
Wind Estimation and Effects of Wind on Waypoint Navigation of UAVs

by

Anandrao Shesherao Biradar

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2014 by the

Graduate Supervisory Committee:

Srikanth Saripalli, Co-Chair

Spring Berman, Co-Chair

Jekan Thanga

ARIZONA STATE UNIVERSITY

May 2014

i

ABSTRACT

The presented work in this report is about Real time Estimation of wind and

analyzing current wind correction algorithm in commercial off the shelf Autopilot board.

The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is

used. Currently there is lot of development being done in the field of Unmanned Aerial

Systems (UAVs), various aerial platforms and corresponding; autonomous systems for

them. This technology has advanced to such a stage that UAVs can be used for specific

designed missions and deployed with reliability. But in some areas like missions

requiring high maneuverability with greater efficiency is still under research area. This

would help in increasing reliability and augmenting range of UAVs significantly.

One of the problems addressed through this thesis work is, current autopilot

systems have algorithm that handles wind by attitude correction with appropriate Crab

angle. But the real time wind vector (direction) and its calculated velocity is based on

geometrical and algebraic transformation between ground speed and air speed vectors.

This method of wind estimation and prediction, many a times leads to inaccuracy in

attitude correction. The same has been proved in the following report with simulation and

actual field testing. In later part, new ways to tackle while flying windy conditions have

been proposed.

ii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof.

Srikanth Saripalli for the continuous support in my Masters Study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me

throughout research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Masters research.

I would also like to thank Prof. Spring Berman for support and guidance

throughout the thesis. She helped me improve different aspect of research with their

different point of view. I am thankful to Prof Jekan Thanga for reviewing my thesis and

helping improve it in various areas.

I can’t be thankful enough to my friend Mr. Sai Vemperala for setting up software

platforms; and giving continuous help whenever needed. I appreciate the help in setting

up Wind Sensor hardware by Alexander Kafka. I am also thankful to my friend Prasanna

for being continuously involved in discussion on different aspects of thesis which

generated various ideas.

I would also like to thank my parents, and younger sister for their endless support.

They always encouraged me with their best wishes.

I always got many ideas during various discussions with my colleagues and

friends. They were always available to help me in the software issues and helped me a lot

in field testing. Finally I am thankful to various student organizations I was involved

with. It helped me a lot to learn various things, which I would never be able to learn

through classes.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ...……………………………………………………………………vi

