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ABSTRACT

Dynamic channel selection in cognitive radio consists of two main phases. The first

phase is spectrum sensing, during which the channels that are occupied by the primary

users are detected. The second phase is channel selection, during which the state of

the channel to be used by the secondary user is estimated. The existing cognitive

radio channel selection literature assumes perfect spectrum sensing. However, this

assumption becomes problematic as the noise in the channels increases, resulting in

high probability of false alarm and high probability of missed detection. This thesis

proposes a solution to this problem by incorporating the estimated state of channel

occupancy into a selection cost function.

The problem of optimal single-channel selection in cognitive radio is considered.

A unique approach to the channel selection problem is proposed which consists of first

using a particle filter to estimate the state of channel occupancy and then using the

estimated state with a cost function to select a single channel for transmission. The

selection cost function provides a means of assessing the various combinations of un-

occupied channels in terms of desirability. By minimizing the expected selection cost

function over all possible channel occupancy combinations, the optimal hypothesis

which identifies the optimal single channel is obtained.

Several variations of the proposed cost-based channel selection approach are dis-

cussed and simulated in a variety of environments, ranging from low to high number

of primary user channels, low to high levels of signal-to-noise ratios, and low to high

levels of primary user traffic.
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Chapter 1

INTRODUCTION

1.1 Work Motivation

Cognitive radio is a disruptive radio communications and networking technology

[1], which enables radios to perform dynamic channel selection (DCS). DCS is a cyclic

process consisting of three phases. During the first phase, the radio senses spectrum

consisting of multiple primary user channels in order to detect which channels are

occupied. During the second phase, the radio selects a single channel from the list

of unoccupied channels. The radio transmits over the selected channel during the

third phase. The concept of a DCS-capable radio is of great interest to the wireless

communications industry because it provides a solution to the problem of spectrum

scarcity by making more efficient use of existing radio spectrum [2]. Gaps, or spectrum

holes, can be found in the spectrum at various times and frequencies when licensed

primary users are not transmitting. The DCS-capable radio provides an unlicensed

secondary user the opportunity to transmit over a licensed primary user channel,

essentially filling in the gaps.

The main problem that must be addressed in DCS deals with primary user channel

occupancy. Specifically, at each time step, the occupancy of each primary user channel

must be determined. This problem, which is solved by means of various spectrum

sensing techniques, has received a great deal of attention in the research community [2,

3, 4, 5, 6, 7]. Another important problem in DCS is channel selection [8, 9, 10]. Once

the primary user channel occupancy is determined, the secondary user must select

a single channel out of all the detected unoccupied channels to use for transmission.
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Channel selection has not received as much attention as spectrum sensing in the

research community. However the choice of an adequate channel selection technique

is important in order to minimize the number of channels the secondary user has to

switch from. This is because switching channels can be quite costly as it can cause

unnecessary delays in transmission and an increase in the packet loss ratio [11].

Some of the existing channel selection methods include works discussed in [11-14],

where perfect spectrum sensing is assumed under high signal-to-noise ratio (SNR)

conditions. In [11], learning automata techniques are used to converge on the opti-

mal channel selection decision in order to avoid channel switches. Here, the optimal

channel is considered to be the channel with the lowest overall probability of primary

user occupancy. In [12], the channel selection problem in a multi-channel network,

with multiple secondary users and multiple primary users, is addressed. This paper

focuses on optimizing the channel selection operation by maximizing the total channel

utilization across all secondary users. This is performed by minimizing the probabil-

ity of contention for the same available channel by multiple secondary users. In [13],

the question of optimal bandwidth allocation for secondary users is addressed. Mul-

tiple channels can be selected by a single secondary user for transmission, allowing

for higher throughput. This is, however, at the cost of an increase in the number

of channel switches due to an increase in likelihood that one of the primary users

will return to reclaim a channel. This paper also includes a study on the tradeoff

between the number of channels selected and the overall throughput. In [14], the

problem of channel selection is explored from a standpoint of maximizing secondary

user throughput. Different primary user channels are assumed to offer different lev-

els of bandwidth. As a result, if the primary user returns to the channel that the

secondary user selected, then the secondary user must decide whether to move to a

different channel or wait for the channel to become unoccupied again.
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The aforementioned methods of channel selection do not take into consideration

the cost of a secondary user dynamically selecting a channel based on prior knowledge

on the previously selected channel. Also, although models on channel transition have

been previously considered [14, 15, 16], the models have not been used to dynamically

estimate the true state of the primary user channels. To our knowledge, a cost-based

channel selection approach which makes use of particle filter to estimate the state of

channel occupancy has not been proposed.

1.2 Proposed Work

The primary objective of this work is to optimize the channel selection phase of

DCS. We achieve this objective by first using the particle filter (PF) sequential Monte

Carlo method [17] to estimate the true state of primary user channel occupancy, and

then by using the estimated state in a cost-based selection approach. In particular,

we minimize the expected cost of a selection cost function over all possible channel

selection scenarios in order to determine the optimal channel selection. Our intent is

to first obtain a more accurate estimate of the state of channel occupancy and then to

use that estimate with a selection cost function to optimize channel selection by not

only minimizing channel switches, but also by minimizing primary user interference

and secondary user missed opportunities.

In our work, we consider a single secondary user operating within a network

consisting of multiple primary users. Each primary user transmits over a contiguous

band of frequencies which we collectively refer to as a channel. Primary user channels

are assumed to be completely independent. The secondary user is capable of sensing

a bandwidth consisting of multiple primary user channels simultaneously at each time

step according to a given probability of false alarm and probability of detection. A

channel is considered to be available to the secondary user for transmission at time
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step k if the primary user is not transmitting at time step k. Multiple channels can be

available at each time step, but only a single channel can be selected by the secondary

user for transmission.

We assume that the transmission patterns of the primary user in each channel

follow a statistical channel occupancy model that is fixed with respect to time, and

is known to the secondary user. We also assume that the spectrum sensing mea-

surements made by the secondary user follow a statistical measurement model that is

fixed with respect to time. But unlike the channel occupancy model, the measurement

model is identical across all channels.

As the focus of our work is on the channel selection phase of DCS, we assume

that spectrum sensing was already performed using one of the existing techniques,

and that the results of the spectrum sensing operation, along with the statistical

measurement model parameters (i.e., probability of false alarm (PFA) and probability

of detection (PD)) are available as inputs to the channel selection phase. The output

of the channel selection phase is a single channel that is used by the secondary user for

transmission at time step k. We assume that any coordination between the secondary

user source-destination pair, choice of transmission power, modulation type, etc., is

handled during the transmission phase of DCS. The transmission phase is outside the

scope of our work.

