
Structural Variant Detection

A Novel Approach

by

Sheetal Shetty

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2014 by the
Graduate Supervisory Committee:

Valentin Dinu, Chair

Matthew Scotch
Kimberly Bussey
Garrick Wallstrom

ARIZONA STATE UNIVERSITY

May 2014

 i

ABSTRACT

Genomic structural variation (SV) is defined as gross alterations in the

genome broadly classified as insertions/duplications, deletions inversions and

translocations. DNA sequencing ushered structural variant discovery beyond

laboratory detection techniques to high resolution informatics approaches.

Bioinformatics tools for computational discovery of SVs however are still missing

variants in the complex cancer genome. This study aimed to define genomic context

leading to tool failure and design novel algorithm addressing this context. Methods:

The study tested the widely held but unproven hypothesis that tools fail to detect

variants which lie in repeat regions. Publicly available 1000-Genomes dataset with

experimentally validated variants was tested with SVDetect-tool for presence of true

positives (TP) SVs versus false negative (FN) SVs, expecting that FNs would be

overrepresented in repeat regions. Further, the novel algorithm designed to

informatically capture the biological etiology of translocations (non-allelic

homologous recombination and 3-D placement of chromosomes in cells-context)

was tested using simulated dataset. Translocations were created in known

translocation hotspots and the novel-algorithm tool compared with SVDetect and

BreakDancer. Results: 53% of false negative (FN) deletions were within repeat

structure compared to 81% true positive (TP) deletions. Similarly, 33% FN insertions

versus 42% TP, 26% FN duplication versus 57% TP and 54% FN novel sequences

versus 62% TP were within repeats. Repeat structure was not driving the tool’s

inability to detect variants and could not be used as context. The novel algorithm

with a redefined context, when tested against SVDetect and BreakDancer was able to

detect 10/10 simulated translocations with 30X coverage dataset and 100% allele

frequency, while SVDetect captured 4/10 and BreakDancer detected 6/10. For 15X

coverage dataset with 100% allele frequency, novel algorithm was able to detect all

 ii

ten translocations albeit with fewer reads supporting the same. BreakDancer

detected 4/10 and SVDetect detected 2/10 Conclusion: This study showed that

presence of repetitive elements in general within a structural variant did not

influence the tool’s ability to capture it. This context-based algorithm proved

better than current tools even with half the genome coverage than accepted protocol

and provides an important first step for novel translocation discovery in cancer

genome.

 iii

DEDICATION

This work is dedicated to my family without whose unwavering solid support I would
not have tested the limits of by ability.

 iv

ACKNOWLEDGMENTS

I would like to thank Dr. Kimberly Bussey for directing and guiding the

research from the first day. Without her support and guidance this work would not

have been possible. I would also like to thank my committee for their very valuable

inputs at various stages of research which shaped a better analysis.

Translational Genomics Institute (TGen), Phoenix, deserves special thanks for access

to its bioinformatics resources and training I received as an intern and a graduate

student. Dr. Waibhav Tembe, Dr. Christophe Legendre, and Dr. Raghu Metpally were

all contributors and guides to my learning process at TGen with special mention for

Dr. Tembe, who suggested the vigorous testing of the first hypothesis of this

analysis.

Also a special thanks to Dr. Matthew Hayes from Case Western Reserve University

for providing the Perl code which was used to create simulated translocations for

testing purpose in this study.

This acknowledgment would be incomplete without special thanks to all blog posts on

bioinformatics websites, specifically “seqanswers” and “biostars” whose precise and

timely posts helped me solve many issues during the analysis process.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ...viii

LIST OF FIGURES ... x

CHAPTER

1 INTRODUCTION 1

1.1 Overview ... 1

1.2 Significance of the Problem .. 2

1.3 Theoretical basis for the study.. 3

1.4 Variables used in the study .. 7

1.5 Problem Statement ... 10

1.6 Research Question and Hypothesis 10

2 BACKGROUND 12

2.1 DNA Sequencing ... 12

2.2 Mapping Algorithms .. 22

2.3 Structural Variant Detection tools ... 24

3 TESTING CONTEXT: REPEAT STRUCTURE OF GENOME................. 30

3.1 Overview ... 30

3.2 Testing Current Tool.. 30

3.2.1 FASTQ file format .. 31

3.2.2 1000-Genomes data analysis 33

3.2.3 SVDetect Analysis .. 36

3.3 Extracting Overlapping Regions .. 37

3.3.1 Results: SVDetect performance 39

3.3.1 Understanding context: Repeat 39

4 ALGORITHM DESIGN AND DEVELOPMENT................. 46

 vi

Page

CHAPTER

4.1 A Context Definition for Translocations 46

4.2 Designing the Algorithm .. 47

4.2.1 Read extraction overview 48

4.2.2 Read extraction algorithm 53

4.3 Re-alignment Using BLAT .. 54

4.3.1 The need for BLAT ... 54

4.3.2 BLAT Alignment method used in tool 58

4.4 De-Duplication Algorithm ... 61

4.5 Create_Matrix Algorithm .. 63

4.6 Write_Count Algorithm .. 68

4.7 Get_HiC-Score Algorithm ... 69

4.8 Proof of Concept ... 73

5 SIMULATED DATA ANALYSIS................. .. 76

5.1 Creating Simulated Dataset ... 76

5.2 Simulated Data Analysis Results ... 79

6 DISCUSSION................. ... 95

6.1 Repeat Analysis .. 96

6.2 Algorithm Development and Simulated Data Analysis 97

6.3 Conclusions .. 99

6.4 Limitations ... 100

6.5 Future Direction and Research ... 100

 vii

Page

CHAPTER

REFERENCES....... .. 102

APPENDIX

A LIST OF 1000-GENOMES FILES USED IN ANALYSIS 109

B BLAT SUITE PROGRAM SPECIFICATIONS AND USER'S GUIDE 122

C SIMULATED TRANSLOCATION REFERENCE LIST 144

D LICENSES FOR COPYRIGHT MATERIAL USE ... 152

E TOOL SCRIPTS ... 162

 viii

LIST OF TABLES

Table Page

3.1. SVDetect defined structural variants ... 36

3.2. Overlap results for SVDetect .. 39

3.3. Repeat elements within undetected events .. 40

3.4. Repeat elements within detected events .. 40

3.5. Chi-squared test: Relation of deletion events with repeat 41

3.6. Chi-squared test: Relation of insertion events with repeat 41

3.7. Chi-squared test: Relation of duplication events with repeat 41

3.8. Chi-squared test: Relation of novel sequences events with repeat 41

3.9. Repeats structure by type: Deletion .. 42

3.10. Repeats structure by type: Mobile element insertion 42

3.11. Repeats structure by type: Tandem duplication 43

3.12. Repeats structure by type: Novel sequences 43

4.1. SAM format fields: alignment section .. 48

4.2. Bitwise FLAG of SAM file .. 49

4.3. Bitwise Flag of SAM FLAG- binary to decimal conversion 49

4.4. CIGAR string .. 50

4.5. FLAGs for read extraction ... 52

4.6. Read_Extract Algorithm ... 53

4.7. BLAT output file format: psl ... 60

4.8. De-Duplication Algorithm ... 61

4.9. Example ‘sml’ file from de-duplication algorithm 62

4.10. Create_Matrix Algorithm .. 63

4.11. Example ‘mat’ file from create_matrix algorithm 65

4.12. Write_count Algorithm ... 68

 ix

Table Page

4.13. Example ‘chr’ file from write_count algorithm 68

4.14. Get_HiC-Score Algorithm ... 70

4.15. Example ‘score’ file from get_HiC-score algorithm 72

4.16. BLAT parameter adjustment results .. 74

5.1. Translocation list used in creating simulated dataset 77

5.2. Simulation read creating program-‘wgsim’ options 77

5.3. Comparison of current tools with novel algorithm 79

5.4. Final score file output of novel algorithm 30X coverage 80

5.5. SVDetect output (trimmed): simulated data 30X coverage 81

5.6. BreakDancer output: simulated data 30X coverage 81

5.7. Final score file output of novel algorithm 15X coverage 83

5.8. BreakDancer output: simulated data 15X coverage 83

5.9. SVDetect output (trimmed): simulated data 15X coverage 84

 x

LIST OF FIGURES

Figure Page

2.1. Sanger DNA sequencing method. ... 14

2.2 Emulsion bead template preparation for next generation sequencing

technology. .. 16

2.3. Bridge amplification template preparation for next generation sequencing

technology ... 17

2.4. Single molecule template preparation for next generation sequencing

technology ... 18

2.5. Real-time template preparation for next generation sequencing

technology ... 18

2.6. Cyclic reversible termination method in next generation sequencing

technology ... 20

2.7. Sequencing by ligation and pyrosequencing method in next generation

sequencing technology. ... 21

2.8. Dynamic programming matrix. .. 23

3.1. Sanger FASTQ format ... 32

3.2. FASTA format example ... 34

3.3. Overlap definition for SVDetect ... 37

3.4. Overlap definition for repeat ... 38

3.5. Circos plot of NAHR overlap with 1000_Genome variants 45

4.1. Novel algorithm flowchart ... 47

4.2. Sample paired-end read of simulated dataset: SAM format 55

4.3. MegaBLAST output with defaults for query sequence pair1 56

4.4. MegaBLAST output with defaults for query sequence pair2 57

4.5. BLAT output with defaults for query sequence pair1 58

 xi

Figure Page

4.6. BLAT output with defaults for query sequence pair2 58

4.7a. Create_Matrix Algorithm: Matrix creation 66

4.7b. Create_Matrix Algorithm: Swapping reads 67

4.8. Translocation (4;8); derivative chromosomes created 73

5.1. Process flow of novel algorithm ... 78

5.2. Hi-C score frequency distribution for chromosome 1 and 22 85

5.3. Hi-C score frequency distribution for chromosome 12 and 13 86

5.4. Hi-C score frequency distribution for chromosome 12 and 16 87

5.5. Hi-C score frequency distribution for chromosome 19 and 22 88

5.6. Hi-C score frequency distribution for chromosome 16 and 21 89

5.7. Hi-C score frequency distribution for chromosome 9 and 14 90

5.8. Hi-C score frequency distribution for chromosome 7 and 11 91

5.9. Hi-C score frequency distribution for chromosome 4 and 8 92

5.10. Hi-C score frequency distribution for chromosome 4 and 11 93

5.11. Hi-C score frequency distribution for chromosome 8 and 12 94

 1

1. INTRODUCTION
Identifying differences at the genome level between a diseased and healthy

individual has been the cornerstone of current medical genetic research with the

purpose of identifying and targeting disease causing variants.

1.1 Overview
Structural variations in the human genome are changes in the genome, when

compared to the reference human genome, that lead to gross aberrations in the

physical structure of the genome. These typically include insertions, deletions,

inversions, and translocations. Structural variations are typically studied by

comparing the target DNA to the consensus reference genome. Insertions represent

the inclusion of a segment of DNA sequence inserted into the target genome.

Similarly a deletion represents a deleted segment, duplication represents a

duplicated or repeat segment, and an inversion is a change in the orientation of the

segment. A translocation is a change in the physical location of a segment of DNA

normally present on the reference chromosome to another chromosomal location in

the donor. Structural variations play a very important role in cancer development.

Translocations were the earliest identified variants in cancer with the identification of

Philadelphia chromosome (translocation between chromosomes 9 and 22 [t(9;22)])

as a hallmark of chronic myeloid leukemia (CML) (Nowell & Hungerford, 1960;

Rowley, 1973). These gross variants in cancer produce fusion genes as BCR-ABL1,

between a breakpoint cluster region on chromosome 22 and tyrosine kinase receptor

gene chromosome 9 that is a recurrent phenomenon in CML and one of the

diagnostic criteria for this disease. Another commonly occurring fusion gene between

a transmembrane protease gene (TMPRSS2) and one of two transcription factors

(ETV1 or ERG) was first reported in 23 of 29 prostate cancers (Tomlins et al., 2005).

 2

These commonly occurring fusion genes are fast becoming the hallmark of cancer

diagnostics with researchers now aiming to define the etiology of this recurrence.

1.2 Significance of the Problem
Detecting structural variations in the cancer genome is the first step towards

extracting disease causing mutations. Current tools using well-examined

bioinformatics approaches to variant detection are still missing variants in the cancer

genome. The reasons for this could be due to allele frequency of the mutant genome

captured in an experiment, due to tumor heterogeneity, mapping algorithm flaws or

structural variant detection algorithm flaws. In addition, these tools have been

designed without accounting for the very special case of cancer genome complexity.

Understanding the biological processes leading to structural variation generation in

the cancer genome and using this context to define the algorithm for variant

detection is an overlooked novel approach explored in this study, specifically in the

study of translocations.

Chromosomal translocations are the most obvious signature for many cancers and

serve as a very important biomarker. Cancer genomes have inherent genetic

instability either due to various micro-environmental factors leading to somatic

mutations or inherent predisposition in the genome leading to germline mutations.

Normal cellular machinery has checks to curb such major overhauls using DNA repair

mechanism. The cancer genome however has circumvented this repair mechanism;

most evident in the resulting fusion-genes which produce protein products which

further disrupt the repair infrastructure.

DNA sequencing technologies aim to identify these variants at a faster rate and with

more accuracy based on the sheer volume of data exiting the machines. Clinical

translation of this information helps to design specific drug targets for these specific

 3

translocation fusion gene products. Two major hurdles to achieve this purpose,

namely the presence of the human reference genome and the reducing cost of

sequencing the patient genome have now been surmounted. Bioinformatics

challenges to map and align this large amount of data, though not fully conquered,

have made significant progress. The challenge now facing the scientific community is

how to make sense of the data by designing better algorithms for detecting variants.

Every approach available in the literature has used some form of

statistical/mathematical modeling or computational algorithm to solve this issue of

detecting structural variants without paying much attention to the biology driving

these variants. Computational methods to detect structural variants (SV) utilize a

consistent algorithm (Tuzun et al., 2005) including: 1) creating a distribution of the

reads length (insert size) to derive a mean and standard deviation (s.d) 2) defining

SV signatures (e.g. insertion = reads mapping 3 s.d. outside the mean length), and

3) clustering all reads which support the same SV. The current study used a

different approach using biological domain information which is already known and

well documented in literature to help design a more effective and biologically

plausible algorithm to detect translocations in the cancer genome.

1.3 Theoretical basis for the study
Cancer occurs due to genomic instability that leads to disruption of normal cell

functions. These mutations and structural alterations can be germline or somatic.

Genomic mutations in germline cells lead to their transmission to the next generation

as a cancer susceptibility gene like BRCA1 (P. Kent et al., 1995). Mutations in

somatic cells can cause cancer due to abnormal proliferation of somatic cells with

aberrant genomic structure. Identifying these gross structural changes has been

done traditionally using experimental technique like karyotyping. Karyotyping uses

stains (Giemsa stains) to color the chromosome during mitosis and studying the

 4

banding patterns (G-banding) to define structural abnormalities like duplication of a

region of chromosome or presence or absence of chromosomes (McNeil, Montagna,

Difilippantonio, & Ried, 2012). However the primary issue with karyotyping remains

to be the resolution of the abnormal chromosomal region, which is 5-10 million base

pairs (Mbps). A successful experiment is also dependent on quality of cell division

rates in metaphase, which is when these chromosomes are captured (Bridge &

Cushman-Vokoun, 2011).

One of the major advances in cytogenetic diagnosis was development of fluorescent

in-situ hybridization (FISH) techniques and its various offshoots (Volpi & Bridger,

2008). The principle was based on hybridization of complementary DNA to specific

fluorescent probes, designed for specific regions on the genome, and viewed through

special cameras for detecting structural abnormalities (McNeil et al., 2012). These

technologies have far reaching applications from pre-natal detection of structural

abnormalities (Hastings, Nisbet, Waters, Spencer, & Chitty, 1999), profiling gene

expression during meiosis in mammalian cells (Mahadevaiah, Costa, & Turner, 2009)

to identifying novel fusion genes in leukemias (H. Lee et al., 2013). Further these

techniques have been seminal in identifying specific recurrent translocations in

tumors leading to targeted therapy for fusion genes (Buchdunger et al., 1996;

Druker et al., 1996; Inokuchi, 2006; Lynch et al., 2004; Mathews et al., 2010; Niu et

al., 1999; Paez et al., 2004). However the resolution of these methods can be about

1 kbps depending on the size of the probe, the target locus and type of FISH being

used. A subsequent development, also based on hybridization, known as

comparative genomic hybridization (CGH) (Kallioniemi et al., 1992) uses tumor and

normal control samples to compare copy number variation between normal and

tumor tissue and even detect gene fusions (Przybytkowski, Ferrario, & Basik, 2011).

These methods have higher resolution of 500 bps to even 50 bps but can be

 5

extremely sensitive to the quality of tumor samples and therefore have a high rate of

errors (Fragouli et al., 2011). These methods are thus dependent on the quality of

the probes and the genomic distance between the probes on the array.

Furthermore, they can only detect aberrations that alter copy number; copy-number

neutral events are missed.

With the advent of massively parallel high throughput sequencing technologies

gaining ground due to reduction in cost, mutation definition is getting higher and

higher resolution with the number of implicated oncogenes growing from 291 in 2004

(Futreal et al., 2004) to 384 in 2010 (Santarius, Shipley, Brewer, Stratton, & Cooper,

2010) and the most recent database of cancer mutations, ‘Mitelmans Database of

Gene Chromosome Aberrations and Gene Fusions in cancer’, a National Cancer

Institute (NCI) resource showing 2038 gene fusions(Mitelman, Johansson, &

Mertens, 2014). These next generation sequencing methods have provided

enormous amount of data and with it daunting bioinformatics challenges. Even with

obvious computational challenges of analyzing large data, sequencing has identified

novel causative mutations that were experimentally validated in diseases like mental

retardation where there was no familial history (Vissers et al., 2010). Similar success

was also seen in autism which is characterized as a multi spectrum disease. Exome-

sequencing of 928 autistic individuals identified 279 novel coding mutations (Sanders

et al., 2012), a feat if not unachievable would be highly labor intensive in an

experimental procedure.

Sequencing methods currently produce paired-end, short reads (30 -100 base-pairs)

such that both ends of a sequence segment are read with an intervening region of

unread sequence in the middle. The two reads are paired such that they have the

same identifier linking the two reads. Sequencing technologies today have adopted

 6

paired end short read sequencing as the preferred method due to the relative low

cost. The bioinformatics challenge is to map these short sequences correctly to the

reference human genome and be able to discern variants. The algorithm developed

for detecting variants was first laid down by Tuzun et al. (Tuzun et al., 2005) as:

• mapping the subject genome to the reference genome

• defining signatures for structural variation using the distribution based

on size of the short reads (inserts)

• identifying the reads which support the structural variant as described

by the signature and clustering all reads which support the same

variant together, and finally

• removing false positives based on percent identity of the variants read

with the reference genomes

Current tools use this basic model for defining structural variation with statistical

adjustments for calculating sensitivity and specificity, and sometimes expanding the

signatures for calling structural variants. These work very well in normal genomes

and reasonably well in cancer genomes. However, cancer genomes are more

complex as samples represent an admixture of normal and abnormal cells, the latter

of which may differ genomically. The ability to detect somatic mutations in a given

sample depends on tissue type, type of mutation (i.e. germline versus somatic),

amount of intercellular heterogeneity in the tumor, the sequencing technology itself,

and most importantly the algorithm used to detect variants. The choice of

sequencing technology/platform also depends on the goal of the study. The

comparison of sequencing platforms in metagenomic studies revealed that the use of

short-read generating technology was better due to significantly increased number of

 7

reads and therefore greater coverage of genomic regions (Mende et al., 2012). In

contrast, a comparison of these sequencing technologies for low-coverage

experiments in clinical setting to detect major copy number changes as part of

prenatal diagnosis found that increased number of reads produced in one

technological platform also made it more prone to GC-content bias due to greater

number of PCR-cycles (S. Chen et al., 2014). After choosing the right platform for

the study, the next challenge is to determine the appropriate tools to analyze the

data and call variants. All major bioinformatics development has been open source,

and tools such as National Center for Biotechnology Information, NCBI’s BLAST

(Basic Local Alignment Search Tool), University of California Santa Cruz, UCSC’s

Genome Browser, and Burrow-Wheeler aligner (BWA) have become the de-facto

standards for alignment and graphical viewing of the genome. However, new variant

detection algorithms are constantly being designed to address specific problems. For

example, a study comparing 12 algorithms for quantifying somatic copy number

variation using whole genome sequencing data (WGS) found that there were

significant differences in sensitivity and specificity of these algorithms (Alkodsi,

Louhimo, & Hautaniemi, 2014). Sensitivity depended on the size of the variant being

detected, while breakpoint detection accuracy was determined by the algorithmic

approach of the tools. These studies demonstrate the bioinformatics challenges of

analyzing DNA sequencing data, specifically variant detection. The multitude of data

being generated by next generation sequencing and the analogous growth in

bioinformatics tools to deal with this data shows the nascent state of the field in

terms of standardized methodologies to analyze this data.

1.4 Variables used in the study
Taking the computational modeling for detection of SVs first presented by Tuzun et

al. (Tuzun et al., 2005) further, Lee et al. (S. Lee, Cheran, & Brudno, 2008)

 8

proposed a probabilistic method for variant calling and controlling the false discovery

rates. Many currently popular tools use this methodology with modifications. For

example, SVDetect (Zeitouni et al., 2010) uses a windowing strategy in the paired

end library together with the clustering mechanism explained above to define

variants. BreakDancer (K. Chen et al., 2009) uses a more stringent method for

defining probabilities and therefore reducing the output of false positives. CREST

(Wang et al., 2011) on the other hand used another signature called soft clipping1 to

extract anomalous reads, build contigs2 of soft-clipped reads and subsequently

define variants based on similar probability calculations discussed above. Thus, all of

these tools work off the alignments produced by the mapping tool. However, this can

be a problem when there are multiple mapping regions with similar identity in the

BWA mapping tool algorithm (Li & Durbin, 2009). During these instances the tool will

randomly assign the read to any location. This is a characteristic of the human

genome: there are regions with considerable sequence homology and repeats such

that the mapping tool fails to align sequences at a unique region on the genome. The

variant detection tools completely ignore the fact that the alignment reported by the

mapping tool may be a random position.

These repeat regions comprise up to 50% of the human genome (Smit, Hubley, &

Green, 2014) and play a very significant role in development of these structural

variants due to errors in the DNA repair process (G. McVean, 2010). McVean has

reviewed these recombination events that lead to mutation and identified hotspots in

the genome that were more prone to rearrangement breakages. Further, these

1 Soft clipping: Paired end read mapped to the reference genome where one end
mapped globally an d the other mapped partially, may need the unaligned ends of
the read ‘clipped’ to achieve mapping. The read is labeled as ‘S’ in its CIGAR string
(Section 4.2.1).

2 Contig: Creating a longer sequence of DNA from overlapping smaller subsequences.

 9

regions tended to be closer to promotor regions but not in the transcribed regions

and were driven by a particular class of repair system called non-allelic homologous

recombination (G. A. McVean et al., 2004). Non-allelic homologous recombination

events (NAHR) are the result of errors in DNA repair involving large chromosomal

regions characterized by low copy repeats and up to 95% sequence identity

(Stankiewicz & Lupski, 2002), (Colnaghi, Carpenter, Volker, & O'Driscoll, 2011a).

Thus, there was information within the genome with a specific signature that was

leading to error prone repair. Further, Ou et al. (Ou et al., 2011) were able to

specifically prove NAHR as the cause of same unbalanced translocation in four

unrelated families. The group was also able to map these ‘NAHR’ regions on the

human genome based on the signature of low copy repeat regions with greater than

94% sequence identity. They were also able to find validated translocations in the

database in these predicted rearrangement hotspots.

Current tools ignore this very relevant information driving these structural variation

events in the genome. There is a general consensus in the scientific community that

variant calling tools fail in repetitive regions (non-unique regions) of the genome

because the mapping algorithms cannot reliably map these regions. This leads to a

decrease in the signal-to-noise ratio, and thus the number of reads supportive of an

aberration. While this is true, there is enough information known about these regions

to account for them algorithmically in a variant detection tool.

DNA damage is acquired primarily during replication process of the cell. Cells have

checks and balances to control for errors during repair and a breakdown of these

repair mechanism leads to non-allelic homologous regions of the genome undergoing

recombination and going unchecked. A low copy repeat region will share homology to

many regions on the genome and even share significant identity with these regions.

 10

The 3-D structural organization of the genome within the cell, as studied by Hi-C

experiments showed that regions of chromosome within close proximity to each

other were more likely to interact compared to regions that were far away

(Lieberman-Aiden et al., 2009). Another study probing the effect of DNA replication

timing on generation of copy number variations in the cancer genome also found the

correlation of spatial organization of the chromosomes within the genome affecting

the occurrence of mutations at specific locations (De & Michor, 2011). They went

further with the hypothesis proving that those regions that were closer to each other

spatially in the cell were also likely to have similar replication timing during cell

division.

1.5 Problem Statement
The purpose of this research was to use the known genomic context driving the

formation of chromosomal aberrations, both in terms of repeat structure and 3D

spatial organization, to design a biologically sound computational algorithm to detect

translocations in the cancer genome.

1.6 Research Question and Hypothesis
1. Are the tools able to detect validated structural variants from a known

dataset?

2. Will the tools fail in regions of repeats?

3. Is the ability of the tool to detect variants driven primarily by the presence of

these variants in high complexity (unique) regions?

 11

Research Hypothesis

1. Tools fail when the variants fall in the repeat regions. Variants in unique regions

are more likely to be detected by the tools compared to variants in repeat

regions.

2. A novel algorithm designed to take into account the genomic context that drives

the formation of chromosomal alterations (De & Michor, 2011; Lieberman-Aiden

et al., 2009) as well as the genomic architecture of cancers (regions of the

genome more susceptible to structural variant formation as seen in recurrent

cancers) is likely to perform better than current tools that do not include this

information.

 12

2. BACKGROUND

2.1 DNA Sequencing
DNA sequencing is the decoding of genetic information locked in the DNA and is the

machine translation of the nucleotide sequence that makes up the three billion bases

of human genetic code. Fred Sanger introduced the chain-termination method for

base determination (Sanger, Nicklen, & Coulson, 1977) (Figure 2.1 (Estevezj.,

2012)) which gained wide acceptance as the preferred method for sequencing.

Although another method by Maxam-Gilbert (Maxam & Gilbert, 1977) was introduced

at the same time and used base-specific chemical degradation, the Sanger method

became more popular due to its ease of use (Nunnally, 2005).

DNA sequencing can be broadly divided into four steps (Nunnally, 2005):

• Reaction

• Separation

• Detection

• Data analysis

The reaction step is specific to the type of method being used. Broadly, double-

stranded DNA is broken mechanically or chemically into single-stranded DNA, mixed

with a DNA polymerase3, DNA primer4, the four deoxynucleotide bases (adenine,

guanine, tyrosine and cytosine) and one dideoxynucleotide (ddNTP) corresponding

each of the bases that when incorporated during the polymerase reaction stops the

lengthening of the DNA chain. Thus, the reaction yields a multiplicity of different

3 Polymerase: Enzyme present in the cells, used during DNA replication process for
synthesizing a new strand of DNA from a copy/template.

4 Primer: Short DNA segment of known sequence which attached to the DNA strand
at its end

 13

sized fragments where the length of the fragment depends on the chance

incorporation of a ddNTP into the chain. Each type of radioactively or fluorescently

labeled ddNTP (ddATP, ddTTP, ddCTP, ddGTP) is aliquotted into a separate reaction,

and all four reactions are required to generate a sequence.

The separation step involves separating the DNA fragments obtained from the

reaction step based on size. Earlier methods used polyacrylamide gel electrophoresis,

in which the DNA fragments travelled vertically through the gel under a steady

current for a set period of time. The distance traveled was dependent on size, with

smaller fragments migrating more quickly than larger ones. Thus sequence was read

from the bottom of the gel up. Currently, this process is done by the capillary based

system where the sample are run through a very fine capillary and can be read

simultaneously by the detector as the DNA sample is travelling through the capillary.

The detection of the separated fragments involves exposing the separated sample to

X-ray film for radioactive labeling. Once the film was developed, the sequence of the

DNA could be read from the bottom up by recording in which lane the smallest

fragment appeared, followed by the next smallest, and so on. However, this method

is not routinely used anymore. It has been replaced by the use of fluorescently

labeled ddNTPs exposed to laser light that is simultaneously detected by the

detecting machine. In the analysis step, all the data is compiled into a single

continuous sequence.

 14

Figure 2.1. Sanger DNA sequencing method. This figure explains the steps in modern
Sanger technology. Adapted from Sanger Sequencing, by Estevezj, Retrieved March
27, 2009, from http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg.
Copyright 2012 by Estevezj. Reprinted under Creative Commons Attribution-Share
Alike 3.0 Unported license.

The automation of the Sanger-sequencing method led to the human genome project

with the aim of sequencing the entire human genome and was completed in 2001

(Venter et al., 2001). The project was completed much earlier than expected using

the above method together with shotgun assembly. In shotgun assembly process the

entire genome is broken into random smaller pieces, these pieces are amplified by

first cloning in bacterial cell (plasmids/bacterial artificial clones) and then through

PCR5. These amplified PCR products have known fragment sizes (also known as

insert size). The major contribution of this group was the development of mate-pair

5 PCR: Polychromase chain reaction, a procedure to create multiple copies of the
DNA using DNA polymerase

 15

reading methods. Different sized libraries of these inserts were created such that

multiple clonally amplified fragments of circularized DNA sequences from each library

are cut into linear pieces and read from both ends, put together to form contigs with

unread gaps and finally contigs assembled together bioinformatically into scaffolds in

the analysis step (Istrail et al., 2004). The size of the gap can be estimated with

reasonable confidence based on the segment length (i.e. insert size) of the DNA

library. This mate-pair sequencing and assembling method was a major step in the

direction of high throughput analysis. The completion of the human genome

assembly was a significant achievement as the scientific community now had the

entire human genome decoded and publicly available through NCBI.

Technology for faster sequencing has improved over the years with a corresponding

decrease in the cost due to the development of these new sequencing methods.

These newer-generation sequencing technologies are now collectively called next-

generation (next-gen) sequencing. The most commonly used next-gen applications

include Roche/454, Illumina/Solexa, Life/APG and Helicos BioSciences (Metzker,

2010). The flow of steps more or less is the same as Sanger sequencing, including

template preparation, sequencing, viewing and data analysis, with major

improvements in template preparation and sequencing.

Template preparation has seen major advances in next generation sequencing

methods with shift from bacterial artificial chromosomes (BACs) (Monaco & Larin,

1994) (Shizuya & Kouros-Mehr, 2001) due to inherent problems with BAC

procedures, including loss of genomic material in the BAC during cell replication and

introduction of replication errors as human errors during the mapping process. The

two major types of template preparation in NGS technology are:

1. Clonally amplified templates

 16

2. Single-molecule templates (Metzker, 2010)

Clonally amplified templates use single stranded DNA molecule with universal primer

attached to beads (Figure 2.2)

Figure 2.2. Emulsion bead template preparation for next generation sequencing
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics,
11, p.33, copyright 2010.

These PCR-amplified beads can then be placed on a glass slide for the NGS sequence

reading to be performed.

Solid phase amplification or bridge amplification can also be performed (Figure 2.3),

where the primers are attached to glass slide and DNA fragments along with

polymerase are added to the glass slide to produce spatially-separated clones of

amplified DNA fragments.

 17

Figure 2.3. Bridge amplification template preparation for next generation sequencing
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics,
11, p.33, copyright 2010.

A single molecule template has a major advantage of not requiring PCR amplification

and therefore reducing errors. Thus there is no need for clonal amplification in this

method and it is believed to be more representative of the original sample. This is

achieved by either attaching primers to the glass slide and adding single-stranded

DNA molecules to these immobilized primers (Figure 2.4) or attaching the single-

stranded DNA molecules to the glass slide and then adding the primers to these

immobilized DNA strands (Figure 2.4). A new approach uses the DNA polymerase

bound to a glass slide and the single-stranded DNA template can be introduced to

this polymerase and read in real-time (Figure 2.5).

 18

Figure 2.4. Single molecule template preparation for next generation sequencing
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics,
11, p.33, copyright 2010.

Figure 2.5. Real-time template preparation for next generation sequencing
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics,
11, p.33, copyright 2010.

