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ABSTRACT 

 There has been considerable advancement in the algae research field to move algae 

production for biofuels and bio-products forward to become commercially viable. However, there 

is one key element that humans cannot control, the natural externalities that impact production.  

An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on 

an area of land for a certain time period with the aim of harvesting the biomass produced. One of 

the advantages of using algae biomass is that it can be used as a source of energy in the form of 

biofuels. Major advances in algae research and development practices have led to new 

knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. 

The challenge is to make the price of biofuels from algae cost-competitive with the price of 

petroleum-based fuels. The scope of this research was to design a concept for an automated 

system to control specific externalities and determine if integrating the system in an algae 

cultivation system could improve the algae biomass production process. This research required 

the installation and evaluation of an algae cultivation process, components selection and 

computer software programming for an automated system. The results from the automated 

system based on continuous real time monitored variables validated that the developed system 

contributes insights otherwise not detected from a manual measurement approach. The 

implications of this research may lead to technology that can be used as a base model to further 

improve algae cultivation systems.  
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Chapter 1 

INTRODUCTION 

Background 

 There is great interest in the development of alternative energy sources that have the 

potential to meet future energy demands, and to reduce society’s dependence on fossil fuel. The 

world economy is highly dependent on fossil fuels for a diverse set of activities (Newell, 2009). 

Over the past several decades, oil prices have continued to climb, putting a strain on many 

aspects of the economy. Many believe that it is important to make transition away from oil 

dependency by developing new energy sources (Newell, 2009). Over several decades there have 

been numerous efforts that have focused on conservation as well as searching for renewable 

energy sources that may reduce the dependency on fossil fuels. Most recently the use of crop 

plants for the production of ethanol has gained attention (Newell, 2009). However, the impact on 

the food industry and increasing prices has created a conflict between the uses of crop plants for 

food versus fuel.  In recent years, the nature of what was regarded as alternative energy sources 

has changed considerably. Today, because of the variety of energy sources and differing goals, 

many companies and educational institutions have been working on the possible ways of 

extracting energy from natural sources. There are several forms of alternative energy sources 

such as solar, wind, geothermal, etc.    

 Based on current events, it has become apparent that energy supplies can easily be 

interrupted worldwide (U.S Department of Energy, 2010). The U. S. Department of Energy 

predicted that in 2019, the demand for petroleum oil is expected to be at 19.8 million barrels per 

day and expected to fall to 18.9 million barrels per day (U.S. Department of Energy, 2013). The 

transportation sector accounts for the largest share of total consumption throughout the 

projection, although it is expected to fall in 2040 as a result of improvements in vehicle efficiency 

with the incorporation of Corporate Average Fuel Economy (CAFE) for light-duty and heavy-duty 

vehicles (U.S. EIA, 2013). The forces of demand and supply have caused the price of fossil fuels 
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to rise sporadically but continually. In the United States, oil-refining capacity is also limited. 

Natural disasters such as Hurricane Katrina, for example, have made key refineries in the Gulf 

Coast area of the U.S. inoperable for a period of time. The Gulf of Mexico oil production, for 

example was decreased by 56% per day. This event caused an immediate increase of oil prices 

due to future markets. The infrastructure and economy are both heavily dependent upon fossil 

fuels. As a consequence, efforts must be accelerated to develop alternative fuels and the 

infrastructure to support their production and distribution. The alternative to developing new 

energy sources is to expand the capacity of conventional energy (i.e., build more oil refineries, 

expand oil production and expand nuclear energy, etc.). However, the conventional energy 

technologies face other issues such as limited resources, pollution, and society’s scrutiny. Due to 

these fundamental issues, alternative energy solutions will continue to be developed and pursued 

by government agencies, academic researches, and innovative industries.  

 One form of alternative energy that has been slow to develop but has gained some 

momentum is the development of biofuel from algae biomass. Research and development on 

algae as a source of biofuel began in the early 1970’s in response to the energy crisis prompted 

by the Arab oil embargo (Sheehan, 1998). However, this technology has faced the challenge of 

competing with an industry that is more than one hundred years old and well developed. In the 

last decade university, national laboratories, and multiple companies have engaged in research 

and development that leads to production of biofuel from algae.  However, there is a specific 

need to conduct further research at multiple levels in order to establish a value chain that may be 

competitive with the price compared to fossil fuels. The U.S. Department of Energy (Newell, 

2009) is expecting biomass to play a major role in the portfolio of non-hydropower renewable 

sources for electricity generation as seen in Figure 1.1 from the Annual Energy Outlook 2010, the 

Energy Information Administration (EIA) and Richard Newell’s early release presentation (Newell, 

2009).  
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Figure 1.1. Energy Information Administration's Projections of Available Nonhydropower 

Renewable Energy Sources Through 2035 

 

 In response to the energy crisis of the 1970’s, the U.S. Department of Energy through its 

Office of Fuels Development established a funded program for developing a broad range of 

alternative fuels such as ethanol and methanol, biogas and biodiesel. One of the research 

components of research within the biofuels program was aimed at developing alternative sources 

of renewable fuels from algae from 1978 to 1996. The program is known as the Aquatic Species 

Program (ASP) (Sheehan, 1998) which focused mainly on production of biofuel from high-lipid 

content algae by utilizing waste CO2 from coal fired power plants.  

Many technical advances were made from this program during the course of almost two decades 

through continuous algae strain selection and improvement by manipulating the metabolism of 

algae and the engineering of algae production systems or bioreactors.    
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 Following to the close-out of The Aquatic Species Program in 1996, biomass derived 

fuels continued to attract attention as one of many solutions to our nation’s continued and 

growing dependence on imported oil, which exposes the country possible risk of disruptions in 

fuel supply, creates economic and social uncertainties for individuals, businesses, and impacts on 

the national security. The establishment of The Energy Independence and Security Act of 2007 

(EISA) mandated a Renewable Fuel Standard (RFS) that requires within a minimum of 36 billion 

gallons to be blended and sold with regular fossil fuel as transportation fuel in the U.S. (U.S. 

DOE, 2010). The RFS mandate also included advanced and cellulosic biofuels and biomass-

based diesel and to be implemented by 2022. EISA also set new standards for fuel economy, 

energy efficiency and advanced research which requires the RFS to increase over time; as well 

as challenges to demonstrate biofuels Green House Gas emission across the life cycle that is at 

least 50% less than GHG emission produced by petroleum-based fuels. Table 1.1 illustrates the 

RFS volume requirements. 
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Table 1.1. Renewable fuel standard volume requirements (billion gallons) (U.S. DOE, 2010) 

  

A number of next generation biofuels offer significant potential in helping to achieve EISA 

goals. For example, 15 billion gallons of biofuel can be produced from corn-based ethanol. 

Another candidate is biofuels derived from algae, which have the potential to help the U.S. meet 

the RFS, and at the same time advancing the nation closer toward energy independence. Despite 

their potential, the technology to produce biofuels from algae is considered by many in the field to 

be in its beginning phase, thus a considerable amount of research, development and deployment 

(RD&D) is needed to achieve affordable, scalable, and sustainable algae based biofuels.  

To advance biofuel development the American Recovery and Renewable Act was 

established and announced by President Obama and Secretary of Energy Steven Chu which 

provided for an investment of $800M in new research on biofuels. The investment included funds 
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for the Department of Energy through the Office of Energy Efficiency and Renewable Energy 

(EERE) biomass program for research, development and utilization of biofuels.  

Statement of the problem 

The research and development of algae as a source of biofuel has been conducted by 

the Laboratory for Algae Research and Biotechnology (LARB) within the Department of Applied 

Biological Science (ABS) at Arizona State University (ASU) for the last eight years. The research 

began in the indoor laboratory using smaller scale transparent tanks (photobioreactors) to grow 

algae.  Due to limitations of the laboratory environment to produce the quantity of algae biomass 

needed, larger scale transparent tank systems were developed in an outdoor facility. However, 

the systems developed faced challenges associated with outdoor environment variables that 

affect algae production.  In order to compensate for these environmental variables, the designed 

cultivation systems had to incorporate ways to provide continuous measurement and monitoring 

of algae production activity and to assist in the control of some of the critical growing or cultivation 

parameters.  

