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ABSTRACT  

   

With ever increasing use of natural gas to generate electricity, installed natural 

gas fired microturbines are found in residential areas to generate electricity locally. This 

research work discusses a generalized methodology for assessing optimal capacity and 

locations for installing natural gas fired microturbines in distribution residential network. 

The overall objective is to place microturbines to minimize the system power loss 

occurring in the electrical distribution network; in such a way that the electric feeder does 

not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for 

validating the developed methodology. Three-phase unbalanced electric power flow is 

run in OpenDSS through COM server, and the gas distribution network is analyzed using 

GASWorkS. The continual sensitivity analysis methodology is developed to select 

multiple DG locations and annual simulation is run to minimize annual average losses.  

The proposed placement of microturbines must be feasible in the gas distribution 

network and should not result into gas pipeline reinforcement. The corresponding gas 

distribution network is developed in GASWorkS software, and nodal pressures of the gas 

system are checked for various cases to investigate if the existing gas distribution 

network can accommodate the penetration of selected microturbines. The results indicate 

the optimal locations suitable to place microturbines and capacity that can be 

accommodated by the system, based on the consideration of overall minimum annual 

average losses as well as the guarantee of nodal pressure provided by the gas distribution 

network. The proposed method is generalized and can be used for any IEEE test feeder or 

an actual residential distribution network.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

A worldwide energy crisis and increased environmental concerns have been the 

driving force for the development and increased penetration of distributed generation 

(DG) into electric distribution systems. Many states in US have encouraged the 

development of smaller generation facilities that connects directly at the distribution level 

of the electricity system. Traditional centralized power plants are inefficient and 

environmentally unfriendly as they use fossil fuels for energy generation. With the 

continuing market deregulation, the DG penetration into the distribution systems has 

rapidly increased over the years. The concept of DG differs from the traditional 

centralized power plants, where the electricity is generated in large power plants and then 

transmitted to the customers through transmission and distribution lines. The central 

power plants are critical to global energy supply, but their flexibility to adjust to changing 

energy needs is limited. 

The spare natural gas in the gas distribution pipelines flowing through the 

residential areas can be utilized to generate electricity locally by feeding natural gas into 

microturbines. These microturbines can be connected in parallel with the electric grid. 

These types of distributed generation systems have capacity to generate 25 to 500 kW of 

electricity, and are suitable for generating electricity at residential or small scale 

commercial level [1]. This project can be realized as a community microgrid where 
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several residential customers (200-1000) can purchase small natural gas microturbine 

units and place them at several locations in their residential area. 

1.2 Research Motivation and Objectives 

This study is interdependent on both electrical and gas distribution networks. The 

locations and capacity should be selected in such a way that the existing grid conditions 

and gas distribution flow parameters are maintained, and there is no need for electric 

distribution feeder up-gradation or gas pipeline reinforcement. To the knowledge of the 

author, the assessment of optimal locations and capacity of microturbines has not been 

done at a distributed level. 

The objective of this study is to develop a generalized approach of placing 

multiple microturbine units in integrated electrical and natural gas distribution network. 

The electric distribution feeder has been modeled in a commercially available distribution 

system analysis software, OpenDSS, to suggest optimal locations on the distribution 

feeder where small natural gas microturbines can be placed in a way that system power 

losses are minimized. The gas distribution network is modeled in GASWorkS software 

and various cases are simulated to check the pressure drop in the gas network, and assess 

the cases which would not result in gas pipeline reinforcement. 

1.3 Thesis Organization 

The main contents of this thesis are partitioned into five chapters. The first 

chapter provides an introduction and presents research motivation and objectives of this 

study. Chapter two discusses relevant background and literature review. An overview of 

electric distribution system, natural gas network and distributed generation is given, and 
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present methodologies to assess distributed generation are discussed. In chapter three, the 

developed methodology of optimally allocating distributed generation in the electric 

distribution network is discussed. It is based on continual sensitivity analysis and the 

method is tested for IEEE 123 node test feeder for peak loss reduction. In chapter four, 

the algorithm is modified to include annual simulation technique for minimizing the 

annual average power losses in the distribution system. The result analysis and 

discussions for the solved model are presented. In chapter five, a gas distribution network 

has been designed in accordance with the selected electric distribution system. The base 

nodal gas consumption of the household is first calculated, and then microturbines are 

placed in the gas distribution network for various cases. The result analysis and 

discussion for the gas distribution network are presented, and the optimal case based on 

the gas pressure guarantee is selected. Chapter six concludes the thesis by describing 

important results, conclusions, contributions and future work. There are five appendices 

provided. Appendix A describes the corresponding OpenDSS file for developing the 

IEEE 123 node test feeder. Appendix B, C, D, and E describes the MATLAB algorithm 

developed for performing various tasks for this study.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Natural Gas Distribution Network 

Natural Gas network is quite similar to the electrical network, both systems being 

designed to carry energy from suppliers to customers. They can be divided into: 

 Suppliers (gas fields) 

 Transmission (high pressure network) 

 Distribution (medium/low pressure network) 

 Customers (gas customers) 

 

Figure 2.1 Pipeline network structure diagram [2] 

 

Figure 2.1 shows gas pipeline network consisting of 17 nodes, 16 pipelines and 2 

compressor stations [2]. In this network, nodes 1, 5 and 6 are supply nodes, and nodes 3, 
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4, 10, 14, 15 and 17 are gas loads. Two compressor stations C1 and C2 are present in the 

gas network to transport the natural gas smoothly and meet the gas pressure limits of 

customers. Gas systems can store energy in the gas pipelines which can be utilized during 

the peak load, while electrical energy storage is not very efficient. Line Packing is a 

special characteristic of natural gas pipelines, which is the ability to effectively store 

small quantities of natural gas for shorter durations, that can be used to manage the load 

fluctuations on the system. A 50 mile section of 42 inch transmission gas pipeline 

operating at 1000 psi contains about 200 million cubic feet of gas, which is sufficient to 

provide gas to 2000 households for a year for cooking purposes [3]. Line packing is done 

by storing natural gas when the demand is less, by increasing the operating pressure of 

pipe, which later can be used during periods of high demand.  

 

Table 2.1 Gas and electric network analogies [4] 

Aspect Gas system Electric system 

Potential Pressure (N/m
2
) Voltage (V) 

Flux Flow (m
3
/s) Current (A) 

Power Pressure*Flow (W) Voltage*Current (W) 

Power loss Δ Pressure*Flow (W) Δ Voltage*Current (W) 

Resistance Friction factor (k) Impedance (Ω) 

 

Table 2.1 gives an overview of the main terms considered when an integrated 

electric and gas system is developed. Figure 2.2 shows a natural gas distribution network 

in Gurgaon, India where existing and proposed gas distribution pipelines are shown.  
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Figure 2.2 Natural gas distribution network in Gurgaon, India geographical area [5] 

 

The U.S. natural gas pipeline network is highly integrated transmission and 

distribution network of gas wells, gathering lines, compressor stations, transmission and 

distribution lines, and storage facilities. The gas is carried from the gas fields to 

customers through an extensive network of gas pipelines. The transmission gas pipelines 

operate between 200 psi to 1500 psi, and its diameter can range from 20 inches to 42 
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inches [3]. Compressor stations are located every 50 to 60 miles to boost the pressure 

which is lost because of the friction of the natural gas moving through the steel pipe. 

Larger commercial, industrial and electric generation customers directly receive the 

natural gas from high pressure pipelines. Gate station reduces the pipeline pressure from 

transmission levels (200 psi to 1500 psi) to distribution levels (1/4 psi to 200 psi), and 

measures the gas flow rate. Natural gas then moves from gate stations to distribution 

pipelines of diameter in the range from 2 inches to 24 inches. Natural gas arrives to a 

household through a service line which is a small diameter plastic line ranging from an 

inch or less in diameter, and operating between 1/4 psi to 60 psi.  

According to a recent report by Gas Technology Institute, the integration of 

natural gas with electricity into a highly reliable energy delivery network would provide 

an increased level of reliability [6]. According to U.S. Energy Information 

Administration (EIA), natural gas fired plants will account for 63% of capacity addition 

from 2012 to 2040 [7]. 

 

2.2 Distributed Generation 

Electric power distribution is one of the major areas of an electric power 

infrastructure that transfers electricity from high voltage transmission system to the end 

users, and it consists of tap changing transformers, voltage regulators, protection devices, 

switches and reactive power compensation devices [8].  

The term Distributed Generation (DG) refers to any electric power production 

technology that is closer to the point of use, and is integrated with the distribution 

systems. Distributed generators are connected to the low or medium voltage grid. The 
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Electric Power Research Institute (EPRI) defines distributed generation as generation 

from a few kilowatts up to 50 MW [9]. ANSI/IEEE standard 1001 states that "small 

dispersed generators are less than 5 MW and normally connected to the utility 

distribution system" [10]. In distributed electricity systems the micro generators are 

directly connected to households, factories, offices and to low voltage distribution grid. 

Electricity not consumed by the directly connected customers can be fed back into the 

distribution network. Electricity storage systems can be utilized to store the excess 

generated energy. Distribution generating systems are capable of operating on broad 

range of gas fuels, and offer clean, efficient, reliable and flexible on-site power 

alternative. 

Interest in operating DG in parallel with utility distribution systems has been 

increasing rapidly because of its wide variety of advantages [11], [12]: 

1. Backup power to improve the availability of electric power 

2. Power loss reduction 

3. Transmission congestion alleviation 

4. Improved reliability 

5. Energy efficiency  

6. Improved power quality 

7. Voltage profile improvement 

8. Peak load shaving 

9. Cogeneration, also known as Combined heat and power (CHP) 

10. Selling power to the grid under net metering 
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A number of DG technologies have been promoted by different states through 

incentive programs. These include solar PV, fuel cells, wind turbines, microturbines and 

energy storage technologies. The main characteristics of DG technologies are 

summarized in Table 2.2 [13], [14] and [15]: 

 

Table 2.2 Summary of DG technologies 

 Fuel cells PV generators Microturbines 

Size range 1 kW-2 MW 1 kW-1 MW 25 kW-1 MW 

Installation cost ($/kWh) 3000-4000 6000-10,000 700-1100 

O & M costs ($/kWh) 0.003-0.015 0.001-0.004 0.002-0.01 

Efficiency 40-70% 10-20% 25-30% 

Energy density (kW/m
2
) 1-3 0.02 59 

 

A microgrid (MG) is defined as an interconnected network of distributed energy 

systems (DG resources and loads) that can function irrespective of their connection with 

the grid [16]. Microgrid generation resources can include solar, wind, fuel cells or other 

energy sources. With the efficient integration of small scale distributed generation 

resources into low voltage system and its ability to supply local customer demand, the 

microgrid have a number of benefits [17]: 

1. Encouraging public to involve in community investment of small scale 

generation 

2. Reduction in marginal central power plants 

3. Reduction in system losses 

4. Development of green and sustainable electricity 

5. Better network congestion management and improved security of supply 
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Many types of microgrids have been developed for small and large scale 

operations. American Electric Power (AEP) developed a microgrid test bed for the 

Consortium of Electric Reliability Technology Solution (CERTS). It has three 60 kW 

natural gas generators, and are connected to AEP distribution network [18]. A residential 

microgrid model is shown in Figure 2.3 where green square boxes represents household 

gas loads, and red square boxes are for natural gas microturbine gas loads. It is a part of 

Chandler residential area, and the model is developed in GASWorkS software. 

 

 

Figure 2.3 Residential microgrid model 

 

A microgrid was built at Illinois Institute of Technology (IIT) for improving the 

existing electric distribution system on the campus. The old electric distribution system at 

the campus experiences three or more power outages every year and annual losses of up 
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to $500,000. The upgraded power system consists of onsite power generation, intelligent 

system controllers, demand response capability, and self sustaining electricity 

infrastructure [19]. A microgrid developed in Kythnos is a single phase standalone 

system consisting of PV modules of 10 kW, three battery inverters of 3.6 kW each, a 53 

kWh battery bank and a 5 kVA diesel Genset [20]. This microgrid is operated in islanded 

mode, and used to research on centralized and decentralized control strategies in islanded 

mode.  

 

2.3 Natural Gas Microturbine Technologies 

Microturbines provided by Capstone Turbine Corporation are widely used by 

small scale industrial customers. Capstone microturbines are used in distributed power 

generation applications including secure power, cogeneration, resource recovery and 

hybrid electric vehicles. They provide 30 kW, 65 kW and 200 kW products. Capstone 

microturbines can be connected to the grid or they can operate as stand-alone, they can 

operate continuously or on-demand as per the requirement. These microturbines run on a 

variety of fuels: natural gas, flare gas, diesel, biogas, propane and kerosene [21].  

