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ABSTRACT

Texture analysis plays an important role in applications like automated pattern

inspection, image and video compression, content-based image retrieval, remote-

sensing, medical imaging and document processing, to name a few. Texture Struc-

ture Analysis is the process of studying the structure present in the textures. This

structure can be expressed in terms of perceived regularity. Our human visual sys-

tem (HVS) uses the perceived regularity as one of the important pre-attentive cues

in low-level image understanding. Similar to the HVS, image processing and com-

puter vision systems can make fast and efficient decisions if they can quantify this

regularity automatically. In this work, the problem of quantifying the degree of per-

ceived regularity when looking at an arbitrary texture is introduced and addressed.

One key contribution of this work is in proposing an objective no-reference per-

ceptual texture regularity metric based on visual saliency. Other key contributions

include an adaptive texture synthesis method based on texture regularity, and a

low-complexity reduced-reference visual quality metric for assessing the quality of

synthesized textures.

In order to use the best performing visual attention model on textures, the

performance of the most popular visual attention models to predict the visual saliency

on textures is evaluated. Since there is no publically available database with ground-

truth saliency maps on images with exclusive texture content, a new eye-tracking

database is systematically built. Using the Visual Saliency Map (VSM) generated by

the best visual attention model, the proposed texture regularity metric is computed.

The proposed metric is based on the observation that VSM characteristics differ

between textures of differing regularity. The proposed texture regularity metric is

based on two texture regularity scores, namely a textural similarity score and a

spatial distribution score. In order to evaluate the performance of the proposed
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regularity metric, a texture regularity database called RegTEX, is built as a part

of this work. It is shown through subjective testing that the proposed metric has a

strong correlation with the Mean Opinion Score (MOS) for the perceived regularity

of textures. The proposed method is also shown to be robust to geometric and

photometric transformations and outperforms some of the popular texture regularity

metrics in predicting the perceived regularity.

The impact of the proposed metric to improve the performance of many image-

processing applications is also presented. The influence of the perceived texture reg-

ularity on the perceptual quality of synthesized textures is demonstrated through

building a synthesized textures database named SynTEX. It is shown through sub-

jective testing that textures with different degrees of perceived regularities exhibit

different degrees of vulnerability to artifacts resulting from different texture syn-

thesis approaches. This work also proposes an algorithm for adaptively selecting

the appropriate texture synthesis method based on the perceived regularity of the

original texture. A reduced-reference texture quality metric for texture synthesis is

also proposed as part of this work. The metric is based on the change in perceived

regularity and the change in perceived granularity between the original and the syn-

thesized textures. The perceived granularity is quantified through a new granularity

metric that is proposed in this work. It is shown through subjective testing that

the proposed quality metric, using just 2 parameters, has a strong correlation with

the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art

full-reference quality metrics on 3 different texture databases. Finally, the ability of

the proposed regularity metric in predicting the perceived degradation of textures

due to compression and blur artifacts is also established.
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Chapter 1

INTRODUCTION

Textures are present in almost everything we see around us, both in natural and

man-made objects. Barks of trees, leaves, grass, flowers and ripples of water are all

examples of natural textures. Tiles on the floor, carpets, and all types of printed

fabrics can be cited as examples for man-made textures that we see every day. Each of

these objects has a spatially repetitive pattern of visual properties that characterize

the specific object and help us in their recognition, classification and segmentation.

This repeated pattern of pixel intensities or color constitute a visual texture. The

patterns can be the result of physical surface properties such as roughness or oriented

strands which often have a tactile quality. The patterns can also be the result of

reflectance differences such as the color on a surface.

Textures are represented by describing this pattern of pixel intensities. The

popular approaches for texture representation and analysis are reviewed in Chapter 2.

These include the statistical approaches, model-based approaches, geometry-based

approaches and structural approaches. In this work, a structural approach is taken

for the representation and analysis of textures.

The pattern of visual intensities that is spatially repeated throughout the

texture in some regular or irregular manner is called a primitive. The primitives

of a texture exhibit varying degrees of similarity in the visual properties like size,

shape, color and orientation. These properties of the primitives along with the degree

of periodicity in their placements, determine the overall perceived regularity of the

primitives. As mentioned in [1], the texture structure can also be quantified through

the local properties of the primitives as well as through the organization amongst
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(a) (b) (c) (d)

Figure 1.1: Examples of irregularity in textures due to (a) placement, (b) size, shape

or color, (c) directionality, and (d) fine-granularity of primitives.

the primitives. Texture structure manifests itself as the perceived regularity of the

primitives. Examples of irregularity in textures due to each of these properties are

illustrated in Fig. 1.1. Sometimes the irregularity in a texture is so high that, it

becomes very difficult to locate and define a primitive. Texture Structure Analysis

essentially involves understanding the regularity present in a texture.

Based on the combined regularities in each of the visual properties, textures

can be broadly classified as regular, hybrid and irregular textures. Examples of

regular, hybrid and irregular textures are shown in columns 1, 2 and 3 of Table 1.1,

respectively. It is proven that the regularity of textural properties is one of the

important visual cues in early vision [2]. This cue helps the Human Visual System

(HVS) in the acceleration of image processing tasks like image segmentation. If the

regularity of textures can also be inferred quickly by computer vision systems, then

there can also be a significant speed-up in automated decision making. Hence one of

the key motivations of this work is to quantify the perceived regularity of textures

through the proposed texture regularity metric, which would help in many image

processing and computer vision problems as described below.

1.1 Applications of Texture Structure Analysis

Texture analysis in general, plays an important role in applications like automated

pattern inspection, image and video compression, content based image retrieval,

remote-sensing, medical imaging and document processing. Texture Structure Anal-

ysis is the process of studying the structure present in the textures and is the main

2



Table 1.1: Examples of regular, hybrid and irregular textures.

Regular Textures Hybrid Textures Irregular Textures

focus of this work. This structure is quantified in terms of a Texture Regularity

Metric that represents the amount of perceived regularity when looking at an arbi-

trary texture. This regularity metric can be of significant use in many compelling

applications as explained below.

Image and Video Compression

In natural images and video sequences, a significant amount of the background con-

sists of textures. Since most of the viewers attention is on the foreground, it is

unnecessary to compress the background regions with high fidelity. Also, since tex-

tures have significant high-frequency components, a lot of bits would be consumed

to compress them using conventional DCT-based transform domain methods. In

texture-based coding frameworks like [3], [4] and [5], a small patch or a set of patches

called exemplars, representing the background textures are compressed and sent as
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a part of the bit-stream. The background texture is synthesized from these exem-

plars at the decoder using a texture synthesis algorithm like [6] and [7]. There are a

number of approaches for texture synthesis that offer a trade-off between compres-

sion efficiency, visual quality and speed of processing. Some of the texture synthesis

algorithms are suitable for stochastic or random textures while others are more ap-

propriate for synthesizing highly deterministic textures. Hence, a Texture Regularity

Metric would help in applying the appropriate method for texture synthesis.

Content Based Image Retrieval

The process of using a small image patch to retrieve similar images from a database is

called Content Based Image Retrieval (CBIR). This involves extracting the features

of the image-patch and matching with the features of each image in the database.

When the size of the database becomes large, feature matching can become an ex-

tremely slow operation. Since textures constitute a major proportion of natural

images, textural features can be very handy in searching these images. Regularity

has been used as a key feature in characterizing images in a database as shown in

approaches [8] and [9]. A broad classification of textures based on regularity can play

a vital role in reducing the search space drastically and hence accelerate the retrieval

process.

Automated Pattern Inspection and Defect Detection

Patterned textures are very common in many industries like the fabric industry. Due

to the high volume and speed of production, human evaluation of every sample is

impossible. The automated computer vision systems for monitoring quality need to

be extremely quick and robust in defect detection for sample isolation. Based on

the defect-free samples, an automated inspection system can be first trained for an

expected value of regularity. Whenever the regularity of the observed sample deviates

4



a lot from this expected value, a defect is detected. The efficacy of regularity metrics

in automated pattern inspection is described in [10] and [11].

Texture-based Region Classification and Object Recognition

When a natural image containing a number of objects is viewed, early processing

of visual information helps us to classify the different regions and each region may

correspond to an object. Textures constitute an important visual cue that helps us

in identifying these homogenous regions and hence are used for object recognition

through approaches like [12]. The goal of automated texture classification is to pro-

duce a texture map having the same size of the original image but whose values are

the texture indices. Each index corresponds to a texture class. This early classi-

fication can be used for object segmentation or computing the object shape from

textures.

In order to quantify the perceived regularity of textures, the proposed texture

regularity metric uses a visual attention model. The following section introduces the

concept of visual attention and the visual saliency map (VSM).

1.2 Visual Attention Models

Visual attention is a low-cost pre-processing step by which artificial and biological

visual systems select the most relevant information from a scene, and relay it to higher

level cognitive areas that perform complex processes such as scene understanding,

action selection, and decision making. Visual attention (VA) can be modelled as a

bottom-up or a top-down process. Visual saliency refers to the bottom-up processes

that render certain image regions more conspicuous compared to their surroundings.

For instance, a single red dot among several blue dots is visually salient. Bottom-

up saliency has been studied in search tasks such as finding an odd item among

distractors in pop-out and conjunction search arrays, as well as in eye movement

prediction on free-viewing of images or videos. In contrast to bottom-up, top-down
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attention deals with high-level cognitive factors that make image regions relevant,

such as task demands, emotions, and expectations. The VA models can also be

divided into spatial [13] or spatial-temporal models [14] depending on whether the

stimulus is a still image or a video sequence. The still-image based models classify

the pixels into saccades and fixations.

The VA models can also be categorized as being space-based or object-based.

Object-based models [15] try to segment or detect objects to predict salient regions.

This is supported by the finding that objects predict fixations better than early

saliency. In contrast, in space-based models, all operations happen at the image

level (pixels or image patches), or in the image spectral phase domain. For the

space-based models [16], the goal is to create saliency maps that predict which lo-

cations have higher probability of attracting human attention. As reviewed in later

chapters of this thesis, the performance of various visual attention models can be

evaluated by observing the correlation of the predicted saliency maps produced by

these models with ground-truth saliency. Although such comparative performance

evaluation had been performed earlier on databases with natural images, no such

work exists for images containing exclusive textures. A performance benchmarking

of visual attention models on textural images is performed as a part of this work.

1.3 Summary of Contributions

The most significant contribution of the work is in proposing a no-reference percep-

tual texture regularity metric based on visual saliency. This is the first ever work

that introduces the concept of perceived regularity and systematically captures it

through subjective testing. A texture regularity database, named RegTEX, is built

as part of this work. The RegTEX database consists of images of regular, hybrid

and irregular textures and their corresponding subjective regularity mean opinion

scores. Using visual attention to quantify texture regularity is a novelty in itself.
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Simulation results show that the proposed no-reference regularity metric is robust

to geometric and photometric transformations and has a high correlation with the

scores obtained from subjective testing.

In order to use the most effective visual attention model for computing the

proposed texture regularity metric, the performance of the visual attention models to

predict fixations on exclusive texture images have been evaluated for the first time.

For this purpose, a texture eye-tracking database, consisting of texture images and

ground-truth eye-tracking data for these textures, is constructed and used for this

evaluation.

The work also contributes an adaptive texture synthesis algorithm based on

the regularity of the original texture. The efficacy of the proposed algorithm is mea-

sured through the development of a synthesized textures database, named SynTEX,

containing synthesized textures along with their corresponding subjective visual qual-

ity mean opinion scores.

A reduced reference (RR) texture quality metric (TQM) for assessing the

perceived quality of synthesized textures, is proposed as part of this work. The

proposed RR TQM uses the change in regularity and the change in granularity

between the original and synthesized textures to estimate the amount of loss in

fidelity. A novel granularity score is also proposed in this work. The RR TQM uses

just 2 parameters but outperforms many full-reference and RR metrics over three

different databases.

This work also establishes the influence of texture regularity on other texture

distortions like compression artifacts and blur.
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1.4 Outline of the report

This thesis is organized as follows. Background concepts on the representation and

analysis of visual textures are presented in Chapter 2. Some of the prior work on tex-

ture regularity analysis is also reviewed in Chapter 2. The performance evaluation

of the state-of-the-art visual attention models on textures is elucidated in Chap-

ter 3. The proposed no-reference perceptual texture regularity metric is presented

in Chapter 4. Simulation results are also presented in Chapter 4. The application of

the proposed texture regularity metric for adaptive texture synthesis is described in

Chapter 5. A reduced reference quality metric for measuring texture synthesis qual-

ity is proposed in Chapter 6. The influence of texture regularity on the perceived

texture distortions resulting from compression or blur is discussed in Chapter 7.

Finally, a conclusion summarizing the contributions of this thesis and suggesting

future research directions is presented in Chapter 8.
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Chapter 2

BACKGROUND AND EXISTING APPROACHES

This chapter presents the background concepts related to the representation and

analysis of textures. Some of the popular existing approaches for quantifying the

regularity of textures are also described in this chapter.

2.1 Background

Natural textures like rocky surfaces, sand, barks of trees, grass, leaves etc., originate

from various physical phenomena like the withering or erosion of rocks, aging of trees,

to name a few. The physical processes that give rise to the observed textures are

very difficult to model. Naturally, the most widely used representation of textures is

through the pixel intensities. Textures are basically patterns of pixel intensities. The

pattern that is spatially repeated throughout the texture in some regular or irregular

manner is called a primitive. Texture representation is achieved by describing the

primitives and their placement in a condensed form. Some of the most popular

approaches for texture representation and analysis are described below.

2.1.1 Statistical Methods

Gray Level Co-occurrence matrices

A spatial Gray Level Co-occurrence Matrix (GLCM) estimates image properties re-

lated to second-order statistics. The use of GLCM for texture analysis was suggested

by Haralick [1]. For an image of size N ×M with G gray levels, the GLCM Pd, for

a displacement vector d = (dx, dy) is defined as follows:

Pd(i, j) = |{((s, t), (u, v)) : I(s, t) = i; I(u, v) = j}| (2.1)

where

(s, t), (u, v) ∈ N ×M ,
9



(u, v) = (s+ dx, t+ dy),

(i, j) ∈ G×G

and |.| is the cardinality of the set.

For an image with G gray levels, the GLCM is a matrix Pd of size G × G.

The (i, j)th entry of the matrix Pd is the number of co-occurrences of the pair of

gray levels i and j which are a distance d apart. The GLCM is not a symmetric

matrix in general. A number of texture features like energy, entropy, contrast and

homogeneity can be computed from the GLCM as shown below:

Energy =
∑
i

∑
j

P 2
d (i, j)

Entropy = −
∑
i

∑
j

Pd(i, j) log(Pd(i, j))

Contrast =
∑
i

∑
j

(i− j)2Pd(i, j)

Homogenity =
∑
i

∑
j

Pd(i, j)

1 + |i− j|

(2.2)

The advantage of GLCM based approaches is that they are invariant to mono-

tonic gray tone variations [1]. GLCM based approaches for texture analyses assume

that the texture is inherently periodic with an unknown periodicity. This requires

computing a GLCM matrix for each possible displacement vector d and hence re-

quires a large memory and a large number of computations. Since the GLCM is

completely based on statistics of the pixel intensities without a perceptual factor,

sometimes wrong conclusions may be derived about the regularity of the textures.

An example of such anomaly is presented in Section 2.3.

Autocorrelation and Power Spectral Density

Autocorrelation measures the self-similarity of a signal. For an image I, the 2D

autocorrelation function for a 2D displacement of (x, y) is given by:
10



ρ(x, y) =

∑
u

∑
v I(u, v)I(u+ x, v + y)∑

u

∑
v I

2(u, v)
(2.3)

In case of textures, the peaks in the 2D autocorrelation function reveal the

periodicity of the textural primitives and also the granularity of the texture. If the

texture is coarse, then its primitives are large in size. Also in coarse natural textures,

there is gradual change in pixel intensities from the primitive to non-primitive regions.

As a result, the autocorrelation function will drop off slowly with variations in x and

y in case of a coarse texture. If the texture is fine, autocorrelation drops of rapidly

as a function of displacement. The autocorrelation function of a regular texture

is periodic and this period equals the placement between primitives. Kaizer [17]

found that there is a high correlation between the displacement d = ρ−1(1/e) and

the subjective coarseness of textures, where ρ is the autocorrelation function and d

is the distance at which the value of autocorrelation reaches (1/e). Further he also

observed that a relatively flat background can be interpreted as a fine or a coarse

texture. For any smooth gray-tone surface, there exists a scale such that when the

surface is examined, it has no texture. It simply appears as a flat region with a

constant color and intensity. Then as resolution increases, it takes on a fine texture

and then a coarse texture. Also, fine textures are perceived to be less regular (more

random) compared to coarse textures [1].

The Fourier Transform of the autocorrelation function gives the Power Spec-

tral Density (PSD). Some approaches like [18] compute the regularity of a texture

by computing the Fourier Transform and analyzing the PSD. When the power spec-

trum is expressed in polar co-ordinates, directional textures have peaks in the phase

spectrum, while blob like textures have a peak in the radial spectrum.
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Figure 2.1: Clique-types for a second-order neighborhood system.

