
Software Techniques in the Compromise of Energy and Accuracy

by

Jeffrey Michael Boyd

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2014 by the
Graduate Supervisory Committee:

Hari Sundaram, Co-Chair
Baoxin Li, Co-Chair
Aviral Shrivastava

Pavan Turaga

ARIZONA STATE UNIVERSITY

May 2014

ABSTRACT

Software has a great impact on the energy efficiency of any computing system–it

can manage the components of a system efficiently or inefficiently. The impact of

software is amplified in the context of a wearable computing system used for activity

recognition. The design space this platform opens up is immense and encompasses

sensors, feature calculations, activity classification algorithms, sleep schedules, and

transmission protocols. Design choices in each of these areas impact energy use,

overall accuracy, and usefulness of the system.

This thesis explores methods software can influence the trade-off between energy

consumption and system accuracy. In general the more energy a system consumes

the more accurate will be. We explore how finding the transitions between human

activities is able to reduce the energy consumption of such systems without reducing

much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect

transitions, and explore how choices of sensor, feature calculations, and parameters

concerning time segmentation affect the accuracy of this method. We discovered

an approximate 5× increase in energy efficiency could be achieved with only a 5%

decrease in accuracy.

We also address how a system’s sleep mode, in which the processor enters a low-

power state and sensors are turned off, affects a wearable computing platform that

does activity recognition. We discuss the energy trade-offs in each stage of the activity

recognition process. We find that careful analysis of these parameters can result in

great increases in energy efficiency if small compromises in overall accuracy can be

tolerated. We call this the “Great Compromise.” We found a 6× increase in efficiency

with a 7% decrease in accuracy.

We then consider how wireless transmission of data affects the overall energy

efficiency of a wearable computing platform. We find that design decisions such as

i

feature calculations and grouping size have a great impact on the energy consumption

of the system because of the amount of data that is stored and transmitted. For

example, storing and transmitting vector-based features such as FFT or DCT do not

compress the signal and would use more energy than storing and transmitting the raw

signal. The effect of grouping size on energy consumption depends on the feature.

For scalar features energy consumption is proportional in the inverse of grouping size,

so it’s reduced as grouping size goes up. For features that depend on the grouping

size, such as FFT, energy increases with the logarithm of grouping size, so energy

consumption increases slowly as grouping size increases.

We find that compressing data through activity classification and transition de-

tection significantly reduces energy consumption and that the energy consumed for

the classification overhead is negligible compared to the energy savings from data

compression. We provide mathematical models of energy usage and data generation,

and test our ideas using a mobile computing platform, the Texas Instruments Chronos

watch.

ii

For Michelle. This would not have been possible without your love and patience.

Thank you.

I love you.

iii

ACKNOWLEDGEMENTS

I’d like to first thank my mentor and advisor, Hari Sundaram, for working with me

on these ideas for the past few years. Thank you for opening the wide world of

university research to me with its many disciplines and for your support when the

going got tough.

This work would not have been possible without the resources and motivation

of the Mixed Reality Rehabilitation lab, part of the School of Arts, Media, and

Engineering at Arizona State University. This lab is the reason I came to ASU in

the first place. I learned early in my life that I loved solving technical problems.

As a young adult I realized I love working with people in need. The Mixed Reality

Rehabilitation lab was an ideal setting to satisfy both those desires. I am grateful for

the people I worked closely with in the lab: Hari Sundaram, Thanassis Rikakis, Loren

Olsen, Yinpeng Chen, Margaret Duff, Michael Baran, Nicole Lehrer, Diana Siwiak,

and Assegid Kidane.

I gratefully acknowledge the financial support from Science Foundation Arizona,

and National Science Foundation Integrative Graduate Education and Research Trainee-

ship (NSF IGERT), under NSF grant DGE-05-04647. This support allowed me to

support my growing family with zero student loan debt.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction. 1

1.1 Motivation . 2

1.2 Scope . 3

1.3 Thesis Roadmap . 5

2 Related Work . 7

2.1 Early Work . 7

2.2 Activity Recognition with Inertial Sensors . 8

2.2.1 Work that focuses on recognition accuracy 8

2.2.2 Work that considers energy consumption 10

3 Transition Detection . 13

3.1 Design Space . 13

3.1.1 Sensors . 14

3.1.2 Features . 14

3.1.3 Temporal Resolution . 15

3.2 Transition Detection Using a Log-Likelihood Ratio Test 15

3.3 Evaluation Metrics . 18

3.3.1 Accuracy . 18

3.3.2 Computational Complexity . 19

3.4 Experiments . 20

3.4.1 Energy and Accuracy Trade-offs . 21

3.4.2 Low-Dimension Feature Detection is better 24

v

CHAPTER Page

3.5 Summary . 25

4 The Effects of Sleep on Energy/Accuracy Trade-offs . 27

4.1 Introduction . 27

4.2 Energy Considerations in the Activity Recognition Process 29

4.2.1 Sensors . 30

4.2.2 Selective Sleep Strategies . 32

4.2.3 Features . 35

4.2.4 Transition Detection Methods . 36

4.2.5 Classifiers . 39

4.3 Experiments . 41

4.3.1 Activities . 41

4.3.2 Data . 41

4.3.3 Design Space Exploration. 42

4.3.4 Evaluation Metrics . 44

4.3.5 Uniform Sampling . 46

4.3.6 Data-driven Sampling . 50

4.4 Discussion . 54

4.5 Summary . 55

5 Energy and Data Models, plus Transmission Effects . 57

5.1 Energy and Data Models . 59

5.1.1 The Mobile Sensor . 59

5.1.2 The Energy Consumption and Data Creation Model 61

5.1.3 Exploring Different Transmission Trade-offs 65

5.2 Strategies for Sensing Less . 69

vi

CHAPTER Page

5.2.1 Reduce FS and bit resolution . 69

5.2.2 Periodically put sensors to sleep . 69

5.2.3 Aperiodically put sensors to sleep . 70

5.2.4 Use a hierarchy of sensors . 70

5.3 System Evaluation . 71

5.3.1 Accuracy . 71

5.3.2 The Energy Cost of Different Transmission Schemes 73

5.4 Summary . 75

6 Conclusion . 77

6.1 Contributions . 77

6.2 Future Work . 78

REFERENCES . 80

APPENDIX

A The Computational Complexity of LLRT . 83

B Transition Detection Tests with Pareto Front . 84

vii

LIST OF TABLES

Table Page

3.1 List of Features and their Complexity . 16

3.2 Pareto Optimal Points Summary. 23

4.1 Computational Complexity of the Transition Detection Methods 37

4.2 Confusion Matrix for the SVM Classifier . 44

4.3 Transition Detection Hit (PC), Miss (PM), and False Alarm (PFA)

Probabilities and Energy Characteristics . 48

4.4 Summary of Transition Detection Metrics . 50

5.1 Variables for Energy and Data used in this Chapter 60

5.2 Energy Characteristics of TI Chronos Watch . 73

viii

LIST OF FIGURES

Figure Page

3.1 System Flow Chart. 14

3.2 Our sliding window technique. 17

3.3 Experimental Setup with the SparkFun 6-DOF IMU v3 21

3.4 Design Space and Pareto Optimal Points . 22

3.5 Pareto Optimal Points by Feature . 25

3.6 The Relationship between Frames per Window, Feature Dimension and

Computational Complexity. 26

4.1 Two Approaches to Activity Recognition . 28

4.2 Energy Consequences in each Stage of Activity Recognition 30

4.3 Uniform and Episodic Sampling Visualized . 33

4.4 Transition Detection using a SVM. 38

4.5 Pareto Fronts of the Transition Detection Methods 47

4.6 Visualization of Transition Detection Metrics . 51

4.7 The Effect of tmax on Episodic, Hybrid Episodic, and Uniform Sampling 53

5.1 Energy Efficiency of TI Chronos for Common Tasks 58

5.2 The Effect of Grouping Size SG on Transition Detection Accuracy 72

5.3 Energy Consumed with Different Transmission Schemes 75

B.1 Uniform, No Transition Detection Strategy Design Space 84

B.2 µ and σ2 Transition Detection Design Space . 85

B.3 LLRT Transition Detection Design Space . 86

B.4 SVM Transition Detection Design Space . 87

ix

Chapter 1

INTRODUCTION

I want to begin with a quote from Professor Steve Furber, co-designer of the ARM

microprocessor:

If you want an ultimate low-power system, then you have to worry about

energy usage at every level in the system design, and you have to get it

right from top to bottom, because any level at which you get it wrong is

going to lose you perhaps an order of magnitude in terms of power effi-

ciency. The hardware technology has a first-order impact on the power

efficiency of the system, but you’ve also got to have software at the top

that avoids waste wherever it can. You need to avoid, for instance, any-

thing that resembles a polling loop because that’s just burning power to

do nothing. [Furber and Brown, 2010]

Steve Furber is one that is thoroughly familiar with the electrical properties of com-

puting systems and has been an active contributer to the field since the early 1980s.

Therefore, his exclamation that top-level software should avoid waste wherever it can

should be taken seriously. Software can have an order of magnitude effect on the

energy usage of a system; Dr. Furber alludes to this in the above quote and this

thesis will demonstrate evidence of this. Software affects many levels of the system

design, so efficiencies and inefficiencies have system-wide ripple effects.

The effect of software on energy efficiency is especially interesting in the context of

mobile computing platforms. These devices are a hotbed of research and development.

In general they contain a low-power processor, a small amount of non-volatile memory,

1

one or more sensors, a radio transceiver, and, perhaps most importantly, get their

energy from a battery. This combination of features on a single platform provide many

opportunities to make decisions on compromises between energy consumption and

accuracy. For example, a Global Positioning System (GPS) sensor is very accurate at

determining location, but it consumes more power than using cellular triangulation,

which also provides location, but is much less accurate. Consider also the design

decision of what size battery to use on a wearable device. A larger battery will mean

the system can run longer before recharging, but a larger battery takes up more space

and is heavier than a smaller one–possibly adversely affecting the person wearing the

device. An energy-constrained device demands efficient use of resources, and software

manages those resources.

1.1 Motivation

This thesis is further motivated by the research into rehabilitation systems for

stroke survivors conducted in the Mixed-Reality Rehabilitation Lab, part of the

School of Arts, Media, and Engineering at Arizona State University. Stroke survivors

are interesting subjects as part of a study on how software affects mobile computing

platforms. A stroke usually impairs one side of a person’s body, so a key indicator

of rehabilitation or progress is a person’s ability to perform routine activities of daily

living (ADL) with their impaired side. ADL are routine functions such as brushing

teeth, reaching for objects, using eating utensils, opening and closing doors or draw-

ers, etc. Physical and occupational therapists are keen to know if their patients use

their impaired side for ADL, but currently rely on subjective, after-the-fact reports

and surveys from patients.

A more objective measurement would be useful in getting a more complete un-

derstanding of a stroke survivor’s recovery. A wearable computing platform could

2

provide a more objective measure if it was as small and unobtrusive as a wristwatch,

comfortable enough for a person to wear throughout the day, able to identify activities

of daily living, and work without frequent recharges to the battery or battery replace-

ments. It was in the context of this situation that we decided to explore how our

knowledge of human behavior could help the overall system be more energy efficient.

A key insight was the observation that humans move and work at completely

different time scales than what modern microprocessors operate at. Microprocessors

perform millions of operations per second, but humans do activities on scales of tens

of seconds, minutes, and hours. Software managing a mobile computing platform

could exploit this knowledge and remain in a low-power state until a person starts a

new activity. The transitions between activities are the interesting points in time to

detect and are key in reducing the energy consumption of a wearable device.

1.2 Scope

I think it’s important to identify some aspects of energy efficiency that are not

covered in this thesis. No discussion on energy efficiency would be complete without at

least mentioning Jevons Paradox. William Stanley Jevons was a 19th century English

economist who observed that increases in the efficiency of coal burning from James

Watt’s steam engine resulted in greater consumption of coal, rather than a decrease

in consumption. Some of his peers had argued that increases in the efficiency of coal

burning would decrease the consumption of this constrained resource, but Jevons

argued the contrary was true.

Parallels can be made with efforts to increase the energy efficiency of software.

Indeed, advances in the capabilities of low-power processors, thanks to Moore’s Law,

have kicked off a surge in hype surrounding the “Internet of Things,” which are

networked, low-power systems embedded in common physical object that have not

3

commonly been augmented with electronics. Gartner, Inc. projects the Internet of

Things will grow to 26 billion devices by the year 2020 [Rivera and van der Meulen,

2013]. This thesis will not address the business and societal consequences of Jevons

Paradox as it applies to software for embedded devices, other than pointing out that

any increases in energy efficiency software can provide would be substantial when

applied across 26 billion devices.

This thesis will not address active research into activity or pattern recognition,

machine learning, or artificial intelligence, though concepts from these disciplines will

be mentioned and used. Nor will it address advances in digital logic design or silicon

processes that enable greater energy efficiency from a hardware perspective.

Given the idea of using our knowledge of human behavior to make a wearable

computing platform for stroke survivors more energy efficient, and the idea of finding

transitions between activities, we will explore the design space this problem opens up.

We introduce the Log-likelihood Ratio Test as a method to detect transitions, and

explore how choices of sensor, feature calculations, and parameters concerning time

segmentation affect the accuracy of this method. We discovered an approximate 5×

increase in energy efficiency could be achieved with only a 5% decrease in accuracy.

We also address how a system’s sleep mode, in which the processor enters a low-

power state and sensors are turned off, affects a wearable computing platform that

does activity recognition. We discuss the energy trade-offs in each stage of the activity

recognition process. We find that careful analysis of these parameters can result in

great increases in energy efficiency if small compromises in overall accuracy can be

tolerated. We call this the “Great Compromise.” We found a 6× increase in efficiency

with a 7% decrease in accuracy.

We then consider how wireless transmission of data affects the overall energy

efficiency of a wearable computing platform. We find that design decisions such as

4

feature calculations and grouping size have a great impact on the energy consumption

of the system because of the amount of data that is stored and transmitted. For

example, storing and transmitting vector-based features such as FFT or DCT do not

compress the signal and would use more energy than storing and transmitting the raw

signal. The effect of grouping size on energy consumption depends on the feature.

For scalar features energy consumption is proportional in the inverse of grouping size,

so it’s reduced as grouping size goes up. For features that depend on the grouping

size, such as FFT, energy increases with the logarithm of grouping size, so energy

consumption increases slowly as grouping size increases.

We find that compressing data through activity classification and transition de-

tection significantly reduces energy consumption and that the energy consumed for

the classification overhead is negligible compared to the energy savings from data

compression. We provide mathematical models of energy usage and data generation,

and test our ideas using a mobile computing platform, the Texas Instruments Chronos

watch.

1.3 Thesis Roadmap

Chapter 2 discusses work related to this thesis. The effects of software on the

energy consumption of a system has been known for quite some time; early work

concentrated on general software optimizations that reduced power. It wasn’t until

recent years that researchers looked specifically at mobile computing platforms and

looked into ideas to reduce their energy consumption based on their purpose. Chapter

3 introduces and explores the design space surrounding our first transition detection

method, the Log-likelihood Ratio Test. Chapter 4 expands on the work in Chapter

3 by introducing two other transition detection methods and explores the effects of

different sleep patterns. Chapter 5 expands the design space to include the energy

5

consumed by wireless transmission of data and highlights the importance of data

compression. It also introduces mathematical models of energy consumption and

data generation for different system levels.

