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ABSTRACT 

Air pollution is a serious problem in most urban areas around the world, which has 

a number of negative ecological and human health impacts.  As a result, it’s vitally 

important to detect and characterize air pollutants to protect the health of the urban 

environment and our citizens.  An important early step in this process is ensuring that the 

air pollution monitoring network is properly designed to capture the patterns of pollution 

and that all social demographics in the urban population are represented.  An important 

aspect in characterizing air pollution patterns is scale in space and time which, along with 

pattern and process relationships, is a key subject in the field of landscape ecology. Thus, 

using multiple landscape ecological methods, this dissertation research begins by 

characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate 

matter (PM10) in the Phoenix, Arizona, metropolitan region.  Results showed that 

pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer 

temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season.  

Next, this dissertation examines the monitoring network within Maricopa County.  Using 

a novel multiscale indicator-based approach, the adequacy of the network was quantified 

by integrating inputs from various academic and government stakeholders.  Furthermore, 

deficiencies were spatially defined and recommendations were made on how to 

strengthen the design of the network.  A sustainability ranking system also provided new 

insight into the strengths and weaknesses of the network.  Lastly, the study addresses the 

question of whether distinct social groups were experiencing inequitable exposure to 

pollutants – a key issue of distributive environmental injustice.  A novel interdisciplinary 

method using multi-scalar ambient pollution data and hierarchical multiple regression 
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models revealed environmental inequities between air pollutants and race, ethnicity, age, 

and socioeconomic classes.  The results indicate that changing the scale of the analysis 

can change the equitable relationship between pollution and demographics.  The 

scientific findings of the scale-dependent relationships among air pollution patterns, 

network design, and population demographics, brought to light through this study, can 

help policymakers make informed decisions for protecting the human health and the 

urban environment in the Phoenix metropolitan region and beyond.  
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CHAPTER 1:  INTRODUCTION 

 

Background 

Air pollution is a problem that has been known in urban areas for millennia; 

however, historically it was not adequately understood, or in some cases was even taken 

to be a sign of modern progress (Fenger 2009) .  As the industrial and transportation 

infrastructure of cities grew, the problem of air pollution emerged as one that could no 

longer be ignored if the health of our citizens was to be protected.  With epidemiological 

and ecological studies showing negative links between air pollution, human health and 

the environment, it is now recognized that it is vitally important to detect and characterize 

air pollutants so that citizens can make informed choices as to their residence and 

lifestyle (Dockery et al. 1993, Suh et al. 2000, Grineski 2007b, Grimm et al. 2008, Fenger 

2009, Fernando et al. 2009a).    

With the advent of modern monitoring technology, the ability to detect and 

measure pollutants has greatly improved. However, ensuring that air monitoring networks 

are adequately designed and that all social demographics in the population are 

represented and protected is difficult (Langstaff et al. 1987, Mofarrah and Husain 2009).  

Thus, in this dissertation research I characterize the spatiotemporal patterns of criteria air 

pollution in the Phoenix metropolitan region, Arizona, based on which the local air 

monitoring network is evaluated for its adequacy and effectiveness.  Furthermore, by 

coupling the spatiotemporal patterns of air pollution with social demographics, I assess if 

any social group is being disproportionately affected or under-represented. 
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The Phoenix metropolitan area, known locally as the ‘Valley of the Sun’ or just the 

‘Valley’, is a thriving, rapidly growing urban center centrally located within the deserts 

of Maricopa County, Arizona, and is home to more than more than 4 million people.  It is 

also home to the Central Arizona-Phoenix Long-Term Ecological Research project, 

making it a prime location for urban ecological studies (Grimm and Redman 2004, Brazel 

and Heisler 2009).  The city is situated in the Salt River valley, with scattered low 

mountain ranges and hills surrounding it.  This combination of terrain, dense population, 

frenzied growth, semi-arid climate, light wind and abundant sunshine creates an 

environment that is conducive to the formation of anthropogenic air pollutants such as 

ozone (O3) or particulate matter <10 microns (PM10) (Bolin et al. 2000).  Maricopa 

County was listed by the United States Environmental Protection Agency (EPA) as being 

in non-attainment of the primary, i.e. protection of human health, standards for both O3 

and carbon monoxide (CO) in 1978, although CO was later delisted in 2004.  PM10 was 

classified in non-attainment status in 1990 and primary standard violations of this 

pollutant are such that in 2006 the EPA threatened economic sanctions if an effective 

reduction strategy is not implemented (ADEQ 2009, EPA 2009a). 

A critical early step in developing this reduction strategy is to spatially and 

temporally characterize these pollutants so as to gain a better understanding of their 

dynamics in relation to stationary sources, transportation corridors, population densities, 

meteorology, and landscape features.  Local government agencies currently employ two 

main methods for determining pollution concentrations: ambient monitoring and 

emissions inventories (ADEQ 2009, MCAQD 2011).  Between State, County, and Tribal 

agencies, there were 34 monitoring sites operating and reporting data in 2008 (EPA 
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2009b).  For a metropolitan land area of 2,387 km2 in area (Luck et al. 2001), this 

government-operated ambient monitoring network within Maricopa County is relatively 

sparse.   

Although the network is sparse for an area this size, it still far exceeds the number 

of monitors required by the federal government for a metropolitan area of this population 

size (Code of Federal Regulations 2009b).  An emissions inventory is a comprehensive 

listing of air pollutants emitted into the atmosphere and contains point, area, mobile, and 

biogenic sources (ADEQ 2009, MCAQD 2009).   While characterizing air pollution 

patterns, it is worth considering merging both ambient monitoring data and emissions 

inventories, similar to the study performed by Diem & Comrie (2001) in Tucson, AZ.  In 

this manner deficiencies and redundancies in the monitoring network, in regards to 

known source emissions listed in the inventory, can be located and evaluated.  Likewise, 

unexplained anomalies in the monitoring data, e.g. ‘hotspots’, which do not conform to 

the inventory list of sources can be noted and the information passed on to pollution 

control agencies to search for possible unregulated emission sources. 

Other important factors that should be considered when evaluating pollution 

patterns and the monitoring network include population demographics and the location of 

distinct social classes.  This research can lend evidence to environmental justice issues.   

Although environmental injustice can have various meanings, it can be simply defined as 

distinct social groups carrying a disproportionate amount of burden from environmental 

hazard (Fisher et al. 2006, Bryant and Callewaert 2008).  The Valley is a sprawling urban 

area with a population-dense core surrounded by less-dense suburban residential areas.  

Industry is decentralized within the Valley; primary industrial sources, including sand & 
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gravel mining, semi-conductor manufacturing, high technology industry, and aerospace 

manufacturing, are spread out across the Valley including in areas near  residential 

suburbia (Bolin et al. 2000).  The urban fringe is surrounded by agricultural areas that 

merge into the desert; however, new development within the Valley, which occurs mostly 

on the urban fringe, is growing at such a fast rate that it has frequently surpassed and 

enveloped these agricultural patches leaving isolated islands within the suburban areas 

(Wu et al. 2003, Berling-Wolff and Wu 2004, Keys et al. 2007).  Within these 

heterogeneous patches of industry, agriculture, and residential areas, are many relatively 

segregated social groups of racial, ethnic, age, and socioeconomic classes (Bolin et al. 

2000, Grineski et al. 2007). 

With the decentralized nature of industry within the Valley, patches of agricultural 

land located within the urban fringe, and major transportation corridors linking all 

communities, there is ample opportunity for the various social groups to be exposed to air 

pollutants.  Several prior environmental justice studies were performed in the Phoenix 

metropolitan area; these studies did find evidence of environmental inequity in racial 

minority and lower-income social groups (Bolin et al. 2000, Bolin et al. 2002, Grineski et 

al. 2007, Grineski 2007b).  However, these studies either used toxic release inventories 

(TRI), or an ambient air model using limited temporal scale as the basis for their 

determination.  While the toxicity of the emissions and periods of acute exposure are 

vitally important, it is also important to understand the extent of long-term chronic 

exposure to pollutants (Schwartz 1989, Dockery et al. 1993).  Thus the need for 

additional research using a model of air pollutants generated from a combination of 
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ambient monitoring and emissions inventories and representing several spatiotemporal 

scales. 

 

Research Goals and Significance 

 

 

Figure 1 Conceptual Framework of the Three Phases of the Dissertation 

 

In this dissertation, I investigate the relationship of the spatiotemporal patterns of 

air pollutants, the ambient monitoring network, and environmental justice issues in the 

Phoenix metropolitan area (Figure 1). My key research questions are: 
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1. What are the spatiotemporal patterns of air pollution and their key 

determinants in the Phoenix metropolitan region? 

2. What implications do the spatiotemporal patterns of air pollution have for 

designing a monitoring network in the Phoenix metropolitan region, and is 

the current government ambient monitoring network adequate? 

3. Using a comprehensive, multi-scale point of view, are there environmental 

justice problems in the Phoenix metropolitan region, and does the current 

ambient monitoring network adequately give representation to these 

vulnerable populations? 

This dissertation develops a multi-scale approach to the study of air pollution in 

urban areas which integrates principles and methods used in landscape ecology, urban 

ecology, and the social sciences.  It fills several gaps in air pollution research through 

case studies focusing on the Phoenix metropolitan region.  This research is significant 

because: 

1. While pollutants are frequently monitored and modeled within the region, 

there is a notable absence in the literature of investigating air pollution and 

its underlying factors at different spatiotemporal scales.  To fill this gap, a 

landscape pattern analysis approach was appropriate and effective. 

2. There is a lack of research in evaluating the adequacy of ambient air 

monitoring networks and their relations to the spatial characteristics of 

industrial and agricultural sources and social demographics in the Phoenix 

area.  The Phoenix metropolitan region is an ideal place to address this 
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problem because of its rapid urbanization, diverse industries, and presence 

of minority ethnicities. 

3. Although various environmental justice issues have attracted increasingly 

greater attention from researchers, many of these studies in the Phoenix area 

have focused only on a specific pollution category, a limited temporal scale, 

or limited social groups.  A comprehensive approach using multiple 

pollutants, scales, and population demographics is needed.  A hierarchical, 

spatially explicit, landscape ecological modeling approach provides an 

effective method of studying these issues (Luck and Wu 2002, Wu 2008).  

This research develops a more comprehensive approach that considers 

multiple pollutants, scales, and population demographics using the Phoenix 

metropolitan region as a test-bed. 

 

Expected Results 

My research (1) quantifies the spatiotemporal patterns of the criteria pollutants O3 

and PM10 within the Phoenix metropolitan area; (2) evaluates the existing ambient air 

monitoring network in the Phoenix metropolitan area for discrepancies or redundant sites, 

with a special emphasis on monitoring for pollution near possible environmental justice 

issues; and (3) completes a comprehensive environmental justice survey at various 

spatiotemporal scales to determine if unique social groups are under a disproportionate 

risk from air pollution. 

The following deliverables were produced from this dissertation research:   
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(1) Production of distinct dissertation chapters and relevant articles written for 

publication in suitable scientific journals. At the time of this writing, two of these articles 

have been published in peer-review journals, and one is in draft.  

(2) A comprehensive report regarding the status of the Maricopa County 

monitoring network was produced for government environmental agencies and policy 

makers, including the EPA, state and local agencies, and the regional planning agency; 

reports regarding the status of environmental justice issues are pending.  The EPA 

requires all air pollution control districts to assess the adequacy of their monitoring 

networks every five years; this assessment must relate to “the ability of existing and 

proposed sites to support air quality characterization for areas with relatively high 

populations of susceptible individuals”, i.e. environmental justice issues (Code of Federal 

Regulations 2009c).  Using methods developed in this research, a report was provided to 

the EPA which satisfied the requirements of the Code of Federal Regulations.   

(3) This report was also made available to the citizens of the Phoenix metropolitan 

area, and press releases and public meetings were held to answer citizen’s questions. This 

report contained information on the spatial location and concentrations of air pollutants 

and the performance of the air pollution monitoring network.  Citizens can access this 

report, which is posted on the websites of the local government environmental and 

planning agencies, so as to make informed decisions regarding their residence and 

lifestyle.    In addition, recommendations from the report on how to improve the quality 

of the air pollution monitoring network have already begun to be implemented, and it is 

expected that the evaluation methods will become a model for other air quality agencies 

within the country.  
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Air quality issues are of vital concern for the health of our citizens, and research on 

these issues is in high demand, especially in areas that are in violation of the primary air 

pollution standards, such as in the Phoenix metropolitan area.  This dissertation adds 

valuable research to advance the body of literature, provide immediate ongoing results 

for use by governmental policy-makers, and provide citizens with the information they 

need to better their lives.  Lastly, these studies will provide a strong base for future 

research in deciding how to address and remediate air pollution problems within the 

Valley of the Sun.
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CHAPTER 2:  CHARACTERIZING AIR POLLUTION PATTERNS ON MULTIPLE 

TIME SCALES IN URBAN AREAS: A LANDSCAPE ECOLOGICAL APPROACH1 

 

Abstract    

Quantifying the spatiotemporal patterns of air pollution in urban areas is essential 

for studying ecological processes, environmental quality, and human health in cities.  To 

adequately characterize or monitor air pollution patterns, one important issue is scale 

because the concentrations of air pollutants are temporally dynamic and spatially 

heterogeneous.  My research addresses the scale issue in air quality monitoring and 

analysis by considering the following research questions: (1) How does the spatial pattern 

of O3 change with the temporal scale of analysis?  (2) How does the spatial pattern of 

PM10 change with the temporal scale of analysis?  (3) What implications do these scale 

effects have for designing and evaluating air pollution monitoring networks?  I 

systematically examined these questions based on data from official air pollution 

monitoring networks in the Phoenix metropolitan region, Arizona, USA.  My results 

showed that spatial patterns of both O3 and PM10 may change substantially with the 

temporal scale of analysis. O3 patterns at broader (but not finer) temporal scales were 

more consistent across years, and exhibited a more uniform, regionalized pattern.  PM10 

patterns were less consistent across years than O3, and exhibited a more localized effect.  

Spatial patterns of PM10 also varied seasonally.  My study demonstrates that it is 

1 This chapter has been published as: Pope, R. L., & Wu, J. (2014). Characterizing air pollution 
patterns on multiple time scales in urban areas: A landscape ecological approach. Urban 
Ecosystems, doi:10.1007/s11252-014-0357-0. 
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critically important to consider the temporal and spatial scales in designing or evaluating 

air monitoring networks in particular and in conducting air pollution research in general.

Introduction 

Monitoring the spatial and temporal patterns of air pollutants in urban areas is 

necessary for protecting human health and ensuring environmental justice.  To accurately 

assess air pollutants and identify populations at risk, a critically important first step is to 

determine how many air sampling stations are needed and where they should be placed.  

Although it would be desirable to have a dense network of air pollution monitors that 

covers the full spatial extent of an urban region, this is infeasible because of physical, 

fiscal, and technical constraints.  Establishing an air monitoring site takes significant 

resources, and issues such as location, objective, power, and security all have to be 

considered (Arizona Department of Environmental Quality 2011b, MCAQD 2011).   

Thus, policy makers and resource managers need multiple sources of information in order 

to maximize their limited resources when designing or improving air monitoring 

networks. A fundamentally important but largely ignored issue in evaluating and 

designing air pollution monitoring networks is spatiotemporal scale.  Scale is a central 

issue in ecological and geographic sciences and particularly in landscape ecology which 

studies the relationship between spatial pattern and ecological processes across a range of 

scales (Turner 1989, Pickett and Cadenasso 1995, Wu et al. 2000).  Two key components 

of scale are grain size (corresponding to spatial or temporal resolutions) and extent (the 

spatial expanse or time duration of a study) (Wu et al. 2006).  Spatial patterns, ecological 

processes, and their relationships are all scale-dependent, meaning that their 

characteristics and controls vary with the scale of observation or analysis (Levin 1992, 
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Wu and Loucks 1995).  Accurately assessing air pollution in an urban area requires the 

generation of time series of spatial patterns (maps) of air pollutants, and these patterns are 

most likely scale dependent as with ecological patterns.  This scale dependence of air 

pollution patterns has important implications for the design of monitoring networks and 

the analysis of data obtained from them.  Capturing spatial and temporally heterogeneous 

air pollution patterns can have important implications, including evaluating 

epidemiological effects or conducting social justice studies at different scales of exposure 

(Loo 2007, Digar et al. 2011). While the scale issues have been scrutinized extensively in 

ecology and geography, there is little landscape ecological work done on how scale 

matters in monitoring and analyzing the spatiotemporal patterns of air pollutants. 

Thus, I attempted to address this research problem in the Phoenix metropolitan 

region, one of the fastest-growing urban areas in the United States and home to more than 

4 million people (Luck and Wu 2002, Berling-Wolff and Wu 2004).  With increasing 

anthropogenic activity, health standards for air pollution are frequently violated in this 

desert city (Bolin et al. 2000, Arizona Department of Environmental Quality 2011a).  

Ground-level O3 and PM10 are the two pollutants currently of most local concern, as the 

region is classified as being in non-attainment of standards for these pollutants (Arizona 

Department of Environmental Quality 2009, U.S. EPA 2009a).  Specifically, my study 

was designed to address the following research questions:  

1. How does the spatial pattern of O3 change with the temporal scale of 

analysis (i.e. temporal extent)? 

2. How does the spatial pattern of PM10 change with the temporal scale of 

analysis?   
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3. What implications do these scale effects have for designing and evaluating 

air pollution monitoring networks? 

I hypothesized that, due to its chemical characteristics, O3 would be a regionally-

scaled pollutant and its spatial pattern would be more uniform across space and more 

consistent between sampling years.  I also hypothesized that O3 would have a more 

apparent urban-to-rural gradient and be more stable outside of the urban area.  By 

contrast, I hypothesized that the spatial pattern of PM10 would be more localized in 

relation to sources and less consistent across temporal scales.

Methods 

Study Area 

The study is in the Phoenix metropolitan statistical area (MSA) in South-Central 

Arizona (Figure 2).  The MSA, within Maricopa and Pinal Counties, is a thriving area 

with more than 20 self-governing municipalities.  The rural areas of Maricopa and Pinal 

counties contain significant agriculture, including livestock and irrigated cropland.  The 

region has experienced dramatic growth since the end of World War II, with population 

in the MSA expanding from 331,000 in 1950 to almost 4.2 million in 2010 (Wu et al. 

2011).  This growth has been exponential ,with populations in Pinal and Maricopa 

Counties increasing by 99.9% and 24.2%, respectively, between the 2000 and 2010 

census (U.S. Census Bureau 2011).   

The Phoenix region is geographically situated in a river valley and is surrounded by 

mountainous topography.  The region is located in arid, sub-tropical latitudes and has 

predominantly high atmospheric pressure, and thus light winds and weak atmospheric 

circulation.  This prevailing lack of strong atmospheric circulation, in combination with 
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the valley location, impedes the dispersion of pollutants out of the urban area (Ellis et al. 

1999, Ellis et al. 2000). 

 

Figure 2  Topographical Map of the Phoenix Metropolitan Area (Shaded) and 
Surrounding Rural Areas, Depicting the O3 and PM10 Study Areas and Monitoring Sites.  
Note that some Sites Combined both O3 and PM10 Monitors 
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Industries and transportation in the Phoenix MSA region, such as agriculture, sand 

and gravel mining, construction, vehicle traffic, and unpaved roads in the urban 

periphery, in combination with the dry desert climate, create considerable sources for 

PM10 pollutants (Bolin et al. 2000, MCAQD 2009).  O3 is a secondary pollutant and is 

not directly emitted; however, the abundant sources of O3 precursors, e.g. volatile organic 

compounds (VOCs), carbon monoxide (CO), and oxides of nitrogen (NOx), mixed with 

the commonly warm, sunny days, create an environment where active photochemical 

reactions produce significant amounts of O3 pollutants near the ground level (Ellis et al. 

1999, MCAQD 2009).   

For this study, the Phoenix MSA region was divided into O3 and PM10 study areas 

(Figure 2).  I designed these study areas based on their geographic features and the 

location of existing pollution monitoring sites.  I also explicitly chose these areas, i.e. the 

homogenous metropolitan area with a shallow buffer of nearby rural sites, for their 

assumed stationarity of data.  O3 is hypothesized to be a more regionally-scaled pollutant 

that is easily transported because of its chemical lifecycle, and as a secondary pollutant it 

can occur in broader areas not necessarily near its precursor sources.  On a diurnal basis, 

precursors, e.g. CO, VOC, and NOx, react with sunlight to produce O3 molecules.  

However, at night, O3 in the nocturnal boundary layer will react with nitric oxide (NO) in 

a titration reaction that converts NO to NO2 while ‘scavenging’, or destroying, O3 

molecules. O3 pollution in the urban core, with ample NO sources, can often virtually 

disappear overnight, only to begin the cycle anew the next morning; while rural areas 

have more persistent O3 concentrations which can travel through the atmosphere 

(National Research Council 1991, Gregg et al. 2003, Seinfeld and Pandis 2006).  

15 



 

 

Therefore, O3 concentrations are also hypothesized to be much more temporally variable 

within urban areas while more stable in rural areas. Thus, I designed the O3 study area to 

include rural areas further away from the urban center, increasing the number of sites for 

the statistical analyses, while still maintaining assumed stationarity.  The O3 study area is 

approximately 2.3 million hectares in size and contains 32 pollution monitoring sites, 

including several in downwind uninhabited wilderness areas (Figure 2).   

PM10, in contrast, is hypothesized to be a more localized pollutant.  The PM10 study 

area is approximately one million hectares in size, and contains 30 pollution monitoring 

sites (Figure 2).    Because of the limitations of this assumed stationarity and the location 

of existing monitoring sites, the PM10 study area is much smaller than the O3 study area.  

PM10 is hypothesized to be a far more temporally variable and spatially localized 

pollutant than O3, and the size of the study area was designed to be smaller to maintain a 

reasonable assumption of stationarity (Pohjola et al. 2002, Seinfeld and Pandis 2006).    

Data Acquisition and Processing  

I obtained air pollution data for the study from the United States Environmental 

Protection Agency’s (EPA) Air Quality System (AQS) database.   These data were 

generated and submitted to AQS by local government air pollution agencies at the state, 

county, and tribal levels.  This study utilizes data from 32 O3 and 30 PM10 monitoring 

stations operated by these local agencies within the Phoenix MSA (Table 1).  These air 

pollution monitors all complied with the EPA’s Federal Reference Method or Federal 

Equivalency Method; thus the sampling equipment was approved for taking official air 

pollution measurements and rigorous maintenance and quality assurance plans for the 
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equipment and data were required and verified (Code of Federal Regulations 2009a, 

Arizona Department of Environmental Quality 2011a, MCAQD 2011). 

Table 1 List of Agencies Operating Monitoring Stations within the Study Area.  
Agencies Submit Their Data to the EPA’s AQS Database, Which Was the Source of Data 
for This Study 

Agency Type of Agency # O3 Stations # PM10 Stations 
Arizona Department of Environmental Quality State 3 2 

Fort McDowell Yavapai Nation Tribal 1 1 
Gila River Indian Community Tribal 2 1 

Maricopa County Air Quality Department Local (County) 17 14 
Pinal County Air Quality Control District Local (County) 5 9 

Salt River Pima-Maricopa Indian Community Tribal 4 3 
 

I collected O3 data for the study in the time span of 2008 through 2010, with each 

of the three years being analyzed separately and compared with each other.  The finest 

temporal resolution (or grain size) of these data is one hour (i.e., raw data were one-hour 

averages).  To examine the effects of different temporal scales on the air pollution pattern 

analysis, I focused on four temporal extents (i.e., time durations over which average 

values of measurements were derived): one hour (at 15:00 on July 15), eight hours 

(15:00-22:00 on July 15), one month (July), and a season (April-October) (Table 2).  The 

seasonal average was chosen instead of an annual average because many of the O3 

monitoring sites only operate during this time period.  

I also analyzed PM10 data and compared them independently for the years 2008 

through 2010.  The temporal resolution for PM10 was a 24-hour average measured one 

day out of every six (1-in-6 day basis), as this is the operating schedule for some of the 

PM10 monitors.  Most PM10 monitors operate on a finer time scale, collecting daily 24- or 

1-hour averages; however, all finer averages were rolled into a 24-hour average and all 

17 



 

 

data outside of the 1-in-6 day schedule were eliminated to create a consistent coarse 

resolution.  These data were then analyzed at three different temporal extents: daily, 

monthly, and annual; daily and monthly extents included both winter and summer 

seasons (Table 2).  

Table 2  Multiple Time Scales Used to Analyze the Spatiotemporal Patterns of O3 and 
PM10 in the Phoenix Metropolitan Region.  Note That for PM10, the Daily Extent Is 
Applied to Different Days in the Different Sampling Years Based On the Running Time 
of the 1-in-6 Day Schedule 

Pollutant 
Temporal 
Resolution 

Study 
Years Temporal Extents 

O3 1-hour 
Averages, 
continuous 

sample 
grain 

2008-
2010 

Seasonal 
(Apr-Oct) 

Monthly 
(July) 

8-hour 
(July 15, 
15:00-
22:00) 

1-hour 
(July 15, 
15:00) 

 

PM10 24-hour 
Averages, 
1-in-6 day 

sample 
grain 

2008-
2010 

Annual Monthly 
(Jan) 

Monthly 
(Aug) 

Daily  
(Jan 7 
[2008, 

2009], Jan 
8 [2010]) 

Daily 
(Aug 22 

[2008], 23 
[2009], 

24 [2010]) 

 

Data analysis 

It is desirable to use a number of methods when performing geostatistical or spatial 

analysis, such as variograms, covariances, or correlograms (Rossi et al. (1992).  

Comparing and contrasting the results from multiple methods and at multiple scales 

provide a more comprehensive understanding with more robust conclusions (Jelinski and 

Wu 1996, Wu 2004).  In that spirit, this study uses several techniques to explore the data 

and address the research questions.  
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Trend Analysis   

The first technique used was trend analysis, a useful method of exploring data 

when no a priori knowledge exists.  For non-spatial data, a common procedure is to use 

regression to explore the relationship between independent and dependent variables.  This 

procedure is also appropriate for spatial data, with the X-Y coordinates as the 

independent variable and the pollution concentrations, or Z-value, as the dependent 

variable (Fortin and Dale 2005). 

The data exploration was accomplished with the Trend Analysis tool in the 

ArcMap Geostatistical Analysis Extension, a Geographical Information System (GIS) 

application (ESRI 2010) .  Using the tool, the study area was overlaid with a grid within 

which monitoring sites were placed according to their X-Y coordinates.  The measured 

pollution concentrations from each site were then displayed as vertical sticks in the Z axis 

(Figure 3).  The pollution concentrations were projected on the X-Z and Y-Z plane to 

give a graphical depiction in a spatially-explicit manner, i.e. north to south and east to 

west.  A second-order polynomial (quadratic) multiple regression trend line was fitted to 

the two Z planes to show the spatial trend of the data (Figure 3).   
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Figure 3  Illustration of the Use of the Trend Analysis Tool for Depicting the Spatial 
Pattern of Air Pollutants in the Phoenix Metropolitan Region.  The Monitoring Sites for 
O3 Are Marked in Green on the Gridded Map on the Left, and Their Concentrations Are 
Displayed in a 3-Dimensional Space on the Right.  The Height of the Z-Axis ‘Stick’ Is 
Proportional to the Pollution Concentration Over a Given Temporal Extent.  The Urban 
Areas of Phoenix Are Also Depicted As a Reference in Relation to the Surrounding Rural 
Areas 

This analysis is a generalized ad hoc interpolation of the data with clear 

representation of the spatial trends.  It is a global interpolation and not intended to model 

local spatial patterns of pollution.  I compared multiple temporal extents and multiple 

years against each other to examine how those trends would change with scale. 

Correlation Analysis   

The second technique used was correlation analysis, similar to the method used by 

Ito et al (2001, 2005).  I compared data from all 32 O3 and 30 PM10 monitoring sites in a 

matrix format and calculated the coefficient of determination between each pair of sites.  

These correlations were cross-referenced with the distance between the sites and 

displayed in a correlogram.  A trend line was also fitted to each correlogram.   
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Correlograms provide a useful method of visualizing the spatial dependence 

between data points in relation to distance, although it is a general method that makes no 

determination of exogenous or endogenous processes effecting the pattern (Fortin and 

Dale 2005).  The primary reason for using correlation analysis in this study was to 

explore how the spatial dependence of air pollution patterns would change with scale.   