Methods typically used in the field were performed manually on each photobioreactor. With the 

increasing number of photobioreactor devices, there was a need for consistent and continuous 

measurement and control of multiple variables to avoid any uncertainty of environmental impact 

on the growth of the algae. 

Scope of the work 

The scope of the work for the research included: 

 Initial data collection performed manually to monitor algae cultivation at various 

temperatures and pH on an early generation outdoor photobioreactor. 

 Infrastructure fabrication and repair on an existing non-operable datalogging instrument 

(Campbell Scientific
®
 brand).  

 Data logging and monitoring for temperature, pH and dissolved oxygen values using a 

Campbell Scientific
® 

datalogger. 
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 Installation of new industrial instrumentation system and infrastructure components at the 

outdoor site, including in one row of a new generation of algae photobioreactors, and in 

the mechanical room and greenhouse computer control room. 

 Developing data correlation of monitored and controlled values on the algae biomass 

production system. 

Limitations 

 The early generation photobioreactor system had a North and South orientation. In 

addition, one specific strain of algae was used during the initial test of the system to compare with 

laboratory experiments. For comparison, the new generation of photobioreactors faced East and 

West and was developed to meet the objectives of the supporting sponsor using a different algae 

strain. Both systems featured a semi-open top tank, which allows air release from the top to the 

atmosphere. However, the design allows both systems to be susceptible to some air borne debris 

and other contamination entering to the system.  
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  Chapter 2 

LITERATURE REVIEW 

Overview of algae 

 Algae are a large and diverse group of typically autotrophic organisms, ranging from 

unicellular to multi-cellular forms. The largest and most complex marine forms are called 

seaweeds. These organisms are photosynthetic similar to land forms; however, they lack many 

distinct organs such as roots, stems, leaves found in other land plants. For many centuries, 

people throughout the world have been collecting algae for many uses (Graham, 2000).  Algae 

biomass contains many valuable components and is currently used in some pharmaceutical 

grade pigments, oils, agar, foods, dietary supplements, paint, and fertilizer. Additionally, many 

environmentally friendly applications have been suggested for algae biomass including: bio-fuel 

and bio-filter components to remove toxic organic compounds and heavy metals from water 

(Park, 2007), bio-monitors to detect toxic contaminants (Melville, 2007), methods to remove CO2 

from flue gas (Mata, 2010), bio-filters to remove nutrients from municipal effluents and dairy 

manure, and as a commercial fertilizer substitute (Mulbry, 2005). Algae are increasingly being 

grown in laboratory based bioreactors, outdoor production ponds, and engineered off-shore 

environments (Chisti, 2007). More recently, a major focus of research and development on algae 

is related to their potential as a promising source of alternative energy.  

 Algae as a group of photosynthetic organisms use energy from the sun to combine water 

with carbon dioxide (CO2) to produce biomass. Most algae grow in aquatic and marine 

environments and are usually characterized as either macroalgae or microalgae. Macroalgae are 

commonly known as seaweeds, and typically can be observed without the aid of a microscope. 

Microalgae are, as the name suggests are relatively small microscopic organisms. Most 

macroalgae are marine, but microalgae are common to freshwater and marine environments. 

Microalgae’s potential oil yields, as well as the ability to be grown in a land-based facility make 

them one of the leading potential sources to possibly replace other crop based feedstocks such  
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as soybeans or corn. Microalgae are able to produce 1200 gallons/acre when grown at 10 

g/m
2
/day at 15 percent lipid and up to 10,000 gallons/acre when grown at 50 g/m

2
/day at 50 

percent lipid. (Pienkos, 2007). With a simple cellular structure and a large surface area to volume 

body ratio enables microalgae to uptake nutrients efficiently. Their natural environment is water 

which contains carbon dioxide and nutrients needed for photosynthesis. Many species are very 

efficient at converting solar energy to biomass. The algae biomass produced contains three main 

components: protein, carbohydrate, and lipids. A variety of microalgae species can be cultivated 

under certain conditions to accumulate large quantity of lipids. Under some conditions, lipids may 

represent more than 60% of the biomass (Putt, 2007).       

Biologists in the field have categorized microalgae in a variety of classes based on basic 

cellular structure, cellular storage products, pigmentation and life cycle. The five most important 

microalgae groups with respect to their use as an energy source or biofuels are the: 

1. Blue-green algae (Cyanophyceae). These microorganisms have the structure and 

organization similar to bacteria, and in some instances can play an important role in 

nitrogen-fixation from the atmosphere. Approximately 2,000 species are blue-green algae 

have been found in aquatic, marine and terrestrial habitats. 

2. Green algae (Chlorophyceae). These are commonly found in both freshwater and marine 

environments as well as in and on soils. These algae are considered to be the 

evolutionary progenitors of modern plants. Their main storage compound is starch and 

under certain conditions such as nitrogen deficiency, lipid/oil can be produced in 

significant quantities. 

3. Diatoms (Bacillariophyceae). These microorganisms are mainly found as phytoplankton 

in the oceans but are also found in brackish and fresh waters. There are over 100,000 

known species (Barclay, 1984), and are the most common and widely distributed groups 

of algae. Cells are golden-brown in color due to high levels of a photosynthetic pigment 

called fucoxanthin. They also contain polymerized silica (Si) in the cell walls. Their cells 

store carbon in the form of natural oils or as polymer of carbohydrates. 
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4. Golden algae (Chrysophyceae). These algae are similar to the diatoms in biochemical 

composition and pigmentation; however, their pigment composition is more complex, 

often appearing brown, orange and yellow in color. Lipids and carbohydrates are the 

major carbon storage forms in this group. Primarily found in freshwater systems, there 

are approximately 1,000 species known to exist in the natural environment. 

5. Picoplankton (Eustigmatophyceae). This group of algae has small cells approximately 2-4 

µm in diameter. The genus Nannochloropsis is one of the marine species that belongs to 

this group and is common in seawater. (Sheehan et al 1998).      

Overview of algae photobioreactor  

 A photobioreactor can be described as a culture vessel designed to capture a light 

controlled liquid cell suspension of photosynthetic algae. Photobioreactors can be classified as 

either open (to the air) or closed systems. Four major types of open air systems are shallow big 

ponds, tanks, circular ponds and raceway ponds (Borowitzka, 1999). Common closed systems 

include bag systems, flat plate reactors and tubular reactors. Each design has advantages and 

disadvantages with respect to capital cost, algae strain used, biomass yield, energy consumption, 

operating cost, temperature control and environment contamination.  

 Large commercial systems used today are mostly open-air systems due to simple 

economics. Open pond systems, also referred to as raceway ponds are commonly utilized in 

large scale production, as seen in figure 2.1. They are usually made of a closed loop recirculation 

channel that is typically about 0.3 m deep, manufactured from concrete, clay, solid plastic, and/or 

combination of different materials. Mixing and circulation are generated by a paddle wheel. The 

paddle wheel operates continuously to prevent any sedimentation of biomass and nutrients. The 

large horizontal surface are of the open pond is where light reaches the system and the 

photosynthesis process occurs and is captured by the algae. Open ponds, including mixed 

raceway ponds are generally economical to build and operate, can be scaled up to several 

hectares for even larger production and has been the method of choice for commercial  
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microalgae production. Approximately 98% of commercial algae biomass production is currently 

done with open ponds (Benemann, 2008). However, productivity in open air pond systems is 

much less than theoretically possible because it is difficult to control the culture conditions when 

the system is exposed to the environment. Various limitations arise in the operation of open 

ponds, such as biological invasion of other algae, algae grazers, fungi, amoeba, and limitations in 

colder or hot humid climates. The pond depth is always a compromise between maintaining an 

adequate water depth for mixing to avoid ionic composition changes due to evaporation and the 

need to provide light to the algae cells (the shallower the pond, the more light available to the 

algae cells). Further studies are being conducted on the relationship between pond depth, algae 

culture density and productivity for maximizing biomass output (Chisti, 2007). 

