$\mathrm{CO}_{\scriptscriptstyle 2}$ Photocatalytic Reduction to Fuels

by:

Alejandro Castañeda Flores

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

> Approved April 2014 by the Graduate Supervisory Committee:

> > Jean M. Andino, Chair Erica Forzani César Torres

ARIZONA STATE UNIVERSITY

May 2014

ABSTRACT

A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO_2) in the presence of water vapor (H_2O) to valuable products such as carbon monoxide (CO) and methane (CH_4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The new photocatalytic material was an ionic liquid functionalized reduced graphite oxide (IL-RGO (high conductive surface))-TiO₂ (photocatalyst) nanocomposite. Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-vis absorption spectroscopy techniques were employed to characterize the new catalyst. In the series of experiments performed, the nanocomposite material was confined in a UV-quartz batch reactor, exposed to CO_2 and H_2O and illuminated by UV light. The primary product formed was CO with a maximum production ranging from 0.18-1.02 µmol(g_{catalvst}-hour)⁻¹ for TiO₂ and $0.41-1.41 \,\mu mol(g_{catalvst}-hour)^{-1}$ for IL-RGO-TiO₂. A trace amount of CH₄ was also formed with its maximum ranging from 0.009-0.01 µmol(g_{catalyst}-hour)⁻¹ for TiO₂ and 0.01-0.04 µmol(g_{catalyst}-hour)⁻¹ for IL-RGO-TiO₂. A series of background experiments were conducted and results showed that; (a) the use of a ionic liquid functionalized reduced graphite oxide $-TiO_2$ produced more products as compared to commercial TiO_2 , (b) the addition of methanol as a hole scavenger boosted the production of CO but not CH₄, (c) a higher and lower reduction time of IL-RGO as compared to the usual 24 hours of reduction presented basically the same production of CO and CH₄, (d) the positive effect of having an ionic liquid was demonstrated by the double production of CO obtained for IL-RGO-TiO₂ as compared to RGO-TiO₂, and (e) a change in the amount of IL-RGO in the IL-RGO-TiO₂ represented a small difference in the CO production but not in the CH_4

i

production. This work ultimately demonstrated the huge potential of the utility of a UVresponsive ionic liquid functionalized reduced graphite oxide- TiO_2 nano-composite for the reduction of CO_2 in the presence of H_2O for the production of fuels.

ACKNOWLEDGMENTS

The author would deeply thank Dr. Jean M. Andino for her supervision, advice, patience, and support. The author would also thank the committee members Dr. Erica Forzani and Dr. César Torres for their feedback and valuable time. Likewise, the assistance given by Selisa Rollins and the schematic provided by Phillip Logan are greatly appreciated. Finally, the author wants to dedicate his work to God and his family.

TABLE OF CONTENTS

Page
ABSTRACT
ACKNOWLEDGMENTSii
INTRODUCTION 1
Energy Consumption and the Increase of Carbon Dioxide Atmospheric Concentration
Reduction Strategies for Carbon Dioxide Emissions
Photocatalysis
Photocatalytic Reduction of Carbon Dioxide
Photocatalytic Properties of TiO ₂ 11
Carbon Nano-Materials as TiO₂ Modifiers15
Research Objectives
METHODS18
Catalyst Synthesis
Characterization21
Photocatalytic Experiments 22
RESULTS AND DISCUSSION
Characterization Results
Photocatalysis Results
Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using an Ionic liquid Reduced Graphite Oxide-TiO ₂ (IL-RGO-TiO ₂) Composite versus Commercial TiO ₂
Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor and Methanol as a Hole Scavenger Using an Ionic Liquid Reduced Graphite Oxide-TiO ₂ (IL-RGO-TiO ₂) Composite and Commercial TiO ₂
Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using the Ionic Liquid Reduced Graphite Oxide-TiO ₂ (IL-RGO-TiO ₂) Composite Containing IL-RGO Reduced for Different Periods of Time
containing 12 1000 feedbeer for Different Ferrous of Time

	Page
Photocatalytic Reduction of Carbon Dioxide in the Presence of Wate an Ionic Liquid Reduced Graphite Oxide-TiO ₂ (IL-RGO-TiO ₂) Comp Reduced Graphite Oxide-TiO ₂ (RGO-TiO ₂) Composite	r Vapor Using osite and a 48
Photocatalytic Reduction of Carbon Dioxide in the Presence of Wate an Ionic Liquid Reduced Graphite Oxide-TiO ₂ (IL-RGO-TiO ₂) Comp 0.2, and 0.1 Weight Percent of IL-RGO	r Vapor Using osite With 0.3, 51
CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	58
APPENDIX	

INTRODUCTION

Energy Consumption and the Increase of Carbon Dioxide Atmospheric Concentration

The United States and the world in general are showing energy and climate problems. Different efforts have been undertaken to decrease energy consumption and to decrease air pollution. It has been reported by the United States Environmental Protection Agency that greenhouse gases principally derive from the burning of fossil fuels in the areas of electricity generation, transportation, and heat^[1]. Thus, scientific efforts are targeted towards the use of renewable fuels in order to reduce greenhouse gas emissions.

The U.S. Energy Information Administration predicts that energy consumption will increase by 56 percent by the end of 2040^[2]. According to studies, the total world energy consumption will grow from 524 quadrillion British thermal units (Btu) to 820 quadrillion (Btu) by 2040^[2]. It is not unreasonable to consider that hydrocarbons will be the primary source of energy for the next decades, but a question remains of whether the current hydrocarbon resources will meet the future demands. The U.S. Energy Information Administration also reports that the energy demand in non-Organization Economic Cooperation and Development (non-OECD) countries will grow by 90% in contrast to active OECD countries where it only will increase by 17% (Figure 1)^[2].

1

Figure 1. Projected energy consumption until 2040^[2]

Renewable energy is projected to be the fastest growing source of energy, with approximately 2.5% growth a year. However, fossil fuels, which currently satisfy 80% of the world's energy demand, are predicted to be a significant source of energy for the next decades^[2]. The previous information leads to the suggestion that greenhouse gases such as carbon dioxide (CO_2) will continuously increase in the next years.

The U.S. Energy Information Administration also indicates that in the past 50 to 60 years the United States has consumed more energy as compared to what it is producing. Consequently there is a need to import fuels (for energy generation) from other countries^[3]. As illustrated in Figure 2, the gap between the United States' overall production and consumption of energy is prevalent^[3].

Figure 2. Production and consumption in quadrillion BTU of energy in the U.S.^[3]

Among the greenhouse gases emitted in the United States, CO_2 is the major greenhouse gas produced, accounting for 84%^[4]. Carbon dioxide is part of the natural Earth carbon cycle, therefore an adequate level of CO_2 is needed. On the other hand, it has been well established by scientific studies that levels of CO_2 higher than normal could lead to global warming problems. The primary sources of CO_2 are from burned fossil fuels, and there has been a dramatic increase in CO_2 production since the 1950's (Figure 3)^[5].

Figure 3. The concentration of CO₂ in the atmosphere increased considerably from 1950 to 2011 due to the use of fossil fuels^[5].

The energy needs of humans are affecting the levels of CO₂ in the atmosphere which are leading to environmental problems^[4]. Carbon dioxide emissions from fossil fuel usage are influenced by factors such as global climate and economy, technological and population development. In the past 20 years, CO₂ emissions have increased by 10%, which corresponds to the same time period of technology development^[1].

Figure 4 displays the sources of CO₂ emissions. Electricity production and hydrocarbons burned for transportation represent about 69% of the CO₂ emissions^[1]. Carbon dioxide emissions from industry arise mostly due to the burning of fossil fuels for energy production but also to chemical processes such as cement production. Commercial and residential CO_2 emissions arise due to fossil fuels that are burned for heat generation. CO_2 emissions in the "Other (non-fossil fuel combustion)" category arise from agricultural sources (e.g. livestock and soil)^[1].

Figure 4. Sources of carbon dioxide emissions in the U.S.^[1]

Reduction Strategies for Carbon Dioxide Emissions

The U.S. Environmental Protection Agency (EPA) has suggested different methods to reduce the use of fossil fuels in order to decrease CO_2 emissions. Table 1 describes different strategies to reduce CO_2 emissions, as suggested by the EPA^[6].

Table 1. Suggested strategies by the U.S. Environmental Protection				
Agency (EPA) to re	duce carbon dioxide emissions ^[6]			
Stratomy	Examples of how emissions can be reduced			
Strategy	Examples of now emissions can be reduced			
Energy efficiency	The use of electric or hybrid automobiles and to have			
Energy enherency	The use of electric of hybrid automobiles, and to have			
	better insolation systems in houses and buildings are ways			
	to increase energy efficiency.			
Energy conservation	Turning off all the electronics when not in use, and the use			
	of bicycles.			
Fuel switching	The production of renewable fuels such as biofuel and			
	hydrogen is a feasible way to decrease CO ₂ emissions.			
Carbon capture and	The capture and sequestration of CO ₂ is a technology that			
sequestration	can eventually decrease CO ₂ emissions.			
-				

There is another method to simultaneously deal with the increase in CO_2 emissions, but to also address shortages in global hydrocarbon fuels^[7]. The method is the conversion of CO_2 to hydrocarbons or other useful materials. Some of the current technologies that are under investigation for the conversion of CO_2 to fuels are: hydrogenation and photocatalytic reduction^[7-9]. The different hydrocarbon products of CO₂ reduction are presented in reactions 1-4^[10].

$$\mathrm{CO}_2 + 2\mathrm{H}^+ + 2\mathrm{e}^- \to \mathrm{CO} + \mathrm{H}_2\mathrm{O} \tag{1}$$

$$CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H \tag{2}$$

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O \tag{3}$$

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 (4)

As indicated in reaction 1, carbon monoxide (CO) simply requires two electrons and protons in order to be formed. In consequence, CO production is most common as compared to methane(CH_4)^[11]. The production of CO is extremely important since it can be then used to form CH_4 by the process of hydrogenation described in reaction 5^[11].

$$CO + 6H^+ + 6e^- \rightarrow CH_4 + 2H_2O \tag{5}$$

Photocatalysis

A photocatalyst is usually a semiconductor that accelerates a light activated reaction^[12]. The semiconductors display an energy difference (band $gap(E_g)$) between the valence band (VB) and a conduction band (CB)^[12, 13]. The energy of the band gap is defined as described by equation 1^[12].

$$E_c - E_v = E_g$$
 (Equation 1)

The activation of a semiconductor is dependent on the absorption of light. The energy needed to activate the photocatalyst has to be the same or higher as compared to the band gap energy^[13]. Electron (e⁻) promotion to the CB and hole (h⁺) formation in the VB is achieved by a photon (hv) as presented in reaction 6^[13].

Photocatalyst
$$\longrightarrow$$
 Photocatalyst (e⁻ + h⁺) (6)

The photoexcitation of an electron in a semiconductor is presented in Figure 5^[13].

Figure 5. Electron photoexcitation of a semiconductor. Valence band (VB), conduction band (CB), electron accepting species (A), electron donating species (D). Adapted from published studies^[13]

The generated electrons and holes can be then utilized for oxidation/reduction reactions^[13]. The electrons react with electron acceptor groups, similarly the hole or positive charge in the valence band reacts with electron donor groups^[13].

