 1.341 
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Species Talonid 
Basin Area 

Talonid 
Basin Depth 

Trigonid-
Talonid Relief 

Acerodon jubatus --- 0.293 --- 
Alionycteris paucidentata --- 0.029 --- 
Coelops hirsutus 0.200 0.047 0.368 
Crocidura beatus 0.436 0.128 0.603 
Cynocephalus volans 5.729 1.001 1.564 
Cynopterus brachyotis --- 0.081 --- 
Dyacopterus rickarti --- 0.100 --- 
Emballonura alecto 0.303 0.114 0.522 
Eonycteris robusta --- 0.046 --- 
Exilisciurus concinnus 0.401 0.037 0.285 
Haplonycteris fischeri --- 0.028 --- 
Harpyionycteris whiteheadi --- 0.313 --- 
Hipposideros ater 0.260 0.171 0.446 
Hipposideros cervinus 0.343 0.157 0.476 
Hipposideros coronatus 0.611 0.168 0.618 
Hipposideros diadema griseus 1.073 0.260 1.026 
Hipposideros obscurus 0.491 0.145 0.615 
Kerivoula pellucida 0.299 0.136 0.456 
Macroglossus minimus --- 0.049 --- 
Megaderma spasma 0.436 0.197 0.561 
Megaerops wetmorei --- 0.068 --- 
Miniopterus australis 0.288 0.145 0.465 
Miniopterus schreibersii 0.373 0.187 0.527 
Miniopterus tristis 0.663 0.234 0.724 
Myotis macrotarsus 0.371 0.139 0.558 
Myotis muricola 0.217 0.095 0.420 
Otomops formosus 0.583 0.262 0.559 
Petinomys crinitus 6.447 0.546 0.775 
Philetor brachypterus 0.324 0.140 0.474 
Pipistrellus javanicus 0.270 0.139 0.435 
Ptenochirus jagori --- 0.167 --- 
Ptenochirus minor --- 0.130 --- 
Pteropus hypomelanus --- 0.507 --- 
Pteropus pumilus --- 0.427 --- 
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Species Talonid 
Basin Area 

Talonid 
Basin Depth 

Trigonid-
Talonid Relief 

Pteropus speciosus --- 0.385 --- 
Pteropus vampyrus --- 0.479 --- 
Rhinolophus arcuatus 0.603 0.249 0.592 
Rhinolophus inops 0.835 0.233 0.722 
Rhinolophus rufus 1.346 0.274 0.934 
Rhinolophus virgo 0.425 0.196 0.497 
Rousettus amplexicaudatus --- 0.110 --- 
Scotophilus kuhlii 0.443 0.187 0.714 
Sundasciurus philippinensis 2.974 0.402 0.688 
Taphozous melanopogon 0.705 0.231 0.789 
Tarsius syrichta 2.300 0.655 1.086 
Urogale everetti 2.481 0.387 1.328 
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APPENDIX C 

BIGHORN BASIN SPECIMENS INCLUDED IN THIS STUDY. 
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APPENDIX D 

REFERENCES USED IN GENUS-LEVEL DESIGNATIONS OF BIGHORN BASIN 

SPECIMENS. 
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Taxon References 
Apatotheria 4,7,8 
Didelphimorphia 4,5,6,12,17,30 
Didelphodonta 30 
Erinaceomorpha 4,6,7 
Leptictida 4,6,7,23 
Dermoptera 1,5,6 
Plesiadapiformes 2,4,6,9,10,15,20,22,27,30 
Rodentia 6,12,13,25 
Euprimates 3,11,12,14,16,17,18,19,21,24,26,28,29,30 
1Rose (1973), 2Bown and Rose (1976), 3Gingerich and Simons (1977), 
4Bown (1979), 5Bown and Rose (1979), 6Rose (1981), 7Bown and 
Schankler (1982), 8Gingerich (1982), 9Rose and Bown (1982), 10Gunnell 
(1985), 11Bown and Rose (1987), 12Gingerich (1989), 13Ivy (1990), 
14Bown and Rose (1991), 15Rose et al. (1993), 16Gingerich (1993), 
17Bown et al. (1994), 18Gingerich (1995), 19Rose (1995), 20Rose and 
Bown (1996), 21O'Leary (1997), 22Bloch and Gingerich (1998), 23Rose 
(2001), 24Strait (2001), 25Rose and Chinnery (2004), 26Smith et al. 
(2006), 27Silcox et al. (2008), 28Tornow (2008), 29Rose et al. (2011), 
30Rose et al. (2012) 
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APPENDIX E 