1.3 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we provide a brief overview of

cognitive radio technology, and we discuss radio frequency spectrum and its current

availability. In Chapter 3, we discuss DCS at a high level and provide an overview of

each of the individual steps of the DCS cycle. In Chapter 4, we discuss our channel

occupancy state and measurement models, and show how the particle filter is used

4



to estimate the state of primary user channel occupancy. In Chapter 5, we present

our cost selection function and show how it is used to select the optimal channel. In

Chapter 6, we discuss our simulation parameters and results. Finally, in Chapter 7,

we provide some concluding remarks and suggestions for future work.

5



Chapter 2

COGNITIVE RADIO AND SPECTRUM ALLOCATION

This chapter introduces cognitive radio as an assortment of technologies capable of

solving the spectrum availability problems that the wireless communications industry

is now facing.

An overview of cognitive radio is provided in Section 2.1. The current state

of spectrum availability is discussed in Section 2.2. The fixed spectrum allocation

policies currently in use are discussed in Section 2.3.

2.1 Cognitive Radio Overview

Cognitive radio is a term used to describe a new class of self-aware radios [18].

It can be thought of an intelligent wireless communication system that adapts to its

environment to achieve highly reliable communications and efficient radio spectrum

utilization [19]. The term is used interchangeably to describe both the radio itself,

and the technologies within the radio that make it cognitive. No single technology

makes a radio cognitive. Rather, an assortment of technologies are combined to

form a cognitive radio in order to benefit the radio user or the radio network. The

technologies, when viewed individually may not be new or breakthrough. What is

new is the way in which the technologies are integrated to create a smarter radio.

The enabling technology of cognitive radio is software defined radio. This is a

technology that allows software to control certain radio parameters such as carrier

frequency, signal bandwidth, modulation, and network access [20]. With the technol-

ogy in place to dynamically configure these parameters, software defined radio was
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then combined with other technologies such as artificial intelligence, geo-location, and

spectrum sensing in order to provide new and significant benefits to radio users and

radio networks [18]. One of the most significant of these benefits is the more efficient

use of radio spectrum.

2.2 Spectrum Availability

Although the electromagnetic spectrum is effectively infinite, only a portion of

it has the necessary propagation characteristics that make it suitable for wireless

radio communications. This portion of the electromagnetic spectrum, as shown in

Figure 2.1, is commonly referred to as the radio spectrum. Because radio commu-

nications channels must reside within this portion of the electromagnetic spectrum,

the radio spectrum can be thought of as a finite, physical resource. As is the case

with most of the worlds physical resources, over time, use of the radio spectrum

has dramatically increased. Demand for spectrum, driven by high-bandwidth cellu-

lar and WiFi applications, is on the rise. This has resulted in spectrum scarcity or

unavailability for new wireless communications services.

Figure 2.1: The radio spectrum. Figure taken from [21].

Figure 2.2 provides a portion of the United States frequency allocation table where

it is clearly demonstrated that nearly one hundred percent of the radio spectrum has

already been allocated. In fact, the only portion that has not been allocated is a small

portion of low-frequency spectrum that is unusable for high-speed, high-bandwidth

applications.

Several advances in wireless communications technology such as ultra-wideband,
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Figure 2.2: United States frequency allocations. Figure taken from [21].

spread-spectrum, and orthogonal frequency-division multiplexing have been imple-

mented to allow for more efficient use of the radio spectrum. In addition to this,

research has been done to expand wireless communications to use spectrum outside

of the 3 kHz to 300 GHz radio spectrum block. Visible light communication makes

use of visible light that ranges in frequency from 400 THz to 800 THz. This form

of wireless communication has been shown to transmit data at rates of up to 500

MBit/s over a distance of 5 meters [22]. Visible light communication certainly shows

potential for high data-rate communications over short distances, but the propaga-

tion characteristics of visible light spectrum greatly limit its usefulness as a wireless

communications medium.
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2.3 Spectrum Allocation

The root of the spectrum availability problem is that the underlying spectrum

allocation policies are inherently inefficient. The easiest way to visualize the ineffi-

ciency of radio spectrum allocation policies is to consider the analogy of a very large

multi-lane highway. If the lanes of the highway were to be allocated and regulated in

a manner similar to that of radio spectrum channels, each lane would be owned by a

single entity (a shipping company, for example), and that entity would be guaranteed

sole use of the lane. When a company is busy shipping products, there will be many

vehicles in its lane, but at other times the lane will be completely empty.

This is precisely what is happening with communications channels in the radio

spectrum. At peak times in busy cities, a few communications channels are highly

utilized by the entities that own them, but overall, spectrum usage is low. In 2004 and

2005, the Shared Spectrum Company carried out a series of spectrum measurements

in several different rural and urban areas in an attempt to quantify how efficiently

spectrum was being utilized in the range of 30 MHz to 3 GHz [23]. Measurements

were taken over a period of 3 days, and the findings are summarized in Figure 2.3.

Figure 2.3: Overall spectrum occupancy in different locations. Figure taken from
[23].

According to the measurements, Chicago was found to have the highest overall

spectrum occupancy at 17.4%, while Greenbank had the lowest at 1%. The average

occupancy across the 7 locations was less than 10%. A breakdown of spectrum
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occupancy within common spectrum bands, averaged across the 7 locations, is shown

in Figure 2.4.

Figure 2.4: Breakdown of spectrum occupancy within common spectrum bands.
Figure taken from [23].

We can easily see from Figure 2.3 and Figure 2.4 that spectrum, taken as a whole,

across all channels, locations, and times, is underutilized. Using the highway analogy,

we know that in reality, highway lanes are not owned by a single entity, but rather

shared among all motorists who wish to access the highway. These “smart” motorists

are capable of switching lanes as needed to fill in the gaps and utilize each lane

to its full potential. This is, in essence, what is meant to be accomplished by a new

spectrum allocation paradigm, referred to as dynamic spectrum allocation. According

to this paradigm, a channel owned by a primary user may be used opportunistically

by a secondary user when the primary user is not using the channel. The benefits of

using cognitive radio technology to implement this paradigm were first discussed in

[24]. In our work, we refer to the functional implementation of the dynamic spectrum

10



allocation paradigm in a cognitive radio as dynamic channel selection (DCS).
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Chapter 3

DYNAMIC CHANNEL SELECTION OVERVIEW

Dynamic channel selection, also known as dynamic spectrum access or oppor-

tunistic spectrum access, is a cyclic process with three distinct phases, as shown in

Figure 3.1. The first phase is spectrum sensing. This is the phase in which the sec-

ondary user scans its environment in an effort to detect unoccupied channels. The

second phase is channel selection. This is the phase in which the secondary user

makes a decision to select a single unoccupied channel for transmission. The third

phase is transmission. During transmission, the secondary user transmits over the

channel selected during the channel selection phase. Although the focus of our work

is on the channel selection phase of dynamic channel selection, we briefly discuss the

spectrum sensing and transmission phases in order to place our discussion of channel

selection within the context of the overall dynamic channel selection cycle.

Spectrum sensing is discussed in Section 3.1. Channel selection is discussed in

Section 3.2. Transmission is discussed in Section 3.3.
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Figure 3.1: Dynamic channel selection cycle.

