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ABSTRACT  
   

Genomic structural variation (SV) is defined as gross alterations in the 

genome broadly classified as insertions/duplications, deletions inversions and 

translocations. DNA sequencing ushered structural variant discovery beyond 

laboratory detection techniques to high resolution informatics approaches. 

Bioinformatics tools for computational discovery of SVs however are still missing 

variants in the complex cancer genome. This study aimed to define genomic context 

leading to tool failure and design novel algorithm addressing this context. Methods: 

The study tested the widely held but unproven hypothesis that tools fail to detect 

variants which lie in repeat regions. Publicly available 1000-Genomes dataset with 

experimentally validated variants was tested with SVDetect-tool for presence of true 

positives (TP) SVs versus false negative (FN) SVs, expecting that FNs would be 

overrepresented in repeat regions. Further, the novel algorithm designed to 

informatically capture the biological etiology of translocations (non-allelic 

homologous recombination and 3-D placement of chromosomes in cells-context) 

was tested using simulated dataset. Translocations were created in known 

translocation hotspots and the novel-algorithm tool compared with SVDetect and 

BreakDancer. Results: 53% of false negative (FN) deletions were within repeat 

structure compared to 81% true positive (TP) deletions. Similarly, 33% FN insertions 

versus 42% TP, 26% FN duplication versus 57% TP and 54% FN novel sequences 

versus 62% TP were within repeats. Repeat structure was not driving the tool’s 

inability to detect variants and could not be used as context. The novel algorithm  

with a redefined context, when tested against SVDetect and BreakDancer was able to 

detect 10/10 simulated translocations with 30X coverage dataset and 100% allele 

frequency, while SVDetect captured 4/10 and BreakDancer detected 6/10. For 15X 

coverage dataset with 100% allele frequency, novel algorithm was able to detect all 
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ten translocations albeit with fewer reads supporting the same. BreakDancer 

detected 4/10 and SVDetect detected 2/10 Conclusion: This study showed that 

presence of repetitive elements in general within a structural variant did not 

influence the tool’s ability to capture it. This context-based algorithm proved 

better than current tools even with half the genome coverage than accepted protocol 

and provides an important first step for novel translocation discovery in cancer 

genome.  
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1. INTRODUCTION 
Identifying differences at the genome level between a diseased and healthy 

individual has been the cornerstone of current medical genetic research with the 

purpose of identifying and targeting disease causing variants.  

1.1 Overview  
Structural variations in the human genome are changes in the genome, when 

compared to the reference human genome, that lead to gross aberrations in the 

physical structure of the genome. These typically include insertions, deletions, 

inversions, and translocations. Structural variations are typically studied by 

comparing the target DNA to the consensus reference genome. Insertions represent 

the inclusion of a segment of DNA sequence inserted into the target genome. 

Similarly a deletion represents a deleted segment, duplication represents a 

duplicated or repeat segment, and an inversion is a change in the orientation of the 

segment. A translocation is a change in the physical location of a segment of DNA 

normally present on the reference chromosome to another chromosomal location in 

the donor. Structural variations play a very important role in cancer development. 

Translocations were the earliest identified variants in cancer with the identification of 

Philadelphia chromosome (translocation between chromosomes 9 and 22 [t(9;22)]) 

as a hallmark of chronic myeloid leukemia (CML) (Nowell & Hungerford, 1960; 

Rowley, 1973). These gross variants in cancer produce fusion genes as BCR-ABL1, 

between a breakpoint cluster region on chromosome 22 and tyrosine kinase receptor 

gene chromosome 9 that is a recurrent phenomenon in CML and one of the 

diagnostic criteria for this disease. Another commonly occurring fusion gene between 

a transmembrane protease gene (TMPRSS2) and one of two transcription factors 

(ETV1 or ERG) was first reported in 23 of 29 prostate cancers (Tomlins et al., 2005). 
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These commonly occurring fusion genes are fast becoming the hallmark of cancer 

diagnostics with researchers now aiming to define the etiology of this recurrence.  

1.2 Significance of the Problem 
Detecting structural variations in the cancer genome is the first step towards 

extracting disease causing mutations. Current tools using well-examined 

bioinformatics approaches to variant detection are still missing variants in the cancer 

genome. The reasons for this could be due to allele frequency of the mutant genome 

captured in an experiment, due to tumor heterogeneity, mapping algorithm flaws or 

structural variant detection algorithm flaws. In addition, these tools have been 

designed without accounting for the very special case of cancer genome complexity. 

Understanding the biological processes leading to structural variation generation in 

the cancer genome and using this context to define the algorithm for variant 

detection is an overlooked novel approach explored in this study, specifically in the 

study of translocations. 

Chromosomal translocations are the most obvious signature for many cancers and 

serve as a very important biomarker. Cancer genomes have inherent genetic 

instability either due to various micro-environmental factors leading to somatic 

mutations or inherent predisposition in the genome leading to germline mutations. 

Normal cellular machinery has checks to curb such major overhauls using DNA repair 

mechanism. The cancer genome however has circumvented this repair mechanism; 

most evident in the resulting fusion-genes which produce protein products which 

further disrupt the repair infrastructure.  

DNA sequencing technologies aim to identify these variants at a faster rate and with 

more accuracy based on the sheer volume of data exiting the machines. Clinical 

translation of this information helps to design specific drug targets for these specific 
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translocation fusion gene products. Two major hurdles to achieve this purpose, 

namely the presence of the human reference genome and the reducing cost of 

sequencing the patient genome have now been surmounted. Bioinformatics 

challenges to map and align this large amount of data, though not fully conquered, 

have made significant progress. The challenge now facing the scientific community is 

how to make sense of the data by designing better algorithms for detecting variants.  

Every approach available in the literature has used some form of 

statistical/mathematical modeling or computational algorithm to solve this issue of 

detecting structural variants without paying much attention to the biology driving 

these variants. Computational methods to detect structural variants (SV) utilize a 

consistent algorithm (Tuzun et al., 2005) including: 1) creating a distribution of the 

reads length (insert size) to derive a mean and standard deviation (s.d) 2) defining 

SV signatures (e.g. insertion = reads mapping 3 s.d. outside the mean length), and 

3) clustering all reads which support the same SV.  The current study used a 

different approach using biological domain information which is already known and 

well documented in literature to help design a more effective and biologically 

plausible algorithm to detect translocations in the cancer genome.  

1.3 Theoretical basis for the study 
Cancer occurs due to genomic instability that leads to disruption of normal cell 

functions. These mutations and structural alterations can be germline or somatic.  

Genomic mutations in germline cells lead to their transmission to the next generation 

as a cancer susceptibility gene like BRCA1 (P. Kent et al., 1995). Mutations in 

somatic cells can cause cancer due to abnormal proliferation of somatic cells with 

aberrant genomic structure. Identifying these gross structural changes has been 

done traditionally using experimental technique like karyotyping. Karyotyping uses 

stains (Giemsa stains) to color the chromosome during mitosis and studying the 
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banding patterns (G-banding) to define structural abnormalities like duplication of a 

region of chromosome or presence or absence of chromosomes (McNeil, Montagna, 

Difilippantonio, & Ried, 2012). However the primary issue with karyotyping remains 

to be the resolution of the abnormal chromosomal region, which is 5-10 million base 

pairs (Mbps). A successful experiment is also dependent on quality of cell division 

rates in metaphase, which is when these chromosomes are captured (Bridge & 

Cushman-Vokoun, 2011).  

One of the major advances in cytogenetic diagnosis was development of fluorescent 

in-situ hybridization (FISH) techniques and its various offshoots (Volpi & Bridger, 

2008). The principle was based on hybridization of complementary DNA to specific 

fluorescent probes, designed for specific regions on the genome, and viewed through 

special cameras for detecting structural abnormalities (McNeil et al., 2012). These 

technologies have far reaching applications from pre-natal detection of structural 

abnormalities (Hastings, Nisbet, Waters, Spencer, & Chitty, 1999), profiling gene 

expression during meiosis in mammalian cells (Mahadevaiah, Costa, & Turner, 2009) 

to identifying novel fusion genes in leukemias (H. Lee et al., 2013). Further these 

techniques have been seminal in identifying specific recurrent translocations in 

tumors leading to targeted therapy for fusion genes (Buchdunger et al., 1996; 

Druker et al., 1996; Inokuchi, 2006; Lynch et al., 2004; Mathews et al., 2010; Niu et 

al., 1999; Paez et al., 2004). However the resolution of these methods can be about 

1 kbps depending on the size of the probe, the target locus and type of FISH being 

used. A subsequent development, also based on hybridization, known as 

comparative genomic hybridization (CGH) (Kallioniemi et al., 1992) uses tumor and 

normal control samples to compare copy number variation between normal and 

tumor tissue and even detect gene fusions (Przybytkowski, Ferrario, & Basik, 2011). 

These methods have higher resolution of 500 bps to even 50 bps but can be 
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extremely sensitive to the quality of tumor samples and therefore have a high rate of 

errors (Fragouli et al., 2011). These methods are thus dependent on the quality of 

the probes and the genomic distance between the probes on the array.  

Furthermore, they can only detect aberrations that alter copy number; copy-number 

neutral events are missed. 

With the advent of massively parallel high throughput sequencing technologies 

gaining ground due to reduction in cost, mutation definition is getting higher and 

higher resolution with the number of implicated oncogenes growing from 291 in 2004 

(Futreal et al., 2004) to 384 in 2010 (Santarius, Shipley, Brewer, Stratton, & Cooper, 

2010) and the most recent database of cancer mutations, ‘Mitelmans Database of 

Gene Chromosome Aberrations and Gene Fusions in cancer’, a National Cancer 

Institute (NCI) resource showing 2038 gene fusions(Mitelman, Johansson, & 

Mertens, 2014). These next generation sequencing methods have provided 

enormous amount of data and with it daunting bioinformatics challenges. Even with 

obvious computational challenges of analyzing large data, sequencing has identified 

novel causative mutations that were experimentally validated in diseases like mental 

retardation where there was no familial history (Vissers et al., 2010). Similar success 

was also seen in autism which is characterized as a multi spectrum disease. Exome-

sequencing of 928 autistic individuals identified 279 novel coding mutations (Sanders 

et al., 2012), a feat if not unachievable would be highly labor intensive in an 

experimental procedure.  

Sequencing methods currently produce paired-end, short reads (30 -100 base-pairs) 

such that both ends of a sequence segment are read with an intervening region of 

unread sequence in the middle. The two reads are paired such that they have the 

same identifier linking the two reads. Sequencing technologies today have adopted 
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paired end short read sequencing as the preferred method due to the relative low 

cost. The bioinformatics challenge is to map these short sequences correctly to the 

reference human genome and be able to discern variants. The algorithm developed 

for detecting variants was first laid down by Tuzun et al. (Tuzun et al., 2005) as: 

• mapping the subject genome to the reference genome 

• defining signatures for structural variation using the distribution based 

on size of the short reads (inserts) 

• identifying the reads which support the structural variant as described 

by the signature and clustering all reads which support the same 

variant together, and finally 

• removing false positives based on percent identity of the variants read 

with the reference genomes 

Current tools use this basic model for defining structural variation with statistical 

adjustments for calculating sensitivity and specificity, and sometimes expanding the 

signatures for calling structural variants. These work very well in normal genomes 

and reasonably well in cancer genomes. However, cancer genomes are more 

complex as samples represent an admixture of normal and abnormal cells, the latter 

of which may differ genomically. The ability to detect somatic mutations in a given 

sample depends on tissue type, type of mutation (i.e. germline versus somatic), 

amount of intercellular heterogeneity in the tumor, the sequencing technology itself, 

and most importantly the algorithm used to detect variants. The choice of 

sequencing technology/platform also depends on the goal of the study. The 

comparison of sequencing platforms in metagenomic studies revealed that the use of 

short-read generating technology was better due to significantly increased number of 
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reads and therefore greater coverage of genomic regions (Mende et al., 2012). In 

contrast, a comparison of these sequencing technologies for low-coverage 

experiments in clinical setting to detect major copy number changes as part of 

prenatal diagnosis found that increased number of reads produced in one 

technological platform also made it more prone to GC-content bias due to greater 

number of PCR-cycles (S. Chen et al., 2014). After choosing the right platform for 

the study, the next challenge is to determine the appropriate tools to analyze the 

data and call variants. All major bioinformatics development has been open source, 

and tools such as National Center for Biotechnology Information, NCBI’s BLAST 

(Basic Local Alignment Search Tool), University of California Santa Cruz, UCSC’s 

Genome Browser, and Burrow-Wheeler aligner (BWA) have become the de-facto 

standards for alignment and graphical viewing of the genome. However, new variant 

detection algorithms are constantly being designed to address specific problems. For 

example, a study comparing 12 algorithms for quantifying somatic copy number 

variation using whole genome sequencing data (WGS) found that there were 

significant differences in sensitivity and specificity of these algorithms (Alkodsi, 

Louhimo, & Hautaniemi, 2014). Sensitivity depended on the size of the variant being 

detected, while breakpoint detection accuracy was determined by the algorithmic 

approach of the tools. These studies demonstrate the bioinformatics challenges of 

analyzing DNA sequencing data, specifically variant detection. The multitude of data 

being generated by next generation sequencing and the analogous growth in 

bioinformatics tools to deal with this data shows the nascent state of the field in 

terms of standardized methodologies to analyze this data.  

1.4 Variables used in the study 
Taking the computational modeling for detection of SVs first presented by Tuzun et 

al. (Tuzun et al., 2005) further, Lee et al. (S. Lee, Cheran, & Brudno, 2008) 
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proposed a probabilistic method for variant calling and controlling the false discovery 

rates. Many currently popular tools use this methodology with modifications. For 

example, SVDetect (Zeitouni et al., 2010) uses a windowing strategy in the paired 

end library together with the clustering mechanism explained above to define 

variants. BreakDancer (K. Chen et al., 2009) uses a more stringent method for 

defining probabilities and therefore reducing the output of false positives. CREST 

(Wang et al., 2011) on the other hand used another signature called soft clipping1 to 

extract anomalous reads, build contigs2 of soft-clipped reads and subsequently 

define variants based on similar probability calculations discussed above. Thus, all of 

these tools work off the alignments produced by the mapping tool. However, this can 

be a problem when there are multiple mapping regions with similar identity in the 

BWA mapping tool algorithm (Li & Durbin, 2009). During these instances the tool will 

randomly assign the read to any location. This is a characteristic of the human 

genome: there are regions with considerable sequence homology and repeats such 

that the mapping tool fails to align sequences at a unique region on the genome. The 

variant detection tools completely ignore the fact that the alignment reported by the 

mapping tool may be a random position.  

These repeat regions comprise up to 50% of the human genome (Smit, Hubley, & 

Green, 2014) and play a very significant role in development of these structural 

variants due to errors in the DNA repair process (G. McVean, 2010). McVean has 

reviewed these recombination events that lead to mutation and identified hotspots in 

the genome that were more prone to rearrangement breakages. Further, these 

                                           
1 Soft clipping: Paired end read mapped to the reference genome where one end 
mapped globally an d the other mapped partially, may need the unaligned ends of 
the read ‘clipped’ to achieve mapping. The read is labeled as ‘S’ in its CIGAR string 
(Section 4.2.1). 
 
2 Contig: Creating a longer sequence of DNA from overlapping smaller subsequences.  
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regions tended to be closer to promotor regions but not in the transcribed regions 

and were driven by a particular class of repair system called non-allelic homologous 

recombination (G. A. McVean et al., 2004). Non-allelic homologous recombination 

events (NAHR) are the result of errors in DNA repair involving large chromosomal 

regions characterized by low copy repeats and up to 95% sequence identity 

(Stankiewicz & Lupski, 2002), (Colnaghi, Carpenter, Volker, & O'Driscoll, 2011a). 

Thus, there was information within the genome with a specific signature that was 

leading to error prone repair. Further, Ou et al. (Ou et al., 2011) were able to 

specifically prove NAHR as the cause of same unbalanced translocation in four 

unrelated families. The group was also able to map these ‘NAHR’ regions on the 

human genome based on the signature of low copy repeat regions with greater than 

94% sequence identity. They were also able to find validated translocations in the 

database in these predicted rearrangement hotspots.  

Current tools ignore this very relevant information driving these structural variation 

events in the genome. There is a general consensus in the scientific community that 

variant calling tools fail in repetitive regions (non-unique regions) of the genome 

because the mapping algorithms cannot reliably map these regions. This leads to a 

decrease in the signal-to-noise ratio, and thus the number of reads supportive of an 

aberration. While this is true, there is enough information known about these regions 

to account for them algorithmically in a variant detection tool.  

DNA damage is acquired primarily during replication process of the cell. Cells have 

checks and balances to control for errors during repair and a breakdown of these 

repair mechanism leads to non-allelic homologous regions of the genome undergoing 

recombination and going unchecked. A low copy repeat region will share homology to 

many regions on the genome and even share significant identity with these regions. 
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The 3-D structural organization of the genome within the cell, as studied by Hi-C 

experiments showed that regions of chromosome within close proximity to each 

other were more likely to interact compared to regions that were far away 

(Lieberman-Aiden et al., 2009). Another study probing the effect of DNA replication 

timing on generation of copy number variations in the cancer genome also found the 

correlation of spatial organization of the chromosomes within the genome affecting 

the occurrence of mutations at specific locations (De & Michor, 2011). They went 

further with the hypothesis proving that those regions that were closer to each other 

spatially in the cell were also likely to have similar replication timing during cell 

division. 

1.5 Problem Statement 
The purpose of this research was to use the known genomic context driving the 

formation of chromosomal aberrations, both in terms of repeat structure and 3D 

spatial organization, to design a biologically sound computational algorithm to detect 

translocations in the cancer genome. 

1.6 Research Question and Hypothesis 
1. Are the tools able to detect validated structural variants from a known 

dataset? 

2. Will the tools fail in regions of repeats? 

3. Is the ability of the tool to detect variants driven primarily by the presence of 

these variants in high complexity (unique) regions? 
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Research Hypothesis 

1. Tools fail when the variants fall in the repeat regions. Variants in unique regions 

are more likely to be detected by the tools compared to variants in repeat 

regions. 

2. A novel algorithm designed to take into account the genomic context that drives 

the formation of chromosomal alterations (De & Michor, 2011; Lieberman-Aiden 

et al., 2009) as well as the genomic architecture of cancers (regions of the 

genome more susceptible to structural variant formation as seen in recurrent 

cancers) is likely to perform better than current tools that do not include this 

information. 

  



  12 

2. BACKGROUND 
 
 

2.1 DNA Sequencing 
DNA sequencing is the decoding of genetic information locked in the DNA and is the 

machine translation of the nucleotide sequence that makes up the three billion bases 

of human genetic code. Fred Sanger introduced the chain-termination method for 

base determination (Sanger, Nicklen, & Coulson, 1977) (Figure 2.1 (Estevezj., 

2012)) which gained wide acceptance as the preferred method for sequencing. 

Although another method by Maxam-Gilbert (Maxam & Gilbert, 1977) was introduced 

at the same time and used base-specific chemical degradation, the Sanger method 

became more popular due to its ease of use (Nunnally, 2005).  

DNA sequencing can be broadly divided into four steps (Nunnally, 2005): 

• Reaction 

• Separation 

• Detection 

• Data analysis 

The reaction step is specific to the type of method being used. Broadly, double-

stranded DNA is broken mechanically or chemically into single-stranded DNA, mixed 

with a DNA polymerase3, DNA primer4, the four deoxynucleotide bases (adenine, 

guanine, tyrosine and cytosine) and one dideoxynucleotide (ddNTP) corresponding 

each of the bases that when incorporated during the polymerase reaction stops the 

lengthening of the DNA chain.  Thus, the reaction yields a multiplicity of different 

                                           
3 Polymerase: Enzyme present in the cells, used during DNA replication process for 
synthesizing a new strand of DNA from a copy/template.    
 
4 Primer: Short DNA segment of known sequence which attached to the DNA strand 
at its end 
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sized fragments where the length of the fragment depends on the chance 

incorporation of a ddNTP into the chain.  Each type of radioactively or fluorescently 

labeled ddNTP (ddATP, ddTTP, ddCTP, ddGTP) is aliquotted into a separate reaction, 

and all four reactions are required to generate a sequence.  

The separation step involves separating the DNA fragments obtained from the 

reaction step based on size. Earlier methods used polyacrylamide gel electrophoresis, 

in which the DNA fragments travelled vertically through the gel under a steady 

current for a set period of time.  The distance traveled was dependent on size, with 

smaller fragments migrating more quickly than larger ones.  Thus sequence was read 

from the bottom of the gel up. Currently, this process is done by the capillary based 

system where the sample are run through a very fine capillary and can be read 

simultaneously by the detector as the DNA sample is travelling through the capillary. 

The detection of the separated fragments involves exposing the separated sample to 

X-ray film for radioactive labeling.  Once the film was developed, the sequence of the 

DNA could be read from the bottom up by recording in which lane the smallest 

fragment appeared, followed by the next smallest, and so on.  However, this method 

is not routinely used anymore. It has been replaced by the use of fluorescently 

labeled ddNTPs exposed to laser light that is simultaneously detected by the 

detecting machine. In the analysis step, all the data is compiled into a single 

continuous sequence.  
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Figure 2.1. Sanger DNA sequencing method. This figure explains the steps in modern 
Sanger technology. Adapted from Sanger Sequencing, by Estevezj, Retrieved March 
27, 2009, from http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg. 
Copyright 2012 by Estevezj. Reprinted under Creative Commons Attribution-Share 
Alike 3.0 Unported license.  

 

The automation of the Sanger-sequencing method led to the human genome project 

with the aim of sequencing the entire human genome and was completed in 2001 

(Venter et al., 2001). The project was completed much earlier than expected using 

the above method together with shotgun assembly. In shotgun assembly process the 

entire genome is broken into random smaller pieces, these pieces are amplified by 

first cloning in bacterial cell (plasmids/bacterial artificial clones) and then through 

PCR5. These amplified PCR products have known fragment sizes (also known as 

insert size). The major contribution of this group was the development of mate-pair 

                                           
5 PCR: Polychromase chain reaction, a procedure to create multiple copies of the 
DNA using DNA polymerase 
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reading methods. Different sized libraries of these inserts were created such that 

multiple clonally amplified fragments of circularized DNA sequences from each library 

are cut into linear pieces and read from both ends, put together to form contigs with 

unread gaps and finally contigs assembled together bioinformatically into scaffolds in 

the analysis step (Istrail et al., 2004). The size of the gap can be estimated with 

reasonable confidence based on the segment length (i.e. insert size) of the DNA 

library. This mate-pair sequencing and assembling method was a major step in the 

direction of high throughput analysis. The completion of the human genome 

assembly was a significant achievement as the scientific community now had the 

entire human genome decoded and publicly available through NCBI.  

Technology for faster sequencing has improved over the years with a corresponding 

decrease in the cost due to the development of these new sequencing methods. 

These newer-generation sequencing technologies are now collectively called next-

generation (next-gen) sequencing. The most commonly used next-gen applications 

include Roche/454, Illumina/Solexa, Life/APG and Helicos BioSciences (Metzker, 

2010). The flow of steps more or less is the same as Sanger sequencing, including 

template preparation, sequencing, viewing and data analysis, with major 

improvements in template preparation and sequencing.  

Template preparation has seen major advances in next generation sequencing 

methods with shift from bacterial artificial chromosomes (BACs) (Monaco & Larin, 

1994) (Shizuya & Kouros-Mehr, 2001) due to inherent problems with BAC 

procedures, including loss of genomic material in the BAC during cell replication and 

introduction of replication errors as human errors during the mapping process. The 

two major types of template preparation in NGS technology are:  

1. Clonally amplified templates 
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2. Single-molecule templates (Metzker, 2010) 

Clonally amplified templates use single stranded DNA molecule with universal primer 

attached to beads (Figure 2.2) 

 

Figure 2.2. Emulsion bead template preparation for next generation sequencing 
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing 
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics, 
11, p.33, copyright 2010.  

 

These PCR-amplified beads can then be placed on a glass slide for the NGS sequence 

reading to be performed. 

Solid phase amplification or bridge amplification can also be performed (Figure 2.3), 

where the primers are attached to glass slide and DNA fragments along with 

polymerase are added to the glass slide to produce spatially-separated clones of 

amplified DNA fragments.  



  17 

 

Figure 2.3. Bridge amplification template preparation for next generation sequencing 
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing 
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics, 
11, p.33, copyright 2010.  

 

A single molecule template has a major advantage of not requiring PCR amplification 

and therefore reducing errors. Thus there is no need for clonal amplification in this 

method and it is believed to be more representative of the original sample. This is 

achieved by either attaching primers to the glass slide and adding single-stranded 

DNA molecules to these immobilized primers (Figure 2.4) or attaching the single-

stranded DNA molecules to the glass slide and then adding the primers to these 

immobilized DNA strands (Figure 2.4). A new approach uses the DNA polymerase 

bound to a glass slide and the single-stranded DNA template can be introduced to 

this polymerase and read in real-time (Figure 2.5).  
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Figure 2.4. Single molecule template preparation for next generation sequencing 
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing 
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics, 
11, p.33, copyright 2010. 
 
 

 

Figure 2.5. Real-time template preparation for next generation sequencing 
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing 
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics, 
11, p.33, copyright 2010. 
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The next step in the process is sequencing the single-stranded DNA and reading it 

using imaging of fluorescence probes attached to the nucleotides. Currently there are 

four methods used for sequencing (Metzker, 2010): 

1. Cyclic reversible termination 

2. Sequencing by ligation 

3. Single-nucleotide addition/ pyrosequencing 

4. Real-time sequencing 

Cyclic reversible termination (Figure 2.6) uses the cyclical process of 

incorporating fluorescent nucleotides, imaging, and termination using ddNTPs. Each 

step of a single nucleotide incorporation, termination, imaging, and washing is 

repeated until the entire template is read. This is most commonly used in clonally 

amplified templates. The method relies on the use of modified ddNTPs with more 

efficient cleavage of the fluorescent labels compared to Sanger sequencing.  
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Figure 2.6. Cyclic reversible termination method in next generation sequencing 
technology. Adapted by permission from Macmillan Publishers Ltd, “Sequencing 
technologies - the next generation”, by M.L.Metzker, 2010, Nature reviews.Genetics, 
11, p.36, copyright 2010. 
 

Sequencing by ligation uses DNA ligase6 to attach to a fluorescent dye-labeled 

probe, washing extra probes away and read by imaging in a cyclical way (Figure 

2.7). Pyrosequencing uses sulphurylase and luciferase to detect bioluminescence 

(Figure 2.7) instead of fluorescently labeled nucleotides. Real-time sequencing is the 

                                           
6 Ligase: cellular enzyme which catalyzes the formation of bonds between two DNA 
strands. 
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most advanced of these technologies not requiring any terminators to stop the 

process of sequencing. DNA polymerases are attached to the glass slides and 

therefore sequencing can be performed without the need to terminate and the 

release of fluorescence from the nucleotide read in real-time by imaging.  

 

Figure 2.7. Sequencing by ligation and pyrosequencing method in next generation 
sequencing technology. Adapted by permission from Macmillan Publishers Ltd, 
“Sequencing technologies - the next generation”, by M.L.Metzker, 2010, Nature 
reviews.Genetics, 11, p.36, copyright 2010. 
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Technological advances will continue to improve these NGS technologies with the 

purpose of reducing sequencing errors. One of the first challenges of parallel 

sequencing was developing efficient algorithms for fast and accurate mapping of this 

data to the reference genome. Big data however brought with itself bioinformatics 

analysis challenges, the first being mapping the target genome to the reference. 

2.2 Mapping Algorithms 
The earliest efforts in algorithm development for mapping was done for discovering 

sequence homology that examines the relatedness of two sequences (protein-coding 

DNA sequences) in different species in order to understand its function (Pevsner, 

2009). Understanding homology was important to define relatedness of proteins 

through evolution and define changes that occurred through speciation. The same 

principles were applied to DNA sequence mapping. Reads to be compared are placed 

along the x-axis and y-axis and scored +1 for each match, -2 for each mismatch and 

gap. This method was first developed by Needleman and Wunsch and is known as 

the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). At the heart of this 

algorithm is dynamic programming (Eddy, 2004) which starts with laying out the 

matrix, deciding on scoring method and finally recursively finding the best path with 

the best optimal score. This algorithm is dynamic because it finds the best optimal 

score and keeps it in memory in order to avoid recalculation of scores that happens 

in a recursive process (Figure 2.8).  
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Figure 2.8. Dynamic programming matrix. Reprinted by permission from Macmillan 
Publishers Ltd, “What is dynamic programming”, by S.R.Eddy, 2004, Nature 
biotechnology, 22, p.909, copyright 2004. 
 

The Needleman-Wunsch algorithm was used for global alignment and when adapted 

to local alignment as done by Smith-Waterman algorithm (Smith, Waterman, & 

Fitch, 1981), proved even more useful in finding DNA sequences of local identity 

(Pevsner, 2009). The Smith-Waterman method uses one more row (m+1) and 

column (n+1) for two sequences of length m and n and each subsequent score in the 

matrix is incremented from the value in the preceding diagonal cell, with a match 

getting a score of +1, -0.3 for a mismatch, and -1.3 for a gap. The Smith-Waterman 

algorithm does not allow for any negative scores. The highest score in the matrix 

signifies the end of alignment. This method allows for getting local alignments from a 

long sequence instead of global alignment of Needleman-Wunsch that is 

computationally intensive due to its recursive calculations. Local alignment is often 
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used for quick database searches and serves as the foundation for most population 

database search mapping tools like BLAST and BLAT.  

 

2.3 Structural Variant Detection Tools 
 
Tuzun et al. were the first to describe a computational framework for structural 

variant (SV) detection (Tuzun et al., 2005). The most gain in information while 

defining SVs comes from alignment of paired end reads i.e. single fragment of DNA 

read from both ends with an unread segment in between. The length of the original 

fragment is known and can further be empirically determined based on the insert 

size distribution of the experiment. Their approach is still the basic framework for SV 

detection and is as follows: 1) define probability distribution of insert sizes (length of 

fragment of DNA sequenced), 2) define discordant reads as those which lie at least 

2-4 standard deviations outside this distribution, 3) cluster all reads that support the 

same SV such that at least 2 discordant reads identify the same SV, 4) identify the 

SV at the location using percent identity of the discordant reads and number of 

supporting reads. 