LIST OF TABLES ...…………………………………………………………………….vii

LIST OF ABBREVIATIONS …….…………………...………………………………… v

CHAPTER

1. INTRODUCTION …………………………………………………………….… 1

Motivation ……………………………………………………….………. 1

Problem Statement ……………………………………………………..... 2

Overview of thesis …………………………….………………………… 2

2. CURRENT SCENARIOS ………………………………………….......……...… 3

 Background ……………………………………………………….……... 3

 Some Earlier methods …………………………………………………… 5

 Current work in Wind Estimation ………………………………………. 6

 Flying in windy conditions………………………………...................... 10

3. EXPERIMENTAL SETUP ……………………………………………………...12

Unmanned Aerial Vehicle …………………………………………..…..12

Ardupilot Mega 2.5 ……………………………………………….……..13

Mission Planner ………………………………………………………....14

AIRMAR Sensor …………………………………………………...…...16

4. SIMULATIONS ……………………………………………………………….. 19

Overview of SITL ……………………………………………..……….. 19

How it works ………………………………………………….….…….. 20

Parts of SITL ………………………………………………….….…….. 21

Simulation results ……………………………………………………… 27

iv

CHAPTER Page

Working of wind estimation algorithm …….……………………………27

5. FIELD TESTING ………………………………………………………………. 38

Field testing data from sensors ………………………………………….41

Actual flight test with lawn mower pattern ……………………………. 44

Additional flight tests ……………………………………………………46

Summarizing cross track error and wind speed …………………………49

6. CONCLUSION ………………………………………………………………… 50

Future work …………………………………………………………….. 51

REFERENCES ………………………………………………………………………… 53

APPENDIX

APPENDIX I ……………………………………………………………………………55

APPENDIX II ….………………………………………………………………………..59

v

LIST OF ABBREVIATIONS

UAVs : Unmanned Aerial Vehicle

UAS : Unmanned Aerial Systems

SITL : Software in the Loop Simulation

FDM : Flight Dynamics Model

AS : Airspeed

GS : Ground Speed

HH:MM:SS : Hours : Minutes : Seconds

MM:SS : Minutes : Seconds

vi

LIST OF FIGURES

FIGURES Page

1. US Reaper UAV in combat ……………………………………………………... 3

2. UAV in surveillance …………………………………………………………..… 3

3. Mapping Using Lawn Mower Pattern …………………………………………… 4

4. Boeing Condor Unmanned Aerial Vehicle ……………………………………… 6

5. Wind triangle method for wind estimation ………………………………………9

6. Wind Drift ……………………………………………………………………. 11

7. Crab angle …………………………………………………………………….....11

8. Skywalker UAV with AIRMAR Wind Sensor ………………………………….12

9. Ardupilot Mega 2.5 board …………………………………………………………..13

10. Mission Planner Layout ………………………………………………………...15

11. Airspeed Sensor …………………………………………………………………16

12. AIRMAR Sensor ………………………………………………………………. 17

13. Google maps Field view of Chandler flight test location ……………………... 18

14. SITL Architecture …………………………………………………………….... 20

15. Parts of SITL Architecture implemented …………………………………….…21

16. Defining waypoint radius ………………………………………………………. 21

17. Flow chart of the python based flight script …………………………………...25

18. Defining waypoint radius ………………………………………………………. 27

19. Sample screen shot of Mission Planner ………………………………………... 27

20. Wind Speed 0 m/s ……………………………………………………………... 23

21. Wind Speed 5 m/s ……………………………………………………………... 30

22. Wind Speed 10 m/s ……………………………………………………………. 31

vii

FIGURES Page

23. Wind Speed 20 m/s ……………………………………………………………. 32

24. Wind speed 15 m/s from 90° .………………………………………………….. 33

25. The graphical representation of how above matrices are calculated …….……. 34

26. Flight with 4 waypoints with simple rectangular path mission ……………….. 39

27. Software in loop simulation of Flight 1 …………………………………………40

28. Wind direction predicted by APM 2.5.…………………………………………..41

29. Wind direction by AIRMAR Wind Sensor……………………………..………..41

30. Wind Speed predicted by APM 2.5 .………………………………………….…43

31. Wind speed by AIRMAR…………………………………………………………..43

32. Lawn mower pattern …………………………………………………….……. 44

33. SITL Simulations of Lawn mower pattern …………………………………...…45

34. Rectangular pattern mission with Flight 3 conditions …………………………. 46

35. ‘Figure of 8’ waypoint pattern mission ………………………………………… 47

36. Lawn mower pattern mission with different wind condition ………………….. 48

37. Cross Track Error Vs. Wind Speed …………………………………………….. 49

38. Future development in algorithm ………………………………….. 51

39. Graphical representation of how the Direction Cosine Matrices are calculated . 59

viii

LIST OF TABLES

Tables Page

1. Skywalker Airplane Characteristics ……………………………………………… 13

2. Rascal 110 FDM Characteristics ……………………………………………..…… 22

3. Simulation Parameters ……………………………………………………….……. 24

4. Flight details ……………………………………………………………………….. 38

1

1. INTRODUCTION

 Motivation

 Current advancements in UAV technologies such as hardware reliability, controls

and open source autopilot systems (APM 2.5) has made it possible by just using Google

Maps point and click features, plan your mission, specify altitude, toggle between

different flight modes. It also helped setup a good platform for using UAVs for

maneuvering missions and long duration flights in surveillance. One of the well-known

and growing interest applications of UAVs is 3D Terrain mapping. Many commercial

image processing tools are available, which will generate the requirements for frontal and

sideways overlap for capturing images. This gives a good idea about what altitude and

latitude-longitude the images have to be taken. The images are triggered at time intervals

by setting up waypoints in Lawn Mower Pattern. But there are nonlinear natural

conditions always present to challenge these systems such as winds. The control

algorithms do compensate for this wind disturbance, but there are no real time wind

speed and directions sensors onboard. The absence of direct wind measurements that can

update correct wind data lead to inaccuracy in attitude corrections applied by autopilot

board. Because of this error in Wind estimation, UAVs drift a lot from their course and

they tend to miss the waypoint and come back again to pass through the waypoints.

The drift in waypoint following results in reduced endurance and less area

coverage in mapping missions. This report will bring out these differences and open up

area for newer algorithm development.

2

 Problem Statement

1) Using Software in Loop Simulations show the effects of wind from

various directions with different speeds on selected UAV model. Show

how it affects the waypoint achievement and drifting from designated

Path following.

2) Through actual flying of UAV, with the wind sensor on board, show

the error in wind direction and speed calculated in APM 2.5 with

independent wind direction and speed sensor.

 Overview of the Thesis

o The current work done in this area

o Current methods of wind handling in UAVs

o Sensors currently used for wind measurements in Aircrafts

o Experimental setup, discussing different instruments used

o Simulation environment, about Software in the loop simulations

o Flight testing characteristics

o Current algorithm used for Wind Estimation

o Flight Dynamics Model used in SITL

o Effects of Wind from various directions and with different speeds

o Discussion of actual field testing data and showing differences in wind

velocity estimations

o Suggested correction methods.

3

2. CURRENT SCENARIOS

 Background

 Unmanned Aerial Vehicles (UAVs) have lots of applications in various

mission scenarios. The development in various areas has increased their

endurance, payload capacity, speed, reduced mission costs.

 There are many defense applications such as,

o Various surveillance scenarios

o Target mission, reaching particular location in munitions applications

o Following a moving target, and many more.

Figure 1, US Reaper UAV in combat Figure 2, UAV in surveillance

 There are many civil applications as mentioned below,

o 3D mapping

o Search and rescue

o Weather monitoring and many more

4

Figure 3, Mapping Using Lawn Mower Pattern

 Among the uses mentioned above, the current work is more focused on

performance of UAVs in missions which require lot of maneuvering while navigating

through waypoints. UAV maneuvering becomes more challenging in conditions where it

needs to perform a minimum radius turns. The important condition when UAV perform

minimum radius turn is UAV needs to follow a coordinated turn. Aircraft is said to be

following a coordinated turn when it doesn’t have any side sleep in turn.

 The path planning of maneuvering missions depends on various parameters of

UAV, some of them are;

o UAV dynamics

o Maneuvering capabilities

o Range

o Cruise speed

o Wind conditions

5

Most of these parameters are known or we can have a good estimation based on

the UAV design before the flight in mission planning phase. But accurate local wind

conditions are difficult to calculate and predict, that’s why it’s estimated onboard and

control actions are applied accordingly. The methods and algorithms used for estimation

of wind plays very important role in robust wind tackling algorithms.

 Some Earlier methods

 Wind conditions were used in various ways in earlier UAV applications.

1. Wind soaring technique:

Wind soaring techniques were most popular ways to reduce energy

consumption onboard by flying in existing wind directions. Soaring is the

process of gaining energy from the atmosphere in-flight using an

aerodynamic free-flying platform. Dynamic soaring utilizes the energy

available in vertical wind gradients; this allows UAVs to spend less

energy to generate lift. [Lawrence et al, 2009]

2. Boeing Condor UAV:

“Fly in backwards” this concept was implemented in Boeing

condor UAV. The airfoil with additional control techniques was designed

in such a way that allows UAV to hover or fly backwards avoiding stall

conditions. Boeing Condor set several records for piston-powered aircraft

by reaching a top altitude of 67,028 feet and staying aloft for nearly two

and one-half days [http://www.boeing.com/boeing/history/boeing/condor]

6

Figure 4, Boeing Condor Unmanned Aerial Vehicle

 Significance of wind in earlier methods:

These techniques were more focused on sustaining and changing current

flight course to use windy conditions rather than maneuvering through wind to

follow preplanned mission. Preplanned missions will require UAVs to follow

waypoints in particular sequential order irrespective of wind conditions. This

makes it challenging to fly with varying attitudes towards with respect to average

wind. UAV needs to turn in different direction based on the waypoint order.

Turning of UAV changes the apparent wind conditions with respect to UAV

frame. The accurate wind estimation becomes more significant in turning

conditions in comparison to techniques discussed above.

 Current work in Wind Estimation

Recently, there has been significant work done in the area of path planning

of UAVs with consideration of Wind effects by Air Force Institute of Technology

in Ohio, Aerospace Control Laboratory at MIT, and University of Washington.

