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ABSTRACT  
   

Based on poor student performance in past studies, the incoherence present in the 

teaching of inverse functions, and teachers' own accounts of their struggles to teach this 

topic, it is apparent that the idea of function inverse deserves a closer look and an 

improved pedagogical approach. This improvement must enhance students' opportunity 

to construct a meaning for a function's inverse and, out of that meaning, produce ways to 

define a function's inverse without memorizing some procedure. This paper presents a 

proposed instructional sequence that promotes reflective abstraction in order to help 

students develop a process conception of function and further understand the meaning of 

a function inverse. The instructional sequence was used in a teaching experiment with 

three subjects and the results are presented here. The evidence presented in this paper 

supports the claim that the proposed instructional sequence has the potential to help 

students construct meanings needed for understanding function inverse. The results of 

this study revealed shifts in the understandings of all three subjects. I conjecture that 

these shifts were achieved by posing questions that promoted reflective abstraction. The 

questions and subsequent interactions appeared to result in all three students moving 

toward a process conception of function. 
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CHAPTER 1 

INTRODUCTION TO THE PROBLEM 

Consider the common function inverse context: 

The temperature can be converted from degrees Celsius to degrees Fahrenheit by 

the following formula: 

F = 9
5C + 32  

According to the typical approach to finding a function’s inverse, students interchange 

the variables as a first step. In this example, students would write:   

C = 9
5 F + 32  

But, is this a true statement? This statement must be false if the original was true. 

Why do we swap the variables if it leads to a false statement? What meanings might 

students make of a strategy that produces false statements along the way, but leads to 

desired answers? I contend that looking past the incoherence of this procedure requires 

the student to ignore the quantities being related in the given problem, which does not 

have a beneficial influence on the development of quantitative reasoning. 

The common approach for determining an inverse function that is presented in 

textbooks and used in instruction is to swap x and y in the function formula, and then 

solve the equation for y. This procedure is typically presented with little or no 

explanation, leaving students with a weak understanding of the idea of function inverse 

and no choice but to memorize the steps for defining an inverse. Oehrtman, Carlson, and 

Thompson (2008) claimed that when students are asked to memorize a procedure without 

understanding why the procedure works, the students are unable to recognize when to 
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apply the procedure. To complicate matters, Van Dyke (1996) has also noted that, “the 

idea of undoing what a function did gets lost in the mechanics of switching the x and the 

y and then solving for the newly named y (p. 121).”  

I contend that teaching students to apply this procedure contributes to their 

developing a view that mathematics is not always logical, but instead is about 

memorizing rules and procedures. Thompson, Thompson, Philipp, and Boyd (1994) 

wrote, “the most powerful approach to solving problems is to understand them deeply 

and proceed from the basis of understanding, and that a weak approach is to search one’s 

memory for the ‘right’ procedure (p. 11).”  

Another commonly taught idea is that the graphs of a function and its inverse are 

reflected about the line y = x when graphed on the same axes. In a conceptually oriented 

classroom where the focus is on meaning making (Thompson et. al., 1994), it is likely 

that numerous attempts are made to have students label the horizontal and vertical axes 

with the names of the quantities being represented when graphing a function. Then, what 

sense does it make to place a function and its inverse on the same axes? I contend that 

ignoring the quantities being related in the context and focusing solely on the geometric 

shapes of a function and its inverse’s graphs further motivates student beliefs that a graph 

is just some shape in the plane rather than a mapping between two covarying quantities. 

Moore, Weber, and Thompson (submitted) describe this tendency of students to consider 

the graph of a function as an object in the plane and to take cues from the visual 

properties of the graph as static shape thinking.  
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Esty (2005) argued that the typical textbook approach to function inverse focuses 

on an algorithm for finding the inverse of a simple function. In doing so, he claims that 

the common approaches highlight topics that will not reappear in future mathematics, and 

fail to focus on related topics that will reappear frequently. Specifically, he argues that 

the algorithm learned for simple inverses is typically never needed again as students are 

introduced to inverse trig functions, as well as the inverse relationship between 

exponential and logarithmic functions. 

It is well documented that secondary and college students struggle with the 

concept of function and have particular difficulty understanding the idea of function 

inverse (e.g., Carlson, 1998; Harel & Dubinsky, 1992). In a study that Carlson, 

Oehrtman, and Engelke (2010) performed with over 2,000 precalculus students at the end 

of their semester, only 17% were able to correctly determine the inverse of a function for 

a specified value when given a table of the function’s values. More recently, the task, 

“Given that the functions h and k are inverses of each other, and that h( 2 ) = 0.13  and 

k(5) = 2π3  determine the value of k(h(2π )) ,” was given to a class of 30 precalculus 

students on their final exam at a large public university. Only 30% of the students applied 

the definition of function inverse and responded with the answer 2π.  

Classroom Observations 
Having seen the problems with this topic at the university level, I was interested 

in seeing how secondary teachers approached function inverse. I observed classes of four 

secondary teachers who were using a conceptually based Algebra II curriculum. Based on 

previous visits to these classrooms, I expected to see these teachers employing the 
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problems in the curriculum’s workbook to lead a discussion on function inverse, while 

also making slight modifications and varying pedagogical choices of how to utilize the 

problems. To my surprise, all four of the teachers decided to use materials they had  

created rather than use the conceptually focused activities that were available to them in 

their curriculum.  

For each lesson I observed, missing were the contextual problems from the 

curriculum and employed were functions given without context. One teacher informed 

his students that they were celebrating “Freaky Friday” and that they were swapping all 

of the x and y variables, similar to the story of how a mother and daughter switched 

places. Another teacher attempted to begin with the notion of undoing the process of the 

function by reversing each operation, in the reverse order that they were applied to the 

input. However, when students appeared confused, he reverted to swapping the variables 

and solving for y. A third teacher also used the method of interchanging the variables, but 

she instructed her students to thenceforth, unfortunately, use the notation x’ and y’ to 

denote that these were no longer the same variables from the original function. And 

finally, the fourth teacher had her students “solve for the other variable”, but at the end of 

that process, she had them swap the variables.  

My interest peaked after attending four classes, back-to-back, of teachers using 

the same curriculum, yet each had abandoned the conceptual approach supported by the 

curriculum for introducing the idea of function inverse and instead each used a different 

approach that was selected by each individual teacher. I only observed one of these four 

teachers explain to their students why they were swapping the variables and, 
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unfortunately, the reasoning was that they were celebrating “Freaky Friday”. Therefore, I 

hypothesize that these students were left with no other reason than to follow their 

teacher’s lead and memorize the given procedure. 

Each teacher not only provided their own problems in place of the contextual 

problems in the workbook, but also employed their own approach for finding the inverse 

of a function. Their conceptual Algebra II curriculum never mentions the action of 

interchanging any variables. Yet, why had these teachers chosen this approach? Up until 

this point in the workbook, each new idea was presented with a variety of contextual 

problems, where functions were defined as a relationship between two covarying 

quantities in a situation, and the variables used in those functions represented all possible 

values each quantity of interest could assume. In contrast, these teachers had resorted to 

simple algebraic formulas using the notation of y = f(x) where the variables x and y held 

no contextual meaning. Why had these teachers discarded the contextual problems 

provided to them in the workbook for simple (meaningless) algebraic functions?  

Further, the Algebra II curriculum used by each teacher included no mention of 

graphing a function and its inverse on the same axis to illustrate that they were reflections 

over the line y = x. However, each teacher spent a significant portion of their lesson 

discussing this fact and having their students graph numerous examples. Why was such 

importance placed on an idea that was absent from their curriculum? 

Teacher Interview 
Fortunately, some of these motives were revealed in a group interview of three 

teachers during a professional development workshop focused on their conceptually 
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based curriculum. The group initially consisted of three teachers, from three different 

high schools, who had chosen to work together on a function inverse investigation. To set 

the stage, Alice was a veteran teacher of the curriculum who had worked with the 

program and used its materials for several years. Both Brad and Cheryl were beginning 

their second year of teaching with the curriculum’s Algebra II materials. Upon being 

asked about their general approach to teaching function inverse, Alice responded by 

saying that she typically used the problems in the curriculum, but when teaching her 

students to find a function’s inverse she taught her students “to simply solve for the other 

variable.” She followed by saying that students created or were given a function with a 

particular input variable and a particular output variable and in solving for the other 

variable, the students were to express the original input variable in terms of the original 

output variable. In this way, she described the conversation her class had about how the 

domain and range of the function and those of its inverse were interchanged.  

In contrast, Brad and Cheryl’s responses were more aligned with the approaches 

used by teachers that I had observed in the classroom. They each shared that they had 

chosen to not use the problems provided in their curriculum when teaching about 

function inverse and instead used materials that had worked for them in the past. Both 

Brad and Cheryl said that they used the method of swapping x and y, and solving for y. 

As they were describing their methods, Alice chimed in by saying that her teaching 

practice placed an emphasis on contextual problems and that she required her students to 

clearly define their variables. She claimed that this traditional method of swapping the 

variables “does not make sense to the students when they have clearly defined their 
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variables to represent specific quantities.” Brad returned with, “I know that this is a 

confusing topic, but there are just so many conventions we have to worry about.” When 

probed to discuss this further, he described that his approach to inverse functions was 

guided by his worry of what his students saw in other textbooks, as a convention used by 

their graphing calculators, on the SAT®, and the ACT®. He clarified that these exams 

are so important to his students and that they “always express y as a function in terms of 

x.” As expected, Cheryl agreed, but Alice also agreed and admitted that she had the same 

worries about her teaching strategies regarding inverses.  

Brad went on to say that the approach and the notation Alice used made more 

sense than his approach of swapping variables, yet by adopting this approach he said he 

would be “shoveling against the tide.” To further clarify this expression he again brought 

up the conventions that students were expected to use as default when reading other 

books and taking standardized tests. Cheryl also commented that she would not change 

her teaching approach and would continue instructing her students to switch the variables 

and solve for y. It was clear here that factors beyond the intuition and meaningfulness of 

an approach to understanding function inverse were significantly influencing two of the 

three teachers’ practices.  

One thing that all three of the teachers agreed upon was that they would begin 

their discussion of function inverse using the contextual problems from the investigation. 

An example that they each highlighted was a problem involving conversions between 

dollars and euros. Cheryl, who had previously avoided using contextual problems for this 

topic, remarked that “this type of context gives the students a concrete understanding of 
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the undo idea involved in finding a function’s inverse.” Brad ended the session by 

exclaiming, “I just realized that I have been working in a world where functions have no 

context- x was just the input and y was just the output.” 