There are several factors that affect the electron/hole production rate. The factors include the following^[14]:

- 1. The intensity of the light used to activate the catalyst
- 2. The bandgap energy of the semiconductor used
- 3. The amount of catalyst
- 4. The temperature and pressure used during the reaction

The proper photocatalyst needs to have the following properties: able to utilize a wide range of light (UV-Visible), economically viable, non-toxic, able to produce enough electrons to reduce CO_2 , non-corrosive, and allow for efficient charge separation^[14]:

Photocatalytic Reduction of Carbon Dioxide

The most novel, inexpensive and promising method to reduce CO_2 to fuels (C_1 - C_2 hydrocarbons) is the use of a photoactivated catalyst in the presence of water vapor $(H_2O)^{[8]}$. In a typical gas-phase photoreaction, H_2O is oxidized and CO_2 is reduced as reaction 7 illustrates in the photoreduction of CO_2 to $CH_4^{[15]}$.

$$2H_2O + CO_2 \xrightarrow{hv} CH_4 + 2O_2$$
(7)

Ideally, the only energy source that this novel technique would use is solar light in order to be a sustainable approach to effectively deal with CO₂ and enhance fuel production without having a negative effect on the environment^[10, 16, 17]. Examples of different semiconductors that can be used as photocatalyst with their respectives bandgap energies are presented in Table 2^[14].

Photocatalyst/Bandgap energy (eV)	Photocatalyst/Bandgap energy (eV)
Fe ₂ O ₃ /3.10	$V_2O_5/2.70$
$\alpha - Fe_2O_3/2.20$	Si/1.1
Cds/2.40	TiO ₂ (rutile)/3.00
ZnS/3.70	TiO ₂ (anatase)/3.20
ZnO/3.20	SrTiO ₃ /3.4
WO ₃ /2.80	WSe ₂ /1.2
GaN/3.2	CuO/1.21-1.51
GaAs/1.45	InP/1.34
Cu ₂ O/2.10	AlP/2.56
TiO ₂ /3.0-3.3	GaP/2.25

 Table 2. Photocatalyst compounds and their respective bandgap

 energies^[14, 18]

Several publications about CO_2 photoreduction in the presence of H_2O have shown promising results. In a selected group of publications, titania (TiO₂) on zeolites was used as the catalysts where the results demonstrated the formation of CH_4 and methanol (CH₃OH) as primary products and CO as a secondary product ^[19-21]. The catalysts were irradiated with UV light for several hours and analyzed by gas chromatography^[19-21].

Past studies describe the photocatalytic activity of Ti containing thin film porous silica. This work on Ti-thin film porous silica reports the formation of CH_4 , CH_3OH and $CO^{[22-24]}$. The irradiation time was approximately 6 hours using a UV light source with a 100 W Hg lamp and products were analyzed using gas chromatography^[22-24].

There is also scientific work that was performed on a variety of catalysts (TiO₂, ZaO, Cds, GaP, SiC and WO₃O) for the photoelectrocatalytic reduction of CO^[25]. The work was performed using the semiconductors suspended in H₂O^[25]. The light sources were a 500 W Xe lamp and a 500 W high pressure mercury arc lamp. The main products were formaldehyde and CH₃OH. Secondary products were formic acid, CH₄ and methyl alcohol^[25]. The product yields were ~5.0x10⁻⁴ M for HCHO and 1.9x10⁻⁴ M for CH₃OH using a TiO₂ catalyst, and 5.0x10⁻⁴ M for HCHO and 4.5 x10⁻⁴ M for CH₃OH using a SiC catalyst^[25].

Up to now, the most studied photocatalytic material for CO₂ conversion has been titanium dioxide (TiO₂) because it has provided the highest efficient photocatalytic activity, and has other various advantages such as being thermally stable, economically feasible and non-toxic^[26, 27].

Photocatalytic Properties of TiO₂

There are several properties that make titanium dioxide (TiO_2) a useful photocatalytic material^[28]. One of the most important characteristics of TiO_2 is the availability of the material since TiO_2 ranks as the fourth most plentiful material on Earth^[29].

Studies on the photocatalytic properties of TiO_2 started as early as the 1950s, but it was not until the 1970s when Fujishima and Honda discovered the ability to achieve H_2O splitting on $TiO_2^{[30]}$. Since then, efforts have been made to understand the photocatalytic mechanism and to improve the photocatalytic activity of TiO_2 . Titanium dioxide is usually synthesized in three principal crystallographic structures: rutile (tetragonal), anatase (tetragonal) and brookite (orthorhombic) as described in Figure 6^[30, 31]. However, the two crystal phases of TiO₂ that are generally used as photocatalyst are anatase and rutile. Geometric defects have shown to directly disturb the conductive properties of the TiO₂ surface^[30].

Figure 6. Principal TiO₂ crystallographic structures: (a) anatase, (b) brookite and (c) rutile. Ti atoms are in red and O atoms are in green.

The capacity to regulate surface defects such as oxygen vacancies by heat treatment and photon bombardment in order to introduce charges on the TiO_2 surface is one of the primary photocatalytic features of $TiO_2^{[30, 32]}$. The most used commercial form of TiO_2 (e. g. Evonik P25) is a combination of approximately 75 percent anatase and 25 percent rutile. The 72%:25% anatase:rutile mixture of TiO_2 has shown promising results for CO_2 photoreduction^[33-36].

There are different problems that affect the photocatalytic activity of TiO_2 . One issue being that the bandgap energy of TiO_2 (~3.2eV) corresponds to the energy of UV light, consequently TiO_2 can only be activated by UV light. Given that UV light is less than 5% of the electromagnetic spectrum, the use of TiO_2 for CO_2 photocatalytic reduction is not very efficient^[30]. Another problem that TiO_2 faces is the low efficiency of the photocatalytic reaction as a result of the rapid recombination between the photogenerated holes and electrons^[28].

In order to overcome the fast electron/hole recombination, TiO₂ is usually modified with various materials. Modification of the TiO₂ helps to capture the excited electron on an "electron trapper", with the purpose of promoting charge separation (Figure 7)^[36]. In addition, modifying TiO₂ might cause reduction of the bandgap energy leading to the expansion of the usable frequencies for activation to the visible light range^[37].

13

Figure 7. The effect of a modified (dark gray circle) -TiO₂ on the excited electron. Adapted from published studies^[36].

Some of the TiO₂ modifiers include: the deposition of transition metals, such as copper, iron, iodine, silver, gold, platinum or their oxides into the photocatalysts structure^[28]. Modifying TiO₂ with metals has revealed a dramatic improvement in its photocatalytic activity^[38].

The properties that constitute a proper TiO₂ modifier include^[39, 40]:

- 1. High conductivity in order to be able to "trap" the electron
- 2. High surface area
- 3. Low cost
- 4. Non-toxicity
- 5. Availability

Carbon Nano-Materials as TiO₂ Modifiers

New work on modified TiO₂ has demonstrated an enhancement of TiO₂ photocatalytic activity when incorporating carbon nano-materials to TiO₂^[38]. Carbon nanotubes (CNTs) and graphene (sp² carbon layer) are the principal carbonaceous nanomaterials that have been studied due to their conductivity, surface area and molecular stability^[41]. The enhancement of TiO₂ photocatalytic activity using the carbon nanomaterials is credited to the adsorption of UV-Vis light and electron trapping^[41].

Graphene exhibits smaller electron transfer obstruction as compared to CNTs, thus minimizing electron/hole recombination^[42]. Graphene is a single hexagonal carbon layer that has a sp² structure (Figure 8, top left) and extraordinary properties such as a large theoretical surface area (2630 m²/g), high Young's Modulu's and high conductivity^[43].

Figure 8. Structures of graphene (top left), graphite (top right), carbon nano -tubes CNTs (bottom left) and fullerenes (bottom right)^[44, 45]

One method used to synthesize graphene layers is by reducing graphite oxide^[46]. Graphite oxide has a sp³ structure with different oxygen-containing groups such as epoxide and hydroxyl that provide hydrophilic properties to the graphene oxide^[43]. A large improvement in photocatalytic activity has been reported when using reduced graphite oxide (RGO), since this material serves as an electron trapper in a reduced graphite oxide modified TiO₂ nano-composite^[47]. There are very few publications regarding the use of UV-vis light activated nanocarbon modified TiO₂ catalysts for the conversion of CO₂ and H₂O to fuels, however their fuel production is minimum (Table 3).

Catalyst	Type of light	Amount of catalyst	Type of reactor	Time of pre treatment	Temperature of pretreatment	Products µmolg _{catalyst} -1h-1	Reference
TiO₂/ graphene	UV light, 300W Xenon lamp	0.1 g	Batch	2 hours under nitrogen	300°C	Methane 10.1 Ethane 16.8	[48]
Hollow spheres: titania nanosheets and graphene	300 W xenon arc lamp	0.01 g	Batch	1 hour at vacuum	350°C	CO 8.91 Methane 1.14	[49]
Carbon- titania nanosheet	UV- Visible	N/R*	Batch	30 min in air	400°C	Methane 9.0	[50]
Graphene- TiO₂	UV and visible	Different weight percent	Batch	30 min in air	400°C	Methane 8.5	[41]
Carbon nanotubes on Ni-TiO₂	Visible light	N/R*	Batch	2 hour under methane and H ₂ /Ar	750°C	Methane 0.145	[51]
Milti-walled carbon nanotube supported TiO ₂	UV	N/R*	Batch	2 hours under argon	450°C	Methane 73.33 Formic acid 93.35 Ethanol 149.36	[52]

Table 3. Publications of carbon dioxide photocatalytic reduction to hydrocarbons using nanocarbo	on-
TiO ₂ catalysts	

Research Objectives

The work outlined in this document focuses on understanding the reactivity of CO_2 over a new UV light activated carbon-TiO₂ nanocomposite in the presence of H₂O. It was hypothesized that modifying TiO₂ with a highly conductive surface like an ionic liquid functionalized reduced graphite oxide (IL-RGO) would not only minimize charge recombination but also selectively attract CO_2 in order to enhance product formation. This catalyst is the first to use an ionic liquid functionalized reduced graphite oxide as a TiO₂ modifier for CO_2 conversion to fuels in the presence of H₂O. To test the hypothesis the following activities were performed:

- To demonstrate that the IL-RGO-TiO₂ composite would lead to higher product production as compared to unmodified TiO₂ or a reduced graphite oxide (RGO)-TiO₂ material, a gas chromatograph (GC) with a flame ionization detector (FID) and a thermal conductivity detector (TCD) was used.
- Experiments using the GC were conducted to determine if IL-RGO-TiO₂ surfaces containing the IL-RGO reduced for different periods of time or containing different IL-RGO weight percentages enhanced CO₂ photocatalytic reduction to valuable products.
- 3. Also, experiments were performed to determine if the addition of a commonly used hole scavenger such as methanol would enhance the photocatalytic activity of the new catalyst.

The eventual objective of this work was to demonstrate that an ionic liquid functionalized reduced graphite oxide-titanium dioxide would be an effective catalyst for the photocatalytic conversion of CO₂ to fuels.