7

But most of the work is focused more on wind prediction techniques than direct

wind measurement.

“An aircraft in flight is airborne and subject to the movement of the air

mass in relation to the surface; i.e. the wind. The relatively low cruising speed of

light aircraft makes them particularly affected by wind velocity. Consequently the

calculation of the wind effect on aircraft movement relative to the ground is a

major part of light aircraft flight planning and navigation.” [John Brandon, 2013]

This quote explains the need of direct wind vector calculation with respect to

earth frame on light aircrafts i.e. UAVs.

o Current Methods

There are different kinds of wind estimation methods used currently.

Some of the methods are discussed below,

1. Using GPS Velocity

 Lagelaan et al. [13] elaborates this method as, GPS

provides a direct measurement of velocity with respect to the Earth,

accurate to approximately 0.1 m/s. Carrier phase differential GPS

allows velocity measurements accurate to the order of millimeters per

second) [16]. Thus, local air mass velocity components can be

obtained directly from vehicle kinematics and the GPS velocity.

[

] [

] [

]

8

W = Wind speed vector over ground

S = Ground speed (GPS Velocity)

V =

 The method is based on autopilot module providing estimated

components of airspeed and Euler angles. This method doesn’t

consider the changes in magnetic heading and turn rate while

predicting the wind vector. This leads to inaccuracy in wind direction

and velocity prediction.

2. Computing Wind from Vehicle Response [13]

 This method is based on comparison of measurements of

aircraft motion with respect to the Earth (GPS measurements) with

predictions of aircraft motion obtained from UAV dynamic model

(based on aircraft acceleration with respect to surrounding air).

 This method doesn’t produce good results due to GPS

uncertainty is of the order of 3 m. The carrier phase differential GPS

does improve position accuracy to the order of centimeters but this is

still noisier than GPS velocity estimates. The aircraft dynamic model

takes into account aerodynamic forces, which depends on wind

gradients. If the wind gradients are large, then predicted forces will be

significantly different from actual forces, resulting an error in UAV

dynamic model.

9

3. Wind Triangle method

 Wind triangle method for wind estimation [6] works on GPS

ground track vector and true airspeed vector and considers turning rate

(yaw rate) of aircraft. As shown in figure (5), this method works on

predicting wind vector () based on geometric transformation

between true airspeed vector () and ground speed vector .

The algorithm based on this method is discussed in detail in

Chapter 4. The wind triangle method is used in Wind estimation

algorithm in Ardupilot Mega 2.5 autopilot board used in this work.

 Figure 5, Wind triangle method for wind estimation

 Summarizing current methods

 The various methods discussed above are mainly prediction based

method rather than direct measurement. These methods predict wind speed

and direction based on airspeed sensor and GPS measurements. These

10

methods don’t use direct wind measurement sensor to calculate wind

speed and direction.

 The current work has shown the inaccuracy of prediction based

wind estimation techniques used in current commercial of the shelf

autopilot boards. The estimated wind is compared with the independent

wind sensor mounted onboard of UAV. This independent wind sensor

gives true wind speed and direction data of actual flying field

environment. The prediction based techniques works very well in simple

waypoint following mission. But these estimations won’t be optimal,

leading to significant cross-track error in maneuvering missions.

Maneuvering missions involves challenging waypoints navigation which

requires more dynamic and real time wind estimation in UAVs.

 Flying in windy conditions

The best way to fly in windy conditions is flying into direction of wind,

i.e. when the fuselage is parallel to the wind. Flying into the wind will allow

maximum wind speed on leading edge of wing airfoil, as they are designed in

such a way. But this isn’t always possible as the path planned may have

orientation either away from or at an angle with respect to the wind direction with

no choice. In such cases the aircrafts are flown with their nose pointing towards

the wind instead of directly towards planned path. The angle between Aircraft

heading and desired course is known as “Crab angle”. The calculation of crab

angle depends on various factors such as wind direction, magnitude, aircraft

11

velocity and the course it needs to follow. The current algorithms are designed in

such a way that they calculate the crab based on the predicted wind direction and

speed. In following figure (6) [Britannica] the first picture shows a drift in wind

without applying any attitude correction and second picture shows applied attitude

correction to maintain the flight path by turning the nose towards the wind.

 Figure 6, Wind Drift

Figure 7, Crab Angle

12

3. EXPERIMENTAL SETUPS

 This section contains description of most of the hardware used in this

experiment.

o Unmanned Aerial Vehicle

We used an RC aircraft known as Skywalker. It is a ready to fly

preassembled kit airplane from Event 38 Unmanned Systems. It’s a

remote controlled electric powered plane and provides good platform for

surveillance purposes. It is pusher propeller configuration which gives

more space in forward area of fuselage for more equipment installation. It

requires 30-35% of maximum throttle for cruise conditions and flies with

cruise speed of 12 m/s. This cruise speed is slow enough for image

capturing missions. These images would be later used in software called

Agisoft for generating 3D map of whole terrain.

Figure 8, Skywalker UAV with AIRMAR Wind Sensor

Wind Sensor Autopilot

Brushless motor

13

 Skywalker Characteristics:

Table 1

 Skywalker Airplane Characteristics

o ArduPilot Mega 2.5

Figure 9, Ardupilot Mega 2.5 board

The heart of the control system used in UAV is open source

developed ArduPilot Mega version 2.5 board, popularly known as APM

2.5 purchased from 3DRobotics Inc. Its Arduino compatible, Atmel’s

ATMEGA2560 based board with following features:

Wing Span 1800 mm

Length 1300 mm

Cruise Speed 12 m/s

Max Speed 42 m/s

Normal flight time 30-50 min

20-25 min with 1.2kg payload

14

 3-axis gyro, accelerometer and magnetometer, along with a high-

performance barometer

 Digital compass powered by Honeywell's HMC5883L-TR chip

 Mediatek MT3329 GPS Module.

 It uses Invensense 6 DoF Accelerometer/Gyro MPU-6000.

 Barometric pressure sensor MS5611, MEAS High Resolution

 Altimeter.

o Mission Planner

 Mission Planner is open source Ground Control Station software

with following features:

 Point-and-click waypoint entry, using Google Maps

 Select mission commands from drop-down menus

 Download mission log files and analyze them, covert them to

KMZ for Google earth data processing

 Configure APM settings for airframe

 See the output from APM’s serial terminal sent over telemetry

 Mission Planner was also used to setup Software in the Loop simulation.