Based on poor student performance in past studies, the incoherence present in the 

teaching of inverse functions, and teachers’ own accounts of their struggles to teach this 

topic, it is apparent that the notion of a function’s inverse deserves a closer look and an 

improved pedagogical approach. This improvement must enhance students’ opportunity 

to construct a meaning for a function’s inverse and, out of that meaning, produce ways to 

define a function’s inverse without memorizing some procedure. 
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CHAPTER 2 

LITERATURE REVIEW & THEORETICAL PERSPECTIVE 

As indicated by its name, the notion of reflective abstraction involves the actions 

of reflection and abstraction. Thus, any author’s attempt to define reflective abstraction 

will, at least implicitly, provide insights into their interpretations of what it means to 

reflect and what it means to abstract.  

In von Glasersfeld’s (1991) case, he takes an approach similar to Locke in 

providing his interpretation of the act of reflection. Both contrasted the notion of 

reflection with the notion of sensation, where sensation relies on external objects while 

reflection is internal in nature. Von Glasersfeld included the actions of re-presenting and 

comparing as acts of reflection. For example, to compare the taste of two apples, he wrote 

that one would have to experience the sensations of eating each of the apples, but would 

then have to re-present those sensations to himself to then be able to compare them. In 

this way, he makes the clear distinction between having an experience (i.e. eating an 

apple) and reflecting on that experience. He further describes reflection to be the action 

of ceasing our collection of perceptual information, trying to recreate what we previously 

experienced, and examining that creation as if it were a direct experience, all the while 

being conscious of the fact that it is not, in fact, a direct experience.  

While Dubinsky (1991) did not explicitly discuss the meaning of reflection, 

aspects of his interpretation of this activity are apparent in his differentiation between 

reflective abstraction and other forms of abstraction introduced by Piaget. In making this 

distinction, Dubinsky wrote that empirical abstraction concerns objects, whereas 
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reflective abstraction concerns actions on those objects. Further, reflective abstraction 

differs from pseudo-empirical abstraction in that the latter is concerned with actions, 

while the former is more concerned with relationships between those actions. Dubinsky 

clarified that reflective abstraction is “completely internal”, which seems to imply that he 

would agree with von Glasersfeld and Locke in saying that reflection is an internal 

activity.  

In discussing the notion of abstraction, von Glasersfeld again refers to Locke’s 

description and seems to, for the most part, agree. I interpret von Glasersfeld’s meaning 

of abstraction to be the action(s) by which ideas from particular objects (whether they are 

physical or mental objects) become more general and apply to all other objects that fit the 

criteria of the original objects in consideration. Glasersfeld argues that once a concept has 

been abstracted, one can then use it to recognize and categorize particular objects that 

they perceive. For example, I have abstracted the concept of function and can now, 

regardless of their nuances, recognize and categorize individual objects as functions or 

non-functions.  

In describing Piaget’s different types of abstraction, Dubinsky uses the language 

of “extracting” or “teasing out” of properties and describes how one “comes to know” the 

properties of objects and actions. It appears as though he views abstraction as the act by 

which one is able to recognize, and possibly accumulate and coordinate, certain 

properties of a particular object or action. Thus, it seems that Dubinsky and von 

Glasersfeld both agree that the subjects of abstraction can be physical or mental objects 

or actions.  
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Dubinsky and von Glasersfeld both described the different forms of abstraction 

that Piaget distinguished, however, their interpretations are not identical. On one hand, 

von Glasersfeld claimed that Piaget distinguished between two main types of abstraction: 

empirical and reflective, where the latter type was divided into three distinct forms. He 

wrote that empirical abstractions are the abstractions of properties of sensory-motor 

experiences. Thus, the sensory material, or observable material (from the perspective of 

the individual), must be available to the individual in order for empirical abstractions to 

be made. Glasersfeld distinguishes three different forms of reflective abstraction and 

claims that the differences in the names Piaget attributed to them were lost when the three 

were translated into English, altogether, as reflective abstractions. First, there are the 

types of reflective abstractions where an individual takes the actions performed at one 

level of thought, and projects and organizes them on a higher level of thought. The 

second type, von Glasersfeld writes, is similar to the first but is differentiated by the fact 

that the subject is now aware of what is being abstracted. And finally, the third type of 

reflective abstraction, according to von Glasersfeld, is called pseudo-empirical 

abstraction. Like empirical abstraction, he describes pseudo-empirical abstraction to 

involve material objects, however, in this form of abstraction, the perceived properties of 

the object(s) were produced by the actions of the individual. For example, it may seem 

that when learning to add that the child simply reads the results directly from the material 

object of the abacus, but what allows the child to do so is not just the existence of the 

physical objects, but the child’s action of counting the beads on the abacus.  
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Rather than four, Dubinsky claims that Piaget defined three distinct types of 

abstraction. Like von Glasersfeld, he defines one of these to be empirical abstraction, in 

which the individual extracts knowledge from the properties of objects that they perceive. 

On the other hand, Dubinsky defines a second form of abstraction as reflective 

abstraction in which coordinations of actions are made. Unlike his description of 

empirical abstractions, Dubinsky claims that the source for reflective abstractions is the 

individual making these abstractions, rather than perceived objects, and that, therefore, 

this form of abstraction is entirely internal. Dubinsky describes the third form of 

abstraction, pseudo-empirical abstraction, to be an intermediate between empirical and 

reflective abstraction. He defines pseudo-empirical abstraction to be the act of extracting 

properties from the meanings we attribute to objects through our actions on them (for 

example, the counting of beads on the abacus).  

In terms of defining the individual forms of abstraction, I find von Glasersfeld and 

Dubinsky to be mostly in agreement, but note that they seem to have formed different 

interpretations on Piaget’s overarching organization of these forms. From both 

descriptions, I conclude that reflective abstraction involves the interiorization of actions 

and then coordination of those actions to create new mental actions and objects. In 

particular, reflective abstraction allows an individual to construct mental objects and then 

to act on those objects.  

Tightly tied to understanding the teaching and learning of function inverse, is the 

concept of function. My hypothesis is that the students (and sometimes teachers) who 

struggle to have a productive understanding of function inverse have not completed the 
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necessary abstraction of the concept of function to enable them to internalize a function’s 

process, let alone construct a function as a mental object. From the observations I have 

made and the data I have collected, it appears that students are (sometimes) capable of 

finding a function’s inverse, but their actions appear to be extracted from imitation, or a 

memorized procedure, rather than meaningful actions on the mental object of a function. 

This claim is further supported by the inability of students, upon correctly calculating a 

function’s inverse, to describe the meaning of what they have just calculated. Dubinsky 

(1991) claimed that an individual could construct a process to reverse an original process, 

only when that original process existed internally for the individual. I fear that many of 

the students I have seen struggle with reversing the process of a particular function lacked 

the ability to internalize the given process and act on it, but, rather, saw the function as 

simply markings and symbols on the paper in front of them. In the words of von 

Glasersfeld, it seems that these students have not made the necessary abstractions in order 

to work with the notion of reversing the process of a function on the re-presentational 

level, and, therefore, are left needing the sensory-motor experience of manipulating the 

symbols on their page.  

Piaget’s notion of reflective abstraction developed from his research on the 

learning of children. The mental constructions of APOS Theory (Action, Process, Object, 

Schema) were introduced as an attempt by researchers to extend the notion of reflective 

abstraction to undergraduate mathematics education (Dubinsky & McDonald, 2001). 

Dubinsky and McDonald describe that the main idea behind APOS Theory is that the  
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learner constructs actions, processes, and objects, and organizes these constructions into 

schemas in an attempt to make sense of situations that they view as mathematical.  

To be specific, an action is any manipulation or transformation of objects in a 

repeatable manner that is either physical or mental (Harel & Dubinsky, 1992; 

Breidenbach et. al., 1992). In the context of function inverse, I argue that a student with 

an action conception would be able to solve for an input value of a function given a 

particular output value, provided that the student was given the algebraic rule for the 

function. I would also argue that students with an action conception of function are 

capable of memorizing and applying meaningless procedures. That is, I hypothesize that 

students with an action conception of function are highly capable of applying the typical 

procedure of swapping x and y, and solving for y, but I would argue that students who  

only possess an action conception of function would be unable to explain why this 

procedure makes sense or why their resulting answer is correct. 

When it is possible for manipulations or transformations to be carried out in the 

mind, without having to consider each step, the action has been interiorized to become a 

process. Harel and Dubinsky (1992) call a process a “dynamic transformation of 

quantities” in such a way that given some initial quantity, the process will always 

transform that quantity to produce the same new quantity, and that this transformation 

can be considered as a complete activity rather than the learner having to consider the 

transformation step-by-step. Breidenbach, et al. (1992) claimed that a process conception 

is necessary for a student to be able to envision the reversal of a function process. When 

the student has completed the necessary mental actions to see the new formula as a 
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generalized rule for determining input values of the original function when given specific 

output values from the original function, I contend that the student has a process 

conception of the inverse function. The student with this conception could also see that 

the output quantity of the original function is now the input quantity of the inverse 

function and the input quantity of the original function is now the output quantity of the 

inverse function.  Additionally, I contend that any understanding of logarithmic functions 

as the inverse of exponential functions requires a process conception of function, as with 

a logarithmic function the student is unable to consider the process in a step-by-step 

manner. This argument can be extended to inverse trigonometric functions for the same 

reasoning. 

When the learner can consider a process as something that can be acted upon, 

then APOS theorists claim that the process has been encapsulated and is now considered 

an object. An example of an application of an object conception could include creating a 

set of functions. 

Then, as these actions, processes, and objects are constructed, they begin to be 

organized into a linked collection that can serve the learner when confronted with the 

topic in the future. This linked collection can serve the student well in applied problems 

where the student might have to consider various relationships between quantities to 

determine whether a particular function or its inverse is needed, whether an inverse 

function may need to be composed with another function, etc. 

These mental constructions of actions, processes, and objects are ordered in such 

a way that each must be constructed before the next is possible (i.e. a process must be 
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constructed before it can be encapsulated into an object) (Dubinsky & McDonald, 2001). 

However, these are ways of thinking about a mathematical concept and not stages of 

development. Therefore, these ways of thinking are not necessarily mutually exclusive 

and can co-exist. A student with multiple conceptions of function might spontaneously 

apply, for example, an action conception in one context and a process conception in 

another context. Further, a learner may also be in a state of transition from one 

conception to another (Breidenbach et al, 1992).  

