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ABSTRACT 

 

The presented work in this report is about Real time Estimation of wind and 

analyzing current wind correction algorithm in commercial off the shelf Autopilot board. 

The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is 

used. Currently there is lot of development being done in the field of Unmanned Aerial 

Systems (UAVs), various aerial platforms and corresponding; autonomous systems for 

them. This technology has advanced to such a stage that UAVs can be used for specific 

designed missions and deployed with reliability. But in some areas like missions 

requiring high maneuverability with greater efficiency is still under research area. This 

would help in increasing reliability and augmenting range of UAVs significantly.  

One of the problems addressed through this thesis work is, current autopilot 

systems have algorithm that handles wind by attitude correction with appropriate Crab 

angle. But the real time wind vector (direction) and its calculated velocity is based on 

geometrical and algebraic transformation between ground speed and air speed vectors. 

This method of wind estimation and prediction, many a times leads to inaccuracy in 

attitude correction. The same has been proved in the following report with simulation and 

actual field testing. In later part, new ways to tackle while flying windy conditions have 

been proposed.   
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1. INTRODUCTION 

 

 Motivation  

           Current advancements in UAV technologies such as hardware reliability, controls 

and open source autopilot systems (APM 2.5) has made it possible by just using Google 

Maps point and click features, plan your mission, specify altitude, toggle between 

different flight modes. It also helped setup a good platform for using UAVs for 

maneuvering missions and long duration flights in surveillance. One of the well-known 

and growing interest applications of UAVs is 3D Terrain mapping. Many commercial 

image processing tools are available, which will generate the requirements for frontal and 

sideways overlap for capturing images. This gives a good idea about what altitude and 

latitude-longitude the images have to be taken. The images are triggered at time intervals 

by setting up waypoints in Lawn Mower Pattern. But there are nonlinear natural 

conditions always present to challenge these systems such as winds. The control 

algorithms do compensate for this wind disturbance, but there are no real time wind 

speed and directions sensors onboard. The absence of direct wind measurements that can 

update correct wind data lead to inaccuracy in attitude corrections applied by autopilot 

board. Because of this error in Wind estimation, UAVs drift a lot from their course and 

they tend to miss the waypoint and come back again to pass through the waypoints. 

The drift in waypoint following results in reduced endurance and less area 

coverage in mapping missions. This report will bring out these differences and open up 

area for newer algorithm development.  
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 Problem Statement 

 

1) Using Software in Loop Simulations show the effects of wind from 

various directions with different speeds on selected UAV model. Show 

how it affects the waypoint achievement and drifting from designated 

Path following.  

2) Through actual flying of UAV, with the wind sensor on board, show 

the error in wind direction and speed calculated in APM 2.5 with 

independent wind direction and speed sensor.  

 

 Overview of the Thesis  

o The current work done in this area 

o Current methods of wind handling in UAVs 

o Sensors currently used for wind measurements in Aircrafts 

o Experimental setup, discussing different instruments used 

o Simulation environment, about Software in the loop simulations 

o Flight testing characteristics 

o Current algorithm used for Wind Estimation 

o Flight Dynamics Model used in SITL 

o Effects of Wind from various directions and with different speeds 

o Discussion of actual field testing data and showing differences in wind 

velocity estimations 

o Suggested correction methods. 
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2. CURRENT SCENARIOS 

 Background 

  Unmanned Aerial Vehicles (UAVs) have lots of applications in various 

mission scenarios. The development in various areas has increased their 

endurance, payload capacity, speed, reduced mission costs. 

 There are many defense applications such as, 

o Various surveillance scenarios 

o Target mission, reaching particular location in munitions applications 

o Following a moving target, and many more. 

 

      

Figure 1, US Reaper UAV in combat                Figure 2, UAV in surveillance 

            There are many civil applications as mentioned below, 

o 3D mapping 

o Search and rescue  

o Weather monitoring and many more 
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Figure 3, Mapping Using Lawn Mower Pattern            

 Among the uses mentioned above, the current work is more focused on 

performance of UAVs in missions which require lot of maneuvering while navigating 

through waypoints. UAV maneuvering becomes more challenging in conditions where it 

needs to perform a minimum radius turns. The important condition when UAV perform 

minimum radius turn is UAV needs to follow a coordinated turn. Aircraft is said to be 

following a coordinated turn when it doesn’t have any side sleep in turn.      

 The path planning of maneuvering missions depends on various parameters of 

UAV, some of them are; 

o UAV dynamics 

o Maneuvering capabilities 

o Range 

o Cruise speed 

o Wind conditions 
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Most of these parameters are known or we can have a good estimation based on 

the UAV design before the flight in mission planning phase. But accurate local wind 

conditions are difficult to calculate and predict, that’s why it’s estimated onboard and 

control actions are applied accordingly.  The methods and algorithms used for estimation 

of wind plays very important role in robust wind tackling algorithms.   