Mission Planner was really important part of simulation to control the flight

conditions, to verify conditions setup in the simulation script in an effort to

simulate as close to real time scenarios as possible.

15

Figure 10, Mission Planner Layout, from DIY Drones

o Airspeed Sensor

An airspeed sensor has been used to calculate airspeed with Pitot

tube setup; this data was used in conjunction with Ground Speed

calculated by GPS to predict wind speed and its direction.

 Features:

 Measure pressure up to 7kPa through each port for pressure

sensing but also for vacuum sensing.

 -2 to 2 kPa (-0.3 to 0.3 psi).

16

Figure 11, Airspeed Sensor, 3DRobotics

o AIRMAR Weather sensor

AIRMAR PB200 weather sensor has been used to collect real time wind

data. The AIRMAR Weather Station Instrument is the only all-in-one

weather sensor that calculates apparent wind speed and direction,

barometric pressure, air temperature, and wind chill temperature. With

the internal compass and WAAS/EGNOS GPS, true wind speed and

direction can also be calculated.

 The AIRMAR wind sensor was really helpful in getting actual

wind data such as true wind speed with respect to ground fame, apparent

wind speed, which is corresponding to airspeed of the airplane. It also

gives these data with the true magnetic heading which was used to

compare the wind direction predicted by APM 2.5.

17

Figure 12, AIRMAR Sensor

 Wind Speed Range: 0 knots to 80 knots (0 MPH to 92 MPH)

 Wind Speed Resolution: 0.1 knots (0.1 MPH)

 Wind Direction Range: 0° to 360°

 Wind Direction Resolution: 0.1°

18

o Field Conditions at flight testing field ; W Fry Rd, Chandler

 The temperature ranges from 50°F to 80°F, with wind speeds from

2 mph to 20 mph. The area shown approx. 2000*2000 ft.

Figure 13, Google maps Field view of Chandler flight test location.

19

4. SIMULATIONS

 Overview of SITL:

 Software in the Loop modeling and simulation (SITL) setup has been used for all

simulation. The advantages are described as follows by Special Interest Group on

Simulation and Modeling:

 Software-in-the-loop Modeling & Simulation can be viewed as

Simulation-based Software Evaluation.

 A software system can be executed under simulated input conditions for

the purpose of evaluating how well the software system functions under

such input conditions.

 Software-in-the-loop Modeling & Simulation is a cost-effective method

for evaluating a developed, mission-critical software system before it is

used in the real world.

 In current scenario, the SITL was used to fly a particular model to follow

generated a flight path from Mission Planner software and simulate the wind conditions

from various directions. The effects of wind on UAV with different directions and

various speeds were observed with SITL simulation.

20

 In Figure (14) shows how SITL architecture works [DIY Drones community].

Figure 14, SITL Architecture

How it works:

 The ArduPlane.elf will be built initially which will have the firmware. The

firmware defines most flight parameters. The build contains most important part

i.e. control algorithms designed to fly ArduPlane.

 The flight script ArduPlane.py shown in later section will be written considering

all mission requirement to be tested. ArduPlane.py is also connected to runsim.py

which calls for Rascal FDM from library.

 Then fly.ArduPlane command will start running which runs ArduPlane.py.

21

 The output of this flight will be displayed on Ground Control Software (GCS)

Mission Planner. The mission can be changed and other parameters such as speed,

modes can be changed real time via Mission Planner.

The part of SITL implemented in current simulations is shown in figure (15).

Figure 15, Part of SITL Architecture used

 Parts of SITL:

The following areas were important parts of Software in the loop simulation and

modeling, it will give more idea about each component and the specifications used:

1) Flight Dynamics Model used from JSBSim

2) Flight Parameters and Mission Script

3) Simulating Wind conditions

4) Ground station - Mission Planner

22

Discussing each component in detail:

1) Flight Dynamics Model (FDM):

The SITL simulations results can be closest to actual aircraft by

selecting closest flight dynamics model to actual test flown aircraft (in

this work the test platform would be Skywalker). For current simulations

Rascal 110 Flight dynamics model has been used and it’s compiled by

JSBSim (an open source flight dynamics model library). FDM defines all

physics and dynamics associated with aircraft. FDM consists of all data

such as dimension, weight, CG, moment of Inertia’s etc. The whole FDM

is the foundation to run the simulation for a particular model.

Rascal 110 FDM has following characteristics:

Table 2

Rascal 110 FDM Characteristics

Max weight 6 kg.

Wing span 2.8 m.

Length 1.92 m.

Wing Area 0.98 m
2

Cruise Speed 30.87 m/s

Maximum Speed 44 m/s

23

2) Flight parameters-Simulation parameters:

 Cruise speed:

The ArduPlane control algorithm tries to maintain the preplanned

cruise speed. It also compensates for windy conditions such as headwind,

side wind, which changes the aircraft speed accordingly and tries to bring

back to preplanned cruise speed. The cruise speed was set to 20 m/s with

considering reduction in throttle to better observe wind effects on actual

path following than planned path.

 The PID gains:

The ArduPlane control algorithm works on PID gains. The

simulation environments allows to tune PID gains for executing better

flight controls and is important while comparing parameters to follow the

planned path as accurately as possible.

3) Various wind conditions:

 It is a well-known fact that planes fly best with wind velocities not

exceeding their maximum achievable velocities. Based on this and as

mentioned earlier the cruise velocity of Rascal FDM is 30.87 m/s, so we have

set the maximum velocity of wind in simulation to be 25 m/s. The simulation

24

input parameters are combination of parameters from column 1 and column 2

as stated in following table.

Table 3

Simulation Parameters

Wind Velocities Direction

5 m/s 0°

10 m/s 90°

15 m/s 180°

20 m/s 270°

 These simulated conditions will show the drift or path swayed away from

actual planned path of UAV. The drift would change based on the direction

and magnitude of wind speed vector.

25

4) Flight script used in the simulations :

Figure 17, Flow chart of the python based flight script.

26

 This is the modified flight script and tailored to simulate mission for wind

estimation and observing its effects. The original script was referred from GitHub

directory of Ardupilot. (https://github.com/diydrones/ardupilot). The python code

is shown in Appendix I.

5) Mission design:

The waypoints are setup in such way that UAV will follow a figure

of 8. This configuration will orient UAV heading towards all directions.