 

 

Figure 2.1.  Arial view of a raceway pond (Chisti, 2007) 
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 Beside open ponds systems, microalgae can be grown using other designs of 

photobioractors. The development of photobioreactors for algae production was initially done 

under the Research Institute of Innovative technology for the Earth (RITE) in Japan from 1990-

2000 (Putt, 2007). For example, a tubular photobioreactor; shown in Figure 2.2, consists of an 

array of straight transparent tubes that are commonly made of plastic or glass. The tubular array 

acts as a solar collector where the energy from sunlight is captured. The solar collector tubes are 

usually designed to be 0.1 m or less in diameter. Microalgae mix is circulated from a reservoir to 

the solar collector section and returned to the reservoir. In a typical arrangement, the solar tubes 

are placed parallel to each other and flat or on various different incline angles relative to the 

ground.  

 

 

Figure 2.2. A tubular photobioreactor with parallel run horizontal tubes (Chisti, 2007). 

 

Horizontal, parallel straight tubes might be arranged like a fence as an improvement to increase 

the number of tubes that can be accommodated in a given land area (Figure 2.3). Other potential 

improvements besides being laid flat horizontally on the ground, include some custom made 

tubes of flexible plastic and coiled around a supporting frame to form a helical coil tubular 

photobioreactors. These particular designs are potentially beneficial for growing a smaller volume 
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of microalgae that can be used for further inoculation process for the larger tubular 

photobioreactors or open ponds (Chisti, 2007).  

 

 

Figure 2.3. A fence-like solar collector tubular photobioreactor (Chisti, 2007). 

 

In overall design considerations, photobioreactors depend on light, so the use of available natural 

sunlight is desirable. Artificial lighting of photobioreactors is technically feasible, yet expensive as 

compared to using natural sunlight. 

 Photobioreactor design is a challenge that is receiving more attention, with a focus on 

new technologies to reduce costs and improve efficiency. Although, in general, photobioreactors 

are costly, they minimize water use, energy and chemicals, making them the system of choice for  
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many algae biomass production facilities. The most important among their characteristics is the 

ability to support up to 13 times higher productivity with respect to volume as well as have a 

smaller footprint on a yield basis. With that perspective, it may help compensate for higher 

bioreactor cost (Schenk, 2008). Table 1 compares photobioreactor and raceway ponds for algae 

biomass production. The comparison is based on an annual production level of 100 tons of 

biomass for both cases, with matching carbon dioxide consumption rate, disregarding any losses 

to the atmosphere. These production methods represent optimal combinations of biomass 

productivity and concentration that have been actually achieved in large scale algae biomass 

production. 
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Table 2.1. Comparison of photobioreactors and open pond production methods (Chisti, 2007) 

 

 

      

 Another concept of improvement of algae biomass production is a combination of open 

pond systems and photobioreactors referred to as hybrid algae photobioreactors. Open ponds 
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are very efficient and relatively low cost for algae cultivation, yet contamination issues are major 

challenges, as well as the larger footprint requirement in land area. Photobioreactors are 

excellent in minimizing land area utilization, and have higher oil yields; however, initial costs can 

be ten times higher than for open pond systems. A combination of both systems may be the most 

feasible choice for cost effective cultivation and high yield algae biomass product. Depending on 

algae strains, consideration of locations, climate, and local regulations, each hybrid system needs 

to be custom-made to accommodate the conditions and requirements. Hybrid systems have been 

developed and demonstrated by several companies including Aquasearch in Hawaii, where algae 

cultivation is for the production of astaxanthin. In this system, the algae is initially grown in 

bioreactors in nutrient sufficient conditions, and then transferred to open ponds under nutrient 

limited conditions to induce astaxanthin production. Recently Green Star Products in Montana 

has utilized the Hybrid Algae Production System (HASP), a combination of closed 

photobioreactor and open pond system to control the cost and accelerate the growth of algae 

(Gordon, 2012). Large scale algae production facilities should be designed with a series of 

photobioreactors in various sizes, from initial culture through the final inoculum. For such a 

concept design to work, it is important to also use an algal strain that is both fast growing during 

the inoculum scale-up stage and highly productive in the final open pond stage (Schenk, 2008).      

In comparison with the open air systems, closed systems of photobioreactors are 

significantly more expensive to build and operate, and many of them are difficult to be scaled up. 

However, the closed systems have advantages such as more controllable and cleaner algae 

culture (less potential contamination of other micro-organisms entering the system), high light 

distribution efficiency leading to high productivities for sustainable biomass, temperature control 

and the flexibility to be used outdoors in natural daylight. This would suggest that a wider range of 

algae strains can be grown in a more closed or contained environment to avoid or reduce 

contamination. Also such systems can be operated over a broader climatic range than the open 

air systems. These features also allow greater control of the systems, possibly allowing this type  
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of the system to be operated in continuous mode and yielding more consistent product 

composition and quality (Borowitzka, 1999). The following table (Table 2.2) illustrates some of the 

properties of different algal culture systems. 

 

Table 2.2. Comparison of properties on different algal culture systems (Borowitzka, 1999). 

 

Variables affecting algae biomass production  

 Microalgae require light, carbon dioxide, water, and inorganic nutrients for photosynthetic 

growth. Ideal temperature ranges are generally between 20 to 35
o
 C. Nutrient supplements in the 

cultivation medium must provide the required inorganic elements. Required essential elements 

are similar to crop plant fertilizers and typically include nitrogen (N), phosphorus (P), potassium 

(K), iron (Fe) and in certain cases silicon (Si). Currently, many microalgae are cultivated in open 

pond systems, photobioreactors, or hybrid systems around the world (Chisti, 2007).     
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 One of the major objectives of growing algae in a controlled environment is to produce 

algal biomass. The biomass contains a total lipid fraction from which the neutral lipid fraction (an 

important precursor to biodiesel) can be separated. This neutral lipid fraction is used for the 

production of transportation fuels. Since the operation of photobioreactors to grow algae relies on 

a photosynthesis process, the availability of sunlight in certain regions like Arizona is an 

advantage; however, the availability of sunlight also is accompanied with increasing temperature. 

Currently, algae strains grown in LARB grow over a temperature range of 20
o
 to 35

o
C. Each 

photobioreactor system is operated with an evaporative cooling system to control temperature 

with the exception of the pond photobioreactors which rely on water evaporation for cooling. 

During the peak temperatures of the summer season, which can reach approximately 40
o
C, 

cooling is required and the cooling system must run at its maximum capacity. Otherwise, algae 

growth in the photobioreactors is reduced and the algae can suffer cell damage or even die. 

However, in the evening hours with the absence of the solar radiation, there is a significant 

reduction in ambient temperature that represents a suitable or tolerable range for the algae cells. 

Thus, a cooling system is required when algae are grown over a certain temperature range; 

however, the cooling system capacity can be altered based on demand, thereby increasing 

photobioreactor efficiency and reducing the operational cost.  

 Another important variable to be considered is the amount of carbon dioxide (CO2) 

injected into photobioreactors. The algae grown in the photobioreactor produce biomass and also 

utilize CO2 and release oxygen (O2). Each photobioreactor was equipped with an aeration system 

that injects ambient air into the tank. A CO2 supply system was also installed in parallel with the 

aeration system to reach a homogeneous mixture. The purpose of an aeration system is to 

agitate the solution, creating a well-distributed mixing of algae and the aqueous solution (culture 

medium) containing the appropriate nutrients and CO2  as well as an even distribution of light 

exposure to the algae cells in suspension. The measure of activity of hydrogen ions in solution 

(pH) is another critical variable to be considered to maintain an appropriate level of acidity or 

basicity of the aqueous solution. As demonstrated in this research, there is a correlation between 
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the levels of dissolved CO2 and pH. From a productivity standpoint, the addition of CO2 has been 

known to increase algal growth rate. The relationship between algae growth and CO2 

concentration, in combination with environmental remediation has been receiving considerable 

attention in the search for renewable, sustainable fuels from algae (Spalding, 2007). The 

cultivation of photoautotrophic algae requires CO2 to be supplied only during daylight hours when 

photosynthesis. The efficiency of CO2 uptake varies depending on the algae species, algae 

growth rate, photobioreactor/cultivation system and incident light conditions.  Therefore, the 

regulation of the CO2 supply necessary to enhance or optimize algae growth is critical.   