Lee et al. proposed a more robust probabilistic method for SV detection (S. Lee et 

al., 2008).  The key methodology proposed was: 

1. Defining a probabilistic framework: All reads generated (paired end reads: 

short fragments of DNA sequenced from both sides with an area of un-

sequenced portion in between) are assumed to be independent of each other. 

The set of same type of structural variants is represented by C. Using the 

independence assumption  each mapped read A and B which are part of the 

same cluster and therefore explaining the same SV will have a joined 

probability of belonging to the same cluster C defined as P(A,B|C)=P(A|C). 

P(B|C). The mean insert size length s is known from library generation for 
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sequencing experiment and also can be derived computationally from 

experiment output. The probability distribution gives the standard deviation of 

insert size. The signature for insertions and deletions is as follows: a length of 

r represents the length of insertion or deletion and s represents the correct 

mapping length of the insert in the reference. Therefore an insertion event is 

s+r and deletion event is s-r. Using this signature we define the probability of 

read A and read B being in the insert size distribution of s+r (or s-r) paired-

end reads by using a maximizing function of the joint probability of A and B 

belonging to the same variant cluster. It thus calculated the probability that a 

read is produced from the genome sequenced. Similarly, in defining the 

signature for inversion and translocation we determine the joint probability of 

observing the 2 mate pairs in the same cluster. The higher this probability the 

more likely a read belongs to the cluster.  

 

2. Defining the SV: The structural variant is defined using three features 

i. Percent similarity of the mate pair sequence to the reference 

ii. Product of the probabilities calculated above for a cluster. The 

larger the probability of a cluster the more it is reliable. 

iii. Number of mate pairs in a cluster 

Each SV can map to various clusters and therefore using the above three features we 

need to find the configuration which maximizes each of the features mentioned 

above. Using this configuration we can assign each SV to just a single cluster. 

The primary challenge of the probabilistic model is that the distributions are based 

on insert sizes and are dependent on intrinsic information output by the mapping 

tool. If the mapping tool does not know where to place the read, the read can be 

either disregarded or placed randomly based on all possible best matches. Lee et al. 
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assigned confidence scores (p-values) to insertion/deletion signatures, but this could 

not be done to inversions and translocations. If there were systematic errors in 

sequencing or in alignment algorithms, these will not be picked up using the 

probability calculation for inversions and translocations and will therefore be ignored. 

However with the current NGS platforms these errors have been considerably 

reduced due to higher coverage. Current tools built up on this method with 

SVDetect, BreakDancer and CREST discussed below. 

The BreakDancerMax (K. Chen et al., 2009) algorithm uses the distance and 

alignment of paired end reads along with the distribution of reads which map to a 

certain location on the reference to define a SV. Using the SV signature, the program 

then searches for regions on the reference genome which anchor more SV’s than 

expected.  These regions form the putative breakpoints. For a particular region, 

whichever is the ‘dominant’ SV signature is used to identify the SV at the location i.e. 

clustering of all SV’s for a particular location and choosing the SV. Further, it uses a 

confidence score to assign the probability of observing a SV at the location which is 

higher than chance using a chi-squared statistic with the cutoff p-value <0.0001. 

This tool assumes a Poisson distribution for the clustered variants. Using an 

analytical model for detecting true positive SV rate in a simulated dataset, they 

estimated that with an average insert size of 200 bps, insertions and deletions 

shorter than 40 bps would be difficult to detect.  

BreakDancerMini tries to overcome the dependence on the insert size by using a 

sliding window test. The algorithm defines a window for the reference that is the 

mean of the insert library of a confidently mapped region+3 s.d - 2(average length 

of read). Using this window, the frame is shifted 1 bp at a time and the probability 

that the read lies in this window is calculated. Once again this method works well for 

insertions and deletions. BreakDancer Max and Mini together did a better job at indel 
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detection (experimentally validated 110 of 167 indels called by BreakDancer) and to 

some extent inversions (validated 4 of 13 inversions) but did not do so well with 

intra-chromosomal events (validated 2 of 6 intra-chromosomal translocations). This 

is primarily because it uses only paired end data where both read ends map within a 

defined distance. If only one end of the pair maps then this read is not considered. 

Translocations will show this pattern where one end of a paired end read mapped to 

one chromosome and the other end mapped on another chromosome. This 

information may be lost in the alignment process as the aligner aligned just one end 

of the read and information on the paired end is lost. Therefore, this tool is most 

likely to miss this inter-chromosomal event. Thus BreakDancer performs well with 

indels but does not have a very strong method for detecting translocations. 

SVDetect (Zeitouni et al., 2010) on the other hand uses a simplified strategy for 

clustering which is non-probabilistic. Clusters are formed from paired end reads 

which had incorrect distance (2-3 s.d.) and/or orientation from the reference 

genome. SVDetect then divides the reference genome into overlapping windows of 

fixed size and groups all the paired end reads which map to the same overlapping 

reference. SVDetect also uses clustering parameters like minimum number of reads 

supporting a SV, filtering those reads whose orientation is different from the majority 

in a cluster. The filtering process is user defined and the thresholds for filtering can 

be changed. 

Another important feature added to SVDetect is the ability to predict copy number 

variations/duplication events. The algorithm does this by finding the ratio of depth of 

coverage of sample to a control dataset in a sliding window along the genome, 

though they do not define the length of the window.  However, the detection of 

duplications needs a control dataset that has not been well defined in the paper. 

Thus SVDetect is able to identify insertions, deletions, inter-chromosomal events, 
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duplications and translocations using a clustering pattern and filtering process. 

However, SVDetect will also miss reads which were the alignment tool failed to 

assign a read unambiguously.  

CREST (Wang et al., 2011), unlike other applications, does not use the concept of 

discordant paired reads. Instead it uses direct mapping of reads to the reference to 

identify the breakpoints. The Burrow Wheeler alignment tool soft clips reads during 

alignment, i.e. when there is partial alignment or when one end of the pair aligns 

perfectly and the other end is partially aligned the tool clips the sequence at the 

point of partial alignment. CREST collects all these soft clipped reads together, 

creates longer contigs of these reads using an assembly algorithm (CAP3) and 

realigns these contigs using BLAT (BLAST Like Alignment Tool) alignment algorithm. 

Thus, the identification of first soft clipped region defines the first breakpoint at 

location 1. All the soft clipped reads are collected and assembled into contigs using 

CAP3 algorithm and aligned using BLAT. Wherever these soft clipped contigs map to 

the genome is the second breakpoint, which will have soft clipped regions mapping 

to location 1. CREST requires the second contig generated from soft clipped regions 

at location 1 to be within a certain distance (user-defined) of the second location.  

The final call of variants includes only those reads with >97% sequence similarity 

and a BLAT score >30 and defines the probability of observing at least c soft clipped 

reads with sequence coverage C (at that location) to be less than or equal to 0.05  

The signatures defined by CREST use the same basic signature of all the SVs but do 

not use the mapping distance of 2-3 s.d. It uses direct alignment information and 

therefore is able to identify the SVs at breakpoint coordinate level. In experiments 

comparing the platform it performed better than BreakDancer in detecting insertions, 

deletions, and inversions. CREST is more apt for inter-chromosomal event detection 

and therefore performs better in translocation events seen in cancer genomes. 
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However due to the alignment heavy algorithm, it performs badly in regions of 

repeats as the tool will perform only as good as the assembly/alignment tool.  

All of the above methods use the mapping tool output as the input and derive 

possible anomalous reads based on either the insert size distribution or flags set by 

the mapping tool. Thus the ability of the tools to detect variants depends entirely on 

the robustness of the alignment.  In regions where the aligner cannot reliably map 

sequence, such as repetitive regions, it is assumed that the ability of the tools to 

detect variants is compromised.  This study aimed to test this theory and to design a 

more effective approach to variant detection by utilizing the known biology driving 

variant formation, focusing specifically on translocations.  
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3. TESTING CONTEXT: REPEAT STRUCTURE OF GENOME 

3.1 Overview 

The overall approach for this study was three pronged: first, test the currently 

available tools against an experimentally validated dataset; second, develop an 

algorithm for translocation detection based on known biological information; and 

finally test our algorithm against the known tools. The first step was essentially to 

identify and define the reason why tools would fail to detect experimentally validated 

variants. Our hypothesis was that the tools would fail to recognize variants that were 

in genomic regions of repeat due to low complexity of these regions and therefore 

the inability of the aligner to map these regions uniquely. Thus stated differently, 

variants in repeat regions were less likely to be detected by the tool compared to 

variants in unique regions.  

  

 

 

3.2 Testing Current Tools 

The first step for proof of concept was to test the available structural variant 

detection tool on an experimentally validated dataset. The 1000-Genomes project 

was designed to use extensive sequencing of many individuals around the world with 

different ethnicities in order to characterize all types of variants found in these 

individuals and to relate it to the phenotype (1000 genomes project). This project is 

a major international collaboration between universities around the world providing 

samples, sequencing data, and bioinformatics analysis in order to map the entire 

spectrum of genetic variation in the human population. The data has been made 

Test current tools to 
understand “context” of 
the structural variants 
failing to be detected 

by the tools 

Develop novel 
algorithm based on 

this “context” 

Test the novel 
algorithm against 
known tools for 

sensitivity 
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publicly available on the website (www.1000genomes.org) (1000 Genomes Project 

Consortium, Abecasis, Altshuler, Auton, Brooks, Durbin, Gibbs, Hurles, & McVean, 

2010b). The project had low-coverage whole genome  sequencing, exome 

sequencing, and high-coverage sequencing of trio-subjects (mother-father-child) 

from different ethnic populations around the world. For purpose of testing we used 

deep sequencing data of the trio subject from Nigeria (YRI: NA19238, NA19239, 

NA19240).  

3.2.1 FASTQ file format 
Most sequencing machine output the data in a widely accepted format known as the 

Sanger-FASTQ (Cock, Fields, Goto, Heuer, & Rice, 2010). This is a text file with 

information about the sequence read and quality score of each base of the sequence 

read. Each read starts with a ‘@’ followed by the identifier and description of the 

sequence which may be platform specific. The next line is a string of ‘ATCGs’, which 

is the actual read from the sequencing machine. The next line is a + sign which may 

be followed by a repeat of the sequence identifier and description line. The last line 

represents quality scores for each of the bases in the read sequence (Figure 3.1).  

 

http://www.1000genomes.org/
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Figure 3.1. Sanger FASTQ format. Reprinted by permission from Oxford University 
Press, “The Sanger FASTQ file format for sequences with quality scores, and the 
Solexa/Illumina FASTQ variants”, by P.J.Cock et al., 2010, Nucleic Acids Research, 
38, p.1769, copyright 2010. 
 
 
The last line equates quality values for each base read by the sequencing machine. 

This is a PHRED-based quality score converted to ASCII characters. PHRED was a 

computation tool developed by Ewing et al. (Ewing & Green, 1998; Ewing, Hillier, 

Wendl, & Green, 1998) to automatically assign quality values to sequencing trace 

files such as chromatograms that are generated by the sequencing machines. This is 

defined in the equation below. 

q = -10 X log10 (p) ----------( Ewing et al.) 

q= quality score of the base 

p=estimated error probability for the base 

 

According to this formula, a base having a 1/1000  probability of being erroneous will 

have a quality score q of 30. The lower the probability score, the higher the quality.  
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3.2.2 1000-Genomes data analysis 
The files obtained from 1000-Genomes website were in FASTQ format. This study 

used Yoruba subject data (YRI: NA19238, NA19239, NA19240). The FASTQ files 

were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/. 

Datasets for each subject had sequencing files of various insert sizes. To maintain 

consistency we only used deep sequencing high coverage paired end library of insert 

size 260. Briefly, experiment ID-SRX001106 with 8 billion reads was used for 

NA19238, experiment ID-SRX000654 with 7.4 billion reads was used for NA19239 

and experiment ID-SRX001102 with 6.1 billion reads was used for NA19240. 

Appendix A lists the files used for this analysis. 

Sequencing reads from these files listed in Appendix A Table 1.1 were aligned to the 

reference genome NCBI build 36.1/ UCSC hg18. The reference human genome is 

assembled and maintained by the Genome Reference Consortium (GRC) 

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/) which 

includes NCBI, Wellcome Trust, Sanger Institute, Genome Institute at Washington 

University and European Bioinformatics Institute (EBI) at NCBI. The complete 

genome and chromosome level FASTA files are stored at UCSC website which can be 

downloaded at (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes). 

The GRC, which is an extension of the Human Genome project 

(http://www.genome.gov/10001772), produces overlapping segments of high 

quality, longer length DNA sequence from a group of volunteers. Using in-house 

tools they release a comprehensive and rigorous representative of a consensus 

normal human reference genome for use in the public domain. The builds are 

constantly getting updated as more data becomes available on previously un-

sequenced regions of the human genome or improved on currently sequences 

regions.  

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.genome.gov/10001772
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Data for these various builds are stored in the FASTA format, which is a text file with 

a header line starting with ‘>’ containing information about the sequence followed on 

the next line by the longest continuous available sequence data as shown in Figure 

3.2. Standard codes to represent amino acid sequences and nucleotides are used 

and can also have lower case letters representing the same nucleotide/amino acid. 

 

 
Figure 3.2. FASTA format example. First line starts with “>” followed by information 
about the sequence and next line contains actual sequence  
 
 
Fastq files for the same insert size and same library were downloaded from the ftp 

site7 for each of the trio subjects; NA19238, NA19239, NA19240. These were aligned 

to the reference genome UCSC hg18 using a popular tool for short read alignment, 

BWA-0.5.9 (Li & Durbin, 2009).8 Briefly, BWA uses the Burrow-Wheeler 

transformation algorithm to compresses the data such that repetitive information is 

stored in a compressed format in prefix and suffix arrays in order to perform 

searches on the entire human genome. The output of the mapping tool is in SAM 

format described in Section 4.2.1. SAM is then converted to BAM, which is the binary 

representation of a SAM file using ‘samtools’ suite.9  

The output from BWA mapping was used to further detect structural variants using 

an open-source toolkit. SVDetect (Zeitouni et al., 2010) is one such toolkit which 

uses paired-end mapping data to identify reads which occur at a distance greater 

than expected insert size and/or are in the incorrect orientation with respect to each 

                                           
7 1000 genomes data download:ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/ 
8 BWA sourceforge page: http://bio-bwa.sourceforge.net/bwa.shtml 
9 SAMTools sourceforge page: http://samtools.sourceforge.net/ 
 

>gi|12345|ref|NM_12345.01|Homo sapiens XYZ 
ATTTCGATTAATCGAGAAAAAAAATATTTTAGGGGGCCATTTATATACCCCCCCC
TACACCCACAC 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
http://bio-bwa.sourceforge.net/bwa.shtml
http://samtools.sourceforge.net/
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other. It then breaks the genome to create overlapping windows. Each anomalous 

paired-end read can anchor to these windows such that the two windows where the 

two paired-end reads map form a link. A filtering process removes links that has less 

than a certain number of reads supporting a link and other features defined in the 

tool. Structural variants are called based on mapping signatures for a particular type 

of variant. This tool has a tendency to output many false positives as it only uses a 

clustering method to call variants. Thus, any variant with 2 or more reads supporting 

it is called as a variant without using the underlying variants distribution to calculate 

confidence scores of calling a variant as done in BreakDancer. We therefore used this 

tool which reports all possible variants in order to test our hypothesis that tools fail 

to detect variants because these variants lie in the repeat regions.  

Experimentally validated structural variants detected in the same trio subjects were 

used as the validation standard. The variant dataset was downloaded from the ftp 

site.10 

Variants were detected computationally using various algorithms developed in-house 

by 1000-Genomes team (1000 Genomes Project Consortium, Abecasis, Altshuler, 

Auton, Brooks, Durbin, Gibbs, Hurles, & McVean, 2010a). The variants were defined 

as mobile element insertions, tandem duplication, deletions, and novel sequences. 

We extracted only those variants from the variant files that were experimentally 

validated as indicated in the Description field of the file.  

 

                                           
10 1000-Genomes structural variation data page: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_hu
man_variation/trio/sv/ 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/trio/sv/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/trio/sv/
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3.2.3 SVDetect Analysis 
SVDetect defines its set of variants as described in the Table 3.1. 

Table 3.1: SVDetect defined structural variants 

NORMAL_SENSE  Correct ends orientation using <mates_orientation> as reference 
REVERSE_SENSE  One of the ends has an incorrect orientation 
DELETION  Deletion (NORMAL_SENSE & mean insert size > µ+threshold*σ) 
INSERTION  Insertion (NORMAL_SENSE & mean insert size < µ-threshold*σ) 
INVERSION  Inversion (REVERSE_SENSE) 
INV_FRAGMT  Inversion of a genomic fragment, defined by balanced signatures 

(BAL) 
INS_FRAGMT  Insertion of a genomic fragment, defined by balanced signatures 

(BAL) 
INV_INS_FRAGMT  Inverted INS_FRAGMT (BAL) 
LARGE_DUPLI  Large duplication 
DUPLICATION  Duplication, medium size 
SMALL_DUPLI  Small duplication (mean insert size < µ-threshold*σ & overlap 

between subgroups) 
INV_DUPLI  Inverted duplication (REVERSE_SENSE & mean insert size < µ-

threshold*σ & UNBAL) 
TRANSLOC  Translocation 
INV_TRANSLOC  Inverted translocation 
COAMPLICON  Co-amplicons, two different fragments repeated in the same 

strand sense (BAL) 
INV_COAMPLICON  Inverted co-amplicons, two different fragments repeated in the 

opposite strand sense (BAL) 
SINGLETON  Singleton (mean insert size < µ-threshold*σ), for Illumina mate-

pairs only 
UNDEFINED  Undefined inter/intra-chromosomal SV type 
 

The purpose of this analysis was to see if the variants detected by SVDetect had 

some overlap in the same genomic region as those in the 1000-Genomes 

experimentally-validated variant dataset. To further characterize these variants, we 

looked for overlap of the variants with mapped repeat structure in the human 

genome (Smit et al., 2014)11. We used the RepeatMasker mapped repeat regions on 

the hg18 build human genome to identify the repeat regions in the human genome. 

The repeat elements in RepeatMasker database have been classified as LINEs: Long 
                                           
11 RepeatMasker webpage: http://www.repeatmasker.org 

http://www.repeatmasker.org/
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interspersed nuclear elements; SINEs: Short interspersed nuclear elements; LTR: 

Long terminal repeats; DNA repeats and other.  

3.3 Extracting Overlapping Regions 
SVDetect-0.7f was used on the mapped BAM files to detect variants. Each variant file 

from 1000-Genomes classified as ‘Deletion’, ‘Novel Sequences’, ‘Mobile Element 

Insertion’ and ‘Tandem Duplications’ was used separately to extract overlapping 

variants detected by SVDetect. 1000-Genomes variant files did not have subject 

identifier in file and thus had structural variants detected in all three trio subjects 

combined. SVDetect was run on each BAM file separately and then combined. We 

were only looking for regions of the genome that showed an overlap irrespective of 

the type of variant as defined in SVDetect. Overlap was defined as at least 10 

percent of the insert size. In this case the insert size library chosen for download was 

260 and therefore 10 percent overlap was at least 26 basepairs on either side of the 

read as represented in the Figure 3.3. Ten percent of insert size was used as an 

arbitrary cutoff. 

    

Figure 3.3: Overlap definition for SVDetect; a: left overlap; b: right overlap; c: 
SVDetect variant completely within; d: 1000-genome variant completely within  
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A perl script was used to do the overlap extraction. Similarly, since the purpose was 

to define the context of the genomic region that is causing the tools to fail, 

RepeatMasker mapped repeat regions was used to do a similar overlap of with 1000-

genome variants. However in order to identify the overlapping regions with repeat 

structure within, the entire repeat region had to be present within the variant as 

shown in Figure 1.1. 

 

Figure 3.4: Overlap definition for repeat; Blue arrows: 1000 genomes, Black arrows: 
repeat elements in RepeatMasker.   
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3.3.1 Results: SVDetect performance  
The result from extraction analysis showed that SVDetect did poorly in detecting 

insertion elements (17%) while it did very well in identifying validated novel 

sequences high in detection percent (67%) (Table 3.2).  

Table 3.2: Overlap results for SVDetect 

Type of Event 1000-
Genomes 
events 

Events detected by 
SV-Detect: True 
Positive 

Events not detected 
by SV-Detect: False 
Negative 

Deletion 9695 4657 (48%) 5038 
Mobile Element 
Insertion 

492 85 (17%) 407 

Tandem 
Duplication 

65 23 (35%) 42 

Novel 
Sequences 

66 42 (67%) 24 

 
SVDetect is known to give many false positives and thus is a highly sensitive tool for 

detection of structural variants. However, even with such a highly sensitive tool, less 

than 50% of the variants detected by SVDetect were in the same region as deletions 

events identified by 1000-Genomes. SVDetect was in the true variants regions 

anywhere from 17 to 67 percent of the time depending on the type of variant. Even 

a highly sensitive tool was clearly not able to detect many of the validated variants.  

3.3.2 Understanding context: Repeat 
We therefore tried to understand if the underlying repeat structure within these 

variants was driving the ability of the tool to detect a variant. If a variant is in a 

repeat region, the mapping tool will not be able to definitively place the read 

representing the variant in a specific region due to low complexity of the repeat 

region. We hypothesized that validated variants that were not detected by the tool 

were more likely to have repeat elements within them than variants that were 

detected by the tool. As shown in Figure 3.4, we extracted those reads that had the 
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repeat element completely contained within the variants or variant completely 

contained within the repeat. The results are shown in Table 3.3, 3.4.  

Table 3.3: Repeat elements within undetected events 

Type of Event 1000-
Genomes 
events 

Events not detected by 
SV-Detect: False-
Negatives (a) 

Events with repeat 
structure within (b) 
(a/b%) 

Deletion 9695 5038 2678 (53%) 
Mobile Element 
Insertion 

492 407 134 (33%) 

Tandem 
Duplication 

65 42 11 (26%) 

Novel 
Sequences 

66 24 13 (54%) 

 

Table 3.4: Repeat elements within detected events 

Type of Event 1000-
Genomes 
events 

Events detected by 
SV-Detect: True-
Positives(a) 

Events with any repeat 
structure within (b) 
(a/b%) 

Deletion 9695 4657 3754 (81%) 
Mobile Element 
Insertion 

492 85  36 (42%) 

Tandem 
Duplication 

65 23  13 (57%) 

Novel Sequences 66 42  26 (62%) 
 

Although 53% of deletion events that were not detected by the tool showed some 

form of repeat structure, 81% of deletion events which were detected also showed a 

repeat structure. A similar pattern was seen with all other variant types where the 

events which were detected by the tool had a greater percent of repeat elements 

compared with those which were not detected by the tool. A chi-squared analysis 

(Tables 3.5, 3.6, 3.7, 3.8) showed a significant association between repeat structure 

and the ability of the tool to detect the variant for deletions and tandem duplication 

events but not significant for novel sequences and mobile element insertion events 

at p<0.05 level. Thus if there was a repeat structure within the variant, the tool was 
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more likely to detect it, which was contrary to our hypothesis. We therefore failed to 

reject the null of no association between repeat structure and ability of the tool to 

detect the variant.  

Table 3.5: Chi-squared test: Relation of deletion events with repeat 

Deletion Events Repeat structure 
within 

No Repeat structure 
within 

Total 

Detected by tool (True 
positives) 

3754 903 4657 

Not detected by tool (False 
Negatives) 

2678 2360 5038 

Note: Table tests if ability of the tool to detect deletion events is influenced by the 
repeat structure within it. The Chi-square statistic is 816.873 with p-value of 0. This 
result is significant at p < 0.05. 

Table 3.6: Chi-squared test: Relation of insertion events with repeat 

Insertion Events Repeat structure 
within 

No Repeat structure 
within 

Total 

Detected by tool (True 
positives) 

36 49 85 

Not detected by tool (False 
Negatives) 

134 273 407 

Note: Table tests if ability of the tool to detect insertion events is influenced by the 
repeat structure within it The Chi-square statistic is 2.764 with p-value of p=0.096. 
This result is not significant at p<0.05.  

Table 3.7: Chi-squared test: Relation of duplication events with repeat 

Duplication Events Repeat structure 
within 

No Repeat structure 
within 

Total 

Detected by tool (True 
positives) 

13 10 23 

Not detected by tool (False 
Negatives) 

11 31 42 

Note: Table tests if ability of the tool to detect duplication events is influenced by the 
repeat structure within it The Chi-square statistic is 5.871 with p-value of 0.015. This 
result is significant at p<0.05.  

Table 3.8: Chi-squared test: Relation of novel sequences events with repeat 

Novel Sequence Events Repeat structure 
within 

No Repeat structure 
within 

Total 

Detected by tool (True 
positives) 

26 16 42 

Not detected by tool (False 
Negatives) 

13 11 24 
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Note: Table tests if ability of the tool to detect novel sequences events is influenced 
by the repeat structure within it The Chi-square statistic is 0.378 with p-value of 
0.538. This result is not significant at p<0.05.  

Since defining genomic context was the goal of the analysis, we further broke down 

the detected and undetected events by type of repeat structure as classified by 

RepeatMasker. Note, however, that the same variants can have more than one type 

of repeat structure. This breakdown also showed similar results. While LINEs and 

SINEs were more abundant of the repeat structure, undetected events (false-

negatives) showed a lower percentage of these events than detected events (true-

positives) (Tables 3.9, 3.10, 3.11, 3.12). 

Table 3.9: Repeats structure by type: Deletion  

1000 
genome 
events 

DNA_repeats  LINEs SINEs LTR Other 
Yes No Yes No Yes No yes No Yes No 

Un-
detected 
(5038) 

245 
(5%) 

4793 825 
(16%) 

4213 1096 
(22%) 

3942 423 
(8%) 

4615 1113 
(22%) 

3925 

Detected 
(4657) 

1560 
(34%) 

3097 2480 
(53%) 

2177 2710 
(58%) 

1947 1954 
(42%) 

2703 2549 
(55%) 

2108 

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear 
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected: 
True positive events (1000-Genomes event) 

 

Table 3.10: Repeats structure by type: Mobile element insertion 

1000 
genome 
events 

DNA_repeats  LINEs SINEs LTR Other 
Yes No Yes No Yes No yes No Yes No 

Undetected 
(407) 

11 
(3%) 

396 69 
(17%) 

338 20 
(5%) 

387 24 
(6%) 

383 31 
(8%) 

376 

Detected 
(85) 

12 
(14%) 

73 15 
(18%) 

70 18 
(21%) 

67 12 
(14%) 

73 14 
(16%) 

71 

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear 
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected: 
True positive events (1000-Genomes event) 
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Table 3.11: Repeats structure by type: Tandem duplication 

1000 
genome 
events 

DNA_repeats  LINES SINES LTR Other 
Yes No Yes No Yes No yes No Yes No 

Undetected 
(24) 

1 
(4%) 

23 3 
(13%) 

21 6 
(25%) 

18 2 
(8%) 

22 5 
(21%) 

19 

Detected 
(42) 

3 
(7%) 

39 7 
(17%) 

35 9 
(21%) 

33 4 
(10%) 

38 13 
(31%) 

29 

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear 
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected: 
True positive events (1000-Genomes event) 

 

Table 3.12: Repeats structure by type: Novel sequences 

1000 
genome 
events 

DNA_repeats  LINES SINES LTR Other 
Yes No Yes No Yes No yes No Yes No 

Undetected 
(42) 

1 
(2%) 

41 5 
(12%) 

37 2 
(5%) 

40 3 
(7%) 

39 1 
(2%) 

41 

Detected 
(23) 

6 
(26%) 

17 10 
(43%) 

13 8 
(34%) 

15 9 
(39%) 

14 9 
(39%) 

14 

Note: LINEs: Long interspersed nuclear elements; SINEs: Short interspersed nuclear 
elements; LTR: Long terminal repeats; Undetected: False negative events; Detected: 
True positive events (1000-Genomes event) 

Since presence of repeat elements was not driving the ability of the tool to detect 

variants, we decided that we had to be even more specific in defining the “context” 

of these variants. Repeat element in general, (including every type of repeat) within 

or around these variants was not the “context” causing these variants to go 

undetected.   

Our goal was to design a tool to detect translocations, and thus the design step 

started from defining the context for translocations occurring in the genome i.e. 

understand how translocations occur in the genome (Bunting & Nussenzweig, 2013) 

and build the context using this information. When we looked at the overlap between 

the NAHR regions and the genomic location of the variants missed by SVDetect, we 

observed a pileup in the regions where the tools failed to detect variants and the 

NAHR regions (Figure 3.5).  Thus, we used NAHR as one part of the biological 
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context for the novel algorithm. However, there are multiple substrates for NAHR in 

the human genome. The likelihood of any two regions of NAHR taking part in 

exchange of genomic material (translocation) depends in part on the probability of 

these regions being in close proximity in 3-dimensional space. Therefore, the second 

part of our biological context was to incorporate information about the distribution of 

the genome in 3-dimensional space as derived from Hi-C data.  
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Figure 3.5: NAHR overlap with 1000-Genomes variants. Pile-up of false negative 
deletion ebents (middle grey bar plot) shows concordant spike with pile-up of NAHR 
(non-allelic homologous recombination) regions (inner red bar plot). Outermost grey 
and red dot plot shows count of number of LINE elements (long interspersed nuclear 
elements) in 1Kbps windows. 