3.1 Spectrum Sensing

Spectrum sensing is defined in [25] as “the action of a radio measuring signal

features”. The radio (the unlicensed secondary user) is a cognitive radio capable

of dynamic channel selection. Spectrum sensing consists of first using an antenna

to passively scan the environment for some length of time, and then processing the

sensed signal to derive a decision test statistic. The detection test statistic is then

used to decide whether or not the licensed primary user is currently transmitting over

the channel [26]. If the primary user is not occupying the channel, then a spectrum

hole exists, and the channel can be utilized by the secondary user for transmission

over a pre-determined duration of time. After the transmission by the secondary

user, the spectrum sensing operation is repeated. The spectrum sensing operation is

performed periodically across multiple channels simultaneously.

Spectrum sensing can be represented in the time-frequency plane, as depicted

in Figure 3.2. The total spectrum detected by the secondary user has some fixed

bandwidth which is sub-divided into N channels. The bandwidth of each individual

13



channel is known by the secondary user a-priori. The sensing time is the amount of

time that the secondary user senses the spectrum before moving on to the decision

making process on the occupancy of each of the N channels.

Figure 3.2: Representation of spectrum channel sensing in the the time-frequency
plane.

The spectrum sensing decision making process is generally approached as a statis-

tical problem in which two hypotheses are defined. Hypothesis H0 is used to describe

the case in which the primary user signal is not present within a channel (i.e., the

channel is unoccupied and a spectrum hole exists). Hypothesis H1 is used to describe

the case in which the primary user signal is present within a channel (i.e., the channel

is occupied).

There are two possible types of error, depending on which hypothesis is chosen.

The first type of error is false alarm (or false positive); this error occurs when hy-

pothesis H1 is chosen when H0 is true. The probability of false alarm (PFA) is an

important metric from the standpoint of the secondary user because it represents

missed opportunities, and the secondary user can only function properly if it is able
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to find sufficient opportunities to transmit. The second type of error is missed de-

tection (or false negative). A missed detection occurs when hypothesis H0 is chosen

when H1 is true. The probability of missed detection (PMD) is an important metric

from the standpoint of the primary user because if the secondary user determines an

occupied channel to be unoccupied, and then starts to transmit over the channel, the

primary user could suffer some level of interference.

The values of PFA and PMD depend on both the level of signal-to-noise ratio (SNR),

and the spectrum sensing technique that is used. Spectrum sensing techniques can

be classified as either coherent or non-coherent [5]. Coherent techniques, such as

cyclostationary detection and matched filter detection, require a priori information

about the primary user signal. Non-coherent techniques, such as energy detection, do

not require a priori information. A survey of a number of different coherent and non-

coherent spectrum sensing techniques is provided in [7]. The performance of various

spectrum sensing techniques is compared in [4] and [3]. A survey of energy detection

spectrum sensing techniques is provided in [5].

Regardless of the technique used, the output of the spectrum sensing operation

at time step k is the (N × 1) vector, yk = [yk,1 . . . yk,N ]T where T denotes the vector

transpose. The vector yk provides the measured state of the channel occupancy of

the N channels that the cognitive radio is sensing. Each of the N vector elements,

yk,i, i = 1, . . . , N , takes on a value of 1 or 0 depending on whether the ith channel is

sensed to be occupied by the primary user at time index k.

yk,i =

 0, ith channel not occupied at time step k

1, ith channel occupied at time step k
(3.1)

The total number of possible channel states is thus 2N .
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3.2 Channel Selection

The objective of channel selection is to choose the optimal single channel for

transmission at time step k. A high-level block diagram depicting this approach is

shown in Figure 3.3.

Figure 3.3: Channel selection block diagram.

Each possible channel selection decision that can be made corresponds to one

of the N channels that is currently being sensed. In addition, a null decision can

also be made if none of the channels is deemed suitable for transmission. If the null

decision is selected, then the cognitive radio will not transmit during time step k and

must wait until time step k + 1 for another chance to transmit. The total number

of possible decisions at time step k is thus N+1, and they are represented by the

set of hypotheses {H(0)
k , H

(1)
k , . . . , H

(N)
k } where H

(0)
k represents the null decision, and

H
(ch)
k , ch = 1, . . . , N represents the decision in which channel ch is selected. The

optimal decision denoted by, Ĥ
(ch)
k , provides the channel that minimizes the expected

cost over all possible decisions. The optimal decision thus represents the channel that

is then used for transmission at time step k.
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3.3 Transmission

During the transmission phase, the selected channel is used to transmit voice or

data at time step k for some length of time. It is assumed that the selection of

transmission parameters in the network, media access control, and physical layers is

performed during this phase. We also assume that the selection of these parameters

is performed independently from the channel selection optimization process. A few

examples of these adjustable transmission parameters are transmitter power, modu-

lation type, symbol rate, encryption, and packet size. In [27], these parameters are

described as writable parameters, and they can be optimized based on the values of a

set of observable parameters. A few examples of observable parameters are bit error

rate, path-loss, data rate, and packet delay. In [28], in which these writable and ob-

servable parameters are referred to as knobs and meters respectively, the optimization

of the knobs based on the readings from the meters, is explored as a multi-objective

decision-making problem. Note that a further discussion of the transmission phase if

beyond the scope of this thesis.
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Chapter 4

CHANNEL OCCUPANCY STATE ESTIMATION

Existing cognitive radio channel selection methods often assume that measure-

ments from the spectrum sensing phase provide perfect detection of the unoccupied

channels. However, due to variations in signal-to-noise ratio environmental condi-

tions, non-zero probability of false alarm and probability of missed detection need

to be taken into consideration when estimating the channel state occupancy. In this

chapter, we propose to improve the accuracy of channel occupancy state estimation

by formulating and solving the problem as a dynamic state space estimation, where

the measurement directly depends on the probability of detection and the probability

of false alarm.

In Section 4.1, we formulate the channel occupancy using a dynamic state model;

we provide the measurement model that provides information on the channel occu-

pancy state in Section 4.2. In Section 4.3, we discuss the particle filter sequential

Monte Carlo method that can be used to provide an estimate of the probability

density function of the state given the measurement.

4.1 Channel Occupancy State Model

We consider a cognitive radio application after the spectrum sensing decision mak-

ing process phase. It was determined that we have N independent and stochastically

identical channels that can be modeled using the Gilbert-Elliot channel model [29].

At any given time, the state of a channel can be considered to be occupied or un-

occupied by the primary user. We are interested in estimating when the channel is
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unoccupied by the primary user in order to provide secondary users with opportunis-

tic spectrum access. As demonstrated in [14-16], a two-state discrete-time Markov

chain is a fit model for the channel transitions between occupied and unoccupied

states. Denoting the state of the ith channel at time step k as xk,i, we demonstrate

the two channel states and the channel transition probabilities in Figure 4.1. Specif-

ically, when xk,i = 0, the state of the channel is unoccupied and when xk,i = 1, the

state of the channel is occupied. There are four transition probabilities involved for

the ith channel, transitioning from a state at time step k − 1 to either the same or

new state at time step k. For example, from Figure 4.1, Pr(xk,i = 1|xk−1,i = 0) is the

probability that the ith channel transitions from being unoccupied at time step k− 1

to being occupied at time step k.