 

Table 2.3 Capstone microturbine C65 cost parameters 

Parameter Capital Cost ($) Replacement Cost ($) O&M Cost ($) Lifetime (hours) 

C65 microturbine 90,000 70,000 0.013 175,200 

 

The cost data of Capstone microturbine C65 is shown in Table 2.3. All the data 

were achieved from relevant technical reference [22] and with the consultation of 
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distributors of Capstone microturbines. Specifications of Capstone microturbines are 

shown in Figure 2.4. 

 

Figure 2.4 Specifications of Capstone microturbines [22] 

 

Micro Turbine Technology BV (MTT) has developed recuperated microturbines 

up to 30 kW of electric power for CHP (Combined Heat and Power) and other 

applications. They generally operate on natural gas for the domestic micro CHP 

application, though it can also operate on liquid fuels such as heating oil or diesel. Their 

most popular product in the market is 3 kW unit, which they claim can reduce the energy 



  13 

bill by 20-25 % [23]. It meets the environmental standards with low noise and exhaust 

emissions.  

As a part of SRP's renewable energy program a commercial-scale fuel cell power 

system utilizing natural gas has been implemented at ASU east campus. The fuel cell is a 

large-scale 250 kWac molten carbonate fuel cell system, fueled by natural gas [24]. 

Electric output from the fuel cell (480 Vac) is stepped-up to 12 kV and interconnected to 

the SRP electric grid. Natural gas is supplied at 15 psi and its annual energy output is 

1,752 MWh. 

 

 

Figure 2.5 Commercial fuel cell running on natural gas at ASU east campus [24] 

 

DOE's Pacific Northwest National Laboratory (PNNL) developed a Solid Oxide 

Fuel Cell (SOFC) system that uses methane, the primary component of natural gas, as its 

fuel and achieves efficiency of 57 percent, significantly higher than the 30 to 50 percent 

efficiencies previously reported for other solid oxide fuel cell systems. The pilot system 
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generates about 2 kW of electricity, which can be scaled up to produce between 100 and 

250 kW [25]. 

 

2.4 Impacts of DG on the Transmission and Distribution System 

DG may have positive and negative impacts on the transmission and distribution 

system. The current penetration level of DG is low which have resulted in relatively 

lower impact of DG on the distribution and transmission system [26]. With the increase 

in DG penetration level, the expected impacts will increase. These impacts would first 

occur on the distribution system due to its direct connection with DG; however, with 

further increase in DG penetration level, transmission system will also have impacts. 

Many of the DG impacts are because the grid was not originally designed to 

accommodate generation on the distribution system. A report published by Rocky 

Mountain Institute and PG&E in March 2012 claims that "DG that is at the right place at 

the right time will create the greatest value, while additional electricity supply in the 

wrong place at the wrong time could result in added costs to the system." 

As DG penetration level increases, there are more chances of reverse power flow, 

that is, generation flowing back to the distribution system. Reverse power flow can 

impact the coordination between DG installations and existing distribution feeder 

automated protection features. Also, some load tap changers that regulates voltage may 

not function correctly if electricity flows opposite to their original design [11]. 

2.4.1    Size and Location Dependent Impact of DG 

The capacity and location of the DG unit can affect its impact on the distribution 

grid. A smaller DG unit generally has lower risk of having negative impacts and causing 
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grid instability through voltage and frequency fluctuations, faults, tripping protection 

schemes or back-feeding onto the transmission system. However, these impacts are also 

dependent on the distribution circuit. Some circuits may have necessary characteristics 

and capacity to easily accommodate a single large DG unit, while other circuit may not 

be able to handle a large DG unit [11]. 

Location of the DG unit along the radial distribution circuit, i.e., whether it is near 

the substation or far from substation, affects the size of DG unit. In general, a larger 

number of small DG units would have lesser negative impact on grid operations than a 

smaller number of large DG systems. Geographic locations of DG units affect grid 

operations. If large numbers of DG units are clustered then it can affect grid operations, 

as they resemble a single large DG unit. 

 

2.5 Network DG Capacity Assessment  

A number of publications have investigated the interaction between electricity and 

natural gas networks. Most of the existing publications deal with interaction between 

electricity and natural gas networks at a transmission level rather than the distribution 

level. In [27], the proposed model is formulated as a mixed-integer linear optimization 

problem where the investment and operation costs are minimized to determine the 

optimal location and technologies of new power generation. The case study of Brazilian 

integrated electricity and gas system is studied. Reference [28] focuses on integrated 

formulation of steady state analysis of electricity and gas systems considering the effect 

of temperature in the natural gas system operation, and distributed slack node technique 

in the electricity network. The Newton-Raphson formulation is used to demonstrate the 
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applicability of the proposed approach on Belgian gas network combined with the IEEE-

14 test system. 

The nexus between distributed generation, urban gas and water network 

infrastructure has been discussed in [29], [30] and [31]. An integrated dispatch model is 

discussed in [29] where optimal DG capacity is assessed for integrated electricity and 

water network in urban setting. Reference [32] analyzes the impacts of gas and water 

distribution networks on the optimal locations and capacity of distributed generation. A 

microgrid model is developed for residential community in Phoenix using Photovoltaic 

(PV) modules, microturbines and fuel cells as distributed energy resources. The model 

proposes using exhaust heat from the microturbines to provide daily hot water demand, 

and absorption chillers are connected to the microturbines to provide cooling, achieving 

combined cooling, heating and power (CCHP). Reference [33] discusses a methodology 

of planning complex energy service systems with multiple energy carriers. A 

methodology including economic, technical and environmental aspects is developed and 

is used for integrated planning of electricity, gas and heat.  

Various mathematical optimization based studies in the literature assesses optimal 

DG location and capacity. In [34] and [35], the AC optimal power flow (ACOPF)-based 

techniques are used to analyze the optimal DG capacity, for which the DG locations in 

the network are fixed and maximum DG power injections are evaluated. Multi-objective 

optimization techniques are proposed for DG capacity assessment in [36] and [37]. 

Reference [38] discusses an optimization model to assess optimal DG locations and 

capacity based on the cost-benefit analysis approach. A heuristic method based on exact 

loss formula is proposed in [39]. The location and size of the first DG unit is search by 
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the algorithm, it is then fixed and all the possible solutions for second DG unit are 

checked. This type of heuristic method does not search the whole solution space, and the 

result might not be optimum. The 2/3 rule is often used for capacitor allocation in electric 

distribution network. Similar approach is used in [40] to analyze radial distribution 

system with uniformly distributed load for power loss minimization. However, this 

approach does not provide a proper solution when the load distribution type is varied, and 

it cannot be applied in meshed network.    

DG has a wide variety of advantages, e.g. power loss reduction, voltage profile 

improvement, reliability and transmission congestion alleviation [41]. However, 

inappropriate planning may bring in negative impacts to the operation and reliability of 

distribution systems. It is essential to allocate distributed generation at proper location 

and with optimal capacity to maximize the economic benefits and overall system 

efficiency. Allocating DG with inappropriate planning may lead to higher power loss as 

compared to when no DG exists in the distribution network at all [42]. In [41], the power 

loss profile for the system with DG installation is discussed. An approach to perform 

repeated power flow on OpenDSS using MATLAB linked through COM server is 

developed. Results obtained from the developed method are compared with repeated load 

flow method, and they are fairly equal. Some analytical approaches for optimal DG 

sizing and allocation for radial and networked distribution system to minimize the system 

power loss are discussed in [43]. The proposed approaches are not iterative algorithms, 

like power flows, and there are no convergence problems involved. Although, results are 

obtained very quickly from this analysis, only overhead lines with uniformly distributed 
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reactance and resistance along the feeder is considered. However, in practical distribution 

network conductor size gradually decreases form substation to the load centre [44].  

In [45], methodology of optimally allocating DG units in meshed electric power 

systems is discussed. The objective function consists of system loading margin and the 

profit of the distribution companies (DISCOs) over the planning period, and it is solved 

using genetic algorithm (GA). In [46], a multi-objective index-based approach to 

optimally allocate DG units in distribution system with non-unity power factor 

considering different load models is discussed. The proposed multi-objective function 

considers a wide range of technical issues and particle swarm optimization technique is 

used. In [47], an adaptive weight particle swarm intelligence optimization algorithm has 

been developed to determine optimum generation capacity of multiple DG units. The 

unbalanced three phase distribution load flow has been performed using OpenDSS tool 

and IEEE 123 node test feeder is used as test bed. In [48], an optimization approach 

based on artificial bee colony (ABC) algorithm is used to determine the optimal size, 

power factor and location of DG unit to minimize the total system power loss. These 

techniques give a single or multi (2-4) large DG units in the distribution network. 

However, the objective of the proposed research study is to allocate several (20-40) 

smaller DG units in the residential distribution network. Although these techniques based 

on artificial intelligence (AI) provides near optimum solution, they have slow 

convergence characteristic and are computationally very demanding [44]. 

Most of the research on DG allocation and sizing has been based on a balanced 

distribution system. However, the distribution network is unbalanced three-phase system 

and more analysis is needed based on this consideration. A methodology based on 
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sensitivity analysis has been proposed in [41] and [47]. Sensitivity value for each location 

is captured by analyzing the change in power loss when a small DG unit is placed at that 

location. The capacity of DG unit at the selected location is decided by increasing the size 

of DG until the total system power losses starts increasing. This approach results in a 

large DG unit at a single location. However, it might not be possible to install large 

microturbine units in residential areas. 

 

2.6 Conclusions  

To the knowledge of the author, the optimal locations and capacity of natural gas 

microturbines have not been assessed at a distributed level. Most of the existing 

publications investigating the interaction between electricity and natural gas networks 

deals at a transmission level. Various mathematical optimization based studies have been 

performed to assess optimal DG location and capacity, but they are computationally 

complex and yield single or multiple (2-3) optimal DG locations. A generalized approach 

needs to be developed to assess optimal placement of multiple natural gas microturbine 

units in residential distribution network.  
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CHAPTER 3 

ELECTRICAL DISTRIBUTION MODELING 

3.1 Test System and Analytical Tools 

The electrical system selected has to be a distribution system such that energy and 

gas infrastructure can be developed based on it. Local utilities Salt River Project (SRP) 

and SouthWest Gas were consulted for residential area selection. SRP suggested 

residential area of Chandler consisting of 200 houses. The area is surrounded by Adams 

Ave on East, McQueen Road on West, Ocotillo Road on North and Brooks Farm Road 

on South, as shown in Figure 3.1 and Figure 3.2.  

 

 

Figure 3.1 Chandler residential area 
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Chandler area was first selected as the study area and power flow models were 

developed in PowerWorld Simulator software. However, only feeders' data were 

provided with insufficient information by Salt River Project (SRP). Due to lack of 

accurate and complete data, the real test bed plan was abandoned.  

Distribution working group of the IEEE PES Distribution System Analysis Sub-

committee have released several unbalanced multi-phase test feeders [49]. These test 

feeders have unbalanced loads with various types of load models, different types of 

conductors including overhead and underground lines, and voltage control devices like 

voltage regulators. These distribution feeders are considered for research and planning 

purposes. The IEEE 123 node test feeder is selected as the electrical system for this 

study, as shown in Figure 3.3. This system has been already complicated enough as a 

distribution system feeder and enough electrical data are provided. 

This test feeder is actually extracted from some real distribution system in US; 

therefore, it can be used for research purpose to represent the real system feeder. The 

system voltage level is 4.16 kV. The main feeder is overhead three-phase, most lateral 

feeders are single phase overhead, and some two-phase overhead feeders are also present. 

One substation transformer and distribution step-down transformer are connected with 

this feeder. Four step-type voltage regulators are included to improve voltage profile of 

the system, and four shunt capacitor banks are present for reactive power compensation. 

It has an unbalanced loading with all combinations of load types, including constant 

current, constant power and constant impedance. Three-phase switches are also present.   
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Figure 3.2 IEEE 123 node test feeder [49] 

 

Electric Power Research Institute's (EPRI) open source software Distribution 

System Simulator (OpenDSS) is used to model unbalanced network components and 

loads. OpenDSS is a script-driven simulation engine that is normally configured as 

shown in Figure 3.4. The simulator can be interfaced to data sources and other programs. 