  

NAHR  

LINES repeat 
distribution  

False Negative 
variants  
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4. ALGORITHM DESIGN AND DEVELOPMENT 

4.1 A Context Definition for Translocations 
The purpose of defining “context” for detecting translocation in the genome was to 

effectively use information on mechanism of translocation formation in designing the 

tool. Earlier held belief that cancer occurs due to random genomic events is being 

proven ineffective due to studies which show non-random patterns to breakage sites, 

also called ‘hotspots’ (Jeffreys, Kauppi, & Neumann, 2001). Recombination event is a 

process by the cellular machinery to create diversity through evolution. These events 

occur through double stranded breaks and the aberrant repair of these breakpoints 

leads to structural variations. However these breakpoint regions have specific 

signatures of low copy number variations which share significant homology 

(Colnaghi, Carpenter, Volker, & O'Driscoll, 2011b). The breakpoint acting as 

substrates for anomalous repair (non-allelic homologous recombination, NAHR) lead 

to translocations and cause phenotypic changes (Deininger & Batzer, 1999), (Ou et 

al., 2011), (Gu, Zhang, & Lupski, 2008). Using this information for the purpose of 

designing a structural variant has not been done so far by any of the current tools. 

There is sufficient evidence to define these regions bioinformatically (Ou et al., 2011) 

and thus be able to use the signature of NAHR programmatically in tool design which 

was attempted in this study. The novelty of this approach is the use of inherent 

biologically processes driving these variants formation and is the first such attempt 

to program this information in a tool. This study tried to capture 3-D packing of the 

genome within a cell bioinformatically, thus taking the concept of “context” one step 

further.  Translocations occurring from double-stranded breaks also do not occur 

randomly. Chromosomes which are more close to each other and with similar 

replication timings are more likely to interact and exchange genomic material 

through NAHR (Yaffe & Tanay, 2011), (De & Michor, 2011), (Wijchers, 2011). 

Instead of using empirical distribution of reads and variants in the data to derive 
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confidence score, this study attempted to use probability distribution of two regions 

in the genome interacting due to physical proximity. This study has thus introduced 

the concept of context-based evaluation of structural variation in the human genome 

as a novel approach.  

4.2 Designing the Algorithm 
The algorithm for the tool is shown in Figure 4.1. Broadly the tool could be divided 

into 3 major steps:  

1. Extraction of anomalous reads from the bam file 

2. Re-alignment using BLAT 

3. Identifying potential translocations and defining probabilities using Hi-C data 

Figure 4.1: Novel algorithm flowchart  
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4.2.1 Read extraction overview  
Sequence Alignment Format: There are many tools available for mapping reads to 

the reference genome like BWA, Bowtie, MAQ. These tools give the output in a 

common format known as SAM format (Sequence Alignment/Map Format), which 

had been widely accepted as the default format for generating output files. Briefly 

the alignment output has a header section and an alignment section. All headers 

start with @ (eg. @HD) and contain general information about the experimental 

process used to generate the sequencing reads. Alignment sections contain 11 

mandatory fields as listed in Table 4.1.  

Table 4.1: SAM format fields: alignment section 

Field  Type  Regexp/Range  Brief description 
QNAME String [!-?A-~]{1,255}  Query template NAME 
FLAG Int [0,216 -1] bitwise FLAG 

RNAME String \*|[!-()+-<>-~][!-~]* Reference sequence NAME 
POS Int [0,229-1] 1-based leftmost mapping POSition 

MAPQ Int [0,28-1] MAPping Quality 

CIGAR String \*|([0-
9]+[MIDNSHPX=])+ 

CIGAR string 

RNEXT String \*|=|[!-()+-<>-~][!-
~]* 

Ref. name of the mate/next read 

PNEXT Int [0,229-1] Position of the mate/next read 

TLEN Int [-229+1,229-1] observed Template LENgth 

SEQ String \*|[A-Za-z=.]+ segment SEQuence 
QUAL String [!-~]+ ASCII of Phred-scaled base 

QUALity+33 
The purpose of the extraction algorithm is to retrieve reads which were assigned by 

the aligner as improperly mapped. This information is coded in the bitwise ‘FLAG’ 

field of the SAM file as shown in Table 4.2.  
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Table 4.2: Bitwise FLAG of SAM file 

Bit Description 
0x1 template having multiple segments in sequencing 
0x2 each segment properly aligned according to the aligner 
0x4 segment unmapped 
0x8 next segment in the template unmapped 
0x10 SEQ being reverse complemented 
0x20 SEQ of the next segment in the template being reversed 
0x40 the first segment in the template 
0x80 the last segment in the template 
0x100 secondary alignment 
0x200 not passing quality controls 
0x400 PCR or optical duplicate 
0x800 supplementary alignment 

 

The above table is represented in the hexadecimal system. The corresponding binary 

and decimal conversion is shown in Table 4.3.  

Table 4.3: Bitwise Flag of SAM FLAG- binary to decimal conversion 

Bit Binary Decimal 
0x1 1 1 
0x2 10 2 
0x4 100 4 
0x8 1000 8 
0x10 100000 16 
0x20 1000000 32 
0x40 10000000 64 
0x80 100000000 128 
0x100 1000000000 256 
0x200 10000000000 512 
0x400 100000000000 1024 
0x800 1000000000000 2048 

 

The value for each bit is set to 0 or 1 based on the description, with 0 being no and 1 

being yes. Thus if a sequencing segment which has been mapped has a value of 64, 

it is the first segment in the template (Table 4.1, Table 4.2). Each mapped segment 
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will have a value as represented in the decimal system in the SAM file. Thus a value 

of 99 equals 64+32+2+1. The corresponding natural language interpretation based 

on the tables 4.1 and 4.2 will be as below: 

FLAG Bit Description 
64  0x40 the first segment in the template 
32 0x20 SEQ of the next segment in the template 

being reversed 
2 0x2 each segment properly aligned according to 

the aligner 
1 0x1 template having multiple segments in 

sequencing 
Thus the read with a SAM flag of 99 meant it mapped correctly. The conversion of 

SAM flag values to the corresponding interpretation can be done using one of the 

utilities of PICARD tool suite.12  

CIGAR String: The sixth field in a SAM file is represented by the ‘CIGAR’ string. Just 

as ‘FLAG’ is used to describe the overall information of sequence read in terms of 

mapping to the reference genome, ‘CIGAR’ string explains similar information in 

terms of mapping at the base-pair level. Thus each base in a sequence read will have 

any one of the CIGAR values listed in Table 4.4. 

Table 4.4: CIGAR String 

Operation BAM  Description 
M 0 alignment match (can be a sequence match or 

mismatch) 
I 1 insertion to the reference 
D 2 deletion from the reference 
N 3 skipped region from the reference 
S 4 soft clipping (clipped sequences present in SEQ) 
H 5 hard clipping (clipped sequences NOT present in 

SEQ) 
P 6 padding (silent deletion from padded reference) 
= 7 sequence match 
X 8 sequence mismatch 

                                           
12 PICARD tool webpage: http://picard.sourceforge.net/index.shtml, 
http://picard.sourceforge.net/explain-flags.html 

http://picard.sourceforge.net/index.shtml
http://picard.sourceforge.net/explain-flags.html
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An example of a sequence read mapped to the reference genome can be represented 

as: 

Reference Genome Sequence:  A T T T G C A T C C C G     T A T T G G C A  
Query Read Sequence:               A T T T G C   T C C C G A T A T T G G C A 
CIGAR String: 6M1D5M1I5M 6 Match, 1 Deletion, 5 Match, 1 Insertion, 8 Match 

Reference Genome Sequence: A T T T G C A T C C C  G T A T T G G C A  
Query Read Sequence:              A T T T    C A T C C C G T A g g g g g 
CIGAR String: 4M1D9M5S 4 Match, 1 Deletion, 9 Match, 5 Soft clipped 

The CIGAR string informs about how many insertions and deletions of base pairs is 

needed to be done in the query sequence for the mapping tool to align the read to a 

given location on the reference genome.  

FLAGs for read extraction: All mapping tools will give the output in SAM format with 

a FLAG assigned. The purpose of read extraction is to identify those reads that did 

not have enough information contained in the sequence for the mapping tool to align 

it at the correct location. This information is extracted using the FLAG field and 

‘CIGAR’ string explained in Section 4.2.1. The FLAG fields used for extraction are 

shown in Table 4.5. 
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Table 4.5: FLAGs for read extraction 

Flag Fields set to derive 
Flag 

Description of fields for Flag 

UNMAPPED READS 
101 64+32+4+1 first in pair, mate reverse strand, read 

unmapped, read paired 
89 64+16+8+1 first in pair,  read reverse strand, mate 

unmapped, read paired 
117 64+32+16+4+1 first in pair, mate reverse strand, read 

reverse strand, read unmapped, read 
paired 

121 64+32+16+8+1 first in pair, mate reverse strand,  read 
reverse strand, mate unmapped, read 
paired 

165 128+32+4+1 second in pair, mate reverse strand, read 
unmapped, read paired  

153 128+16+8+1 second in pair, read reverse strand, mate 
unmapped, read paired 

185 128+32+16+4+1 second in pair, mate reverse strand, read 
reverse strand, read unmapped, read 
paired 

181 128+32+16+8+1 second in pair, mate reverse strand,  read 
reverse strand, mate unmapped, read 
paired 

69 64+4+1 first in pair, read unmapped, read paired 
73 64+8+1 first in pair, mate unmapped, read paired 
133 128+4+1 second in pair, read unmapped, read 

paired 
137 128+8+1 second in pair, mate unmapped, read 

paired 
77 64+8+4+1 first in pair, mate unmapped, read 

unmapped, read paired 
141 128+8+4+1 second in pair, mate unmapped, read 

unmapped, read paired 
 
READS WITH NO INFORMATION ON MAPPING 
65 64+1 first in pair, read paired 
129 128+1 second in pair, read paired 
81 64+16+1 first in pair, read reverse strand, read paired 
97 64+32+1 first in pair, mate reverse strand, read 

paired 
145 128+16+1 second in pair,  read reverse strand, read 

paired 
161 128+32+1 second in pair, mate reverse strand, read 

paired 
113 64+32+16+1 first in pair, mate reverse strand,  read 

reverse strand, read paired  
177 128+32+16+1 second in pair, mate reverse strand,  read 

reverse strand, read paired 
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Flag Fields set to derive 
Flag 

Description of fields for Flag 

READS WITH IMPROPER ORIENTATION 
115 64+32+16+2+1 first in pair, mate reverse strand,  read 

reverse strand, read mapped in proper pair, 
read paired 

179 128+32+16+2+1 second in pair, mate reverse strand,  read 
reverse strand, read mapped in proper pair, 
read paired 

67 64+2+1 first in pair, read mapped in proper pair, 
read paired 

131 128+2+1 second in pair, read mapped in proper pair, 
read paired 

 

4.2.2 Read extraction algorithm 
Perl script algorithm to extract the reads using the ‘Flag’ field and ‘CIGAR’ string was 

used as described in Table 4.6. 

Table 4.6: Read_Extract Algorithm 

Assumption: The input file has to be in BAM/SAM 
format. 

Creating FASTA 
file from BAM 
output of mapping 
tool 

Input Arguments for file name; 
 if (file is in SAM/BAM format) 
      { Create output files, both FASTA and SAM;} 
  Else 
    {output error to screen} 
Matchlist array=(List of FLAGs) 

Creates input 
argument array 
and array of 
FLAGs to be used, 
output files with 
.fa and .sam 
extension 

While {  
           Read each line of SAM/BAM file; 
           Split into fields based on delimiter; 
           Set fields 0: Read Identifier 
                          1: FLAG 
                          5: CIGAR 
                          8: TLEN 
                          9: SEQUENCE as variables;             
 

Variables identified 
for read extraction  

   If (readcounter==1) 
             {Calculate 30% of read length 
                Create pattern for longest continuous  
                 ‘N’s which equals 30% of read length 
                Increment readcounter} 
 

Creates ‘NNNN’ 
pattern which is 
30% of read 
length to search 
for in SEQUENCE; 
pattern created 
just once 

   If (currentReadIdentifier==previousReadIdentifier Matches FLAG 
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       AND 
        (currentReadIdentifier OR  previousReadIdentifier 
          == matchlist array)) 
      {  if (‘N’ pattern not found) 
         {print to output FASTA file with <RID1>/ 
           <RID2> as suffix to identify two reads of a pair  
           and also entire line to SAM file} 
      } 
} END OF WHILE LOOP 
 
Close all files 
 

array and extracts 
only those reads 
where both reads 
of a pair are 
present and did 
not have more 
than 30% ‘N’s. It 
further adds 
identifier <RID1>, 
<RID2> to keep 
paired end reads 
information 

 

The output from the extraction process is saved in both FASTA and SAM format. The 

FASTA file serves as the input for BLAT mapping tool. Both reads of a pair now have 

a unique identifier (RID1, RID2) which is an important addition in this step. 

4.3 Re-alignment Using BLAT 

4.3.1 The need for BLAT 

BLAT which stands for BLAST-like alignment tool was developed in 2001 by James 

Kent at University of California, Santa Cruz. The popular alignment tool BLAST 

(Altschul, Gish, Miller, Myers, & Lipman, 1990) developed by the NCBI uses the 

Smith-Waterman algorithm (Smith et al., 1981) to do local alignment of a defined 

length. The extension is done such that further extension of the segment will not 

improve the score.  

BLAT (Kent, 2002) was used primarily because of its speed and comparable output 

to BLAST. For example a sample output from the simulated data of translocations 

had FLAGs set as 117 and 153 such that the first read was unmapped and the 

second read mapped to a region with 100% match (Figure 4.2). The output from 

BLAST and BLAT are shown in Figures 1 and 2. BLAT is very similar to BLAST in 

terms of its search algorithm but differs in the fact that BLAST builds an index of the 
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query to search through its database, while BLAT used the database to build its index 

and search through the query which significantly affects search time. 

Figure 4.2: Sample paired-end read of simulated dataset: SAM format 

BLAST output for the first segment of the pair (with FLAG=117) showed a match 

with 56 regions in the ‘Human plus Transcript’ database and MegaBLAST algorithm 

(Figure 4.3). The corresponding mate segment of the pair (with FLAG=153) showed 

match with 200 regions in the same database and same algorithm (Figures 4.4). 
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Figure 4.3. MegaBLAST output with defaults for query sequence pair1 
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Figure 4.4: MegaBLAST output with defaults for query sequence pair2 



  58 

For the same two query sequences, BLAT output is represented below (Figures 4.5, 

4.6).  

 

Figure 4.5: BLAT output with defaults for query sequence pair1 

 

Figure 4.6: BLAT output with defaults for query sequence pair2 

The BLAT output was comparable with BLAST and took less time even with a web 

interface. BLAT had 200+ entries for each query pair and showed significant identity 

with chromosome 12 for sequence pair 1 (Figure 1 and 2) and chromosome 4 for 

sequence pair 2. More importantly, BLAST did not show any output if the option for 

filtering in repeat regions was turned on. BLAT does not have such an option and 

gives all possible hits.  

4.3.2 BLAT alignment method used in tool 

We used the FASTA output from the read extraction as the input for BLAT tool. BLAT 

can be run as server-client interface where the user creates a server (gfServer) that 



  59 

keeps the genome index in memory while the client (gfClient) is used to input query 

sequences that are sent to the gfServer. The server-client program has also been 

combined into a single standalone program such that the database and query are 

sent as arguments to the program. Instructions on setting up the client and options 

used by BLAT are provided in Appendix B. A perl script was written that allows the 

user to set up the server-client interface in a single step. A pre-requisite for this was 

that the 2-bit file for the genome needs to be made using a BLAT-faToTwoBit 

program. This program converts a FASTA file into “.2bit” format that is then used by 

gfServer to create the reference genome index file. In order to speed up the process, 

the reference genome was split by chromosome, and the query was run against each 

database in parallel.  

We used BLAT-version 35.1 to run the queries with minimum tile match of 4 and 

minimum identity of 95%. These queries were run in parallel, one for each 

chromosome. Output from BLAT is presented in the psl format (Appendix B, BLAT 

specification) which has the fields as defined in Table 1.1. The output from each 

chromosome mapping was finally merged together and sorted by ‘Identifier’ (field 

10), ‘Chromosome’ (field 14) and ‘Start position’ (field 16) to get the sorted psl 

output file. 
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Table 4.7: BLAT output file format: psl 

Field 
# 

Field Names 
(Type) 

Description 

1 Matches 
(int unsigned) 

 Number of bases that match that aren't repeats 

2 Mismatches 
(int unsigned) 

 Number of bases that don't match 

3 repMatches 
(int unsigned) 

 Number of bases that match but are part of repeats 

4 nCount  
(int unsigned) 

 Number of 'N' bases 

5 qNumInsert  
(int unsigned) 

 Number of inserts in query 

6 qBaseInsert  
(int unsigned ) 

 Number of bases inserted in query 

7 tNumInsert  
(int unsigned) 

 Number of inserts in target 

8 tBaseInsert  
(int unsigned) 

 Number of bases inserted in target 

9 Strand 
(char(2)) 

 + or - for query strand  optionally followed by + or – 
for target strand 

10 qName  
(varchar(255)) 

 Query sequence name 

11 qSize  
(int unsigned) 

 Query sequence size 

12 qStart  
(int unsigned) 

 Alignment start position in query 

13 qEnd  
(int unsigned) 

 Alignment end position in query 

14 tName 
(varchar(255)) 

 Target sequence name 

15 tSize  
(int unsigned) 

 Target sequence size 

16 tStart 
(int unsigned) 

 Alignment start position in target 

17 tEnd 
(int unsigned) 

 Alignment end position in target 

18 blockCount  
(int unsigned) 

 Number of blocks in alignment. A block contains no 
gaps. 

19 blockSizes  
(longblob) 

 Size of each block in a comma separated list 

20 qStarts  
(longblob) 

 Start of each block in query in a comma separated list 

21 tStarts  
(longblob) 

 Start of each block in target in a comma separated 
list 
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4.4 De-Duplication Algorithm  

The de-duplication algorithm essentially checks for rows with the same ‘Identifier’ 

and ‘Chromosome’ and bins it into buckets of 1000 basepairs windows. The output 

for this algorithm produces an SML file, an in-house defined format (Table 4.8).  

Table 4.8: De-Duplication Algorithm 

Assumption: The input file is in psl format which has 
been sorted by ‘Read identifier’, ‘Chromosome’ and 
‘Start Position’ 

Creating sml file 
from psl file 

Input Arguments for file name; 
 if (file is in sorted psl format) 
      { Create output file with sml extension;} 
  Else 
    {output error to screen} 
 

Creates output file 
with .sml 
extension 

While {  
           Read each line of psl file; 
           Split into fields based on delimiter; 
           Set fields 9:Identifier 
                         13:Chromosome 
                         15:Start position 
                         16:End position 
                         17:BlockCount as variables; 

      Define variables current-range and previous- 
      range using GetRange() function return value 
 

Sets variables and 
defines new 
variables current-
range and 
previous-range 

If (Prev Identifier not equal Curr Identifier) 
    {Insert Read(to output file)} 
Else  
  if (Prev Chr not equal Curr Chr) 
    {if (BlockSize==1) 
       {Insert Read(to output file)} 
     Else  
       if (current-range not equals previous-range) 
         {if (BlockSize==1) 
           {Insert Read(to output file)} 
          } 
     } 

} END OF WHILE LOOP 
 
Close all files 

 

Bins data in 1000 
basepair regions. 
If identifiers and 
chromosomes are 
same, compress 
the rows into 1000 
basepair bins, 
finally filtered on 
BlockSize; de-
duplication of rows 

Sub GetRange{ 
  rangeSpan=1000; 
  midpoint=(StartPosition+EndPosition)/2 
  if (midpoint < rangeSpan) 
 { 

GetRange function 
defines the 1000 
base-pair blocks 
into which the 
consecutive rows 
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  grange = 1; 
 } 
 else 
 { 
     grange = int(midpoint/rangespan) + 1; 
 } 
 return grange ; 
} 
 

with same 
identifier and 
chromosome are 
compressed i.e. 
de-duplicated. 
Mid-point of length 
of mapping region 
is used to check 
for range span. 
The return value 
of the function is 
the offset for 
each bin starting 
from 1 for 1-1000 
bp bin 

Sub InsertRead{ 
 print ‘Identifier’, ‘Chromosome’, ‘Start position’, 
 ‘Start position’, ‘current-range’ 
} 

Output format for 
the sml file 
defined 

 

Table 4.9: Example sml file from de-duplication algorithm 

Identifier Chromo 
some 

Start  
Position 

End  
Position 

Offset  
for 
Range 

4_103112562_103113055 
_5:1:0_2:0:0_dedbba<RID>1 4 950 1010 1 

4_14019666_14020194 
_6:0:0_1:0:0_17f93b6<RID>1 8 999 1010 2 

4_4086095_4086615 
_3:0:0_2:0:0_a6acbd<RID>1 4 4086515 4086615 4087 

4_4086106_4086642 
_3:0:0_2:0:0_5cdfa1<RID>1 4 4086105 4086205 4087 

4_4086106_4086642 
_3:0:0_2:0:0_5cdfa1<RID>2 4 4086542 4086642 4087 
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4.5 Create_Matrix Algorithm  

The SML file created from de-duplication algorithm serves as input file for matrix 

creation. The SML file essentially contains all the possible mapping locations for the 

queries in PSL file on the reference genome based on BLAT mapping algorithm in 

1000 base pair windows.  

The Create_Matrix algorithm creates all possible combinations of the read pair (RID1 

and RID2), such that each row in output file is the location where readpair1 maps 

and the corresponding location where readpair2 maps on the human genome. The 

algorithm is defined in Table 4.10. The Create_Matrix algorithm essentially defines 

how to capture the NAHR regions and can be represented in the Figure 4.7a, 4.7b. 

Output is a MAT file with an example in Table 4.11.  

Table 4.10: Create_Matrix Algorithm 

Assumption: The input file is in sml format and is 
sorted by ‘Read Identifier’ and ‘Chromosome’ 

Creating mat file from 
sml file 

Input Arguments for file name; 
 if (file is in sorted sml format) 
      { Create output files with mat extension;} 
  Else 
    {output error to screen} 
 

Creates output files 
with .mat extension 

While {  
           Read each line of psl file; 
           Split into fields based on delimiter; 
           Set fields 1:Identifier 
                         2:Chromosome 
                         3:Start position 
                         4:End position 
                         5:Range offset; 

       

Sets variables 

  If (previous Identifier==current Identifier) 
    {Insert Read(to output file)} 
    Else 
     { Create_Matrix() 
        Insert Read() 
      } 
 If first line of file 
   {Insert Read(to output file} 
} END OF WHILE LOOP 
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Close all files 
Do UNIX sort on Read1,Read2, Range Offset1, 
Range Offset2 
 
Sub Create_Matrix{ 
 Foreach read1 
  { 
    Foreach read2 
    { 
     If (Chromosome and Range offset is same) 
        {do not print} 
     Else 
         {  
            If (swapFunction==False) 
            {print to outfile read1, read2} 
             Else 
             {print to outfile read2, read1} 
          } 
    } 
  } 
For (read1) 
 { 
  For ( next read1) 
   { 
    If (Chromosome and Range offset is same) 
        {do not print} 
     Else 
         {  
            If (swapFunction==False) 
            {print to outfile read1, next read1} 
             Else 
             {print to outfile nextread1, read1} 
          } 
 
    } 
  } 
} 
 
For (read2) 
 { 
  For ( next read2) 
   { 
    If (Chromosome and Range offset is same) 
        {do not print} 
     Else 
         {  
            If (swapFunction==False) 
            {print to outfile read2, next read2} 
             Else 
             {print to outfile nextread2, read2} 
          } 
    } 

Matrix is created based 
on conditions; if both 
read pairs map to the 
same region we do not 
print the output as 
these do not suggest a 
translocation. Else if 
read1 and read2 go on 
different locations then 
print to outfile. 
 
 
 
 
 
 
Second condition 
checks for read1 going 
to different locations 
i.e. the same read 
mapping to different 
locations and creating a 
matrix of these 
combinations. Printing 
of values is such that 
Chromosome field1 is 
always less than 
Chromosome field2 and 
Chromosome X is 
always less than 
Chromosome Y 
 
 
 
Third condition checks 
for read2 going to 
different locations i.e. 
the same read mapping 
to different locations 
and creating a matrix of 
these combinations. 
Printing of values is 
such that Chromosome 
field1 is always less 
than Chromosome 
field2 and Chromosome 
X is always less than 
Chromosome Y. 
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  } 
} 
 
Sub InsertRead { 
 If (Identifier==Read1) 
 { write array for Read1;Chromosome and Offset}
  
If (Identifier==Read2) 
 { write array for Read2;Chromosome and Offset} 
} 

Creates array for read1 
and read 2 and pushes 
each read into the 
respective array based 
on Identifier 

Sub SwapFunction{ 
  Set default SwapFunction return-value==No; 
   Create arg1: Chromosome read1 
              arg2: Chromosome read2 
              arg3: Offset read1 
              arg4: Offset read2 
 If (Chromosome read1 ==Y and Chromosome  
            read2==X ) 
   { swap return value==Yes} 
Else 
 If (Chromosomes read1 and 2 are integers and  
      Chromosome read1>Chromosome read2) 
   { swap return value==Yes } 
 Return swap return-value; 
} 

This function returns a 
value of “Yes” if 
Chromosome on field1 
is greater than 
Chromosome in field2. 
Y is greater than X as 
defined.  

 

Table 4.11: Example ‘mat’ file from create_matrix algorithm 

Chromosome1 Offset1 Chromosome2 Offset2 
1 1001 4 2021 
1 1004 4 5036 
1 2385 8 6236 
1 5321 8 8288 
4 4087 8 6974 
4 4087 8 6974 
4 4087 8 6974 
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Figure 4.7a: Create_Matrix Algorithm: Matrix creation with all possible combinations 
of read1 and read2 excluding reads where both go to same chromosome. 
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Figure 4.7b: Create_Matrix Algorithm: Swapping reads such that lower number 
chromosome is always on the left which makes the counting process efficient.  

Non-allelic homologous recombination regions are defined by their sequence identity 

(>95%) with different regions of the genome and greater than 5kb in size such that 

these form substrates for anomalous pairing during repair. BLAT identifies all 

possible regions such that read-pair1 maps to one region and read-pair2 maps to 

another region which will therefore identify potential NAHR regions. The 

Create_Matrix algorithm, in creating the matrix, identifies potential NAHR pairs and 

therefore potential translocation breakpoints. Further support is added if read1 also 

maps to both locations on different chromosomes identified as potential breakpoint 

regions (e.g. Read1 mapping to chromosome 4 and chromosome 8) suggesting that 

these regions could be homologous and share significant identity. The purpose of 
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swapping the reads is to sort the reads for easier counting. This finally gives the 

number of reads supporting a translocation identified by the matrix.   

4.6 Write_Count Algorithm  

Output from matrix creation is a sorted MAT file and is the input for the write_count 

algorithm. The output for the write_count algorithm is a CHR file as shown in 

example Table 4.12. 

Table 4.12: Write_count Algorithm 

Assumption: The input file is in mat format and is 
sorted by field1, field3, field2 and field4 in that 
order, i.e. Chromosome1, Chromosome2, Offset1, 
Offset2 

Creating chr file from 
mat file 

Input Arguments for file name; 
 if (file is in sorted .mat format) 
      { Create output files with .chr extension;} 
  Else 
    {output error to screen} 
 

Creates output files 
with .chr extension 

While  (Read each line of mat file) 
  { 
    If (previous record==current record) 
      {Count=1; Increment count} 
    Else 
      {WriteCount(to output file)} 
  } END OF WHILE LOOP 
 
Close all files 
                  

Counts number of 
records which are same 

Sub WriteCount{ 
  Print each unique row with count; 
} 

Creates ‘.chr’ output file 
format 

 

Table 4.13: Example ‘chr’ file from write_count algorithm 

Chromosome1 Offset1 Chromosome2 Offset2 Count 
1 1001 4 2021 1 
1 1004 4 5036 1 
1 2385 8 6236 1 
1 5321 8 8288 1 
4 4087 8 6974 3 
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4.7 Get_HiC-Score Algorithm  

The last step in the process was to define the probability of calling a translocation as 

not false. We did not used distribution of insert size within the dataset to define this 

probability as is done by other variant calling programs (SVDetect, BreakDancer, 

PEMer). The cancer genome is highly heterogeneous with various clonal populations 

showing different types of variation signatures. Even with a 30X coverage of 

sequencing experiment, the likelihood of picking a variant in the heterogeneous 

cancer sample cannot be defined based on the distribution of reads in the current 

sample. We therefore wanted to capture as many variants as we could define using 

our algorithm and assign the probability based on an informative prior. This was 

determined using Hi-C experiments (Lieberman-Aiden et al., 2009) which takes into 

account the three dimensional positioning of the genomes within a cell and defines 

the probability of two regions of the genome interacting based on their physical 

proximity to each other, as determined experimentally. For the purpose of this 

analysis we used the database created by Lieberman-Aiden’s groups at 

BROAD/MIT.13 The datasets contain Pearson’s correlation coefficient for each 

combination of chromosome in one million base-pair (1Mbps) windows. This is the 

highest level of resolution for these experiments, and we had our variants defined in 

1000 basepair windows. We had to accept this as a limitation of the study.   