Semivariance Analysis 

The third technique used was semivariance analysis, which is useful for quantifying the 

structure of spatial autocorrelation, and necessary for determining the values of 

unmeasured locations using kriging (q.v. next section).  Semivariance usually is plotted 

against the separation distances (or lag distance, h) between two points in space to create 

a semivariogram (Figure 4).  The range in the semivariance plot indicates the distance 

within which spatial autocorrelation exists and beyond which statistical independence in 

the data begins (Griffith 1992, Rossi et al. 1992, Fortin and Dale 2005).  Semivariance 

between each pair of samples is computed based on the following equation: 
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γ  is the semivariance for interval distance class h, n(h) is the number of pairs 

of samples for the lag interval h, zi is the is the measured sample value at point i, and zi+h 

is the measured sample value at point i+h.  
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Figure 4  Examples of Semivariogram Models.  The Solid Line Is the Theoretical 
Spherical or Gaussian Semivariogram Which Would Be Based upon Experimental 
Observations. Its Parameters Are: the Nugget (Variability Due to Local Random Effects 
or Measurement Error), Range (Distance up to which the Spatial Structure Varies) and 
Sill (Plateau of Semivariance Values, Or the End of Spatial Autocorrelation).   The 
Spatial Lag, Or Distance between Points, Is h, and the Semivariance Value Is γ (h).  This 
Study Found That O3 Data Best Fit the Gaussian Model, While PM10 Data Best Fit the 
Spherical Model 

The software, GS+: Geostatistics for the Environmental Sciences (Gamma Design 

Software 2006) was used for the semivariance analysis.  Sample locations were formed 

into lag intervals with uniform distance.  These lag intervals need to be small enough to 

capture the pattern, though if they are too small it will be unnecessarily patchy (Fortin 

and Dale 2005).  Specifically, the maximum lag distance was set smaller than one half 

the spatial extent of the dataset (Meisel and Turner 1998).  The shortest distance between 

sample points was used as the uniform distance with PM10 data, though a slightly longer 

distance was used for O3 points to reduce excessive patchiness.  Data were log or square-

root transformed as appropriate to reduce skewness (Fortin and Dale 2005), and the h-

lags were plotted in h-scattergrams to identify extreme outliers to be removed, as a 

necessary process described by Rossi, et al. (1992).  The prepared data were modeled in 

isotropic semivariograms using the Gaussian model for O3 and the spherical model for 
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PM10, as these models consistently produced the least error when paired with the 

respective parameter (Figure 4).  By definition of the GS+ software, the sill never meets 

the asymptote in the Gaussian model; therefore range is estimated as the distance at 

which the sill is within 5% of the asymptote (Gamma Design Software 2006).  See 

Appendix A: Table 15 and Table 16, for further details on the parameters of the 

semivariance analysis. 

Kriging Interpolation 

Kriging is a geostatistical interpolation method to estimate values at unsampled 

locations based on the spatial autocorrelation structure quantified in the semivariance 

analysis (Cressie 1990, Fortin and Dale 2005).   When additional sampling is too 

expensive or difficult to accomplish, as is often the case with air pollution monitoring, 

kriging provides an effective way of mapping out the spatial pattern of the pollutant over 

the large area.  My kriging of the maps of O3 and PM10 concentrations over the study area 

was conducted using the Geostatistical Analysis Extension within ArcMap (ESRI 2010).  

All input settings were matched with those of the GS+ software to maintain consistency 

with my semivariance analysis.  Thematic maps were created at each temporal scale, for 

both O3 and PM10, so as to create a visual comparison of spatial patterns between scales.

Results  

Spatiotemporal Patterns of O3 

Trend Analysis of O3    

My analysis of data from the 32 O3 monitoring sites showed that the spatial trend of 

O3 concentration varied with different temporal extents in each of the three study years 
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(2008-2010) (Figure 5).  The O3 pattern tended to be consistent across the three years on 

broader scales (i.e., the seasonal and monthly extents), but not on finer scales (i.e., the 

eight-hour and hourly extents).  On the seasonal and monthly scales, the highest O3 

concentration consistently occurred in the northeastern section of the study area, but this 

was not the case on the finer scales (Figure 5)   Because the urban core is located toward 

the top middle of the study area and because the dominant wind direction is to the 

northeast (Pardyjak et al. 2009), the highest O3 concentration on the seasonal and 

monthly scales occurred in the rural mountainous areas downwind of the urban center.  

On shorter temporal scales (especially the hourly extent), the location of the highest 

concentration of O3 was much closer to the urban core, with the urban areas generally 

having higher O3 levels than the rural areas (Figure 5). 

Correlation Analysis of O3 

The degree of correlation in O3 concentration between monitoring sites generally 

decreased with increasing between-site distances, but the specific pattern differed 

between the long (seasonal and monthly) and short (8-hour) scales (Figure 6).  The 

correlograms on the longer scales were also similar between years.  However, the 

distance-based correlation pattern of O3 at the 8-hour scale was different quantitatively  
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Figure 5  Trend Analysis Results Showing Spatial Patterns of O3 Concentration at 
Different Temporal Extents and in Different Years in the Phoenix Metropolitan Region.  
The Trend Line on the 3D Graphs Depicts the Concentration Trend of Pollutants across 
the Study Area and Changes to the Trend Line between Scales Is the Focus of the Trend 
Analysis Method.  Refer to Figure 3 for Details on the Elements within Each 3-D Graph 
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from that on the longer scales, and highly variable between the three study years (Figure 

6).  Except for the 8-hour scale in 2009, the results of correlation analysis showed that the 

majority of O3 monitoring sites were highly correlated with each other (over 70%) within 

a distance of 30 km. 

 

Figure 6  Correlograms of O3 Concentration on Different Temporal Scales and in 
Different Years in the Phoenix Metropolitan Region.  Each X Axis Represents Distance 
from 0-180 Km.  Each Y Axis Represents the Coefficient of Determination (R2) from 
0.00-1.00 
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Semivariance Analysis of O3 

The range – the distance over which O3 concentration was spatially autocorrelated 

– changed with temporal scales and between the three study years (Figure 7; Appendix A: 

Table 15).  In certain cases, the range for O3 was approaching 200 km, which is outside 

the spatial extent of the study area.  The longest spatial autocorrelation range was found 

at the monthly scale, not at the longest temporal scale (seasonal).  However, the range 

showed a consistent decreasing trend as the temporal scale became shorter than a month 

(Figure 7). 

 

Figure 7  Effects of Temporal Scale (Extents) on Autocorrelation Ranges of O3.   Range 
Is the Distance (in km) Over Which Spatial Autocorrelation Exists among the O3 
Monitoring Sites, As Determined in the Semivariogram Analysis.  Note That the 1-Hour 
Scale Has Much Shorter Ranges than the Other Scales, and More Variation between 
Years, Suggesting a Major Change in O3 Patterns between the 1- and 8-Hour Scales 
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Kriging Interpolation of O3 

The kriged maps showed that O3 concentrations across the study area were 

relatively low at the seasonal scale, but increased appreciably with decreasing temporal 

scales (Figure 8).   

The northeast mountainous region of the study area had higher O3 concentrations 

on the seasonal and monthly scales, with little variation in space and between years.  This 

spatial pattern of O3 began to change at the 8-hour scale as the areas of high O3 

concentrations intensified with appreciable differences between years.  At the 1-hour 

scale, which is 3:00-4:00 P.M. in a summer afternoon, O3 levels were almost at their 

highest for the entire region (Khoder 2009).  At this fine scale, the spatial pattern of 

higher O3 concentrations occurred in both the urban and rural areas, and also varied 

considerably between years (Figure 8). 
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Figure 8  Kriged Maps of O3 Concentrations, Each of Which Is Bordered by the O3 
Study Area Shown in Figure 2.  Black Dots Represent the O3 Monitoring Sites; 
Highways Are Represented As Lines.  O3 Concentrations Range from 0.028 to 0.080 
PPM 
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Spatiotemporal Patterns of PM10 

Trend Analysis of PM10 

Data for PM10 were analyzed for summer and winter seasons on three different 

temporal scales: annual, monthly, and daily.  The spatial pattern of PM10 was more 

variable between years than that of O3, but the general trend shown in spatial pattern was 

similar (Figure 9).  The spatial trend of PM10 did not change appreciably between the 

temporal scales, but differences were noticeable between summer and winter.  In 

particular, PM10 levels tended to be higher in the urban areas in winter, but in the rural 

areas in summer (Figure 9).  The spatial pattern at the annual scale closely resembled that 

of August, implying that the summer pattern was predominant most of the year. 

One site, located in rural Pinal County south of the Phoenix metropolitan area, had 

higher PM10 concentrations than all other sites, regardless of scale or season.  This site, 

known as the Cowtown monitor, was surrounded by agriculture operations (including 

cattle feedlots) and not far from housing developments (Arizona Department of 

Environmental Quality 2010).  The Cowtown monitor was sited as a hotspot monitor of 

local agglomerated sources, and as such had particulate concentrations that were much 

higher than other monitors in the region (U.S. EPA 2009b, Arizona Department of 

Environmental Quality 2010).  The Cowtown monitor was included in the trend analysis, 

but excluded as an outlier in the semivariogram analysis. 
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Figure 9  Spatial Patterns of PM10 Concentration at Different Temporal Extents and in 
Different Years.  Refer to Figure 3 for Details on the Elements within Each 3-D Graph 
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Figure 10  Correlograms of PM10 Concentration on Different Temporal Scales and in 
Different Years in the Phoenix Metropolitan Region.  Each X Axis Represents Distance 
from 0-140 Km.  Each Y Axis Represents the Coefficient of Determination (R2) from 
0.00-1.00 

Correlation Analysis of PM10 

The PM10 correlation analysis was only conducted at the annual and monthly 

(winter and summer) scales because there was only a single value at the daily scale.  The 

distance-based correlation patterns of PM10 were more variable between scales and 

between years than those of O3 (Figure 10).  For the annual-scale pattern, high-levels of 

correlation (>70%) appeared within 10 to 20 km.  At the monthly scale, however, the 

correlation disappeared.  August 2009 is an extreme exception, however, with most of the 
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correlations being above the 80% level, even so far as 120 km.  August 2009 had hotter 

and drier weather than August 2008 or 2010. 

 

Figure 11  Effects of Temporal Scale (Extents) on Spatial Autocorrelation Ranges of 
PM10, As Determined in the Semivariogram Analysis. The Semivariogram from Jan 2010 
Exhibited Two Nested Sills Giving a Multi-Scalar Range.  The Aug 2010 Daily 
Semivariogram Did Not Display a Sill, As the Data Appeared to Be Linear in Nature 

Semivariance Analysis of PM10 

The ranges of PM10 were, in general, less than 50 km in distance for different 

temporal scales and study years (Figure 11) – much shorter than those of O3.  Unlike O3, 

the ranges of PM10 tended to get longer with shorter temporal scales, with ranges longer 

in winter than summer.  Major differences in the PM10 patterns occurred between the 

daily and monthly scales.  January 2010, an exceptionally rainy month, exhibited a multi-

scale nested semivariogram (Robertson and Gross 1994).  The first sill evident in the 
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semivariogram was reached at 20 km, similar to the other sample years.  The second sill 

was estimated by the GS+ software to be reached at 159 km, which is outside of the study 

area.  The semivariogram on August 24, 2010, was also different from the other sample 

years with an apparent linear pattern with no sill.  The study area was experiencing a 

weather event on that day with windy conditions out of the north, which is unusual. 

Kriging Interpolation of PM10 

The Kriged maps of PM10 showed that concentrations tended to be higher in the 

southern agricultural portion of the study area, while the urban areas in the northern 

portion had the lowest concentrations, especially at higher elevations (Figure 12).  The 

overall spatial pattern at the annual scale was fairly consistent between the three study 

years, all showing a PM10 ‘hotspot’ in the south-central portion of the study area (the 

Cowtown monitor as mentioned previously). 

At the monthly temporal scale, the PM10 pattern varied between winter and 

summer, with the summer pattern more closely resembling the annual pattern and having 

a distinct urban/rural gradient.  PM10 winter concentrations in the southern agricultural 

areas were lower and more comparable with the northern urban areas.  In January 2009, 

the urban area had the highest PM10 concentrations in the study area.  The pattern 

between study years at the monthly scale was also similar to each other, although there 

appeared to be more variation between the summer months.  At the daily scale, the spatial 

pattern of PM10 showed the greatest variability between scales and between years (Figure 

12).    
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Figure 12  Kriged Maps of PM10 Concentrations, Each of Which Is Bordered by the 
PM10 Study Area Shown in Figure 2.  Black Dots Represent the PM10 Monitoring Sites 
and Highways Are Represented As Lines. The PM10 Concentration Color Scale Ranges 
from 0 to 150 µg/M3
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Discussion  

Changing O3 Patterns on Different Temporal Scales 

Our study has shown that spatial patterns of O3 in the Phoenix metropolitan region 

may change substantially with the temporal scale of analysis.  For example, the results of 

trend analysis and Kriging indicated consistently higher concentrations in the northeast 

portions of the study area on the longer time scales (i.e. seasonal and monthly), but this 

pattern dissipated on shorter time scales  (i.e., the 8-hour and 1-hour scales).  Likewise, 

the correlograms showed high degrees of correlation with strong trends at the seasonal 

and monthly scales, but not at the finer scales.  My results from semivariance analysis 

further indicated that the spatial autocorrelation ranges for O3 were quite sensitive to the 

temporal scale of analysis. 

These patterns were not unexpected, given the meteorological conditions in this 

region of Arizona and the chemical lifecycle of O3 and its relation to other urban 

pollutants, such as NOx.  O3 requires the mix of VOCs, NOx or CO, and sunshine to be 

created, but excessive NOx also scavenges O3 molecules at night when the O3 reaction 

stops.  Thus urban areas with high NOx sources often have a reduction in O3 

concentrations overnight.  In contrast, rural areas often maintain steady concentrations of 

O3 after dark and over time, as there is not a sufficient amount of NOx to scavenge it and 

the other sinks of O3, such as dry deposition, occur much slower (Gregg et al. 2003).  

These dynamics likely account for the spatial patterns of higher O3 concentrations in the 

downwind rural areas of the Phoenix metropolitan region.  Also, the average wind 

direction in the region is from west to east, and there are also daytime anabatic winds 
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which push O3 out of the urban areas and up against the mountains east of the urban 

valley (Ellis et al. 1999).  A nighttime katabatic wind will drain some of the pollution 

back into the urban area, but the long-term effect is to have higher O3 concentrations in 

the eastern mountains. 

These results confirm my hypothesis that O3 is a regional-scaled pollutant with 

long-distance ranges for spatial autocorrelation (i.e. more uniform across space), at least 

over the longer seasonal and monthly temporal scales.  At the shorter 8-hour and, 

especially, 1-hour scales, however, this hypothesis is no longer valid as O3 exhibits short-

ranged patterns more strongly influenced by local factors.  A key message here is that the 

spatial patterns of O3 do change with temporal scales. 

Changing PM10 patterns on different temporal scales  

The spatial patterns of PM10 also varied with temporal scales and between study 

years.  In particular, major scale effects occurred between summer and winter months, 

with summer showing a much higher rural-to-urban pollution gradient than winter.  The 

correlation analysis showed that PM10 concentrations had little correlation over long 

distances at the monthly scale, and this result was corroborated by the generally much 

shorter ranges from semivariance analysis.  Once again, meteorological factors and 

source locations were likely the dominating determinants for the patterns of PM10.   

PM10 is not as easily transported as finer particles because it is heavier and tends to 

settle out of the atmosphere sooner (Chung et al. 2012).  Nevertheless, some 

meteorological conditions such as wind speed and relative humidity have a strong effect 

on PM10 concentration levels, as well as the strong influence that nearby sources in the 
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Phoenix valley have on PM10 concentrations (Wise and Comrie 2005).  However in the 

wintertime, the southwestern deserts are often subjected to atmospheric stagnation events.  

The atmosphere over this desert region is typically dry and cool during the winter, and as 

sunset approaches, the ground surface begins to cool faster than the atmosphere above it.  

The rapid cooling of the ground and boundary layer atmosphere, resulting in temperature 

inversion, can create stable atmospheric conditions at low altitudes (Pardyjak et al. 2009).  

This nighttime temperature inversion also creates stagnant atmospheric conditions that 

contribute to trapping particulate pollution close to its sources (Pardyjak et al. 2009).  As 

the Phoenix metropolitan area is geographically located in a valley, this effect is 

compounded and likely accounts for the smaller urban-to-rural gradient observed in the 

winter.  According to Wise and Comrie (2005), with the typically dry atmospheric 

conditions in the region (summer and else wise), the observed patterns at the annual scale 

are likely due to the effect of local sources of PM10.  

In general, the spatial patterns of PM10 showed more consistency between years 

than originally anticipated, but the considerable effects of temporal scale confirmed my 

hypothesis.  Also, the results seem to support my hypothesis that PM10 is a local pollutant 

influenced mainly by nearby sources, though I found that seasonal meteorology is as 

important to PM10 patterns.  In addition, the winter to summer pattern dynamics were as 

informative as the spatiotemporal dynamics between different temporal scales.   

Sample Size and Kriging 

The use of Kriging techniques when interpolating data from an air monitoring 

network with a small number of sampling sites has inherent risk involved.  Kriging has 

reduced accuracy with small sample sizes and different alternatives to this method have 
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been suggested (Diem 2003).  For example, the study by Diem and Comrie (2002) 

specifically addressed the problem of a sparse sample size by using a linear regression 

model to improve the accuracy of the interpolation.  However, linear regression models 

have their own disadvantages, such as the necessity of significant resources and high-

quality data (Diem and Comrie 2002).  Although I recognize the problems with Kriging 

to create accurate high-resolution pollution surfaces with a small sample size, this study 

has focus primarily on the landscape-level pattern and its changes between temporal 

scales.  As such, I believe that my results are adequately robust for this purpose. 

Implications of Scale in Air Pollution Analyses  

The findings of this study have important implications for the design and 

evaluation of air pollution monitoring networks in large urban regions.  In general, the 

temporal scale of observation and analysis may substantially affect what air pollution 

patterns will be revealed.  These scale effects, if not adequately understood, may 

influence people’s perception and misguide governmental policy decisions.  To overcome 

this problem, researchers and decision makers need to better understand the multi-scale 

patterns of air pollution in time and space, and this scale multiplicity must be considered 

explicitly in designing or evaluating air monitoring networks.   

More specifically, air pollution monitoring networks should be designed so that 

both grain size (the spatial and temporal resolutions of the monitoring network) and 

extent (the time duration and spatial expanse of the network) are appropriate.  For 

example, in the US, much emphasis is often placed upon a community or region to 

comply with Federal air pollution health standards, with each standard having differing 

averaging intervals such as annual, 24 hours, or 8 hours.  If the region’s government 
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focuses on only a few single sites or local areas that are exceeding specific standards, the 

density of monitors may be much higher than the rest of the region (Nejadkoorki et al. 

2011).  This may lead to a deficient monitoring network that is unable to capture the 

spatiotemporally heterogeneous patterns of air pollution over the entire region.  With 

these implications in mind and building upon the results from this study, I have 

conducted a comprehensive evaluation of the air pollution monitoring network in the 

Phoenix metropolitan region, which will identify its deficiencies and redundancies based 

on integrated data on environmental settings, demographics, and air quality 

measurements (Chapter 3). 

Scale multiplicity of air pollution patterns may also affect environmental justice 

research.  The studies of environmental justice, or equity, seek to identify unique 

socioeconomic population groups exposed to disproportionate amounts of pollution risk.  

As shown in this study, pollution patterns may change when the temporal scale of 

analysis is changed.  For example, if an environmental justice study only utilizes peak 1-

hour values to find populations affected by acute pollution exposure, it risks missing 

those population groups affected by chronic exposure to monthly or annual pollution 

patterns.  To cope with this problem, a multi-scale approach is needed (Wu 2004, 2007).  

Part of my ongoing research is to take such an approach, and as such, I am using the 

multi-temporal scale kriging results from this study to explore a number of environmental 

equity-related research questions in the Phoenix metropolitan region.  For example, do 

certain population groups experience disproportionately higher pollution risks?  How 

would the detection of such potential environmental injustices change with the scale of 

analysis? 
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CHAPTER 3:  A MULTI-OBJECTIVE ASSESSMENT OF AN AIR QUALITY 

MONITORING NETWORK USING ENVIRONMENTAL, ECONOMIC, AND 

SOCIAL INDICATORS AND GIS-BASED MODELS2 

 

Abstract 

In the United States, air pollution is primarily measured by Air Quality Monitoring 

Networks (AQMN).  These AQMNs have multiple objectives, including characterizing 

pollution patterns, protecting the public health, and determining compliance with air 

quality standards.  In 2006, the Environmental Protection Agency issued a directive that 

air pollution agencies assess the performance of their AQMNs.  Although various 

methods to design and assess AQMNs exist, here I demonstrate a GIS-based approach 

that combines environmental, economic, and social indicators through the assessment of 

the O3 and PM10 networks in Maricopa County, Arizona.  The assessment was conducted 

in three phases: (1) to evaluate the performance of the existing networks, (2) to identify 

areas that would benefit from the addition of new monitoring stations, and (3) to 

recommend changes to the AQMN.   A comprehensive set of indicators were created for 

evaluating differing aspects of the AQMN’s objectives, and weights were applied to 

emphasize important indicators.  Indicators were also classified according to their 

sustainable development goal.  My results showed that O3 was well represented in the 

county with some redundancy in terms of the urban monitors.  The addition of weights to 

2 This chapter has been published as: Pope, R. L., & Wu, J. (2014). A Multi-Objective 
Assessment of an Air Quality Monitoring Network Using Environmental, Economic, and Social 
Indicators and GIS-Based Models. Journal of the Air & Waste Management Association, 
doi:10.1080/10962247.2014.888378. 
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the indicators only had a minimal effect on the results.  For O3, urban monitors had 

greater social scores, while rural monitors had greater environmental scores.   The results 

did not suggest a need for adding more O3 monitoring sites.  For PM10, clustered urban 

monitors were redundant, and weights also had a minimal effect on the results.  The 

clustered urban monitors had overall low scores; sites near point sources had high 

environmental scores.  Several areas were identified as needing additional PM10 

monitors.  This study demonstrates the usefulness of a multi-indicator approach to assess 

AQMNs.  Network managers and planners may use this method to assess the 

performance of air quality monitoring networks in urban regions. 

 

Introduction  

 In the United States, the primary method of measuring ambient air is through a 

system of government-regulated air quality monitoring networks (AQMN), usually 

operated by state, tribal, or local agencies at regional or local scales (U.S. EPA 2011, 

2012).  These AQMNs have multiple design objectives, including characterizing 

population exposure to pollutants, monitoring source impacts, measuring maximum and 

background pollutant concentrations, providing data for modeling purposes, and 

documenting air quality trends over time.  In addition, a primary mission of an AQMN is 

to determine compliance with U.S. National Ambient Air Quality Standards (NAAQS),  

which are defined levels of criteria pollutants considered potentially harmful to public 

health and the environment (U.S. EPA 2011).  Thus, a properly designed AQMN is 

important for protecting the health and welfare of the public.     
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In 2006, the United States Environmental Protection Agency (EPA) introduced a 

requirement for air pollution control agencies to perform assessments of their monitoring 

networks once every five years (40 CFR pt 58.10 2007, Scheffe et al. 2009).  These 

periodic assessments are intended to determine “…whether new sites are needed, whether 

existing sites are no longer needed and can be terminated, and whether new technologies 

are appropriate for incorporation in to the ambient air monitoring network.” (40 CFR pt 

58.10 2007).  These periodic assessments are also expected to re-evaluate the objectives 

and budget for the network, and to determine its effectiveness and efficiency relative to 

its intended goals.  Thus, recommendations to reconfigure and improve AQMNs are also 

expected in the assessments (Raffuse et al. 2007).  To assist state and local entities in 

developing these assessments, the EPA supplied guidance documents detailing 

assessment projects performed at the regional level, including analytical techniques and 

indicators that state and local agencies could employ (U.S. EPA 2001, Raffuse et al. 

2007, Scheffe et al. 2009).  

A number of methods have been developed for designing and assessing AQMNs.  

Some early information theory-based approaches utilize Shannon’s entropy as a measure 

of uncertainty to optimally locate monitoring stations (Lindley 1956, Husain and Khan 

1983, Caselton and Zidek 1984).  Other modeling approaches for AQMN design employ 

various techniques.  For example, geostatistical modeling is used to locate monitors with 

the least amount of predictive error (Trujillo-Ventura and Ellis 1991, Haas 1992, 

Kanaroglou et al. 2005).  The use of sampling campaigns to collect high-resolution data 

on the spatial pattern of pollutants is another method, which is often paired with 

geostatistical modeling when designing a network (Cocheo et al. 2008, Lozano et al. 
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2009, Ferradás et al. 2010).  Simulation modeling (e.g., using atmospheric dispersion 

models such as Eulerian grid-based or Gaussian plume) also can be used to determine the 

spatial pattern of pollutants and thus help network design and assessment (McElroy et al. 

1986, Bauldauf et al. 2002, Mazzeo and Venegas 2008, Mofarrah and Husain 2009, 

Zheng et al. 2011).  

Because different air pollutants behave differently, multiple methods are necessary 

to optimally design an AQMN.  For Example, Trujillo-Ventura and Ellis (1991) confront 

the problem of designing a suitable network for various air pollutants by applying 

multiple methods such as geostatistics, pollutant violation of standards, data validity, and 

network cost.  Mofarrah and Husain (2009) integrated the multiple-criteria method with 

spatial correlation techniques, using data from a Gaussian plume model and applying 

environmental, social, and economic criteria via a weighting scheme to identify potential 

site locations.  These locations were then evaluated with the sphere-of-influence spatial 

correlation technique suggested by Liu et al. (1986).  Chen et al. (2006) proposed that 

sustainable development principles be considered when designing an AQMN.  In their 

study, environmental objectives were related to the concentrations of air pollutants and 

the emission quantity of sources; social objectives were related to the location of 

monitoring stations with population, sensitive receptors (e.g., schools and hospitals), 

traffic areas, and air pollution complaints; and economic objectives focused on lowering 

the cost for the AQMN.  Their sustainable development procedure combines system 

analysis and multi-objective planning to determine optimal locations for monitoring 

stations (Chen et al. 2006). 

45 



 

 

However, most of today’s AQMNs did not begin operation as planned integrative 

wholes; instead they began as small number of stations which grew and evolved over 

time as circumstances dictated (Pope Demerjian 2000, Chen et al. 2006, 2011).  The 

growth of these government AQMNs in the United States was often planned using the 

EPA’s monitoring objectives mentioned previously, and these objectives have changed 

over time as air pollution regulations have matured (Demerjian 2000).  Thus, while the 

previously mentioned design methods can be used to assess certain aspects of an existing 

network, it is necessary to employ multiple measures in order to adequately assess the 

multi-dimensional objectives of AQMNs; environmental indicators and indices are 

effective measures for communicating air quality information to network managers, and 

are especially relevant at the city scale (Engel-Cox et al. 2013, Hsu et al. 2013). 

Some previous studies have considered multiple indicators or objectives for 

performing assessment.  For example, Gramsch et al. (2006) assessed the AQMN of 

Santiago, Chile using a cluster analysis approach based on the Pearson’s correlation 

between monitoring stations.  The study followed earlier attempts to optimize the AQMN 

in Santiago using Shannon’s information index which excluded the least informative 

stations (Silva and Quiroz 2003), and a simulation modeling study in the Santiago airshed 

(Schmitz 2005).  Another cluster analysis assessment was performed by Ignaccolo et al. 

(2008) in Italy, which used a functional data analysis approach.   Other types of 

assessment studies include correlation analysis (Morawska et al. 2002), principal 

component analysis (Pires et al. 2009), and geostatistical methods (Van Egmond and 

Onderdelinden 1981, Briggs et al. 1997). 
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In this study, I develop a GIS-based, multi-objective assessment approach that 

integrates environmental, economic, and social indicators, and demonstrate its use 

through assessing the O3 and PM10 monitoring networks in the Phoenix metropolitan 

area.  The assessment was conducted in three phases: 

1. A site-to-site comparison of each monitoring station by a series of 

indicators, this section scores each station as compared to its assessed 

objective. 

2. Geographic Information System (GIS)-based spatial models identify areas 

where the existing AQMN does not adequately represent potential air 

pollution problems to show where additional sites are needed.  

3. Recommendations are developed on reconfigurations necessary to improve 

the AQMN. 

The original periodic network assessment performed for the Maricopa County Air 

Quality Department (MCAQD) was conducted for the time period 2005-2009 and 

included the criteria pollutants carbon monoxide (CO), nitrogen dioxide (NO2), ground-

level O3, particulate matter less than 10 and 2.5 microns (PM10 and PM2.5,, respectively) 

and sulfur dioxide (SO2) (Pope 2011).  For brevity, this paper will only detail the results 

for O3 and PM10, as the Phoenix metropolitan area is in NAAQS non-attainment for these 

pollutants, and therefore has the largest network of stations (Pope and Wu 2014).  This 

paper emphasizes the sustainable development approach as detailed by Chen et al. (2006) 

and Moldan et al. (2012), and indicators are classified as supporting environmental, 

social, or economic objectives, if applicable.  This study also includes indicators to 

emphasize environmental justice issues, i.e., it includes analyses to determine if minority 
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populations were experiencing a disproportionate amount of risk from air pollution.  This 

study describes a multi-objective assessment technique to answer the following research 

question: Does the monitoring network of the Phoenix metropolitan area effectively and 

efficiently represent spatial pollution patterns and trends, and does it provide all 

population groups with adequate information on the quality of their air?