Researchers in undergraduate mathematics education have applied APOS Theory 

to the notion of functions to further examine how students construct their meanings for 

function (e.g. Breidenbach et al., 1992; Harel & Dubinsky, 1992; Dubinsky & McDonald, 

2001: Asiala et al. 2004). Asiala et al. (2004) described that with an action conception of 

function, the student can consider a step-by-step process applied to some quantity to 

produce a new quantity. In doing so, the student with an action conception of function 

requires some precise definition of what steps to take to be able to consider the function. 

In contrast, Harel and Dubinsky (1992) describe a student with a process conception of 

function as having the ability to imagine the activity as a complete activity involving 

some input quantity, some transformation, and an output quantity. As the details are not 

required when a student possesses a process conception of function, students with this 

conception are able to envision a function process without being given the algebraic rule 

of assignment for the function.  

Harel and Dubinsky (1992) claim that a process conception of function is 

necessary for a student to be able to envision reversing the given process, or, in other 
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words, envisioning the inverse of the given function. In agreement, Asiala et al. (2004) 

claimed that the struggle many students face when function inverses are introduced can 

be linked to the fact that these students have not been able to construct beyond an action 

conception of function. 
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CHAPTER 3 

CONCEPTUAL ANALYSIS 

An intended understanding of function that is propitious to understanding function 

inverse is an understanding of a function as a process that maps a continuum of input 

values to output values (Dubinsky & Harel 1992, Carlson et al 2005). Dubinsky and 

Harel (1992) claim that a process conception of function allows the student to reverse the 

process of a function (i.e. consider the inverse of a function.) Consider, for example, the 

function g that accepts temperature measured in degrees Celsius as its input, and 

produces the corresponding temperature measured in degrees Fahrenheit as output. 

According to a process conception, the student can imagine starting with some 

temperature (or a continuum of temperatures) measured in degrees Celsius, perform some 

process as defined by the function’s rule, and end with the corresponding temperature(s) 

in degrees Fahrenheit. With an understanding of this process from inputs to outputs, the 

student has the potential to understand reversing that process. As in the reversal of 

everyday tasks like making your way back home from a destination, you begin with the 

final product (or output) and work your way backwards to the initial state (or input). Then 

the reversal of the function g will begin with a temperature measured in degrees 

Fahrenheit and end with the corresponding temperature in degrees Celsius (see Figure 1). 
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Figure 1 

Once the student is able to understand that the function’s inverse is the reversal of the 

function’s process and that the input of the original function is the output of the 

function’s inverse and vice versa, then many important properties of the function’s 

inverse can become available for discussion. 

For example, the rule for the inverse function can be considered as a 

representation of the same relationship between the two quantities being considered, but 

in such a way that the direction of the relationship of the function and its inverse are 

opposite. For example, the function g is defined as F = g(C) = 9/5C+32, which can be 

written as F = 9/5C+32. As this function defines F in terms of C, the inverse function will 

define C in terms of F. To find a rule that takes values of F as its input and produces 

values of C as its output, the student simply needs to solve the original formula for C. 

This solving approach effectively reverses the directional relationship. 
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The understanding of the reversal of inputs and outputs also provides a bridge into  

a discussion of the graphs of function inverses. If the coordinate point (a, b) is on the 

graph of the function, then the point (b, a) will be on the graph of the inverse function as 

the input and output quantities are related in the reverse order. This way of thinking also 

extends to the construction and interpretation of tables of values for the function and its 

inverse. 

The reversal of input and output quantities also allows for a discussion about the 

relationship between the domain and range of the original function and its inverse. When 

the student is able to reason about either the algebraic definition of the inverse or the 

graph of the inverse, then there can be an understanding about whether or not the inverse 

is a function itself, or, in other words, whether the inverse maps each input to exactly one 

output. In exploring when a function’s inverse will be a function or not, there arises an 

intellectual need for the classification of one-to-one functions.   

In understanding that the function inverse is a reversal of the process of the 

original function, the student has the potential to comprehend why the composite function 

created by the composition of a function and its inverse (when also a function) produces 

the identity function. While the student may not be able to articulate this understanding in 

this way, they should be able to understand why f −1( f (a)) = a  for all values a in the 

domain of f and f ( f −1(b)) = b  for all values b in the domain of f–1.  

An object conception of function will also be propitious for students’ 

understanding of function inverse. With this conception, students have the potential to 

understand that processes and their inverses are objects in and of themselves, rather than 
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transformations that act on other objects. This understanding of processes as objects can 

lead to the understanding that processes and their inverses, then, can be acted upon (e.g. 

taking the inverse of a function, composing two functions, etc.). Without an 

understanding that, for example, g–1 is an object that can be acted upon, then the notation 

(g–1)–1 will likely appear as an opportunity to apply a procedure for a student, rather than 

an expression involving the transformation of a relationship. 

 



 
22 

CHAPTER 4 

METHODS 

Three students were selected from my pre-calculus course based on their ability to 

vocalize their thinking. Two of the students, Randy and Madison, are categorized as A-

level students. Randy has been out of high school for 13 years and took College Algebra 

the semester prior to this experiment. Madison is a freshman in her first year out of high 

school, and stopped taking secondary mathematics courses before she reached the pre-

calculus level. The third student, Tess, is a sophomore in her second year out of high 

school, where she previously took pre-calculus. Tess is categorized as a C-level student 

who stated, “I do not like math in any way, shape, or form…” The mix of educational 

levels and backgrounds was intended to provide a potential for gaining insights into the 

usefulness of the instructional sequence for a variety of students.  

 Each student participated in two one-on-one teaching sessions. The first session 

lasted about 90 minutes. This session included a pre-test that allowed me to document the 

meanings that the student had previously constructed. In order to construct a model of the 

students’ thinking rather than trying to influence that thinking, I treated the pre-test as a 

clinical interview (Hunting, 1997). Following the pre-test, I began a teaching experiment 

(Steffe & Thompson, 2000) in which I utilized the tasks outlined in the instructional 

sequence. The first session ended once the student had worked through each of the nine 

tasks in the instructional sequence.  

Randy and Madison met with me two days after the first session to complete the 

second session, while Tess did so four days later. The second session lasted, on average, 
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about 25 minutes in which I administered a post-test to document the meanings the 

student had constructed throughout the instructional sequence and in the following days. 

In order to document these meanings without continuing to influence the student, I 

treated the second session as a clinical interview. The details of the pre-test, instructional 

sequence, and the post-test will be discussed in more detail in the following section titled 

Hypothetical Learning Trajectory.  

I video recorded each of the sessions in order to analyze the student’s work and 

statements following the interview. Before beginning the second session, I completed the 

analysis of the first session in order to form hypotheses about the students’ meanings and 

prepare questions to ask during the post-test clinical interview. 

Hypothetical Learning Trajectory 
As a starting point, the Pre-test (see Figure 2) will allow the researcher to 

document the meanings and ways of thinking the student associates with inverse 

function. That is, I designed this Pre-test with the intent to learn about the student’s 

current concept image (Tall and Vinner, 1981), or the total cognitive structure including 

properties and processes the student associates with the concept of function inverse.  

 
Figure 2 

 

Pre-Test 
A local apple orchard uses the function f to determine the cost of a 
customer’s load of apples, c, given the number of pounds of apples that the 
customer picked, n, where c = f (n)  and f is defined by f (n) = .45n + 7 . 
 

i. Determine f −1(25)  and describe its meaning in the given context. 

ii. Define  f –1. 

iii. Sketch graphs for the functions f and f –1. 
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Based on my experience teaching pre-calculus students and on the general 

consensus in APOS literature, I conjecture that the student will begin the instructional 

sequence with an action conception of function. That is, it is likely that the student can 

only consider a function step-by-step when given all the details about said function. The 

first four tasks of the instructional sequence are designed to be approachable for a student 

with an action conception of function, while helping him construct a process conception 

of function and, further, imagine the reversal of a function as the reversal of a process.  

The first task provides the student with a process (see Figure 3) for moving from 

one point on the grid to another. The student is then prompted to construct the reverse of 

this process. This is not a presentation of a function in any sense that a student would 

likely be familiar with, but the purpose of this task is to have the student reflect on the 

salient features of a process and its reversal. For instance, the student can reflect on the 

relationship between the “Start” and “End” of the process and its inverse, as well as what 

happens when a process and its inverse are applied in succession. By having the student 

name the process and name the reverse process, it is hoped that the focus is removed 

from the details of each step of the process, towards the entire process as a whole. 

Overall, this task provides a potential building block for students to reflect on their 

actions and the products of those actions in such a way that promotes reflective 

abstraction.  
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Figure 3 

 
The student is provided repeated opportunities to envision the reversal of specific 

processes in the first three tasks since this reasoning ability has been shown to be 

challenging for students to learn. In having the student engage in the action of reversing a 

process and prompting them to reflect by asking them to compare the tasks, my intention 

was to provide an opportunity for the student to engage in reflective abstraction that 

would allow them to generalize those actions. I designed Task IV (see Figure 4) to 

provide the student an opportunity to generalize their thinking about the actions involved 

in reversing a process. As there are no step-by-step directions for the student to apply to 

an input value to determine an output value, I contend that a student who was only 

capable of utilizing an action conception of function would not be able to successfully 

answer the question. In addition, Breidenbach, et al. (1992) argued that a student is only  

 

Process: 
1. Shift 2 units up 

2. Shift 4 units right 

3. Shift 1 unit down 

4. Shift 2 units left 

5. Shift 6 units up 
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capable of envisioning the reversal of a process once that student has developed a process 

conception of function. 

 
 

Figure 4 
 

Task V (see Figure 5) provides the student with a real-world motivation for 

constructing an inverse function. The task gives the student the function used to convert a 

temperature measured in degrees Celsius to the corresponding temperature measured in 

degrees Fahrenheit. In the first two subtasks, the student is asked to calculate the 

temperature in degrees Celsius when given the temperature in degrees Fahrenheit (i.e. 

solve for the input of the function, when the output is known.) The first two subtasks are 

possible to perform with an action conception of function and the third task requires the 

student to envision calculating a temperature in degrees Celsius given any temperature in 

degrees Fahrenheit. In order to do so, the student must envision and determine how to 

reverse the process of the given function.  

Task IV 
Consider the process called h that has three steps: 
 
Step 1: ? 
Step 2: ? 
Step 3: ? 
 
Describe (with as much detail as possible) the process needed to undo h.  
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Figure 5 

 
This task is designed to begin a discussion about the usefulness of a function’s 

inverse, how to determine the rule of a function’s inverse, and what quantities are being 

related by the function’s inverse. As students are likely to see inverse functions again 

when they uncover logarithms and exponentials and inverse trigonometric functions, this 

initial introduction is likely the last time the student will actually determine the rule for a 

function’s inverse. Thus, I found it important to introduce the procedure used to 

determine the inverse of a function in a conceptual way that mimics the action of solving 

for a function’s input, in terms of that function’s output. In addition, this task provides an 

opportunity to discuss function inverse notation.  