 

 

 

 

                                           
13 Hi-C database webpage: http://hic.umassmed.edu/welcome/welcome.php 

http://hic.umassmed.edu/welcome/welcome.php
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Table 4.14: Get_HiC-Score Algorithm 

Assumption: The input file is in chr format and is 
sorted by field1(chr1), field3(chr2), field2(Offset1) 
and field4(Offset2) in that order 

Creating FASTA file 
from BAM output of 
mapping tool 

Input Arguments for file name, path to Hi-C file; 
 if (file is in sorted .chr format) 
      { Create output files with .score extension;} 
  Else 
    {output error to screen} 
 

Creates output files 
with .score extension 

While  (Read each line of chr file) 
  { 
    Split into fields based on delimiter; 
    Set fields 1: Chromosome1 
                 2: Offset1 
                 3: Chromosome2 
                 4: Offset2 
                 5: Chromosome Count 
                 6: Current Hi-C filename  
Create Hi-C filename by dynamically setting  
values of chromosome1 and chromosome2 on Hi-C 
filename template 

 

If (current Hi-C filename not equals previous Hi-C 
filename) 
    { 
     Open Hi-C file () 
    } 
row-midrange= CalcMidPosition(offset1) 
column-midrange=CalcMidPosition(offset2) 
rowposition=GetFilePosition(row-midrange); 
colposition=GetFilePosition(column-midrange); 
score = GetHi-CScore() 
CalcRange(Offset1,Offset2) 
If (score>0) 
  { 
   Print to outfile chr1,start1,end1,chr2,start2,end2 
    numberOfReads, scorefrom Hi-C 
  } 
} END OF WHILE LOOP 
 
Close all files 
 

Open each Hi-C file only 
once and calculate 
midrange of row and 
column offsets. Use 
these offsets to get the 
exact column and row 
position in Hi-C file, 
open Hi-C file and 
extract the score for x-
row and y-cloumn. 
Only Hi-C scores with 
Pearson’s probability 
correlation greater than 
zero printed to output 

Sub Open Hi-C file{ 
 Concatenates Hi-C filepath variable to dynamically 
created current Hi-C filename and open 
corresponding file. 
Puts entire file into @filearray; 
} 
 

Opens Hi-C file bases 
on chromosome1 and 
chromosome2 values 
and their offsets. Puts 
the entire file into file 
array which is scanned 
in the GetHi-CScore 
function for getting 
score. 
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Each Hi-C file is opened 
only once since ‘chr’ file 
is sorted by 
chromosomes and 
therefore all 
corresponding Hi-C 
scores for each 
combination of row and 
column offset values 
can be obtained in one 
open file function call. 
  

Sub CalcMidPosition { 
  chrspan=1000; 

end = (column_offset * $chrspan)-1; 
   start = end - (chrspan-1); 
   cpos = (end+start)/2; 

return cpos; 
} 

Calcuate mid position of 
Offset. Offsets are in 
the range of 1000 
basepairs. Start and 
end values for offsets 
are calculated and a 
midpoint for the offset 
is obtained and 
returned as function 
value. 
 

Sub GetFilePosition { 
   readpos=Offset midpoint of chr1/chr2 
   colspan =1000000;   #hi-c file span by million 

 pos = 0; 
 if (readpos < colspan) 
 { 
  pos = 1; 
 } 
 else 
 { 
  pos = (readpos/colspan) + 1; 
   
 } 

 return pos ; 
} 

Hi-C files are in 1million 
basepair range. Get 
corresponding Hi-C file 
positions based on 
Offset midpoints 
(CalcMidPosition 
function) and return the 
corresponding 
row/column position for 
Hi-C file  

Sub GetHi-CScore { 
  @cline= Split @filearray on rowpos ; 
   Score=cline[colpo]; 
   Return score; 
} 

Scans the @filearray 
(the entire Hi-C file for 
a chromosome row-
column combination) to 
get the exact row and 
column position for Hi-
C score and return 
score 

Sub CalcRange 
{ 
 chrspan = 1000;   
 r1end = (r1col * chrspan)-1; 
 r1start = (r1end-(chrspan-1); 
 r2end = (r2col * chrspan)-1; 

Calculates start and 
end positions of offset1 
and offset2 
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 r2start = r2end-(chrspan-1); 
 

} 

The output from this program is as represented in Table 4.15 that is presented as 

the final output to the user. Further, the algorithm filtered out any Hi-C scores below 

zero and only reported translocations with positive Hi-C probability scores.  

Table 4.15: Example ‘score’ file from get_HiC-score algorithm 

Chromo 
some1 

Start End Chromo 
some2 

Start End No. 
of 
reads 

Hi-C 
Score 

chrX 0 999 chrX 1000 1999 2 1 
chrX 4000 4999 chrX 9000 9999 3 1 
chr1 5170000 5170999 chrX 4620000 4620999 2 0.050044 
chr1 5193000 5193999 chrX 17311000 17311999 2 0.018999 
chr1 5236000 5236999 chrX 2850000 2850999 8 0.061457 
chr1 16000 16999 chr20 45680000 45680999 3 0.089301 
chr1 23000 23999 chr20 63000 63999 2 0.359193 
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4.8 Proof of Concept  

BLAT provides various input options to the user that can change the output 

significantly based on the user requirements. In our case, since we were looking for 

regions which share 95% sequence identity and can therefore give more than one 

significant hit, we wanted to keep the minIdentity option as 95%. As a proof of 

concept we created a single translocation in chromosomes 4 and 8 

(t4;8)(p16.3;p23.1) with breakpoint of chromosome 4 at chr4: 4086365 and on 

chromosome 8 at chr8: 6973436 (Figure 4.8).  

Figure 4.8: Translocation (4;8); derivative chromosomes created using (Hiller, 

Bradtke, Balz, & Rieder, 2005).  

The simulation data had derivative chromosomes 4 and 8 as well as normal 

chromosome 4 and 8. This was created using the perl script provided by Dr Hayes for 

inserting manufactured translocations in the normal human genome. This mini 

FASTA file containing normal chromosome 4 and 8 and the derivative chromosome 4 

and 8 was mapped to reference genome hg19 (UCSC) using BWA-0.5.9. The BAM file 

from this alignment was used as input for extraction of anomalous reads (Section 

4.1). Since this simulated data only had chromosomes 4 and 8, the database file for 

Chr4 

Chr8 
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BLAT was also only created for chromosome 4 and 8. BLAT was run on FASTA output 

file obtained from the extraction algorithm applied to the BWA-alignment BAM file. 

There were 2,441,572 anomalous reads identified from the extraction step. We used 

two BLAT parameters, minMatch and minIdentity to test for BLAT output. These are 

defined in the BLAT manual (Appendix B) as below: 

-tileSize=N sets the size of match that triggers an alignment, usually between 8 and 

12. Default is 11 for DNA and 5 for protein. 

-minMatch=N Sets the number of tile matches. Usually set from 2 to 4.  Default 

is 2 for nucleotide, 1 for protein. 

-minIdentity=N Sets minimum sequence identity (in percent).Default is 90 for 

nucleotide searches, 25 for protein or translated protein searches. 

We kept the default tile size of 11 for this analysis and adjusted the other two 

parameters. The output from BLAT is summarized in Table 4.16.  

Table 4.16: BLAT parameter adjustment results 

Parameter Number of 
alignments 

Number of 
translocation 
reported 

Number of 
reads 
supporting 

Defaults: 
minIdentity=90 
minMatch=2 

15111989 339887 3 

minIdentity=95 
minMatch=2 

7482820 141527 2 

minIdentity=99 
minMatch=2 

1073276 8733 0 

minIdentity=95 
minMatch=4 

6620511 118282 0 

minIdentity=99 
minMatch=4 

934711 8166 0 
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Testing the algorithm with a simulated single translocation (t(4;8)) dataset showed 

that adjusting BLAT parameters to 95% identity and minimum tile match of two, 

captured the positive translocations while reducing false positive by almost a third 

(Table 4.16). Therefore these BLAT options were used in the final simulated dataset 

analysis. When tightening the alignment option to report 99% identity many false 

positives are reduced though at the cost of true positives. Since the aim was to 

detect these events which are most likely to be missed by BWA alignment tool and 

since 95% identity is the criteria for a non-allelic homologous recombination 

substrate, we used this option at the cost of reporting many false positives.   
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5. SIMULATED DATA ANALYSIS 

5.1 Creating Simulated Dataset 

The idea for creating a simulated dataset was to include known documented 

translocations that were biologically plausible and be able to test the algorithm on 

this dataset. An attempt to define drivers of translocation based on genomic 

architecture was done by Ou et al., (Ou et al., 2011) whereby they demonstrated 

recurrent translocation driven by non-allelic homologous recombination in unrelated 

families. They also mapped the regions which could be involved in potential 

translocation computationally using low-copy repeat regions in the genome which 

shares >94% sequence identity and more than 5kb in length. They were able to 

experimentally verify the computationally predicted translocations for the three 

regions identified in Table 5.1.  

Burrow et al. analyzed recurrent translocation in cancers from various databases and 

tried to define the characteristics of these translocations. They found that over 50% 

of the recurrent translocations mapped to fragile sites, defined as regions on the 

genome that show multiple gaps (Burrow, Williams, Pierce, & Wang, 2009). We tried 

to derive our list of translocations from this comprehensive list (Appendix C) that 

could be near NAHR regions and found seven listed in Table 5.1. This list of 

translocation breakpoints was used to create derivative chromosomes using the 

translocation perl script mentioned in section 4.8.  
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Table 5.1: Translocation list used in creating simulated dataset 

Translocation from Burrow et 
al paper 

Breakpoint  
First chr. 

Breakpoint  
Second chr. 
 

Gene  
First chr 

Gene  
Second 
chr. 

t(1;22)(1q21;22q11) 142749690 19819306 BCL9 IGL@ 
t(12;13)(12q14;13q13) 50787223 40914700 HMGA2 LHFP 
t(19;22)(19q13;22q11) 63789868 49571663 IGL@ BCL3 
t(12;16)(12p13;16p13) 8270437 5069858 LAG3 MYH11 
t(16;21)(16q24.3;21q22.12) 88815835 46924874 RUNX1 CBFA2T3 
t(9;14)(9p21;14q11) 27286005 42868270 TRA@ CDKN2A 
t(7;11)(7q34;11p15) 128044540 124564 TRB@ LMO1 
Translocation from Ou et al. 
paper (Ou et al., 2011) 

Breakpoint  
First chr. 

Breakpoint  
Second chr. 
 

Gene  
First chr 

Gene  
Second 
chr. 

t(4;8)(4p16.3;8p23.1) 4088911 6992273 NA NA 
t(4:11)(4p16.2;11p15.4) 3852863 3569449 NA NA 
t(8;12)(8p23.1;12p13.31) 6992273 8367384 NA NA 

This simulated dataset included normal chromosomes and the derivative translocated 

chromosomes. The FASTA file was used to create simulated data using wgsim 

program that is a part of SAMTOOLS suite. A description of the options used for this 

program is presented in Table 1.1. 

Table 5.2: Simulation read creating program-‘wgsim’ options 

Options Type  Description 
e FLOAT base error rate [0.020] 
d INT outer distance between the two ends [500] 
s INT standard deviation [50] 
N INT number of read pairs [1000000] 
1 INT length of the first read [70] 
2 INT length of the second read [70] 
r FLOAT rate of mutations [0.0010] 
R FLOAT fraction of indels [0.10] 
X FLOAT probability an indel is extended [0.30] 
c NA generate reads in color space (SOLiD read 
C NA show mismatch info in comment rather than 
h NA haplotype mode 
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At the very least, it requires input FASTA file (translocation FASTA file) and length of 

the reads. In order to get 30X coverage of the genome we needed to define the 

number of read pairs needed (-N, Table 1.1). Coverage is calculated using equation 

1 below: 

(1) 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑎𝑑 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠

𝐻𝑎𝑝𝑙𝑜𝑖𝑑 𝐺𝑒𝑛𝑜𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 

Thus for 30X coverage and read length of 100 basepairs, we calculated the number 

of read required for the haploid genome of length 3x109 to be 900 million reads. 

Output from this program gives two FASTQ files, one each for a paired end library. 

Further, a random subsample of this dataset was produced to simulate 15X 

coverage. BWA mapping tool was used to produce the alignment BAM files. The BAM 

file was then run against current tools, namely SVDetect-0.7f and BreakDancer-1.1.  

The process flow for our algorithm was as described in Figure 5.1.

Figure 5.1. Process flow of novel algorithm 
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5.2 Simulated Data Analysis Results 

SVDetect could correctly identify four out of the ten translocations created (4/10) 

and BreakDancer detected six out of ten (6/10) briefly summarized in Table 5.3. 

Table 5.3: Comparison of current tools with novel algorithm 

Translocation from Burrow et 
al paper 

SVDetect BreakDancer 
 

Novel 
Algorithm 

t(1;22)(1q21;22q11) Detected No Detected 
t(12;13)(12q14;13q13) Detected Detected Detected 
t(19;22)(19q13;22q11) No No Detected 
t(12;16)(12p13;16p13) Detected Detected Detected 
t(16;21)(16q24.3;21q22.12) No No Detected 
t(9;14)(9p21;14q11) Detected Detected Detected 
t(7;11)(7q34;11p15) No No Detected 
Translocation from Ou et al. 
paper (Ou et al., 2011) 

SVDetect BreakDancer 
 

Novel 
Algorithm 

t(4;8)(4p16.3;8p23.1) No Detected Detected 
t(4:11)(4p16.2;11p15.4) No Detected Detected 
t(8;12)(8p23.1;12p13.31) No Detected Detected 

The novel algorithm was able to detect all the translocations at a 1000 base pair 

resolution. The number of reads supporting a translocation varied from 3 to 50. The 

three translocations that were not detected by either SVDetect or BreakDancer, 

t(19;22), t(16;21) and t(7;11), all had less than 10 reads supporting the 

translocation in the novel algorithm output. The score file output is represented in 

Table 5.4.  
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Table 5.4: Final score file output of novel algorithm 30X coverage 

Chr_1 Start End Chr_2 Start End No_ 
 of 
reads 

Pearsons 
Corr- 
elation 
coeff 
icient 

chr1 142749000 142749999 chr22 19819000 19819999 3 0.01779 

chr12 50786000 50786999 chr13 40914000 40914999 3 0.00739 

chr12 50787000 50787999 chr13 40914000 40914999 17 0.00739 

chr19 63789000 63789999 chr22 49571000 49571999 4 0.30154 

chr12 8270000 8270999 chr16 5069000 5069999 29 0.28795 

chr16 88815000 88815999 chr21 46924000 46924999 9 0.42250 

chr9 42867000 42867999 chr14 27285000 27285999 15 0.25198 

chr9 42868000 42868999 chr14 27285000 27285999 23 0.25198 

chr9 42868000 42868999 chr14 27286000 27286999 23 0.25198 

chr7 128044000 128044999 chr11 124000 124999 6 0.25539 

chr4 4088000 4088999 chr8 6991000 6991999 2 0.21970 

chr4 4088000 4088999 chr8 6992000 6992999 15 0.21970 

chr4 3852000 3852999 chr11 3569000 3569999 23 0.1985 

chr8 6991000 6991999 chr12 8367000 8367999 7 0.24114 

chr8 6992000 6992999 chr12 8367000 8367999 51 0.24114 

SVDetect, although correctly identified chromosome 1 breakpoint for translocation 

t(1;22) did not identify chromosome 2 breakpoint as precisely and had very few 

reads supporting this translocation (Table 5.5). BreakDancer did a very good job at 

breakpoint resolution but could only detect six out of ten (Table 5.6) while SVDetect 

picked four (Table 5.5).  
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Table 5.5: SVDetect output (trimmed): simulated data 30X coverage 

SV_type BAL_ 
type 

chrom
o 
some1 

chrom
o 
some2 

no 
_pai
rs 

final 
_sco
re 

break 
point1 

break 
point2 

INV_ 
TRANSLOC 

UNBAL chr1 chr22 3 1 14274984-
142750363 

19960253-
19960750 

INV_ 
TRANSLOC 

UNBAL chr1 chr22 1 1 14274900-
142749572 

19958766-
19959329 

TRANSLOC UNBAL chr1 chr22 1 1 14274981-
142750378 

22001986-
22002549 

INV_ 
TRANSLOC 

UNBAL chr12 chr13 1 1 50786416-
50786979 

40903686-
40904249 

TRANSLOC UNBAL chr12 chr16 24 0.83 8270917-
8271106 

5069215-
5069396 

INV_ 
TRANSLOC 

UNBAL chr9 chr14 36 0.88 42867615-
42867796 

27285344-
27285586 

 

Table 5.6: BreakDancer output: simulated data 30X coverage 

Chrom 
osome1 

Pos1 Chrom 
osome2 

Pos2 Type Size Score Number 
of Reads 

chr4 3852787 chr11 3569702 CTX -499 99 4 
chr4 3853180 chr11 3569260 CTX -499 99 6 
chr4 4088565 chr8 6992324 CTX -499 99 2 
chr4 4088649 chr8 6992415 CTX -499 99 2 
chr8 6992535 chr12 8367239 CTX -499 99 2 
chr8 6992629 chr12 8367239 CTX -499 99 3 
chr8 6991970 chr12 8367520 CTX -499 99 3 
chr8 6992195 chr12 8367520 CTX -499 99 3 
chr8 6992195 chr12 8367640 CTX -499 99 5 
chr9 42868057 chr14 27285682 CTX -499 99 19 
chr12 8270277 chr16 5069881 CTX -499 99 3 
chr12 8270277 chr16 5069996 CTX -499 99 5 
chr12 8270277 chr16 5070133 CTX -499 95 2 
chr12 8270357 chr16 5070133 CTX -499 99 3 
chr12 8270471 chr16 5069481 CTX -499 99 3 
chr12 8270742 chr16 5069481 CTX -499 98 2 
chr12 8270742 chr16 5069585 CTX -499 99 11 
chr12 50787289 chr13 40914358 CTX -499 99 3 
chr12 50787452 chr13 40914358 CTX -499 99 8 
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As described, cancer genome complexity is overburdened further by factors like 

sample collection, tumor heterogeneity (Ulahannan, Kovac, Mulholland, Cazier, & 

Tomlinson, 2013), and platform specific issues like AT-rich and GC-rich bias in the 

Illumina platform (Metzker, 2010). Even with a 30X coverage of the genome and a 

100% representation of the alternative allele, the tools did not detect 40% to 60% of 

the simulated translocations. For the next step the dataset was randomly sampled so 

that 50% of the reads were picked to do analysis on a 15X coverage dataset.  This is 

more realistic for current whole-genome sequencing strategies of cancer.  30X or 

greater coverage is usually reserved for exome-sequencing mainly due to cost 

constraints.  Even if a cancer genome is sequenced at 30X or greater, the inherent 

intercellular heterogeneity coupled with the aneuploidy that typifies most tumors 

means that a given translocation may be represented by even fewer supporting 

reads for the regions of interest.   

Even with 15X coverage, our novel algorithm tool was able to detect all ten 

simulated translocations (Table 5.7) albeit with fewer reads supporting the 

translocations (compare with Table 5.4).  
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Table 5.7: Final score file output of novel algorithm 15X coverage 

Chr_1 Start End Chr_2 Start End No_ 
 of 
reads 

Pearsons 
Corr- 
elation 
coeff 
icient 

chr1 142749000 142749999 chr22 19819000 19819999 2 0.01779 
chr12 50786000 50786999 chr13 40914000 40914999 2 0.00739 
chr12 50787000 50787999 chr13 40914000 40914999 7 0.00739 
chr19 63789000 63789999 chr22 49571000 49571999 3 0.30154 
chr12 8270000 8270999 chr16 5069000 5069999 14 0.28795 
chr16 88815000 88815999 chr21 46924000 46924999 5 0.42250 
chr9 42867000 42867999 chr14 27285000 27285999 10 0.25198 
chr9 42868000 42868999 chr14 27285000 27285999 8 0.25198 
chr9 42868000 42868999 chr14 27286000 27286999 14 0.25198 
chr7 128044000 128044999 chr11 124000 124999 3 0.25539 
chr4 4088000 4088999 chr8 6992000 6992999 11 0.21970 
chr4 3852000 3852999 chr11 3569000 3569999 9 0.1985 
chr8 6991000 6991999 chr12 8367000 8367999 4 0.24114 
chr8 6992000 6992999 chr12 8367000 8367999 28 0.24114 

BreakDancer was only able to detect four (4/10) translocations with 15X coverage 

(Table 5.8).   

Table 5.8: BreakDancer output: simulated data 15X coverage 

Chrom 
osome1 

Pos1 Chrom 
osome2 

Pos2 Type Size Score Number 
of Reads 

chr4 3852745 chr11 3569702 CTX -499 99 3 
chr4 3853180 chr11 3569294 CTX -499 99 4 
chr8 6992049 chr12 8367520 CTX -499 99 2 
chr9 42867966 chr14 27285748 CTX -499 99 5 
chr9 42868047 chr14 27285748 CTX -499 99 2 
chr12 8270471 chr16 5069481 CTX -499 99 2 
chr12 8270566 chr16 5069585 CTX -499 99 2 

 

SVDetect was only able to detect two (2/10) variants (Table 5.9). 
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Table 5.9: SVDetect output (trimmed): simulated data 15X coverage 

SV_type BAL_type Chr_1 Chr_
2 

nb 
_pair
s 

final 
_sco
re 

break 
point1 

break 
point2 

INV_ 
TRANSLOC 

UNBAL chr1 chr22 1 1 142749572-
142749671 

19959329-
19959428 

TRANSLOC UNBAL chr12 chr13 4 0.8 50786565 
-50786795 

40915026-
40915369 

TRANSLOC UNBAL chr12 chr13 4 0.8 50787552 
-50788028 

40913925-
40914365 

One of the major issues with the novel algorithm is that it gives large number of 

false positives despite filtering out variants with negative Hi-C scores. Therefore 

distribution-based filtering is another approach to reduce false positives. Frequency 

distribution of Hi-C data for chromosome 1 and chromosome 22 showed most of the 

regions (1 Mbps windows) with Pearson’s correlation coefficient between 0.03 and 

0.09 (Figure 5.2).   
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Figure 5.2: Hi-C score frequency distribution for chromosome 1 and 22 

 

Setting the filtering cutoff at 0.09 would make the tool miss this translocation while 

setting it at the tail end at 0.249 will capture it (Table 5.4).  

Frequency distribution of chromosome 12 and chromosome 13 (Figure 5.3) with 

cutoff above zero will include the translocation (Table 5.4).  
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Figure 5.3: Hi-C score frequency distribution for chromosome 12 and 13 

Similarly to capture t(12;16), t(19;22), t(16;21), t(9;14), t(7;11), t(4;8), t(4;11), 

and t(8;12) we need to include the far right end of the distribution (Figure 5.4, 

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11). 

Thus, although these translocations had a strong Pearson’s correlation value, filtering 

based on distribution will lose these translocations. A filtering method to filter out 

variants which are one standard deviation away from the mean in the positive 

direction will be a better approach to capture these events.    
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Figure 5.4: Hi-C score frequency distribution for chromosome 12 and 16 
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Figure 5.5: Hi-C score frequency distribution for chromosome 19 and 22 
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Figure 5.6: Hi-C score frequency distribution for chromosome 16 and 21 
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Figure 5.7: Hi-C score frequency distribution for chromosome 9 and 14 
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Figure 5.8: Hi-C score frequency distribution for chromosome 7 and 11 
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Figure 5.9: Hi-C score frequency distribution for chromosome 4 and 8 
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Figure 5.10: Hi-C score frequency distribution for chromosome 4 and 11 
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Figure 5.11: Hi-C score frequency distribution for chromosome 8 and 12 

Thus in order to reduce noise, filtering variants with negative correlation coefficients 

is an essential first step. Further, arriving at a cutoff by looking at the distribution of 

Hi-C scores to filter variants with strong positive correlation can further reduce noise 

and fine-tune the tool.  
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6.  DISCUSSION 

The aim of this study was to understand if characteristics of the structural variant 

made it more or less conducive to detection by current computational methods in 

use. We wanted to understand the structural variant in relation to its position in the 

genome and determine if this genomic context made some variants more difficult to 

be detected by current tools. The human genome is made up of approximately 

20,000-25,0000 genes and targeted sequencing of only these known coding regions 

covers about 1% of the 3 billion bases of the human genome, i.e. approximately 30 

million (Brunham & Hayden, 2013). Applying genome linkage analysis to single-gene 

Mendelian disease has met with considerable success as in cystic fibrosis (Kerem et 

al., 1989; Rommens et al., 1988) and Huntington’s disease (Fox, Bloch, Fahy, & 

Hayden, 1989). Application of next generation sequencing efforts to Mendelian 

disorders has led to discovery of more than 3000 genes associated with a 

phenotypically visible trait and more than 5000 phenotypic traits with known 

molecular basis as recorded to date in the Online Mendelian Inheritance in Man 

(OMIM database) (McKusick, 2014). Discovery of these specific genes has 

tremendous value in the predictive capability of genetic diagnosis through 

biomarkers as in Alzheimer as well as targeted gene therapy as in cystic fibrosis with 

the mean survival rate of cystic fibrosis going from 6 months in 1930’s to 40 years in 

1990’s (Ikpa, Bijvelds, & de Jonge, 2014) due to novel therapy. The impact of 

genotype-to-phenotype translation, while more obvious in Mendelian diseases, are 

not so easily translated in complex disease with possible multi-gene etiology. 

Translational bioinformatics tries to fill up this gap using high throughput data 

analysis techniques. Cancers are even more complicated due to presence of somatic 

variants that are not inherited and therefore more difficult to define. Further, tumors 

are highly heterogeneous, and therefore the presence of a variant will be highly 
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dependent on sample extraction and preparation. Thus, the aim is to identify the 

best approach to detect novel variants in a heterogeneous sample with highly 

mutated genome.  The currently available tools were designed around the normal 

genome architecture assuming 100% allele frequency. Cancer genome does not 

conform to this assumption. 

6.1 Repeat Analysis 

The study analysis started with the hypothesis that the tools were failing to detect 

variants due to presence of these variants in repeat regions. If the mapping tools are 

unable to map reads uniquely, the tools will not be able to pick these variants. The 

first analysis for this study tried to define the characteristics of the validated variants 

in 1000 genomes trio dataset using current variant detection algorithms. The 

purpose was to understand the reason these tools were missing to detect the 

validated variants.  SVDetect was chosen for this analysis due to its high false 

positive rate and thus be highly sensitive. Since the idea was to define context, true 

positive was defined as those variants detected by SVDetect with at least 10% of 

insert size overlap with variants in the 1000-genome validated file. Although less 

than 50% of the true variants had some overlap with the variants detected by the 

tools, their representation in the repeat regions was not as hypothesized. The 

hypothesis that structural variants missed by the tools were more likely to be in 

repeat regions was rejected by the analysis. A greater percent of the variants 

detected by the tools had repeats compared to variants not detected by the tools. 

This was consistent across all four variant types, deletion, mobile element insertion, 

tandem duplication, and novel sequences classified in the 1000-Genomes dataset. 

Repeat structure was not driving the tool’s inability to pick less than 50% of true 

variants. Since 50% of the human genome is made up of repeats, this very broad 

classification of context did not prove very useful. Since the study was trying to 
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design a tool specific for translocation, the context was now focused towards 

mechanisms driving translocation which can be captured informatically.  

6.2 Algorithm Development and Simulated Data Analysis 

Translocations lead to genetic imbalances and are a precursor to cancers. Detection 

of the same recurrent translocation in four unrelated families by Ou et al. (Ou et al., 

2011) led to implication of non-allelic homologous recombination (NAHR) as the 

driver for these variants in all these subjects. NAHR occurs due to aberrant DNA 

repair mechanism between regions that share considerable homology, also known as 

low copy repeat regions (LCRs). Unlike repeat elements, these LCRs are several 

thousand basepairs long and share greater than 95% identity. Using these 

characteristics, Ou et al. computationally mapped the NAHR regions on the human 

genome and predicted validated translocations in their database. This mapping was 

based on the segmental duplication map created using comparative genomic 

hybridization which identified novel structural variants in these regions of LCRs by 

Sharp et al. (Sharp et al., 2006). Segmental duplications as possible hotspots for 

structural variation events were first hypothesized and mapped by Bailey et al. 

(Bailey et al., 2002) identifying 169 such regions in the human genome. However, 

the physical co-location of these LCR regions in cell is also an important contributing 

factor to the actual interaction between these regions. Regions of chromosomes that 

are physically close to each other in 3-dimensional space are more likely to interact 

with each other as proved by chromosomal conformation capture experiments known 

as (3C or Hi-C) which reveal three-dimensional architecture of genome packing in 

the cell (Wijchers, 2011). The mobility of different regions in the genome is limited 

by the location of these regions in the genome (Chubb, Boyle, Perry, & Bickmore, 

2002). While accounting for these two types of important contextual based 

information about translocation etiology, the study was able to design and test the 
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algorithm based on this context and proved to do better than current methodologies 

for translocation detection.  

The algorithm was designed to capture all reads that would be ambiguously aligned 

by the mapping tool. The most popular mapping tool currently in use, namely BWA 

(Li & Durbin, 2009), was used for generating initial mapping. BWA’s popularity is due 

to its speed in mapping billions of shorts reads in hours, achieved by its effective use 

of cache memory in indexing the reads and also wide acceptance in the 

bioinformatics community as a preferred mapping tool. The output from BWA is also 

in the SAM/BAM format (Li et al., 2009) accepted as the standard output format for 

alignment. BWA randomly assigns reads which map to more than one region on the 

genome. In their simulated read alignment, BWA mapped 11/1,569,108 incorrectly 

(Li & Durbin, 2009), which still is a very low error rate but in a sequencing 

experiment with for example 50 million reads, approximately 500 reads would be 

wrongly assigned. While this may be sufficient for a normal genome, in a cancer 

genome sequencing project aimed at finding novel variants and showing 

heterogeneity, this number might make a difference. Analysis in this study showed 

that even with 100% allele frequency, which is not the case in tumors; the tools 

were missing variants in the simulated dataset. The tools pick up anomalous reads 

based on these reads mapping at greater/shorter distance than the normal 

distribution of insert size or incorrect orientation.  Our novel algorithm does not use 

the probability distribution of insert size to pick reads. This is because reads with 

NAHR characteristics, i.e. reads which share greater than 95% identity, could have 

been placed at a location selected randomly by the mapping tool since these regions 

are so similar, and thus their imputed insert size is suspect. The algorithm accounted 

for this information by extracting reads which could have multiple mappings on the 

genome while extracting the partner paired read irrespective of its mapping score. 
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Re-mapping of these ambiguous reads with a local alignment tool like BLAT (W. J. 

Kent, 2002) further helps define context, since all possible genomic regions of 

identity are now reported. Further, instead of using read distribution of the data and 

number of reads supporting a type of variant to assign probability of calling a true 

variant, the algorithm again used context to define the probability of two regions 

being involved in translocation based on their known proximity to each other in 3-D 

cellular space and therefore the probability of interacting regions (Lieberman-Aiden 

et al., 2009). Even with 15X coverage, the novel tool was able to detect all ten 

simulated translocations.   