 

 Some Earlier methods 

         Wind conditions were used in various ways in earlier UAV applications.  

1. Wind soaring technique: 

Wind soaring techniques were most popular ways to reduce energy 

consumption onboard by flying in existing wind directions. Soaring is the 

process of gaining energy from the atmosphere in-flight using an 

aerodynamic free-flying platform. Dynamic soaring utilizes the energy 

available in vertical wind gradients; this allows UAVs to spend less 

energy to generate lift. [Lawrence et al, 2009] 

 

2. Boeing Condor UAV: 

“Fly in backwards” this concept was implemented in Boeing 

condor UAV. The airfoil with additional control techniques was designed 

in such a way that allows UAV to hover or fly backwards avoiding stall 

conditions. Boeing Condor set several records for piston-powered aircraft 

by reaching a top altitude of 67,028 feet and staying aloft for nearly two 

and one-half days [http://www.boeing.com/boeing/history/boeing/condor] 
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Figure 4, Boeing Condor Unmanned Aerial Vehicle 

 

 Significance of wind in earlier methods: 

These techniques were more focused on sustaining and changing current 

flight course to use windy conditions rather than maneuvering through wind to 

follow preplanned mission. Preplanned missions will require UAVs to follow 

waypoints in particular sequential order irrespective of wind conditions. This 

makes it challenging to fly with varying attitudes towards with respect to average 

wind. UAV needs to turn in different direction based on the waypoint order. 

Turning of UAV changes the apparent wind conditions with respect to UAV 

frame. The accurate wind estimation becomes more significant in turning 

conditions in comparison to techniques discussed above.  

 

 Current work in Wind Estimation 

Recently, there has been significant work done in the area of path planning 

of UAVs with consideration of Wind effects by Air Force Institute of Technology 

in Ohio, Aerospace Control Laboratory at MIT, and University of Washington. 
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But most of the work is focused more on wind prediction techniques than direct 

wind measurement.  

“An aircraft in flight is airborne and subject to the movement of the air 

mass in relation to the surface; i.e. the wind. The relatively low cruising speed of 

light aircraft makes them particularly affected by wind velocity. Consequently the 

calculation of the wind effect on aircraft movement relative to the ground is a 

major part of light aircraft flight planning and navigation.” [John Brandon, 2013] 

This quote explains the need of direct wind vector calculation with respect to 

earth frame on light aircrafts i.e. UAVs.  

 

o Current Methods  

There are different kinds of wind estimation methods used currently. 

Some of the methods are discussed below, 

1. Using GPS Velocity 

   Lagelaan et al. [13] elaborates this method as, GPS 

provides a direct measurement of velocity with respect to the Earth, 

accurate to approximately 0.1 m/s. Carrier phase differential GPS 

allows velocity measurements accurate to the order of millimeters per 

second) [16]. Thus, local air mass velocity components can be 

obtained directly from vehicle kinematics and the GPS velocity. 

[

  

  

  

]  [

  

  

  

]  [

  
  
  

] 
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W = Wind speed vector over ground 

S = Ground speed (GPS Velocity)   

V =                                   

    The method is based on autopilot module providing estimated 

components of airspeed and Euler angles. This method doesn’t 

consider the changes in magnetic heading and turn rate while 

predicting the wind vector. This leads to inaccuracy in wind direction 

and velocity prediction. 

 

2. Computing Wind from Vehicle Response [13] 

       This method is based on comparison of measurements of 

aircraft motion with respect to the Earth (GPS measurements) with 

predictions of aircraft motion obtained from UAV dynamic model 

(based on aircraft acceleration with respect to surrounding air).   

       This method doesn’t produce good results due to GPS 

uncertainty is of the order of 3 m. The carrier phase differential GPS 

does improve position accuracy to the order of centimeters but this is 

still noisier than GPS velocity estimates. The aircraft dynamic model 

takes into account aerodynamic forces, which depends on wind 

gradients. If the wind gradients are large, then predicted forces will be 

significantly different from actual forces, resulting an error in UAV 

dynamic model. 
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3.  Wind Triangle method 

         Wind triangle method for wind estimation [6] works on GPS 

ground track vector and true airspeed vector and considers turning rate 

(yaw rate) of aircraft. As shown in figure (5), this method works on 

predicting wind vector (  ) based on geometric transformation 

between true airspeed vector (  ) and ground speed vector    .   

The algorithm based on this method is discussed in detail in 

Chapter 4. The wind triangle method is used in Wind estimation 

algorithm in Ardupilot Mega 2.5 autopilot board used in this work. 