 

Task V: Part I 
Since many countries measure the temperature in Celsius units instead of 
Fahrenheit, we need a way to convert between these two units. We use the 

following function: F = 9
5
C + 32 , where F represents the temperature measured 

in degrees Fahrenheit and C represents the temperature measured in degrees 
Celsius to convert from degrees Celsius to degrees Fahrenheit.   
 

1. Think about the question: “What is the value of C when F = 96?” 

How is this question like the “find my number” game? (Then find 

your number.) 

2. Find the value of C when F = 25? 

3. How can you find the value of C for any value of F? Can you write 

this as a function? 

 



 
28 

When discussing the relationship between the two quantities (temperature in  

degrees Celsius and temperature in degrees Fahrenheit) and how they are related by the 

original function and its inverse, the researcher can develop the opportunity to have the 

student envision the outcome of applying the two processes in succession. That is, this is 

an opportunity to help the student discover the outcome of composing a function and its 

inverse. If it does not arise spontaneously, the interviewer can ask the student to compare 

this notion of composing a function and its inverse, to applying the original and reverse 

processes in Task I on the grid. Having the student compare these two tasks might help 

him develop more meaning for what the composed function represents, but also requires 

the student to reflect on the products of their actions in these two different tasks. This 

continued focus on having the student reflect on their actions and the products of those 

actions was the result of designing an instructional sequence with the goal of promoting 

reflective abstraction 

In addition to having the student determine the rule for the inverse function in Part 

I, Task V: Part II requires the student to graph both the original function and the inverse 

function. In combination, these two parts are intended to confront the incoherence with 

the common approaches of determining the inverse by swapping the two variables and 

flipping the graph of the function across the line y = x. Whether these approaches are 

used spontaneously by the student or introduced by the instructor, these tasks are 

designed to initiate a conversation about the problems that arise with each of these 

procedures in the given context of temperature conversion. If the student has either of 

these procedures in his scheme for function inverse, this conversation is intended to 
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perturb the student in ways that lead to him abandoning his reliance on these procedures 

in lieu of a conceptual understanding of inverse. If the student does not rely on these 

procedures at the time of this interview, explaining the problems that arise by the use of 

these procedures may cause him to reflect on the understandings that he has in hopes of 

strengthening his meanings. This might also help to prepare the student to confront the 

incoherencies about function inverse in future textbooks he may use.  

The sixth and seventh tasks are designed to engage students in using function 

inverse in the contexts of algebraic rules, tables, and graphs. The tasks will provide the 

student an opportunity to reflect on the relationship between the input and output 

quantities of the original function compared to the input and output quantities of the 

inverse function. For example, Task VI: Part II provides the student a graph of the 

function g that takes the number of years since Bill made an investment and outputs the 

value of that investment. The student is then given the questions in Figure 6.  This focus 

on considering the relationship between the input and output quantities of the function 

and its inverse, when the algebraic rule is not known, allows the student to build 

meanings for function inverse that will be beneficial when he is introduced to logarithms 

and inverse trig functions, in which there is no simple algebraic rule for step-by-step 

consideration. 
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Figure 6 

 
 Once the student had responded to questions utilizing tables, graphs, and function 

notation to represent the inverse of a function, Task VIII was designed to provide an 

opportunity for him to extend his reasoning to consider the reversal of a combination of 

processes. During the interviews each student was told that if we start at x and apply 

some process A and then apply some process B, we end up at y. The student was then 

asked to undo this process to start at y and end up at x. By stripping away the details of 

the processes A and B, the student was no longer able to rely on an action conception of 

function, but must consider the complete process and its reversal. Additionally, Harel and 

Dubinsky (1992) claim that a student must have a process conception of function in order 

to envision not only the reversal of a function, but also the composition of functions.  

Task VIII was designed to elicit the understanding needed to invert a composed 

function. For example, the understandings needed to answer this question mirrors the 

knowledge needed to understand that  ( f  g)
−1 = g−1  f −1 . However, by utilizing  

Task VII: Part II 
 
i. Determine g–1(400) and explain its meaning in the given context. 

ii. Determine the value of a so that g–1(a)= 8. Explain the meaning of this in the 
given context. 

 
iii. Determine the value of b so that g(b)= 500. What similarities and differences 

are there between the statements g(b)= 500 and g–1(a)= 8? 
 

iv. What are the domain and range of g? What are the domain and range of g–1? 

v. Sketch the graph of g–1? 
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“process A and process B” rather than “function f and function g”, we can avoid any 

pseudo conceptual knowledge about function notation that the student may have 

memorized without understanding (Oehrtman, Carlson, & Thompson, 2008). 

The final task in the instructional sequence, Task IX (see Figure 7), requires the 

student to consider when it is appropriate to utilize a function’s inverse, and when it is 

not. It is important that the student understand the meaning of an inverse function and 

how to determine a function’s inverse, but these skills alone cannot properly serve the 

student if he or she does not understand when to utilize function inverse when solving 

problems. 

 
Figure 7 

 
 In completing this instructional sequence, the student has been given the 

opportunity to build a conceptual understanding of a function’s inverse as the process that 

undoes the original function. The student has also been given multiple opportunities to 

engage in repeated reasoning about how to determine the rule of a function’s inverse,  

 

Task IX 
The function f accepts the number of molecules in a sample of the chemical 
Phosphorus as input and determines the mass (in kilograms) of the sample. The 
function g takes the volume (in milliliters) of the sample, and determines the mass 
(in kilograms) of the sample. 
 
a. If possible, use function notation to express the number of molecules in the 
sample, given the volume in mL of the sample. 
 
 
b. If possible, express the volume of the sample in mL in terms of the number of 
molecules present in the sample.  
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how to graph, and how to produce tables of values for a function’s inverse. Throughout  

the tasks, the student is required to reflect on the relationship between the input and 

output quantities of the original function and its inverse. The post-test was designed to 

assess the meanings that the student constructed through his participation in the 

instructional sequence.  

 The post-test starts by having the student examine his responses on the Pre-test 

and having him reflect on anything he might now approach or understand differently. 

Thus, the Pre-test not only serves as a benchmark for the researcher, but also a tool to 

help the student reflect on his own ways of thinking.  

The post-test includes three items that mirror tasks from the instructional 

sequence. The first item provides the student with the graph of a function and requires the 

student to reason about the relationship between the input and output of f and f-1, inverse 

function notation, and the composition of a function and its inverse. The second item of 

the Post-test mirrors Task IX of the instructional sequence (see Figure 7) and requires the 

student to reason about the quantities being related to decide when the original function is 

required and when the inverse function is required. And finally, the third item of the Post-

test asks the student to determine the meaning of (f–1)–1, given that f is a function. This 

novel task is designed to see whether the student can envision an inverse function as 

something that can be acted upon. 
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CHAPTER 5 

RESULTS 

Pre-test 
In the pre-test, the students were given the definition of a function f, in the context 

of buying a certain number of pounds of apples, and were asked to define f–1. (Refer to 

Figure 1.) None of the three students determined the correct answer of f −1(c) = c − 7
0.45

. In 

their responses, it was apparent that all three students were attempting to recall a learned 

procedure rather than appealing to any meaning they may have had for the inverse of a 

function.  

 An excerpt of Randy’s written work for his attempt to determine the rule for f–1 is 

included in Figure 8. As I had anticipated, Randy applied the typical approach of 

swapping the variables, but was unable to explain why his procedure made sense. 

Although Randy arrived at what many math teachers would consider the “correct 

answer”, he did not appear to be viewing an inverse function as the reversal of the 

function process. von Glasersfeld’s words seem appropriate here, in that Randy had not 

previously engaged in the abstractions necessary to envision reversing the given process 

on the re-presentational level. Thus, the sensory-motor activity of applying a memorized 

procedure to the markings on his paper was his only resort to getting the correct answer. 

Randy and I had the following conversation: 

1. I: The only question I have…for now…is umm… I see how you got here 
[pointing to (y-7)/0.45 = n]. You solved for n…and you got this rule y 
minus 7 divided by .45 and then you changed it to n minus 7 divided 
by…I’m just curious why you…why you made that change. I’m not 
saying its right or wrong, I’m just curious why you did that. 
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2. R: Um…this is just the way I was taught last semester…how to do it… and 
I know that you said…um…(long pause) 

3. I: You don’t have to worry about what I said. I’m just curious why 
you…So someone taught you to do that? 

4. R: Yes. Um I just remembered like setting it to y and then putting 
everything on that side and then once you’ve got everything over to this 
side its known as the inverse. 

5. I: Ok. 
6. R: And then you just swap it back. 
7. I: Ok. So just some one taught you that? 
8. R: Yes. 
9. I: Ok. Do you have any meaning for it besides that….just beside that 

someone taught you that? 
10. R: No. [laughs] 

 

 
 

Figure 8 
 

Neither Tess nor Madison utilized the typical procedure of swapping the 

variables, but both seemed to struggle to remember some procedure they had learned or, 

rather, memorized before. Tess, on one hand, did not appear to differentiate between the 

functions f and f–1. When attempting to determine f–1(25), Tess simply plugged 25 into the 

rule for function f and did not seem perturbed when I paraphrased what she had done. In  
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defining the rule for f–1, Tess began by setting f–1 equal to the rule of f. Once she had 

written f −1 = .45n + 7  she continued by solving for n, to get that n = f −1 − 7
.45

. When I asked 

her why she had done this, she claimed that she was trying to remember what she had 

done before, and she claimed, “it’s just been a really long time since I’ve worked with 

this stuff.”  

Tess exhibited an action conception of function as she was able to step-by-step 

calculate an output when she plugged 25 into the rule for f. However, her use of notation 

(i.e. using f-1 without expressing an input variable) could suggest a pre-function 

conception, or a lack of function concept (Breidenbach, et. al., 1992). In not expressing 

an input variable for f–1 and manipulating it as if it were a variable, Tess’ work suggests 

that she imagines f–1 as a variable that represents some value or values. Tess did not 

appear to be viewing the name of the function as the name of the process that maps input 

values to output values. This impoverished understanding of function notation resulted in 

Tess mindlessly manipulating mathematical symbols when determining her answer. 