6

Chapter 2

RELATED WORK

2.1 Early Work

Early work on how software affects energy consumption identified three hardware

subsystems that software can significantly influence, namely the memory system,

system buses, and data paths to arithmetic logic units and floating-point units [Roy

and Johnson, 1997; Tiwari et al., 1996]. They discuss how to estimate the energy

consumption of a particular program and describe several techniques to optimize

software to use less power, mostly through code optimizations, taking advantage of

hardware low-power options and caches, and exploiting parallelism when available.

One important insight is that the shortest code sequences resulted in the lowest

program energy consumption. This important work led to an awareness of the impact

software has on the energy consumption of systems, opening the door for hardware-

software co-design and helped compiler designers write compilers that generate more

energy efficient code.

Expanding on the previous work, which was done mainly for desktop computers,

several papers addressed low power principles for entire mobile, battery-operated sys-

tems such as laptop computers and cellular phones [Smit and Havinga, 1997; Lorch

and Smith, 1998; Havinga and Smit, 2000]. They address the device as an ecosystem

of processing units, input-output devices, networking devices and device operator.

Important insights for hardware include reducing the operating voltage and switch-

ing frequency, designing components that have low-power modes with reduced func-

tionality, and having dedicated subunits that are more power-efficient than a general

7

purpose component. Also, adding some complexity, such as adding cache, does re-

duce power consumption because it reduces the number of (relatively power-hungry)

memory accesses. Trade-offs have to be made as well, since the most power-efficient

systems are often the least flexible, and the user should be given some control over

the power response of the system. Any evaluation of an energy saving strategy should

include whether the trade-offs are desirable for the users.

Zotos et al. proposed using a new measurement, energy complexity, in addition

to time and space complexity, as a performance measurement of algorithms [Zotos

et al., 2005]. They model the energy consumed by the system to CPU instructions,

memory accesses to instructions and memory accesses to data. They demonstrated

the usefulness of their model with three different implementations of matrix multipli-

cation. Though their model overestimated energy consumption, it was consistent in

the amount it overestimated. Their model only considers computation and assumes

a non-mobile platform. We use a similar model for energy consumption in a mobile

computing platform, but include more components usually found in those platforms.

2.2 Activity Recognition with Inertial Sensors

The use of inertial sensors, such as accelerometers and gyroscopes, in monitoring

and classifying a wide variety of activities from healthcare to sports is a well-studied

subject. The work can roughly be divided into two camps: those that focus on

recognition accuracy and those that take energy consumption into account.

2.2.1 Work that focuses on recognition accuracy

Accelerometers have been shown to be a valid and objective measurement of im-

paired arm usage in stroke survivors [Uswatte et al., 2006]. More recently, accelerom-

eters have been used to accurately estimate the Functional Ability Scale (FAS) in

8

stroke survivors [Patel et al., 2009]. The FAS is a clinical scale that assesses the

function and impairment of stroke survivors. Accelerometers have been used to iden-

tify routines throughout the day [Huynh et al., 2008] and been combined with RFID

readers to monitor daily activities and interaction with devices tagged with RFID

tags [Stikic et al., 2008]. One thing these and many other studies have in common is

their lack of concern for the energy consumption of wearable devices. Indeed, activ-

ity recognition projects have traditionally focused on obtaining the highest possible

accuracy and avoiding overfitting rather than energy efficiency.

For more information on accelerometers for activity recognition and healthcare,

see a survey by Gebruers et al. [2010]. They focus on clinical trials that used ac-

celerometers to measure the physical activity of stroke survivors. Key findings from

their survey are that patients were compliant and motivated to wear motion loggers,

and devices worn on the wrist, hip, and ankle were perceived to be non-restricting.

Activity recognition, including gesture spotting, is a popular area of research

with many published papers on the subject. Some recent examples include Czabke

et al. [2011], who developed a highly accurate accelerometer-based activity recognition

system that generalizes across users and sensor orientations. They limit the activities

to resting, walking, running, and unknown activity. They do not discuss the energy

consumed by their implementation or possible ways to conserve energy. Also, Krassnig

et al. [2010] created a very accurate activity classifier that generalizes across users.

They use a single 3-axis accelerometer near the center of mass. They do not consider

how much energy their system consumes.

A good survey of current practices and open research problems was written by

Avci et al. [2010]. Avci et. al. report on the various techniques in the published

literature used in the main steps of activity recognition: preprocessing, segmentation,

feature extraction, and classification. One conclusion they draw is that there is a

9

growing problem of minimizing communication and energy consumption, two areas

of focus in this thesis.

2.2.2 Work that considers energy consumption

There have been a few studies that recognize that there is a trade-off between

activity recognition accuracy and energy efficiency. Stäger, Bharatula and others have

presented an empirical design methodology to explore the trade-offs between energy

and accuracy in a wrist-worn system consisting of accelerometers, microphone, and

light sensors [Stäger et al., 2007; Bharatula et al., 2005]. They took a low-power

approach from the beginning, investigating and showing how sampling frequency,

feature selection, and choice of classifier change their system’s power consumption.

An important finding was that a lot of battery life could be gained by sacrificing

a little accuracy. Another insight was that the addition of a sensor could improve

the energy efficiency [Bharatula et al., 2005]. Both of these projects focus on the

sampling frequency of the sensors and feature selection as means of reducing energy

while maintaining a regular, periodic sleep schedule. Not only do we use sampling

frequency and feature selection to reduce energy, we explore different sleep strategies.

Another study recognized the trade-off between power and accuracy. Krause and

others used the accelerometers on the eWatch system to classify five activities: walk-

ing, running, standing, sitting and climbing or descending stairs [Krause et al., 2005].

They showed a 4× increase in the lifetime of their wrist-mounted system, without

significantly reducing prediction accuracy, by reducing the sampling frequency and

exploring different sleep schedules. They refer to these sleep schedules as selective

sampling strategies. Their best results came from a sampling strategy that relies on

extensive training data and a model of activity sequences with probabilities of transi-

tioning between activities, which they tested against a strategy based on exponential

10

back-off, a strategy based on sleep times drawn from a uniform distribution, and the

baseline uniform sampling with regular periodicity.

French et al. expanded on the work of Krause by collecting more data and focused

specifically on evaluating different selective sampling strategies [French et al., 2007].

They tested a baseline uniform sampling strategy, a strategy that samples over the

distribution of duration times of activities (assuming a Gaussian distribution), and

one that samples based on the probability of a transition occurring. Our work in ac-

tivity transition detection complements the selective sampling strategies described by

Krause et al. and French et al. Also, their methods rely on extensive a priori knowl-

edge about the duration of activities and probabilities of transitions. Our methods

assume no prior knowledge. Further, we explore a much larger design space beyond

just the sampling rate of the sensors.

Another project studied how changing the sleep schedule affects power and ac-

curacy in recognizing activities [Au et al., 2009]. Their algorithm, called Episodic

Sampling, uses a method similar to the exponential back-off strategy employed by

Krause et al. They report dramatic decreases in energy consumption, data storage

needs, and large gains in battery life while only sacrificing approximately 5% in av-

erage accuracy compared to a continuous classification strategy. Episodic Sampling

will be discussed in more detail in Section 4.2.2.

A different approach to reducing power in an activity recognition system was

taken by Wang et al., who focused on using the accelerometers, microphone, wi-fi,

and GPS radios in a smartphone [Wang et al., 2009]. They reduce power with a

sensor hierarchy and decision tree that ensure only the minimum number of sensors

are active at any time and that lower-power sensors activate higher-power sensors

only when necessary. They further reduce energy consumption by manually setting

sampling strategies for each sensor, based on extensive training data. In this paper,

11

we attempt to automatically set the sampling strategy, without the need of training

data.

There has been recent work that recognizes how software can improve the energy

efficiency of wearable systems. Sun et al. [2011] recognize that energy optimizations

are possible even when continuously monitoring physiological signals. They use ac-

celerometers to measure activity levels and optimize the settings of an electrocardio-

gram (ECG). They take advantage of using a low-power microcontroller to calculate

features on the device itself, thus reducing the overhead of wireless transmission. This

extends the battery life 2.5 times.

Raffa et al. [2010] present a method of recognizing specific gestures from contin-

uous accelerometer and gyroscope data in an energy-efficient manner. They leverage

relatively simples features and algorithms calculated on a wearable device to dis-

till the stream of data to the most essential parts. They do this to limit the times

computationally-complex activity classification algorithms are called, which also re-

duces overall system power without sacrificing much accuracy. They wirelessly trans-

mit the raw data, probably because the features they use actually generate more

data than the raw data. They focus on high-accuracy, with very few false positives,

because their system is designed to be an input to a computer’s user interface.

Patel et al. [2009] conserve energy in an electroencephalogram (EEG) based seizure

detection system by downsampling the EEG sampling frequency, reducing the number

of bits to represent data, and using hardware approximations of features. They also

simulate how their system would perform on a low-power digital signal processor and

custom, application-specific circuit. They also find that transmitting all EEG data

consumes the most energy and that reducing the amount of data that is transmitted

significantly extends the lifetime of their device.

12

Chapter 3

TRANSITION DETECTION

We introduce the idea of transition detection as one method of reducing the energy

consumption of wearable computing platform that does activity classification. Activ-

ity classification or pattern recognition algorithms are computationally complex and

the overall system would be inefficient if it were to continuously run these algorithms.

It would be accurate, but inefficient because the time scale at which people change

activities is far greater than the time scale it takes for a computer to run a classifica-

tion algorithm. The ideal would be for the classification algorithms once per activity

and not run again until the next activity. The overall system would be more efficient

if we had some method of detecting transitions that works well and is less complex

than pattern recognition algorithms.

This chapter explores the questions that came out of this idea. We first explore

the design space created by the problem of transition detection. Figure 3.1 outlines

the general procedure of our transition detection system. Then we explain the log-

likelihood ratio test we developed as a way to detect transitions. Next we develop

ways to evaluate our transition detection scheme and explain the experimental setup

we used to test it. Last we summarize the findings.

3.1 Design Space

In the following sections we outline the parameters of our design space in three

broad categories: sensors, features, and temporal resolution. We define temporal

resolution as the various time-based controls (sampling frequency, window duration,

etc.) we have in the system.

13

Figure 3.1: The design space in low-power activity transition detections focuses on
the sensors that detect activities, the features extracted from these signals, and the
temporal resolution or time-dependent properties of the system.

3.1.1 Sensors

To sense the activities we are interested in we chose to use a wrist-mounted triaxial

accelerometer. Accelerometers offer several advantages, beginning with the fact that

they’re small, lightweight, and inexpensive. Accelerometers are also widely used in

the literature on wearable computing systems and human activity recognition [Bao

and Intille, 2004]. We also investigated using magnetometers and gyroscopes. We

found the magnetometers in our test system to be too noisy for any practical use and

preliminary tests that included gyroscopes yielded poor results.

We used a triaxial accelerometer and experimented with all seven possible combi-

nations of signals, x-axis; y-axis; z-axis; x and y axes; x and z axes; y and z axes; x,

y, and z axes.

3.1.2 Features

Features are some aspect or quantitative measurement of the signal. They can

be simple time-domain measurements such as maximum, minimum, variance, and

mean, or frequency-domain based such as the Fast Fourier Transform (FFT) and

14

the Discrete Cosine Transformation (DCT). Other projects have had success using

wavelet transformations [Nyan et al., 2006; Sekine et al., 2000]. Each feature has its

own computational complexity, summarized in Table 3.1. Computational complexity

of feature extraction is important because it is directly related to energy consumption

[Zotos et al., 2005].

3.1.3 Temporal Resolution

The third variable is sampling frequency. We chose 100Hz as a baseline. We

chose this value because the fastest hand movements are about 5 Hz, and a good

rule-of-thumb is to oversample about 20x when using a noisy sensor. Realizing there

are low-power advantages to sampling at lower frequencies and encouraged by the

good results of Krause et al. [2005], who sampled at much lower frequencies, we also

experimented sampling at 50, 20, and 10 Hz. Lower sampling frequencies mean fewer

samples to process, faster runtimes, and increased energy savings.

The fourth variable is the size of the observation. We call this observation a frame

and define it as the number of samples that the features are extracted from. In our

study we used frame sizes of 10 and 20 samples.

Last we have the length or duration of the sliding window, measured in seconds.

The length of the window affects the number of observations used to calculate the

likelihood function, as well as the total number of comparisons. In our study we used

window lengths of 6, 8, 10, 12, 14, 16, 18, and 20 seconds.

There are 4480 permutations of the variables in our design space.

3.2 Transition Detection Using a Log-Likelihood Ratio Test

Our transition detection method uses a measurement of how different two sections

of the signal are within a bounded window of time. More specifically, given some point

15

Table 3.1: This table is adapted from Avci et. al’s survey on using inertial sensors
for activity recognition in the healthcare industry [Avci et al., 2010]. In terms of en-
ergy consumption, features can be characterized by their computational and spatial
complexity. Those features with complexity O(N logN) will take longer to compute
and consume more energy than those with complexity O(N). Similarly, vector fea-
tures will consume more energy than scalar ones because of the increased amount
of data, especially when algorithms that use the data later in the system are O(N3)
(such as matrix inversions).

Feature Complexity Scalar or Vector

Mean O (N) S

Variance/Std. Dev. O (N) S

RMS O (N) S

Cum. Histogram O (N) S

Zero/Mean Crossing Rate O (N) S

Derivative O (N) V

Peak Count O (N) S

Sign O (1) S

Spectral Centroid O (N) S

Spectral Energy O (N) S

Spectral Entropy O (N) S

Wavelet Coefficent O (N) V

Signal Magnitude Area O (N) S

Signal Magnitude Vector O (N) V

Inter-axis Correlation O (N) S

Freq. Range Power O (N logN) S

Fast Fourier Transform O (N logN) V

Discrete Cosine Transform O (N logN) V

16

Figure 3.2: The window is divided into left and right panes and compared using a
log-likelihood ratio test. The window panes are made of several frames, which are
comprised of several samples (shown in dashed lines). Features are calculated per
frame and can be a scalar or a vector.

in time, we want to measure how likely it is we have a transition there by looking

at the window of time immediately before and after that point in time. We split

the window in half, creating left and right window panes, as seen in Figure 3.2. We

want to measure how different the panes are from each other and the entire window.

First we define the log-likelihood function. For each of these panes and for the entire

window itself, we calculate a log-likelihood function for each signal we are analyzing:

L (x1, . . ., xN) =
N∑
i=1

ln (p (xi|µ,Λ)) (3.1)

In Equation 3.1, x1, . . . , xN denote the N observations or frames from the left

pane, right pane or the whole window. The values µ and Λ are the mean feature

vector and covariance matrix of all N observations. The probability p is derived from

the multivariate Gaussian probability distribution function. Each observation xi is a

vector of features extracted from each signal.

Once these likelihoods have been calculated for each part of the window, we com-

17

bine them in a log-likelihood ratio test, seen in Equation 3.2.

LLRTi =
L
(
i, . . . , i+

Nf

2
, j, . . . , j +

Nf

2

)
L
(
i, . . . , i+

Nf

2

)
+ L

(
j, . . . , j +

Nf

2

) (3.2)

In Equation 3.2, the variable i represents the first frame of the left window pane, j

is the first frame of the right window pane, and Nf is the total number of frames per

window. The intuition behind the LLRT is that it analyzes if the two distributions

are identical. The LLRT will be close to one when no transition is present and greater

than one when a transition is present. It peaks where the probability of a transition

is greatest.