The waypoint radius: The perimeter around the waypoint is defined so

that UAV can have certain tolerance while passing through waypoint

instead of just defining a single point in 3D space. The radius has to be set

in such a way that it is not too small so that UAV will miss it even with a

small wind or other disturbance. The radius shouldn’t be too big so that it

would drift from center of waypoint instead of passing through it. This is

also basis for testing Lawn mower patterns for 3D mapping of terrain. The

figure (18) shows the waypoint radius was defined bigger than maximum.

https://github.com/diydrones/ardupilot

27

 Figure 18, Defining waypoint radius

 Simulations:

The Software in The Loop simulation was performed with all

combinations of input parameters mentioned in the table 3. The effects of the

wind from different directions and magnitude can be seen by looking over the

blue colored track.

Yellow track: designated path generated by predefined missions containing

 Waypoints.

Blue Track: Path followed by UAV

The dotted circles around waypoints: It shows the predefined waypoint radius.

28

The following results will show the drift from the preplanned path by

UAV. The following image is a sample screen shot of Mission Planner displaying

output of SITL simulation. It can be compared with the path followed by UAV in

no input wind conditions (i.e. velocity 0 m/s) shown in figure 20.

 Figure 19, Sample screen shot of Mission Planner

All the images shown are with standard upward north convention.

29

1) Figure 20 shows the simulation with following input conditions:

Wind speed: 0 m/s

Wind Direction: 0°

 The shown output of simulation can be presumed as ideal flight conditions

because of no input wind conditions. This would be benchmarking case for testing

how the Rascal 110 flight model flies with no wind conditions.

 Figure 20, Wind Speed 0 m/s

Figure 20 shows near ideal situation with minimal natural disturbance and

following almost close to planned yellow track.

30

2) The next result shows the effects with:

Wind Direction: 0°, from north to south

Wind Speed: 5 m/s

Figure 21, Wind speed 5 m/s

The drifted blue line track between waypoint 3 and 4 can be seen in circle

marked. Wind speed of 5 m/s would be normal environmental conditions in Arizona,

USA.

Wind

31

3) The next result shows the effects with:

 Wind Direction: 0°, from north to south

 Wind Speed: 10 m/s

Figure 22, Wind speed 10 m/s

It can be noticed that the flight path has drifted more compared to Figure 22

between waypoint 3 to 4 and 4 to 5 also towards waypoint 6. In later part after 6 there

isn’t significant cross track error. The significant error in this case would be a cross track

error of more than 2 meters from the yellow planned path. Here is very important point to

note when comparing the waypoint followed from 3 – 4 – 5, in this case UAV was

experiencing a tail wind conditions and while approaching waypoint 6 it experiences

headwind conditions. Applying attitude corrections in case of headwind conditions is

faster than tailwind case as there would be better control in headwind conditions.

32

4) The next result shows the effects with:

 Wind Direction: 0°, from north to south

 Wind Speed: 20 m/s

Figure 23, Wind speed 20 m/s

The maximum drift can be observed with 20 m/s wind from north to south. Wind

velocity of 20 m/s being maximum velocity conditions for Skywalker. The drift is more

between waypoint 3 and 4 as compare to 4 and 5. It is because Ardupilot doesn’t predict

the wind direction and velocity in advance, before reaching to waypoint 3. This causes

the UAV to drift more but after waypoint 4, Ardupilot predicts approximately the wind

direction which helps to obtain good attitude correction i.e. turning the nose towards

wind (into the wind direction) with appropriate crab angle. However this stabilization

time won’t be enough when the UAV is taking a U turn with turning radius close

minimum turning radius, in this case it need better wind estimation in advance.

33

5) The next result shows the effects with:

 Wind Direction: 90°, from east to west

 Wind Speed: 15 m/s

Figure 24, Wind speed 15 m/s from 90°

 The drift can be seen in the oval, but there isn’t any drift inwards while the UAV is

flying from waypoint 7 to 8. This can be explained with UAV flying from waypoint 6

towards 7 it flies with heading into the wind and it doesn’t predict wind in advance and

enter the right turn while passing through waypoint 7, this is also responsible for

overshooting the path between waypoint 7 and 8.

Wind

34

 Working of wind estimation algorithm:

The whole wind estimation method in ArduPlane code is based on

William Premerlani’s Algorithm. This algorithm works on geometric

transformation between Air Speed and Ground Speed. The figure (25) [free online

private pilot], gives a detail about the airspeed vector (V) and groundspeed vector

(S) used for wind vector prediction (W). [William Premerlani, 2009]

Figure 25, Wind triangle method

 (1)

 [

]

35

 [

]

 [

]

 (2)

 (3)

 [

] (4)

 V = magnitude of the airspeed

 = residual yaw error in the direction cosine matrix

 =column of the DCM that represents the fuselage

From equation 4 and 2

 [

] (5)

 Equation 5 leads to the following equation for computing the airspeed:

36

| |

| |
 (6)

Equation 6 is used in to compute airspeed in case there isn’t airspeed sensor mounted

onboard. But a vital step in understanding how the transformation between AS and GS

has been worked out to predict Wind direction and speed as shown in further part.

| |

| |
 (7)

 [

] [

] ⌈

⌉ (8)

 [

] [

] [

] (9)

 The above 3 equations explains the 3 components of wind vector estimated

by ArduPlane.

Note: The direction cosine matrices are additional data added in wind prediction

algorithm to take into account the changes in magnetic heading due to yaw rates in

37

UAVs. The graphical explanation of Direction Cosine Matrix implemented is shown in

appendix II.

 Error with the prediction based algorithm

 As shown above the wind estimation algorithm used by ArduPlane code is

mainly a prediction based algorithm instead of direct wind measurements. The

absence of direct measurement techniques leads to inaccurate wind speed and

direction calculation. This is very important in maneuvering missions. Due to use

of prediction based algorithm there are cross track errors as shown in simulation

results earlier. The simulations are performed with constant wind speed and

direction. The effects of varying wind conditions can be seen well in actual field

testing data shown in Chapter 5.

38

5. FIELD TESTING

 The flight testing was done with Skywalker UAV and AIRMAR sensor onboard.

The following results will show the difference between true wind speed with respect to

ground and the wind speed calculated by APM 2.5.

 Table (4) is a reference table for details about flight tests performed on the flying

field.