Methods 

Study Area and Data Sources 

  The study addresses the Phoenix metropolitan area in South-Central Arizona 

(Figure 13), a thriving area comprised of more than 20 self-governing municipalities.  

The region, including the rural areas of Maricopa and adjacent Pinal counties, contains 

significant agriculture, including livestock and irrigated cropland.  The region has 

experienced dramatic growth since the end of World War II, with population expanding 

from 331,000 in 1950 to almost 4.2 million in 2010 (Wu et al. 2011).  This growth has 

been exponential, with populations in Pinal and Maricopa Counties increasing by 99.9% 

and 24.2%, respectively, between 2000 and 2010 (U.S. Census Bureau 2011).    
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Figure 13  Map of the Metropolitan Phoenix Area Including O3 and PM10 Monitoring 
Stations for MCAQD (Labeled) and Other Area Agencies.  Note That Some Site 
Locations Contain Monitoring Stations for Both O3 and PM10 

The Phoenix region is situated in a river valley surrounded by mountainous 

topography and desert vegetation.  The region is located in arid, sub-tropical latitudes and 

has predominantly high atmospheric pressure, and thus light winds and weak atmospheric 

circulation.  This prevailing lack of strong atmospheric circulation, in combination with 

the valley location, impedes the dispersion of pollutants out of the urban area (Ellis et al. 

1999, Ellis et al. 2000).   Industries (e.g., agriculture, mining, and construction) and 

transportation (e.g., vehicle traffic on unpaved roads or re-entrainment from paved roads) 

in the South-Central Arizona region, in combination with windblown dust, create 

considerable sources for PM10 pollutants (Bolin et al. 2000, MCAQD 2009).  Abundant 

sources of O3 precursors – i.e., volatile organic compounds (VOC), CO, and oxides of 
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nitrogen (NOx) – and the commonly warm, sunny days together create an environment 

where active photochemical reactions produce significant amounts of ground-level O3 

(Ellis et al. 1999, MCAQD 2009).  

Though the original assessment performed for the MCAQD (Pope 2011) included 

all the criteria pollutants (note that air toxic species are not monitored by the MCAQD 

and were not included), for brevity, only O3 and PM10 are highlighted in this paper as 

they are of most concern within Maricopa County (Figure 14).  While concentrations of 

other criteria pollutants in the region are below the NAAQS, O3 and PM10 have both been 

classified as being in non-attainment of the NAAQS.  Thus these pollutants are given a 

high priority for air pollution monitoring and have the largest network of monitoring 

stations to use within a multi-objective assessment (MCAQD 2011).  Although this study 

focuses primarily on the 17 O3 and 14 PM10 monitoring stations operated by the MCAQD 

(Table 3), other federal, tribal, state, and local agencies in Arizona also operate O3 and 

PM10 stations (Table 4).  Where applicable, these stations were also included in the 

assessment to increase the robustness of the analyses, giving a total of 45 O3 and 48 PM10 

stations to draw data from (Figure 15).  
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(b) 

 
Figure 14  Map Depicting Pattern of Average 2009 Pollution Concentrations in 
Metropolitan Phoenix. (a) Depicts O3 Concentrations and Monitoring Stations. (b) 
Depicts PM10 Concentrations and Monitoring Stations. Note That Though the Map 
Differentiates between MCAQD and Other Agency Monitoring Stations, This Ordinary 
Kriging Interpolation Was Created from All Stations 
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Figure 15  Map of Southern Arizona Including Location of All O3 and PM10 Monitoring 
Stations Used for Data Purposes in the Study.  The Two Largest Metropolitan Areas on 
This Map Are Phoenix, Located in Maricopa County, and Tucson, Located in Pima 
County to the South 

Table 3  MCAQD Monitoring Stations Assessed within This Study 

Station Name Acronym Pollutants 
Monitored 

Station Name Acronym Pollutants 
Monitored 

Buckeye BE O3, PM10 Mesa ME PM10 
Blue Point BP O3 Humboldt Mountain HM O3 
Cave Creek CC O3 North Phoenix NP O3, PM10 
Central Phoenix CP O3, PM10 Pinnacle Peak PP O3 
Durango Complex DC PM10 Rio Verde RV O3 
Dysart DY O3, PM10 South Phoenix SP O3, PM10 
Falcon Field FF O3 South Scottsdale SS O3, PM10 
Fountain Hills FH O3 Tempe TE O3 
Glendale GL O3, PM10 West Chandler WC O3, PM10 
Greenwood GR PM10 West 43rd Avenue WF PM10 
Higley HI PM10 West Phoenix WP O3, PM10 
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Table 4  Agencies Providing Data and the Number of Monitoring Stations Used within 
This Study 

Agency Type of Agency # O3 Stations # PM10 Stations 
Maricopa County Air Quality Department Local (County) 17 14 
Arizona Department of Environmental Quality State 6 8 
Fort McDowell Yavapai Nation Tribal 1 1 
Gila River Indian Community Tribal 2 1 
National Park Service Federal 1 0 
Pima County Department of Environmental Quality Local (County) 9 8 
Pinal County Air Quality Control District Local (County) 5 13 
Salt River Pima-Maricopa Indian Community Tribal 4 3 

 

 I obtained O3 and PM10 data from the Air Quality System (AQS) database 

maintained by the U.S. EPA.  Each of the previously mentioned agencies is responsible 

for entering data from their stations into AQS.  These stations all complied with the U.S. 

EPA’s Federal Reference Method or Federal Equivalency Method; thus the sampling 

equipment was approved for taking official air pollution measurements and quality 

assurance plans for the equipment and data were required and verified (40 CFR pt 58 

appx A 2010, MCAQD 2011, ADEQ 2013).   Raw pollution values were averaged into 

yearly and 5-year numbers for use in the assessment. Note that not all stations were fully 

operational during the 2005-2009 time period; stations that did not meet a 75% data 

completeness level, as required by the U.S. EPA (40 CFR pt 50 1971), were excluded 

where applicable. 

Phase I: Indicators for Evaluating the Existing Monitoring Network 

 The first phase of the study consists of a site-to-site comparative assessment of 

each monitoring station.  The purpose of this assessment is to evaluate the performance 

of existing stations of the AQMN using multi-objective indicators (Table 5).   The mix of 
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indicators were chosen to reflect multiple aspect of the AQMN and they score for a 

comprehensive array of traits desired in monitoring stations, e.g., one indicator gives the 

highest scores for stations located in urban areas measuring the highest concentration of 

pollutants; whereas another indicator favors rural stations monitoring background 

concentrations of pollutants.  Most of the indicators were based on existing guidance 

documents, e.g. Raffuse et al. (2007), though some were developed independently.  These 

indicators are used to obtain information about the performance of each station, and, after 

aggregating and applying appropriate weights, the scores give an overall network 

performance for each station.  The indicators also provide information on the three 

sustainability aspects of the station (environment, social, and economy). 

 

Table 5  Indicators and Their Categories Used in Phase I and II of the Study 

Phase I Phase II 
# Indicator Sustainability Group # Indicator Category 
1 Measured Concentrations Environmental 1 Emissions Inventory Point 

Sources 
Source-Oriented 

2 Deviation from the 
NAAQS 

Environmental 2 Arterial Road Traffic 
Count 

Source-Oriented 

3 Area Served Environmental/Social 3 Freeway Traffic Count Source-Oriented 
4a Emissions Inventory Environmental 4 Road Density Source-Oriented 
4b Emissions Inventory -

Predicted Ozone 
Environmental 5 Population Density Population-

Oriented 
5 Traffic Counts Environmental 6 Minority Population 

Density 
Population-

Oriented 
6 Monitor-to-Monitor 

Correlation 
Environmental/Economic 7 Euclidean Distance 

between Sites 
Spatially-
Oriented 

7 Removal Bias Environmental/Economic 8 Standard Error from 
Predicted Pollution 

Spatially-
Oriented 

8 Population Served Social    
9 Environmental Justice-

Minority Population served 
Social    

10 Trends Impact Social/Economic    
11 Number of other 

Parameters Monitored 
Economic    
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Sustainability descriptors of environmental, social, or economic were assigned to 

the 11 different indicators following the format described by Chen et al. (2006), i.e., 

environmental  indicators are related to the emissions and concentrations of sources and 

air pollutants; social indicators are related to population and sensitive receptors; and 

economic indicators are related to the cost-effectiveness, efficiency, and leveraging 

capability of stations within the AQMN.  The specific indicators are as follows:  

1.  Measured Concentrations (Environmental): This indicator scored stations on the 

concentration of measured pollutants using the design value of each station; the design 

value is generally the highest annual concentration measured in that averaging interval, 

which is based upon the NAAQS.  Higher design values received higher scores.  This 

indicator provides information that is important from a regulatory standpoint for 

determining NAAQS compliance and for performing model evaluations (Schmidt 2001, 

Raffuse et al. 2007). 

2.  Deviation from the NAAQS (Environmental): This indicator also uses the 

design values from each monitoring station; however, this technique uses the absolute 

value between the design value and the NAAQS exceedance threshold.  Monitoring 

stations whose design values are closest to the exceedance threshold, either below or 

above, were given the highest score as they were considered to provide more information 

in terms of NAAQS compliance (Schmidt 2001, Raffuse et al. 2007).   

3.  Area Served (Environmental/Social): This indicator scored monitoring stations 

based upon their area of coverage.  Using ArcView 10.0  GIS to create Thiessen 

polygons (a standard technique used in geography to assign a zone of influence around a 
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point), spatial areas that are closest to an existing station were collected into one 

proximity polygon (O'Sullivan and Unwin 2003, ESRI 2010).  Stations having the largest 

proximity polygons were scored the highest, which tends to give those stations in 

suburban or rural areas a higher score.  Though these stations often have low 

concentration scores, they have high value for determining background concentrations, 

conducting air quality modeling, adding spatial coverage and interpolation points to a 

large metropolitan area, and giving air quality information to people living in less densely 

populated areas (U.S. EPA 2001). 

4a. Emissions Inventory (Environmental): This indicator scores stations based on 

their proximity to point sources of pollution and the density of emissions in the 

surrounding area.  Using the 2008 Periodic Emissions Inventory reports from the 

MCAQD, which includes reported emissions from approximately 1000 permitted sources 

within Maricopa County (MCAQD 2011), point sources were geolocated using a GIS and 

emissions from these sources were spatially aggregated using the township, range, and 

section grid system, with each section being 1.6 km square in size .  Though PM10 

monitoring stations used reported emissions of corresponding PM10, O3 stations used 

reported emissions of VOCs instead, as O3 formation in the Phoenix metropolitan area is 

VOC-limited (Kleinman et al. 2005).  Emissions were summed within the area served by 

each station’s Thiessen proximity polygon from the Area Served indicator.  These results 

were normalized for emission density by dividing the emission sums by the Thiessen 

polygon area; this aids the technique by taking weight away from the rural and urban 

fringe stations that have large Thiessen proximity polygons, and thus emission sources 

that are farther away from the station.  Since this analysis only included point sources 
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within the limits of Maricopa County, the Thiessen polygons were trimmed to only 

include areas within the county.  Stations with higher emission densities in their area 

served were scored higher. 

4b. Emissions Inventory-Predicted Ozone (Environmental):  This indicator, which 

was only used for the O3 parameter, scores stations based upon their proximity to long-

term O3 concentrations.  Since ground-level O3 is a secondary pollutant, emissions 

inventory lists of primary sources are insufficient at longer temporal scales.  Furthermore, 

although O3 needs NOx in its formation reaction, it is also scavenged by NOx in the 

atmosphere (Seinfeld and Pandis 2006).  Because of these chemical dynamics, O3 

concentrations follow different patterns than other primary pollutants.  In the short-term 

(several hours or less), O3 will form near its precursor sources and increase as the plume 

moves downwind and has more time to react with the sun.  At night, with the 

photochemical reaction stopped, O3 concentrations within the urban area will decrease as 

NOx compounds in the area scavenge them.  However, outside of the urban areas, where 

NOx concentrations are low, O3 will persist longer in the environment before deposition 

or decomposition.  Thus O3 concentrations tend to be much higher in the rural areas 

downwind of an urban area when averaged over long temporal periods (Gregg et al. 

2003, Pope and Wu 2014). Therefore it is insufficient to only use emission densities of 

VOC point sources to score O3 stations.  To address this, I created an interpolated O3 

surface using the longer scaled 2008 annual average.  The mean O3 concentrations were 

calculated within each O3 station’s area served Thiessen polygon, and stations with 

higher mean concentrations were scored higher.  Thus O3 stations were scored for both 
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proximity to VOC sources (for the short term) and proximity to annual O3 concentrations 

(for the long term). 

5.  Traffic Counts (Environmental):  Point sources only account for a portion of 

the pollution emission sources within an area, with other major sources including mobile 

sources and transported pollutants.  Transports were not addressed in this study, but this 

indicator does consider mobile source emissions.  Emissions from mobile sources can 

vary; factors which can affect the amount of pollution released include road type, as fast-

moving vehicles on a freeway generally emit less pollution per mile than vehicles on 

arterial roads and collectors; vehicle type, e.g., diesel vs. gasoline powered vehicles; 

traffic congestion; and age and size of vehicles.   Ideally, a method which attempts to 

account for traffic emissions would account for all of these variables in a model which 

would give high spatial detail to mobile sources of pollution.  Such traffic modeling is 

outside the scope of this study; instead, traffic count and road density were used as a 

proxy to approximate the spatial variability of mobile source pollution. 

The average weekday traffic (AWT) counts for Maricopa County in 2007 were 

obtained from the Maricopa Association of Governments, which in turn collected them 

from various state, county, and municipal agencies.  The dataset includes counts for 

freeways and arterial roads with extensive sample location coverage; however, it is 

difficult to ascertain if AWT sample locations cover all arterial roads with the same 

density and it is likely that additional new roads were not sampled.  To normalize these 

data for evaluation, both the AWT and the length of roads within each monitoring 

station’s area served Thiessen proximity polygon were selected.  These were divided by 
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the area of the polygon to determine the traffic and road density.  The densities were 

averaged together to obtain the score for each station. 

6.  Monitor-to-Monitor Correlation (Environmental/Economic): This indicator 

scored stations based upon their distinctiveness of pollution data.  Using annual-average 

data from 2009, the concentration of each station was compared to every other station by 

evaluation within a matrix where the coefficient of determination (r2) was generated for 

each pair of stations.   Stations were scored based on their maximum correlation with 

higher values, showing more redundancy, receiving a lower score.   This indicator was 

useful in identifying redundancy between stations and can be used as evidence in 

justifying the cost-effectiveness of shutting down a station (U.S. EPA 2003, Ito et al. 

2005). 

7.  Removal Bias (Environmental/Economic): This indicator evaluates the long-

term contribution of each station to the creation of an interpolation map.  Using the five-

year average from each monitoring station, a kriging interpolation map was created 

which incorporates all stations.  Each station was then systematically removed from the 

dataset and the interpolation map was recreated.  The difference, or removal bias, 

between the actual value from the station and the predicted value from the interpolation 

once the station was removed was recorded.  Sites were then scored using the absolute 

value of the bias; a higher value equates a higher score. 

Removal bias is a useful technique for noting redundancies in the monitoring 

network.  Sites with high bias are important for creating the interpolation map, thus their 

values add a unique perspective to the overall modeled pollution surface.  Sites with a 
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low bias could possibly be redundant with other sites, at least in the long-term temporal 

scale of this analysis (Schmidt 2001, U.S. EPA 2002, Cimorelli et al. 2003). 

8.  Population Served (Social): This indicator used data from the 2000 U.S. Census 

to create a GIS polygon map of census block groups within Maricopa County, which was 

then converted to centroid points containing the population count information.  Using 

Thiessen polygons, the total population within the area served by each monitoring station 

was counted and stations with the highest population counts were given the highest score.  

This technique provides more weight to stations that have a high surrounding population 

and a large area of representation.  Note that in the case of large areas served, population 

far away from the monitoring site might not necessarily be adequately represented by that 

station.  However, it is the closest perspective station, so this technique assumes that it is 

the most representative, even though this is purely spatial in construction and does not 

consider meteorology, topology, or location of sources. (U.S. EPA 2001, O'Sullivan and 

Unwin 2003). 

9.  Environmental Justice-Minority Population Served (Social): The U.S. EPA has 

the goal of providing an environment where all people enjoy the same degree of 

protection from environmental and health hazards and equal access to the decision-

making process to maintain a healthy environment in which to live, learn, and work (U.S. 

EPA 2010).  This environmental justice mandate extends to all areas the U.S. EPA works 

with, including AQMN assessments.  As this study was based upon the U.S. EPA’s 

periodic assessment requirement, it includes this social indicator as a basic test of how 

the AQMN relates to environmental equity issues, in this case minority populations 

within Maricopa County.  This indicator follows a methodology identical to the 
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population served indicator described earlier, but used the total population minus the non-

Hispanic white population listed in the 2000 U.S. Census to determine the total minority 

population in each census block group.  The percentage of minority population was 

determined within each monitoring station’s area served Thiessen proximity polygon, and 

stations were then scored with the highest percentages having the greatest score. 

10.  Trends Impact (Social/Economic): This indicator was based on the historical 

monitoring record of the station, i.e., the length of time the station has been in operation 

as of 2009.  Stations that have a long historical record are valuable for tracking trends; 

continuation of a long unbroken monitoring record is desirable for providing modeling 

data or determining chronic population exposure to pollutants.  Note that if stations had 

alternating periods of operation, not including seasonal schedules, only the most recent 

operating period was considered.  Seasonal O3 stations were counted as if they were in 

continual operation (Cimorelli et al. 2003, Raffuse et al. 2007). 

11.  Number of other Parameters Monitored (Economic): This indicator counted the 

number of different parameters monitored at each site.  Parameters counted were those 

that are entered into the AQS database, including criteria pollutants and wind 

meteorological parameters; ancillary parameters were not included.  Multiple monitored 

parameters make a site more valuable, as they have increased cost effectiveness and 

collocated pollutant measurements can be compared and modeled together (Cimorelli et 

al. 2003, Raffuse et al. 2007, Scheffe et al. 2009). 
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Phase II: Identifying Areas of Insufficient AQMN Representation 

 The second phase of the study utilizes spatial indicators in the framework of a 

GIS to quantify the representation of the existing AQMN and identify areas that are 

possibly deficient in coverage and could benefit from the addition of a monitoring station.  

This phase has eight different spatial indicators grouped into three different groups: 

source-oriented, population-oriented, and spatially-oriented (Figure 16, Table 5).  These 

groups consider characteristics that are associated with monitoring station representation, 

e.g., the location of point and mobile sources, the density of population, or the straight-

line distance to the next closest monitoring station. 

 

Figure 16  The Weighted Spatial Output Model.  Spatial Indicators, i.e. Raster Maps, Are 
Inputted, Reclassified, and Spatially Averaged to Create the Final Spatial Output Map 
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Each spatial indicator consists of a GIS raster map with a 100m grid pattern.  These 

rasters were reclassified in ArcView 10.0 so that the data distribution of each indicator 

was scored with values from one to ten.  The reclassified rasters were then spatially 

averaged with calculated weights (q.v.) using the weighted spatial overlay tool of 

ArcView 10.0, giving each indicator a weighted-average score.  A higher score signified 

a greater likelihood that a spatial location would benefit from additional monitoring 

representation.  The specific indicators are as follows: 

1.   Emissions Inventory Point Sources (Source-Oriented):  This indicator is a raster 

map of point emission sources taken from the MCAQD Periodic Emissions Inventory 

report (MCAQD 2009).  The emission sources were aggregated into each township, 

range, and section; the sum of emissions in each sector was used as the raster value.  

When reclassifying the raster, the entire distribution of emissions was divided into 10 

equal parts and assigned a score of 1-10 with 10 signifying the highest emission 

quantities. 

2.  Arterial Road Traffic Count (Source-Oriented):  First of the mobile source 

indicators, this used the AWT count from arterial roads in Maricopa County.  AWT 

counts were averaged in each township, range, and section, with the average result being 

used as the raster value.  Higher AWT counts were assigned higher scores as they are 

representative of higher mobile-source emissions. 

3.  Freeway Traffic Count (Source-Oriented):  Second of the mobile source 

indicators and similar to the Arterial Road Traffic Count, this indicator used the AWT 

from interstate and state highways in Maricopa County.  AWT counts were also averaged 
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in each township, range, and section.  As with arterial road traffic counts, higher freeway 

AWT counts were assigned higher scores. 

4.  Road Density (Source-Oriented):  Third of the mobile source indicators, this 

assessed the density of roads, both arterial and freeways, in a given area and returned the 

result as the raster value.  This indicator was designed to give support to the traffic counts 

indicator in determining emissions from mobile sources.  Since traffic counts are based 

upon discrete sampling locations and it is difficult to ascertain if these locations are 

evenly sampled, the road density serves as another proxy in determining mobile source 

emissions.  The densities of roads (lines) were calculated within 1 km cells; higher 

densities were assigned higher scores. 

5.  Population Density (Population-Oriented):  This indicator used the 2000 U.S. 

Census block groups to account for total population.  The population density of each 

block group was calculated and used for each raster cell.  Higher population densities 

were assigned higher scores. 

6.  Minority Population Density (Population-Oriented):  This indicator is identical 

in design to the Population Density indicator, except that instead of total population in 

each census block group, the total population minus the non-Hispanic white population 

was used.  This indicator provides a method of accounting for environmental equity 

issues.  Areas with higher minority population densities were assigned higher scores, as 

ensuring that these populations have adequate monitoring representation is necessary to 

identify equity issues. 
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7.  Euclidean Distance between Sites (Spatially Oriented):  This indicator is based 

on the straight-line distance away from an existing monitoring site.  The implied 

assumption is that it is more desirable to have a new monitoring site farther away from an 

existing site.  In practice this method created concentric rings of 3km for O3 and 1.5km 

for PM10 around each monitoring site.  This distance was an a priori decision based upon 

the spatial autocorrelation characteristics of each pollutant (Pope and Wu 2014).  The 

score increases the farther away in space that the location is from existing monitoring 

sites. 

8.  Standard Error from Predicted Pollution (Spatially Oriented):  This indicator 

accounts for the actual modeled pollution surface.  This was accomplished by creating a 

kriging interpolation map for each pollution parameter using annual average data from 

each existing monitoring site.  However, instead of a standard pollution surface output, a 

standard error map was generated.  This map shows areas of highest uncertainty in the 

kriging model.  After converting the map to a raster, the areas of highest uncertainty were 

reclassified with the highest score. 

Weights 

 The methodology used in this study relies on different indicators to provide a 

comprehensive analysis of different factors.  However, I did not assume that these factors 

were all equally important.   Instead, weights were used to emphasize particularly 

important indicators.  There are multiple weighting methods mentioned in the literature, 

including judgment-based expert opinion and data-dependent statistical methods (Garriga 

and Foguet 2010, Zheng et al. 2011).  This study utilized the expert opinion method, as 

this is a common method of assigning weights, though it is likely biased toward the 
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subjective perception of the expert or policymaker (Booysen 2002).  Still, given the 

strong relationship of this study with air quality policymaking, I argue that this is an 

effective method for weighting these indicators.  A panel of ten air quality experts, 

policymakers, and academics was invited to answer a survey with their opinions on the 

relative importance of Phase I and II indicators and how they should be weighted.  

Survey answers were averaged together and used for the weighting scheme (Table 6). 

Table 6  (a) Weights for Phase I of the Study. (b) Weights for Phase II of the Study.  
Note That While Multiple Indicators Might Be Applicable to the Same Subject, e.g. the 
Traffic Indicators in Phase II, This Was Accounted for with the Weighting System 

(a) # Phase I Indicator Sustainability 
Descriptor 

O3 
Weight 

PM10 
Weight 

1 Measured Concentrations Environmental 13.03% 13.81% 
2 Deviation from the NAAQS Environmental 9.32% 9.48% 
3 Area Served Environmental/Social 8.12% 8.48% 
4 Emissions Inventory Environmental 7.78% 11.59% 
4b Emissions Inventory-Predicted Ozone Environmental 9.38% N/A 
5 Traffic Counts Environmental 8.12% 8.49% 
6 Monitor-to-Monitor Correlation Environmental/Economic 7.12% 6.32% 
7 Removal Bias Environmental/Economic 8.27% 7.85% 
8 Population Served Social 8.32% 9.82% 

9 Environmental Justice-Minority Population 
Served Social 7.22% 9.22% 

10 Trends Impact Social /Economic 8.82% 10.08% 
11 Number of Other Parameters Monitored Economic 4.51% 4.89% 
  Total 100.0% 100.0% 

 

(b) # Phase II Indicator Category O3 Weight PM10 Weight 
1 Emissions Inventory Point Sources Source-Oriented 13.3% 20.0% 
2 Arterial Road Traffic Count Source-Oriented 8.9% 9.0% 
3 Freeway Traffic Count Source-Oriented 8.4% 8.4% 
4 Road Density Source-Oriented 9.9% 10.0% 
5 Population Density Population-Oriented 17.6% 16.3% 
6 Minority Population Density Population-Oriented 13.6% 12.9% 
7 Euclidean Distance Between Sites Spatially-Oriented 13.4% 11.1% 
8 Standard Error from Predicted Pollution Spatially-Oriented 15.0% 12.2% 
  Total 100.0% 100.0% 

 

 

To analyze the sensitivity of the chosen weights, results were also calculated from 

the unweighted indicators and compared to the weighted results.  For the sustainability 
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results, because there are an unequal number of indicators for each sustainability 

category, indicators from each category were averaged together and compared with the 

original results in the format demonstrated by Van de Kerk and Manuel (2008).

Results 

Phase I: Indicators for Evaluating the Existing AQMN  

Displaying Results 

 Each O3 and PM10 monitoring station earned a score for the 11 individual 

indicators.  The score was based upon that station’s placing in each indicator’s 

distribution, e.g., for the 17 assessed O3 stations, there were 1-17 points possible 

depending on the station’s placing.  Tied results earned the stations an average score from 

the placing.  For the original unweighted results, the 11 indicator scores were averaged 

together and a rank for the station was determined.  Weights were then applied to each 

indicator score and the average and rank for each station was recalculated (Table 7a; see 

Table 17 and Table 18 in Appendix B for complete chart results). 
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Table 7  Raw and Weighted Average Scores and Ranks for the Phase I (a) O3 and (b) 
PM10 Assessment 

(a) 
 

Raw Indicator 
Scores 

Weighted 
Indicator Scores 

O3 
Site Average Rank Average Rank 

BE 7.54 15 0.56 16 
BP 6.08 17 0.50 17 
CC 8.38 11 0.73 11 
CP 9.46 8 0.75 10 
DY 8.00 13 0.63 14 
FF 9.83 6.5 0.83 6 
FH 7.75 14 0.69 12 
GL 11.00 2 0.92 2 
HM 8.79 10 0.78 8 
NP 11.04 1 0.94 1 
PP 9.92 5 0.85 5 
RV 6.42 16 0.60 15 
SP 8.33 12 0.66 13 
SS 9.29 9 0.77 9 
TE 9.83 6.5 0.82 7 
WC 10.58 4 0.88 3 
WP 10.75 3 0.86 4 

 

(b) 
 

Raw Indicator 
Scores 

Weighted 
Indicator Scores 

PM10 
Site Average Rank Average Rank 

BE 6.70 12 0.604 12 
CP 8.86 1 0.811 1 
DC 6.09 13 0.621 10 
DY 5.86 14 0.522 14 
GL 8.23 4 0.759 4 
GR 7.45 7 0.720 6 
HI 6.77 11 0.616 11 
ME 8.77 2 0.772 2 
NP 7.23 9 0.599 13 
SP 7.95 5 0.742 5 
SS 7.41 8 0.635 9 

WC 7.77 6 0.682 7 
WF 6.86 10 0.657 8 
WP 8.36 3 0.761 3 

 

 

 Individual indicator results from each site were also displayed in a radar chart 

format with the indicators arranged by their sustainability descriptor, i.e., environmental, 

social, and economic.  This provided a convenient visualization of individual 

sustainability aspects for the entire network (Figure 17a).   The 11 individual indicator 

results were further aggregated into the three sustainability groups of environmental, 

social, and economic, and a score and rank for each group was generated for each 

monitoring station.  These results were also displayed in radar charts which allow the 

viewer to quickly ascertain the network’s sustainability strengths and weaknesses (Figure 

17b; see Appendix B for complete chart results). 
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(a) 

 
(b) 

 
Figure 17  (a) Radar Charts of Phase I Indicator Results for the Highest and Lowest 
Ranked O3 Monitoring Stations, North Phoenix and Blue Point, Respectively.  Labeled 
Numbers Correspond to the 11 Phase I Indicators Listed on Table 5. Graph Gridlines 
Each Represent 0.5 Points of Score, from 0-2.0. (b) Radar Charts of Sustainability 
Results for the Same Stations.  Each Sustainability Group Is An Aggregation of the 
Appropriate Phase I Indicators.  Graph Gridlines Each Represent 0.3 Points of Score, 
from 0-1.2 

Results for O3 Monitoring Stations 

 The final weighted scores and rankings revealed that the three highest ranked 

stations, North Phoenix, Glendale, and West Chandler, are located within urban areas, 

while the bottom two ranked stations, Buckeye and Blue Point, are located in suburban or 

rural areas (Figure 18).  Applying weight to the original scores did not affect the top or 

bottom ranked stations, but it did have effect on the stations in between (Table 8a).  