Much like Tess, Madison seemed to reach for a memorized algorithm to 

determine the rule for f–1. Madison and I had the following conversation: 

11. I: Ok…so it looks like when you were finding f inverse of 25…can you tell 
me what you did? 

12. M: Well…I don’t even know if I did that right, but I thought to find the 
inverse it would be -1 times the… 

13. I: Ok. That’s just what you remember? Or do you have some meaning for 
that- why you multiply by -1? 

14. M: That’s just what I remember. 
15. I: Ok. 
16. M: So yeah, that was just kind of a guess. 
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Again, rather than describing the meaning of an inverse or discussing the reversal 

of the given process, Madison resorted to applying a procedure that she admitted held no 

meaning for her. Many of my pre-calculus students describe a function’s inverse is “the 

opposite”. It is possible that multiplying by negative one was consistent with Madison’s 

interpretation of  “the opposite” function. 

Tess utilized the notation of f–1 without including an input variable, Randy 

claimed that you just “swap it back “ (line 6) and then ended up with n as the input to f–1, 

and Madison included n as the input to f–1 only after I asked her about a possible input. 

Thus, not one of the three students was able to correctly identify the input quantity to the 

inverse function. In applying their individual procedures for determining the rule for the 

inverse, none of the students mentioned the input or output quantities. And, although each 

of the three students graphed f and f–1 on separate axes and did not utilize the procedure of 

flipping the graph over y = x, none of the students labeled their axes with the quantities 

that the functions were relating. It is noteworthy that none of the three students were 

referring to the input and output quantities for the given function and its inverse. Their 

responses suggest that rather than imagine the reversal of a directional relationship 

between two quantities, the three subjects were attempting to apply memorized 

algorithms to determine the inverse function.  

Since I was treating the pre-test as a clinical interview to observe the students’ 

ways of thinking about function inverse, I did not try to influence their thinking at this 

stage of the data collection. After finishing the clinical interview, I began the teaching 

experiment with new tasks in my hypothesized instructional sequence. During the second 
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session of the data collection, I also gave students a chance to return to the work they 

provided in the pre-test. This provided me information about how my subjects’ thinking 

about function inverse was being impacted by the teaching experiment.  

Teaching Experiment 
The first three tasks of the teaching session prompted students to carry out the 

mental actions involved in reversing a set of steps.  When attempting to carry out the 

actions involved in reversing a process all three of my subjects were successful. They 

were able to conclude that the inverse of each operation or, the inverse of each “action”, 

as noted by Tess, needed to be applied in the reverse order. The first three tasks allowed 

the student to come to this conclusion three times.  

By prompting the student to describe his thought process and compare his 

conclusions to any previous tasks, I was intending to provide an opportunity for him to 

reflect on his actions, or to participate in reflective abstraction, in the hopes of allowing 

him the ability to generalize those conclusions. An example of the intended type of 

reflection is evident in the following conversation I had with Randy after he constructed 

the inverse process for a given set of actions in Task II: 

17. I: Do you see anything similar with this task and this one [Task I] that you 
just did? 

18. R: Yes. 
19. I: Or different? 
20. R: The same thing. 
21. I: The same thing? How so? It doesn’t look like the same to me. 
22. R: No, but its just going in the same routine, as in you’re asking me to go one 

way [runs pen down given process in Task II] and then back the other way 
[runs pen down inverse process he wrote for TII], if I were to do these two 
processes [points to the two processes in Task I] 

23. I: Ok. Sounds good. Anything else? 
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24. R: Mm, no. I mean, I can, its asking me the same thing. You were asking me 
the same thing about starting and ending point, where I can get from the 
starting point [points to 5 in given process of TII] to the end [points to 14 in 
given process], and then I can also get from the end back [points to 14] to 
the [points to 5 in given process]… 

 

 In the first four tasks of the teaching session, the students, first, coordinated the 

input and output with a given process. In Tasks II-IV, Randy repeatedly used the phrases 

“starting point”, “apply the process” and “end up with” (e.g. line 6 and Figure 9). He kept 

returning back to his work on Task I with the grid and set of directions to compare his 

conclusion on later tasks, so I conjecture that this imagery of the input as the “starting 

point” and the output as the “end” may have developed from his participation in solving 

Task I.    

Randy’s ability to coordinate the inputs and outputs, or “starting point” and 

“ending point”, of the original process with the inverse process is also evidenced early on 

in Randy’s work and explanations of his solution to Task III. For this task he was told a 

process that I had applied to an unidentified number, given the final value after applying 

the process, and asked to determine the original unidentified number (see Figure 9). 

Randy’s comparison of Task III with Tasks I and II provides evidence that Randy was 

reflecting on his previous actions and the products of those actions in the first two tasks, 

while explaining his thought process in the third task. Randy would have needed to 

abstract his actions and products from each task, and then reflect on those products and 

actions to be able to compare the three tasks. The first few tasks were intentionally  
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designed to promote a repetition of similar actions and conclusions with the goal of 

allowing for the reflections and comparisons that Randy engaged in. 

 

 
 

Figure 9 
 

By Task III, each of the three students spontaneously described the process they 

had constructed to reverse the original process and calculate the original number, given 

the final number, as the inverse. Their descriptions of both the original process and the 

inverse process suggest that the subjects were beginning to coordinate the input and 

output values of the original function with the input and output values of the inverse 

function. Consider, for example, the explanation that Tess wrote for Task IV (Figure 10), 

where the student was given a function named h that involving Step 1, Step 2, and Step 3 

without any details about these steps, and was asked to describe the process needed to 

undo h. It appears that Tess has constructed and generalized her understanding that the 

input to the original function will be the output of the inverse function. 

R: “Uh well its going back to 
Task I and II where we were 
using functions and inverse 
functions to get from our 
starting point [points to 4 1/3 
in step 1 of process f] to the 
ending point [points to 6 in 
step 5 of process f] and then 
from our ending point [points 
to 6 in step one of process f–1] 
back to our starting point 
[points to 4 1/3 in step 5 of 
process f–1].” 



 
40 

 

 

Figure 10 

 
Like Tess, none of the students had difficulty generalizing their thinking in order 

to answer Task IV, and describe the general process of reversing a process. Madison even 

asked, “That’s it?” after successfully responding to this task. Their generalizations 

showed that the students had constructed a meaning for an inverse process, as well as 

reasoning behind an approach they could utilize to define an inverse process. Rather than 

a meaningless, memorized procedure, the students had developed their own procedures 

for defining an inverse process based on their understanding of reversing a set of actions. 

It was noteworthy that in Task II and III, Tess and Randy continued defining their 

processes by defining each step and numbering those steps to indicate their order of 

application in the process. This is consistent with how the original processes were 

provided to the student in Tasks I and II in order to accommodate an action conception of 

function. However, in Task III when Madison was told the process applied to some 

unidentified number and asked to represent this process for herself, she began to 

spontaneously introduce strings of operations. She chose to let the variable n represent  
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the unidentified number that I started with. Her use of this variable and her strings of 

mathematical operations allowed her to construct the original function I had described to 

her. Once she had this function that accepted n as its input and expressed the final 

number as its output, she was capable of solving for n when given two example values 

for the output (i.e. the final, known number). Figure 11 shows Madison’s work for Task 

III, which can be compared to Randy’s work shown in Figure 9. 

 

 

Figure 11 

Once she was able to solve for the input given values of the output, I asked 

Madison if she could find the original, unidentified number given any final number. 

Madison decided to let the variable a represent the value of the final number, and 

modeled the process she had utilized to solve for the original number, n, to construct the 

inverse function. In the following excerpt (especially lines 27 and 29) Madison utilized 
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the work she had written in the first subtask in order to describe how she would construct 

the function’s inverse. She replaced the example’s specific output value (6 in this case) 

with the variable a and was able to walk through the actions she had previously applied in 

order to solve for n in terms of any value for a. Thus, Madison’s ability to construct the 

inverse function appears to be a product of her reflection on her actions she engaged in 

when solving for input values given specific output values. Her construction of this 

inverse function seemed to come naturally from her understanding of “solving for”, and 

she was able to do so without being given some procedure to memorize. Her description 

of her thought process follows: 

25. M: Alright, so you’d take 9n+3, all over 7 and then you’re gonna, whatever 
number you have…can I call it like… 

26. I: You can call it whatever you want. 
27. M: I’m not used to coming up with my own variables. Call it a. On this side 

[points to 6 on right side of first equation in Figure 11]. 
28. I: So replace 6 with a. Ok. 
29. M: So you multiply a times 7 [points to 6 times 7 in first line of Figure 11]. 

And can I call this [adds parenthesis around (9n+3)/7] something? 
Whatever. You do a times 7 and this side of the equation times 7 
[pointing to left side of first equation in Figure 11]. So 9n+3 divided by 
7 times 7. So then its 9n+3 equals a times 7. 

30. I: I’ll write down what you’re saying. a times 7 equals 9n+3. 
31. M: And then you subtract 3 from both sides and it would be 9n equals a 

times 7 minus 3. And then you divide that by 9. 
32. I: Ok. And what is a, again? 
33. M: Whatever number you started with. Or, would that be like the output? 

Technically? 
34. I: Its like the 6 and the 15, right? 
35. M: Yeah. 
36. I: Those were the numbers that I ended up with and you’re trying to find 

the number that I started with. 
37. M: Ok. 
38. I: So how can you compare this process or this function [circles n = (7a –

3)/9] to this one that you started with? 
39. M: Well, it would be the inverse. 
40. I: Why so? 
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41. M: Because if you…well I don’t know, but I know if I tested it… 
42. I: Ok. Like how could you show some one that those two functions are 

inverses? 
43. M: Well, you’re gonna end up, like whatever n equals, like here n = 4.3, 4 

and 1/3, and you go through that process [points to n = (7a –3)/9], you’re 
gonna end up with 6. And then, if you start with 6 as a and go through 
this process, you’re gonna end up with n equals 4 and 1/3 again. 

44. I: Is that true for only those two numbers or any two numbers? 
45. M: Any two numbers in this n and a context. 

 

While Madison was able to spontaneously construct a function and apply her 

understanding of “solving for” to determine the inverse function in Task III, Tess and 

Randy were both also able to engage in this type of reasoning in Task V: Part I. Again, all 

three of these students were able to determine the rule for the inverse function by solving 

for the input of the given function (temperature measured in degrees Celsius) in terms of 

the output of the original function (temperature measured in degrees Fahrenheit) without 

needing some outlined procedure.  

In the case for each student, he or she was asked to solve for the input value of a 

function when given some specific output values of the function. Through the repetition 

of solving, it was intended that students would have the opportunity to reflect on those 

actions involved in solving and generalize them to create the desired inverse function. It 

is difficult to decipher whether Tess, Randy, and Madison engaged in reflective 

abstraction on their previous actions to produce this generalization, or if they engaged in 

pseudo-empirical abstraction by reflecting on the patterns in the work they had written. 