 19

The next step in the process is sequencing the single-stranded DNA and reading it

using imaging of fluorescence probes attached to the nucleotides. Currently there are

four methods used for sequencing (Metzker, 2010):

1. Cyclic reversible termination

2. Sequencing by ligation

3. Single-nucleotide addition/ pyrosequencing

4. Real-time sequencing

Cyclic reversible termination (Figure 2.6) uses the cyclical process of

incorporating fluorescent nucleotides, imaging, and termination using ddNTPs. Each

step of a single nucleotide incorporation, termination, imaging, and washing is

repeated until the entire template is read. This is most commonly used in clonally

amplified templates. The method relies on the use of modified ddNTPs with more

efficient cleavage of the fluorescent labels compared to Sanger sequencing.

 20

Figure 2.6. Cyclic reversible termination method in next generation sequencing
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics,
11, p.36, copyright 2010.

Sequencing by ligation uses DNA ligase6 to attach to a fluorescent dye-labeled

probe, washing extra probes away and read by imaging in a cyclical way (Figure

2.7). Pyrosequencing uses sulphurylase and luciferase to detect bioluminescence

(Figure 2.7) instead of fluorescently labeled nucleotides. Real-time sequencing is the

6 Ligase: cellular enzyme which catalyzes the formation of bonds between two DNA
strands.

 21

most advanced of these technologies not requiring any terminators to stop the

process of sequencing. DNA polymerases are attached to the glass slides and

therefore sequencing can be performed without the need to terminate and the

release of fluorescence from the nucleotide read in real-time by imaging.

Figure 2.7. Sequencing by ligation and pyrosequencing method in next generation
sequencing technology. Adapted by permission from Macmillan Publishers Ltd,
“Sequencing technologies - the next generation”, by M.L.Metzker, 2010, Nature
reviews.Genetics, 11, p.36, copyright 2010.

 22

Technological advances will continue to improve these NGS technologies with the

purpose of reducing sequencing errors. One of the first challenges of parallel

sequencing was developing efficient algorithms for fast and accurate mapping of this

data to the reference genome. Big data however brought with itself bioinformatics

analysis challenges, the first being mapping the target genome to the reference.

2.2 Mapping Algorithms
The earliest efforts in algorithm development for mapping was done for discovering

sequence homology that examines the relatedness of two sequences (protein-coding

DNA sequences) in different species in order to understand its function (Pevsner,

2009). Understanding homology was important to define relatedness of proteins

through evolution and define changes that occurred through speciation. The same

principles were applied to DNA sequence mapping. Reads to be compared are placed

along the x-axis and y-axis and scored +1 for each match, -2 for each mismatch and

gap. This method was first developed by Needleman and Wunsch and is known as

the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). At the heart of this

algorithm is dynamic programming (Eddy, 2004) which starts with laying out the

matrix, deciding on scoring method and finally recursively finding the best path with

the best optimal score. This algorithm is dynamic because it finds the best optimal

score and keeps it in memory in order to avoid recalculation of scores that happens

in a recursive process (Figure 2.8).

 23

Figure 2.8. Dynamic programming matrix. Reprinted by permission from Macmillan
Publishers Ltd, “What is dynamic programming”, by S.R.Eddy, 2004, Nature
biotechnology, 22, p.909, copyright 2004.

The Needleman-Wunsch algorithm was used for global alignment and when adapted

to local alignment as done by Smith-Waterman algorithm (Smith, Waterman, &

Fitch, 1981), proved even more useful in finding DNA sequences of local identity

(Pevsner, 2009). The Smith-Waterman method uses one more row (m+1) and

column (n+1) for two sequences of length m and n and each subsequent score in the

matrix is incremented from the value in the preceding diagonal cell, with a match

getting a score of +1, -0.3 for a mismatch, and -1.3 for a gap. The Smith-Waterman

algorithm does not allow for any negative scores. The highest score in the matrix

signifies the end of alignment. This method allows for getting local alignments from a

long sequence instead of global alignment of Needleman-Wunsch that is

computationally intensive due to its recursive calculations. Local alignment is often

 24

used for quick database searches and serves as the foundation for most population

database search mapping tools like BLAST and BLAT.

2.3 Structural Variant Detection Tools

Tuzun et al. were the first to describe a computational framework for structural

variant (SV) detection (Tuzun et al., 2005). The most gain in information while

defining SVs comes from alignment of paired end reads i.e. single fragment of DNA

read from both ends with an unread segment in between. The length of the original

fragment is known and can further be empirically determined based on the insert

size distribution of the experiment. Their approach is still the basic framework for SV

detection and is as follows: 1) define probability distribution of insert sizes (length of

fragment of DNA sequenced), 2) define discordant reads as those which lie at least

2-4 standard deviations outside this distribution, 3) cluster all reads that support the

same SV such that at least 2 discordant reads identify the same SV, 4) identify the

SV at the location using percent identity of the discordant reads and number of

supporting reads.

Lee et al. proposed a more robust probabilistic method for SV detection (S. Lee et

al., 2008). The key methodology proposed was:

1. Defining a probabilistic framework: All reads generated (paired end reads:

short fragments of DNA sequenced from both sides with an area of un-

sequenced portion in between) are assumed to be independent of each other.

The set of same type of structural variants is represented by C. Using the

independence assumption each mapped read A and B which are part of the

same cluster and therefore explaining the same SV will have a joined

probability of belonging to the same cluster C defined as P(A,B|C)=P(A|C).

P(B|C). The mean insert size length s is known from library generation for

 25

sequencing experiment and also can be derived computationally from

experiment output. The probability distribution gives the standard deviation of

insert size. The signature for insertions and deletions is as follows: a length of

r represents the length of insertion or deletion and s represents the correct

mapping length of the insert in the reference. Therefore an insertion event is

s+r and deletion event is s-r. Using this signature we define the probability of

read A and read B being in the insert size distribution of s+r (or s-r) paired-

end reads by using a maximizing function of the joint probability of A and B

belonging to the same variant cluster. It thus calculated the probability that a

read is produced from the genome sequenced. Similarly, in defining the

signature for inversion and translocation we determine the joint probability of

observing the 2 mate pairs in the same cluster. The higher this probability the

more likely a read belongs to the cluster.

2. Defining the SV: The structural variant is defined using three features

i. Percent similarity of the mate pair sequence to the reference

ii. Product of the probabilities calculated above for a cluster. The

larger the probability of a cluster the more it is reliable.

iii. Number of mate pairs in a cluster

Each SV can map to various clusters and therefore using the above three features we

need to find the configuration which maximizes each of the features mentioned

above. Using this configuration we can assign each SV to just a single cluster.

The primary challenge of the probabilistic model is that the distributions are based

on insert sizes and are dependent on intrinsic information output by the mapping

tool. If the mapping tool does not know where to place the read, the read can be

either disregarded or placed randomly based on all possible best matches. Lee et al.

 26

assigned confidence scores (p-values) to insertion/deletion signatures, but this could

not be done to inversions and translocations. If there were systematic errors in

sequencing or in alignment algorithms, these will not be picked up using the

probability calculation for inversions and translocations and will therefore be ignored.

However with the current NGS platforms these errors have been considerably

reduced due to higher coverage. Current tools built up on this method with

SVDetect, BreakDancer and CREST discussed below.

The BreakDancerMax (K. Chen et al., 2009) algorithm uses the distance and

alignment of paired end reads along with the distribution of reads which map to a

certain location on the reference to define a SV. Using the SV signature, the program

then searches for regions on the reference genome which anchor more SV’s than

expected. These regions form the putative breakpoints. For a particular region,

whichever is the ‘dominant’ SV signature is used to identify the SV at the location i.e.

clustering of all SV’s for a particular location and choosing the SV. Further, it uses a

confidence score to assign the probability of observing a SV at the location which is

higher than chance using a chi-squared statistic with the cutoff p-value <0.0001.

This tool assumes a Poisson distribution for the clustered variants. Using an

analytical model for detecting true positive SV rate in a simulated dataset, they

estimated that with an average insert size of 200 bps, insertions and deletions

shorter than 40 bps would be difficult to detect.

BreakDancerMini tries to overcome the dependence on the insert size by using a

sliding window test. The algorithm defines a window for the reference that is the

mean of the insert library of a confidently mapped region+3 s.d - 2(average length

of read). Using this window, the frame is shifted 1 bp at a time and the probability

that the read lies in this window is calculated. Once again this method works well for

insertions and deletions. BreakDancer Max and Mini together did a better job at indel

 27

detection (experimentally validated 110 of 167 indels called by BreakDancer) and to

some extent inversions (validated 4 of 13 inversions) but did not do so well with

intra-chromosomal events (validated 2 of 6 intra-chromosomal translocations). This

is primarily because it uses only paired end data where both read ends map within a

defined distance. If only one end of the pair maps then this read is not considered.

Translocations will show this pattern where one end of a paired end read mapped to

one chromosome and the other end mapped on another chromosome. This

information may be lost in the alignment process as the aligner aligned just one end

of the read and information on the paired end is lost. Therefore, this tool is most

likely to miss this inter-chromosomal event. Thus BreakDancer performs well with

indels but does not have a very strong method for detecting translocations.

SVDetect (Zeitouni et al., 2010) on the other hand uses a simplified strategy for

clustering which is non-probabilistic. Clusters are formed from paired end reads

which had incorrect distance (2-3 s.d.) and/or orientation from the reference

genome. SVDetect then divides the reference genome into overlapping windows of

fixed size and groups all the paired end reads which map to the same overlapping

reference. SVDetect also uses clustering parameters like minimum number of reads

supporting a SV, filtering those reads whose orientation is different from the majority

in a cluster. The filtering process is user defined and the thresholds for filtering can

be changed.

Another important feature added to SVDetect is the ability to predict copy number

variations/duplication events. The algorithm does this by finding the ratio of depth of

coverage of sample to a control dataset in a sliding window along the genome,

though they do not define the length of the window. However, the detection of

duplications needs a control dataset that has not been well defined in the paper.

Thus SVDetect is able to identify insertions, deletions, inter-chromosomal events,

 28

duplications and translocations using a clustering pattern and filtering process.

However, SVDetect will also miss reads which were the alignment tool failed to

assign a read unambiguously.

CREST (Wang et al., 2011), unlike other applications, does not use the concept of

discordant paired reads. Instead it uses direct mapping of reads to the reference to

identify the breakpoints. The Burrow Wheeler alignment tool soft clips reads during

alignment, i.e. when there is partial alignment or when one end of the pair aligns

perfectly and the other end is partially aligned the tool clips the sequence at the

point of partial alignment. CREST collects all these soft clipped reads together,

creates longer contigs of these reads using an assembly algorithm (CAP3) and

realigns these contigs using BLAT (BLAST Like Alignment Tool) alignment algorithm.

Thus, the identification of first soft clipped region defines the first breakpoint at

location 1. All the soft clipped reads are collected and assembled into contigs using

CAP3 algorithm and aligned using BLAT. Wherever these soft clipped contigs map to

the genome is the second breakpoint, which will have soft clipped regions mapping

to location 1. CREST requires the second contig generated from soft clipped regions

at location 1 to be within a certain distance (user-defined) of the second location.

The final call of variants includes only those reads with >97% sequence similarity

and a BLAT score >30 and defines the probability of observing at least c soft clipped

reads with sequence coverage C (at that location) to be less than or equal to 0.05

The signatures defined by CREST use the same basic signature of all the SVs but do

not use the mapping distance of 2-3 s.d. It uses direct alignment information and

therefore is able to identify the SVs at breakpoint coordinate level. In experiments

comparing the platform it performed better than BreakDancer in detecting insertions,

deletions, and inversions. CREST is more apt for inter-chromosomal event detection

and therefore performs better in translocation events seen in cancer genomes.

 29

However due to the alignment heavy algorithm, it performs badly in regions of

repeats as the tool will perform only as good as the assembly/alignment tool.

All of the above methods use the mapping tool output as the input and derive

possible anomalous reads based on either the insert size distribution or flags set by

the mapping tool. Thus the ability of the tools to detect variants depends entirely on

the robustness of the alignment. In regions where the aligner cannot reliably map

sequence, such as repetitive regions, it is assumed that the ability of the tools to

detect variants is compromised. This study aimed to test this theory and to design a

more effective approach to variant detection by utilizing the known biology driving

variant formation, focusing specifically on translocations.

 30

3. TESTING CONTEXT: REPEAT STRUCTURE OF GENOME

3.1 Overview

The overall approach for this study was three pronged: first, test the currently

available tools against an experimentally validated dataset; second, develop an

algorithm for translocation detection based on known biological information; and

finally test our algorithm against the known tools. The first step was essentially to

identify and define the reason why tools would fail to detect experimentally validated

variants. Our hypothesis was that the tools would fail to recognize variants that were

in genomic regions of repeat due to low complexity of these regions and therefore

the inability of the aligner to map these regions uniquely. Thus stated differently,

variants in repeat regions were less likely to be detected by the tool compared to

variants in unique regions.

3.2 Testing Current Tools

The first step for proof of concept was to test the available structural variant

detection tool on an experimentally validated dataset. The 1000-Genomes project

was designed to use extensive sequencing of many individuals around the world with

different ethnicities in order to characterize all types of variants found in these

individuals and to relate it to the phenotype (1000 genomes project). This project is

a major international collaboration between universities around the world providing

samples, sequencing data, and bioinformatics analysis in order to map the entire

spectrum of genetic variation in the human population. The data has been made

Test current tools to
understand “context” of
the structural variants
failing to be detected

by the tools

Develop novel
algorithm based on

this “context”

Test the novel
algorithm against
known tools for

sensitivity

 31

publicly available on the website (www.1000genomes.org) (1000 Genomes Project

Consortium, Abecasis, Altshuler, Auton, Brooks, Durbin, Gibbs, Hurles, & McVean,

2010b). The project had low-coverage whole genome sequencing, exome

sequencing, and high-coverage sequencing of trio-subjects (mother-father-child)

from different ethnic populations around the world. For purpose of testing we used

deep sequencing data of the trio subject from Nigeria (YRI: NA19238, NA19239,

NA19240).

3.2.1 FASTQ file format
Most sequencing machine output the data in a widely accepted format known as the

Sanger-FASTQ (Cock, Fields, Goto, Heuer, & Rice, 2010). This is a text file with

information about the sequence read and quality score of each base of the sequence

read. Each read starts with a ‘@’ followed by the identifier and description of the

sequence which may be platform specific. The next line is a string of ‘ATCGs’, which

is the actual read from the sequencing machine. The next line is a + sign which may

be followed by a repeat of the sequence identifier and description line. The last line

represents quality scores for each of the bases in the read sequence (Figure 3.1).

http://www.1000genomes.org/

 32

Figure 3.1. Sanger FASTQ format. Reprinted by permission from Oxford University
Press, “The Sanger FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants”, by P.J.Cock et al., 2010, Nucleic Acids Research,
38, p.1769, copyright 2010.

The last line equates quality values for each base read by the sequencing machine.

This is a PHRED-based quality score converted to ASCII characters. PHRED was a

computation tool developed by Ewing et al. (Ewing & Green, 1998; Ewing, Hillier,

Wendl, & Green, 1998) to automatically assign quality values to sequencing trace

files such as chromatograms that are generated by the sequencing machines. This is

defined in the equation below.

q = -10 X log10 (p) ----------(Ewing et al.)

q= quality score of the base

p=estimated error probability for the base

According to this formula, a base having a 1/1000 probability of being erroneous will

have a quality score q of 30. The lower the probability score, the higher the quality.

 33

3.2.2 1000-Genomes data analysis
The files obtained from 1000-Genomes website were in FASTQ format. This study

used Yoruba subject data (YRI: NA19238, NA19239, NA19240). The FASTQ files

were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/.

Datasets for each subject had sequencing files of various insert sizes. To maintain

consistency we only used deep sequencing high coverage paired end library of insert

size 260. Briefly, experiment ID-SRX001106 with 8 billion reads was used for

NA19238, experiment ID-SRX000654 with 7.4 billion reads was used for NA19239

and experiment ID-SRX001102 with 6.1 billion reads was used for NA19240.

Appendix A lists the files used for this analysis.

Sequencing reads from these files listed in Appendix A Table 1.1 were aligned to the

reference genome NCBI build 36.1/ UCSC hg18. The reference human genome is

assembled and maintained by the Genome Reference Consortium (GRC)

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/) which

includes NCBI, Wellcome Trust, Sanger Institute, Genome Institute at Washington

University and European Bioinformatics Institute (EBI) at NCBI. The complete

genome and chromosome level FASTA files are stored at UCSC website which can be

downloaded at (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes).

The GRC, which is an extension of the Human Genome project

(http://www.genome.gov/10001772), produces overlapping segments of high

quality, longer length DNA sequence from a group of volunteers. Using in-house

tools they release a comprehensive and rigorous representative of a consensus

normal human reference genome for use in the public domain. The builds are

constantly getting updated as more data becomes available on previously un-

sequenced regions of the human genome or improved on currently sequences

regions.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.genome.gov/10001772

 34

Data for these various builds are stored in the FASTA format, which is a text file with

a header line starting with ‘>’ containing information about the sequence followed on

the next line by the longest continuous available sequence data as shown in Figure

3.2. Standard codes to represent amino acid sequences and nucleotides are used

and can also have lower case letters representing the same nucleotide/amino acid.

Figure 3.2. FASTA format example. First line starts with “>” followed by information
about the sequence and next line contains actual sequence

Fastq files for the same insert size and same library were downloaded from the ftp

site7 for each of the trio subjects; NA19238, NA19239, NA19240. These were aligned

to the reference genome UCSC hg18 using a popular tool for short read alignment,

BWA-0.5.9 (Li & Durbin, 2009).8 Briefly, BWA uses the Burrow-Wheeler

transformation algorithm to compresses the data such that repetitive information is

stored in a compressed format in prefix and suffix arrays in order to perform

searches on the entire human genome. The output of the mapping tool is in SAM

format described in Section 4.2.1. SAM is then converted to BAM, which is the binary

representation of a SAM file using ‘samtools’ suite.9

The output from BWA mapping was used to further detect structural variants using

an open-source toolkit. SVDetect (Zeitouni et al., 2010) is one such toolkit which

uses paired-end mapping data to identify reads which occur at a distance greater

than expected insert size and/or are in the incorrect orientation with respect to each

7 1000 genomes data download:ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
8 BWA sourceforge page: http://bio-bwa.sourceforge.net/bwa.shtml
9 SAMTools sourceforge page: http://samtools.sourceforge.net/

>gi|12345|ref|NM_12345.01|Homo sapiens XYZ
ATTTCGATTAATCGAGAAAAAAAATATTTTAGGGGGCCATTTATATACCCCCCCC
TACACCCACAC

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
http://bio-bwa.sourceforge.net/bwa.shtml
http://samtools.sourceforge.net/

 35

other. It then breaks the genome to create overlapping windows. Each anomalous

paired-end read can anchor to these windows such that the two windows where the

two paired-end reads map form a link. A filtering process removes links that has less

than a certain number of reads supporting a link and other features defined in the

tool. Structural variants are called based on mapping signatures for a particular type

of variant. This tool has a tendency to output many false positives as it only uses a

clustering method to call variants. Thus, any variant with 2 or more reads supporting

it is called as a variant without using the underlying variants distribution to calculate

confidence scores of calling a variant as done in BreakDancer. We therefore used this

tool which reports all possible variants in order to test our hypothesis that tools fail

to detect variants because these variants lie in the repeat regions.

Experimentally validated structural variants detected in the same trio subjects were

used as the validation standard. The variant dataset was downloaded from the ftp

site.10

Variants were detected computationally using various algorithms developed in-house

by 1000-Genomes team (1000 Genomes Project Consortium, Abecasis, Altshuler,

Auton, Brooks, Durbin, Gibbs, Hurles, & McVean, 2010a). The variants were defined

as mobile element insertions, tandem duplication, deletions, and novel sequences.

We extracted only those variants from the variant files that were experimentally

validated as indicated in the Description field of the file.

10 1000-Genomes structural variation data page:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_hu
man_variation/trio/sv/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/trio/sv/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/trio/sv/

 36

3.2.3 SVDetect Analysis
SVDetect defines its set of variants as described in the Table 3.1.

Table 3.1: SVDetect defined structural variants

NORMAL_SENSE Correct ends orientation using <mates_orientation> as reference
REVERSE_SENSE One of the ends has an incorrect orientation
DELETION Deletion (NORMAL_SENSE & mean insert size > µ+threshold*σ)
INSERTION Insertion (NORMAL_SENSE & mean insert size < µ-threshold*σ)
INVERSION Inversion (REVERSE_SENSE)
INV_FRAGMT Inversion of a genomic fragment, defined by balanced signatures

(BAL)
INS_FRAGMT Insertion of a genomic fragment, defined by balanced signatures

(BAL)
INV_INS_FRAGMT Inverted INS_FRAGMT (BAL)
LARGE_DUPLI Large duplication
DUPLICATION Duplication, medium size
SMALL_DUPLI Small duplication (mean insert size < µ-threshold*σ & overlap

between subgroups)
INV_DUPLI Inverted duplication (REVERSE_SENSE & mean insert size < µ-

threshold*σ & UNBAL)
TRANSLOC Translocation
INV_TRANSLOC Inverted translocation
COAMPLICON Co-amplicons, two different fragments repeated in the same

strand sense (BAL)
INV_COAMPLICON Inverted co-amplicons, two different fragments repeated in the

opposite strand sense (BAL)
SINGLETON Singleton (mean insert size < µ-threshold*σ), for Illumina mate-

pairs only
UNDEFINED Undefined inter/intra-chromosomal SV type

The purpose of this analysis was to see if the variants detected by SVDetect had

some overlap in the same genomic region as those in the 1000-Genomes

experimentally-validated variant dataset. To further characterize these variants, we

looked for overlap of the variants with mapped repeat structure in the human

genome (Smit et al., 2014)11. We used the RepeatMasker mapped repeat regions on

the hg18 build human genome to identify the repeat regions in the human genome.

The repeat elements in RepeatMasker database have been classified as LINEs: Long

11 RepeatMasker webpage: http://www.repeatmasker.org

http://www.repeatmasker.org/

 37

interspersed nuclear elements; SINEs: Short interspersed nuclear elements; LTR:

Long terminal repeats; DNA repeats and other.

3.3 Extracting Overlapping Regions
SVDetect-0.7f was used on the mapped BAM files to detect variants. Each variant file

from 1000-Genomes classified as ‘Deletion’, ‘Novel Sequences’, ‘Mobile Element

Insertion’ and ‘Tandem Duplications’ was used separately to extract overlapping

variants detected by SVDetect. 1000-Genomes variant files did not have subject

identifier in file and thus had structural variants detected in all three trio subjects

combined. SVDetect was run on each BAM file separately and then combined. We

were only looking for regions of the genome that showed an overlap irrespective of

the type of variant as defined in SVDetect. Overlap was defined as at least 10

percent of the insert size. In this case the insert size library chosen for download was

260 and therefore 10 percent overlap was at least 26 basepairs on either side of the

read as represented in the Figure 3.3. Ten percent of insert size was used as an

arbitrary cutoff.

Figure 3.3: Overlap definition for SVDetect; a: left overlap; b: right overlap; c:
SVDetect variant completely within; d: 1000-genome variant completely within

 38

A perl script was used to do the overlap extraction. Similarly, since the purpose was

to define the context of the genomic region that is causing the tools to fail,

RepeatMasker mapped repeat regions was used to do a similar overlap of with 1000-

genome variants. However in order to identify the overlapping regions with repeat

structure within, the entire repeat region had to be present within the variant as

shown in Figure 1.1.

Figure 3.4: Overlap definition for repeat; Blue arrows: 1000 genomes, Black arrows:
repeat elements in RepeatMasker.

 39

3.3.1 Results: SVDetect performance
The result from extraction analysis showed that SVDetect did poorly in detecting

insertion elements (17%) while it did very well in identifying validated novel

sequences high in detection percent (67%) (Table 3.2).

Table 3.2: Overlap results for SVDetect

Type of Event 1000-
Genomes
events

Events detected by
SV-Detect: True
Positive

Events not detected
by SV-Detect: False
Negative

Deletion 9695 4657 (48%) 5038
Mobile Element
Insertion

492 85 (17%) 407

Tandem
Duplication

65 23 (35%) 42

Novel
Sequences

66 42 (67%) 24

SVDetect is known to give many false positives and thus is a highly sensitive tool for

detection of structural variants. However, even with such a highly sensitive tool, less

than 50% of the variants detected by SVDetect were in the same region as deletions

events identified by 1000-Genomes. SVDetect was in the true variants regions

anywhere from 17 to 67 percent of the time depending on the type of variant. Even

a highly sensitive tool was clearly not able to detect many of the validated variants.

3.3.2 Understanding context: Repeat
We therefore tried to understand if the underlying repeat structure within these

variants was driving the ability of the tool to detect a variant. If a variant is in a

repeat region, the mapping tool will not be able to definitively place the read

representing the variant in a specific region due to low complexity of the repeat

region. We hypothesized that validated variants that were not detected by the tool

were more likely to have repeat elements within them than variants that were

detected by the tool. As shown in Figure 3.4, we extracted those reads that had the

 40

repeat element completely contained within the variants or variant completely

contained within the repeat. The results are shown in Table 3.3, 3.4.

Table 3.3: Repeat elements within undetected events

Type of Event 1000-
Genomes
events

Events not detected by
SV-Detect: False-
Negatives (a)

Events with repeat
structure within (b)
(a/b%)

Deletion 9695 5038 2678 (53%)
Mobile Element
Insertion

492 407 134 (33%)

Tandem
Duplication

65 42 11 (26%)

Novel
Sequences

66 24 13 (54%)

Table 3.4: Repeat elements within detected events

Type of Event 1000-
Genomes
events

Events detected by
SV-Detect: True-
Positives(a)

Events with any repeat
structure within (b)
(a/b%)

Deletion 9695 4657 3754 (81%)
Mobile Element
Insertion

492 85 36 (42%)

Tandem
Duplication

65 23 13 (57%)

Novel Sequences 66 42 26 (62%)

Although 53% of deletion events that were not detected by the tool showed some

form of repeat structure, 81% of deletion events which were detected also showed a

repeat structure. A similar pattern was seen with all other variant types where the

events which were detected by the tool had a greater percent of repeat elements

compared with those which were not detected by the tool. A chi-squared analysis

(Tables 3.5, 3.6, 3.7, 3.8) showed a significant association between repeat structure

and the ability of the tool to detect the variant for deletions and tandem duplication

events but not significant for novel sequences and mobile element insertion events

at p<0.05 level. Thus if there was a repeat structure within the variant, the tool was

 41

more likely to detect it, which was contrary to our hypothesis. We therefore failed to

reject the null of no association between repeat structure and ability of the tool to

detect the variant.

Table 3.5: Chi-squared test: Relation of deletion events with repeat

Deletion Events Repeat structure
within

No Repeat structure
within

Total

Detected by tool (True
positives)

3754 903 4657

Not detected by tool (False
Negatives)

2678 2360 5038

Note: Table tests if ability of the tool to detect deletion events is influenced by the
repeat structure within it. The Chi-square statistic is 816.873 with p-value of 0. This
result is significant at p < 0.05.

Table 3.6: Chi-squared test: Relation of insertion events with repeat

Insertion Events Repeat structure
within

No Repeat structure
within

Total

Detected by tool (True
positives)

36 49 85

Not detected by tool (False
Negatives)

134 273 407

Note: Table tests if ability of the tool to detect insertion events is influenced by the
repeat structure within it The Chi-square statistic is 2.764 with p-value of p=0.096.
This result is not significant at p<0.05.

Table 3.7: Chi-squared test: Relation of duplication events with repeat

Duplication Events Repeat structure
within

No Repeat structure
within

Total

Detected by tool (True
positives)

13 10 23

Not detected by tool (False
Negatives)

11 31 42

Note: Table tests if ability of the tool to detect duplication events is influenced by the
repeat structure within it The Chi-square statistic is 5.871 with p-value of 0.015. This
result is significant at p<0.05.

Table 3.8: Chi-squared test: Relation of novel sequences events with repeat

Novel Sequence Events Repeat structure
within

No Repeat structure
within

Total

Detected by tool (True
positives)

26 16 42

Not detected by tool (False
Negatives)

13 11 24

 42

Note: Table tests if ability of the tool to detect novel sequences events is influenced
by the repeat structure within it The Chi-square statistic is 0.378 with p-value of
0.538. This result is not significant at p<0.05.

Since defining genomic context was the goal of the analysis, we further broke down

the detected and undetected events by type of repeat structure as classified by

RepeatMasker. Note, however, that the same variants can have more than one type

of repeat structure. This breakdown also showed similar results. While LINEs and

SINEs were more abundant of the repeat structure, undetected events (false-

negatives) showed a lower percentage of these events than detected events (true-

positives) (Tables 3.9, 3.10, 3.11, 3.12).

Table 3.9: Repeats structure by type: Deletion

1000
genome
events

DNA_repeats LINEs SINEs LTR Other
Yes No Yes No Yes No yes No Yes No

Un-
detected
(5038)

245
(5%)

4793 825
(16%)

4213 1096
(22%)

3942 423
(8%)

4615 1113
(22%)

3925

Detected
(4657)

1560
(34%)

3097 2480
(53%)

2177 2710
(58%)

1947 1954
(42%)

2703 2549
(55%)

2108

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected:
True positive events (1000-Genomes event)

Table 3.10: Repeats structure by type: Mobile element insertion

1000
genome
events

DNA_repeats LINEs SINEs LTR Other
Yes No Yes No Yes No yes No Yes No

Undetected
(407)

11
(3%)

396 69
(17%)

338 20
(5%)

387 24
(6%)

383 31
(8%)

376

Detected
(85)

12
(14%)

73 15
(18%)

70 18
(21%)

67 12
(14%)

73 14
(16%)

71

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected:
True positive events (1000-Genomes event)

 43

Table 3.11: Repeats structure by type: Tandem duplication

1000
genome
events

DNA_repeats LINES SINES LTR Other
Yes No Yes No Yes No yes No Yes No

Undetected
(24)

1
(4%)

23 3
(13%)

21 6
(25%)

18 2
(8%)

22 5
(21%)

19

Detected
(42)

3
(7%)

39 7
(17%)

35 9
(21%)

33 4
(10%)

38 13
(31%)

29

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected:
True positive events (1000-Genomes event)

Table 3.12: Repeats structure by type: Novel sequences

1000
genome
events

DNA_repeats LINES SINES LTR Other
Yes No Yes No Yes No yes No Yes No

Undetected
(42)

1
(2%)

41 5
(12%)

37 2
(5%)

40 3
(7%)

39 1
(2%)

41

Detected
(23)

6
(26%)

17 10
(43%)

13 8
(34%)

15 9
(39%)

14 9
(39%)

14

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected:
True positive events (1000-Genomes event)

Since presence of repeat elements was not driving the ability of the tool to detect

variants, we decided that we had to be even more specific in defining the “context”

of these variants. Repeat element in general, (including every type of repeat) within

or around these variants was not the “context” causing these variants to go

undetected.

Our goal was to design a tool to detect translocations, and thus the design step

started from defining the context for translocations occurring in the genome i.e.

understand how translocations occur in the genome (Bunting & Nussenzweig, 2013)

and build the context using this information. When we looked at the overlap between

the NAHR regions and the genomic location of the variants missed by SVDetect, we

observed a pileup in the regions where the tools failed to detect variants and the

NAHR regions (Figure 3.5). Thus, we used NAHR as one part of the biological

 44

context for the novel algorithm. However, there are multiple substrates for NAHR in

the human genome. The likelihood of any two regions of NAHR taking part in

exchange of genomic material (translocation) depends in part on the probability of

these regions being in close proximity in 3-dimensional space. Therefore, the second

part of our biological context was to incorporate information about the distribution of

the genome in 3-dimensional space as derived from Hi-C data.

 45

Figure 3.5: NAHR overlap with 1000-Genomes variants. Pile-up of false negative
deletion ebents (middle grey bar plot) shows concordant spike with pile-up of NAHR
(non-allelic homologous recombination) regions (inner red bar plot). Outermost grey
and red dot plot shows count of number of LINE elements (long interspersed nuclear
elements) in 1Kbps windows.

NAHR

LINES repeat
distribution

False Negative
variants

 46

4. ALGORITHM DESIGN AND DEVELOPMENT

4.1 A Context Definition for Translocations
The purpose of defining “context” for detecting translocation in the genome was to

effectively use information on mechanism of translocation formation in designing the

tool. Earlier held belief that cancer occurs due to random genomic events is being

proven ineffective due to studies which show non-random patterns to breakage sites,

also called ‘hotspots’ (Jeffreys, Kauppi, & Neumann, 2001). Recombination event is a

process by the cellular machinery to create diversity through evolution. These events

occur through double stranded breaks and the aberrant repair of these breakpoints

leads to structural variations. However these breakpoint regions have specific

signatures of low copy number variations which share significant homology

(Colnaghi, Carpenter, Volker, & O'Driscoll, 2011b). The breakpoint acting as

substrates for anomalous repair (non-allelic homologous recombination, NAHR) lead

to translocations and cause phenotypic changes (Deininger & Batzer, 1999), (Ou et

al., 2011), (Gu, Zhang, & Lupski, 2008). Using this information for the purpose of

designing a structural variant has not been done so far by any of the current tools.