The LLRT can become computationally complex when the dimension of the fea-

ture vector is high. This happens when using multiple scalar features or the coeffi-

cients of a Fourier, Discrete Cosine, or wavelet transformation. The complexity of the

LLRT is proportional to the square and cube of the dimension of the feature vector.

This is because of the calculation of the covariance matrix and its inverse, which are

O(N2) and O(N3) functions, respectively. This is discussed further in Section 3.3.2

and Appendix A.

3.3 Evaluation Metrics

We evaluate how good LLRT is at detecting transitions using precision, recall,

F-score and estimated energy consumption based on the runtime of the experiments.

3.3.1 Accuracy

Our accuracy measurements are based on hits, misses and false positives. When

there is a true transition, the transition detector can either correctly detect the tran-

sition (hits) with probability PC , or miss the transition with probability PM . When

there is no transition, the transition detector can incorrectly raise a false alarm with

18

probability PFA. We then combine these into precision, and recall, where

Precision =
PC

PC + PFA

and

Recall =
PC

PC + PM

A common measure that combines both is the F-Score:

F = 2 · Precision ·Recall
Precision+Recall

F is equal to 1 when both Precision and Recall are 1. We also define Reverse F-Score

(RF) measure:

RF = 1− F

which reverses the F-Score so that 1 is bad and 0 is good. We use RF to more easily

visualize accuracy vs. runtime.

3.3.2 Computational Complexity

We estimate energy as a computational complexity metric, since to a first order,

energy consumption is very strongly correlated to computational complexity. This is

because computational complexity directly affects runtime and runtimes affect energy

consumption. We’ve developed a model for computational complexity based on the

variables in our system.

The computational complexity, C, of our system can be broken up into two parts:

feature extraction (CFE) and the log-likelihood ratio test (CRT). We define:

C = CFE + CRT

If this were running in realtime, or in other words, the steady-state case, then the

best way to look at it is to consider the complexity per comparison. For feature

19

extraction:

CFE = FC (Sf)

where FC is the computational complexity of the chosen feature, many of which can

be seen in Table 3.1. The second part of complexity is:

CRT =

(
2 · FS · SW

Sf

)
·D2 +D3 (3.3)

where FS is the sampling frequency (samples/sec), SW is the window size (in units

of seconds), and Sf is the frame size (samples/frame). The quantity 2·FS ·SW

Sf
is twice

the number of frames per window. Multiplying by two is necessary because in each

comparison the window is essentially processed twice by looking at the left and right

panes and the whole window. The square and cube powers in the equation for CRT

are there because of the calculation of the covariance matrix and the inverse of the

covariance matrix in the multivariate Gaussian probability distribution function. See

Appendix A for more details on the derivation of this equation.

3.4 Experiments

This experiment used a SparkFun 6-DOF IMU v3, seen in Figure 3.3. The Spark-

Fun device has a Freescale MMA7260Q 3-axis accelerometer as well as gyroscopes

and magnetometers, though only the accelerometers were used in this experiment.

This device uses a LPC2138 ARM7 microcontroller and Bluetooth to communicate

with a computer. The SparkFun IMU was rigidly mounted to a subject’s right wrist

while they performed sequence of activities. The device was mounted such that the

accelerometer’s x-axis was parallel to the forearm, pointing toward the elbow, the y-

axis perpendicular to the forearm, pointing in the same direction as the thumb when

it is outstretched, and the z-axis pointing into the hand from the back of the hand to

the palm. All data was sampled at 100Hz and processed off-line using Matlab.

20

Figure 3.3: The SparkFun 6-DOF IMU v3 features a 3-axis accelerometer, 3-axis
gyroscope, 2-axis magnetometer and Bluetooth connectivity. In our tests, this device
was attached to the right wrist, with the x-axis parallel to the forearm. The raw data
was sent via Bluetooth to a computer and saved for use in Matlab simulations.

3.4.1 Energy and Accuracy Trade-offs

We estimate the accuracy and measure the performance of each sequence of ac-

tivities, for each design alternative. Accuracy is measured as Reverse F-Score (RF),

while performance is computed as average runtime per activity sequence. We define

runtime in this way because we want to compare the runtimes across all activity

sequences, which are of different durations.

Figure 3.4 plots the performance and accuracy of all design alternatives. Out of the

total 4480 combinations, only 15 are Pareto-optimal, and are connected by a curve,

and marked by circles on the graph. The Pareto-optimal points are also summarized

in Table 3.2. Each Pareto-optimal design point represents a design alternative for

which there is no better performing (in terms of processing time) design alternative

for a given F-Score. These are the most interesting points in the design space. The

other permutations are either slower or have a lower F-Score. Much of the following

discussion will focus on what we learn from these points.

A couple of interesting observations can be made about these Pareto-optimal de-

21

Figure 3.4: The red circles highlight the Pareto optimal points, which are dominated
by the 100Hz and 20Hz sampling frequencies. All combinations with a sampling
frequency of 10Hz had an RF of 1, meaning they did not detect any transitions. Note
the x-axis is log scale and the y-axis is linear.

sign points. The difference in accuracy between the top two rows in Table 3.2 is only

5%, but the top combination runs approximately 5.6x longer than the second, mean-

ing its computational complexity and energy consumption is much greater. Thus,

significant energy savings can be achieved if small sacrifices in accuracy are tolerable.

The eight pareto-optimal points on the lower right side of Figure 3.4, all have a

sampling frequency of 100Hz, while the seven on the top-middle are all sampled at

20Hz. Interestingly there is not much gain in accuracy when sampling at 50Hz (+

marked points) as compared to 20 Hz (points marked by x), while there is significant

improvement in performance. It appears the 10Hz combinations ran very fast, but

22

Table 3.2: This table summarizes the system parameters of the highlighted points
in Figure 3.4. Note similarities in signal, feature, frequency, and frame size.

RF Normalized
Time

Signal
(axis)

Feature Freq. (Hz) Frame Size Window
Size (s)

0.036 0.2172 x DCT 100 10 16

0.086 0.0388 y min 100 20 18

0.112 0.0359 x mean 100 20 16

0.146 0.0331 y max 100 20 14

0.170 0.0330 x min 100 20 14

0.196 0.0216 x max 100 20 8

0.270 0.0176 x min 100 20 6

0.340 0.0172 x max 100 20 6

0.729 0.0059 x variance 20 20 10

0.754 0.0056 x variance 20 20 8

0.775 0.0041 x min 20 20 10

0.829 0.0037 x mean 20 20 8

0.878 0.0037 z min 20 20 6

0.882 0.0032 x mean 20 20 6

0.938 0.0029 x max 20 20 6

simply did not have enough data to identify the transitions.

All Pareto points except the one with the lowest RF, have a frame size of 20 sam-

ples per frame. On average, the 20-samples-per-frame combinations ran faster the

10-samples-per-frame combinations, which was predicted by our model for computa-

tional complexity in the equations in Section 3.3.2. Frame size is in the denominator

in Equation 3.3; therefore dividing by a larger frame size reduces the overall complex-

ity. This also makes intuitive sense because with a larger frame size there are fewer

frames, or observations, per window and features are calculated per frame.

23

Note also that 12 of the 15 Pareto points use the x-axis, which represents the line

parallel to the forearm, from wrist to elbow. The fact that so many of the Pareto

optimal points use this axis indicates that it is important for detecting the kinds of

activities and transitions between the activities we tested.

3.4.2 Low-Dimension Feature Detection is better

Another interesting conclusion we can draw from the Pareto points is the fact that

most of them, all except the one with the lowest RF, use simple features such as mean,

minimum, maximum, and variance. These features performed very fast compared to

the more complex features such as DCT, FFT, and the wavelet transformations. Even

though both the wavelet transformations are O(N), just like the simple features, the

wavelets are represented by a vector of coefficients, rather than a scalar, which the

simple features use. This is a key difference in the runtime between the two groups.

Figure 3.5 shows the Pareto optimal points for each feature and the best overall.

The best overall curve, shown in red, is the same as the curve shown in Figure

3.4. Notice how the simple feature group and the more complex feature group have

similar curves within their group. The increase in runtime in the complex feature

group is attributable to the increased feature dimension. Equation 3.3 shows that

computational complexity is proportional to the square and cube of the dimension of

the feature. These two elements dominate the equation when the dimension of the

feature is high.

Figure 3.6 shows how the number of frames per window and the dimension of

the feature affect computational complexity. It shows the graph of Nf · D2 + D3,

where Nf is the number of frames per window and D is the feature dimension. In our

experiments, the feature dimension ranges in size from 1 to 20, and the number of

frames per window ranges from 3 to 200. Low feature dimensions have little effect on

24

Figure 3.5: The Pareto optimal points for each feature are shown. This figure shows
how feature computational complexity affects system runtime. FFT, DCT, and the
wavelet approximations are vectors, but max, min, mean and variance are scalars.

complexity as the number of frames per window increases. However, a high feature

dimension has a significant impact on computational complexity as the number of

frames per window increases.

3.5 Summary

This chapter introduced the design space of transition detection. This design space

includes the choice of activities to monitor, the sensor to use, temporal parameters

such as sampling frequency and window size, and the choice of what features to

calculate from the sensor signals. We began exploring how each choice in the design

25

Figure 3.6: Complexity increases sharply with the number of frames per window
when feature dimension in high, but is relatively flat when feature dimension is low.

space affects accuracy and energy consumption. We introduced the log-likelihood

ratio test as a simple instrument of detecting transitions. Our experiments with

accelerometer data from a wrist-worn device show there great variety in the design

space surrounding transition detection and yielded the surprising result that simple

scalar features are sufficient in many cases to detect transitions. Most importantly,

our analysis shows that it is possible to achieve greater energy efficiency without

sacrificing much accuracy. Our model is rather simplistic, however, in that it doesn’t

take into account that computing systems can enter a low-power sleep state in which

no calculations are done. The next chapter expands the design space to include sleep

schedules and how they affect accuracy and energy efficiency.

26

Chapter 4

THE EFFECTS OF SLEEP ON ENERGY/ACCURACY TRADE-OFFS

4.1 Introduction

This chapter expands the discussion on energy efficient activity recognition by

extending the design space of the previous chapter to include the effects of low-power

sleep states and discussion of energy efficiency choices in each stage of the activity

recognition process.

As seen in the top loop of Figure 4.1, these steps each consume different amounts of

energy: EP for sleep, ES for sensing, Ef,c for feature calculations, and EC for activity

classification. In addition, these steps usually occur in a simple loop with a fixed

sleep time and no probability of changing the order. In order to provide maximum

freedom of movement for the user, and achieve maximum, uninterrupted monitoring,

all this computation must be performed on a battery operated mobile device, which

the user has to carry all the time. Given the limited storage capacity and the critical

need to minimize the battery weight to carry, it is desirable to implement this activity

monitoring system in a energy-efficient manner.

This chapter explores the energy and accuracy tradeoffs in the design of a human

activity detection system. There are three main contributions:

• We explore the energy requirements at each stage of the activity recognition

process, including sensing, sleep strategies, feature calculations and activity

classification. Each step has its own energy requirements and decisions at each

step can influence energy and accuracy measurements in subsequent steps.

27

Sleep Sense Features Classify

EP Ef,t ES EC

Transition

Et

1.0 1.0 1.0

1.0

Features

Ef,c

1.0 α

β

Sleep Sense Features Classify

EP Ef,c ES EC

1.0 1.0 1.0

1.0

Figure 4.1: A typical activity recognition embedded system, as seen in the top loop,
sleeps, senses, calculates features, classifies and then repeats. Each step consumes a
different amount of energy, defined as EP , ES, Ef,c, and EC , respectively, with the
guaranteed probability of transitioning from one step to the next. As Ef,c and EC can
be especially high, we propose using activity transition detection as a preprocessing
step to prevent calls to energy-consuming classifiers, as seen in the lower loop. A
transition detector consumes energy to calculate some feature(s), Ef,t and to test for
a transition, Et. The probability of calculating the activity classifier features and clas-
sifier is α = PTPC +PNTPFA and depends on the probability of activity transition and
no transition in the activity sequence (PT and PNT respectively) and the probability
of the transition detector correctly identifying a transition (PC) and raising a false
alarm (PFA). The probability of moving to the sleep state after transition detection
is β = PTPM + PNTPCR and depends on the probability of the transition detector
missing a transition (PM) and the probability of correctly identifying no transition
(PCR), in addition to PT and PNT .

• We introduce three methods of transition detection to lower the energy drain on

the system, as outlined in the bottom loop of Figure 4.1. As opposed to trying

to classify sensor output signals into human activity at each moment, we detect

the change in the pattern of the signal rather than a change in the signal itself.

This scheme is called Activity Transition Detection, and has been shown to be

more energy-efficient [Boyd et al., 2010]. The transition detection methods we

explore include a log-likelihood test, a trained Support Vector Machine, and

using simple threshold cut-off values of mean and variance. We also explore the

question of when it is beneficial to use transition detection, given characteristics

of the activities you want to detect (such as average activity length and prob-

28

ability of changing activity), and the characteristics of the transition detection

methods (such as hit, miss, and false alarm probabilities).

• While some of the key design parameters, e.g., sampling frequency have been

explored by previous researchers [Krause et al., 2005], previous works have not

performed a multi-parameter exploration that we present in this work. Our

experimental results underscore the importance of design space exploration for

designing an accurate, yet energy-efficient activity transition detection system.

We can improve the energy efficiency of our system by more than 6× by carefully

selecting design parameters and algorithms, and giving a 7% leeway on accuracy.

Section 4.2 explores the potential power savings at each step of the activity recog-

nition process, including a discussion on some transition detection methods in Section

4.2.4. We present our experimental results in Section 4.3. We conclude this chapter

with a discussion on when it makes sense to use transition detection or why it some-

times makes sense to use some computation upfront to prevent more computation

downstream.

4.2 Energy Considerations in the Activity Recognition Process

From the choice of sensors, to sleep strategies, feature calculations, and activity

classifiers, there are energy consequences at each step of the activity recognition

process. These energy consequences usually trade increased recognition accuracy

for increased energy, but hidden within the many combinations of parameters there

may be some that increase recognition accuracy and decrease energy at the same

time [Bharatula et al., 2005]. Finding these combinations can be a difficult task;

they may be revealed only after experimentation or simulation, but it is the very

existence of these possibilities that should motivate researchers to consider carefully

29

Sensing

Selective
Sampling
Strategy

Feature
Calculation

Classification

•  Type
•  Sampling Frequency
•  Resolution
•  Low-pass Filter

•  Uniform
•  Episodic
•  Transition Detection

•  Time domain
•  Frequency domain
•  Number of Features

•  Type of
Classifier

Output Input

Figure 4.2: In general, there are four stages in the activity recognition process and
there are energy consequences in each. Sensing includes the sensor type, sampling
frequency, how many bits will be used to represent it, and any low-pass filtering. By
selective sampling strategy, we refer to the pattern of activity and sleep, whether
activity be continuous, interjected with regularly repeating cycles of sleep, or involve
changing durations of sleep. We also include transition detection in this stage. Fea-
ture calculation refers to the choice of type and number of features to use for both
transition detection and classification. In the classification stage, the number and
type of classifiers used make a difference in energy consumption.

what design choices they make. In this section we will discuss the energy consequences

of traditional techniques in each stage of the activity recognition process as well as

introduce some new techniques. These steps are outlined in Figure 4.2.