The engine has a Windows Computer Object Model (COM) interface through which its 

features can be accessed by other programs [50]. 
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Figure 3.3 OpenDSS Architecture [51] 

 

OpenDSS is a frequency domain tool which supports all rms steady-state analyses 

and some of its key features are discussed below [51]: 

1. It can be interfaced externally with other software, such as Visual Basic, 

MATLAB, etc. 

2. It is possible to model n-phase lines of any arbitrary configuration. 

3. The 'dynamic' solution mode can be used for dynamics of power conversion 

elements. 

4. It is an object-oriented program which gives flexibility in adding new models of 

components and controls without the need to be concerned about other program 

parts. 

5. It can simulate different load types with different configurations and loadings, as 

well as many different load types on the same node.  

6. It can perform sequential time simulations called 'quasi-static solutions.' This 

feature can be used to perform daily, yearly and duty cycle simulations. 
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Figure 3.4 shows the internal architecture of the OpenDSS software. A relatively 

small executive manages most of the interactions; it processes the main script commands 

and redirects the remainder of it to each class of object for further processing. The DSS 

Executive stored global variable and options; it has one Circuit object which has a 

Solution and five classes of general and circuit elements.  

 

 

 

Figure 3.4 OpenDSS object structure [51] 
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3.2 Power Loss in Distribution System with DG Placement 

Power losses occur throughout the transmission of electric energy from generating 

centers to the load centers due to transmission and distribution line resistances. A 

distribution system operates at a lower voltage level than a transmission system, and it 

has a higher resistance. This results in higher power losses in the distribution system than 

the transmission system. 70% of power losses occur in the distribution network, and only 

30% of power losses occur in transmission network [52]. High distribution losses have 

detrimental impact on the system as it increases the energy demand which results in 

increase in cost of production. Due to increased load currents across the devices, 

additional compensation devices are required further increasing the costs. Hence, it is 

beneficial to keep distribution losses within a limit to maximize overall system efficiency 

and economic benefits. 

Losses in a distribution network comprises of variable and fixed losses. Fixed 

losses are referred as iron losses and they mainly occur in the cores of transformers and 

motors, while variable losses are referred as copper losses and they occur in power 

delivery equipments, such as lines, cables and in transformer copper parts. The variable 

loss is the most significant part of the losses and it is proportional to the square of the 

current flowing through the line or device.    
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Figure 3.5 Radial line with one generation and one load [53] 

 

Real power losses in any element are associated with the current flowing through 

it and its series resistance. Total real power loss in a distribution network consisting of 'n' 

branches is given by: 

       
   

 
                                                       (3.1)           

where, PL is the total real power loss in the system, Ii and Ri are the current and 

resistance of the associated element respectively. Current in any element can be obtained 

from the load flow study. Considering a simple three-phase balanced equivalent radial 

transmission line with generation as shown in Figure 3.5, the real power losses are: 

                                                               (3.2) 

where, R is per phase resistance of the line, and I is current flowing through the 

line which can be obtained using: 

   
  

         
                                                   (3.3) 
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where, PG refers to the power generated, VG is the magnitude of voltage at 

generation node, and       is the generator power factor. Using the expression for I, the 

power loss from (3.2) can be expressed as: 

    
      

             
                                                 (3.4) 

Considering generator voltage and power factor to be constant, the losses can be 

written as: 

      
                                                        (3.5) 

where, 

   
 

             
                                                (3.6) 

From (3.5), we can say that power losses in a system are an approximate quadratic 

function of generation, as discussed in [54]. Placing a DG unit in distribution network 

will affect the power loss profile of the system. Power loss curve when the generation 

unit is varied at a particular location is approximately a quadratic function. The total 

system losses decreases when the DG size (penetration level) is increased up till a point, 

this particular penetration level is called optimum DG size for that particular node. If the 

DG size is increased beyond the optimum size, the system loss increases. This variation 

of power loss with variations in DG size is shown in Figure 3.6 and it has been discussed 

in [44]. 
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Figure 3.6 Power loss variations for different DG sizes at a particular node 

 

The electrical distribution system is generally designed for unidirectional power 

flow from distribution substations to the end users. When a DG is placed in the 

distribution network, it is desirable that power be consumed within the distribution 

system, thereby avoiding reverse power flow and reducing the system losses. However, 

placing a DG unit of size greater than optimal capacity will result in reverse power flow 

towards the distribution substation. A DG is placed at node 83 in the IEEE 123 node test 

feeder and its size is varied, the OpenDSS file is given in Appendix A and developed 

MATLAB code is given in Appendix B. The variation in power loss is shown in Figure 

3.7. 
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Figure 3.7 Power loss variations for different DG sizes at node 83 

 

The power loss variation pattern is followed when DG size is varied at each 

location; however, the optimal DG size for each location varies. Power loss variation for 

different DG sizes at node 22 and node 33 is shown in Figure 3.8. The optimal DG size 

for node 76 is 2200 kW, and for node 64 is 1500 kW. This reflects that DG units have 

location impacts on power loss variation. 

 

      

Figure 3.8 Power loss variations for different DG sizes at node 76 and 64 
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3.3   Voltage Profile with DG Placement 

Power system stability comprises of frequency stability, angle stability and 

voltage stability. Voltage stability refers to the ability of a power system to maintain 

steady voltages at each of its buses when there is an uncontrollable or progressive voltage 

drop after a disturbance, increase in load or change in operating conditions [55]. Voltage 

instability can result in voltage collapse under which the voltage becomes uncontrollable 

after voltage instability [56]. Voltage collapse can occur due to inadequate reactive power 

support or a low voltage profile [57]. A DG is generally expected to improve the voltage 

profile; however, this depends on the penetration level, location and DG technology.  

Distribution networks are modeled for power delivery and consumption as a 

passive network considering the drop in voltage that takes place in distribution network. 

The resistance of the distribution system conductors is very high which results in voltage 

drops along the distribution network from the distribution substation to the load centre. 

For equivalent radial transmission line shown in Figure 3.5, the voltage drop equation can 

be written as: 

                                                         (3.7) 

where, VG and VL are the magnitude of voltages at generation and load node 

respectively, I is current flowing through the line, R is per phase resistance of the line, 

and X is per phase reactance of the line. The impact of DG placement on the voltage 

profile is studied by placing DG at a particular node in the IEEE 123 node test feeder. 

The voltage profile of the system in the base case is shown in Figure 3.9, and the 
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MATLAB code is given in Appendix-C. The voltage regulators are included in the 

system as defined in the base system.  

 

 

Figure 3.9 Unbalanced voltage profile of IEEE 123 node test feeder 

 

The integration of DG into the system can create a voltage rise; this is particularly 

true if the DG penetration level is high at a particular node. 1500 kW and 4000 kW DG 

units are placed at node 83 in the test feeder and the corresponding voltage profile are 

shown in Figure 3.10. IEEE 1547 specifies the interconnection standards for distributed 

energy resources [58]. The voltage regulation should be within +5%. However, when a 

4000 kW DG is placed at node 83 in the system, the voltage rises beyond five percent at 

some of the nodes. This analysis shows that voltage profile of the system depends on DG 

penetration level.   
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Figure 3.10 Unbalanced voltage profile with 1500 kW and 4000 kW DG at node 83 
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CHAPTER 4 

POWER LOSS MINIMIZATION BASED ON OPTIMUM DG PLANNING 

4.1    Sensitivity Calculation 

From the previous discussions, it is clear that the location and capacity of DG 

units have an impact on system losses and voltage profile, which in turn affects 

economical benefits of integrating DG into the distribution networks. In this section, a 

heuristic method is proposed for loss reduction in a distribution system. The developed 

electric load flow architecture is shown in Figure 4.1. Custom scripts for allocating DGs 

in the IEEE 123 node test feeder are developed in MATLAB and it is interfaced with 

OpenDSS Simulator through COM Interface. The IEEE 123 node test feeder is developed 

in OpenDSS using the architecture explained in Figure 3.4, and multiple distributed load 

flows are run in it. Load flow results after each distributed load flow are exported to 

MATLAB where it is processed and stored to compare with the results of other load 

flows, which suggests optimal locations to place DG units to minimize the losses. 

 

 

Figure 4.1 Electric load flow architecture 
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A methodology based on continual sensitivity analysis is proposed. The 

sensitivity index   
  is defined as: 

  
  

                                                     

 
               (4.1) 

where, n is the node in the distribution system for which the sensitivity is 

calculated, i is the iteration, and   is the capacity of DG in kW.   
  reflects the sensitivity 

value of node n when (i-1) previously selected DG units are in the distribution system, 

and another DG of   kW is placed at node n. 

The objective of the analysis is to find multiple locations in the distribution 

system where small size DG units can be placed to minimize the system losses. A DG is 

placed at node 83 in the IEEE 123 node test feeder and its size is varied to analyze its 

effect on the sensitivity values. The plot of sensitivity vales is shown in Figure 4.2. Here, 

n is node 83,   = 100 kW and i is varied.  

 

Figure 4.2 Initial sensitivity values at node 83 with DG size variation 
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It is a continuously decreasing graph, and it reflects that with each subsequent DG 

addition at the same location the loss reduction keeps on decreasing, that is, added benefit 

decreases. A positive sensitivity index indicates that there are some positive impacts of 

DG allocation on the network power loss profile. Negative values of sensitivity reflect 

that the system losses have start increasing as compared to the previous iteration, which 

is not desirable when planning for DG placement. There might be several locations with 

initial sensitivity values near each other. But, when a certain DG is placed at a location, 

and sensitivity values are again calculated, they will be different than initial values. Table 

4.1 shows top ten buses with maximum initial sensitivity values for IEEE 123 node test 

feeder, where sensitivity of each node is calculated by (4.1). 

 

Table 4.1 Initial sensitivity values 

Rank Bus number Sensitivity 

1.) 95 6.0169 

2.) 93 6.0118 

3.) 91 6.0017 

4.) 89 5.9854 

5.) 87 5.9579 

6.) 66 5.953 

7.) 83 5.9179 

8.) 82 5.9165 

9.) 81 5.9082 

10.) 65 5.906 
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Bus 95 has maximum initial sensitivity of 6.0169. A 300 kW DG is placed at bus 

95, and the sensitivity values are again calculated. Table 4.2 shows top ten buses with 

maximum sensitivity values after the placement of 300 kW DG at bus 95. 

 

Table 4.2 Sensitivity values after 300 kW DG placement at bus 95 

Rank Bus number Sensitivity 

1.) 66 5.3565 

2.) 65 5.3094 

3.) 83 5.1505 

4.) 82 5.1492 

5.) 81 5.1409 

6.) 80 5.1279 

7.) 64 5.1161 

8.) 79 5.084 

9.) 78 5.08 

10.) 77 5.067 

 

From the above results, it is evident that there are several nodes with initial 

sensitivity values near 6. A 300 kW DG is put at the node 95 which had the highest 

sensitivity value, and the sensitivity values are again calculated. As expected, the new 

sensitivity values are lower than the initial sensitivity values, and the buses having the 

maximum sensitivity values are different than the buses which had highest initial 

sensitivity values.  
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4.2    Continuous Sensitivity Analysis 

A methodology based on continual sensitivity analysis is developed and its 

algorithm is shown in Figure 4.3. The three phase unbalanced load flow is done in 

OpenDSS Simulator, and the algorithm is developed in MATLAB. OpenDSS is 

connected to MATLAB through COM server to accept parameters from MATLAB, and 

then transfer back the results. The relevant code is given in Appendix D.   

 

 

Figure 4.3 Algorithm for continual sensitivity analysis 
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Step 1: Base case power flow is run in OpenDSS to calculate initial system 

losses. This value is exported to MATLAB and saved for further comparison.  

Step 2: A small DG of   kW is put at each node in the distribution network and 

its effect is analyzed by calculating change in system losses. Sensitivity value for each 

node is calculated by formula given in (4.1) and it reflects the change in losses when an 

additional   kW DG is placed in the distribution system.  

Step 3: The location with maximum sensitivity as suggested by step 2 is selected 

for a 100 kW DG placement. For this study, size of a single DG unit is selected as 100 

kW because of most of the natural gas microturbines in the market are available in unit 

size of 100 kW.  

Step 4, 5 and 6: The new system loss with an additional 100 kW DG placed at the 

selected location is calculated. If the system loss of the current iteration is less than the 

system loss of the previous iteration, the selected DG is placed in the system, and step 2 

to step 5 are repeated.  