REFERENCES FROM WHICH DIETARY DATA WERE COLLECTED FOR THE 

BALTA, PERU SAMPLE. 
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APPENDIX F 
 

REFERENCES FROM WHICH DIETARY DATA WERE COLLECTED FOR THE 

MINDANAO, PHILIPPINES SAMPLE. 
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SAS CODE FOR THE MODIFIED MANOVA PAIRWISE COMPARISONS.  
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The example below is for the comparison of two fossil groups. The imported file has the 
following columns: taxonomic group(s), time interval, eigenvectors from principal component 
analysis. “Taxon_level” references columns of the import file that pertain to different hierarchical 
taxonomic levels such that a specimen is assigned to a species, genus, family, order, etc. This 
allows analyses using variable taxonomic groupings. “Taxon1” and “taxon2” are the groups to be 
compared in the analysis (e.g., taxon1=Carpolestidae, taxon2=Adapidae). In this analysis, 
“time_interval”s correspond to the time intervals illustrated in Fig. 1.1. “b” is the number of 
iterations of the randomization procedure. The following code includes six principal components 
but can easily be modified for fewer or greater principal components by deletion or insertion of 
“pc”s. The last line of the code provides examples of the variable values included. The output file 
provides the F-statistic and associated p-value for the comparison. 
 
%macro distance (taxon1, taxon2, taxon_level1, taxon_level2, time_interval1, time_interval2, 
file, b); 
data data2; 
set data1; 
if ((&taxon_level1 eq &taxon1) and (time_interval eq &time_interval1)) then do; 
group = 1; 
end; 
if ((&taxon_level2 eq &taxon2) and (time_interval eq &time_interval2)) then do; 
group = 2; 
end; 
if group = '.' then delete; 
run; 
 
/*Both groups*/ 
data data3; 
set data2 end = eof; 
count+1; 
if eof then call symput ("nobs",count); 
run; 
 
data data4; 
set data3; 
drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs then delete; 
run; 
 
data data5; 
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set data4; 
%let nobs2 = %eval(&nobs - 1); 
%do i = 1 %to &nobs2; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 + (pc6&i- pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data data6; 
set data5; 
%let i = &nobs; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs; 
run; 
 
/*Group 1*/ 
data group1; 
set data2; 
if group ne 1 then delete; 
run; 
 
data nobs1; 
set group1 end = eof; 
count+1; 
if eof then call symput ("nobs_gr1",count); 
run; 
 
data group1_2; 
set group1; 
drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs_gr1; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs_gr1 then delete; 
run; 
 
data group1_3; 
set group1_2; 
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%let nobs2_gr1 = %eval(&nobs_gr1 - 1); 
%do i = 1 %to &nobs2_gr1; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs_gr1; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 + (pc6&i - pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data group1_4; 
set group1_3; 
%let i = &nobs_gr1; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs_gr1; 
run; 
 
/*Group 2*/ 
data group2; 
set data2; 
if group ne 2 then delete; 
run; 
 
data nobs2; 
set group2 end = eof; 
count+1; 
if eof then call symput ("nobs_gr2",count); 
run; 
 
data group2_2; 
set group2; 
drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs_gr2; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs_gr2 then delete; 
run; 
 
data group2_3; 
set group2_2; 
%let nobs2_gr2 = %eval(&nobs_gr2 - 1); 
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%do i = 1 %to &nobs2_gr2; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs_gr2; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 + (pc6&i - pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data group2_4; 
set group2_3; 
%let i = &nobs_gr2; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs_gr2; 
run; 
 
/*F Statistic*/ 
data fstat; 
set data6 group1_4 group2_4; 
keep interdist; 
run; 
 
proc transpose data = fstat out = fstat2; 
run; 
 
data fstat3; 
set fstat2; 
fstat_orig = (col1-(col2+col3))/((col2+col3)/(&nobs-2)); 
run; 
 