 Environmental factors such as light, temperature, and nutrient status not only affect 

photosynthesis and productivity of the algae, but also influence the pattern, pathway and activity 

of cell metabolism and cell composition. Certain techniques in manipulation of algae cultures 

using various environmental factors could achieve specific biotechnological results. The effects of 

temperature, CO2 and O2 concentrations and light intensity on the growth of algae has been 

investigated to determine the optimum culture conditions for microalgae production in aquatic 

food production modules, including both microalgae culture and fish culture systems (Kitaya, 

2005). The ambient temperature during cultivation is greatly influenced by the availability of 

natural sunlight.  The effect of light on photosynthetic organisms is called photoacclimation or 

photoadaptation and can affect the biochemical composition of the organism. During this process, 

algae cells can undergo dynamic changes in cell composition with alterations in structural, 

biophysical, and physiological properties (Dubinsky, 1995). In the case of decreasing light 

intensity, the algae cellular response is to increase their chlorophyll a  and other light-harvesting 

pigments (chlorophyll b, chlorophyll c, phycobiliproteins and primary carotenoids). In contrast, 

with the increase of light intensity, chlorophyll a and other pigments for photosynthesis decrease, 

while the secondary carotenoids (astaxanthin and beta-carotene), which serve as photoprotective 

agents, increase. Carotenoid accumulation may result from the alteration of carbon and nitrogen 

flows within the cells under stressful conditions (Ben-Amotz, 1982). This is critical information 

necessary to optimize cultivation techniques particularly when the algae being cultivated is for 
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higher value products such as carotenoids. For biofuel production, light intensity plays equally 

important roles during which lipid content and composition are the essential components. 

Increasing light intensity has been found to be inversely related to algae cellular lipids and total 

polyunsaturated fatty acid (PUFA) content (Cohen, 1999). However, in other studies, strong light 

intensity was observed to increase PUFA levels in certain algae species, resulting from an 

increase in oxygen-mediated lipid desaturation under high light conditions (Molina Grima, 1999).  

 Temperature effect is another major factor influencing algae biochemical composition.  

The effect of temperature on membrane lipid content and composition has been well-studied.  A 

decrease in temperature below an optimum growth temperature level generally increases the 

content of unsaturation of lipids in membrane systems. In addition, it also results in increasing 

enzyme production as an adaptive mechanism for maintaining rates of photosynthesis and 

respiration (Thompson, 1992). Another effect of temperature on algae growth is in the co- 

production of other compounds.   

In a study on Haematococcus, cell numbers increased threefold when the growth 

temperature was increased from 20
o
C to 30

o
C (Tjahjono, 1994). Similar result was observed with 

the alga, Chlorococcum, in addition to the observation that the total carotenoid content almost 

doubled when growth temperature was increased to 35
o
C. These findings suggested that by 

increasing the temperature above that required for optimum growth can induce the formation of 

active oxygen radicals within algae cells, and stimulate an enzymatic reaction which results in the 

increase in carotenoid composition (Liu & Lee, 2000). With the complex correlation of 

environment variables and the resulting algae biomass, there is a clear need for consistent 

monitoring and control of those variables to establish an optimal condition and to avoid 

uncertainty that can impact the growth of the algae and the composition of the algae biomass.  

Overview of automation system 

 According to Merriam-Webster dictionary (www.merriam-webster.com), automation is 

defined as the technique of making an apparatus, a process, or a system to operate 



21 

 

automatically; the state of being operated automatically; and automatically controlled operation of 

an apparatus, process, or system by mechanical or electronic devices that take the place of  

human labor. Simply, automation can be described as the construction and application of 

technology to monitor and control activities for the delivery of products and services. The 

technology application involves the utilization of a complete system that includes design 

considerations, sensors, programmable controllers, program algorithm and controlled devices.   

Historical background of automation 

 The introduction of automation was applied to the manufacturing enterprise in the 1960’s 

to replace bulky and challenging electromechanical relay technology being used in factory 

systems at that time. The primary goal was to eliminate the high cost of inflexible, relay controlled 

systems. Microprocessor technology as a programmable control or programmable logic controller 

(PLC) was quickly adopted in the form of a solid state control due to many advantages over more 

conventional electromechanical technology. In comparison to electromechanical control, 

programmable control is generally relatively inexpensive, provides a higher level of flexibility, 

offers smaller size components, comes industrially reinforced for factory environment and is 

modular and reusable to reduce the time and labor required for process changeovers (Morriss, 

2000).   

 The implementation of an automation system to a processing system needs to be well 

thought out in order for each system to work reliably together for a relatively long period. The 

installation processes, improvement, as well as troubleshooting, are simplified through the use of 

software reprogramming instead of costly and labor intensive rewiring upgrades. The result is the 

reduction of downtime, increased yields and an improvement in product quality. The success of 

U.S. industries in the global market has been the result of implementing programmable control for 

manufacturing automation
 
(Gintz, 2004) 
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Basic PLC principles and operation 

 A programmable logic controller consists of two basic sections; the central processing 

unit and the input/output interface system as illustrated in Figure 2.4. 

 

 

Figure 2.4. Programmable controller block diagram (Bryan, 1997) 

 

Referring to Figure 2.4 above, the central processing unit (CPU) manages all of PLC activities. 

The CPU consists of three major components such as processor, memory and power supply. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Major CPU components block diagram (Bryan, 1997) 
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The operation principle of a PLC is relatively simple. The input/output (I/O) component of 

the system is physically connected to the devices on the field that are encountered in the 

machine or ones that are used in the control of a process. Examples of these field devices can be 

discrete or analog input/output devices, such as limit switches, pressure transducers, push 

buttons, motor starters, solenoids, etc. The I/O interfaces provide the correlation between the 

CPU and the information providers (inputs) and controllable devices (outputs). Figure 2.5 

illustrates major CPU components block diagram and the correlation. During its CPU operation, it 

performs three processes such as: 

1. Reading or accepting the input data from the field devices via the input interfaces.  

2. Executing or performing the control program stored in the memory system.  

3. Writing or updating the output devices via the output interfaces.  

The process of sequentially reading the inputs, executing the program in memory and updating 

the outputs is known as scanning.  

 The I/O system forms the interface at the point where the field devices are connected to 

the controller. The main function of the interface is to structure various signals received from or 

sent to external field devices. Incoming signals from sensors such as push buttons, limit switches, 

analog sensors, and selector switches are connected to the terminals on the input interfaces. 

Field devices that are being controlled such as motor starters, solenoid valves, pilot lights, and 

position valves, are connected to the terminals of the output interfaces. The system power supply 

provides the entire electrical voltages requirement for proper operation of various CPU sections. 

A personal computer equipped with PLC software is usually used to program the PLC.  
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Figure 2.6. I/O system interface (Bryan, 1997) 

Summary 

 Product development for biotechnology using an algae photobioreactor requires a longer 

time than the development of other technologies leading to products such as consumer goods. 

There are many unknown factors, combined with the requirement of teamwork of many people 

with different disciplines and expertise. Consequently, the research and development of algae 

cultivation systems at LARB must be designed to implement current knowledge and to be able to 

adapt based on future insight, innovation, and new devices/tools, and techniques. A high degree 

of flexibility is needed to include and integrate concepts and equipment designs for potential 

upgrades. The advances in the fields of electronics, information, and physical sciences must be 

incorporated into this biotechnology field. 

 The application of an automated monitoring and control system for an algae 

photobioreactor eliminates the need for constant manual measurement techniques and the labor 

necessary to obtain the required data on either a semi-continuous or continuous or interval basis. 

In addition, potential errors can be prevented assuming the automated system is well-calibrated 
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and maintained. Overall, the process, product and environmental control can be significantly 

enhanced and the value of the scientific research and data obtained can be improved. 

 The significance of an automated system to the field is the increased precision of activity 

monitoring and control over an extended period. The measurement accuracy and speed are 

improved and can be expected to be more advanced in the future. The design for the adaptability 

of an automated system with other components for future updates should always be considered. 