Regardless, either type of abstraction is arguably beneficial in allowing the student to 

produce the algebraic rule for an inverse function, while maintaining the proper input and 

output variables for a given context. 



 
44 

Further, although the question simply asked them to write a function that 

determined the temperature measured in degrees Celsius given the temperature measured 

in degrees Fahrenheit, each of the three students spontaneously referred to this function 

as the inverse of the given function (F = (9/5)C+32). Thus, it appears that the students 

had constructed an understanding that an inverse function expressed the original 

function’s input in terms of the original function’s output. Tess spontaneously chose to 

name the original function h and claimed that the function she had constructed must be  

h–1. Upon my request, she was then able to describe the input and output of h and h–1 (see 

Figure 12). 

 

Figure 12 

Although Tess’ use of notation had not been perfected (i.e. she was not able to come up 

with notation such as C = h−1(F) = 5
9 F − 32( ) ), she expressed a clear distinction between 

the two functions and coordinated each function with its respective input and output 

quantities. Notation was also a struggle for Madison on multiple tasks. An example of her  
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work from Task V is shown in Figure 13. Madison was able to verbalize the quantities 

that were represented by the input and output, and describe the rule of the inverse 

function. However, she was unable to explain how function (inverse) notation is utilized 

to show those connections. 

 

 

Figure 13 

Up to this point in the teaching session, the focus had been on envisioning the 

reversal of a process, particularly a function, but this provided a good opportunity to 

stress the conventions of function inverse notation. As function notation is essential to 

any instructional sequence involving function inverse, it is important that students have a 

strong understanding of function notation before the complications of function inverse 

notation are added. This includes discussing what the name of a function is referring to, 

how one should indicate the input and output variables, and the algebraic rule of the 

function. 

The misuse of function notation continued for each of the three students when 

attempting to construct a table of values for the function f–1, given the rule or a table of  
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values for the function f. In Task VI, the rule for the function f, which takes number of 

dollars, x, as its input and produces a number of euros, y, as its output, was provided. The 

student was asked to create a table of input and output values for f. The student was then 

asked to use that table to produce a table of values for the inverse of f.  In Randy’s first 

attempt, he labeled the input column as f–1(y) and the output column as x. In Tess’s first 

attempt, she labeled the input column as x-1 (“because it’s the input to the inverse 

function”) and the output column as f–1(x). While both students could describe the 

reversal of the process of f, as well as the input and output quantities of the function f –1, 

the tables that Randy and Tess individually produced did not reflect this understanding. 

Likewise, Madison’s three attempts to construct a table of inverse values (see 

Figure 14) revealed her struggle to coordinate her meanings with the desired notation. 

For this particular task, the student was provided with a table of values for some function 

f and then she was asked to use the given values to produce a table of values for f–1. The 

following excerpt, is the conversation I had with Madison after her second attempt to 

construct the table, in which she labeled the left column x and the right column f–1(y). 

Madison (lines 53 and 55) expressed that that the phrase, “2 is the input to f” is more 

helpful for her than saying, “f of 2”. Again, I claim that this is evidence that Madison was 

struggling to coordinate her meanings involving the relationship between input values 

and output values of a given function with the conventions used for function notation and 

the construction of tables. 
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Figure 14 

46. I: I: So we want to make a table of output values of f –1 [writes f–1(y)], so 
you’re right, there, output values of f inverse, and then [points to left 
column of the second table] the input values to f inverse, which would be 
y. 

47.  M:  [Scratches out label x in the table and replaces it with y]. 
48. I: Um, and then we have to reverse the table, right? If I know [points to 

column x in given table] this is the input to f and [points to f(x) column in 
given table] this is the output to f, 0.5 would be the input to f inverse. 

49. M: [Begins constructing third table by labeling columns y and f–1(y).] Yeah, 
because you’re putting in 0.5 and then you’re going to get out -1. 

50. I: Mhmm. 
51. M: [Adds the pair (2,0) to the third table.] 
52. I: You did it for this example [points to first subtask]. When 2 is the input 

to f –1, the output to f –1 is zero. 
53. M: I think I need to just like talk about it like that. Instead of saying like f of 

x, the input to f is… 
54. I: The input to f, uhuh. 
55. M: As far as helping kids learn, I think talking like that definitely helps. 
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This provides evidence to suggest that Madison was not considering the 

relationship between input and output values when viewing a table. Further evidence of 

this behavior in the context of graphs was evidenced in Randy’s comments about the 

graph of the function g, with the x-axis labeled “Number of Years since Bill Made His 

Investment” and the y-axis labeled “Value of Bill’s Investment (In Dollars)”. The student 

was asked to determine the value of g–1(400), and the value of a so that g–1(a) = 8 using 

the graph. Once Randy was able to correctly determine those two values, we had the 

following conversation: 

56. I:  How are you relating, I’m assuming this is what you had to do, you had 
to relate the output and the input of g–1 to the input and the output of g. 
How are those related? Like what’s the input and output of g, what’s the 
input and output of g–1? 

57. R: Ok, so this, the output of g–1 of a equals 8, I basically went to the uh, the 
output which, basically, in this graph, if I were to do the inverse it would 
be flipped [pointing to the two axes], but uh, I went from 8 and then 
found 475. And the same with 400 [pointing to the first subtask] I went 
from 400 [points to y-axis and traces finger over to graph and then down 
to x-axis] and found 6, I went down to find the number of years. 

58. I: Ok, so what are… so for g, what is the input quantity and the output 
quantity? 

59. R: g, for g it would be uh…number of years. 
60. I: That’s the input or the output? 
61. R: Um…this would be the input [points to “Number of years since Bill 

made his investment”]. 
62. I: Of g? 
63. R: Of g and… this [points to “Value of Bill’s investment (in dollars)”] 

would be the output of g. 
64. I: Ok. And what would be the input and the output quantity of g–1? 
65. R: g–1, uh…um…the input would be the number of dollars Bill invested, 

and then the output would be the number of years that Bill made his 
investment. 
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Based on the number of pauses and “um’s” in Randy’s responses to my questions 

about the input and output quantities of g and g inverse, it appears that he did not have a 

clear conception of the covarying quantities in the situation.  His response provides 

further evidence that he was manipulating symbols with tables and graphs by memorizing 

procedures that allowed him to reach correct answers without understanding that a 

function table and graph are a dynamic illustration of a functional relationship between 

inputs and outputs. I contend that if these students have not conceptualized a table or 

graph as a representation of a mapping from one varying quantity to another, there is little 

meaning that they can draw from that table or graph other than a set of coordinate pairs. 

With little meaning for graphs or tables, it seems unlikely for a student to have developed 

meaning behind the actions they perform with tables and graphs. Thus, such a student 

would be left with no other option than to cope by memorizing meaningless procedures. 

I had not anticipated this obstacle when planning the instructional sequence, and 

therefore, argue that the extent of tabular and graphical problems in the instructional 

sequence did not provide enough opportunities for students to develop the desired 

understanding of a graphical or tabular representation of a function and its inverse. The 

results suggest that students may benefit from repeated opportunities to describe and 

interpret the relationships conveyed by function graphs and tables, and that these ways of 

representing function mappings should be discussed and practiced when the idea of 

representation of a function is initially introduced. Then, the student could potentially 

apply those understandings to graphs and tables when building his meanings for inverse 

functions.  
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In the last two tasks of the instructional sequence, which did not include tables or 

graphs, the three students were once again successful. In Task VIII, the students were 

told that if one were to start with some number x and apply a process A and then apply 

another process B, the result would be some number y. Without any additional 

information about the two processes, A and B, the student was asked to explain how to 

reverse the application of these combined processes. As each of the three students had 

been able to generalize their thinking in Task IV when they each described their general 

approach to reversing a process, this task would require them to further generalize their 

thinking to the reversal of a combination of processes.  

In each session, I told the student that they could describe their ideas verbally, 

with notation, or with some diagram. Randy and Madison both chose to utilize function 

notation and were successful in expressing the original process as B(A(x)) = y and the 

reversal of that entire process as A–1(B–1(y)) = x. Randy’s response follows: 

66. R: So, so to reverse that…start with… and apply A and B [he continues 
reading the task for the third time]. So, [writes out A(B(x)) = y] this 
would be the same, right? No, we apply A and then B [writes  
B(A(x)) = y]. 

67. I: Ok that sounds fine, if you’re thinking of A and B as functions. 
68. R: Yes. 
69. I: So you apply A first, and then apply B to get from x to y. That looks 

fine to me. So, what I’m looking for, how could I start at y and end 
at x? 

70. R: Mkay… 
71. I: So I’ve not taught you this. I don’t know if you’ve learned this. You 

don’t have to use notation. You can, you can draw a diagram, or you 
can just verbally say what you would do. 

72. R: So based on this, [writes A–1(B–1(y)) = x]. 
73. I: Ok, walk me through it. 
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74. R: So um, originally I said with function notation, A of x, originally I 
believe, reading this [pointing to B(A(x)) = y], I start with the 
process A of x and get that and apply B to get y. Um, I think that 
with doing the inverse or reverse function of B and then applying A 
inverse, I would get x. I would work my way backwards. 

75. I: So, why do you do B and then do A? [Pointing to A–1(B–1(y)) = x] 
76. R: Well because, um I’m just doing the backwards, I’m backwards 

pedaling basically, in which case I ended with B [pointing to B(A(x)) 
= y], so I should start with B in this case [points to A–1(B–1(y)) = x] 
and then end with A. 

 

Unlike Randy and Madison, Tess chose to construct a diagram in order to 

represent how the application of process A followed by the application of process B could 

be reversed (see Figure 15). After she had constructed the first diagram on the left to 

represent the application the two processes A and B, we had the following conversation 

about the reversal: 

77. T: Ok, so, if you’re starting at y, you have to take, you have to start with y. 
You’d have to do, first, the inverse of B process, so B inverse process, 
which would give you ending number h. And then to find your original 
number [circles x in previous diagram] that we don’t have, you have to 
apply the A process, the A inverse process, excuse me, to find some 
number x. 