/*Randomization*/ 
%do i4 = 1 %to &b; 
data permutation; 
set data2; 
select = rannor(-1); 
run; 
 
proc sort data = permutation; 
by select; 
run; 
 
data random; 
set permutation end = eof; 
count+1; 
if eof then call symput ("nobs",count); 
run; 
 
data random2; 
set random; 
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drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs then delete; 
run; 
 
data random3; 
set random2; 
%let nobs2 = %eval(&nobs - 1); 
%do i = 1 %to &nobs2; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 +  
(pc6&i - pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data random4; 
set random3; 
%let i = &nobs; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs; 
run; 
 
data assign; 
set permutation; 
if _N_ le &nobs_gr1 then group = 1; 
else group = 2; 
run; 
 
/*Group 1 Random*/ 
data group1; 
set assign; 
if group ne 1 then delete; 
run; 
 
data group1_2; 
set group1; 
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drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs_gr1; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs_gr1 then delete; 
run; 
 
data group1_3; 
set group1_2; 
%let nobs2_gr1 = %eval(&nobs_gr1 - 1); 
%do i = 1 %to &nobs2_gr1; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs_gr1; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 + (pc6&i - pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data group1_4; 
set group1_3; 
%let i = &nobs_gr1; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs_gr1; 
run; 
 
/*Group 2 Random*/ 
data group2; 
set assign; 
if group ne 2 then delete; 
run; 
 
data group2_2; 
set group2; 
drop pc1 pc2 pc3 pc4 pc5 pc6; 
%do i = 1 %to &nobs_gr2; 
retain pc1-pc1&i pc2-pc2&i pc3-pc3&i pc4-pc4&i pc5-pc5&i pc6-pc6&i; 
if _N_ eq &i then do; 
pc1&i = pc1; 
pc2&i = pc2; 
pc3&i = pc3; 
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pc4&i = pc4; 
pc5&i = pc5; 
pc6&i = pc6; 
end; 
%end; 
if _N_ ne &nobs_gr2 then delete; 
run; 
 
data group2_3; 
set group2_2; 
%let nobs2_gr2 = %eval(&nobs_gr2 - 1); 
%do i = 1 %to &nobs2_gr2; 
%let i2 = %eval(&i + 1); 
%do i3 = &i2 %to &nobs_gr2; 
interdist&i3 = (pc1&i - pc1&i3)**2 + (pc2&i - pc2&i3)**2 + (pc3&i - pc3&i3)**2 + (pc4&i - 
pc4&i3)**2 + (pc5&i - pc5&i3)**2 + (pc6&i - pc6&i3)**2; 
%end; 
inter_dist&i = sum(of interdist&i2-interdist&i3); 
%end; 
run; 
 
data group2_4; 
set group2_3; 
%let i = &nobs_gr2; 
interdist_final_sum = sum(of inter_dist1-inter_dist&i); 
interdist = interdist_final_sum/&nobs_gr2; 
run; 
 
/*F Statistic Random*/ 
data fstat_ran; 
set data6 group1_4 group2_4; 
keep interdist; 
run; 
 
proc transpose data = fstat_ran out = fstat2_ran; 
run; 
 
data fstat3_ran; 
set fstat2_ran; 
fstat_ran = (col1-(col2+col3))/((col2+col3)/(&nobs-2)); 
run; 
 
data write_difference; 
set fstat3_ran; 
file 'fisherout.txt' mod; 
put @1 fstat_ran 6.4; 
run; 
 
%end; 
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data asl; 
infile 'fisherout.txt'; 
input @1 fstat_ran 6.4; 
run; 
 
data asl_perm; 
merge asl fstat3 
end = last; 
retain fstat_orig2 count_n; 
drop _name_ col1 col2 col3; 
if _N_ eq 1 then do; 
fstat_orig2 = fstat_orig; 
count_n = 0; 
end; 
if fstat_ran ge fstat_orig2 then count_n = count_n + 1; 
if last then do; 
p_value = count_n / &b; 
output; 
end; 
run; 
 
data p_value; 
set asl_perm;         
set fstat3; 
file &file; 
put @1 p_value 6.4 
@20 fstat_orig 6.4; 
run; 
 
filename newlog 'fisher.log'; 
proc printto log = newlog; 
run; 
 
%mend distance; 
 
%distance ('Tetonius-Pseudotetonius', 'Paramys', genus, genus, 'Wa4', 'Wa4', 'Wa4Tetonius-
Pseudotetonius_Wa4Paramys.txt', 1000) 
 
 
 
  