6.3 Conclusion 

Designing a novel context based approach to detect translocations, the study 

showed a very effective way to detect these variants using a biologically derived 

context-based approach which has not been used so far to effectively mine structural 

variants. The study also rejected the hypothesis that repeat structure within the 

variant was driving the inability of current tools to detect true positive events.  

The output from this novel algorithm could help discover many de-novo variants in 

cancers and provide a starting point for mining variant information from sequencing 

data. The purpose of this tool was not to define a few variants, but to give as many 

possible variants that could then be teased out by the user through experimental 

validation. Bioinformatics data analysis of such big volume data does suffer from 

copious output of false positives, but at the same time is the first step in moving 

towards more comprehensive follow-up using laboratory tools. Providing the user 

with biological context-based algorithm instills more confidence in the output, which 

was the purpose of this analysis. 
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6.4 Limitations 

The major limitation of this study is the number of false positive reported in output. 

Ideally the user would like to see only the most relevant information that is currently 

embedded in a lot of noise. Noise can be reduced by narrowing BLAT’s extraction 

parameters for stricter re-alignment. How this would play out in a real dataset was 

not explored in this analysis.  

Since re-alignment with BLAT is a computationally intensive process, the access to 

high performance computing environment is a pre-requisite. Without high-

throughput computing the analysis can get prohibitively time consuming. Running 

BLAT alignments in parallel greatly reduces the time, and we assume that users 

would have access to parallel, high performance computing resources.  

The tool was also specifically designed for detecting translocations, and users would 

prefer getting the entire spectrum of structural variation in a single tool, which is 

another limitation for this study. 

6.5 Future Direction and Research 

The tool was specifically designed to obtain as much information from mapping as 

possible to be able to derive de-novo variants that it achieved at the cost of 

reporting a lot of noise. I would like to explore new methods to reduce noise in the 

data without compromising on the mining ability of the tool. Noise reduction 

parameters could also include evolutionary information of conserved versus non-

conserved regions to remove implausible variants. I would also like to expand the 

tool capability to detect all type of other structural variants including deletion, 

insertion and inversion. 
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This is the first context-based tool designed to date and can prove useful for 

helping lay the framework for further algorithm development along these lines which 

take other biological context into account while designing bioinformatics tools.  

 



  102 

REFERENCES 
  

1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A., Brooks, 
L. D., Durbin, R. M., et al. (2010a). A map of human genome variation from 
population-scale sequencing. Nature, 467(7319), 1061-1073.  

 
1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A., Brooks, 

L. D., Durbin, R. M., et al. (2010b). A map of human genome variation from 
population-scale sequencing. Nature, 467(7319), 1061-1073.  

 
Alkodsi, A., Louhimo, R., & Hautaniemi, S. (2014). Comparative analysis of methods 

for identifying somatic copy number alterations from deep sequencing data. 
Briefings in Bioinformatics,  

 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local 

alignment search tool. Journal of Molecular Biology, 215(3), 403-410.  
 
Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., et al. 

(2002). Recent segmental duplications in the human genome. Science (New 
York, N.Y.), 297(5583), 1003-1007.  

 
Bridge, J. A., & Cushman-Vokoun, A. M. (2011). Molecular diagnostics of soft tissue 

tumors. Archives of Pathology & Laboratory Medicine, 135(5), 588-601.  
 
Brunham, L. R., & Hayden, M. R. (2013). Hunting human disease genes: Lessons 

from the past, challenges for the future. Human Genetics, 132(6), 603-617.  
 
Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Muller, M., Druker, B. J., et al. 

(1996). Inhibition of the abl protein-tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative. Cancer Research, 56(1), 100-104.  

 
Bunting, S. F., & Nussenzweig, A. (2013). End-joining, translocations and cancer. 

Nature Reviews.Cancer, 13(7), 443-454.  
 
Burrow, A. A., Williams, L. E., Pierce, L. C., & Wang, Y. H. (2009). Over half of 

breakpoints in gene pairs involved in cancer-specific recurrent translocations are 
mapped to human chromosomal fragile sites. BMC Genomics, 10, 59-2164-10-
59.  

 
Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., et 

al. (2009). BreakDancer: An algorithm for high-resolution mapping of genomic 
structural variation. Nature Methods, 6(9), 677-681.  

 
Chen, S., Li, S., Xie, W., Li, X., Zhang, C., Jiang, H., et al. (2014). Performance 

comparison between rapid sequencing platforms for ultra-low coverage 
sequencing strategy. PloS One, 9(3), e92192.  

 
Chubb, J. R., Boyle, S., Perry, P., & Bickmore, W. A. (2002). Chromatin motion is 

constrained by association with nuclear compartments in human cells. Current 
Biology : CB, 12(6), 439-445.  

 



  103 

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The sanger 
FASTQ file format for sequences with quality scores, and the Solexa/Illumina 
FASTQ variants. Nucleic Acids Research, 38(6), 1767-1771.  

 
Colnaghi, R., Carpenter, G., Volker, M., & O'Driscoll, M. (2011a). The consequences 

of structural genomic alterations in humans: Genomic disorders, genomic 
instability and cancer. Seminars in Cell & Developmental Biology, 22(8), 875-
885.  

 
Colnaghi, R., Carpenter, G., Volker, M., & O'Driscoll, M. (2011b). The consequences 

of structural genomic alterations in humans: Genomic disorders, genomic 
instability and cancer. Seminars in Cell & Developmental Biology, 22(8), 875-
885.  

 
De, S., & Michor, F. (2011). DNA replication timing and long-range DNA interactions 

predict mutational landscapes of cancer genomes. Nature Biotechnology, 
29(12), 1103-1108.  

 
Deininger, P. L., & Batzer, M. A. (1999). Alu repeats and human disease. Molecular 

Genetics and Metabolism, 67(3), 183-193.  
 
Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al. 

(1996). Effects of a selective inhibitor of the abl tyrosine kinase on the growth of 
bcr-abl positive cells. Nature Medicine, 2(5), 561-566.  

 
Eddy, S. R. (2004). What is dynamic programming? Nature Biotechnology, 22(7), 

909-910.  
 
Estevezj. (2012). Sanger-sequencing. Retrieved 03/27, 2014, from 

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg  
 
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using 

phred. II. error probabilities. Genome Research, 8(3), 186-194.  
 
Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of automated 

sequencer traces using phred. I. accuracy assessment. Genome Research, 8(3), 
175-185.  

 
Fox, S., Bloch, M., Fahy, M., & Hayden, M. R. (1989). Predictive testing for 

huntington disease: I. description of a pilot project in british columbia. American 
Journal of Medical Genetics, 32(2), 211-216.  

 
Fragouli, E., Alfarawati, S., Daphnis, D. D., Goodall, N. N., Mania, A., Griffiths, T., et 

al. (2011). Cytogenetic analysis of human blastocysts with the use of FISH, CGH 
and aCGH: Scientific data and technical evaluation. Human Reproduction 
(Oxford, England), 26(2), 480-490.  

 
Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. 

(2004). A census of human cancer genes. Nature Reviews.Cancer, 4(3), 177-
183.  

 

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg


  104 

Gu, W., Zhang, F., & Lupski, J. R. (2008). Mechanisms for human genomic 
rearrangements. PathoGenetics, 1(1), 4-8417-1-4.  

 
Hastings, R. J., Nisbet, D. L., Waters, K., Spencer, T., & Chitty, L. S. (1999). 

Prenatal detection of extra structurally abnormal chromosomes (ESACs): New 
cases and a review of the literature. Prenatal Diagnosis, 19(5), 436-445.  

 
Hiller, B., Bradtke, J., Balz, H. & Rieder, H. (2005). CyDAS online analysis site. 

Retrieved March,2014, 2014, from http://www.cydas.org/About/index.html  
 
Ikpa, P. T., Bijvelds, M. J., & de Jonge, H. R. (2014). Cystic fibrosis: Toward 

personalized therapies. The International Journal of Biochemistry & Cell 
Biology(2014), doi: 10.1016/j.biocel.2014.02.008.  

 
Inokuchi, K. (2006). Chronic myelogenous leukemia: From molecular biology to 

clinical aspects and novel targeted therapies. Journal of Nippon Medical School = 
Nippon Ika Daigaku Zasshi, 73(4), 178-192.  

 
Istrail, S., Sutton, G. G., Florea, L., Halpern, A. L., Mobarry, C. M., Lippert, R., et al. 

(2004). Whole-genome shotgun assembly and comparison of human genome 
assemblies. Proceedings of the National Academy of Sciences of the United 
States of America, 101(7), 1916-1921.  

 
Jeffreys, A. J., Kauppi, L., & Neumann, R. (2001). Intensely punctate meiotic 

recombination in the class II region of the major histocompatibility complex. 
Nature Genetics, 29(2), 217-222.  

 
Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., 

et al. (1992). Comparative genomic hybridization for molecular cytogenetic 
analysis of solid tumors. Science (New York, N.Y.), 258(5083), 818-821.  

 
Kent, P., O'Donoghue, J. M., O'Hanlon, D. M., Kerin, M. J., Maher, D. J., & Given, H. 

F. (1995). Linkage analysis and the susceptibility gene (BRCA-1) in familial 
breast cancer. European Journal of Surgical Oncology : The Journal of the 
European Society of Surgical Oncology and the British Association of Surgical 
Oncology, 21(3), 240-241.  

 
Kent, W. J. (2002). BLAT--the BLAST-like alignment tool. Genome Research, 12(4), 

656-664.  
 
Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, 

A., et al. (1989). Identification of the cystic fibrosis gene: Genetic analysis. 
Science (New York, N.Y.), 245(4922), 1073-1080.  

 
Lee, H., Kim, M., Lim, J., Kim, Y., Han, K., Cho, B. S., et al. (2013). Acute myeloid 

leukemia associated with FGFR1 abnormalities. International Journal of 
Hematology, 97(6), 808-812.  

 
Lee, S., Cheran, E., & Brudno, M. (2008). A robust framework for detecting 

structural variations in a genome. Bioinformatics (Oxford, England), 24(13), i59-
67.  

 

http://www.cydas.org/About/index.html


  105 

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics (Oxford, England), 25(14), 1754-1760.  

 
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). 

The sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, 
England), 25(16), 2078-2079.  

 
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., 

Telling, A., et al. (2009). Comprehensive mapping of long-range interactions 
reveals folding principles of the human genome. Science (New York, N.Y.), 
326(5950), 289-293.  

 
Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., 

Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth 
factor receptor underlying responsiveness of Non–Small-cell lung cancer to 
gefitinib. N Engl J Med, 350(21), 2129-2139.  

 
Mahadevaiah, S. K., Costa, Y., & Turner, J. M. (2009). Using RNA FISH to study gene 

expression during mammalian meiosis. Methods in Molecular Biology (Clifton, 
N.J.), 558, 433-444.  

 
Mathews, V., George, B., Chendamarai, E., Lakshmi, K. M., Desire, S., 

Balasubramanian, P., et al. (2010). Single-agent arsenic trioxide in the 
treatment of newly diagnosed acute promyelocytic leukemia: Long-term follow-
up data. Journal of Clinical Oncology, 28(24), 3866-3871.  

 
Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings 

of the National Academy of Sciences of the United States of America, 74(2), 
560-564.  

 
McKusick, V. A. (2014). Online mendelian inheritance in man, OMIM®. McKusick-

nathans institute of genetic medicine, johns hopkins university (baltimore, MD). 
Retrieved 04/01, 2014, from http://omim.org/  

 
McNeil, N., Montagna, C., Difilippantonio, M. & Ried, T. (2012). Comparative cancer 

cytogenetics. atlas genet cytogenet oncol haematol. Retrieved 03/2013, 2014, 
from http://atlasgeneticsoncology.org//Deep/ComparCancerCytogID20011.html  

 
McVean, G. (2010). What drives recombination hotspots to repeat DNA in humans? 

Philosophical Transactions of the Royal Society of London.Series B, Biological 
Sciences, 365(1544), 1213-1218.  

 
McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., & Donnelly, P. 

(2004). The fine-scale structure of recombination rate variation in the human 
genome. Science (New York, N.Y.), 304(5670), 581-584.  

 
Mende, D. R., Waller, A. S., Sunagawa, S., Jarvelin, A. I., Chan, M. M., Arumugam, 

M., et al. (2012). Assessment of metagenomic assembly using simulated next 
generation sequencing data. PloS One, 7(2), e31386.  

 
Metzker, M. L. (2010). Sequencing technologies - the next generation. Nature 

Reviews.Genetics, 11(1), 31-46.  

http://omim.org/
http://atlasgeneticsoncology.org/Deep/ComparCancerCytogID20011.html


  106 

Mitelman, F., Johansson, B. & Mertens, F. (. ). (2014). Mitelman database of 
chromosome aberrations and gene fusions in cancer. Retrieved March/15, 2014, 
from http://cgap.nci.nih.gov/Chromosomes/Mitelman  

 
Monaco, A. P., & Larin, Z. (1994). YACs, BACs, PACs and MACs: Artificial 

chromosomes as research tools. Trends in Biotechnology, 12(7), 280-286.  
 
Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the 

search for similarities in the amino acid sequence of two proteins. Journal of 
Molecular Biology, 48(3), 443-453.  

 
Niu, C., Yan, H., Yu, T., Sun, H. P., Liu, J. X., Li, X. S., et al. (1999). Studies on 

treatment of acute promyelocytic leukemia with arsenic trioxide: Remission 
induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 
relapsed acute promyelocytic leukemia patients. Blood, 94(10), 3315-3324.  

 
Nowell, P. C., & Hungerford, D. A. (1960). Chromosome studies on normal and 

leukemic human leukocytes. Journal of the National Cancer Institute, 25, 85-
109.  

 
Nunnally, B. (2005). Introduction to DNA sequencing: Sanger and beyond. In B. 

Nunnally (Ed.), Analytical techniques in DNA sequencing (1st ed., pp. 1-11). 
Boca Raton,FL: Taylor&Francis Group.  

 
Ou, Z., Stankiewicz, P., Xia, Z., Breman, A. M., Dawson, B., Wiszniewska, J., et al. 

(2011). Observation and prediction of recurrent human translocations mediated 
by NAHR between nonhomologous chromosomes. Genome Research, 21(1), 33-
46.  

 
Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). 

EGFR mutations in lung cancer: Correlation with clinical response to gefitinib 
therapy. Science (New York, N.Y.), 304(5676), 1497-1500.  

 
Pevsner, J. (2009). Pairwise sequence alignment. Bioinformatics and functional 

genomics (2nd ed., pp. 47-94). Hoboken, New Jersey: John Wiley & Sons, Inc.  
 
Przybytkowski, E., Ferrario, C., & Basik, M. (2011). The use of ultra-dense array CGH 

analysis for the discovery of micro-copy number alterations and gene fusions in 
the cancer genome. BMC Medical Genomics, 4, 16-8794-4-16.  

 
Rommens, J. M., Zengerling, S., Burns, J., Melmer, G., Kerem, B. S., Plavsic, N., et 

al. (1988). Identification and regional localization of DNA markers on 
chromosome 7 for the cloning of the cystic fibrosis gene. American Journal of 
Human Genetics, 43(5), 645-663.  

 
Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic 

myelogenous leukaemia identified by quinacrine fluorescence and giemsa 
staining. Nature, 243(5405), 290-293.  

 
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, 

A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are 
strongly associated with autism. Nature, 485(7397), 237-241.  

http://cgap.nci.nih.gov/Chromosomes/Mitelman


  107 

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences of the 
United States of America, 74(12), 5463-5467. 

  
Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., & Cooper, C. S. (2010). A 

census of amplified and overexpressed human cancer genes. Nature 
Reviews.Cancer, 10(1), 59-64.  

 
Sharp, A. J., Hansen, S., Selzer, R. R., Cheng, Z., Regan, R., Hurst, J. A., et al. 

(2006). Discovery of previously unidentified genomic disorders from the 
duplication architecture of the human genome. Nature Genetics, 38(9), 1038-
1042.  

 
Shizuya, H., & Kouros-Mehr, H. (2001). The development and applications of the 

bacterial artificial chromosome cloning system. The Keio Journal of Medicine, 
50(1), 26-30.  

 
Smit, A., Hubley, R. & Green, P. (2014). RepeatMasker open-3.0.. Retrieved 03,25, 

2014, from http://www.repeatmasker.org  
 
Smith, T. F., Waterman, M. S., & Fitch, W. M. (1981). Comparative biosequence 

metrics. Journal of Molecular Evolution, 18(1), 38-46.  
 
Stankiewicz, P., & Lupski, J. R. (2002). Genome architecture, rearrangements and 

genomic disorders. Trends in Genetics : TIG, 18(2), 74-82.  
 
Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. 

W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor 
genes in prostate cancer. Science (New York, N.Y.), 310(5748), 644-648.  

 
Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. 

(2005). Fine-scale structural variation of the human genome. Nature Genetics, 
37(7), 727-732.  

 
Ulahannan, D., Kovac, M. B., Mulholland, P. J., Cazier, J. B., & Tomlinson, I. (2013). 

Technical and implementation issues in using next-generation sequencing of 
cancers in clinical practice. British Journal of Cancer, 109(4), 827-835.  

 
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. 

(2001). The sequence of the human genome. Science (New York, N.Y.), 
291(5507), 1304-1351.  

 
Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., et al. 

(2010). A de novo paradigm for mental retardation. Nature Genetics, 42(12), 
1109-1112.  

 
Volpi, E. V., & Bridger, J. M. (2008). FISH glossary: An overview of the fluorescence 

in situ hybridization technique. BioTechniques, 45(4), 385-6, 388, 390 passim.  
 
Wang, J., Mullighan, C. G., Easton, J., Roberts, S., Heatley, S. L., Ma, J., et al. 

(2011). CREST maps somatic structural variation in cancer genomes with base-
pair resolution. Nature Methods, 8(8), 652-654.  

http://www.repeatmasker.org/


  108 

Wijchers, P. (2011). Genome organization influences partner selection for 
chromosomal rearrangements. Trends in Genetics, 27(2), 63; 63-71; 71.  

 
Yaffe, E., & Tanay, A. (2011). Probabilistic modeling of hi-C contact maps eliminates 

systematic biases to characterize global chromosomal architecture. Nature 
Genetics, 43(11), 1059-1065.  

 
Zeitouni, B., Boeva, V., Janoueix-Lerosey, I., Loeillet, S., Legoix-ne, P., Nicolas, A., 

et al. (2010). SVDetect: A tool to identify genomic structural variations from 
paired-end and mate-pair sequencing data. Bioinformatics (Oxford, England), 
26(15), 1895-1896.  

108 

  



  109 

APPENDIX A 
[LIST OF 1000-GENOMES FILES USED IN ANALYSIS]   
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 NA19238   NA19238   
FASTQ_FILE MD5 
data/NA19238/sequence_read/SRR005192_1.filt.fastq

 
3110d6d61bdcc620c9a179b93c0f

 data/NA19238/sequence_read/SRR005192_2.filt.fastq
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 data/NA19238/sequence_read/SRR005195_1.filt.fastq
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 data/NA19238/sequence_read/SRR005196_1.filt.fastq
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 data/NA19238/sequence_read/SRR005196_2.filt.fastq
 

c8222dcc6a8a598be80d5847aa84
 data/NA19238/sequence_read/SRR005197_1.filt.fastq
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 data/NA19238/sequence_read/SRR005197_2.filt.fastq
 

8f1c57c94b08cb6ce7f2c2bdd553b
 data/NA19238/sequence_read/SRR005198_1.filt.fastq
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 data/NA19238/sequence_read/SRR005198_2.filt.fastq
 

571be24092fd1461fc603c24fca88
 data/NA19238/sequence_read/SRR005207_1.filt.fastq
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 data/NA19238/sequence_read/SRR005207_2.filt.fastq
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 data/NA19238/sequence_read/SRR005209_1.filt.fastq
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 data/NA19238/sequence_read/SRR005209_2.filt.fastq
 

78a0b36d85660647acb9de113ca
 data/NA19238/sequence_read/SRR005210_1.filt.fastq

 
bc0be085804c2516b49c7a36a899

 data/NA19238/sequence_read/SRR005210_2.filt.fastq
 

8476cad371e344af09e05b5cea38
 data/NA19238/sequence_read/SRR005211_1.filt.fastq

 
54adf7a8bae6c62a5461c400f99e

 data/NA19238/sequence_read/SRR005211_2.filt.fastq
 

2522236016de36b57a53bd109ab
 data/NA19238/sequence_read/SRR005212_1.filt.fastq

 
6ba1954e295bda218a2118fc8aa2

 data/NA19238/sequence_read/SRR005212_2.filt.fastq
 

b445a0cfc600db40e0b691418333
 data/NA19238/sequence_read/SRR005213_1.filt.fastq

 
fd4ae153f97419fcde27757202adf

 data/NA19238/sequence_read/SRR005213_2.filt.fastq
 

9445853a49d0bf79210427ed0f3f
 data/NA19238/sequence_read/SRR005214_1.filt.fastq

 
e30e3fe5bef08ff7426972e513d22

 data/NA19238/sequence_read/SRR005214_2.filt.fastq
 

0539bd41f8e05fc48a5725130e5b
 data/NA19238/sequence_read/SRR005234_1.filt.fastq

 
ac5ab344453144ac814e4a641d1

 data/NA19238/sequence_read/SRR005234_2.filt.fastq
 

537dcfd662bb446057a33aec0d15
  NA19239   NA19239   

FASTQ_FILE MD5 
data/NA19239/sequence_read/SRR002955_1.filt.fastq

 
d2ba15c23b0ea4d141091e29498

 data/NA19239/sequence_read/SRR002955_2.filt.fastq
 

89d1488783426bc5bee1f6486d2
 data/NA19239/sequence_read/SRR002956_1.filt.fastq

 
f6a17acc125140972b1d0e1658d7

 data/NA19239/sequence_read/SRR002956_2.filt.fastq
 

84c5ee8d297a472d2bd98bedd9c
 data/NA19239/sequence_read/SRR002957_1.filt.fastq

 
494845e8f8c23228eff7a51371fe7

 data/NA19239/sequence_read/SRR002957_2.filt.fastq
 

942fc8cbdc1ca14850d436381d6c
 data/NA19239/sequence_read/SRR002958_1.filt.fastq

 
f2ba138f5b4e3d2c22e24ef007e5

 data/NA19239/sequence_read/SRR002958_2.filt.fastq
 

8da0f35e82f3d892ab0af3278192
 data/NA19239/sequence_read/SRR002959_1.filt.fastq

 
ae73beeba370de5bf7e0a3979795
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data/NA19239/sequence_read/SRR002959_2.filt.fastq
 

e074b4e1ac1385f64f8d567f6c648
 data/NA19239/sequence_read/SRR002960_1.filt.fastq

 
8b25fee1184f5637cf16ccbb0d729
b91 data/NA19239/sequence_read/SRR002960_2.filt.fastq

 
b279a5a991b49db48a5639e5fb9f

 data/NA19239/sequence_read/SRR002961_1.filt.fastq
 

09578c8ecb4d08fe105d9c01e4ce
 data/NA19239/sequence_read/SRR002961_2.filt.fastq

 
af805552162f41cdd043f72c06add

 data/NA19239/sequence_read/SRR002962_1.filt.fastq
 

236fa73d55de2cd976342993bf21
 data/NA19239/sequence_read/SRR002962_2.filt.fastq

 
98ea38969923270d3336af8a2d0

 data/NA19239/sequence_read/SRR002963_1.filt.fastq
 

02ff2466baf9bd74f619305194058
 data/NA19239/sequence_read/SRR002963_2.filt.fastq

 
aa7ee92f6393097d52016b8b151c

 data/NA19239/sequence_read/SRR002964_1.filt.fastq
 

b25bccafd54edd86abf4e389eda1
 data/NA19239/sequence_read/SRR002964_2.filt.fastq

 
872db6265531d791f22027046c6

 data/NA19239/sequence_read/SRR002965_1.filt.fastq
 

88a0503c066051cc88b962882c0c
 data/NA19239/sequence_read/SRR002965_2.filt.fastq

 
bce9ac30781e5ec8fd19cbc70e50

 data/NA19239/sequence_read/SRR002966_1.filt.fastq
 

ae76268b7ad710dfd46aa2df8579
 data/NA19239/sequence_read/SRR002966_2.filt.fastq

 
46f7b4b1b7296fe89f39700d5132

 data/NA19239/sequence_read/SRR002967_1.filt.fastq
 

d6c6ad9f92cb457db2087e6ce363
 data/NA19239/sequence_read/SRR002967_2.filt.fastq

 
503e515dde2f13a78f0e629eba99

 data/NA19239/sequence_read/SRR003029_1.filt.fastq
 

d4c1a8c8c5acb90146499d58d603
 data/NA19239/sequence_read/SRR003029_2.filt.fastq

 
45111b5330c104a73017defcf87c

 data/NA19239/sequence_read/SRR007422_1.filt.fastq
 

250b5c091fe1c11cf1710f445e2db
 data/NA19239/sequence_read/SRR007422_2.filt.fastq

 
8ec2e99eddab5810d66d1ae3c99

  NA19240   NA19240   
FASTQ_FILE MD5 
data/NA19240/sequence_read/SRR004483_1.filt.fastq

 
b7ce1dcb4a62c3382f86143ced4b

 data/NA19240/sequence_read/SRR004483_2.filt.fastq
 

2d0d9b8c156939e516282f3ea9c0
 data/NA19240/sequence_read/SRR004484_1.filt.fastq

 
0b4cf789a716c1235c31fc574b14

 data/NA19240/sequence_read/SRR004484_2.filt.fastq
 

071c8e38659b21bcfc2e726abfe9
 data/NA19240/sequence_read/SRR004485_1.filt.fastq

 
1b615fb8d04788c413ce5424f7b6

 data/NA19240/sequence_read/SRR004485_2.filt.fastq
 

c666b912d12e3e738a550ac12acb
 data/NA19240/sequence_read/SRR004783_1.filt.fastq

 
19f0db03a8f822b7a3df27f21e1b8

 data/NA19240/sequence_read/SRR004783_2.filt.fastq
 

350412ab18793c4240ef2296d61a
 data/NA19240/sequence_read/SRR004784_1.filt.fastq

 
be46222998b027213cfafa5d9a8d

 data/NA19240/sequence_read/SRR004784_2.filt.fastq
 

77dabc7efefea2c062af0c8fda476
 data/NA19240/sequence_read/SRR004785_1.filt.fastq

 
7aef2b68952f07ceb5a4e3834103

 data/NA19240/sequence_read/SRR004785_2.filt.fastq
 

6df41a7a5290e164adc95642358d
 data/NA19240/sequence_read/SRR004786_1.filt.fastq

 
828c0a376a745e64009b0e2ecc79

 data/NA19240/sequence_read/SRR004786_2.filt.fastq
 

0c3f85ad38d3ad4e8df5d21924e9
 data/NA19240/sequence_read/SRR004788_1.filt.fastq

 
c59b50bd44ad5d3f7f7782e1316f

 data/NA19240/sequence_read/SRR004788_2.filt.fastq
 

a37b8ff65efe7fce535fd6ad7fa73a
70 
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 NA19238   NA19238   NA19238   NA19238   NA19238   
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID 
SRR005192 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002880 
SRR005192 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002880 
SRR005193 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002881 
SRR005193 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002881 
SRR005194 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002882 
SRR005194 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002882 
SRR005195 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002883 
SRR005195 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002883 
SRR005196 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002884 
SRR005196 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002884 
SRR005197 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002885 
SRR005197 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002885 
SRR005198 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002886 
SRR005198 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002886 
SRR005207 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002895 
SRR005207 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002895 
SRR005208 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002896 
SRR005208 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002896 
SRR005209 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002897 
SRR005209 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002897 
SRR005210 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002898 
SRR005210 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002898 
SRR005211 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002899 
SRR005211 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002899 
SRR005212 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002900 
SRR005212 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002900 
SRR005213 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002901 
SRR005213 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002901 
SRR005214 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002902 
SRR005214 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002902 
SRR005234 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002922 
SRR005234 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002922 
 NA19239   NA19239   NA19239   NA19239   NA19239   
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID 
SRR002955 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001427 
SRR002955 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001427 
SRR002956 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001428 
SRR002956 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001428 
SRR002957 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001429 
SRR002957 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001429 
SRR002958 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001430 
SRR002958 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001430 
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SRR002959 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001431 
SRR002959 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001431 
SRR002960 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001432 

SRR002960 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001432 
SRR002961 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001433 
SRR002961 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001433 
SRR002962 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001434 
SRR002962 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001434 
SRR002963 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001435 
SRR002963 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001435 
SRR002964 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001436 
SRR002964 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001436 
SRR002965 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001437 
SRR002965 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001437 
SRR002966 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001438 
SRR002966 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001438 
SRR002967 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001439 
SRR002967 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001439 
SRR003029 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001500 
SRR003029 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA001500 
SRR007422 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA004284 
SRR007422 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA004284 
 NA19240   NA19240   NA19240   NA19240   NA19240   
RUN_ID STUDY_ID STUDY_NAME CENTER_NAME SUBMISSION_ID 
SRR004483 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002351 
SRR004483 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002351 
SRR004484 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002352 
SRR004484 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002352 
SRR004485 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002353 
SRR004485 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002353 
SRR004783 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002629 
SRR004783 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002629 
SRR004784 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002630 
SRR004784 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002630 
SRR004785 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002631 
SRR004785 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002631 
SRR004786 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002632 
SRR004786 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002632 
SRR004788 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002636 
SRR004788 SRP000032 1000Genomes Project Pilot 2 WUGSC SRA002636 
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 NA19238   NA19238   NA19238   NA19238   NA19238   
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/24/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/26/2008 0:00 SRS000212 NA19238 YRI SRX001106 
9/26/2008 0:00 SRS000212 NA19238 YRI SRX001106 
 NA19239   NA19239   NA19239   NA19239   NA19239   
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
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8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 