4.2.1 Sensors

The activities to be recognized should guide the choice of sensors. A low-power

activity recognition system should use the minimum number and correct type of

sensors for a given task. Determining the minimum number of sensors and where to

place them are interesting topics beyond the scope of this thesis. The main theme

of this section is that reducing the volume of data that enters the pipeline is an

important method of reducing energy. The first place to start is with the sensors.

Sensing Frequency and Resolution

A simple method to reduce the volume of data is to reduce the sampling frequency

of the sensors with entering a sleep state. The sampling frequency depends on the

activities to be recognized and, in order to fulfill Nyquist’s theorem, should be sampled

30

at twice the frequency of the original signal. For sensing human movements this

doesn’t have to be very fast, at least compared to the capabilities of modern sensors, so

sampling frequencies from 2-40Hz have yielded good results in the published literature

[Stäger et al., 2007; Krause et al., 2005].

Another simple way to reduce the volume of data is the number of bits, or reso-

lution, used to represent the signal from the sensor. A higher resolution analog-to-

digital converter will be more sensitive to small changes in a signal, so the choice of

what resolution to use depends on the coarseness of the movements. Measuring the

small tremors in the hand of a Parkinson’s patient requires a much higher resolution

than measuring the large movements of a game controller or mobile phone. Using

the lowest resolution ADC that can adequately differentiate between the activities in

question will conserve energy. It does so mainly by reducing the amount of storage

needed to save the signal and the amount of data to be transmitted wirelessly.

Powering off Sensors and Pre-processing

The latency of powering on sensors, after they’ve been powered off, needs to be

considered if the system is designed to turn a sensor on and off. The resistance

and capacitance of the sensor’s electrical circuit determine latency because capacitors

need to be charged and electrons have to flow through resistors to get to them. This

latency also creates an upper bound on the sampling rate of the sensor, but this

should not be a concern if one is using the minimum sampling frequency as outlined

in the previous section. The sensor needs to conserve enough energy while it is off to

justify the time and energy it takes to power it on again. Also, any unused sensors

should be powered off if possible.

Pre-processing data adds some complexity to the system, but can be valuable

in increasing the signal-to-noise ratio and accuracy of the system. It does this by

31

reducing high-frequency noise inherent in sensor signals. Methods to reduce high-

frequency noise include low-pass filters such as a moving average, Laplacian, and

Gaussian filters [Avci et al., 2010].

4.2.2 Selective Sleep Strategies

Selective sleep strategies are the methods used to determine when a system acti-

vates its sensors and, perhaps optionally, classifies. As an example, the most basic

and simple selective sleep strategy is continuous sampling in which a system does

not sleep but always has its sensors on and classifies at fixed intervals. A more so-

phisticated selective sleep strategy might use knowledge about the activities to be

recognized or information from the data it is collecting to lay out a schedule of when

to sleep and when to wake up. There are real energy-saving possibilities by adding

this layer of intelligence to an activity recognition system because of the possibility

of staying in a low-power sleep mode as long as possible and only waking up when

necessary, or at least when it’s most likely that the system needs to be awake. Se-

lective sleep strategies can be roughly divided into either time-driven or data-driven,

which describe whether the choice of when to classify is determined by time or the

content of the data being collected.

Selective sleep strategies are really a cycle of active and sleep system states. The

strategies are differentiated by the duration of the sleep state and what happens

during the active state. The duration of the sleep state can be static or dynamic,

meaning it can be fixed and never change or change based on the data the system

collects. Sleep strategies are also defined by how the active state uses what the system

senses to determine whether or not to call a classifier and how to change the duration

of the next sleep state. The following sections describe options for these defining

characteristics found in the literature and some we introduce here.

32

Ta Ta Ta Ta

Ts Ts Ts

Ta Ta Ta Ta

Ts Ts Ts

Figure 4.3: Time is divided into sequences of sleep, Ts, and analysis Ta. The top
figure shows uniform sampling in which Ts is fixed. The bottom figure shows Episodic
Sampling, in which Ts is variable. It increases when no change in activity is detected
and decreases when change is detected. The horizontal dashed line represents the
transition from one activity to another. The vertical dashed lines inside active time
represent the sampling frequency of the sensors.

Uniform Sleep Strategy

Using time as the basis for when to classify is the simplest selective sleep strategy.

The duration of the sleep state is fixed and chosen beforehand. A fixed sleep duration

will waste energy sensing and classifying when it doesn’t need to (when an activity

doesn’t change for a long time) and potentially miss a transition to a new activity

(when the transition occurs right after it goes to sleep). In this paper we call this the

uniform sleep strategy because spacing of the active states is uniformly distributed.

See the top figure in Figure 4.3.

Uniform sampling is the standard to which other sleep strategies are compared and

most activity recognition systems use this strategy. Most work on pattern recognition

has primarily focused on recognition accuracy, not energy savings. Therefore, heuris-

tics reducing the sampling rate have sufficed. An alternative to uniform sampling is

one that changes the duration of sleep time.

33

Data-driven Sleep Strategy

A method called Episodic Sampling [Au et al., 2009] is based on the additive increase,

multiplicative decrease principle. In Episodic Sampling, the results of a classification

are compared to the previous classification and if the results are the same, then some

amount of time, tincr is added to the duration of the next sleep cycle, up to some max-

imum, tmax. The amount tincr could be fixed or a random variable chosen uniformly

from an interval [tincr,min, tincr,max]. If the results of the classification comparison are

different, then the duration of sleep time is decreased by multiplying it by some α,

where 0 ≤ α ≤ 1. See the bottom figure in Figure 4.3. This allows the system’s sleep

time to grow gradually and conserve energy, but change sharply if needed.

Episodic Sampling is similar to the exponential back-off protocol found in the

Ethernet standard [Metcalfe and Boggs, 1976]. When a collision occurs in the Eth-

ernet protocol, a packet is delayed for some random amount of time that depends on

the number of retries. The protocol essentially uses randomness to combat packet

collisions. Episodic sampling, in a similar matter, uses randomness to conserve energy

during the seemingly random transitions between activities.

One extension of Episodic Sampling is to use transition detection techniques to

call the classifier only when a change in activity is detected. We call this method

Hybrid Episodic Sampling and pseudocode for it is in Algorithm 1. Episodic Sampling

differs from Hybrid Episodic Sampling in that it calls the classifier directly on line

5, instead of a transition detector. The Hybrid Episodic Sampling method combines

the energy savings of being able to increase the sleep time if activities do not change

frequently with the energy savings of only calling the activity classification algorithm

when necessary. We discuss some transition detection methods in more detail in

Section 4.2.4.

34

Algorithm 1: This is the Hybrid Episodic Sampling algorithm, adapted from
the Au et al.’s Episodic Sampling algorithm. The amount of time the system
sleeps changes according to an additive-increase, multiplicative-decrease strat-
egy. When no change in activity detected by transition detector TD, the sleep
time is increased by tincr, a random variable chosen from the uniform distribu-
tion, tincr ∼ U (tincr,min, tincr,max). If TD detects a transition, then the activity
classifier C is called, and the sleep time is reduced by multiplying the sleep time
by α, where 0 ≤ α ≤ 1.

1 tsleep = 0
2 while in each episode do
3 Collect Sensor Data

4 Extract Features, ~F = (F1, F2, . . .)

5 state⇐ TD
(
~F
)

6 if state has changed since last iteration then

7 activity ⇐ C
(
~F
)

8 tsleep ⇐ α · tsleep, where 0 ≤ α ≤ 1
9 else

10 tincr ⇐ U (tincr,min, tincr,max)
11 tsleep ⇐ tsleep + tincr
12 if tsleep > tsleep,max then
13 tsleep ⇐ tsleep,max

14 end
15 end
16 end

4.2.3 Features

Features can have an impact on the energy consumption of a system in two ways.

First is in the computational complexity of calculating them and second in the amount

of memory required to store them. The second factor also impacts the transition

detection and classification algorithms further down in the system.

Feature extraction refers to calculating some measurement on input data. Fea-

tures should faithfully represent the original data and be able to distinguish between

different types of activities. Researchers have experimented with a wide variety of

features for different types of activity detection. Table 3.1 in Chapter 3 summarizes

some of the more popular features researchers have used for inertial sensors.

35

4.2.4 Transition Detection Methods

If we assume that classification is a computationally expensive operation and that

the uniform sleep strategy wastes energy because it will frequently classify when it

is unnecessary to do so, one possible improvement is to add a function that tests

if it is even necessary to classify. In other words, we wish to add a function that

can accurately and in a computationally efficient manner detect whether a transition

has occurred from the last cycle and then only call the classifier if a transition has

occurred. Such a function would act as a gatekeeper to the classification function;

it attempts to spend a little energy in computation in order to save more energy by

calling a classifier less frequently.

In the next three sections we introduce methods of analyzing the data to detect

transitions in real time. The first method, the log-likelihood ratio test, finds tran-

sitions by calculating the probability of the data given mean and covariance of the

features of opposing sides of a window. The second method uses a trained Sup-

port Vector Machine (SVM) to detect transitions and the third uses only mean and

variance thresholds.

Each transition detection method is characterized by three key numbers: Et, PC ,

and PFA. Et is the energy of the transition detector or, in other words, the time

it takes the transition detector to make its decision, PC is the probability of the

transition detector correctly identifying a transition, and PFA is the probability of

raising a false alarm. False alarms add to energy costs because they will incorrectly

trigger the classifier. The probability of missing a transition, PM is 1 − PC and will

increase error. Once we have established these three methods of detecting transitions,

we can move beyond the polling-loop style selective sleep strategy and into data-driven

strategies that change the sleep duration based on the data. The time complexities

36

Table 4.1: In this table N is the number of observations, or frames, as we call them.
For LLRT, D is the dimensionality of the feature vector. For SVM-transition, V is
the number of support vectors.

Transition Detection Method Complexity

LLRT O(D3) +O(D2N)

SVM-transition O (NV)

µ, σ2 O (N)

of the three strategies are summarized in Table 4.1.

Log-likelihood Ratio Test (LLRT) We introduced the ideas of the Log-likelihood

Ratio Test in the previous chapter, Section 3.2. That chapter demonstrated that it

can be effective in detecting transitions, and that it’s parameters create a rich design

space. We also showed that the computational complexity of LLRT grows quickly

with the dimension of the feature vector. As a refresher, LLRT is a measure of the

similarity of features from two blocks of time. The previous chapter assumed these

two blocks of time are adjacent to each other, but this chapter takes into account the

effects of sleep and no such assumption is made. The value of LLRT will be close to

1 when the signals in two blocks of time are similar and no transition is detected and

it will increase as the probability of a transition rises.

SVM-transition Detection A Support Vector Machine (SVM) [Cristianini and

Shawe-Taylor, 2010] can be trained to detect transitions. Similar to the log-likelihood

ratio test, two sides of a window are compared by finding the difference in feature

values from several frames on opposite sides of the window as seen in Figure 4.4. The

differences are the observations that become the input into the SVM.

For each window, several differences are calculated as input into the SVM, which

outputs either 1 for a transition or 0 for none. If the percentage of frames in a window

37

Left Pane Right Pane

Ts

i1 i3 i5 j1 j3 j5

Ta Ta

Figure 4.4: In SVM-transition detection, two window “panes” each of length Ta
are separated by some sleep time, Ts. Each pane is pane is divided into separate
observations, which we call frames. In this example, the first, third, and fifth frames
of each pane are compared to each other by finding the per-feature difference. This
difference vector is the input to the SVM-transition detector.

detect a transition reaches some threshold, it is assumed a transition has occurred,

and the classifier is called. Training a SVM is computationally demanding; evaluating

one is not, since evaluation is essentially an inner product of the observations with

the support vectors. If we assume there are N observations and V support vectors,

the complexity of SVM-transition detection is O(NV).

Mean and Variance (µ, σ2) A third method is to use the simple statistical mea-

sures of mean and variance, calculated over the entire window. These are compared

to the mean and variance of the window from the previous time it was awake. If the

absolute value of the difference between the current and previous window of either

mean or variance is above some threshold, a transition is assumed to have occurred

and the classifier is called.

This transition detection method is the simplest of the three we’ve discussed.

Its complexity is O(N) and only depends on the number of observations used in

the window. Experimentation is needed to determine appropriate threshold levels.

Although calculating mean and variance on the raw data is used for the experiments

in this paper, they could be used on other calculated features.

38

4.2.5 Classifiers

A classifier is traditionally judged on its recognition accuracy. However, in low-

power human activity analysis, the computational complexity of determining the

classifier outcome is critical. There are many different types of activity classifiers

that vary greatly in the complexity required to train and test them. Here we discuss

three common classifiers and how their complexity may influence a low-power device.

We discuss k-nearest neighbor, decision trees, and support vector machines.

K-Nearest Neighbors (KNN)

K-nearest neighbor classifiers are widely used in pattern analysis as baseline, non-

parametric classifiers. They work by measuring the distance of new observations to

the stored training data. Distances are defined by standard Euclidian distance, which

can be weighted or not. New observations are classified by taking the classification

of the majority of its k-nearest neighbors.

KNN can be quite computationally complex because the distance must be calcu-

lated between each new observation and all the training data. The computational

complexity of the KNN classifier is O(ND), where N is the number of training ex-

amples and D is the dimensionality of the feature vector. We can see that KNN can

quickly become too computationally complex to run in real time for problems with a

large number of training examples or features.

Decision Tree

Decision trees are another baseline classifier used in activity recognition. They use

information gain to create a hierarchy of decision nodes to classify activities. Decision

trees are well suited for problems in which observations are represented by attribute-

39

value pairs and the output has discrete values. They are also robust to errors and

ambiguities in training data [Mitchell, 1997]. There are also several variations of

decision trees, such as decision stumps (one-level decision trees) and random decision

forests, an ensemble technique that combines the output of many decision trees each

trained on a random subset of features.

The complexity of a decision tree depends on the number of nodes and how they

are organized in the hierarchy. In learning a decision tree, attributes that have high

information gain are placed closer to the root, which gives decision trees an induc-

tive bias that favors smaller trees. Some researchers have chosen decision trees over

better performing classifiers (in terms of accuracy) because of their low computation

complexity [Stäger et al., 2007; Bharatula et al., 2005].

Support Vector Machines

Support vector machines (SVM) are a supervised learning method that use a num-

ber of support vectors to define a decision boundary between two classes. In the

most basic SVM implementation, labeled, two-class training data are mapped into a

hypothesis space such that examples of the two classes are separated by a wide mar-

gin. Training samples along the margin become the support vectors that define the

decision boundary. Extensions to the original SVM definition include using kernels

to map the original features to higher dimension feature spaces; this is known as the

“kernel trick”. This gives SVMs the ability to linearly separate two classes in a higher

dimension feature space that are not linearly separable in the original feature space.

Two common kernel functions are the polynomial function and the Gaussian radial

basis function.

As mentioned previously, SVMs are computationally intensive to train, but not

to classify. This is because evaluating a SVM is essentially an inner product of the

40

observation with the support vectors. However, a SVM can be inefficient if it has a

large number of support vectors. This can be brought on by poor class separation

from poorly chosen features.