 

 

 

               Figure 5, Wind triangle method for wind estimation 

 

 Summarizing current methods 

              The various methods discussed above are mainly prediction based 

method rather than direct measurement. These methods predict wind speed 

and direction based on airspeed sensor and GPS measurements. These 
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methods don’t use direct wind measurement sensor to calculate wind 

speed and direction.  

             The current work has shown the inaccuracy of prediction based 

wind estimation techniques used in current commercial of the shelf 

autopilot boards. The estimated wind is compared with the independent 

wind sensor mounted onboard of UAV. This independent wind sensor 

gives true wind speed and direction data of actual flying field 

environment. The prediction based techniques works very well in simple 

waypoint following mission. But these estimations won’t be optimal, 

leading to significant cross-track error in maneuvering missions. 

Maneuvering missions involves challenging waypoints navigation which 

requires more dynamic and real time wind estimation in UAVs.  

 

 Flying in windy conditions 

The best way to fly in windy conditions is flying into direction of wind, 

i.e. when the fuselage is parallel to the wind. Flying into the wind will allow 

maximum wind speed on leading edge of wing airfoil, as they are designed in 

such a way. But this isn’t always possible as the path planned may have 

orientation either away from or at an angle with respect to the wind direction with 

no choice. In such cases the aircrafts are flown with their nose pointing towards 

the wind instead of directly towards planned path. The angle between Aircraft 

heading and desired course is known as “Crab angle”. The calculation of crab 

angle depends on various factors such as wind direction, magnitude, aircraft 
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velocity and the course it needs to follow. The current algorithms are designed in 

such a way that they calculate the crab based on the predicted wind direction and 

speed. In following figure (6) [Britannica] the first picture shows a drift in wind 

without applying any attitude correction and second picture shows applied attitude 

correction to maintain the flight path by turning the nose towards the wind. 

 

 

           Figure 6, Wind Drift                                       

 

 

Figure 7, Crab Angle  
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3. EXPERIMENTAL SETUPS 

 

               This section contains description of most of the hardware used in this 

experiment. 

o Unmanned Aerial Vehicle 

We used an RC aircraft known as Skywalker. It is a ready to fly 

preassembled kit airplane from Event 38 Unmanned Systems. It’s a 

remote controlled electric powered plane and provides good platform for 

surveillance purposes. It is pusher propeller configuration which gives 

more space in forward area of fuselage for more equipment installation. It 

requires 30-35% of maximum throttle for cruise conditions and flies with 

cruise speed of 12 m/s. This cruise speed is slow enough for image 

capturing missions. These images would be later used in software called 

Agisoft for generating 3D map of whole terrain. 

 

 

 

 

    

 

 

 

Figure 8, Skywalker UAV with AIRMAR Wind Sensor 

 

Wind Sensor Autopilot 

Brushless motor 
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 Skywalker Characteristics: 

Table 1 

            Skywalker Airplane Characteristics   

 

  

 

 

 

 

 

o ArduPilot Mega 2.5 

 

Figure 9, Ardupilot Mega 2.5 board  

 

The heart of the control system used in UAV is open source 

developed ArduPilot Mega version 2.5 board, popularly known as APM 

2.5 purchased from 3DRobotics Inc. Its Arduino compatible, Atmel’s 

ATMEGA2560 based board with following features: 

Wing Span 1800 mm 

Length 1300 mm 

Cruise Speed 12 m/s 

Max Speed 42 m/s 

Normal flight time 30-50 min 

20-25 min with 1.2kg payload 
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 3-axis gyro, accelerometer and magnetometer, along with a  high-

performance barometer 

 Digital compass powered by Honeywell's HMC5883L-TR chip 

 Mediatek MT3329 GPS Module. 

 It uses Invensense 6 DoF Accelerometer/Gyro MPU-6000. 

 Barometric pressure sensor MS5611, MEAS High Resolution 

      Altimeter. 

o Mission Planner 

            Mission Planner is open source Ground Control Station software 

with following features: 

 Point-and-click waypoint entry, using Google Maps 

 Select mission commands from drop-down menus 

 Download mission log files and analyze them, covert them to 

KMZ for Google earth data processing 

 Configure APM settings for airframe 

 See the output from APM’s serial terminal sent over telemetry  

     Mission Planner was also used to setup Software in the Loop simulation. 

Mission Planner was really important part of simulation to control the flight 

conditions, to verify conditions setup in the simulation script in an effort to 

simulate as close to real time scenarios as possible. 
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Figure 10, Mission Planner Layout, from DIY Drones 

 

o Airspeed Sensor 

An airspeed sensor has been used to calculate airspeed with Pitot 

tube setup; this data was used in conjunction with Ground Speed 

calculated by GPS to predict wind speed and its direction. 

                             Features: 

 Measure pressure up to 7kPa through each port for pressure 

sensing but also for vacuum sensing. 