8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/15/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/17/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/17/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/21/2008 0:00 SRS000213 NA19239 YRI SRX000654 
8/21/2008 0:00 SRS000213 NA19239 YRI SRX000654 
 NA19240   NA19240   NA19240   NA19240   NA19240   
SUBMISSION_DATE SAMPLE_ID SAMPLE_NAME POPULATION EXPERIMENT_ID 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/23/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
9/24/2008 0:00 SRS000214 NA19240 YRI SRX001102 
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 NA19238   NA19238   NA19238   NA19238   NA19238 
  INSTRUMENT INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME  INSERT_SIZE 

_PLATFORM     
ILLUMINA Illumina Genome Analyzer II 2675169269 7592 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7592 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7593 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7593 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7594 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7594 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7595 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7595 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7596 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7596 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7597 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7597 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7598 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7598 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7607 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7607 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7608 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7608 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7609 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7609 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7610 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7610 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7611 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7611 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7612 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7612 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7613 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7613 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7614 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7614 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7646 260 
ILLUMINA Illumina Genome Analyzer II 2675169269 7646 260 
 NA19239   NA19239   NA19239   NA19239   NA19239 

  INSTRUMENT_P
 

INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME INSERT_SIZE 
ILLUMINA Illumina Genome Analyzer 2485443314 5685 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5685 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5686 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5686 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5687 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5687 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5688 260 
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ILLUMINA Illumina Genome Analyzer 2485443314 5688 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5689 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5689 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5690 260 

ILLUMINA Illumina Genome Analyzer 2485443314 5690 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5691 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5691 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5692 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5692 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5693 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5693 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5694 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5694 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5695 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5695 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5696 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5696 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5697 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5697 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5895 260 
ILLUMINA Illumina Genome Analyzer 2485443314 5895 260 
ILLUMINA Illumina Genome Analyzer 2485443314 6430 260 
ILLUMINA Illumina Genome Analyzer 2485443314 6430 260 
 NA19240   NA19240   NA19240   NA19240   NA19240 

  INSTRUMENT_L
 

INSTRUMENT_MODEL LIBRARY_NAME RUN_NAME INSERT_SIZE 
ILLUMINA Illumina Genome Analyzer II 2675080346 7223 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7223 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7224 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7224 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7225 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7225 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7522 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7522 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7523 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7523 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7524 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7524 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7525 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7525 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7526 260 
ILLUMINA Illumina Genome Analyzer II 2675080346 7526 260 
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NA19238   NA19238   NA19238 
LIBRARY PAIRED_FASTQ READ 
_LAYOUT  _COUNT 
PAIRED data/NA19238/sequence_read/SRR005192_2.filt.fastq.gz 11270293 
PAIRED data/NA19238/sequence_read/SRR005192_1.filt.fastq.gz 11270293 
PAIRED data/NA19238/sequence_read/SRR005193_2.filt.fastq.gz 11173375 
PAIRED data/NA19238/sequence_read/SRR005193_1.filt.fastq.gz 11173375 
PAIRED data/NA19238/sequence_read/SRR005194_2.filt.fastq.gz 10300764 
PAIRED data/NA19238/sequence_read/SRR005194_1.filt.fastq.gz 10300764 
PAIRED data/NA19238/sequence_read/SRR005195_2.filt.fastq.gz 8931016 
PAIRED data/NA19238/sequence_read/SRR005195_1.filt.fastq.gz 8931016 
PAIRED data/NA19238/sequence_read/SRR005196_2.filt.fastq.gz 8075975 
PAIRED data/NA19238/sequence_read/SRR005196_1.filt.fastq.gz 8075975 
PAIRED data/NA19238/sequence_read/SRR005197_2.filt.fastq.gz 7380429 
PAIRED data/NA19238/sequence_read/SRR005197_1.filt.fastq.gz 7380429 
PAIRED data/NA19238/sequence_read/SRR005198_2.filt.fastq.gz 8413304 
PAIRED data/NA19238/sequence_read/SRR005198_1.filt.fastq.gz 8413304 
PAIRED data/NA19238/sequence_read/SRR005207_2.filt.fastq.gz 5792641 
PAIRED data/NA19238/sequence_read/SRR005207_1.filt.fastq.gz 5792641 
PAIRED data/NA19238/sequence_read/SRR005208_2.filt.fastq.gz 5388572 
PAIRED data/NA19238/sequence_read/SRR005208_1.filt.fastq.gz 5388572 
PAIRED data/NA19238/sequence_read/SRR005209_2.filt.fastq.gz 4034189 
PAIRED data/NA19238/sequence_read/SRR005209_1.filt.fastq.gz 4034189 
PAIRED data/NA19238/sequence_read/SRR005210_2.filt.fastq.gz 4510010 
PAIRED data/NA19238/sequence_read/SRR005210_1.filt.fastq.gz 4510010 
PAIRED data/NA19238/sequence_read/SRR005211_2.filt.fastq.gz 4060395 
PAIRED data/NA19238/sequence_read/SRR005211_1.filt.fastq.gz 4060395 
PAIRED data/NA19238/sequence_read/SRR005212_2.filt.fastq.gz 4397559 
PAIRED data/NA19238/sequence_read/SRR005212_1.filt.fastq.gz 4397559 
PAIRED data/NA19238/sequence_read/SRR005213_2.filt.fastq.gz 4996197 
PAIRED data/NA19238/sequence_read/SRR005213_1.filt.fastq.gz 4996197 
PAIRED data/NA19238/sequence_read/SRR005214_2.filt.fastq.gz 6422603 
PAIRED data/NA19238/sequence_read/SRR005214_1.filt.fastq.gz 6422603 
PAIRED data/NA19238/sequence_read/SRR005234_2.filt.fastq.gz 8418918 
PAIRED data/NA19238/sequence_read/SRR005234_1.filt.fastq.gz 8418918 
 NA19239   NA19239   NA19239 
LIBRARY_

 
PAIRED_FASTQ READ_COU

 PAIRED data/NA19239/sequence_read/SRR002955_2.filt.fastq.gz 7258052 
PAIRED data/NA19239/sequence_read/SRR002955_1.filt.fastq.gz 7258052 
PAIRED data/NA19239/sequence_read/SRR002956_2.filt.fastq.gz 7170493 
PAIRED data/NA19239/sequence_read/SRR002956_1.filt.fastq.gz 7170493 
PAIRED data/NA19239/sequence_read/SRR002957_2.filt.fastq.gz 7245012 
PAIRED data/NA19239/sequence_read/SRR002957_1.filt.fastq.gz 7245012 
PAIRED data/NA19239/sequence_read/SRR002958_2.filt.fastq.gz 7414026 
PAIRED data/NA19239/sequence_read/SRR002958_1.filt.fastq.gz 7414026 
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PAIRED data/NA19239/sequence_read/SRR002959_2.filt.fastq.gz 8114993 
PAIRED data/NA19239/sequence_read/SRR002959_1.filt.fastq.gz 8114993 
PAIRED data/NA19239/sequence_read/SRR002960_2.filt.fastq.gz 8079331 

PAIRED data/NA19239/sequence_read/SRR002960_1.filt.fastq.gz 8079331 
PAIRED data/NA19239/sequence_read/SRR002961_2.filt.fastq.gz 7959676 
PAIRED data/NA19239/sequence_read/SRR002961_1.filt.fastq.gz 7959676 
PAIRED data/NA19239/sequence_read/SRR002962_2.filt.fastq.gz 5187607 
PAIRED data/NA19239/sequence_read/SRR002962_1.filt.fastq.gz 5187607 
PAIRED data/NA19239/sequence_read/SRR002963_2.filt.fastq.gz 6173753 
PAIRED data/NA19239/sequence_read/SRR002963_1.filt.fastq.gz 6173753 
PAIRED data/NA19239/sequence_read/SRR002964_2.filt.fastq.gz 6055820 
PAIRED data/NA19239/sequence_read/SRR002964_1.filt.fastq.gz 6055820 
PAIRED data/NA19239/sequence_read/SRR002965_2.filt.fastq.gz 6745735 
PAIRED data/NA19239/sequence_read/SRR002965_1.filt.fastq.gz 6745735 
PAIRED data/NA19239/sequence_read/SRR002966_2.filt.fastq.gz 6621194 
PAIRED data/NA19239/sequence_read/SRR002966_1.filt.fastq.gz 6621194 
PAIRED data/NA19239/sequence_read/SRR002967_2.filt.fastq.gz 6706504 
PAIRED data/NA19239/sequence_read/SRR002967_1.filt.fastq.gz 6706504 
PAIRED data/NA19239/sequence_read/SRR003029_2.filt.fastq.gz 5826974 
PAIRED data/NA19239/sequence_read/SRR003029_1.filt.fastq.gz 5826974 
PAIRED data/NA19239/sequence_read/SRR007422_2.filt.fastq.gz 6497852 
PAIRED data/NA19239/sequence_read/SRR007422_1.filt.fastq.gz 6497852 
 NA19240   NA19240   NA19240 
LIBRARY_

 
PAIRED_FASTQ READ_COU

 PAIRED data/NA19240/sequence_read/SRR004483_2.filt.fastq.gz 10553597 
PAIRED data/NA19240/sequence_read/SRR004483_1.filt.fastq.gz 10553597 
PAIRED data/NA19240/sequence_read/SRR004484_2.filt.fastq.gz 11564301 
PAIRED data/NA19240/sequence_read/SRR004484_1.filt.fastq.gz 11564301 
PAIRED data/NA19240/sequence_read/SRR004485_2.filt.fastq.gz 10252162 
PAIRED data/NA19240/sequence_read/SRR004485_1.filt.fastq.gz 10252162 
PAIRED data/NA19240/sequence_read/SRR004783_2.filt.fastq.gz 9921824 
PAIRED data/NA19240/sequence_read/SRR004783_1.filt.fastq.gz 9921824 
PAIRED data/NA19240/sequence_read/SRR004784_2.filt.fastq.gz 11020784 
PAIRED data/NA19240/sequence_read/SRR004784_1.filt.fastq.gz 11020784 
PAIRED data/NA19240/sequence_read/SRR004785_2.filt.fastq.gz 11378879 
PAIRED data/NA19240/sequence_read/SRR004785_1.filt.fastq.gz 11378879 
PAIRED data/NA19240/sequence_read/SRR004786_2.filt.fastq.gz 11581025 
PAIRED data/NA19240/sequence_read/SRR004786_1.filt.fastq.gz 11581025 
PAIRED data/NA19240/sequence_read/SRR004788_2.filt.fastq.gz 11172997 
PAIRED data/NA19240/sequence_read/SRR004788_1.filt.fastq.gz 11172997 
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 NA19238   NA19238   
BASE_COUNT ANALYSIS_GROUP 

405730548 high coverage 
405730548 high coverage 
402241500 high coverage 
402241500 high coverage 
370827504 high coverage 
370827504 high coverage 
321516576 high coverage 
321516576 high coverage 
290735100 high coverage 
290735100 high coverage 
265695444 high coverage 
265695444 high coverage 
302878944 high coverage 
302878944 high coverage 
208535076 high coverage 
208535076 high coverage 
193988592 high coverage 
193988592 high coverage 
145230804 high coverage 
145230804 high coverage 
162360360 high coverage 
162360360 high coverage 
146174220 high coverage 
146174220 high coverage 
158312124 high coverage 
158312124 high coverage 
179863092 high coverage 
179863092 high coverage 
231213708 high coverage 
231213708 high coverage 
303081048 high coverage 
303081048 high coverage 

 NA19239   NA19239   
BASE_COUNT ANALYSIS_GROUP 

261289872 high coverage 
261289872 high coverage 
258137748 high coverage 
258137748 high coverage 
260820432 high coverage 
260820432 high coverage 
266904936 high coverage 
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266904936 high coverage 
292139748 high coverage 
292139748 high coverage 
290855916 high coverage 

290855916 high coverage 
286548336 high coverage 
286548336 high coverage 
186753852 high coverage 
186753852 high coverage 
222255108 high coverage 
222255108 high coverage 
218009520 high coverage 
218009520 high coverage 
242846460 high coverage 
242846460 high coverage 
238362984 high coverage 
238362984 high coverage 
241434144 high coverage 
241434144 high coverage 
209771064 high coverage 
209771064 high coverage 
233922672 high coverage 
233922672 high coverage 

 NA19240   NA19240   
BASE_COUNT ANALYSIS_GROUP 

369375895 high coverage 
369375895 high coverage 
404750535 high coverage 
404750535 high coverage 
358825670 high coverage 
358825670 high coverage 
347263840 high coverage 
347263840 high coverage 
385727440 high coverage 
385727440 high coverage 
398260765 high coverage 
398260765 high coverage 
405335875 high coverage 
405335875 high coverage 
391054895 high coverage 
391054895 high coverage 
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APPENDIX B  

[BLAT SUITE PROGRAM SPECIFICATIONS AND USER'S GUIDE]  
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BLAT Suite Program Specifications and User Guide 
 
General: 

 
Blat produces two major classes of alignments: at the DNA level between two 
sequences that are of 95% or greater identity, but which may include large inserts, 
and at the protein or translated DNA level between sequences that are of 80% or 
greater identity and may also include large inserts.  The output of BLAT is 
flexible.  By default it is a simple tab-delimited file which describes the alignment, 
but which does not include the sequence of the alignment itself. Optionally it can 
produce BLAST and WU-BLAST compatable output as well as a number of other 
formats. 

 
 
 
 
The main programs in the blat suite are: 

 
•  gfServer – a server that maintains an index of the genome in memory and 

uses the index to quickly find regions with high levels of sequence 
similarity to a query sequence. 

•  gfClient – a program that queries gfServer over the network, and then 
does a detailed alignment of the query sequence with regions found by 
gfServer. 

•  blat –combines client and server into a single program, first building the 
index, then using the index, and then exiting. 

•  webBlat – a web based version of gfClient that presents the alignments in 
an interactive fashion. 

 
Building an index of the genome typically takes 10 or 15 minutes.  Typically for 
interactive applications one uses gfServer to build a whole genome index.  At that 
point gfClient or webBlat can align a single query within few seconds.  If one is 
aligning a lot of sequences in a batch 
mode then blat can be more efficient, particularly if run on a cluster of computers.  
Each blat run is typically done against a single chromosome, but with a large 
number of query sequences. 

 
 
 
 
Other programs in the blat suite are: 

 
•  pslSort – combines and sorts the output of multiple blat runs.  (The blat 

default output format is .psl). 
•  pslReps – selects the best alignments for a particular query sequence, using 

a ‘near best in genome’ approach. 
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•  pslPretty – converts alignments from the psl format, which is tab-
delimited format and does not include the bases themselves, to a more 
readable alignment format. 

•  faToTwoBit – convert Fasta format sequence files to a dense randomly-
accessable  .2bit format that gfClient can use. 
•  twoBitToFa – convert from the .2bit 

format back to fasta 
•  faToNib – convert from Fasta to a somewhat less dense randomly 

accessible format that predates .2bit.  Note each .nib file can only contain 
a single sequence. 

 
•  nibFrag – convert portions of a nib file back to fasta. 

 
 
 
 
In addition you may be interested in the following programs which are not part of 
the BLAT 
suite: 

 
•  In Silico PCR –  given two primers quickly find the sequence between 

them.  Available from Kent Informatics. This includes webPCR, an 
interface similar to webBlat. 

•  The Genome Browser – display annotations as a series of tracks on top of 
the genome. 

Available from the University of California 
Santa Cruz.  See 
http://genome.ucsc.edu/license/. 

 
 
 
 

Running the Programs: 
 
The command line options of each of the programs is described below. Similar 
summaries of usage are printed when a command is run with no arguments.  See 
the next section for info on installing webBlat. 

 
 
 
 
blat 

 
 
 
 
blat - Standalone BLAT sequence search 

command line tool usage: 

http://cgwb.nci.nih.gov/license/
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blat database query [-ooc=11.ooc] 

output.psl where: 

database and query are each either a .fa , .nib or .2bit file, 

 
or a list these files one file name per line. 

 
-ooc=11.ooc tells the program to load over-occurring 

11-mers from and external file. This 

will increase the speed 

by a factor of 40 in many cases, but is 

not required output.psl is where to put the output. 

Subranges of nib and .2bit files may specified using the syntax: 
 

/path/file.nib:seqid:start-end 
 

or 
 

/path/file.2bit:seqid:start-end 
 

or 
 

/path/file.nib:start-end 

 
With the second form, a sequence id of file:start-end will 

be used. options: 

-t=type Database type. Type is one of: 

 
dna - DNA sequence 

 
prot - protein sequence 

 
dnax - DNA sequence translated in six frames to protein 

 
The default is dna 

 
-q=type Query type. Type is one of: 

 
dna - DNA 

sequence 

rna - RNA 

sequence 
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prot - protein sequence 

 
dnax - DNA sequence translated in six frames to 

protein rnax - DNA sequence translated in three 

frames to protein 

The default is dna 

 
-prot Synonymous with -t=prot -q=prot 

 
-ooc=N.ooc Use overused tile file N.ooc. N should 

correspond to the tileSize 

-tileSize=N sets the size of match that triggers an alignment. 

 
Usually between 8 and 12 

 
Default is 11 for DNA and 5 for protein. 

 
-stepSize=N spacing between tiles. Default is tileSize. 

 
-oneOff=N If set to 1 this allows one mismatch in tile and still 

 
triggers an alignments.  Default 
is 0. 

 
-minMatch=N sets the number of tile matches. Usually set from 2 to 4 

 
Default is 2 for nucleotide, 1 for 
protein. 

 
-minScore=N sets minimum score. This is the matches minus the 

mismatches minus some sort of gap penalty. Default 

is 30 

-minIdentity=N Sets minimum sequence identity (in percent). Default is 

 
90 for nucleotide searches, 25 for protein or 

translated protein searches. 

-maxGap=N sets the size of maximum gap between tiles in a clump.

 Usually set from 0 to 3.

 Default is 2. Only relevent for 

minMatch > 1. 
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-noHead suppress .psl header (so it's just a tab-separated file) 

 
-makeOoc=N.ooc Make overused tile file. Target needs to be complete 
genome. 

 
-repMatch=N sets the number of repetitions of a tile allowed before 

 
it is marked as overused.  Typically this is 256 for 
tileSize 

 
12, 1024 for tile size 11, 4096 for tile 
size 10. 

 
Default is 1024.  Typically only comes into play with 

makeOoc. Also affected by stepSize. When stepSize is 

halved repMatch is doubled to compensate. 

-mask=type Mask out repeats. Alignments won't be started in masked region 

 
but may extend through it in nucleotide searches. Masked 

areas are ignored entirely in protein or translated 

searches. Types are 

lower - mask out lower cased sequence 

 
upper - mask out upper cased sequence 

 
out - mask according to database.out RepeatMasker 

.out file file.out - mask database according to 

RepeatMasker file.out 

-qMask=type Mask out repeats in query sequence. Similar to -mask 

above but for query rather than target sequence. 

 
-repeats=type Type is same as mask types above. Repeat bases will 

not be masked in any way, but matches in repeat areas 

will be reported separately from matches in other areas 

in the psl output. 
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-minRepDivergence=NN - minimum percent divergence of repeats to 

allow them to be unmasked. Default is 15. Only 

relevant for masking using RepeatMasker .out files. 

-dots=N Output dot every N sequences to show program's progress 

 
-trimT Trim leading poly-T 

 
-noTrimA Don't trim trailing poly-A 

 
-trimHardA Remove poly-A tail from qSize as well as 

alignments in psl output 

-fastMap Run for fast DNA/DNA remapping - not allowing 

introns, requiring high %ID 

-out=type Controls output file format. Type is one of: 

 
psl - Default. Tab separated format, no 

sequence pslx - Tab separated format with 

sequence 

axt - blastz-associated axt 

format maf - multiz-

associated maf format sim4 - 

similar to sim4 format 

wublast - similar to wublast 

format 

blast - similar to NCBI blast 

format blast8- NCBI blast 

tabular format 

blast9 - NCBI blast tabular format with comments 

 
-fine For high quality mRNAs look harder for small 

initial and terminal exons. Not recommended for 

ESTs 



  129 

-maxIntron=N Sets maximum intron size. Default is 750000 

 
-extendThroughN - Allows extension of alignment through large blocks of 
N's 

 
 
Here are some blat settings for common usage scenarios: 

 
 
1) Mapping ESTs to the genome within the same species 

 
-ooc=11.ooc 

 
2) Mapping full length mRNAs to the genome in the same species 

 
-ooc=11.ooc -fine -q=rna 

 
3) Mapping ESTs to the genome across species 

 
-q=dnax -t=dnax 

 
4) Mapping mRNA to the genome across species 

 
-q=rnax -t=dnax 

 
5) Mapping proteins to the genome 

 
-q=prot -t=dnax 

 
6) Mapping DNA to DNA in the same species 

 
-ooc=11.ooc -fastMap 

 
7) Mapping DNA from one species to another species 

 
-q=dnax -t=dnax 

 
When mapping DNA from one species to another the 

 
query side of the alignment should be cut up 

into chunks of 25kb or less for best 

performance. 

 

gfServer 
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gfServer - Make a server to quickly find where DNA occurs 

in genome. To set up a server: 

gfServer start host port file(s) 

 
Where the files are in .nib or .2bit format 

 
To remove a server: 

 
gfServer stop host port 

 
To query a server with DNA sequence: 

 
gfServer query host port probe.fa 

 
To query a server with protein sequence: 

 
gfServer protQuery host port probe.fa 

 
To query a server with translated dna sequence: 

 
gfServer transQuery host port probe.fa 

 
To process one probe fa file against a .nib format genome (not starting 
server): 

 
gfServer direct probe.fa file(s).nib 

 
To figure out usage 

level gfServer 

status host port 

To get input file 

list gfServer 

files host port 

Options: 

 
-tileSize=N size of n-mers to index. Default is 11 for 

nucleotides, 4 for proteins (or translated 

nucleotides). 

-stepSize=N spacing between tiles. Default is tileSize. 

 
-minMatch=N Number of n-mer matches that trigger detailed alignment 
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Default is 2 for nucleotides, 3 for 
protiens. 

 
-maxGap=N Number of insertions or deletions allowed between n-mers. 

 
Default is 2 for nucleotides, 0 for 

protiens. 
 

-trans Translate database to protein in 6 frames. Note: 

it is best to run this on RepeatMasked data in this 

case. 

-log=logFile keep a log file that records server requests. 

 
-seqLog Include sequences in log file (not logged with -syslog) 

 
-syslog Log to syslog 

 
-logFacility=facility log to the specified syslog facility - default 
local0. 

 
-mask Use masking from nib file. 

 
-repMatch=N Number of occurrences of a tile (nmer) 

that trigger repeat masking the tile. 

Default is 1024. 

-maxDnaHits=N Maximum number of hits for a dna query that are sent from 
the 

 
server. Default is 100. 

 
-maxTransHits=N Maximum number of hits for a translated query 

that are sent from the server. Default is 200. 

-maxNtSize=N Maximum size of untranslated DNA query sequence 

 
Default is 40000 

 
-maxAsSize=N Maximum size of protein or translated DNA queries 

 
Default is 8000 

 
-canStop If set then a quit message will actually take 

down the server 

gfClient 
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gfClient - A client for the genomic 

finding program usage: 

gfClient host port nibDir in.fa out.psl 

 
where 

 
host is the name of the machine running the 

gfServer port is the same as you started 

the gfServer with 

nibDir is the path of the nib files relative to the current dir 

 
(note these are needed by the client as well as the server) 

 
in.fa a fasta format file. May contain 

multiple records out.psl where to put the 

output 

options: 

 
-t=type Database type. Type is one of: 

 
dna - DNA sequence 

 
prot - protein sequence 

 
dnax - DNA sequence translated in six frames to protein 

 
The 

default 
is dna 

 
-q=type Query type. Type is one of: 

 
dna - DNA 

sequence 

rna - RNA 

sequence 

prot - protein sequence 
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dnax - DNA sequence translated in six frames to 

protein rnax - DNA sequence translated in three 

frames to protein 

-dots=N Output a dot every N query sequences 

 
-nohead Suppresses psl five line header 

 
-minScore=N sets minimum score. This is twice the matches 

minus the mismatches minus some sort of gap 

penalty. Default is 30 

-minIdentity=N Sets minimum sequence identity (in percent). Default is 

 
90 for nucleotide searches, 25 for protein or 

translated protein searches. 

 
 

-out=type Controls output file format. Type is one of: 

 
psl - Default. Tab separated format without actual 

sequence pslx - Tab separated format with sequence 

axt - blastz-associated axt 

format maf - multiz-

associated maf format 

wublast - similar to 

wublast format blast - 

similar to NCBI blast 

format 

-maxIntron=N Sets maximum intron size. Default is 750000 
 
 
 
webBlat 

 
webBlat generally is not run from the command line. See ‘Setting 
Up webBlat instructions below` for information on this program. 
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faToTwoBit 

 
faToTwoBit - Convert DNA from fasta to 

2bit format usage: 

faToTwoBit in.fa [in2.fa in3.fa ...] 

out.2bit options: 

-noMask - Ignore lower-case masking in fa file. 
 
 
 
 
twoBitToFa 

 
twoBitToFa - Convert all or part of .2bit file 

to fasta usage: 

twoBitToFa input.2bit 

output.fa options: 

-seq=name - restrict this to just one sequence 

 
-start=X - start at given position in sequence (zero-based) 

 
-end=X - end at given position in sequence (non-inclusive) 

 
faToNib 

 
faToNib - Convert from .fa 

to .nib format usage: 

faToNib in.fa out.nib 
 
 
nibFrag 

 
nibFrag - Extract part of a 

nib file as .fa usage: 

nibFrag file.nib start end strand out.fa 
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pslPretty 

 
pslPretty - Convert PSL to human 

readable output usage: 

pslPretty in.psl target.lst 

query.lst pretty.out options: 

-axt - save in Scott Schwartz's axt format 

 
-dot=N Put out a dot every N records 

 
-long - Don't abbreviate long inserts 

 
 
 
 
It's a really good idea if the psl file is sorted by target if it contains multiple targets.  
Otherwise this will be very very slow.   The target and query lists can either be 
fasta files, nib files, or a list of fasta and/or nib files one per line.  Currently this 
only handles nucleotide based psl files. 

 
 
 
 
pslSort 

 
pslSort - merge and sort psCluster 

.psl output files usage: 

pslSort dirs[1|2] outFile 
tempDir inDir(s) 

 
This will sort all of the .psl files in the 

directories inDirs in two stages - first into 

temporary files in tempDir and second into outFile.

 The device on tempDir 

needs to have 

enough space (typically 15-20 gigabytes if processing whole genome) 

 
pslSort g2g[1|2] outFile tempDir inDir(s) 
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This will sort a genome to genome alignment, 

reflecting the alignments across the diagonal. 

 
 
Adding 1 or 2 after the dirs or g2g will limit the 

program to only the first or second pass repectively 

of the sort 

Options: 

 
-verbose=N Set verbosity level, higher for more output. Default 1 

 
 
 
 
Note for huge files pslSort will run out of memory. The unix 

sort command sort –k 10 *.psl > sorted.psl 

may be preferable in these situations, though the psl header 

lines should be removed or avoided with the –noHead option to 

blat. 

 
 
pslReps 

 
pslReps - analyse repeats and generate genome 

wide best alignments from a sorted set of 

local alignments 

usage: 

 
pslReps in.psl out.psl out.psr 

 
where in.psl is an alignment file generated by 

psLayout and sorted by pslSort, out.psl is the 

best alignment output 

and out.psr contains repeat info 
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options: 

 
-nohead don't add PSL header 

 
-ignoreSize Will not weigh in favor of larger alignments so much 

 
-noIntrons Will not penalize for not having introns when 

calculating size factor 

-singleHit Takes single best hit, not splitting into parts 

 
-minCover=0.N minimum coverage to output. Default is 0. 

 
-ignoreNs Ignore 'N's when calculating minCover. 

 
-minAli=0.N minimum 

alignment ratio 

default is 0.93 

-nearTop=0.N how much can deviate from top and be taken 

 
default is 0.01 

 
-minNearTopSize=N Minimum size of alignment that is 

near top for aligmnent to be kept.

 Default 30. 

-coverQSizes=file Tab-separate file with effective query sizes. 

 
When used with -minCover, this 

allows polyAs to be excluded from 

the coverage calculation 

 
 
 
Setting Up webBlat 
 
INSTALLING WEBBLAT 
Installing A Web-Based Blat Server involves four major steps: 
 
1) Creating sequence databases. 
 
2) Running the gfServer program to create in-memory indexes of the databases. 
 
3) Editing the webBlat.cfg file to tell it what machine and port the gfServer(s) 
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are running on, and optionally customizing the webBlat appearance to users. 
 
4) Copying the webBlat executable and webBlat.cfg to a directory where the web 
server can execute webBlat as a CGI. 
 
 
 
CREATING SEQUENCE DATABASES 
 
 
 
 
You create databases with the program faToTwoBit. Typically you'll create a 
separate database for each genome you are indexing.  Each database can 
contain up to four billion bases of sequence in an unlimited number of records.  
The databases for webPcr and webBlat are identical. 
 
 
 
The input to faToTwoBit is one or more fasta format files each of which can 
contain multiple records.  If the sequence contains repeat sequences, as is the 
case with vertebrates and many plants, the repeat sequences can 
be represented in lower case and the other sequence in upper case.  The 
gfServer program can be configured to ignore the repeat sequences.  The output 
of faToTwoBit is a file which is designed for fast random access and efficient 
storage.  The output files store four bases per byte.  They use a small amount 
of additional space to store the case of the DNA and to keep track of runs of 
 
N's in the input.  Non-N ambiguity codes such as Y and U in the input sequence 
will be converted to N. 
 
 
 
Here's how a typical installation might create a mouse and a human genome 
database: 
 
cd/data/genomes mkdir twoBit 
faToTwoBit human/hg16/*.fa twoBit/hg16.2bit faToTwoBit mouse/mm4/*.fa 
twoBit/mm4.2bit 
There's no need to put all of the databases in the same directory, but it can 
simplify bookkeeping. 
 