Step 7: With the selected DG in the system, the sensitivity values are again 

calculated for the next iteration at each location up till a point where system losses starts 

increasing. When the losses start increasing no further DG is added in the system, and the 

result is displayed.  

 

4.3   Results and Analysis of Continual Sensitivity Analysis 

When the developed continual sensitivity analysis is simulated, placing 48 DGs of 

100 kW each is suggested for system loss minimization. Three DGs are suggested at node 

76, two DGs at node 48, and following 43 locations are suggested a single DG: node 10, 
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101, 104, 105, 108, 11, 111, 113, 114, 16, 19, 2, 20, 25, 27, 29, 33, 35, 36, 4, 42, 46, 47, 

49, 5, 50, 53, 6, 62, 64, 65, 66, 67, 71, 72, 75, 80, 82, 86, 89, 9, 93 and 99. 

When a total of 4.8 MW DG is installed in the distribution network, the system 

losses are reduced to 12.4 kW. Initial system losses are 95.7 kW, which results in 

Percentage Loss Reduction (PLR) of 87%, where PLR is given by: 

 

    
                                                                 

                     
                 

(4.2) 

However, it is realized that the loss reduction for each iteration keeps on 

decreasing. That is, when first 10 DGs (iteration 1- iteration 10) are placed in the 

distribution system, the losses are reduced from 95.7 kW to 50 kW, resulting in loss 

reduction of 45.7 kW. Variation of power loss with optimal DG placement is shown in 

Figure 4.4. 

 

Figure 4.4 Variation of power loss with optimal DG placement 
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Placing next 10 DGs (iteration 10 - iteration 20) reduces the system losses to 26 

kW, resulting in loss reduction of 19.7 kW, which is significantly lower than 45.7 kW. If 

40 DGs are placed in the system rather than 48 DGs, the system losses are reduced to 

12.9 kW and PLR of 86.5% is achieved. If 35 DGs are placed, the system losses are 

reduced to 13.9 kW and PLR of 85.5% is achieved. 

A constraint of five percent over-voltage is included in the developed algorithm. 

If at any iteration of DG allocation, the voltage rises beyond 1.05 pu then no further DG 

placement is done. The voltage at each node is ensured to be within limits at each 

iteration. All the voltage regulators are assumed to be on, as per the base case. Three 

phase unbalanced voltages when 48 DGs are placed in the distribution system is shown in 

Figure 4.5.  

 

 

Figure 4.5 Unbalanced voltage profile with 48 DG units 
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It is observed that a high penetration of distributed generation is possible without 

violating the steady-state voltage stability limit. As these test system come with voltage 

control devices (voltage regulators) and compensation devices (shunt capacitor banks), 

voltages are maintained throughout the distribution network.   

 

4.4    Annual Simulation Analysis 

The continual sensitivity analysis methodology is developed and applied to peak 

load condition, but there are several light load days in a year. Figure 4.6 shows an annual 

load curve provided by EPRI along with OpenDSS. The load multiplier (LM) value for 

some days can be as low as 0.4.  

 

 

Figure 4.6 Annual load profile 
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Peak load losses are not necessarily indicative of annual losses occurring in the 

distribution network. If DG penetration is too high on a light load day then instead of 

losses minimizing, the system losses with DG placement might be higher than the base 

case losses. The optimally selected locations and capacity of DG on the basis of peak 

load condition might be inappropriate planning for a light load day. The 48 DGs 

suggested by the continual sensitivity analysis methodology are placed in the distribution 

network and the system losses are calculated for peak, moderate, light and very light load 

conditions. The results are showed in Table 4.1. It is evident that with high DG 

penetration level, the system losses will be higher than the base case losses for very light 

load conditions. Here, system losses doubles when high DG is penetrated in the 

distribution network on a very light load day (LM = 0.4).  

 

Table 4.3 Loss comparison with high DG penetration  

Load Condition  Base Load  Base Loss  Loss with 48 DG  Change in Loss  

Peak Load (1)  3.49 MW  95.7 kW  12.4 kW  + 87 %  

Moderate Load (0.8)  2.8 MW  61 kW  12.1 kW  + 80.2 %  

Light Load (0.6)  2.1 MW  35.1 kW  20.2 kW  + 42.4 %  

Very Light Load (0.5)  1.75 MW  25.3 kW  27.2 kW  - 7.5 %  

Very Light Load (0.4)  1.4 MW  18 kW  36.7 kW  - 103.9%  

 

Some natural gas microturbines can be turned off on a light load day to reduce the 

DG penetration level. Since the initial investment of natural gas microturbines is high, 

this option is not considered in this study. If some microturbines are not used for a part of 

the year, it will result into increased payback time of the project. 
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The continual sensitivity analysis is applied for LM = 0.8, 0.6 and 0.5, and the 

results are compared with those obtained when it was applied for LM = 1.  

Placing 38 DGs of 100 kW each are suggested for system loss minimization when 

continual sensitivity analysis is done for LM = 0.8. Two DGs are suggested at node 48, 

49, 76 and 9, and following 30 locations are suggested a single DG: node 105, 108, 11, 

112, 113, 150, 16, 19, 20, 26, 29, 33, 35, 36, 4, 42, 53, 6, 63, 65, 66, 67, 71, 72, 75, 78, 

81, 87, 93 and 99.  

31 DGs of 100 kW each are suggested for system loss minimization when 

continual sensitivity analysis is done for LM = 0.6. A single DG is suggested at node 101, 

108, 11, 110, 113, 150, 16, 20, 26, 28, 33, 36, 4, 42, 47, 48, 49, 57, 6, 64, 65, 71, 72, 75, 

76, 81, 86, 9, 90, 91 and 98.  

Placing 24 DGs of 100 kW each are suggested for system loss minimization when 

continual sensitivity analysis is done for LM = 0.5. Two DGs are suggested at node 76 

and following 22 locations are suggested a single DG: node 1, 108, 11, 113, 150, 20, 28, 

33, 35, 47, 48, 49, 6, 63, 65, 67, 71, 75, 81, 9, 91 and 98. 

48, 38, 31 and 24 DGs are placed in the distribution network at the locations 

suggested, and the losses are compared with the base case losses for LM varying from 

0.35 to 1. The results are showed in Figure 4.7, and the relevant MATLAB code is given 

in Appendix-F.  
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Figure 4.7 Loss analysis with optimal DG placement 

 

The base peak load losses when there is no DG in the system are 95.7 kW, which 

can be minimized to 12.4 kW by placing 48 DG, that is, planning DG for LM = 1. 

However, during a light load day (LM = 0.4 - 0.5), the system losses are higher than the 

base case losses. If DG is planned for LM = 0.5, though the losses are minimum during a 

light load day, the losses are not minimized during a high load day.  

It is realized that instead of minimizing the peak load losses, annual average 

losses should be minimized and an optimal value of LM should be determined for which 

the annual average losses are minimum when DGs are allocated as suggested by that LM 

planning. Loadshape provided by EPRI along with OpenDSS as shown in Figure 4.6 is 

used to run annual simulation. The annual simulation is run for 5 cases: base case, and 

placing 48 DG, 38 DG, 31 DG and 24 DG in the distribution network. The DGs are 
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placed at the locations suggested by the continual sensitivity analysis methodology and 

the load flow is performed to calculate the annual average losses occurring in the system. 

The results are shown in the Table 4.4.  

 

Table 4.4 Annual average losses with optimal DG placement 

Case  Total Loss (kWh)  Annual Average Loss (kW)  PLR (%)  

Base Case  332,550  37.96  0  

48 DG (LM=1)  183,600  20.96  44.8 %  

38 DG (LM=0.8)  97,278  9.88  73.4 %  

31 DG (LM=0.6)  59,050  6.74  82.2 %  

24 DG (LM=0.5)  68,504  7.82  79.4 %  

 

High penetration of DG in the distribution system minimizes the losses during 

peak load condition, and low penetration of DG minimizes the losses during low load 

condition. But, either of the DG planning will not be able to minimize the annual average 

losses. It is important to determine an optimal LM for which when DG planning is done, 

it gives the minimum annual average losses. A methodology combining continual 

sensitivity and an annual simulation analysis is developed. Continual sensitivity is done 

for LM = 0.35 to 1. For each iteration different DG capacity and locations are suggested 

which are placed in the distribution network and then the annual simulation is run to 

calculate the annual average losses in the system after optimal DG placement. A time-

series simulation is performed to determine the annual average power losses. During this 

process, a sequential 8760-hour simulation is performed with 1 hour interval for different 

proposed DG placement in the distribution network. The modified algorithm is shown in 

Figure 4.8. 
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Figure 4.8 Modified algorithm for optimal DG placement 
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Variation in minimized average losses for different load multipliers are plotted 

and shown in Figure 4.9. 

 

 

Figure 4.9 Annual simulation analysis results  

 

The results demonstrate that if DG planning is done on the basis of peak load, the 

losses are minimized for peak load but annual average losses are not minimum. Here 

annual average losses for peak load planning are 21 kW which are the maximum if 

compared with annual average losses for DG planning for other load multipliers. For this 

study, if DG planning is done for LM = 0.6, the minimum annual average losses are 

obtained. Maximum Percentage Loss Reduction (PLR) of 82.2% is obtained and annual 

average losses are minimized to 6.7 kW when 31 DGs are placed in the distribution 

network as suggested by planning done based on 0.6 LM. There is a significant reduction 

in annual average loss when DGs are planned on the bases of annual simulation analysis.  
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CHAPTER 5 

NATURAL GAS NETWORK MODELING 

5.1    Natural Gas Distribution System 

In most major cities of United States, natural gas is used as a clean fuel choice for 

cooking and heating. In countries like United States, Russia, Brazil and Europe, the 

natural gas electricity generation have rapidly increased in the last decade due to increase 

in number of combined cycle natural gas thermal power plants, which directly integrates 

electric power and natural gas [59]. Electric power generation using natural gas has 

several advantages, e.g. economic competitiveness, low environmental impact, and rich 

in natural storage, and thus it is a preferable source of electricity generation as compared 

to other fossil fuels such as coal and oil. 

Transmission pipelines transport natural gas from compressor stations and storage 

facilities to regulators which reduces the gas pressure before feeding it into distribution 

network. Transmission gas pipelines generally operate at a higher pressure (more than 60 

psig) and are larger (more than 24 inches) than distribution pipelines. This constrains the 

gas capacity that can be transported and stored in the gas distribution system. There is a 

close interconnection between gas supply in gas distribution network and natural gas 

microturbine placement in the electric distribution network. Gas consumption by 

microturbines affects the gas flows and reduces the pressures in the gas distribution 

network. It is necessary to integrate electric and gas distribution network to assess the 

possible placements of natural gas microturbines.    

Gas transmission pipeline system map of PG&E's area around Mountain View, 

CA is showed in Figure 5.1. Any transmission lines operating at or above 60 psig is 
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included in this map, which means the additional distribution pipelines are not shown in 

this map. A properly maintained pipe can operate safely for 100 years or more, although 

age of the gas pipeline is a relevant factor while reviewing the status of pipeline and 

planning for pipeline reinforcement. The pressure is controlled in the pipeline system by 

pressure regulating stations and over-pressure protection devices, these systems operate 

to ensure that pressure is within the safety limits [60].  

 

 

Figure 5.1 Gas transmission pipeline system map [61] 

 

Local natural gas utility, SouthWest gas was consulted for detailed information on 

gas distribution network and typical values in Arizona residential gas distribution 
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networks. Sub transmission gas network carries natural gas at 300 psi and compressor 

stations are placed at every few miles to compress the gas down to 60 psi. The residential 

gas demand for cooking and heating varies during the year, and it can be approximated to 

35 cfh (cubic feet per hour) for winter and 10 cfh for summer for a typical Arizona 

household. Winter gas demand is higher than summer since heating is required.  

For this study, the worst case scenario is analyzed and hence the maximum 

pressure, that is, 35 cfh is considered for each residential load in the gas distribution 

network. Actual pressure requirement of residential load varies, and it can be as low as 

1/4 psi. However, utilities regularly monitor the pressure in gas pipelines, and if they 

sense that gas pressure has been below a set pressure level for a long duration, they start 

planning for pipeline reinforcement. The pressures are not measured at every house and 

street on a real time basis. Utilities work on a historic data, and predict pressure in the 

next week and next month. If they see pressure to be dropping below the pressure 

constraint, then some measures needs to be taken.  

The pressure constraint can be utility and area dependent. Some utilities have a 

strict pressure constraint, as well as, some areas might need stricter constraint due to 

older pipelines. As a rule of thumb, the tail-end pressure (lowest pressure in the system) 

is not allowed to get less than about half of the supply pressure under peak conditions. 