There is sufficient evidence to define these regions bioinformatically (Ou et al., 2011)

and thus be able to use the signature of NAHR programmatically in tool design which

was attempted in this study. The novelty of this approach is the use of inherent

biologically processes driving these variants formation and is the first such attempt

to program this information in a tool. This study tried to capture 3-D packing of the

genome within a cell bioinformatically, thus taking the concept of “context” one step

further. Translocations occurring from double-stranded breaks also do not occur

randomly. Chromosomes which are more close to each other and with similar

replication timings are more likely to interact and exchange genomic material

through NAHR (Yaffe & Tanay, 2011), (De & Michor, 2011), (Wijchers, 2011).

Instead of using empirical distribution of reads and variants in the data to derive

 47

confidence score, this study attempted to use probability distribution of two regions

in the genome interacting due to physical proximity. This study has thus introduced

the concept of context-based evaluation of structural variation in the human genome

as a novel approach.

4.2 Designing the Algorithm
The algorithm for the tool is shown in Figure 4.1. Broadly the tool could be divided

into 3 major steps:

1. Extraction of anomalous reads from the bam file

2. Re-alignment using BLAT

3. Identifying potential translocations and defining probabilities using Hi-C data

Figure 4.1: Novel algorithm flowchart

 48

4.2.1 Read extraction overview
Sequence Alignment Format: There are many tools available for mapping reads to

the reference genome like BWA, Bowtie, MAQ. These tools give the output in a

common format known as SAM format (Sequence Alignment/Map Format), which

had been widely accepted as the default format for generating output files. Briefly

the alignment output has a header section and an alignment section. All headers

start with @ (eg. @HD) and contain general information about the experimental

process used to generate the sequencing reads. Alignment sections contain 11

mandatory fields as listed in Table 4.1.

Table 4.1: SAM format fields: alignment section

Field Type Regexp/Range Brief description
QNAME String [!-?A-~]{1,255} Query template NAME
FLAG Int [0,216 -1] bitwise FLAG

RNAME String *|[!-()+-<>-~][!-~]* Reference sequence NAME
POS Int [0,229-1] 1-based leftmost mapping POSition

MAPQ Int [0,28-1] MAPping Quality

CIGAR String *|([0-
9]+[MIDNSHPX=])+

CIGAR string

RNEXT String *|=|[!-()+-<>-~][!-
~]*

Ref. name of the mate/next read

PNEXT Int [0,229-1] Position of the mate/next read

TLEN Int [-229+1,229-1] observed Template LENgth

SEQ String *|[A-Za-z=.]+ segment SEQuence
QUAL String [!-~]+ ASCII of Phred-scaled base

QUALity+33
The purpose of the extraction algorithm is to retrieve reads which were assigned by

the aligner as improperly mapped. This information is coded in the bitwise ‘FLAG’

field of the SAM file as shown in Table 4.2.

 49

Table 4.2: Bitwise FLAG of SAM file

Bit Description
0x1 template having multiple segments in sequencing
0x2 each segment properly aligned according to the aligner
0x4 segment unmapped
0x8 next segment in the template unmapped
0x10 SEQ being reverse complemented
0x20 SEQ of the next segment in the template being reversed
0x40 the first segment in the template
0x80 the last segment in the template
0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate
0x800 supplementary alignment

The above table is represented in the hexadecimal system. The corresponding binary

and decimal conversion is shown in Table 4.3.

Table 4.3: Bitwise Flag of SAM FLAG- binary to decimal conversion

Bit Binary Decimal
0x1 1 1
0x2 10 2
0x4 100 4
0x8 1000 8
0x10 100000 16
0x20 1000000 32
0x40 10000000 64
0x80 100000000 128
0x100 1000000000 256
0x200 10000000000 512
0x400 100000000000 1024
0x800 1000000000000 2048

The value for each bit is set to 0 or 1 based on the description, with 0 being no and 1

being yes. Thus if a sequencing segment which has been mapped has a value of 64,

it is the first segment in the template (Table 4.1, Table 4.2). Each mapped segment

 50

will have a value as represented in the decimal system in the SAM file. Thus a value

of 99 equals 64+32+2+1. The corresponding natural language interpretation based

on the tables 4.1 and 4.2 will be as below:

FLAG Bit Description
64 0x40 the first segment in the template
32 0x20 SEQ of the next segment in the template

being reversed
2 0x2 each segment properly aligned according to

the aligner
1 0x1 template having multiple segments in

sequencing
Thus the read with a SAM flag of 99 meant it mapped correctly. The conversion of

SAM flag values to the corresponding interpretation can be done using one of the

utilities of PICARD tool suite.12

CIGAR String: The sixth field in a SAM file is represented by the ‘CIGAR’ string. Just

as ‘FLAG’ is used to describe the overall information of sequence read in terms of

mapping to the reference genome, ‘CIGAR’ string explains similar information in

terms of mapping at the base-pair level. Thus each base in a sequence read will have

any one of the CIGAR values listed in Table 4.4.

Table 4.4: CIGAR String

Operation BAM Description
M 0 alignment match (can be a sequence match or

mismatch)
I 1 insertion to the reference
D 2 deletion from the reference
N 3 skipped region from the reference
S 4 soft clipping (clipped sequences present in SEQ)
H 5 hard clipping (clipped sequences NOT present in

SEQ)
P 6 padding (silent deletion from padded reference)
= 7 sequence match
X 8 sequence mismatch

12 PICARD tool webpage: http://picard.sourceforge.net/index.shtml,
http://picard.sourceforge.net/explain-flags.html

http://picard.sourceforge.net/index.shtml
http://picard.sourceforge.net/explain-flags.html

 51

An example of a sequence read mapped to the reference genome can be represented

as:

Reference Genome Sequence: A T T T G C A T C C C G T A T T G G C A
Query Read Sequence: A T T T G C T C C C G A T A T T G G C A
CIGAR String: 6M1D5M1I5M 6 Match, 1 Deletion, 5 Match, 1 Insertion, 8 Match

Reference Genome Sequence: A T T T G C A T C C C G T A T T G G C A
Query Read Sequence: A T T T C A T C C C G T A g g g g g
CIGAR String: 4M1D9M5S 4 Match, 1 Deletion, 9 Match, 5 Soft clipped

The CIGAR string informs about how many insertions and deletions of base pairs is

needed to be done in the query sequence for the mapping tool to align the read to a

given location on the reference genome.

FLAGs for read extraction: All mapping tools will give the output in SAM format with

a FLAG assigned. The purpose of read extraction is to identify those reads that did

not have enough information contained in the sequence for the mapping tool to align

it at the correct location. This information is extracted using the FLAG field and

‘CIGAR’ string explained in Section 4.2.1. The FLAG fields used for extraction are

shown in Table 4.5.

 52

Table 4.5: FLAGs for read extraction

Flag Fields set to derive
Flag

Description of fields for Flag

UNMAPPED READS
101 64+32+4+1 first in pair, mate reverse strand, read

unmapped, read paired
89 64+16+8+1 first in pair, read reverse strand, mate

unmapped, read paired
117 64+32+16+4+1 first in pair, mate reverse strand, read

reverse strand, read unmapped, read
paired

121 64+32+16+8+1 first in pair, mate reverse strand, read
reverse strand, mate unmapped, read
paired

165 128+32+4+1 second in pair, mate reverse strand, read
unmapped, read paired

153 128+16+8+1 second in pair, read reverse strand, mate
unmapped, read paired

185 128+32+16+4+1 second in pair, mate reverse strand, read
reverse strand, read unmapped, read
paired

181 128+32+16+8+1 second in pair, mate reverse strand, read
reverse strand, mate unmapped, read
paired

69 64+4+1 first in pair, read unmapped, read paired
73 64+8+1 first in pair, mate unmapped, read paired
133 128+4+1 second in pair, read unmapped, read

paired
137 128+8+1 second in pair, mate unmapped, read

paired
77 64+8+4+1 first in pair, mate unmapped, read

unmapped, read paired
141 128+8+4+1 second in pair, mate unmapped, read

unmapped, read paired

READS WITH NO INFORMATION ON MAPPING
65 64+1 first in pair, read paired
129 128+1 second in pair, read paired
81 64+16+1 first in pair, read reverse strand, read paired
97 64+32+1 first in pair, mate reverse strand, read

paired
145 128+16+1 second in pair, read reverse strand, read

paired
161 128+32+1 second in pair, mate reverse strand, read

paired
113 64+32+16+1 first in pair, mate reverse strand, read

reverse strand, read paired
177 128+32+16+1 second in pair, mate reverse strand, read

reverse strand, read paired

 53

Flag Fields set to derive
Flag

Description of fields for Flag

READS WITH IMPROPER ORIENTATION
115 64+32+16+2+1 first in pair, mate reverse strand, read

reverse strand, read mapped in proper pair,
read paired

179 128+32+16+2+1 second in pair, mate reverse strand, read
reverse strand, read mapped in proper pair,
read paired

67 64+2+1 first in pair, read mapped in proper pair,
read paired

131 128+2+1 second in pair, read mapped in proper pair,
read paired

4.2.2 Read extraction algorithm
Perl script algorithm to extract the reads using the ‘Flag’ field and ‘CIGAR’ string was

used as described in Table 4.6.

Table 4.6: Read_Extract Algorithm

Assumption: The input file has to be in BAM/SAM
format.

Creating FASTA
file from BAM
output of mapping
tool

Input Arguments for file name;
 if (file is in SAM/BAM format)
 { Create output files, both FASTA and SAM;}
 Else
 {output error to screen}
Matchlist array=(List of FLAGs)

Creates input
argument array
and array of
FLAGs to be used,
output files with
.fa and .sam
extension

While {
 Read each line of SAM/BAM file;
 Split into fields based on delimiter;
 Set fields 0: Read Identifier
 1: FLAG
 5: CIGAR
 8: TLEN
 9: SEQUENCE as variables;

Variables identified
for read extraction

 If (readcounter==1)
 {Calculate 30% of read length
 Create pattern for longest continuous
 ‘N’s which equals 30% of read length
 Increment readcounter}

Creates ‘NNNN’
pattern which is
30% of read
length to search
for in SEQUENCE;
pattern created
just once

 If (currentReadIdentifier==previousReadIdentifier Matches FLAG

 54

 AND
 (currentReadIdentifier OR previousReadIdentifier
 == matchlist array))
 { if (‘N’ pattern not found)
 {print to output FASTA file with <RID1>/
 <RID2> as suffix to identify two reads of a pair
 and also entire line to SAM file}
 }
} END OF WHILE LOOP

Close all files

array and extracts
only those reads
where both reads
of a pair are
present and did
not have more
than 30% ‘N’s. It
further adds
identifier <RID1>,
<RID2> to keep
paired end reads
information

The output from the extraction process is saved in both FASTA and SAM format. The

FASTA file serves as the input for BLAT mapping tool. Both reads of a pair now have

a unique identifier (RID1, RID2) which is an important addition in this step.

4.3 Re-alignment Using BLAT

4.3.1 The need for BLAT

BLAT which stands for BLAST-like alignment tool was developed in 2001 by James

Kent at University of California, Santa Cruz. The popular alignment tool BLAST

(Altschul, Gish, Miller, Myers, & Lipman, 1990) developed by the NCBI uses the

Smith-Waterman algorithm (Smith et al., 1981) to do local alignment of a defined

length. The extension is done such that further extension of the segment will not

improve the score.

BLAT (Kent, 2002) was used primarily because of its speed and comparable output

to BLAST. For example a sample output from the simulated data of translocations

had FLAGs set as 117 and 153 such that the first read was unmapped and the

second read mapped to a region with 100% match (Figure 4.2). The output from

BLAST and BLAT are shown in Figures 1 and 2. BLAT is very similar to BLAST in

terms of its search algorithm but differs in the fact that BLAST builds an index of the

 55

query to search through its database, while BLAT used the database to build its index

and search through the query which significantly affects search time.

Figure 4.2: Sample paired-end read of simulated dataset: SAM format

BLAST output for the first segment of the pair (with FLAG=117) showed a match

with 56 regions in the ‘Human plus Transcript’ database and MegaBLAST algorithm

(Figure 4.3). The corresponding mate segment of the pair (with FLAG=153) showed

match with 200 regions in the same database and same algorithm (Figures 4.4).

 56

Figure 4.3. MegaBLAST output with defaults for query sequence pair1

 57

Figure 4.4: MegaBLAST output with defaults for query sequence pair2

 58

For the same two query sequences, BLAT output is represented below (Figures 4.5,

4.6).

Figure 4.5: BLAT output with defaults for query sequence pair1

Figure 4.6: BLAT output with defaults for query sequence pair2

The BLAT output was comparable with BLAST and took less time even with a web

interface. BLAT had 200+ entries for each query pair and showed significant identity

with chromosome 12 for sequence pair 1 (Figure 1 and 2) and chromosome 4 for

sequence pair 2. More importantly, BLAST did not show any output if the option for

filtering in repeat regions was turned on. BLAT does not have such an option and

gives all possible hits.

4.3.2 BLAT alignment method used in tool

We used the FASTA output from the read extraction as the input for BLAT tool. BLAT

can be run as server-client interface where the user creates a server (gfServer) that

 59

keeps the genome index in memory while the client (gfClient) is used to input query

sequences that are sent to the gfServer. The server-client program has also been

combined into a single standalone program such that the database and query are

sent as arguments to the program. Instructions on setting up the client and options

used by BLAT are provided in Appendix B. A perl script was written that allows the

user to set up the server-client interface in a single step. A pre-requisite for this was

that the 2-bit file for the genome needs to be made using a BLAT-faToTwoBit

program. This program converts a FASTA file into “.2bit” format that is then used by

gfServer to create the reference genome index file. In order to speed up the process,

the reference genome was split by chromosome, and the query was run against each

database in parallel.

We used BLAT-version 35.1 to run the queries with minimum tile match of 4 and

minimum identity of 95%. These queries were run in parallel, one for each

chromosome. Output from BLAT is presented in the psl format (Appendix B, BLAT

specification) which has the fields as defined in Table 1.1. The output from each

chromosome mapping was finally merged together and sorted by ‘Identifier’ (field

10), ‘Chromosome’ (field 14) and ‘Start position’ (field 16) to get the sorted psl

output file.

 60

Table 4.7: BLAT output file format: psl

Field

Field Names
(Type)

Description

1 Matches
(int unsigned)

 Number of bases that match that aren't repeats

2 Mismatches
(int unsigned)

 Number of bases that don't match

3 repMatches
(int unsigned)

 Number of bases that match but are part of repeats

4 nCount
(int unsigned)

 Number of 'N' bases

5 qNumInsert
(int unsigned)

 Number of inserts in query

6 qBaseInsert
(int unsigned)

 Number of bases inserted in query

7 tNumInsert
(int unsigned)

 Number of inserts in target

8 tBaseInsert
(int unsigned)

 Number of bases inserted in target

9 Strand
(char(2))

 + or - for query strand optionally followed by + or –
for target strand

10 qName
(varchar(255))

 Query sequence name

11 qSize
(int unsigned)

 Query sequence size

12 qStart
(int unsigned)

 Alignment start position in query

13 qEnd
(int unsigned)

 Alignment end position in query

14 tName
(varchar(255))

 Target sequence name

15 tSize
(int unsigned)

 Target sequence size

16 tStart
(int unsigned)

 Alignment start position in target

17 tEnd
(int unsigned)

 Alignment end position in target

18 blockCount
(int unsigned)

 Number of blocks in alignment. A block contains no
gaps.

19 blockSizes
(longblob)

 Size of each block in a comma separated list

20 qStarts
(longblob)

 Start of each block in query in a comma separated list

21 tStarts
(longblob)

 Start of each block in target in a comma separated
list

 61

4.4 De-Duplication Algorithm

The de-duplication algorithm essentially checks for rows with the same ‘Identifier’

and ‘Chromosome’ and bins it into buckets of 1000 basepairs windows. The output

for this algorithm produces an SML file, an in-house defined format (Table 4.8).

Table 4.8: De-Duplication Algorithm

Assumption: The input file is in psl format which has
been sorted by ‘Read identifier’, ‘Chromosome’ and
‘Start Position’

Creating sml file
from psl file

Input Arguments for file name;
 if (file is in sorted psl format)
 { Create output file with sml extension;}
 Else
 {output error to screen}

Creates output file
with .sml
extension

While {
 Read each line of psl file;
 Split into fields based on delimiter;
 Set fields 9:Identifier
 13:Chromosome
 15:Start position
 16:End position
 17:BlockCount as variables;

 Define variables current-range and previous-
 range using GetRange() function return value

Sets variables and
defines new
variables current-
range and
previous-range

If (Prev Identifier not equal Curr Identifier)
 {Insert Read(to output file)}
Else
 if (Prev Chr not equal Curr Chr)
 {if (BlockSize==1)
 {Insert Read(to output file)}
 Else
 if (current-range not equals previous-range)
 {if (BlockSize==1)
 {Insert Read(to output file)}
 }
 }

} END OF WHILE LOOP

Close all files

Bins data in 1000
basepair regions.
If identifiers and
chromosomes are
same, compress
the rows into 1000
basepair bins,
finally filtered on
BlockSize; de-
duplication of rows

Sub GetRange{
 rangeSpan=1000;
 midpoint=(StartPosition+EndPosition)/2
 if (midpoint < rangeSpan)
 {

GetRange function
defines the 1000
base-pair blocks
into which the
consecutive rows

 62

 grange = 1;
 }
 else
 {
 grange = int(midpoint/rangespan) + 1;
 }
 return grange ;
}

with same
identifier and
chromosome are
compressed i.e.
de-duplicated.
Mid-point of length
of mapping region
is used to check
for range span.
The return value
of the function is
the offset for
each bin starting
from 1 for 1-1000
bp bin

Sub InsertRead{
 print ‘Identifier’, ‘Chromosome’, ‘Start position’,
 ‘Start position’, ‘current-range’
}

Output format for
the sml file
defined

Table 4.9: Example sml file from de-duplication algorithm

Identifier Chromo
some

Start
Position

End
Position

Offset
for
Range

4_103112562_103113055
_5:1:0_2:0:0_dedbba<RID>1 4 950 1010 1

4_14019666_14020194
_6:0:0_1:0:0_17f93b6<RID>1 8 999 1010 2

4_4086095_4086615
_3:0:0_2:0:0_a6acbd<RID>1 4 4086515 4086615 4087

4_4086106_4086642
_3:0:0_2:0:0_5cdfa1<RID>1 4 4086105 4086205 4087

4_4086106_4086642
_3:0:0_2:0:0_5cdfa1<RID>2 4 4086542 4086642 4087

 63

4.5 Create_Matrix Algorithm

The SML file created from de-duplication algorithm serves as input file for matrix

creation. The SML file essentially contains all the possible mapping locations for the

queries in PSL file on the reference genome based on BLAT mapping algorithm in

1000 base pair windows.

The Create_Matrix algorithm creates all possible combinations of the read pair (RID1

and RID2), such that each row in output file is the location where readpair1 maps

and the corresponding location where readpair2 maps on the human genome. The

algorithm is defined in Table 4.10. The Create_Matrix algorithm essentially defines

how to capture the NAHR regions and can be represented in the Figure 4.7a, 4.7b.

Output is a MAT file with an example in Table 4.11.

Table 4.10: Create_Matrix Algorithm

Assumption: The input file is in sml format and is
sorted by ‘Read Identifier’ and ‘Chromosome’

Creating mat file from
sml file

Input Arguments for file name;
 if (file is in sorted sml format)
 { Create output files with mat extension;}
 Else
 {output error to screen}

Creates output files
with .mat extension

While {
 Read each line of psl file;
 Split into fields based on delimiter;
 Set fields 1:Identifier
 2:Chromosome
 3:Start position
 4:End position
 5:Range offset;

Sets variables

 If (previous Identifier==current Identifier)
 {Insert Read(to output file)}
 Else
 { Create_Matrix()
 Insert Read()
 }
 If first line of file
 {Insert Read(to output file}
} END OF WHILE LOOP

 64

Close all files
Do UNIX sort on Read1,Read2, Range Offset1,
Range Offset2

Sub Create_Matrix{
 Foreach read1
 {
 Foreach read2
 {
 If (Chromosome and Range offset is same)
 {do not print}
 Else
 {
 If (swapFunction==False)
 {print to outfile read1, read2}
 Else
 {print to outfile read2, read1}
 }
 }
 }
For (read1)
 {
 For (next read1)
 {
 If (Chromosome and Range offset is same)
 {do not print}
 Else
 {
 If (swapFunction==False)
 {print to outfile read1, next read1}
 Else
 {print to outfile nextread1, read1}
 }

 }
 }
}

For (read2)
 {
 For (next read2)
 {
 If (Chromosome and Range offset is same)
 {do not print}
 Else
 {
 If (swapFunction==False)
 {print to outfile read2, next read2}
 Else
 {print to outfile nextread2, read2}
 }
 }

Matrix is created based
on conditions; if both
read pairs map to the
same region we do not
print the output as
these do not suggest a
translocation. Else if
read1 and read2 go on
different locations then
print to outfile.

Second condition
checks for read1 going
to different locations
i.e. the same read
mapping to different
locations and creating a
matrix of these
combinations. Printing
of values is such that
Chromosome field1 is
always less than
Chromosome field2 and
Chromosome X is
always less than
Chromosome Y

Third condition checks
for read2 going to
different locations i.e.
the same read mapping
to different locations
and creating a matrix of
these combinations.
Printing of values is
such that Chromosome
field1 is always less
than Chromosome
field2 and Chromosome
X is always less than
Chromosome Y.

 65

 }
}

Sub InsertRead {
 If (Identifier==Read1)
 { write array for Read1;Chromosome and Offset}

If (Identifier==Read2)
 { write array for Read2;Chromosome and Offset}
}

Creates array for read1
and read 2 and pushes
each read into the
respective array based
on Identifier

Sub SwapFunction{
 Set default SwapFunction return-value==No;
 Create arg1: Chromosome read1
 arg2: Chromosome read2
 arg3: Offset read1
 arg4: Offset read2
 If (Chromosome read1 ==Y and Chromosome
 read2==X)
 { swap return value==Yes}
Else
 If (Chromosomes read1 and 2 are integers and
 Chromosome read1>Chromosome read2)
 { swap return value==Yes }
 Return swap return-value;
}

This function returns a
value of “Yes” if
Chromosome on field1
is greater than
Chromosome in field2.
Y is greater than X as
defined.

Table 4.11: Example ‘mat’ file from create_matrix algorithm

Chromosome1 Offset1 Chromosome2 Offset2
1 1001 4 2021
1 1004 4 5036
1 2385 8 6236
1 5321 8 8288
4 4087 8 6974
4 4087 8 6974
4 4087 8 6974

 66

Figure 4.7a: Create_Matrix Algorithm: Matrix creation with all possible combinations
of read1 and read2 excluding reads where both go to same chromosome.

 67

Figure 4.7b: Create_Matrix Algorithm: Swapping reads such that lower number
chromosome is always on the left which makes the counting process efficient.

Non-allelic homologous recombination regions are defined by their sequence identity

(>95%) with different regions of the genome and greater than 5kb in size such that

these form substrates for anomalous pairing during repair. BLAT identifies all

possible regions such that read-pair1 maps to one region and read-pair2 maps to

another region which will therefore identify potential NAHR regions. The

Create_Matrix algorithm, in creating the matrix, identifies potential NAHR pairs and

therefore potential translocation breakpoints. Further support is added if read1 also

maps to both locations on different chromosomes identified as potential breakpoint

regions (e.g. Read1 mapping to chromosome 4 and chromosome 8) suggesting that

these regions could be homologous and share significant identity. The purpose of

 68

swapping the reads is to sort the reads for easier counting. This finally gives the

number of reads supporting a translocation identified by the matrix.

4.6 Write_Count Algorithm

Output from matrix creation is a sorted MAT file and is the input for the write_count

algorithm. The output for the write_count algorithm is a CHR file as shown in

example Table 4.12.

Table 4.12: Write_count Algorithm

Assumption: The input file is in mat format and is
sorted by field1, field3, field2 and field4 in that
order, i.e. Chromosome1, Chromosome2, Offset1,
Offset2

Creating chr file from
mat file

Input Arguments for file name;
 if (file is in sorted .mat format)
 { Create output files with .chr extension;}
 Else
 {output error to screen}

Creates output files
with .chr extension

While (Read each line of mat file)
 {
 If (previous record==current record)
 {Count=1; Increment count}
 Else
 {WriteCount(to output file)}
 } END OF WHILE LOOP

Close all files

Counts number of
records which are same

Sub WriteCount{
 Print each unique row with count;
}

Creates ‘.chr’ output file
format

Table 4.13: Example ‘chr’ file from write_count algorithm

Chromosome1 Offset1 Chromosome2 Offset2 Count
1 1001 4 2021 1
1 1004 4 5036 1
1 2385 8 6236 1
1 5321 8 8288 1
4 4087 8 6974 3

 69

4.7 Get_HiC-Score Algorithm

The last step in the process was to define the probability of calling a translocation as

not false. We did not used distribution of insert size within the dataset to define this

probability as is done by other variant calling programs (SVDetect, BreakDancer,

PEMer). The cancer genome is highly heterogeneous with various clonal populations

showing different types of variation signatures. Even with a 30X coverage of

sequencing experiment, the likelihood of picking a variant in the heterogeneous

cancer sample cannot be defined based on the distribution of reads in the current

sample. We therefore wanted to capture as many variants as we could define using

our algorithm and assign the probability based on an informative prior. This was

determined using Hi-C experiments (Lieberman-Aiden et al., 2009) which takes into

account the three dimensional positioning of the genomes within a cell and defines

the probability of two regions of the genome interacting based on their physical

proximity to each other, as determined experimentally. For the purpose of this

analysis we used the database created by Lieberman-Aiden’s groups at

BROAD/MIT.13 The datasets contain Pearson’s correlation coefficient for each

combination of chromosome in one million base-pair (1Mbps) windows. This is the

highest level of resolution for these experiments, and we had our variants defined in

1000 basepair windows. We had to accept this as a limitation of the study.

13 Hi-C database webpage: http://hic.umassmed.edu/welcome/welcome.php

http://hic.umassmed.edu/welcome/welcome.php

 70

Table 4.14: Get_HiC-Score Algorithm

Assumption: The input file is in chr format and is
sorted by field1(chr1), field3(chr2), field2(Offset1)
and field4(Offset2) in that order

Creating FASTA file
from BAM output of
mapping tool

Input Arguments for file name, path to Hi-C file;
 if (file is in sorted .chr format)
 { Create output files with .score extension;}
 Else
 {output error to screen}

Creates output files
with .score extension

While (Read each line of chr file)
 {
 Split into fields based on delimiter;
 Set fields 1: Chromosome1
 2: Offset1
 3: Chromosome2
 4: Offset2
 5: Chromosome Count
 6: Current Hi-C filename
Create Hi-C filename by dynamically setting
values of chromosome1 and chromosome2 on Hi-C
filename template

If (current Hi-C filename not equals previous Hi-C
filename)
 {
 Open Hi-C file ()
 }
row-midrange= CalcMidPosition(offset1)
column-midrange=CalcMidPosition(offset2)
rowposition=GetFilePosition(row-midrange);
colposition=GetFilePosition(column-midrange);
score = GetHi-CScore()
CalcRange(Offset1,Offset2)
If (score>0)
 {
 Print to outfile chr1,start1,end1,chr2,start2,end2
 numberOfReads, scorefrom Hi-C
 }
} END OF WHILE LOOP

Close all files

Open each Hi-C file only
once and calculate
midrange of row and
column offsets. Use
these offsets to get the
exact column and row
position in Hi-C file,
open Hi-C file and
extract the score for x-
row and y-cloumn.
Only Hi-C scores with
Pearson’s probability
correlation greater than
zero printed to output

Sub Open Hi-C file{
 Concatenates Hi-C filepath variable to dynamically
created current Hi-C filename and open
corresponding file.
Puts entire file into @filearray;
}

Opens Hi-C file bases
on chromosome1 and
chromosome2 values
and their offsets. Puts
the entire file into file
array which is scanned
in the GetHi-CScore
function for getting
score.

 71

Each Hi-C file is opened
only once since ‘chr’ file
is sorted by
chromosomes and
therefore all
corresponding Hi-C
scores for each
combination of row and
column offset values
can be obtained in one
open file function call.

Sub CalcMidPosition {
 chrspan=1000;

end = (column_offset * $chrspan)-1;
 start = end - (chrspan-1);
 cpos = (end+start)/2;

return cpos;
}

Calcuate mid position of
Offset. Offsets are in
the range of 1000
basepairs. Start and
end values for offsets
are calculated and a
midpoint for the offset
is obtained and
returned as function
value.

Sub GetFilePosition {
 readpos=Offset midpoint of chr1/chr2
 colspan =1000000; #hi-c file span by million

 pos = 0;
 if (readpos < colspan)
 {
 pos = 1;
 }
 else
 {
 pos = (readpos/colspan) + 1;

 }

 return pos ;
}

Hi-C files are in 1million
basepair range. Get
corresponding Hi-C file
positions based on
Offset midpoints
(CalcMidPosition
function) and return the
corresponding
row/column position for
Hi-C file

Sub GetHi-CScore {
 @cline= Split @filearray on rowpos ;
 Score=cline[colpo];
 Return score;
}

Scans the @filearray
(the entire Hi-C file for
a chromosome row-
column combination) to
get the exact row and
column position for Hi-
C score and return
score

Sub CalcRange
{
 chrspan = 1000;
 r1end = (r1col * chrspan)-1;
 r1start = (r1end-(chrspan-1);
 r2end = (r2col * chrspan)-1;

Calculates start and
end positions of offset1
and offset2

 72

 r2start = r2end-(chrspan-1);

}

The output from this program is as represented in Table 4.15 that is presented as

the final output to the user. Further, the algorithm filtered out any Hi-C scores below

zero and only reported translocations with positive Hi-C probability scores.

Table 4.15: Example ‘score’ file from get_HiC-score algorithm

Chromo
some1

Start End Chromo
some2

Start End No.
of
reads

Hi-C
Score

chrX 0 999 chrX 1000 1999 2 1
chrX 4000 4999 chrX 9000 9999 3 1
chr1 5170000 5170999 chrX 4620000 4620999 2 0.050044
chr1 5193000 5193999 chrX 17311000 17311999 2 0.018999
chr1 5236000 5236999 chrX 2850000 2850999 8 0.061457
chr1 16000 16999 chr20 45680000 45680999 3 0.089301
chr1 23000 23999 chr20 63000 63999 2 0.359193

 73

4.8 Proof of Concept

BLAT provides various input options to the user that can change the output

significantly based on the user requirements. In our case, since we were looking for

regions which share 95% sequence identity and can therefore give more than one

significant hit, we wanted to keep the minIdentity option as 95%. As a proof of

concept we created a single translocation in chromosomes 4 and 8

(t4;8)(p16.3;p23.1) with breakpoint of chromosome 4 at chr4: 4086365 and on

chromosome 8 at chr8: 6973436 (Figure 4.8).

Figure 4.8: Translocation (4;8); derivative chromosomes created using (Hiller,

Bradtke, Balz, & Rieder, 2005).

The simulation data had derivative chromosomes 4 and 8 as well as normal

chromosome 4 and 8. This was created using the perl script provided by Dr Hayes for

inserting manufactured translocations in the normal human genome. This mini

FASTA file containing normal chromosome 4 and 8 and the derivative chromosome 4

and 8 was mapped to reference genome hg19 (UCSC) using BWA-0.5.9. The BAM file

from this alignment was used as input for extraction of anomalous reads (Section

4.1). Since this simulated data only had chromosomes 4 and 8, the database file for

Chr4

Chr8

 74

BLAT was also only created for chromosome 4 and 8. BLAT was run on FASTA output

file obtained from the extraction algorithm applied to the BWA-alignment BAM file.

There were 2,441,572 anomalous reads identified from the extraction step. We used

two BLAT parameters, minMatch and minIdentity to test for BLAT output. These are

defined in the BLAT manual (Appendix B) as below:

-tileSize=N sets the size of match that triggers an alignment, usually between 8 and

12. Default is 11 for DNA and 5 for protein.

-minMatch=N Sets the number of tile matches. Usually set from 2 to 4. Default

is 2 for nucleotide, 1 for protein.