78. I: Perfect, um, is this h [in the second diagram] the same as this h [points to h 
in first diagram]? 

79. T: Yes, it’s the same h. Because, you’re just in reverse. If you’re looking at it, 
if there’s two numbers in the middle [points to h in first diagram], 
depending on what process, you’re always going to end up with the same 
middle number if you reverse those processes. 
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Figure 15 

Each of the students’ responses mirrored the reasoning in their responses to the 

first four tasks of the instructional sequence. When reversing a process, as the examples 

given in Tasks I-IV, the students had described reversing each step of the given process 

and applying those steps in the reverse order. In the case of Task VIII, the students had to 

first envision the steps and their order of application in the original combined application 

of processes A and B. In the case of Madison and Randy, this step was required in order 

for the students to know that the composition B(A(x)) = y was appropriate, rather than 

A(B(x)) = y (see Randy’s explanation in line 66). This step was also required of Tess 

when designing her diagram and deciding when process to apply first. 
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Then, since the students had previously considered applying the reverse of each 

step in the reverse order, they were now able to conclude that they needed to apply the 

reverse of each process in the reverse order. The design of the instructional sequence had 

accommodated the students’ engagement in the reversal of processes, reflection on the 

necessary actions involved in the reversal of processes, and the generalization of those 

actions. Then, the students were able to extend those generalizations to a context in which 

they envisioned reversing the combination of two processes. 

The three students’ responses provide further evidence that each of the students 

had developed a process conception of function. Dubinsky wrote that a process has been 

internalized when the subject has a total picture of the process and is capable of moving 

back and forth applying and reversing the mental actions involved (1991).  Each of the 

students expressed the ability to anticipate applying a process to an input to result with 

some output, which could then serve as the input to a second process. This was the case 

with both the original application of processes A and B, as well as in the reversal of that 

entire process. With a process conception of function, the students were capable of 

reasoning about this reversal without being given the step-by-step details of each process. 

Post-test 
The first activity of the post-test asked the student to evaluate his or her work on 

the pre-test and express what they might change or approach differently after their 

participation in the teaching session. In doing so, all three students were able to correctly 

determine the value of f–1 for a given input value, when given the rule for the function f. 

While, Madison determined the algebraic rule for the inverse function first, Randy and 
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Tess chose to determine the value of f–1(25) before determining the rule for f–1. They were 

able to do this by setting the rule for f(n) equal to 25 (i.e. 25 = 0.45n+7) and solving for 

the appropriate value of n. This was a significant shift for Tess, who, four days prior, had 

not distinguished between the two functions f and f–1 and had simply treated the input to 

f–1 the same as the input to f. Randy and Tess were now capable of relating a function and 

its inverse in such a way that the input to the inverse function is the output to the original 

function, and vice versa. 

All three students were also able to correctly alter their definition of the inverse 

function, which included the correct rule of assignment with the appropriate input 

variable for the given context. Randy and Tess constructed the inverse function by 

solving for the input to f, which was the number of pounds of apples that the customer 

picked n, in terms of the output to f, the cost of the customer’s load of apples. This was 

the approach to defining the rule of the inverse function that they had developed in the 

Celsius to Fahrenheit conversion task during the teaching session. Randy, who had 

utilized the approach of swapping the variables in his pre-test, claimed the he would no 

longer swap the variables “because its not always appropriate. Here we want f–1(c) = n, 

not f–1(n).” This is further evidence that Randy had shifted towards focusing on the 

relationship between input and output quantities. 

On the other hand, Madison utilized her understanding of the actions involved in 

the reversal of a process. Madison initially wrote f–1(c) = (c/0.45) –7, and we had the 

following conversation: 
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80. I: How do you know that you divide by 0.45 first and then subtract 7? How 
did you decide that? 

81. M: Well, if you’re looking at this one [had previously written f(1) = 0.45(1) 
+7] you’re going to multiply it by 0.45 and then you’re going to add 7. 
But then, ooh, you added 7, so this would be c minus 7 [added parenthesis 
around c –7] and then you divide. [This changed her response to f–1(c) = 
(c –7)/0.45.] 

82. I: So you changed it. Ok, why did you change that? 
83. M: Because you have to change the order, too. Since I multiplied by 0.45 

first, I divide by 0.45 second because you have to reverse the order. 
 

In her response, it is clear that Madison is considering the reversal of the given function’s 

process. This shows that she now associates finding the inverse of a function with 

reversing the function’s process. She has shifted from trying to remember some 

meaningless procedure, to now applying a generalization she developed during the 

teaching experiment. She illustrated that she understands that reversing a process 

involves reversing each of the actions of the original process and applying them in the 

reverse order. She also attended to how the two quantities of interest were being related 

by expressing that c, the output of the original function, was now the input to the inverse 

function. 

Thus, the three subjects, at varying levels and from various educational 

backgrounds, were now capable of determining the rule for an inverse function without 

having to be taught a procedure. The method of determining the inverse function was no 

longer something that the student needed to memorize and recall, because it followed 

from their understanding of reversing a process. 

 As mentioned in the analysis of the pre-test, none of the students had referenced 

the input or output quantities in the given context prior to the teaching session. However, 



 
56 

in re-examining their previous work, two days after the teaching session, Randy and 

Madison showed signs of attending to the quantities by explaining that they would now 

feel the need to label the axes with the input and output quantities for the graphs of the 

functions f and f–1. This suggests that these two students made shifts towards the 

perception of a graph as a coordination between the values of two varying quantities. 

This is likely a product of the instructional sequence in which the student was exposed to 

several contextual problems where he or she was repeatedly asked to describe how the 

given input and output quantities were being related. 

Unfortunately, four days after the teaching session, Tess chose to draw the graphs 

of f and f–1 on the same axes and did not label the axes with the quantities being 

represented. When asked why she had only used one axis rather than two axes as she had 

before, she claimed that her decision was made for convenience and that she could also 

have drawn the graphs on separate axes. She chose to type the two functions into her 

calculator and sketch the graphs that she saw, rather than reasoning about how the linear 

functions could be graphed. Her responses to this question of graphing further supports 

my conjecture that her understanding of a graph was just some shape in the plane, rather 

than a representation of the relationship between input and output quantities. While I 

argue that Tess had developed a process conception of function during the teaching 

session, action and process conceptions of functions are not mutually exclusive, and Tess 

may be more inclined to apply one conception over another in various contexts. 

 To further support the claim that each student had developed a process conception 

of function (including inverse functions) during the teaching session, each of the three 
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students, when given that f was a function, where able to conclude that (f–1)–1 would be 

the original process f. When Randy answered this task, he said he was “100% confident” 

in his answer. 

As shown in the following conversation with Madison, she was able to imagine a 

process from input values to output values, as well as the reversal of that process and the 

effect it would have on the input and output values. 

84. M: I think you’re gonna end up with your original, like your function.  
85. I: Ok. Are you guessing or do you have a reasoning? 
86. M: Well because, uh, I was like doing this, well, I think I was getting 

confused because when you have like an inverse you put in an input and 
you get out an output, which is going to be like the other one’s output 
and input. Those are flipped. So I was like, well, you’ll end up with those 
same values, but they’re still going to be flipped, but then if you take the 
inverse of it that’s what’s going to get you back to the original. So that’s 
[(f–1)–1] going to get you just to f.  

 

In her response, Madison appears to understand that the input quantity of the 

original function will be the output quantity of the inverse function, and vice versa (line 

86). In Madison’s perception, taking the inverse of some function causes the input and 

output quantities to be swapped. She was able to utilize this understanding of the input 

and output quantities of (f–1)–1 to conclude that it would be equivalent to the original 

function f.  

In attempting this same task, Tess and I had the following conversation: 

87. T: So you’re taking the inverse of the inverse function. Wouldn’t that just 
put it back to the original? [Points to f in problem statement.] 

88. I: Ok. 
89. T: When you take an inverse of an inverse, you get back to your original 

function, right? 
90. I: Ok. Can you tell me why? 
91. T: Um, because… 
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92. I: Or, how could you argue to some one why you’re right? 
93. T: So, when you take the inverse of some function [writes f], you’re just 

undoing that same function [writes f–1]. So, if you undo the inverse 
function, you’d come back to your original. So, its kind of like taking one 
step forward [draws an arrow from f to f–1] and then one step back [draws 
an arrow from f–1 to f] (See Figure 16). 

 

 

Figure 16 

I claim that the students would need a process conception of function to be able to 

consider the meaning of (f–1)–1, given that f is some function. If a student merely had an 

action conception of function, the student would not know what actions to carry out, and 

would not be able to see that composing a function with its inverse always returns the 

original input value. Instead, the student has to envision a general process, the reversal of 

that process, and then a second reversal. APOS theorists claimed that the ability to 

envision inverting a function required a process conception of function. It may also be 

argued that the student has an object conception of function since he is able to consider 

applying a transformation to the function f–1. 
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As foreshadowed in the teaching session, students continued to have difficulty 

interpreting the quantitative relationships displayed by function graphs during the post-

test. As I had not expected the students’ lack of meaning for a table of function values, I 

did not design any table tasks on the post-test. In the first task of the post-test, the student 

was given the graph of the function f and was asked to determine the value of a so that    

f–1(a) = 2.5. Tess and Randy were able to correctly use the graph of f to solve for this 

value of a. This required these students to understand that the output of the inverse 

function would be the input to the original function, and vice versa. Then, the students 

had to apply this understanding to use the graph of the function f to determine the value 

of a.  

Madison, on the other hand, was less successful. She seemed to either not 

recognize or ignore the fact that the given graph was for f and, therefore, that the input 

and output of f–1 would have to be found in an alternative way. Rather than viewing the 

output of f–1 as the input to the function f, she viewed the output of f–1 the same as one 

would view the output of f. While describing inputs and outputs in her answer, Madison 

never referred to the function whose inputs and outputs she was discussing. 

94. M: I think a would be 3. 
95. I: Ok, can you tell me how you got that? 
96. M: Well, f inverse, well its saying like when you input a, you’re getting 2.5. 

Or is it saying that a is… No, no, when you input a you get 2.5. So if a is 
the input and the output has to be 2.5. So the input’s on the x-axis. The 
output is on the y-axis. So, I went to 2.5 on the y-axis and went over to 
see where it touched the line and got 3.  
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Although she seemed to understand the conventions of locating the input quantity 

on the x-axis and the output quantity on the y-axis, she had not coordinated the input and 

output quantities of the function f–1. Therefore, her knowledge of these conventions was 

not enough for her to successfully answer the question. 

In addition to finding the value of a so that f–1(a) = 2.5, I asked the students if it 

was possible to determine the value of b so that f–1(f (b)) = 2, or f–1(f (b)) = 3. During the 

teaching session, each of the students had been able to describe, in their own words, that 

the product of the composition of a function and its inverse would be equivalent to the 

identity function. The idea of applying a function followed by its inverse (or in the 

opposite order) had been considered in Tasks I-V. For example, in Task I with the grid, 

each of the students could visually illustrate that if we started at the “Start” point, applied 

the original process and then applied the reverse process, that we would end up back at 

the “Start” point. The students were asked to consider this type of question for the fifth 

time in Task V where, given a particular temperature measured in degrees Celsius, the 

student could apply the original function, and then the inverse function, and the output 

would be the same original temperature measured in degrees Celsius. None of the 

students had difficulty answering these questions. 