2.1.2 Model-based methods

Markov Random Fields

A discrete Markov random field is a random field whose probability mass function

has the properties of positivity, Markovianity, and homogeneity [19]. Textures can

be modeled as a MRF as they exhibit the following properties:

1. Locality: The probability of a pixel taking a particular value is dependent only on

the pixel values of its immediate neighbors and is independent of other pixel values.

2. Stationarity: The dependency of a pixel value on its neighbors expressed through

the conditional probability density, is independent of the location of the pixel.

A texture can be considered to be a lattice S and each pixel location in the

texture corresponds to a site in the lattice. The pixel intensity of each site in the

lattice can be denoted by the random variable X. The lattice can also be viewed as

an undirected graph in which every pixel corresponds to a node and an edge is present

between a pair of nodes in the graph if the corresponding pixels are adjacent to each

other in the texture. A clique is a subset of vertices of this graph in which every

pair of vertices are connected by an edge. A neighborhood system Nsys determines

the set of all possible clique types. For example the clique types for a second order

neighborhood system is shown in Fig. 2.1.
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Every clique C is associated with an energy, that indicates the joint proba-

bility of the pixels in the clique possessing a particular set of pixel intensities. This

energy is called the clique potential and denoted by VC . The higher the joint prob-

ability of pixels in the clique, the lower is the clique potential.

As seen earlier, the locality of textures ensures that the probability of a pixel

intensity X assuming a particular value is completely determined by the conditional

probability density of the pixel, given its neighboring pixels. The conditional prob-

ability density of pixel intensities can also be specified by the clique potentials. The

Hammersley-Clifford theorem [20] states that for every MRF, there is a unique Gibbs

Random Field. The set of random variables X is said to be a Gibbs Random Field

(GRF) on the lattice S with respect to a system of neighborhoods Nsys if and only

if its configurations obey a Gibbs distribution, whose probability mass function is

given as follows:

P (X = x) =
1

Z
e−U(x) (2.4)

where Z is the normalization constant called the partition function and U(x) is the

energy function, expressed through the clique potentials as follows:

U(x) =
∑
c∈Q

Vc(X) (2.5)

where Q is a set of all possible cliques for the considered neighborhood system

Nsys. By parameterizing the clique potentials, representation of the entire texture is

achieved. Some of the possible parameterizations are proposed in [20] and [21]. The

model parameters can be used in texture synthesis [22]. As mentioned in [22], MRF

models have been found effective for synthesizing micro-textures but do not result

in a good visual quality when synthesizing coarse and inhomogeneous textures.
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Simultaneous Auto-Regressive Models

The non-deterministic nature of textures is best analyzed and characterized by Si-

multaneous Auto-Regressive (SAR) models as in [23] and [24]. Let g(s) be the gray

level value of a pixel at site s = (s1, s2) in an M ×M textured image. The SAR

model can be expressed as follows:

g(s) = µ+
∑
i∈D

θig(s+ i) + ε(s) (2.6)

where D is the set of neighbors of the pixel at site s. A second-order neighborhood

is chosen. In (2.6), ε(s) is an independent Gaussian random variable with zero mean

and variance σ2; θ(i), i ∈ (1, ..., D) are the model parameters characterizing the

dependence of a pixel to its neighbors, and µ is the bias which is dependent on the

mean gray value of the image. The standard deviation, σ, is directly proportional to

the visually perceived granularity of the texture. These model parameters, estimated

using least squares error (LSE) technique or the maximum likelihood estimation

(MLE) method, are often used as features for texture classification and segmentation.

The work by Mao et al. [25] improves the SAR model by first suggesting

a rotation invariant SAR (RISAR) model. A pixel located at position s with an

original gray level of g(s) is mapped to a new rotation invariant space X. Some

of the sample points in the new circular grid fall between the pixel locations of

the original rectangular grid. As a result, they are estimated by interpolating the

available neighboring pixels as follows:

xi(s) =
1

8i

∑
r∈Ni

wi(r)g(s+ r) (2.7)

where Ni is the neighborhood pixel locations of the ith circle around s and i ∈

(1, ..., p)
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Wi(r) indicates the weight or the contribution of rth neighboring pixel to the ith

parameter. The weights are picked up from a constant table based on the radius

of the ith circle. The weight of a neighborhood pixel is directly proportional to the

nearness of the pixel to the interpolated location.

The RISAR model can be obtained by re-arranging the terms in (2.7) as

follows:

g(s) = µ+

p∑
i=1

θixi(s) + ε(s) (2.8)

The parameters θ1....θp along with µ need to be estimated at each scale.

There are 2 problems with the RISAR model:

1. Since the textures can be at many different scales, the extent of spatial dependence

of textures also differs. As a result, a single neighborhood size cannot give an effective

representation for all textures.

2. The window over which SAR parameters are estimated must contain homogeneous

texture regions. This window size cannot be the same for all textures.

The Multi-Resolution SAR (MRSAR) model described below avoids both the

problems of the RISAR model. A Gaussian pyramid of L levels is constructed by

recursively low-pass filtering and subsampling the original image to generate the

image sequence, Gl, l = 0, 1, ....., L − 1. G0 represents the original image. The

neighborhood size at each level is maintained constant. However, a neighborhood of a

considered size in a higher scale covers a larger region compared to the neighborhood

of the same size at a lower scale. Hence the MRSAR parameters effectively model

the textures belonging to multiple scales.

At each level of the pyramid, the RISAR model parameters are computed.

At the lowest scale (highest resolution), the RISAR model parameters capture the

properties of textural primitives while at the higher scales, the model parameters
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capture the spatial dependency of the primitives. This representation can be used

for texture segmentation into a set of homogenous regions as described in [25]. For

every pixel, using a neighborhood size of 25×25, at any specific level l of the Gaussian

pyramid there are 5 RISAR model parameters excluding µ . Considering all L levels,

each pixel has a total of 5L MRSAR model parameters. Using these 5L elements in

the feature vector of each pixel, texture segmentation can be achieved by K-means

clustering in the feature space.

Fractals

A fractal can be defined as a fragmented geometric shape that can be subdivided

into parts, each of which is approximately a reduced-size copy of the whole [26].

Fractals are generally self-similar and independent of scale. A fractal dimension is a

ratio providing a statistical index of complexity that signifies how detail in a pattern

changes with scale. The Euclidean dimension of an object is the dimension of the

object in a Euclidean space. The Euclidean space is the real line in one dimension,

the Cartesian plane in two dimensions and a coordinate space with three or more

real number coordinates in higher dimensions.

The most common fractal dimension is the Hausdorffs dimension [26]. Con-

sider an object that possesses a Euclidean dimension of E. The Hausdorffs fractal

dimension D can be computed by the following expression:

D = lim
ε−>0

N(ε)

log(ε−1)
(2.9)

where N(ε) is the number of hyper-cubes of dimension E and length ε that cover the

object.

Mandelbrot [27] has pointed out that natural patterns are characterized by

similar structures at different scales and textures also possess this property. Textures

can be interpreted as fractals because they also exhibit a lot of self-similarity due
16



to the repetitive primitive patterns. The fractal dimension gives a measure of the

roughness of a surface. Intuitively, the larger the fractal dimension, the rougher the

texture is. Pentland [28] introduced a fractal-based image description and modeled

an image by a fractal set. Since then, a variety of fractal-dimension counting methods

have been proposed, such as box dimension [29] and blanket dimension [30], fractal

Brownian motion (FBM)-related dimension [31]. Because visually different textures

may have indistinguishable fractal dimensions, Peleg et al. [30] improved fractal

dimension to fractal signature. Fractal signature is a set of fractal dimensions at

different scales. Compared with fractal dimension, the fractal signature provides a

more discriminative texture characterization.

2.1.3 Signal Processing Methods

The Human Visual System (HVS) perceives the characteristics of texture images

through a set of frequency and orientation selective filters. A similar approach is

taken for texture analysis in spatial or frequency domain-based signal processing

methods. The filter responses act as feature descriptors and the feature descriptors

are further used in tasks like texture classification and segmentation.

Spatial domain methods

Textures are considered high frequency 2D signals with a lot of edges. The edginess

or the number of edges per unit area can readily characterize textures. For example,

fine textures have more edginess than coarse textures and this can aid in texture

classification and segmentation. The edges in an image can be found by convolving

the image with a set of orthogonal edge masks like the Sobel operator as shown

below.
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Hx =


−1 −2 −1

0 0 0

1 2 1

 Hy =


−1 0 1

−2 0 2

−1 0 1

 (2.10)

The orthogonal masks Hx and Hy extract the gradients along the horizontal and

vertical directions, respectively. These masks are mutually orthogonal because the

dot product of any column vector from Hx and any column vector from Hy is zero.

The magnitude and direction of the gradient are computed from the gradient compo-

nents at each pixel location. The edge pixels are located by thresholding the gradient

magnitude. The number of edges in a neighborhood region around a pixel acts as a

texture descriptor for the considered pixel.

Pre-attentive visual processing is the process through which the HVS inspects

a large portion of a visual field in a very small time and achieves an early under-

standing of the scene. In all the image data collected by the HVS during this phase,

only the information having a significant saliency is selected for further analysis by

conscious (attentive) processing. As mentioned in [2], the pre-attentive features of a

texture are those the HVS extracts during the first 50ms of looking at the texture.

During this phase, the texture is segmented into ”Textons” or elongated blobs. The

properties of the blobs like color, orientation, size etc., are considered to be the pre-

attentive features. Both pre-attentive and attentive features are used by the HVS

for texture discrimination.

A model for pre-attentive texture perception in the HVS based on spatial

filtering was proposed by Malik and Perona [32] for the segmentation of an image

into homogeneous textural regions. Their proposed model consists of three stages:

(i) convolution of the image with a bank of even-symmetric filters followed by half-

wave rectication, (ii) inhibition of spurious responses in a localized area, and (iii)
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detection of the boundaries between the different textures. The even-symmetric

filters they used consist of differences of offset Gaussian (DOOG) functions. The

half-wave rectication and inhibition (implemented as leaders-take-all strategy) are

methods of introducing a non-linearity into the computation of texture features. A

non-linearity is needed in order to discriminate texture pairs with identical mean

brightness and identical second-order statistics. The texture boundary detection is

done by a straightforward edge detection method applied to the feature images ob-

tained from the inhibition stage (ii). This method works on a variety of texture

examples and is able to discriminate natural as well as synthetic textures. Unser

and Eden [33] have also looked at texture features that are obtained from spatial

filters and a nonlinear operator. Reed and Wechsler [34] review a number of spa-

tial/frequency domain filter techniques for segmenting textured images.

Frequency domain methods

The frequency content of textures can be analyzed by computing the 2D Fourier

Transform. The Fourier Transform only gives the global frequency content of the

textures without specifying the spatial locations at which those global frequencies

occur. Many applications require frequency localization in the spatial domain. A

windowed Fourier Transform, centered on a particular pixel (τx, τy), can get the

spatial frequencies in the local neighborhood of the considered pixel as follows:

Fτ (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)w(x− τx, y − τy)e−j2πuxe−j2πvydxdy (2.11)

where w is the window function.

When the windowed function is a Gaussian, the above transform becomes the

Gabor transform. The proposal to use the Gabor filters in texture analysis was made

by Turner [35] and Clark et al. [36]. A two-dimensional Gabor function consists of a

sinusoidal plane wave of a certain frequency and orientation modulated by a Gaussian
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envelope. It is given by the following:

g(x, y) = e
−1
2

(
x2

σ2x
+ y2

σ2y

)
cos(2πu0x+ θ) (2.12)

where u0 and θ are the frequency and phase of the sinusoidal wave. The values σx

and σy are the sizes of the Gaussian envelope in the x and y directions, respectively.

Wavelet Transform

The Short-Time (or space) Fourier Transform (STFT) despite giving good frequency

localization, suffers from the problem of constant window size. Consider the STFT,

F (u) of a temporal signal f(t). Let ∆t and ∆u be the window size in the temporal and

frequency domains. The limits on the resolution in the time and frequency domain

of the window Fourier transform are determined by the time-bandwidth product or

the Heisenberg uncertainty inequality given by:

∆t∆u ≥ 1

4π
(2.13)

Once a window is chosen for the window Fourier transform the time-frequency

resolution is fixed over the entire time-frequency plane. To overcome the resolution

limitation of the window Fourier transform, one lets the ∆t and ∆u vary in the

time-frequency domain. Intuitively, the time resolution must increase as the central

frequency, fc, of the analyzing filter is increased. That is, ∆t must decrease and as

per the time-bandwidth constraint ∆u must increase with the central frequency. As

a result, the relative bandwidth, defined as ∆u
fc

, must be kept constant in a loga-

rithmic scale. This is accomplished by using the Wavelet Transform. It intrinsically

introduces a scale factor s, which controls both the scale and frequency selectivity

simultaneously as shown below:

F (τ, s) =
1√
(s)

∫ ∞
−∞

x(t)ψ∗
(
t− τ
s

)
dt (2.14)
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Figure 2.2: A three-level analysis filter bank for implementing the DWT. L(z) and
H(z) denote the Lowpass and the Highpass analysis filters, respectively.

where ψ(t) is the mother wavelet function. As the scale factor increases the temporal

window is dilated and this also selects low frequency components. A larger tempo-

ral window helps in the analysis of low frequencies. On the contrary, as the scale

factor decreases the temporal window is small and localized. A small temporal win-

dow is suitable for analyzing high frequencies. Thus the wavelet transform achieves

high frequency resolution for low frequencies and high temporal resolution for high

frequencies in the signal.

The Discrete Wavelet Transform is implemented through a set of multi-

resolution filter banks. A three-level analysis filter bank is shown in Fig. 2.2. At

each level there is a highpass (H(z) in Fig. 2.2) and a lowpass filter (L(z) in Fig. 2.2)

that extract the detail and approximation components of the signal input at that

level. The high frequency component is down-sampled by a factor of 2 and appended

to the output. The low frequency component is also down-sampled by a factor of 2

and becomes the input for the next level. The spatial resolution decreases by a factor

of 2 with each successive level as is the case with a Dyadic Wavelet with doubling

scale factors. The highpass outputs at each level (except the first level) are actually

the band-pass outputs of the original signal.
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2.1.4 Geometric Methods

The geometric methods visualize texture as a collection of smaller regions called

texture elements. The texture elements are also referred to as primitives, as defined

above. Some of the popular geometry based methods are described below.

Voronoi Diagram based methods

These methods achieve the segmentation of a textural image into smaller homogenous

regions through a process called Voronoi Tessellation [37]. They are composed of the

following steps:

1. An image filter like the Laplacian of the Gaussian (LoG) is applied to transform

the texture into feature space.

2. The local maxima in the feature space are located. This is represented by a binary

mask in which a 1 indicates a location where the magnitude of the feature vector is

a local maximum in its 6-point or 8-point local neighborhood.

3. Connected components are formed by doing an 8-point connected component

analysis on the binary mask. Each connected component represents a texture token.

4. A Voronoi Tessellation is performed using the locations of these texture tokens,

to generate a set of open or closed Voronoi polygons or cells.

5. Features of each Voronoi cell are extracted and tokens with similar features

are grouped to construct uniform texture regions. Moments of area of the Voronoi

polygons serve as a useful set of features that reflect both the spatial distribution

and shapes of the tokens in the textured image.

The texture features based on Voronoi polygons have been used for segmen-

tation of textured images. The segmentation algorithm [37] merges the adjacent

Voronoi polygons into connected regions based on the similarity of their texture

tokens.
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Structural Methods

Structural methods consider a textural image to be a collage of textural elements

(Primitives) which are arranged according to a definitive or a random placement rule.

The primitives can be arbitrary shaped regions and are locally stationary. Only when

there are a significant number of primitives in a textural image, the image is perceived

as a texture. Otherwise, the primitives are perceived as individual objects.

As mentioned in [1], a texture can be characterized through the statistical

properties of pixels of a primitive and the spatial dependence of primitives with

respect to each other. The granularity or the size of the textural primitives plays a

role in determining the regularity of the texture. Harlick [1] defines fine and coarse

textures and differentiates their properties as follows:

- Fine Texture: When the spatial pattern of tonal primitives is random and the gray

tone variation between primitives is large

- Coarse Texture: When the spatial pattern of the primitives is regular and the tonal

regions involve more pixels.

As mentioned in Chapter 1, the regularity of textures can be quantified

through properties like size, shape, color and orientation. Based on these visual

properties of the primitives along with their placement regularity, textures can be

classified into 3 broad classes as follows:

1. Regular Textures: The class of textures for which the primitives are well-

defined, significantly coarse in size and exhibit a good degree of regularity with other

primitives in properties like size, shape, color and orientation, constitute the class of

regular textures.

2. Irregular Textures: The textures in which the primitives are either hard

to define or extremely small in size constitutes the class of irregular textures. The
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textures in which the primitives exhibit a lot of variations in visual properties like

size, shape, color and orientation, can also be classified as irregular textures. In

this class of textures, the irregularity is either very high in a single property or a

moderate degree of irregularity is observed in several properties.

3. Hybrid Textures: Hybrid textures have an intermediate degree of regularity

between Regular and Irregular texture classes. The primitives resemble each other

in general but exhibit some degree of variation in one of the visual properties like

placement, size, shape, color or orientation.

This work takes a structural approach to the analysis of texture regularity.