Individual indicator analyses, such as Monitor-to-Monitor Correlation and Removal Bias, 
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revealed redundancy among the urban O3 stations.  On the other hand, the Population 

Served indicator demonstrated that the urban stations each represented a sizably higher 

number of people then the suburban and rural stations, even when considering the much 

greater area served of those stations. 

 

Figure 18  Map of Relative Sustainability Results for O3 Monitoring Stations in 
MCAQD’s Network.  The Label for Each Monitoring Station Gives Its Overall Analysis 
Rank 
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Table 8  Comparison of Raw and Weighted Phase I Rankings for (a) O3 and (b) PM10 
Sites 

(a) Rank Unweighted Weighted 
1 NP NP 
2 GL GL 
3 WP WC 
4 WC WP 
5 PP PP 
6 FF (Tie) FF 
7 TE (Tie) TE 
8 CP HM 
9 SS SS 

10 HM CP 
11 CC CC 
12 SP FH 
13 DY SP 
14 FH DY 
15 BE RV 
16 RV BE 
17 BP BP 

 

(b) Rank Unweighted Weighted 
1 CP CP 
2 ME ME 
3 WP WP 
4 GL GL 
5 SP SP 
6 WC GR 
7 GR WC 
8 SS WF 
9 NP SS 

10 WF DC 
11 HI HI 
12 BE BE 
13 DC NP 
14 DY DY 

 

  

The sustainability results for O3 demonstrated that the monitoring stations located 

in urban settings tended to score higher on the social sustainability indicators. Rural 

monitoring stations to the northeast of the urban area tended to have higher 

environmental indicators, following the known patterns of O3, which tends to accumulate 

in the mountainous downwind area northeast of the metropolitan area (Pope and Wu 

2014) (Figure 14).  However, this environmental pattern was nebulous, as several of the 

urban stations scored high and several of the rural stations scored low.  Economic 

indicator scores were mixed between urban and rural stations; some of the large, long-

term urban stations scored high, but several of the more remote rural stations also scored 

high as their unique data is useful for modeling purposes, thus bringing a high score on 

those indicators. 
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Results for PM10 Stations 

 The final weighted scores and results for the PM10 stations revealed that the 

highest ranking station, Central Phoenix, did not have any top scores in the heaviest 

weighted indicators and many of its scores were in the bottom half, but it did have the 

highest score in Traffic Count and high enough scores in other indicators to give it the top 

ranked average (Table 7b).   The second overall ranked station was Mesa, even though it 

scored near the bottom in Measured Concentrations, which is the most heavily weighted 

indicator.   The stations scoring highest in Measured Concentrations tended to rank 

poorly in the overall results.   Applying weights to the raw scores did not change the rank 

of the five highest scoring stations, but it did have some effect on the ranks of the lower 

scoring stations (Table 8b).  The Monitor-to-Monitor Correlation and Removal Bias 

indicators also displayed redundancy among the PM10 stations, especially among the 

clustered stations in southwest Phoenix.  These same urban stations tended to score low 

in the social indicators, as their clustered positions caused them to serve smaller areas and 

populations. 

 Sustainability results for PM10 demonstrated a regional pattern with stations in the 

southern portion of the AQMN, which tend to be closer to agricultural, mining, and 

industrial sources, ranking higher in the environmental indicators (Figure 19).   The 

clustered stations in southwest Phoenix tended to score the lowest in the social and 

economic indicators due to their redundancy and small service areas.  Appendix B 

contains complete Phase I analysis results for each indicator for both O3 and PM10 

parameters. 
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Figure 19  Map of Relative Sustainability Results for PM10 Monitoring Stations in 
MCAQD’s Networks.   The Label for Each Monitoring Station Gives Its Overall 
Analysis Rank 

 

Phase II: Identifying Areas of Insufficient AQMN Representation 

Displaying Results 

 Each phase II spatial indicator was entered into the spatial output model (Figure 

16) and two separate spatial outputs, i.e., raster maps, were created.  The first output did 

not use any weights and equal emphasis was placed on each indicator in the spatial 

averaging; the second used the weights from the expert opinion survey as listed in Table 

6b.  Each spatial output raster consists of a scored map of the Phoenix metropolitan 
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region with higher scores giving a relative representation of locations that could possibly 

benefit from the addition of a monitoring station.  One to ten points were possible for 

each grid of the spatial output; however, for these results the spatially averaged scores did 

not exceed four or five points for O3 and PM10, respectively. 

 

Results for O3 Monitoring Stations 

 The spatial output for O3 displayed relatively low scores for most of the 

metropolitan area, demonstrating that it is well-represented by existing monitoring 

stations (Figure 20a).  Much of the region outside of the metropolitan area received 

higher scores, though this is because the low density of existing stations in those areas 

gave them maximum individual scores in the Euclidean distance and spatial error 

indicators.  Inside of the metropolitan boundaries, areas nearby major transportation 

corridors mainly received the highest scores.  

 When the weights were removed from the input indicators, a similar pattern 

emerged, though scores were emphasized more along the transportation corridors (Figure 

20b).  
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(a) 

 

(b) 

 

Figure 20  Scored Spatial Output Map for the O3 Phase II Analysis Showing the 
Suitability for Adding Additional O3 Monitoring Stations. Grid Scores Represent Relative 
Suitability for Adding a New O3 Monitoring Station (Higher Score Equals Greater 
Suitability). (a) Weights Were Added to Spatial Indicators before Averaging the Output.  
(b) Shows the Results from Using Unweighted Indicators 
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Results for PM10 Monitoring Stations 

 The spatial output for PM10 displayed higher average scores then the O3 output, 

even in areas close to existing monitoring stations (Figure 21a).  Scores for the PM10 

output ranged from one to five points out of the ten possible points; though only two grid 

cells, which are the location of power generating plants approximately 35 km west of the 

metropolitan area, scored five points.  As with the O3 stations, major transportation 

corridors within the metropolitan area tended to have the highest scores.  However, there 

were also many locations within the metropolitan area which scored high because they 

have high population counts or large PM10 emission sources.  Three locations in the 

spatial output map were particularly evident as being likely candidates for new 

monitoring stations: the town of Avondale in the western metropolitan area, Deer Valley 

and northern Scottsdale in the northern area, and Tempe and Mesa in the eastern area 

(Figure 21a). 

 Adding weights to the spatial indicators did not greatly change the pattern of the 

PM10 scores.  The spatial output using unweighted indicators appears to emphasize the 

same portions of the metropolitan area, though, on average, scores in each location are 

higher (Figure 21b). 
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(a) 

 
(b) 

 
Figure 21  (a) Scored Spatial Output Map for the PM10 Analysis Using Weighted 
Indicator Inputs.  Numbered Callouts Represent Areas Indicated for New PM10 Stations, 
1=Avondale, 2=Deer Valley, 3=Tempe.  Only Two Grid Cells, Not Pictured in This Map, 
Earned A Score of 5.  These Cells Are Located in Western Maricopa County 
Approximately 35 Km from the Western Edge of This Map. (b) The Same Analysis 
Using Unweighted Indicators
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Discussion 

Station Design Objectives 

 The techniques and indicators used in this study are not meant to be used and 

applied in a rote manner; rather the intention is to use the indicator results and spatial 

outputs to gather greater knowledge about the existing monitoring stations and suitable 

locations for new stations.  Indicators might be co-dependent on one another and this 

should be taken into account, e.g. the monitor-to-monitor correlation and the removal 

bias indicators.  For example, even though they would likely score low in the monitor-to-

monitor correlation and removal bias indicators, monitoring stations with high correlation 

but more distant apart are more valuable than those that correlate well in close proximity.  

Logic and reason must be applied to properly interpret the results and evaluate the 

AQMN.  An important consideration that must be taken into account when applying this 

logic is the design objectives that are required for every monitoring station and network. 

 Design objectives can take several forms, such as the need to characterize 

population exposure to pollutants, monitoring the impact of certain sources, or measuring 

the maximum expected or background pollutant concentrations.  These objectives were 

considered when creating the multiple indicators used in this study; nevertheless, when 

analyzing results individual station objectives should be reviewed.  For instance, a station 

might rank poorly in the Phase I assessment because it scored poorly in all but one or two 

indicators, but those high-scoring indicators are that site’s objective, e.g., it is a maximum 

concentration station or it’s located near a specific industry to monitor its emissions.  If 

this objective is uniquely fulfilled by that station, then it has worth outside of what the 
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general assessment results might suggest and that should be taken into consideration 

when making decisions regarding the network. 

O3 Monitoring Stations 

 The assessment of O3 stations revealed that the region is well represented by the 

AQMN, though there is likely redundancy in urban areas.  The monitor-to-monitor 

correlation indicator found an average of 81% correlation among the O3 stations, though 

when selecting only urban area stations the average changes to 88% as compared to 

rural/suburban stations with an average of 74%.  From a sustainability standpoint, all of 

the urban stations do have strong social scores, though low performance in the correlation 

and removal bias indicators affects many of the urban stations in their environmental and 

economic scores.  Spatial patterns for economic indicators were mixed; many of the 

urban stations scored well with the Trends Impact and Number of Parameters indicators, 

but their low scores in the correlation indicators hurt their overall economic average, thus 

giving an economic advantage to some of the rural stations. 

 Based on an evaluation of the Phase I assessment, the AQMN would likely 

benefit from closing or moving certain O3 stations, such as some of the eastern downwind 

rural stations or the highly redundant urban stations, though at the current time this was 

not recommended.  The reason for this decision was due to the objectives of these 

stations and the policy issues that could arise from closing them in a non-attainment area 

(see Scheffe et al. (2009) for greater detail on policy issues in these cases); the downwind 

sites were designed to measure maximum concentrations in areas that frequently violate 

health standards, and the urban sites provide neighborhood representation and are relied 

upon by many people for local air quality information (thus the high social scores).  
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However, the results do suggest that the objectives for some of the downwind stations 

should be reevaluated. 

 Especially when considering the Phase I results, the Phase II assessment did not 

find areas that were seriously under-represented by O3 stations.  However, there are 

several areas of the city, especially along freeway transportation corridors with adjacent 

high population densities, which would benefit from new stations.  The recommendation 

is not to open a new site just for O3 monitoring, but if another station is to be opened for 

other parameters or if an existing station needed to be moved, then adding or moving an 

O3 monitor into those deficient areas should be considered.    

PM10 Monitoring Stations 

 The assessment of PM10 stations shows areas that are over-represented, as well as 

areas that lack adequate representation.  The PM10 stations in Maricopa County’s AQMN 

are located in both urban and sub-urban areas and most show a great deal of redundancy.  

On average, stations throughout the metropolitan region exhibit 86% correlation; though 

the clustered stations in the south-central region exhibit 90% correlation.   However, 

many of these clustered stations are positioned so as to monitor ambient pollution in areas 

near specific point sources and/or have an objective to measure maximum concentrations 

and thus receive much attention from managers and policy makers. 

 The Phase I assessment shows that these clustered stations score high in the 

Measured Concentrations and Emissions Inventory indicators, but their low Area and 

Population Served scores hurt them in the overall rankings.  From a sustainability 

viewpoint, the most important stations were those that represent larger areas and 
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populations, while also having significant environmental impact from surrounding 

sources.  While this would suggest that the AQMN would benefit if some of these 

clustered stations were closed or moved, this is difficult to accomplish when considering 

their aforementioned objectives; also, these stations frequently violate health standards 

and have considerable political import.  Therefore it was not recommended to close any 

PM10 stations, but evidence from these indicators should be closely considered while 

modifying the AQMN in the future. 

 The Phase II assessment does show areas that are deficient in monitoring 

representation.  Rural areas were uniformly indicated as in need of representation, mainly 

because of the lack of rural stations, but monitoring objective considerations, such as 

population coverage in rural towns or monitoring major point sources, needs to be 

considered before adding stations to these areas.  It was recommended to add PM10 

stations to two small rural towns, Gila Bend and Wickenburg, located in Maricopa 

County to the southeast and northeast of the metropolitan area, respectively.  Urban areas 

within the metropolitan region were also indicated as needing PM10 stations.  After 

evaluating the spatial output maps, the location of existing monitors, and possible 

monitoring objectives, recommendations were made to add stations to the metropolitan 

neighborhoods of Avondale, Deer Valley, and Tempe (Figure 21a).  MCAQD has added, 

or has preliminary plans to add, PM10 stations to all of these localities (Pope 2011). 

Multiple Indicators for Multiple Objectives 

 This study has demonstrated the usefulness of using multiple indicators to assess 

the various objectives of an AQMN.   This multi-objective technique has the advantage 

of providing a broad view of the various aspects of each monitoring station, though at the 
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cost of greater detailed knowledge on each aspect.  Nevertheless, when evaluating the 

performance of existing monitoring stations, or attempting to locate areas where new 

stations are needed, these various objectives all have worth and should be evaluated with 

differing indicators.  The use of weights to provide emphasis to more critical aspects can 

be important, and this study has demonstrated, through the comparison of weighted and 

unweighted indicators, how much effect those weights can have.  It should be noted that 

future assessments could be improved with the inclusion of additional indicators to 

evaluate further sources and objectives, e.g. including agricultural source indicators or 

evaluating the effects of transported sources, or more detailed indicators, such as 

including socio-economic status with race/ethnicity environmental justice indicators.   

 Adding the sustainability component to the assessment provides an effective 

method of aggregating the many indicators into a straightforward display of the results.  

The spatial patterns that result from this sustainability aggregation were also useful for 

evaluating network performance and finding areas of deficiency.  Because of the 

usefulness of data that was produced with this technique, it is recommended that 

MCAQD utilize sustainability indicators in all future assessments of their AQMN. 

 Managers and planners should take note of the effect of multiple objectives on the 

AQMN and utilize their available resources appropriately.  This has not always been 

done in the past, and resources were not always used to best effect.  For example, there is 

often great concern among government planners regarding monitoring stations with the 

objective of measuring maximum concentrations.  This concern is warranted, as pollution 

exceedances at maximum concentrations sites may cause the AQMN to be in violation of 

clean air regulations.  However, while placing a large amount of resources, such as 

82 



 

 

compliance inspectors or remediation efforts, around maximum concentration sites might 

be effective in controlling pollution in the area local to these sites, this could come at a 

cost of resources around monitors that represent greater numbers of population or more 

sensitive receptors, thus ignoring or exacerbating environmental justice issues.  With 

more knowledge on environmental, social, and economic conditions, managers can make 

better decisions on how to deploy new monitoring resources to create a more 

comprehensive AQMN that best serves government regulations and the general public; 

thus giving information resources about air quality so that health risks can be recognized 

and citizens can make proper choices to benefit their lifestyles. 
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CHAPTER 4:  A DISTRIBUTIVE ENVIRONMENTAL JUSTICE STUDY IN THE 

PHOENIX METROPOLITAN REGION USING A MULTI-SCALE LANDSCAPE 

APPROACH∗ 

Chapter 4 Abstract 

This study investigated the distributive environmental justice issue between distinct 

demographic groups and ambient air quality in the Phoenix metropolitan region of the 

United States.  I used landscape ecological methods to create multiscale spatiotemporal 

pollution surfaces (maps) for O3 and PM10, and explicitly considered possible scale 

effects on statistical analysis as well as legacy effects of discriminatory policies of the 

past on minority groups.  Specifically, I analyzed the patterns of O3 and PM10 at three 

spatial scales and several temporal scales.  The pollution surfaces were evaluated against 

the Census block group-scaled demographics of class (median household income), age 

(17 and under, 65 and older), race (African American, Native American), and ethnicity 

(Hispanic).  The results of hierarchical multiple regressions, a total of 48 O3 and 60 PM10 

regression models, showed that significant relationships existed between the dependent 

and independent variables, signifying possible environmental inequity situations. These 

relationships seem robust as only in a few instances changing the spatiotemporal scales 

had significant effects on the results.  Several consistent patterns emerged from these 

results.  For example, people at the age of 17 and under were significant predictors for O3 

∗ This chapter will be published as: Pope, R. L., C. Boone, and J. Wu. A distributive 
environmental justice study in the Phoenix metropolitan region using a multi-scale 
landscape approach. (Manuscript in revision) 
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and PM10, but age 65 and older were only predictors for PM10.  African Americans were 

strong predictors for PM10, while Native Americans were strong predictors for O3.  

Hispanics had a strong negative correlation with O3, but a less consistent positive 

relationship with PM10.  Interestingly, the PM10–related patterns changed between 

seasons of analysis.  Given the legacy conditions suffered by the racial and ethnic groups, 

and the relative lack of mobility of these groups, the distribution of these criteria 

pollutants suggests the existence of environmental inequity in the Phoenix metropolitan 

region. 

Introduction 

Environmental justice can be a field of study for researchers, a public policy goal 

for government regulators, or a social movement by stakeholders who are concerned 

about the environment in which they live (Brulle and Pellow 2006).  The concept of 

environmental justice can have many facets, e.g., procedural justice is often defined as 

equal access to the environmental policy making process across all social demographics 

and distributive justice, often geographic in nature, is a fair and equitable distribution of 

environmental risk or burden (Rechtschaffen 2003). Studies in environmental justice 

examine relationships between social demographics, such as race and class, and patterns 

of environmental conditions, such as proximity to sources of pollution, the quality of 

ambient air or water resources available, or even blighted and polluted neighborhoods.  

When these inequitable conditions are brought to light, policy-makers can be notified that 

they must rectify the situation and citizens are given the knowledge and opportunity to 

pursue this improvement of their living environment.  
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This study focuses on ambient air quality and how distinct socioeconomic groups 

in the neighborhoods of Phoenix, Arizona, are exposed to ground-level O3 and PM10, the 

two criteria pollutants of most concern in this area.  Acknowledging that environmental 

justice can be more complicated than just the distribution of pollutants, I discuss some of 

the legacy conditions experienced by minority populations in the Phoenix area; but I 

mainly focus on the utilization of landscape ecological methods to create multi-scale 

pollution models, based upon actual monitored pollution concentrations, to test for 

possible distributive justice issues within the modern population.  Landscape ecology, a 

discipline devoted to understanding the spatial relationships between scales, patterns, and 

processes, offers useful methods and insight into the creation of these pollution models. 

Legacy Conditions for Racial and Ethnic Minorities in Phoenix 

The Phoenix metropolitan area today, a modern, thriving southwestern city with 

more than 20 self-governing municipalities, is one of the largest in the United States, with 

over 4.2 million residents in 2010 (Wu et al. 2011).  However, the city of Phoenix, which 

was incorporated in 1870, began as a small agricultural community in the Salt River 

valley in the Arizona Territory.  Unlike many other major southwestern cities, this area 

did not have pre-existing Mexican settlements and in the beginning Phoenix was a self-

identified Anglo community (Bolin et al. 2005, Meeks 2007).   Minority groups, such as 

Hispanics and African Americans, began to immigrate into the region in greater numbers 

in the late nineteenth-century, providing valuable labor services in agricultural and 

industrial development; however, they were greeted with racial segregation and political 

disenfranchisement as a policy (Bolin et al. 2013).  As the city grew, transportation 

corridors further divided the segregated population with the affluent Anglo populations to 
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the north of the main east-west railroad branch and the minority populations to the flood 

plains south of the tracks.  Segregationist city zoning and planning services in the first 

half of the twentieth-century placed much of the industrial and waste-handling facilities 

in minority-dominated South Phoenix, and the neighborhoods that grew in that area were 

blighted with poverty and lacked many basic municipal services and resources (Grineski 

et al. 2007, Bolin et al. 2013).    The civil rights reforms of the 1960’s and 1970’s brought 

some relief to the situation that Phoenix’s minority populations endured, but the land use 

pattern had already been set.  Post World War II Phoenix saw massive growth in high-

technology manufacturing and this industry, seeking educated employees and in the 

beginning having a whites-only hiring policy, moved into more affluent areas; but many 

industrial and waste-handling facilities were still located in the southern and western 

portions of the city where most minority populations lived (Bolin et al. 2000, McCoy 

2000). Even the last two decades of the twentieth-century, and into the twenty-first, has 

seen minority populations in south Phoenix fighting to protect their communities from 

encroachment from transportation corridors and industrial and hazardous-waste facilities, 

often unsuccessfully (Dimas 1999, Sicotte 2008, Bolin et al. 2013).   

Native American Tribes in the Central Arizona Deserts 

Native American Indians also faced patterns of subordination in Arizona history.  

There were several tribes of Native Americans living in and around the Salt and Gila 

rivers when the area was ceded to the United States from Mexico in 1848, including the 

Akimel O’odham (or Pima), Tohano O’odham, Maricopa, and Yavapai.  The Pima and 

Maricopa people in particular were farmers who practiced irrigation agriculture along the 

ephemeral streams and seasonal rivers of this desert region.  Early Anglo settlers 
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described these people as industrious and hospitable, as they provided material and 

military aide, and they were praised as allies who should be defended by the government 

(Meeks 2007).  However, in 1859 these two tribes were confined to the newly formed 

Gila River reservation which was much smaller than their original homeland range, 

though additional reservations, Ft. McDowell and Salt River, were also eventually 

opened for the Pima, Maricopa, and Yavapai people in the late 19th century.   

Furthermore, the tribes were not granted any water rights, and Anglo settlers began 

upriver diversions for their own irrigated crops, depriving the reservation of the greater 

portion of its water supply.  Unable to sustain their agriculture at their former level, the 

tribes became increasingly less self-sufficient and impoverished, and the Anglo depiction 

of them changed from industrious to ‘uncooperative’ and ‘degenerate’ (Meeks 2007), 

thus beginning the period of discrimination and forced assimilation into Anglo culture 

which followed.  The other tribes of the area faced similar situations with the reservation 

system, water rights, and subordination, and were often forced to abandon their culture to 

become laborers in off-reservation industries, or to lease out their lands for various 

agricultural or industrial purposes.  Reforms came slowly and sometime were veiled with 

exploitation attempts, such as land for water deals (Meeks 2007).  Even though they were 

granted U.S. citizenship in 1924, Native Americans in Arizona were not granted suffrage 

until 1948, and water-right issues were still being addressed in the legal system in the 

1970’s and 80’s (Meeks 2007).  These aforementioned situations with the indigenous 

population, such as segregation within a reservation and exploitation by outside 

industries, have created many potential and realized environmental injustices which exist 
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to this day, thus ethically requiring the inclusion of Native Americans in any justice 

research done within Arizona. 

Spatiotemporal Scale in the Environmental Justice Literature 

There have been a number of previously conducted environmental justice studies in 

the Phoenix metropolitan area using different techniques and scales.  These techniques 

usually did find justice issues, depending on the observed scale, the method used, and the 

medium investigated.  For instance, the Bolin et al. (2000) study investigated point-

sources of toxic emissions to determine environmental equity problems with the location, 

volume, and toxicity of emissions.  Their study found that minority populations in South 

Phoenix faced injustices when compared with the location of industries or volume of 

emissions, but not toxicity of emissions (as previously mentioned, most of the high-tech 

industries, implicated with emissions of greater toxicity, are located in more affluent 

areas of Phoenix).    

A similar spatial analysis by Bolin et al. (2002) found equity issues between race 

and class and point sources of hazardous waste industries and large quantity generators. 

Grineski et al. (2007) quantified air pollution by laying a grid over an ambient pollution 

surface of carbon monoxide (CO), nitrous oxides (NOx), and ground-level O3, modeled in 

a 1-hour time resolution, and using it to compare to race and class.  They found equity 

issues for Latinos and Native Americans, but not African Americans.  Grineski (2007a) 

used the same pollution model, along with the Toxic Release Inventory (TRI) and a 

proxy for indoor pollution hazards, to look for equity issues with asthma cases.  They 

found that African Americans experienced injustices, but Latinos were not significant 
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predictors for rates of asthma hospitalization.  Native Americans were not included in 

that study. 

These Phoenix-based studies employed a number of different methods to find 

justice issues over different spatial scales, with some differing results, showing that the 

scale of observation is important.  Other studies, outside of the Phoenix area, consider or 

address scale (i.e. the areal unit of analysis) or scope (i.e. the geographic bounds of the 

study) issues using various methods.  For example, Cutter et al (1996) conducted a justice 

study in South Carolina to see how TRI and hazardous waste facilities affect low-income 

minority groups at three different spatial scales: counties, census tracks, and census block 

groups.  Scale was important, as they found issues at the county level, but not the finer 

scales.  On the other hand, though Huby et al.’s (2009) justice study in England stresses 

the need for multi-scale analysis, they note that the coarser scales can mask inequalities 

due to aggregation.  Baden et al (2007) performed a review of the existing empirical 

justice literature and noted studies spanning the range of scale and scope method 

possibilities, and though some studies use multi-scale methods, they rarely use multiple 

units of analysis.  Variation was observed across the methods, but the authors did note 

that studies typically found evidence of injustice, though smaller scales tended to exhibit 

more statistically insignificant findings, and they note that scale and scope may be 

influential factors that contribute to the results (Baden et al. 2007).   

Choosing the scale of analysis is important, and different scales can produce 

different results-a phenomenon known as the modifiable areal unit problem (MAUP), a 

subject often addressed in landscape ecology.  The MAUP presents two interrelated 

problems with spatial data analysis: the scaling problem and the zoning problem 
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(Openshaw 1984, Jelinski and Wu 1996).  The scaling problem is due to the aggregation 

of smaller units into fewer and larger geographical units increasing correlation, but 

reducing variation; while the zoning problem results from the drawing of spatial 

boundaries and is related to gerrymandering.  Researchers have tried different methods of 

analysis to avoid the issues of the MAUP, such as using the hedonic price method 

(Noonan et al. 2009) or dasymetric mapping (Giordano and Cheever 2010), with varying 

results; though presenting results from multiple scales can also be effective against the 

MAUP, as an inequity observed at any scale can arguably be considered evidence of an 

injustice (Baden et al. 2007). 

The temporal scale of analysis is equally important in finding environmental 

inequity, especially when using ambient air pollution as the environmental medium.  

Although temporal scale of the analysis or data is frequently mentioned, e.g. the study by 

Jerrett et al (2001), there is a deficit of environmental justice literature addressing 

multiple-scale temporal analysis methods (Noonan 2008).  This study does address both 

the spatial and temporal dimensions of environmental justice by using a novel approach 

of comparing race, ethnicity, class, and age at the Census block group level to multiple 

spatiotemporal scales of monitored O3 and PM10 pollution, so as to determine the multi-

scalar extent of environmental justice issues in the Phoenix area.   Results with positive 

correlation between demographics and pollution, taken in the context of the historical 

patterns of inequitable planning or the location of vulnerable populations with low 

mobility, within the Phoenix metropolitan area, were used as evidence of possible 

injustices; though the primary aim of the study is to highlight the differences in results 

between multiple spatiotemporal scales in the analysis.  
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Methods 

The study covers the Phoenix metropolitan statistical area (MSA) in South-Central 

Arizona (Figure 22). There are two distinct study areas in this project, one representing 

the O3 monitoring network and the other representing the PM10 network; O3 and PM10 are 

the two criteria pollutants of most concern in the Phoenix MSA, as they are listed as non-

attainment for national ambient air quality standards (U.S. EPA 2009a).  The O3 area is 

approximately 2.3 million hectares in size, and the PM10 area is approximately 1 million 

hectares in size.  Both of these areas are based upon Pope and Wu’s (2014) study which 

characterized spatiotemporal patterns of O3 and PM10 in the Phoenix MSA.   The Pope 

and Wu study delineated the study areas based upon the spatial location of official 

pollution monitoring stations and the assumed stationarity of data within the metropolitan 

area, with a shallow buffer of nearby rural monitoring stations (Pope and Wu 2014).   

There were 32 O3 and 30 PM10 pollution monitoring stations within each respective 

study area; the stations were operated by various state, tribal, and local agencies (Table 

9), and pollution monitoring complied with all federal regulations (Pope and Wu 2014).  