-minIdentity=N Sets minimum sequence identity (in percent).Default is 90 for

nucleotide searches, 25 for protein or translated protein searches.

We kept the default tile size of 11 for this analysis and adjusted the other two

parameters. The output from BLAT is summarized in Table 4.16.

Table 4.16: BLAT parameter adjustment results

Parameter Number of
alignments

Number of
translocation
reported

Number of
reads
supporting

Defaults:
minIdentity=90
minMatch=2

15111989 339887 3

minIdentity=95
minMatch=2

7482820 141527 2

minIdentity=99
minMatch=2

1073276 8733 0

minIdentity=95
minMatch=4

6620511 118282 0

minIdentity=99
minMatch=4

934711 8166 0

 75

Testing the algorithm with a simulated single translocation (t(4;8)) dataset showed

that adjusting BLAT parameters to 95% identity and minimum tile match of two,

captured the positive translocations while reducing false positive by almost a third

(Table 4.16). Therefore these BLAT options were used in the final simulated dataset

analysis. When tightening the alignment option to report 99% identity many false

positives are reduced though at the cost of true positives. Since the aim was to

detect these events which are most likely to be missed by BWA alignment tool and

since 95% identity is the criteria for a non-allelic homologous recombination

substrate, we used this option at the cost of reporting many false positives.

 76

5. SIMULATED DATA ANALYSIS

5.1 Creating Simulated Dataset

The idea for creating a simulated dataset was to include known documented

translocations that were biologically plausible and be able to test the algorithm on

this dataset. An attempt to define drivers of translocation based on genomic

architecture was done by Ou et al., (Ou et al., 2011) whereby they demonstrated

recurrent translocation driven by non-allelic homologous recombination in unrelated

families. They also mapped the regions which could be involved in potential

translocation computationally using low-copy repeat regions in the genome which

shares >94% sequence identity and more than 5kb in length. They were able to

experimentally verify the computationally predicted translocations for the three

regions identified in Table 5.1.

Burrow et al. analyzed recurrent translocation in cancers from various databases and

tried to define the characteristics of these translocations. They found that over 50%

of the recurrent translocations mapped to fragile sites, defined as regions on the

genome that show multiple gaps (Burrow, Williams, Pierce, & Wang, 2009). We tried

to derive our list of translocations from this comprehensive list (Appendix C) that

could be near NAHR regions and found seven listed in Table 5.1. This list of

translocation breakpoints was used to create derivative chromosomes using the

translocation perl script mentioned in section 4.8.

 77

Table 5.1: Translocation list used in creating simulated dataset

Translocation from Burrow et
al paper

Breakpoint
First chr.

Breakpoint
Second chr.

Gene
First chr

Gene
Second
chr.

t(1;22)(1q21;22q11) 142749690 19819306 BCL9 IGL@
t(12;13)(12q14;13q13) 50787223 40914700 HMGA2 LHFP
t(19;22)(19q13;22q11) 63789868 49571663 IGL@ BCL3
t(12;16)(12p13;16p13) 8270437 5069858 LAG3 MYH11
t(16;21)(16q24.3;21q22.12) 88815835 46924874 RUNX1 CBFA2T3
t(9;14)(9p21;14q11) 27286005 42868270 TRA@ CDKN2A
t(7;11)(7q34;11p15) 128044540 124564 TRB@ LMO1
Translocation from Ou et al.
paper (Ou et al., 2011)

Breakpoint
First chr.

Breakpoint
Second chr.

Gene
First chr

Gene
Second
chr.

t(4;8)(4p16.3;8p23.1) 4088911 6992273 NA NA
t(4:11)(4p16.2;11p15.4) 3852863 3569449 NA NA
t(8;12)(8p23.1;12p13.31) 6992273 8367384 NA NA

This simulated dataset included normal chromosomes and the derivative translocated

chromosomes. The FASTA file was used to create simulated data using wgsim

program that is a part of SAMTOOLS suite. A description of the options used for this

program is presented in Table 1.1.

Table 5.2: Simulation read creating program-‘wgsim’ options

Options Type Description
e FLOAT base error rate [0.020]
d INT outer distance between the two ends [500]
s INT standard deviation [50]
N INT number of read pairs [1000000]
1 INT length of the first read [70]
2 INT length of the second read [70]
r FLOAT rate of mutations [0.0010]
R FLOAT fraction of indels [0.10]
X FLOAT probability an indel is extended [0.30]
c NA generate reads in color space (SOLiD read
C NA show mismatch info in comment rather than
h NA haplotype mode

 78

At the very least, it requires input FASTA file (translocation FASTA file) and length of

the reads. In order to get 30X coverage of the genome we needed to define the

number of read pairs needed (-N, Table 1.1). Coverage is calculated using equation

1 below:

(1) 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑎𝑑 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠

𝐻𝑎𝑝𝑙𝑜𝑖𝑑 𝐺𝑒𝑛𝑜𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

Thus for 30X coverage and read length of 100 basepairs, we calculated the number

of read required for the haploid genome of length 3x109 to be 900 million reads.

Output from this program gives two FASTQ files, one each for a paired end library.

Further, a random subsample of this dataset was produced to simulate 15X

coverage. BWA mapping tool was used to produce the alignment BAM files. The BAM

file was then run against current tools, namely SVDetect-0.7f and BreakDancer-1.1.

The process flow for our algorithm was as described in Figure 5.1.

Figure 5.1. Process flow of novel algorithm

 79

5.2 Simulated Data Analysis Results

SVDetect could correctly identify four out of the ten translocations created (4/10)

and BreakDancer detected six out of ten (6/10) briefly summarized in Table 5.3.

Table 5.3: Comparison of current tools with novel algorithm

Translocation from Burrow et
al paper

SVDetect BreakDancer

Novel
Algorithm

t(1;22)(1q21;22q11) Detected No Detected
t(12;13)(12q14;13q13) Detected Detected Detected
t(19;22)(19q13;22q11) No No Detected
t(12;16)(12p13;16p13) Detected Detected Detected
t(16;21)(16q24.3;21q22.12) No No Detected
t(9;14)(9p21;14q11) Detected Detected Detected
t(7;11)(7q34;11p15) No No Detected
Translocation from Ou et al.
paper (Ou et al., 2011)

SVDetect BreakDancer

Novel
Algorithm

t(4;8)(4p16.3;8p23.1) No Detected Detected
t(4:11)(4p16.2;11p15.4) No Detected Detected
t(8;12)(8p23.1;12p13.31) No Detected Detected

The novel algorithm was able to detect all the translocations at a 1000 base pair

resolution. The number of reads supporting a translocation varied from 3 to 50. The

three translocations that were not detected by either SVDetect or BreakDancer,

t(19;22), t(16;21) and t(7;11), all had less than 10 reads supporting the

translocation in the novel algorithm output. The score file output is represented in

Table 5.4.

 80

Table 5.4: Final score file output of novel algorithm 30X coverage

Chr_1 Start End Chr_2 Start End No_
 of
reads

Pearsons
Corr-
elation
coeff
icient

chr1 142749000 142749999 chr22 19819000 19819999 3 0.01779

chr12 50786000 50786999 chr13 40914000 40914999 3 0.00739

chr12 50787000 50787999 chr13 40914000 40914999 17 0.00739

chr19 63789000 63789999 chr22 49571000 49571999 4 0.30154

chr12 8270000 8270999 chr16 5069000 5069999 29 0.28795

chr16 88815000 88815999 chr21 46924000 46924999 9 0.42250

chr9 42867000 42867999 chr14 27285000 27285999 15 0.25198

chr9 42868000 42868999 chr14 27285000 27285999 23 0.25198

chr9 42868000 42868999 chr14 27286000 27286999 23 0.25198

chr7 128044000 128044999 chr11 124000 124999 6 0.25539

chr4 4088000 4088999 chr8 6991000 6991999 2 0.21970

chr4 4088000 4088999 chr8 6992000 6992999 15 0.21970

chr4 3852000 3852999 chr11 3569000 3569999 23 0.1985

chr8 6991000 6991999 chr12 8367000 8367999 7 0.24114

chr8 6992000 6992999 chr12 8367000 8367999 51 0.24114

SVDetect, although correctly identified chromosome 1 breakpoint for translocation

t(1;22) did not identify chromosome 2 breakpoint as precisely and had very few

reads supporting this translocation (Table 5.5). BreakDancer did a very good job at

breakpoint resolution but could only detect six out of ten (Table 5.6) while SVDetect

picked four (Table 5.5).

 81

Table 5.5: SVDetect output (trimmed): simulated data 30X coverage

SV_type BAL_
type

chrom
o
some1

chrom
o
some2

no
_pai
rs

final
_sco
re

break
point1

break
point2

INV_
TRANSLOC

UNBAL chr1 chr22 3 1 14274984-
142750363

19960253-
19960750

INV_
TRANSLOC

UNBAL chr1 chr22 1 1 14274900-
142749572

19958766-
19959329

TRANSLOC UNBAL chr1 chr22 1 1 14274981-
142750378

22001986-
22002549

INV_
TRANSLOC

UNBAL chr12 chr13 1 1 50786416-
50786979

40903686-
40904249

TRANSLOC UNBAL chr12 chr16 24 0.83 8270917-
8271106

5069215-
5069396

INV_
TRANSLOC

UNBAL chr9 chr14 36 0.88 42867615-
42867796

27285344-
27285586

Table 5.6: BreakDancer output: simulated data 30X coverage

Chrom
osome1

Pos1 Chrom
osome2

Pos2 Type Size Score Number
of Reads

chr4 3852787 chr11 3569702 CTX -499 99 4
chr4 3853180 chr11 3569260 CTX -499 99 6
chr4 4088565 chr8 6992324 CTX -499 99 2
chr4 4088649 chr8 6992415 CTX -499 99 2
chr8 6992535 chr12 8367239 CTX -499 99 2
chr8 6992629 chr12 8367239 CTX -499 99 3
chr8 6991970 chr12 8367520 CTX -499 99 3
chr8 6992195 chr12 8367520 CTX -499 99 3
chr8 6992195 chr12 8367640 CTX -499 99 5
chr9 42868057 chr14 27285682 CTX -499 99 19
chr12 8270277 chr16 5069881 CTX -499 99 3
chr12 8270277 chr16 5069996 CTX -499 99 5
chr12 8270277 chr16 5070133 CTX -499 95 2
chr12 8270357 chr16 5070133 CTX -499 99 3
chr12 8270471 chr16 5069481 CTX -499 99 3
chr12 8270742 chr16 5069481 CTX -499 98 2
chr12 8270742 chr16 5069585 CTX -499 99 11
chr12 50787289 chr13 40914358 CTX -499 99 3
chr12 50787452 chr13 40914358 CTX -499 99 8

 82

As described, cancer genome complexity is overburdened further by factors like

sample collection, tumor heterogeneity (Ulahannan, Kovac, Mulholland, Cazier, &

Tomlinson, 2013), and platform specific issues like AT-rich and GC-rich bias in the

Illumina platform (Metzker, 2010). Even with a 30X coverage of the genome and a

100% representation of the alternative allele, the tools did not detect 40% to 60% of

the simulated translocations. For the next step the dataset was randomly sampled so

that 50% of the reads were picked to do analysis on a 15X coverage dataset. This is

more realistic for current whole-genome sequencing strategies of cancer. 30X or

greater coverage is usually reserved for exome-sequencing mainly due to cost

constraints. Even if a cancer genome is sequenced at 30X or greater, the inherent

intercellular heterogeneity coupled with the aneuploidy that typifies most tumors

means that a given translocation may be represented by even fewer supporting

reads for the regions of interest.

Even with 15X coverage, our novel algorithm tool was able to detect all ten

simulated translocations (Table 5.7) albeit with fewer reads supporting the

translocations (compare with Table 5.4).

 83

Table 5.7: Final score file output of novel algorithm 15X coverage

Chr_1 Start End Chr_2 Start End No_
 of
reads

Pearsons
Corr-
elation
coeff
icient

chr1 142749000 142749999 chr22 19819000 19819999 2 0.01779
chr12 50786000 50786999 chr13 40914000 40914999 2 0.00739
chr12 50787000 50787999 chr13 40914000 40914999 7 0.00739
chr19 63789000 63789999 chr22 49571000 49571999 3 0.30154
chr12 8270000 8270999 chr16 5069000 5069999 14 0.28795
chr16 88815000 88815999 chr21 46924000 46924999 5 0.42250
chr9 42867000 42867999 chr14 27285000 27285999 10 0.25198
chr9 42868000 42868999 chr14 27285000 27285999 8 0.25198
chr9 42868000 42868999 chr14 27286000 27286999 14 0.25198
chr7 128044000 128044999 chr11 124000 124999 3 0.25539
chr4 4088000 4088999 chr8 6992000 6992999 11 0.21970
chr4 3852000 3852999 chr11 3569000 3569999 9 0.1985
chr8 6991000 6991999 chr12 8367000 8367999 4 0.24114
chr8 6992000 6992999 chr12 8367000 8367999 28 0.24114

BreakDancer was only able to detect four (4/10) translocations with 15X coverage

(Table 5.8).

Table 5.8: BreakDancer output: simulated data 15X coverage

Chrom
osome1

Pos1 Chrom
osome2

Pos2 Type Size Score Number
of Reads

chr4 3852745 chr11 3569702 CTX -499 99 3
chr4 3853180 chr11 3569294 CTX -499 99 4
chr8 6992049 chr12 8367520 CTX -499 99 2
chr9 42867966 chr14 27285748 CTX -499 99 5
chr9 42868047 chr14 27285748 CTX -499 99 2
chr12 8270471 chr16 5069481 CTX -499 99 2
chr12 8270566 chr16 5069585 CTX -499 99 2

SVDetect was only able to detect two (2/10) variants (Table 5.9).

 84

Table 5.9: SVDetect output (trimmed): simulated data 15X coverage

SV_type BAL_type Chr_1 Chr_
2

nb
_pair
s

final
_sco
re

break
point1

break
point2

INV_
TRANSLOC

UNBAL chr1 chr22 1 1 142749572-
142749671

19959329-
19959428

TRANSLOC UNBAL chr12 chr13 4 0.8 50786565
-50786795

40915026-
40915369

TRANSLOC UNBAL chr12 chr13 4 0.8 50787552
-50788028

40913925-
40914365

One of the major issues with the novel algorithm is that it gives large number of

false positives despite filtering out variants with negative Hi-C scores. Therefore

distribution-based filtering is another approach to reduce false positives. Frequency

distribution of Hi-C data for chromosome 1 and chromosome 22 showed most of the

regions (1 Mbps windows) with Pearson’s correlation coefficient between 0.03 and

0.09 (Figure 5.2).

 85

Figure 5.2: Hi-C score frequency distribution for chromosome 1 and 22

Setting the filtering cutoff at 0.09 would make the tool miss this translocation while

setting it at the tail end at 0.249 will capture it (Table 5.4).

Frequency distribution of chromosome 12 and chromosome 13 (Figure 5.3) with

cutoff above zero will include the translocation (Table 5.4).

0

1000

2000

3000

4000

5000

6000

-0
.2

80
84

14
76

-0
.2

27
82

75
75

-0
.1

74
81

36
73

-0
.1

21
79

97
71

-0
.0

68
78

58
69

-0
.0

15
77

19
68

0.
03

72
41

93
4

0.
09

02
55

83
6

0.
14

32
69

73
8

0.
19

62
83

63
9

0.
24

92
97

54
1

0.
30

23
11

44
3

0.
35

53
25

34
4

0.
40

83
39

24
6

0.
46

13
53

14
8

M
or

e

Fr
eq

ue
nc

y

Hi-C score bin

Hi-C score frequency distribution
Chr1_Chr22

Frequency

 86

Figure 5.3: Hi-C score frequency distribution for chromosome 12 and 13

Similarly to capture t(12;16), t(19;22), t(16;21), t(9;14), t(7;11), t(4;8), t(4;11),

and t(8;12) we need to include the far right end of the distribution (Figure 5.4,

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11).

Thus, although these translocations had a strong Pearson’s correlation value, filtering

based on distribution will lose these translocations. A filtering method to filter out

variants which are one standard deviation away from the mean in the positive

direction will be a better approach to capture these events.

0

1000

2000

3000

4000

5000

6000

7000

-0
.2

52
46

16
55

-0
.2

02
52

30
06

-0
.1

52
58

43
57

-0
.1

02
64

57
08

-0
.0

52
70

70
6

-0
.0

02
76

84
11

0.
04

71
70

23
8

0.
09

71
08

88
7

0.
14

70
47

53
6

0.
19

69
86

18
5

0.
24

69
24

83
4

M
or

e

Fr
eq

ue
nc

y

Hi-C score bin

Hi-C score frequency distribution
Chr12_Chr13

Frequency

 87

Figure 5.4: Hi-C score frequency distribution for chromosome 12 and 16

0

1000

2000

3000

4000

5000

6000

-0
.2

80
08

16
9

-0
.2

00
94

16
57

-0
.1

21
80

16
25

-0
.0

42
66

15
92

0.
03

64
78

44

0.
11

56
18

47
3

0.
19

47
58

50
5

0.
27

38
98

53
8

0.
35

30
38

57

0.
43

21
78

60
3

0.
51

13
18

63
5

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr12_Chr16

Frequency

 88

Figure 5.5: Hi-C score frequency distribution for chromosome 19 and 22

0

200

400

600

800

1000

1200

1400

1600

1800

-0
.3

49
75

20
59

-0
.2

62
83

11
87

-0
.1

75
91

03
15

-0
.0

88
98

94
43

-0
.0

02
06

85
71

0.
08

48
52

30
1

0.
17

17
73

17
3

0.
25

86
94

04
5

M
or

e

Fr
eq

ue
nc

y

Hi-C score bin

Hi-C score frequency distribution
Chr19_Chr22

Frequency

 89

Figure 5.6: Hi-C score frequency distribution for chromosome 16 and 21

0

500

1000

1500

2000

2500

-0
.2

63
93

50
37

-0
.1

59
24

34
13

-0
.0

54
55

17
89

0.
05

01
39

83
6

0.
15

48
31

46

0.
25

95
23

08
4

0.
36

42
14

70
9

0.
46

89
06

33
3

0.
57

35
97

95
7

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr16_Chr21

Frequency

 90

Figure 5.7: Hi-C score frequency distribution for chromosome 9 and 14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-0
.2

72
69

87
57

-0
.1

98
63

71
72

-0
.1

24
57

55
87

-0
.0

50
51

40
02

0.
02

35
47

58
4

0.
09

76
09

16
9

0.
17

16
70

75
4

0.
24

57
32

33
9

0.
31

97
93

92
5

0.
39

38
55

51

0.
46

79
17

09
5

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr9_Chr14

Frequency

 91

Figure 5.8: Hi-C score frequency distribution for chromosome 7 and 11

0

2000

4000

6000

8000

10000

12000

-0
.2

64
06

34
91

-0
.1

79
56

13
89

-0
.0

95
05

92
88

-0
.0

10
55

71
86

0.
07

39
44

91
5

0.
15

84
47

01
7

0.
24

29
49

11
8

0.
32

74
51

22

0.
41

19
53

32
1

0.
49

64
55

42
3

0.
58

09
57

52
5

0.
66

54
59

62
6

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr7_Chr11

Frequency

 92

Figure 5.9: Hi-C score frequency distribution for chromosome 4 and 8

0

2000

4000

6000

8000

10000

12000

-0
.3

29
20

51
35

-0
.2

62
94

13
92

-0
.1

96
67

76
49

-0
.1

30
41

39
06

-0
.0

64
15

01
63

0.
00

21
13

58

0.
06

83
77

32
3

0.
13

46
41

06
6

0.
20

09
04

80
9

0.
26

71
68

55
2

0.
33

34
32

29
5

0.
39

96
96

03
8

0.
46

59
59

78
1

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr4_Chr8

Frequency

 93

Figure 5.10: Hi-C score frequency distribution for chromosome 4 and 11

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

-0
.2

91
13

89
83

-0
.2

26
56

96
38

-0
.1

62
00

02
93

-0
.0

97
43

09
47

-0
.0

32
86

16
02

0.
03

17
07

74
4

0.
09

62
77

08
9

0.
16

08
46

43
5

0.
22

54
15

78

0.
28

99
85

12
6

0.
35

45
54

47
1

0.
41

91
23

81
6

0.
48

36
93

16
2

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr4_Chr11

Frequency

 94

Figure 5.11: Hi-C score frequency distribution for chromosome 8 and 12

Thus in order to reduce noise, filtering variants with negative correlation coefficients

is an essential first step. Further, arriving at a cutoff by looking at the distribution of

Hi-C scores to filter variants with strong positive correlation can further reduce noise

and fine-tune the tool.

0

1000

2000

3000

4000

5000

6000

7000

8000

-0
.2

91
44

86
75

-0
.2

20
08

84
24

-0
.1

48
72

81
73

-0
.0

77
36

79
22

-0
.0

06
00

76
7

0.
06

53
52

58
1

0.
13

67
12

83
2

0.
20

80
73

08
3

0.
27

94
33

33
5

0.
35

07
93

58
6

0.
42

21
53

83
7

0.
49

35
14

08
8

M
or

e

Fr
eq

ue
nc

y

Hi-C score Bin

Hi-C score frequency distribution
Chr8_Chr12

Frequency

 95

6. DISCUSSION

The aim of this study was to understand if characteristics of the structural variant

made it more or less conducive to detection by current computational methods in

use. We wanted to understand the structural variant in relation to its position in the

genome and determine if this genomic context made some variants more difficult to

be detected by current tools. The human genome is made up of approximately

20,000-25,0000 genes and targeted sequencing of only these known coding regions

covers about 1% of the 3 billion bases of the human genome, i.e. approximately 30

million (Brunham & Hayden, 2013). Applying genome linkage analysis to single-gene

Mendelian disease has met with considerable success as in cystic fibrosis (Kerem et

al., 1989; Rommens et al., 1988) and Huntington’s disease (Fox, Bloch, Fahy, &

Hayden, 1989). Application of next generation sequencing efforts to Mendelian

disorders has led to discovery of more than 3000 genes associated with a

phenotypically visible trait and more than 5000 phenotypic traits with known

molecular basis as recorded to date in the Online Mendelian Inheritance in Man

(OMIM database) (McKusick, 2014). Discovery of these specific genes has

tremendous value in the predictive capability of genetic diagnosis through

biomarkers as in Alzheimer as well as targeted gene therapy as in cystic fibrosis with

the mean survival rate of cystic fibrosis going from 6 months in 1930’s to 40 years in

1990’s (Ikpa, Bijvelds, & de Jonge, 2014) due to novel therapy. The impact of

genotype-to-phenotype translation, while more obvious in Mendelian diseases, are

not so easily translated in complex disease with possible multi-gene etiology.

Translational bioinformatics tries to fill up this gap using high throughput data

analysis techniques. Cancers are even more complicated due to presence of somatic

variants that are not inherited and therefore more difficult to define. Further, tumors

are highly heterogeneous, and therefore the presence of a variant will be highly

 96

dependent on sample extraction and preparation. Thus, the aim is to identify the

best approach to detect novel variants in a heterogeneous sample with highly

mutated genome. The currently available tools were designed around the normal

genome architecture assuming 100% allele frequency. Cancer genome does not

conform to this assumption.

6.1 Repeat Analysis

The study analysis started with the hypothesis that the tools were failing to detect

variants due to presence of these variants in repeat regions. If the mapping tools are

unable to map reads uniquely, the tools will not be able to pick these variants. The

first analysis for this study tried to define the characteristics of the validated variants

in 1000 genomes trio dataset using current variant detection algorithms. The

purpose was to understand the reason these tools were missing to detect the

validated variants. SVDetect was chosen for this analysis due to its high false

positive rate and thus be highly sensitive. Since the idea was to define context, true

positive was defined as those variants detected by SVDetect with at least 10% of

insert size overlap with variants in the 1000-genome validated file. Although less

than 50% of the true variants had some overlap with the variants detected by the

tools, their representation in the repeat regions was not as hypothesized. The

hypothesis that structural variants missed by the tools were more likely to be in

repeat regions was rejected by the analysis. A greater percent of the variants

detected by the tools had repeats compared to variants not detected by the tools.

This was consistent across all four variant types, deletion, mobile element insertion,

tandem duplication, and novel sequences classified in the 1000-Genomes dataset.

Repeat structure was not driving the tool’s inability to pick less than 50% of true

variants. Since 50% of the human genome is made up of repeats, this very broad

classification of context did not prove very useful. Since the study was trying to

 97

design a tool specific for translocation, the context was now focused towards

mechanisms driving translocation which can be captured informatically.

6.2 Algorithm Development and Simulated Data Analysis

Translocations lead to genetic imbalances and are a precursor to cancers. Detection

of the same recurrent translocation in four unrelated families by Ou et al. (Ou et al.,

2011) led to implication of non-allelic homologous recombination (NAHR) as the

driver for these variants in all these subjects. NAHR occurs due to aberrant DNA

repair mechanism between regions that share considerable homology, also known as

low copy repeat regions (LCRs). Unlike repeat elements, these LCRs are several

thousand basepairs long and share greater than 95% identity. Using these

characteristics, Ou et al. computationally mapped the NAHR regions on the human

genome and predicted validated translocations in their database. This mapping was

based on the segmental duplication map created using comparative genomic

hybridization which identified novel structural variants in these regions of LCRs by

Sharp et al. (Sharp et al., 2006). Segmental duplications as possible hotspots for

structural variation events were first hypothesized and mapped by Bailey et al.

(Bailey et al., 2002) identifying 169 such regions in the human genome. However,

the physical co-location of these LCR regions in cell is also an important contributing

factor to the actual interaction between these regions. Regions of chromosomes that

are physically close to each other in 3-dimensional space are more likely to interact

with each other as proved by chromosomal conformation capture experiments known

as (3C or Hi-C) which reveal three-dimensional architecture of genome packing in

the cell (Wijchers, 2011). The mobility of different regions in the genome is limited

by the location of these regions in the genome (Chubb, Boyle, Perry, & Bickmore,

2002). While accounting for these two types of important contextual based

information about translocation etiology, the study was able to design and test the

 98

algorithm based on this context and proved to do better than current methodologies

for translocation detection.

The algorithm was designed to capture all reads that would be ambiguously aligned

by the mapping tool. The most popular mapping tool currently in use, namely BWA

(Li & Durbin, 2009), was used for generating initial mapping. BWA’s popularity is due

to its speed in mapping billions of shorts reads in hours, achieved by its effective use

of cache memory in indexing the reads and also wide acceptance in the

bioinformatics community as a preferred mapping tool. The output from BWA is also

in the SAM/BAM format (Li et al., 2009) accepted as the standard output format for

alignment. BWA randomly assigns reads which map to more than one region on the

genome. In their simulated read alignment, BWA mapped 11/1,569,108 incorrectly

(Li & Durbin, 2009), which still is a very low error rate but in a sequencing

experiment with for example 50 million reads, approximately 500 reads would be

wrongly assigned. While this may be sufficient for a normal genome, in a cancer

genome sequencing project aimed at finding novel variants and showing

heterogeneity, this number might make a difference. Analysis in this study showed

that even with 100% allele frequency, which is not the case in tumors; the tools

were missing variants in the simulated dataset. The tools pick up anomalous reads

based on these reads mapping at greater/shorter distance than the normal

distribution of insert size or incorrect orientation. Our novel algorithm does not use

the probability distribution of insert size to pick reads. This is because reads with

NAHR characteristics, i.e. reads which share greater than 95% identity, could have

been placed at a location selected randomly by the mapping tool since these regions

are so similar, and thus their imputed insert size is suspect. The algorithm accounted

for this information by extracting reads which could have multiple mappings on the

genome while extracting the partner paired read irrespective of its mapping score.

 99

Re-mapping of these ambiguous reads with a local alignment tool like BLAT (W. J.

Kent, 2002) further helps define context, since all possible genomic regions of

identity are now reported. Further, instead of using read distribution of the data and

number of reads supporting a type of variant to assign probability of calling a true

variant, the algorithm again used context to define the probability of two regions

being involved in translocation based on their known proximity to each other in 3-D

cellular space and therefore the probability of interacting regions (Lieberman-Aiden

et al., 2009). Even with 15X coverage, the novel tool was able to detect all ten

simulated translocations.

6.3 Conclusion

Designing a novel context based approach to detect translocations, the study

showed a very effective way to detect these variants using a biologically derived

context-based approach which has not been used so far to effectively mine structural

variants. The study also rejected the hypothesis that repeat structure within the

variant was driving the inability of current tools to detect true positive events.

The output from this novel algorithm could help discover many de-novo variants in

cancers and provide a starting point for mining variant information from sequencing

data. The purpose of this tool was not to define a few variants, but to give as many

possible variants that could then be teased out by the user through experimental

validation. Bioinformatics data analysis of such big volume data does suffer from

copious output of false positives, but at the same time is the first step in moving

towards more comprehensive follow-up using laboratory tools. Providing the user

with biological context-based algorithm instills more confidence in the output, which

was the purpose of this analysis.

 100

6.4 Limitations

The major limitation of this study is the number of false positive reported in output.

Ideally the user would like to see only the most relevant information that is currently

embedded in a lot of noise. Noise can be reduced by narrowing BLAT’s extraction

parameters for stricter re-alignment. How this would play out in a real dataset was

not explored in this analysis.

Since re-alignment with BLAT is a computationally intensive process, the access to

high performance computing environment is a pre-requisite. Without high-

throughput computing the analysis can get prohibitively time consuming. Running

BLAT alignments in parallel greatly reduces the time, and we assume that users

would have access to parallel, high performance computing resources.

The tool was also specifically designed for detecting translocations, and users would

prefer getting the entire spectrum of structural variation in a single tool, which is

another limitation for this study.

6.5 Future Direction and Research

The tool was specifically designed to obtain as much information from mapping as

possible to be able to derive de-novo variants that it achieved at the cost of

reporting a lot of noise. I would like to explore new methods to reduce noise in the

data without compromising on the mining ability of the tool. Noise reduction

parameters could also include evolutionary information of conserved versus non-

conserved regions to remove implausible variants. I would also like to expand the

tool capability to detect all type of other structural variants including deletion,

insertion and inversion.

 101

This is the first context-based tool designed to date and can prove useful for

helping lay the framework for further algorithm development along these lines which

take other biological context into account while designing bioinformatics tools.

 102

REFERENCES

1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A., Brooks,
L. D., Durbin, R. M., et al. (2010a). A map of human genome variation from
population-scale sequencing. Nature, 467(7319), 1061-1073.

1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A., Brooks,

L. D., Durbin, R. M., et al. (2010b). A map of human genome variation from
population-scale sequencing. Nature, 467(7319), 1061-1073.

Alkodsi, A., Louhimo, R., & Hautaniemi, S. (2014). Comparative analysis of methods

for identifying somatic copy number alterations from deep sequencing data.
Briefings in Bioinformatics,

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local

alignment search tool. Journal of Molecular Biology, 215(3), 403-410.

Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., et al.

(2002). Recent segmental duplications in the human genome. Science (New
York, N.Y.), 297(5583), 1003-1007.

Bridge, J. A., & Cushman-Vokoun, A. M. (2011). Molecular diagnostics of soft tissue

tumors. Archives of Pathology & Laboratory Medicine, 135(5), 588-601.

Brunham, L. R., & Hayden, M. R. (2013). Hunting human disease genes: Lessons

from the past, challenges for the future. Human Genetics, 132(6), 603-617.

Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Muller, M., Druker, B. J., et al.

(1996). Inhibition of the abl protein-tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative. Cancer Research, 56(1), 100-104.

Bunting, S. F., & Nussenzweig, A. (2013). End-joining, translocations and cancer.

Nature Reviews.Cancer, 13(7), 443-454.

Burrow, A. A., Williams, L. E., Pierce, L. C., & Wang, Y. H. (2009). Over half of

breakpoints in gene pairs involved in cancer-specific recurrent translocations are
mapped to human chromosomal fragile sites. BMC Genomics, 10, 59-2164-10-
59.

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., et

al. (2009). BreakDancer: An algorithm for high-resolution mapping of genomic
structural variation. Nature Methods, 6(9), 677-681.

Chen, S., Li, S., Xie, W., Li, X., Zhang, C., Jiang, H., et al. (2014). Performance

comparison between rapid sequencing platforms for ultra-low coverage
sequencing strategy. PloS One, 9(3), e92192.

Chubb, J. R., Boyle, S., Perry, P., & Bickmore, W. A. (2002). Chromatin motion is

constrained by association with nuclear compartments in human cells. Current
Biology : CB, 12(6), 439-445.

 103

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Research, 38(6), 1767-1771.