2.2 Existing Approaches for Texture Regularity Measurement

Many approaches have been proposed in the past to quantify the regularity or ran-

domness of textures.

A measure of spatial periodicity for regular textures, derived from the Gray

Level Co-occurrence Matrix (GLCM) is proposed in [1]. A faster version of this

approach that acts on a Binary Co-occurrence Matrix (BCM) is proposed in [38].

A 2D Wold decomposition of homogeneous random fields is employed in [39]

to extract the periodic, random and directional components of textures.

In [40], the spatial regularities in the pixel intensities and the placement of

the primitives along a direction, together quantify the directional regularity. The

overall regularity metric is taken as the maximum of the directional regularities.

In [41], the randomness of the observed texture is represented by a Kolmogrov

Stochasticity parameter measured between the empirical and a modeled distribution

of wavelet packet coefficients.
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(a)

(b) (c)

Figure 2.3: Limitations of pixel domain methods to predict perceived texture reg-
ularity: (a) An irregularly perceived texture - greynoise; (b) Binary Gray Level
Co-occurrence matrix (BCM) elements as a function of the horizontal displacement
for the texture in (a); (c) Expected value of the Extended Gray Level Difference
Histogram (EGLDH) along α = 0◦ as a function of displacement for the texture in
(a).

2.3 Limitations of Existing Approaches

None of the above mentioned approaches take human perception into account but

directly operate on the pixel domain [38] or on the spectral domains [42]. Some of

the approaches like [11], assume that they act on a patterned regular texture and

are thus not suitable for stochastic textures.
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The inability of sheer pixel domain approaches, like those based on GLCM

to predict the perceived regularity of textures is exemplified through a greynoise

texture shown in Fig. 2.3(a). The texture is deliberately constructed by taking a

noisy patch of size 64×64 and repeating it 6 times along X and Y directions. Due to

the local randomness in the primitive placements coupled with the high granularity of

primitives, the image is expected to be perceived as an irregular or a hybrid texture.

The values of the 4 elements of the BCM [38] exhibit significant periodicity for

displacements along both the X and Y directions. The variation of the elements along

the X-direction is shown in Fig. 2.3(b) and indicates that the texture has a periodicity

of 64 pixels along the horizontal direction. It can be shown through a similar plot

along the Y axis that the texture also exhibits a spatial periodicity of 64 along the

vertical direction. These results suggest that the greynoise texture is perceived

as a periodic regular texture, which is not true. The approach in [40] computes a

directional regularity from the periodicity in the minima of the expectation of the

EGLDH. Even though the greynoise texture has a very low perceived regularity,

the EGLDH based contrast curve [40] exhibits a significant periodicity as shown in

Fig. 2.3(c). The Pattern Regularity metric based on EGLDH has a very high score of

0.984 for the greynoise texture, suggesting a high degree of regularity. An improved

Pattern Regularity metric based on autocorrelation suggested in [43], gives a score

of 0.867 for this texture, which also indicates a high degree of regularity. But as seen

in Fig. 2.3(a), the greynoise texture does not have a significant degree of perceived

regularity. The Mean Opinion Score for this texture is 0.175 in a normalized range of

(0,1) where, 1 signifies maximal regularity. The proposed regularity metric turns out

to be 0.365 for the greynoise texture and this correlates better with the perceptual

score.
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Perceptual quality metrics for textures proposed in the past like STSIM [44],

are full reference metrics used to assess the similarity between a texture and a ref-

erence, and cannot quantify the structure in a newly observed texture without the

presence of a reference. Furthermore, they cannot assess the degree of regularity in a

texture image. A rarity-based VA model for texture description is suggested in [45].

The method classifies the regions of an image into regular and irregular textures by

considering irregular texture regions to be highly salient relative to regular texture

regions. However, this assumption does not generally hold since regular textures can

also be highly salient (Table 4.1). Further, it is also shown through performance

evaluation that the VA model suggested in [45] has very low correlation with the

ground-truth saliency maps obtained from eye-tracking.
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Chapter 3

VISUAL ATTENTION MODELS ON TEXTURES

The Human Visual System (HVS) has variant spatial resolution, with high resolution

sampling only in the center. This requires that different regions of a scene are

inspected sequentially. Our gaze locations move from region to region via a series

of fast eye movements (saccades), interspersed with periods of relatively static eye

positions (fixations) during which visual information is acquired. When viewing a

visual scene, the HVS fixates on salient points in that scene. This visual saliency also

called Visual Attention (VA), can be captured through a Visual Saliency Map (VSM)

whose values quantify the extent to which each region grabs the human attention.

The saliency map is normalized to 1 and shown as an image in which the brightest

pixels (close to 1) correspond to highest attention and the darkest pixels (close to

0) correspond to lowest attention. There are a number of earlier works like [46],

that evaluate the performance of various VA Models in predicting the true visual

saliency on natural images. These images are generally a mixture of natural scenes,

man-made objects and sometimes human faces. But images with exclusive textural

patterns have image characteristics that differ a lot from the natural images. For

example, in a highly regular texture, primitives with identical image characteristics

are uniformly distributed throughout the image. This kind of a pattern does not

typically occur solely by itself in natural images. Hence, there is an inherent need

to re-evaluate the performance of the popular VA models on textures and employ

the best VA model for computing the proposed texture regularity metric. In the

following sections, the process of constructing an eye tracking database for textures

and the performance evaluation of the VA models for textures are described in detail.
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Table 3.1: Eye-tracker set up details.

Eye Tracker Sample Rate 40 Hz
Tracking Method Binocular tracking
Angular Resolution 0.5 degrees
Display Size 15× 11.25 inches
Display Resolution 1280× 960
Position of the chin-rest from screen 33 inches
Angle subtended by screen 32 degrees
Pixels per degree 50

3.1 Eye Tracking Database

A set of 21 textures representing a wide range of regularity were chosen as the data

set. The original size of the textures varied from 256 × 256 to 800 × 600. These

textures had primitives that differed in the degrees of placement, color, orientation

and shape regularities. Also, they represented a wide range in the granularity of the

primitives. The textures were displayed for 8 seconds one after the other on a 60

Hertz LCD display. A chin rest was placed at a distance of 33 inches in front of the

display. An EyeTech TM3 eye tracker was used to track the gaze positions of the

subject looking at a displayed texture.

The center of the display, chin rest and the camera of the eye-tracker were

precisely aligned in a straight line, along the normal to the plane of the display. The

details of the eye tracker set up are enclosed in Table 3.1. A test pattern as shown in

Fig. 3.1(a) was used to validate the accuracy of the system. A subject was first asked

to focus on the small red-circle for 8 seconds and from the eye-tracking data collected

during this period, fixation points were computed and overlaid on the image as shown

in Fig. 3.1(b). This result establishes the validity of both the eye-tracking set up

as well as the software for fixation computation (explained below). In addition, as

a part of separate eye tracking experiments, the eye tracker accuracy was validated
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(a) (b) (c)

Figure 3.1: Validating the eye-tracker system and the software for computing fix-

ations: (a) Test Pattern (red-dot); (b) Fixation Overlaid (blue-cross); (c) Ground-

truth Saliency Map.

by its ability to reproduce the ground-truth eye tracking data of publicly published

databases for natural images.

During the calibration phase, the eye-tracker was set in the binocular mode

and a 16 point routine was displayed. The subject was asked to focus on each point

one after another. The eye tracker tracks the size and location of the subject’s

pupil and cornea by emanating IR light into the subject’s eyes and capturing the

relative positions of the four captured IR reflections (so called Purkinje images).

During calibration, the eye-tracker learns how to estimate the gaze position from

the reflected IR images. After calibration is performed, the computer then validates

the calibration information by determining whether the estimation of eye positions

is actually close to the known positions of the targets in the 16-point routine. If

errors were found to be less than a threshold, calibration is indicated as successful

and the subject is allowed to continue with the free-viewing testing on textures. The

selective qualification of subjects was done to ensure the alignment and the biological

correctness of both eyes before collecting the eye-tracking data. The calibration error

threshold was fixed at 2% of the screen resolution in our testing.

For each subject, the data collection lasted for about 20 mins for the 21

textures including breaks and recalibration times. The subjects were asked to take
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a break for 2 minutes after viewing every 7 textures. Each time they resumed,

they had to do a recalibration which lasted for about 2 minutes. The recorded

eye-tracking data of each subject, while free viewing each texture, was analyzed for

fixations and saccades using the Dispersion-Duration-Threshold (DDT) algorithm

[47] implemented in [48]. The dispersion threshold was fixed at 1.2 degrees and the

duration threshold fixed at 200 milliseconds as in [48]. The DDT algorithm computes

a set of fixation points for each texture and each subject, based on the eye-tracker′s

gaze points and the dispersion and duration thresholds. The fixation points of all

the subjects, when free-viewing each of the texture images, were stored for further

analysis. This constitutes the eye-tracking database.

The fixation points were stored in a 2D binary VA mask which has the same

size as that of the texture image. A 1 in the mask indicates a fixation while a

0 indicates a non-fixation point. For each considered texture i, the union of the

VA masks from various subjects gives the texture’s final ground truth VA mask,

GTMaski.

3.2 Performance Metrics

The ability of the most popular VA models to predict the VA on textures is evaluated

in terms of the performance metrics described below. These metrics were also used

for evaluation in [46] for natural images.

Receiver Operating Characteristics (ROC) and AUC:

The ROC is used for evaluating the performance of any binary classifier. A predicted

saliency map for each texture is obtained from each VA model by applying the

corresponding algorithm on the textural image. The predicted saliency map that is

generated by a model can be viewed as a binary classifier at any given threshold.

In other words, all the pixels having a saliency value higher than the threshold are

classified as fixated while those having a saliency below the threshold are classified
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as not fixated. A binarized predicted saliency map in which a 1 indicates a fixation

and 0 indicates non-fixation, is obtained at a given threshold. Using these predicted

fixations and ground-truth fixations, the true and false positive rates (TPR and FPR)

are obtained for a particular threshold level. By varying the threshold, a series of

TPR and FPR combinations can be obtained for a considered texture. Averaging the

TPR and FPR values over all textures at each VA threshold signifies the performance

of the VA model. Plotting average TPR versus average FPR generates the ROC and

the area under the ROC is the AUC metric.

The 1s in the GTMaski, correspond to the salient pixels and constitute the

positive set. The GTMaski is denoted by G ∈ {0, 1} for simplicity. The predicted

saliency map is binarized at a sweeping threshold (between 0 and 1) to generate a

predicted mask, P ∈ {0, 1}. TPR is computed from the positive sample set of true

fixations, as shown below:

TPR =
N(A)

N(G)
(3.1)

where A = P ∩G, represents the common set of saliency points in the ground truth

and predicted saliency masks and N(X) is the number of 1s in the binary mask X.

The FPR is obtained from the negative set. The negative set can be formed in 3

ways as described below.

(i) Randomized set of locations within the same image:

The negative set can be obtained by considering the visual saliency at a random set

of locations within the same image. The number of randomly selected points equals

the number of fixations. The values of the binarized predicted saliency map at these

random locations form the randomized binary saliency set, R ∈ {0, 1} . Then the

FPR is given by:

FPR =
N(R)

T (G)−N(G)
(3.2)
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where T (X) is the total number of elements in X.

(ii) Non-fixated locations on the same image:

If we consider the negative set to consist of all locations in the current image at

which there are no fixations, then the FPR is computed as follows:

FPR =
N(P )−N(A)

T (G)−N(G)
(3.3)

where A, P and G are as defined above.

(iii) Fixated locations on the other images in the database (Shuffled AUC):

Some of the models compared here have an inherent center-bias and these models

may score better when predicting fixations on a database in which most images have

visually attentive regions near the center. To eliminate center-bias, a shuffled AUC

metric was suggested by Zhang [16]. For a particular texture and a human subject,

the positive set consists of the true fixations of the subject on the texture while the

negative set consists of fixations by all subjects on all other images. A random subset,

whose cardinality equals the number of elements in the positive set, is chosen from

the negative set and the FPR is computed. Plotting TPR versus FPR generates the

ROC, the area under which is the shuffled AUC metric for the considered VA model

when acting on the considered texture and with respect to the considered subject.

Averaging the Shuffled AUC score over all subjects and all textures, gives the overall

Shuffled AUC score for the considered VA model.

Normalized Scan-path Saliency (NSS):

A normalized predicted saliency map can be obtained from a model′s predicted

saliency map by making the map zero mean and unit standard deviation. The true

fixations are obtained from the ground-truth data collected while building the eye-

tracking database. Each fixation point is assigned an NSS score, which equals the

saliency value of the point in the normalized predicted saliency map. The average of
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the NSS scores for all the fixations gives the NSS score for the considered texture.

For a single texture, NSS=1 indicates that the scan path of the subjects for that

texture fell on a region whose predicted saliency values were at least one standard

deviation above the average saliency. Averaging the NSS score over all textures gives

the NSS score for the considered VA model.

Pearson’s Linear Correlation Coefficient (PLCC):

A 2D correlation coefficient measured between a Predicted Saliency Map (PSM)

produced by a model and the Ground-truth Saliency Map (GSM) quantifies the

efficacy of a model′s accuracy in predicting human eye gaze. For a considered texture

i, the GSM was obtained from the corresponding GTMaski by convolving a 2D

Gaussian with 2D Dirac-delta functions located at each of the fixations. The width

of the 2D Gaussian was equal to the number of pixels in 1 degree of visual angle.

The 2D correlation is expressed as follows:

ρGSM,PSM =
cov (GSM,PSM)

σGSM .σPSM
(3.4)

where cov(GSM,PSM) is the covariance of GSM and PSM , and σX denotes the

standard deviation of the map X. The value of ρGSM,PSM varies from -1 to +1. The

higher the value of ρGSM,PSM , the better is the VA model.

3.3 Performance Evaluation Results

In this work, the performance of 9 VA models is compared. These models include

GBVS [13], GAFFE [49], AWS [50], AIM [51], SUN [16], FTS [52], GlobalRarity [45]

and HouNIPS [53]. Also, the ability to predict visual saliency when using simple

local contrast [54] is evaluated for reference.

Since GBVS is inherently center-biased, a 2D inverted Gaussian function is

multiplied with the activation map to remove the central bias in GBVS while
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Figure 3.2: Performance evaluation of VA models: (a) AUC with randomly chosen

locations as the negative set (AUC I); (b) AUC with non-fixated locations as the

negative set (AUC II); (c) Shuffled AUC with fixated locations on other images

as the negative set; (d) Normalized Scan path Saliency (NSS); (e) 2D Correlation

between predicted and ground-truth saliency maps.
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Figure 3.3: ROC curves for different VA models.

generating the predicted saliency map. Figs. 3.2 and 3.3 present the obtained per-

formance evaluation results.

The following can be concluded from our performance analysis:

1. Amongst all the VA models compared in this work, GBVS [13] has the highest

overall performance in terms of AUC I, AUC II, shuffled AUC, NSS and Correlation

Coefficient, as seen in Fig. 3.2 (a), (b), (c), (d) and (e), respectively. GAFFE [49] is

the second best followed by HouNIPS [53].

2. The negative NSS values seen for AWS (Fig. 3.2(c)) are due to border effects.

Borders of images have high contrast due to sharp transitions in pixel values. As

mentioned in [46], when an image filter lies partially off the edge of an image, the

filter response is not well defined. This leads to an increase in saliency at the bound-

aries and corners of the image, compared to the central regions. So, most of the

central pixels have a saliency lower than the mean saliency of the PSM. Hence, the

normalized saliency of the central pixels become negative. On removing the periph-

eral regions (15% from all sides) from both the GSM and PSM before evaluation,

both NSS and PLCC become close to zero for AWS.
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Table 3.2: P-values for the correlation between the performance metrics of GBVS
and other saliency models.

Metric GAFFE AWS AIM SUN FTS Global
Rarity

Hou-
NIPs

Contrast

AUC I 0.001 0.834 0.056 0.069 0.482 0.891 0.123 0.744

AUC II 0.000 0.492 0.509 0.430 0.807 0.892 0.004 0.593

Shuffled
AUC

0.000 0.000 0.004 0.001 0.043 0.046 0.003 0.137

NSS 0.000 0.604 0.103 0.193 0.610 0.957 0.062 0.919

PLCC 0.000 0.895 0.014 0.375 0.268 0.663 0.029 0.479

3. Our occulomotor system biases the fixations towards the center. So there are

many VA models that give a higher saliency near the center. But if our database

has images with more salient points near the image center, then the models with

center-bias would score better than the models without center-bias, irrespective of

their true capacity to detect saliency. So in order to compare VA models on fair

grounds, it is recommended to remove the central bias as stated in [46]. The shuffled

AUC score accounts for central bias and border effects. As shown in Fig. 3.2(a) and

Fig. 3.2(b), the shuffled AUC score of AWS (Fig. 3.2(b)) is higher than its corre-

sponding AUC score (Fig. 3.2(a)). However, GBVS, with center inhibition exhibits

the highest performance even when using the shuffled AUC metric.

4. The ROC curves shown in Fig. 3.3, indicates that GBVS has the highest AUC.

This further supports that GBVS is the best performing VA model on textures.