Figure 4.1: Channel occupancy modeled as a two-state discrete-time Markov chain.

The discrete probability density function that defines the state of the ith channel

at time step k = 0 is given as follows:

p(x0,i) = Pr(x0,i = 0)δ[x0,i − 0] + Pr(x0,i = 1)δ[x0,i − 1] (4.1)

where δ[x− 1] is the Kronecker delta function, defined to be 1 when x = 1 and zero

otherwise. In (4.1), Pr(x0,i = 0) is the probability that the state of the ith channel is

not occupied at time step k = 0 and Pr(x0,i = 1) is the probability that the state of
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the ith channel is occupied at time step k = 0.

A formulation of the probability density function describing the channel state

model is given by

p(xk,i|xk−1,i = 0) =Pr(xk,i = 0|xk−1,i = 0)δ[xk,i − 0]+

Pr(xk,i = 1|xk−1,i = 0)δ[xk,i − 1]

(4.2)

This is a discrete probability density function that defines the state of the ith channel

at time step k, given that the state of the ith channel is not occupied at time step

k − 1. In (4.2), Pr(xk,i = 0|xk−1,i = 0) is the probability that the state of the ith

channel is not occupied at time step k, given that the state of the ith channel is not

occupied at time step k − 1, and Pr(xk,i = 1|xk−1,i = 0) is the probability that the

state of the ith channel is occupied at time step k, given that the state of the ith

channel is not occupied at time step k − 1.

Similarly, the discrete probability density function that defines the state of the

ith channel at time step k, given that the state of the ith channel was occupied at

time step k − 1 is given as follows:

p(xk,i|xk−1,i = 1) =Pr(xk,i = 0|xk−1,i = 0)δ[xk,i − 0]+

Pr(xk,i = 1|xk−1,i = 0)δ[xk,i − 1]

(4.3)

where Pr(xk,i = 0|xk−1,i = 1) is the probability that the state of the ith channel is

not occupied at time step k, given that the state of the ith channel is occupied at

time step k−1, and Pr(xk,i = 1|xk−1,i = 1) is the probability that the state of the ith

channel is occupied at time step k, given that the state of the ith channel is occupied

at time step k − 1.

4.2 Measurement Model

The measurement corresponds to the information yk,i provided at the spectrum

sensing phase on the state of the ith channel at time step k; if yk,i = 0, then the
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measurement provides the information that the channel is not occupied and if yk,i = 1,

then the information states that the channel is occupied. The measurement model is

provided by two discrete probability density functions.

The discrete probability density function that defines the sensed state of the ith

channel at time step k, given that the state of the ith channel is not occupied at time

step k is given by

p(yk,i|xk,i = 0) =Pr(yk,i = 0|xk,i = 0)δ[yk,i − 0]+

Pr(yk,i = 1|xk,i = 0)δ[yk,i − 1]

(4.4)

where Pr(yk,i = 0|xk,i = 0) is the probability that the sensed state of the ith channel

is not occupied at time step k, given that the state of the ith channel is not occupied

at time step k, and Pr(yk,i = 1|xk,i = 0), commonly referred to as the probability

of false alarm (PFA), is the probability that the sensed state of the ith channel is

occupied at time step k, given that the state of the ith channel is not occupied at

time step k.

The discrete probability density function that defines the sensed state of the ith

channel at time step k, given that the state of the ith channel is occupied at time

step k is given by

p(yk,i|xk,i = 1) =Pr(yk,i = 0|xk,i = 1)δ[yk,i − 0]+

Pr(yk,i = 1|xk,i = 1)δ[yk,i − 1]

(4.5)

where Pr(yk,i = 0|xk,i = 1), commonly referred to as the probability of missed detec-

tion (PMD), is the probability that the sensed state of the ith channel is not occupied

at time step k, given that the state of the ith channel is occupied at time step k, and

Pr(yk,i = 1|xk,i = 1), commonly referred to as the probability of detection (PD), is

the probability that the sensed state of the ith channel is occupied at time step k,

given that the state of the ith channel is occupied at time step k.
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The values of PFA and PMD are provided by the spectrum sensing operation and

are based upon the level of signal-to-noise ratio (SNR) and upon the spectrum sensing

technique used. In our simulations, both PFA and PMD remain fixed with respect to

time as we assume that channel conditions do not change.

4.3 Channel State Estimation

Using the dynamic state space formulation provided by the state model in Equa-

tions (4.2) and (4.3) and the measurement model in Equations (4.4) and (4.5), our

goal is to estimate the channel occupancy state. In order to achieve that, we explore

the use of an optimal Bayesian filter that uses grid-based methods to obtain the pos-

terior probability density function at time step k. We also consider the sub-optimal

Bayesian particle filter (PF) that estimates the posterior probability density function

at time step k using a set of particles and weights.

4.3.1 Grid-based Bayesian Approach

The grid-based methods used by the optimal Bayesian filter provide the optimal

recursion of the posterior probability density function if the state space is discrete and

consists of a finite number of states [17]. The posterior probability density function

is denoted by p(xk|y1:k), where the state vector is given by xk = [xk,1 . . . xk,N ]T

and the measurement data y1:k up to time k is given by the set of measurement

vectors {y1,y2, . . . ,yN} and yk = [yk,1 . . . yk,N ]T where T denotes the vector trans-

pose. In our case, the state space at time k consists of 2N discrete state vectors

{x[1]
k ,x

[2]
k , . . . ,x

[2N ]
k } representing all possible combinations of channel occupancy.

The calculation of p(xk|y1:k), as discussed in [17], is a 2-step process consisting of
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a prediction step,

p(xk|y1:k−1) =
2N∑
j=1

p(xk|x[j]
k−1)p(x

[j]
k−1|y1:k−1) (4.6)

and an update step,

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

2N∑
j=1

p(yk|x[j]
k )p(x

[j]
k |y1:k−1)

. (4.7)

Equations (4.6) and (4.7) result in the most accurate approach to obtain the

channel state estimate. However, it is computationally very demanding, and infeasible

for large values of N . For this reason, we do not explore its performance in our

simulations, but we consider the sub-optimal PF instead.

4.3.2 Particle Filter Approach

The particle filter approximates the posterior probability density function with a

set of particles and weights. The particles and weights can then be used to estimate

the state [17]. The set of particles is denoted by {x(1)
k ,x

(2)
k , . . . ,x

(M)
k } where M is the

number of particles and each particle is an N × 1 vector xm
k = [x

(m)
k,1 . . . x

(m)
k,N ]T where

x
(m)
k,i is the state of the ith channel occupancy at time step k for the mth particle.