4.3 Experiments

In this section, we discuss activities we are interested in recognizing, metrics, data

used for testing, experimental results including discussion of the results.

4.3.1 Activities

We are most interested in activities of daily living (ADL). An ADL is any routine

activity we perform either for leisure or to take care of ourselves. A sensible and

useful measure of disability is the ability to perform ADL.

In this work, we focused on sitting, standing, walking, reaching and eating as ADL.

Sitting, standing, and walking were chosen to test the transition detectors ability to

distinguish between low-frequency changes in posture (from sit to stand or stand to

sit) and test their ability to handle high-frequency noise from walking data. Reaching

and eating are similar in that they both involve large arm movement, but thy have

distinguishable motion patterns. Reaching, here, is meant to be reaching for a cup or

other object in front of you. Eating is the lifting of the hand from approximately the

waist to the mouth. Reaching and eating are activities of daily living that therapists

of stroke survivors are particularly keen on seeing in their patients.

4.3.2 Data

We used the same experimental setup as in Chapter 3 and seen in Figure 3.3. To

conduct more experiments on transition types not found in the data we collected,

we created our own activity sequences by copying, replicating and repositioning the

41

existing data. We created our own transition table to define how likely one activity

was to transition to another, assuming unequal probabilities of transitioning between

activities. We assumed the duration of each activity was a Gaussian variable, so we

gave each activity a mean and standard deviation. We generated 100 sequences that

contained 9 transitions each. The average duration of an activity before a transition

is 29.7s with a standard deviation of 6.3s.

Although the data was collected at 100Hz, the data was downsampled from 100Hz

to 10Hz in 10Hz intervals to simulate having a slower underlying sensing frequency.

The tests were all run at the different sampling frequencies as well.

4.3.3 Design Space Exploration

There are two major aspects of the design space that are the focus of this paper:

features and sleep strategies.

Features In this work, we chose the following features: minimum, maximum, mean,

and variance of each of the three axis of the accelerometer, for a total of 12 features.

We chose to focus on these simple scalar features because our previous work [Boyd

et al., 2010] showed that simple scalar features were faster and just as accurate as

vector-based features such as the FFT, DCT, and wavelet coefficients. We set the

frame size to be 20 samples, regardless of the underlying sampling frequency, and

calculate features by frame. This has the effect that at 100Hz, one frame is 0.2s, but

at 10Hz, one frame is 2s.

Sleep Strategies We examined several sleep strategies. We started with the basic

uniform sleep strategy with fixed sleep times of 0, 1, 2, 4, 8, 15, 20, 25, 30, 35, and 40

seconds. We used the uniform sleep strategies to compare transition detection meth-

42

ods against no transition detection at all. Each of the transition detection methods

had their own set of parameters, each affecting the energy and accuracy in some way.

• The parameters in LLRT are the signal and feature to use, how large a window

of time to examine the signal (8, 16, and 32 seconds), and what threshold to

use to determine what does and does not constitute a transition.

• For SVM-transition, we look at the same window sizes as LLRT.

• For mean and variance we look at different threshold values for mean and vari-

ance. We used a fixed window length of Ta = 2.2s for this method.

We also experimented with Episodic Sampling, both as it was described by Au and in

hybrid form, using our Mean and Variance transition detection method. The variables

for Episodic Sampling include the multiplicative decreasing factor α, the maximum

sleep time, tmax, and the interval over which incremental amounts of sleep time are

chosen from, tincr,max. For maximum sleep time, we use the same durations as the

fixed sleep times we used for uniform sampling. We define tincr,max by the maximum

amount of time the sleep increment, tincr, could be chosen from. Remember, Episodic

Sampling protocol adds an amount of sleep chosen uniformly at random from some

interval whenever no change in activity is detected. In our experiments we used

tincr,max = {1, 2, 4, 8, 16, 32} seconds. The minimum sleep increment was fixed at our

lowest unit of time increment, one frame.

Activity Classification We used one classifier to classify all the activities for all

our experiments, a multi-class SVM using the LIBSVM library for Matlab [Chang

and Lin, 2001]. To distinguish this SVM from the SVM used for transition detection

we call the former SVM-activity and the latter SVM-transition. SVM-activity was

trained using an equal distribution of data from each of the five activities and all 12

43

Table 4.2: The confusion matrix for SVM-activity shows generally good results.
The average testing accuracy is 96.4%. We used the LIBSVM library for Matlab to
train a ν-SVC with a Radial Basis Function kernel. A grid search over the ν and
γ parameters yielded ν = 0.1 and γ = 1/12 having the best average accuracy using
10-fold cross validation. Each value is a percentage.

Predicted

Sit Stand Walk Reach Eat

Actual

Sit 98.4 1.6

Stand 0.5 94.7 4.8

Walk 0.5 2.7 96.8

Reach 1.6 94.7 3.7

Eat 0.5 0.5 1.6 97.4

features described above. We trained a ν-SVC with a Radial Basis Function kernel

and performed a grid search over the ν and γ parameters. Testing was done using

10-fold cross validation and the results are summarized in Table 4.2. Average testing

accuracy is 96.4%.

4.3.4 Evaluation Metrics

We evaluate our experiments using two broad categories: accuracy and estimated

energy consumption. We measure accuracy with precision, recall, F-score, and ac-

tivity sequence reconstruction error. Estimated energy consumption based on the

runtime of the experiments.

Accuracy

Similar to the previous chapter, we use Precision, Recall and F-Score to evaluate the

accuracy of our transition detection algorithms. These metrics are based on hits,

misses and false alarms. See Section 3.3 for the definitions of these measurements.

44

We also measure error based on a frame-by-frame comparison with the ground

truth. This could also be called reconstruction error because it is a measure of how

well the sleep strategies and transition detectors reconstruct the sequence of activities

in the ground truth. More formally, we define the reconstruction error, e, to be

e =

∑N
i=1 xi ∧ yi
N

where xi is the ground-truth label for the frame, yi is the predicted label, and N is

the total number of frames in the data sequence. For this measurement, we assume a

“sample-and-hold” strategy where the results of the activity classifier are held until

the next time the activity classifier is called. A natural effect of this strategy is

that experiments with little or no sleep time will detect transitions close to when

they actually happen. Experiments with longer sleep time may potentially miss the

transitions and introduce large errors.

Energy Consumption

We estimate the energy consumption and, by analogy, the computational complexity

of a particular permutation of system parameters by measuring the runtime of each

experiment. This empirical measurement gives us an estimation of the energy con-

sumption of a system that would implement the aforementioned sleep strategies and

transition detectors since energy consumption is proportional to runtime [Roy and

Johnson, 1997; Zotos et al., 2005; Tiwari et al., 1996].

For our experiments, we used the tic and toc functions in Matlab to calculate

the runtime of feature calculation (our sensing estimate), transition detection, and

activity classification. These measurements are the basis for our energy consumption

estimates. Let the energy required to sense and calculate features be Es, to analyze

and detect a transition be Et, and to classify be Ec.

45

4.3.5 Uniform Sampling

Figure 4.5 summarizes the results of comparing the uniform sleep strategy for the

baseline, no-transition-detection method and our three transition detection methods.

The Pareto-fronts and their respective regressions are shown. Note that the y-axis

is reconstruction error and the x-axis is time, so points closer to the origin represent

combinations of system parameters more accurate and consume less energy. The

Pareto-front represents the combinations that are most accurate for a given level of

energy consumption. Points above those in the Pareto front are less accurate; points

to the right are slower and use more energy. The purple line is the baseline, no

transition detection, and points below and to the left of it are more accurate and

consume less energy. As you can see, the µ and σ2 transition detector, the least

complex of the transition detection methods we’ve described, is almost always faster

and more accurate than no transition detection at all. The LLRT method performed

about the same as no transition detection and SVM-transition was never faster and

more accurate. Figure 4.5 shows only the Pareto fronts for each transition detector.

Scatterplots that show how each permutation of the design parameters performed in

the error-time space can be found in Appendix B.

The Great Compromise Figure 4.5 shows that great energy savings can be ob-

tained by not using the most accurate combination of system parameters. The most

accurate combination used no transition detection and never slept; it was approx-

imately 98% accurate in reconstructing the activity sequence. Compare this with

a value near the 0.1 error mark, which uses µ, σ2 transition detection, It is ap-

proximately 90% accurate in reconstructing the original activity sequence and runs

approximately 6× faster than the most accurate combination and uses proportionally

less energy. We call this the “great” compromise because of the great energy savings

46

Figure 4.5: The Pareto-fronts of all transition detectors and no transition detection
with their respective regression curves. Note here how close each of the four curves
approach y = α/x with low error (R2 ≈ 1).

47

Table 4.3: Hit, miss, and false alarm values were obtained by testing the transition
detectors on 1000 pairs data sequences known to be of differing activities and 1000
pairs of data sequences known to be the same activity. Please note these values
represent some of the best performing (in terms of accuracy and energy consumption)
combination of system parameters. Each combination will have its own hit, miss, and
false alarm probabilities. Each transition detection method also consumes energy to
calculate its features, Ef,t, and to determine if there is a transition, Et. Ec is the
energy our activity classifier consumes; for our experiments Ec = 6.15 × 10−4s. The
ratio Et/Ec is important in determining if energy can be preserved by transition
detection.

Transition
Detector

PM PFA PC or
Recall

Precision F-Score Ef,t

(µs)
Et

(µs)
Et/Ec

LLRT 0.012 0.304 0.988 0.765 0.862 9.55 456 0.64

SVM-
transition

0.109 0.076 0.891 0.921 0.906 14.2 144 0.39

µ, σ2 0.009 0.237 0.991 0.807 0.890 57.3 15.6 0.10

to be had if a little drop in accuracy can be tolerated.

Table 4.3 shows some other interesting properties of the transition detection meth-

ods; it summarizes their Precision, Recall, F-score, and energy characteristics. Note

that SVM-transition detection has the highest F-score on account of its low proba-

bility of false alarm, PFA, relative the other two. LLRT and the µ and σ2 transition

detectors are very eager to identify transitions hence they have very low miss probabil-

ity, PM values, but high PFA scores. F-score simply does not give a complete picture.

It does not include energy measurements. The value of Et for SVM-transition is an

order of magnitude slower than for µ and σ2 transition detection. Also, we see in

Table 4.3 that the probability of missing a transition, PM , for SVM-transition is an

order of magnitude higher than the other two methods.

Power Balance Inequality Let us assume a uniform sleep strategy: in each cycle,

the time the system sleeps is Ts and the time the system analyzes the data is Ta. Let

the fraction when the system is awake be fa = Ta/(Ta+Ts). When the system is awake,

48

it first calls a transition detection algorithm. If the transition detector indicates that

there has been a transition, then an activity classifier is invoked. Furthermore, let us

assume that the transition detector makes errors, which we represent with the PC ,

PM , and PFA as described in Section 3.3. The system will use energy to sense (Es),

detect a transition (Et), and classify (Ec). Finally, we note that the two classes—

transition, no transition—have different probabilities: PT and PNT , both of which

depend on the fixed sleep time Ts.

Any time that we sense, we save energy in the following conditions:

fa · (Es + Ec) ≥ fa · (Es + Et) + fa · (PTPC + PNTPFA) · Ec (4.1a)

Ec ≥ Et + (PTPC + PNTPFA) · Ec (4.1b)

Et ≤ (1− (PTPC + PNTPFA)) · Ec (4.1c)

There are three interesting insights from Equation (4.1c), given specific values for Et

and Ec. First, transition detection is an asymmetric classification problem because

PT � PNT . This implies that the relationship between Et and Ec is not very sensitive

to the exact value of the classification rate PC , since the value of PT is very small.

Second, the critical parameter affecting the relationship is the false alarm rate PFA.

This outcome is intuitive. The probability that any segment is not a transition is

high (i.e. PNT ≈ 1), and if the transition detector has many false alarms, we run the

classifier many times, thus expending significant energy. Third, the inequality has a

greater chance of being satisfied if Et � Ec.

If we want to ensure that Equation 4.1c holds for highly asymmetric class prior

probabilities, we need to ensure that the false alarm rate is low and that we pick

a transition detector that is cheap in terms of energy. Another way to understand

Equation (4.1c) is that the ratio Et/Ec ≤ 1 − (PTPC + PNTPFA) in order for the

system to conserve energy by transition detection. This is demonstrated in Table

49

Table 4.4: For each transition detector, there is a point when it no longer
makes sense to use transition detection. Energy can be conserved as long as
1 − (PTPc + PNTPFA) ≥ Et/Ec, indicated by the bold values in this table. This
value is dependent on the sleep time, the average duration of activities, the probabil-
ity of transitions (PT), and no transitions (PNT) in the data, each transition detector’s
probability of correctly identifying a transition (Pc) and the probability of raising a
false alarm (PFA). For the data we collected, the average activity length is 29.7
seconds. The values of Et/Ec for each transition detector are in Table 4.3.

1− (PTPc + PNTPFA)

Sleep (s) PT PNT
Sleep

Avg. Activity Length
µ, σ2 LLRT SVM-transition

0 0.07 0.93 0.00 0.71 0.65 0.87

1 0.10 0.90 0.03 0.69 0.63 0.85

2 0.13 0.87 0.07 0.67 0.61 0.82

4 0.19 0.81 0.13 0.62 0.57 0.77

8 0.31 0.69 0.27 0.53 0.48 0.67

15 0.53 0.47 0.51 0.36 0.33 0.49

20 0.68 0.32 0.67 0.25 0.23 0.37

25 0.80 0.20 0.84 0.16 0.15 0.27

30 0.89 0.11 1.01 0.09 0.09 0.20

35 0.93 0.07 1.18 0.06 0.06 0.17

40 0.94 0.06 1.35 0.05 0.05 0.16

4.4 and visualized in Figure 4.6, which show that there is a certain point for each

transition detector where there is no longer a benefit of doing transition detection.

4.3.6 Data-driven Sampling

We now move to experiments and discussion of using data analysis to change the

sleep strategy. In the case of episodic sampling, we use the results of an activity

classifier at two time instances to change the amount of sleep. Sleep time additively

increases when no change in activity is detected, it multiplicatively decreases when

50

Figure 4.6: This figure visualizes the data in Table 4.4. The values of 1 −
(PTPc + PNTPFA) for each of the three transition detection methods decrease linearly
as the probability of transition, PT , increases. Energy is conserved in the colored re-
gions of the lines. The long extention of the colored region of the µ, σ2 line indicates
it would be able to conserve more energy than the other two methods because it is
still effective when sleep times and the probability of transitions occurring are high.

51

a change is detected. In hybrid episodic sampling, a transition detector is used to

determine if a call to the activity classifier is needed. Our experiments focused on the

effects of the multiplying constant α, tincr,max, and tmax on energy and accuracy.

For both types of data-driven sampling, the choice of α seems to have little overall

affect on the energy consumption and accuracy of the system. Values for α of 0.1 and

0.9 will aggressively or slightly reduce the sleep time, respectively, when a transition

or new activity is detected, so one would expect α = 0.1 to use much more energy

than α = 0.9. In our experiments, for a given max sleep time, tmax, and max sleep

increment, tincr,max, values of α = {0.1, 0.3, 0.5, 0.7, 0.9} form a small cluster, without

a significant difference between energy and accuracy of α = 0.1 and α = 0.9. For the

remainder of our data-driven sampling experiments, we used α = 0.5.