Air pollution data for the study were obtained from the United States Environmental 

Protection Agency’s Air Quality System (AQS) database.   
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Figure 22  Map of Central Arizona Including the Phoenix Metropolitan Area.  The Map 
Includes the Location of O3 and PM10 Monitoring Stations, Note That Some Stations 
Contain Both Monitor Types.  American Indian Reservations Are Labeled on the Map: 
A. Ft. McDowell Yavapai Nation, B. Salt River Pima-Maricopa Indian Community, C. 
Gila River Indian Community, and D. Tohono O’odham Nation 
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Table 9 List of Agencies Operating Monitoring Stations within the Study Area.  
Agencies Submit Their Data to the EPA’s AQS Database Which Was the Source of Data 
for This Study 

Agency Type of Agency # O3 Stations # PM10 Stations 

Arizona Department of Environmental Quality State 3 2 
Fort McDowell Yavapai Nation Tribal 1 1 
Gila River Indian Community Tribal 2 1 
Maricopa County Air Quality Department Local (County) 17 14 
Pinal County Air Quality Control District Local (County) 5 9 
Salt River Pima-Maricopa Indian Community Tribal 4 3 

 

O3 Data were collected for the time period of 2008-2010; the finest temporal 

resolution (or grain size) was one hour (i.e. raw data were one-hour averages). Four 

temporal extents (i.e. time durations over which average values of measurements were 

derived) were utilized: one hour (at 15:00 on July 15), eight hours (15:00-22:00 on July 

15), one month (July), and seasonal (April-October) (Table 10). The seasonal average 

was chosen instead of an annual average because many of the O3 monitoring sites only 

operate during this time period.   

PM10 data were also collected from 2008-2010, though the temporal resolution for 

PM10 was a 24-hour average measured one day out of every six (1-in-6 day basis), as this 

is the operating schedule for some of the PM10 monitors.  Most PM10 monitors operated 

on a finer time scale, collecting daily 24- or 1-hour averages; however, all finer averages 

were rolled into a 24-hour average and all data outside of the 1-in-6 day schedule were 

eliminated to create a consistent coarse resolution. These data were then utilized at three 

different temporal extents: annually, monthly, and daily; monthly and daily extents 

included both winter and summer seasons (Table 10).   
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Table 10 Details on the Temporal Scales Used within This Study.  Note That the PM10 
Daily Temporal Extent Occurs on Different Days in Each of the Study Years Because of 
the 1-in-6 Day Sample Resolution 

Pollutant 
Temporal 
Resolution 

Study 
Years Temporal Extents 

O3 1-hour 
Averages, 
continuous 

sample 
grain 

2008-
2010 

Seasonal 
(Apr-
Oct) 

Monthly 
(July) 

8-hour 
(July 15, 
15:00-
22:00) 

1-hour 
(July 15, 
15:00) 

 

PM10 24-hour 
Averages, 
1-in-6 day 

sample 
grain 

2008-
2010 

Annual Monthly 
(Jan) 

Monthly 
(Aug) 

Daily  
(Jan) 

[Jan 7, 2008, 
Jan 7, 2009, 
Jan 8, 2010] 

Daily 
(Aug) 

[Aug 22, 2008,  
Aug 23, 2009, 
Aug 24, 2010] 

 

Pollution Surface 

The pollution surface was modeled using the landscape ecological methods in Pope 

and Wu (2014), i.e. first a semivariance analysis was performed on the pollution data, and 

then a kriging interpolation model was created.  The semivariance analysis was 

performed using the software GS+: Geostatistics for the Environmental Sciences 

(Gamma Design Software 2006).  After the data were properly prepared, they were 

modeled in isotropic semivariograms using the Gaussian model for O3 and the spherical 

model for PM10, quantifying the structure of spatial autocorrelation (see Pope and Wu 

(2014) for further details). 

Following the semivariance analysis, a kriging interpolation map of the pollution 

surface was created.  Kriging is a geostatistical interpolation method to estimate values at 

unsampled locations based on the spatial autocorrelation structure quantified in the 

semivariance analysis (Cressie 1990, Fortin and Dale 2005).  My kriging maps of O3 and 

PM10 concentrations over the study area were created using the Geostatistical Analysis 
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Extension within ArcMap (ESRI 2010).  All input settings were matched with those of 

the GS+ software to maintain consistency with my semivariance analysis.  Thematic 

maps were created at each temporal scale, for both O3 and PM10 (Figure 23; also see 

Appendix C: Figures 31-39). 

Census Data 

Census data were selected at the block group level, as this was the finest resolution 

available for all variables (Table 11 and Figure 24; also see Appendix C: Figures 40-51 

for demographic summaries).  There were six variables in four groups: socioeconomic 

status, age, race, and ethnicity (Table 12).  My inclusion of status, race, and ethnicity was 

based upon previous environmental justice research in the Phoenix area.  Although not 

typically used as a variable in environmental justice studies, age was chosen here because 

the Phoenix area is a popular retirement location with many elder-only communities in 

locations that could possibly be at risk of inequitable pollution levels.  In addition, 

children and elders are more vulnerable to higher pollution values, so information 

regarding their unique risk is important (Andersen et al. 2007, Tecer et al. 2008). 

Table 11 Spatial and Population Statistics for the Census Block Groups Located within 
the O3 and PM10 Study Areas.  Note That Only Block Groups That Were Completely 
inside the Respective Study Areas Were Included 

Study 
Area 

Census Block Groups Spatial Statistics Census Block Groups Population Statistics 

N Min. 
Size 

(km2)  

Max. 
Size 

(km2)  

Mean 
Size 

(km2)  

Std. 
Dev. 
(km2) 

Population 
N 

Min. 
Pop. 

Max. 
Pop. 

Mean 
Pop. 

Std. 
Dev. 

O3 2646 0.085 904.9 4.23 27.36 4,108,844 0 7293 1552.9 698.4 

PM10 2172 0.085 603.0 2.91 17.30 3,380,319 0 7293 1556.3 680.9 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 23  An Example of Pollution Contours Overlaying Population Proportion Maps.  
(a) Displays O3 Pollution Contours (with Units of PPB) Taken at the Seasonal Temporal 
Extent and Averaged from 2008-2010, Overlaying the Population Proportion of Native 
Americans at the Census Block Group Level, (b) Is the Same Map at A Finer Resolution 
and Focused upon the Metropolitan Phoenix Urban Area to Display Details.  (c) Repeats 
This for PM10 Contours (with Units of µg/M3) Overlaying the Population Proportion of 
African Americans and (d) is A Finer Resolution in the Urban Metropolitan Area.  See 
Appendix C: Figures 31-39, for Complete Maps from All Temporal Extents 
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Figure 24  Map of the Census Block Groups That Were Used within the PM10 and O3 
Portions of the Study.  Note That Only Those Block Groups That Were Fully Contained 
within the Respective Study Areas Were Included.  The Very Large, Sparsely Populated 
Block Groups in Rural Areas That Crossed the Studies’ Boundaries Were Excluded.  
Block Groups That Are Colored Light Grey Were Used in the O3 Study, Those That Are 
Colored Dark Grey Were Used for Both the O3 and PM10 Studies 
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Table 12 Descriptive Statistics for Study Variables, Based upon Census Block Groups 

 O3 Study Area N Range Min. Max. Mean SD Vari. 

Socioeconomic Status        
 Median Household Income (thousands) 2646 200.0 0.0 200.0 56.9 28.9 834.1 

Age Proportion        
  ≤Age 17 (%) 2646 59 0 59 25 10 1 
  ≥Age 65 (%) 2646 90 0 90 14 17 3 

Race Proportion        
 African American (%) 2646 60 0 60 5 5 0 
 Native American (%) 2646 98 0 98 2 7 1 

Ethnicity Proportion        
 Hispanic (%) 2646 94 0 94 28 24 6 

O3 Pollution        
 Seasonal O3 (PPB) 2646 11.6 33.0 44.5 36.9 2.0 4.1 
 Monthly(July) O3 (PPB) 2646 8.4 35.0 43.4 39.3 1.5 2.3 
 8-hour O3 (PPB) 2646 19.6 33.2 52.8 41.8 4.0 16.3 
 1-hour O3 (PPB) 2646 20.3 46.3 66.6 55.6 5.2 27.4 
 

         PM10 Study Area N Range Min. Max. Mean SD Vari. 

Socioeconomic Status        

 Median Household Income (thousands) 2172 200.0 0.0 200.0 54.4 28.0 782.8 

Age Proportion        

  ≤Age 17 (%) 2172 59 0 59 26 10 1 

  ≥Age 65 (%) 2172 86 0 86 13 15 2 

Race Proportion        

 African American (%) 2172 60 0 60 5 5 0 

 Native American (%) 2172 98 0 98 3 7 1 

Ethnicity Proportion        

 Hispanic (%) 2172 94 0 94 32 24 6 

PM10 Pollution        

 Annual PM10 (µg/m3) 2172 74.0 20.7 94.6 30.4 6.9 47.5 

 Monthly (Jan) PM10 (µg/m3) 2172 34.3 8.2 42.5 20.2 6.4 40.8 

 Monthly (Aug) PM10 (µg/m3) 2172 57.0 24.0 81.0 31.3 5.3 28.4 

 Daily (Jan) PM10 (µg/m3) 2172 35.8 10.0 45.8 21.3 6.0 36.1 

 Daily (Aug) PM10 (µg/m3) 2172 50.3 17.9 68.2 24.7 4.8 23.4 
 

99 



 

 

GIS Model 

Rasters for each 2008-2010 kriged pollution surface maps for each temporal extent 

were averaged together using the Raster Calculator tool in ArcMap, thus creating an 

average pollution surface for each extent with a 250m resolution.  These average surfaces 

were categorized into three spatial scales: the initial pollution surface or raw data, 

pollution deciles, and pollution quartiles (the decile and quartile surfaces were created 

with the Reclassify tool in ArcMap).  After converting to polygons, these pollution 

surfaces were spatially joined with the census data using the pollution score at the 

centroid of each block group; the spatially-explicit tables were then exported for 

statistical analysis (Figure 25). 

Statistical Model 

I used hierarchical multiple regression models to examine the independent effects 

of the four census groups (socioeconomic status, age, race, and ethnicity) with each 

pollution surface at each temporal extent and spatial aggregation.  This resulted in a total 

of 48 and 60 regression equations for O3 and PM10, respectively.  Models 1-4 were 

ordered in the hierarchical multiple regression using an a priori decision of 

socioeconomic status (median household income), age (proportion age≤17 and proportion 

age≥65), race (proportion African American and proportion Native American), and 

ethnicity (proportion Hispanic) (Table 13; also see Tables 42-43 in Appendix C). 

The models were created in SPSS Version 22.0 (IBM Corp 2013).  Input data were 

transformed as necessary, and homoskedasticity was tested for with the Breusch-Pagan 

and the Koenker tests.  These tests revealed that data were significantly heteroskedastic, 
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so the heteroskedasticity-consistent standard error estimator model HC3, run using a 

script developed for SPSS by Hayes and Cai (2007), was used to reduce bias.  

 

Table 13 Dependent Variables Used in Each of the Hierarchical Multiple Regression 
Models. 

Model 
# 

Dependent Variables 

1 Median Household Income 

2 Median Household Income, Age 17 and under, Age 65and over 

3 Median Household Income, Age 17 and under, Age 65and over, Proportion African American, 
Proportion Native American 

4 Median Household Income, Age 17 and under, Age 65and over, Proportion African American, 
Proportion Native American, Proportion Hispanic 
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Figure 25 The Model Used to Generate Spatial Files which Combine Pollution Surface Data and Census Data.  Ovals Represent 
Map Data Files, either Rasters or Polygons.  Rectangles Represent Tools Or Processes within the GIS.  The Spatial Join Added 
the Pollution Value at the Centroid of Each Block Group to the Census Files.  The Spatially-Explicit Table Was Then Exported 
for Statistical Analysis 

 
 



 

 

Results 

The hierarchical multiple regression models did find significant relationships 

between the dependent pollution and independent demographic variables (see Appendix 

C: Tables 42-43 for complete statistical results).  These relationships are summarized in 

Table 14, which is based upon model 4 of the regressions, and identifies those that could 

possibly be a justice issue, i.e. the independent variable is a significant predictor for the 

dependent variable.  These positive relationships were noted as possible justice issues 

based upon the slope of the beta score in the regression, e.g. a negative beta would 

demonstrate a trend of the concentration of pollution increasing while the median 

household income of the Census block group decreases and a positive beta reveals a trend 

where the pollution concentration and the proportion of a demographic group increase 

together.  

There were only a few instances where changing the temporal scale or spatial 

aggregation changed the relationship between the dependent and independent variables 

(Table 14).  The only examples of this were O3 with the variables median household 

income and proportion aged≤17, and PM10 with income and proportion Hispanic; in all 

other cases the significant relationships between the variables were the same between all 

temporal extents or spatial aggregations. 

There were many examples of where changing scale resulted in the model 4 

relationship becoming non-significant (Table 14).  This was especially prevalent in the 

median household income variable for both O3 and PM10. In many of these cases, income 

did act as a significant predictor for pollution levels in models 1 through 3; however, the 
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addition of the proportion Hispanic independent variable in model 4 explained away the 

relationship between pollution and income causing the significant relationship to be lost 

(Appendix C: Table 42).  

Table 14  Summary of Hierarchical Regression Results for Model 4 of the O3 and PM10 
Parameters and Demographic Variables at Each Spatial and Temporal Scale 

  Median Household Income Proportion Age ≤17 Proportion Age ≥65 

  
Raw 
Data Deciles Quartiles Raw 

Data Deciles Quartiles Raw 
Data Deciles Quartiles 

O
3 

Seasonal + + NS + + NS - - - 

Monthly NS NS - NS - - - - - 

8-hour NS NS NS + + + NS NS NS 

1-hour NS NS NS + + NS - - - 

PM
10

 

Annual - - NS + + + + + + 
Jan 

Monthly - - - NS NS NS NS NS + 

Jan Daily NS - - + + + + + + 
Aug 

Monthly NS NS + + + + + + + 

Aug 
Daily - NS NS + + + + + + 

  Proportion African 
American Proportion Native American Proportion Hispanic 

  Raw 
Data Deciles Quartiles Raw 

Data Deciles Quartiles Raw 
Data Deciles Quartiles 

O
3 

Seasonal - - - + + + - - - 

Monthly - - - + NS + - - - 

8-hour - - - + + + - - - 

1-hour - - - + + + - - - 

PM
10

 

Annual + + + - - - + + + 
Jan 

Monthly + + + - - - + + + 

Jan Daily + + + - - - + + + 
Aug 

Monthly + + + - - - NS NS - 

Aug 
Daily + + + - - NS + NS - 

 Key 
 

 

 NS No Significant Relationship 
 

- 
No Justice Relationships 
Found 

 + Possible Justice Relationship 
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There were several distinct, consistent patterns that emerged in the data.  At most 

scales, the proportion of people age 17 and under was a significant predictor for both O3 

and PM10; however, the proportion of people age 65 and over was only a significant 

predictor for PM10 and was negatively correlated with O3.  The proportion of African 

Americans was a strong predictor for PM10, but had an equally strong negative 

relationship with O3.  In contrast, the proportion of Native Americans was a predictor for 

O3, but had a negative relationship with PM10.  The proportion of Hispanics had a strong 

negative correlation with O3, but a less consistent relationship with PM10, with the 

August monthly and daily temporal scales varying between positive, negative, and non-

significant beta scores (Table 14). 

Discussion 

Multi-Scalar Results 

Though changing the temporal scale changed the slope of the model results, i.e. 

from negative to positive or vice versa, in a few instances, the effect was far less than 

anticipated (Table 14).  A more common occurrence was to change the relationship from 

significant to non-significant, or vice versa, between the independent and dependent 

variables when the temporal scale was changed. This proves that, in most cases, even 

though the spatial pattern of the pollutant is visibly changed between time periods, the 

representative relationship between pollution sources/dynamics and demographics did not 

change.  A more interesting result noted were the changes between the PM10 winter and 

summer scales, especially in relation to the Hispanic demographics.  These changes in the 
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spatial pattern of PM10 are likely the result of changes in meteorology between the 

seasons, as source apportionment likely remains the same (Pope and Wu 2014). 

Changes in spatial aggregation of pollutant also resulted in less effect than 

expected.  It was expected that aggregating into deciles, and especially into quartiles, 

would bring many changes from the MAUP scaling problem.  In actuality, of the 54 

regression models, aggregating to deciles only changed the results (including changing to 

non-significance) five times, or 9% of the time.  Aggregating to quartiles changed the 

results a total of 13 times, or 24% of the time (Table 14). 

Environmental Inequity with O3 Pollution 

Our analysis shows that significant relationships of possible environmental inequity 

exists between O3 pollution and Native Americans, youth under 17 years of age (at most 

scales), and to a limited extent, with lower median household incomes (Table 14). This 

relationship, at least in regards to Native Americans, was not unexpected as the spatial 

patterns of O3 show concentrations tending to increase toward the northeast portion of the 

study area, away from the urban area and close to the Ft. McDowell Yavapai Nation and 

Salt River Pima-Maricopa Indian Communities (Pope and Wu 2014, also see figures 31-

34 in Appendix C).  O3, being a secondary pollutant, forms in sunlight from 

photoreactive precursor chemicals mainly emitted by industrial and transportation 

sources in the urban area.  Prevailing easterly and/or anabatic winds push the precursors 

and O3 plume up against the northeastern mountains in the daytime where it continues to 

react in sunlight, and the usually slower nighttime katabatic winds drain it back into the 

lower elevations, giving O3 a tendency to pool at the edge of the urban areas and near the 

reservations (Ellis et al. 1999, Pope and Wu 2014).  Furthermore, O3 within the urban 
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area is destroyed, or scavenged, during the night by nitrous oxide (NOx) emissions; but 

O3 in rural areas, lacking scavenging NOx, persists longer in the environment before 

decay or deposition (Gregg et al. 2003). 

Given that, in general, O3 concentrations increase with an increasing population 

proportion of Native Americans; and more specifically, the increase in concentrations 

over the reservations, I contend that an inequitable situation in O3 distribution exists for 

Native Americans. Although the O3 patterns are more a function of geography and 

meteorology than a deliberate attempt to place polluting sources near minority 

populations, given the legacy conditions, such as forced segregation and economic 

hardship on the reservations, that Native Americans have endured, the pattern of 

environmental injustice is clear.    

It should also be noted that my findings differ from earlier environmental justice 

studies using O3.  The Grineski et al (2007) study found that Latino immigrants were 

significant predictors for O3, while Native Americans had a significant negative 

relationship.  However, their study differed in time and scale, as it was based upon 

modeled data from a single one-hour temporal scale, August 27, 1999 at 16:00.  

The relational patterns between O3 and people aged 17 and under are less clear than 

those with Native Americans.  The density of young people is highest in the urban areas 

of west Phoenix and Mesa, but the block groups with a higher proportion of young people 

is scattered into rural areas and American Indian reservations (see Figure 45 and 48 in 

Appendix C).  Furthermore, the relationships were less consistent, with the regression 

models always showing negative correlations, until the Hispanic demographics were 
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added in model 4 (Appendix C: Table 42).  In addition, this demographic was one of the 

few to show differing results with a change of temporal scales, and O3 at a monthly scale 

was either non-significant or negatively correlated (Table 14).  Thus while it is difficult 

to point directly to an overall pattern of inequity, there are certainly, on average, locales 

and temporal scales where youth are exposed to an excessive distribution of O3 pollution.  

Environmental Inequity with PM10 Pollution 

Our analysis of the relationship between PM10 concentrations and independent 

demographics shows patterns that are often directly opposite those of O3.  At most scales, 

African Americans, Hispanics, and people aged 65 and older, while having negative 

relationships with O3, became significant predictors for PM10.  People aged 17 and under 

were usually predictors for PM10, except at the January monthly scale when the addition 

of the Hispanic population to the regression model explained away the relationship with 

youth.  As in the O3 analysis, income was an inconsistent predictor for PM10, especially at 

the summer temporal scales.  Lower incomes were usually predictors for PM10 in models 

1-3 of the regression, but this relationship often changed after adding the Hispanic 

demographic in model 4 (Appendix C: Table 43).  

As with O3, the known characteristics and patterns of PM10 pollution in Phoenix 

supports these results.  Unlike O3, PM10 is a primary pollutant that tends to aggregate 

around its sources, in addition to windblown transport from the surrounding desert areas.  

Many of the PM10 ‘hotspots’ in the study area were created from localized sources 

including agriculture in rural Pinal county and extractive and material handling industries 

in South Phoenix (Fernando et al. 2009b, Dimitrova et al. 2012, Clements et al. 2013).  In 

addition, South Phoenix is in the Salt River flood plain, and has the lowest average 
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elevations in the metropolitan area; the river channel acts as a natural transport corridor 

and downwind sink for early morning particles emitted from other portions of the 

metropolitan area (Dimitrova et al. 2012).  The South Phoenix area has high proportions 

of African American and Hispanic populations, though Hispanic populations are far more 

spatially distributed throughout the study area, and this likely accounts for much of the 

correlation in the results. 

The spatial correlation between the youth and elder age groups and PM10 is more 

difficult to note with visual inspection of the maps.  Youth proportions appear to be 

higher through the rural areas and urban fringe, which are areas tending to have higher 

PM10 concentrations (Appendix C: Figure 50).  Elder proportions are highest in the 

retirement communities in the northwest portion of the study area (Sun City), east Mesa, 

and the center of the study area (Sun Lakes) (Appendix C: Figure 51).  PM10 

concentrations were relatively low at all scales in the Sun City area, therefore the 

correlation with PM10 is likely due to the elder populations living in Mesa and Sun Lakes.  

The spatial pattern, quantified by the statistical results, confirms an inequitable 

situation between PM10 distribution and African American and Hispanic populations.  

Legacy conditions with these populations, e.g. historical segregation into South and West 

Phoenix along with most industrial sources, clarifies the origin of these long-term 

inequities with minority population in these areas. 

Limitations 

Environmental justice studies, including this study, often use classic regression 

models to test the relationship between independent and dependent variables 
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(Chakraborty et al. 2011).  The classic global regression model makes two key 

assumptions, that observations and residuals are independent and the process under study 

is stationary.  Assumptions regarding stationarity can be made if the region under study 

and the data set is small enough and the spatial units are as small as possible; as in the 

case of census block groups for this study (Páez 2004, Grineski and Collins 2008, Gilbert 

and Chakraborty 2011).  However, the demographic data used in this study did show 

clustering, as Moran’s I tests returned significant results for all groups (P<0.01).   

Based on the results shown by changing the spatial aggregation of pollutant data, it 

is quite possible that bias in my regression model is low.  However, future studies could 

be improved by using regression techniques that control for spatial dependence, such as 

geographically weighted regression (GWR) or simultaneous autoregressive models 

(SAR) (Brunsdon et al. 1999, Kissling and Carl 2008, Chakraborty 2009). 

Conclusion 

This study has shown that distributive inequities exist, across scales and spatial 

aggregation, in the two ambient pollutants of most concern in the Phoenix area, O3 and 

PM10.  These inequities affect different social groups to varying degrees, based upon their 

location and population clustering in the metropolitan area. These populations have 

various legacy stories behind them: Native Americans were forcibly confined to 

reservations in the 19th century where the greater part of their freedom and livelihood was 

denied them.  African Americans and Hispanic people, arriving after the 19th century 

Anglo settlers, were excluded from living in the prime areas of White privilege, and 

instead were segregated into South and West Phoenix, where city planners placed heavy 

industries and waste handling facilities. Youth and elder populations, being more 
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vulnerable to pollution effects, have different situations.  The elder population, while 

certainly not a unique group suffering oppression like minority populations in the past, 

has nevertheless often purchased their retirement homes with the expectation of a clean 

and healthy environment; and the youth are obviously under the authority of their 

guardians and have little say in the environment in which they live.  All of these groups 

have distinct reasons for being protected from environmental inequities, which begins 

with identifying the relationships. 

The occurrence of adverse health effects to these populations because of excessive 

exposure to O3 or PM10 has not been confirmed with this study, though serious health 

complications can be implied from frequent acute or long-term chronic exposure to these 

pollutants (Lippmann 1989, Pope and Dockery 2006).  The case to be made here is that 

conditions, either historical or current, are such that these populations of limited mobility 

are located in areas where they bear a larger burden of criteria pollutant exposure.  With 

the inequitable relationships identified, policy makers and regulating agencies in the 

Phoenix area have the knowledge necessary for making the right decisions in regards to 

protecting the health of its citizens.
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CHAPTER 5: SYNTHESIS: AIR POLLUTION, MONITORING NETWORK DESIGN, 

AND ENVIRONMENTAL JUSTICE 

 

Overall Research Design Revisited 

The design of air pollution monitoring networks is guided by regulations issued by 

the EPA.  These regulations require monitoring sites to fill a series of objectives and 

monitoring scales, e.g. “Sites located to determine the highest concentrations expected to 

occur in the area covered by the network” or “Sites located to measure typical 

concentrations in areas of high population density” (Code of Federal Regulations 2009b).  

The government environmental agencies design their networks to meet these regulations, 

which in theory would give comprehensive representation to the metropolitan area, but is 

the network properly situated such that the distribution of known pollution is being 

adequately monitored?  Is our knowledge of the pollution distribution limited by the 

design of the network?  How does spatiotemporal scale affect this pollution distribution 

and network design features?  These were the questions that led to this dissertation 

research. 

The most important reason for monitoring air pollution is to protect the health of 

our citizens.  While every citizen’s health is important, a main priority is to identify those 

social groups that are experiencing an inequitable proportion of health risk.  This is a 

priority of the EPA based on a 1994 presidential directive (U.S. EPA 2010).  It is difficult 

to properly determine environmental inequity from air pollution unless that pollution is 

adequately characterized, and it is formidable to adequately characterize air pollution if 
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the monitoring network is not properly designed.  Thus, my dissertation research was 

designed to simultaneously tackle the interactive issues of pollution characterization, 

network evaluation, and environmental justice (Figure 1 and Figure 26). 

 

Figure 26  Diagram Displaying Major Findings Based upon the Relationship between 
Study Chapters in This Dissertation 

 

An important theme underlying this dissertation research is scale in space and time.  

This was inspired by the widely applicable finding in landscape ecology that patterns and 

processes, as well as their relationships, are frequently scale-dependent (Wu and Loucks 

1995, Turner et al. 2001, Wu 2007).  Using interdisciplinary methods from landscape 

ecology, geography, sustainability assessment, and social sciences, I have addressed 
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questions on how scale affects the patterns of air pollution, the assessment of monitoring 

networks used to monitor these pollutants, and how scale-dependent pollution patterns 

affect environmental justice.  These are important questions that cut across several 

research fields, including urban landscape ecology, environmental justice, and air 

pollution research in general.  This spatially explicit, multiscale approach is innovative 

and effective for studying air pollution problems. 

To study the effects of scale on air pollution, I began this dissertation research by 

forming three key research questions: 

1. What are the spatiotemporal patterns of air pollution and their key 

determinants in the Phoenix metropolitan region? 

2. What implications do the spatiotemporal patterns of air pollution have for 

designing a monitoring network in the Phoenix metropolitan region, and is the 

current government ambient monitoring network adequate? 

3. Using a comprehensive, multi-scale point of view, are there environmental 

justice problems in the Phoenix metropolitan region, and does the current 

ambient monitoring network adequately give representation to these 

vulnerable populations? 

 

Key Research Findings 

My research has addressed all the questions mentioned above, and has important 

implications for assessing the adequacy of air pollution monitoring systems and the 
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potential problems of environmental injustice (Figure 26).  Key findings from this 

research are summarized below: 

1. Chapter 2 addressed research question #1, where patterns of O3 and PM10 

were found to change significantly with changes of spatiotemporal scale.  

These changes were quantified using several landscape ecological methods, 

and models appropriate to the pollutant were revealed. In addition, it was 

shown that, at longer temporal scales, O3 is a regionally-scaled pollutant less 

affected by local sources, while PM10 is a more locally-scaled pollutant 

strongly affected by sources.  It was also shown that the effect of season on 

PM10 was as great as the effect of scale.  These results contributed to the body 

of urban landscape ecological science by displaying the direct attribution of 

scale to air pollution patterns. 

2.  Chapter 3 addressed research question #2.  Using a novel approach of a large 

variety of weighted indicators at various spatiotemporal scales, the adequacy 

of the network in Maricopa County was quantified in a trans-disciplinary 

approach that involved input from various stakeholders, including academics 

and government policymakers (Wu 2006).  Furthermore, deficiencies were 

spatially defined and recommendations were made on how to strengthen the 

design of the network.  A framework utilizing a sustainability ranking system 

provided new insight into the strengths and weaknesses of the network.  These 

results further scientific knowledge by demonstrating the power of a multi-

objective sustainability-based method that can be used by researchers or 

managers in designing or assessing monitoring networks. 

115 



 

 

3. Two chapters addressed research question #3; in chapter 3 multiple indicators 

were used to quantify the performance of the network in monitoring air 

pollution in neighborhoods with high proportions of racial and ethnic 

minorities, and also to locate areas where additional monitors would provide 

benefit to these populations.  In chapter 4, a novel method using multi-scalar 

ambient data from the air pollution monitoring network and 108 hierarchical 

multiple regression models revealed environmental inequities between air 

pollutants and race, ethnicity, age, and socioeconomic class.  Though the 

effect was less than expected, the method nonetheless proved that changing 

the scale of the analysis can change the equitable relationship between 

pollution and demographics.  This research improves the body of literature in 

both landscape ecology and social science by demonstrating novel, 

interdisciplinary methods of quantifying environmental inequity.  