Here, supply node pressures are considered to be at 60 psi. Hence, while placing natural 

gas microturbine DGs in the distribution network, the pressure at each node should be 

maintained above 30 psi.  

 

5.2    Natural Gas Network Design 
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The software used to model the natural gas distribution network is GASWorkS 

9.0. The GASWorkS 9.0 is a windows based steady-state network modeling tool which 

can be used to design and analyze transmission, distribution, gathering and plant piping 

systems containing natural gas or other compressible fluids [62].  

The nodes modeled in the gas distribution network exceeded the nodes which can 

be modeled in a demo version of the software. Upon the request of the author, the 

distributor of this software agreed to offer four month free academic version of 

GASWorkS 9.0 with no limit on the node number, the duration of which was 

subsequently extended upon request and constant support was provided in modeling the 

IEEE 123 gas distribution network as close as possible to a typical US residential area. 

However, GASWorkS 9.0 does not have any way to interact with MATLAB or any other 

third party application through COM server, and they are currently considering such 

options for a future release.  

It is assumed that at all the nodes in IEEE 123 node test feeder where an electric 

load is present, the natural gas load is also there. Each node in the gas distribution 

network corresponds to the same node in the electric distribution network, which 

represents a cluster of houses. The base natural gas consumption by these loads is 

calculated by approximating households at each node and then multiplying by hourly 

winter natural gas consumption of individual household. Each household is assumed to 

have a peak electric load of 4 kW, which approximates total electric load of 3.49 kW of 

IEEE 123 node test feeder as 872 households. Each household is given a gas load of 35 

cfh as per the winter data, which approximates total gas load of the distribution network 

to be 30,537.5 cfh or 30.53 Mcfh (thousand cubic feet per hour). The gas loads for 



  52 

households are based on representative diversified values for central Arizona. The 

developed IEEE 123 node gas distribution network is shown in Figure 5.2. 

 

 

Figure 5.2 IEEE 123 node gas distribution network 

 

As natural gas flows through the gas distribution network, pressure and energy are 

lost due to heat transfer and heat [4]. Gas load flow assesses the pressure values at all the 

consumption nodes and flow rates for all pipelines in the network. Known input data are 
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pressure values at supply nodes, load requirement in the system, and the connectivity 

matrix. Either an iterative process can be used to solve the set of non-linear equations or 

software can be used to run the simulation and give results.  

There are many possible combinations of pipe diameter, material, valves, 

regulators, etc., making the gas distribution system design a complicated design. Smaller 

size service lines which are less than one inch in diameter are not modeled in this 

distribution network, they connect and provide gas to each individual household. Besides 

gas distribution pipelines, a gas distribution network also comprises of valves and 

regulators. Valves are not modeled in this distribution network as they are used only to 

switch on or off the gas supply in a specific area, not modeling them in the network does 

not have any effect on gas pressure drops in the network. The regulators are used to 

reduce the output gas pressure and they are also not modeled in this distribution network. 

Medium-density polyethylene (MDPE) plastic pipes are selected for all pipelines 

as they are anticorrosive, and they are generally used in the residential underground gas 

distribution network. Gas pipeline diameter can vary from half inch to eight inches in 

distribution network. Typically, three inch (3P) diameter pipe is used in residential 

distribution network to carry gas at high pressures from the compressors, and two inch 

(2P) diameter pipe is used to connect individual households. Generally, 40 ft half inch 

MDPE service lines are tapped from the main line to connect to individual household. 

For this study, all the pipes are assumed to be of 2P size to represent an actual residential 

network.  

The electric network is used as the background figure to determine coordinates of 

the nodes in the gas distribution network. To improve the reliability of gas supply, node 
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300 and node 151 are connected to make the original radial gas distribution network as 

looped network, which is generally the case for a typical residential gas distribution 

network. The node 16 and node 86 are designated as the supply nodes of natural gas. 

Supply pressure is fixed at 60 psi and the load as unknown. The load at these two nodes 

is determined by running the simulation of gas distribution network. At a supply node, 

the pressure is set as known and the load as unknown, and at all the other nodes the 

pressure is set as unknown and load as known.  

The elevation of all the pipelines and nodes in the network are assumed to be at 

the same level, and the ambient temperature is set at 70° F. The gas flows from nodes at 

higher pressure to nodes at lower pressures, and gas pressure drops when flowing along 

the pipelines due to gravity and friction. Nodes with gas loads that are farther from the 

supply nodes, generally have lower gas pressures. The gas pressure in the distribution 

network can be less than 10 psi, and it might need to be increased by the natural gas 

booster placed along with gas microturbine DGs to ensure normal operation. 

There are many pipe flow equations that are used to calculate the pressure drops 

and gas flow in the distribution network. Each equation has its own characteristic and 

applications, and appropriate equation has to be determined for a specific application. For 

this study, the IGT-Improved Equation [63] is selected and used in this application of 

medium pressure distribution for residential gas distribution network. This equation is 

applicable to all distribution networks operating between pressure of 1 to 500 psi for two 

inch and larger diameter pipelines, and it yields moderate results [64]. The base case gas 

flow is simulated and the pressure result at each node is shown in Figure 5.3. 
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Figure 5.3 IEEE 123 node base case pressures 

 

The nodes which are farther from the supply nodes have lower gas pressures as 

compared to nodes which are near to the supply nodes. Node 29 and surrounding nodes 

have 55.5 psi, which resembles a real residential distribution gas network as maximum 

pressure drop in it can be 5 psi to 10 psi for a similar network.   
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5.3   Case Studies 

The various cases of microturbine placement in the gas distribution network are 

simulated. Combined electric and gas load flow architecture is shown in Figure 5.3. 

Natural gas microturbines are placed at locations suggested by running DG allocation 

scripts and electric load flow, and gas load flow is run. The nodal DG gas consumption is 

calculated using the power/fuel conversion equation, and it is updated in MS Excel 

spreadsheets. The total nodal gas consumption is then calculated by adding DG gas 

consumption to the existing base gas load of the households. The total nodal gas 

consumption data is exported as a routine to the developed IEEE 123 gas distribution 

network in GASWorkS.  

 

 

Figure 5.4 Combined electric and gas load flow architecture 

 

The simulations are run for four cases: 48, 38, 31 and 24 natural gas microturbine 

placement in the gas distribution network at suggested locations discussed in section 4.4. 
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The nodal gas pressures for the four cases are showed in Figure 5.5, Figure 5.6, Figure 

5.7 and Figure 5.8. 

 

 

Figure 5.5 IEEE 123 node pressures with 48 microturbines in distribution network 
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Figure 5.6 IEEE 123 node pressures with 38 microturbines in distribution network 
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Figure 5.7 IEEE 123 node pressures with 31 microturbines in distribution network 
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Figure 5.8 IEEE 123 node pressures with 24 microturbines in distribution network 

 

The results are summarized in Figure 5.9. For all the four cases left top-most 

nodes are at the lowest pressures. This is because these nodes are farther from the supply 

pressures, and top right-most network is lopped after connecting node 151 and node 300, 

unlike top left-most network.  
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Figure 5.9 Nodal gas pressure for microturbine placement in gas network  

 

High spike in the nodal gas pressure curve corresponds to high nodal gas pressure 

and less nodal gas consumption at that node, such as nodes around 51 and 125. 

Conversely, the pressure sag indicates the nodes where more gas is consumed compared 

to other nodes.  

The total gas consumption is higher when 48 microturbines are placed in the 

network compared to when 24 microturbines are in the network. The nodal pressure 

drops to as low at 8 psi at few nodes when 48 microturbine DGs are placed in the 

distribution network. The results indicate that placing 48 microturbines is not possible 

due to high pressure drops, and the gas distribution network will need pipeline 

reinforcement.  Placing 24 and 31 microturbines in the distribution network is possible as 
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the pressure at each node remains above half the initial supply pressure, that is, 30 psi. 

Placing 38 microturbines might also be possible with certain relaxation in the standards.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions and Main Contributions 

The developed integrated methodology offers a generalized means of determining 

optimal natural gas microturbine capacity and locations in residential distribution 

networks. The overall objective of the integrated system is to place microturbines to 

minimize the system power loss occurring in the electrical distributed system; in such a 

way that the electric feeder does not need any up-gradation. The proposed placement of 

microturbines must be feasible in the gas distribution network and should not result into 

gas pipeline reinforcement. The proposed method is generalized and can be used for any 

IEEE test feeder or an actual residential distribution network.  

There are several advantages of placing DG in distribution network. For this 

study, power loss minimization is selected as a key objective for determining optimal 

locations and capacity of DGs, and voltage stability is maintained throughout the 

analysis. IEEE 123 node test feeder is selected as the test bed for validation of the 

developed methodology. A global optimization algorithm for placing DGs in the 

distribution system have been developed in MATLAB and is dynamically linked to 

OpenDSS through COM server for running unbalanced multi-phase optimal power flow. 

A method based on sensitivity analysis is used to decrease the solution space and problem 

complexity, and optimal placement of DGs is determined for peak load loss reduction. A 

placement of 48 DGs is suggested and it reduces the system losses by 87 percent.  

There are low load days also present in a given year, and it is realized that high 

penetration of DGs in a distributed network will result into increased system losses 
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during a low load day. Therefore, the optimally selected DG units based on a high load 

day are not applicable and economic for the real operation given a light load day. A 

method based on annual simulation is combined with sensitivity analysis to suggest 

optimal load multiplier for which DG placement should be planned. Placing 31 DGs of 

100 kW based on 0.6 load multiplier planning results in 82.2% annual average loss 

reduction.  

The gas distribution network model corresponding to IEEE 123 node test feeder is 

developed using GASWorkS software to assess whether the existing gas distribution 

network could support the large penetration of microturbines at suggested locations. Four 

cases are simulated in GASWorkS software by adding the microturbine gas loads to the 

existing household gas loads in the gas distribution network. The gas flow simulation 

results suggest that installation of large number of microturbines will need pipeline 

reinforcement due to constraint of nodal gas supply pressure.  

For this study, an installation of 31 microturbine DG units results in the optimal 

scenario based on the consideration of overall minimum annual average losses as well as 

the guarantee of nodal pressure provided by the gas distribution network. The results 

based on this research work resulted in a research paper [65].   

 

5.2    Future Work 

The conducted study mainly focuses on assessing the optimal placement of 

microturbines by taking out few feasible solutions from the electric distribution network, 

and then checking feasibility of individual cases in the gas distribution network. In future, 

both electric distribution network and gas distribution system can be linked through API 
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server and a co-simulation platform can be developed. Such approach will make the 

entire process automatic and give an optimal result.  

The mathematical model of the gas distribution network will be developed and 

integrated with the available mathematical model of electrical system. The integrated 

model is difficult to solve by available commercial solvers due to mathematical 

complexity and large size of the problem. 

For this study, it is assumed that microturbines only provide real power, since 

majority of the microturbine units available in United States do not provide reactive 

power support.  In future, reactive power support option will be considered and optimal 

power factor to operate the microturbines will be determined. For this study, the size of a 

microturbine unit is fixed at 100 kW since most of the available technologies provide 100 

kW units. This size can be varied and an optimal size of a DG unit will be determined.  

IEEE 123 node test feeder is selected as a test bad to conduct this study. A real 

residential distribution feeder in Chandler was initially selected, but due to lack of 

complete and accurate data, the real test bed plan was abandoned. In future, the 

developed method will be tested on a real residential distribution system.  
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APPENDIX A  

OPENDSS SCRIPT  
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Compile (IEEE123Master.dss) 

 

RegControl.creg1a.maxtapchange=1  Delay=15  !Allow only one tap change 

per solution. This one moves first 

RegControl.creg2a.maxtapchange=1  Delay=30   

RegControl.creg3a.maxtapchange=1  Delay=30   

RegControl.creg4a.maxtapchange=1  Delay=30   

RegControl.creg3c.maxtapchange=1  Delay=30   

RegControl.creg4b.maxtapchange=1  Delay=30   

RegControl.creg4c.maxtapchange=1  Delay=30   

Set MaxControlIter=700 

Set normvmaxpu=1.07 

New EnergyMeter.Feeder Line.L115 1 

 

 

OPENDSS MASTER SCRIPT 

! Annotated Master file for the IEEE 123-bus test case. 

! 

! This file is meant to be invoked from the Compile command in the 

"Run_IEEE123Bus.DSS"  file. 