 -2 to 2 kPa (-0.3 to 0.3 psi). 
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Figure 11, Airspeed Sensor, 3DRobotics 

 

o AIRMAR Weather sensor 

AIRMAR PB200 weather sensor has been used to collect real time wind 

data. The AIRMAR Weather Station Instrument is the only all-in-one 

weather sensor that calculates apparent wind speed and direction, 

barometric pressure, air temperature, and wind chill temperature. With 

the internal compass and WAAS/EGNOS GPS, true wind speed and 

direction can also be calculated. 

            The AIRMAR wind sensor was really helpful in getting actual 

wind data such as true wind speed with respect to ground fame, apparent 

wind speed, which is corresponding to airspeed of the airplane. It also 

gives these data with the true magnetic heading which was used to 

compare the wind direction predicted by APM 2.5. 
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Figure 12, AIRMAR Sensor 

 

 Wind Speed Range: 0 knots to 80 knots (0 MPH to 92 MPH) 

 Wind Speed Resolution: 0.1 knots (0.1 MPH) 

 Wind Direction Range: 0° to 360° 

 Wind Direction Resolution: 0.1° 
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o Field Conditions at flight testing field ; W Fry Rd, Chandler 

                             The temperature ranges from 50°F to 80°F, with wind speeds from 

2 mph to 20 mph.  The area shown approx. 2000*2000 ft. 

 

 
 

Figure 13, Google maps Field view of Chandler flight test location. 
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4. SIMULATIONS 

 

 Overview of SITL: 

 Software in the Loop modeling and simulation (SITL) setup has been used for all 

simulation. The advantages are described as follows by Special Interest Group on 

Simulation and Modeling: 

  

 Software-in-the-loop Modeling & Simulation can be viewed as 

Simulation-based Software Evaluation. 

 A software system can be executed under simulated input conditions for 

the purpose of evaluating how well the software system functions under 

such input conditions. 

 Software-in-the-loop Modeling & Simulation is a cost-effective method 

for evaluating a developed, mission-critical software system before it is 

used in the real world. 

            In current scenario, the SITL was used to fly a particular model to follow 

generated a flight path from Mission Planner software and simulate the wind conditions 

from various directions. The effects of wind on UAV with different directions and 

various speeds were observed with SITL simulation.  
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 In Figure (14) shows how SITL architecture works [DIY Drones community].  

 

 

Figure 14, SITL Architecture 

How it works: 

 The ArduPlane.elf will be built initially which will have the firmware. The 

firmware defines most flight parameters. The build contains most important part 

i.e. control algorithms designed to fly ArduPlane. 

 The flight script ArduPlane.py shown in later section will be written considering 

all mission requirement to be tested. ArduPlane.py is also connected to runsim.py 

which calls for Rascal FDM from library.  

 Then fly.ArduPlane command will start running which runs ArduPlane.py. 
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 The output of this flight will be displayed on Ground Control Software (GCS) 

Mission Planner. The mission can be changed and other parameters such as speed, 

modes can be changed real time via Mission Planner. 

The part of SITL implemented in current simulations is shown in figure (15). 

 

Figure 15, Part of SITL Architecture used 

 Parts of SITL:  

The following areas were important parts of Software in the loop simulation and 

modeling, it will give more idea about each component and the specifications used: 

1) Flight Dynamics Model used from JSBSim  

2) Flight Parameters and Mission Script 

3) Simulating Wind conditions 

4) Ground station - Mission Planner 
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Discussing each component in detail: 

1) Flight Dynamics Model (FDM):   

The SITL simulations results can be closest to actual aircraft by 

selecting closest flight dynamics model to actual test flown aircraft ( in 

this work the test platform would be Skywalker ). For current simulations 

Rascal 110 Flight dynamics model has been used and it’s compiled by 

JSBSim (an open source flight dynamics model library). FDM defines all 

physics and dynamics associated with aircraft. FDM consists of all data 

such as dimension, weight, CG, moment of Inertia’s etc. The whole FDM 

is the foundation to run the simulation for a particular model. 

 

Rascal 110 FDM has following characteristics: 

Table 2 

Rascal 110 FDM Characteristics 

 

Max weight  6 kg. 

Wing span 2.8 m. 

Length 1.92 m. 

Wing Area  0.98 m
2 
 

Cruise Speed 30.87 m/s  

Maximum Speed  44  m/s 
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2) Flight parameters-Simulation parameters: 

 Cruise speed:   

The ArduPlane control algorithm tries to maintain the preplanned 

cruise speed. It also compensates for windy conditions such as headwind, 

side wind, which changes the aircraft speed accordingly and tries to bring 

back to preplanned cruise speed.  The cruise speed was set to 20 m/s with 

considering reduction in throttle to better observe wind effects on actual 

path following than planned path. 