This task on the post-test was designed to determine if the students could 

generalize their reasoning about the composition of a function and its inverse. The three 

students’ responses to this task when given the graph of f were diverse. Unfortunately, 

after a few attempts, Tess claimed that she couldn’t remember how to do this. Rather than 

attempting to utilize her understanding of function inverse, it appeared that Tess had 
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reverted back to her old habits of trying to remember some procedure. On the other hand, 

Randy and Madison both argued that the presence of the graph of f made them think 

differently about f–1(f (b)) = 3 than if the graph had not been given.  

I anticipated that, in trying to determine the value of b so that f–1(f (b)) = 3, the 

students would note that the graph was unnecessary since they were applying a process 

and then subsequently applying the inverse of that process (granted, of course, that we 

were describing values in the domain of each function). This was not the case. In Randy’s 

initial attempt to answer the question, he utilized the graph to find that b = 3. I then chose 

to ask whether he could determine the value of b so that f–1(f (b)) = 10. I chose the value 

of 10 because the values on the graph did not lend themselves to Randy’s method. As I 

had anticipated when posing this question, Randy responded by saying that it was 

impossible to determine this because there was not enough information given in the graph 

since the input values to f were cut off after 5. When I moved on to the next task, Randy 

whispered, “Is that right?” We had the following conversation: 

97. I:  You can…Do you want to keep thinking about it? 
98. R: [Points to b = 3.] That one. Is that correct? 
99. I: What do you… so what do you think about the inputs and outputs of f and 

f-1? 
100. R: Well I mean [points to f–1(f (b)) = 10]…if I wasn’t using this function 

[points to given graph of f] it would still be 10 for the b. 
101. I: Why? 
102. R: Because if the…if I’m inputting something and then I’m doing the 

opposite…trying to get the reverse function of that, then I’m going to get 
10 in this case. But in using this scenario [points to graph of f] it wouldn’t 
work that way. 

103. I: Ok. Interesting. Did you use that reasoning…so you said whatever I plug 
in is what I’ll get because you’re doing the opposite…did you use that 
reasoning when you were trying to solve for this [points to f–1(f (b)) = 3] 
or you just used the graph? 

104. R: Yes, I used the graph. 
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105. I: So why did the graph change…you were using a different way of 
thinking…so if I didn’t give you this [covers up the given graph] and I 
gave you the same question… 

106. R: It would be 3. 
108. I: But giving you the graph, 
109. R: Made me think of it differently because its in a scenario [points to the 

labels on the graph’s axes.] 
 

Madison and I had a similar conversation regarding the same task, except that she 

had been asked to determine the value of b so that f–1(f (b)) = 2: 

110. M: Alright, this one is like…you take the inverse of a function…you just end 
up back with 2…yeah? 

111. I: When you take the… 
112. M: Well because if you have f of b, taking the inverse of that is just gonna 

undo it again. So b would be… your input and 2 would be your output. 
(Pause.) 

115. I: You apply the inverse and you said that “undoes” it or reverses it. 
116. M: So you get that b is gonna be the output a. [Writes b = a.] And when you 

input a, the output you get is…(pause) 
117. I: Sorry, what was a? 
118. M: Well like I’m going off of, since like this one [points to f-1(a) = 2.5 in the 

previous task] the inverse of this was like a was the input. Then like if 
you input a you must get b. 

119. I: Input a to what? 
120. M: Well like you’re inputting f of b… so you’re inputting b and then you’re 

going to get an output, which is going to be a. Then you take the inverse 
of that, which is going to land you back at b. So b = 2. But b was the 
input…originally…so then it must be [goes to graph] 2 as input…so 5 
would be…5 would be the output. 5 would be a, so the input just would 
be 2. 

121. I: So b would be equal to 2. Ok. So is it just a coincidence that these are the 
same [points to b = 2 and output of f

–1(f (b)) = 2] 2 and 2? 
122. M: Oh I was just like…well yeah because like I was just overthinking it. I 

mean the inverse… like if you take the inverse of a function you’re just 
gonna end up with the original because you’re doing something and then 
just undoing it. 

123. I: Ok. So you said you were overthinking it. Ok. So you could have just 
wrote b = 2? 

124. M: Yeah. 
125. I: Ok. Why do you think you did all that extra work? 
126. M: Because I was looking at the graph. 
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In their responses, both Madison and Randy conveyed that when considering an 

expression like f–1(f (b)), they would start with an input, apply the process f, get some 

output, apply f–1 to undo the previous process they applied, and end up with the original 

input value. For example, consider line 106, when Madison said, “you’re inputting b and 

then you’re going to get an output, which is going to be a. Then you take the inverse of 

that, which is going to land you back at b.” Here she was describing the output of f 

becoming the input to f–1, which would result in a return to the original input value. 

However, both of Randy and Madison felt that they needed to utilize the graph to 

determine their answer. While neither Randy nor Madison spontaneously applied their 

conceptual knowledge about applying a function and applying a function’s inverse, they 

each not only described their understanding of this composition, but they also displayed 

their ability to coordinate inputs and outputs of the composed function with the inputs 

and outputs displayed in the given graph of the function f. 
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CHAPTER 6 

CONCLUDING REMARKS 

The evidence presented in this paper supports the claim that this proposed 

instructional sequence has the potential to help students construct meanings for function 

inverse. This was shown by each of the student’s ability to, not only, determine a value of 

the inverse function when given the original function, but to also define the algebraic rule 

for the inverse function. All three students were also able to consider the inverse of an 

inverse function. And, two of the three students were able to describe the result of 

composing a function and its inverse.   

I conjecture that the shifts in their understanding was achieved by posing 

questions that promoted reflective abstraction, and the questions and interactions led to 

all three students moving toward a process conception of function. The instructional 

sequence was designed to engage the student in the repetition of particular reasoning 

patterns and conclusions in a variety of contexts in order to provide an opportunity for 

him to reflect on his actions and the products of those actions when comparing the tasks. 

I hypothesize that the reflection on actions, or the act of reflective abstraction, is what 

allowed the students to make the generalizations that they did.  

One such generalization, articulated by each of the three students during the 

teaching session, was that when reversing a process, the reverse of each action must be 

applied in the reverse order. The first three tasks were specifically designed so that the 

student could repeatedly engage in the mental actions of reversing a given process and 

then generalize those actions to reverse an unidentified process in the fourth task. By 
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repeatedly constructing the reversal of a process and then naming that new process using 

function inverse notation, the evidence suggests that the students began to construct a 

meaning for a function’s inverse as the process that reverses, or undoes, the original 

function process. 

I also argue that the students were able to generalize the results they constructed 

to conclude that the input and output quantities of a function and its inverse will be 

swapped. This idea played a role in each of the nine tasks and I repeatedly had the 

students identify the input and output quantities of the original function, as well as its 

inverse. This focus on quantities during the teaching session is likely what allowed all 

three students to shift towards attending to and reasoning about the input and output 

quantities of a function and its inverse.  

And, finally, I hypothesize that reflecting on and then generalizing the actions that 

they engaged in during the numbers game and the Celsius to Fahrenheit conversion is 

what allowed each of the three students to construct their own approach to determining 

the algebraic rule for a function’s inverse. The instructional sequence was designed so 

that the student would solve a given function for its input value when given specific 

output values. After this was carried out multiple times, the student was then asked to 

extend his thinking to consider solving for a function’s input value for any output value. 

In this way, the design was intended to prompt the student to reflect on his previous 

actions and generalize those actions in order to construct the given function’s inverse. In 

doing so, the student was able to utilize their understanding of solving to construct their 

own approach to determine the algebraic rule of a function’s inverse.  
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It is important to note that for two months prior to the study, the three subjects 

had been students in a conceptually oriented pre-calculus course, where the development 

of reasoning abilities was prioritized over “answer-getting” strategies. In addition, it is 

also important to note that this was not the first time these students were introduced to the 

concept of inverse function. So, while the students may have had the benefit to construct 

powerful meanings about function inverse prior to the teaching session, there was also the 

potential that the students came in with undesirable meanings and procedures. Further 

research would need to be conducted in order to assess whether this instructional 

sequence could produce the same effects with students who had never been introduced to 

the concept of function inverse. 

 As reported in the results, the three subjects initially struggled to coordinate their 

conceptions about an inverse function and its input and output quantities with function 

notation. They also had difficulty constructing and interpreting values in tables and 

graphs. If this instructional sequence were to be implemented in a classroom, I 

recommend that more tabular and graphical tasks that prompt them to express what the 

tables and graphs are relating be added to both the instructional sequence and homework 

set. It is not clear how much opportunity for repeated practice is needed for particular 

students. Further investigations are needed to understand the role of homework and the 

amount of practice that is needed for students at various ability levels to construct the 

desired meanings. I also argue that further research is needed to learn about students’ 

understanding of function notation, graphs, and tables as representations of a functional 

relationship between two covarying quantities. 
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Precalculus Concept Assessment  

 1

Consent Form 

        

Dear ______________________(Participant): 
 
 
I am a professor in the School of Mathematical and Statistical Science at Arizona State University.   
 

I am conducting a research study to learn about teacher’s learning and its impact on teaching. I am inviting 
your participation, which will involve using data that is collected as part of coursework for research 
purposes.   
 
Your participation in this study is voluntary.  You can skip questions if you wish. If you choose not to 
participate or to withdraw from the study at any time, there will be no penalty. It will not affect your grade. 
You must be 18 or older to participate in the study. 
 
The results of this study may be used in reports, presentations, or publications but your 
name will not be known/used (whichever applies). Results will only be shared in the aggregate form. 
 
If you have any questions concerning the research study, please contact the research team at: (480) 964-
6188. If you have any questions about your rights as a subject/participant in this research, or if you feel you 
have been placed at risk, you can contact the Chair of the Human Subjects Institutional Review Board, 
through the ASU Office of Research Integrity and Assurance, at (480) 965-6788. 
              

This instrument was designed by Marilyn Carlson’s research group. If you have any questions about this 
instrument, you may contact Dr. Marilyn Carlson by e-mail at: marilyn.carlson@asu.edu   
 
By signing below, you give permission for my responses to these questions to be used for the purpose 
of validation of this assessment instrument. I understand that all data is confidential. The researcher 
will not associate my name with my score and my identity will not be disclosed to any party not 
associated with this research project.  
 

Name:_____________________________________________ 

� �

 