 

Concluding Remarks 

The design and implementation of the Maricopa County air monitoring network 

was performed by various government agencies, beginning with the first site opened by 

the County health department in central Phoenix over fifty years ago (U.S. EPA 2009b).  

Since then, the network has slowly grown as sites and new pollution monitors have been 

added by state, local, and tribal agencies.  Sites have also been moved or closed over the 

years as changes occurred for such reasons as environmental regulations, population 

demographics, new or changed pollution sources, or budget constraints.  These dynamics 
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in the physical network naturally lead to questions of whether or not the network is still 

representative of the pollution landscape. 

This dissertation research also forms a basis for future research questions.  For 

example, how does spatiotemporal scale affect the relationship between pollution sources 

and air pollution patterns, or how do differing pollutants (e.g. toxic air species or 

different criteria pollutants) change the scale-dependent relationships?   Other future 

research opportunities stemming directly from this research involve using different 

modeling approaches, indicators, or scales to create the pollution patterns or test the 

related processes.  For example, in lieu of geostatistical interpolation modeling to create 

the pollution surface, dispersion modeling could be used both for network evaluation and 

environmental justice research.  Health indicators, e.g. an indicator focused on hotspots 

of asthma or respiratory disease, could be added as an additional assessment tool to 

ensure that vulnerable populations are properly represented.  Finally, ‘human-scales’ 

could be implemented to research the relationship of air pollution patterns with the social 

demographics of where people work, go to school, and play, instead of only looking 

where people live with census data.  

In conclusion, our citizens need a clean and healthy environment to live in, and 

achieving this goal requires a balance among the environmental, economic, and social 

dimensions underpinning urban sustainable development (Wu 2008).  In respect to air 

pollution, a critical first step in meeting these goals is the characterization of pollution 

patterns.  As this dissertation research has shown, a critical component of this 

characterization is understanding the role of scale in these pattern dynamics.  By 

explicitly considering spatial and temporal scales, this study not only provides new 
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insights into, but also an innovative methodology for the study of, air pollution problems 

in urban regions.  With this knowledge brought to light, researchers, managers, and 

policymakers will have the ability to make informed decisions while studying or 

protecting the health and livelihoods of our citizens. 

118 



 

 

REFERENCES 

40 CFR pt 50. 1971. National Primary and Secondary Air Quality Standards. U.S. 
National Archive and Records Administration, Washington D.C. 

40 CFR pt 58 appx A. 2010. Quality Assurance Standards for State and Local Air 
Monitoring Stations (SLAMS). U.S. National Archive and Records 
Administration, Washington D.C. 

40 CFR pt 58.10. 2007. Annual monitoring network plan and periodic network 
assessment. U.S. National Archive and Records Administration, Washington D.C. 

ADEQ. 2013. Arizona Department of Environmental Quality Annual Reports, 2011. 

Andersen, Z. J., P. Wahlin, O. Raaschou-Nielsen, T. Scheike, and S. Loft. 2007. Ambient 
particle source apportionment and daily hospital admissions among children and 
elderly in Copenhagen. Journal of Exposure Science & Environmental 
Epidemiology 17:625-636. 

Arizona Department of Environmental Quality. 2009. Air Quality Plans: Nonattainment 
Areas and Attainment Areas with Maintenance Plans. Arizona Department of 
Environmental Quality. 

Arizona Department of Environmental Quality. 2010. Analysis of PM2.5 Exceedances in 
Pinal County Arizona: Demonstration that PM2.5 Concentrations are Driven by 
Local Sources of PM10 Near the Cowtown Monitor. Air Quality Division, 
Arizona Department of Environmental Quality, Phoenix. 

Arizona Department of Environmental Quality. 2011a. ADEQ Annual Reports. 

Arizona Department of Environmental Quality. 2011b. Air Quality Monitoring. 

Arizona Department of Environmental Quality (ADEQ). 2009. Air Quality Monitoring. 

Baden, B. M., D. S. Noonan, and R. M. R. Turaga. 2007. Scales of justice: Is there a 
geographic bias in environmental equity analysis? Journal of Environmental 
Planning and Management 50:163-185. 

Bauldauf, R. W., R. W. Wiener, and D. K. Heist. 2002. Methodology for Siting Ambient 
Air Monitors at the Neighborhood Scale. Journal of the Air & Waste Management 
Association 52:1433-1452. 

Berling-Wolff, S., and J. Wu. 2004. Modeling urban landscape dynamics: A case study in 
Phoenix, USA. Urban Ecosystems 7:215-240. 

Bolin, B., J. D. Barreto, M. Hegmon, L. Meierotto, and A. York. 2013. Double Exposure 
in the Sunbelt: The Sociospatial Distribution of Vulnerability in Phoenix, 
Arizona. Pages 159-178 in C. Boone and M. Fragkias, editors. Urbanization and 

119 



 

 

Sustainability: Linking Urban Ecology, Environmental Justice and Global 
Environmental Change. Springer Netherlands. 

Bolin, B., S. Grineski, and T. Collins. 2005. The Geography of Despair: Environmental 
Racism and the Making of South Phoenix, Arizona, USA. Human Ecology 
Review 12:156-168. 

Bolin, B., E. Matranga, E. J. Hackett, E. K. Sadalla, K. D. Pijawka, D. Brewer, and D. 
Sicotte. 2000. Environmental equity in a sunbelt city: the spatial distribution of 
toxic hazards in Phoenix, Arizona. Environmental Hazards 2:11-24. 

Bolin, B., A. Nelson, E. J. Hackett, K. D. Pijawka, C. S. Smith, D. Sicotte, E. K. Sadalla, 
E. Matranga, and M. O'Donnell. 2002. The ecology of technological risk in a 
Sunbelt city. Environment and Planning A 34:317-339. 

Booysen, F. 2002. An Overview and Evaluation of Composite Indices of Development. 
Social Indicators Research 59:115-151. 

Brazel, A. J., and G. M. Heisler. 2009. Climatology at Urban Long-Term Ecological 
Research Sites: Baltimore Ecosystem Study and Central Arizona-Phoenix. 
Geography Compass 3:22-44. 

Briggs, D., S. Collins, P. Elliott, P. Fischer, S. Kingham, E. Lebret, K. Pryl, H. V. 
Reeuwijk, K. Smallbone, and A. V. D. Veen. 1997. Mapping urban air pollution 
using GIS: a regression-based approach. International Journal of Geographical 
Information Science 11:699-718. 

Brulle, R. J., and D. N. Pellow. 2006. Environmental Justice: Human Health and 
Environmental Inequalities. Annual Review of Public Health 27:103-124. 

Brunsdon, C., A. S. Fotheringham, and M. Charlton. 1999. Some Notes on Parametric 
Significance Tests for Geographically Weighted Regression. Journal of Regional 
Science 39:497-524. 

Bryant, B., and J. Callewaert. 2008. Why Is Understanding Urban Ecosystems Important 
to People Concerned About Environmental Justice? Pages 46-57 in A. R. 
Berkowitz, C. H. Nilon, and K. S. Hollweg, editors. A new frontier for science 
and education. Springer-Verlag New York, Inc., New York Berlin Heidelberg. 

Caselton, W. F., and J. V. Zidek. 1984. Optimal monitoring network designs. Statistics & 
Probability Letters 2:223-227. 

Chakraborty, J. 2009. Automobiles, Air Toxics, and Adverse Health Risks: 
Environmental Inequities in Tampa Bay, Florida. Annals of the Association of 
American Geographers 99:674-697. 

120 



 

 

Chakraborty, J., J. A. Maantay, and J. D. Brender. 2011. Disproportionate Proximity to 
Environmental Health Hazards: Methods, Models, and Measurement. American 
Journal of Public Health 101:S27-S36. 

Chen, C.-H., W.-L. Liu, and C.-H. Chen. 2006. Development of a multiple objective 
planning theory and system for sustainable air quality monitoring networks. 
Science of The Total Environment 354:1-19. 

Chung, W., Q. Chen, O. Osammor, A. Nolan, X. Zhang, V. Sharifi, and J. Swithenbank. 
2012. Characterisation of particulate matter on the receptor level in a city 
environment. Environmental Monitoring and Assessment 184:1471-1486. 

Cimorelli, A. J., A. H. Chow, C. H. Stahl, D. Lohman, E. Ammentorp, R. Knapp, and T. 
Erdman. 2003. Region III ozone network reassessment. September 9-11 Air 
Monitoring & Quality Assurance Workshop. U.S. Environmental Protection 
Agency, Region 3, Atlanta, GA. 

Clements, A. L., M. P. Fraser, N. Upadhyay, P. Herckes, M. Sundblom, J. Lantz, and P. 
A. Solomon. 2013. Characterization of summertime coarse particulate matter in 
the Desert Southwest—Arizona, USA. Journal of the Air & Waste Management 
Association 63:764-772. 

Cocheo, C., P. Sacco, P. P. Ballesta, E. Donato, S. Garcia, M. Gerboles, D. Gombert, B. 
McManus, R. F. Patier, C. Roth, E. de Saeger, and E. Wright. 2008. Evaluation of 
the best compromise between the urban air quality monitoring resolution by 
diffusive sampling and resource requirements. Journal of Environmental 
Monitoring 10:941-950. 

Code of Federal Regulations. 2009a. Title 40, Code of Federal Regulations Part 58, 
Appendix A, Quality Assurance Standards for State and Local Air Monitoring 
Stations (SLAMS). U.S. Government Printing Office, Washington D.C. 

Code of Federal Regulations. 2009b. Title 40, Code of Federal Regulations Part 58, 
Appendix D.  Ambient Air Quality Surveilance. National Archive and Records 
Administration, Washington D.C. 

Code of Federal Regulations. 2009c. Title 40, Code of Federal Regulations Part 58, 
Subpart B, section 58.10. Annual monitoring network plan and periodic network 
assessment. National Archive and Records Administration, Washington D.C. 

Cressie, N. 1990. The Origins of Kriging. Mathematical Geology 22:239-252. 

Cutter, S. L., D. Holm, and L. Clark. 1996. The Role of Geographic Scale in Monitoring 
Environmental Justice. Risk Analysis 16:517-526. 

Demerjian, K. L. 2000. A review of national monitoring networks in North America. 
Atmospheric Environment 34:1861-1884. 

121 



 

 

Diem, J. E. 2003. A critical examination of ozone mapping from a spatial-scale 
perspective. Environmental Pollution 125:369-383. 

Diem, J. E., and A. C. Comrie. 2001. Allocating anthropogenic pollutant emissions over 
space: application to ozone pollution management. Journal of Environmental 
Management 63:425-447. 

Diem, J. E., and A. C. Comrie. 2002. Predictive mapping of air pollution involving sparse 
spatial observations. Environmental Pollution 119:99-117. 

Digar, A., D. S. Cohan, and M. L. Bell. 2011. Uncertainties Influencing Health-Based 
Prioritization of Ozone Abatement Options. Environmental Science & 
Technology 45:7761-7767. 

Dimas, P. R. 1999. Progress and a Mexican American Community's Struggle for 
Existence. Peter Lang Publishing, New York. 

Dimitrova, R., N. Lurponglukana, H. J. S. Fernando, G. C. Runger, P. Hyde, B. C. 
Hedquist, J. Anderson, W. Bannister, W. Johnson, and A. Baklanov. 2012. 
Relationship between particulate matter and childhood asthma -- basis of a future 
warning system for central Phoenix. Atmospheric Chemistry & Physics 12:2479-
2490. 

Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, 
and F. E. Speizer. 1993. An Association between Air Pollution and Mortality in 
Six U.S. Cities. N Engl J Med 329:1753-1759. 

Ellis, A. W., M. L. Hildebrandt, and H. J. S. Fernando. 1999. Evidence of lower-
atmospheric ozone "sloshing" in an urbanized valley. Physical Geography 20:520-
536. 

Ellis, A. W., M. L. Hildebrandt, W. M. Thomas, and H. J. S. Fernando. 2000. Analysis of 
the climatic mechanisms contributing to the summertime transport of lower 
atmospheric ozone across metropolitan Phoenix, Arizona, USA. Climate Research 
15:13-31. 

Engel-Cox, J., N. T. Kim Oanh, A. van Donkelaar, R. V. Martin, and E. Zell. 2013. 
Toward the next generation of air quality monitoring: Particulate Matter. 
Atmospheric Environment 80:584-590. 

ESRI. 2010. ArcMap Version 10.0. ESRI (Environmental Systems Resource Institute), 
Redlands, CA. 

Fenger, J. 2009. Air pollution in the last 50 years – From local to global. Atmospheric 
Environment 43:13.22. 

Fernando, H. J. S., R. Dimitrova, G. Runger, N. Lurponglukana, P. Hyde, B. Hedquist, 
and J. Anderson. 2009a. Children’s Health Project: Linking Asthma to PM10 in 

122 



 

 

Central Phoenix – a report to the Arizona Department of Environmental Quality. 
Arizona State University’s Center for Environmental Fluid Dynamics and Center 
for Health Information and Research. 

Fernando, H. J. S., R. Dimitrova, G. Runger, N. Lurponglukana, P. Hyde, B. Hedquist, 
and J. Anderson. 2009b. Children’s Health Project: Linking Asthma to PM10 in 
Central Phoenix – a report to the Arizona Department of Environmental Quality. 
Arizona State University’s Center for Environmental Fluid Dynamics and Center 
for Health Information and Research. 

Ferradás, E. G., M. D. Miñarro, I. M. Morales Terrés, and F. J. Marzal Martínez. 2010. 
An approach for determining air pollution monitoring sites. Atmospheric 
Environment 44:2640-2645. 

Fisher, J. B., M. Kelly, and J. Romm. 2006. Scales of environmental justice: Combining 
GIS and spatial analysis for air toxics in West Oakland, California. Health & 
Place 12:701-714. 

Fortin, M. J., and M. R. T. Dale. 2005. Spatial Analysis: A Guide for Ecologists. 
Cambridge University Press, Cambridge, UK. 

Gamma Design Software. 2006. GS+: Geostatistics for the Environmental Sciences. 
Gamma Design Software, Plainwell, Michigan USA. 

Garriga, R. G., and A. P. Foguet. 2010. Improved Method to Calculate a Water Poverty 
Index at Local Scale. Journal of Environmental Engineering 136:1287-1298. 

Gilbert, A., and J. Chakraborty. 2011. Using geographically weighted regression for 
environmental justice analysis: Cumulative cancer risks from air toxics in Florida. 
Social Science Research 40:273-286. 

Giordano, A., and L. Cheever. 2010. Using Dasymetric Mapping to Identify 
Communities at Risk from Hazardous Waste Generation in San Antonio, Texas. 
Urban Geography 31:623-647. 

Gramsch, E., F. Cereceda-Balic, P. Oyola, and D. von Baer. 2006. Examination of 
pollution trends in Santiago de Chile with cluster analysis of PM10 and Ozone 
data. Atmospheric Environment 40:5464-5475. 

Gregg, J. W., C. G. Jones, and T. E. Daws. 2003. Urbanization effects on tree growth in 
the vicinity of New York City. Nature 424:183-187. 

Griffith, D. A. 1992. What is spatial autocorrelation? Reflections on the past 25 years of 
spatial statistics. l'Espace Géographique 21:265-280. 

Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. 
Briggs. 2008. Global Change and the Ecology of Cities. Science 319:756-760. 

123 



 

 

Grimm, N. B., and C. L. Redman. 2004. Approaches to the study of urban ecosystems: 
The case of Central Arizona—Phoenix. Urban Ecosystems 7:199-213. 

Grineski, S. 2007a. Incorporating health outcomes into environmental justice research: 
The case of children’s asthma and air pollution in Phoenix, Arizona. 
Environmental Hazards 7:360-371. 

Grineski, S., B. Bolin, and C. Boone. 2007. Criteria Air Pollution and Marginalized 
Populations: Environmental Inequity in Metropolitan Phoenix, Arizona. Social 
Science Quarterly 88. 

Grineski, S. E. 2007b. Incorporating health outcomes into environmental justice research: 
The case of children’s asthma and air pollution in Phoenix, Arizona. 
Environmental Hazards 7:360-371. 

Grineski, S. E., and T. W. Collins. 2008. Exploring Patterns of Environmental Injustice in 
the Global South: "Maquiladoras" in Ciudad Juárez, Mexico. Population and 
Environment 29:247-270. 

Haas, T. C. 1992. Redesigning continental-scale monitoring networks. Atmospheric 
Environment. Part A. General Topics 26:3323-3333. 

Hayes, A., and L. Cai. 2007. Using heteroskedasticity-consistent standard error 
estimators in OLS regression: An introduction and software implementation. 
Behavior Research Methods 39:709-722. 

Hsu, A., A. Reuben, D. Shindell, A. de Sherbinin, and M. Levy. 2013. Toward the next 
generation of air quality monitoring indicators. Atmospheric Environment 
80:561-570. 

Huby, M., S. Cinderby, P. White, and A. d. Bruin. 2009. Measuring inequality in rural 
England: the effects of changing spatial resolution. Environment and Planning A 
41:3023-3037. 

Husain, T., and H. U. Khan. 1983. Shannon's entropy concept in optimum air monitoring 
network design. Science of The Total Environment 30:181-190. 

IBM Corp. 2013. IBM SPSS Statistics for Windows. IBM Corp, Armonk, NY. 

Ignaccolo, R., S. Ghigo, and E. Giovenali. 2008. Analysis of air quality monitoring 
networks by functional clustering. Environmetrics 19:672-686. 

Ito, K., S. De Leon, G. D. Thurston, A. Nadas, and M. Lippmann. 2005. Monitor-to-
monitor temporal correlation of air pollution in the contiguous US. J Expo Anal 
Environ Epidemiol 15:172-184. 

124 



 

 

Ito, K., G. D. Thurston, A. Nádas, and M. Lippmann. 2001. Monitor-to-monitor temporal 
correlation of air pollution and weather variables in the North-Central U.S. 
Journal of Exposure Analysis & Environmental Epidemiology 11:21. 

Jelinski, D. E., and J. G. Wu. 1996. The modifiable areal unit problem and implications 
for landscape ecology. Landscape Ecology 11:129-140. 

Jerrett, M., R. T. Burnett, P. Kanaroglou, J. Eyles, N. Finkelstein, C. Giovis, and J. R. 
Brook. 2001. A GIS - environmental justice analysis of particulate air pollution in 
Hamilton, Canada. Environment and Planning A 33:955-973. 

Kanaroglou, P. S., M. Jerrett, J. Morrison, B. Beckerman, M. A. Arain, N. L. Gilbert, and 
J. R. Brook. 2005. Establishing an air pollution monitoring network for intraurban 
population exposure assessment: A location-allocation approach. Atmospheric 
Environment 39:2399-2409. 

Keys, E., E. A. Wentz, and C. L. Redman. 2007. The Spatial Structure of Land Use from 
1970-2000 in the Phoenix, Arizona, Metropolitan Area. The Professional 
Geographer 59:131-147. 

Khoder, M. 2009. Diurnal, seasonal and weekdays–weekends variations of ground level 
ozone concentrations in an urban area in greater Cairo. Environmental Monitoring 
and Assessment 149:349-362. 

Kissling, W. D., and G. Carl. 2008. Spatial autocorrelation and the selection of 
simultaneous autoregressive models. Global Ecology and Biogeography 17:59-71. 

Kleinman, L. I., P. H. Daum, Y. N. Lee, L. J. Nunnermacker, S. R. Springston, J. 
Weinstein-Lloyd, and J. Rudolph. 2005. A comparative study of ozone production 
in five U.S. metropolitan areas. Journal of Geophysical Research: Atmospheres 
110:D02301. 

Langstaff, J., C. Seigneur, L. Mei-Kao, J. Behar, and J. L. McElroy. 1987. Design of an 
optimum air monitoring network for exposure assessments. Atmospheric 
Environment 21:1393-1410. 

Levin, S. A. 1992. The Problem of Pattern and Scale in Ecology. Ecology 73:1943-1967. 

Lindley, D. V. 1956. On a Measure of the Information Provided by an Experiment. The 
Annals of Mathematical Statistics 27:986-1005. 

Lippmann, M. 1989. Health Effects of Ozone; A Critical Review. JAPCA 39:672-695. 

Liu, M. K., J. Avrin, R. I. Pollack, J. V. Behar, and J. L. McElroy. 1986. Methodology 
for designing air quality monitoring networks: I. Theoretical aspects. 
Environmental Monitoring and Assessment 6:1-11. 

125 



 

 

Loo, T. 2007. Disturbing the Peace: Environmental Change and the Scales of Justice on a 
Northern River. Environmental History 12:895-919. 

Lozano, A., J. Usero, E. Vanderlinden, J. Raez, J. Contreras, B. Navarrete, and H. E. 
Bakouri. 2009. Design of air quality monitoring networks and its application to 
NO2 and O3 in Cordova, Spain. Microchemical Journal. 

Luck, M. A., D. Jenerette, J. Wu, and N. B. Grimm. 2001. The Urban Funnel Model and 
the Spatially Heterogeneous Ecological Footprint. Ecosystems 4:782-796. 

Luck, M. A., and J. Wu. 2002. A gradient analysis of urban landscape pattern: a case 
study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology 
17:327-339. 

Mazzeo, N., and L. Venegas. 2008. Design of an Air-Quality Surveillance System for 
Buenos Aires City Integrated by a NOx Monitoring Network and Atmospheric 
Dispersion Models. Environmental Modeling and Assessment 13:349-356. 

MCAQD. 2009. Emissions Inventory-Maricopa County Air Quality Department. 

MCAQD. 2011. Maricopa County Air Quality Department Annual Air Monitoring 
Network Reviews.in R. L. Pope, editor. Maricopa County Air Quality 
Department. 

McCoy, M. G. 2000. Desert metropolis: Image building and the growth of Phoenix, 
1940--1965. Ph.D. Thesis. Arizona State University. 

McElroy, J. L., J. V. Behar, T. C. Meyers, and M. K. Liu. 1986. Methodology for 
designing air quality monitoring networks: II. Application to Las Vegas, Nevada, 
for carbon monoxide. Environmental Monitoring and Assessment 6:13-34. 

Meeks, E. V. 2007. Border citizens: the making of Indians, Mexicans, and Anglos in 
Arizona. University of Texas Press, Austin, Texas. 

Meisel, J. E., and M. G. Turner. 1998. Scale detection in real and artificial landscapes 
using semivariance analysis. Landscape Ecology 13:347-362. 

Mofarrah, A., and T. Husain. 2009. A Holistic Approach for optimal design of Air 
Quality Monitoring Network Expansion in an Urban Area. Atmospheric 
Environment. 

Moldan, B., S. Janoušková, and T. Hák. 2012. How to understand and measure 
environmental sustainability: Indicators and targets. Ecological Indicators 17:4-
13. 

Morawska, L., D. Vishvakarman, K. Mengersen, and S. Thomas. 2002. Spatial variation 
of airborne pollutant concentrations in Brisbane, Australia and its potential impact 
on population exposure assessment. Atmospheric Environment 36:3545-3555. 

126 



 

 

National Research Council. 1991. Rethinking the Ozone Problem in Urban and Regional 
Air Pollution. The National Academies Press. 

Nejadkoorki, F., K. Nicholson, and K. Hadad. 2011. The design of long-term air quality 
monitoring networks in urban areas using a spatiotemporal approach. 
Environmental Monitoring and Assessment 172:215-223. 

Noonan, D. S. 2008. Evidence of Environmental Justice: A Critical Perspective on the 
Practice of EJ Research and Lessons for Policy Design. Social Science Quarterly 
89:1153-1174. 

Noonan, D. S., R. M. Turaga, and B. M. Baden. 2009. Superfund, Hedonics, and the 
Scales of Environmental Justice. Environmental Management 44:909-920. 

O'Sullivan, D., and D. J. Unwin. 2003. Geographic Information Analysis. John Wiley & 
Sons, Inc, Hoboken, New Jersey. 

Openshaw, S. 1984. The Modifiable Areal Unit Problem. Geo Books, Norwich. 

Páez, A. 2004. Anisotropic Variance Functions in Geographically Weighted Regression 
Models. Geographical Analysis 36:299-314. 

Pardyjak, E. R., H. J. S. Fernando, J. C. R. Hunt, A. A. Grachev, and J. Anderson. 2009. 
A case study of the development of nocturnal slope flows in a wide open valley 
and associated air quality implications. Meteorologische Zeitschrift 18:85-100. 

Pickett, S. T. A., and M. L. Cadenasso. 1995. Landscape Ecology: Spatial Heterogeneity 
in Ecological Systems. Science 269:331-334. 

Pires, J. C. M., M. C. Pereira, M. C. M. Alvim-Ferraz, and F. G. Martins. 2009. 
Identification of redundant air quality measurements through the use of principal 
component analysis. Atmospheric Environment 43:3837-3842. 

Pohjola, M. A., A. Kousa, J. Kukkonen, J. Härkönen, A. Karppinen, P. Aarnio, and T. 
Koskentalo. 2002. The Spatial and Temporal Variation of Measured Urban PM10 
and PM2.5 in the Helsinki Metropolitan Area. Water, Air & Soil Pollution: Focus 
2:189-201. 

Pope, C. A., and D. W. Dockery. 2006. Health Effects of Fine Particulate Air Pollution: 
Lines that Connect. Journal of the Air & Waste Management Association (Air & 
Waste Management Association) 56:709-742. 

Pope, R. L. 2011. Maricopa County Air Monitoring Network:Technical Assessment 
2005–2009. Maricopa County Air Quality Department, Phoenix, AZ. 

Pope, R. L., and J. Wu. 2014. Characterizing air pollution patterns on multiple time 
scales in urban areas: A landscape ecological approach. Urban Ecosystems. 

127 



 

 

Raffuse, S. M., D. C. Sullivan, M. C. McCarthy, B. M. Penfold, and H. R. Hafner. 2007. 
Ambient Air Monitoring Network Assessment Guidance: Analytical Techniques 
for Technical Assessments of Ambient Air Monitoring Networks. Environmental 
Protection Agency, Research Triangle Park, NC. 

Rechtschaffen, C. 2003. Advancing Environmental Justice Norms. UC Davis L. Rev. 
37:95. 

Robertson, G. P., and K. L. Gross. 1994. Assessing the heterogeneity of below ground 
resources: quantifying pattern and scale. Pages 237-253 in M. M. Caldwell and R. 
W. Pearcy, editors. Exploitation of Environmental Heterogeneity by Plants: 
Ecophysiological Processes Above and Below Ground. Academic Press, San 
Diego. 

Rossi, R. E., D. J. Mulla, A. G. Journel, and H. F. Eldon. 1992. Geostatistical Tools for 
Modeling and Interpreting Ecological Spatial Dependence. Ecological 
Monographs 62:277-314. 

Scheffe, R. D., P. A. Solomon, R. Husar, T. Hanley, M. Schmidt, M. Koerber, M. Gilroy, 
J. Hemby, N. Watkins, M. Papp, J. Rice, J. Tikvart, and R. Valentinetti. 2009. The 
National Ambient Air Monitoring Strategy: Rethinking the Role of National 
Networks. Journal of the Air & Waste Management Association 59:579-590. 

Schmidt, M. 2001. Monitoring strategy: national analysis.in RTP Monitoring Strategy 
Workshop, Research Triangle Park, NC. 

Schmitz, R. 2005. Modelling of air pollution dispersion in Santiago de Chile. 
Atmospheric Environment 39:2035-2047. 

Schwartz, J. 1989. Lung function and chronic exposure to air pollution: A cross-sectional 
analysis of NHANES II. Environmental Research 50:309-321. 

Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric Chemistry and Physics - From Air 
Pollution to Climate Change (2nd Edition). John Wiley & Sons, Hoboken, New 
Jersey. 

Sicotte, D. 2008. Dealing in Toxins on the Wrong Side of the Tracks: Lessons from a 
Hazardous Waste Controversy in Phoenix. Social Science Quarterly 89:1136-
1152. 

Silva, C., and A. Quiroz. 2003. Optimization of the atmospheric pollution monitoring 
network at Santiago de Chile. Atmospheric Environment 37:2337-2345. 

Suh, H. H., T. Bahadori, J. Vallarino, and J. D. Spengler. 2000. Criteria Air Pollutants 
and Toxic Air Pollutants. Environ Health Perspect 108:625-633. 

Tecer, L. H., O. Alagha, F. Karaca, G. Tuncel, and N. Eldes. 2008. Particulate Matter 
(PM2.5, PM10-2.5, and PM10) and Children's Hospital Admissions for Asthma 

128 



 

 

and Respiratory Diseases: A Bidirectional Case-Crossover Study. Journal of 
Toxicology and Environmental Health, Part A 71:512-520. 

Trujillo-Ventura, A., and J. H. Ellis. 1991. Multiobjective air pollution monitoring 
network design. Atmospheric Environment. Part A. General Topics 25:469-479. 