 

 The PID gains:    

The ArduPlane control algorithm works on PID gains. The 

simulation environments allows to tune PID gains for executing better 

flight controls and is important while comparing parameters to follow the 

planned path as accurately as possible. 

 

3) Various wind conditions: 

               It is a well-known fact that planes fly best with wind velocities not 

exceeding their maximum achievable velocities. Based on this and as 

mentioned earlier the cruise velocity of Rascal FDM is 30.87 m/s, so we have 

set the maximum velocity of wind in simulation to be 25 m/s. The simulation 



 
 

24 
 

input parameters are combination of parameters from column 1 and column 2 

as stated in following table. 

 

Table 3 

Simulation Parameters 

 

Wind Velocities Direction 

5 m/s 0° 

10 m/s 90° 

15 m/s 180° 

20 m/s 270° 

 

 

 These simulated conditions will show the drift or path swayed away from 

actual planned path of UAV. The drift would change based on the direction 

and magnitude of wind speed vector. 

 

 

 

 

 

 

 



 
 

25 
 

4) Flight script used in the simulations :  

 

Figure 17, Flow chart of the python based flight script. 
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 This is the modified flight script and tailored to simulate mission for wind 

estimation and observing its effects. The original script was referred from GitHub 

directory of Ardupilot. (https://github.com/diydrones/ardupilot ). The python code 

is shown in Appendix I. 

 

 

5) Mission design: 

 

The waypoints are setup in such way that UAV will follow a figure 

of 8. This configuration will orient UAV heading towards all directions.  

The waypoint radius: The perimeter around the waypoint is defined so 

that UAV can have certain tolerance while passing through waypoint 

instead of just defining a single point in 3D space. The radius has to be set 

in such a way that it is not too small so that UAV will miss it even with a 

small wind or other disturbance. The radius shouldn’t be too big so that it 

would drift from center of waypoint instead of passing through it. This is 

also basis for testing Lawn mower patterns for 3D mapping of terrain. The 

figure (18) shows the waypoint radius was defined bigger than maximum.  

 

https://github.com/diydrones/ardupilot
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                            Figure 18, Defining waypoint radius 

 

 Simulations: 

The Software in The Loop simulation was performed with all 

combinations of input parameters mentioned in the table 3. The effects of the 

wind from different directions and magnitude can be seen by looking over the 

blue colored track. 

Yellow track:   designated path generated by predefined missions containing 

                         Waypoints. 

Blue Track:      Path followed by UAV 

The dotted circles around waypoints: It shows the predefined waypoint radius.  
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The following results will show the drift from the preplanned path by 

UAV. The following image is a sample screen shot of Mission Planner displaying 

output of SITL simulation. It can be compared with the path followed by UAV in 

no input wind conditions (i.e. velocity 0 m/s) shown in figure 20. 

 

 

            Figure 19, Sample screen shot of Mission Planner 

All the images shown are with standard upward north convention.  
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1) Figure 20 shows the simulation with following input conditions:   

Wind speed: 0 m/s 

Wind Direction: 0°  

 The shown output of simulation can be presumed as ideal flight conditions 

because of no input wind conditions. This would be benchmarking case for testing 

how the Rascal 110 flight model flies with no wind conditions.  

 

 
 

           Figure 20, Wind Speed 0 m/s 

Figure 20 shows near ideal situation with minimal natural disturbance and 

following almost close to planned yellow track. 
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2) The next result shows the effects with: 

Wind Direction: 0°, from north to south  

Wind Speed: 5 m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21, Wind speed 5 m/s 

The drifted blue line track between waypoint 3 and 4 can be seen in circle 

marked. Wind speed of 5 m/s would be normal environmental conditions in Arizona, 

USA. 

 

 

 

Wind 
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3) The next result shows the effects with: 

      Wind Direction: 0°, from north to south 

      Wind Speed: 10 m/s 

 

 

Figure 22, Wind speed 10 m/s 

It can be noticed that the flight path has drifted more compared to Figure 22 

between waypoint 3 to 4 and 4 to 5 also towards waypoint 6. In later part after 6 there 

isn’t significant cross track error. The significant error in this case would be a cross track 

error of more than 2 meters from the yellow planned path. Here is very important point to 

note when comparing the waypoint followed from 3 – 4 – 5, in this case UAV was 

experiencing a tail wind conditions and while approaching waypoint 6 it experiences 

headwind conditions. Applying attitude corrections in case of headwind conditions is 

faster than tailwind case as there would be better control in headwind conditions. 
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4) The next result shows the effects with: 

       Wind Direction: 0°, from north to south 

       Wind Speed: 20 m/s 

  