From our evaluation results, it can be concluded that GBVS predicts the fix-

ations on textures more accurately compared to other models. In order to conclude

the statistical significance of these results, a P-value analysis is performed. In sta-

tistical significance testing, the null hypothesis is that the two measured quantities

under consideration are uncorrelated. The P-value is a number between 0 and 1 rep-

resenting the probability that this data would have arisen if the null hypothesis were

true. The P-values for the correlation between the performance metrics of GBVS
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and other saliency models is shown in Table 3.2. If the P-value is greater than 0.05

between a pair of models for a considered metric, then there is statistical difference

in the performance of the considered models in predicting the true saliency, with

respect to that metric. As seen in Table 3.2, GBVS and GAFFE do not perform sta-

tistically different based on the 5 metrics. Also, except for local contrast, all models

appear statistically equivalent when compared in terms of Shuffled AUC score. But

based on the AUC I & II, NSS and PLCC metrics, GBVS is statistically different

(except for GAFFE) and better performing than all the other models. Hence, the

visual saliency map (VSM) produced by GBVS is used for computing the proposed

texture regularity metric.
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Chapter 4

PROPOSED PERCEPTUAL TEXTURE REGULARITY METRIC

The performance evaluation of the popular visual attention models on textures was

described in the previous chapter. A texture regularity metric based on the visual

saliency map generated by the most efficient visual attention model, is proposed

in this work. This chapter describes the details of the proposed texture regularity

metric. Simulation results evaluating the performance of the proposed metric to

predict the subjective regularity of textures are also enclosed in this chapter.

4.1 Proposed Texture Regularity Metric

The proposed metric makes use of the characteristics and the distribution of the

Visual Saliency Map (VSM) in order to assess the degree of perceived regularity

in texture images. The motivation for the proposed approach comes from the fact

that the VSM characteristics differ between regular, irregular and hybrid textures as

illustrated in Table 4.1. Table 4.1 shows sample regular, hybrid and irregular textures

(row 1) and their corresponding predicted VSMs (row 2). Table 4.1 also shows the

normalized histograms of the VSMs, PVA, associated with each texture image (row

3). The VSM has the same size as the input image and its value V A at each pixel

corresponds to the probability of attention at that pixel location. For example, a

VSM value V A = 0.5 indicates that 50%of the users looked at this location. Thus in

a VSM, an attention level VA ≤ 0.5, corresponds to a low attentive area. As shown

in Table 4.1 (row 3), the normalized histograms of the VSMs of the three classes of

textures differ in their shape, peakedness and the location of the peaks. This fact

can be exploited in quantifying the degree of regularity of a texture image.

A flowchart of the proposed texture regularity metric is shown in Fig. 4.1.

A VSM is generated by applying the GBVS [13] model on the given texture. A

histogram of the visual saliency values is formed from which a Textural Similarity
39



Table 4.1: Visual Saliency Analysis for regular, hybrid and irregular textures.

Regular Texture (Tile) Hybrid Texture (Tulips) Irregular Texture(Clouds)

Texture

Saliency Map obtained
from GBVS [13]

Histogram of the
Saliency Map

Score is computed. The fixation points are also determined from the VSM from which

a Spatial Distribution Score of the primitives is computed. The proposed texture

regularity metric is a combination of these two scores which together influence the

perceived regularity. The following sub-sections elucidate their computation.

4.1.1 Textural Similarity Score

In the cases of regular and hybrid textures, where the primitives are easily discernible,

the VA predicted by the VA model is largest at the center and decreases from the

center to the periphery of each texture primitive (Fig. 4.2). The high VA at the

central pixels of the primitives correspond to the tail of the histogram. Futhermore,

the neighborhood pixels of the central pixels of the primitives are relatively larger in

number and the VA at these neighborhood pixels correspond to the last peak, lpeak,
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Texture

Visual Saliency
Map Generation

Build Histogram
of Saliency Map

Determine Fixations
and Texture Spread

Compute the Similar-
ity Score of Primitives

Compute the Spa-
tial Distribution

Score of Primitives

Compute the
Overall Texture

Regularity Metric

Figure 4.1: Block diagram of the proposed texture regularity metric.

in the histogram. The histograms of the VSMs of regular textures are more peaked

near the VAlpeak value of the VSM histogram, compared to hybrid and irregular

textures. The histograms of regular textures also exhibit a faster decay beyond the

VAlpeak compared to irregular and hybrid textures (Table 4.1, third row). This is

illustrated through a regular texture (tile) in Fig. 4.2. The saliency map of the reg-

ular texture (Fig. 4.2 (a)) is shown in Fig. 4.2 (b) while the correspondence between

various texture regions and their VA values in the histogram is shown in Fig. 4.2 (c).

When the texture primitives are identical in size, shape and color, pixels of one prim-

itive would have similar VA levels as the corresponding pixels of another primitive.

This gives a high value of the histogram at VAlpeak.
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(a) A regular texture (tile)

(b) saliency map of (tile)

(c) The correspondence between different
regions of the saliency map of a regular

texture and the histogram of its Saliency
Map

Figure 4.2: An Illustration of relationship between the saliency map and the his-
togram of the saliency map for a regular texture.

The histogram of a regular texture also shows a faster decay beyond the

VAlpeak because the central primitive pixels corresponding to very high VA values

are fewer in number relative to the pixels in their neighborhood. In the case of

textures with irregularly shaped, sized or colored primitives, the VA values at the

peripheral regions of the primitives are not identical to each other. Hence, the last

peak of the histogram is relatively smaller and there is a spread of higher VA values.

This leads to a gradual decay of the histogram.

The decay rate d of the histogram contributes to the quantification of the tex-

ture regularity and is found by fitting an exponential function from V A = V AThresh

to the tail of the histogram as follows:

(a, d) = argmina,d

(
1∑

VA≥V AThresh

(
P (VA)− a.e−d.VA

)2

)
(4.1)

where
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VAThresh =

 V Alpeak, if 0.5 ≤ V Alpeak ≤ 0.65

0.6, otherwise
(4.2)

In (4.1), for computing the decay rate, we constrain the VAlpeak to be greater

than 0.5 for the region to be salient. Also in order to account for the decay in the

whole salient area in the texture, the VAlpeak is constrained to be less than 0.65.

This higher threshold is fixed at 0.65 because, as mentioned in [55], the threshold

of visual detection is often taken as the intensity of the stimulus at which 63% of

subjects noticed its presence. In case the VAlpeak falls outside the [0.5,0.65] saliency

range, the value of the VSM histogram starting at VA = 0.6 is used for computing

the decay rate.

A peakedness parameter, p, that is also used to quantify the textural similarity

is computed as follows:

p = P (V AThresh) (4.3)

where V AThresh is defined in (4.2).

Finally the texture similarity score is computed as the average of the peaked-

ness parameter and decay parameter as follows:

SSimilarity =

(
1

2

)
.

(
min(p,maxp)

maxp
+

min(d,maxd)

maxd

)
(4.4)

where maxp and maxd can be calibrated to saturate the peakedness and decay rate,

respectively, to their maximum values and to normalize the similarity score to the

range [0,1]. In our implementation, maxp = 0.16 and maxd = 12.5 were used.

4.1.2 Spatial Distribution Score

The above mentioned texture similarity score quantifies the proportion of visually

attentive pixels and the similarity between the primitives as measures of regularity.
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Table 4.2: Fixation Points and Spread Masks for regular, hybrid and irregular tex-
tures.

Regular Texture
(Tile)

Hybrid Texture
(Tulips)

Irregular
Texture(Clouds)

Texture

Saliency Map
with Predicted
Fixation Points
(crosses−
strongpeaks)
(dots−
weakpeaks)

Region of
Support for the
Texture Spread
Mask

But even when these two measures are high, regularity falls when the primitives do

not span the entire image and are not spatially distributed in a periodic or quasi-

periodic manner. A spatial distribution score is attributed to the texture for this

purpose. To compute the spatial distribution score, the local peaks in the VSM,

which act as local maxima simultaneously along both the X and Y directions, are

first located. However, some of the local peaks are insignificant in the sense that

their VA value is relatively small. We want to retain only the 2D local peaks that
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correspond to the center of the primitives and hence local peaks with very low VA

values should be discarded.

As mentioned in Section 4.1.1, for center-biased VA models such as GBVS [13],

the VA at the 2D local peaks occuring in the peripheral portions of the texture is

relatively smaller than the VA at the 2D local peaks that occur in the central parts

of the texture. In order to account for attenuated but still significant peaks in the

periphery, we qualify the 2D local peaks at which the VA is greater than a significance

threshold, V Asig, as significant peaks and these correspond to the primitive centers.

To accomodate for the sensitivity of the VA model to photometric and geometric

transformations, a higher and a lower threshold are incorporated in determining

V Asig as follows:

VASig =

 VAlow, if |PeaksVAlow | ≥ β ∗ |PeaksVAhigh|

VAhigh, otherwise
(4.5)

where |PeaksVAlow | and |PeaksVAhigh| denote, respectively, the number of 2D local

peaks at which the VSM value V A exceeds VAlow and VAhigh. VAhigh = 0.55,

VAlow = 0.45 and β = 2 were used in our implementation for selecting the visually

significant peaks. In row 2 of Table 4.2, the red pluses indicate visually significant

large peaks (fixation points) while the green dots indicate insignificant 2D local peaks.

In addition to the insignificant peaks, 2D local peaks that fall in a 8×8 neighborhood

of a significant peak are also eliminated.

A score characterizing the spread of the primitives is computed as follows.

The located visually significant VSM peaks, pi , act as high saliency fixation points.

For each such fixation point pi, the distance of its closest neighboring fixation point,
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cdisti, is determined as follows:

cdisti = min(pi − pj),where 1 ≤ i, j ≤ N and i 6= j (4.6)

where N is the total number of fixation points.

Let the closest neighbor distances of all the fixation points together constitute

the closest neighbor distance set, D, as follows:

D = {cdisti, 1 ≤ i ≤ N} (4.7)

The region of support for the texture spread mask, shown in row 3 of Table 4.2,

is obtained by convolving 2D Dirac-delta functions at the fixation points with a

rectangular filter. The 2D impulse response of the rectangular filter is approximated

by a square block of size L× L, where L is computed as follows:

L = mean(D) (4.8)

where D is the closest neighbor distance set.

The region of support of the texture spread mask gives a measure of the

spread of the texture primitives. The higher the spread, the higher is the perceived

regularity. A texture spread score is thus computed as follows:

STextureSpread =
Spread Mask Area

κ.Total Image Area
(4.9)

where

Spread Mask Area =
⋃

1≤i≤N

r(m− xi, n− yi) (4.10)

In (4.10), (xi, yi) is the location of the peak pi and r(m.n) is given by:
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r(m.n) =

 1, if − (L− 1)/2 ≤ m,n ≤ (L− 1)/2

0, otherwise
(4.11)

where L is the width of the convolved rectangular filter.

In (4.9), the term κ is introduced due to the inherent center-bias of the GBVS

model [13] which leads to a reduced region of support for the computed spread mask.

As it can be noticed in row 2 of Table 4.2, the predicted saliency has low values in the

periphery of the textural image. Assuming a peripheral region of 15% of the image

dimension on all 4 sides where the visual saliency of GBVS becomes relatively low,

the central region is a rectangle whose dimensions are 70% of the height and width

of the original texture. In other words the VA model can only account for 49% of the

original texture’s area and hence the value κ = 0.5 was used in our implementation.

In addition to the textural spread, a score characterizing the placement regu-

larity of the primitives is computed as follows. The standard deviation of the closest

neighbor distance set, std(D), is higher for textures with irregularly placed primi-

tives and lower for regularly placed primitives. Therefore, std(D) gives a measure

of placement irregularity. However, among textures exhibiting the same std(D), the

perceived irregularity tends to be smaller for textures with large primitives compared

to textures with small primitives. In order to better account for the perceived irregu-

larity, std(D) is normalized by the primitive size. The primitive size is approximated

as the mean of the closest neighbor distance set, mean(D). The placement regularity

score is computed as follows:

SPlacementRegularity = 1− PlacementIrreg

MaxP lacementIrreg
, (4.12)

where

PlacementIrreg =
std(D)

mean(D)
, (4.13)
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and MaxPlacementIrreg is a constant that is used to saturate PlacementRegu-

larity to a maximum value and to normalize the placement regularity score to the

range [0,1]. In our implementation, MaxPlacementIrreg is set to 100.

When the number of fixations (N) is very small (N < NTh), std(D) is not

a dependable measure of placement irregularity. This typically happens in two sce-

narios, namely, (i) when there are a few large sized primitives in a regular texture in

which case the textural spread score is high and (ii) when there are a large number of

small random primitives in an irregular texture. In the latter case, the fixations are

mostly in the center, closer to each other and smaller in number, resulting in a very

small texture spread score. Consequently, in these cases, the PlacementRegularity

score can be estimated using solely the TextureSpread score. The TextureSpread is

highest for regular textures having primitives distributed throughout the texture and

lowest for irregular textures exhibiting very small number of fixations. Therefore,

when the number of fixations is very small, the placement regularity score can be

computed by quantizing the STextureSpread score into 3 levels (low, medium, high) as

follows:

SPlacementRegularity = ∆.

⌊
|STextureSpread|

∆
+

1

2

⌋
(4.14)

where ∆ = 1/3 is the quantization step size.

When the STextureSpread is quantized as shown in equation (4.14) with ∆ = 1/3,

the [0,1] range of the texture spread score is divided into three equal non-overlapping

bins and a score corresponding to the bin center is approximated as the placement

regularity score.

The spatial distribution score is then computed as follows:

SSpatialDistribution = STextureSpread.SPlacementRegularity (4.15)
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The overall texture regularity measure is obtained as follows:

SRegularity = Sα1
Similarity.S

α2
SpatialDistribution (4.16)

In (4.16), the values α1 = 1 and α2 = 0.50, were empirically found to be the best set

of parameters for obtaining a high degree of correlation with the subjective regularity

scores.

4.2 Simualtion Results

Subjective testing was conducted on 21 textures shown in Table. 4.3. These textures

were obtained from two databases, namely, the MIT Vistex database [56] and the

Graph-Cut texture synthesis database [57]. The textures were chosen such that they

distinctly represented one or more of the primitive irregularities as mentioned in

Fig. 1.1. Also, to understand the difference in the perceived regularity between fine

granular and large sized primitives, textures from both these classes were chosen in

the test set. Ten subjects with normal to corrected-normal vision participated in

the subjective tests. The textures, equally distributed amongst the broad classes of

regular, irregular and hybrid textures, were randomly displayed one after another

to each subject. The subjects were asked to score the overall regularity for each

observed texture using a three-scale score with 1 corresponding to lowest and 3 to

highest. In addition to observing the overall texture regularity, subjects were asked to

observe and score using a three-scale score (1 being the lowest and 3 the highest) five

visual properties of the texture primitives, namely (i) ease in locating the primitive,

(ii) regularity in the placement of the primitives, (iii) regularity in size, shape and

color of the primitives, (iv) regularity in the direction of the primitives, and (v)

average size of the primitives. The subjects also gave a final overall regularity score

for each displayed texture image.
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Table 4.3: Textures used for evaluating the performance of the proposed metric.

Regular Textures Hybrid Textures Irregular Textures
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Table 4.4: Mean Opinion Score (MOS) and the proposed metric for textures. The
textures are listed in the order of decreasing perceived regularity according to the
MOS Overall Regularity.

Input MOS
Overall
Regularity

MOS Avg
Property

Pattern
Regularity
Metric [43]

Proposed
Texture
Regularity
Metric

marbles 3.00 2.81 0.80 0.74
tile 3.00 2.83 0.76 0.67
gecko 2.88 2.68 0.56 0.42
blocks 2.88 2.43 0.68 0.22
keyboard 2.81 2.79 0.23 0.44
fabric 2.81 2.71 0.12 0.44
horses 2.69 2.64 0.30 0.31
puzzlepieces 2.69 2.53 0.10 0.30
bricks 2.63 2.43 0.25 0.26
red-peppers 2.31 2.18 0.22 0.37
tomatoes 2.13 1.85 0.20 0.30
tulips 2.00 2.01 0.08 0.29
fresh-
blueberries

2.00 1.93 0.0 0.23

lobelia 2.00 1.78 0.07 0.21
flowers 1.94 1.75 0.12 0.18
rice 1.88 1.71 0.08 0.19
northbeach 1.31 1.28 0.10 0.07
misc 1.31 1.18 0.04 0.13
water 1.25 1.16 0.02 0.05
long island 1.19 1.33 0.0 0.03
clouds 1.13 1.38 0.04 0.06

The primitives in a regular texture are very easy to find compared to those in

an irregular texture. Also, small sized primitives are perceived as less regular than

larger ones [1]. An average of the five property scores gives the Average Property

score for each subject. The Overall Regularity and the Average Property scores were

separately averaged over all 10 subjects to generate the respective Mean Opinion

Scores (MOS Property Regularity and MOS Overall Regularity) as shown in Ta-

ble 4.4. The textures in Table 4.4 are listed in the order of decreasing perceived

regularity according to the MOS Overall Regularity. The proposed texture regular-
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ity metric is shown in the last column of Table 4.4. For comparison, Table 4.4 also

shows the Pattern Regularity Metric of [43]. To account for extreme values at the

ends of the testing range (very high and very low regularity), each metric value Mi

is transformed into a predicted MOS (MOSpi) value using a four-parameter logistic

function [58]:

MOSpi =
β1 − β2

1 + e

(
Mi−

β3
|β4|

) + β2 (4.17)

For calibrating the texture regularity metric, the maximal values maxp, maxd

and MaxPlacementIrreg were computed from the maximal peakedness, decay and

placement irregularities, respectively, over all the 21 textures. This results in the

texture regularity metric given in Table 4.4. However, the other way to calibrate the

proposed metric is based on the peakedness, decay and placement irregularities of

the perceptually most regular texture in the database.