METHODS

Catalyst Synthesis

The catalytic material was synthesized in-house using methods modified from Kovtyukhava, *et al.*^[53], Hummers and Offeman^[54], and Yang, *et al.*^[55]. Carbon layers were separated by oxidizing graphite. Prior to oxidizing graphite, a pre-oxidation was needed in order to obtain a higher yield of graphite oxygenated nano-particles, similar to work performed by Kovtyukhava, *et al.*^[53]. Pre-oxidation of graphite was obtained by adding graphite powder to a mixture of H₂SO₄, K₂S₂O₈ and P₂O₅ at 80°C. A dark solution was obtained. The dark solution was allowed to cool down to room temperature for six hours in a standalone stirrer. Then the solution was washed with nanopure water until the pH became neutral. Finally, the pre-oxidized graphite was dried at 35°C overnight.

Graphite oxide (GO) was obtained by using a method from Hummers and Offeman^[54]. The dried pre-oxidized graphite oxide was added to a mixture of H_2SO_4 and KMnO₄ at 0°C and stirred for 10 minutes. After that, the mixture was then stirred at 35°C for two hours. After the two hours, nanopure water was added to the mixture, and was allowed to stir for 15 minutes. Next, nanopure water and 30% H_2O_2 were added to the oxidized graphite, resulting in a bright yellow color (see appendix). The bright yellow solution was washed with HCl and H_2O (1:10 HCl to H_2O volume ratio). The dark brown viscous product was suspended in nanopure water. The suspended GO was washed with nanopure water to eliminate the excess HCl. Finally, nanopure water was added to the resultant neutral GO. Graphite oxide is non-conductive^[56]. Thus, in order to gain conductivity, graphite oxide must be reduced^[56].

Ionic liquids have a strong ability to attract CO_2 and are highly soluble in $H_2O^{[57]}$. These two properties make them a powerful tool for CO_2 photocatalytic reduction to fuels. In the catalyst used in the present document, at the same time that reduction of graphite oxide occurred, graphite oxide was functionalized with a NH₂ terminated ionic liquid 1-butyl-3-methylimidazolium chloride (NH₂-C₄mimCl). The high solubility of the ionic liquid in H₂O and its charge repulsion makes it a viable way for TiO₂ to be dispersed and decorated on the ionic liquid functionalized reduced graphite oxide (IL-RGO) sheets^[55]. The theoretical surface area of the IL-RGO may enhance the adsorption of the photocatalytic reactants, subsequently generating more reactive sites. Previous work conducted by Andino's research group points out that the NH₂-C₄mimCl ionic liquid does not interact with alkanes^[58]. For that reason, the ionic liquid might selectively attract CO₂ to interact with the excited electrons, and rapidly dissociate any potential hydrocarbon products.

The ionic liquid (IL) was synthesized by containing a mixture of 3chloropropylamine hydrochloride, 1-methylimidazole and ethanol refluxing under nitrogen and stirrer for 24 hours at ~80°C (see appendix). Then, ethyl acetate was added to the mixture resulting in a cloudy turbid mixture (see appendix) which was dried under nitrogen at ~60°C for 24 hours^[55]. An image of the resulting ionic liquid (NH₂ terminated 1-butyl-3-methylimidazolium chloride (NH₂-C₄mimCl)) is shown in the appendix.

IL-reduced graphite oxide (RGO) synthesis was accomplished using a modified method from Yang, *et al.*^[55]. To obtain the IL-RGO, GO was added to the ionic liquid resulting in a brown turbid mixture (see appendix). In order to allow the epoxide ring opening to occur, KOH was added to the IL-GO mixture and then it was ultrasonicated for 1 hour. During the ultra-sonication the mixture started to change to a dark brown color due to an increase in temperature (see appendix). The color change suggested that graphite oxide reduction was successfully starting to happen. The dark brown solution was stirred for 24 hours at 80°C under nitrogen to have complete reduction of the oxidized graphite (see appendix). The resulting dark turbid mixture was washed with 1:10 ethanol to H_2O volume ratio.

Lastly, a mixture of C_4 mimBF₄ and H_2O was added to TiO₂ in order to enhance the dispersion of the TiO₂ nanoparticles^[59]. The product was allowed to stir for one hour. The washed IL-RGO was ultrasonicated for 30 minutes. Right after the ultra-sonication, the IL-RGO was added to the TiO₂/ C_4 mimBF₄/ H_2O mixture and stirred for one more hour. Then the mixture was washed with a 1:10 ethanol to H_2O mixture. The final product, which was the IL-RGO-TiO₂, was dried at 80°C for 24 hours to remove ethanol from the surface (see appendix for image of the IL-RGO-TiO₂).

The RGO-TiO₂ catalyst was synthesized using the same procedure as the IL-RGO-TiO₂, but neither of the two ionic liquids (used for the IL-RGO-TiO₂) were added.

Chemicals Used

Graphite flake (325 mesh, 99.8%), potassium permanganate and methanol (99.8+%) were purchased from Alfa Aesar. 3-Chloropropylamine hydrochloride (98%), 1-methylimidazole (\geq 99%), 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4, \geq 98%), phosphorous pentoxide (98%), potassium hydroxide (85%), P-25 (titanium (IV) oxide 99.5%), ethyl acetate (99.8%, anhydrous) and ethanol (\geq 99.5%) were purchased from Sigma Aldrich. Hydrogen peroxide (30%) was purchased from Fisher Scientific. Sulfuric acid (98%) and hydrochloric acid (38%) were purchased from EMD Millipore.

Characterization

Brunauer-Emmett-Teller (BET)

The modification of the TiO_2 with the IL-RGO should increase the surface area of the catalyst. A higher surface area represents more reactive sites for CO_2 conversion. A Micromeritics' TriStar II was used to determine the BET surface area of the catalysts. The instrument operated using the nitrogen gas adsorption method.

Raman spectroscopy

A Raman spectrometer having 180° geometry specially built at Arizona State University was used to study the molecular vibrational modes of the catalysts. Raman spectroscopy gave information on the oxidation of graphite and reduction of graphite oxide by looking at the sp² and sp³ carbon structures. The Raman spectrometer utilized a 100mW Compass 532 nm laser controlled by neutral density filters to excite the sample. A 50X super long working distance Mitutoyo objective with a numerical aperture of 0.42 was used to focus the laser. The signal was filtered using a Kaiser Laser band pass filter and a Semrock edge filter. Data were collected by an Acton 300i spectrograph and a back-thinned Princeton Instruments liquid N₂ cooled CCD detector.

UV-visible (UV-vis) absorption spectroscopy

UV-vis absorption spectra were obtained using a UV–visible spectrophotometer (Perkin-Elmer LAMBDA-18). The spectra were used to determine the effect that coupling TiO₂ with IL-RGO had on the composite's bandgap energy.

X-ray photoelectron spectroscopy (XPS)

The XPS data were acquired to characterize the surface atomic concentration. The XPS data also helped to demonstrate the reduction of graphite oxide. The study was performed with a VG ESCALAB 220i-XL aluminum-K α (1486.6 eV) X-ray source.

Photocatalytic Experiments

The photocatalytic experiments were performed in a 100mL quartz glass batch reactor. The reactor was placed inside a Srinivasan-Griffin Rayonet photochemical reactor to have a uniform UV irradiation and the proper ventilation. Water vapor was produced by flowing nitrogen/helium through an impinger containing nanopure water. Figure 9 illustrates the reactor setup for the photocatalytic experiments.

Figure 9. Reactor setup

A gas chromatograph mounted with a TCD and FID is the preferable technique to study the products from the photocatalytic experiments, as presented in Table 4.

able 4. Techniques used to investigate the performance of CO2 hotoreduction to fuels			
Method	Catalysts	Results	Reference
Gas	TiO ₂ /RuO ₂	HCOOH(1.46µmol/hr),	[60]
chromatography-		$CH_3OH(0.21\mu mol/hr),$	
FID		HCHO(0.17 µmol/hr)	
Gas	TiO ₂ /Cu	CH ₄ (15µl/g),	[61]
chromatography-		C ₂ H ₆ (22µl/g)	
FID (Yanako			
G2800 and GL			
Science GC-380)			
Gas	TiO ₂ /RuO ₂ /Ru	CH ₄ (450µl)	[62]
chromatography,			
mass			
spectrometry,			
high pressure			
liquid			
chromatography			
HP 5890 gas	TiO ₂ /Pd	H_2 (5.2 X 10 ⁻²	[63]
chromatography-		µmol/min)	
FID-TCD, Ion			
chromatography			

A Bruker 456 gas chromatography (GC) mounted with a thermal conductivity detector (TCD) and a flame ionization detector (FID) was used to determine and quantify the photocatalytic products. The GC section of the instrument is used to separate components of the mixture. After separation, each component enters the detector region. The thermal conductivity detector measures the difference in thermal conductivities of the carrier gas flow and the sample gas flow^[64]. Any compound that has a thermal conductivity that is different from the thermal conductivity of the carrier gas may be measured with a TCD detector^[64]. A compound that enters the flame ionization detector (FID) passes through a hydrogen flame where it is burned, thus producing ions^[65]. The ions create an electrical signal which is then measured^[65].

The GC that was used in this work is fixed with two columns: a fused silica Q-plot column and a mol-sieve column. The Q-plot column has dimensions of $30m \ge 0.53mm$ (length x internal diameter) and an average film thickness of $20\mu m$ to separate C1 to C3 isomers and alkanes up to C12. The maximum operating temperature is 300° C. The molsieve column has dimensions of $15m \ge 0.53mm$ (length x internal diameter) and an average film thickness of $20\mu m$ to separate C1 to C3 isomers and alkanes up to C12. The maximum operating temperature is 300° C. The molsieve column has dimensions of $15m \ge 0.53mm$ (length x internal diameter) and an average film thickness of $50\mu m$ to separate oxygen, nitrogen, carbon monoxide and methane. The maximum operating temperature is 300° C.

The experiments that were carried out to compare commercial TiO₂ versus IL-

 $RGO-TiO_2$ at different pretreated conditions are described in Table 5.