 
 
The databases can also be in the .nib format which was used with blat and 
gfClient/gfServer until recently.  The .nib format only packed 2 bases per byte, 
and could only handle one record per nib file.  Recent versions of blat and 
related programs can use .2bit files as well. 
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CREATING IN-MEMORY INDICES WITH GFSERVER 
 
The gfServer program creates an in-memory index of a nucleotide sequence 
database. The index can either be for translated or untranslated searches.  
Translated indexes enable protein-based blat queries and use approximately two 
bytes per unmasked base in the database.  Untranslated indexes are used 
nucleotide-based blat queries as well 
as for In-silico PCR.  An index for normal blat uses approximately 1/4 byte per 
base.  For blat on smaller (primer-sized) queries or for In-silico PCR a more 
thorough index that requires 1/2 byte per base is recommended.  The gfServer 
is memory intensive but typically doesn not require a lot of CPU power.  Memory 
permitting multiple gfServers can be run on the same machine. 
 
 
A typical installation might go: 
 
ssh bigRamMachine 
 
cd /data/genomes/twoBit 
 
gfServer start bigRamMachine 17779 hg16.2bit & 
 
gfServer -trans -mask start bigRamMachine 17778 hg16.2bit & 
 
the -trans flag makes a translated index.   It will take approximately 
 
15 minutes to build an untranslated index, and 45 minutes to build a translate 
index.  To build an untranslated index to be shared with 
In-silico PCR do 
 
gfServer -stepSize=5 bigRamMachine 17779 hg16.2bit & 
 
This index will be slightly more sensitive, noticeably so for small query 
sequences, with blat. 
 
 
EDITING THE WEBBLAT.CFG FILE 
 
 
The webBlat.cfg file tells the webBlat program where to look for gfServers and 
for sequence.  The basic format of the .cfg file is line oriented with the 
first word of the line being a command.  Blank lines and lines starting with # 
 
are ignored.  The webBlat.cfg and webPcr.cfg files are similar. The webBlat.cfg 
commands are: 
gfServer  - defines host and port a (untranslated) gfServer is running on, the 
associated sequence directory, and the name of the database to display in the 
webPcr web page. 
 
gfServerTrans - defines location of a translated server. 
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background - defines the background image if any to display on web page 
company - defines company name to display on web page 
tempDir - where to put temporary files.  This path is relative to where the 
web server executes CGI scripts.  It is good to remove files that haven't 
been accessed for 24 hours from this directory periodically, via a cron job or 
similar mechanism. 
The background and company commands are optional.  The webBlat.cfg file 
must have at least one valid gfServer or gfServerTrans line, and a tempDir line. 
.  Here is a webBlat.cfg file that you might find at a typical installation: 
 
 
 
company Awesome Research Amalgamated background /images/dnaPaper.jpg 
gfServer bigRamMachine 17778 /data/genomes/2bit/hg16.2bit Human Genome 
gfServer bigRamMachine 17779 /data/genomes/2bit/hg16.2bit Human Genome 
gfServer mouseServer 17780 /data/genomes/2bit/mm4.2bit Mouse Genome 
gfServer mouseServer 17781 /data/genomes/2bit/mm4.2bit Mouse Genome 
tempDir ../trash 
 
 
 
PUTTING WEBBLAT WHERE THE WEB SERVER CAN EXECUTE IT 
 
The details of this step vary highly from web server to web server.  On a typical 
Apache installation it might be: 
ssh webServer cd kent/webBlat 
cp webBlat webBlat.cfg /usr/local/apache/cgi-bin mkdir /usr/local/apache/trash 
chmod 777 /usr/local/apache/trash 
 
assuming that you've put the executable and config file in kent/webBlat. The 
program will create some files in the trash directory.  It is good to periodically 
clean out old files from this directory.   On Mac OS-X instead you might do: 
cp webBlat webBlat.cfg /Library/WebServer/CGI-Executables mkdir 
/Library/WebServer/trash 
chmod 777 /Library/WebServer/trash 
 
Unless you are administering your own computer you will likely need to ask your 
local system administrators for help with this part of the webBlat installation. 
 
 
File Formats 
 
.psl files 
 
A .psl file describes a series of alignments in a dense easily parsed text format.  
It begins with a five line header which describes each field.  Following this is one 
line for each alignment with a tab between each field.  The fields are describe 
below in  a format suitable for many relational databases. 
 
matches int unsigned , # Number of bases that match that aren't repeats 
 
misMatches int unsigned ,  # Number of bases that don't match 
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repMatches int unsigned ,  # Number of bases that match but are part of 
repeats nCount int unsigned , # Number of 'N' bases 
qNumInsert int unsigned ,  # Number of inserts in query  
qBaseInsert int unsigned ,  # Number of bases inserted in query  
tNumInsert int unsigned ,   # Number of inserts in target  
tBaseInsert int unsigned ,   # Number of bases inserted in target 
strand char(2) , # + or - for query strand, optionally followed by + or – for 
target strand  
qName varchar(255) , # Query sequence name 
qSize int unsigned , # Query sequence size 
 
qStart int unsigned ,           # Alignment start position in query  
qEnd int unsigned ,            # Alignment end position in query  
tName varchar(255) ,         # Target sequence name 
tSize int unsigned , # Target sequence size 
 
tStart int unsigned , # Alignment start position in target  
tEnd int unsigned , # Alignment end position in target 
blockCount int unsigned ,  # Number of blocks in alignment. A block contains 
no gaps.  
blockSizes longblob , # Size of each block in a comma separated list 
qStarts longblob , # Start of each block in query in a comma separated list 
tStarts longblob , # Start of each block in target in a comma separated list 
 
In general the coordinates in psl files are “zero based half open.” The first base 
in a sequence is numbered zero rather than one. When representing a range the 
end coordinate is not included in the range. Thus the first 100 bases of a 
sequence are represented as 0-100, and the second 100 bases are represented 
as 100-200. There is a another little unusual feature in the .psl format. It has to 
do with how coordinates are handled on the negative strand. In the qStart/qEnd 
fields the coordinates are where it matches from the point of view of the forward 
strand (even when the match is on the reverse strand). However on the 
qStarts[] list, the coordinates are reversed. 
Here's an example of a 30-mer that has 2 blocks that align on the minus strand 
and 2 blocks on the plus strand (this sort of stuff happens in real life in response 
to assembly errors sometimes). 
 
0 1 2 3 tens position in query 
0123456789012345678901234567890 ones position in query 
++++ +++++ plus strand alignment on query 
-------- ---------- minus strand alignment on query 
 
Plus strand: 
qStart 12 qEnd 31 blockSizes 4,5 qStarts 12,26 
Minus strand: 
qStart 4 qEnd 26 blockSizes 10,8 qStarts 5,19 
 
Essentially the minus strand blockSizes and qStarts are what you would get if 
you reverse complemented the query.However the qStart and qEnd are non-
reversed. To get from one to the other: 
qStart = qSize - revQEnd qEnd = qSize - revQStart 
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.2bit files 
 
A .2bit file can store multiple DNA sequence (up to 4 gig total) in a compact 
randomly accessible format.  The two  bit files contain masking information as 
well as the DNA itself. The file begins with a 16 byte header containing the 
following fields: 
 
1)  signature – the number 0x1A412743 in the architecture of the 
machine that created the file. 
 
2) version – zero for now. Readers should abort if they see a version 
number higher than 0. 
 
3) sequenceCount – the number of sequences in the file 
 
4) reserved – always zero for now. 
 
All fields are 32 bits unless noted. If the signature value is not as given, the 
reader program should byte swap the signature and see if the swapped version 
matches.  If so all multiple-byte entities in the file will need to be byte-swapped.  
This enables these binary files to be used unchanged on different architectures. 
 
 
 
 
The header is followed by a file index.  There is one entry in the index for each 
sequence.   Each index entry contains three fields: 
 
1) nameSize – a byte containing the length of the name field 
 
2)  name – this contains the sequence name itself, and is variable 
length depending on nameSize. 
 
3) offset – 32 bit offset of the sequence data relative to the start of the file 
 
 
 
 
The index is followed by the sequence records.  These contain 9 fields: 
 
1) dnaSize – number of bases of DNA in the sequence. 
 
2) nBlockCount – the number of blocks of N’s in the file (representing 
unknown 
sequence). 
 
3) nBlockStarts – a starting position for each block of N’s 
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4) nBlockSizes – the size of each block of N’s 
 
5) maskBlockCount – the number of masked (lower case) blocks 
 
6) maskBlockStarts – starting position for each masked block 
 
7) maskBlockSizes – the size of each masked block 
 
8) packedDna – the dna packed to two bits per base as so: 00 – T,  01 – C,  
10 – A, 11 – G. 
The first base is in the most significant 2 bits byte, and the last base in the least 
significant 2 bits, so that the sequence TCAG would be represented as 
00011011.  The packedDna field will be padded with 0 bits as necessary so that 
it takes an even multiple of 32 bit in the file, as this improves i/o performance 
on some machines. 
 
 
 
 
 
 
 
.nib files 
 
A .nib file describes a DNA sequence packing two bases into each byte. Each nib 
file contains only a single sequence.  A nib file begins with a 32 bit signature 
which is 0x6BE93D3A in the architecture of the machine that created the file, 
and possibly a byte-swapped version of the same number on another machine.  
This is followed by a 32 bit number in the same format which describes the 
number of bases in the file.   This is followed by the bases themselves packed 
two bases to the byte.  The first base is packed in the high order 4 bits (nibble), 
the second base in the low order four bits.  In C code: 
 
byte = (base1<<4) + base2 
 
The numerical values for the bases are: 
 
0 – T, 1 – C, 2 – A, 3 – G, 4 – N (unknown) 
 
The most significant bit in a nibble is set if the base is masked. 
 
Limits 
 
The gfServer program requires approximately 1 byte for every 3 bases in the 
genome it is indexing in DNA mode, and 1.5 bytes for each unmasked base in 
translated mode. The blat program requires approximately two bytes for each 
base in the genome in DNA mode, and three bytes for each base in translated 
mode. The other programs use relatively little memory. 
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APPENDIX C 

[SIMULATED TRANSLOCATION REFERENCE LIST]   



  145 

Additional file 1 - Comprehensive list of gene pairs involved in cancer-specific recurrent translocations which result in fusion transcripts 
Translocation Gene Location Fragile Site Gene Location Fragile 

 t(7;12)(p22;q13) ACTB 7p22.1 FRA7B (common, apc) GLI1 12q13.3  
inv(7)(q21q34) AKAP9 7q21.2 FRA7E (common, apc) BRAF 7q34  
t(X;17)(p11;q25) ASPSCR1 17q25.3  TFE3 Xp11.23  
inv(2)(p23q35) ATIC 2q35  ALK 2p23.2-p23.1  
t(17;20)(q23;q13) BCAS4 20q13.13  BCAS3 17q23.2  
t(2;3)(p16;q26) BCL11A 2p16.1  MDS1 3q26.2  
t(5;14)(q35;q32) BCL11B 14q32.2  NKX2E 5q35.2 FRA5G (rare, folic acid) 
t(5;14)(q35;q32) BCL11B 14q32.2  TLX3 5q35.1 FRA5G (rare, folic acid) 

inv(14)(q11q32) BCL11B 14q32.2  TRD@ 14q11.2  
t(14;18)(q32;q21) BCL2 18q21.33 FRA18B (common, apc) IGH@ 14q32.33  
t(2;18)(p11;q21) BCL2 18q21.33 FRA18B (common, apc) IGK@ 2p11.2 FRA2L (rare, folic acid) 

t(18;22)(q21;q11) BCL2 18q21.33 FRA18B (common, apc) IGL@ 22q11.22  
t(8;19)(q24;q13) BCL3 19q13.31 FRA19A (common, 5-aza) MYC 8q24.21  
t(3;16)(q27;p13) BCL6 3q27.3 FRA3C (common, apc) CIITA 16p13.13  
t(3;8)(q27;q24) BCL6 3q27.3 FRA3C (common, apc) MYC 8q24.21  
t(1;14)(q21;q32) BCL9 1q21.1 FRA1F (common, apc) IGH@ 14q32.33  
t(1;22)(q21;q11) BCL9 1q21.1 FRA1F (common, apc) IGL@ 22q11.22  
t(9;22)(q34;q11) BCR 22q11.23  ABL1 9q34.12  
t(8;22)(p12;q11) BCR 22q11.23  FGFR1 8p12  
t(9;22)(p24;q11) BCR 22q11.23  JAK2 9p24.1  
t(4;22)(q12;q11) BCR 22q11.23  PDGFRA 4q12 FRA4B (common, BrdU) 

t(11;18)(q22;q21) BIRC3 11q22.2  MALT1 18q21.32 FRA18B (common, apc) 

t(X;11)(q21;q23) BRWD3 Xq21.1  ARHGAP20 11q22.3-q23.1  
t(8;12)(q21;q22) BTG1 12q21.33 FRA12B (common, apc) MYC 8q24.21  
t(7;15)(p21;q21) C15ORF21 15q21.1  ETV1 7p21.2  
t(3;3)(q21;q26) C3ORF27 3q21.3  EVI1 3q26.2  
t(2;11)(p23;p15) CARS 11p15.4  ALK 2p23.2-p23.1  
t(16;16)(p13;q22), inv(16)(p13q22) CBFB 16q22.1 FRA16B (rare, dist A), FRA16C (common, apc) MYH11 16p13.11 FRA16A (rare, folic acid) 
t(5;10)(q33;q21) CCDC6 10q21.2 FRA10C (common, BrdU) PDGFRB 5q33.1  
inv(10)(q11q21) CCDC6 10q21.2 FRA10C (common, BrdU) RET 10q11.21 FRA10G (common, apc) 
t(5;14)(q33;q32) CCDC88C 14q32.12  PDGFRB 5q33.1  
t(11;19)(q13;p13) CCND1 11q13 .2 FRA11H (common, apc) FSTL3 19p13.3 FRA19B (rare, folic acid) 

t(5;6)(q32-33;q22) CD74 5q33.1  ROS1 6q22.2  
t(16;17)(q21;p13) CDH11 16q21  USP6 17p13.2  
t(7;11)(q21;q23) CDK6 7q21.2 FRA7E (common, apc) MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 

 t(5;7)(q35;q21) CDK6 7q21.2 FRA7E (common, apc) TLX3 5q35.1 FRA5G (rare, folic acid) 

t(5;11)(q12;q23) CENPK 5q12.3  MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 
 t(8;9)(p12;q33) CEP110 9q33.2  FGFR1 8p12  
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t(4;12)(q12;p13) CHIC2 4q12 FRA4B (common, BrdU) ETV6 12p13.2  
t(4;19)(q35;q13) CIC 19q13.2 FRA19A (common, 5-aza) DUX4 4q35.2  
t(2;17)(p23;q23) CLTC 17q23.1 FRA17B (common, apc) ALK 2p23.2-p23.1  
t(X;17)(p11;q23) CLTC 17q23.1 FRA17B (common, apc) TFE3 Xp11.23  
t(2;22)(p23;q11) CLTCL1 22q11.21  ALK 2p23.2-p23.1  
t(3;17)(q21;p13) CNBP 3q21.3  USP6 17p13.2  
t(17;22)(q21;q13) COL1A1 17q21.33  PDGFB 22q13.1 FRA22A (rare, folic acid) 
t(17;17)(p13;q21) COL1A1 17q21.33  USP6 17p13.2  
t(7;8)(q21;q12) COL1A2 7q21.3  PLAG1 8q12.1  
t(X;6)(q22;q13-14) COL4A5 Xq22.3  COL12A1 6q13-q14.1 FRA6D (common, BrdU) 
t(1;2)(p13;q37) COL6A3 2q37.3 FRA2J (common, apc) CSF1 1p13.3  
t(8;12)(p12;q15) CPSF6 12q15  FGFR1 8p12  
t(11;19)(q21;p13) CRTC1 19p13.11 FRA19B (rare, folic acid) MAML2 11q21  
t(11;15)(q21;q26) CRTC3 15q26.1  MAML2 11q21  
t(3;8)(p22;q12) CTNNB1 3p22.1  PLAG1 8q12.1  
t(3;9)(q27;p24) DMRT1 9p24.3  BCL6 3q27.3 FRA3C (common, apc) 

t(1;1)(p36;q41) DUSP10 1q41  PRDM16 1p36.32 FRA1A (common, apc) 

t(5;12)(q33;q14) EBF1 5q33.3  LOC204010 12q14.3  
t(X;21)(q25;q22) ELF4 Xq25  ERG 21q22.2  
t(9;14)(q34;q32) EML1 14q32.2  ABL1 9q34.12  
inv(2)(p21p23), del(2)(p21p23)* EML4 2p21  ALK 2p23.2-p23.1  
t(5;12)(q33;p13) ERC1 12p13.33  PDGFRB 5q33.1  
t(10;12)(q11;p13) ERC1 12p13.33  RET 10q11.21 FRA10G (common, apc) 

t(9;12)(q34;p13) ETV6 12p13.2  ABL1 9q34.12  
t(1;12)(q25;p13) ETV6 12p13.2  ABL2 1q25.2  
t(5;12)(q31;p13) ETV6 12p13.2  ACSL6 5q31.1 FRA5C (common, apc) 

t(1;12)(q21;p13) ETV6 12p13.2  ARNT 1q21.2 FRA1F (common, apc) 

t(12;12)(p13;q13) ETV6 12p13.2  BAZ2A 12q13.3  
t(12;13)(p13;q12) ETV6 12p13.2  CDX2 13q12.2  
t(3;12)(q26;p13) ETV6 12p13.2  EVI1 3q26.2  
t(4;12)(p16;p13) ETV6 12p13.2  FGFR3 4p16.3  
t(12;13)(p13;q12) ETV6 12p13.2  FLT3 13q12.2  
t(6;12)(q22;p13) ETV6 12p13.2  FRK 6q22.1  
t(10;12)(q24;p13) ETV6 12p13.2  GOT1 10q24.2 FRA10A (rare, folic acid) 

t(9;12)(p24;p13) ETV6 12p13.2  JAK2 9p24.1  
t(3;12)(q26;p13) ETV6 12p13.2  MDS1 3q26.2  
t(1;12)(p36;p13) ETV6 12p13.2  MDS2 1p36.11 FRA1A (common, apc) 

t(12;15)(p13;q25) ETV6 12p13.2  NTRK3 15q25.3  
t(4;12)(q12;p13) ETV6 12p13.2  PDGFRA 4q12 FRA4B (common, BrdU) 
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t(5;12)(q33;p13) ETV6 12p13.2  PDGFRB 5q33.1  
t(12;17)(p13;p13) ETV6 12p13.2  PER1 17p13.1  
inv(12)(p13q15) ETV6 12p13.2  PTPRR 12q15  
t(12;21)(p13;q22) ETV6 12p13.2  RUNX1 21q22.12  
t(6;12)(q23;p13) ETV6 12p13.2  STL 6q23  
t(9;12)(q22;p13) ETV6 12p13.2  SYK 9q22.2  
t(12;22)(q13;q12) EWSR1 22q12.2 FRA22B (common, apc) ATF1 12q13.13 FRA12A (rare, folic acid) 
t(2;22)(q33;q12) EWSR1 22q12.2 FRA22B (common, apc) CREB1 2q33.3 FRA2I (common,apc) 

t(12;22)(q13;q12) EWSR1 22q12.2 FRA22B (common, apc) DDIT3 12q13.3  
t(21;22)(q22;q12) EWSR1 22q12.2 FRA22B (common, apc) ERG 21q22.2  
t(7;22)(p21;q12) EWSR1 22q12.2 FRA22B (common, apc) ETV1 7p21.2  
t(17;22)(q21;q12) EWSR1 22q12.2 FRA22B (common, apc) ETV4 17q21.31  
t(2;22)(q35;q12) EWSR1 22q12.2 FRA22B (common, apc) FEV 2q35  
t(11;22)(q24;q12) EWSR1 22q12.2 FRA22B (common, apc) FLI1 11q24.3  
t(9;22)(q31;q12) EWSR1 22q12.2 FRA22B (common, apc) NR4A3 9q31.1  
inv(22)(q12q12) EWSR1 22q12.2 FRA22B (common, apc) PATZ1 22q12.2 FRA22B (common, apc) 

t(6;22)(p21;q12) EWSR1 22q12.2 FRA22B (common, apc) POU5F1 6p21.33 FRA6H (common, apc) 

t(2;22)(q31;q12) EWSR1 22q12.2 FRA22B (common, apc) SP3 2q31.1 FRA2G (common, apc) 

t(11;22)(p13;q12) EWSR1 22q12.2 FRA22B (common, apc) WT1 11p13 FRA11E (common, apc) 

t(12;22)(p13;q12) EWSR1 22q12.2 FRA22B (common, apc) ZNF384 12p13.31  
t(5;7)(q31;q34) FCHSD1 5q31.3  BRAF 7q34  
t(6;8)(q27;p12) FGFR1OP 6q27  FGFR1 8p12  
del(4)(q12q12)* FIP1L1 4q12 FRA4B (common, BrdU) PDGFRA 4q12 FRA4B (common, BrdU) 
t(4;17)(q12;q21) FIP1L1 4q12 FRA4B (common, BrdU) RARA 17q21.2  
t(2;13)(q36;q14) FOXO1A 13q14.11  PAX3 2q36.1  
t(X;11)(q13;q23) FOXO4 Xq13.1  MLL 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 

 t(12;16)(q13;p11) FUS 16p11.2  ATF1 12q13.13 FRA12A (rare, folic acid) 

t(11;16)(p11;p11) FUS 16p11.2  CREB3L1 11p11.2  
t(7;16)(q34;p11) FUS 16p11.2  CREB3L2 7q33-q34  
t(12;16)(q13;p11) FUS 16p11.2  DDIT3 12q13.3  
t(16;21)(p11;q22) FUS 16p11.2  ERG 21q22.2  
t(2;16)(q35;p11) FUS 16p11.2  FEV 2q35  
t(3;12)(q27;p13) GAPDH 12p13.31  BCL6 3q27.3 FRA3C (common, apc) 

t(5;12)(q33;q24) GIT2 12q24.11 FRA12E (common, apc) PDGFRB 5q33.1  
t(10;14)(q11;q32) GOLGA5 14q32.12  RET 10q11.21 FRA10G (common, apc) 

del(6)(q21q22)* GOPC 6q22.2  ROS1 6q22.2  
del(8)(q12q24)* HAS2 8q24.13 FRA8C (common, apc), FRA8E (rare, dist A) PLAG1 8q12.1  
t(8;19)(p12;q13) HERV-K (LOC113386) 19q13.43 FRA19A (common, 5-aza) FGFR1 8p12  
t(5;7)(q33;q11) HIP1 7q11.23 FRA7J (common, apc) PDGFRB 5q33.1  
t(3;6)(q27;p22) HIST1H4I 6p22.1  BCL6 3q27.3 FRA3C (common, apc) 
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inv(6)(p21q21) HMGA1 6p21.31 FRA6H (common, apc) LAMA4 6q21 FRA6F (common, apc) 

t(12;14)(q14;q11) HMGA2 12q14.3  CCNB1IP1 14q11.2  
t(8;12)(q22;q14) HMGA2 12q14.3  COX6C 8q22.2  
t(2;12)(q37;q14) HMGA2 12q14.3  CXCR7 2q37.3 FRA2J (common, apc) 

t(5;12)(q33;q14) HMGA2 12q14.3  EBF1 5q33.3  
t(12;13)(q14;q13) HMGA2 12q14.3  LHFP 13q13.3  
t(3;12)(q28;q14) HMGA2 12q14.3  LPP 3q28  
t(9;12)(p23;q14) HMGA2 12q14.3  NFIB 9p23-p22.3  
t(12;14)(q14;q24) HMGA2 12q14.3  RAD51L1 14q24.1 FRA14C (common, apc) 

t(7;7)(p15;p21) HNRPA2B1 7p15.2  ETV1 7p21.2  
t(8;10)(p11;q11) HOOK3 8p11.21  RET 10q11.21 FRA10G (common, apc) 

t(6;16)(p21;q22) HP 16q22.3  MRPS10 6p21.1 FRA6H (common, apc) 

t(3;14)(q27;q32) HSP90AA1 14q32.31  BCL6 3q27.3 FRA3C (common, apc) 

t(3;6)(q27;p21) HSP90AB1 6p21.1 FRA6H (common, apc) BCL6 3q27.3 FRA3C (common, apc) 

t(1;14)(p22;q32) IGH@ 14q32.33  BCL10 1p22.3 FRA1D (common, apc) 

t(2;14)(p16;q32) IGH@ 14q32.33  BCL11A 2p16.1  
t(14;19)(q32;q13) IGH@ 14q32.33  BCL3 19q13.31 FRA19A (common, 5-aza) 

t(3;14)(q27;q32) IGH@ 14q32.33  BCL6 3q27.3 FRA3C (common, apc) 

t(14;15)(q32;q11-13) IGH@ 14q32.33  BCL8 15q11.2  
t(11;14)(q13;q32) IGH@ 14q32.33  CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common, 

 t(12;14)(p13;q32) IGH@ 14q32.33  CCND2 12p13.32  
t(6;14)(p21;q32) IGH@ 14q32.33  CCND3 6p21.1 FRA6H (common, apc) 

t(7;14)(q21;q32) IGH@ 14q32.33  CDK6 7q21.2 FRA7E (common, apc) 

t(14;19)(q32;q13) IGH@ 14q32.33  CEBPA 19q13.11 FRA19A (common, 5-aza) 

t(14;20)(q32;q13) IGH@ 14q32.33  CEBPB 20q13.13  
t(8;14)(q11;q32) IGH@ 14q32.33  CEBPD 8q11.21  
t(14;14)(q11;q32) IGH@ 14q32.33  CEBPE 14q11.2  
t(14;19)(q32;q13) IGH@ 14q32.33  CEBPG 19q13.11 FRA19A (common, 5-aza) 

t(12;14)(q23;q32) IGH@ 14q32.33  CHST11 12q23.3  
t(11;14)(q23;q32) IGH@ 14q32.33  DDX6 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 

 t(7;14)(q21;q32) IGH@ 14q32.33  ERVWE1 7q21.2 FRA7E (common, apc) 

t(12;14)(p13;q32) IGH@ 14q32.33  ETV6 12p13.2  
t(1;14)(q23;q32) IGH@ 14q32.33  FCGR2B 1q23.3  
t(1;14)(q21;q32) IGH@ 14q32.33  FCRL4 1q23.1  
t(4;14)(p16;q32) IGH@ 14q32.33  FGFR3 4p16.3  
t(3;14)(p14;q32) IGH@ 14q32.33  FOXP1 3p14.1  
t(6;14)(p22;q32) IGH@ 14q32.33  ID4 6p22.3  
t(14;22)(q32;q11) IGH@ 14q32.33  IGL@ 22q11.22  
t(5;14)(q31;q32) IGH@ 14q32.33  IL3 5q31.1 FRA5C (common, apc) 
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t(6;14)(p25;q32) IGH@ 14q32.33  IRF4 6p25.3  
t(1;14)(p35;q32) IGH@ 14q32.33  LAPTM5 1p35.2  
t(1;14)(q25;q32) IGH@ 14q32.33  LHX4 1q25.2  
t(14;16)(q32;q23) IGH@ 14q32.33  MAF 16q23.1  
t(14;20)(q32;q12) IGH@ 14q32.33  MAFB 20q12  
t(14;18)(q32;q21) IGH@ 14q32.33  MALT1 18q21.32 FRA18B (common, apc) 
t(1;14)(q22;q32) IGH@ 14q32.33  MUC1 1q22  
t(8;14)(q24;q32) IGH@ 14q32.33  MYC 8q24.21  
t(10;14)(q24;q32) IGH@ 14q32.33  NFKB2 10q24.32  
t(11;14)(q23;q32) IGH@ 14q32.33  PAFAH1B2 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 

 t(9;14)(p13;q32) IGH@ 14q32.33  PAX5 9p13.2  
t(11;14)(q23;q32) IGH@ 14q32.33  PCSK7 11q23.3 FRA11B (rare, folic acid), FRA11G (common, 

 t(4;14)(p14;q32) IGH@ 14q32.33  RHOH 4p14  
t(14;19)(q32;q13) IGH@ 14q32.33  SPIB 19q13.33 FRA19A (common, 5-aza) 
t(14;14)(q11;q32), inv(14)(q11q32) IGH@ 14q32.33  TRA@ 14q11.2  
inv(14)(q11q32) IGH@ 14q32.33  TRD@ 14q11.2  
t(4;14)(p16;q32) IGH@ 14q32.33  WHSC1 4p16.3  
t(14;16)(q32;q23) IGH@ 14q32.33  WWOX 16q23.1 FRA16D (common, apc) 

t(1;2)(p22;p11) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL10 1p22.3 FRA1D (common, apc) 

t(2;19)(p11;q13) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL3 19q13.31 FRA19A (common, 5-aza) 

t(2;3)(p11;q27) IGK@ 2p11.2 FRA2L (rare, folic acid) BCL6 3q27.3 FRA3C (common, apc) 
t(2;11)(p11;q13) IGK@ 2p11.2 FRA2L (rare, folic acid) CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common, 

 t(2;12)(p11;p13) IGK@ 2p11.2 FRA2L (rare, folic acid) CCND2 12p13.32  
t(2;7)(p11;q21) IGK@ 2p11.2 FRA2L (rare, folic acid) CDK6 7q21.2 FRA7E (common, apc) 

t(2;18)(p11;q21) IGK@ 2p11.2 FRA2L (rare, folic acid) FVT1 18q21.33 FRA18B (common, apc) 

t(2;8)(p11;q24) IGK@ 2p11.2 FRA2L (rare, folic acid) MYC 8q24.21  
t(2;8)(p11;q24) IGK@ 2p11.2 FRA2L (rare, folic acid) PVT1 8q24.21  
t(2;6)(p11;q25) IGK@ 2p11.2 FRA2L (rare, folic acid) ZC3H12D 6q25.1  
t(19;22)(q13;q11) IGL@ 22q11.22-q11.23  BCL3 19q13.31 FRA19A (common, 5-aza) 
t(3;22)(q27;q11) IGL@ 22q11.22-q11.23  BCL6 3q27.3 FRA3C (common, apc) 