The performance of the proposed Texture Regularity Metric to quantify the

perceived regularity is shown through the Pearson Linear Correlation Coefficient

(PLCC) and the Spearman Rank Order Correlation Coefficient (SROCC) between

MOSp and MOS. As shown in Table 4.5, for the original set of 21 textures, the

proposed Texture Regularity Metric results in a PLCC of 91.4% and SROCC of

90.1% for the Overall Regularity MOS, while the Pattern Regularity metric [43] gives

a PLCC and SROCC of 83.5% and 86.6%, respectively. When correlating with the

Average Property MOS, the proposed metric has PLCC and SROCC values of 91.7%

and 93.3%, respectively, as shown in Table 4.6. These values were again significantly

higher than the corresponding values of the Pattern Regularity metric [43]. Tables

4.5 and 4.6 also show the Root Mean Square Error (RMSE), the Mean Absolute

Error (MAE) and the P-values for PLCC and SROCC while correlating the proposed

and the compared Pattern Regularity [43] metrics with the MOS. The P-value is the

probability of getting a correlation as large as the observed value by random chance,
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Table 4.5: Correlation with Overall Regularity MOS.

Texture Regularity PLCC SROCC RMSE MAE PPLCC PSROCC
Pattern Regularity
Metric [43]

83.46 86.59 0.35 0.26 0.000026 0.000000

Proposed Regularity
Metric

91.41 90.10 0.27 0.19 0.000000 0.000000

Proposed Regular-
ity Metric (without
outliers)

97.04 97.83 0.16 0.12 0.000000 0.000000

while the variables are unrelated. If the P-value is less than 0.05 then the correlation

is significant. The P-values reported in Tables 4.6 and 4.6 indicate that all the

correlation scores are statistically significant.

Table 4.6: Correlation with Average Regularity Property MOS.

Texture Regularity PLCC SROCC RMSE MAE PPLCC PSROCC
Pattern Regularity
Metric [43]

79.50 78.93 0.35 0.28 0.000016 0.000021

Proposed Regularity
Metric

91.65 93.28 0.23 0.17 0.000000 0.000000

Proposed Regular-
ity Metric (without
outliers)

95.99 95.87 0.17 0.11 0.000000 0.000000

As it can be seen from Table 4.4, bricks, blocks and red−peppers are outliers.

These textures along with their saliency maps produced by the GBVS model [13] are

shown in Table 4.7. The metric failed to accurately predict the perceived regularity

on bricks and blocks due to the presence of artifacts leading to a non-uniform visual

saliency map produced the VA model (GBVS [13]) these textures. As shown in

Table 4.7, the presence of visual irregularities in the chroma components of these

textures results in a high VA at these artifacts. This leads to a reduction of visual

attention at the primitive locations and few VA peaks in the normalized VSM. Hence

the corresponding spatial distribution score is very low and this results in a very low

predicted overall regularity, while the subjective perceived regularity is higher for
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Table 4.7: Visual Saliency Maps of outlier textures, produced by GBVS [13]. Fixation
points are shown as crosses.

Texture Name Texture Predicted Saliency Map with Fixations

blocks

bricks

red− peppers

these textures (Table 4.4). In the case of red−peppers, the high similarity in the tonal

properties between the primitives results in a VSM in which the VA corresponding to

the primitive regions are similar to each other. This results in a high similarity score

and hence a high value for the proposed texture regularity metric. But the MOS

scores were medium for this case due to irregularities in shape of the primitives. As

shown in the last row of Tables 4.5, when eliminating these outliers, the PLCC

and SROCC of the proposed metric with the Overall Regularity MOS increases to

97.0% and 98.0%, respectively, for the remaining textures. Similarly, the PLCC

and SROCC of the proposed metric with the Average Regularity Property MOS

increases to 96.0% and 96.1%, respectively, as shown in the last row of Table 4.6.
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The Pattern Regularity Metric for this set of 18 textures without bricks, blocks

and red − peppers has a PLCC of 82.1% and a SROCC of 83.5% with the Overall

Regularity MOS, while it has a PLCC of 79.9% and a SROCC of 76.9% with the

Average Regularity Property MOS.

4.3 Robustness to Geometric and Photometric Transformations

The robustness of the proposed texture regularity metric to geometric and photomet-

ric transformations was tested by applying a set of affine and color transformations.

A 2D affine transformation matrix can be expressed as a decomposition of transla-

tion, rotation and scaling matrices as follows:

T =


1 0 dx

0 1 dy

0 0 1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



sx 0 0

0 sy 0

0 0 1



Two sets of affine transformations, as shown in Fig. 4.3(b) and Fig. 4.3(c),

were obtained respectively using the following parameter sets 1 and 2:

Affine Parameter Set 1: sx = 0.9; sy = 1.1; θ = 5◦; dx = 1; dy = −1

Affine Parameter Set 2: sx = 1.05; sy = .95; θ = −5◦; dx = 0; dy = 2

Three sets of color transformations were applied by modifying the hue, satu-

ration or contrast of the 21 textures. The hue transformed textures were obtained by

transforming the colors to the CIE Lab color space and rotating the color space by

15◦. The saturated textures were obtained by increasing the color components in the

CIE Lab color space by a factor of 2. Finally, contrast transformation was obtained

by stretching the V component in the HSV color space. The values within the upper

0.5% and lower 0.5% of the V histogram were saturated to the extremal points of
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(a)
(b) (c)

Figure 4.3: Examples of affine transformations: (a) Original texture; (b)Affine trans-
form 1; (c) Affine transform 2.

(a) (b) (c) (d)

Figure 4.4: Examples of color transformations: (a) Original texture; (b) Hue trans-
form; (c) Saturation transform; (d) Contrast transform.

the range and the remaining values were stretched between them. Examples of hue,

saturation and contrast transformations along with the input texture are shown in

Fig. 4.4.

A subjective testing was conducted on the 5 transformed (2 affine and 3

color transformations) images of the same set of 21 textures, described above. Ten

subjects with normal to corrected vision participated in the tests and gave an overall

regularity score for each of the transformed textures. The proposed texture regularity

metric was also computed on these transformed textures. Each metric value was also

mapped into a predicted MOS using the 4-parameter logistic function as shown in

equation (4.17). The robustness of the proposed metric to geometric and photometric

transformations is compared with that of the Pattern Regularity metric [43] as shown

in Table 4.8. Results for the original textures are shown in the first row of Table 4.8.
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Table 4.8: Comparison of the performance of the proposed Texture Regularity Met-
ric (TRM) with Pattern Regularity Metric (PRM) on textures with geometric and
photometric transformations.

Transform Method PLCC SROCC RMSE MAE PPLCC PSROCC

Original
TRM 91.41 90.10 0.27 0.19 0.000000 0.000000
PRM [43] 83.46 86.59 0.35 0.26 0.000026 0.000000

Affine1
TRM 85.11 85.84 0.38 0.29 0.000001 0.000001
PRM [43] 79.27 75.00 0.44 0.33 0.000018 0.000090

Affine2
TRM 88.19 79.06 0.33 0.27 0.000000 0.000020
PRM [43] 66.84 59.84 0.51 0.38 0.000926 0.004163

Hue
TRM 78.26 78.83 0.44 0.32 0.000028 0.000022
PRM [43] 82.90 82.79 0.39 0.28 0.000003 0.000004

Saturation
TRM 80.42 78.54 0.41 0.30 0.000010 0.000025
PRM [43] 54.98 34.48 0.58 0.44 0.009821 0.125836

Contrast
TRM 86.71 83.99 0.35 0.28 0.000000 0.000002
PRM [43] 79.60 74.06 0.42 0.33 0.000016 0.000123

Results for the affine transformed textures are shown in rows 2 and 3, while those

for the hue, saturation and contrast transformed textures are shown, respectively,

in rows 4, 5 and 6 of Table 4.8. In each row, the performance of the proposed

regularity metric is presented in the first line while that of the compared pattern

regularity metric [43] is given in the second line. As it can be seen in Table 4.8, the

proposed metric is more robust to affine and contrast transformations than to hue and

saturation transforms. Due to each of these transformations, the VSM produced by

GBVS model changes and this leads to a change in the proposed metric. The change

in VSM characteristics is higher for hue and saturation transformations, compared

to the affine and contrast transformations. However, the proposed regularity metric

scores better than the pattern regularity metric [43] under all transformations except

the hue transformation.

The execution time of the proposed texture regularity metric will depend on

the processor speed, coding language and efficiency of implementation. The algo-

rithm, including the computation of visual saliency, takes about 2.5 seconds per
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texture using Matlab R2012b on an Intel Core I5 CPU running at 2.6 GHz with 4

GB of RAM. Since our goal in this work is to achieve a high correlation between

the proposed regularity metric and the subjective regularity (MOS), algorithmic op-

timizations for speed of execution is beyond the scope of this work.
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Chapter 5

ADAPTIVE TEXTURE SYNTHESIS BASED ON

TEXTURE REGULARITY

This chapter presents the influence of texture regularity on the perceptual quality

of textures synthesized through parametric and non-parametric approaches. It is

shown through subjective testing that textures with different degrees of perceived

regularity exhibit different degrees of vulnerability to synthesis artifacts. The work

also proposes an algorithm for adaptively selecting the appropriate texture synthesis

algorithm based on the no-reference texture regularity metric proposed in Chapter 4.

The contrast sensitivity function of the Human Visual System (HVS) indicates

that the HVS is less sensitive to visual artifacts in high frequency components. Many

perceptually motivated video codecs like [3] and [4], exploit this fact to achieve higher

compression ratios. Textures, because of their high spatial frequencies, are very good

candidates for lowering the bit-rate at the cost of introducing imperceptible artifacts.

Typically, the texture-based video codecs attempt to save on bit-rate by synthesizing

the texture regions at the decoder such that the synthesized regions perceptually

resemble the original texture. This is achieved by sending a sample texture patch or

synthesis parameters which represent the original texture. The general framework

for image and video codecs based on texture synthesis is shown in Fig. 5.1. The

input image or a frame of video is first segmented into texture and non-texture

regions. The texture regions are further analyzed to extract the data needed for

texture synthesis. This data may be constraint parameters in parametric texture

synthesis approaches like [7] or it could be seed-pixel regions in exemplar-based

synthesis approaches like [59]. The quality assessment unit uses the synthesized and

the original texture to estimate the fidelity of the synthesized texture. The texture

synthesis process is repeated in an iterative manner until a prescribed quality is met.
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The final synthesis parameters and/or the seed pixels of the texture regions of the

frame are compressed and sent over the network. The standard video codecs like

H.264 are used for the compression of non-texture regions.

The various parametric approaches like [7] and [60] and non-parametric ap-

proaches like [59] and [61] differ in their speed, perceptual quality and the amount

of side information needed for synthesizing textures. In this work, we propose that

the perceived loss in fidelity when employing a considered synthesis method is not

the same for all types of textures but depends on the regularity of the original tex-

ture. In other words, for synthesizing a texture of a given regularity, one method

may have a perceptually better performance compared to another. As mentioned

in [59] and [62], parametric methods are believed to be more suited for stochastic

textures and exemplar-based methods like [59] are appropriate for structured tex-

tures. However, it is shown in this paper through examples that even some of the

highly structured textures can be synthesized with high fidelity using parametric

methods provided that they exhibit a significantly high regularity. This regular-

ity of the original texture is quantified through the no-reference perceptual texture

regularity metric proposed in Chapter 4.

5.1 Existing Approaches for Texture Synthesis

Textures in video sequences may be classified into static and dynamic textures. Static

textures are those textures whose appearance does not change from frame to frame.

That is, they show a repetition only in space. Dynamic textures are regions of a

video sequence that exhibit a repetition in both space and time. We restrict our

analysis to only 2D static textures in this work.

2D Texture synthesis methods can be broadly classified into parametric ap-

proaches and non-parametric based approaches. In parametric based approaches,

the texture is characterized and described through a set of perceptually motivated
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Figure 5.1: The general framework for video codecs based on texture synthesis.

parameters. These methods begin with a uniform random texture and apply the

parameters/constraints in an iterative manner to match the appearance of the orig-

inal texture. In one of the earliest works by Heeger [60], the histograms of the

wavelet coefficients of different bands of the steerable pyramid of the original texture

are used as parameters. Portilla et al. [7] proposed a more refined model based on

matching wavelet coefficients of multi-scale oriented filter responses. The parame-

ters in [7] include the first-order and second-order statistics of the filter coefficients

of the neighboring orientation and scale. Being parametric, these methods describe

any texture via a few parameters and thus achieve a very compact representation of
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textures. This is very useful for attaining high compression efficiency in scenarios

like low bit-rate video transmission or compact storage applications.

Non-parametric approaches can be further classified into pixel-based and

patch-based approaches. Pixel-based approaches synthesize one pixel at a time while

patch-based approaches synthesizes an output patch or a group of neighboring pixels

at a time. A region of the original texture called the seed or the exemplar is used for

both these approaches. The pixel-based synthesis proposed by Effros et al. [61] works

as follows. Given an input exemplar, the output is first initialized by copying a small

seed region from the input. The synthesized region is then gradually grown from

the initial seed by assigning the output pixels one by one in an inside-out fashion.

Each output pixel is determined by a neighborhood search process. To synthesize an

output pixel at a particular location, the method considers a neighborhood of user-

determined size (3x3 for this toy example) around it and collects the set of already

synthesized pixels in that neighborhood. The method then finds the candidate set

of good matches from the input with respect to this partial neighborhood composed

of these already synthesized pixels, and assigns the output pixel as the center of a

randomly selected neighborhood from the candidate set. This process is repeated for

every output pixel by growing from the initial region until all the output pixels are

assigned. This synthesis method is very slow and also may not give good synthe-

sis quality for arbitrary sized texture primitives using a fixed neighborhood size for

finding the candidate regions. In the method proposed by Wei and Levoy [63], both

the synthesized texture and the seed texture are represented as image pyramids and

reconstruction is done through neighborhood matching at each level. Also, the pixels

are synthesized in a raster-scan order instead of inside out. For every output pixel,

the causal neighborhood is matched with the input at the corresponding level of the

pyramid. The pixel at the center of the matched neighborhood is assigned as the

62



output pixel at the considered location. The coarser levels are reconstructed first fol-

lowed by the finer levels. Even with a fixed neighborhood size at each level, a larger

range of textural primitives could be accommodated through this multi-resolution

approach. The method further accelerates the best neighborhood search through a

tree-structured vector quantization and hence increases the speed of synthesis.

Whenever output texture pixels are synthesized based on neighborhood match-

ing as in the above mentioned approaches, it is very likely that adjacent pixels in

the input exemplar end up as adjacent pixels in the output. So instead of search-

ing through the entire input exemplar for every output pixel, only a smaller set of

candidate locations are considered in the K-coherence based approach [64]. The

K-coherence algorithm is divided into two phases: analysis and synthesis. During

analysis, the algorithm builds a similarity set for each input texel (texture element),

where the similarity set contains a list of other texels with similar neighborhoods to

the specific input texel. During synthesis, the algorithm copies pixel from the input

to the output, but in addition to colors, the source pixel location is also copied. To

synthesize a particular output pixel, the algorithm builds a candidate set by taking

the union of all similarity sets of the neighborhood texels for each output texel, and

then searches through this candidate set to find out the best match. The size of the

similarity set, K, is a user-controllable parameter (typically in the range 2 to 11)

that trades off the overall speed for the quality of synthesis.

The quality and speed of pixel-based approaches can be improved by synthe-

sizing patches rather than pixels. The quality of synthesis is better as the contiguous

pixels belonging to a particular patch in the input texture are more likely to be

contiguous in the output texture. However, in patch-based algorithms, the issue is

more complicated as a patch, being larger than a pixel, usually overlaps with the

already synthesized portions, so some decision has to be made about how to handle
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the conflicting regions. In [65], new patches simply overwrite over existing regions.

By using patches with irregular shapes, this approach took advantage of the texture

masking effects of the human visual system and works surprisingly well for stochas-

tic textures. Blending the overlapped regions in patch-based texture synthesis can

cause blurry artifacts in some situations. Instead of blending, the work by [59] finds

an optimal boundary between adjacent patches in the overlapped regions via graph

cut. The graph-cut synthesis first places an exemplar patch in a random location in

the synthesized texture grid. It then places successive exemplar patches that overlap

with the prior synthesized patches. After each placement, the boundaries of the ad-

jacent patches are then trimmed through a graph-cut algorithm in the overlapping

regions. There are two ways in which the exemplar can be placed, namely (i) random

placement (P1) and (ii) entire patch matching (P2). The placement algorithm P1,

places the exemplar at a random position, while algorithm P2 always places the ex-

emplar at a position such that the sum of the squared difference between the pixels in

the overlapping region is minimized. The algorithm P1 is faster while the algorithm

P2 promises to have a better synthesis quality as the misalignment artifacts will be

minimized.