!  

Clear 

 

New object=circuit.ieee123 

~ basekv=4.16 Bus1=150 pu=1.00 R1=0 X1=0.0001 R0=0 X0=0.0001 

 

new transformer.reg1a phases=3 windings=2 buses=[150 150r] conns=[wye 

wye] kvs=[4.16 4.16] kvas=[5000 5000] XHL=.001 %LoadLoss=0.00001 

ppm=0.0 

new regcontrol.creg1a transformer=reg1a winding=2 vreg=120 band=2 

ptratio=20 ctprim=700 R=3 X=7.5 

 

! REDIRECT INPUT STREAM TO FILE CONTAINING DEFINITIONS OF LINECODES 

! This file defines the line impedances is a similar manner to the 

description in the test case. 

 

Redirect        IEEELinecodes.DSS 

 

New Line.L115     Bus1=149        Bus2=1          LineCode=1    

Length=0.4 

New Line.L1   Phases=1 Bus1=1.2   Bus2=2.2        LineCode=10   

Length=0.175 

New Line.L2   Phases=1 Bus1=1.3     Bus2=3.3      LineCode=11   

Length=0.25 

New Line.L3   Phases=3 Bus1=1.1.2.3  Bus2=7.1.2.3  LineCode=1    

Length=0.3 

New Line.L4   Phases=1 Bus1=3.3      Bus2=4.3      LineCode=11   

Length=0.2 

New Line.L5   Phases=1 Bus1=3.3      Bus2=5.3      LineCode=11   

Length=0.325 

New Line.L6   Phases=1 Bus1=5.3      Bus2=6.3      LineCode=11   

Length=0.25 

New Line.L7   Phases=3 Bus1=7.1.2.3  Bus2=8.1.2.3  LineCode=1    

Length=0.2 
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New Line.L8   Phases=1 Bus1=8.2      Bus2=12.2     LineCode=10   

Length=0.225 

New Line.L9   Phases=1 Bus1=8.1      Bus2=9.1      LineCode=9    

Length=0.225 

New Line.L10  Phases=3 Bus1=8.1.2.3  Bus2=13.1.2.3 LineCode=1    

Length=0.3 

New Line.L11  Phases=1 Bus1=9r.1     Bus2=14.1     LineCode=9    

Length=0.425 

New Line.L12  Phases=1 Bus1=13.3     Bus2=34.3     LineCode=11   

Length=0.15 

New Line.L13  Phases=3 Bus1=13.1.2.3 Bus2=18.1.2.3 LineCode=2    

Length=0.825 

New Line.L14  Phases=1 Bus1=14.1     Bus2=11.1     LineCode=9    

Length=0.25 

New Line.L15  Phases=1 Bus1=14.1     Bus2=10.1     LineCode=9    

Length=0.25 

New Line.L16  Phases=1 Bus1=15.3     Bus2=16.3     LineCode=11   

Length=0.375 

New Line.L17  Phases=1 Bus1=15.3     Bus2=17.3     LineCode=11   

Length=0.35 

New Line.L18  Phases=1 Bus1=18.1     Bus2=19.1     LineCode=9    

Length=0.25 

New Line.L19  Phases=3 Bus1=18.1.2.3 Bus2=21.1.2.3 LineCode=2    

Length=0.3 

New Line.L20  Phases=1 Bus1=19.1     Bus2=20.1     LineCode=9    

Length=0.325 

New Line.L21  Phases=1 Bus1=21.2     Bus2=22.2     LineCode=10   

Length=0.525 

New Line.L22  Phases=3 Bus1=21.1.2.3 Bus2=23.1.2.3 LineCode=2    

Length=0.25 

New Line.L23  Phases=1 Bus1=23.3     Bus2=24.3     LineCode=11   

Length=0.55 

New Line.L24  Phases=3 Bus1=23.1.2.3 Bus2=25.1.2.3 LineCode=2    

Length=0.275 

New Line.L25  Phases=2 Bus1=25r.1.3  Bus2=26.1.3   LineCode=7    

Length=0.35 

New Line.L26  Phases=3 Bus1=25.1.2.3 Bus2=28.1.2.3 LineCode=2    

Length=0.2 

New Line.L27  Phases=2 Bus1=26.1.3   Bus2=27.1.3   LineCode=7    

Length=0.275 

New Line.L28  Phases=1 Bus1=26.3     Bus2=31.3     LineCode=11   

Length=0.225 

New Line.L29  Phases=1 Bus1=27.1     Bus2=33.1     LineCode=9    

Length=0.5 

New Line.L30  Phases=3 Bus1=28.1.2.3 Bus2=29.1.2.3 LineCode=2    

Length=0.3 

New Line.L31  Phases=3 Bus1=29.1.2.3 Bus2=30.1.2.3 LineCode=2    

Length=0.35 

New Line.L32  Phases=3 Bus1=30.1.2.3 Bus2=250.1.2.3 LineCode=2    

Length=0.2 

New Line.L33  Phases=1 Bus1=31.3     Bus2=32.3     LineCode=11   

Length=0.3 

New Line.L34  Phases=1 Bus1=34.3     Bus2=15.3     LineCode=11   

Length=0.1 
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New Line.L35  Phases=2 Bus1=35.1.2   Bus2=36.1.2   LineCode=8    

Length=0.65 

New Line.L36  Phases=3 Bus1=35.1.2.3 Bus2=40.1.2.3 LineCode=1    

Length=0.25 

New Line.L37  Phases=1 Bus1=36.1     Bus2=37.1     LineCode=9    

Length=0.3 

New Line.L38  Phases=1 Bus1=36.2     Bus2=38.2     LineCode=10   

Length=0.25 

New Line.L39  Phases=1 Bus1=38.2     Bus2=39.2     LineCode=10   

Length=0.325 

New Line.L40  Phases=1 Bus1=40.3     Bus2=41.3     LineCode=11   

Length=0.325 

New Line.L41  Phases=3 Bus1=40.1.2.3 Bus2=42.1.2.3 LineCode=1    

Length=0.25 

New Line.L42  Phases=1 Bus1=42.2     Bus2=43.2     LineCode=10   

Length=0.5 

New Line.L43  Phases=3 Bus1=42.1.2.3 Bus2=44.1.2.3 LineCode=1    

Length=0.2 

New Line.L44  Phases=1 Bus1=44.1     Bus2=45.1     LineCode=9    

Length=0.2 

New Line.L45  Phases=3 Bus1=44.1.2.3 Bus2=47.1.2.3 LineCode=1    

Length=0.25 

New Line.L46  Phases=1 Bus1=45.1     Bus2=46.1     LineCode=9    

Length=0.3 

New Line.L47  Phases=3 Bus1=47.1.2.3 Bus2=48.1.2.3 LineCode=4    

Length=0.15 

New Line.L48  Phases=3 Bus1=47.1.2.3 Bus2=49.1.2.3 LineCode=4    

Length=0.25 

New Line.L49  Phases=3 Bus1=49.1.2.3 Bus2=50.1.2.3 LineCode=4    

Length=0.25 

New Line.L50  Phases=3 Bus1=50.1.2.3 Bus2=51.1.2.3 LineCode=4    

Length=0.25 

New Line.L51  Phases=3 Bus1=51.1.2.3 Bus2=151.1.2.3 LineCode=4   

Length=0.5 

New Line.L52  Phases=3 Bus1=52.1.2.3 Bus2=53.1.2.3 LineCode=1    

Length=0.2 

New Line.L53  Phases=3 Bus1=53.1.2.3 Bus2=54.1.2.3 LineCode=1    

Length=0.125 

New Line.L54  Phases=3 Bus1=54.1.2.3 Bus2=55.1.2.3 LineCode=1    

Length=0.275 

New Line.L55  Phases=3 Bus1=54.1.2.3 Bus2=57.1.2.3 LineCode=3    

Length=0.35 

New Line.L56  Phases=3 Bus1=55.1.2.3 Bus2=56.1.2.3 LineCode=1    

Length=0.275 

New Line.L57  Phases=1 Bus1=57.2     Bus2=58.2     LineCode=10   

Length=0.25 

New Line.L58  Phases=3 Bus1=57.1.2.3 Bus2=60.1.2.3 LineCode=3    

Length=0.75 

New Line.L59  Phases=1 Bus1=58.2     Bus2=59.2     LineCode=10   

Length=0.25 

New Line.L60  Phases=3 Bus1=60.1.2.3 Bus2=61.1.2.3 LineCode=5    

Length=0.55 

New Line.L61  Phases=3 Bus1=60.1.2.3 Bus2=62.1.2.3 LineCode=12   

Length=0.25 
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New Line.L62  Phases=3 Bus1=62.1.2.3 Bus2=63.1.2.3 LineCode=12   

Length=0.175 

New Line.L63  Phases=3 Bus1=63.1.2.3 Bus2=64.1.2.3 LineCode=12   

Length=0.35 

New Line.L64  Phases=3 Bus1=64.1.2.3 Bus2=65.1.2.3 LineCode=12   

Length=0.425 

New Line.L65  Phases=3 Bus1=65.1.2.3 Bus2=66.1.2.3 LineCode=12   

Length=0.325 

New Line.L66  Phases=1 Bus1=67.1     Bus2=68.1     LineCode=9    

Length=0.2 

New Line.L67  Phases=3 Bus1=67.1.2.3 Bus2=72.1.2.3 LineCode=3    

Length=0.275 

New Line.L68  Phases=3 Bus1=67.1.2.3 Bus2=97.1.2.3 LineCode=3    

Length=0.25 

New Line.L69  Phases=1 Bus1=68.1     Bus2=69.1     LineCode=9    

Length=0.275 

New Line.L70  Phases=1 Bus1=69.1     Bus2=70.1     LineCode=9    

Length=0.325 

New Line.L71  Phases=1 Bus1=70.1     Bus2=71.1     LineCode=9    

Length=0.275 

New Line.L72  Phases=1 Bus1=72.3     Bus2=73.3     LineCode=11   

Length=0.275 

New Line.L73  Phases=3 Bus1=72.1.2.3 Bus2=76.1.2.3 LineCode=3    

Length=0.2 

New Line.L74  Phases=1 Bus1=73.3     Bus2=74.3     LineCode=11   

Length=0.35 

New Line.L75  Phases=1 Bus1=74.3     Bus2=75.3     LineCode=11   

Length=0.4 

New Line.L76  Phases=3 Bus1=76.1.2.3 Bus2=77.1.2.3 LineCode=6    

Length=0.4 

New Line.L77  Phases=3 Bus1=76.1.2.3 Bus2=86.1.2.3 LineCode=3    

Length=0.7 

New Line.L78  Phases=3 Bus1=77.1.2.3 Bus2=78.1.2.3 LineCode=6    

Length=0.1 

New Line.L79  Phases=3 Bus1=78.1.2.3 Bus2=79.1.2.3 LineCode=6    

Length=0.225 

New Line.L80  Phases=3 Bus1=78.1.2.3 Bus2=80.1.2.3 LineCode=6    

Length=0.475 

New Line.L81  Phases=3 Bus1=80.1.2.3 Bus2=81.1.2.3 LineCode=6    

Length=0.175 

New Line.L82  Phases=3 Bus1=81.1.2.3 Bus2=82.1.2.3 LineCode=6    

Length=0.25 

New Line.L83  Phases=1 Bus1=81.3     Bus2=84.3     LineCode=11   

Length=0.675 

New Line.L84  Phases=3 Bus1=82.1.2.3 Bus2=83.1.2.3 LineCode=6    

Length=0.25 

New Line.L85  Phases=1 Bus1=84.3     Bus2=85.3     LineCode=11   

Length=0.475 

New Line.L86  Phases=3 Bus1=86.1.2.3 Bus2=87.1.2.3 LineCode=6    

Length=0.45 

New Line.L87  Phases=1 Bus1=87.1     Bus2=88.1     LineCode=9    

Length=0.175 

New Line.L88  Phases=3 Bus1=87.1.2.3 Bus2=89.1.2.3 LineCode=6    

Length=0.275 
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New Line.L89  Phases=1 Bus1=89.2     Bus2=90.2     LineCode=10   