Table 5. Methodology of the experiments performed to analyze the photocatalytic performance of IL-RGO-TiO ₂ versus commercial TiO ₂					
IL-RGO-TiO ₂	RGO-TiO ₂ IL-RGO-TiO ₂ IL-RGO-TiO ₂ TiO ₂ pretreated TiO ₂				
untreated	pretreated 120°C	pretreated 200°C	200°C	untreated	
• 0.5560g of	• 0.4875g of IL-	• 0.5360g of IL-	• 0.4946g of TiO ₂	• 0.4997g of	
IL-RGO-	RGO-TiO ₂	RGO-TiO2	• TiO ₂ pretreated	TiO ₂	
TiO ₂	• IL-RGO-TiO ₂	• IL-RGO-TiO ₂	at 200°C under	• Room	
• Room	pretreated at	pretreated at	nitrogen for 90	temperature	
temperature	120°C under	200°C under	minutes	(21 ⁰ C)	
(21 ⁰ C)	nitrogen for 90	nitrogen for 90	• Allowed to cool	• N ₂ purge 130	
• N ₂ purge 140	minutes	minutes	down to room	min	
min	• Allowed to cool	• Allowed to cool	temperature	• $N_2 + H_2O +$	
• $N_2 + H_2O +$	down to room	down to room	(21°C)	CO₂ purge 30	
CO ₂ purge	temperature	temperature (21°C)	• Total N ₂ purge	min	
30 min	(21°C)	• Total N ₂ purge 130	130 min	• $N_2 + H_2O +$	
• N ₂ + H ₂ O +	• Total N ₂ purge	min	• $N_2 + H_2O + CO_2$	CO ₂ (~7%v/v	
CO ₂ (~7%v/v	150 min	• $N_2 + H_2O + CO_2$	purge 30 min	CO2 and	
CO2 and	• $N_2 + H_2O + CO_2$	purge 30 min	• $N_2 + H_2O + CO_2$	~2%v/v H ₂ O)	
~2%v/v	purge 30 min	• $N_2 + H_2O + CO_2$	(~7%v/v CO ₂	batch 15 min	
H₂O) batch	• $N_2 + H_2O + CO_2$	$(\sim 7\% v/v CO_2 and$	and ~2%v/v	no light	
15 min no	(~7%v/v CO ₂	~2%v/v H ₂ O)	H ₂ O) batch 15	• UV light	
light	and ~2%v/v	batch 15 min no	min no light	• Quartz	
• UV light	H₂O) batch 15	light	• UV light	reactor	
• Quartz	min no light	• UV light	• Quartz reactor	(100ml)	
reactor	• UV light	• Quartz reactor	(100ml)		
(100ml)	• Quartz reactor	(100ml)			
	(100ml)				

The experiments to determine if adding methanol enhanced the photocatalytic

activity of the IL-RGO-TiO₂ (towards CO₂ conversion) are described in Table 6.

Table 6. Methodology of the experiments performed to analyze if adding a hole scavenger such as methanol will improve the photocatalytic performance of IL-RGO-TiO₂

(0.5g) TiO ₂ and IL-	(0.5g) TiO ₂ (0.84%	(0.5g) TiO ₂ and IL-	(0.2g) TiO ₂ and IL-
RGO-TiO2 (0.84%	v/v methanol) (No	RGO-TiO2 (0.61%	RGO-TiO2 (0.61% v/v
v/v methanol)	CO ₂)	v/v methanol)	methanol)
• 0.4915g for TiO_2 and	• 0.4891g of TiO ₂	• 0.5003g for TiO_2 and	• 0.1997g for TiO_2 and
0.4947g for IL-RGO-	• Pretreated (200°C)	0.4959 for IL-RGO-	0.2011 for IL-RGO-
TiO ₂ respectively	under helium for 2	TiO ₂ respectively	TiO ₂ respectively
• Pretreated (200°C)	hr.	• Pretreated (200°C)	• Pretreated (200°C)
under helium for 2	• Allowed to cool	under helium for 2	under helium for 2 hr.
hr.	down to room	hr.	Allowed to cool down
• Allowed to cool	temperature for 1 hr.	• Allowed to cool	to room temperature
down to room	• (99.99%)He flow	down to room	for 1 hr.
temperature for 1 hr.	through a H₂O	temperature for 1 hr.	• (99%) CO ₂ flow
• (99%) CO ₂ flow	(140mL)/methanol	• (99%) CO ₂ flow	through a H₂O
through a H₂O	(10mL) bath for 5	through a H₂O	(95mL)/methanol
(140mL)/methanol	min before batch	(95mL)/methanol	(5mL) bath for 1 hour
(10mL) bath for 5	mode (100mL/min)	(5mL) bath for 1 hour	before batch mode
min before batch	• methanol + H_2O +	before batch mode	(4mL/min)
mode (100mL/min)	Helium batch 10	(4mL/min)	• methanol + H_2O +
• methanol + H_2O +	min no light (2%v/v	• methanol + H_2O +	CO₂ batch 5 min no
CO2 batch 10 min no	${ m H_2O}$ and 97%v/v	CO₂ batch 5 min no	light (2.2%v/v H_2O
light (2.2%v/v H_2O	He)	light (2.2%v/v H_2O	and 96.2%v/v CO ₂)
and 96.2%v/v CO ₂)	• UV light (450 W)	and 96.2%v/v CO ₂)	• UV light (150 W)
• UV light (450 W)	• Quartz reactor	• UV light (450 W)	Quartz reactor
Quartz reactor	(100ml)	Quartz reactor	(100ml)
(100ml)		(100ml)	

The experiments performed to determine if a higher or lower reduction time as compared to the usual 24 hours used for the reduction of the IL-RGO would enhance the photocatalytic properties of the IL-RGO-TiO₂ are described in Table 7.

Table 7. Methodology of the experiments performed to analyze how different time periods for the reduction of IL-RGO will impact the photocatalytic performance of IL-RGO-TiO₂

IL-RGO-TiO ₂	IL-RGO-TiO ₂	IL-RGO-TiO ₂	IL-RGO-TiO ₂
IL-RGO (12	IL-RGO (24	IL-RGO (48	IL-RGO (62
hours reduction)	hours reduction)	hours reduction)	hours reduction)
• 0.1120g of IL-	• 0.1013g of IL-	• 0.1113g of IL-	• 0.1120g of IL-
RGO-TiO ₂	RGO-TiO ₂	RGO-TiO ₂	RGO-TiO ₂
• Room	• Room	• Room	• Room
temperature	temperature	temperature	temperature
(21 ⁰ C)	(21 ⁰ C)	(21 ⁰ C)	(21 ⁰ C)
• N_2 purge 60 min	• N ₂ purge 60 min	• N ₂ purge 60 min	• N ₂ purge 60 min
• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$
purge 15 min	purge 15 min	purge 15 min	purge 15 min
• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$	• $N_2 + H_2O + CO_2$
$(\sim 1\% v/v CO_2 and$	$(\sim 1\% v/v CO_2 and$	$(\sim 1\% v/v CO_2 and$	$(\sim 1\% v/v CO_2 and$
~2%v/v H ₂ O)	$\sim 2\% v/v H_2O)$	$\sim 2\% v/v H_2O)$	$\sim 2\% v/v H_2O)$
batch 5 min no	batch 5 min no	batch 5 min no	batch 5 min no
light	light	light	light
• UV light	• UV light	• UV light	• UV light
• Quartz reactor	Quartz reactor	Quartz reactor	Quartz reactor
(100ml)	(100ml)	(100ml)	(100ml)

The experiments performed to analyze the photocatalytic effect of the ionic liquid in the IL-RGO-TiO₂ for the conversion of CO_2 to fuels are described in Table 8.

Table 8. Methodology of the experiments performed to analyze how the ionic liquid will impact the photocatalytic performance of IL-RGO-TiO ₂			
IL-RGO-TiO ₂	RGO-TiO ₂		
• 0.1013g of IL-RGO-TiO ₂	• 0.1080g of RGO-TiO ₂		
• Room temperature (21°C)	• Room temperature (21°C)		
• N ₂ purge 60 min	 N₂ purge 60 min 		
• $N_2 + H_2O + CO_2$ purge 15 min	• $N_2 + H_2O + CO_2$ purge 15 min		
• $N_2 + H_2O + CO_2 (\sim 1\% v/v CO_2)$	• $N_2 + H_2O + CO_2 (\sim 1\% v/v CO_2)$		
and ~2%v/v H ₂ O) batch 5 min	and ~2%v/v H ₂ O) batch 5 min		
no light	no light		
• UV light	• UV light		
• Quartz reactor (100ml)	• Quartz reactor (100ml)		

The experiments performed to analyze how using different IL-RGO weight percentages in the IL-RGO-TiO₂ composite would impact the photocatalytic production of products are described in Table 9.

Table 9. Methodology of the experiments performed to analyze how different weight percentages of IL-RGO affect the photocatalytic performance of IL-RGO-TiO ₂				
IL-RGO(0.3 wt.%)-TiO ₂	IL-RGO(0.2 wt.%)-TiO ₂	IL-RGO(0.1 wt.%)-TiO2		
• 0.1054g of IL-RGO-TiO ₂	• 0.1113g of IL-RGO-TiO ₂	• 0.1119g of IL-RGO-TiO ₂		
Room temperature	Room temperature	Room temperature		
(21°C)	(21°C)	(21°C)		
• He purge 60 min	• He purge 60 min	• He purge 60 min		
• N_2 + H_2O + CO_2 purge 15	• N_2 + H_2O + CO_2 purge 15	• N_2 + H_2O + CO_2 purge 15		
min	min	min		
• $N_2 + H_2O + CO_2 (\sim 1\% v/v)$	• $N_2 + H_2O + CO_2 (\sim 1\% v/v)$	• $N_2 + H_2O + CO_2 (\sim 1\% v/v)$		
CO_2 and ~2%v/v H ₂ O)	CO_2 and ~2%v/v H ₂ O)	CO_2 and ~2%v/v H ₂ O)		
batch 5 min no light	batch 5 min no light	batch 5 min no light		
• UV light	• UV light	• UV light		
• Quartz reactor (100ml)	• Quartz reactor (100ml)	Quartz reactor (100ml)		

RESULTS AND DISCUSSION

Characterization Results

Raman spectroscopy was performed to characterize the graphite oxide and the IL-RGO-TiO₂ and results were plotted in Figure 10. The results show the existence of the "D" band and the "G" band. The G band corresponds to the sp² bonded carbon atoms and the D band corresponds to disordered sp³ bonded carbon atoms^[46]. The Raman spectra reveal shifts at~1354 cm⁻¹ and 1581 cm⁻¹ for the D and G bands of the graphite oxide. After the reduction of graphite oxide, the peaks moved to lower values of ~1345 cm⁻¹ and 1578 cm⁻¹ for the D and G bands. According to literature, the broadening of the G and D peaks suggest an oxidation of graphite^[46]. The relative intensity D/G band ratio is 1.032 for GO and the relative intensity D/G band ratio is 0.96 for IL-RGO-TiO₂. The D/G band intensity ratio decrease is indicative of the rebuilding of some sp² carbon structures^[48, 66]. The rebuilding of sp² carbon structures suggests a gain in conductivity^[67]. The virtually small D/G band intensity ratio decrease could be attributed to the attachment of the ionic liquid on the carbon layers, since the attachment of the ionic liquid might increase the D band intensity^[46].

X-ray photoelectron spectroscopy (XPS) characterization was performed to determine the chemical composition of GO, IL-RGO, and IL-RGO-TiO₂. The wide scan survey of graphite oxide (GO), IL-RGO, and IL-RGO-TiO₂ (Figures 11, 12, and 13) showed that the anticipated elements O and C for graphite oxide, O, C, and N for IL-RGO and O, C, N, and Ti for IL-RGO-TiO₂ were present in the catalysts.

The carbon peak is comprised of different binding configuration C=C, C-C, C=O, C-OH, and epoxide/ether, as displayed in Figures 14 and 15. Figures 14 and 15 also demonstrate the reduction of the epoxide/ether bonds, which occurred when GO was reacted with KOH and NH_2 -C₄mimCl in the presence of heat. An accompanying increase in the signals corresponding to C=C and C-C configurations (reduction of graphite oxide) occurred. In addition, Table 10 validates that the C/O ratio increased from 3.00 to 6.35 in the chemical process of converting from GO to IL-RGO. Thus, many oxygen groups on the GO disappeared; supporting the information that GO was reduced. Table 10 illustrates the expected result that the C/O ratio increased as the reduction time of IL-RGO increased due to the higher exposure time to heat^[68]. The difference in weight percent of IL-RGO also shows a difference in the atomic percent of carbon (Table 10).