The system must be easy to upgrade in order to keep up with technology advances in analytical, 

electronics and informatics, including improved software and other component upgrades. This 

approach guarantees interactive operating systems that allows for maximum ease of use and 

efficiency. Other possible advancements include window-based human machine interfaces (HMI) 

that guarantees secure user recognition, including graphical representation that reduces 

probability of misinterpretation; and continuous training of the user personnel
 
(Sonnleitner, 1991).  

 The intent of this research is to design a conceptual automated monitoring and control 

system that will enable the researchers to conduct biological research with real time datalogging, 

monitoring, and control. The PLC, as the processor of the system, for example, has the capability 

to be programmed to specific needs based on the scope of the experiment or project performed.   



26 

 

Chapter 3 

METHODOLOGY 

Overview 

 This chapter discusses the design, construction, operation and data collection for the 

photobioreactors used in this research. At the time this document was written, there were three 

stages of monitoring system design and experimentation. The first stage used the Campbell 

Scientific
® 

system on existing photobioreactor tank systems. The second stage was similar to the 

first stage with the exception that a new generation bioreactor prototype was incorporated. The 

third stage was the design, installation and setup of various industrial instrumentations, including 

a Programmable Logic Controller system on the revised new generation of photobioreactor. The 

project began with the initial stage of evaluating and assessing the Campbell Scientific
® 

datalogger capability and overall performance of an older generation photobioreactor. 

Stage 1: Initial photobioreactor data collection      

 The initial data collection for the algae photobioreactor monitoring system was started by 

rebuilding an existing non-operated Campbell Scientific
® 

CR-1000 datalogger that was available 

at LARB. The objective of this stage was to determine whether this particular system was 

operational due to the fact that the system was part of an existing bioreactor system and exposed 

to outdoor environmental conditions. Based on the sensors used the system was capable of 

measuring and datalogging temperature and pH values. Once the system was operational, its 

overall performance for data collection on an older bioreactor system was evaluated in relation to 

the algae biomass produced. 

Datalogger installation 

 The first step in testing the datalogger involved repairing any wiring damage on the 

system. The damage was due to direct exposure of components to the environment conditions.  
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After the damage was repaired, a sealed control box was purchased to protect the datalogger 

components (processor, receiver/transmitter and power supply) from environmental 

conditions such as sunlight, impact, moisture and temperature.  

 

 

Figure 3.1. Processor and other components inside a sealed control box 

 

In order for the datalogger system to have the mobility to collect data for various photobioreactor 

systems for research purposes, the system was mounted on a plastic mobile cart purchased from 

a local hardware store. A software package supplied by the datalogger manufacturer called 

Loggernet was also installed on the laboratory computer along with same type of a 

receiver/transmitter installed in the control box for data collection.   

 Three sensors were used with the datalogger for measuring two different photobioreactor 

tanks including content temperature, ambient temperature and one pH sensor measuring the pH 

on one of the tanks.  Manual measurement techniques using a handheld instrument were also 

performed for data comparison. The experiment was conducted for a period of one month (May 

2009). The following pictures show the sensors used during the experiment. 
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Figure 3.2. Temperature (blue arrow) and pH (red arrow) probes  

Photobioreactor systems and content used for data collection 

 Three types of photobioreactor systems were used for this experiment. One was a pond 

photobioreactor. A pond photobioreactor is a race-track shaped tank that consists of a paddle 

wheel to keep the algae solution circulating in the tank and to enhance cooling through 

evaporation. A photograph of the reactor is included in Appendix (Figure A.1). The tank measured 

12’L x6 W’x1.25’D, with a radius of 3’ on each end. A concentration of 1.5 g/L of one algae strain 

type and water with an approximate depth of five inches was used as part of an ongoing growth 

experiment conducted by LARB researchers. Two ponds, labeled Pond B and Pond D, were 

positioned North-South to each other, and an East-West orientation relative to their radius. Both 

were used for duplicate samples.  

 The second type of photobioreactor used was a mobile flat panel photobioreactor with the 

surface area facing an East-West orientation. The algae strain and concentration used was the 

same as the one contained in the pond photobioreactor. The tank measured 48”L x48”Wx1.5”D. 

The cooling system incorporated a water evaporative system with water circulating in a cooling 
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loop heat exchanger inside the tank. Two tanks were mounted on a fixed main frame, with both 

tanks positioned East-West to each other and labeled Mobile SE #5 and Mobile SW #6. A 

photograph of the mobile flat panel photobioreactor system is included in Appendix (Figure A.2).  

 The third type of photobioreactor was the outdoor column reactor. This system was not 

used for the algae inoculation process at the time of the study due to the scheduled cleaning 

stage. However, temperature measurements in two columns were taken as references to 

determine the temperature when they were only filled with plain water.    

The following page shows the graph plot of temperature measurements and pH taken from 

Loggerrnet software (Figure 3.3). Temperature units were in degrees Celsius.  

 

 

Figure 3.3. Loggernet graph plot of temperature and pH 
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The following table shows the graph colors corresponding to the photobioreactor systems being 

tested for temperature based on the window display on the left side.  

Table 3.1. Photobioreactor systems monitored for temperature. 

  

No. Graph color System Temp (deg. C) 

C1 Blue Pond D 27.3 

C3 Green Column (water only) 30 

C4 Black Column (water only) 30 

C5 Orange Mobile SE #5 27.3 

C6 Grey Pond B 27.5 

C7 Purple Mobile SW #6 27 

 Light Green Ambient 38 

 

Stage 2: Data collection on new generation photobioreactor prototype 

 In July of 2009, a new generation panel photobioreactor prototype was constructed. The 

tank was a continuous system that measured 4’Hx4’L with a width of 2”. A preliminary test of its 

performance was needed in terms of cooling system and its influence on the algae solution. This 

was the same datalogger system, algae strain type and concentration for the growth experiment 

that was used previously.  

 The experiment was conducted over a two month period: July to August 2009. Variables 

measured were ambient temperature, aeration, algae solution, cooling system inlet and outlet 

temperatures. The purpose of this experiment was to determine the temperature and pH ranges 

necessary for parts specification and configuration that were needed on Stage 3 of the research. 

A photograph of the prototype tank is included in Appendix section (Figure A.3 and A.4). 

 Due to a problem encountered with the Loggernet activation software, the datalogging 

values could not be plotted within the software. Instead, values were plotted using Microsoft 

Excel. Figure 3.4 illustrates the performance of the cooling system during the peak temperature. 

The output temperature was higher by around 3
o
C than the input temperature, which indicates 

that the water absorbed the excess heat from inside the tank. Another interesting observation 
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from the graph was the fact that the aeration system introduced higher air temperature than the 

ambient air temperature by almost 10
o
C higher. The algae solution reached 39

o
C during peak 

temperature. Because of this finding, it was concluded that there was a need for higher heat 

capacity evaporative cooler to lower the algae solution temperature by ca. 10
o
C.  Figure 3.4 

shows the temperature trends over two days. 

 

 

Figure 3.4. Partial temperature readings plotted for stage 2 experiment 
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Stage 3: Design and construction of industrial monitoring and control system 

 In November of 2009, a revision of the new generation bioreactor was completed. A 

larger capacity evaporative cooler having twice the size of the previous one was installed. The 

unit was to be a model for an algae commercial production system. The same variables 

measured on previous experiments were also considered for this design; such as temperature 

and pH. A new variable measurement for consideration in this system was the addition of a 

dissolved O2 probe along with an analyzer capable of analyzing the signals from pH and 

dissolved O2 probes. A Programmable Logic Control (PLC) system was a new addition to the 

design scope. 