Length=0.25 

New Line.L90  Phases=3 Bus1=89.1.2.3 Bus2=91.1.2.3 LineCode=6    

Length=0.225 

New Line.L91  Phases=1 Bus1=91.3     Bus2=92.3     LineCode=11   

Length=0.3 

New Line.L92  Phases=3 Bus1=91.1.2.3 Bus2=93.1.2.3 LineCode=6    

Length=0.225 

New Line.L93  Phases=1 Bus1=93.1     Bus2=94.1     LineCode=9    

Length=0.275 

New Line.L94  Phases=3 Bus1=93.1.2.3 Bus2=95.1.2.3 LineCode=6    

Length=0.3 

New Line.L95  Phases=1 Bus1=95.2     Bus2=96.2     LineCode=10   

Length=0.2 

New Line.L96  Phases=3 Bus1=97.1.2.3 Bus2=98.1.2.3 LineCode=3    

Length=0.275 

New Line.L97  Phases=3 Bus1=98.1.2.3 Bus2=99.1.2.3 LineCode=3    

Length=0.55 

New Line.L98  Phases=3 Bus1=99.1.2.3 Bus2=100.1.2.3 LineCode=3   

Length=0.3 

New Line.L99  Phases=3 Bus1=100.1.2.3 Bus2=450.1.2.3 LineCode=3  

Length=0.8 

New Line.L118 Phases=3 Bus1=197.1.2.3 Bus2=101.1.2.3 LineCode=3  

Length=0.25 

New Line.L100 Phases=1 Bus1=101.3    Bus2=102.3    LineCode=11   

Length=0.225 

New Line.L101 Phases=3 Bus1=101.1.2.3 Bus2=105.1.2.3 LineCode=3  

Length=0.275 

New Line.L102 Phases=1 Bus1=102.3    Bus2=103.3    LineCode=11   

Length=0.325 

New Line.L103 Phases=1 Bus1=103.3    Bus2=104.3    LineCode=11   

Length=0.7 

New Line.L104 Phases=1 Bus1=105.2    Bus2=106.2    LineCode=10   

Length=0.225 

New Line.L105 Phases=3 Bus1=105.1.2.3 Bus2=108.1.2.3 LineCode=3  

Length=0.325 

New Line.L106 Phases=1 Bus1=106.2    Bus2=107.2    LineCode=10   

Length=0.575 

New Line.L107 Phases=1 Bus1=108.1    Bus2=109.1    LineCode=9    

Length=0.45 

New Line.L108 Phases=3 Bus1=108.1.2.3 Bus2=300.1.2.3 LineCode=3  

Length=1 

New Line.L109 Phases=1 Bus1=109.1    Bus2=110.1    LineCode=9    

Length=0.3 

New Line.L110 Phases=1 Bus1=110.1    Bus2=111.1    LineCode=9    

Length=0.575 

New Line.L111 Phases=1 Bus1=110.1    Bus2=112.1    LineCode=9    

Length=0.125 

New Line.L112 Phases=1 Bus1=112.1    Bus2=113.1    LineCode=9    

Length=0.525 

New Line.L113 Phases=1 Bus1=113.1    Bus2=114.1    LineCode=9    

Length=0.325 

New Line.L114 Phases=3 Bus1=135.1.2.3 Bus2=35.1.2.3 LineCode=4   

Length=0.375 
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New Line.L116 Phases=3 Bus1=152.1.2.3 Bus2=52.1.2.3 LineCode=1   

Length=0.4 

New Line.L117 Phases=3 Bus1=160r.1.2.3 Bus2=67.1.2.3 LineCode=6  

Length=0.35 

 

 

! NORMALLY CLOSED SWITCHES ARE DEFINED AS SHORT LINES 

! Could also be defined by setting the Switch=Yes property 

 

New Line.Sw1    phases=3  Bus1=150r   Bus2=149    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw2    phases=3  Bus1=13     Bus2=152    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw3    phases=3  Bus1=18     Bus2=135    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw4    phases=3  Bus1=60     Bus2=160    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw5    phases=3  Bus1=97     Bus2=197    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw6    phases=3  Bus1=61     Bus2=61s    r1=1e-3 r0=1e-3 

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

 

! NORMALLY OPEN SWITCHES; DEFINED AS SHORT LINE TO OPEN BUS SO WE CAN 

SEE OPEN POINT VOLTAGES.  

! COULD ALSO BE DEFINED AS DISABLED OR THE TERMINCAL COULD BE OPENED 

AFTER BEING DEFINED 

 

New Line.Sw7    phases=3  Bus1=151    Bus2=300_OPEN   r1=1e-3 r0=1e-3  

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

New Line.Sw8    phases=1  Bus1=54.1   Bus2=94_OPEN.1  r1=1e-3 r0=1e-3  

x1=0.000 x0=0.000 c1=0.000 c0=0.000 Length=0.001 

 

! LOAD TRANSFORMER AT 61s/610 

! This is a 150 kVA Delta-Delta stepdown from 4160V to 480V. 

 

New Transformer.XFM1  Phases=3   Windings=2 Xhl=2.72 

~ wdg=1 bus=61s       conn=Delta kv=4.16    kva=150    %r=0.635 

~ wdg=2 bus=610       conn=Delta kv=0.48    kva=150    %r=0.635 

 

! CAPACITORS 

! Capacitors are 2-terminal devices. The 2nd terminal (Bus2=...) 

defaults to all phases 

! connected to ground (Node 0). Thus, it need not be specified if a Y-

connected or L-N connected 

! capacitor is desired 

 

New Capacitor.C83       Bus1=83      Phases=3     kVAR=600     kV=4.16 

New Capacitor.C88a      Bus1=88.1    Phases=1     kVAR=50      kV=2.402 

New Capacitor.C90b      Bus1=90.2    Phases=1     kVAR=50      kV=2.402 

New Capacitor.C92c      Bus1=92.3    Phases=1     kVAR=50      kV=2.402 

 

!REGULATORS - REDIRECT TO DEFINITIONS FILE 

! This file contains definitions for the remainder of regulators on the 

feeder: 
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Redirect IEEE123Regulators.DSS 

 

! SPOT LOADS -- REDIRECT INPUT STREAM TO LOAD DEFINITIONS FILE 

 

Redirect IEEE123Loads.DSS 

 

Set VoltageBases = [4.16, 0.48]    ! ARRAY OF VOLTAGES IN KV 

CalcVoltageBases  ! PERFORMS ZERO LOAD POWER FLOW TO ESTIMATE VOLTAGE 

BASES 
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APPENDIX B  

MATLAB FILE FOR POWER LOSS VARIATION 
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clc 
GenkW=0; E=50; 
MaxVoltage=1; OldLoss=95.7743; 
i=1; 

  
while i<1000 && MaxVoltage<1.05 
GenkW = GenkW + E; 

    
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

         
% Now let's add a generator at bus 83  
DSSText.Command = 'New Generator.GL Bus1=83 kv=4.16 kW=0 PF=1 '; 
DSSText.Command = ['Generator.GL.kW =' num2str(GenkW)]; 

          
% Solve executes the solution for the present solution mode, which is 

"snapshot" and establishes the bus list. 
DSSSolution.Solve; 

     
% Now load in the bus coordinates so we can execute a circuit plot if 

we want to 
DSSText.Command='Buscoords Buscoords.dat   ! load in bus coordinates'; 

    
% Get bus voltage magnitudes in pu and distances from energy meter and 

plot in a scatter plot 
V1 = DSSCircuit.AllNodeVmagPUByPhase(1); 
Dist1 = DSSCircuit.AllNodeDistancesByPhase(1); 
V2 = DSSCircuit.AllNodeVmagPUByPhase(2); 
Dist2 = DSSCircuit.AllNodeDistancesByPhase(2); 
V3 = DSSCircuit.AllNodeVmagPUByPhase(3); 
Dist3 = DSSCircuit.AllNodeDistancesByPhase(3); 

    
% Getting max voltage 
MaxV1 = max(V1); 
MaxV2 = max(V2); 
MaxV3 = max(V3); 
MaxVol = [MaxV1, MaxV2, MaxV3]; 
MaxVoltage = max (MaxVol); 

         
GenkWdisplay(i)=GenkW; 
MaxVoltagedisplay(i)=MaxVoltage; 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1); 
RealLossesinkW(i)=Realpart/1000; 
NewLoss = Realpart/1000; 

    
if NewLoss>150 
       break 
end 
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plot(GenkWdisplay, RealLossesinkW); 
grid on; xlabel('Total DG (kW)', 'FontSize', 10); ylabel('Power Loss 

(kW)', FontSize', 10);  

  
i=i+1;  

  
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 
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APPENDIX C  

MATLAB FILE FOR VOLTAGE PROFILE 
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[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

     
% Adding a generator at bus 83  
DSSText.Command = 'New Generator.GL Bus1=83 kv=4.16 kW=1500 PF=1 '; 

    
DSSSolution.Solve;    
% Now load in the bus coordinates so we can execute a circuit plot    

DSSText.Command='Buscoords Buscoords.dat   ! load in bus coordinates'; 

     
% Get bus voltage magnitudes in pu and distances from energy meter and 

plot in a scatter plot 
% Get Voltage and Distances Array 
V1 = DSSCircuit.AllNodeVmagPUByPhase(1); 
Dist1 = DSSCircuit.AllNodeDistancesByPhase(1); 
V2 = DSSCircuit.AllNodeVmagPUByPhase(2); 
Dist2 = DSSCircuit.AllNodeDistancesByPhase(2); 
V3 = DSSCircuit.AllNodeVmagPUByPhase(3); 
Dist3 = DSSCircuit.AllNodeDistancesByPhase(3); 

         
% Getting max voltage 
MaxV1 = max(V1); 
MaxV2 = max(V2); 
MaxV3 = max(V3); 
MaxVol = [MaxV1, MaxV2, MaxV3]; 
MaxVoltage = max (MaxVol); 

        
% Make Plot 
plot(Dist1, V1,'k*');  % black * 
hold on; 
plot(Dist2, V2, 'r+');  % red + 
plot(Dist3, V3, 'bd');  % diamond Marker 
legend('phase A','phase B','phase C','Location','SouthEast');  
ylim([0.96 1.07]); 
ylabel('Voltage(pu)'); 
xlabel('Distance from Substation (km)'); 
hold off 

 
else 
a='DSS Did Not Start' 
disp(a) 
end 
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APPENDIX D  

MATLAB FILE FOR CONTINUAL SENSITIVITY ANALYSIS 
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clc 
f=0; 
E=100;          % DG step size for checking sensitivity 
DGincrease=100; % putting DG of 100 kW after each iteration 
LossDifference = 1; k=1; 

 
%Initializing the BusDGLossS matrix 
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 
DSSSolution.Solve; 
Loss = DSSCircuit.Losses; 
InitialLoss = Loss(1)/1000 
OldLoss=InitialLoss; 
BusSet = DSSCircuit.AllBusNames; 
else 
a='DSS Did Not Start' 
disp(a) 
end 
NumBuses = length(BusSet) 

  
%Iniializing DG at each bus to be zero 
for i=1:NumBuses 
BusDGLossS(i,1)=BusSet(i);   % Bus no 
BusDGLossS(i,2)={0};           % Initial DG  
BusDGLossS(i,3)={InitialLoss}; % Initial total system loss 
BusDGLossS(i,4)={0};           % Initial Sensitivity  
end 

  
for i=1:NumBuses 
    for j=1:4 
        BusDGLossS1(i,j)=BusDGLossS(i,j); 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%while (LossDifference>0)&&(MaxVoltage<1.05)      %No. of 

iteration 

     
for j=1:NumBuses      

[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

     
%Retrieving old DGs  
for q=1:NumBuses 



  87 

CurrentDG = BusDGLossS{q,2}; 
if CurrentDG~=0 
NewDGLevel = BusDGLossS{q,2};    
busname=strcat(num2str(BusDGLossS{q,1})); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
else 
end 
end 

     
% Adding a generator E at j bus  
busname=BusDGLossS{j,1}; 
NewGen=strcat('New Generator.TestGen bus1=',busname,' kv=4.16',' 

kw=',num2str(E),' PF=1'); 
DSSText.command=NewGen; 
DSSSolution.Solve; 
%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1); 
OldLoss = BusDGLossS{j,3};      % Extracting current/old loss from 

matrix 
BusDGLossS{j,3}=Realpart/1000;  % Replacing Loss column by new loss 
NewLoss = Realpart/1000; 

    
% Sensitivity calculation for j bus 
S = ((OldLoss - NewLoss)*100)/E; 
BusDGLossS{j,4} = S; % Feeding 4th column with sensitivity values 
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 

   
%Selecting top 5 buses on the basis of sensitivity 
NewMatrix = sortrows(BusDGLossS,4) 