Colnaghi, R., Carpenter, G., Volker, M., & O'Driscoll, M. (2011a). The consequences

of structural genomic alterations in humans: Genomic disorders, genomic
instability and cancer. Seminars in Cell & Developmental Biology, 22(8), 875-
885.

Colnaghi, R., Carpenter, G., Volker, M., & O'Driscoll, M. (2011b). The consequences

of structural genomic alterations in humans: Genomic disorders, genomic
instability and cancer. Seminars in Cell & Developmental Biology, 22(8), 875-
885.

De, S., & Michor, F. (2011). DNA replication timing and long-range DNA interactions

predict mutational landscapes of cancer genomes. Nature Biotechnology,
29(12), 1103-1108.

Deininger, P. L., & Batzer, M. A. (1999). Alu repeats and human disease. Molecular

Genetics and Metabolism, 67(3), 183-193.

Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al.

(1996). Effects of a selective inhibitor of the abl tyrosine kinase on the growth of
bcr-abl positive cells. Nature Medicine, 2(5), 561-566.

Eddy, S. R. (2004). What is dynamic programming? Nature Biotechnology, 22(7),

909-910.

Estevezj. (2012). Sanger-sequencing. Retrieved 03/27, 2014, from

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using

phred. II. error probabilities. Genome Research, 8(3), 186-194.

Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of automated

sequencer traces using phred. I. accuracy assessment. Genome Research, 8(3),
175-185.

Fox, S., Bloch, M., Fahy, M., & Hayden, M. R. (1989). Predictive testing for

huntington disease: I. description of a pilot project in british columbia. American
Journal of Medical Genetics, 32(2), 211-216.

Fragouli, E., Alfarawati, S., Daphnis, D. D., Goodall, N. N., Mania, A., Griffiths, T., et

al. (2011). Cytogenetic analysis of human blastocysts with the use of FISH, CGH
and aCGH: Scientific data and technical evaluation. Human Reproduction
(Oxford, England), 26(2), 480-490.

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al.

(2004). A census of human cancer genes. Nature Reviews.Cancer, 4(3), 177-
183.

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg

 104

Gu, W., Zhang, F., & Lupski, J. R. (2008). Mechanisms for human genomic
rearrangements. PathoGenetics, 1(1), 4-8417-1-4.

Hastings, R. J., Nisbet, D. L., Waters, K., Spencer, T., & Chitty, L. S. (1999).

Prenatal detection of extra structurally abnormal chromosomes (ESACs): New
cases and a review of the literature. Prenatal Diagnosis, 19(5), 436-445.

Hiller, B., Bradtke, J., Balz, H. & Rieder, H. (2005). CyDAS online analysis site.

Retrieved March,2014, 2014, from http://www.cydas.org/About/index.html

Ikpa, P. T., Bijvelds, M. J., & de Jonge, H. R. (2014). Cystic fibrosis: Toward

personalized therapies. The International Journal of Biochemistry & Cell
Biology(2014), doi: 10.1016/j.biocel.2014.02.008.

Inokuchi, K. (2006). Chronic myelogenous leukemia: From molecular biology to

clinical aspects and novel targeted therapies. Journal of Nippon Medical School =
Nippon Ika Daigaku Zasshi, 73(4), 178-192.

Istrail, S., Sutton, G. G., Florea, L., Halpern, A. L., Mobarry, C. M., Lippert, R., et al.

(2004). Whole-genome shotgun assembly and comparison of human genome
assemblies. Proceedings of the National Academy of Sciences of the United
States of America, 101(7), 1916-1921.

Jeffreys, A. J., Kauppi, L., & Neumann, R. (2001). Intensely punctate meiotic

recombination in the class II region of the major histocompatibility complex.
Nature Genetics, 29(2), 217-222.

Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F.,

et al. (1992). Comparative genomic hybridization for molecular cytogenetic
analysis of solid tumors. Science (New York, N.Y.), 258(5083), 818-821.

Kent, P., O'Donoghue, J. M., O'Hanlon, D. M., Kerin, M. J., Maher, D. J., & Given, H.

F. (1995). Linkage analysis and the susceptibility gene (BRCA-1) in familial
breast cancer. European Journal of Surgical Oncology : The Journal of the
European Society of Surgical Oncology and the British Association of Surgical
Oncology, 21(3), 240-241.

Kent, W. J. (2002). BLAT--the BLAST-like alignment tool. Genome Research, 12(4),

656-664.

Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti,

A., et al. (1989). Identification of the cystic fibrosis gene: Genetic analysis.
Science (New York, N.Y.), 245(4922), 1073-1080.

Lee, H., Kim, M., Lim, J., Kim, Y., Han, K., Cho, B. S., et al. (2013). Acute myeloid

leukemia associated with FGFR1 abnormalities. International Journal of
Hematology, 97(6), 808-812.

Lee, S., Cheran, E., & Brudno, M. (2008). A robust framework for detecting

structural variations in a genome. Bioinformatics (Oxford, England), 24(13), i59-
67.

http://www.cydas.org/About/index.html

 105

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics (Oxford, England), 25(14), 1754-1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).

The sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford,
England), 25(16), 2078-2079.

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T.,

Telling, A., et al. (2009). Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science (New York, N.Y.),
326(5950), 289-293.

Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A.,

Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth
factor receptor underlying responsiveness of Non–Small-cell lung cancer to
gefitinib. N Engl J Med, 350(21), 2129-2139.

Mahadevaiah, S. K., Costa, Y., & Turner, J. M. (2009). Using RNA FISH to study gene

expression during mammalian meiosis. Methods in Molecular Biology (Clifton,
N.J.), 558, 433-444.

Mathews, V., George, B., Chendamarai, E., Lakshmi, K. M., Desire, S.,

Balasubramanian, P., et al. (2010). Single-agent arsenic trioxide in the
treatment of newly diagnosed acute promyelocytic leukemia: Long-term follow-
up data. Journal of Clinical Oncology, 28(24), 3866-3871.

Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings

of the National Academy of Sciences of the United States of America, 74(2),
560-564.

McKusick, V. A. (2014). Online mendelian inheritance in man, OMIM®. McKusick-

nathans institute of genetic medicine, johns hopkins university (baltimore, MD).
Retrieved 04/01, 2014, from http://omim.org/

McNeil, N., Montagna, C., Difilippantonio, M. & Ried, T. (2012). Comparative cancer

cytogenetics. atlas genet cytogenet oncol haematol. Retrieved 03/2013, 2014,
from http://atlasgeneticsoncology.org//Deep/ComparCancerCytogID20011.html

McVean, G. (2010). What drives recombination hotspots to repeat DNA in humans?

Philosophical Transactions of the Royal Society of London.Series B, Biological
Sciences, 365(1544), 1213-1218.

McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., & Donnelly, P.

(2004). The fine-scale structure of recombination rate variation in the human
genome. Science (New York, N.Y.), 304(5670), 581-584.

Mende, D. R., Waller, A. S., Sunagawa, S., Jarvelin, A. I., Chan, M. M., Arumugam,

M., et al. (2012). Assessment of metagenomic assembly using simulated next
generation sequencing data. PloS One, 7(2), e31386.

Metzker, M. L. (2010). Sequencing technologies - the next generation. Nature

Reviews.Genetics, 11(1), 31-46.

http://omim.org/
http://atlasgeneticsoncology.org/Deep/ComparCancerCytogID20011.html

 106

Mitelman, F., Johansson, B. & Mertens, F. (.). (2014). Mitelman database of
chromosome aberrations and gene fusions in cancer. Retrieved March/15, 2014,
from http://cgap.nci.nih.gov/Chromosomes/Mitelman

Monaco, A. P., & Larin, Z. (1994). YACs, BACs, PACs and MACs: Artificial

chromosomes as research tools. Trends in Biotechnology, 12(7), 280-286.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3), 443-453.

Niu, C., Yan, H., Yu, T., Sun, H. P., Liu, J. X., Li, X. S., et al. (1999). Studies on

treatment of acute promyelocytic leukemia with arsenic trioxide: Remission
induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47
relapsed acute promyelocytic leukemia patients. Blood, 94(10), 3315-3324.

Nowell, P. C., & Hungerford, D. A. (1960). Chromosome studies on normal and

leukemic human leukocytes. Journal of the National Cancer Institute, 25, 85-
109.

Nunnally, B. (2005). Introduction to DNA sequencing: Sanger and beyond. In B.

Nunnally (Ed.), Analytical techniques in DNA sequencing (1st ed., pp. 1-11).
Boca Raton,FL: Taylor&Francis Group.

Ou, Z., Stankiewicz, P., Xia, Z., Breman, A. M., Dawson, B., Wiszniewska, J., et al.

(2011). Observation and prediction of recurrent human translocations mediated
by NAHR between nonhomologous chromosomes. Genome Research, 21(1), 33-
46.

Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004).

EGFR mutations in lung cancer: Correlation with clinical response to gefitinib
therapy. Science (New York, N.Y.), 304(5676), 1497-1500.

Pevsner, J. (2009). Pairwise sequence alignment. Bioinformatics and functional

genomics (2nd ed., pp. 47-94). Hoboken, New Jersey: John Wiley & Sons, Inc.

Przybytkowski, E., Ferrario, C., & Basik, M. (2011). The use of ultra-dense array CGH

analysis for the discovery of micro-copy number alterations and gene fusions in
the cancer genome. BMC Medical Genomics, 4, 16-8794-4-16.

Rommens, J. M., Zengerling, S., Burns, J., Melmer, G., Kerem, B. S., Plavsic, N., et

al. (1988). Identification and regional localization of DNA markers on
chromosome 7 for the cloning of the cystic fibrosis gene. American Journal of
Human Genetics, 43(5), 645-663.

Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic

myelogenous leukaemia identified by quinacrine fluorescence and giemsa
staining. Nature, 243(5405), 290-293.

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey,

A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are
strongly associated with autism. Nature, 485(7397), 237-241.

http://cgap.nci.nih.gov/Chromosomes/Mitelman

 107

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences of the
United States of America, 74(12), 5463-5467.

Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., & Cooper, C. S. (2010). A

census of amplified and overexpressed human cancer genes. Nature
Reviews.Cancer, 10(1), 59-64.

Sharp, A. J., Hansen, S., Selzer, R. R., Cheng, Z., Regan, R., Hurst, J. A., et al.

(2006). Discovery of previously unidentified genomic disorders from the
duplication architecture of the human genome. Nature Genetics, 38(9), 1038-
1042.

Shizuya, H., & Kouros-Mehr, H. (2001). The development and applications of the

bacterial artificial chromosome cloning system. The Keio Journal of Medicine,
50(1), 26-30.

Smit, A., Hubley, R. & Green, P. (2014). RepeatMasker open-3.0.. Retrieved 03,25,

2014, from http://www.repeatmasker.org

Smith, T. F., Waterman, M. S., & Fitch, W. M. (1981). Comparative biosequence

metrics. Journal of Molecular Evolution, 18(1), 38-46.

Stankiewicz, P., & Lupski, J. R. (2002). Genome architecture, rearrangements and

genomic disorders. Trends in Genetics : TIG, 18(2), 74-82.

Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X.

W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor
genes in prostate cancer. Science (New York, N.Y.), 310(5748), 644-648.

Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al.

(2005). Fine-scale structural variation of the human genome. Nature Genetics,
37(7), 727-732.

Ulahannan, D., Kovac, M. B., Mulholland, P. J., Cazier, J. B., & Tomlinson, I. (2013).

Technical and implementation issues in using next-generation sequencing of
cancers in clinical practice. British Journal of Cancer, 109(4), 827-835.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al.

(2001). The sequence of the human genome. Science (New York, N.Y.),
291(5507), 1304-1351.

Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., et al.

(2010). A de novo paradigm for mental retardation. Nature Genetics, 42(12),
1109-1112.

Volpi, E. V., & Bridger, J. M. (2008). FISH glossary: An overview of the fluorescence

in situ hybridization technique. BioTechniques, 45(4), 385-6, 388, 390 passim.

Wang, J., Mullighan, C. G., Easton, J., Roberts, S., Heatley, S. L., Ma, J., et al.

(2011). CREST maps somatic structural variation in cancer genomes with base-
pair resolution. Nature Methods, 8(8), 652-654.

http://www.repeatmasker.org/

 108

Wijchers, P. (2011). Genome organization influences partner selection for
chromosomal rearrangements. Trends in Genetics, 27(2), 63; 63-71; 71.

Yaffe, E., & Tanay, A. (2011). Probabilistic modeling of hi-C contact maps eliminates

systematic biases to characterize global chromosomal architecture. Nature
Genetics, 43(11), 1059-1065.

Zeitouni, B., Boeva, V., Janoueix-Lerosey, I., Loeillet, S., Legoix-ne, P., Nicolas, A.,

et al. (2010). SVDetect: A tool to identify genomic structural variations from
paired-end and mate-pair sequencing data. Bioinformatics (Oxford, England),
26(15), 1895-1896.

108

 109

APPENDIX A
[LIST OF 1000-GENOMES FILES USED IN ANALYSIS]

 110

 NA19238 NA19238
FASTQ_FILE MD5
data/NA19238/sequence_read/SRR005192_1.filt.fastq

3110d6d61bdcc620c9a179b93c0f

 data/NA19238/sequence_read/SRR005192_2.filt.fastq

e7bda40a41048d14827fb0cc4f38
 data/NA19238/sequence_read/SRR005193_1.filt.fastq

c8798ad272b04ec4048c78ce85b1

 data/NA19238/sequence_read/SRR005193_2.filt.fastq

7bf0c21b54862ed57a1657a43c6d
 data/NA19238/sequence_read/SRR005194_1.filt.fastq

ec8fe3d8289f22c8baacbd43e16c5

 data/NA19238/sequence_read/SRR005194_2.filt.fastq

077f9e9e8921f966c3b659fc02c8e
 data/NA19238/sequence_read/SRR005195_1.filt.fastq

8966bbc2201e0632e609193bf66

 data/NA19238/sequence_read/SRR005195_2.filt.fastq

5c37e56b89e025904ddc5d7cebcb
 data/NA19238/sequence_read/SRR005196_1.filt.fastq

e8b748413e193c88b89307200ef

 data/NA19238/sequence_read/SRR005196_2.filt.fastq

c8222dcc6a8a598be80d5847aa84
 data/NA19238/sequence_read/SRR005197_1.filt.fastq

a973556332823824b53fd22e438

 data/NA19238/sequence_read/SRR005197_2.filt.fastq

8f1c57c94b08cb6ce7f2c2bdd553b
 data/NA19238/sequence_read/SRR005198_1.filt.fastq

8a9d339a0eaa86a693fc6112e4a9

 data/NA19238/sequence_read/SRR005198_2.filt.fastq

571be24092fd1461fc603c24fca88
 data/NA19238/sequence_read/SRR005207_1.filt.fastq

b58c47719b1fd3978bb66c13cf21

 data/NA19238/sequence_read/SRR005207_2.filt.fastq

ac1b7529997dff1a66caa91f7c7a0
 data/NA19238/sequence_read/SRR005208_1.filt.fastq

c9be0f679ddb17d80c939b4310b7

 data/NA19238/sequence_read/SRR005208_2.filt.fastq

e4ec92a85bbc5bb67b224b9af827
 data/NA19238/sequence_read/SRR005209_1.filt.fastq

863bae9c44ce63c6e6bc05157a6e

 data/NA19238/sequence_read/SRR005209_2.filt.fastq

78a0b36d85660647acb9de113ca
 data/NA19238/sequence_read/SRR005210_1.filt.fastq

bc0be085804c2516b49c7a36a899

 data/NA19238/sequence_read/SRR005210_2.filt.fastq

8476cad371e344af09e05b5cea38
 data/NA19238/sequence_read/SRR005211_1.filt.fastq

54adf7a8bae6c62a5461c400f99e

 data/NA19238/sequence_read/SRR005211_2.filt.fastq

2522236016de36b57a53bd109ab
 data/NA19238/sequence_read/SRR005212_1.filt.fastq

6ba1954e295bda218a2118fc8aa2

 data/NA19238/sequence_read/SRR005212_2.filt.fastq

b445a0cfc600db40e0b691418333
 data/NA19238/sequence_read/SRR005213_1.filt.fastq

fd4ae153f97419fcde27757202adf

 data/NA19238/sequence_read/SRR005213_2.filt.fastq

9445853a49d0bf79210427ed0f3f
 data/NA19238/sequence_read/SRR005214_1.filt.fastq

e30e3fe5bef08ff7426972e513d22

 data/NA19238/sequence_read/SRR005214_2.filt.fastq

0539bd41f8e05fc48a5725130e5b
 data/NA19238/sequence_read/SRR005234_1.filt.fastq

ac5ab344453144ac814e4a641d1

 data/NA19238/sequence_read/SRR005234_2.filt.fastq

537dcfd662bb446057a33aec0d15
 NA19239 NA19239

FASTQ_FILE MD5
data/NA19239/sequence_read/SRR002955_1.filt.fastq

d2ba15c23b0ea4d141091e29498

 data/NA19239/sequence_read/SRR002955_2.filt.fastq

89d1488783426bc5bee1f6486d2
 data/NA19239/sequence_read/SRR002956_1.filt.fastq

f6a17acc125140972b1d0e1658d7

 data/NA19239/sequence_read/SRR002956_2.filt.fastq

84c5ee8d297a472d2bd98bedd9c
 data/NA19239/sequence_read/SRR002957_1.filt.fastq

494845e8f8c23228eff7a51371fe7

 data/NA19239/sequence_read/SRR002957_2.filt.fastq

942fc8cbdc1ca14850d436381d6c
 data/NA19239/sequence_read/SRR002958_1.filt.fastq

f2ba138f5b4e3d2c22e24ef007e5

 data/NA19239/sequence_read/SRR002958_2.filt.fastq

8da0f35e82f3d892ab0af3278192
 data/NA19239/sequence_read/SRR002959_1.filt.fastq

ae73beeba370de5bf7e0a3979795

 111

data/NA19239/sequence_read/SRR002959_2.filt.fastq

e074b4e1ac1385f64f8d567f6c648
 data/NA19239/sequence_read/SRR002960_1.filt.fastq

8b25fee1184f5637cf16ccbb0d729
b91 data/NA19239/sequence_read/SRR002960_2.filt.fastq

b279a5a991b49db48a5639e5fb9f

 data/NA19239/sequence_read/SRR002961_1.filt.fastq

09578c8ecb4d08fe105d9c01e4ce
 data/NA19239/sequence_read/SRR002961_2.filt.fastq

af805552162f41cdd043f72c06add

 data/NA19239/sequence_read/SRR002962_1.filt.fastq

236fa73d55de2cd976342993bf21
 data/NA19239/sequence_read/SRR002962_2.filt.fastq

98ea38969923270d3336af8a2d0

 data/NA19239/sequence_read/SRR002963_1.filt.fastq

02ff2466baf9bd74f619305194058
 data/NA19239/sequence_read/SRR002963_2.filt.fastq

aa7ee92f6393097d52016b8b151c

 data/NA19239/sequence_read/SRR002964_1.filt.fastq

b25bccafd54edd86abf4e389eda1
 data/NA19239/sequence_read/SRR002964_2.filt.fastq

872db6265531d791f22027046c6

 data/NA19239/sequence_read/SRR002965_1.filt.fastq

88a0503c066051cc88b962882c0c
 data/NA19239/sequence_read/SRR002965_2.filt.fastq

bce9ac30781e5ec8fd19cbc70e50

 data/NA19239/sequence_read/SRR002966_1.filt.fastq

ae76268b7ad710dfd46aa2df8579
 data/NA19239/sequence_read/SRR002966_2.filt.fastq

46f7b4b1b7296fe89f39700d5132

 data/NA19239/sequence_read/SRR002967_1.filt.fastq

d6c6ad9f92cb457db2087e6ce363
 data/NA19239/sequence_read/SRR002967_2.filt.fastq

503e515dde2f13a78f0e629eba99

 data/NA19239/sequence_read/SRR003029_1.filt.fastq

d4c1a8c8c5acb90146499d58d603
 data/NA19239/sequence_read/SRR003029_2.filt.fastq

45111b5330c104a73017defcf87c

 data/NA19239/sequence_read/SRR007422_1.filt.fastq

250b5c091fe1c11cf1710f445e2db
 data/NA19239/sequence_read/SRR007422_2.filt.fastq

8ec2e99eddab5810d66d1ae3c99

 NA19240 NA19240
FASTQ_FILE MD5
data/NA19240/sequence_read/SRR004483_1.filt.fastq

b7ce1dcb4a62c3382f86143ced4b

 data/NA19240/sequence_read/SRR004483_2.filt.fastq

2d0d9b8c156939e516282f3ea9c0
 data/NA19240/sequence_read/SRR004484_1.filt.fastq

0b4cf789a716c1235c31fc574b14

 data/NA19240/sequence_read/SRR004484_2.filt.fastq

071c8e38659b21bcfc2e726abfe9
 data/NA19240/sequence_read/SRR004485_1.filt.fastq

1b615fb8d04788c413ce5424f7b6

 data/NA19240/sequence_read/SRR004485_2.filt.fastq

c666b912d12e3e738a550ac12acb
 data/NA19240/sequence_read/SRR004783_1.filt.fastq

19f0db03a8f822b7a3df27f21e1b8

 data/NA19240/sequence_read/SRR004783_2.filt.fastq

350412ab18793c4240ef2296d61a
 data/NA19240/sequence_read/SRR004784_1.filt.fastq

be46222998b027213cfafa5d9a8d

 data/NA19240/sequence_read/SRR004784_2.filt.fastq

77dabc7efefea2c062af0c8fda476
 data/NA19240/sequence_read/SRR004785_1.filt.fastq

7aef2b68952f07ceb5a4e3834103

 data/NA19240/sequence_read/SRR004785_2.filt.fastq

6df41a7a5290e164adc95642358d
 data/NA19240/sequence_read/SRR004786_1.filt.fastq

828c0a376a745e64009b0e2ecc79

 data/NA19240/sequence_read/SRR004786_2.filt.fastq

0c3f85ad38d3ad4e8df5d21924e9
 data/NA19240/sequence_read/SRR004788_1.filt.fastq

c59b50bd44ad5d3f7f7782e1316f

 data/NA19240/sequence_read/SRR004788_2.filt.fastq

a37b8ff65efe7fce535fd6ad7fa73a
70

 112

 NA19238 NA19238 NA19238 NA19238 NA19238
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID
SRR005192 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002880
SRR005192 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002880
SRR005193 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002881
SRR005193 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002881
SRR005194 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002882
SRR005194 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002882
SRR005195 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002883
SRR005195 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002883
SRR005196 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002884
SRR005196 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002884
SRR005197 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002885
SRR005197 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002885
SRR005198 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002886
SRR005198 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002886
SRR005207 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002895
SRR005207 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002895
SRR005208 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002896
SRR005208 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002896
SRR005209 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002897
SRR005209 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002897
SRR005210 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002898
SRR005210 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002898
SRR005211 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002899
SRR005211 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002899
SRR005212 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002900
SRR005212 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002900
SRR005213 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002901
SRR005213 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002901
SRR005214 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002902
SRR005214 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002902
SRR005234 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002922
SRR005234 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002922
 NA19239 NA19239 NA19239 NA19239 NA19239
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID
SRR002955 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001427
SRR002955 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001427
SRR002956 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001428
SRR002956 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001428
SRR002957 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001429
SRR002957 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001429
SRR002958 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001430
SRR002958 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001430

 113

SRR002959 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001431
SRR002959 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001431
SRR002960 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001432

SRR002960 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001432
SRR002961 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001433
SRR002961 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001433
SRR002962 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001434
SRR002962 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001434
SRR002963 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001435
SRR002963 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001435
SRR002964 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001436
SRR002964 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001436
SRR002965 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001437
SRR002965 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001437
SRR002966 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001438
SRR002966 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001438
SRR002967 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001439
SRR002967 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001439
SRR003029 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001500
SRR003029 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001500
SRR007422 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA004284
SRR007422 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA004284
 NA19240 NA19240 NA19240 NA19240 NA19240
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID
SRR004483 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002351
SRR004483 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002351
SRR004484 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002352
SRR004484 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002352
SRR004485 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002353
SRR004485 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002353
SRR004783 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002629
SRR004783 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002629
SRR004784 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002630
SRR004784 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002630
SRR004785 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002631
SRR004785 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002631
SRR004786 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002632
SRR004786 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002632
SRR004788 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002636
SRR004788 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002636

 114

 NA19238 NA19238 NA19238 NA19238 NA19238
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/26/2008 0:00 SRS000212 NA19238 YRI SRX001106
9/26/2008 0:00 SRS000212 NA19238 YRI SRX001106
 NA19239 NA19239 NA19239 NA19239 NA19239
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654

 115

8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654

8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/17/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/17/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/21/2008 0:00 SRS000213 NA19239 YRI SRX000654
8/21/2008 0:00 SRS000213 NA19239 YRI SRX000654
 NA19240 NA19240 NA19240 NA19240 NA19240
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102

 116

 NA19238 NA19238 NA19238 NA19238 NA19238
 INSTRUMENT INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME INSERT_SIZE

_PLATFORM
ILLUMINA Illumina Genome Analyzer II 2675169269 7592 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7592 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7593 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7593 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7594 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7594 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7595 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7595 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7596 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7596 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7597 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7597 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7598 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7598 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7607 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7607 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7608 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7608 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7609 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7609 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7610 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7610 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7611 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7611 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7612 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7612 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7613 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7613 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7614 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7614 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7646 260
ILLUMINA Illumina Genome Analyzer II 2675169269 7646 260
 NA19239 NA19239 NA19239 NA19239 NA19239

 INSTRUMENT_P

INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME INSERT_SIZE
ILLUMINA Illumina Genome Analyzer 2485443314 5685 260
ILLUMINA Illumina Genome Analyzer 2485443314 5685 260
ILLUMINA Illumina Genome Analyzer 2485443314 5686 260
ILLUMINA Illumina Genome Analyzer 2485443314 5686 260
ILLUMINA Illumina Genome Analyzer 2485443314 5687 260
ILLUMINA Illumina Genome Analyzer 2485443314 5687 260
ILLUMINA Illumina Genome Analyzer 2485443314 5688 260

 117

ILLUMINA Illumina Genome Analyzer 2485443314 5688 260
ILLUMINA Illumina Genome Analyzer 2485443314 5689 260
ILLUMINA Illumina Genome Analyzer 2485443314 5689 260
ILLUMINA Illumina Genome Analyzer 2485443314 5690 260

ILLUMINA Illumina Genome Analyzer 2485443314 5690 260
ILLUMINA Illumina Genome Analyzer 2485443314 5691 260
ILLUMINA Illumina Genome Analyzer 2485443314 5691 260
ILLUMINA Illumina Genome Analyzer 2485443314 5692 260
ILLUMINA Illumina Genome Analyzer 2485443314 5692 260
ILLUMINA Illumina Genome Analyzer 2485443314 5693 260
ILLUMINA Illumina Genome Analyzer 2485443314 5693 260
ILLUMINA Illumina Genome Analyzer 2485443314 5694 260
ILLUMINA Illumina Genome Analyzer 2485443314 5694 260
ILLUMINA Illumina Genome Analyzer 2485443314 5695 260
ILLUMINA Illumina Genome Analyzer 2485443314 5695 260
ILLUMINA Illumina Genome Analyzer 2485443314 5696 260
ILLUMINA Illumina Genome Analyzer 2485443314 5696 260
ILLUMINA Illumina Genome Analyzer 2485443314 5697 260
ILLUMINA Illumina Genome Analyzer 2485443314 5697 260
ILLUMINA Illumina Genome Analyzer 2485443314 5895 260
ILLUMINA Illumina Genome Analyzer 2485443314 5895 260
ILLUMINA Illumina Genome Analyzer 2485443314 6430 260
ILLUMINA Illumina Genome Analyzer 2485443314 6430 260
 NA19240 NA19240 NA19240 NA19240 NA19240

 INSTRUMENT_L

INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME INSERT_SIZE
ILLUMINA Illumina Genome Analyzer II 2675080346 7223 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7223 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7224 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7224 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7225 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7225 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7522 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7522 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7523 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7523 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7524 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7524 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7525 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7525 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7526 260
ILLUMINA Illumina Genome Analyzer II 2675080346 7526 260

 118

NA19238 NA19238 NA19238
LIBRARY PAIRED_FASTQ READ
_LAYOUT _COUNT
PAIRED data/NA19238/sequence_read/SRR005192_2.filt.fastq.gz 11270293
PAIRED data/NA19238/sequence_read/SRR005192_1.filt.fastq.gz 11270293
PAIRED data/NA19238/sequence_read/SRR005193_2.filt.fastq.gz 11173375
PAIRED data/NA19238/sequence_read/SRR005193_1.filt.fastq.gz 11173375
PAIRED data/NA19238/sequence_read/SRR005194_2.filt.fastq.gz 10300764
PAIRED data/NA19238/sequence_read/SRR005194_1.filt.fastq.gz 10300764
PAIRED data/NA19238/sequence_read/SRR005195_2.filt.fastq.gz 8931016
PAIRED data/NA19238/sequence_read/SRR005195_1.filt.fastq.gz 8931016
PAIRED data/NA19238/sequence_read/SRR005196_2.filt.fastq.gz 8075975
PAIRED data/NA19238/sequence_read/SRR005196_1.filt.fastq.gz 8075975
PAIRED data/NA19238/sequence_read/SRR005197_2.filt.fastq.gz 7380429
PAIRED data/NA19238/sequence_read/SRR005197_1.filt.fastq.gz 7380429
PAIRED data/NA19238/sequence_read/SRR005198_2.filt.fastq.gz 8413304
PAIRED data/NA19238/sequence_read/SRR005198_1.filt.fastq.gz 8413304
PAIRED data/NA19238/sequence_read/SRR005207_2.filt.fastq.gz 5792641
PAIRED data/NA19238/sequence_read/SRR005207_1.filt.fastq.gz 5792641
PAIRED data/NA19238/sequence_read/SRR005208_2.filt.fastq.gz 5388572
PAIRED data/NA19238/sequence_read/SRR005208_1.filt.fastq.gz 5388572
PAIRED data/NA19238/sequence_read/SRR005209_2.filt.fastq.gz 4034189
PAIRED data/NA19238/sequence_read/SRR005209_1.filt.fastq.gz 4034189
PAIRED data/NA19238/sequence_read/SRR005210_2.filt.fastq.gz 4510010
PAIRED data/NA19238/sequence_read/SRR005210_1.filt.fastq.gz 4510010
PAIRED data/NA19238/sequence_read/SRR005211_2.filt.fastq.gz 4060395
PAIRED data/NA19238/sequence_read/SRR005211_1.filt.fastq.gz 4060395
PAIRED data/NA19238/sequence_read/SRR005212_2.filt.fastq.gz 4397559
PAIRED data/NA19238/sequence_read/SRR005212_1.filt.fastq.gz 4397559
PAIRED data/NA19238/sequence_read/SRR005213_2.filt.fastq.gz 4996197
PAIRED data/NA19238/sequence_read/SRR005213_1.filt.fastq.gz 4996197
PAIRED data/NA19238/sequence_read/SRR005214_2.filt.fastq.gz 6422603
PAIRED data/NA19238/sequence_read/SRR005214_1.filt.fastq.gz 6422603
PAIRED data/NA19238/sequence_read/SRR005234_2.filt.fastq.gz 8418918
PAIRED data/NA19238/sequence_read/SRR005234_1.filt.fastq.gz 8418918
 NA19239 NA19239 NA19239
LIBRARY_

PAIRED_FASTQ READ_COU

 PAIRED data/NA19239/sequence_read/SRR002955_2.filt.fastq.gz 7258052
PAIRED data/NA19239/sequence_read/SRR002955_1.filt.fastq.gz 7258052
PAIRED data/NA19239/sequence_read/SRR002956_2.filt.fastq.gz 7170493
PAIRED data/NA19239/sequence_read/SRR002956_1.filt.fastq.gz 7170493
PAIRED data/NA19239/sequence_read/SRR002957_2.filt.fastq.gz 7245012
PAIRED data/NA19239/sequence_read/SRR002957_1.filt.fastq.gz 7245012
PAIRED data/NA19239/sequence_read/SRR002958_2.filt.fastq.gz 7414026
PAIRED data/NA19239/sequence_read/SRR002958_1.filt.fastq.gz 7414026

 119

PAIRED data/NA19239/sequence_read/SRR002959_2.filt.fastq.gz 8114993
PAIRED data/NA19239/sequence_read/SRR002959_1.filt.fastq.gz 8114993
PAIRED data/NA19239/sequence_read/SRR002960_2.filt.fastq.gz 8079331