Table 4,

Flight tests details

Test No. Flight

Starting Time

HH:MM:SS

Total Flight

Time

(MM:SS)

Average Wind

Conditions

Speed (m/s) &

Direction

Waypoint

Mission

Flight 1 17:27:10 7:30 16 m/s from 225° Rectangular

Flight 2 18:10:00 10:10 16 m/s from 225° Lawn Mower

Flight 3 9:33:45 11:25 10 m/s from 52° Rectangular &

Figure of 8

Flight 4 9:59:25 6:5 12 m/s from 325° Lawn Mower

Figure 25, shows the path followed by Skywalker in Flight 1 (Table 4) with 4

waypoints, the maximum cross track error can be seen between waypoint 3 and 4.

39

Figure 26, Flight with 4 waypoints with simple rectangular path mission.

Wind Speed 16 m/s, the average in Chandler, Arizona USA is considered to be lot

higher than average of 5 m/s. This can be considered as high and gusty windy conditions.

40

 Software in the loop simulation:

 The software in the loop simulation was performed with the same waypoints,

wind conditions were similar as actual field tests and the result is shown in Figure (20).

The cross track error is lesser than the actual flight test (figure 19). The reason behind

that is wind conditions in simulation were constant throughout the flight, whereas in

actual flight test the wind conditions don’t remain constant. The wind prediction

stabilizes after sometime and remains almost constant. That’s why; cross track error in

simulation is less than cross track error in actual flight.

Figure 27, Software in loop simulation of Flight 1.

41

Field testing data from sensors:

1. Wind direction data:

Figure 28, Wind direction predicted by APM 2.5

Figure 29, Wind direction by AIRMAR Wind Sensor

-50

0

50

100

150

200

0 100 200 300 400 500

A
n

gl
e

 (
 D

e
gr

e
e

s
)

Time (Seconds)

Wind Direction by APM 2.5

42

Graph Comparison:

Comparing figure 28, showing wind direction predicted by APM 2.5 with figure

29, showing wind direction by AIRMAR Wind Sensor (true wind direction) with the

local values of angles (shows wind direction), it can be clearly seen the error in wind

prediction by APM 2.5. This error leads to wrong crab angle calculation for attitude

correction. This overall results into cross track errors, as the correct attitude correction

was not applied.

2. Wind Speed data:

Referring to the graphs shown on next page, figure (30) shows the graph

of wind speed by predicted by APM 2.5 with average of 4 m/s. Figure (31),

shows true wind speed by AIRMAR Wind Sensor with average of 10 m/s.

comparing local values at different time instances shown in figure (30) and figure

(31), it can be clearly seen the inaccuracy of wind speed prediction by APM 2.5

and the actual wind speed. This will result in less power supplied to main

brushless motor propelling the UAV, which will make it fly slower or not able to

fly in windy conditions.

43

Figure 30, Wind Speed predicted by APM 2.5

Figure 31, Wind speed by AIRMAR

0

2

4

6

8

0 100 200 300 400 500

W
in

d
 S

p
e

e
d

 m
/s

Time (Seconds)

Wind Speed by APM 2.5

44

 Actual flight test with lawn mower pattern

The actual test of the wind prediction algorithm was performed by flying UAV

with through lawn mower pattern mission. Flight 2 from Table (4) explains the flight

details. The lawn mower pattern involved turns, (referring turn between waypoint 2 and

3) with more than minimum radius.

Figure 32, Lawn mower pattern

Figure (32) shows the blue track way off from the preplanned path (shown by

yellow track). The maximum cross track error can be noted between waypoint 6 and 7.

This is very bad scenario in lawn mower pattern following. The UAV spent nearly 50%

more distance than required planned path. This leads to UAV spending more mission

45

time and more battery power. This is because the way Ardupilot calculates wind with the

geometrical transformation based prediction method, discussed in Chapter 4.

 Software in the loop simulation:

 Figure (33) shows software in the loop simulation of same lawn mower pattern

mission with simulating the flight conditions mentioned in flight 2 (Table 4), the drift in

actual flight path can be seen with the maximum drift between waypoint 5 and 6.

Figure 33, SITL Simulations of Lawn mower pattern

46

 Additional flight tests:

Some more flights tests were performed to test the UAV in different

conditions.

1. Rectangular Pattern: Figure (34) shows snapshot of a mission data with

Flight 3 (table 4). The maximum cross track error can be noted between

waypoint 2 and 3. The wind direction is opposite as compared to Flight 1

shown in Figure (27).

 Figure 34, Rectangular pattern mission with Flight 3 conditions

Wind

47

2. ‘Figure of 8 Pattern’: This pattern is used in mostly all software in loop

simulations (figure 35). This pattern was tested with same flight 3 conditions

(table 4). Average 15 meters of cross track error was noted with maximum being

31 meters between waypoint 6 and 7. The cross track error is less than cross

track error in rectangular pattern shown in figure (34). This is mainly due to

turning angle is around 120° in ‘figure of 8’ loop as compared to turning angle of

around 90° in rectangular. The rectangular pattern involve more sharper turns

which require better wind estimation to reduce cross track error. The earlier

graph comparison of wind speed and direction data showed the inaccuracy on

ArduPlane code.

 Figure 35, ‘Figure of 8’ waypoint pattern mission

48

3. Lawn Mower Pattern: The lawn mower pattern showed in figure (36) shows

the flight track under different wind condition than previous lawn mower

pattern mission (figure 36). It can be seen from the flight track the drift due

to wind after waypoint 2. The drift increased more and more due to

inaccurate wind predictions before reaching back to track between 3 and 4.

 Figure 36, Lawn mower pattern mission with different wind condition

49

 Summarizing cross track error and wind speed:

 The following graph shows the maximum cross track error in each of missions

discussed earlier with wind velocity. The graph explains the variation in cross track error

depending on different missions and wind conditions. The maximum cross track errors

can be seen in lawn mower pattern missions having more turns.

Figure 37, Cross Track Error vs. Wind Speed

16 16
10 10 12

0

20

40

60

80

100

120

140

160

180

Rectangular Lawn Mower Rectangular Figure of 8 Lawn Mower

C
ro

ss
 T

ra
ck

 E
rr

o
r

(
M

et
er

s
)

Mission Configuration

Cross Track Error Vs Wind Speed

Cross Track Error Average wind Speed (m/s)

50

6. CONCLUSIONS

The current method of wind estimation and prediction doesn’t predict true wind

speed and direction with respect to earth frame. The predicted wind speed and direction

are more than 60% off from the actual wind condition. The inaccuracy in real time

updating of wind data leads to error in attitude correction applied by autopilot board. The

effects of this method are shown with Software in The Loop simulations (with the

constant wind conditions) and actual field testing.