  
% Making last row as first row, and reversing the matrix 
n=1; 
for m=NumBuses:-1:1 
BusDGLossS(n,1)=NewMatrix(m,1); 
BusDGLossS(n,2)=NewMatrix(m,2); 
BusDGLossS(n,3)=NewMatrix(m,3); 
BusDGLossS(n,4)=NewMatrix(m,4); 
n=n+1; 
end 
BusDGLossS 

  
disp(' ') 
disp(' ') 
str=['Iteration ' num2str(k)]; 
disp(str) 
disp('5 buses with highest sensitivities are:') 
counter=0; 
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for h=1:5 
counter=counter+1; 
Str= [num2str(counter) '.) The Sensitivity for bus ' 

num2str(BusDGLossS{h,1}) ' is = ' num2str(BusDGLossS{h,4})]; 
disp(Str) 
end 

  
% Adding DG in the matrix to top 5 buses with max sensitivity 
for p=1%:5 
BusDGLossS{p,2}= BusDGLossS{p,2} + DGincrease; 
end 

  
% Adding k DG to OpenDSS, and Calculating new system losses after 

addition of kx100 kW DG 
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

     
%Retrieving old DGs as well as putting 5 more DGs 
for q=1:NumBuses 
CurrentDG = BusDGLossS{q,2}; 
if CurrentDG~=0 
NewDGLevel = BusDGLossS{q,2};    

busname=strcat(num2str(BusDGLossS{q,1})); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
else 
end 
end 
DSSSolution.Solve; 

    
%Calculating losses for the new system 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1); 
LossReplace = Realpart/1000 ; 
else 
a='DSS Did Not Start' 
disp(a) 
end 

  
% Replacing loss column 
for p=1:NumBuses 
BusDGLossS{p,3}= LossReplace; 
end 
LossMatrix(k)=LossReplace; 
disp(' ') 
str11=['Modified matrix after Iteration ' num2str(k)]; 
disp(str11) 
BusDGLossS 
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LossDifference=OldLoss-LossMatrix(k); 
OldLoss=LossMatrix(k); 
k=k+1; 

  
V1 = DSSCircuit.AllNodeVmagPUByPhase(1); 
V2 = DSSCircuit.AllNodeVmagPUByPhase(2); 
V3 = DSSCircuit.AllNodeVmagPUByPhase(3); 
MaxV1 = max(V1); 
MaxV2 = max(V2); 
MaxV3 = max(V3); 
MaxVol = [MaxV1, MaxV2, MaxV3]; 
MaxVoltage = max (MaxVol); 

     
if LossDifference>0 
for i=1:NumBuses 
for j=1:4 
BusDGLossS1(i,j)=BusDGLossS(i,j) 
end 
end 
else 
end 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
%Sort by bus number 
BusDGLossS1 = sortrows(BusDGLossS1,1) 
disp(' ') 
disp(' ') 
str3=['Initial system loss without any DG is = ' num2str(InitialLoss) ' 

kW']; 
disp(str3) 
Loss(1)=InitialLoss; 
Iteration(1)=0; 
for a=1:k-1 
Iteration(a+1)=a; 
Loss(a+1) =LossMatrix(a);  
n=a*5; 
strr=['System loss after iteration ' num2str(a) ' when ' num2str(n) ' 

DG have been put is = ' num2str(LossMatrix(a)) ' kW']; 
disp(strr) 
end 

  
% plot(Iteration, Loss);   
% ylabel('Power Loss (kW)'); 
% xlabel('Iteration'); 
disp(' ') 
disp(' ') 
counter=0; 
for a=1:NumBuses    % Made 6 in place of 1 
DG=BusDGLossS1{a,2}; 
if DG~=0 
counter=counter+1; 
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str2=[num2str(counter) '.) Total DG at bus ' num2str(BusDGLossS1{a,1}) 

' is = ' num2str(BusDGLossS1{a,2})]; 
disp(str2) 
else 
end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%  
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

     
for q=1:NumBuses 
CurrentDG = BusDGLossS1{q,2};    % Have 5 extra DGs ??? 
if CurrentDG~=0 
NewDGLevel = BusDGLossS1{q,2};   % +... ?? 
busname=strcat(num2str(BusDGLossS1{q,1})); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
else 
end 
end 

     
DSSSolution.Solve; 
% Now load in the bus coordinates so we can execute a circuit plot 
DSSText.Command='Buscoords Buscoords.dat   ! load in bus coordinates'; 

     
% Get bus voltage magnitudes in pu and distances from energy meter and 

plot in a scatter plot 
% Get Voltage and Distances Array 
V1 = DSSCircuit.AllNodeVmagPUByPhase(1); 
Dist1 = DSSCircuit.AllNodeDistancesByPhase(1); 
V2 = DSSCircuit.AllNodeVmagPUByPhase(2); 
Dist2 = DSSCircuit.AllNodeDistancesByPhase(2); 
V3 = DSSCircuit.AllNodeVmagPUByPhase(3); 
Dist3 = DSSCircuit.AllNodeDistancesByPhase(3); 
% Getting max voltage 
MaxV1 = max(V1); 
MaxV2 = max(V2); 
MaxV3 = max(V3); 
MaxVol = [MaxV1, MaxV2, MaxV3]; 
MaxVoltage = max (MaxVol); 
if MaxVoltage==MaxV1 
str=['Phase A has max voltage of ' num2str(MaxV1) ' pu']; 
disp(str) 
elseif MaxVoltage==MaxV2 
str=['Phase B has max voltage of ' num2str(MaxV2) ' pu']; 
disp(str) 
else 
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str=['Phase C has max voltage of ' num2str(MaxV3) ' pu']; 
disp(str) 
end 

    
% Make Plot 
plot(Dist1, V1,'k*');  % black * 
hold on; 
plot(Dist2, V2, 'r+');  % red + 
plot(Dist3, V3, 'bd');  % diamond Marker 
legend('phase A','phase B','phase C','Location','SouthEast'); %put the 

legend 
ylim([0.96 1.05]); 
ylabel('Voltage(pu)'); 
xlabel('Distance from substation (km)'); 
hold off 
else 
a='DSS Did Not Start' 
disp(a) 
end 
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APPENDIX E  

MATLAB FILE FOR CALCULATING ANNUAL AVERAGE LOSSES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  93 

clc 
set(0,'defaultlinelinewidth',1.5) 
c=0;   
for m=1:-0.005:0.35 
c=c+1; 
LM(c) = m;    
DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution;   
DSSSolution.LoadMult = m; %Mult(m); 
DSSSolution.Solve; 
%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1)/1000; 
LossMatrix(c) = Realpart; 
str = ['System losses for LoadMult = ' num2str(m) ' are ' 

num2str(Realpart) ' kW.']; 
disp(str) 
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 

  
BusSet = [10 101 104 105 108 11 111 113 114 16 19 2 20 25 27 29 33 35 

36 4 42 46 47 48 49 5 50 53 6 62 64 65 66 67 71 72 75 76 80 82 86 89 9 

93 99]; % NEW 48 DG, LM=1, E=100kW 
NumBuses = length(BusSet); 
cc=0;   
for m=1:-0.005:0.35 
cc=cc+1; 
LMDG1(cc) = m;    
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

        
%Retrieving old DGs as well as putting 5 more DGs 
for q=1:NumBuses 
NewDGLevel = 100; 
busname=strcat(num2str(BusSet(q))); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
end 

     
NewGen=strcat('New Generator.Gena bus1=48 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen; 
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NewGen=strcat('New Generator.Genb bus1=76 kv=4.16 kw=200 PF=1'); 
DSSText.command=NewGen; 

  
DSSSolution.LoadMult = m; %Mult(m); 
DSSSolution.Solve; 
%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1)/1000; 
LossMatrixDG1(cc) = Realpart; 
str = ['System losses for LoadMult = ' num2str(m) ' are ' 

num2str(Realpart) ' kW.']; 
disp(str) 
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 

  
BusSet = [105, 108, 11, 112, 113, 150, 16, 19, 20, 26, 29, 33, 35, 36, 

4, 42, 48, 49, 53, 6, 63, 65, 66, 67, 71, 72, 75, 76, 78, 81, 87, 9, 

93, 99];  %NEW 38 DG, LM=0.8, E=100kW 
NumBuses = length(BusSet); 
a=0;   
for m=1:-0.005:0.35 
a=a+1; 
LMDG8(a) = m;    
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

        
%Retrieving old DGs as well as putting 5 more DGs 
for q=1:NumBuses 
NewDGLevel = 100; 
busname=strcat(num2str(BusSet(q))); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
end 

     
NewGen=strcat('New Generator.Gena bus1=48 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen; 
NewGen=strcat('New Generator.Genb bus1=49 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen;  
NewGen=strcat('New Generator.Genc bus1=76 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen;  
NewGen=strcat('New Generator.Gend bus1=9 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen;  

         
DSSSolution.LoadMult = m; %Mult(m); 
DSSSolution.Solve; 
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%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1)/1000; 
LossMatrixDG8(a) = Realpart; 
str = ['System losses for LoadMult = ' num2str(m) ' are ' 

num2str(Realpart) ' kW.']; 
disp(str) 
else 
k='DSS Did Not Start' 
disp(k) 
end 
end 

  

  
BusSet = [101 108 11 110 113 150 16 20 26 28 33 36 4 42 47 48 49 57 6 

64 65 71 72 75 76 81 86 9 90 91 98];  % NEW 31 DG, LM=0.6, E=100kW 
NumBuses = length(BusSet); 
  cc=0; 
for m=1:-0.005:0.35 
cc=cc+1; 
LMDG6(cc) = m;    
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

        
%Retrieving old DGs as well as putting 5 more DGs 
for q=1:NumBuses 
NewDGLevel = 100; 
busname=strcat(num2str(BusSet(q))); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
end 

         
DSSSolution.LoadMult = m; %Mult(m); 
DSSSolution.Solve; 
%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1)/1000; 
LossMatrixDG6(cc) = Realpart; 
str = ['System losses for LoadMult = ' num2str(m) ' are ' 

num2str(Realpart) ' kW.']; 
disp(str) 
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 
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BusSet = [1 108 11 113 150 20 28 33 35 47 48 49 6 63 65 67 71 75 76 81 

9 91 98];  %NEW 24 DG, LM=0.5, E=100kW 
NumBuses = length(BusSet); 
cc=0; 
for m=1:-0.005:0.35 
cc=cc+1; 
LMDG5(cc) = m;    
[DSSStartOK, DSSObj, DSSText] = DSSStartup; 
if DSSStartOK 
DSSText.command='Compile (C:\Program 

Files\OpenDSS\IEEETestCases\123Bus\IEEE123firstscript.dss)'; 
% Set up the interface variables 
DSSCircuit=DSSObj.ActiveCircuit; 
DSSSolution=DSSCircuit.Solution; 

        
%Retrieving old DGs as well as putting 5 more DGs 
for q=1:NumBuses 
NewDGLevel = 100; 
busname=strcat(num2str(BusSet(q))); 
NewGen=strcat('New Generator.Gen',busname,' bus1=',busname,' kv=4.16',' 

kw=',num2str(NewDGLevel),' PF=1'); 
DSSText.command=NewGen; 
end 
NewGen=strcat('New Generator.Gena bus1=76 kv=4.16 kw=100 PF=1'); 
DSSText.command=NewGen; 
DSSSolution.LoadMult = m; %Mult(m); 
DSSSolution.Solve; 
%Calculating losses for j bus 
Loss = DSSCircuit.Losses; 
Realpart = Loss(1)/1000; 
LossMatrixDG5(cc) = Realpart; 
str = ['System losses for LoadMult = ' num2str(m) ' are ' 

num2str(Realpart) ' kW.']; 
disp(str) 
else 
a='DSS Did Not Start' 
disp(a) 
end 
end 

   
plot(LM, LossMatrix,'k');  % black 
hold on; 
plot(LMDG1, LossMatrixDG1, 'r');  % red 
hold on; 
plot(LMDG8, LossMatrixDG8, 'b');  % blue  
hold on; 
plot(LMDG6, LossMatrixDG6, 'g');  % green 
hold on; 
plot(LMDG5, LossMatrixDG5, 'm');  % magenta  
legend('Base system loss','Loss with 48 DG (LM=1)', 'Loss with 38 DG 

(LM=0.8)', 'Loss with 31 DG (LM=0.6)', 'Loss with 24 DG 

(LM=0.5)','Location','SouthEast'); %put the legend     
xlabel('Load Multiplier'); 
ylabel('Power Loss (kW)'); 
hold off 