The evidence of the N1s band at ~400 eV with a lower binding-energy shoulder at ~398 eV in the high resolution spectrum of IL-RGO and IL-RGO-TiO₂ (Figures 16 and 17) is in accordance with literature^[55]. The N1s band, together with the C-N peak at 286 eV in the high resolution XPS of C1s (Figure 15) confirms the presence of the amine functionalized ionic liquid (IL-NH₂) after all the catalysts were washed^[55]. The amount of ionic liquid in the (0.1 wt. % IL-RGO)-TiO₂ sample is so small that the instrument is not able to detect and quantify the N1 atomic percent from the amine group (Table 10).

31

Table 10. Atomic percent concentration obtained by X-rayphotoelectron spectroscopy (XPS)

Catalyst	Atomic %	Atomic %	Atomic %	Atomic %
	Ti 2p	C1	01	N1
RGO-TiO ₂	15.91	32.46	51.63	0
(0.1 wt.% IL-RGO)-TiO ₂	26.47	9.92	63.61	0
(0.2 wt.% IL-RGO)-TiO ₂	25.77	10.65	63.37	0.21
(0.3 wt.% IL-RGO)-TiO ₂	25.74	11.02	62.64	0.60
IL-RGO(reduced for 12 hours)-TiO ₂	25.01	14.08	60.32	0.59
IL-RGO(reduced for 24 hours)-TiO ₂	23.87	15.45	59.61	1.08
IL-RGO(reduced for 48 hours)-TiO ₂	21.43	21.11	55.96	1.50
IL-RGO(reduced for 62 hours)-TiO ₂	20.04	24.94	53.17	1.85
IL-RGO	0	80.73	12.72	6.55
GO	0	74.81	25.19	0

Figure 11. X-ray photoelectron spectroscopy (XPS) wide scan of graphite oxide (GO). The wide scan survey of GO showed the anticipated elements, which are oxygen and carbon

Figure 12. X-ray photoelectron spectroscopy (XPS) wide scan of the ionic liquid functionalized reduced graphite oxide (IL-RGO). The wide scan survey of the IL-RGO showed the anticipated elements, which are oxygen, carbon, and nitrogen

Figure 13. X-ray photoelectron spectroscopy (XPS) wide scan of the ionic liquid functionalized reduced graphite oxide-TiO₂ (IL-RGO-TiO₂). The wide scan survey of the IL-RGO-TiO₂ showed the anticipated elements, which are oxygen, carbon, nitrogen, and titanium

Figure 14. X-ray photoelectron spectroscopy (XPS) high resolution spectrum of C1s in graphite oxide (GO). The high resolution spectrum of C1 in GO showed that the carbon peak is comprised of different binding configurations C=C, C-C, C=O, C-OH, and epoxide/ether

Figure 15. X-ray photoelectron spectroscopy (XPS) high resolution spectrum of C1s in the ionic liquid functionalized reduced graphite oxide (IL-RGO). The high resolution spectrum of C1 in the IL-RGO demonstrated the reduction of the epoxide/ether bonds, which occurred when GO was reacted with KOH and NH₂-C₄mimCl in the presence of heat

Figure 16. X-ray photoelectron spectroscopy (XPS) high resolution spectrum of N1s in the ionic liquid functionalized reduced graphite oxide (IL-RGO). The high resolution spectrum of N1 in IL-RGO confirms the presence of the ionic liquid (IL-NH₂)

Figure 17. X-ray photoelectron spectroscopy (XPS) high resolution spectrum of N1s in the ionic liquid functionalized reduced graphite oxide-TiO₂ (IL-RGO-TiO₂). The high resolution spectrum of N1 in IL-RGO-TiO₂ confirms the presence of the ionic liquid (IL-NH₂) after the catalyst was washed

UV-vis absorbance spectra of the synthesized RGO-TiO₂, IL-RGO-TiO₂ catalysts, and commercial TiO₂ were acquired. The results are presented in Figures 18, 19, 20, and 21. All of the absorption edges for the catalyst overlap with commercial TiO₂. Thus, there was not a significant change in the bandgap energy for the catalysts, which is consistent with literature^[69].

Figure 18. UV-vis absorbance spectra for all IL-RGO-TiO₂, commercial TiO₂, and RGO-TiO₂ composites

Figure 19. UV-vis absorbance spectra for IL-RGO-TiO₂, commercial TiO₂, and RGO-TiO₂

Figure 20. UV-vis absorbance spectra for IL-RGO-TiO₂ with different weight percentages

Figure 21. UV-vis absorbance spectra for IL-RGO-TiO₂ samples where the IL-RGO was reduced for different periods of time

Table 11 illustrates the estimated bandgap energy values for all of the catalyst that were synthesized. Estimated bandgap energies were found by recording the cut off wavelength (λ), which is the point where the absorbance value is minimum, and the equation described in Table 11 [70-72]. The results indicate that the commercial TiO₂ bandgap energy is about 3.05 eV whereas the IL-RGO-TiO₂ and RGO-TiO₂ bandgap energies indicate slightly larger values ranging between 3.08eV-3.19eV, however still an insignificant change when compared to the bandgap energy of commercial TiO₂. As mentioned earlier in this document, all the bandgap energies are about the same since the absorption edge overlaps. The overlap of the absorption edge has to do with the color of the catalyst (light gray for IL-RGO-TiO₂ and dark gray for RGO-TiO₂), size of the particles and defects on the surface^[70, 73].

Table 11. Estimated bandgap energies for each of the

catalysts					
Catalyst	λ = Cut off	Bandgap			
	wavelength	energy ^A			
	(m)	(eV)			
RGO-TiO ₂	3.90E-07	3.19			
(0.1 wt.% IL-RGO)-TiO ₂	4.04E-07	3.08			
(0.2 wt.% IL-RGO)-TiO ₂	4.03E-07	3.08			
(0.3 wt.% IL-RGO)-TiO ₂	4.01E-07	3.10			
IL-RGO(reduced for 12 hours)-TiO ₂	3.92E-07	3.17			
IL-RGO(reduced for 24 hours)-TiO ₂	3.93E-07	3.16			
IL-RGO(reduced for 48 hours)-TiO ₂	3.99E-07	3.11			
IL-RGO(reduced for 62 hours)-TiO ₂	3.99E-07	3.11			
TiO ₂	4.07E-07	3.05			

^A The value of the bandgap energy (E) was calculated using the equation (E) =
h*C/λ. Planks constant (h) = 6.626 x 10 ⁻³⁴ Joules.sec and speed of light (C) =
3.0x10 ⁸ meter/sec. Where 1eV = 1.6X10 ⁻¹⁹ joules (conversion factor)

Brunauer–Emmett–Teller (BET) results are presented in Table 12. Table 12 demonstrates that there was a surface area increase by modifying TiO₂ with the IL-RGO. The surface area data establishes an almost insignificant change when using different weight percentages of IL-RGO ranging from 0.1-0.3 wt. %, however there is a significant variation in surface area when the reduction time of IL-RGO increases. The reduction time of 48 hours seems to represent the point at which the surface area (58.6 ± 3.0 m²/g) is at its highest, and then the surface area decreases, meaning that a possible ionic liquid decomposition is occurring leading to a carbon to carbon sheet recombination (graphite particles are being created). The carbon sheet recombination should decrease the conductivity of the material, which represents a negative effect in the photocatalytic properties of the catalyst. During the washing step of the synthesis of RGO-TiO₂, there was a significant amount of TiO₂ lost. On the other hand, when synthesizing the IL-RGO-TiO₂ there was an insignificant amount of TiO₂ lost, thus the reason for the higher surface area of RGO-TiO₂ (63.5 ± 3.3m²/g) as compared to any of the other catalyst used was due to the much higher amount of RGO in the catalyst.

Table 12. Brunauer–Emmett–Teller (BET) surface area results				
Catalyst	BET, surface area (m²/g)			
RGO-TiO ₂	63.5 ±3.3			
(0.1 wt.% IL-RGO)-TiO ₂	59.7 ±3.0			
(0.2 wt.% IL-RGO)-TiO ₂	58.8 ±3.0			
(0.3 wt.% IL-RGO)-TiO ₂	58.4 ±3.0			
IL-RGO(reduced for 12 hours)-TiO ₂	48.8 ±2.0			
IL-RGO(reduced for 24 hours)-TiO ₂	53.6 ±2.0			
IL-RGO(reduced for 48 hours)-TiO ₂	58.6 ±3.0			
IL-RGO(reduced for 62 hours)-TiO ₂	54.8 ±2.0			
TiO ₂	45.7 ±2.0			

Photocatalysis Results

<u>Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using an</u> <u>Ionic liquid Reduced Graphite Oxide-TiO₂ (IL-RGO-TiO₂) Composite versus Commercial</u> <u>TiO₂</u>

Initial experiments were conducted to test the hypothesis that modifying TiO_2 with a highly conductive material like IL-RGO enhances the formation of products. Researchers have hypothesized that pretreatment of TiO_2 at high temperatures creates oxygen vacancies that enhances CO_2 reduction^[32]. Thus, some of the commercial TiO_2 and IL-RGO-TiO₂ catalysts were pretreated in an effort to improve the production of products by creating oxygen vacancies in the TiO_2 . The production of CO from the photocatalytic reduction of CO_2 in the presence of H_2O using untreated and pretreated IL-RGO-TiO₂ and TiO_2 is presented in Figure 22.

Figure 22. Carbon monoxide results from the photocatalytic conversion of carbon dioxide in the presence of water vapor over various untreated and pretreated IL-RGO-TiO₂ and TiO₂ catalysts, \pm 1.87% error of the value

Carbon monoxide and CH_4 were the principal products formed and detected by the GC. The results of the CO production clearly showed that IL-RGO-TiO₂ (pretreated and untreated) had a higher photocatalytic CO production as compared to commercial TiO₂ (pretreated and untreated) over 90 minutes of UV light irradiation. The highest production observed was 0.41 µmol(g_{catalyst}-hour)⁻¹ for IL-RGO-TiO₂ pretreated at 200°C and 0.18 µmol(g_{catalyst}-hour)⁻¹ for commercial TiO₂ pretreated at 200°C.

It was clear that photocatalytic reactions occurred more efficiently when the catalyst was pretreated at high temperatures. The higher CO production using IL-RGO-TiO₂ versus commercial TiO₂ could be attributed to three factors: oxygen vacancies generated on the TiO₂ surface by the pretreatment, the CO₂ attraction properties of the ionic liquid and the conductive properties of the RGO. No CO product was detected in the absence of the catalysts, meaning that the reactor was clean and that the reaction could not be initiated without the catalyst. No CO product was detected under dark conditions, signifying that the CO was produced through reaction that was initiated by UV light illumination. There was also no production of CO when running the same experiment in the absence of CO_2 or H_2O as the reactant. Thus, CO was produced by CO_2 conversion.