The field testing confirms the difference between wind speed and direction

predicted by autopilot board (APM 2.5) and the true wind speed, direction (actual field

conditions) by AIRMAR wind sensor. This difference is significantly large which leads

to cross track error. In some cases the maximum cross track error occurred while flying

between two waypoints is larger than the distance between them. The larger cross track

error, increases mission completion time with more power consumption than estimated.

The current method of wind estimation and prediction is not accurate enough to

perform minimum radius turns for waypoints navigation in highly maneuvering missions

such as lawn mower patterns.

51

Future Work

Mapping missions requires capturing images at predefined waypoints with many

waypoint and turns. The UAV needs to fly with different heading depending on the turns

they are flying through. Considering one of the following cases which involve high wind

conditions and maneuvering. One of the difficult parts in the planned path is achieving

waypoint 2, as shown wind direction would be 45° to path between waypoint 1 and 2.

The UAV would drift from the waypoint 2 while on the way to waypoint 3. To overcome

this problem following solution can be implemented.

Figure 38, Future development in algorithm

 Designing an algorithm which will use the real time wind data and

will increase the waypoint radius real-time, so the UAV can still

achieve the waypoint.

 But the radius cannot be increased more than maximum allowable

tolerance so that it will affect the frontal and sideways overlap of

image to be captured by camera while passing through the

52

waypoint. The next part of algorithm would be, if the UAV drifts

more than maximum limit of the radius then it should skip the

waypoint and going towards the next one. It should come back

later while flying into the wind to achieve missed waypoint.

53

References

1. John Osborne and Rolf Rysdyky “Waypoint Guidance for Small UAVs in Wind”

Journal of Guidance, Control and Dynamics, July-August 2011.

2. Brent K. Robinson a thesis report on “an investigation into robust wind correction

algorithms for off-the-shelf unmanned aerial vehicle autopilots” Air Force

Institute of Technology, Ohio.

3. DIY Drones, UAV development community.

4. William Premerlani “IMU Wind estimation theory” 12/12/2009.

5. Jan Petrich, Kamesh Subbarao “On-Board Wind Speed Estimation for UAVs”

Nextgen Aeronautics and the University of Texas Arlington.

6. Am Cho, Jihoon Kim, Sanghyo Lee, Changdon Kee “Wind Estimation and

Airspeed Calibration using a UAV with a single –Antenna GPS Receiver and

Pitot Tube” IEEE Transactions on Aerospace and Electronic System, Vol 47 No

1, January 2011.

7. Adrian Stanley “Flight Path Deconfliction of Autonomous UAVs” QuinetiQ,

Thurleigh, Bedfordshire, UK.

8. Duncan Miller “Autonomous Vehicle Laboratory for Sense and Avoid Research

and Hardware-in-the-Loop” University of Michigan, Ann Arbor.

9. Hollister, W. M., Bradford, E. R., and Welch, J. D. “ Using aircraft radar tracks to

estimate winds aloft ” MIT Lincoln Laboratory Journal, 2 (1989), 555—565.

10. Khelif, D., Burns, S. P., and Friehe, C. A. “Improved wind measurements on

research aircraft” Journal of Atmospheric and Oceanic Technology, (1998)

11. Meir Pachter, Nicola Ceccarelli and Philip R. Chandler “Estimating MAV’s

Heading and the Wind Speed and Direction Using GPS, Inertial, and Air Speed

Measurements” Air Force Institute of Technology Wright-Patterson Air Force

Base, OH 45433.

12. GitHub for Ardupilot “ https://github.com/diydrones/ardupilot ”

13. Jack W. Langelaan, Nicholas Alley and James Neidhofer “Wind Field Estimation

for Small Unmanned Aerial Vehicles”, Journal of Guidance, Control and

Dynamics, July-August 2011.

54

14. N. Ceccarelli, J.J. Enright, E. Frazzoli, S.J. Rasmussen and C.J. Schumacher,

“Micro UAV Path Planning for Reconnaissance in Wind”, American Control

Conference.

15. Lawrance, N.R.J, Sukkarieh, S. “A guidance and control strategy for dynamic

soaring with a gliding UAV” Robotics and Automation, 2009. ICRA.

16. Mishra, P. and Enge, P. “Gloabal Positioning System: Signals, Measurements and

Performance, 2
nd

 Ed”, Lincoln, MA, 2006.

17. Rysdyk, “Unmanned Aerial Vehicle Path Following for Target Observation in

Wind”, Journal of Guidance, Control and Dynamics, September-October 2006.

18. Jonathan How, Ellis King, Yoshiaki Kuwata, “Flight Demonstrations of

Cooperative Control”, Unmanned Unlimited, September 2004, Chicago, Illinois.

19. K.P.A. Lievins, J. A. Mulder and P. Chu, “Single GPS antenna attitude

determination of a fixed wind aircraft aided with aircraft aerodynamics”, AIAA

Guidance, Navigation and Control Conference and Exhibit, August 2005, San

Francisco, California.

55

APPENDIX I

FLIGHT SCRIPT

The following python code explains the flight script used to perform Software in

the loop simulations. The script contains home location, wind parameter input and the

way to import preplanned mission.

fly ArduPlane in SIL

import util, pexpect, sys, time, math, shutil, os

from common import *

from pymavlink import mavutil

import random

get location of scripts

testdir=os.path.dirname(os.path.realpath(__file__))

HOME_LOCATION='33.298825,-111.954793,354,180' # Setting up home GPS Co-

ordinates

WIND="30,90,0.2" # speed,direction,variance # Specifying wind directions

homeloc = None

The following first 3 blocks of code specifies the Takeoff, Fly in

circuit, then Return to Launch to start Auto mode This allows UAV to

start a waypoint mission

def takeoff(mavproxy, mav):

 '''takeoff get to 30m altitude'''

 mavproxy.send('switch 4\n')

 wait_mode(mav, 'FBWA')