There is a trade-off between the speed of texture synthesis, the fidelity of

texture synthesis and the compression ratio using different texture synthesis meth-

ods. As mentioned above, there are two variations of the graph-cut texture synthesis

approach [59], one that aims at faster synthesis while the other aims at higher syn-

thesis quality. Also, the parametric approaches often achieve very low bit-rates for

the same perceived quality on certain types of textures. Texture regularity can be

useful in employing the right method for texture synthesis. In the following sections,

a novel method for performing adaptive texture synthesis is proposed.
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5.2 Proposed Adaptive Texture Synthesis based on Texture Regularity

Textures are basically patterns of pixel intensities. The pattern that is spatially

repeated throughout the texture in some regular or irregular manner is called a

primitive. The regularity of textures can be quantified through properties like size,

shape, color and orientation of the primitives [1]. The overall perceptual regularity

of textures is due to the accumulated effect of all these factors. Based on these visual

properties of the primitives along with their placement regularity, textures can be

classified into regular, irregular or hybrid textures as discussed in Chapter 4. The

various texture synthesis methods produce different types of visual artifacts that lead

to a loss in fidelity of the synthesized texture compared to the original. It is shown

as part of this work that the regularity class of a texture has a direct impact on the

perceptual loss in fidelity of the synthesized texture and this loss in fidelity varies

from one synthesis method to another.

Effect of regularity on texture synthesis:

We propose that the perceived loss in fidelity using a considered synthesis method

is not the same for all types of textures but depends on the regularity of the original

texture. This is illustrated through some examples in Table 5.4 which contains the

original textures and the synthesized textures. The original textures are shown in

column 1 of Table 5.4. The textures synthesized by two variations of graph-cut

synthesis (P1 and P2) [59], are shown in columns 2 and 3. The Luma component

of the texture synthesized by the parametric approach suggested in [7] is shown in

column 4.

As discussed in Chapter 4, a subjective testing was conducted on 18 textures

from two databases, namely, the MIT Vistex database [56] and the Graph-Cut tex-
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ture synthesis database [57] in order to determine the perceived regularity of these

textures. Ten subjects with normal to corrected vision participated in the subjective

tests. The textures, equally distributed amongst the broad classes of regular, irreg-

ular or hybrid textures, were randomly displayed one after another to each subject.

The subjects were asked to score the regularity for each observed texture using a

three-scale score with 1 corresponding to lowest and 3 to highest. The regularity

scores were averaged for each texture image over all 10 subjects to generate the

Regularity Mean Opinion Scores (R-MOS) for the considered texture.

In another experiment, a subjective testing was conducted to analyze the

synthesis quality of the same 18 textures from the texture databases mentioned

above. Fifteen subjects with normal to corrected vision participated in the subjective

tests. For the synthesis, seed texture regions were hand-picked from each of these

textures and given as input to Kwatra’s patch-based texture synthesis algorithm

[59]. As mentioned before, corresponding to the two versions of the algorithm (P1

and P2) in [59], two sets of textures were synthesized. The tile size was just large

enough to capture the periodicity along the X and Y directions. The synthesized

texture dimension was set as 6 times the size of the original seed. A third set of

textures was synthesized from the original textures using the Portilla’s method [7].

In the implementation of [7] obtained from [66], N=4 multi-resolution levels, K=4

orientations and 75 iterations were used. A 128 × 128 region was used for analysis

and a set of 710 parameters as mentioned in [7] was used for synthesis of textures

that were of 192 × 192 in dimension. For each considered synthesis method, the

synthesized textures along with the corresponding original textures were displayed

side-by-side in a subjective testing experiment. To avoid scaling differences, only the

top-left portions of the synthesized images having the same dimension as the original

textures were displayed. The temporal order of the image pairs were randomized
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Table 5.1: Mean Opinion Scores (MOS) for original and synthesized regular textures.

Texture Regularity
MOS
Original

Q-MOS
Kwarta
P1 [59]

Q-MOS
Kwarta
P2 [59]

Q-MOS
Portilla [7]

Marbles 3.00 1.4 1.7 3.2

Tile 3.00 1.5 2.4 4.4

Gecko 2.88 1.8 1.3 1.4

Cream 2.88 3.5 4.2 4.2

Keyboard 2.81 1.9 2.0 1.6

Maille 2.81 2.5 3.2 2.86

Average 2.60 2.80 2.95

and displayed one after another to each subject. The reference texture was always

displayed on the left and the synthesized texture on the right. The subjects were

asked to score the overall fidelity for each synthesized texture by comparing it to

the original, using a five-scale score with 1 corresponding to lowest and 5 to highest.

An average of the fidelity scores over all 10 subjects for a considered texture gives

the Mean Opinion fidelity Score (Q-MOS) for a considered method. The Regularity

MOS (R-MOS) is available from the texture regularity subjective experiments and

is shown in the second column of Tables 5.1 to 5.3.The synthesis Quality MOS (Q-

MOS) for the regular textures using Kwatra’s P1, P2 and Portilla’s methods are

given in columns 3, 4 and 5 of Table 5.1 respectively. Similarly the R-MOS and the

synthesis Q-MOS for the hybrid and irregular textures are shown in Tables 5.2 and

5.3, respectively. The Average Q-MOS for the different synthesis methods are shown

in the last row of Tables 5.1, 5.2 and 5.3.

As it can be seen from Table 5.1, for highly regular textures, Portilla’s method

has the average best performance. The parametric synthesis performs the best when

modeling and synthesizing highly regular textures as the autocorrelation constraints

in the wavelet coefficients can be well established. The Kwatra’s patch matching

methods P1 and P2 exhibit misalignment at the patch boundaries and a partial loss
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Table 5.2: Mean Opinion Scores (MOS) for original and synthesized hybrid textures.

Texture Regularity
MOS
Original

Q-MOS
Kwarta
P1 [59]

Q-MOS
Kwarta
P2 [59]

Q-MOS
Portilla [7]

Horses 2.69 3.46 3.57 1.25

Puzzle-pieces 2.69 3.57 3.93 2.00

Red-peppers 2.31 3.75 3.79 2.57

Tomatoes 2.13 3.61 2.93 1.96

Tulips 2.00 3.75 3.18 1.14

Average 3.63 3.48 1.79

Table 5.3: Mean Opinion Scores (MOS) for original and synthesized irregular tex-
tures.

Texture Regularity
MOS
Original

Q-MOS
Kwarta
P1 [59]

Q-MOS
Kwarta
P2 [59]

Q-MOS
Portilla [7]

Flowers 1.94 3.32 2.25 2.43

Rice 1.88 2.68 2.82 1.04

Misc 1.31 3.07 3.32 3.80

Water 1.25 2.25 2.82 3.75

LongIsland 1.19 1.00 1.18 1.64

Clouds 1.13 1.50 1.36 1.46

Average 2.30 2.29 2.35

in spatial periodicity for regular textures. In the case of hybrid textures, the perfor-

mance of Portilla’s method is poor compared to Kwatra’s methods as illustrated in

Table 5.2. The parametric synthesis [7] has a poor performance when the primitives

have differing orientations or intensities. Also, there is a higher loss in fidelity when

the primitives resemble closed blobs or flat polygons with just linear boundaries [7].

These limitations are more pronounced for hybrid textures than for regular or irreg-

ular textures. As shown in Table 5.3, all the 3 methods have a similar performance

when synthesizing irregular textures. The better local structure produced by the

Kwatra’s methods is partially offset by the tiling artifacts caused due to pseudo-

periodic repetition of primitives, which was absent in the original textures. Between

the two variations of Kwatra’s graph-cut synthesis, the method P1 is based on ran-
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dom patch placement and is much faster than P2. The synthesis performance of P1

is however not affected for hybrid or random textures in which there is an inherent

randomness already present. However for regular textures, its performance is not as

good as P2.

Adaptive Texture Synthesis Algorithm:

The block diagram of the proposed adaptive texture selection algorithm is given

in Fig. 5.2. The input image is first analyzed and segmented into texture and non-

texture regions. The non-texture regions are compressed using codecs like JPEG2000

or H.264. The texture regions are further segmented into homogeneous texture sub-

regions. The no-reference texture regularity metric, R, described in Chapter 4, is

computed for each texture sub-region. Each texture sub-region is synthesized using

one of the three aforementioned algorithms, based on the texture regularity metric

for that sub-region. When R ≤ Th1 , the texture is considered an irregular texture

and the synthesis quality of all the 3 methods are similar. In this case Portilla’s

method [7] is used for synthesis as it involves synthesis parameters that occupy fewer

bits compared to the exemplar patches in Kwatra’s methods. When Th1 ≤ R ≤ Th2

then the texture is considered a hybrid texture and is synthesized using Kwatra’s P1

method. Finally, for highly regular textures R ≥ Th2 and in this case, the primitive

region is approximated by a square of size L× L pixels, as mentioned in Chapter 4.

For regular textures with large primitives (L ≥ Th3), Kwatra’s P2 algorithm is used.

For regular textures with small-sized primitives (L ≤ Th3), Portilla’s synthesis [7] is

employed. The thresholds Th1 = 0.3, Th2 = 0.5 and Th3 = 128 and were used in

our implementation.

5.3 Simulation Results

The efficacy of the proposed algorithm to select the right synthesis algorithm for a

texture under consideration is illustrated through Table 5.4. The original textures
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Figure 5.2: Block diagram of the proposed adaptive texture synthesis algorithm. The
regularity thresholds Th1 and Th2 are used for classifying the textures as irregular
or hybrid.
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along with the proposed texture regularity metric are shown in column 1 of Table 5.4.

The synthesized textures using Kwatra’s P1 and P2 algorithms and those synthesized

using Portilla’s method are given in columns 2, 3 and 4. The fidelty MOS (Q-MOS)

for each of the synthesized textures is also shown. The results for regular, hybrid

and irregular textures are shown in rows 1, 2 and 3, respectively. Portilla’s method

outperforms Kwatra’s methods for the regular and the irregular textures. But for

hybrid textures, the patch-based method in [59], gives better results. This is in

accordance with our proposed algorithm. Also, as observed in Table 5.3, the synthesis

quality of irregular textures is almost independent of the synthesis method.
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Table 5.4: Original and Synthesized Textures with regularity metric (Reg) and Qual-
ity Mean Opinion Scores (Q-MOS).

Original Texture GraphCut Synthesis P1 GraphCut Synthesis P2 Parametric Synthesis

Reg = 0.71 Q-MOS = 2.14 Q-MOS = 2.27 Q-MOS = 3.41

Reg = 0.67 Q-MOS = 1.77 Q-MOS = 2.41 Q-MOS = 4.55

Reg = 0.33 Q-MOS = 3.91 Q-MOS = 3.91 Q-MOS = 2.64

Reg = 0.19 Q-MOS = 4.45 Q-MOS = 4.41 Q-MOS = 1.45

Reg = 0.13 Q-MOS = 3.27 Q-MOS = 3.23 Q-MOS = 3.64

Reg = 0.05 Q-MOS = 2.27 Q-MOS = 2.64 Q-MOS = 3.86
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Chapter 6

A REDUCED REFERENCE PERCEPTUAL QUALITY METRIC FOR

TEXTURE SYNTHESIS

In this chapter, a reduced-reference quality metric that quantifies the perceived qual-

ity of the synthesized textures is presented. The metric is based on the change in

perceived regularity and change in perceived granularity between the original and

the synthesized textures. The perceived regularity is quantified through a texture

regularity metric based on visual attention. It is shown through subjective testing

that the proposed metric has a strong correlation with the Mean Opinion Score for

the fidelity of synthesized textures and outperforms the state-of-the-art full-reference

quality metrics.

6.1 Existing Reduced Reference and Texture Quality Metrics

Image quality metrics can be broadly divided into 3 classes, namely, full-reference,

no-reference and reduced reference metrics. In the case of full-reference metrics,

both the distorted and the reference image are completely available. No-reference

metrics compute a quality score using only the distorted image assuming a particular

type of distortion like blurring, ringing or blocking. Reduced reference (RR) metrics

compute the quality of the distorted image from features of the reference image.

We address the problem of measuring texture synthesis quality in this work.

Even when the original reference texture is available, the process of evaluating the

quality of texture synthesis is ill-posed for two reasons, namely, (i) the sizes of the

synthesized and the original texture can be different and (ii) the synthesized texture

need not have pixel-wise correspondence with the original texture but can still appear

perceptually equivalent. Since the perceptual equivalence of textures stem from their

inherent structure, metrics that quantify the structural similarity of the synthesized

and the original textures seem to be most relevant.
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There are many full-reference quality metrics to measure the structural dif-

ferences between textures. The SSIM [67] and the multi-scale SSIM (MSSSIM) [68]

metrics use the mean, variance, and co-variance of pixels to compute structural sim-

ilarity. The CWSSIM [69] and WCWSSIM [70] extend SSIM to the complex wavelet

domain. A pixel-domain structural texture similarity metric (STSIM) was proposed

in [71]. Later, STSIMs involving steerable pyramid decomposition [7] and sub-band

autocorrelations and cross-correlations of wavelet coefficients were proposed in [72].

A metric that uses Portilla’s constraints [7] along with the Kullback-Leibler Diver-

gence (KLD) is suggested in [62]. The above mentioned metrics such as [68] and [69],

are either devised for near-threshold applications (e.g., image compression) or for

supra-threshold applications (e.g., image retrieval) [62]. They may be either highly

constrained or excessively accommodative of texture synthesis artifacts. The quality

metric in [62] gives 85% of weightage to Portilla’s constraints and hence may not

suitable for non-stochastic textures.

As explained in Chapter 5, there are many texture synthesis based video cod-

ing schemes in which texture regions are synthesized at the decoder using parametric

or non-parametric synthesis algorithms. Many of these algorithms are iterative ap-

proaches in which the synthesized image fidelity needs to be estimated at the end

of each iteration. Also, the receiver may have to evaluate the quality degradation

of synthesized regions in order to communicate to the sender for alternative syn-

thesis parameters or ’seed’ textures. Since the original reference is not available at

the decoder, RR features representing the original texture can be used to measure

image fidelity. RR quality metrics are typically used for quality evaluation at the

receiver side of a communication system [73]. They can also be used in other appli-

cations like Content Based Image Retrieval (CBIR) where the RR features can act

as an efficient representation of the image and help in reducing the computations
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for feature-matching. In a communication system, the sender sends the original im-

age data after compression and modulation through a distorted channel. At the

sender side the RR features are computed from the original image and sent through

a distortion-free auxiliary channel. At the receiver side the data received from the

distorted channel is demodulated and decoded. Quality evaluation is performed at

the receiver side by extracting the features of the distorted image and comparing

the distorted image’s features with the RR features from the auxiliary channel. The

computed quality degradation can be used for controlling the network streaming

sources.

The performance of a RR quality metric to predict the true visual degradation

of images depend on the following:

(i) the ability of the RR metric to efficiently represent the image

(ii) the sensitivity of the RR metric to various image distortions

(iii) the visual perceptual relevance of the RR features

The various RR quality metrics can be further classified into 3 classes based

on the modelling approach:

(i) RR metrics based on modelling image distortions

(ii) RR metrics based on modelling the natural image statistics

(iii) RR metrics based on modelling the Human Visual System (HVS)

Popular reduced reference metrics include RRIQA [73] and RRSSIM [74].

These metrics require training of parameters that are trained to approximate a target

full-reference metric as in the case of RRSSIM, or that are trained to fit subjective

quality mean opinion scores (MOS) over a database, as in the case of RRIQA. Both

of these metrics also require the extraction of several features as side information (48
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Table 6.1: Visual Saliency Map characteristics for original and synthesized textures.

Texture VSM with VA peaks Histogram of VSM Regularity

0.674

0.304

0.054

0.307

for RRIQA using a 3 level steerable pyramid decomposition and 36 for RRSIM) that

are extracted from the original image.

6.2 Proposed Reduced Reference Metric based on Texture Regularity

The perceived loss in fidelity due to texture synthesis artifacts can be quantified by

the effect of these artifacts on the regularity and granularity of the textures. This is

illustrated with some examples in the following subsections.

6.2.1 Effect of Texture Synthesis Artifacts on Regularity

The various parametric and non-parametric approaches for texture synthesis lead to

different types of artifacts. The parametric approaches like [7] while preserving the
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global texture properties lead to a loss of local structure. The patch-based approaches

like [59] while preserving the local structure lead to a loss in global structure. The

synthesis artifacts include misalignment of texture patterns, blurring artifacts due to

overlap of patterns and tiling artifacts resulting from excessive repetition of patterns.

These artifacts disrupt the regularity of the original texture. Also, as illustrated in

Table 6.1, these artifacts naturally capture our visual attention (VA) in a different

way compared to the VA of the original texture. This VA can be captured through a

Visual Saliency Map (VSM) whose values directly quantify the extent to which each

region grabs the human attention. The saliency map is normalized to 1 and shown as

an image in which the brightest pixels (close to 1) correspond to highest attention and

the darkest pixels (close to 0) correspond to lowest attention. The effect of texture

synthesis artifacts on visual saliency is illustrated through a regular and an irregular

texture in Table 6.1. Samples of the original and synthesized textures (column 1)

along with the corresponding VSMs (column 2) and the histogram of the VSMs

(column 3) are shown in Table 6.1. The textures were synthesized using Graph-

Cut synthesis [59]. The VSMs in Table 6.1 were generated using the GBVS model

[16]. The impact of misalignment artifacts on visual saliency while synthesizing a

regular texture is illustrated through the Tile texture in rows 1 and 2 of Table 6.1.