Figure 23, Wind speed 20 m/s 

The maximum drift can be observed with 20 m/s wind from north to south. Wind 

velocity of 20 m/s being maximum velocity conditions for Skywalker. The drift is more 

between waypoint 3 and 4 as compare to 4 and 5. It is because Ardupilot doesn’t predict 

the wind direction and velocity in advance, before reaching to waypoint 3. This causes 

the UAV to drift more but after waypoint 4, Ardupilot predicts approximately the wind 

direction which helps to obtain good attitude correction i.e. turning the nose towards 

wind (into the wind direction) with appropriate crab angle. However this stabilization 

time won’t be enough when the UAV is taking a U turn with turning radius close 

minimum turning radius, in this case it need better wind estimation in advance. 
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5) The next result shows the effects with: 

         Wind Direction: 90°, from east to west 

         Wind Speed: 15 m/s 

 

 

 

 

 

 

 

 

 

 

 

Figure 24, Wind speed 15 m/s from 90° 

  The drift can be seen in the oval, but there isn’t any drift inwards while the UAV is 

flying from waypoint 7 to 8. This can be explained with UAV flying from waypoint 6 

towards 7 it flies with heading into the wind and it doesn’t predict wind in advance and 

enter the right turn while passing through waypoint 7, this is also responsible for 

overshooting the path between waypoint 7 and 8. 
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 Working of  wind estimation algorithm: 

The whole wind estimation method in ArduPlane code is based on 

William Premerlani’s Algorithm. This algorithm works on geometric 

transformation between Air Speed and Ground Speed. The figure (25) [free online 

private pilot], gives a detail about the airspeed vector (V) and groundspeed vector 

(S) used for wind vector prediction (W). [William Premerlani, 2009]  

 

Figure 25, Wind triangle method 

                                                             (1) 

 

   [

  

  

  

]                                          

 



 
 

35 
 

  [

  
  
  

]                                  

 

  [

  

  

  

]                                   

 

                            

                                                                                                                       (2) 

          

  
               

 
                                                        (3) 

           

                    [
              
      

 
         

  

]                                         (4) 

   V = magnitude of the airspeed 

                                     = residual yaw error in the direction cosine matrix  

                                     =column of the DCM that represents the fuselage  

From equation 4 and 2 
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 Equation 5 leads to the following equation for computing the airspeed: 
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|     |

|     |
                                                                       (6) 

Equation 6 is used in to compute airspeed in case there isn’t airspeed sensor mounted 

onboard. But a vital step in understanding how the transformation between AS and GS 

has been worked out to predict Wind direction and speed as shown in further part. 
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           The above 3 equations explains the 3 components of wind vector estimated 

by ArduPlane. 

Note: The direction cosine matrices are additional data added in wind prediction 

algorithm to take into account the changes in magnetic heading due to yaw rates in 
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UAVs. The graphical explanation of Direction Cosine Matrix implemented is shown in 

appendix II. 

 

 Error with the prediction based algorithm 

  As shown above the wind estimation algorithm used by ArduPlane code is 

mainly a prediction based algorithm instead of direct wind measurements.  The 

absence of direct measurement techniques leads to inaccurate wind speed and 

direction calculation. This is very important in maneuvering missions. Due to use 

of prediction based algorithm there are cross track errors as shown in simulation 

results earlier. The simulations are performed with constant wind speed and 

direction. The effects of varying wind conditions can be seen well in actual field 

testing data shown in Chapter 5.   
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5. FIELD TESTING 

 

 The flight testing was done with Skywalker UAV and AIRMAR sensor onboard. 

The following results will show the difference between true wind speed with respect to 

ground and the wind speed calculated by APM 2.5. 

              Table (4) is a reference table for details about flight tests performed on the flying 

field.  

Table 4,  

Flight tests details  

Test No. Flight 

Starting Time 

HH:MM:SS 

Total Flight 

Time 

( MM:SS) 

Average Wind 

Conditions 

Speed (m/s) & 

Direction 

Waypoint 

Mission 

Flight 1 17:27:10 7:30 16 m/s from 225°  Rectangular  

Flight 2 18:10:00 10:10 16 m/s from 225° Lawn Mower 

Flight 3 9:33:45 11:25 10 m/s from 52° Rectangular & 

Figure of 8 

Flight 4 9:59:25 6:5 12 m/s from 325° Lawn Mower 

 

Figure 25, shows the path followed by Skywalker in Flight 1 (Table 4) with 4 

waypoints, the maximum cross track error can be seen between waypoint 3 and 4.  
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Figure 26, Flight with 4 waypoints with simple rectangular path mission. 

Wind Speed 16 m/s, the average in Chandler, Arizona USA is considered to be lot 

higher than average of 5 m/s. This can be considered as high and gusty windy conditions. 
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 Software in the loop simulation:  

 The software in the loop simulation was performed with the same waypoints, 

wind conditions were similar as actual field tests and the result is shown in Figure (20). 