The corresponding set of weights is denoted by {w(1)
k , w

(2)
k , . . . , w

(M)
k }.

We use the sequential importance resampling (SIR) particle filter algorithm that

is described in the following steps [17].

Step 1. For m = 1, ...,M draw particle x
(m)
k from the importance sampling func-

tion q(x
(m)
k |x

(m)
k−1,yk) and assign a weight, w

(m)
k , as shown in the following equation:

w
(m)
k ∝ w

(m)
k−1

p(yk|x(m)
k )p(x

(m)
k |x

(m)
k−1)

q(x
(m)
k |x

(m)
k−1,yk)

(4.8)

where yk = [yk,1 . . . yk,N ]T . We use the transition prior probability distribution,

denoted by p(xk|x(m)
k−1), which is obtained directly from our state transition model, as
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the importance sampling function. This simplifies the calculation of the weights, as

follows:

w
(m)
k ∝ w

(m)
k−1p(yk|x(m)

k ) (4.9)

where p(yk|x(m)
k ) is obtained from Equations (4.4) and (4.5).

Step 2. For m = 1, . . . ,M , we compute the normalized weights w
(m)
k as follows:

w
(m)
k =

w
(m)
k

M∑
m=1

w
(m)
k

(4.10)

Step 3. We compute the number of effective samples, denoted by Neff, as follows:

Neff =
1

M∑
m=1

(
w

(m)
k

)2
(4.11)

Step 4. If Neff < Nt, where Nt is some predetermined threshold, then we perform

resampling (with replacement) by drawing M particles from the current particle set

{x1
k,x

2
k, . . . ,x

M
k } with probabilities proportional to their weights. We replace the

current particle set with the new set and calculate new weights using:

w
(m)
k =

1

M
(4.12)

for all k.

The estimated posterior probability density function is thus given by:

p(xk|y1:k) ≈
M∑

m=1

w
(m)
k δ(xk − x

(m)
k ) (4.13)

The set of particles and weights can then be used to obtain an estimate of the

true state, denoted by x̂k, as follows:

x̂k = E[xk] =

∫
xk(xk|y1:k)dxk ≈

M∑
m=1

(
w

(m)
k x

(m)
k

)
(4.14)
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The result of Equation (4.14) is an (N × 1) vector in which each element takes on

a value between 0 and 1. We therefore round our results towards the nearest integer

in order to obtain our estimate of the discrete state.

In conclusion, the estimation result x̂k is a binary vector of the channel occupancy

state. Specifically, if the ith element of x̂k is one, then the ith channel is estimated

to be occupied; and if the ith element is zero, then the ith channel is estimated to

not be occupied.
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Chapter 5

SINGLE CHANNEL SELECTION

Multiple channels can be available to the secondary user for transmission at each

time step, but, based on the assumption that a single channel provides adequate

bandwidth for secondary user transmission, our goal is to find the channel with the

minimum cost. This chapter discusses the use of a cost function to accomplish this

goal. The cost function consists of a cost table listing the costs for each unique

combination of input parameters. We assign low costs to desirable combinations of

input parameters, and high costs to undesirable combinations. By minimizing the

expected cost of the cost function over all possible channel selection hypotheses, we

arrive at the optimal hypothesis which represents the optimal channel that will be

used by the secondary user for transmission.

In Section 5.1, we discuss the cost table and explain how cost values are assigned

based on the input parameters. In Section 5.2, we discuss the selection cost function,

and present an example of how the cost table is used by the selection cost function.

In Section 5.3, we show how the selection cost function, along with the particle filter

state estimation in Section 4.3, is used to compute the expected cost associated with

a single channel selection hypothesis.

5.1 Cost Table Formation

We use the cost table as a means to assign a single cost to each unique combination

of input parameters. The three input parameters that we use are xk,i, the ith channel

occupancy at time step k, H
(ch)
k , the Channel ch selection hypothesis at time step k,

26



and Ĥ
(ch)
k−1 , the estimated Channel ch selection hypothesis at time step k − 1. Each

of these parameters is either assigned one of two possible values or it results in one

of two possible outcomes. Overall, the three parameters yield eight combinations.

The cost values within the cost table are assigned based on the the priority level of a

given combination of input parameters. The higher the priority level of a parameter

combination, the lower its assigned cost. The input parameters are described in

Table 5.1.

Table 5.1: Description of parameters and their assigned or outcome values.

Parameter Description Assigned or Outcome Value

H
(ch)
k Channel selection hypothesis at time

step k taken from the hypotheses set

{H(0)
k , H

(1)
k , . . . , H

(N)
k }

ch = i or ch 6= i

xk,i State of occupancy of the ith channel

at time step k

0 or 1

Ĥ
(ch)
k−1 Estimated channel selection hypothesis

at time step k − 1

ch = i or ch 6= i

Assigning a cost to a given combination of parameters H
(ch)
k and xk,i, is equiva-

lent to assigning a priority level to the combination with the goal of minimizing the

primary user interference occurrences and the secondary user missed opportunities.

A given combination of H
(ch)
k and xk,i has a high priority level for either the primary

user or the secondary user, but not both. The cost assignment based on priority

levels is provided in Table 5.2. The assigned costs are unbiased in that the number

of low and high priority combination levels occur equally between the primary and

secondary users. In particular, unbiased costs place equal emphasis on minimizing
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primary user interference occurrences and secondary user missed opportunities.

Table 5.2: Cost assignment based on priority levels of combinations of parameters

H
(ch)
k and xk,i. Here, SU stands for secondary user and PU stands for primary user.

H
(ch)
k xk,i Description Priority Level Cost

ch 6= i xk,i = 0 SU does not select channel

that is not occupied by PU

Low priority level for SU 5

ch 6= i xk,i = 1 SU does not select channel

that is occupied by PU

High priority level for PU 2

ch = i xk,i = 0 SU selects channel that is

not occupied by PU

High priority level for SU 2

ch = i xk,i = 1 SU selects channel that is

occupied by PU

Low priority level for PU 5

Assigning a cost to a given combination of parameters H
(ch)
k and Ĥ

(ch)
k−1, is equiv-

alent to assigning a priority level to the combination with the goal of minimizing

channel switchings. Note that the priority level is only from the perspective of

the secondary user since the primary user is not affected when the secondary user

switches channels. In Table 5.3, we describe each combination of H
(ch)
k and Ĥ

(ch)
k−1,

and assign costs based on the priority level of each combination. The costs associ-

ated with high priority level combinations are not as low as the ones for high priority

level combinations in Table 5.2 because we consider minimizing primary user inter-

ference occurrences and secondary user missed opportunities to be more important

than minimizing channel switchings; similarly, the costs associated with low priority

level combinations are not as high as the ones for low priority level combinations in

Table 5.2.

Finally, by combining Table 5.2 and Table 5.3, we form the cost lookup table
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Table 5.3: Cost assignment based on priority levels of combinations of parameters

H
(ch)
k and Ĥ

(ch)
k−1. Here, SU stands for secondary user and PU stands for primary user.