The values of tincr,max and tmax, however, do have a big impact on energy and ac-

curacy. Figure 4.7 shows a comparison between episodic sampling, uniform sampling

with no transition detection, and hybrid episodic sampling using µ, σ2 as the tran-

sition detector. For our experiments we used values of tincr,max = {1, 2, 4, 8, 16, 32}

and tmax = {0, 1, 2, 4, 8, 15, 20, 25, 30, 35, 40} in units of seconds. As our data-driven

sampling algorithms depend on random numbers, each experiment was run 50 times

and their scores averaged. Figure 4.7 gives us several insights into how tincr,max and

tmax affect energy and accuracy, and how they relate to the uniform, no-transition

detection strategy.

The first is that for a given maximum sleep time for both uniform and episodic

sampling, uniform sampling is faster and uses less energy, but almost always has

a marginally higher error rate. Episodic sampling is more accurate than uniform

sampling when tincr,max is small, but it is slower and will consume more energy. There

is no clear advantage, in terms of energy and accuracy, to use episodic sampling over

uniform, no-transition detection when they have similar maximum sleep times.

52

Figure 4.7: Here we compare how changing maximum sleep time (tmax) affects
episodic sampling (circles), uniform sampling with no transition detection (triangles),
and hybrid episodic sampling (diamonds) at a sampling rate of 100Hz. Each color
represents a different tmax. Both the episodic and hybrid episodic sampling strategies
used the same values for tincr,max. There are three important things to note. First, the
uniform, no-transition detection strategy is always faster than episodic sampling for
a given tmax, but it usually has the highest error. Second is that including transition
detection in the hybrid episodic sampling algorithm results in faster, lower power,
and more accurate results in the region closest to the origin, representing the best
trade-off between energy and accuracy. Third is that there are two types of clustering,
one around small values of tmax for all values of tincr,max, and another for small values
of tincr,max and large values of tmax.

Hybrid episodic sampling does offer a clear advantage over uniform, no-transition

detection sampling for a given tmax, in terms of both energy and accuracy. In Fig-

ure 4.7, in the region closest to the origin, which represents the best trade-off between

energy and accuracy, the hybrid episodic strategy is clearly faster and more accurate

than the other two strategies. Again we see a situation similar to the Great Compro-

mise described above where a marginal reduction in accuracy can be several times

faster and consume much less energy than the most accurate strategies.

53

Another insight Figure 4.7 gives us is that there appears to be two types of clus-

tering based on tmax and tincr,max. The first is obvious to explain. When tmax is

small, it doesn’t matter how big tincr,max is because tincr,max reaches tmax and stays

there, basically reducing to uniform sampling. This is why they cluster close to the

uniform sampling strategy. The second type of clustering occurs when tmax is large

and tincr,max is small. When tmax is large, there is greater diversity of energy and

accuracy values based on tincr,max. Clustering occurs around the different values of

tincr,max, suggesting that tincr never reaches tmax and each value of tincr,max in these

cases produces similar strategies. In terms of finding a good trade-off between energy

and accuracy, it appears tmax gets you in the general area and values of tincr,max are

for fine-tuning.

4.4 Discussion

In exploring the stages of the activity recognition process we have not found one

area that significantly improves accuracy or reduces energy consumption, but rather

some rules-of-thumb that researchers should explore in their own projects. The first

is that less is more, or at least good enough. We found using simple, scalar features

were good enough, in terms of accuracy, as more computational complex, vector-based

features and consumed less energy for our transition detection methods. Along this

same vein, we observed that a relatively simple transition detection method using

only the mean and variance of simple features was more accurate and consumed less

energy than more complex log-likelihood ratio test and SVM transition detectors.

Researchers should explore ways to simplify computations and reduce data storage

in their projects. An analogy comes to mind: when it comes to energy consumption,

data are like the calories we consume, the more there are, the more energy the system

consumes to process them all.

54

Another rule-of-thumb is to explore the idea of using some resources to prevent

using even more resources later on. This is essentially what transition detection

asserts and what our experiments confirm. We wanted to see if using a relatively

simple process could be effective as a type of gate-keeper to a more complex process,

calling on the more complicated process only when needed. We found confirmation

that this works in both fixed-interval (uniform) and variable-interval (episodic) sleep

patterns. This is a powerful idea that has implications beyond activity classifiers.

One more rule-of-thumb is that significant energy savings are possible if a marginal

reduction in accuracy is tolerable. We call this the Great Compromise in this chap-

ter. We use “great” a little tongue-in-cheek because in some applications it is not

really much of a compromise at all. This has application to any battery-powered

or energy-constrained systems. While we do not recommend this rule-of-thumb for

applications where accuracy is of the utmost importance, we recognize that not all

systems require perfect accuracy and researchers should evaluate their systems to see

if some compromise in accuracy can result in reduced energy consumption.

4.5 Summary

We have presented a model for activity recognition and described the energy

considerations at each stage of the model. For sensing, this includes the number and

type of sensors as well as the sampling frequency, resolution and pre-processing such

as a low-pass filter. At the selective sampling strategy stage, we explored using fixed-

interval sleep times and variable-interval sleep times that change with the sequence

of activities. We also compared three transition detection methods as a means to

conserve energy: a log-likelihood ratio test, a SVM, and one simply using mean and

variance. Each stage of the activity recognition process has parameters that can be

tweaked in the search for a compromise between energy and accuracy.

55

We also note that features and classifiers affect energy consumption in the com-

putational complexity of calculating them and in the amount of memory needed to

store the results (their time and space complexities). Vector features not only take

up more storage space, but they can greatly increase the time complexity when used

in sophisticated downstream operations such as matrix inversion or calculation of a

covariance matrix. Classifiers, too, vary in their complexity. Some classifiers, such

as KNN have little up-front or offline preparation and put most of the complexity

at the time of classification. Other classifiers, such as decision trees and SVMs, do

a considerable amount of work up-front and offline so that evaluating them is a less

computationally complex process. These latter type of classifiers are better-suited for

embedded systems.

Our experimental results led us to what we call the Great Compromise, where

a 7% sacrifice in the accuracy of reconstructing the activity sequence can bring a

6× increase in energy efficiency. The consequence of such energy savings in a wear-

able sensor would mean longer intervals between recharging or replacing batteries or

smaller, more lightweight batteries, thus reducing the entire package size. In any case,

a more energy efficient system leads to a better user experience.

56

Chapter 5

ENERGY AND DATA MODELS, PLUS TRANSMISSION EFFECTS

Sensing and wireless transmission are the two main consumers of energy in a

wearable system. We propose strategies to reduce the amount of time in these two

states while minimizing reduction of accuracy and usefulness of the overall system.

The efficiency of modern embedded processors allows an embedded system to conserve

energy by transmitting features and activity classifications instead of raw data, thus

reducing the amount of data to be transmitted. We model the energy a wearable

system consumes when data is transmitted at any of four stages: the raw data,

features, activity stream, or activity transitions. Transmission at any stage results in

its own energy-accuracy trade-off.

We recognize that there is an inherent trade-off between energy consumption and

any measurement of accuracy for a given system. In general, the more energy the

system consumes, the more accurate it is. However, greater energy consumption

creates practical obstacles to the design and implementation of effective wearable

sensors. Greater energy consumption means a larger battery is needed for continuous

operation. A larger battery may limit where a sensor can be placed or become a

burden and hindrance for the person wearing it. We also recognize the importance

of advancements in creating energy efficient electronic hardware, namely low-power

sensors and microcontrollers. However, we believe there are many ways the software

that controls the hardware can be optimized to reduce energy consumption.

In Figure 5.1 we see that sensing and transmission consume the most energy per

byte. Our goal is to investigate methods of reducing the time spent sensing and

transmitting data without sacrificing too much of the accuracy of the system. In this

57

Figure 5.1: Here is shown the energy consumed per byte of data generated, pro-
cessed, or transmitted by the Texas Instruments eZ430-Chronos Development Tool.
The eZ430-Chronos is a programmable, wristwatch-like device that features a 3-axis
accelerometer, altimeter, flash storage, and wireless transceiver. The values in this
figure are drawn from the device’s official specification sheet and measurements done
by the author. These measurements assume data is collected at 100Hz from a 3-axis
accelerometer, that mean and variance are calculated every 128 samples, and that
the radio broadcasts at maximum power and capacity.

chapter we focus mainly on how to reduce the amount of data to be transmitted,

since it consumes the most energy per byte and discuss briefly methods of reducing

sensing. This chapter makes the following contributions:

• Energy consumption models for sensing, feature calculations, reading and writ-

ing to storage, and transmission

• Data creation models for the amount of raw data collected and amount gener-

ated during feature calculations

• Models of system-wide energy usage when transmitting raw data, features, or

activity classifications

We have analyzed these models on a Texas Instruments eZ430-Chronos Develop-

ment Tool, hereafter called the TI Chronos watch. Using measurements of how much

58

current the TI Chronos watch draws for different operating modes, we show how much

energy can be saved by reducing the amount of data generated and transmitted.

In Section 5.1 we develop our models for how much energy is consumed during

the stages of activity recognition and how much data is generated during sensing and

feature calculations. We also model the energy consumed when data is transmitted

at different stages of activity recognition. Then in Section 5.2 we summarize methods

used to sense less. In Section 5.3 we present our findings with the TI Chronos watch.

5.1 Energy and Data Models

5.1.1 The Mobile Sensor

An embedded sensing system can be modeled with four stages: sensing, feature

calculation or compression (which may include any preprocessing of the data), storage,

and transmission. Sensing and transmission are the major consumers of energy in an

embedded system.

Sensing is a major consumer of energy in an embedded system. Not only does

the sensing frequency directly affect the current draw in the system (the higher the

frequency, the higher the current draw), but the amount of data generated has ripple

effects in the energy consumed by stages downstream in the form of increased process-

ing time in the compression stage, and more data to be stored and/or transmitted.

Transmitters are most efficient (in terms of mW/byte) when they are used at or

close to their capacity. Storing data locally in non-volatile memory such as flash

consumes energy to read and write, introduces latency into the system, but is faster

and uses less energy than transmitting that data wirelessly. It is more energy efficient

to store data in a buffer and transmit all at once, allowing the transmitter to operate

at or near its capacity, than to continuously stream the data. This assumes the

59

Table 5.1: Variables for Energy and Data used in this Chapter

Variable Description

t Time, in seconds, that a device is actively sensing in a day

FS Sampling Frequency (Hz)

NC The number of channels

N FS · t ·NC . This is the total number of samples produced in a day.

CO Number of cycles to compute feature per sample (cycles/sample). For
example addition or multiplication may take 5 CPU cycles.

FO Operating frequency of the microcontroller (Hz)

Efeat Energy (mWs or mJ) to calculate features for entire day

Esense Energy (mWs or mJ) to sense for entire day

Draw Raw data generated in a day (bytes)

Dfeat Feature data generated (compressed) in a day (bytes)

Dact Activity classification data generated (compressed) in a day (bytes)

SWF Wavelet Filter Size

SG Grouping Size, fastest if it’s a power of 2, for FFT

Ψcpu Power of active mode (mW)

Ψsense Power of sensing mode (mW)

Ψread Power of reading from flash memory (mW)

Ψwrite Power of writing flash memory (mW)

twrite Time to write one byte of data to flash memory (seconds)

Ψtrans Power of wirelessly transmitting data (mW)

ttrans Time to wirelessly transmit one byte of data (seconds)

wireless transmission rate is much greater than the rate that data is generated.

60

5.1.2 The Energy Consumption and Data Creation Model

We now discuss the energy consumed by each part of the mobile sensor. For each

part we describe the energy consumed and amount of data generated over some length

of time, t. We list the variables used in this document and their definitions in Table

5.1 to avoid repeating variable definitions in each section.

Sense

Inertial sensors such as accelerometers, magnetometers and gyroscopes are typical

measurement sensors for mobile activity monitoring. EEG, ECG and pulse oxime-

ters are examples of sensors that measure physiological signals. The near ubiquity

of smartphones has made other sensors such as GPS and Wi-Fi radios, light and

proximity sensors more prevalent and useful in activity monitoring as well. The wide

range of available sensors also vary greatly in the power they use.

The power of a sensor, Ψsense, is a function of the sampling frequencies, FS, and

the number of channels, NC . Ψsense = f(FS, NC). Ψsense is unique to each device and

should be measured empirically. The energy consumed by sensing is

Esense = Ψsenset, (5.1)

where t is the amount of time spent sensing.

The data produced during sensing depends on the sampling frequency, FS, the

number of channels, NC , and the number of bytes used to represent one sample.

A typical setup uses anywhere between 8 and 16 bits to represent a sampling of a

sensor, thus individual sensor data points are typically represented by 2 bytes. If we

define N to be the total number of samples generated over some time period t, then

N = FS · t · NC . The number of bytes of raw data, Draw, generated in that time is

61

twice the number of samples, N :

Draw = 2FS · t ·NC = 2N. (5.2)

Analyze

We group the sensed data stream and then each group of samples is filtered and

analyzed to calculate features. The grouping size, SG, has a great impact on the

energy consumed in calculating features and in the amount of data produced. The

grouping size, SG determines how often features are calculated. The expression N/SG

is the number of groups over a given amount of data. In previous chapters we used

the word ‘frame’ for SG.

The energy consumed in calculating features can be estimated based on the fea-

ture’s computational complexity. Typical features for accelerometers can be roughly

grouped in three categories: time-domain, frequency-domain, and joint time-frequency

domain. The first category includes time-domain features such as mean and variance

that are typically O(n). The O(n) notation refers to the computational complexity

or order of the function. For O(n), this means the function grows linearly with the

input, as seen by the example of the formula for mean: 1
n
·
∑n

i=1 xi. In this category

there are approximately SG operations per group and the energy used for feature

calculation is:

Efeat = Ψcpu · SG ·
N

SG

· CO
FO

= Ψcpu ·N ·
CO

FO

. (5.3)

The ratio CO/FO is the number of cpu cycles per elementary operation (addition,

multiplication, etc. usually take multiple cpu cycles to complete and the number

varies by cpu architecture) divided by the number of cpu cycles per second, which

gives us the amount of time, in seconds, of each operation.

The second category includes frequency-domain, O(n log n) features such as the

62

Fast Fourier Transform (FFT). Here,

Efeat = Ψcpu · SG logSG ·
N

SG

· CO
FO

= Ψcpu ·N logSG ·
CO

FO

.

(5.4)

The third category includes time-frequency features such as wavelets. The com-

putational complexity of wavelet analysis is O(nSWF), where SWF is the size of the

wavelet filter. Given SG lengths of data, wavelet analysis needs approximately SGSWF

operations and the energy consumed is approximately:

Efeat = Ψcpu · SGSWF ·
N

SG

· CO
FO

= Ψcpu ·N · SWF ·
CO

FO

.

(5.5)

The amount of data produced during analysis by the features can either be more or

less than the raw data. Scalar features such as those from the time-domain compress

the raw data, representing SG-size chunks of data with one value. Frequency-domain

features such as FFT or Discrete Cosine Transform (DCT) produce the same amount

of data or more. For the first category where we calculate time-domain O(n) features,

we have

Dfeat =
2FS · t ·NC

SG

=
2N

SG

. (5.6)

This makes intuitive sense because as SG increases, larger chunks of data are repre-

sented by a single number and Dfeat decreases. The compression ratio, Draw/Dfeat,

for time-domain features is 2N/2N
SG

= SG.