PAIRED data/NA19239/sequence_read/SRR002960_1.filt.fastq.gz 8079331
PAIRED data/NA19239/sequence_read/SRR002961_2.filt.fastq.gz 7959676
PAIRED data/NA19239/sequence_read/SRR002961_1.filt.fastq.gz 7959676
PAIRED data/NA19239/sequence_read/SRR002962_2.filt.fastq.gz 5187607
PAIRED data/NA19239/sequence_read/SRR002962_1.filt.fastq.gz 5187607
PAIRED data/NA19239/sequence_read/SRR002963_2.filt.fastq.gz 6173753
PAIRED data/NA19239/sequence_read/SRR002963_1.filt.fastq.gz 6173753
PAIRED data/NA19239/sequence_read/SRR002964_2.filt.fastq.gz 6055820
PAIRED data/NA19239/sequence_read/SRR002964_1.filt.fastq.gz 6055820
PAIRED data/NA19239/sequence_read/SRR002965_2.filt.fastq.gz 6745735
PAIRED data/NA19239/sequence_read/SRR002965_1.filt.fastq.gz 6745735
PAIRED data/NA19239/sequence_read/SRR002966_2.filt.fastq.gz 6621194
PAIRED data/NA19239/sequence_read/SRR002966_1.filt.fastq.gz 6621194
PAIRED data/NA19239/sequence_read/SRR002967_2.filt.fastq.gz 6706504
PAIRED data/NA19239/sequence_read/SRR002967_1.filt.fastq.gz 6706504
PAIRED data/NA19239/sequence_read/SRR003029_2.filt.fastq.gz 5826974
PAIRED data/NA19239/sequence_read/SRR003029_1.filt.fastq.gz 5826974
PAIRED data/NA19239/sequence_read/SRR007422_2.filt.fastq.gz 6497852
PAIRED data/NA19239/sequence_read/SRR007422_1.filt.fastq.gz 6497852
 NA19240 NA19240 NA19240
LIBRARY_

PAIRED_FASTQ READ_COU

 PAIRED data/NA19240/sequence_read/SRR004483_2.filt.fastq.gz 10553597
PAIRED data/NA19240/sequence_read/SRR004483_1.filt.fastq.gz 10553597
PAIRED data/NA19240/sequence_read/SRR004484_2.filt.fastq.gz 11564301
PAIRED data/NA19240/sequence_read/SRR004484_1.filt.fastq.gz 11564301
PAIRED data/NA19240/sequence_read/SRR004485_2.filt.fastq.gz 10252162
PAIRED data/NA19240/sequence_read/SRR004485_1.filt.fastq.gz 10252162
PAIRED data/NA19240/sequence_read/SRR004783_2.filt.fastq.gz 9921824
PAIRED data/NA19240/sequence_read/SRR004783_1.filt.fastq.gz 9921824
PAIRED data/NA19240/sequence_read/SRR004784_2.filt.fastq.gz 11020784
PAIRED data/NA19240/sequence_read/SRR004784_1.filt.fastq.gz 11020784
PAIRED data/NA19240/sequence_read/SRR004785_2.filt.fastq.gz 11378879
PAIRED data/NA19240/sequence_read/SRR004785_1.filt.fastq.gz 11378879
PAIRED data/NA19240/sequence_read/SRR004786_2.filt.fastq.gz 11581025
PAIRED data/NA19240/sequence_read/SRR004786_1.filt.fastq.gz 11581025
PAIRED data/NA19240/sequence_read/SRR004788_2.filt.fastq.gz 11172997
PAIRED data/NA19240/sequence_read/SRR004788_1.filt.fastq.gz 11172997

 120

 NA19238 NA19238
BASE_COUNT ANALYSIS_GROUP

405730548 high coverage
405730548 high coverage
402241500 high coverage
402241500 high coverage
370827504 high coverage
370827504 high coverage
321516576 high coverage
321516576 high coverage
290735100 high coverage
290735100 high coverage
265695444 high coverage
265695444 high coverage
302878944 high coverage
302878944 high coverage
208535076 high coverage
208535076 high coverage
193988592 high coverage
193988592 high coverage
145230804 high coverage
145230804 high coverage
162360360 high coverage
162360360 high coverage
146174220 high coverage
146174220 high coverage
158312124 high coverage
158312124 high coverage
179863092 high coverage
179863092 high coverage
231213708 high coverage
231213708 high coverage
303081048 high coverage
303081048 high coverage

 NA19239 NA19239
BASE_COUNT ANALYSIS_GROUP

261289872 high coverage
261289872 high coverage
258137748 high coverage
258137748 high coverage
260820432 high coverage
260820432 high coverage
266904936 high coverage

 121

266904936 high coverage
292139748 high coverage
292139748 high coverage
290855916 high coverage

290855916 high coverage
286548336 high coverage
286548336 high coverage
186753852 high coverage
186753852 high coverage
222255108 high coverage
222255108 high coverage
218009520 high coverage
218009520 high coverage
242846460 high coverage
242846460 high coverage
238362984 high coverage
238362984 high coverage
241434144 high coverage
241434144 high coverage
209771064 high coverage
209771064 high coverage
233922672 high coverage
233922672 high coverage

 NA19240 NA19240
BASE_COUNT ANALYSIS_GROUP

369375895 high coverage
369375895 high coverage
404750535 high coverage
404750535 high coverage
358825670 high coverage
358825670 high coverage
347263840 high coverage
347263840 high coverage
385727440 high coverage
385727440 high coverage
398260765 high coverage
398260765 high coverage
405335875 high coverage
405335875 high coverage
391054895 high coverage
391054895 high coverage

 122

APPENDIX B

[BLAT SUITE PROGRAM SPECIFICATIONS AND USER'S GUIDE]

 123

BLAT Suite Program Specifications and User Guide

General:

Blat produces two major classes of alignments: at the DNA level between two
sequences that are of 95% or greater identity, but which may include large inserts,
and at the protein or translated DNA level between sequences that are of 80% or
greater identity and may also include large inserts. The output of BLAT is
flexible. By default it is a simple tab-delimited file which describes the alignment,
but which does not include the sequence of the alignment itself. Optionally it can
produce BLAST and WU-BLAST compatable output as well as a number of other
formats.

The main programs in the blat suite are:

• gfServer – a server that maintains an index of the genome in memory and

uses the index to quickly find regions with high levels of sequence
similarity to a query sequence.

• gfClient – a program that queries gfServer over the network, and then
does a detailed alignment of the query sequence with regions found by
gfServer.

• blat –combines client and server into a single program, first building the
index, then using the index, and then exiting.

• webBlat – a web based version of gfClient that presents the alignments in
an interactive fashion.

Building an index of the genome typically takes 10 or 15 minutes. Typically for
interactive applications one uses gfServer to build a whole genome index. At that
point gfClient or webBlat can align a single query within few seconds. If one is
aligning a lot of sequences in a batch
mode then blat can be more efficient, particularly if run on a cluster of computers.
Each blat run is typically done against a single chromosome, but with a large
number of query sequences.

Other programs in the blat suite are:

• pslSort – combines and sorts the output of multiple blat runs. (The blat

default output format is .psl).
• pslReps – selects the best alignments for a particular query sequence, using

a ‘near best in genome’ approach.

 124

• pslPretty – converts alignments from the psl format, which is tab-
delimited format and does not include the bases themselves, to a more
readable alignment format.

• faToTwoBit – convert Fasta format sequence files to a dense randomly-
accessable .2bit format that gfClient can use.
• twoBitToFa – convert from the .2bit

format back to fasta
• faToNib – convert from Fasta to a somewhat less dense randomly

accessible format that predates .2bit. Note each .nib file can only contain
a single sequence.

• nibFrag – convert portions of a nib file back to fasta.

In addition you may be interested in the following programs which are not part of
the BLAT
suite:

• In Silico PCR – given two primers quickly find the sequence between

them. Available from Kent Informatics. This includes webPCR, an
interface similar to webBlat.

• The Genome Browser – display annotations as a series of tracks on top of
the genome.

Available from the University of California
Santa Cruz. See
http://genome.ucsc.edu/license/.

Running the Programs:

The command line options of each of the programs is described below. Similar
summaries of usage are printed when a command is run with no arguments. See
the next section for info on installing webBlat.

blat

blat - Standalone BLAT sequence search

command line tool usage:

http://cgwb.nci.nih.gov/license/

 125

blat database query [-ooc=11.ooc]

output.psl where:

database and query are each either a .fa , .nib or .2bit file,

or a list these files one file name per line.

-ooc=11.ooc tells the program to load over-occurring

11-mers from and external file. This

will increase the speed

by a factor of 40 in many cases, but is

not required output.psl is where to put the output.

Subranges of nib and .2bit files may specified using the syntax:

/path/file.nib:seqid:start-end

or

/path/file.2bit:seqid:start-end

or

/path/file.nib:start-end

With the second form, a sequence id of file:start-end will

be used. options:

-t=type Database type. Type is one of:

dna - DNA sequence

prot - protein sequence

dnax - DNA sequence translated in six frames to protein

The default is dna

-q=type Query type. Type is one of:

dna - DNA

sequence

rna - RNA

sequence

 126

prot - protein sequence

dnax - DNA sequence translated in six frames to

protein rnax - DNA sequence translated in three

frames to protein

The default is dna

-prot Synonymous with -t=prot -q=prot

-ooc=N.ooc Use overused tile file N.ooc. N should

correspond to the tileSize

-tileSize=N sets the size of match that triggers an alignment.

Usually between 8 and 12

Default is 11 for DNA and 5 for protein.

-stepSize=N spacing between tiles. Default is tileSize.

-oneOff=N If set to 1 this allows one mismatch in tile and still

triggers an alignments. Default
is 0.

-minMatch=N sets the number of tile matches. Usually set from 2 to 4

Default is 2 for nucleotide, 1 for
protein.

-minScore=N sets minimum score. This is the matches minus the

mismatches minus some sort of gap penalty. Default

is 30

-minIdentity=N Sets minimum sequence identity (in percent). Default is

90 for nucleotide searches, 25 for protein or

translated protein searches.

-maxGap=N sets the size of maximum gap between tiles in a clump.

 Usually set from 0 to 3.

 Default is 2. Only relevent for

minMatch > 1.

 127

-noHead suppress .psl header (so it's just a tab-separated file)

-makeOoc=N.ooc Make overused tile file. Target needs to be complete
genome.

-repMatch=N sets the number of repetitions of a tile allowed before

it is marked as overused. Typically this is 256 for
tileSize

12, 1024 for tile size 11, 4096 for tile
size 10.

Default is 1024. Typically only comes into play with

makeOoc. Also affected by stepSize. When stepSize is

halved repMatch is doubled to compensate.

-mask=type Mask out repeats. Alignments won't be started in masked region

but may extend through it in nucleotide searches. Masked

areas are ignored entirely in protein or translated

searches. Types are

lower - mask out lower cased sequence

upper - mask out upper cased sequence

out - mask according to database.out RepeatMasker

.out file file.out - mask database according to

RepeatMasker file.out

-qMask=type Mask out repeats in query sequence. Similar to -mask

above but for query rather than target sequence.

-repeats=type Type is same as mask types above. Repeat bases will

not be masked in any way, but matches in repeat areas

will be reported separately from matches in other areas

in the psl output.

 128

-minRepDivergence=NN - minimum percent divergence of repeats to

allow them to be unmasked. Default is 15. Only

relevant for masking using RepeatMasker .out files.

-dots=N Output dot every N sequences to show program's progress

-trimT Trim leading poly-T

-noTrimA Don't trim trailing poly-A

-trimHardA Remove poly-A tail from qSize as well as

alignments in psl output

-fastMap Run for fast DNA/DNA remapping - not allowing

introns, requiring high %ID

-out=type Controls output file format. Type is one of:

psl - Default. Tab separated format, no

sequence pslx - Tab separated format with

sequence

axt - blastz-associated axt

format maf - multiz-

associated maf format sim4 -

similar to sim4 format

wublast - similar to wublast

format

blast - similar to NCBI blast

format blast8- NCBI blast

tabular format

blast9 - NCBI blast tabular format with comments

-fine For high quality mRNAs look harder for small

initial and terminal exons. Not recommended for

ESTs

 129

-maxIntron=N Sets maximum intron size. Default is 750000

-extendThroughN - Allows extension of alignment through large blocks of
N's

Here are some blat settings for common usage scenarios:

1) Mapping ESTs to the genome within the same species

-ooc=11.ooc

2) Mapping full length mRNAs to the genome in the same species

-ooc=11.ooc -fine -q=rna

3) Mapping ESTs to the genome across species

-q=dnax -t=dnax

4) Mapping mRNA to the genome across species

-q=rnax -t=dnax

5) Mapping proteins to the genome

-q=prot -t=dnax

6) Mapping DNA to DNA in the same species

-ooc=11.ooc -fastMap

7) Mapping DNA from one species to another species

-q=dnax -t=dnax

When mapping DNA from one species to another the

query side of the alignment should be cut up

into chunks of 25kb or less for best

performance.

gfServer

 130

gfServer - Make a server to quickly find where DNA occurs

in genome. To set up a server:

gfServer start host port file(s)

Where the files are in .nib or .2bit format

To remove a server:

gfServer stop host port

To query a server with DNA sequence:

gfServer query host port probe.fa

To query a server with protein sequence:

gfServer protQuery host port probe.fa

To query a server with translated dna sequence:

gfServer transQuery host port probe.fa

To process one probe fa file against a .nib format genome (not starting
server):

gfServer direct probe.fa file(s).nib

To figure out usage

level gfServer

status host port

To get input file

list gfServer

files host port

Options:

-tileSize=N size of n-mers to index. Default is 11 for

nucleotides, 4 for proteins (or translated

nucleotides).

-stepSize=N spacing between tiles. Default is tileSize.

-minMatch=N Number of n-mer matches that trigger detailed alignment

 131

Default is 2 for nucleotides, 3 for
protiens.

-maxGap=N Number of insertions or deletions allowed between n-mers.

Default is 2 for nucleotides, 0 for

protiens.

-trans Translate database to protein in 6 frames. Note:

it is best to run this on RepeatMasked data in this

case.

-log=logFile keep a log file that records server requests.

-seqLog Include sequences in log file (not logged with -syslog)

-syslog Log to syslog

-logFacility=facility log to the specified syslog facility - default
local0.

-mask Use masking from nib file.

-repMatch=N Number of occurrences of a tile (nmer)

that trigger repeat masking the tile.

Default is 1024.

-maxDnaHits=N Maximum number of hits for a dna query that are sent from
the

server. Default is 100.

-maxTransHits=N Maximum number of hits for a translated query

that are sent from the server. Default is 200.

-maxNtSize=N Maximum size of untranslated DNA query sequence

Default is 40000

-maxAsSize=N Maximum size of protein or translated DNA queries

Default is 8000

-canStop If set then a quit message will actually take

down the server

gfClient

 132

gfClient - A client for the genomic

finding program usage:

gfClient host port nibDir in.fa out.psl

where

host is the name of the machine running the

gfServer port is the same as you started

the gfServer with

nibDir is the path of the nib files relative to the current dir

(note these are needed by the client as well as the server)

in.fa a fasta format file. May contain

multiple records out.psl where to put the

output

options:

-t=type Database type. Type is one of:

dna - DNA sequence

prot - protein sequence

dnax - DNA sequence translated in six frames to protein

The

default
is dna

-q=type Query type. Type is one of:

dna - DNA

sequence

rna - RNA

sequence

prot - protein sequence

 133

dnax - DNA sequence translated in six frames to

protein rnax - DNA sequence translated in three

frames to protein

-dots=N Output a dot every N query sequences

-nohead Suppresses psl five line header

-minScore=N sets minimum score. This is twice the matches

minus the mismatches minus some sort of gap

penalty. Default is 30

-minIdentity=N Sets minimum sequence identity (in percent). Default is

90 for nucleotide searches, 25 for protein or

translated protein searches.

-out=type Controls output file format. Type is one of:

psl - Default. Tab separated format without actual

sequence pslx - Tab separated format with sequence

axt - blastz-associated axt

format maf - multiz-

associated maf format

wublast - similar to

wublast format blast -

similar to NCBI blast

format

-maxIntron=N Sets maximum intron size. Default is 750000

webBlat

webBlat generally is not run from the command line. See ‘Setting
Up webBlat instructions below` for information on this program.

 134

faToTwoBit

faToTwoBit - Convert DNA from fasta to

2bit format usage:

faToTwoBit in.fa [in2.fa in3.fa ...]

out.2bit options:

-noMask - Ignore lower-case masking in fa file.

twoBitToFa

twoBitToFa - Convert all or part of .2bit file

to fasta usage:

twoBitToFa input.2bit

output.fa options:

-seq=name - restrict this to just one sequence

-start=X - start at given position in sequence (zero-based)

-end=X - end at given position in sequence (non-inclusive)

faToNib

faToNib - Convert from .fa

to .nib format usage:

faToNib in.fa out.nib

nibFrag

nibFrag - Extract part of a

nib file as .fa usage:

nibFrag file.nib start end strand out.fa

 135

pslPretty

pslPretty - Convert PSL to human

readable output usage:

pslPretty in.psl target.lst

query.lst pretty.out options:

-axt - save in Scott Schwartz's axt format

-dot=N Put out a dot every N records

-long - Don't abbreviate long inserts

It's a really good idea if the psl file is sorted by target if it contains multiple targets.
Otherwise this will be very very slow. The target and query lists can either be
fasta files, nib files, or a list of fasta and/or nib files one per line. Currently this
only handles nucleotide based psl files.

pslSort

pslSort - merge and sort psCluster

.psl output files usage:

pslSort dirs[1|2] outFile
tempDir inDir(s)

This will sort all of the .psl files in the

directories inDirs in two stages - first into

temporary files in tempDir and second into outFile.

 The device on tempDir

needs to have

enough space (typically 15-20 gigabytes if processing whole genome)

pslSort g2g[1|2] outFile tempDir inDir(s)

 136

This will sort a genome to genome alignment,

reflecting the alignments across the diagonal.

Adding 1 or 2 after the dirs or g2g will limit the

program to only the first or second pass repectively

of the sort

Options:

-verbose=N Set verbosity level, higher for more output. Default 1

Note for huge files pslSort will run out of memory. The unix

sort command sort –k 10 *.psl > sorted.psl

may be preferable in these situations, though the psl header

lines should be removed or avoided with the –noHead option to

blat.

pslReps

pslReps - analyse repeats and generate genome

wide best alignments from a sorted set of

local alignments

usage:

pslReps in.psl out.psl out.psr

where in.psl is an alignment file generated by

psLayout and sorted by pslSort, out.psl is the

best alignment output

and out.psr contains repeat info

 137

options:

-nohead don't add PSL header

-ignoreSize Will not weigh in favor of larger alignments so much

-noIntrons Will not penalize for not having introns when

calculating size factor

-singleHit Takes single best hit, not splitting into parts

-minCover=0.N minimum coverage to output. Default is 0.

-ignoreNs Ignore 'N's when calculating minCover.

-minAli=0.N minimum

alignment ratio

default is 0.93

-nearTop=0.N how much can deviate from top and be taken

default is 0.01

-minNearTopSize=N Minimum size of alignment that is

near top for aligmnent to be kept.

 Default 30.

-coverQSizes=file Tab-separate file with effective query sizes.

When used with -minCover, this

allows polyAs to be excluded from

the coverage calculation

Setting Up webBlat

INSTALLING WEBBLAT
Installing A Web-Based Blat Server involves four major steps:

1) Creating sequence databases.

2) Running the gfServer program to create in-memory indexes of the databases.

3) Editing the webBlat.cfg file to tell it what machine and port the gfServer(s)

 138

are running on, and optionally customizing the webBlat appearance to users.

4) Copying the webBlat executable and webBlat.cfg to a directory where the web
server can execute webBlat as a CGI.

CREATING SEQUENCE DATABASES

You create databases with the program faToTwoBit. Typically you'll create a
separate database for each genome you are indexing. Each database can
contain up to four billion bases of sequence in an unlimited number of records.
The databases for webPcr and webBlat are identical.

The input to faToTwoBit is one or more fasta format files each of which can
contain multiple records. If the sequence contains repeat sequences, as is the
case with vertebrates and many plants, the repeat sequences can
be represented in lower case and the other sequence in upper case. The
gfServer program can be configured to ignore the repeat sequences. The output
of faToTwoBit is a file which is designed for fast random access and efficient
storage. The output files store four bases per byte. They use a small amount
of additional space to store the case of the DNA and to keep track of runs of

N's in the input. Non-N ambiguity codes such as Y and U in the input sequence
will be converted to N.

Here's how a typical installation might create a mouse and a human genome
database:

cd/data/genomes mkdir twoBit
faToTwoBit human/hg16/*.fa twoBit/hg16.2bit faToTwoBit mouse/mm4/*.fa
twoBit/mm4.2bit
There's no need to put all of the databases in the same directory, but it can
simplify bookkeeping.

The databases can also be in the .nib format which was used with blat and
gfClient/gfServer until recently. The .nib format only packed 2 bases per byte,
and could only handle one record per nib file. Recent versions of blat and
related programs can use .2bit files as well.

 139

CREATING IN-MEMORY INDICES WITH GFSERVER

The gfServer program creates an in-memory index of a nucleotide sequence
database. The index can either be for translated or untranslated searches.
Translated indexes enable protein-based blat queries and use approximately two
bytes per unmasked base in the database. Untranslated indexes are used
nucleotide-based blat queries as well
as for In-silico PCR. An index for normal blat uses approximately 1/4 byte per
base. For blat on smaller (primer-sized) queries or for In-silico PCR a more
thorough index that requires 1/2 byte per base is recommended. The gfServer
is memory intensive but typically doesn not require a lot of CPU power. Memory
permitting multiple gfServers can be run on the same machine.

A typical installation might go:

ssh bigRamMachine

cd /data/genomes/twoBit

gfServer start bigRamMachine 17779 hg16.2bit &

gfServer -trans -mask start bigRamMachine 17778 hg16.2bit &

the -trans flag makes a translated index. It will take approximately

15 minutes to build an untranslated index, and 45 minutes to build a translate
index. To build an untranslated index to be shared with
In-silico PCR do

gfServer -stepSize=5 bigRamMachine 17779 hg16.2bit &

This index will be slightly more sensitive, noticeably so for small query
sequences, with blat.

EDITING THE WEBBLAT.CFG FILE

The webBlat.cfg file tells the webBlat program where to look for gfServers and
for sequence. The basic format of the .cfg file is line oriented with the
first word of the line being a command. Blank lines and lines starting with #

are ignored. The webBlat.cfg and webPcr.cfg files are similar. The webBlat.cfg
commands are:
gfServer - defines host and port a (untranslated) gfServer is running on, the
associated sequence directory, and the name of the database to display in the
webPcr web page.

gfServerTrans - defines location of a translated server.

 140

background - defines the background image if any to display on web page
company - defines company name to display on web page
tempDir - where to put temporary files. This path is relative to where the
web server executes CGI scripts. It is good to remove files that haven't
been accessed for 24 hours from this directory periodically, via a cron job or
similar mechanism.
The background and company commands are optional. The webBlat.cfg file
must have at least one valid gfServer or gfServerTrans line, and a tempDir line.
. Here is a webBlat.cfg file that you might find at a typical installation:

company Awesome Research Amalgamated background /images/dnaPaper.jpg
gfServer bigRamMachine 17778 /data/genomes/2bit/hg16.2bit Human Genome
gfServer bigRamMachine 17779 /data/genomes/2bit/hg16.2bit Human Genome
gfServer mouseServer 17780 /data/genomes/2bit/mm4.2bit Mouse Genome
gfServer mouseServer 17781 /data/genomes/2bit/mm4.2bit Mouse Genome
tempDir ../trash

PUTTING WEBBLAT WHERE THE WEB SERVER CAN EXECUTE IT

The details of this step vary highly from web server to web server. On a typical
Apache installation it might be:
ssh webServer cd kent/webBlat
cp webBlat webBlat.cfg /usr/local/apache/cgi-bin mkdir /usr/local/apache/trash
chmod 777 /usr/local/apache/trash

assuming that you've put the executable and config file in kent/webBlat. The
program will create some files in the trash directory. It is good to periodically
clean out old files from this directory. On Mac OS-X instead you might do:
cp webBlat webBlat.cfg /Library/WebServer/CGI-Executables mkdir
/Library/WebServer/trash
chmod 777 /Library/WebServer/trash

Unless you are administering your own computer you will likely need to ask your
local system administrators for help with this part of the webBlat installation.

File Formats

.psl files

A .psl file describes a series of alignments in a dense easily parsed text format.
It begins with a five line header which describes each field. Following this is one
line for each alignment with a tab between each field. The fields are describe
below in a format suitable for many relational databases.

matches int unsigned , # Number of bases that match that aren't repeats

misMatches int unsigned , # Number of bases that don't match

 141

repMatches int unsigned , # Number of bases that match but are part of
repeats nCount int unsigned , # Number of 'N' bases
qNumInsert int unsigned , # Number of inserts in query
qBaseInsert int unsigned , # Number of bases inserted in query
tNumInsert int unsigned , # Number of inserts in target
tBaseInsert int unsigned , # Number of bases inserted in target
strand char(2) , # + or - for query strand, optionally followed by + or – for
target strand
qName varchar(255) , # Query sequence name
qSize int unsigned , # Query sequence size

qStart int unsigned , # Alignment start position in query
qEnd int unsigned , # Alignment end position in query
tName varchar(255) , # Target sequence name
tSize int unsigned , # Target sequence size

tStart int unsigned , # Alignment start position in target
tEnd int unsigned , # Alignment end position in target
blockCount int unsigned , # Number of blocks in alignment. A block contains
no gaps.
blockSizes longblob , # Size of each block in a comma separated list
qStarts longblob , # Start of each block in query in a comma separated list
tStarts longblob , # Start of each block in target in a comma separated list

In general the coordinates in psl files are “zero based half open.” The first base
in a sequence is numbered zero rather than one. When representing a range the
end coordinate is not included in the range. Thus the first 100 bases of a
sequence are represented as 0-100, and the second 100 bases are represented
as 100-200. There is a another little unusual feature in the .psl format. It has to
do with how coordinates are handled on the negative strand. In the qStart/qEnd
fields the coordinates are where it matches from the point of view of the forward
strand (even when the match is on the reverse strand). However on the
qStarts[] list, the coordinates are reversed.
Here's an example of a 30-mer that has 2 blocks that align on the minus strand
and 2 blocks on the plus strand (this sort of stuff happens in real life in response
to assembly errors sometimes).

0 1 2 3 tens position in query
0123456789012345678901234567890 ones position in query
++++ +++++ plus strand alignment on query
-------- ---------- minus strand alignment on query

Plus strand:
qStart 12 qEnd 31 blockSizes 4,5 qStarts 12,26
Minus strand:
qStart 4 qEnd 26 blockSizes 10,8 qStarts 5,19

Essentially the minus strand blockSizes and qStarts are what you would get if
you reverse complemented the query.However the qStart and qEnd are non-
reversed. To get from one to the other:
qStart = qSize - revQEnd qEnd = qSize - revQStart

 142

.2bit files

A .2bit file can store multiple DNA sequence (up to 4 gig total) in a compact
randomly accessible format. The two bit files contain masking information as
well as the DNA itself. The file begins with a 16 byte header containing the
following fields:

1) signature – the number 0x1A412743 in the architecture of the
machine that created the file.

2) version – zero for now. Readers should abort if they see a version
number higher than 0.

3) sequenceCount – the number of sequences in the file

4) reserved – always zero for now.

All fields are 32 bits unless noted. If the signature value is not as given, the
reader program should byte swap the signature and see if the swapped version
matches. If so all multiple-byte entities in the file will need to be byte-swapped.
This enables these binary files to be used unchanged on different architectures.

The header is followed by a file index. There is one entry in the index for each
sequence. Each index entry contains three fields:

1) nameSize – a byte containing the length of the name field

2) name – this contains the sequence name itself, and is variable
length depending on nameSize.

3) offset – 32 bit offset of the sequence data relative to the start of the file

The index is followed by the sequence records. These contain 9 fields:

1) dnaSize – number of bases of DNA in the sequence.

2) nBlockCount – the number of blocks of N’s in the file (representing
unknown
sequence).

3) nBlockStarts – a starting position for each block of N’s

 143

4) nBlockSizes – the size of each block of N’s

5) maskBlockCount – the number of masked (lower case) blocks

6) maskBlockStarts – starting position for each masked block

7) maskBlockSizes – the size of each masked block

8) packedDna – the dna packed to two bits per base as so: 00 – T, 01 – C,
10 – A, 11 – G.
The first base is in the most significant 2 bits byte, and the last base in the least
significant 2 bits, so that the sequence TCAG would be represented as
00011011. The packedDna field will be padded with 0 bits as necessary so that
it takes an even multiple of 32 bit in the file, as this improves i/o performance
on some machines.

.nib files

A .nib file describes a DNA sequence packing two bases into each byte. Each nib
file contains only a single sequence. A nib file begins with a 32 bit signature
which is 0x6BE93D3A in the architecture of the machine that created the file,
and possibly a byte-swapped version of the same number on another machine.
This is followed by a 32 bit number in the same format which describes the
number of bases in the file. This is followed by the bases themselves packed
two bases to the byte. The first base is packed in the high order 4 bits (nibble),
the second base in the low order four bits. In C code:

byte = (base1<<4) + base2

The numerical values for the bases are:

0 – T, 1 – C, 2 – A, 3 – G, 4 – N (unknown)

The most significant bit in a nibble is set if the base is masked.

Limits

The gfServer program requires approximately 1 byte for every 3 bases in the
genome it is indexing in DNA mode, and 1.5 bytes for each unmasked base in
translated mode. The blat program requires approximately two bytes for each
base in the genome in DNA mode, and three bytes for each base in translated
mode. The other programs use relatively little memory.