 Several critical temperature points were considered for measurement on this 

photobioreactor. Performance evaluation of the new evaporative cooling system was needed to 

establish overall photobioreactor performance. One row of the new generation photobioreactor 

consisted of 12 stainless steel cooling loops, one loop being on each 4’ length section of the 

photobioreactor tank. Each inlet of the cooling loops was connected to a supply manifold, while 

each outlet was connected to a return manifold. Important points for temperature monitoring 

measurements were: 

 In-tank on East end 

 In-tank on West end 

 Cooling supply manifold  

 Cooling return manifold  

 Inlet of cooling loop center pair 

 Outlet of cooling loop center pair 

 Ambient air 

A total of seven resistance temperature detectors (RTD) were used as temperature sensors. Two 

of these were 18” long and used for in-tank measurement, while the rest were 6” long and used 

for other applications as mentioned above. The RTD was chosen over the use of a thermocouple 
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due to its narrower temperature range and to yield higher accuracy and repeatability. Two 

stainless steel brackets were custom fabricated to support in-tank RTDs, while the shorter ones 

were fitted with brass T-fitting in series with the cooling system plumbing. Figures 3.5, 3.6, and 

3.7 show the RTDs fitted on the photobioreactor system. 

 

 

Figure 3.5. In-tank use RTD (red arrow) fitted with a bracket (blue arrow) 
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Figure 3.6. RTD (red arrow) installed on aeration plumbing 

 

 

Figure 3.7. RTD (red arrow) installed on cooling system plumbing 

 

 Beside RTD installation for temperature measurement, pH and dissolved O2 probes 

along with an analyzer were also installed. All of the sensors’ wirings were connected to a 
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dedicated sealed enclosure containing a data communication interface. Both pH and dissolved O2 

probes were used by submerging them directly in the tank. Additional photographs of other 

equipment installation are included in the appendix section. Figures 3.8 and 3.9 illustrate the pH 

and dissolved O2 probes. 

 

 

Figure 3.8. pH probe utilized 
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Figure 3.9. Dissolved O2 probe utilized 

 

  Infrastructure construction, components installation, parts selection and negotiation with 

parts suppliers were also tasks performed during the performance and completion of the project. 

PLC programming with the use of software from Rockwell Automation such as RSLogix 5000, 

RSLinx Classic and FactoryTalk View Studio was included in order for a PC computer to be 

utilized to program and control the PLC. Continuous development and improvement of this project 

included the following: 

 Mass flow meters for measuring aeration and CO2 supplies. 

 Control valve for CO2 supply regulation. 

 Control valve for cooling water regulation. 

 Relay/switching device for activation and deactivation of cooling and heating system. 

 Update on PLC software and program to accommodate the additional devices. 
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Chapter 4 

RESULTS AND DISCUSSION 

Overview 

 In this chapter, the results obtained from the latest experimental run are presented along 

with a discussion of the results in relation to the published literature. From the previous chapter, 

three design stages were used as experimental discoveries to develop experience with different 

environment conditions, photobioreactor designs, equipment, and other challenges encountered 

while conducting the study. This provided a better understanding for designing a complete system 

that takes into consideration of environment conditions, algae strain selection, photobioreactor 

system, and existing infrastructure.   

 The experiment was conducted with available resources, in consideration of variables 

involved in the algae culturing process (algae strain selection, equipment availability, labor 

support) and monitoring and control setup (infrastructure design and build up, programming and 

IT support), and simplified to comply with the time frame for research completion. In this chapter, 

challenges in understanding the biological mechanisms related to algae growth, the production 

system for algae cultivation, and automation system infrastructure build up are presented to 

provide a guide for the steps required in integrating an automation system with an existing algae 

photobioreactor system.   

Photobioreactor type utilized for the experiment 

 The photobioreactor system chosen for the experimental run was a flat panel 

photobioreactor system. The orientation of the photobioreactor system was in a North-South 

orientation, consisting of four rows with each row having twelve tanks of flat panel 

photobioreactors. Each tank measured 48”Hx48”Lx1.5”W yielding a total operational volume 

approximately of 3,456 cubic inches or 55 liters. Pictures of the entire photobioreactor system 

arrangement including basic infrastructure, flat panel rows, and cooling system are included in the  
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Appendix A. Figure 4.1 shows the actual tanks utilized for the experiment with the photograph 

taken facing toward the South; the two green color panels are on the West side and the two 

brown color panels are on the East side.    

 

 

Figure 4.1. Flat panel photobioreactors 

 

Design of the experiment 

 The primary objective of the experiment was to compare algae growth rates when 

cultivated for a conventional production run with a continuous supply of CO2 during the day 

compared to a controlled CO2 supply based on select environment variables within the entire 

photobioreactor system. The conventional system of CO2 supply was activated with a timer  
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controller with the activation and deactivation timing adjusted based on the sunrise and the 

sunset of the season. The experimental design for the research used a total of 4 flat panel tanks; 

2 operated with the conventional continuous method and 2 operated with monitoring and control 

system integration. The system boundary considered includes the entire photobioreactor system 

components, including flat panel tanks, cooling system and aeration system. Figure 15 shows the 

two brown colored flat panels on the East side that were being operated in the conventional way 

without having any monitoring and control system integration. The two green colored flat panels 

on the West side were monitored for system variable values. Concurrently to obtaining the input 

values for those variables, the controlled variable was the CO2 supply to the aeration system. The 

CO2 was contained in a large aluminum gas cylinder installed within the field site. Appendix 

Figure A.5 shows the large CO2 storage cylinder used to supply CO2, to all types of 

photobioreactors within the LARB cultivation facility. 

All four flat panels retained the shared cooling system operational infrastructure including 

evaporative cooling tower (Appendix Figure A.6), underground cooling water storage tank, water 

supply and return piping, and cooling coils inside each flat panel tank. The original design 

infrastructure of the flat panel photobioreactor system had 2 blower motors installed for the 

aeration system of all 4 rows of panels. 

Since the CO2 supply is transported by blending with a stream of air from the aeration 

system by a blower, a secondary blower was utilized specifically for the two West side flat panels, 

providing the capability to control the CO2 supply to the West side flat panels through a 

monitoring and control system. A stand-alone aeration system was arranged by fabricating a CO2 

supply line obtained by providing a separate piping line from the main CO2 line supply that was 

already being controlled by the timer. Hence, a CO2 supply was always available inside the piping 

line whenever the timer was activated. From that pipeline, an air pressure regulator capable of 

regulating CO2 (0-100 psi) was installed in order to match the operating pressure set for the East 

side flat panel tanks. In-line with the output flow of the pressure regulator, a normally closed 2-

way 24VDC solenoid valve was fitted. The solenoid acted as a valve that allowed the CO2 to be 
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routed. The next part installed was a manual flow meter that was used to adjust the CO2 flow rate 

to match the operational flow rate set on the east side flat panel tanks. With this configuration, 

CO2 could be supplied on demand for the West side flat panel tanks based on the programmed 

function demand. Figure 4.2 and 4.3 show the arrangement and modification for an independent 

stand-alone aeration system for the West side flat panel tanks.  

 

 

Figure 4.2. Stand-alone aeration system with supporting parts assembled (inside green box)  
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Figure 4.3. CO2 regulator, solenoid and flow meter as part of stand-alone aeration system 

 

 The system’s operational components assessment was based on the earlier experiment 

setup and data generated. Even though different photobioreactor designs may exhibit different 

performance results, there were other variables that were not completely understood along with 

other uncontrollable and unpredictable occurrences. For the two West side flat panel tanks with 

the integrated automation system, the experimental variables were: 

Inside flat panel tanks: 

 Temperature reading: 2 RTD probes for algae culture temperature 

 pH reading: pH probe 

 Dissolved O2 reading: Dissolved O2 probe 
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Outside flat panel tanks: 

 Ambient temperature 

 One cooling loop inlet temperature for West side flat panel tanks  

 One cooling loop outlet temperature for West side flat panel tanks  

 Main manifold cooling loop inlet temperature for East and West side flat panel tanks  

 Main manifold cooling loop outlet temperature for East and West side flat panel tanks  

 Aeration temperature for West side flat panel tanks 

The following figures (4.4 and 4.5) show the RTDs installed on aeration and cooling systems. 

 

 

Figure 4.4. RTD installed on aeration system piping 
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Figure 4.5. RTD installed on cooling system (blue arrow for supply and red arrow for return) 

 

Among the variables being monitored, the cooling system and pH readings could be 

controlled based on several temperature readings and regulation of CO2 addition in the aeration 

supply stream. In order to minimize ambiguity in variable values, the cooling system was fitted 

with a controller activation using time-based adjustment. The regulation of CO2 addition through 

the aeration system was retained as the only controlled variable.   