H
(ch)
k Ĥ

(ch)
k−1 Description Priority Level Cost

ch 6= i ch 6= i SU does not select channel

that was not selected at pre-

vious time step

High priority level for SU 3

ch 6= i ch = i SU does not select channel

that was selected at previ-

ous time step

Low priority level for SU 4

ch = i ch 6= i SU selects channel that was

not selected at previous

time step

Low priority level for SU 4

ch = i ch = i SU selects channel that was

selected at previous time

step

High priority level for SU 3

shown in Table 5.4, which is used by the selection cost function (SCF) in the next

section.
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Table 5.4: Cost assignment for parameters H
(ch)
k , Ĥ

(ch)
k−1, and xk,i.

H
(ch)
k Ĥ

(ch)
k−1 xk,i g(H

(ch)
k , Ĥ

(ch)
k−1 , xk,i)

ch 6= i ch 6= i 0 8

ch 6= i ch 6= i 1 5

ch 6= i ch = i 0 9

ch 6= i ch = i 1 6

ch = i ch 6= i 0 6

ch = i ch 6= i 1 9

ch = i ch = i 0 5

ch = i ch = i 1 8

5.2 Heuristic Selection Cost Function

The SCF is used to calculate the total cost for a given H
(ch)
k , Ĥ

(ch)
k−1, and xk =

[xk,1 . . . xk,N ]T as follows:

G
(
H

(ch)
k , Ĥ

(ch)
k−1,xk

)
=

N∑
i=1

g
(
H

(ch)
k , Ĥ

(ch)
k−1, xk,i

)
(5.1)

where the cost function g(·) for the different values of H
(ch)
k , Ĥ

(ch)
k−1 , and xk,i) is

obtained from Table 5.4. The table lookup arguments H
(ch)
k , Ĥ

(ch)
k−1, and xk,i serve as

the indices into the table, and the matching cost value is returned. The cost lookup

table provides a single cost for every possible unique combination of H
(ch)
k , Ĥ

(ch)
k−1, and

xk,i.

An example of cost lookup using the SCF is given as follows. Assume that the

secondary user has sensed N = 3 channels. At time step k, channels 1 and 2 are

unoccupied, and channel 3 is occupied; thus xk = [001]T . Assume that at time

30



step k − 1, channel 2 was selected for transmission; therefore, the estimated channel

selection hypothesis at time step k − 1 is denoted by Ĥ
(2)
k . We want to calculate

the cost associated with each channel selection hypothesis at time step k from the

set {H(0)
k , H

(1)
k , H

(2)
k , H

(3)
k } in order to choose the channel for transmission by the

secondary user with the minimum cost.

Starting with the null hypothesis in which no channel is selected, denoted by H
(0)
k ,

we insert H
(0)
k , Ĥ

(2)
k , and xk = [001] into Equation (5.1), and proceed to calculate the

cost for each channel as follows.

For i = 1, the arguments to the cost table are H
(0)
k (where ch 6= i), Ĥ

(2)
k (where

ch 6= i), and xk,i = 0. The cost associated with this unique combination of arguments

is g(0, 2, 0) = 8, (first row of Table 5.4).

For i = 2, the arguments to the cost table are H
(0)
k (where ch 6= i), Ĥ

(2)
k (where

ch = i), and xk,i = 0. The cost associated with this unique combination of arguments

is g(0, 2, 0) = 9, (third row of Table 5.4).

For i = 3, the arguments to the cost table are H
(0)
k (where ch 6= i), Ĥ

(2)
k (where

ch 6= i), and xk,i = 1. The cost associated with this unique combination of arguments

is g(0, 2, 1) = 5, (second row of Table 5.4).

The total cost associated with H
(0)
k , as obtained from Equation (5.1), is thus

G(H
(ch)
k , Ĥ

(ch)
k−1,xk) = g(0, 2, 0) + g(0, 2, 0) + g(0, 2, 1) = 22. Similarly, the total cost

associated with H
(1)
k is 6+9+5 = 20, the total cost associated with H

(2)
k is 8+5+5 =

18, and the total cost associated with H
(3)
k is 8 + 9 + 9 = 26. The costs obtained

imply that channel 2 is the most desirable channel because it is currently unoccupied

and it was selected at the previous time step.
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5.3 Theoretic Selection Cost Function

5.3.1 Computation of Expected Cost using Particle Filter

In order to obtain the expected cost associated with a given channel selection

hypothesis H
(ch)
k , we consider the state of channel occupancy to be a random vari-

able with a corresponding posterior probability density function p(xk|y1:k) that we

estimated using the PF in Chapter 4. The expected cost function can be obtained as

E
[
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)

]
=

∫
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)p(xk|y1:k)dxk (5.2)

where the posterior distribution is approximated using the PF as

E
[
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)

]
=

M∑
m=1

G(H
(ch)
k , Ĥ

(ch)
k−1,x

(m)
k )w

(m)
k (5.3)

We refer to Equation (5.3) as the direct PF (DPF) method because the particles

and weights are used directly in the expected cost function.

We can also use the state estimated by the PF in the expected cost function,

which simplifies the calculation to the following:

E
[
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)

]
= G(H

(ch)
k , Ĥ

(ch)
k−1, x̂k) (5.4)

We refer to Equation (5.4) as the indirect PF (IPF) method because the particles

and weights are used indirectly to produce the estimated state x̂k, which is then used

in the expected cost function.

If the secondary user is operating in a very high signal-to-noise ratio (SNR) envi-

ronment, we can assume that the sensed state is a perfect measurement of the true

state. In this case, the expected cost is calculated as follows:

E
[
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)

]
= G(H

(ch)
k , Ĥ

(ch)
k−1,yk) (5.5)

We refer to Equation (5.5) as the direct sensing (DS) method because the the

sensed state of channel occupancy yk is used directly in the expected cost function.
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5.3.2 Minimum Selection Cost Function

The optimal channel selection hypothesis at time step k, denoted by Ĥ
(ch)
k , is made

by minimizing the expected cost over all possible channel selection hypotheses. This

is shown as follows:

Ĥ
(ch)
k = arg min

H
(0)
k ,H

(1)
k ,...,H

(M)
k

E
[
G(H

(ch)
k , Ĥ

(ch)
k−1,xk)

]
(5.6)
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Chapter 6

SIMULATIONS

In this chapter, we explore the performance of the particle filter, and compare the

various channel selection techniques. We simulate a variety of environments ranging

from a low to high number of primary user channels, low to high levels of signal-to-

noise ratio, and low to high levels of primary user traffic.

In Section 6.1, we discuss the values assigned to the various simulation parameters.

In Section 6.2, we explore the performance of the particle filter and determine the

number of particles necessary to achieve a desired level of performance. In Section 6.3,

we compare the performance of the various channel selection techniques.

6.1 Simulation Parameters

Throughout our simulations, we use 3 different values of N , corresponding to low,

medium, and high levels of channel density. The specific values we assign to N for

each of 3 channel density levels is shown in Table 6.1.