The cross track error is lesser than the actual flight test (figure 19). The reason behind 

that is wind conditions in simulation were constant throughout the flight, whereas in 

actual flight test the wind conditions don’t remain constant. The wind prediction 

stabilizes after sometime and remains almost constant. That’s why; cross track error in 

simulation is less than cross track error in actual flight. 

 

Figure 27, Software in loop simulation of Flight 1. 
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Field testing data from sensors: 

1. Wind direction data: 

 

Figure 28, Wind direction predicted by APM 2.5 

 

 

Figure 29, Wind direction by AIRMAR Wind Sensor 
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Graph Comparison: 

Comparing figure 28, showing wind direction predicted by APM 2.5 with figure 

29, showing wind direction by AIRMAR Wind Sensor (true wind direction) with the 

local values of angles (shows wind direction), it can be clearly seen the error in wind 

prediction by APM 2.5. This error leads to wrong crab angle calculation for attitude 

correction. This overall results into cross track errors, as the correct attitude correction 

was not applied. 

2. Wind Speed data: 

Referring to the graphs shown on next page, figure (30) shows the graph 

of wind speed by predicted by APM 2.5 with average of 4 m/s. Figure (31), 

shows true wind speed by AIRMAR Wind Sensor with average of 10 m/s. 

comparing local values at different time instances shown in figure (30) and figure 

(31), it can be clearly seen the inaccuracy of wind speed prediction by APM 2.5 

and the actual wind speed. This will result in less power supplied to main 

brushless motor propelling the UAV, which will make it fly slower or not able to 

fly in windy conditions.  
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Figure 30, Wind Speed predicted by APM 2.5 

 

Figure 31, Wind speed by AIRMAR  
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 Actual flight test with lawn mower pattern  

The actual test of the wind prediction algorithm was performed by flying UAV 

with through lawn mower pattern mission. Flight 2 from Table (4) explains the flight 

details. The lawn mower pattern involved turns, (referring turn between waypoint 2 and 

3) with more than minimum radius. 

 

Figure 32, Lawn mower pattern 

Figure (32) shows the blue track way off from the preplanned path (shown by 

yellow track). The maximum cross track error can be noted between waypoint 6 and 7. 

This is very bad scenario in lawn mower pattern following. The UAV spent nearly 50% 

more distance than required planned path. This leads to UAV spending more mission 
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time and more battery power. This is because the way Ardupilot calculates wind with the 

geometrical transformation based prediction method, discussed in Chapter 4. 

 

 Software in the loop simulation: 

          Figure (33) shows software in the loop simulation of same lawn mower pattern 

mission with simulating the flight conditions mentioned in flight 2  (Table 4), the drift in 

actual flight path can be seen with the maximum drift between waypoint 5 and 6.   

 

Figure 33, SITL Simulations of Lawn mower pattern 
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 Additional flight tests: 

Some more flights tests were performed to test the UAV in different 

conditions. 

1. Rectangular Pattern: Figure (34) shows snapshot of a mission data with   

Flight 3 (table 4).  The maximum cross track error can be noted between 

waypoint 2 and 3. The wind direction is opposite as compared to Flight 1 

shown in Figure (27).                 

 

                Figure 34, Rectangular pattern mission with Flight 3 conditions 

 

Wind 
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2. ‘Figure of 8 Pattern’: This pattern is used in mostly all software in loop 

simulations (figure 35). This pattern was tested with same flight 3 conditions 

(table 4). Average 15 meters of cross track error was noted with maximum being 

31 meters between waypoint 6 and 7. The cross track error is less than cross 

track error in rectangular pattern shown in figure (34). This is mainly due to 

turning angle is around 120° in ‘figure of 8’ loop as compared to turning angle of 

around 90° in rectangular. The rectangular pattern involve more sharper turns 

which require better wind estimation to reduce cross track error. The earlier 

graph comparison of wind speed and direction data showed the inaccuracy on 

ArduPlane code.    

 

 

           Figure 35, ‘Figure of 8’ waypoint pattern mission 
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3. Lawn Mower Pattern: The lawn mower pattern showed in figure (36) shows 

the flight track under different wind condition than previous lawn mower 

pattern mission (figure 36). It can be seen from the flight track the drift due 

to wind after waypoint 2. The drift increased more and more due to 

inaccurate wind predictions before reaching back to track between 3 and 4. 

 

                   Figure 36, Lawn mower pattern mission with different wind condition 
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 Summarizing cross track error and wind speed: 

 The following graph shows the maximum cross track error in each of missions 

discussed earlier with wind velocity. The graph explains the variation in cross track error 

depending on different missions and wind conditions. The maximum cross track errors 

can be seen in lawn mower pattern missions having more turns.  