 In order to enable continuous development of this research effort, some components 

were upgraded to meet the research interests and/or scalability of the photobioreactor system. 

Some of the areas of interest were: 

 Algae culture pH: this was done by metering of CO2 supply to the aeration supply 

stream. Algae culture pH reading is affected by culture media, temperature and CO2 
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content.  Appendix Figure A.7 illustrates pH analyzer installed on prototype 

photobioreactor. The analyzer has a build in capability to interpret signal from a dissolved 

O2 sensor initially installed as a test. The dissolved O2 value was planned to be used as a 

baseline to determine correlation with the dissolved CO2 content in the algae culture.  

There was a need for further experimentation on the correlation of the dissolved O2 data 

in relation to dissolved CO2 content.  The main part for CO2 regulated supply is a normally 

closed solenoid valve. For future precise metering, an electronically controllable mass 

airflow metering device with a mass air flow sensor could be fitted. To complement the 

mass airflow metering device, an additional dissolved CO2 sensor with an analyzer could 

be installed. Dissolved CO2 input parameter would be better utilized if operated together 

with an already installed dissolved O2 sensor. From those two sensors, input variables of 

dissolved O2 and CO2 would assist in defining the correlation between dissolved gases, 

volumetric displacement in a liquid media, as well as the algae culture’s capacity to 

capture CO2 supplied in the flat panel tanks.   

 Cooling system: the main manifold supply for the cooling system can be controlled by 

utilizing a regulating bypass valve to allow excess cooling water that is not needed for 

cooling to be returned back to the reservoir. Continuous regulation of water supply to 

cooling coils and bypass return path to reservoir will affect the cooling system 

performance, allowing for better control resolution based on the defined algae culture 

temperature. A major improvement for controlling flat panel tanks temperature is to install 

an electronically controllable 3-way bypass valve; one port for inlet water and two ports 

with one port for cooling water supply and one port for cooling water return.  

Algae strain selection 

 The algae use for this research was a green microalga Scenedesmus sp. (LRB-0414). 

The culture was initially grown in an indoor laboratory in several small glass tubes. The algae 

culture grown indoors utilized BG-11 culture growth media and was illuminated with cool white  
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fluorescent lamps to enable doubling the cell concentration within approximately 3 days. The cells 

were grown in glass tubes with the following dimensions: internal diameter 5.0 cm, length 60 cm, 

and maximum volume 850 mL. Light intensities provided by the fluorescent lamps ranged from 15 

to 350 µmol photons m
-2

s
-1

. The algae culture was aerated by compressed air containing 1% CO2 

at a flow rate of 2 Liters/second. The mixture of air and CO2 was regulated through a rotometer 

muti-tube flowmeter device. Cells were grown at a constant temperature of 25
o
C. This initial step 

is critical in order to determine overall algae culture health and prepares for sufficient culture 

density required prior to transferring algae culture to be inoculated for outdoor cultivation. From 

this stage, an algae culture density of 1.5 g/L was prepared to be used for outdoor inoculation. 

Automation system configuration and results 

 The initial step to utilize an automation system is to configure supporting components 

within the infrastructure. Supporting components were installed outdoor (field site) and indoor 

(control room) which include PLC unit, power supply and communication junction box. Integration 

of select components to photobioreactor system required attention to detail to ensure that 

components can function consistently with minimum problems. Supporting components are 

shown in Appendix section Figure A.8-11. 

The software used for the monitoring and control programming algorithm was obtained 

from Rockwell Automation (www.rockwellautomation.com). The software package includes 

several components that enable multiple function variables to be integrated in a designed 

program. The main software is FactoryTalk View; including other software such as FactoryTalk 

View Site Edition (SE), FactoryTalk View Machine Edition (ME) and FactoryTalk View Studio. 

These are Human Machine Interface (HMI) software products designed with a common look and 

navigation to assist application development and training time.  

Supportive of the Rockwell Automation Integrated Architecture, FactoryTalk View is part 

of scalable and unified set of monitoring and control solutions designed to extend stand-alone 

machine-level applications up through supervisory level HMI applications that can be developed  
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through a series of networks. This offers a common development environment for application, 

utilization, architecture productivity increases, long term operation costs, and to achieve quality 

improvement. Figure 4.6 shows FactoryTalk View Studio window from the training software. 

 

 

Figure 4.6. FactoryTalk View Studio window  

 

 Rockwell FactoryTalk Activation software is essential to initiate any use of Rockwell 

licensed products. It is part of the FactoryTalk Services Platforms and provides components that 

allow FactoryTalk-enable products to use activated files generated by Rockwell and distributed 

over the system network or internet. The activation uses a file over Rockwell website that is 

digitally signed, plain-text file that activates software products and locks the activation to a 
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designated computer’s hard disk, Ethernet card or a secured website. The activation file contents 

are confined by a signature generated by Rockwell that is based on machine specific information 

provided when installing the software. This greatly enhances the system’s security in the event of 

any Intellectual Property know-how concerned.  

 Support for the operational system of FactoryTalk View software input and output data 

management is essential to enable system monitoring and control algorithm. Also from Rockwell, 

software RSLinx Enterprise is utilized for operating the data server. It communicates via 

FactoryTalk data using systems client/server communication protocol with FactoryTalk products. 

FactoryTalk products and RSLinx Enterprise share FactoryTalk capabilities of system 

diagnostics, redundancy, and security. RSLinx Enterprise is included with all FactoryTalk 

software package.  Figure 4.7 illustrates RSLinx software window. 
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Figure 4.7. RSLinx Gateway window 

 

The operation software that enables algorithm programming of monitoring and control 

systems was performed through Rockwell RSLogix 5000 software for design and configuration. 

RSLogix 5000 uses of protocol IEC61131-3 compliant interface, symbolic programming with 

structures and arrays and a comprehensive instruction set that serves many types of applications. 

It provides ladder logic, structured text, function block diagram and sequential function chart 

editors for program development as well as support for batch and machine control applications. 

Any program configurations completed from RSLinx and RSlogix 5000 software could then be 

included as a programmed operating system for FactoryTalk View Studio. Figure 4.8 illustrates 

the HMI template being configured in FactoryTalk View Studio.  
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Figure 4.8. HMI template configuration in FactoryTalk View Studio 

 

The study was conducted in parallel with the research scope under EPA P3 (Environment 

Protection Agency, People, Prosperity, and the Planet) sponsored project in developing 

commercially viable culture media from wastewaters optimized for the emerging microalgae-

based biofuel industry. The experiment was performed over two weeks starting on the second 

week of January 2012, with the monitored data obtained from the run over the first five days. The 

flat panel photobioreactor utilized for conducting the monitoring control study was used as a 

control study using standard BG-11 Growth Medium. In contrast, other flat panels were used for 

experimental algae cultivation using growth media processed from various wastewaters obtained  
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from dairy, poultry and municipal sources. Due to time constraints and limited assistance in algae 

cultivation process, the monitoring and control system progress covered only up to the 

programming of the data communication and PLC to obtain input variable values (temperatures 

values on various points and pH).  