In the frequency domain, an FFT produces complex numbers, which use twice as

many bytes. The amount of generated data is:

Dfeat =
4SG · FS · t ·NC

SG

= 4N. (5.7)

The compression ratio for FFT is 2N/4N = 1/2. However, the DCT produces only

real values so Dfeat = 2N and its compression ratio is 1. Of course an implementation

63

might not use all the FFT or DCT coefficients and so the compression ratio could be

higher.

Wavelet analysis on a SG-size chunk of data produces two vectors each of length⌊
SG+SWF−1

2

⌋
. Remembering that each number is represented by two bytes, the total

amount of data produced by wavelet analysis is:

Dfeat =
2 · 2 ·

⌊
SG+SWF−1

2

⌋
· FS · t ·NC

SG

=
2 bSG + SWF − 1c ·N

SG

≤ 2N(SG + SWF − 1)

SG

= 2N

(
1 +

SWF − 1

SG

)
.

(5.8)

In general, SWF � SG, so Dfeat ≈ 2N and the compression ratio is ∼ 1.

The equations in this section have shown that the energy consumed and data

generated by the analysis stage depend on the grouping size, SG and the type of

feature used.

Store

Mobile sensors come with volatile and non-volatile memory. Non-volatile memory,

such as flash memory, has different energy consumption for reads and writes. If we

assume the device reads 2 bytes (1 word) in COword cycles, then:

Eread,perbyte = Ψread ·
COword

2FO

. (5.9)

The maximum amount of time it takes to write a byte to flash memory is usually

a constant in the device specifications.

Ewrite,perbyte = Ψwritetwrite (5.10)

64

Transmit

The energy consumed during transmission depends upon several factors: the length of

time of the transmission, transmission frequency and the power used for broadcasting.

Etrans,perbyte = Ψtransttrans (5.11)

Here, Ψtrans is device specific and should be measured empirically.

5.1.3 Exploring Different Transmission Trade-offs

Data can be transmitted at any stage along the pipeline, but there are distinct

trade-offs in terms of energy and accuracy at each stage.

There are four ways of considering a system that senses and transmit data, distin-

guished by the point in the processing pipeline they transmit their data. The system

can (1) transmit the raw data, (2) transmit calculated feature data, (3) transmit

activity classifications, or (4) transmit a subset of activity classifications, defined as

the subset of activities that are different than the previously transmitted activity. In

other words, (4) only transmits activities when there is a transition from one activity

to another.

Raw Data

Transmitting the raw data has highest accuracy and energy consumption.

Esystem =Esense + (Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·Draw (5.12)

Esystem =Ψsenset+ (Ψwritetwrite + Ψread ·
COword

2FO

+ Ψtransttrans) · 2N (5.13)

The energy for transmitting raw data grows linearly with time.

65

Features

Transmitting features can conserve energy (in comparison with transmitting raw fea-

tures) if the amount of feature data is less than the raw data. Transforming the data

from one space to another introduces some error.

For features, we introduce Efeat and Dfeat. Naturally, these two variables vary

greatly from feature to feature as seen above.

Esystem =Esense + Efeat + (Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·Dfeat (5.14)

Now, let’s look at the case when the features are scalars such as mean and variance.

Dfeat grows with the number of features, but we still divide by SG. In this case

Esystem looks like:

Esystem =Esense + Ψcpu ·N ·
CO

FO

+ (Ewrite,perbyte + · · ·

Eread,perbyte + Etrans,perbyte) ·
4N

SG

(5.15)

In this case, Esystem can actually be reduced by increasing SG. If we let SG be a

variable and set everything else then Esystem is of the form:

Esystem =
α

SG

+ β (5.16)

Now let’s consider the case when the feature size depends on the grouping size, such

as FFT.

Esystem =Esense + Ψcpu ·N logSG ·
CO

FO

+ · · ·

(Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) · 4N
(5.17)

Letting SG be a variable and all others constant, Esystem now takes on the form:

Esystem = α logSG + β (5.18)

The point here is that the choice of feature has a dramatic effect on the energy

consumption of the system and how the system responds to changes in variables such

as the grouping size.

66

Activity Classification

Transmitting only activity classifications can conserve energy when the energy re-

quired to calculate the classification and send the compressed result is less than the

energy required to transmit features or raw data. The error introduced at this stage

depends on the accuracy of the classification model used.

The advantage of transmitting only activity classifications is that you can drasti-

cally reduce the amount of data you need to send. You’re effectively increasing the

compression ratio. Here we introduce Eclassify, which depends on the specific classi-

fication algorithm in use. In general, these are computationally complex operations,

but the payoff you get is that you can compress data even further and thus reduce

the data to transmit. We also introduce Dact. If we assume the activity classification

can be represented in 2 bytes then Dact = 2N/SG.

Esystem =Esense + Efeat + Eclassify + · · ·

(Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·Dact

(5.19)

Now, for an example of a classifier, let’s look at a support vector machine (SVM)

with a radial basis function kernel, which is O(SGNSV) to evaluate, where NSV is the

number of support vectors.

Esystem =Esense + Efeat + ψcpuSGNSV
N

SG

CO

FO

+

(Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·
2N

SG

=Esense + Efeat + ψcpuNNSV
CO

FO

+

(Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·
2N

SG

(5.20)

This case has good compression, but the energy used in calculation can be significant

if the number of support vectors is high or if the classifier is more complex than a

SVM. We think we can do a little better.

67

Transitions

Transmitting activity classifications only when transitions occur is another way of

reducing the amount of data that needs to be processed and transmitted. It’s based

on the idea that a simple routine could act as a gatekeeper to the computationally

complex classification algorithms and wireless communication if it can quickly deter-

mine if a change in activity has occurred. Two such transition detection strategies

we’ve explored are a log-likelihood ratio test and using mean and variance.

We think we can reduce energy consumption by adding one more preprocessing

step to determine if a transition has occurred between two sampling times. By looking

for transitions, we only call the classifier if a transition has occurred. Now the number

of times the classifier is called and the amount of data generated is dependent on the

probability of transitions occurring, which we represent with τ , with 0 < τ < 1.

This assumes we have a perfect transition detector. In reality τ depends on the true

positives and false positives of the transition detector.

Esystem =Esense + Efeat + Edetect transition + τEclassify + · · ·

τ(Ewrite,perbyte + Eread,perbyte + Etrans,perbyte) ·Dact

(5.21)

Since the transition detector will be called more often than the classifier, one must

ensure that Edetect transition < Eclassify.

Our previous discussion of transition detection using a log-likelihood ratio test

found a 5× decrease in power consumption with only a 5% sacrifice in accuracy [Boyd

et al., 2010]. A similar technique called Early Template Matching was employed by

Raffa et. al. [Raffa et al., 2010] in their gesture recognition system. The idea is to

use a little processing to prevent even more processing from happening.

68

5.2 Strategies for Sensing Less

From the energy and data creation model we see that strategies for reducing energy

consumption should focus on reducing the amount of data generated by sensing, thus

reducing the amount of data transmitted. This section will focus on ways to smartly

reduce sensing and the next section will cover reducing the amount of data to transmit.

5.2.1 Reduce FS and bit resolution

Sometimes a smart way to reduce the data generated is to simply reduce the

sampling frequency, FS, of the sensors. For example, Krause et al. [2005] achieved

nearly the same accuracy sampling accelerometers at 6Hz as they did at 20Hz, but

improved the lifetime of their battery from 9.2 to 17 hours. The nature of the activity

to be sensed should drive the choice of sampling frequency and the sampling frequency

should be evaluated to see if it can be lowered while still meeting design specifications.

Another technique that doesn’t exactly reduce the amount of sensing, but still

has the affect of reducing the rate at which data is generated is the act of reducing

the resolution, or number of bits, used to represent samples. Patel et al. [2009] saw a

reduction in power consumption from 29.8µW to 12.5µW by reducing the bitwidth

by 6 and observed only a 3% decrease in accuracy of their system. A higher bitwidth

can measure smaller variations in a signal. If we are only interested in coarse changes

in a signal, then a low bitwidth may be sufficient.

5.2.2 Periodically put sensors to sleep

Sensors are often sensing when nothing interesting is going on. Periodically

putting the sensors to sleep will take advantage of those times, creating regular duty

cycles of sleep and sense. However, this can introduce two types of error in the system:

69

latency and misses. For example, latency will be incurred when an important change

in the signal occurs while the sensor sleeps, which the sensor does not detect until

after it wakes up. Furthermore, important changes may be missed entirely while the

sensor sleeps. Also, this scheme will still waste energy when it senses unnecessarily

in scenarios where the changes in signal are sparse.

5.2.3 Aperiodically put sensors to sleep

To deal with the sparsity of some signals, techniques of aperiodically putting

sensors to sleep have been developed. Aperiodically means sleep times will not be

uniform in length; some intervals will be longer than others. These techniques seek to

exploit the aperiodic nature of human activity and leverage the fact that humans move

slowly compared to the speed at which modern microcontrollers operate. Examples of

this are episodic sampling from Au et al. [2009], and sleep times based on a Gaussian

distribution of activity length [French et al., 2007; Krause et al., 2005].

5.2.4 Use a hierarchy of sensors

Another way to reduce sensing is to selectively choose which sensors are powered.

As some sensors consume more energy than others, we can use a hierarchy of sensors

such that low-power sensors do most of the sensing and high-power sensors are turned

on when necessary. This scheme has seen success with smartphones, which feature

a heterogeneous mixture of sensors from low-power accelerometers and high-power

GPS radios [Wang et al., 2009; Paek et al., 2010]. Even if sensors are homogeneous,

in terms of the energy they consume, a hierarchy can be constructed which selectively

turns off sensors that are not needed [Zappi et al., 2008].

70

5.3 System Evaluation

Based on the analysis of our energy models, we were keen to see the models with

values from a real wearable device, the TI Chronos Watch. It features a MSP430 dig-

ital signal processor, which includes a microcontroller, flash storage and a sub-1GHz

wireless transceiver. Its sensors include a 3-axis accelerometer, altimeter, barometer,

and thermometer. The device also has a LCD screen, buttons for interaction, and a

small CR2032 coin-size battery. The device comes with a wristwatch-like enclosure

so it can easily be worn on the wrist.

Several things make this an attractive test bed for the kind of software optimiza-

tions techniques we’ve talked about in this thesis. The small, unobtrusive form factor

is as comfortable as a wristwatch. The small battery, limited on-board storage, wire-

less transceiver, and ability to turn off individual sensors make it suitable for testing

how software can change how much energy the system uses.

We see from the equations in Section 5.1 that the grouping size has a big effect

on energy consumed and data. We decided to investigate how the grouping size

affects accuracy. We also looked into how much energy is consumed when the system

transmits raw data, features, and activity classifications.

5.3.1 Accuracy

We begin with a simple simulation of how the grouping size, SG, affects accuracy

in terms of Precision, Recall, and F-Score. These three metrics were defined in Section

3.3. We’ve seen in this chapter that increasing SG has energy saving benefits, but is

there a limit to how high you can make the grouping size before it negatively affects

the usefulness of the system? For this simulation we used the same data we used in

the previous chapter, which is the synthetic data used to simulate lots of transitions.

71

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1
avg fscore

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1
avg precision

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1
avg recall

Grouping Size

Figure 5.2: F-Score improves as the grouping size increase until the grouping size is
approximately the mean value of the duration of activities. This simulation used the
same data as the previous chapter, which is synthetic data used to represent many
transitions. We assumed 100Hz sampling frequency and mean and variance transition
detection. The results shown are the average of three different threshold values for
mean and variance.

One important aspect about this data is that the average length of time for each

activity is just under 30 seconds. We assumed a 100Hz sampling frequency and µ and

σ2 transition detection. This transition detection methods requires a threshold for µ

and σ2. We used the average of three different threshold values. The results can be

seen in Figure 5.2.

F-Score increases until it peaks at a grouping size of approximately 3000 samples.

Given that this data is sampled at 100Hz, that’s about 30 seconds of time that each

grouping represents. It is interesting to note that this corresponds with the average

72

Table 5.2: These are measurements of how much current the TI Chonos watch draws
in different operating modes. The active mode uses the default 12MHz setting for the
DSP and assumes no other sensor or radio is on. The accelerometer mode assumes a
sampling frequency of 100Hz. The Active, Sleep and Read/Write Flash values were
measured with a multimeter. The Accelerometer and Transmit values come from the
TI datasheet. The TI Chronos watch runs on a 3V CR2032 coin-size battery.

Mode Current (mA)

Sleep 0.0064

Active 5.4

Read Flash 2.9

Write Flash 2.2

Accelerometers 0.166

Transmit 35

activity length of the simulation data, which is also approximately 30 seconds. As

SG increases beyond the average activity length, the probability of miss, PM , used in

the calculation of Recall, increases greatly, thus bringing down F-Score.

5.3.2 The Energy Cost of Different Transmission Schemes

The choice of when to transmit data has a big impact on how much energy the

system consumes. For this test we measured how much current the TI Chronos watch

draws when operating in different modes. Table 5.2 summarizes these measurements.

Notice that the amount of current the device draws in Transmit mode is much greater

than Active or Sleep.

We were most curious to know how much energy could be saved over the course

of a day given four scenarios:

1. Transmit the raw data

2. Transmit features and compare a scalar feature versus a vector feature

73

3. Transmit after activity classification; include energy required for classification

4. Transmit activity only after transition detection

We set up a simulation in Matlab that assumed the TI Chronos watch would be active

for 12 hours and sensing the accelerometers at 100Hz. We further assumed we had a

100% accurate transition detector and that the probability of a transition occurring

was 0.50. A probability of a transition occurring of 0.50 would mean that about

half the time the transition detector runs it would detect a transition and call the

classifier. A value of 0.50 is probably high, but it should account for false positives

that would occur in the real world. We assumed the classifier to be a SVM which

has computational complexity based on the number of support vectors and input

values. A grouping size of 128 values was chosen. To see the difference in the choice

of feature, we ran two simulations to show the difference between calculating mean

and variance (two scalar features) and the FFT (a vector feature). The results can

be seen in Figure 5.3. Note the two bar graphs are on the same horizontal scale. The

amount of energy to sense the accelerometers is the same for both situations and is

omitted from this figure.

The breakdown of how much energy classification and transition detection use

is not that important compared to the savings evident in reducing the amount of

data generated and transmitted. The compression ratio that activity classification

achieves significantly reduces the amount of energy the entire system would use over

the course of day. Transition detection enables only a slight gain over just classifica-

tion. Transmission detection would become more important if the energy to classify

were significantly more than the energy to detect a transition. This simulation as-

sumed we used a SVM to classify, which is relatively inexpensive, computationally,

compared to other classifiers used for activity recognition such as Hidden Markov

74

Figure 5.3: This figure shows the energy savings of data compression and the choice
of when to transmit data. These two graphs show the energy used for a simulated
situation on the TI Chronos watch that continuously senses the accelerometers at
100Hz and calculates either mean and variance in the top graph or FFT in the bottom
graph. Current and voltage measurements for this simulation were taken from the
measurements in Table 5.2. The important thing to note here is the significant energy
savings that activity classification enables by reducing the amount of data that needs
to be stored and transmitted. Feature calculation has little energy overhead compared
to the energy required to store and transmit data.