The results also indicated trace production of CH_4 for all of the catalysts. Based on the results, an untreated IL-RGO-TiO₂ (0.019 µmol($g_{catalyst}$ -hour)⁻¹) seemed to be a superior photocatalyst for the production of CH_4 as compared to 200°C pretreated IL-RGO-TiO₂ (0.010 µmol($g_{catalyst}$ -hour)⁻¹), 120°C pretreated IL-RGO-TiO₂ (0.010 µmol($g_{catalyst}$ -hour)⁻¹) and 200°C pretreated TiO₂ (0.009 µmol($g_{catalyst}$ -hour)⁻¹). The small production of CH_4 could be attributed to different phenomena. Since CO is also a precursor for CH_4 formation, the amount of CH_4 produced could have been limited by the amount of CO produced. Finally, it is possible that a hole scavenger was needed in order to have more electrons available for the hypothesized eight electron reaction that may be needed to convert CO_2 and H_2O to CH_4 (as compared to the two electron reaction that is hypothesized for CO production).

<u>Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor and</u> <u>Methanol as a Hole Scavenger Using an Ionic Liquid Reduced Graphite Oxide-TiO₂ (IL-RGO-TiO₂) Composite and Commercial TiO₂</u>

Researchers have hypothesized that a hole scavenger such as methanol enhances the production of products by inhibiting electro/hole recombination^[74]. Thus, a similar approach was undertaken to enhance CO_2 photocatalytic reduction to fuels. The production results of CO from the conversion of CO_2 in the presence of H₂O and methanol over various pretreated (200°C) IL-RGO-TiO₂ and TiO₂ catalysts are presented in Figure 23.

Figure 23. Carbon monoxide results from the photocatalytic conversion of carbon dioxide in the presence of water vapor and methanol as a hole scavenger over various pretreated (200°C) IL-RGO-TiO₂ and TiO₂ catalysts, ± 1.87% error of the value.

Carbon monoxide and CH_4 were the principal products formed and detected by the GC. The results indicated that (0.2g) IL-RGO-TiO₂ (0.61%v/v methanol) and (0.5g) TiO₂ (0.84%v/v methanol) revealed a CO production of 1.41 and 1.02 µmol(g_{catalyst}-hour)⁻¹ respectively over 350 minutes of irradiation. The results for IL-RGO-TiO₂ reached its highest production faster as compared to commercial TiO₂, which represent the higher availability of holes in the IL-RGO-TiO₂ catalyst. The production rate was taken at the point in which the respective experiment revealed the higher CO production.

To verify the source of the CO that formed, a background experiment with just helium flowing through H₂O and methanol was performed. The product concentration data for these experiments indicated that the principal source of the CO was the oxidation of methanol. This conclusion was further reinforced because of the increase that was appreciated in the CO₂ concentration upon irradiation. Carbon dioxide is a byproduct of a methanol oxidation reaction.

The idea of adding the hole scavenger (methanol) was to increase the production of CH₄, but that did not happened. The higher production of CH₄ observed in the experiments was only 0.010 μ mol(g_{catalyst}-hour)⁻¹ for (0.2g) IL-RGO-TiO₂ (0.61%v/v methanol) and 0.009 μ mol(g_{catalyst}-hour)⁻¹ for (0.2g) TiO₂ (0.61%v/v methanol) after 350 minutes of UV light irradiation. The small production of CH₄ could be attributed to different phenomena. Since CO is a precursor for CH₄ formation, the amount of CH₄ produced could have been limited by the amount of CO produced. Any CH₄ that was produced could also have undergone a secondary reaction where it was rapidly oxidized to CO and CO₂. Materials manufacturing issues may also have played a role. Specifically the conductivity of the IL-RGO may not have been high enough to inhibit electron/hole recombination, thus a longer IL-RGO reduction time may have been needed in order to gain conductivity. Alternatively, the reduction time of IL-RGO was excessive, thus leading to a decrease in interlayer spacing. This would make it difficult for the TiO₂ to deposit within the surface layers of the IL-RGO, thus adversely affecting charge separation for the production of CH₄. <u>Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using the</u> <u>Ionic Liquid Reduced Graphite Oxide-TiO₂ (IL-RGO-TiO₂) Composite Containing IL-</u> <u>RGO Reduced for Different Periods of Time</u>

It was hypothesized that reducing the IL-RGO for different periods of time would enhance the photocatalytic properties of the IL-RGO-TiO₂ composite for the photocataytic reduction of CO₂ to fuels in the presence of H₂O. There was a possibility that 24 hours was not enough time to gain conductivity high enough to inhibit electron/hole recombination. Alternatively, there was a possibility that reducing the IL-RGO for 24 hours was an excessive time leading to a decrease in interlayer space that made it difficult for the TiO₂ to deposit on the surface of the IL-RGO, thus adversely affecting charge separation for the production of products. Thus, IL-RGO-TiO₂ composites were synthesized having IL-RGO reduced for 12, 48 and 62 hours. The production of CO from the photocatalytic reduction of CO₂ in the presence of H₂O using untreated IL-RGO-TiO₂ composites containing IL-RGO reduced at different periods of time are presented in Figure 24. As previously described, the experiments were conducted in a batch reactor.

Figure 24. Carbon monoxide results from the photocatalytic conversion of carbon dioxide in the presence of water vapor over various untreated IL-RGO-TiO₂ catalysts with the IL-RGO reduced at different periods of time, \pm 1.87% error of the value

Carbon monoxide and CH_4 were the principal products formed and detected by the GC. There was a slightly higher production of 0.65 µmol($g_{catalyst}$ -hour)⁻¹ of CO at about 157 minutes of irradiation by using an IL-RGO reduced for 12 hours, but in general there were no significant differences. The rest of the catalysts exhibited a production rate of about 0.50 µmol($g_{catalyst}$ -hour)⁻¹ after 150 minutes of irradiation. The results presented a maximum value that started to occur after 100 minutes of irradiation. The maximum value could represent a couple of things: (a) one of the reactants was limited in concentration, or (b) CO was consumed rapidly after being formed. No CO product was detected in the absence of the catalysts, indicating that the reactor was clean and that the reaction could not be initiated without the catalyst. Carbon monoxide was not detected under dark conditions, i.e. the absence of UV light illumination. There was no production of CO when running the same experiment in the absence of CO₂ or H₂O. Thus, CO was produced by CO₂ photocatalytic reaction.

The results also indicated trace production of CH_4 for all of the catalysts. Methane production seemed to reach its highest point very rapidly. Based on these results an IL-RGO (GO reduced for 12 hours)-TiO₂ catalyst basically had the same CH_4 production rate (0.040 µmol($g_{catalyst}$ -hour)⁻¹) as compared to IL-RGO (GO reduced for 62 hours-TiO₂ (0.035 µmol($g_{catalyst}$ -hour)⁻¹). The CH_4 production was negligible in all experiments, suggesting that a change in the IL-RGO reduction times did not have an appreciable effect on CH_4 formation. The small production of CH_4 could be attributed to different phenomena. Since CO is also a precursor for CH_4 formation, the amount of CH_4 produced could have been limited by the amount of CO produced. Finally, there was a possibility that the attachment of the ionic liquid was negatively affecting the conductivity of the RGO, thus not enough electrons were available for CO_2 reduction. <u>Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using an</u> <u>Ionic Liquid Reduced Graphite Oxide-TiO₂ (IL-RGO-TiO₂) Composite and a Reduced</u> Graphite Oxide-TiO₂ (RGO-TiO₂) Composite

A set of experiments were conducted to test if the attachment of the ionic liquid to the reduced graphite oxide negatively affects the photocatalytic formation of products when using IL-RGO-TiO₂ for the photocatalytic reduction of CO_2 in the presence of H₂O. The production of CO from the photocatalytic reduction of CO_2 in the presence of H₂O using untreated IL-RGO-TiO₂ and RGO-TiO₂ are presented in Figure 25.

Figure 25. Carbon monoxide results from the photocatalytic conversion of carbon dioxide in the presence of water vapor over untreated IL-RGO-TiO₂ and RGO-TiO₂, \pm 1.87% error of the value

Carbon monoxide and CH_4 were the principal products formed and detected by the GC. It was clear that there was a superior production of CO (0.72µmol(g_{catalyst}-hour)⁻¹) when using an IL-RGO-TiO₂ composite as compared to using RGO-TiO₂ (0.30 µmol(g_{catalyst}-hour)⁻¹). Furthermore, the production of CO when using IL-RGO-TiO₂ occurred faster as compared to RGO-TiO₂. The fact that it took at least 20 minutes for the CO to start producing when using IL-RGO-TiO₂ represents a potential condition in which a compound that was not detected by the current GC, e.g. HCOOH, decomposed to CO. The higher and faster production of CO when using IL-RGO-TiO₂ could be due to the properties of the ionic liquid. The ionic liquid would help to attract the CO₂ to the surface of the catalyst. Thus, there will be more CO₂ molecules to react with the excited electrons resulting in higher and faster amounts of products as compared to just RGO-TiO₂. No CO product was detected in the absence of the catalysts, meaning that the reactor was clean and that the reaction could not initiate without the catalyst. No CO product was detected under dark conditions, meaning that it was only produced catalytically under UV light illumination. There was also no production of CO when running the same experiment in the absence of CO₂ or H₂O. Thus, CO was produced only by CO₂ conversion.

The results also indicated trace production of CH_4 for both of the catalysts, however it seemed to reach its maximum production very rapidly. Results demonstrated that an IL-RGO-TiO₂ and RGO-TiO₂ had the same production of 0.02μ mol(g_{catalyst}-hour)⁻¹ of CH_4 . The CH_4 production was minor in both experiments meaning the production of CH_4 was not being restricted by the attachment of the ionic liquid to the reduced graphite oxide. The small production of CH_4 could be attributed to different phenomena. Since CO is also a precursor for CH_4 formation, the amount of CH_4 produced could have been limited by the amount of CO produced. Also, the amount of IL-RGO in the IL-RGO-TiO₂ was probably too much, and since the theoretical conductivity of IL-RGO is so high most of the electrons were held by the IL-RGO, rather than allowing them to react with the CO_2 . <u>Photocatalytic Reduction of Carbon Dioxide in the Presence of Water Vapor Using an</u> <u>Ionic Liquid Reduced Graphite Oxide-TiO₂ (IL-RGO-TiO₂) Composite With 0.3, 0.2, and</u> <u>0.1 Weight Percent of IL-RGO</u>

Experiments were conducted to determine if decreasing the amount of IL-RGO from ~2-5 weight percent to 0.1-0.3 weight percent in the IL-RGO-TiO₂ composite would enhance the photocatalytic production of products. The indicated hypothesis was tested because previous work suggests that a high concentration of the conductive material might be counterproductive for CO₂ photocatalytic reduction experiments, since too much of a conductive material might hold onto the electrons due to the absorbance of the RGO ^[48, 75]. The production of CO from the photocatalytic reduction of CO₂ in the presence of H₂O using different IL-RGO weight percentages in the IL-RGO-TiO₂ composite are presented in Figures 26.