The information obtained from sensors was processed through PLC with Rockwell 

Automation software programmed to correlate input values to be useful for the further 

programming routines needed for the control variable outputs. The raw data processing from PLC 

was transferred to a data management system (Microsoft Access), which enabled the raw data to 

be stored in its own format based on the Access Jet Database Engine. The support of Access is 

by Visual Basic for Applications (VBA), an object oriented programming language that can 

reference a variety of data generation such as from Rockwell Automation. The integration of 

Access greatly minimizes the size of data memory space utilization as compared to storing 

Rockwell Automation data to the computer desktop hard drive.  The stored data from Access was 

then tabulated through Microsoft Excel enabling the values to be better interpreted in the form of 

organized spreadsheet and graphical forms. Starting time of the recording was at 10:00 PM of the 

day 0, and continued to 6:00 AM of day 5. The programmed real time measurements were taken 

every fifteen minutes. The graphical plots in this report have been simplified to provide the five 

day monitoring into hourly data points. Figure 4.9 illustrates ambient and aeration temperature 

values versus time. 
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Figure 4.9. Aeration and ambient temperatures versus time 

 

Referring to the graph, the red plot is for the ambient temperature, and the blue plot is for the 

aeration temperature. At the highest temperature of the day, the ambient temperature shows 

readings that are higher than the actual temperature value. This was due to the fact that the RTD 

used was exposed directly to the sunlight, thus the radiant heat from the sun increased 

temperature values during the peak time of the day. The solution was to relocate it to the point 

where it could obtain actual ambient air temperatures while avoiding direct sunlight exposure 

during the day. The blue plot of the aeration shows that during the highest temperature of the 

day, the air and CO2 mix supplied to the photobioreactor reached 58
o
C. This is normal due to the 

air supply being forced by a blower at a high flow rate (rated at 110 cubic feet per minute from 
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www.aquaticeco.com). This greatly affects the in-tank culture temperature and cooling system 

efficiency. 

The next graph is the plot of in-tank algae culture temperature for the east and west flat 

panels under the monitored system. Figure 4.10 shows the comparison of the two flat panel 

temperature variations. 

 

 

Figure 4.10. East and west flat panel temperatures versus time 

 

In-tank algae culture temperature is influenced by many factors. Environment factors are ambient 

temperature and sunlight radiation. Other factors influenced are the overall system integrations 

and cultivation preparation such as aeration system, cooling system and culture density. From the  
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graph it can be observed that the west side overall temperature values were lower than the east 

side due to the cooling water supply of fresh water from the cooling tower. The excess water that 

was already used to cool the west side through its cooling loop was circulated to be used for the 

east side flat panel cooling loop, thus a temperature difference between west and east in-tank 

algae culture temperatures. Figure 4.11 illustrates the temperature values for the cooling loop 

inlet and outlet. The cooling loop described for the plot is a combination of two cooling loops of 

the west and east flat panels connected in series.  

 

 

Figure 4.11. Cooling loop inlet and outlet temperatures versus time 
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The cooling loop inlet temperature reading was based on the lowest water temperature capable 

of being supplied by the cooling system. The cooling loop outlet temperature was based on the 

reading of cooling water circulated from west and east flat panel cooling loops. There were slight 

variations in temperature readings due to the RTDs exposure to the sunlight. To remedy this, a 

UV resistance insulation material could be added to cover the RTDs. 

Monitoring the main manifold supply and return water temperatures can also assess the 

cooling system efficiency for the entire cooling system circuit. Two RTDs integrated within main 

manifold provided the temperature values. Figure 4.12 illustrates the cooling system 

performance. 

 

 

Figure 4.12. Cooling system supply and return temperatures versus time 
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The cooling system supply temperature provided the lowest temperature reading for the cooling 

system capability based on the ambient temperature. The cooling system return temperature 

reading represents the overall temperature of the flat panel photobioreactors in a row and 

provides an example of how the twelve flat panels arranged in series affect the cooling water 

temperature as it was returned to the evaporative cooling tower. The overall cooling system 

temperature readings can assist in detecting any cooling system problems during the cultivation 

process, as well as predict the components maintenance requirements and service life, and 

provide seasonal cooling system performance should the existing cooling system need to be 

utilized for additional photobioreactors. 

The other monitored values beside temperature readings were the pH readings. Figure 

4.13 shows the pH data (red plot) taken manually with a hand held pH meter, compared with pH 

measurements taken by the monitoring system. Due to the availability of only one pH probe unit 

for the monitoring system, the west side flat panel was chosen to be the sampling unit. 
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Figure 4.13. pH values from manual measurements and system monitored versus time 

 

The manual pH measurement was taken two times a day; first at 9:00 AM and second at 6:00 

PM. The eight manual pH measurements were compared against the monitoring system 

measurements. All eight yielded comparable pH values to that obtained with the monitoring 

system at the same time. The system monitored plot shows other pH values, including the 

highest and lowest values, otherwise not detected by the manual methods. This data illustrates 

that continuous real time system monitoring can assist in determining the pH, CO2 supply status, 

and photobioreactor cooling system efficiency as well as other parameters to maintain 

appropriate algae culture conditions. 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 An algae cultivation system, in general, is similar to agricultural crop farming practices. 

Plants are grown on an area of land for a certain time period (season) with the goal of harvesting 

part of or all the biomass produced by the plants. One of the advantages of using algae biomass 

is that it can be grown as a source of energy in the form of biofuels. Additionally, algae-based 

biofuels do not compete with other agriculture food crops. Significant advances in algae 

production practices, photobioreactor technology and strain selections, have led to additional 

knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel.  

 Although a scalable, commercially viable algae cultivation system has not yet emerged; 

numerous approaches in research have been conducted to make the price of biofuels from algae 

to become cost-competitive with fossil-based petroleum fuels. Continuous improvement in the 

algae production process is required in order to obtain the desired quality and quantity of product 

and reduce the overall cost to obtain biofuels and co-products from algae. One of the 

improvement efforts needed is the design of an automated monitoring and control system 

specifically for an algae photobioreactor system. This is of great importance to research 

organizations and industries that wish to exploit the use of algae for various products. 

 The results from this research indicate that in a diverse world there can be no set of 

absolute components for designing a universal ”fits-all” automated system. Some systems may 

require more functionality and/or flexibility, some may require less. The balance between cost and 

functionality will vary from project to project. This research focused on an evaluation of outdoor 

photobioreactor types and was conducted using an existing datalogger system. In order to 

improve datalogging repeatability and upgradability, robust industrial components were evaluated 

and integrated with the photobioreactor system. In addition, a PLC was configured and validated 

using Rockwell Automation software.  
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The following recommendations are based on the monitoring capabilities provided by the 

automation software and the results from the field testing.            

Recommendations  

 This study should be further developed to implement the automated monitoring and 

control system with more functionality and adaptability for various algae photobioreactor systems. 

However, any steps taken should observe some of the following recommendations to ensure the 

ultimate goal can be achieved. 

 Planning should include collaboration of researchers from various disciplines such as 

biology, chemistry and engineering. 

 Planning must include a thorough study of field site, including environment conditions, 

existing infrastructure systems and other supporting equipment available.  

 Planning team should have a thorough understanding of algae cultivation 

process/production systems and photobioreactor system dynamics. 

 Design of any automated system must be custom specific to the planned photobioreactor 

system and its infrastructure.   

 Knowledge of algae strain or strains to be used, environmental effects on the strain and 

nutrient/treatment sources supporting the algae cultivation will enhance the productivity 

and value of any planned system. 

 Photobioreactor and pond systems need additional research and development to improve 

overall production capabilities. 

 Continuous analysis of the cost of production systems (including monitoring and control) 

is necessary to make cultivation systems operational, competitive, and sustainable. 

Integration of other sustainable energy sources such as solar, wind and natural gas with 

algae cultivation systems need to be evaluated for long-term potential benefits.   
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APPENDIX: 

FIGURES OF PHOTOBIOREACTORS AND SUPPORTING COMPONENTS 

  



63 

 

 

 

Figure A.1. LARB Medium Pond Raceway System 
 

 
 

Figure A.2. LARB Mobile Photobioreactor 
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Figure A.3. Prototype Flat-panel Photobioreactor Production Row 
 

 
 

Figure A.4. Prototype Flat-panel Photobioreactor Production Row 
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Figure A.5. Outdoor CO2 Storage Cylinder 
 

 
 

Figure A.6. Evaporative Cooling Tower 
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Figure A.7. Outdoor pH Analyzer and Communication Junction Box Installed on Prototype 
Photobioreactor 
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Figure A.8. Outdoor Electrical Junction Box with 120VAC-to-24VAC Power Supply 
 

 
 

Figure A.9. Outdoor Communication Junction Box in the Harvest Room 
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Figure A.10. Communication Junction Box with Power Supply in Control Room 
 

 
 

Figure A.11. Early Prototype Human Machine Interface (HMI) Window for Photobioreactor 
Monitoring 

 
 