Turner, M. G. 1989. Landscape Ecology: The Effect of Pattern on Process. Annual 
Review of Ecology and Systematics 20:171-197. 

Turner, M. G., R. H. Gardner, and R. V. O'Neill. 2001. Lanscape ecology in theory and 
practice: pattern and process. Springer Verlag. 

U.S. Census Bureau. 2011. Profile of General Population and Housing Characteristics: 
2010. U.S. Census Bureau. 

U.S. EPA. 2001. National assessment of the existing criteria pollutant monitoring 
networks O3, CO, NO2, SO2, Pb, PM10, PM2.5 - Part 1, July 25, 2001. 

U.S. EPA. 2002. Assessment of the ambient air monitoring networks. Draft report 
prepared for the U.S. Environmental Protection Agency, Research Triangle Park, 
NC, by the U.S. Environmental Protection Agency, Region 4. 

U.S. EPA. 2003. Region 5 network assessment. Air Monitoring & Quality Assurance 
Workshop, Atlanta, GA, September 9-11. 

U.S. EPA. 2009a. The Green Book Non-Attainment Areas for Criteria Pollutants. 
Environmental Protection Agency. 

U.S. EPA. 2009b. Technology Transfer Network Air Quality System. U.S. 
Environmental Protection Agency. 

U.S. EPA. 2010. Environmental Justice. 

U.S. EPA. 2011. The Ambient Air Monitoring Program. OAQPS. 

U.S. EPA. 2012. Clean Air Act. U.S. Environmental Protection Agency. 

Van de Kerk, G., and A. R. Manuel. 2008. A comprehensive index for a sustainable 
society: The SSI -- the Sustainable Society Index. Ecological Economics 66:228-
242. 

Van Egmond, N. D., and D. Onderdelinden. 1981. Objective analysis of air pollution 
monitoring network data; spatial interpolation and network density. Atmospheric 
Environment (1967) 15:1035-1046. 

Wise, E. K., and A. C. Comrie. 2005. Meteorologically adjusted urban air quality trends 
in the Southwestern United States. Atmospheric Environment 39:2969-2980. 

129 



 

 

Wu, J. 2004. Effects of changing scale on landscape pattern analysis: scaling relations. 
Landscape Ecology 19:125-138. 

Wu, J. 2006. Landscape Ecology, Cross-disciplinarity, and Sustainability Science. 
Landscape Ecology 21:1-4. 

Wu, J. 2007. Scale and scaling: A cross-disciplinary perspective. Pages 115-142 in J. G. 
Wu and R. J. Hobbs, editors. Key Topics in Landscape Ecology. Cambridge 
University Press, Cambridge, UK. 

Wu, J. 2008. Making the Case for Landscape Ecology: An Effective Approach to Urban 
Sustainability. Landscape Jrnl. 27:41-50. 

Wu, J., D. E. Jelinski, M. Luck, and P. T. Tueller. 2000. Multiscale Analysis of 
Landscape Heterogeneity: Scale Variance and Pattern Metrics. Geographical 
Information Science 6:6-19. 

Wu, J., G. D. Jenerette, A. Buyantuyev, and C. L. Redman. 2011. Quantifying 
spatiotemporal patterns of urbanization: The case of the two fastest growing 
metropolitan regions in the United States. Ecological Complexity 8:1-8. 

Wu, J., K. Jones, and O. L. Loucks, editors. 2006. Scaling and Uncertainty Analysis in 
Ecology; Methods and Applications. Springer, Dordrecht, The Netherlands. 

Wu, J., and O. L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: 
A paradigm shift in ecology. Quarterly Review of Biology 70:439-466. 

Wu, J. G., G. D. Jenerette, and J. L. David. 2003. Linking land use change with 
ecosystem processes: A hierarchical patch dynamics model. . Pages 99-119 in S. 
Guhathakurta, editor. Integrated Land Use and Environmental Models. Springer, 
Berlin. 

Zheng, J., X. Feng, P. Liu, L. Zhong, and S. Lai. 2011. Site location optimization of 
regional air quality monitoring network in china: methodology and case study. 
Journal of Environmental Monitoring 13:3185-3195. 

130 



 

 

APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER 2 

131 
 



 

132 

Table 15  Table of Parameter Input Variables and Statistical Model Results in the Semivariance Analyses Conducted with the GS+ 
Software for the O3 Parameter 

O
3 

Temporal 
Extent 

Data Trans-
formation 

Back 
Trans-

formation 

Kur-
tosis 

Skew-
ness 

Iso-
tropic 
Model 

Active 
Lag 

Distance 
(km) 

Uniform 
Interval 

(km) 

Range 
(km) 

Nugget  
Variance 

(Intercept) 

Sill 
(Sample 

Variance) 
RSS r2 

Seasonal, 2008 Log Weighted -0.79 0.42 Gaussian 84.722 5.651 121.4 0.0052 0.0995 5.501 x 10-4 0.775 

Seasonal, 2009 Log Weighted -0.65 0.58 Gaussian 84.722 5.651 132.8 0.0048 0.1054 3.437 x 10-4 0.823 

Seasonal, 2010 Log Weighted -0.65 0.30 Gaussian 84.722 5.651 171.3 0.0052 0.1398 3.508 x 10-4 0.769 

Monthly (July), 
2008 

Not 
transformed N/A -0.62 0.12 Gaussian 84.722 5.651 166.4 7.0 x 10-6 1.91 x 10-4 7.021 x 10-10 0.776 

Monthly (July), 
2009 Log Weighted -0.37 0.16 Gaussian 84.722 5.651 192.4 0.0048 0.1135 1.257 x 10-4 0.798 

Monthly (July), 
2010 

Not 
transformed N/A 0.10 -0.28 Gaussian 84.722 5.651 194.5 4.0 x 10-6 1.44 x 10-4 1.281 x 10-10 0.863 

8-hour (July 
15, 15:00-
22:00), 2008 

Log Weighted -0.90 0.05 Gaussian 84.722 5.651 119.1 0.011 0.248 2.121 x 10-3 0.857 

8-hour (July 
15, 15:00-
22:00), 2009 

Log Weighted 0.34 0.10 Gaussian 84.722 5.651 148.4 0.0015 0.1634 3.568 x 10-4 0.887 

8-hour (July 
15, 15:00-
22:00), 2010 

Not 
transformed N/A -0.44 -0.37 Gaussian 84.722 5.651 125.7 1.0 x 10-5 3.08 x 10-4 2.210 x 10-9 0.884 

1-hour (July 
15, 15:00), 
2008 

Log Weighted -1.00 0.08 Gaussian 84.722 5.651 40.1 0.0062 0.054 3.688 x 10-4 0.883 

1-hour (July 
15, 15:00), 
2009 

Square-Root Standard -1.06 -0.04 Gaussian 84.722 5.651 45.0 7.1 x 10-5 6.98 x 10-4 8.198 x 10-8 0.891 

1-hour (July 
15, 15:00), 
2010 

Not 
transformed N/A -0.29 -0.15 Gaussian 84.722 5.651 95.8 4.0 x 10-5 3.4 x 10-4 1.369 x 10-8 0.735 
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Table 16  Table of Parameter Input Variables and Statistical Model Results in the Semivariance Analyses Conducted with the GS+ 
Software for the PM10 Parameters 

PM
10

 

Temporal 
Extent 

Data Trans-
formation 

Back 
Trans-

formation 

Kur-
tosis 

Skew-
ness 

Iso-
tropic 
Model 

Active 
Lag 

Distance 
(km) 

Uniform 
Interval 

(km) 

Range 
(km) 

Nugget  
Variance 

(Intercept) 

Sill 
(Sample 

Variance) 
RSS r2 

Annual, 2008 Log Weighted 2.59 1.13 Spherical 61.025 4.068 25.0 1.0 x 10-4 0.1152 0.0200 0.452 

Annual, 2009 Log Weighted -0.23 0.40 Spherical 61.025 4.068 34.6 0.0084 0.1268 0.0290 0.379 

Annual, 2010 Log Weighted -0.68 -0.11 Spherical 61.025 4.068 22.2 1.0 x 10-4 0.0882 0.0211 0.277 

Monthly 
(Jan), 2008 Square-root Standard 0.49 -0.07 Spherical 61.025 4.068 24.2 0.0010 1.509 3.66 0.472 

Monthly 
(Jan), 2009 Square-root Standard -0.58 -0.02 Spherical 61.025 4.068 28.4 0.0010 1.823 3.66 0.562 

Monthly 
(Jan), 2010 Square-root Standard -0.37 0.01 Spherical 61.025 4.068 159.2 0.1330 3.276 1.87 0.668 

Monthly 
(Aug), 2008 Log Weighted -0.84 -0.08 Spherical 61.025 4.068 23.2 6.0 x 10-4 0.0722 6.935 x 10-3 0.422 

Monthly 
(Aug), 2009 Log Weighted -0.50 0.42 Spherical 61.025 4.068 23.7 1.0 x 10-4 0.0742 9.447 x 10-3 0.421 

Monthly 
(Aug), 2010 Log Weighted -0.45 0.00 Spherical 61.025 4.068 17.5 1.0 x 10-4 0.0662 0.0121 0.194 

24-hour (Jan 
7), 2008 Square-root Standard 0.72 0.01 Spherical 61.025 4.068 50.7 0.043 0.527 0.314 0.518 

24-hour (Jan 
7), 2009 Square-root Standard -0.07 -0.07 Spherical 61.025 4.068 47.6 0.122 1.099 1.29 0.517 

24-hour (Jan 
8), 2010 Square-root Standard -1.11 0.07 Spherical 61.025 4.068 24.8 0.09 3.109 14.4 0.388 

24-hour (Aug 
22), 2008 Log Weighted -0.51 0.37 Spherical 61.025 4.068 38.1 0.0065 0.121 0.0203 0.461 

24-hour (Aug 
23), 2009 Log Weighted 1.34 0.30 Spherical 61.025 4.068 19.0 2.0 x 10-4 0.0644 5.667 x 10-3 0.352 

24-hour (Aug 
24), 2010 Log Weighted -0.20 -0.44 Spherical 61.025 4.068 N/A, 

linear 0.028 0.743 0.0720 0.637 
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Table 17  Raw and Weighted Scores and Ranks for the Phase I O3 Assessment.  Indicator 
Number Labels Correspond with Those for Phase I Listed on Table 5 

Raw Indicator Scores 
Site 1 2 3 4a 4b 5 6 7 8 9 10 11 Average RANK 
BE 1 1 17 5 3 3.5 12 17 4 13 1 13 7.54 15 
BP 3 7 11 1.5 12 3.5 13 7 1 1 8 5 6.08 17 
CC 13 8 14 4 15 5.5 15 6 6 6 3 5 8.38 11 
CP 5 13 1 16 1 16.5 2.5 1 10 15 17 15.5 9.46 8 
DY 2 2 15 7 11 7 14 8 11 7.5 2 9.5 8.00 13 
FF 7 15 7 13 9 11 7.5 12 14 7.5 10 5 9.83 6.5 
FH 15 5 4 6 13 5.5 9.5 16 5 3 6 5 7.75 14 
GL 9 16 9 11 8 11 11 3 17 12 15.5 9.5 11.00 2 
HM 14 6 16 3 17 1 17 15 3 4 8 1.5 8.79 10 
NP 17 3 8 9 10 14 5 14 16 10 13.5 13 11.04 1 
PP 10.5 11.5 10 8 14 8 16 13 7 5 11 5 9.92 5 
RV 16 4 13 1.5 16 2 9.5 4.5 2 2 5 1.5 6.42 16 
SP 4 9 3 15 4 9 2.5 2 8 17 13.5 13 8.33 12 
SS 12 10 2 10 6 13 5 4.5 9 9 15.5 15.5 9.29 9 
TE 10.5 11.5 5 14 5 16.5 5 11 12 14 4 9.5 9.83 6.5 
WC 8 17 12 12 7 11 7.5 9 15 11 8 9.5 10.58 4 
WP 6 14 6 17 2 15 1 10 13 16 12 17 10.75 3 

               
Weighted Indicator Scores 

Site 1 2 3 4a 4b 5 6 7 8 9 10 11 Average RANK 
BE 0.13 0.09 1.38 0.39 0.28 0.28 0.85 1.41 0.33 0.94 0.09 0.59 0.56 16 
BP 0.39 0.65 0.89 0.12 1.13 0.28 0.93 0.58 0.08 0.07 0.71 0.23 0.50 17 
CC 1.69 0.75 1.14 0.31 1.41 0.45 1.07 0.50 0.50 0.43 0.26 0.23 0.73 11 
CP 0.65 1.21 0.08 1.24 0.09 1.34 0.18 0.08 0.83 1.08 1.50 0.70 0.75 10 
DY 0.26 0.19 1.22 0.54 1.03 0.57 1.00 0.66 0.92 0.54 0.18 0.43 0.63 14 
FF 0.91 1.40 0.57 1.01 0.84 0.89 0.53 0.99 1.17 0.54 0.88 0.23 0.83 6 
FH 1.95 0.47 0.32 0.47 1.22 0.45 0.68 1.32 0.42 0.22 0.53 0.23 0.69 12 
GL 1.17 1.49 0.73 0.86 0.75 0.89 0.78 0.25 1.41 0.87 1.37 0.43 0.92 2 
HM 1.82 0.56 1.30 0.23 1.59 0.08 1.21 1.24 0.25 0.29 0.71 0.07 0.78 8 
NP 2.22 0.28 0.65 0.70 0.94 1.14 0.36 1.16 1.33 0.72 1.19 0.59 0.94 1 
PP 1.37 1.07 0.81 0.62 1.31 0.65 1.14 1.07 0.58 0.36 0.97 0.23 0.85 5 
RV 2.08 0.37 1.05 0.12 1.50 0.16 0.68 0.37 0.17 0.14 0.44 0.07 0.60 15 
SP 0.52 0.84 0.24 1.17 0.38 0.73 0.18 0.17 0.67 1.23 1.19 0.59 0.66 13 
SS 1.56 0.93 0.16 0.78 0.56 1.06 0.36 0.37 0.75 0.65 1.37 0.70 0.77 9 
TE 1.37 1.07 0.41 1.09 0.47 1.34 0.36 0.91 1.00 1.01 0.35 0.43 0.82 7 
WC 1.04 1.58 0.97 0.93 0.66 0.89 0.53 0.74 1.25 0.79 0.71 0.43 0.88 3 
WP 0.78 1.30 0.49 1.32 0.19 1.22 0.07 0.83 1.08 1.16 1.06 0.77 0.86 4 
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Table 18  Raw and Weighted Indicator Scores for PM10.  Note That the Buckeye Station 
(BE) Did Not Earn A Score for Indicator #7, Removal Bias, Because Its Location on the 
Edge of the Map Did Not Allow It to Be Removed in the Kriging Interpolation.  Indicator 
Number Labels Correspond with Those for Phase I Listed on Table 5 

Raw Indicator Scores 
Site 1 2 3 4a 5 6 7 8 9 10 11 Average RANK 
BE 13 2 14 4 1 11 - 3 8 1 10 6.70 12 
CP 8 13 3 9 14 4 4 6 10.5 13.5 12.5 8.86 1 
DC 12 3 1 14 7.5 3 7 1 12.5 5 1 6.09 13 
DY 5 9 13 5 2 6.5 6 9 1 2 6 5.86 14 
GL 4 8 10 11 7.5 6.5 5 14 7 11.5 6 8.23 4 
GR 9 12 2 13 13 1.5 3 2 14 6.5 6 7.45 7 
HI 11 6 9 2 6 13 11 8 2 4 2.5 6.77 11 
ME 2 5 6 12 12 14 10 12 9 8.5 6 8.77 2 
NP 1 4 12 3 5 12 8 13 3 8.5 10 7.23 9 
SP 10 11 7 8 4 6.5 2 5 10.5 13.5 10 7.95 5 
SS 3 7 5 6 10 6.5 9 7 4 11.5 12.5 7.41 8 

WC 6 10 8 1 9 9 13 11 6 6.5 6 7.77 6 
WF 14 1 11 10 3 10 12 4 5 3 2.5 6.86 10 
WP 7 14 4 7 11 1.5 1 10 12.5 10 14 8.36 3 

  
 Weighted Indicator Scores 

Site 1 2 3 4a 5 6 7 8 9 10 11 Average RANK 
BE 1.80 0.19 1.19 0.46 0.09 0.70 - 0.30 0.74 0.10 0.49 0.60 12 
CP 1.10 1.23 0.25 1.04 1.19 0.25 0.31 0.59 0.97 1.36 0.61 0.81 1 
DC 1.66 0.28 0.09 1.62 0.64 0.19 0.55 0.10 1.15 0.50 0.05 0.62 10 
DY 0.69 0.85 1.10 0.58 0.17 0.41 0.47 0.88 0.09 0.20 0.29 0.52 14 
GL 0.55 0.76 0.85 1.27 0.64 0.41 0.39 1.37 0.65 1.16 0.29 0.76 4 
GR 1.24 1.14 0.17 1.51 1.10 0.10 0.24 0.20 1.29 0.66 0.29 0.72 6 
HI 1.52 0.57 0.76 0.23 0.51 0.82 0.86 0.79 0.18 0.40 0.12 0.62 11 
ME 0.28 0.47 0.51 1.39 1.02 0.88 0.79 1.18 0.83 0.86 0.29 0.77 2 
NP 0.14 0.38 1.02 0.35 0.42 0.76 0.63 1.28 0.28 0.86 0.49 0.60 13 
SP 1.38 1.04 0.59 0.93 0.34 0.41 0.16 0.49 0.97 1.36 0.49 0.74 5 
SS 0.41 0.66 0.42 0.70 0.85 0.41 0.71 0.69 0.37 1.16 0.61 0.64 9 

WC 0.83 0.95 0.68 0.12 0.76 0.57 1.02 1.08 0.55 0.66 0.29 0.68 7 
WF 1.93 0.10 0.93 1.16 0.26 0.63 0.94 0.39 0.46 0.30 0.12 0.66 8 
WP 0.97 1.32 0.34 0.81 0.93 0.10 0.08 0.98 1.15 1.01 0.68 0.76 3 
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Individual Indicator Results 

Indicator #1: Measured Concentrations 

Table 19  O3 Measured Concentrations 

O3 Design value (3-Yr Average of 4th High)  

Site 2005 2006 2007 2008 2009 Average Score 

BE 0.06 0.06 0.07 0.07 0.07 0.064 1 
BP 0.08 0.07 0.07 0.07 0.07 0.071 3 
CC 0.08 0.08 0.08 0.08 0.08 0.078 13 
CP 0.08 0.08 0.08 0.07 0.07 0.074 5 
DY 0.07 0.07 0.07 0.07 0.07 0.068 2 
FF 0.08 0.08 0.08 0.08 0.07 0.075 7 
FH 0.08 0.08 0.08 0.08 0.07 0.080 15 
GL 0.08 0.08 0.08 0.07 0.07 0.075 9 
HM 0.08 0.08 0.08 0.08 0.07 0.080 14 
NP 0.08 0.08 0.08 0.08 0.08 0.081 17 
PP 0.08 0.08 0.08 0.08 0.07 0.076 10.5 
RV 0.08 0.08 0.08 0.08 0.08 0.080 16 
SP 0.08 0.07 0.07 0.07 0.07 0.073 4 
SS 0.08 0.08 0.08 0.08 0.08 0.077 12 
TE 0.08 0.08 0.08 0.08 0.07 0.076 10.5 
WC 0.07 0.08 0.08 0.08 0.07 0.075 8 
WP 0.07 0.07 0.08 0.08 0.07 0.074 6 
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Table 20  PM10 Measured Concentrations 

PM10 Design value (Max 24hr Avg)  

Site 2005 2006 2007 2008 2009 Average Score 

BE 169 272 195 223 439 259.6 13 
CP 116 190 267 133 153 171.8 8 
DC 206 253 155 247 277 227.6 12 
DY 76 67 111 75 227 111.2 5 
GL 84 60 92 80 196 102.4 4 
GR 173 212 124 133 229 174.2 9 
HI 142 274 230 133 275 210.8 11 
ME 86 75 110 71 87 85.8 2 
NP 81 79 78 88 69 79 1 
SP 147 132 171 230 250 186 10 
SS 121 76 73 92 135 99.4 3 
WC 94 77 104 67 220 112.4 6 
WF 233 313 227 278 317 273.6 14 
WP 155 178 124 113 210 156 7 
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Indicator #2: Deviation from the NAAQS 

Table 21  O3 Deviation from the NAAQS 

O3 Design value (3-Yr Average of 4th High)   

Site 2005 2006 2007 2008 2009 Avg NAAQS Deviant ABS Score 

BE 0.0620 0.0630 0.0650 0.0660 0.0650 0.0642 0.075 -0.0108 0.0108 1 
BP 0.0810 0.0730 0.0670 0.0650 0.0670 0.0706 0.075 -0.0044 0.0044 7 
CC 0.0800 0.0790 0.0800 0.0780 0.0750 0.0784 0.075 0.0034 0.0034 8 
CP 0.0760 0.0760 0.0750 0.0740 0.0700 0.0742 0.075 -0.0008 0.0008 13 
DY 0.0680 0.0680 0.0680 0.0680 0.0670 0.0678 0.075 -0.0072 0.0072 2 
FF 0.0750 0.0750 0.0760 0.0760 0.0710 0.0746 0.075 -0.0004 0.0004 15 
FH 0.0820 0.0820 0.0820 0.0790 0.0740 0.0798 0.075 0.0048 0.0048 5 
GL 0.0790 0.0770 0.0750 0.0740 0.0710 0.0752 0.075 0.0002 0.0002 16 
HM 0.0840 0.0810 0.0810 0.0780 0.0740 0.0796 0.075 0.0046 0.0046 6 
NP 0.0830 0.0830 0.0820 0.0810 0.0770 0.0812 0.075 0.0062 0.0062 3 
PP 0.0780 0.0760 0.0780 0.0750 0.0730 0.0760 0.075 0.0010 0.0010 11.5 
RV 0.0810 0.0810 0.0830 0.0800 0.0750 0.0800 0.075 0.0050 0.0050 4 
SP 0.0750 0.0720 0.0720 0.0720 0.0720 0.0726 0.075 -0.0024 0.0024 9 
SS 0.0760 0.0770 0.0780 0.0780 0.0750 0.0768 0.075 0.0018 0.0018 10 
TE 0.0760 0.0750 0.0770 0.0780 0.0740 0.0760 0.075 0.0010 0.0010 11.5 
WC 0.0740 0.0750 0.0760 0.0770 0.0730 0.0750 0.075 0.0000 0.0000 17 
WP 0.0720 0.0740 0.0750 0.0780 0.0730 0.0744 0.075 -0.0006 0.0006 14 
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Table 22  PM10 Deviation from the NAAQS 

PM10 Design value (Max 24hr Avg) 

Site 2005 2006 2007 2008 2009 Avg NAAQS Deviant ABS Score 

BE 169 272 195 223 439 260 150 109.6 109.6 2 
CP 116 190 267 133 153 172 150 21.8 21.8 13 
DC 206 253 155 247 277 228 150 77.6 77.6 3 
DY 76 67 111 75 227 111 150 -38.8 38.8 9 
GL 84 60 92 80 196 102 150 -47.6 47.6 8 
GR 173 212 124 133 229 174 150 24.2 24.2 12 
HI 142 274 230 133 275 211 150 60.8 60.8 6 
ME 86 75 110 71 87 85.8 150 -64.2 64.2 5 
NP 81 79 78 88 69 79 150 -71 71 4 
SP 147 132 171 230 250 186 150 36 36 11 
SS 121 76 73 92 135 99.4 150 -50.6 50.6 7 
WC 94 77 104 67 220 112 150 -37.6 37.6 10 
WF 233 313 227 278 317 274 150 123.6 123.6 1 
WP 155 178 124 113 210 156 150 6 6 14 
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Indicator #3: Area Served 

Table 23  O3 Area Served 

O3 
Site 

Area 
Served 
(km2) 

Score 

BE 12,565 17 
BP 441 11 
CC 1617 14 
CP 80 1 
DY 2,690 15 
FF 228 7 
FH 139 4 
GL 318 9 
HM 7,767 16 
NP 273 8 
PP 414 10 
RV 940 13 
SP 123 3 
SS 118 2 
TE 147 5 
WC 511 12 
WP 190 6 
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Table 24  PM10 Area Served 

  PM10 
Site 

Area 
Served 
(km2) 

Score 

BE 15,100 14 
CP 86 3 
DC 15 1 
DY 4,845 13 
GL 379 10 
GR 20 2 
HI 376 9 
ME 148 6 
NP 857 12 
SP 207 7 
SS 136 5 
WC 344 8 
WF 638 11 
WP 112 4 
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Indicator #4a: Emissions Inventory 

Table 25  O3 (VOC) Emissions Inventory 

O3 
Site 

Sum of 
VOC 

Emissions 
(lbs) 

Mean 
Max 

emission-
section 

Area of 
Polygon 

(km2) 

Density: 
Sum/Area 
(lbs/km2) 

Score 

BE 258,594 9,235 51,590 9,902 26 5 
BP 0 0 0 441 0 1.5 
CC 16,699 3,340 7,815 985 17 4 
CP 447,686 22,384 106,506 83 5,394 16 
DY 161,902 6,746 51,863 2,333 69 7 
FF 200,057 16,671 94,343 228 877 13 
FH 6,121 3,060 5,915 139 44 6 
GL 240,333 10,924 92,160 318 756 11 
HM 18 18 18 668 0.03 3 
NP 162,441 12,495 32,645 273 595 9 
PP 28,811 4,116 13,729 414 70 8 
RV 0 0 0 850 0 1.5 
SP 832,811 43,832 202,998 168 4,957 15 
SS 73,843 10,549 34,738 118 626 10 
TE 702,033 26,001 113,404 147 4,776 14 
WC 356,114 13,189 73,189 442 806 12 
WP 2,303,800 50,083 430,755 249 9,252 17 
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Table 26  PM10 Emissions Inventory 

PM10 
Site 

Sum of 
PM10 

Emissions 
(lbs) 

Mean 
Max 

emission-
section 

Area of 
Polygon 
(km2) 

Density: 
Sum/Area 
(lbs/km2) 

Score 

BE 321,961 18,939 232,691 8,179 39 4 
CP 39,517 2,325 11,188 86 460 9 
DC 291,007 58,201 195,492 15 19,400 14 
DY 209,309 7,475 14,202 3,081 68 5 
GL 201,152 11,175 56,032 379 531 11 
GR 95,471 11,934 71,659 20 4,774 13 
HI 138 69 87 349 0.4 2 
ME 80,546 5,034 30,970 148 544 12 
NP 32,177 1,788 5,994 837 38 3 
SP 50,062 5,006 22,774 206 243 8 
SS 14,984 2,141 7,793 136 110 6 

WC 0 0 0 342 0 1 
WF 295,379 10,185 57,469 607 487 10 
WP 18,427 1,417 7,620 112 165 7 

  

144 
 



 

 

Indicator #4b: Predicted Ozone 

Table 27  Predicted O3 

O3 
Site 

Min 
Predicted 
O3 (ppm) 

Max 
predicted O3 
concentration 

(ppm) 

Mean 
predicted 
O3 (ppm) 

Score 
(based 

on 
mean) 

BE 0.0296 0.0433 0.0322 3 
BP 0.0376 0.0443 0.0404 12 
CC 0.0401 0.0496 0.0457 15 
CP 0.0299 0.0336 0.0316 1 
DY 0.0314 0.046 0.0392 11 
FF 0.0355 0.0381 0.037 9 
FH 0.0381 0.0438 0.0411 13 
GL 0.032 0.0403 0.0348 8 
HM 0.0463 0.052 0.0491 17 
NP 0.0318 0.0424 0.0376 10 
PP 0.0398 0.049 0.0453 14 
RV 0.0402 0.0498 0.0459 16 
SP 0.031 0.0344 0.0331 4 
SS 0.0323 0.0396 0.0346 6 
TE 0.032 0.0353 0.0333 5 
WC 0.0336 0.0361 0.0347 7 
WP 0.0297 0.0333 0.032 2 
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Indicator#5: Traffic Counts 

Table 28   O3 Traffic Counts 

O3 
Site 

Freeway 
Sum of 
AWT 

Counts 

Arterial 
Sum of 
AWT 

Counts 

Area of 
Polygon 

(km2) 

Length of 
Roads (m) 

Traffic 
Count 

Density 
(Sum/Area) 

Road Density 
(Length/Area) 