 144

APPENDIX C

[SIMULATED TRANSLOCATION REFERENCE LIST]

 145

Additional file 1 - Comprehensive list of gene pairs involved in cancer-specific recurrent translocations which result in fusion transcripts
Translocation Gene Location Fragile Site Gene Location Fragile

 t(7;12)(p22;q13) ACTB 7p22.1 FRA7B (common, apc) GLI1 12q13.3
inv(7)(q21q34) AKAP9 7q21.2 FRA7E (common, apc) BRAF 7q34
t(X;17)(p11;q25) ASPSCR1 17q25.3 TFE3 Xp11.23
inv(2)(p23q35) ATIC 2q35 ALK 2p23.2-p23.1
t(17;20)(q23;q13) BCAS4 20q13.13 BCAS3 17q23.2
t(2;3)(p16;q26) BCL11A 2p16.1 MDS1 3q26.2
t(5;14)(q35;q32) BCL11B 14q32.2 NKX2E 5q35.2 FRA5G (rare, folic acid)
t(5;14)(q35;q32) BCL11B 14q32.2 TLX3 5q35.1 FRA5G (rare, folic acid)

inv(14)(q11q32) BCL11B 14q32.2 TRD@ 14q11.2
t(14;18)(q32;q21) BCL2 18q21.33 FRA18B (common, apc) IGH@ 14q32.33
t(2;18)(p11;q21) BCL2 18q21.33 FRA18B (common, apc) IGK@ 2p11.2 FRA2L (rare, folic acid)

t(18;22)(q21;q11) BCL2 18q21.33 FRA18B (common, apc) IGL@ 22q11.22
t(8;19)(q24;q13) BCL3 19q13.31 FRA19A (common, 5-aza) MYC 8q24.21
t(3;16)(q27;p13) BCL6 3q27.3 FRA3C (common, apc) CIITA 16p13.13
t(3;8)(q27;q24) BCL6 3q27.3 FRA3C (common, apc) MYC 8q24.21
t(1;14)(q21;q32) BCL9 1q21.1 FRA1F (common, apc) IGH@ 14q32.33
t(1;22)(q21;q11) BCL9 1q21.1 FRA1F (common, apc) IGL@ 22q11.22
t(9;22)(q34;q11) BCR 22q11.23 ABL1 9q34.12
t(8;22)(p12;q11) BCR 22q11.23 FGFR1 8p12
t(9;22)(p24;q11) BCR 22q11.23 JAK2 9p24.1
t(4;22)(q12;q11) BCR 22q11.23 PDGFRA 4q12 FRA4B (common, BrdU)

t(11;18)(q22;q21) BIRC3 11q22.2 MALT1 18q21.32 FRA18B (common, apc)

t(X;11)(q21;q23) BRWD3 Xq21.1 ARHGAP20 11q22.3-q23.1
t(8;12)(q21;q22) BTG1 12q21.33 FRA12B (common, apc) MYC 8q24.21
t(7;15)(p21;q21) C15ORF21 15q21.1 ETV1 7p21.2
t(3;3)(q21;q26) C3ORF27 3q21.3 EVI1 3q26.2
t(2;11)(p23;p15) CARS 11p15.4 ALK 2p23.2-p23.1
t(16;16)(p13;q22), inv(16)(p13q22) CBFB 16q22.1 FRA16B (rare, dist A), FRA16C (common, apc) MYH11 16p13.11 FRA16A (rare, folic acid)
t(5;10)(q33;q21) CCDC6 10q21.2 FRA10C (common, BrdU) PDGFRB 5q33.1
inv(10)(q11q21) CCDC6 10q21.2 FRA10C (common, BrdU) RET 10q11.21 FRA10G (common, apc)
t(5;14)(q33;q32) CCDC88C 14q32.12 PDGFRB 5q33.1
t(11;19)(q13;p13) CCND1 11q13 .2 FRA11H (common, apc) FSTL3 19p13.3 FRA19B (rare, folic acid)

t(5;6)(q32-33;q22) CD74 5q33.1 ROS1 6q22.2
t(16;17)(q21;p13) CDH11 16q21 USP6 17p13.2
t(7;11)(q21;q23) CDK6 7q21.2 FRA7E (common, apc) MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common,

 t(5;7)(q35;q21) CDK6 7q21.2 FRA7E (common, apc) TLX3 5q35.1 FRA5G (rare, folic acid)

t(5;11)(q12;q23) CENPK 5q12.3 MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common,
 t(8;9)(p12;q33) CEP110 9q33.2 FGFR1 8p12

 146

t(4;12)(q12;p13) CHIC2 4q12 FRA4B (common, BrdU) ETV6 12p13.2
t(4;19)(q35;q13) CIC 19q13.2 FRA19A (common, 5-aza) DUX4 4q35.2
t(2;17)(p23;q23) CLTC 17q23.1 FRA17B (common, apc) ALK 2p23.2-p23.1
t(X;17)(p11;q23) CLTC 17q23.1 FRA17B (common, apc) TFE3 Xp11.23
t(2;22)(p23;q11) CLTCL1 22q11.21 ALK 2p23.2-p23.1
t(3;17)(q21;p13) CNBP 3q21.3 USP6 17p13.2
t(17;22)(q21;q13) COL1A1 17q21.33 PDGFB 22q13.1 FRA22A (rare, folic acid)
t(17;17)(p13;q21) COL1A1 17q21.33 USP6 17p13.2
t(7;8)(q21;q12) COL1A2 7q21.3 PLAG1 8q12.1
t(X;6)(q22;q13-14) COL4A5 Xq22.3 COL12A1 6q13-q14.1 FRA6D (common, BrdU)
t(1;2)(p13;q37) COL6A3 2q37.3 FRA2J (common, apc) CSF1 1p13.3
t(8;12)(p12;q15) CPSF6 12q15 FGFR1 8p12
t(11;19)(q21;p13) CRTC1 19p13.11 FRA19B (rare, folic acid) MAML2 11q21
t(11;15)(q21;q26) CRTC3 15q26.1 MAML2 11q21
t(3;8)(p22;q12) CTNNB1 3p22.1 PLAG1 8q12.1
t(3;9)(q27;p24) DMRT1 9p24.3 BCL6 3q27.3 FRA3C (common, apc)

t(1;1)(p36;q41) DUSP10 1q41 PRDM16 1p36.32 FRA1A (common, apc)

t(5;12)(q33;q14) EBF1 5q33.3 LOC204010 12q14.3
t(X;21)(q25;q22) ELF4 Xq25 ERG 21q22.2
t(9;14)(q34;q32) EML1 14q32.2 ABL1 9q34.12
inv(2)(p21p23), del(2)(p21p23)* EML4 2p21 ALK 2p23.2-p23.1
t(5;12)(q33;p13) ERC1 12p13.33 PDGFRB 5q33.1
t(10;12)(q11;p13) ERC1 12p13.33 RET 10q11.21 FRA10G (common, apc)

t(9;12)(q34;p13) ETV6 12p13.2 ABL1 9q34.12
t(1;12)(q25;p13) ETV6 12p13.2 ABL2 1q25.2
t(5;12)(q31;p13) ETV6 12p13.2 ACSL6 5q31.1 FRA5C (common, apc)

t(1;12)(q21;p13) ETV6 12p13.2 ARNT 1q21.2 FRA1F (common, apc)

t(12;12)(p13;q13) ETV6 12p13.2 BAZ2A 12q13.3
t(12;13)(p13;q12) ETV6 12p13.2 CDX2 13q12.2
t(3;12)(q26;p13) ETV6 12p13.2 EVI1 3q26.2
t(4;12)(p16;p13) ETV6 12p13.2 FGFR3 4p16.3
t(12;13)(p13;q12) ETV6 12p13.2 FLT3 13q12.2
t(6;12)(q22;p13) ETV6 12p13.2 FRK 6q22.1
t(10;12)(q24;p13) ETV6 12p13.2 GOT1 10q24.2 FRA10A (rare, folic acid)

t(9;12)(p24;p13) ETV6 12p13.2 JAK2 9p24.1
t(3;12)(q26;p13) ETV6 12p13.2 MDS1 3q26.2
t(1;12)(p36;p13) ETV6 12p13.2 MDS2 1p36.11 FRA1A (common, apc)

t(12;15)(p13;q25) ETV6 12p13.2 NTRK3 15q25.3
t(4;12)(q12;p13) ETV6 12p13.2 PDGFRA 4q12 FRA4B (common, BrdU)

 147

t(5;12)(q33;p13) ETV6 12p13.2 PDGFRB 5q33.1
t(12;17)(p13;p13) ETV6 12p13.2 PER1 17p13.1
inv(12)(p13q15) ETV6 12p13.2 PTPRR 12q15
t(12;21)(p13;q22) ETV6 12p13.2 RUNX1 21q22.12
t(6;12)(q23;p13) ETV6 12p13.2 STL 6q23
t(9;12)(q22;p13) ETV6 12p13.2 SYK 9q22.2
t(12;22)(q13;q12) EWSR1 22q12.2 FRA22B (common, apc) ATF1 12q13.13 FRA12A (rare, folic acid)
t(2;22)(q33;q12) EWSR1 22q12.2 FRA22B (common, apc) CREB1 2q33.3 FRA2I (common,apc)

t(12;22)(q13;q12) EWSR1 22q12.2 FRA22B (common, apc) DDIT3 12q13.3
t(21;22)(q22;q12) EWSR1 22q12.2 FRA22B (common, apc) ERG 21q22.2
t(7;22)(p21;q12) EWSR1 22q12.2 FRA22B (common, apc) ETV1 7p21.2
t(17;22)(q21;q12) EWSR1 22q12.2 FRA22B (common, apc) ETV4 17q21.31
t(2;22)(q35;q12) EWSR1 22q12.2 FRA22B (common, apc) FEV 2q35
t(11;22)(q24;q12) EWSR1 22q12.2 FRA22B (common, apc) FLI1 11q24.3
t(9;22)(q31;q12) EWSR1 22q12.2 FRA22B (common, apc) NR4A3 9q31.1
inv(22)(q12q12) EWSR1 22q12.2 FRA22B (common, apc) PATZ1 22q12.2 FRA22B (common, apc)

t(6;22)(p21;q12) EWSR1 22q12.2 FRA22B (common, apc) POU5F1 6p21.33 FRA6H (common, apc)

t(2;22)(q31;q12) EWSR1 22q12.2 FRA22B (common, apc) SP3 2q31.1 FRA2G (common, apc)

t(11;22)(p13;q12) EWSR1 22q12.2 FRA22B (common, apc) WT1 11p13 FRA11E (common, apc)

t(12;22)(p13;q12) EWSR1 22q12.2 FRA22B (common, apc) ZNF384 12p13.31
t(5;7)(q31;q34) FCHSD1 5q31.3 BRAF 7q34
t(6;8)(q27;p12) FGFR1OP 6q27 FGFR1 8p12
del(4)(q12q12)* FIP1L1 4q12 FRA4B (common, BrdU) PDGFRA 4q12 FRA4B (common, BrdU)
t(4;17)(q12;q21) FIP1L1 4q12 FRA4B (common, BrdU) RARA 17q21.2
t(2;13)(q36;q14) FOXO1A 13q14.11 PAX3 2q36.1
t(X;11)(q13;q23) FOXO4 Xq13.1 MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common,

 t(12;16)(q13;p11) FUS 16p11.2 ATF1 12q13.13 FRA12A (rare, folic acid)

t(11;16)(p11;p11) FUS 16p11.2 CREB3L1 11p11.2
t(7;16)(q34;p11) FUS 16p11.2 CREB3L2 7q33-q34
t(12;16)(q13;p11) FUS 16p11.2 DDIT3 12q13.3
t(16;21)(p11;q22) FUS 16p11.2 ERG 21q22.2
t(2;16)(q35;p11) FUS 16p11.2 FEV 2q35
t(3;12)(q27;p13) GAPDH 12p13.31 BCL6 3q27.3 FRA3C (common, apc)

t(5;12)(q33;q24) GIT2 12q24.11 FRA12E (common, apc) PDGFRB 5q33.1
t(10;14)(q11;q32) GOLGA5 14q32.12 RET 10q11.21 FRA10G (common, apc)

del(6)(q21q22)* GOPC 6q22.2 ROS1 6q22.2
del(8)(q12q24)* HAS2 8q24.13 FRA8C (common, apc), FRA8E (rare, dist A) PLAG1 8q12.1
t(8;19)(p12;q13) HERV-K (LOC113386) 19q13.43 FRA19A (common, 5-aza) FGFR1 8p12
t(5;7)(q33;q11) HIP1 7q11.23 FRA7J (common, apc) PDGFRB 5q33.1
t(3;6)(q27;p22) HIST1H4I 6p22.1 BCL6 3q27.3 FRA3C (common, apc)

 148

inv(6)(p21q21) HMGA1 6p21.31 FRA6H (common, apc) LAMA4 6q21 FRA6F (common, apc)

t(12;14)(q14;q11) HMGA2 12q14.3 CCNB1IP1 14q11.2
t(8;12)(q22;q14) HMGA2 12q14.3 COX6C 8q22.2
t(2;12)(q37;q14) HMGA2 12q14.3 CXCR7 2q37.3 FRA2J (common, apc)

t(5;12)(q33;q14) HMGA2 12q14.3 EBF1 5q33.3
t(12;13)(q14;q13) HMGA2 12q14.3 LHFP 13q13.3
t(3;12)(q28;q14) HMGA2 12q14.3 LPP 3q28
t(9;12)(p23;q14) HMGA2 12q14.3 NFIB 9p23-p22.3
t(12;14)(q14;q24) HMGA2 12q14.3 RAD51L1 14q24.1 FRA14C (common, apc)

t(7;7)(p15;p21) HNRPA2B1 7p15.2 ETV1 7p21.2
t(8;10)(p11;q11) HOOK3 8p11.21 RET 10q11.21 FRA10G (common, apc)

t(6;16)(p21;q22) HP 16q22.3 MRPS10 6p21.1 FRA6H (common, apc)

t(3;14)(q27;q32) HSP90AA1 14q32.31 BCL6 3q27.3 FRA3C (common, apc)

t(3;6)(q27;p21) HSP90AB1 6p21.1 FRA6H (common, apc) BCL6 3q27.3 FRA3C (common, apc)

t(1;14)(p22;q32) IGH@ 14q32.33 BCL10 1p22.3 FRA1D (common, apc)

t(2;14)(p16;q32) IGH@ 14q32.33 BCL11A 2p16.1
t(14;19)(q32;q13) IGH@ 14q32.33 BCL3 19q13.31 FRA19A (common, 5-aza)

t(3;14)(q27;q32) IGH@ 14q32.33 BCL6 3q27.3 FRA3C (common, apc)

t(14;15)(q32;q11-13) IGH@ 14q32.33 BCL8 15q11.2
t(11;14)(q13;q32) IGH@ 14q32.33 CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common,

 t(12;14)(p13;q32) IGH@ 14q32.33 CCND2 12p13.32
t(6;14)(p21;q32) IGH@ 14q32.33 CCND3 6p21.1 FRA6H (common, apc)

t(7;14)(q21;q32) IGH@ 14q32.33 CDK6 7q21.2 FRA7E (common, apc)

t(14;19)(q32;q13) IGH@ 14q32.33 CEBPA 19q13.11 FRA19A (common, 5-aza)

t(14;20)(q32;q13) IGH@ 14q32.33 CEBPB 20q13.13
t(8;14)(q11;q32) IGH@ 14q32.33 CEBPD 8q11.21
t(14;14)(q11;q32) IGH@ 14q32.33 CEBPE 14q11.2
t(14;19)(q32;q13) IGH@ 14q32.33 CEBPG 19q13.11 FRA19A (common, 5-aza)

t(12;14)(q23;q32) IGH@ 14q32.33 CHST11 12q23.3
t(11;14)(q23;q32) IGH@ 14q32.33 DDX6 11q23.3 FRA11B (rare, folic acid), FRA11G (common,

 t(7;14)(q21;q32) IGH@ 14q32.33 ERVWE1 7q21.2 FRA7E (common, apc)

t(12;14)(p13;q32) IGH@ 14q32.33 ETV6 12p13.2
t(1;14)(q23;q32) IGH@ 14q32.33 FCGR2B 1q23.3
t(1;14)(q21;q32) IGH@ 14q32.33 FCRL4 1q23.1
t(4;14)(p16;q32) IGH@ 14q32.33 FGFR3 4p16.3
t(3;14)(p14;q32) IGH@ 14q32.33 FOXP1 3p14.1
t(6;14)(p22;q32) IGH@ 14q32.33 ID4 6p22.3
t(14;22)(q32;q11) IGH@ 14q32.33 IGL@ 22q11.22
t(5;14)(q31;q32) IGH@ 14q32.33 IL3 5q31.1 FRA5C (common, apc)

 149

t(6;14)(p25;q32) IGH@ 14q32.33 IRF4 6p25.3
t(1;14)(p35;q32) IGH@ 14q32.33 LAPTM5 1p35.2
t(1;14)(q25;q32) IGH@ 14q32.33 LHX4 1q25.2
t(14;16)(q32;q23) IGH@ 14q32.33 MAF 16q23.1
t(14;20)(q32;q12) IGH@ 14q32.33 MAFB 20q12
t(14;18)(q32;q21) IGH@ 14q32.33 MALT1 18q21.32 FRA18B (common, apc)
t(1;14)(q22;q32) IGH@ 14q32.33 MUC1 1q22
t(8;14)(q24;q32) IGH@ 14q32.33 MYC 8q24.21
t(10;14)(q24;q32) IGH@ 14q32.33 NFKB2 10q24.32
t(11;14)(q23;q32) IGH@ 14q32.33 PAFAH1B2 11q23.3 FRA11B (rare, folic acid), FRA11G (common,

 t(9;14)(p13;q32) IGH@ 14q32.33 PAX5 9p13.2
t(11;14)(q23;q32) IGH@ 14q32.33 PCSK7 11q23.3 FRA11B (rare, folic acid), FRA11G (common,

 t(4;14)(p14;q32) IGH@ 14q32.33 RHOH 4p14
t(14;19)(q32;q13) IGH@ 14q32.33 SPIB 19q13.33 FRA19A (common, 5-aza)
t(14;14)(q11;q32), inv(14)(q11q32) IGH@ 14q32.33 TRA@ 14q11.2
inv(14)(q11q32) IGH@ 14q32.33 TRD@ 14q11.2
t(4;14)(p16;q32) IGH@ 14q32.33 WHSC1 4p16.3
t(14;16)(q32;q23) IGH@ 14q32.33 WWOX 16q23.1 FRA16D (common, apc)

t(1;2)(p22;p11) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL10 1p22.3 FRA1D (common, apc)

t(2;19)(p11;q13) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL3 19q13.31 FRA19A (common, 5-aza)

t(2;3)(p11;q27) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL6 3q27.3 FRA3C (common, apc)
t(2;11)(p11;q13) IGK@ 2p11.2 FRA2L (rare, folic acid) CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common,

 t(2;12)(p11;p13) IGK@ 2p11.2 FRA2L (rare, folic acid) CCND2 12p13.32
t(2;7)(p11;q21) IGK@ 2p11.2 FRA2L (rare, folic acid) CDK6 7q21.2 FRA7E (common, apc)

t(2;18)(p11;q21) IGK@ 2p11.2 FRA2L (rare, folic acid) FVT1 18q21.33 FRA18B (common, apc)

t(2;8)(p11;q24) IGK@ 2p11.2 FRA2L (rare, folic acid) MYC 8q24.21
t(2;8)(p11;q24) IGK@ 2p11.2 FRA2L (rare, folic acid) PVT1 8q24.21
t(2;6)(p11;q25) IGK@ 2p11.2 FRA2L (rare, folic acid) ZC3H12D 6q25.1
t(19;22)(q13;q11) IGL@ 22q11.22-q11.23 BCL3 19q13.31 FRA19A (common, 5-aza)
t(3;22)(q27;q11) IGL@ 22q11.22-q11.23 BCL6 3q27.3 FRA3C (common, apc)

t(11;22)(q13;q11) IGL@ 22q11.22-q11.23 CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common,
 t(12;22)(p13;q11) IGL@ 22q11.22-q11.23 CCND2 12p13.32

t(6;22)(p21;q11) IGL@ 22q11.22-q11.23 CCND3 6p21.1 FRA6H (common, apc)

t(7;22)(q21;q11) IGL@ 22q11.22-q11.23 CDK6 7q21.2 FRA7E (common, apc)

t(16;22)(q23;q11) IGL@ 22q11.22-q11.23 MAF 16q23.1
t(8;22)(q24;q11) IGL@ 22q11.22-q11.23 MYC 8q24.21
t(8;22)(q24;q11) IGL@ 22q11.22-q11.23 PVT1 8q24.21
t(2;22)(p16;q11) IGL@ 22q11.22-q11.23 REL 2p16.1
t(16;22)(q23;q11) IGL@ 22q11.22-q11.23 WWOX 16q23.1 FRA16D (common, apc)

t(4;16)(q27;p13) IL2 4q27 DEXI 16p13.13

 150

t(4;16)(q27;p13) IL2 4q27 TNFRSF17 16p13.13
t(3;16)(q27;p12) IL21R 16p12.1 FRA16E (rare, dist A) BCL6 3q27.3 FRA3C (common, apc)

t(5;9)(q33;q22) ITK 5q33.3 SYK 9q22.2
t(6;7)(p21;p15) JAZF1 7p15.2-p15.1 PHF1 6p21.32 FRA6H (common, apc)

t(7;17)(p15;q11) JAZF1 7p15.2-p15.1 SUZ12 17q11.2
t(2;17)(p23;q25) KIAA1618 17q25.3 ALK 2p23.2-p23.1
t(4;10)(q12;p11) KIF5B 10p11.22 PDGFRA 4q12 FRA4B (common, BrdU)

t(10;14)(q11;q22) KTN1 14q22.3 RET 10q11.21 FRA10G (common, apc)

t(12;16)(p13;p13) LAG3 12p13.31 MYH11 16p13.11 FRA16A (rare, folic acid)

t(1;7)(p35;q34) LCK 1p35.1 TRB@ 7q34
t(3;13)(q27;q14) LCP1 13q14.12 BCL6 3q27.3 FRA3C (common, apc)

t(5;8)(p13;q12) LIFR 5p13.1 FRA5A (common, BrdU) PLAG1 8q12.1
del(3)(q27q28)* LPP 3q28 BCL6 3q27.3 FRA3C (common, apc)

t(7;19)(q34;p13) LYL1 19p13.13 FRA19B (rare, folic acid) TRB@ 7q34
t(11;19)(q13;q13.4) MALAT1 11q13.1 FRA11H (common, apc) MHLB1 19q13.4 FRA19A (common, 5-aza)
t(6;11)(p21.1;q13) MALAT1 11q13.1 FRA11H (common, apc) TFEB 6p21.1 FRA6H (common, apc)
t(3;18)(p21;q21) MALT1 18q21.32 FRA18B (common, apc) MAP4 3p21.31

 151

 152

APPENDIX D

[LICENSES FOR COPYRIGHT MATERIAL USE]

 153

NATURE PUBLISHING GROUP LICENSE
TERMS AND CONDITIONS
Apr 04, 2014

This is a License Agreement between Sheetal Shetty ("You") and Nature Publishing
Group ("Nature Publishing Group") provided by Copyright Clearance Center ("CCC").
The license consists of your order details, the terms and conditions provided by Nature
Publishing Group, and the payment terms and conditions.
All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.
License Number 3357810018516
License date Mar 28, 2014
Licensed content publisher Nature Publishing Group
Licensed content publication Nature Reviews Genetics

Licensed content title Sequencing technologies [mdash] the next
generation

Licensed content author Michael L. Metzker
Licensed content date Jan 1, 2010
Volume number 11
Issue number 1
Type of Use reuse in a dissertation / thesis
Requestor type academic/educational
Format electronic
Portion figures/tables/illustrations
Number of figures/tables/illustrations 5
High-res required no
Figures Figure1, Figure2, Figure3, Figure4, Figure5,
Author of this NPG article no
Your reference number

Title of your thesis / dissertation Structural Variant Detection A Novel Approach
Expected completion date Apr 2014
Estimated size (number of pages) 400
Total 0.00 USD
Terms and Conditions

Terms and Conditions for Permissions
Nature Publishing Group hereby grants you a non-exclusive license to reproduce this
material for this purpose, and for no other use,subject to the conditions below:

1. NPG warrants that it has, to the best of its knowledge, the rights to license

 154

reuse of this material. However, you should ensure that the material you are
requesting is original to Nature Publishing Group and does not carry the
copyright of another entity (as credited in the published version). If the credit
line on any part of the material you have requested indicates that it was
reprinted or adapted by NPG with permission from another source, then you
should also seek permission from that source to reuse the material.

2. Permission granted free of charge for material in print is also usually granted for
any electronic version of that work, provided that the material is incidental to
the work as a whole and that the electronic version is essentially equivalent to,
or substitutes for, the print version.Where print permission has been granted for
a fee, separate permission must be obtained for any additional, electronic re-
use (unless, as in the case of a full paper, this has already been accounted for
during your initial request in the calculation of a print run).NB: In all cases,
web-based use of full-text articles must be authorized separately through the
'Use on a Web Site' option when requesting permission.

3. Permission granted for a first edition does not apply to second and subsequent
editions and for editions in other languages (except for signatories to the STM
Permissions Guidelines, or where the first edition permission was granted for
free).

4. Nature Publishing Group's permission must be acknowledged next to the figure,
table or abstract in print. In electronic form, this acknowledgement must be
visible at the same time as the figure/table/abstract, and must be hyperlinked
to the journal's homepage.

5. The credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME]
(reference citation), copyright (year of publication)
For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME],
advance online publication, day month year (doi: 10.1038/sj.[JOURNAL
ACRONYM].XXXXX)

Note: For republication from the British Journal of Cancer, the following
credit lines apply.
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME], advance online publication, day month year
(doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

6. Adaptations of single figures do not require NPG approval. However, the
adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME]

 155

(reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following
credit line applies.
Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)

7. Translations of 401 words up to a whole article require NPG approval. Please
visit http://www.macmillanmedicalcommunications.com for more
information.Translations of up to a 400 words do not require NPG approval. The
translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME]
(reference citation), copyright (year of publication).

Note: For translation from the British Journal of Cancer, the following
credit line applies.
Translated by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)

We are certain that all parties will benefit from this agreement and wish you the best in
the use of this material. Thank you.
Special Terms:
v1.1

http://www.macmillanmedicalcommunications.com/

 156

OXFORD UNIVERSITY PRESS LICENSE
TERMS AND CONDITIONS
Apr 04, 2014

This is a License Agreement between Sheetal Shetty ("You") and Oxford University Press
("Oxford University Press") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by Oxford University Press,
and the payment terms and conditions.
All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.
License Number 3361850838425
License date Apr 04, 2014
Licensed content
publisher Oxford University Press

Licensed content
publication Nucleic Acids Research

Licensed content title The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants:

Licensed content
author

Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L.
Heuer, Peter M. Rice

Licensed content date 04/01/2010
Type of Use Thesis/Dissertation
Institution name
Title of your work Structural Variant Detection A Novel Approach
Publisher of your work n/a
Expected publication
date Apr 2014

Permissions cost 0.00 USD
Value added tax 0.00 USD
Total 0.00 USD
Total 0.00 USD
Terms and Conditions

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL
FROM AN OXFORD UNIVERSITY PRESS JOURNAL

1. Use of the material is restricted to the type of use specified in your order details.

 157

2. This permission covers the use of the material in the English language in the following
territory: world. If you have requested additional permission to translate this material, the
terms and conditions of this reuse will be set out in clause 12.

3. This permission is limited to the particular use authorized in (1) above and does not allow
you to sanction its use elsewhere in any other format other than specified above, nor does it
apply to quotations, images, artistic works etc that have been reproduced from other sources
which may be part of the material to be used.

4. No alteration, omission or addition is made to the material without our written consent.
Permission must be re-cleared with Oxford University Press if/when you decide to reprint.

5. The following credit line appears wherever the material is used: author, title, journal, year,
volume, issue number, pagination, by permission of Oxford University Press or the
sponsoring society if the journal is a society journal. Where a journal is being published on
behalf of a learned society, the details of that society must be included in the credit line.

6. For the reproduction of a full article from an Oxford University Press journal for whatever
purpose, the corresponding author of the material concerned should be informed of the
proposed use. Contact details for the corresponding authors of all Oxford University Press
journal contact can be found alongside either the abstract or full text of the article concerned,
accessible from www.oxfordjournals.org Should there be a problem clearing these rights,
please contact journals.permissions@oup.com

7. If the credit line or acknowledgement in our publication indicates that any of the figures,
images or photos was reproduced, drawn or modified from an earlier source it will be
necessary for you to clear this permission with the original publisher as well. If this
permission has not been obtained, please note that this material cannot be included in your
publication/photocopies.

8. While you may exercise the rights licensed immediately upon issuance of the license at
the end of the licensing process for the transaction, provided that you have disclosed
complete and accurate details of your proposed use, no license is finally effective unless and
until full payment is received from you (either by Oxford University Press or by Copyright
Clearance Center (CCC)) as provided in CCC's Billing and Payment terms and conditions. If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted. Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted. Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and Oxford University Press reserves the right to take any and all action to protect its
copyright in the materials.

9. This license is personal to you and may not be sublicensed, assigned or transferred by you

 158

to any other person without Oxford University Press’s written permission.

10. Oxford University Press reserves all rights not specifically granted in the combination of
(i) the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and
conditions.

11. You hereby indemnify and agree to hold harmless Oxford University Press and CCC,
and their respective officers, directors, employs and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.

12. Other Terms and Conditions:

v1.4

 159

NATURE PUBLISHING GROUP LICENSE
TERMS AND CONDITIONS
Apr 04, 2014

This is a License Agreement between Sheetal Shetty ("You") and Nature Publishing
Group ("Nature Publishing Group") provided by Copyright Clearance Center ("CCC").
The license consists of your order details, the terms and conditions provided by Nature
Publishing Group, and the payment terms and conditions.
All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.
License Number 3361601448677
License date Apr 03, 2014
Licensed content publisher Nature Publishing Group
Licensed content publication Nature Biotechnology
Licensed content title What is dynamic programming?
Licensed content author Sean R Eddy
Licensed content date Jul 1, 2004
Volume number 22
Issue number 7
Type of Use reuse in a dissertation / thesis
Requestor type academic/educational
Format print and electronic
Portion figures/tables/illustrations
Number of figures/tables/illustrations 1
High-res required no
Figures Figure 1
Author of this NPG article no
Your reference number

Title of your thesis / dissertation Structural Variant Detection A Novel

Approach
Expected completion date Apr 2014
Estimated size (number of pages) 400
Total 0.00 USD
Terms and Conditions

Terms and Conditions for Permissions
Nature Publishing Group hereby grants you a non-exclusive license to reproduce this
material for this purpose, and for no other use,subject to the conditions below:

1. NPG warrants that it has, to the best of its knowledge, the rights to license

 160

reuse of this material. However, you should ensure that the material you are
requesting is original to Nature Publishing Group and does not carry the
copyright of another entity (as credited in the published version). If the credit
line on any part of the material you have requested indicates that it was
reprinted or adapted by NPG with permission from another source, then you
should also seek permission from that source to reuse the material.

2. Permission granted free of charge for material in print is also usually granted for
any electronic version of that work, provided that the material is incidental to
the work as a whole and that the electronic version is essentially equivalent to,
or substitutes for, the print version.Where print permission has been granted for
a fee, separate permission must be obtained for any additional, electronic re-
use (unless, as in the case of a full paper, this has already been accounted for
during your initial request in the calculation of a print run).NB: In all cases,
web-based use of full-text articles must be authorized separately through the
'Use on a Web Site' option when requesting permission.

3. Permission granted for a first edition does not apply to second and subsequent
editions and for editions in other languages (except for signatories to the STM
Permissions Guidelines, or where the first edition permission was granted for
free).

4. Nature Publishing Group's permission must be acknowledged next to the figure,
table or abstract in print. In electronic form, this acknowledgement must be
visible at the same time as the figure/table/abstract, and must be hyperlinked
to the journal's homepage.

5. The credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME]
(reference citation), copyright (year of publication)
For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME],
advance online publication, day month year (doi: 10.1038/sj.[JOURNAL
ACRONYM].XXXXX)

Note: For republication from the British Journal of Cancer, the following
credit lines apply.
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME], advance online publication, day month year
(doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

6. Adaptations of single figures do not require NPG approval. However, the
adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME]

 161

(reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following
credit line applies.
Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)

7. Translations of 401 words up to a whole article require NPG approval. Please
visit http://www.macmillanmedicalcommunications.com for more
information.Translations of up to a 400 words do not require NPG approval. The
translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME]
(reference citation), copyright (year of publication).