Table 6.1: Simulation values associated with various channel density levels.

Channel density N

Low 6

Medium 12

High 18

Regarding our measurement model parameters, we use 3 different probability of
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false alarm (PFA) and probability of detection (PD) value pairs. These 3 value pairs

correspond to low, medium, and high levels of sensing accuracy. The specific values we

assign to PFA and PD for each of the 3 sensing accuracy levels are shown in Table 6.2.

These are values that would appear on a typical receiver operating characteristic

curve, as seen in [6], where the low values correspond to a low-performance spectrum

sensing algorithm and/or low levels of signal-to-noise ratio (SNR), the medium values

correspond to a medium-performance spectrum sensing algorithm and/or medium

levels of SNR, and the high values correspond to a high-performance spectrum sensing

algorithm operating in high levels of SNR.

Table 6.2: Simulation values associated with various sensing accuracy levels.

Sensing accuracy PFA PD

Low .4 .5

Medium .1 .85

High .01 .95

Regarding our state model parameters, similar to [14], we use three levels of

primary user traffic, namely low, medium and high. Low traffic has the characteris-

tics of long unoccupied durations and short occupied durations, while high traffic is

characterized by long occupied durations and short unoccupied durations. Medium

traffic falls in between. Simulations are also performed for a mixed traffic scenario

in which a third of the channels have low traffic, a third have medium traffic, and a

third have high traffic. The specific values we assign to the state model parameters

for each of the 3 traffic levels are shown in Table 6.3. The state model parameters

that correspond to probabilities of occupancy for the ith channel are Pr(x0,i = 1),

Pr(xk,i = 1|xk−1,i = 0), and Pr(xk,i = 1|xk−1,i = 1). The state model parameters

that correspond to probabilities of unoccupancy for the ith channel are Pr(x0,i = 0),
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Pr(xk,i = 0|xk−1,i = 0), and Pr(xk,i = 0|xk−1,i = 1).

Table 6.3: Simulation values associated with various traffic levels.

Traffic Probability of channel

occupancy

Pr(x0,i = 1)

Pr(xk,i = 1|xk−1,i = 0)

Pr(xk,i = 1|xk−1,i = 1)

Probability of channel

unoccupancy

Pr(x0,i = 0)

Pr(xk,i = 0|xk−1,i = 0)

Pr(xk,i = 0|xk−1,i = 1)

Low 0.1 0.9

Medium 0.5 0.5

High 0.9 0.1

6.2 Particle Filter Simulations

Before using the particle filter (PF) in the channel selection simulations, we must

determine an appropriate number of particles, denoted by M , to use for various com-

binations of simulation parameters to obtain accurate channel occupancy estimates.

There exists a trade off between high accuracy of the particle filter and processing

time required to obtain that high level of accuracy. We measure the accuracy of the

PF in terms of mean square error (MSE). The calculation of PF MSE at time step k,

denoted by MSEk, is shown below:

MSEk =
1

N

N∑
i=1

(
xk,i −

M∑
m=1

(
w

(m)
k x

(m)
k,i

))2

(6.1)

The calculation of the overall MSE across all K time steps is shown below:

MSE =
1

K

K∑
k=1

MSEk (6.2)

In a similar manner, we can calculate the MSE of the sensed state of channel

occupancy provided by the spectrum sensing (SS) operation by substituting yk,i for
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M∑
m=1

(
w

(m)
k x

(m)
k,i

)
in Equation (6.1). We refer to this as the SS MSE, and it provides

us with a benchmark against which to compare the PF MSE.

We run multiple simulations which correspond to each possible combination of

channel density, sensing accuracy, and traffic taken from Table 6.1, Table 6.2, and

Table 6.3. Each simulation is made up of multiple simulation runs in which we vary

the value of M from 20 to 210. In each simulation run, we set the number of time steps

K to 100, and average both the PF MSE, and the SS MSE results over 10 simulation

iterations.

Some of these results corresponding to low, medium and high sensing accuracy

are shown in Figure 6.1. In each of the plots, the channel density is fixed to medium

and the traffic is mixed, i.e., a third of the channels have low traffic, a third have

medium traffic, and a third have high traffic.

By examining all PF simulation results, we determine the number of particles to

use for a given level of sensing accuracy, channel density, and traffic. This information,

along with the PF MSE associated with the specified number of particles, and the

SS MSE, is summarized in Table 6.4, Table 6.5, and Table 6.6. The last column in

the tables is the result of subtracting the PF MSE from the SS MSE. If the value in

this column is positive, then the PF estimated state is more accurate than the sensed

state. If the value is negative, then the sensed state is more accurate than the PF

estimated state.

What we have found is that the levels of sensing accuracy and traffic have the

greatest impact on PF MSE, and therefore dictate the number of particles required

to obtain accurate results in terms of PF MSE as compared to SS MSE. For medium

traffic level, a much larger number of particles is required than for low or high traffic

level. Each increase in sensing accuracy from low to medium to high requires an

increased number of particles, regardless of the levels of traffic and channel density.

37



(a) Low sensing accuracy

(b) Medium sensing accuracy

(c) High sensing accuracy

Figure 6.1: Particle filter MSE plotted versus the number of particles M , with
medium channel density and mixed traffic.
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Table 6.4: Low sensing accuracy particle filter simulation results.

Channel Density Traffic Particles PF MSE SS MSE SS MSE - PF MSE

Low Low 16 0.1090 0.4082 0.2992

Low Medium 256 0.4493 0.4499 0.0006

Low High 16 0.0990 0.4938 0.3948

Low Mixed 16 0.2290 0.4500 0.2210

Medium Low 16 0.0972 0.4083 0.3111

Medium Medium 512 0.4493 0.4486 -0.0007

Medium High 16 0.1021 0.4911 0.3890

Medium Mixed 16 0.2288 0.4497 0.2209

High Low 16 0.1008 0.4117 0.3109

High Medium 512 0.4518 0.4513 -0.0005

High High 16 0.1013 0.4891 0.3878

High Mixed 16 0.2310 0.4507 0.2197

Because channel density does not appear to have much of an impact on PF MSE, we

fix the channel density level to medium for the channel selection simulation in the

following section.
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Table 6.5: Medium sensing accuracy particle filter simulation results.

Channel Density Traffic Particles PF MSE SS MSE SS MSE - PF MSE

Low Low 32 0.0952 0.1052 0.0100

Low Medium 64 0.1317 0.1262 -0.0055

Low High 32 0.1137 0.1446 0.0309

Low Mixed 32 0.1108 0.1235 0.0127

Medium Low 32 0.0998 0.1042 0.0044

Medium Medium 512 0.1324 0.1235 -0.0089

Medium High 32 0.1172 0.1465 0.0293

Medium Mixed 128 0.1138 0.1266 0.0128

High Low 32 0.0980 0.1037 0.0057

High Medium 512 0.1863 0.1252 -0.0611

High High 32 0.1122 0.1459 0.0337

High Mixed 256 0.1124 0.1258 0.0134
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Table 6.6: High sensing accuracy particle filter simulation results.