Models, Bayes Nets, or K-Nearest Neighbor. The choice of feature is also very ev-

ident in this figure. It is interesting to see that the energy overhead of calculating

features pales in comparison to the energy required to store and transmit data. These

measurements are more evidence of how energy efficient CPUs are in comparison to

file I/O.

5.4 Summary

Our models of energy and data usage show how just a few design parameters in a

wearable activity recognition system can affect its energy consumption and accuracy.

The models showed the importance of the grouping size and choice of feature. For

75

scalar features, the energy consumption of a system decreases as the grouping size

increases. For vector-based features, the energy increase with the log of grouping

size. The models also show that activity classification can significantly compress the

data and our experiments verified that classification greatly reduced the energy a

system would consume in a day. We have also shown that for the TI Chronos watch,

the energy overhead of feature calculation and activity classification is minuscule

compared to the saving gained by not storing or transmitting that data.

76

Chapter 6

CONCLUSION

6.1 Contributions

This thesis has contributed the following to the study of how software affects the

energy vs. accuracy trade-off in a wearable activity recognition system:

1. The idea of using transition detection as a means of reducing the number of

times activity classification algorithms are called. We explored three different

techniques of transition detection: the log-likelihood ratio test, support vector

machine, and mean-and-variance thresholds. We found the design space sur-

rounding transition detection to be quite large when you take into account the

choice of sensors, features, and temporal parameters. In general we found that

simple scalar features work well for the task and are more energy efficient than

vector-based features.

2. An exploration of the energy consequences of design choices in each of the

major stages in activity recognition: sensing, sleep schedule, feature extraction,

classification, and storage or transmission.

3. A framework to answer the question of when it is advantageous to include

transition detection in a system, given the probabilities of transitions occurring

and the energy characteristics of a platform.

4. The introduction of Hybrid Episodic Sampling, a sleep schedule that incorpo-

rates activity transition detection with a sleep schedule that changes based on

77

the activity classifications. This schedule was shown to use less energy and be

more accurate than a uniform sleep strategy.

5. An explanation of the “Great Compromise”: a situation in which some small

sacrifice in overall accuracy results in substantial gains in energy efficiency. The

fact that this phenomenon occurs should motivate systems designers to carefully

consider the parameters of their system and search for ways to optimize for

energy without sacrificing too much accuracy.

6. A mathematical model of energy consumed and data generated in each stage

of the activity recognition process. This analysis showed the importance of the

grouping size, which is the number of samples your system treats as a block to

analyze. It also demonstrated the importance of reducing the amount of data

generated, stored and transmitted. Sensing and wireless transmission consume

the most amount of energy per byte, so optimizations that reduce the amount

of time sensing and reduce the amount of data to be transmitted greatly reduce

the energy a system consumes.

These ideas were tested using two embedded systems: a SpakFun IMU and a TI

Chronos watch, though much of the analysis of different situations was done using

Matlab. The work provided in this document shows compelling evidence that software

has a profound effect on the compromise of energy consumption and accuracy. This

work also shows that incorporating knowledge of human behavior into the design of

the system can help it be more energy efficient without sacrificing too much accuracy.

6.2 Future Work

A full implementation of these ideas running on an embedded system and a com-

plete trial with human subjects remains to be done. It remains to be seen if transition

78

detection via mean and variance, SVM, or a log-likelihood ratio test will generalize

and scale to multiple users. It would also be instructive to see multiple machine

learning algorithms implemented in an embedded system like the TI Chronos Watch,

so that the energy cost of each algorithm could be compared against the energy cost

of transition detection.

There is also the question of how Jevons Paradox can be avoided. Jevons Paradox

is the phenomenon that an increase in energy efficiency creates more demand for fuel

rather than reducing demand. In a general sense, Jevons Paradox can be avoided if a

technology, for example, doubles in efficiency and, at the same time, does not double

the demand for the energy source. The social and political ramifications of Jevons

Paradox for computing platforms could be explored.

There is also the growing field of energy harvesting to consider. An embedded

system that employs energy harvesting would supplement or rely exclusively on en-

ergy from the surrounding environment. Some examples include solar power, kinetic

energy transformed to electric energy via piezoelectric resistors, and electromagnetic

energy from radio and television broadcasts. Imagine a finely-tuned system that could

operate in any number of energy profiles based on the current and projected energy

consumption rates and energy storage. Energy profiles would consist of different per-

mutations of the variables in the design space: sampling frequency, sensors, features,

grouping size, classifier, etc. The controlling software could switch between energy

profiles as energy availability fluctuates much as online video streaming services can

switch between different quality of audio and video based on current bandwidth avail-

ability.

79

REFERENCES

Au, L., M. A. Batalin, T. Stathopoulus, A. A. T. Bui and W. J. Kaiser, “Episodic
Sampling: Towards Energy-efficient Patient Monitoring with Wearable Sensors”,
in “31st Annual International Conference of the IEEE EMBS”, (Minneapolis, MN,
USA, 2009).

Avci, A., S. Bosch, M. Marin-Perianu, R. Marin-Perianu and P. Havinga, “Activity
Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applica-
tions: A Survey”, in “23rd International Conference on Architecture of Computing
Systems, ARCS 2010”, (Hannover, Germany, 2010).

Bao, L. and S. Intille, “Activity Recognition from User-Annotated Acceleration
Data”, in “Pervasive 2004”, pp. 1–17 (Vienna, Austria, 2004).

Bharatula, N. B., M. Stäger, P. Lukowicz and G. Tröster, “Empirical Study of Design
Choices in Multi-Sensor Context Recognition Systems”, in “IFAWC: 2nd Interna-
tional Forum on Applied Wearable Computing”, (Zurich, Switzerland, 2005).

Boyd, J., H. Sundaram and A. Shrivastava, “Power-Accuracy Tradeoffs in Human Ac-
tivity Transition Detection”, in “Design, Automation, and Test in Europe. DATE
2010.”, (Dresden, Germany, 2010).

Chang, C. C. and C. J. Lin, “LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm”, (2001).

Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods (Cambridge University Press, 2010).

Czabke, A., S. Marsch and T. C. Lueth, “Accelerometer based real-time activity anal-
ysis on a microcontroller”, in “Pervasive Computing Technologies for Healthcare
(PervasiveHealth), 2011 5th International Conference on”, pp. 40–46 (2011).

French, B., D. Siewiorek, A. Smailagic and M. Deisher, “Selective Sampling Strate-
gies to Conserve Power in Context Aware Devices”, in “Proceedings of the 2007
11th IEEE International Symposium on Wearable Computers”, (Boston, MA, USA,
2007).

Furber, S. and D. Brown, “INTERVIEW A Conversation with Steve Furber”, Queue
8, 2, 1–8, URL http://doi.acm.org/10.1145/1716383.1716385 (2010).

Gebruers, N., C. Vanroy, S. Truijen, S. Engelborghs and P. P. De Deyn, “Monitor-
ing of physical activity after stroke: a systematic review of accelerometry-based
measures”, Archives of physical medicine and rehabilitation , 2, 288–297 (2010).

Havinga, P. and G. J. M. Smit, “Design Techniques For Low Power Systems ”, Journal
of Systems Architecture 46 (2000).

Huynh, T., M. Fritz and B. Schiele, “Discovery of Activity Patterns using Topic
Models”, (2008).

80

Krassnig, G., D. Tantinger, C. Hofmann, T. Wittenberg and M. Struck, “User-
friendly system for recognition of activities with an accelerometer”, in “4th In-
ternational Conference on Pervasive Computing Technologies for Healthcare (Per-
vasiveHealth)”, pp. 1–8 (2010).

Krause, A., M. Ihmig, E. Rankin, D. Leong, S. Gupta, D. Siewiorek, A. Smailagic,
M. Deisher and U. Sengupta, “Trading off Prediction Accuracy and Power Con-
sumption for Context-Aware Wearable Computing”, in “9th IEEE International
Symposium on Wearable Computers ISWC’05”, (Osaka, Japan, 2005).

Lorch, J. R. and A. J. Smith, “Software Strategies for Portable Computer Energy
Management”, IEEE Personal Communications (1998).

Metcalfe, R. M. and D. R. Boggs, “Ethernet: distributed packet switching for local
computer networks”, Communications of the ACM 19, 395–404 (1976).

Mitchell, T. M., Machine Learning (McGraw-Hill, New York, 1997).

Nyan, M., F. Tay, K. Seah and Y. Sitoh, “Classification of gait patterns in the time-
frequency domain”, Journal of biomechanics 39, 14, 2647–2656 (2006).

Paek, J., J. Kim and R. Govindan, “Energy-Efficient Rate-Adaptive GPS-based Po-
sitioning for Smartphones”, (2010).

Patel, K., C. Chern-Pin, S. Fau and C. J. Bleakley, “Low power real-time seizure
detection for ambulatory EEG”, in “Pervasive Computing Technologies for Health-
care, 2009. PervasiveHealth 2009. 3rd International Conference on”, pp. 1–7 (2009).

Raffa, G., L. Jinwon, L. Nachman and S. Junehwa, “Don’t slow me down: Bring-
ing energy efficiency to continuous gesture recognition”, in “Wearable Computers
(ISWC), 2010 International Symposium on”, pp. 1–8 (2010).

Rivera, J. and R. van der Meulen, “Gartner Says the Internet of
Things Installed Base Will Grow to 26 Billion Units By 2020”, URL
http://www.gartner.com/newsroom/id/2636073 (2013).

Roy, K. and M. C. Johnson, “Software Design for Low Power”, in “Low power design
in deep submicron electronics”, (Kluwer Academic Publishers, 1997).

Sekine, M., T. Tamura, T. Togawa and Y. Fukui, “Classification of waist-acceleration
signals in a continuous walking record”, Medical Engineering & Physics 22, 4,
285–291 (2000).

Smit, G. J. M. and P. Havinga, “A survey of energy saving techniques for mobile
computers”, Tech. rep., Twente, The Netherlands (1997).

Stäger, M., P. Lukowicz and G. Tröster, “Power and accuracy trade-offs in sound-
based context recognition systems”, Pervasive and Mobile Computing 3, 3, 300–327
(2007).

81

Stikic, M., T. Huyng, K. V. Laerhoven and B. Schiele, “ADL Recognition Based on
the Combination of RFID and Accelerometer Sensing”, (2008).

Sun, F.-T., C. Kuo and M. Griss, “PEAR: Power efficiency through activity recogni-
tion (for ECG-based sensing)”, in “Pervasive Computing Technologies for Health-
care (PervasiveHealth), 2011 5th International Conference on”, pp. 115–122 (2011).

Tiwari, V., S. Malik and A. Wolfe, “Instruction Level Power Analysis and Optimiza-
tion of Software”, Journal of VLSI Signal Processing 13 (1996).

Uswatte, G., C. Giuliani, C. Winstein, A. Zeringue, L. Hobbs and S. L. Wolf, “Validity
of accelerometry for monitoring real-world arm activity in patients with subacute
stroke: evidence from the extremity constraint-induced therapy evaluation trial”,
Archives of physical medicine and rehabilitation 87, 10, 1340–1345 (2006).

Wang, Y., J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari and
N. Sadeh, “A Framework of Energy Efficient Mobile Sensing for Automatic User
State Recognition”, (2009).

Zappi, P., C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini and
G. Tröster, “Activity Recognition from On-Body Sensors: Accuracy-Power Trade-
Off by Dynamic Sensor Selection Wireless Sensor Networks”, in “Wireless Sensor
Networks”, edited by R. Verdone, vol. 4913, pp. 17–33 (Springer Berlin / Heidel-
berg, 2008).

Zotos, K., A. Litke, A. Chatzigeorgiou, S. Nikolaidis and G. Stephanides, “Energy
Complexity of Software in Embedded Systems”, (2005).

82

APPENDIX A

THE COMPUTATIONAL COMPLEXITY OF LLRT

This appendix describes the derivation of the ratio test’s complexity. Let D be the
dimensionality of the feature we are analyzing. Let N be the number of frames, or
observations, per window. Calculation of the probability p in Equation 3.1 involves
calculating the mean feature vector (µ) and covariance matrix (Λ) across the entire
window. The complexity of µ is O(DN), because features are calculated per frame
and each dimension of the feature is averaged. The complexity of Λ is O(D2N). The
calculation of p also involves calculating Λ−1, which has complexity O(D3) since the
best known algorithms to calculate the inverse of a matrix are cubic. The complexity
for calculating p can now be simplified to O(D3) +O(D2N).

83

APPENDIX B

TRANSITION DETECTION TESTS WITH PARETO FRONT

The following four figures show all the results for each of the three transition detection
methods, and no transition detection at all. The color and shape represent different
sampling frequencies and each point represents a permutation of each strategy’s vari-
ables. The Pareto-front is highlighted. These points represent the optimal points for
which there no more accurate combination given some level of energy consumption.

0.2289 1 2 3 4 5 6.1697

0.0187

0.1

0.2

0.3

0.4

0.5436

Time (s)

E
rr

o
r

Uniform, No−Transition Detection, All Frequencies

100Hz

90Hz

80Hz

70Hz

60Hz

50Hz

40Hz

30Hz

20Hz

10Hz

Pareto Front

Figure B.1: For the uniform, no-transition detection strategy, the only variable is
tmax. The cluster of points near the “knee” of the curve all have tmax values of 8s. It’s
interesting to note in this figure that sampling frequency doesn’t have a significant
impact on error until 20Hz.

84

0.1493 0.5 1 1.5 2 2.6413

0.0242

0.1

0.2

0.3

0.4

0.5

0.583

Time (s)

E
rr

o
r

Uniform µ, σ
2
 All Frequencies

100Hz

90Hz

80Hz

70Hz

60Hz

50Hz

40Hz

30Hz

20Hz

10Hz

Pareto Front

Figure B.2: For transition detection with µ and σ2, the variables are tmax and
the threshold values for µ and σ2. This figure shows the result of performing a grid
search on the two threshold values and finding the threshold values that offer the best
trade-off between power and accuracy. It’s also interesting to note that the impact
of sampling frequency on accuracy is evident at a higher sampling frequency than no
transition detection. The cluster of points near the ”knee” of the curve have tmax

values of 8s.

85

0.3667 1 2 3 4 5 6 7 8 9 10.213

0.0543

0.1

0.2

0.3

0.4

0.5277

Time (s)

E
rr

o
r

Uniform LLRT All Frequencies

100Hz

90Hz

80Hz

70Hz

60Hz

50Hz

40Hz

30Hz

20Hz

10Hz

Pareto Front

Figure B.3: For transition detection with LLRT, the variables are tmax, the length of
the analysis window, and the LLRT threshold value. Here, the effect of sampling fre-
quency is more pronounced and the lowest sampling frequencies lose little in accuracy
compared to the higher frequencies.

86

0.2212 0.5 1 1.5 2 2.5 2.9812

0.0868

0.2

0.3

0.4

0.5

0.6472

Time (s)

E
rr

o
r

Uniform SVM−transition, All Frequencies

100Hz

90Hz

80Hz

70Hz

60Hz

50Hz

40Hz

30Hz

20Hz

10Hz

Pareto Front

Figure B.4: For transition detection using a SVM, the variables are tmax and the
size of the analysis window. It is interesting to note that the size of the analysis
window has little effect on the energy consumption compared to LLRT. There is also
a big jump in sampling frequency in the Pareto-front near the “knee”; it goes from
100Hz to 10Hz.

87