Note: For translation from the British Journal of Cancer, the following
credit line applies.
Translated by permission from Macmillan Publishers Ltd on behalf of Cancer
Research UK: [JOURNAL NAME] (reference citation), copyright (year of
publication)

We are certain that all parties will benefit from this agreement and wish you the best in
the use of this material. Thank you.
Special Terms:
v1.1

http://www.macmillanmedicalcommunications.com/

 162

APPENDIX E

[TOOL SCRIPTS]

 163

Extraction algorithm
#!/usr/bin/perl -w

use strict;
use warnings;

my $infile_name=shift(@ARGV);
my $outfile1_name=$infile_name;
my $outfile2_name=$infile_name;
check file extension is .sam or .bam
if($infile_name=~/.(s|b)am$/){
 $outfile1_name=~s/.(b|s)am$/.extraction2.sam/; # add .extraction.sam suffix to output file
 $outfile2_name=~s/.(b|s)am$/.extraction2.fa/; # add .extraction.fq suffix to output file
}else{
 die "Error: input file needs to be in bam/sam format.\n"; # if file extension not .sam and .bam file
then exit
}

my $isbam=($infile_name =~ /.bam$/)? 1:0; # if .bam file then return 1(true)

if($isbam){
 open(INFILEHDL, "samtools view $infile_name |") or die "$0: can't open ".$infile_name.":$!\n"; #
open bam file
}else{
 open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sam file
}
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";
open file in overwite mode
open(OUTFILEHDL2, ">$outfile2_name") or die "$0: can't write in the output: $outfile2_name :$!\n";
open file in overwite mode

my $readsum = 0;
my $readcount = 0;
my $prevline = "";
my $prevfld0 = "";
my $prevfld1 = "";
my $prevfld5 = "";
my $prevfld9 = "";
my $currentfld0 = "";
my $currentfld1 = "";
my $currentfld5 = "";
my $currentfld8 = "";
my $currentfld9 = "";
my $first = 0;
my $pattlen =0;
my $Ipattern="";
my @meanlist =('99','163','147','83');
my @matchlist =
('73','133','89','121','165','181','101','117','153','185','69','137','77','141','67','131','115','179','81','161'
,'97','145','65','129','113','177');
while (my $LINE=<INFILEHDL>) # read line till EOF

 164

{
 # chomp my $LINE; # removes trailing whitespace

 my @L=split(/\t+/,$LINE); # split on white space, + will merge multiple whitespace
 #my @L=split;
 if ($L[0]=~/^@/) # current line first character is @ then print that line and skip that line
 {
 print OUTFILEHDL1 $LINE;
 next;
 }

 $currentfld0 = "";
 $currentfld1 = "";
 $currentfld5 = "";
 $currentfld8 = "";
 $currentfld9 = "";

 if (scalar(@L)>= 11) # array length is atleast 11
 {
 $currentfld0 = $L[0]; #Identifier
 $currentfld1 = $L[1]; #FLAG
 $currentfld5 = $L[5]; #CIGAR
 $currentfld8 = $L[8]; #TLEN
 $currentfld9 = $L[9]; #SEQUENCE

 if ($first == 0) # build search pattern only once
 {
 $pattlen = int(length($currentfld9)*.30); #30% or less based on decimal
point of identifier length
 $Ipattern = "N" x $pattlen;
 $first = 1;
 print $Ipattern."\n" ; # for testing purpose
 }

 if (grep{$currentfld1 eq $_} @meanlist)
 {
 $readsum = $readsum + $currentfld8 ;
 $readcount = $readcount + 1 ;
 }

 if (($currentfld0 eq $prevfld0) and ((grep{$currentfld1 eq $_} @matchlist) || (grep{$prevfld1 eq
$_} @matchlist) || ($currentfld5=~/S/ || $prevfld5=~/S/)))
 {

 print OUTFILEHDL1 $prevline."\n";
 print OUTFILEHDL1 $LINE."\n";

 if (index($prevfld9,$Ipattern)==-1 and index($currentfld9,$Ipattern)==-1)
if N Pattern not found in Read 1 & Read 2 then write to FA file
 {
 print OUTFILEHDL2 ">".$prevfld0."<RID>1"."\n";
 print OUTFILEHDL2 $prevfld9."\n";

 165

 print OUTFILEHDL2 ">".$currentfld0."<RID>2"."\n";
 print OUTFILEHDL2 $currentfld9."\n";
 }
 }

 } # if scalar

 $prevline = $LINE ;
 $prevfld0 = $currentfld0;
 $prevfld1 = $currentfld1;
 $prevfld9 = $currentfld9;

} # while

close OUTFILEHDL1;
close OUTFILEHDL2;
close INFILEHDL;

De-duplication algorithm
#!/usr/bin/perl -w

Assumptions
psl file needs to be sorted by identifier,chromosome,start position

use strict;
use warnings;

my $infile_name=shift(@ARGV);
my $outfile1_name=$infile_name;
if (not defined $infile_name)
{
 die "Error: .psl filename missing \n";
}
check file extension is psl
if($infile_name=~/.(p)sl$/){
 $outfile1_name=~s/.(p)sl$/.sml/; # add .sml suffix to output file
}else{
 die "Error: input file needs to be in psl format.\n"; # if file extension not .psl then exit
}
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";
open file in overwite mode
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sam file
my @read1;
my @read2;
my $prevline = "";
my $prevfld9 = "";
my $prevfld13 = "";
my $prevfld15 = "";
my $prevfld16 = "";
my $prevfld17 = "";
my $prevrange = 0;

 166

my $currentfld9 = "";
my $currentfld13 = "";
my $currentfld15 = "";
my $currentfld16 = "";
my $currentfld17 = "";
my $currrange = 0;

my $iline = 1;
my $processline = 0;
my $i=0;
my $j=0;
my $lastmaxrange = 0;
my @cid;
my @pid;
while (my $LINE=<INFILEHDL>) # read line till EOF
{
 my @L=split(/\t/,$LINE); # split on tab space
 $processline += 1;
 if (scalar(@L)>= 18) # array length is at least 17
 {
 $currentfld9 = $L[9]; # Identifier
 if(substr($L[13],0,3) eq "chr")
 {
 $currentfld13 = substr($L[13],3); # Chromosome
 }
 else
 {
 $currentfld13 = $L[13]; #Chromosome
 }
 $currentfld15 = $L[15]; # Start
 $currentfld16 = $L[16]; # End
 $currentfld17 = $L[17]; # Blockcount
 #$currrange = GetRange$currentfld15,$currentfld16();
 $currrange = GetRange($currentfld15,$currentfld16);
 @cid = split("<RID>",$currentfld9);
 @pid = split("<RID>",$prevfld9);

 if ((scalar(@cid) >1))
 {
 if ($currentfld9 ne $prevfld9) # identifier not match then save
 {
 $lastmaxrange = 0; # if identifier changes then reset last
max range
 if ($currentfld17 eq "1") # blockcount = 1 then add to array
 {
 InsertRead();

 }
 }

 167

 else # if same identifier then check chr range and blockcount
 {
 if ($currentfld13 ne $prevfld13) # chromsome diff then save
 {
 $lastmaxrange = 0; # if chromosome changes then reset
last max range
 if ($currentfld17 eq "1") # blockcount = 1 then add to
array
 {
 InsertRead();

 }
 else # if chromosome same then check range
 {
 if ($currrange != $prevrange) # if range diff then
save
 {
 if ($currentfld17 eq "1") # blockcount =
1 then add to array
 {
 InsertRead();

 }
 }
 }
 }
 }
 }
 } #scalar L

} # eof

close OUTFILEHDL1;
close INFILEHDL;

sub GetRange
{
 my $rangespan = 1000;
 my $grange = 0;
 my $st = 0;
 my $ed = 0;
 $st = $_[0];
 $ed = $_[1];
 my $midpoint = int(($ed+$st)/2);

 if ($midpoint < $rangespan)
 {
 $grange = 1;
 }
 else
 {
 $grange = int($midpoint/$rangespan) + 1;

 168

 }
 return $grange ;
}

sub InsertRead
{
 if ($currrange >$lastmaxrange)
 {
 print OUTFILEHDL1
$currentfld9."\t".$currentfld13."\t".$currentfld15."\t".$currentfld16."\t".$currrange."\n" ;
 $lastmaxrange = $currrange ;

 $prevline = my $LINE;
 $prevfld9 = $currentfld9;
 $prevfld13 = $currentfld13;
 $prevfld15 = $currentfld15;
 $prevfld16 = $currentfld16;
 $prevfld17 = $currentfld17;
 $prevrange = $currrange;
 }
}

Create_matrix algorithm
#!/usr/bin/perl -w

Assumption
sml file is ordered by Idenitifier,chromosome

use strict;
use warnings;

my $infile_name=shift(@ARGV);
my $outfile1_name=$infile_name;
if (not defined $infile_name)
{
 die "Error: .sml filename missing \n";
}
check file extension is sml
if($infile_name=~/.(s)ml$/){
 $outfile1_name=~s/.(s)ml$/.unsort/; # add .unsort suffix to output file
}else{
 die "Error: input file needs to be in sml format.\n"; # if file extension not .sml then exit
}
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";
open file in overwite mode
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sml file
my @read1;
my @read2;
my $prevline = "";

 169

my $prevfld1 = "";
my $prevfld2 = "";
my $prevfld3 = "";
my $prevfld4 = "";
my $prevfld5 = "";
my $currentfld1 = "";
my $currentfld2 = "";
my $currentfld3 = "";
my $currentfld4 = "";
my $currentfld5 = "";
my $matfilename = $outfile1_name;

my $processline = 0;
my $i=0;
my $j=0;
my @cid;
my @pid;
$matfilename =~s/.(u)nsort$/.mat/;
while (my $LINE=<INFILEHDL>) # read line till EOF
{
 chomp($LINE) ;
 my @L=split(/\t/,$LINE); # split on tab space
 $processline += 1;
 if (scalar(@L)>= 5) # array length is at least 5

 {
 $currentfld1 = $L[0]; # Identifier
 $currentfld2 = $L[1]; # Chromosome
 $currentfld3 = $L[2]; # Start
 $currentfld4 = $L[3]; # End
 $currentfld5 = $L[4]; # range

 @cid = split("<RID>",$currentfld1);
 @pid = split("<RID>",$prevfld1);
 if ((scalar(@cid) >1) and (scalar(@pid) >1))
 {
 if ($pid[0] eq $cid[0]) # identifier match
 {
 InsertRead();
 }
 else # if different match then save array to file
 {
 CreateMatrix();
 @read1 =(); # $#read1 = -1 # clear array
 @read2 =(); # clear array

 InsertRead();
 }
 }
 if (($processline == 1) and (scalar(@cid) >1)) # save first line to array
 {
 InsertRead();

 170

 }
 } #scalar L
 $prevline = $LINE;
 $prevfld1 = $currentfld1;
 $prevfld2 = $currentfld2;
 $prevfld3 = $currentfld3;
 $prevfld4 = $currentfld4;
 $prevfld5 = $currentfld5;
} # eof

CreateMatrix(); #save array to file remaining ones
close OUTFILEHDL1;
close INFILEHDL;

do unix sort for field 1,Field3,Field2,Field4 here on the mat file
 system ("sort -k1n,1 -k3n,3 -k2n,2 -k4n,4 $outfile1_name > $matfilename");

sub CreateMatrix
{
 my @ln1;
 my @ln2;

 my $cnt = 1;
 foreach my $r1(@read1) # r1 and r2 combination
 {
 foreach my $r2(@read2)
 {
 @ln1 = split(/\t/,$r1);
 @ln2 = split(/\t/,$r2);
 if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is
same then do not print
 {
 # do not print
 }
 else
 {
 if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2)
 {
 print OUTFILEHDL1 $r1."\t".$r2."\n";
 }
 else
 {
 print OUTFILEHDL1 $r2."\t".$r1."\n";
 }
 }
 }

 }

 for(my $x=0; $x < scalar(@read1); $x++) # r1 unique combination

 171

 {
 for(my $j=$cnt; $j < scalar(@read1); $j++)
 {
 @ln1 = split(/\t/,$read1[$x]);
 @ln2 = split(/\t/,$read1[$j]);
 if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is same then do
not print
 {
 # do not print
 }
 else
 {
 if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2)
 {
 print OUTFILEHDL1 $read1[$x]."\t".$read1[$j]."\n";
 }
 else
 {
 print OUTFILEHDL1 $read1[$j]."\t".$read1[$x]."\n";
 }
 }

 }
 $cnt++;
 }
 $cnt = 1;
 for(my $x=0; $x < scalar(@read2); $x++) # r2 unique combination
 {
 for(my $j=$cnt; $j < scalar(@read2); $j++)
 {
 @ln1 = split(/\t/,$read2[$x]);
 @ln2 = split(/\t/,$read2[$j]);
 if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is same then do
not print
 {
 # do not print
 }
 else
 {
 if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2)
 {
 print OUTFILEHDL1 $read2[$x]."\t".$read2[$j]."\n";
 }
 else
 {
 print OUTFILEHDL1 $read2[$j]."\t".$read2[$x]."\n";
 }
 }

 }
 $cnt++;
 }

 172

}

sub InsertRead
{
 if($cid[1] eq "1") # read 1
 {
 push @read1, $currentfld2."\t".$currentfld5;
 }
 if($cid[1] eq "2") # read 2
 {
 push @read2, $currentfld2."\t".$currentfld5;
 }
}

sub PivotFile
{
 my $arg1 ="";
 my $arg2 ="";
 my $arg3 ="";
 my $arg4 ="";
 $arg1 = $_[0]; # chr1
 $arg2 = $_[1]; # chr2
 $arg3 = $_[2]; # offset1
 $arg4 = $_[3]; # offset2
 my $rw;
 my $co;
 if (uc($arg1) eq 'X' or uc($arg1) eq 'Y')
 {
 $rw=0;
 }
 else
 {
 $rw = int($arg1);
 }
 if (uc($arg2) eq 'X' or uc($arg2) eq 'Y')
 {
 $co=0;
 }
 else
 {
 $co = int($arg2);
 }

 my $pvot = 2; # default 2 = no 1 = yes

 if ($rw == 0 and $co == 0) # both row and col are x or y
 {
 if ($arg1 gt $arg2) # row greater than col then pivot
 {
 $pvot = 1;
 }
 }

 173

 else
 {
 if ($rw == 0 and $co > 0) # row is x or y , col is number then pivot
 {
 $pvot = 1;
 }
 }

 if ($rw > 0 and $co > 0) # row and col both are numbers
 {

 if ($rw > $co) # row is greater than col then pivot
 {
 $pvot = 1;

 }
 }

 if ($arg1 eq $arg2) # if and row and col is same
 {

 if (int($arg3) > int($arg4)) # if row offset is greater than col offset
 {
 $pvot = 1;
 }

 }

 return $pvot;
}

Write_count algorithm

#!/usr/bin/perl -w
Assumption
mat file is ordered by field1,field3,field2,field4
use strict;
use warnings;

my $infile_name=shift(@ARGV);
my $outfile1_name=$infile_name;
if (not defined $infile_name)
{
 die "Error: .sml filename missing \n";
}
check file extension is mat
if($infile_name=~/.(m)at$/){
 $outfile1_name=~s/.(m)at$/.chr/; # add .chr suffix to output file
}else{
 die "Error: input file needs to be in mat format.\n"; # if file extension not .mat then exit
}

 174

open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";
open file in overwite mode
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open mat file
my $prevline = "";

my $iline = 1;
my $cnt = 0;
my $first = 1;
while (my $LINE=<INFILEHDL>) # read line till EOF
{
 chomp($LINE);
 if ($first == 1)
 {
 $prevline = $LINE;
 $first = 0;
 }
 if ($prevline eq $LINE)
 {
 $cnt = $cnt + 1;
 }
 else
 {
 WriteCount();
 $cnt = 1;
 }
 $prevline = $LINE;
} # eof

WriteCount(); #save remaining ones
close OUTFILEHDL1;
close INFILEHDL;

sub WriteCount
{
 print OUTFILEHDL1 $prevline."\t".$cnt."\n";
}

Get Hi-C Score algorithm
#!/usr/bin/perl -w
use strict;
use warnings;

Assumptions chr file is sorted by field1,field3,field2,field4
Hi -c file range is 1000000 and they are tab delimited

my $infile_name = shift(@ARGV);
my $hicfile_path = shift(@ARGV);

my $outfile1_name = $infile_name;
check file extension is chr

 175

if($infile_name=~/.(c)hr$/){
 $outfile1_name=~s/.(c)hr$/.score/; # add .score suffix to output file
}else{
 die "Error: input file needs to be in chr format.\n"; # if file extension not .chr then exit
}

if (not defined $hicfile_path)
{
 die "Error: HIC file path not found.\n";
}

open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";
open file in overwite mode
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open MAT file
my $currR1fld9 = "";
my $currR1fld13 = "";
my $currR1fld15 = "";
my $currR1fld16 = "";
my $currR2fld9 = "";
my $currR2fld13 = "";
my $currR2fld15 = "";
my $currR2fld16 = "";
my $prevR1fld13 = "";
my $prevR2fld13 = "";

my $currhicfile = "";
my $prevhicfile = "";
my $hicfile = "";
my @filearray ;
my $colmidrange = 0;
my $rowmidrange = 0;
my $rowpos = 0;
my $colpos = 0;
my $r1start =0;
my $r1end =0;
my $r2start =0;
my $r2end =0;
my $currCount="";
my $score = "";
my $pivot = 2;
while (my $LINE=<INFILEHDL>) # read line till EOF
{
 chomp($LINE);
 my @L=split(/\t/,$LINE); # split on tab space
 $currR1fld9 = "";
 $currR1fld13 = "";
 $currR1fld15 = "";
 $currR1fld16 = "";
 $currR2fld9 = "";
 $currR2fld13 = "";
 $currR2fld15 = "";
 $currR2fld16 = "";

 176

 $currCount = "";
 $r1start=0;
 $r1end=0;
 $r2start=0;
 $r2end=0;
 $score = "" ;
 $pivot = 2;

 if (scalar(@L)>= 5) # array length is at least 7
 {
 $currR1fld9 = $L[0]; # Chromosome
 $currR1fld13 = $L[1]; # Column Offset
 $currR2fld9 = $L[2]; # Chromosome
 $currR2fld13 = $L[3]; # Column Offset
 $currCount = $L[4]; # Chromosome Count

 if ($pivot == 1) # if row chr greater than col chr then swap chr position
HIC_gm06690_chr2_chr18_1000000_pearson.txt
 {
 $currhicfile =
"HIC_gm06690_chr".uc($currR2fld9)."_"."chr".uc($currR1fld9)."_1000000_pearson.txt"; # file name
will chr21_chr22.hic
 }
 else
 {
 $currhicfile =
"HIC_gm06690_chr".uc($currR1fld9)."_"."chr".uc($currR2fld9)."_1000000_pearson.txt"; # file name
will chr21_chr22.hic
 }

 if ($currhicfile ne $prevhicfile) # if previous file not same as current file open file
 {
 openHiCFile(); #open file
 }
 $rowpos = 0;
 $colpos = 0;
 $rowmidrange = CalcMidPosition($currR1fld13);
 $colmidrange = CalcMidPosition($currR2fld13) ;

 if ($pivot == 1)
 {
 $rowpos = GetFilePosition($colmidrange);
 $colpos = GetFilePosition($rowmidrange);
 }
 else
 {
 $rowpos = GetFilePosition($rowmidrange);
 $colpos = GetFilePosition($colmidrange);
 }

 177

 $score = GetHiCScore(); # get hic score
 CalcRange($currR1fld13,$currR2fld13);

 if ($score gt 0) # score greater than 0 then print
 {
 if ($currCount > 1) # count is greater than 1 then print
 {
 print OUTFILEHDL1
"chr".$currR1fld9."\t".$r1start."\t".$r1end."\t"."chr".$currR2fld9."\t".$r2start."\t".$r2end."\t".$curr
Count."\t".$score."\n";
 }
 }

 }

 $prevR1fld13 = $currR1fld13;
 $prevR2fld13 = $currR2fld13;
 $prevhicfile = $currhicfile;
}

close OUTFILEHDL1 ;
close INFILEHDL ;

open file and load into array
sub openHiCFile
{
 $hicfile = $hicfile_path.$currhicfile;
 @filearray = ();
 open INFILEHIC, "<".$hicfile or die "$0: can't open ".$hicfile.":$!\n"; #open hi-c file
 @filearray = <INFILEHIC>;
 shift(@filearray);
 close INFILEHIC;
}

get HI-C Score base on row and col position
sub GetHiCScore
{
 my @cline;
 my $scr = "Not found";
 if (scalar(@filearray) > $rowpos) # check if that range exists or not
 {
 @cline = split(/\t/,$filearray[$rowpos]);

#print "score col 0 ".$cline[0]." col 1 ".$cline[1]."\n";

 if (scalar(@cline) > $colpos) # check if range exist or not
 {
 $scr = $cline[$colpos];
 }
 else
 {

 178

 print "column offset not found
".$currhicfile."\t".$rowpos."\t".$colpos."\n";
 }
 }
 else
 {
 print "row offset not found ".$currhicfile."\t".$rowpos."\t".$colpos."\n";
 }
 return $scr;
}

Calculate Position based on range (not used)
sub GetPosition
{
 my $readpos = $_[0];
 my $start = 0;
 my $end = 999999;
 my $rfactor = 1000000; # hi-c file range span by million
 my $pos = 0;
 for (my $i = 0; $i < 1000; $i++)
 {
 if (($readpos >= $start) and ($readpos <= $end))
 {
 $pos = $i ;
 last;
 }
 $start += $rfactor;
 $end += $rfactor
 }
 return $pos;
}

sub GetFilePosition
{
 my $readpos = $_[0];
 my $colspan =1000000; #hi-c file span by million
 my $pos = 0;
 if ($readpos < $colspan)
 {
 $pos = 1;
 }
 else
 {
 $pos = int($readpos/$colspan) + 1;

 }
 return $pos ;
}

sub CalcMidPosition
{

 179

 my $coloff = $_[0];
 my $chrspan = 1000; # assuming chr file column offset span is 1000 , change this if needed
 my $cpos = 0;
 my $mend = ($coloff * $chrspan)-1;
 my $mstart = $mend - ($chrspan-1);

 $cpos = int(($mend+$mstart)/2);

 return $cpos;
}

sub CalcRange
{
 my $r1col = $_[0];
 my $r2col = $_[1];
 my $chrspan = 1000; # assuming chr file column offset span is 1000, change this if needed

 $r1end = ($r1col * $chrspan)-1;
 $r1start = $r1end-($chrspan-1);
 $r2end = ($r2col * $chrspan)-1;
 $r2start = $r2end-($chrspan-1);

}

sub PivotFile
{
 my $arg1 ="";
 my $arg2 ="";
 $arg1 = $_[0]; # row
 $arg2 = $_[1]; # col
 my $rw;
 my $co;
 if (uc($arg1) eq 'X' or uc($arg1) eq 'Y')
 {
 $rw=0;
 }
 else
 {
 $rw = int($arg1);
 }
 if (uc($arg2) eq 'X' or uc($arg2) eq 'Y')
 {
 $co=0;
 }
 else
 {
 $co = int($arg2);
 }

 my $pvot = 2; # default 2 = no 1 = yes

 if ($rw == 0 and $co == 0) # both row and col are x or y

 180

 {
 if ($arg1 gt $arg2) # row greater than col then pivot
 {
 $pvot = 1;
 }
 }
 else
 {
 if ($rw == 0 and $co > 0) # row is x or y , col is number then pivot
 {
 $pvot = 1;
 }
 }

 if ($rw > 0 and $co > 0) # row and col both are numbers
 {

 if ($rw > $co) # row is greater than col then pivot
 {
 $pvot = 1;

 }
 }
 return $pvot;
}

180

	1. INTRODUCTION
	1.1 Overview
	1.2 Significance of the Problem
	1.3 Theoretical basis for the study
	1.4 Variables used in the study
	1.5 Problem Statement
	1.6 Research Question and Hypothesis

	2. BACKGROUND
	2.1 DNA Sequencing

	DNA sequencing is the decoding of genetic information locked in the DNA and is the machine translation of the nucleotide sequence that makes up the three billion bases of human genetic code. Fred Sanger introduced the chain-termination method for base...
	DNA sequencing can be broadly divided into four steps (Nunnally, 2005):
	 Reaction
	 Separation
	 Detection
	 Data analysis
	The reaction step is specific to the type of method being used. Broadly, double-stranded DNA is broken mechanically or chemically into single-stranded DNA, mixed with a DNA polymerase2F , DNA primer3F , the four deoxynucleotide bases (adenine, guanine...
	The separation step involves separating the DNA fragments obtained from the reaction step based on size. Earlier methods used polyacrylamide gel electrophoresis, in which the DNA fragments travelled vertically through the gel under a steady current fo...
	The detection of the separated fragments involves exposing the separated sample to X-ray film for radioactive labeling. Once the film was developed, the sequence of the DNA could be read from the bottom up by recording in which lane the smallest frag...
	2.2 Mapping Algorithms
	2.3 Structural Variant Detection Tools

	3. TESTING CONTEXT: REPEAT STRUCTURE OF GENOME
	3.1 Overview

	The overall approach for this study was three pronged: first, test the currently available tools against an experimentally validated dataset; second, develop an algorithm for translocation detection based on known biological information; and finally t...
	3.2 Testing Current Tools
	3.2.1 FASTQ file format
	3.2.2 1000-Genomes data analysis
	3.2.3 SVDetect Analysis

	3.3 Extracting Overlapping Regions
	3.3.1 Results: SVDetect performance

	The result from extraction analysis showed that SVDetect did poorly in detecting insertion elements (17%) while it did very well in identifying validated novel sequences high in detection percent (67%) (Table 3.2).
	SVDetect is known to give many false positives and thus is a highly sensitive tool for detection of structural variants. However, even with such a highly sensitive tool, less than 50% of the variants detected by SVDetect were in the same region as del...
	3.3.2 Understanding context: Repeat

	4. ALGORITHM DESIGN AND DEVELOPMENT
	4.1 A Context Definition for Translocations
	4.2 Designing the Algorithm
	4.2.1 Read extraction overview

	FLAGs for read extraction: All mapping tools will give the output in SAM format with a FLAG assigned. The purpose of read extraction is to identify those reads that did not have enough information contained in the sequence for the mapping tool to alig...
	4.2.2 Read extraction algorithm

	4.3 Re-alignment Using BLAT
	4.3.1 The need for BLAT

	BLAT which stands for BLAST-like alignment tool was developed in 2001 by James Kent at University of California, Santa Cruz. The popular alignment tool BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) developed by the NCBI uses the Smith-Waterman...
	BLAT (Kent, 2002) was used primarily because of its speed and comparable output to BLAST. For example a sample output from the simulated data of translocations had FLAGs set as 117 and 153 such that the first read was unmapped and the second read mapp...
	Figure 4.2: Sample paired-end read of simulated dataset: SAM format
	BLAST output for the first segment of the pair (with FLAG=117) showed a match with 56 regions in the ‘Human plus Transcript’ database and MegaBLAST algorithm (Figure 4.3). The corresponding mate segment of the pair (with FLAG=153) showed match with 20...
	Figure 4.3. MegaBLAST output with defaults for query sequence pair1
	Figure 4.4: MegaBLAST output with defaults for query sequence pair2
	For the same two query sequences, BLAT output is represented below (Figures 4.5, 4.6).
	Figure 4.5: BLAT output with defaults for query sequence pair1
	Figure 4.6: BLAT output with defaults for query sequence pair2
	The BLAT output was comparable with BLAST and took less time even with a web interface. BLAT had 200+ entries for each query pair and showed significant identity with chromosome 12 for sequence pair 1 (Figure 1 and 2) and chromosome 4 for sequence pai...
	4.3.2 BLAT alignment method used in tool

	We used the FASTA output from the read extraction as the input for BLAT tool. BLAT can be run as server-client interface where the user creates a server (gfServer) that keeps the genome index in memory while the client (gfClient) is used to input quer...
	We used BLAT-version 35.1 to run the queries with minimum tile match of 4 and minimum identity of 95%. These queries were run in parallel, one for each chromosome. Output from BLAT is presented in the psl format (Appendix B, BLAT specification) which ...
	4.4 De-Duplication Algorithm

	The de-duplication algorithm essentially checks for rows with the same ‘Identifier’ and ‘Chromosome’ and bins it into buckets of 1000 basepairs windows. The output for this algorithm produces an SML file, an in-house defined format (Table 4.8).
	4.5 Create_Matrix Algorithm

	The SML file created from de-duplication algorithm serves as input file for matrix creation. The SML file essentially contains all the possible mapping locations for the queries in PSL file on the reference genome based on BLAT mapping algorithm in 10...
	4.6 Write_Count Algorithm

	Output from matrix creation is a sorted MAT file and is the input for the write_count algorithm. The output for the write_count algorithm is a CHR file as shown in example Table 4.12.
	4.7 Get_HiC-Score Algorithm

	The last step in the process was to define the probability of calling a translocation as not false. We did not used distribution of insert size within the dataset to define this probability as is done by other variant calling programs (SVDetect, Break...
	The output from this program is as represented in Table 4.15 that is presented as the final output to the user. Further, the algorithm filtered out any Hi-C scores below zero and only reported translocations with positive Hi-C probability scores.
	4.8 Proof of Concept

	BLAT provides various input options to the user that can change the output significantly based on the user requirements. In our case, since we were looking for regions which share 95% sequence identity and can therefore give more than one significant ...
	Figure 4.8: Translocation (4;8); derivative chromosomes created using (Hiller, Bradtke, Balz, & Rieder, 2005).
	The simulation data had derivative chromosomes 4 and 8 as well as normal chromosome 4 and 8. This was created using the perl script provided by Dr Hayes for inserting manufactured translocations in the normal human genome. This mini FASTA file contain...
	There were 2,441,572 anomalous reads identified from the extraction step. We used two BLAT parameters, minMatch and minIdentity to test for BLAT output. These are defined in the BLAT manual (Appendix B) as below:
	5. SIMULATED DATA ANALYSIS
	5.1 Creating Simulated Dataset

	The idea for creating a simulated dataset was to include known documented translocations that were biologically plausible and be able to test the algorithm on this dataset. An attempt to define drivers of translocation based on genomic architecture wa...
	Burrow et al. analyzed recurrent translocation in cancers from various databases and tried to define the characteristics of these translocations. They found that over 50% of the recurrent translocations mapped to fragile sites, defined as regions on t...
	This simulated dataset included normal chromosomes and the derivative translocated chromosomes. The FASTA file was used to create simulated data using wgsim program that is a part of SAMTOOLS suite. A description of the options used for this program i...
	At the very least, it requires input FASTA file (translocation FASTA file) and length of the reads. In order to get 30X coverage of the genome we needed to define the number of read pairs needed (-N, Table 1.1). Coverage is calculated using equation 1...
	(1) 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒= ,𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑎𝑑×𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠-𝐻𝑎𝑝𝑙𝑜𝑖𝑑 𝐺𝑒𝑛𝑜𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ.
	Thus for 30X coverage and read length of 100 basepairs, we calculated the number of read required for the haploid genome of length 3x109 to be 900 million reads. Output from this program gives two FASTQ files, one each for a paired end library. Furthe...
	5.2 Simulated Data Analysis Results

	SVDetect could correctly identify four out of the ten translocations created (4/10) and BreakDancer detected six out of ten (6/10) briefly summarized in Table 5.3.
	The novel algorithm was able to detect all the translocations at a 1000 base pair resolution. The number of reads supporting a translocation varied from 3 to 50. The three translocations that were not detected by either SVDetect or BreakDancer, t(19;2...
	As described, cancer genome complexity is overburdened further by factors like sample collection, tumor heterogeneity (Ulahannan, Kovac, Mulholland, Cazier, & Tomlinson, 2013), and platform specific issues like AT-rich and GC-rich bias in the Illumina...
	Even with 15X coverage, our novel algorithm tool was able to detect all ten simulated translocations (Table 5.7) albeit with fewer reads supporting the translocations (compare with Table 5.4).
	BreakDancer was only able to detect four (4/10) translocations with 15X coverage (Table 5.8).
	One of the major issues with the novel algorithm is that it gives large number of false positives despite filtering out variants with negative Hi-C scores. Therefore distribution-based filtering is another approach to reduce false positives. Frequency...
	Figure 5.2: Hi-C score frequency distribution for chromosome 1 and 22
	Figure 5.3: Hi-C score frequency distribution for chromosome 12 and 13
	Figure 5.4: Hi-C score frequency distribution for chromosome 12 and 16
	Figure 5.5: Hi-C score frequency distribution for chromosome 19 and 22
	Figure 5.6: Hi-C score frequency distribution for chromosome 16 and 21
	Figure 5.7: Hi-C score frequency distribution for chromosome 9 and 14
	Figure 5.8: Hi-C score frequency distribution for chromosome 7 and 11
	Figure 5.9: Hi-C score frequency distribution for chromosome 4 and 8
	Figure 5.10: Hi-C score frequency distribution for chromosome 4 and 11
	Figure 5.11: Hi-C score frequency distribution for chromosome 8 and 12
	6. DISCUSSION
	The aim of this study was to understand if characteristics of the structural variant made it more or less conducive to detection by current computational methods in use. We wanted to understand the structural variant in relation to its position in the...
	6.1 Repeat Analysis

	The study analysis started with the hypothesis that the tools were failing to detect variants due to presence of these variants in repeat regions. If the mapping tools are unable to map reads uniquely, the tools will not be able to pick these variants...
	6.2 Algorithm Development and Simulated Data Analysis

	Translocations lead to genetic imbalances and are a precursor to cancers. Detection of the same recurrent translocation in four unrelated families by Ou et al. (Ou et al., 2011) led to implication of non-allelic homologous recombination (NAHR) as the ...
	The algorithm was designed to capture all reads that would be ambiguously aligned by the mapping tool. The most popular mapping tool currently in use, namely BWA (Li & Durbin, 2009), was used for generating initial mapping. BWA’s popularity is due to ...
	6.3 Conclusion

	Designing a novel context based approach to detect translocations, the study showed a very effective way to detect these variants using a biologically derived context-based approach which has not been used so far to effectively mine structural variant...
	The output from this novel algorithm could help discover many de-novo variants in cancers and provide a starting point for mining variant information from sequencing data. The purpose of this tool was not to define a few variants, but to give as many ...
	6.4 Limitations

	The major limitation of this study is the number of false positive reported in output. Ideally the user would like to see only the most relevant information that is currently embedded in a lot of noise. Noise can be reduced by narrowing BLAT’s extract...
	Since re-alignment with BLAT is a computationally intensive process, the access to high performance computing environment is a pre-requisite. Without high-throughput computing the analysis can get prohibitively time consuming. Running BLAT alignments ...
	The tool was also specifically designed for detecting translocations, and users would prefer getting the entire spectrum of structural variation in a single tool, which is another limitation for this study.
	6.5 Future Direction and Research

	The tool was specifically designed to obtain as much information from mapping as possible to be able to derive de-novo variants that it achieved at the cost of reporting a lot of noise. I would like to explore new methods to reduce noise in the data w...
	This is the first context-based tool designed to date and can prove useful for helping lay the framework for further algorithm development along these lines which take other biological context into account while designing bioinformatics tools.
	REFERENCES
	APPENDIX A