Carbon monoxide and CH_4 were the principal products formed and detected by the GC. The results showed insignificant CO photocatalytic production difference when comparing different low weight percentages (0.1, 0.2, and 0.3 wt. %) of IL-RGO in the IL-RGO-TiO₂ catalysts. The data illustrated that low levels of IL-RGO in the IL-RGO-TiO₂ material could decrease the product formation potential since less than 0.2 wt. % of IL-RGO did not present enough ionic liquid (as seen with the XPS data) to enhance the photocatalytic activity of the catalyst. The highest production of CO was 0.91 μ mol(g_{catalyst}-hour)⁻¹ obtained when using 0.3 wt. % IL-RGO-TiO₂. The catalysts containing 0.2 wt. % and 0.1 wt. % IL-RGO resulted in a production of 0.72 and 0.60 μ mol(g_{catalyst}-hour)⁻¹, respectively. No CO product was detected in the absence of the catalysts, meaning that the reactor was clean and that the reaction could not be initiated without the catalyst. No CO products were detected under dark conditions or in the absence of CO₂ and H₂O, thus indicating that CO was produced by CO₂ photoinduced catalytic conversion in the presence of H₂O.

The results in Figure 26 illustrated a plateau that starts to occur after 30 minutes of irradiation. The plateau signifies that a steady state production level was reached.

The results also indicated trace production of CH_4 for all of the catalysts, however it seemed to reach its highest point very rapidly. Results showed that there was a production of about 0.026 µmol(g_{catalyst}-hour)⁻¹ of CH_4 for all the catalyst. The CH_4 production was insignificant in these experiments, indicating that the production of CH_4 was not being restricted by the content of 1-3 wt. % IL-RGO. The small production of CH_4 could be attributed to different phenomena. Since CO is also precursor for CH_4 formation, the amount of CH_4 produced was limited by the CO produced. Another reason could be that not enough electrons were available for CO_2 conversion to CH_4 .

53

CONCLUSIONS AND RECOMMENDATIONS

The photocatalytic activity for the reduction of CO_2 over a new carbon/semiconductor material in the presence of H_2O was investigated using a gas chromatograph (GC). The new photocatalytic material was a blend of a highly conductive surface (ionic liquid functionalized reduced graphite oxide (IL-RGO)) and a photocatalyst (TiO₂). The synthesis of the IL-RGO-TiO₂ was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). An increase in surface area when modifying TiO₂ with the IL-RGO was confirmed by Brunauer–Emmett–Teller (BET) characterization. The estimated bandgap energies were examined using UV-vis absorbance spectra data. Gas chromatography results indicate that the ionic liquid functionalized reduced graphite oxide-TiO₂ composite was able to produced CO from the photocatalytic reduction of CO₂ in the presence of H₂O, but was unable to produce significant amounts of CH₄.

The IL-RGO-TiO₂ composite led to twice the production of CO from CO₂ conversion in comparison to unmodified TiO₂. The introduction of a commonly known hole scavenger such as methanol did not enhance the photocatalytic production of CH₄, but it did produce more CO as compared to any experiment conducted due to the oxidation of methanol. Different reduction times (during the reduction of graphite oxide step) of the IL-RGO did not have a significant impact on the photocatalytic production of CO and/or CH₄. It was demonstrated that there was twice CO production using ionic IL-RGO-TiO₂ as compared to RGO-TiO₂. This phenomenon was likely due to the enhanced attraction of CO₂ on the surface of the catalyst. However, the CH₄ production was about the same for both catalysts. The modification of different low IL-RGO weight percentages in the IL-RGO-TiO₂ composite did not lead to a substantial increase in CO or CH_4 production. The maximum formation of products in each set of experiments is

presented in Table 13.

Table 13: Major results obtained in the conversion of CO₂ in the presence of water over selected catalytic materials						
Experiment	Catalyst	Pretreatment	Product	Product production		
name		conditions	formed	µmol(g _{catalyst} -hour)-1		
IL-RGO-TiO ₂	IL-RGO-TiO ₂			0.41		
versus		200 °C	CO			
unmodified	TiO ₂			0.18		
IIO_2	IL_RCO_TIO	Untrooted		0.010		
$\frac{11-100-110_2}{10}$	$11-R60-110_2$	Uniteateu		0.019		
unmodified			CH₄			
TiO ₂	TiO ₂	200 °C	Т	0.010		
Methanol	IL-RGO-TiO ₂			1.41		
oxidation	-	200 °C	CO			
	TiO ₂			1.02		
Methanol	IL-RGO-TiO ₂	~		0.010		
oxidation	TO	200 °C	CH_4			
H DGO	110 ₂			0.009		
IL-KGO	IL- DCO(reduced					
reduced at	KGO(reduced	Untroated	CO	0.65		
times	12 fiburs	Uniteateu	0	0.05		
II -RGO	110 ₂ II -					
reduced at	RGO(reduced					
different	12 hours)-	Untreated	CH	0.04		
times	TiO ₂		4			
IL-RGO-TiO ₂	IL-RGO-TiO ₂			0.72		
versus RGO-		Untreated	CO	,		
TiO ₂	RGO-TiO ₂			0.30		
IL-RGO-TiO ₂	IL-RGO-TiO ₂			0.02		
versus RGO-		Untreated	CH_4			
TiO ₂	$RGO-TiO_2$			0.02		
Different	IL-					
amounts of	RGO(0.3wt%)	TT 1	G O			
IL-RGO	-110 ₂	Untreated	CO	0.91		
Different	$\frac{\text{IL}}{\text{PCO}(a \approx \pm 0.0)}$					
amounts of	KGU(0.3WT%)	Untrooted	CU	0.006		
IL-KGU	-11O ₂	Untreated	CH_4	0.020		

The work described demonstrates that an IL-RGO-TiO₂ is a novel and effective catalyst that boosts the production of CO in comparison to commercial TiO₂, due to the enhanced electron-hole separation and CO₂ attraction properties. In contrast, CH₄ production was not increased. XPS data reveal that all the catalysts had more than 1 atomic percent of carbon. Previous work suggests that an atomic concentration higher than 1 percent might be counterproductive for CO₂ photocatalytic reduction experiments, as too much of a conductive material might capture or hold onto the electrons due to the absorbance of the RGO^[48, 75].

The chemical properties of this novel catalyst, the theoretical negligible environmental impact of the IL-RGO-TiO₂, and the results obtained suggest that there is a lot more photocatalytic potential to investigate, which could be the beginning of exceptional results for CO_2 photocatalytic reduction to higher value products. As mentioned earlier, Ti-based catalysts have shown promising results for CO_2 photocatalytic reduction, but the results still show low production amounts of the desired products (e.g. CH_4). Thus, the expansion to carbon nano-materials and ionic liquids to help enhance fuel production might be the next step that scientists could take.

Recommendations for future work are listed below.

- Determine the conductivity of the IL-RGO. This will help to understand if the low production of photocatalytic products was due to unavailability of electrons for CO₂ reduction.
- 2. Determine the effect of the temperature used during the synthesis process on the hydrophobic and hydrophilic properties of the RGO. Past studies suggest that since GO and TiO₂ are hydrophilic whereas RGO is hydrophobic, as the reduction of GO increases the binding of IL-RGO and TiO₂ might be more

difficult^[46]. Thus, producing a negative effect for charge separation within the IL-RGO-TiO₂ catalysts^[46]. The results could help to understand if a different temperature is needed during the synthesis of the catalyst.

3. Determine the reaction mechanism of which the CO and CH_4 in this document were produced. This will help to understand if a potential condition in which a compound that was not detected by the current GC, e.g. HCOOH, decomposed to CO.

REFERENCES

[1] in Inventory of U.S. Greenhouse Gas Emissions and Sinks, Vol. (Ed.[^]Eds.: Editor), City, **1990-2012**.

[2] in Annual Energy Outlook 2013 with Projections to 2040, Vol. (Ed.^Eds.: Editor), City, **2013**.

[3] in Annual Energy Outlook 2014 Early Release Overview, Vol. (Ed.[^]Eds.: Editor), City, **2014**.

[4] in Advancing the Science of Climate Change, Vol. (Ed.^Eds.: Editor), National Research Council. The National Academies Press, City, **2012**.

[5] in Annual Energy Review 2011, Vol. (Ed.^Eds.: Editor), City, 2012.

[6] in Inventory of U.S. greenhouse Gas Emissions and Sinks, Vol. (Ed.[^]Eds.: Editor), City, **1990-2011**.

[7] S. B. Wang, G. Q. M. Lu, G. J. Millar Energy & Fuels. 1996, 10, 896-904.

[8] G. Centi, S. Perathoner *Catalysis Today*. **2009**, 148, 191-205.

[9] C. S. Song Catalysis Today. **2006**, 115, 2-32.

[10] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C. P. Kubiak *Annual Review of Physical Chemistry, Vol 63.* **2012**, 63, 541-+.

[11] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes Acs Nano. 2010, 4, 1259-1278.

[12] N. Serpone, E. Pelizzetti, photocatalysis fundamentals and applications, Wiley publishers, **1989**.

[13] U. I. Gaya, A. H. Abdullah *Journal of Photochemistry and Photobiology C-Photochemistry Reviews*. **2008**, 9, 1-12.

[14] D. S. Bhatkhande, V. G. Pangarkar, A. Beenackers *Journal of Chemical Technology and Biotechnology*. **2002**, *77*, 102-116.

[15] F. Sastre, A. Corma, H. Garcia *Journal of the American Chemical Society*. **2012**, 134, 14137-14141.

[16] R. de Richter, S. Caillol *Journal of Photochemistry and Photobiology C-Photochemistry Reviews*. **2011**, 12, 1-19.

[17] E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja *Chemical Society Reviews*. **2009**, 38, 89-99.

[18] L. Zhu, G. Shao, J. K. Luo Semiconductor Science and Technology. 2011, 26.

[19] K. Ikeue, H. Yamashita, M. Anpo *Electrochemistry*. **2002**, *7*0, 402-408.

[20] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda *Journal of Physical Chemistry B.* **1997**, 101, 2632-2636.

[21] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi *Catalysis Today*. **1998**, 44, 327-332.

[22] K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo Catalysis Letters. 2002, 80, 111-114.

[23] I. Keita, S. Nozaki, M. Ogawa, M. Anpo *Catalysis Today*. 2002, 74, 241-248.

[24] Y. Shioya, K. Ikeue, M. Ogawa, M. Anpo *Applied Catalysis a-General.* **2003**, 254, 251-259.

[25] T. Inoue, A. Fujishima, S. Konishi, K. Honda Nature. 1979, 277, 637-638.

[26] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy *Renewable & Sustainable Energy Reviews*. **2007**, 11, 401-425.

[27] K. Hashimoto, H. Irie, A. Fujishima Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers. **2005**, 44, 8269-8285.

[28] A. Heciak, A. W. Morawski, B. Grzmil, S. Mozia *Applied Catalysis B-Environmental.* **2013**, 140, 108-114.

[29] F. Akira, T. N, D. Rao, T. A Journal of Photochemistry and Photobiology. 2000.

[30] U. Diebold Surface Science Reports. 2003, 48, 53-229.

[31] M. Landmann, E. Rauls, W. G. Schmidt *Journal of Physics-Condensed Matter*. **2012**, 24.