t(11;22)(q13;q11) IGL@ 22q11.22-q11.23  CCND1 11q13.2 FRA11A (rare, folic acid), FRA11H (common, 
 t(12;22)(p13;q11) IGL@ 22q11.22-q11.23  CCND2 12p13.32  

t(6;22)(p21;q11) IGL@ 22q11.22-q11.23  CCND3 6p21.1 FRA6H (common, apc) 

t(7;22)(q21;q11) IGL@ 22q11.22-q11.23  CDK6 7q21.2 FRA7E (common, apc) 

t(16;22)(q23;q11) IGL@ 22q11.22-q11.23  MAF 16q23.1  
t(8;22)(q24;q11) IGL@ 22q11.22-q11.23  MYC 8q24.21  
t(8;22)(q24;q11) IGL@ 22q11.22-q11.23  PVT1 8q24.21  
t(2;22)(p16;q11) IGL@ 22q11.22-q11.23  REL 2p16.1  
t(16;22)(q23;q11) IGL@ 22q11.22-q11.23  WWOX 16q23.1 FRA16D (common, apc) 

t(4;16)(q27;p13) IL2 4q27  DEXI 16p13.13  
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t(4;16)(q27;p13) IL2 4q27  TNFRSF17 16p13.13  
t(3;16)(q27;p12) IL21R 16p12.1 FRA16E (rare, dist A) BCL6 3q27.3 FRA3C (common, apc) 

t(5;9)(q33;q22) ITK 5q33.3  SYK 9q22.2  
t(6;7)(p21;p15) JAZF1 7p15.2-p15.1  PHF1 6p21.32 FRA6H (common, apc) 

t(7;17)(p15;q11) JAZF1 7p15.2-p15.1  SUZ12 17q11.2  
t(2;17)(p23;q25) KIAA1618 17q25.3  ALK 2p23.2-p23.1  
t(4;10)(q12;p11) KIF5B 10p11.22  PDGFRA 4q12 FRA4B (common, BrdU) 

t(10;14)(q11;q22) KTN1 14q22.3  RET 10q11.21 FRA10G (common, apc) 

t(12;16)(p13;p13) LAG3 12p13.31  MYH11 16p13.11 FRA16A (rare, folic acid) 

t(1;7)(p35;q34) LCK 1p35.1  TRB@ 7q34  
t(3;13)(q27;q14) LCP1 13q14.12  BCL6 3q27.3 FRA3C (common, apc) 

t(5;8)(p13;q12) LIFR 5p13.1 FRA5A (common, BrdU) PLAG1 8q12.1  
del(3)(q27q28)* LPP 3q28  BCL6 3q27.3 FRA3C (common, apc) 

t(7;19)(q34;p13) LYL1 19p13.13 FRA19B (rare, folic acid) TRB@ 7q34  
t(11;19)(q13;q13.4) MALAT1 11q13.1 FRA11H (common, apc) MHLB1 19q13.4 FRA19A (common, 5-aza) 
t(6;11)(p21.1;q13) MALAT1 11q13.1 FRA11H (common, apc) TFEB 6p21.1 FRA6H (common, apc) 
t(3;18)(p21;q21) MALT1 18q21.32 FRA18B (common, apc) MAP4 3p21.31  
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Extraction algorithm 
#!/usr/bin/perl -w 
 
use strict; 
use warnings; 
 
my $infile_name=shift(@ARGV); 
my $outfile1_name=$infile_name; 
my $outfile2_name=$infile_name; 
# check file extension is .sam or .bam 
if($infile_name=~/.(s|b)am$/){  
    $outfile1_name=~s/.(b|s)am$/.extraction2.sam/;  # add  .extraction.sam suffix to output file 
    $outfile2_name=~s/.(b|s)am$/.extraction2.fa/; # add .extraction.fq suffix to output file 
}else{ 
    die "Error: input file needs to be in bam/sam format.\n"; # if file extension not .sam and .bam file 
then exit 
} 
 
my $isbam=($infile_name =~ /.bam$/)? 1:0; # if .bam file then return 1(true)  
 
if($isbam){ 
    open(INFILEHDL, "samtools view $infile_name |") or die "$0: can't open ".$infile_name.":$!\n"; # 
open bam file 
}else{ 
    open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sam file 
} 
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";  
# open file in overwite mode 
open(OUTFILEHDL2, ">$outfile2_name") or die "$0: can't write in the output: $outfile2_name :$!\n";  
# open file in overwite mode 
 
my $readsum = 0; 
my $readcount = 0; 
my $prevline = "";  
my $prevfld0 = ""; 
my $prevfld1 = ""; 
my $prevfld5 = ""; 
my $prevfld9 = ""; 
my $currentfld0 = ""; 
my $currentfld1 = ""; 
my $currentfld5 = ""; 
my $currentfld8 = ""; 
my $currentfld9 = ""; 
my $first = 0; 
my $pattlen =0; 
my $Ipattern=""; 
my @meanlist =('99','163','147','83'); 
my @matchlist = 
('73','133','89','121','165','181','101','117','153','185','69','137','77','141','67','131','115','179','81','161'
,'97','145','65','129','113','177'); 
while (my $LINE=<INFILEHDL>) # read line till EOF 



  164 

{ 
   # chomp my $LINE;  # removes trailing whitespace 
    
    my @L=split(/\t+/,$LINE); # split on white space,  + will merge multiple whitespace   
    #my @L=split; 
    if ($L[0]=~/^@/) # current line first character is @ then print that line and skip that line 
    { 
        print OUTFILEHDL1 $LINE; 
        next; 
    } 
 
    $currentfld0 = ""; 
    $currentfld1 = ""; 
    $currentfld5 = ""; 
    $currentfld8 = ""; 
    $currentfld9 = ""; 
 
    if ( scalar(@L)>= 11) # array length is atleast 11 
    { 
        $currentfld0 = $L[0]; #Identifier 
        $currentfld1 = $L[1]; #FLAG 
        $currentfld5 = $L[5]; #CIGAR 
        $currentfld8 = $L[8]; #TLEN 
        $currentfld9 = $L[9]; #SEQUENCE 
   
  if ($first == 0) # build search pattern only once 
  { 
   $pattlen = int(length($currentfld9)*.30);  #30% or less based on decimal 
point of identifier length  
   $Ipattern = "N" x $pattlen; 
   $first = 1; 
   print $Ipattern."\n" ; # for testing purpose 
  } 
 
        if  (grep{$currentfld1 eq $_} @meanlist)  
        { 
           $readsum = $readsum + $currentfld8 ; 
           $readcount = $readcount + 1 ; 
        } 
 
        if ( ($currentfld0 eq $prevfld0) and ( (grep{$currentfld1 eq $_} @matchlist) || (grep{$prevfld1 eq 
$_} @matchlist) || ($currentfld5=~/S/ || $prevfld5=~/S/))  )  
        { 
 
            print OUTFILEHDL1 $prevline."\n"; 
            print OUTFILEHDL1 $LINE."\n"; 
     
   if (index($prevfld9,$Ipattern)==-1 and index($currentfld9,$Ipattern)==-1 )  
# if N Pattern not found in Read 1 & Read 2 then write to FA file 
   { 
    print OUTFILEHDL2 ">".$prevfld0."<RID>1"."\n"; 
    print OUTFILEHDL2 $prevfld9."\n"; 



  165 

    print OUTFILEHDL2 ">".$currentfld0."<RID>2"."\n"; 
    print OUTFILEHDL2 $currentfld9."\n"; 
   } 
        } 
 
    }  # if scalar 
 
    $prevline = $LINE ;  
    $prevfld0 = $currentfld0; 
    $prevfld1 = $currentfld1; 
    $prevfld9 = $currentfld9; 
 
} # while 
 
close OUTFILEHDL1; 
close OUTFILEHDL2; 
close INFILEHDL; 
 
De-duplication algorithm 
#!/usr/bin/perl -w 
 
# Assumptions 
# psl file needs to be sorted by identifier,chromosome,start position 
 
use strict; 
use warnings; 
 
my $infile_name=shift(@ARGV); 
my $outfile1_name=$infile_name; 
if (not defined $infile_name) 
{ 
   die "Error: .psl filename missing \n";  
} 
# check file extension is psl 
if($infile_name=~/.(p)sl$/){  
    $outfile1_name=~s/.(p)sl$/.sml/;  # add  .sml suffix to output file 
}else{ 
    die "Error: input file needs to be in psl format.\n"; # if file extension not .psl then exit 
} 
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";  
# open file in overwite mode 
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sam file 
my @read1; 
my @read2; 
my $prevline = "";  
my $prevfld9 = ""; 
my $prevfld13 = ""; 
my $prevfld15 = ""; 
my $prevfld16 = ""; 
my $prevfld17 = ""; 
my $prevrange = 0; 
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my $currentfld9 = ""; 
my $currentfld13 = ""; 
my $currentfld15 = ""; 
my $currentfld16 = ""; 
my $currentfld17 = ""; 
my $currrange = 0; 
 
 
my $iline = 1; 
my $processline = 0; 
my $i=0; 
my $j=0; 
my $lastmaxrange = 0;  
my @cid; 
my @pid; 
while (my $LINE=<INFILEHDL>) # read line till EOF 
{  
   my @L=split(/\t/,$LINE); # split on tab space     
    $processline += 1; 
    if (scalar(@L)>= 18) # array length is at least 17 
    { 
  $currentfld9  = $L[9];  # Identifier 
  if(substr($L[13],0,3) eq "chr") 
  { 
   $currentfld13 = substr($L[13],3); # Chromosome 
  } 
  else 
  { 
   $currentfld13 = $L[13]; #Chromosome 
  }  
  $currentfld15 = $L[15]; # Start 
  $currentfld16 = $L[16]; # End 
  $currentfld17 = $L[17]; # Blockcount 
  #$currrange = GetRange$currentfld15,$currentfld16(); 
                $currrange = GetRange($currentfld15,$currentfld16); 
  @cid = split("<RID>",$currentfld9); 
  @pid = split("<RID>",$prevfld9); 
 
 
  if ( (scalar(@cid) >1)   ) 
  { 
   if ($currentfld9 ne $prevfld9) # identifier not match then save 
   { 
     $lastmaxrange = 0; # if identifier changes then reset last 
max range 
    if ($currentfld17 eq "1") # blockcount = 1 then add to array 
    {  
     InsertRead();   
                                        
    } 
   } 
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   else # if same identifier then check chr range and blockcount 
   { 
    if ( $currentfld13 ne $prevfld13 ) # chromsome diff then save 
    { 
      $lastmaxrange = 0; # if chromosome changes then reset 
last max range 
     if ($currentfld17 eq "1") # blockcount = 1 then add to 
array 
     {  
      InsertRead();   
      
     } 
     else # if chromosome same then check range 
     { 
      if ( $currrange != $prevrange) # if range diff then 
save 
      { 
       if ($currentfld17 eq "1") # blockcount = 
1 then add to array 
       {  
        InsertRead();   
        
       } 
      } 
     } 
    }  
                        } 
  } 
 } #scalar L 
 
} # eof 
 
close OUTFILEHDL1; 
close INFILEHDL; 
 
sub GetRange 
{ 
 my $rangespan = 1000; 
 my $grange = 0; 
 my $st = 0; 
 my $ed = 0; 
 $st = $_[0]; 
 $ed = $_[1]; 
 my $midpoint = int(($ed+$st)/2);  
 
 if ($midpoint < $rangespan) 
 { 
  $grange = 1; 
 } 
 else 
 { 
     $grange = int($midpoint/$rangespan) + 1; 
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 } 
 return $grange ; 
} 
 
sub InsertRead 
{ 
 if ($currrange >$lastmaxrange) 
 { 
  print OUTFILEHDL1 
$currentfld9."\t".$currentfld13."\t".$currentfld15."\t".$currentfld16."\t".$currrange."\n" ; 
  $lastmaxrange = $currrange ; 
 
  $prevline  = my $LINE; 
  $prevfld9  = $currentfld9; 
  $prevfld13 = $currentfld13; 
  $prevfld15 = $currentfld15; 
  $prevfld16 = $currentfld16; 
  $prevfld17 = $currentfld17; 
  $prevrange = $currrange; 
 } 
} 
 
 
Create_matrix algorithm  
#!/usr/bin/perl -w 
 
 
# Assumption 
# sml file is ordered  by Idenitifier,chromosome 
 
use strict; 
use warnings; 
 
my $infile_name=shift(@ARGV); 
my $outfile1_name=$infile_name; 
if (not defined $infile_name) 
{ 
   die "Error: .sml filename missing \n";  
} 
# check file extension is sml 
if($infile_name=~/.(s)ml$/){  
    $outfile1_name=~s/.(s)ml$/.unsort/;  # add  .unsort suffix to output file 
}else{ 
    die "Error: input file needs to be in sml format.\n"; # if file extension not .sml then exit 
} 
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";  
# open file in overwite mode 
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open sml file 
my @read1; 
my @read2; 
my $prevline = "";  
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my $prevfld1 = ""; 
my $prevfld2 = ""; 
my $prevfld3 = ""; 
my $prevfld4 = ""; 
my $prevfld5 = ""; 
my $currentfld1 = ""; 
my $currentfld2 = ""; 
my $currentfld3 = ""; 
my $currentfld4 = ""; 
my $currentfld5 = ""; 
my $matfilename = $outfile1_name; 
 
my $processline = 0; 
my $i=0; 
my $j=0; 
my @cid; 
my @pid; 
$matfilename =~s/.(u)nsort$/.mat/; 
while (my $LINE=<INFILEHDL>) # read line till EOF 
{ 
    chomp($LINE) ; 
    my @L=split(/\t/,$LINE); # split on tab space     
    $processline += 1; 
    if (scalar(@L)>= 5) # array length is at least 5 
 
    { 
  $currentfld1  = $L[0];  # Identifier 
  $currentfld2 = $L[1]; # Chromosome 
  $currentfld3 = $L[2]; # Start 
  $currentfld4 = $L[3]; # End 
  $currentfld5 = $L[4]; # range 
 
  @cid = split("<RID>",$currentfld1); 
  @pid = split("<RID>",$prevfld1); 
  if ( (scalar(@cid) >1) and (scalar(@pid) >1)  ) 
  { 
   if ($pid[0] eq $cid[0]) # identifier match 
   { 
     InsertRead();   
   } 
   else # if different match then save array to file 
   { 
    CreateMatrix(); 
    @read1 =(); #   $#read1 = -1 # clear array 
    @read2 =(); # clear array 
                                
    InsertRead();  
                        } 
  } 
  if (($processline == 1) and (scalar(@cid) >1) ) # save first line to array 
  { 
   InsertRead();  
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  } 
 } #scalar L 
 $prevline  = $LINE; 
 $prevfld1  = $currentfld1; 
 $prevfld2 = $currentfld2; 
 $prevfld3 = $currentfld3; 
 $prevfld4 = $currentfld4; 
 $prevfld5 = $currentfld5; 
} # eof 
 
CreateMatrix(); #save array to file remaining ones 
close OUTFILEHDL1; 
close INFILEHDL; 
 
# do unix sort for field 1,Field3,Field2,Field4  here on the mat file 
 system ("sort -k1n,1 -k3n,3 -k2n,2 -k4n,4 $outfile1_name > $matfilename");  
  
 
 
sub CreateMatrix 
{ 
  my @ln1; 
 my @ln2; 
 
 my $cnt = 1; 
 foreach my $r1(@read1) # r1 and r2 combination 
 { 
  foreach my $r2(@read2) 
  { 
            @ln1 = split(/\t/,$r1); 
   @ln2 = split(/\t/,$r2);  
   if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is 
same then do not print  
   { 
    # do not print 
   } 
   else 
   { 
     if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2) 
                                { 
                                        print OUTFILEHDL1 $r1."\t".$r2."\n"; 
                                } 
                                else 
                                { 
                                        print OUTFILEHDL1 $r2."\t".$r1."\n"; 
                                }            
   } 
  }  
 
 } 
 
 for(my $x=0; $x < scalar(@read1); $x++) # r1 unique combination 
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 { 
  for(my $j=$cnt; $j < scalar(@read1); $j++) 
  { 
                        @ln1 = split(/\t/,$read1[$x]); 
                        @ln2 = split(/\t/,$read1[$j]); 
                        if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is same then do 
not print 
                        { 
                                # do not print 
                        } 
                        else 
                        { 
                          if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2) 
    { 
     print OUTFILEHDL1 $read1[$x]."\t".$read1[$j]."\n"; 
    } 
    else 
    { 
      print OUTFILEHDL1 $read1[$j]."\t".$read1[$x]."\n"; 
    } 
                        } 
   
  } 
  $cnt++; 
 } 
 $cnt = 1; 
        for(my $x=0; $x < scalar(@read2); $x++) # r2 unique combination 
        { 
                for(my $j=$cnt; $j < scalar(@read2); $j++) 
                { 
                        @ln1 = split(/\t/,$read2[$x]); 
                        @ln2 = split(/\t/,$read2[$j]); 
                        if ($ln1[0] eq $ln2[0] and $ln1[1] eq $ln2[1]) # if chromosome and offset is same then do 
not print 
                        { 
                                # do not print 
                        } 
                        else 
                        { 
     if (PivotFile($ln1[0],$ln2[0],$ln1[1],$ln2[1]) == 2) 
                                { 
                                        print OUTFILEHDL1 $read2[$x]."\t".$read2[$j]."\n"; 
                                } 
                                else 
                                { 
                                        print OUTFILEHDL1 $read2[$j]."\t".$read2[$x]."\n"; 
                                } 
                        } 
 
                } 
                $cnt++; 
        } 
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} 
 
sub InsertRead 
{ 
             if($cid[1] eq "1") # read 1 
             { 
                 push @read1,  $currentfld2."\t".$currentfld5; 
             } 
             if($cid[1] eq "2") # read 2 
             { 
                 push @read2,  $currentfld2."\t".$currentfld5; 
             } 
} 
 
sub PivotFile 
{ 
        my $arg1 =""; 
        my $arg2 =""; 
 my $arg3 =""; 
 my $arg4 =""; 
        $arg1 = $_[0];  # chr1 
        $arg2 = $_[1];  # chr2 
 $arg3 = $_[2];  #  offset1 
 $arg4 = $_[3];  #  offset2 
        my $rw; 
        my $co; 
        if (uc($arg1) eq 'X' or uc($arg1) eq 'Y') 
        { 
                $rw=0; 
        } 
        else 
        { 
                $rw = int($arg1); 
        } 
        if (uc($arg2) eq 'X' or uc($arg2) eq 'Y') 
        { 
                $co=0; 
        } 
        else 
        { 
                $co = int($arg2); 
        } 
 
        my $pvot = 2;  # default 2 = no 1 = yes 
 
        if ($rw == 0 and $co == 0) # both row and col are x or y 
        { 
                if ($arg1 gt $arg2) # row greater than col then pivot 
                { 
                        $pvot = 1; 
                } 
        } 



  173 

        else 
        { 
                if ($rw == 0 and $co > 0)  # row is x or y , col is number then  pivot 
                { 
                        $pvot = 1; 
                } 
        } 
 
        if ($rw > 0 and $co > 0)        # row and col both are numbers 
        { 
 
                if ($rw > $co)  # row is greater than col then pivot 
                { 
                        $pvot = 1; 
 
                } 
        } 
  
 if ($arg1 eq $arg2)  # if and row and col is same  
 { 
 
  if (int($arg3) > int($arg4)) # if row offset is greater than col offset 
  { 
   $pvot = 1;  
  } 
 
 } 
 
 return $pvot; 
} 
 
Write_count algorithm 
 
#!/usr/bin/perl -w 
# Assumption 
# mat file is ordered by field1,field3,field2,field4 
use strict; 
use warnings; 
 
my $infile_name=shift(@ARGV); 
my $outfile1_name=$infile_name; 
if (not defined $infile_name) 
{ 
   die "Error: .sml filename missing \n";  
} 
# check file extension is mat 
if($infile_name=~/.(m)at$/){  
    $outfile1_name=~s/.(m)at$/.chr/;  # add  .chr suffix to output file 
}else{ 
    die "Error: input file needs to be in mat format.\n"; # if file extension not .mat then exit 
} 
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open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";  
# open file in overwite mode 
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open mat file 
my $prevline = "";  
 
my $iline = 1; 
my $cnt = 0; 
my $first = 1; 
while (my $LINE=<INFILEHDL>) # read line till EOF 
{ 
        chomp($LINE); 
 if ($first == 1) 
 { 
     $prevline = $LINE; 
     $first = 0; 
 } 
 if ($prevline eq $LINE) 
 { 
  $cnt = $cnt + 1; 
        } 
 else 
 {  
  WriteCount(); 
  $cnt = 1; 
 } 
 $prevline  = $LINE; 
} # eof 
 
WriteCount(); #save  remaining ones 
close OUTFILEHDL1; 
close INFILEHDL; 
 
sub WriteCount 
{ 
            print OUTFILEHDL1 $prevline."\t".$cnt."\n"; 
} 
 
Get Hi-C Score algorithm 
#!/usr/bin/perl -w 
use strict; 
use warnings; 
 
# Assumptions chr file is sorted by field1,field3,field2,field4 
# Hi -c file  range is 1000000 and they are tab delimited 
 
 
my $infile_name = shift(@ARGV); 
my $hicfile_path = shift(@ARGV); 
 
my $outfile1_name = $infile_name; 
# check file extension is chr 
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if($infile_name=~/.(c)hr$/){  
    $outfile1_name=~s/.(c)hr$/.score/;  # add  .score suffix to output file 
}else{ 
    die "Error: input file needs to be in chr format.\n"; # if file extension not .chr then exit 
} 
 
if (not defined $hicfile_path ) 
{ 
   die "Error: HIC file path not found.\n";  
}  
 
open(OUTFILEHDL1, ">$outfile1_name") or die "$0: can't write in the output: $outfile1_name :$!\n";  
# open file in overwite mode 
open INFILEHDL, "<".$infile_name or die "$0: can't open ".$infile_name.":$!\n"; #open MAT file 
my $currR1fld9 = ""; 
my $currR1fld13 = ""; 
my $currR1fld15 = ""; 
my $currR1fld16 = ""; 
my $currR2fld9 = ""; 
my $currR2fld13 = ""; 
my $currR2fld15 = ""; 
my $currR2fld16 = ""; 
my $prevR1fld13 = ""; 
my $prevR2fld13 = ""; 
 
my $currhicfile = ""; 
my $prevhicfile = ""; 
my $hicfile = ""; 
my @filearray ; 
my $colmidrange = 0; 
my $rowmidrange = 0; 
my $rowpos = 0; 
my $colpos = 0; 
my $r1start =0; 
my $r1end =0; 
my $r2start =0; 
my $r2end =0; 
my $currCount=""; 
my $score = ""; 
my $pivot = 2; 
while (my $LINE=<INFILEHDL>) # read line till EOF 
{ 
 chomp($LINE); 
 my @L=split(/\t/,$LINE); # split on tab space     
 $currR1fld9 = ""; 
 $currR1fld13 = ""; 
 $currR1fld15 = ""; 
 $currR1fld16 = ""; 
 $currR2fld9 = ""; 
 $currR2fld13 = ""; 
 $currR2fld15 = ""; 
 $currR2fld16 = ""; 
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 $currCount = ""; 
 $r1start=0; 
 $r1end=0; 
 $r2start=0; 
 $r2end=0; 
 $score = "" ; 
 $pivot = 2;  
 
 if (scalar(@L)>= 5) # array length is at least 7 
    { 
  $currR1fld9  = $L[0]; # Chromosome 
  $currR1fld13 = $L[1]; # Column Offset 
               $currR2fld9  = $L[2]; # Chromosome 
  $currR2fld13 = $L[3]; # Column Offset 
  $currCount = $L[4];  # Chromosome Count  
                            
 
  if ($pivot == 1) # if row chr greater than col chr then swap chr position  
HIC_gm06690_chr2_chr18_1000000_pearson.txt 
  { 
   $currhicfile = 
"HIC_gm06690_chr".uc($currR2fld9)."_"."chr".uc($currR1fld9)."_1000000_pearson.txt";  # file name 
will chr21_chr22.hic 
  } 
  else 
  { 
   $currhicfile = 
"HIC_gm06690_chr".uc($currR1fld9)."_"."chr".uc($currR2fld9)."_1000000_pearson.txt";  # file name 
will chr21_chr22.hic 
  } 
   
  if ($currhicfile ne $prevhicfile)  # if previous file not same as current file open file 
  { 
   openHiCFile(); #open file 
  } 
  $rowpos = 0; 
  $colpos = 0; 
  $rowmidrange = CalcMidPosition($currR1fld13); 
  $colmidrange = CalcMidPosition($currR2fld13) ; 
 
 
  if ($pivot == 1)  
  { 
   $rowpos = GetFilePosition($colmidrange); 
   $colpos = GetFilePosition($rowmidrange);  
  } 
  else 
  { 
                        $rowpos = GetFilePosition($rowmidrange); 
                        $colpos = GetFilePosition($colmidrange); 
  } 
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  $score = GetHiCScore(); # get hic score 
  CalcRange($currR1fld13,$currR2fld13); 
 
  if ($score gt 0 )  # score greater than 0 then print 
  { 
   if ($currCount > 1) # count is greater than 1 then print 
   { 
    print OUTFILEHDL1 
"chr".$currR1fld9."\t".$r1start."\t".$r1end."\t"."chr".$currR2fld9."\t".$r2start."\t".$r2end."\t".$curr
Count."\t".$score."\n";  
   } 
  } 
   
 }  
  
 $prevR1fld13 = $currR1fld13; 
 $prevR2fld13 = $currR2fld13; 
 $prevhicfile = $currhicfile; 
}  
 
close OUTFILEHDL1 ; 
close INFILEHDL ; 
 
 
# open file and load into array 
sub openHiCFile   
{ 
 $hicfile =  $hicfile_path.$currhicfile; 
 @filearray = ();  
 open INFILEHIC, "<".$hicfile or die "$0: can't open ".$hicfile.":$!\n"; #open hi-c file 
 @filearray = <INFILEHIC>; 
 shift(@filearray); 
 close INFILEHIC; 
} 
 
# get HI-C Score base on row and col position 
sub GetHiCScore 
{ 
 my @cline; 
 my $scr = "Not found"; 
 if (scalar(@filearray) > $rowpos) # check if that range exists or not 
 { 
  @cline = split(/\t/,$filearray[$rowpos]); 
 
#print "score col 0  ".$cline[0]." col 1 ".$cline[1]."\n"; 
 
  if (scalar(@cline) > $colpos) # check if range exist or not 
  { 
   $scr = $cline[$colpos]; 
  } 
  else 
  { 
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    print "column offset not found 
".$currhicfile."\t".$rowpos."\t".$colpos."\n"; 
  } 
 } 
 else 
 { 
  print "row offset not found ".$currhicfile."\t".$rowpos."\t".$colpos."\n";  
 } 
 return $scr; 
} 
 
# Calculate Position based on range (not used) 
sub GetPosition 
{ 
 my $readpos = $_[0]; 
 my $start = 0; 
 my $end = 999999; 
 my $rfactor = 1000000;  # hi-c file range span by million 
 my $pos = 0; 
 for (my $i = 0; $i < 1000; $i++) 
 { 
  if (($readpos >= $start) and ($readpos <= $end)) 
  { 
   $pos = $i ; 
   last; 
  } 
  $start += $rfactor; 
  $end += $rfactor 
 } 
 return $pos; 
} 
 
 
sub GetFilePosition 
{ 
 my $readpos = $_[0]; 
 my $colspan =1000000;   #hi-c file span by million 
 my $pos = 0; 
 if ($readpos < $colspan) 
 { 
  $pos = 1; 
 } 
 else 
 { 
  $pos = int($readpos/$colspan) + 1; 
   
 } 
 return $pos ; 
} 
 
sub CalcMidPosition 
{ 
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 my $coloff = $_[0]; 
 my $chrspan = 1000;   # assuming chr file column offset span is 1000 , change this if needed 
 my $cpos = 0; 
 my $mend = ($coloff * $chrspan)-1; 
 my $mstart = $mend - ($chrspan-1); 
  
 $cpos = int(($mend+$mstart)/2); 
  
 return $cpos; 
} 
 
sub CalcRange 
{ 
 my $r1col = $_[0]; 
 my $r2col = $_[1]; 
 my $chrspan = 1000;  # assuming chr file column offset span is 1000, change this if needed 
  
 $r1end = ($r1col * $chrspan)-1; 
 $r1start = $r1end-($chrspan-1); 
 $r2end = ($r2col * $chrspan)-1; 
 $r2start = $r2end-($chrspan-1); 
 
} 
 
sub PivotFile 
{ 
 my $arg1 =""; 
 my $arg2 =""; 
 $arg1 = $_[0];  # row 
 $arg2 = $_[1];  # col 
 my $rw; 
 my $co; 
 if (uc($arg1) eq 'X' or uc($arg1) eq 'Y') 
 { 
  $rw=0; 
 } 
 else 
 { 
  $rw = int($arg1); 
 } 
 if (uc($arg2) eq 'X' or uc($arg2) eq 'Y') 
        { 
                $co=0; 
        } 
 else 
 { 
  $co = int($arg2); 
 } 
  
 my $pvot = 2;  # default 2 = no 1 = yes  
 
 if ($rw == 0 and $co == 0) # both row and col are x or y 
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 { 
  if ($arg1 gt $arg2) # row greater than col then pivot 
  { 
   $pvot = 1;   
  } 
 } 
 else 
 { 
  if ($rw == 0 and $co > 0)  # row is x or y , col is number then  pivot 
  { 
   $pvot = 1;     
  } 
 } 
 
 if ($rw > 0 and $co > 0)   # row and col both are numbers 
 { 
 
  if ($rw > $co)  # row is greater than col then pivot 
  { 
   $pvot = 1; 
 
  } 
 } 
 return $pvot; 
} 
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