Traffic 
Density 
Score 

Road 
Density 
Score 

Average 
Score 

BE 441,881 559,413 9902 2,152,160 101 217 4 3 3.5 
BP 0 23,718 441 98,003 54 222 3 4 3.5 
CC 405,562 653,505 985 416,285 1,075 423 6 5 5.5 
CP 4,075,333 1,531,085 83 181,510 67,809 2,195 17 16 16.5 
DY 780,091 2,786,684 2,333 1,185,701 1,529 508 7 7 7 
FF 1,272,800 4,179,774 228 261,969 23,892 1,148 13 10 11 
FH 0 114,946 139 59,387 829 428 5 6 5.5 
GL 2,206,427 3,312,061 317.5 426,544 17,381 1,343 11 12 11 
HM 0 1,668 668.12 89,156 2 133 1 1 1 
NP 4,085,750 3,201,204 272.86 376,181 26,706 1,379 14 13 14 
PP 1,030,877 925,787 413.69 250,215 4,730 605 8 8 8 
RV 0 8,349 850.08 144,614 10 170 2 2 2 
SP 467,456 1,527,054 168.46 137,799 11,840 818 9 9 9 
SS 810,010 1,205,076 118.36 170,788 17,025 1,443 10 14 13 
TE 5,259,616 2,951,145 147.09 357,331 55,821 2,429 16 17 16.5 
WC 2,548,856 5,278,548 441.65 547,268 17,723 1,239 12 11 11 
WP 3,478,558 3,686,963 249.33 362,031 28,739 1,452 15 15 15 
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Table 29  PM10 Traffic Counts 

PM10 
Site 

Freeway 
Sum of 
AWT 

Counts 

Arterial 
Sum of 
AWT 

Counts 

Area of 
Polygon 

(km2) 

Length of 
Roads (m) 

Traffic Count 
Density 

(Sum/Area) 

Road Density 
(Length/Area) 

Traffic 
Density 
Score 

Road 
Density 
Score 

Average 
Score 

BE 441,881 541,860 8,179 2,242,300 120 274 1 1 1 
CP 4,681,440 1,474,336 86 215,563 71,938 2,519 13 14 14 
DC 118,668 266,203 15 11,732 25,008 762 10 5 7.5 
DY 997,355 2,937,941 3,081 1,333,503 1,277 433 2 2 2 
GL 2,394,725 3,322,245 379 447,363 15,097 1,181 7 8 7.5 
GR 1,774,353 413,467 20 39,263 110,384 1,981 14 12 13 
HI 1,150,509 4,115,465 349 344,946 15,096 989 6 7 6 
ME 4,145,383 3,723,345 148 320,602 53,024 2,160 12 13 12 
NP 4,541,914 4,239,517 838 685,792 10,485 819 5 6 5 
SP 117,988 1,396,107 206 125,655 7,338 609 4 4 4 
SS 1,202,720 1,443,388 136 222,159 19,421 1,631 9 10 10 
WC 2,672,268 3,621,075 342 423,711 18,376 1,237 8 9 9 
WF 0 1,455,885 607 264,137 2,400 435 3 3 3 
WP 1,984,895 2,280,263 112 189,279 38,242 1,697 11 11 11 
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Indicator#6: Monitor-to-Monitor Correlations 

Table 30  O3 Correlations 

O3 
Sites 

Max 
Correlation Score 

BE 0.79 12 
BP 0.78 13 
CC 0.69 15 
CP 0.9 2.5 
DY 0.76 14 
FF 0.86 7.5 
FH 0.83 9.5 
GL 0.81 11 
HM 0.59 17 
NP 0.89 5 
PP 0.64 16 
RV 0.83 9.5 
SP 0.9 2.5 
SS 0.89 5 
TE 0.89 5 
WC 0.86 7.5 
WP 0.94 1 
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Table 31  PM10 Correlations 

PM10 
Sites 

Max 
Correlation Score 

BE 0.82 11 
CP 0.9 4 
DC 0.91 3 
DY 0.89 6.5 
GL 0.89 6.5 
GR 0.92 1.5 
HI 0.78 13 
ME 0.72 14 
NP 0.81 12 
SP 0.89 6.5 
SS 0.89 6.5 

WC 0.87 9 
WF 0.86 10 
WP 0.92 1.5 
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Indicator#7: Removal Bias 

Table 32  O3 Removal Bias 

O3 
Sites 

2005-2009 
Average 

Removal 
Bias Difference Absolute 

Value Score 

BE 0.0295 0.0391 0.0096 0.0096 17 
BP 0.0373 0.0386 0.0013 0.0013 7 
CC 0.0471 0.0459 -0.0012 0.0012 6 
CP 0.0311 0.0312 0.0001 0.0001 1 
DY 0.0336 0.035 0.0014 0.0014 8 
FF 0.0389 0.0362 -0.0027 0.0027 12 
FH 0.0443 0.0367 -0.0076 0.0076 16 
GL 0.034 0.0333 -0.0007 0.0007 3 
HM 0.0526 0.0464 -0.0062 0.0062 15 
NP 0.0367 0.0321 -0.0046 0.0046 14 
PP 0.0472 0.0442 -0.003 0.003 13 
RV 0.0437 0.0426 -0.0011 0.0011 4.5 
SP 0.0327 0.0321 -0.0006 0.0006 2 
SS 0.0344 0.0333 -0.0011 0.0011 4.5 
TE 0.0317 0.0338 0.0021 0.0021 11 
WC 0.0353 0.0338 -0.0015 0.0015 9 
WP 0.0317 0.0301 -0.0016 0.0016 10 
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Table 33  PM10 Removal Bias. Note That a Removal Bias Could Not Be Calculated for 
the Buckeye Site (BE), As It Is the Furthest West PM10 Site and Located on the Edge of 
the Map 

PM10 
Sites 

2005-2009 
Average 

Removal 
Bias Difference Absolute 

Value Score 

BE 48.1 N/A N/A N/A N/A 
CP 38.3 41 2.7 2.7 4 
DC 57.52 51.9 -5.62 5.62 7 
DY 29.3 34.7 5.4 5.4 6 
GL 31 34.9 3.9 3.9 5 
GR 47.6 46.3 -1.3 1.3 3 
HI 48.7 37.3 -11.4 11.4 11 
ME 27.6 37.9 10.3 10.3 10 
NP 29.1 34.8 5.7 5.7 8 
SP 50.9 49.7 -1.2 1.2 2 
SS 29.6 39.2 9.6 9.6 9 

WC 31 47.8 16.8 16.8 13 
WF 66.6 52.1 -14.5 14.5 12 
WP 42.9 43.4 0.5 0.5 1 
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Indicator#8: Population Served 

Table 34  O3 Population Served 

O3 
Sites 

Population 
Served Score 

BE 31,132 4 
BP 3 1 
CC 46,772 6 
CP 153,630 10 
DY 174,019 11 
FF 248,082 14 
FH 34,926 5 
GL 457,740 17 
HM 14,197 3 
NP 387,993 16 
PP 67,517 7 
RV 2,414 2 
SP 90,333 8 
SS 130,327 9 
TE 236,002 12 
WC 321,428 15 
WP 246,076 13 
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Table 35  PM10 Population Served 

PM10 
Sites 

Population 
Served Score 

BE 35,459 3 
CP 144,345 6 
DC 12,348 1 
DY 179,961 9 
GL 467,204 14 
GR 31,503 2 
HI 166,608 8 
ME 293,977 12 
NP 452,859 13 
SP 126,432 5 
SS 148,186 7 

WC 266,220 11 
WF 38,150 4 
WP 211,122 10 
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Indicator#9: Environmental Justice 

Table 36  O3 Environmental Justice 

O3 
Sites 

Population 
Served 

Minority 
Population 

Served 

% 
Minority Score 

BE 31,132 11,231 36% 13 
BP 3 0 0% 1 
CC 46,772 4,856 10% 6 
CP 153,630 100,866 66% 15 
DY 174,019 28,312 16% 7.5 
FF 248,082 39,184 16% 7.5 
FH 34,926 2,461 7% 3 
GL 457,740 134,973 29% 12 
HM 14,197 1,115 8% 4 
NP 387,993 86,371 22% 10 
PP 67,517 6,006 9% 5 
RV 2,414 78 3% 2 
SP 90,333 84,455 93% 17 
SS 130,327 24,482 19% 9 
TE 236,002 87,838 37% 14 
WC 321,428 84,768 26% 11 
WP 246,076 196,670 80% 16 
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Table 37  PM10 Environmental Justice 

PM10 
Sites 

Population 
Served 

Minority 
Population 

Served 

% 
Minority Score 

BE 35,459 12,559 35% 8 
CP 144,345 90,392 63% 10.5 
DC 12,348 8,775 71% 12.5 
DY 179,961 29,581 16% 1 
GL 467,204 136,339 29% 7 
GR 31,503 25,542 81% 14 
HI 166,608 29,375 18% 2 
ME 293,977 109,276 37% 9 
NP 452,859 91,983 20% 3 
SP 126,432 80,046 63% 10.5 
SS 148,186 30,938 21% 4 

WC 266,220 74,082 28% 6 
WF 38,150 8,775 23% 5 
WP 211,122 150,192 71% 12.5 
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Indicator#10: Trends Impact 

Table 38  O3 Trends Impact 

O3 
Sites 

Length of 
Continuous 

Monitoring Record 
(Years as of 2009) 

Score 

BE 6 1 
BP 17 8 
CC 9 3 
CP 43 17 
DY 7 2 
FF 21 10 
FH 14 6 
GL 36 15.5 
HM 17 8 
NP 35 13.5 
PP 22 11 
RV 13 5 
SP 35 13.5 
SS 36 15.5 
TE 10 4 
WC 17 8 
WP 26 12 
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Table 39  PM10 Trends Impact 

PM10 
Sites 

Length of Continuous 
Monitoring Record 
(Years as of 2009) 

Score 

BE 6 1 
CP 25 13.5 
DC 11 5 
DY 7 2 
GL 23 11.5 
GR 17 6.5 
HI 10 4 
ME 20 8.5 
NP 20 8.5 
SP 25 13.5 
SS 23 11.5 

WC 17 6.5 
WF 8 3 
WP 22 10 
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Indicator#11: Number of Parameters Monitored 

Table 40  O3 Number of Parameters Monitored 

O3 
Sites 

Number of 
Parameters 
Monitored 

Score 

BE 6 13 
BP 3 5 
CC 3 5 
CP 7 15.5 
DY 5 9.5 
FF 3 5 
FH 3 5 
GL 5 9.5 
HM 1 1.5 
NP 6 13 
PP 3 5 
RV 1 1.5 
SP 6 13 
SS 7 15.5 
TE 5 9.5 
WC 5 9.5 
WP 8 17 
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Table 41  PM10 Number of Parameters Monitored 

PM10 
Sites 

Number of 
Parameters 
Monitored 

Score 

BE 6 10 
CP 7 12.5 
DC 3 1 
DY 5 6 
GL 5 6 
GR 5 6 
HI 4 2.5 
ME 5 6 
NP 6 10 
SP 6 10 
SS 7 12.5 

WC 5 6 
WF 4 2.5 
WP 8 14 
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Phase I Indicator Radar Charts Results 

 

Figure 27  Results by Site from the O3 Phase I Assessment.  Number Labels Correspond 
to the Indicator Numbers of Table 5.  Graph Gridlines Each Represent 0.5 Points of 
Score, from 0-2.0 
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Figure 28  Results by Site from the PM10 Phase I Assessment.  Number Labels 
Correspond to the Indicator Numbers of Table 5.  Graph Gridlines Each Represent 0.5 
Points of Score, from 0-2.0 
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Phase I Sustainability Radar Chart Results 

 

Figure 29  Results by Site from the Aggregation of O3 Phase I Sustainability Indicators.   
Sustainability Labels Correspond to the Groups on Table 5.  Graph Gridlines Each 
Represent 0.3 Points of Score, from 0-1.2 
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Figure 30  Results by Site from the Aggregation of PM10 Phase I Sustainability 
Indicators.   Sustainability Labels Correspond to the Groups on Table 5.  Graph Gridlines 
Each Represent 0.3 Points of Score, from 0-1.2 
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APPENDIX C 

SUPPLEMENTARY DATA FOR CHAPTER 4
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Table 42 Regression Results for the O3 Parameter 

     
Median  

HH Income Age ≤17 Age ≥65 Proportion  
African American 

Proportion  
Native American 

Proportion  
Hispanic 

  Model# R2 F* BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. 

O
3 S

ea
so

na
l A

ve
ra

ge
d 

D
at

a 

R
aw

 D
at

a 1 0.11 310.5 0.332 0.000           
2 0.16 177.4 0.325 0.000 -0.223 0.000 -0.001 0.970       
3 0.27 240.5 0.198 0.000 -0.233 0.000 -0.161 0.000 -0.411 0.000 0.051 0.009   
4 0.37 326.7 -0.059 0.043 0.116 0.000 -0.103 0.000 -0.404 0.000 0.101 0.000 -0.532 0.000 

D
ec

ile
s 

1 0.11 303.8 0.330 0.000           
2 0.16 177.7 0.323 0.000 -0.222 0.000 0.011 0.696       
3 0.27 218.7 0.197 0.000 -0.233 0.000 -0.147 0.000 -0.397 0.000 0.044 0.026   
4 0.37 313.4 -0.073 0.011 0.135 0.000 -0.085 0.002 -0.389 0.000 0.096 0.000 -0.561 0.000 

Q
ua

rt
ile

s 1 0.09 258.3 0.185 0.000           
2 0.15 162.2 0.182 0.000 -0.197 0.000 -0.069 0.000       
3 0.25 194.1 0.133 0.000 -0.196 0.000 -0.142 0.000 -0.243 0.000 0.081 0.000   
4 0.33 260.1 -0.016 0.361 0.007 0.742 -0.108 0.000 -0.238 0.000 0.110 0.000 -0.309 0.000 

O
3 M

on
th

ly
 A

ve
ra

ge
d 

D
at

a 

R
aw

 D
at

a 1 0.09 249.1 0.301 0.000           
2 0.14 152.1 0.296 0.000 -0.291 0.000 -0.092 0.001       
3 0.24 186.8 0.198 0.000 -0.296 0.000 -0.224 0.000 -0.383 0.000 0.089 0.000   
4 0.28 214.8 0.022 0.468 -0.056 0.093 -0.184 0.000 -0.378 0.000 0.123 0.000 -0.365 0.000 

D
ec

ile
s 

1 0.08 246.9 0.363 0.000           
2 0.16 186.4 0.335 0.000 -0.576 0.000 -0.410 0.000       
3 0.21 113.7 0.217 0.000 -0.563 0.000 -0.508 0.000 -0.343 0.000 0.004 0.904   
4 0.25 172.2 0.001 0.986 -0.295 0.000 -0.484 0.000 -0.335 0.000 -0.030 0.351 -0.418 0.000 

Q
ua

rt
ile

s 1 0.05 110.7 0.109 0.000           
2 0.09 79.2 0.108 0.000 -0.155 0.000 -0.079 0.000       
3 0.14 70.8 0.106 0.000 -0.147 0.000 -0.097 0.000 -0.131 0.000 0.093 0.000   
4 0.16 69.5 0.046 0.004 -0.065 0.000 -0.083 0.000 -0.129 0.000 0.105 0.000 -0.125 0.000 

*All F scores are significant at p<0.000.   Bold BETAs are significant at p<0.05 
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Table 42 Continued 

     
Median 

HH Income Age ≤17 Age ≥65 Proportion  
African American 

Proportion  
Native American 

Proportion  
Hispanic 

  Model# R2 F* BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. 

O
3 8

-h
ou

r 
A

ve
ra

ge
d 

D
at

a 

R
aw

 D
at

a 1 0.06 213.4 0.238 0.000           
2 0.08 100.6 0.235 0.000 -0.170 0.000 -0.048 0.116       
3 0.18 158.0 0.220 0.000 -0.152 0.000 -0.107 0.000 -0.367 0.000 0.242 0.000   
4 0.25 195.4 -0.003 0.912 0.152 0.000 -0.056 0.064 -0.361 0.000 0.285 0.000 -0.463 0.000 

D
ec

ile
s 

1 0.06 214.3 0.240 0.000           
2 0.08 101.5 0.237 0.000 -0.158 0.000 -0.038 0.218       
3 0.17 154.2 0.218 0.000 -0.141 0.000 -0.100 0.001 -0.359 0.000 0.227 0.000   
4 0.24 193.6 -0.007 0.803 0.165 0.000 -0.049 0.111 -0.353 0.000 0.270 0.000 -0.466 0.000 

Q
ua

rt
ile

s 1 0.05 199.9 0.186 0.000           
2 0.06 82.8 0.184 0.000 -0.082 0.000 -0.006 0.812       
3 0.15 130.1 0.171 0.000 -0.069 0.002 -0.052 0.045 -0.273 0.000 0.175 0.000   
4 0.24 149.5 -0.028 0.206 0.201 0.000 -0.006 0.808 -0.267 0.000 0.214 0.000 -0.413 0.000 

 O
3 1

-h
ou

r 
A

ve
ra

ge
d 

D
at

a R
aw

 d
at

a 1 0.05 186.4 0.223 0.000           
2 0.07 95.9 0.221 0.000 -0.211 0.000 -0.098 0.001       
3 0.17 152.4 0.200 0.000 -0.195 0.000 -0.161 0.000 -0.361 0.000 0.226 0.000   
4 0.22 175.2 0.006 0.823 0.069 0.042 -0.117 0.000 -0.355 0.000 0.263 0.000 -0.403 0.000 

D
ec

ile
s 

1 0.05 177.5 0.218 0.000           
2 0.07 90.4 0.216 0.000 -0.206 0.000 -0.100 0.001       
3 0.16 148.1 0.194 0.000 -0.190 0.000 -0.164 0.000 -0.359 0.000 0.222 0.000   
4 0.22 170.0 0.006 0.833 0.067 0.049 -0.120 0.000 -0.353 0.000 0.258 0.000 -0.392 0.000 

Q
ua

rt
ile

s 1 0.06 219.0 0.273 0.000           
2 0.09 107.8 0.271 0.000 -0.296 0.000 -0.184 0.000       
3 0.18 157.0 0.268 0.000 -0.273 0.000 -0.236 0.000 -0.388 0.000 0.280 0.000   
4 0.25 177.2 0.023 0.418 0.060 0.101 -0.180 0.000 -0.381 0.000 0.327 0.000 -0.508 0.000 

*All F scores are significant at p<0.000.   Bold BETAs are significant at p<0.05 
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Table 43 Regression Results for the PM10 Parameter 

     
Median 

HH Income Age ≤17 Age ≥65 Proportion 
African American 

Proportion 
Native American 

Proportion 
Hispanic 

  Model# R2 F* BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. 

PM
10

 A
nn

ua
l A

ve
ra

ge
 D

at
a 

R
aw

 d
at

a 1 .00 4.68 -0.043 0.031           2 .18 126.37 -0.033 0.077 0.506 0.000 0.138 0.000       3 .24 125.53 -0.041 0.077 0.497 0.000 0.184 0.000 0.266 0.000 -0.195 0.000   4 .26 124.30 0.090 0.004 0.340 0.000 0.175 0.000 0.270 0.000 -0.201 0.000 0.250 0.000 

D
ec

ile
s 1 .00 5.15 -0.048 0.023           

2 .17 118.93 -0.036 0.070 0.464 0.000 0.089 0.005       
3 .22 121.04 -0.042 0.079 0.456 0.000 0.130 0.000 0.239 0.000 -0.174 0.000   4 .24 124.85 0.094 0.003 0.292 0.000 0.121 0.000 0.244 0.000 -0.180 0.000 0.260 0.000 

Q
ua

rt
ile

s 1 .01 21.05 -0.061 0.000           
2 .13 95.08 -0.054 0.000 0.273 0.000 0.062 0.000       
3 .17 71.52 -0.048 0.002 0.271 0.000 0.098 0.000 0.158 0.000 -0.093 0.000   4 .18 72.32 0.010 0.664 0.202 0.000 0.094 0.000 0.160 0.000 -0.095 0.000 0.110 0.001 

*All Bold F scores are significant at p<0.05.   Bold BETAs are significant at p<0.05 
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Table 43 Continued 
  

   
Median  

HH Income Age ≤17 Age ≥65 Proportion  
African American 

Proportion  
Native American 

Proportion  
Hispanic 

  Model# R2 F* BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. 

PM
10

 J
an

ua
ry

 M
on

th
ly

 A
ve

ra
ge

 
D

at
a 

R
aw

 D
at

a 1 .05 111.49 -0.217 0.000           2 .21 168.29 -0.199 0.000 0.356 0.000 -0.058 0.066       3 .28 181.93 -0.141 0.000 0.366 0.000 0.050 0.122 0.315 0.000 -0.092 0.001   4 .37 230.18 0.132 0.000 0.038 0.310 0.031 0.311 0.325 0.000 -0.104 0.000 0.521 0.000 

D
ec

ile
s 1 .05 112.33 -0.220 0.000           2 .19 156.54 -0.203 0.000 0.347 0.000 -0.043 0.167       3 .26 167.43 -0.150 0.000 0.355 0.000 0.061 0.061 0.311 0.000 -0.099 0.000   4 .35 218.69 0.125 0.000 0.024 0.530 0.042 0.180 0.321 0.000 -0.112 0.000 0.525 0.000 

Q
ua

rt
ile

s 1 .06 149.80 -0.213 0.000           2 .20 161.79 -0.203 0.000 0.357 0.000 0.059 0.014       3 .26 126.33 -0.161 0.000 0.364 0.000 0.139 0.000 0.234 0.000 -0.071 0.002   4 .37 174.50 0.103 0.000 0.046 0.161 0.120 0.000 0.244 0.000 -0.083 0.000 0.504 0.000 

PM
10

 J
an

ua
ry

 D
ai

ly
 A

ve
ra

ge
 

D
at

a 

R
aw

 d
at

a 1 .03 66.25 -0.170 0.000           
2 .23 179.80 -0.154 0.000 0.488 0.000 0.049 0.138       
3 .28 157.47 -0.139 0.000 0.486 0.000 0.111 0.002 0.255 0.000 -0.141 0.000   
4 .33 176.42 0.062 0.050 0.244 0.000 0.097 0.005 0.262 0.000 -0.150 0.000 0.384 0.000 

D
ec

ile
s 1 .03 65.01 -0.163 0.000           

2 .21 159.01 -0.149 0.000 0.470 0.000 0.063 0.056       
3 .26 136.87 -0.134 0.000 0.468 0.000 0.124 0.000 0.251 0.000 -0.138 0.000   
4 .30 154.01 0.065 0.042 0.229 0.000 0.110 0.001 0.258 0.000 -0.147 0.000 0.379 0.000 

Q
ua

rt
ile

s 1 .03 70.58 -0.130 0.000           
2 .16 114.51 -0.123 0.000 0.352 0.000 0.099 0.000       
3 .19 86.65 -10.430 0.000 0.353 0.000 0.150 0.000 0.180 0.000 -0.081 0.002   
4 .26 105.25 0.084 0.001 0.126 0.000 0.137 0.000 0.187 0.000 -0.090 0.001 0.359 0.000 

*All Bold F scores are significant at p<0.05.   Bold BETAs are significant at p<0.05 

  

 
 



 

169 

Table 43 Continued 
     Median  

HH Income Age ≤17 Age ≥65 Proportion  
African American 

Proportion  
Native American 

Proportion  
Hispanic 

  Model# R2 F* BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. BETA SIG. 

PM
10

 A
ug

us
t M

on
th

ly
 A

ve
ra

ge
 

D
at

a 

R
aw

 D
at

a 1 .00 2.79 0.034 0.095           
2 .15 93.38 0.034 0.083 0.554 0.000 0.315 0.000       
3 .21 99.79 -0.050 0.029 0.525 0.000 0.275 0.000 0.145 0.000 -0.272 0.000   
4 .21 83.86 -0.052 0.088 0.527 0.000 0.275 0.000 0.145 0.000 -0.272 0.000 -0.004 0.909 

D
ec

ile
s 1 .00 9.73 0.065 0.002           

2 .11 71.55 0.066 0.001 0.464 0.000 0.252 0.000       
3 .15 75.28 0.007 0.789 0.443 0.000 0.231 0.000 0.140 0.000 -0.218 0.000   
4 .15 63.43 0.018 0.584 0.429 0.000 0.230 0.000 0.141 0.000 -0.219 0.000 0.021 0.574 

Q
ua

rt
ile

s 1 .00 0.05 0.003 0.822           
2 .10 69.13 0.009 0.472 0.264 0.000 0.062 0.000       
3 .12 49.80 0.005 0.727 0.261 0.000 0.080 0.000 0.106 0.000 -0.079 0.000   
4 .13 43.00 -0.501 0.039 0.327 0.000 0.084 0.000 0.104 0.000 -0.077 0.000 -0.106 0.002 

PM
10

 A
ug

us
t D

ai
ly

 A
ve

ra
ge

 D
at

a 

R
aw

 d
at

a 1 .00 0.24 0.010 0.628           
2 .14 88.09 0.023 0.244 0.404 0.000 0.051 0.098       
3 .16 74.16 0.035 0.156 0.402 0.000 0.099 0.005 0.194 0.000 -0.105 0.001   
4 .17 69.07 0.083 0.015 0.345 0.000 0.096 0.007 0.196 0.000 -0.108 0.000 0.092 0.021 

D
ec

ile
s 

1 .00 0.28 -0.011 0.598           
2 .13 97.08 0.000 0.998 0.421 0.000 0.081 0.010       
3 .15 75.20 0.011 0.641 0.421 0.000 0.121 0.001 0.155 0.000 -0.080 0.007   
4 .15 70.37 0.037 0.266 0.390 0.000 0.119 0.001 0.156 0.000 -0.082 0.006 0.049 0.193 

Q
ua

rt
ile

s 1 .00 0.32 0.007 0.570           
2 .09 69.02 0.012 0.295 0.221 0.000 0.051 0.001       
3 .11 48.49 0.023 0.117 0.222 0.000 0.076 0.000 0.084 0.000 -0.035 0.085   
4 .11 41.56 -0.016 0.482 0.268 0.000 0.078 0.000 0.083 0.000 -0.033 0.099 -0.073 0.012 

*All Bold F scores are significant at p<0.05.   Bold BETAs are significant at p<0.05 
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Figure 31  O3 Pollution Surface Maps for the Seasonally-Averaged Temporal Extents.  
Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 32  O3 Pollution Surface Maps for the Monthly-Averaged Temporal Extents 
(July). Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 33  O3 Pollution Surface Maps for the 8-Hour Averaged Temporal Extents (July 
15). Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 34  O3 Pollution Surface Maps for the 1-Hour Averaged Temporal Extents (July 
15, 15:00). Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 35  PM10 Pollution Surface Maps for the Annually-Averaged Temporal Extents. 
Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 36  PM10 Pollution Surface Maps for the Monthly-Averaged Temporal Extents 
(January). Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 37  PM10 Pollution Surface Maps for the Daily-Averaged Temporal Extents 
(January 7, 2008-2009, January 8, 2010). Includes Averaged Data from 2008-2010. (a) 
Raw Concentration Data. (b) Concentrations Aggregated into Deciles. (c) Concentrations 
Aggregated into Quartiles 
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Figure 38  PM10 Pollution Surface Maps for the Monthly-Averaged Temporal Extents 
(August).  Includes Averaged Data from 2008-2010. (a) Raw Concentration Data. (b) 
Concentrations Aggregated into Deciles. (c) Concentrations Aggregated into Quartiles 
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Figure 39  PM10 Pollution Surface Maps for the Daily-Averaged Temporal Extents (Aug 
22, 2008; Aug 23, 2009; Aug 24, 2010).  Includes Averaged Data from 2008-2010. (a) 
Raw Concentration Data. (b) Concentrations Aggregated into Deciles. (c) Concentrations 
Aggregated into Quartiles 
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Figure 40  Total Population Density, Aggregated by Census Block Group, within 
Maricopa and Pinal Counties.  Units Are People/Km2 
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Figure 41  Median Household Income, by Census Block Group, within Maricopa and 
Pinal Counties.  Units Are Thousands of Dollars 
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Figure 42  Population Density of African Americans within Maricopa and Pinal Counties 
by Census Block Group.  Units Are People/Km2 
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Figure 43  Population Density of Native Americans in Maricopa and Pinal Counties by 
Census Block Group.  Units Are People/Km2 
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Figure 44  Population Density of Hispanics within Maricopa and Pinal Counties by 
Census Block Group.  Units Are People/Km2 
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Figure 45  Population Density of People Aged 17 and Under within Maricopa and Pinal 
Counties by Census Block Group.  Units Are People/Km2 
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Figure 46  Population Density of People Aged 65 and Over within Maricopa and Pinal 
Counties by Census Block Group.  Units Are People/Km2 
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Figure 47  Population Proportion of African Americans within Maricopa and Pinal 
Counties by Census Block Group.  Units Are Percentage 
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Figure 48  Population Proportion of Native Americans within Maricopa and Pinal 
Counties by Census Block Group.  Units Are Percentage 
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Figure 49  Population Proportion of Hispanics within Maricopa and Pinal Counties by 
Census Block Group.  Units Are Percentage 
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Figure 50  Population Proportion of People Age 17 and Under within Maricopa and Pinal 
Counties by Census Block Group.  Units Are Percentage 
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Figure 51  Population Proportion of People Age 65 and Older within Maricopa and Pinal 
Counties by Census Block Group.  Units Are Percentage 
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