Channel Density Traffic Particles PF MSE SS MSE SS MSE - PF MSE

Low High 256 0.0525 0.0468 -0.0057

Low Mixed 256 0.0348 0.0309 -0.0039

Medium Low 256 0.0239 0.0142 -0.0097

Medium Medium 1024 0.0560 0.0300 -0.0260

Medium High 256 0.0681 0.0470 -0.0211

Medium Mixed 1024 0.0376 0.0301 -0.0075

High Low 256 0.0369 0.0136 -0.0233

High Medium 1024 0.1244 0.0298 -0.0946

High High 256 0.0697 0.0461 -0.0236

High Mixed 1024 0.0531 0.0300 -0.0231
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6.3 Channel Selection Simulations

Following a similar approach as the simulations in [8] and [9], we use a random

selection technique as a baseline against which to compare our cost-based channel

selection techniques. In the random selection technique, we use the sensed state

information yk. An unoccupied channel is selected randomly and is used until the

channel becomes occupied. In our plots, we refer to the random selection technique

as RND. The RND technique, along with the other channel selection techniques

discussed in Section 5.3 are summarized in Table 6.7.

Table 6.7: Summary of channel selection simulation techniques.

Technique Description

Random (RND) Use the sensed state yk.

Direct sensing (DS) Use the sensed state yk directly in the SCF.

Indirect particle filter (IPF) Use particles and weights indirectly to pro-

duce the estimated state xk, which is then

used in the SCF.

Direct particle filter (DPF) Use particles and weights directly in the

SCF.

Based on the low priority level scenarios discussed in Section 5.1, we formulate

a set of simulation metrics which we use to compare the performance of the various

channel selection techniques. These metrics are summarized in Table 6.8.

In each of the channel selection simulations, we set the number of time steps K to

100, and we calculate the metrics in Table 5.1 as a percentage of K, averaged over 10

simulation iterations. We fix the level of channel density to medium, for all channel

selection simulations.
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Table 6.8: Summary of channel selection simulation metrics. Here, SU stands for
secondary user and PU stands for primary user.

Metric Description Formulation

PU interference SU selects channel that is

occupied by PU

Ĥ
(i)
k , xk,i = 1

SU missed opportunity SU does not select any chan-

nel when at least one chan-

nel is available

Ĥ
(0)
k ,
∑
xk,i 6= N

Channel switch SU selects channel that was

not selected at previous

time step

Ĥk 6= Ĥk−1

First we explore the performance of the various channel selection techniques in a

low sensing accuracy environment. The number of particles used in the PF for each

simulation is obtained from Table 6.4. The results, as shown in Figure 6.2, indicate

that the IPF and DPF techniques consistently result in a significantly lower number

of channel switches compared to the RND and DS techniques, regardless of the traffic

level. In mixed traffic, the IPF and DPF techniques also result in a lower number of

both primary user interference occurrences and secondary user missed opportunities

when compared to the RND and DS techniques.

Next we explore the performance of the various channel selection techniques in

a medium sensing accuracy environment. The number of particles used in the PF

for each simulation is obtained from Table 6.5. The results, as shown in Figure 6.3,

indicate that IPF and DPF techniques consistently result in a lower number of channel

switches compared to the RND and DS techniques, regardless of the traffic level.

However, the IPF and DPF techniques to not appear to offer any benefit over the
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(a) Low traffic

(b) Mixed traffic

(c) High traffic

Figure 6.2: Channel selection technique performance, with low sensing accuracy.
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RND and DS techniques in terms of both primary user interference and secondary

user missed opportunities, regardless of the traffic level.

Finally we explore the performance of the various channel selection techniques

in a high sensing accuracy environment. The number of particles used in the PF

for each simulation is obtained from Table 6.6. The results, as shown in Figure 6.4,

indicate that the IPF and DPF techniques offer a slight advantage over the RND and

DS techniques in terms of channel switches, regardless of the traffic level. However,

the IPF and DPF techniques to not appear to offer any benefit over the RND and

DS techniques in terms of both primary user interference and secondary user missed

opportunities, regardless of the traffic level.

In conclusion, we can see from the channel selection simulation results that the

random and direct sensing techniques provide similar results, regardless of sensing

accuracy and traffic levels. When the random technique is compared to the direct and

indirect PF techniques, on the other hand, we can see that there is a clear advantage to

using either the direct or indirect PF technique under certain conditions. Specifically

when sensing accuracy is low and traffic is mixed, we can see that the use of either

the direct or indirect PF technique results in a decrease in primary user interference

by a factor of 3, and a decrease in channel switches by a factor of 20. There does

not appear to be an advantage to using the direct PF technique over the indirect PF

technique.
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(a) Low traffic

(b) Mixed traffic

(c) High traffic

Figure 6.3: Channel selection technique performance, with medium sensing accu-
racy.
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(a) Low traffic

(b) Mixed traffic

(c) High traffic

Figure 6.4: Channel selection technique performance with high sensing accuracy.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

We proposed a unique formulation of channel selection in cognitive radio as a

dynamic state space estimation problem. We then estimated the channel occupancy

using the particle filter sequential Monte Carlo method. By incorporating the particle

filter into a selection cost function, we designed a method to select a single channel for

secondary user transmission with the minimum cost function for channel occupancy

at each time step. Using simulations, we demonstrated that the proposed method

effectively decreases primary user interference, secondary user missed opportunities,

and channel switches under certain conditions, when compared to a random channel

selection technique.

When using the sensed state in the direct sensing technique, we did not find any

advantage in applying the selection cost function over the random channel selection

technique, irrespective of the level of sensing accuracy. On the other hand, when using

the estimated state in both the direct and indirect particle filter techniques, we found

a distinct advantage in applying the selection cost function over the random channel

selection technique, under certain conditions. Specifically, when sensing accuracy

is low and traffic is mixed, we have shown that primary user interference can be

decreased by a factor of 3, and channel switches can be decreased by a factor of 20.

We have also shown that the indirect particle filter technique performs nearly as well

as the computationally intensive direct particle filter technique.

Regarding future work, the selection cost function is an area of research with many

open questions to explore, especially with regards to input parameters. For example,

channel switches could be further minimized by including a future channel occupancy
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parameter. Throughput could be considered by including a channel bandwidth pa-

rameter. Furthermore, by pre-defining multiple costs for each combination of input

parameters, the costs could be changed in real-time, thus allowing for a priority or

objective-based channel selection scheme.

We would also like to extend our network model from a single secondary user to

multiple secondary users, and look more closely at the interaction between secondary

user source-destination pairs. We would like to expand our channel occupancy state

model to a more realistic time-varying model. And finally, we would like to explore

the hardware implementation of the particle filter and selection cost function in order

to study real-time performance and determine practical feasibility.
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