[32] M. M. Rodriguez, X. H. Peng, L. J. Liu, Y. Li, J. M. Andino *Journal of Physical Chemistry C.* **2012**, 116, 19755-19764.

[33] M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara *Journal of Electroanalytical Chemistry*. **1995**, 396, 21-26.

[34] F. Saladin, L. Forss, I. Kamber *Journal of the Chemical Society-Chemical Communications*. **1995**, 533-534.

[35] K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova *Applied Catalysis B-Environmental*. **2009**, 89, 494-502.

[36] G. H. Li, K. A. Gray Chemical Physics. 2007, 339, 173-187.

[37] G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston, A. Felmy, D. W. Goodman, M. Gratzel, G. Maciel, M. I. McCarthy, K. H. Nealson, D. A. Sverjensky, M. F. Toney, J. M. Zachara *Chemical Reviews*. **1999**, 99, 77-174.

[38] J. Mao, K. Li, T. Y. Peng Catalysis Science & Technology. 2013, 3, 2481-2498.

[39] S. Teshome, R. Slva, C. Subrahmanyam *International Research Journal & Applied Chemistry*. **2011**.

[40] Z. Adriana *Recent Patents on Engineering*. **2008**.

[41] Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam *Nano Letters*. **2011**, 11, 2865-2870.

[42] D. H. Yoo, V. C. Tran, V. H. Pham, J. S. Chung, N. T. Khoa, E. J. Kim, S. H. Hahn *Current Applied Physics*. **2011**, 11, 805-808.

[43] A. Adan-Mas, D. Wei Nanomaterials. 2013.

[44] T. Kuilla, S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, J. H. Lee *Progress in Polymer Science*. **2010**, 35, 1350-1375.

[45] A. C. Neto, F. Guinea, N. M. R. Peres Physics World. 2006, 19, 33-37.

[46] N. J. Bell, H. N. Yun, A. J. Du, H. Coster, S. C. Smith, R. Amal *Journal of Physical Chemistry C.* **2011**, 115, 6004-6009.

[47] Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, P. V. Kamat *Journal of Physical Chemistry Letters*. **2010**, 1, 2222-2227.

[48] W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou Advanced Functional Materials. **2013**, 23, 1743-1749.

[49] W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou *Advanced Functional Materials*. **2012**, 22, 1215-1221.

[50] Y. T. Liang, B. K. Vijayan, O. Lyandres, K. A. Gray, M. C. Hersam *Journal of Physical Chemistry Letters*. **2012**, 3, 1760-1765.

[51] W. J. Ong, M. M. Gui, S. P. Chai, A. R. Mohamed *Rsc Advances*. **2013**, 3, 4505-4509.

[52] X.-H. Xia, Z.-H. Jia, Y. Yu, Y. Liang, Z. Wang, L.-L. Ma Carbon. 2007, 45, 717-721.

[53] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, A. D. Gorchinskiy *Chemistry of Materials*. **1999**, 11, 771-778.

[54] W. S. Hummers, R. E. Offeman *Journal of the American Chemical Society*. **1958**, 80, 1339-1339.

[55] H. F. Yang, C. S. Shan, F. H. Li, D. X. Han, Q. X. Zhang, L. Niu *Chemical Communications*. **2009**, 3880-3882.

[56] B. Y. Dai, L. Fu, L. Liao, N. Liu, K. Yan, Y. S. Chen, Z. F. Liu *Nano Research*. **2011**, 4, 434-439.

[57] M. Ramdin, T. W. de Loos, T. J. H. Vlugt *Industrial & Engineering Chemistry Research.* **2012**, 51, 8149-8177.

[58] T. T. Gao, J. M. Andino, J. R. Alvarez-Idaboy *Physical Chemistry Chemical Physics*. **2010**, 12, 9830-9838.

[59] J. F. Shen, M. Shi, B. Yan, H. W. Ma, N. Li, M. X. Ye *Nano Research*. **2011**, 4, 795-806.

[60] M. Halmann, V. Katzir, E. Borgarello, J. Kiwi *Solar Energy Materials*. **1984**, 10, 85-91.

[61] K. Adachi, K. Ohta, T. Mizuno Solar Energy. 1994, 53, 187-190.

[62] K. R. Thampi, J. Kiwi, M. Gratzel Nature. 1987, 327, 506-508.

[63] Z. Goren, I. Willner, A. J. Nelson, A. J. Frank *Journal of Physical Chemistry*. **1990**, 94, 3784-3790.

[64] in Operating Parameters for the Thermal Conductivity Detector in Varian 3800 and 3900 Gas Chromatographs, Vol. (Ed. ^Eds.: Editor), Lotus flower, City, **2007**.

[65] in Analytical Laboratories Applications:GC with Flame Ionization Detector Vol. (Ed.^Eds.: Editor), Air products and chemicals, City, **2012**.

[66] T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, D. L. Huber *Journal of Physical Chemistry C*. **2009**, 113, 19812-19823.

[67] O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar *Journal of Physical Chemistry C.* **2010**, 114, 12955-12959.

[68] S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park, H. Lee *Scientific Reports*. **2013**, 3.

[69] B. Li, X. T. Zhang, X. H. Li, L. Wang, R. Y. Han, B. B. Liu, W. T. Zheng, X. L. Li, Y. C. Liu *Chemical Communications*. **2010**, 46, 3499-3501.

[70] V. Stengl, S. Bakardjieva, T. M. Grygar, J. Bludska, M. Kormunda *Chemistry Central Journal.* **2013**, *7*.

[71] A. B. Murphy Solar Energy Materials and Solar Cells. 2007, 91, 1326-1337.

[72] S. U. M. Khan, M. Al-Shahry, W. B. Ingler Science. 2002, 297, 2243-2245.

[73] Q. Y. Zhang, T. T. Gao, J. M. Andino, Y. Li *Applied Catalysis B-Environmental*. **2012**, 123, 257-264.

[74] L. Liu, D. Pitts T, H. Zhao, C. Zhao, Y. Li in Silver- incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with wate in the presence of methanol, Vol. (Ed.^Eds.: Editor), Applied Catalyst, City, **2013**.

[75] Q. Zhang, T. Gao, J. M. Andino, Y. Li *Applied Catalysis B-Environmental.* **2012**, 123, 257-264.

APPENDIX

DATA COLLECTED 2012-2014

The process for operating the gas chromatographs was as follows. When starting the GC, a few runs using just the carrier gases were performed to clean the columns. Once the experiment in the photoreactor was ready and free of leaks, samples were taken manually from the septum port located in the top of the photoreactor using a 0.5mL Hamilton gas tight syringe. The syringe was previously flushed with an inert gas (N₂ or He) in order to eliminate any contamination.

The calibration curves were prepared by manually injecting to the GC the different gas concentrations and recording the peak area and retention time for each of the gases of interest. The gas concentrations were prepared in SKC Tedlar (1L) sample bags using a gas dilution technique. After each of the experiments finished, a point in each of the calibration curves was checked to make sure the retention time of each gas did not change and the peak areas were accurate. Examples of the calibration curves used to calculate the product concentrations are presented in Figures 27-30:

Figure 27. Calibration curve of methane, ± 3.20% error of the value

Figure 28. Calibration curve of methane (expanded), ± 3.20% error of the value

Figure 29. Calibration curve of carbon monoxide, ± 1.87% error of the value

Figure 30. Calibration curve of carbon monoxide (expanded), \pm 1.87% error of the value

The synthesis of the catalyst is divided into 5 steps

- 1. Pre-oxidation of graphite^[53]:
 - 1.1 Graphite powder was added to a mixture of H_2SO_4 , $K_2S_2O_8$ and P_2O_5 at 80°C (Dark solution was obtained)
 - 1.2 The dark solution was allowed to cool down to room temperature for six hours in a standalone stirrer.
 - 1.3 The solution was washed with nanopure water until the pH became neutral
 - 1.4 The pre-oxidized graphite was dried at 35°C
- 2. Oxidation by graphite^[54]:
 - 2.1 Pre-oxidized graphite oxide was added to a mixture of H_2SO_4 and $KMnO_4$ at 0°C and stirred for 10 minutes
- 2.2 The mixture was then stirred at 35°C for 2 hours
- 2.3 After the two hours nanopure water was added to the mixture, and was allowed to stir for 15 minutes.
- 2.4 Nanopure water and 30% H₂O₂ were added to the oxidized graphite resulting in a bright yellow color shown in Figure 31.

Figure 31. Oxidized graphite oxide after the addition of H₂O₂

- 2.5 The bright yellow solution was washed with 1:10 HCl to H_2O volume ratio
- 2.6 The dark brown viscous product was suspended in nanopure water
- 2.7 The suspended GO was washed with nanopure water to eliminate the excess HCl
- 2.8 Nanopure water was added to the resultant neutral GO.
- 3. Ionic liquid (IL) synthesis [55]:
 - 3.1 A mixture of 3-chloropropylamine hydrochloride, 1-methylimidazole and ethanol was refluxed under nitrogen and stirrer for 24 hours at ~80°C (Figure 32).

Figure 32. Ionic liquid synthesis setup

3.2 Ethyl acetate was added to the mixture resulting in a turbid mixture (Figure

33) which was dried under nitrogen at \sim 60°C for 24 hours.

Figure 33. Ionic liquid after the addition of ethyl acetate

3.3 The resulting ionic liquid (NH $_2$ terminated 1-butyl-3-methylimidazolium chloride (NH $_2$ -C $_4$ mimCl)) is shown in Figure 34.

Figure 34. Ionic liquid

- 4. IL-reduced graphite oxide (RGO) synthesis^[55]:
 - 4.1 GO was added to the ionic liquid resulting in a brown turbid mixture shown

in Figure 35.

Figure 35. IL-GO

- 4.2 In order to allow the epoxy ring opening to occur, KOH was added to the IL-GO mixture and then it was subject to ultra-sonication for 1 hour.
- 4.3 During the ultra-sonication, the mixture started to change to a dark brown color due to an increase in temperature (Figure 36). The color change suggests that graphite oxide reduction was successful.

Figure 36. IL-GO after ultrasonication

4.4 The dark brown solution was stirred for 24 hours at 80°C under nitrogen to have a complete reduction of the oxidized graphite (Figure 37).

Figure 37. IL-RGO

- 4.5 The resulting dark turbid mixture was washed with 1:10 ethanol to $\rm H_2O$ volume ratio.
- 5. IL-RGO-TiO₂ synthesis:
 - 5.1 TiO₂ was added to a mixture of C_4 mimBF₄ and $H_2O^{[59]}$. The product was allowed to stir for one hour.
 - 5.2 The washed IL-RGO was under ultra-sonication for 30 minutes.
 - 5.3 After the ultra-sonication, the IL-RGO was added to the $TiO_2/C_4mimBF_4/$

H₂O mixture and stirred for one more hour.

- 5.4 The mixture was washed with a 1:10 ethanol to H_2O mixture.
- 5.5 The final product was dried at 80°C for 24 hours (see Figure 38).

Figure 38. IL-RGO-TiO₂

The RGO-TiO₂ catalyst was synthesized using the same procedure as the IL-RGO-TiO₂, but neither of the two ionic liquids used for the IL-RGO-TiO₂ were added.