 # gain a bit of altitude

 if not wait_altitude(mav, homeloc.alt+50, homeloc.alt+80, timeout=30): # Changed

from 150 and 180

 return False

 # level off

 mavproxy.send('rc 2 1500\n')

 print("TAKEOFF COMPLETE")

 return True

def fly_left_circuit(mavproxy, mav):

 '''fly a left circuit, 200m on a side'''

 mavproxy.send('switch 4\n')

 wait_mode(mav, 'FBWA')

 mavproxy.send('rc 3 1600\n') # changed fro 2000

 '''if not wait_level_flight(mavproxy, mav):

56

 return False'''

 print("Flying left circuit")

 # do 4 turns

 for i in range(0,4):

 # hard left

 print("Starting turn %u" % i)

 mavproxy.send('rc 1 1000\n')

 if not wait_heading(mav, 270 - (90*i), accuracy=10):

 return False

 mavproxy.send('rc 1 1500\n')

 print("Starting leg %u" % i)

 if not wait_distance(mav, 100, accuracy=20):

 return False

 print("Circuit complete")

 return True

def fly_RTL(mavproxy, mav):

 '''fly to home'''

 print("Flying home in RTL")

 mavproxy.send('switch 2\n')

 wait_mode(mav, 'RTL')

 if not wait_location(mav, homeloc, accuracy=120,

 target_altitude=homeloc.alt+80, height_accuracy=20,

 timeout=180):

 return False

 print("RTL Complete")

 return True

def setup_rc(mavproxy):

 '''setup RC override control'''

 for chan in [1,2,4,5,6,7]:

 mavproxy.send('rc %u 1500\n' % chan)

 mavproxy.send('rc 3 1000\n')

 mavproxy.send('rc 8 1800\n')

The mission script is loaded here

def fly_mission(mavproxy, mav, filename, height_accuracy=-1, target_altitude=None):

 '''fly a mission from a file'''

 global homeloc

 print("Flying mission %s" % filename)

 mavproxy.send('wp load %s\n' % filename)

 mavproxy.expect('flight plan received')

 mavproxy.send('wp list\n')

 mavproxy.expect('Requesting [0-9]+ waypoints')

 mavproxy.send('switch 1\n') # auto mode

 wait_mode(mav, 'AUTO')

 if not wait_waypoint(mav, 1, 7, max_dist=60):

 return False

 if not wait_groundspeed(mav, 0, 0.5, timeout=60):

 return False

 print("Mission OK")

 return True

57

def fly_ArduPlane(viewerip=None, map=False):

 '''fly ArduPlane in SIL

 you can pass viewerip as an IP address to optionally send fg and

 mavproxy packets too for local viewing of the flight in real time

 '''

 global homeloc

 options = '--sitl=127.0.0.1:5501 --out=127.0.0.1:19550 --streamrate=10'

 print "Getting ready to send"

 if viewerip:

 options += " --out=%s:14550" % viewerip

 print "Sending on %st port 14550" % viewerip

 if map:

 options += ' --map'

 sil = util.start_SIL('ArduPlane', wipe=True)

 mavproxy = util.start_MAVProxy_SIL('ArduPlane', options=options)

 mavproxy.expect('Received [0-9]+ parameters')

 # setup test parameters

 mavproxy.send("param load %s/ArduPlane.parm\n" % testdir)

 mavproxy.expect('Loaded [0-9]+ parameters')

 mavproxy.send("param fetch\n")

 # restart with new parms

 util.pexpect_close(mavproxy)

 util.pexpect_close(sil)

 cmd = util.reltopdir("Tools/autotest/jsbsim/runsim.py")

 cmd += " --home=%s --wind=%s" % (HOME_LOCATION, WIND)

 if viewerip:

 cmd += " --fgout=%s:5503" % viewerip

 runsim = pexpect.spawn(cmd, logfile=sys.stdout, timeout=10)

 runsim.delaybeforesend = 0

 util.pexpect_autoclose(runsim)

 runsim.expect('Simulator ready to fly')

 sil = util.start_SIL('ArduPlane')

 mavproxy = util.start_MAVProxy_SIL('ArduPlane', options=options)

 mavproxy.expect('Logging to (\S+)')

 logfile = mavproxy.match.group(1)

 print("LOGFILE %s" % logfile)

 buildlog = util.reltopdir("../buildlogs/ArduPlane-test.tlog")

 print("buildlog=%s" % buildlog)

 if os.path.exists(buildlog):

 os.unlink(buildlog)

 try:

 os.link(logfile, buildlog)

 except Exception:

 pass

 mavproxy.expect('Received [0-9]+ parameters')

58

 util.expect_setup_callback(mavproxy, expect_callback)

 expect_list_clear()

 expect_list_extend([runsim, sil, mavproxy])

 print("Started simulator")

 # get a mavlink connection going

 try:

 mav = mavutil.mavlink_connection('127.0.0.1:19550', robust_parsing=True)

 except Exception, msg:

 print("Failed to start mavlink connection on 127.0.0.1:19550" % msg)

 raise

 mav.message_hooks.append(message_hook)

 mav.idle_hooks.append(idle_hook)

 failed = False

 e = 'None'

 try:

 if not fly_mission(mavproxy, mav, os.path.join(testdir, "ap1.txt"),

 height_accuracy = 10,

 target_altitude=homeloc.alt+100):

 print("Failed mission")

 failed = True

 if not log_download(mavproxy, mav, util.reltopdir("../buildlogs/ArduPlane-

 log.bin")):

 print("Failed log download")

 failed = True

 except pexpect.TIMEOUT, e:

 print("Failed with timeout")

 failed = True

 mav.close()

 util.pexpect_close(mavproxy)

 util.pexpect_close(sil)

 util.pexpect_close(runsim)

 if os.path.exists('ArduPlane-valgrind.log'):

 os.chmod('ArduPlane-valgrind.log', 0644)

 shutil.copy("ArduPlane-valgrind.log", util.reltopdir("../buildlogs/ArduPlane-

valgrind.log"))

 if failed:

 print("FAILED: %s" % e)

 return False

 return True

59

APENDIX II

GRAPHICAL ILLUSTRATION FOR DIRECTION COSINE MATRICES

F
ig

u
re

 3
9
,
G

ra
p
h
ic

al
 r

ep
re

se
n
ta

ti
o
n
 o

f
h
o
w

 t
h
e

D
ir

ec
ti

o
n
 C

o
si

n
e

M
at

ri
ce

s
ar

e
ca

lc
u
la

te
d
.