For this regular texture, as shown in Table 6.1, the original texture’s VSM (row 1)

exhibits a periodic regular placement of local peaks. The local peaks correspond

to the center of the textural primitives where there is maximum VA in the local

neighborhood. In the corresponding synthesized texture’s VSM (row 2), there is

a higher visual saliency at locations corresponding to the boundary misalignment

artifacts. This lowers the relative saliency of other regions without artifacts. This

results in a modified VSM in which the location and distribution of the local peaks

differ from those of the original VSM. The artifacts also lead to a change in the

shape of the VSM histogram characteristics like location of the last peak and the
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Table 6.2: Limitation of the texture regularity metric to capture change in granular-
ity.

Texture Histogram of VSM VSM with VA peaks Regularity

0.332

0.321

decay rate. A decrease in the perceived texture regularity can also be observed for

the synthesized texture (Table 6.1, column 1, row 2) relative to the original one

(Table 6.1, column 1, row 1). The objective texture regularity metric (Chapter 4)

computed from the VSM characteristics decreases from 0.674 to 0.304 for the Tile

texture as a result of texture synthesis artifacts. Similarly, the effect of tiling artifacts

on visual saliency and texture regularity is illustrated through the irregular Water

texture in rows 3 and 4 of Table 6.1. The irregularity in the original texture arises

from the fine-granularity of the primitives. This results in few visually salient regions

and less number of local peaks (row 3). The VSM of the synthesized texture (row 4)

shows more local peaks due to the tiling artifacts. This leads to a change in the shape

of the VSM histogram. It can also be seen from Table 6.1 (row 4) that the artifacts

also result in an increase in the perceived texture regularity as also verified by the

authors through subjective testing of perceived texture regularity. As expected, the

texture regularity metric (Chapter 4) increases from 0.054 to 0.307 for the Water

texture due to tiling artifacts.
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6.2.2 Effect of Texture Synthesis Artifacts on Granularity

Some of the texture synthesis algorithms synthesize one pixel at a time. These

approaches sometimes generate highly granular textures in which the shape and

contours of the original primitives are not preserved, resulting in a low fidelity score.

The synthesis methods, while altering the local characteristics of the original texture,

may still generate a texture that preserves the VSM characteristics of the original

texture. As a result, the granularity artifacts cannot be captured through the change

in texture regularity metric that depends completely on the VSM. This is illustrated

in Table 6.2, through the D11 texture obtained from [75]. The original D11 texture

along with the histogram of its VSM and the VA peaks are shown in row 1 of

Table 6.2. The D11 texture synthesized by the algorithm proposed in [63] along

with its VSM characteristics are shown in row 2 of Table 6.2. The texture regularity

metric for the two textures, computed using the algorithm proposed in Chapter 4, is

given in the last column of Table 6.2. The DMOS score for the two textures is 0.875 in

a (0,1) scale which indicates a high loss in fidelity. But since the VSM characteristics

of the two textures does not differ much, the change in texture regularity based on

VSM characteristics, will not quantify the perceptual loss in texture quality.

6.2.3 Proposed Texture Granularity Metric

Granularity is directly related to the size of the textural primitives. A granularity

score is computed from the wavelet transform coefficients of the texture image as de-

scribed below. As mentioned in [76], by applying the Discrete Dyadic Wavelet Trans-

form (DDWT) to the texture image g(u, v), two detailed-subband images, W 1
g(u,v,s)

and W 2
g(u,v,s), corresponding, respectively, to the horizontal and the vertical edges

and one low-frequency subband image, W 3
g(u,v,s) are obtained at each level s. Only

the low-frequency subband image, W 3
g(u,v,s), will be used for the decomposition at
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the next level. A 5-level non-subsampled DDWT decomposition is performed in the

proposed method.

For each of the detailed subbands W l
g(u,v,s), l = 1, 2 and s = 1, 2, 3, 4, a

correlation measure is computed at each location as follows:

Corrl(u, v, s) = W l
g(u,v,s).W

l
g(u,v,s+1). (6.1)

Let µcorr(s) denote the average correlation of the detail subband coefficients at a

level s with the corresponding detail subband coefficients at the next level. The

granularity score, G, is measured as follows:

G =
µcorr(1)− µcorr(4)

C
(6.2)

where C is a normalizaton constant so that G is in the range (−0.5, 0.5). C = 80

was used in our implementation.

The variation of the proposed granularity metric with the size of texture prim-

itives is illustrated through some examples in Table 6.3. The textures are shown in

column 1 while the average correlation µcorr(s) for different scales s in the 5-level

DDWT is shown in column 2 of Table 6.3. The textures are arranged in increas-

ing order of granularity in Table 6.3. The proposed granularity metric is shown in

column 3 of Table 6.3. As shown in row 1 of Table 6.3, for a texture with large prim-

itives, the amount of inter-subband correlation increases with scale s. This results in

a negative granularity metric for textures with large primitives. The inter-subband

correlation decreases as the scale s increases for textures with very small sized prim-

itives (micro-textures) as illustrated through the Misc texture in row 4 of Table 6.3.

This results in a positive granularity metric for textures with very small primitives.

The ability of the granularity metric to compensate for the inadequacies of the reg-

ularity metric is shown through rows 3 and 4 of Table 6.3. The original D11 texture
80



Table 6.3: Examples of textures and their corresponding Granularity Metric G. The
horizontal axes of the plots in the middle column are the DDWT levels (s).

Texture Average Correlation µcorr(s) Granularity
Metric G

-0.166

-0.012

0.188

0.213

along with its granularity score is shown in row 2 of Table 6.3 while the granularity

characteristics of the texture synthesized by the algorithm proposed in [63] is shown

in row 3 of Table 6.3. As shown in Table 6.3, the synthesized texture appears more

grainy compared to the original texture and this results in an increase in the pro-

posed granularity metric from -0.12 to 1.88. Based on these observations, this work

proposes an RR texture quality metric that quantifies the loss in texture fidelity due

to synthesis through the change in regularity and the granularity of the synthesized

texture relative to the original. Fig. 6.1 shows a flowchart of the proposed RR tex-

ture synthesis quality metric computation algorithm at the decoder. The proposed
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Original Texture
RR features

({ Rorig) , Gorig) }
Synthesized Texture

Compute Texture
Regularity (Rsynth)

Compute Texture
Granularity(Gsynth)

∆R = |Rorig −Rsynth| ∆G = |Gorig −Gsynth|

Texture Distortion = λ.∆R + (1 − λ).∆G

Texture Quality Metric = 1- Texture Distortion

Figure 6.1: Block diagram of the proposed texture synthesis quality metric.

metric makes use of the amount of perceived texture regularity in the original and

synthesized textures. The difference in regularities quantifies the loss in fidelity.

Texture Quality Metric:

The proposed reduced-reference texture quality metric makes use of the change in

perceived regularity and the change in granularity of the synthesized textures com-

pared to the original textures. The regularity and the granularity of the original

texture are available as RR features for quality assessment. The perceived regu-

larities of the original and the synthesized textures are computed using (4.16) as

mentioned in the previous chapter. The regularity of the original texture is available
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as a RR feature at the receiver. The difference of the perceived regularities between

the original and synthesized textures is used a measure of loss in fidelity. To accom-

modate both increase and decrease in regularity as a result of synthesis, an absolute

value of the difference is computed as the delta-regularity score, ∆R, as shown below:

∆R = |Rorig −Rsynth| (6.3)

where Rorig and Rsynth are the perceived regularities of the original and synthesized

textures, respectively. Since both the regularities are in the normalized (0,1) range,

∆R ∈ (0, 1). We propose that the higher the value of the delta-regularity score, the

higher is the loss in fidelity of the synthesized texture or, equivalently, the lower is

the perceived quality of the synthesized texture.

Similarly, the perceived granularities of the original and the synthesized tex-

tures are computed using (6.2). The granularity of the original texture is available as

a RR feature at the receiver. The difference of the granularities between the original

and synthesized textures is also used as a measure of loss in fidelity. An absolute

value of the difference is computed as the delta-granularity score, ∆G, to accom-

modate both increase and decrease in granularity as a result of synthesis as shown

below:

∆G = |Gorig −Gsynth| (6.4)

where Gorig and Gsynth are the granularities of the original and synthesized textures,

respectively. Since both the granularities are in the normalized (-0.5,0.5) range,

∆G ∈ (0, 1). We propose that the higher the value of the delta-granularity score,

the higher is the loss in fidelity of the synthesized texture or, equivalently, the lower

is the perceived quality of the synthesized texture.

83



The perceived texture distortion is computed from the change in regularity

∆R and the change in granularity ∆G scores as follows:

TextureDistortion = λ.∆R + (1− λ).∆G (6.5)

The value of λ = 0.25 was used in our implementation in order to maximize the

correlation with subjective loss in fidelity.

The proposed RR Texture Quality Metric (TQM) for synthesized textures is

computed from the texture distortion as follows.

TQM = 1− TextureDistortion (6.6)

6.3 SynTEX Database

A set of 16 textures were obtained from two databases, namely, the MIT Vistex

database [56] and the Graph-Cut textures database [57]. The textures were chosen

such that they together represented the regular, hybrid and irregular texture classes.

The textures exhibit varying degrees of regularities in the visual properties of prim-

itives, like placement, size, shape, color or orientation. Also, to understand the dif-

ference in the perceived regularity between fine granular and large sized primitives,

textures from both these classes were chosen in the test set. For the patch-based

graph-cut texture synthesis algorithm [59], seed texture regions were hand-picked

from each of these textures and given as input. There are two versions of the graph-

cut synthesis algorithm that differ in the cost function for boundary-matching while

placing the successive patches [59]. Corresponding to the two versions, two sets of

textures were synthesized. The seed size was just large enough to capture the peri-

odicity along the X and Y directions. The synthesized texture dimension was set as

6 times the size of the original seed. A third set of textures was synthesized from

the original textures using the Portilla’s method [7]. In the implementation, N=4

multi-resolution levels, K=4 orientations and 75 iterations were used. So in total,
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a set of 48 textures were synthesized from the original 16 textures using the 3 tex-

ture synthesis algorithms. A subjective testing was conducted on the 48 synthesized

textures. Fifteen subjects with normal to corrected vision participated in the sub-

jective tests. Only the subjects who passed the 20-20 vision test and the color-vision

tests were chosen for the subjective testing experiment. For each considered synthe-

sis method, the synthesized textures along with the corresponding original textures

were displayed side-by-side. To avoid scaling differences, only the central portions

of the synthesized images having the same dimension as the original textures were

displayed. The order of the image-pairs were randomized and displayed one after an-

other to each subject. The subjects were asked to score the overall fidelity for each

synthesized texture by comparing it to the original, using the ITU recommended

five-scale score with 1(very-annoying) corresponding to lowest and 5(imperceptible)

corresponding to highest fidelity. An average of the fidelity scores over all subjects

for a considered texture gives the Mean Opinion fidelity Score (MOS) for a consid-

ered method. The standard deviation of the MOS over all subjects was within 1.5,

for each of the 48 textures and within 1.0 for 43 out of 48 textures. The 48 syn-

thesized textures along with their fidelity MOS constitute our Synthesized Textures

(SynTEX) database.

6.4 Simulation Results

In addition to the SynTEX database, two more texture synthesis databases were

used for performance evaluation. The QualTEX database [77] contains a set of

20 textures synthesized from an original set of 10 textures, by using quantized and

non-quantized Portilla’s parameters. The third database used in our performance

analysis was the parametric quality assessment database [78] denoted by SynthPQA

database in this work. The SynthPQA database consists of 567 textures synthesized

using 9 algorithms from the original set of 63 textures obtained from the Brodatz
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database [75]. The 9 different algorithms are denoted by Alg1 to Alg9 and they

represent the texture synthesis algorithms in [61], [79], [80], [81], [7], [63], [82], [83]

and [59], respectively. While Alg3 and Alg5 are parametric algorithms, the rest are

all non-parametric approaches. In [62], a set of 42 textures representing 7 different

perceptual texture clusters as mentioned in [84], was used for quality evaluation. In

this work, 27 of the 42 textures mentioned in [84], were used for quality evaluation

by eliminating textures with the following characteristics:

1. Textures without at least 2 primitives along the X and Y directions.

2. Textures whose DMOS scores were abnormally high.

3. Textures with brick-like flat regions for which the VA models fail.

4. Textures with very low contrast for which the VA models fail.

The final set of 27 original textures used from the SynthPQA database con-

sists of D2, D4, D5, D11, D12, D25, D29, D30, D31, D33, D35, D38, D40, D41,

D42, D45, D46, D65, D74, D84, D92, D93, D97, D99, D101, D104 and D108.

The performance of the proposed Texture Quality Metric (TQM) to predict

the perceptual quality of synthesized textures was compared against 7 popular full-

reference algorithms for measuring image quality. These include MSSIM [68], CWS-

SIM [69], WCWSSIM [70], STSIM [71], STSIM1 [72], STSIM2 [72] and Parametric

Quality [62]. Each of these algorithms acted on a pair of original and synthesized

textures and produced a quality metric. To account for extreme values at the ends

of the testing range (very high and very low quality metric), each metric value Mi

is transformed into a predicted MOS (MOSpi) value using a four-parameter logistic

function as suggested by VQEG [58]:

MOSpi =
β1 − β2

1 + e

(
Mi−

β3
|β4|

) + β2 (6.7)
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Table 6.4: Performance evaluation on the QualTEX database.

Texture Regularity PLCC SROCC RMSE MAE PPLCC PSROCC
CWSSIM 0.400 0.423 0.137 0.094 0.081 0.063

WCWSSIM 0.476 0.402 0.137 0.094 0.034 0.079

MSSSIM 0.391 0.349 0.127 0.090 0.088 0.131

STSIM 0.382 0.486 0.137 0.094 0.097 0.030

STSIM1 -0.335 -0.422 0.137 0.094 0.149 0.064

STSIM2 -0.332 -0.464 0.137 0.094 0.152 0.039

Parametric Quality 0.639 0.688 0.105 0.064 0.002 0.001

Proposed TQM 0.911 0.550 0.056 0.031 0.000 0.012
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Figure 6.2: Performance of quality metrics on the QualTEX database for different
texture synthesis algorithms.

The performance comparison of the proposed TQM with other quality metrics

in quantifying the perceptual texture quality is shown through the Pearson Linear

Correlation Coefficient (PLCC) and the Spearman Rank Order Correlation Coef-

ficient (SROCC) between MOSp and MOS in addition to the Root Mean Square

Error (RMSE) and the Mean Absolute Error (MAE). The quality metrics were evalu-

ated on the QualTEX database consisting of 20 textures synthesized using Portilla’s
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Table 6.5: Performance evaluation on the SynTEX database.

Texture Regularity PLCC SROCC RMSE MAE PPLCC PSROCC
CWSSIM 0.405 0.410 0.154 0.123 0.004 0.004

WCWSSIM 0.409 0.397 0.154 0.122 0.004 0.005

MSSSIM -0.171 -0.171 0.169 0.142 0.245 0.246

STSIM 0.220 0.190 0.169 0.142 0.134 0.196

STSIM1 0.443 0.397 0.151 0.125 0.002 0.005

STSIM2 0.433 0.390 0.169 0.142 0.002 0.006

Parametric Quality 0.196 0.089 0.165 0.138 0.182 0.546

Proposed TQM 0.491 0.592 0.147 0.116 0.000 0.000
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Figure 6.3: Performance of the quality metrics on the SynTEX database for different
texture synthesis algorithms.

parametric synthesis as explained above. The proposed TQM outperformed all the

state-of-the-art quality metrics in terms of PLCC, as shown in Fig. 6.2 and Table 6.4.

The SROCC of the proposed TQM is the second best, lower than the Parametric

Quality metric. The proposed RR metric required just 2 parameters, namely Reg-

ularity and Granularity, in contrast to hundreds of parameters involved in other

image-pyramid based approaches [62].
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Table 6.6: Performance evaluation on the Parametric Quality Assessment database.

Texture Regularity PLCC SROCC RMSE MAE PPLCC PSROCC
CWSSIM 0.146 0.194 0.235 0.190 0.032 0.004

WCWSSIM 0.167 0.190 0.235 0.190 0.014 0.005

MSSSIM 0.089 0.058 0.235 0.190 0.193 0.398

STSIM 0.261 0.263 0.235 0.190 0.000 0.000

STSIM1 0.143 0.221 0.235 0.190 0.036 0.001

STSIM2 0.268 0.278 0.235 0.190 0.000 0.000

Parametric Quality 0.639 0.428 0.181 0.144 0.000 0.000

Proposed TQM 0.546 0.484 0.197 0.157 0.000 0.000

Similarly, the performance comparison of the proposed TQM with other qual-

ity metrics was done on the SynTex database consisting of 48 textures synthesized

using parametric and patch-based synthesis as explained above. As shown in Ta-

ble 6.5, the proposed RR TQM has the highest correlation with MOS. The P-value

of this correlation is less than 0.05 for both PLCC and SROCC. This proves the sta-

tistical significance of the correlation between the proposed TQM and synthesized

texture quality. The performance of the quality metrics on the individual algorithms

is shown in Fig. 6.3. It can be seen that the proposed quality metric has the high-

est performance for Kwatra’s Graph-Cut synthesis that employ P2 algorithm for

boundary matching. It has a reasonably good performance on Kwatra’s P1 synthe-

sis. However, the proposed approach uses just 2 RR parameters while other metrics

are Full-Reference. It should be noted that the Parametric Quality metric [62] can

be as well thought of as a RR metric employing hundreds of parameters.

On the SynthPQA database, the performance of the proposed RR TQM has

a PLCC of 0.546 and a SROCC of 0.484 over all synthesis algorithms, as shown

in Table 6.6. The performance of the proposed RR TQM, was the second-best in

performance to the parametric quality metric suggested in [62]. However the pro-

posed approach requires just 2 RR parameters per texture and hence is significantly

more efficient than the metric in [62]. The performance of the quality metrics on the
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Figure 6.4: Performance of quality metrics on the SynthPQA database for different
texture synthesis algorithms.

individual synthesis algorithms is shown in Fig. 6.4. It can be seen from Fig. 6.4,

that all metrics perform poorly on textures synthesized using Alg2 and Alg8, which

leads to an overall poor score for correlation. Also, the proposed RR TQM performs

as good as or even better than the Parametric Quality metric of [62] for Alg2, Alg3

Alg4, Alg7 and Alg8.
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Chapter 7

EFFECT OF TEXTURE REGULARITY ON PERCEIVED TEXTURE

DISTORTIONS

This chapter presents some of the effects of texture regularity on perceived distortions

in textures. The distortions considered in this chapter are the artifacts due to texture

compression and the visual degradation due to Gaussian blur on textures.

7.1 Effect of Texture Regularity on Perceived Compression Artifacts

This section presents the influence of texture regularity on the perceived quality

of textures compressed through JPEG2000. It is shown through subjective testing

that textures with different degrees of perceived regularity exhibit different degrees of

vulnerability to compression artifacts, for the same degree of compression. Further, it

is also shown through subjective and objective metrics that the regularity of textures

directly affects the perceived loss in fidelity due to compression.

The popular video codecs like MPEG4, H.264 and HEVC use lossy video com-

pression to enable the transmission of high volume video data through low-bandwidth

networks. Lossy video compression involves discarding unimportant video data in

order to achieve higher compression ratios compared to lossless video coding. The

discarding of image data may lead to the appearance of visual artifacts, which can

lead to a loss of fidelity. The perceived visual quality depends on the sensitivity of

the Human Visual System (HVS) to the various visual artifacts introduced during

the compression process. The contrast sensitivity function of the HVS indicates that

the HVS is less sensitive to visual artifacts in high frequency components. Many

perceptually motivated video codecs like [3], [4] and [5] exploit this fact by encoding

regions of high spatial frequencies with a lower number of bits. Textures, because

of their high spatial frequencies, are very good candidates for lowering the bit-rate

at the cost of introducing imperceptible artifacts. The texture-based video codecs
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achieve compression through either of the following approaches:

1. Texture synthesis at the decoder using a sample texture patch and synthesis pa-

rameters.

2. Heavily quantizing the texture regions compared to the non-texture regions.

Texture synthesis and texture synthesis based video codecs were reviewed in

Chapter 5. Apart from the texture-based video codecs based on texture-synthesis,

some schemes like [5] try to quantize the textures heavily compared to the non-

textured regions and achieve a better rate-distortion (R-D) performance. The per-

ceptual Macroblock (MB)-level Rate Control (RC) scheme in [85] uses a distortion

measure weighted by a perceptual threshold considering luminance adaptation, tex-

ture masking, and skin detection in the Rate-Distortion (R-D) model used for ob-

taining the optimal quantization step size for each MB. The advantage of the rate-

control based methods for exploiting texture irrelevancy is that they are backward

compatible with existing standard video decoders. On the other hand, implementing

texture synthesis based approaches involve modifying both the encoder and decoders

to perform texture synthesis.

Most of the popular image and video compression standards like JPEG,

MPEG and H.264 achieve data compression by a set of generic steps:

1. Prediction in spatial or temporal domain

2. Transformation of the signal to frequency domain using DCT or DWT

3. Quantization of the frequency domain data.

Typically, these operations together produce a set of artifacts on compressed

images like color distortions, blockiness, ringing artifacts and blur. The quantization

is a lossy operation due to which a large range of values is represented by a single
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quantum value. The amount of noise introduced due to quantization is directly

proportional to the step size. Since the HVS is less sensitive to visual artifacts in

high frequency components compared to those in lower frequencies, a higher step

size is used for higher frequencies. Since edges are predominantly high frequency

components, the loss of edges due to quantization results in blurred images.

Textures in general contain a lot of edges and consume a lot of bits compared

to uniform regions for compression. Often, textures occur in the background and are

perceptually unimportant. So many video-codecs like [5] try to isolate texture regions

and heavily compress them. But not all types of textures are equally vulnerable to

compression artifacts. This is illustrated through the examples in Table 7.1. The

original and the JPEG2000-compressed textures are shown in columns 1 and 2 of

Table 7.1, respectively. The textures in column 2 were compressed to 1% of the

original size with JPEG2000. As it can be observed from Table 7.1, the regular

textures are more robust to compression while the irregular or random textures

exhibit a much higher loss in structure due to JPEG2000 compression. As shown later

in this section, the Mean Opinion Scores (MOS) obtained through subjective testing

also indicate this. Tile and Marbles are regular textures and their corresponding

MOS scores are 3.72 and 3.5, respectively. Water and Misc are irregular textures

whose compressed images show a MOS of 1.22 and 1.61, respectively. This is because

these random textures with very small-sized textural primitives contain a lot of

weak high frequency coefficients which are heavily modified during the compression

process. This greatly modifies the regularity and the structure of these textures,

leading to a significant loss in fidelity.

The standard image and video codecs compress the data to a specified extent

using a compression unit called the Rate-Control (RC) unit. The RC unit takes into

account many factors like the target bit-rate, already consumed bits for a frame etc.,
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Table 7.1: JPEG2000 Compression Artifacts on Textures.

Original Texture JPEG2000 Compressed Texture
JPEG2000
Fidelity MOS

Regularity
Metric

3.72 0.69

3.50 0.81

2.78 0.39

2.83 0.33

1.22 0.20

1.61 0.19
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and computes a QP for a frame and ultimately for a Macro-block or a block. Even

though many RC algorithms are content adaptive like [85], none of the algorithms

take texture regularity into account. We propose that texture regularity has a strong

influence on the perceived compression artifacts and must be taken into account

while computing the QP for the texture block. This can potentially lead to a higher

perceived quality through a more efficient distribution of bits.

Rate-Control algorithms on video encoders aim to achieve the best perceptual

quality by redistributing the bits optimally to achieve the best visual quality at any

given bitrate. Since textures contain high frequency data, the textural artifacts

are less perceptible compared to non-textured regions. So the RC algorithms tend

to heavily quantize the textural regions. The degradation in the perceived image

fidelity due to the blur resulting from quantization, is not the same for all class of

textures but varies from regular to irregular textures. Therefore, it may be possible

to vary the quantization step size based on the regularity of the textures for a higher

video fidelity.

This is illustrated through the textures in Table 7.1. The original texture is

shown in column 1 while the reconstructed texture after JPEG2000 compression is

shown in column 2 of Table 7.1. The fidelity Mean Opinion Score for the recon-

structed texture is shown in column 3 and the proposed texture regularity metric is

given in column 4 for the original non-compressed texture. As it can be observed, the

compression artifacts are much more pronounced on irregular textures as compared

to regular textures.

7.2 Simulation Results

A subjective testing was conducted on 9 textures from the texture regularity database

of 21 textures constructed from two databases, namely the MIT Vistex database [56]

and the Graph-Cut texture synthesis database [57] mentioned in Chapter 4. Ten
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Table 7.2: Mean Opinion Scores (MOS) for JPEG2000 compressed images along with
MOS and objective scores for regularity of original textures.

Texture JPEG2000
Fidelity
MOS

Average
Property
Regularity
MOS

Average
Overall
Regularity
MOS

Texture
Regularity
Metric

Tile 3.72 2.83 3.00 0.69

Marbles 3.50 2.81 3.00 0.81

Fabric 2.67 2.71 2.81 0.56

Tulips 2.78 2.01 2.00 0.39

Fresh-blue-
berries

2.83 1.93 2.00 0.33

Lobelia 2.39 1.78 2.00 0.32

North-beach 1.56 1.28 1.31 0.22

Misc 1.22 1.18 1.31 0.23

Water 1.61 1.16 1.25 0.20

Table 7.3: Correlation of fidelity MOS of JPEG2000-compressed images with sub-
jective and objective regularity scores.

Texture Regularity PLCC SROCC RMSE MAE

Average Property
Regularity MOS

92.56 88.33 0.246 0.168

Average Overall Regu-
larity MOS

91.95 85.83 0.266 0.195

Proposed Regularity
Metric

91.95 85.00 0.082 0.061

subjects with normal to corrected vision participated in the subjective tests. The

textures were equally distributed amongst the broad classes of regular, irregular

or hybrid textures. The textures were compressed using JPEG2000, implemented

in [86], to 1% of their original size and reconstructed back. The reconstructed images

exhibit compression artifacts. The decompressed textures along with the correspond-

ing original texture were displayed side-by-side in a subjective testing experiment.

The order of the image pairs was randomized and these were displayed one after

another to each subject. The subjects were asked to score the overall fidelity for

each compressed texture by comparing it to the original, using a five-scale score with
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1 corresponding to lowest and 5 to highest. An average of the fidelity scores over

all 10 subjects for a considered texture gives its Mean Opinion JPEG2000 fidelity

Score. The JPEG2000 MOS for the various textures are given in column 2 of Table

7.2. The Average Property Regularity MOS and Overall Regularity MOS, available

from the texture database (as described in Chapter 4), are shown in columns 3 and

4 of Table 7.2, respectively. The no-reference perceptual texture regularity metric

proposed in Chapter 4 is given in column 5. To account for extreme values at the

ends of the testing range (very high and very low regularity), each metric value Mi

is transformed into a predicted MOS (MOSpi) value using a four-parameter logistic

function as mentioned in Chapter 4. The correlation of the fidelity MOS with the

subjective and objective regularity metrics is quantified through the Pearson Linear

Correlation Coefficient (PLCC) and the Spearman Rank Order Correlation Coeffi-

cient (SROCC) as given in Table 7.3. For the considered nine textures, the Average

Property Regularity MOS had a PLCC and SROCC of 92.6% and 88.3% respec-

tively with the JPEG2000 image fidelity MOS. The Overall Regularity MOS had a

correlation of 92.0% and 85.8% with the JPEG2000 image fidelity MOS. The tex-

ture regularity metric proposed in Chapter 4 also had a high correlation with the

JPEG2000 image fidelity MOS. The PLCC and SROCC for the texture regularity

metric were 92% and 85%, respectively when correlating with the image fidelity of

textures compressed by JPEG2000.

The effect of texture regularity on the amount of perceived artifacts in com-

pressed textures is analyzed. It is proposed that irregular textures with small primi-

tives are more susceptible to perceived artifacts than regular textures for the same de-

gree of compression and that texture regularity should be taken into consideration in

bit allocation and rate control methods. Subjective testing on JPEG2000-compressed
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textures validates this proposition. Including the texture degree of regularity may

help in predicting the degradation of texture quality due to compression.

7.3 Effect of Texture Regularity on perceived Blur

Blur in textures can be due to many reasons like blur due to the camera lens, mo-

tion blur due to camera motion during capture, and blurry artifacts as a result of

quantizing the high frequency coefficients. The perceived blur is often quantified as

the spread of edges in the direction of the gradient.

Regular textures have clearly demarcated primitives and are associated with

strong edges. Since the primitive sizes are significant, the spread of the edges does

not change the structure or the spatial periodicity of the primitives. Also the regu-

lar pattern grabs the human attention and hence reduces the perceptibility of blur.

Amongst the regular textures, the perceived blur is higher in textures with a high lo-

cal contrast. This is because the Just Noticeable Blur (JNB) width tends to decrease

with increase in contrast [87].

The perceived blur is relatively high in irregular textures having very small-

sized primitives. This is because the small sized primitives (high granularity) in the

irregular textures lose their shape and structure completely upon convolving with a

lowpass filter such as a 2D Gaussian kernel. This leads to a larger perceived blur.

The correlation of the perceived blur with texture regularity is illustrated

through a set of textures in Table 7.4. The original textures are shown in column 1

of Table 7.4. The blurred textures obtained by convolving the corresponding original

textures with a Gaussian of standard deviation of σ = 3.0 is shown in column 2 of

Table 7.4. The proposed Texture Regularity Metric score is given in column 3 of

the table. It can be observed that the perceived blur increases with decreasing

texture regularity. This is because the very small-sized primitives in these irregular
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Table 7.4: Gaussian Blur (σ = 3.0) on Textures.

Original Texture Blurred Texture
Regularity
Metric

0.81

0.69

0.33

0.39

0.20

0.19
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textures lose their form and structure as a result of the blur. This directly affects

the placement periodicity of the primitives and result in a high degree of perceived

blur. The regular textures on the other hand, are characterized by strong edges at

the primitive boundaries and the primitives are medium or large in size. So the

shape, structure or the placement periodicity of the primitives in regular textures

are not affected significantly due to blur. This fact can be exploited in the design of

an improved blur metric for textures based on the texture regularity metric that is

proposed as a part of this work.
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Chapter 8

Conclusion

This work contributes to the areas of visual saliency on textures, texture regularity

analysis and applications like texture-based image coding and texture quality as-

sessment. This chapter summarizes the main contributions of this work and some

directions for future research.

8.1 Summary of Contributions

The contributions of this thesis are summarized below.

• A no-reference perceptual texture regularity metric is proposed as part of this

work. This is the first ever texture regularity metric that takes visual perception

into account. The proposed metric is based on the fact that regularity in

textural primitives manifests itself as regularity in the visual saliency map. The

texture regularity is quantified through a texture similarity score and a spatial

distribution score. The proposed regularity metric is compared with one of the

state-of-the-art regularity metrics [43] and is shown to have a higher correlation

with subjective testing results. The proposed regularity metric is also found to

be fairly robust to small geometric and photometric transformations

• The performance of the visual attention models on textures is evaluated. Though

there are a number of visual saliency databases for natural images, this is the

first work to build the ground-truth eye-tracking data for images with exclusive

texture content. Nine popular VA models were evaluated using the acquired

ground-truth data.

• An adaptive texture synthesis algorithm is proposed. This algorithm, selects

the appropriate method for texture synthesis based on the regularity of the
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original texture. The texture regularity metric proposed in this work is used

to quantify the texture regularity.

• A reduced reference texture quality metric (RR TQM) is developed and pre-

sented in this work for assessing the quality of synthesized textures. The RR

TQM uses the change in regularity and change in granularity between the orig-

inal and synthesized textures to estimate the amount of loss in fidelity of the

synthesized textures. The proposed texture regularity metric is employed for

computing the regularity score. A novel granularity score that quantifies the

amount of perceived fineness or coarseness of textures is also proposed in this

work. The proposed RR TQM uses just 2 parameters and is shown to have a

high degree of correlation with the Mean Opinion Scores on 3 different texture

databases. A new texture synthesis quality database named SynTEX is also a

contribution of this work. This database was constructed by synthesizing a set

of 16 original textures obtained from [56] and [57], through parametric [7] and

graph-cut based texture synthesis [59] methods. The database also includes

the MOS for the fidelity of the synthesied textures.

• The final contribution of this work is in establishing the influence of texture

regularity on distortions like texture compression artifacts and texture blur. It

is proposed that irregular textures with small primitives are more susceptible to

perceived artifacts than regular textures for the same degree of compression and

that texture regularity should be taken into consideration in bit allocation and

rate control methods. Subjective testing on JPEG2000-compressed textures

validates this proposition. It is also proposed that the perceived blur increases

with decreasing texture regularity. The loss in form and structure of small-

sized primitives in blurred irregular textures, directly affects the placement

periodicity of the primitives and result in a high degree of perceived blurriness.

102



8.2 Future Research Directions

The efforts to apply visual saliency for computing texture regularity are still in their

inception. So there are many unsolved problems which can be pursued for future

research. Some of the potential directions for future research could be the following:

• Improving the limitations of the proposed regularity metric for detecting shape

and direction irregularities.

• Understanding the effect of texture regularity on visual attention models.

• Improving the visual attention models that are able to more closely predict

the effect of texture regularity on human visual saliency. For example, the

regularities in grid-like patterns cannot be currently detected due to flat regions

without high contrast primitive centers.

• Improving the visual quality assessment of textures based on the regularity of

textures.

• Improving the texture enhancement and restoration techniques based on the

knowledge of the original undegraded texture’s regularity.

• Designing an improved blur metric for textures, that takes into account the

regularity of the textures.

• Designing visual texture compression systems that adaptively perform texture

synthesis or compression based on texture regularity.
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