 

Figure 37, Cross Track Error vs. Wind Speed  
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6. CONCLUSIONS 

 

The current method of wind estimation and prediction doesn’t predict true wind 

speed and direction with respect to earth frame. The predicted wind speed and direction 

are more than 60% off from the actual wind condition. The inaccuracy in real time 

updating of wind data leads to error in attitude correction applied by autopilot board. The 

effects of this method are shown with Software in The Loop simulations (with the 

constant wind conditions) and actual field testing. 

The field testing confirms the difference between wind speed and direction 

predicted by autopilot board (APM 2.5) and the true wind speed, direction (actual field 

conditions) by AIRMAR wind sensor. This difference is significantly large which leads 

to cross track error. In some cases the maximum cross track error occurred while flying 

between two waypoints is larger than the distance between them. The larger cross track 

error, increases mission completion time with more power consumption than estimated.  

The current method of wind estimation and prediction is not accurate enough to 

perform minimum radius turns for waypoints navigation in highly maneuvering missions 

such as lawn mower patterns. 
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Future Work 

Mapping missions requires capturing images at predefined waypoints with many 

waypoint and turns. The UAV needs to fly with different heading depending on the turns 

they are flying through. Considering one of the following cases which involve high wind 

conditions and maneuvering. One of the difficult parts in the planned path is achieving 

waypoint 2, as shown wind direction would be 45° to path between waypoint 1 and 2. 

The UAV would drift from the waypoint 2 while on the way to waypoint 3. To overcome 

this problem following solution can be implemented. 

 

Figure 38, Future development in algorithm 

 Designing an algorithm which will use the real time wind data and 

will increase the waypoint radius real-time, so the UAV can still 

achieve the waypoint. 

 But the radius cannot be increased more than maximum allowable 

tolerance so that it will affect the frontal and sideways overlap of 

image to be captured by camera while passing through the 
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waypoint. The next part of algorithm would be, if the UAV drifts 

more than maximum limit of the radius then it should skip the 

waypoint and going towards the next one. It should come back 

later while flying into the wind to achieve missed waypoint. 
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APPENDIX I 

FLIGHT SCRIPT 

The following python code explains the flight script used to perform Software in 

the loop simulations. The script contains home location, wind parameter input and the 

way to import preplanned mission. 

 

# fly ArduPlane in SIL 

import util, pexpect, sys, time, math, shutil, os 

from common import * 

from pymavlink import mavutil 

import  random 

 

# get location of scripts 

testdir=os.path.dirname(os.path.realpath(__file__)) 

 

HOME_LOCATION='33.298825,-111.954793,354,180'  # Setting up home GPS Co-

ordinates 

WIND="30,90,0.2" # speed,direction,variance  # Specifying wind directions 

homeloc = None 

 

 

## The following first 3 blocks of code specifies the Takeoff, Fly in 

circuit, then Return to Launch to start Auto mode This allows UAV to 

start a waypoint mission 
   

def takeoff(mavproxy, mav): 

    '''takeoff get to 30m altitude''' 

    mavproxy.send('switch 4\n') 

    wait_mode(mav, 'FBWA') 

 

    # gain a bit of altitude 

    if not wait_altitude(mav, homeloc.alt+50, homeloc.alt+80, timeout=30):    # Changed 

from 150 and 180 

        return False 

 

    # level off 

    mavproxy.send('rc 2 1500\n') 

 

    print("TAKEOFF COMPLETE") 

    return True 

 

 

def fly_left_circuit(mavproxy, mav): 

    '''fly a left circuit, 200m on a side''' 

    mavproxy.send('switch 4\n') 

    wait_mode(mav, 'FBWA') 

    mavproxy.send('rc 3 1600\n')               # changed fro 2000 

    '''if not wait_level_flight(mavproxy, mav): 
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        return False''' 

 

    print("Flying left circuit") 

    # do 4 turns 

    for i in range(0,4): 

        # hard left 

        print("Starting turn %u" % i) 

        mavproxy.send('rc 1 1000\n') 

        if not wait_heading(mav, 270 - (90*i), accuracy=10): 

            return False 

        mavproxy.send('rc 1 1500\n') 

        print("Starting leg %u" % i) 

        if not wait_distance(mav, 100, accuracy=20): 

            return False 

    print("Circuit complete") 

    return True  

 

def fly_RTL(mavproxy, mav): 

    '''fly to home''' 

    print("Flying home in RTL") 

    mavproxy.send('switch 2\n') 

    wait_mode(mav, 'RTL') 

    if not wait_location(mav, homeloc, accuracy=120, 

                         target_altitude=homeloc.alt+80, height_accuracy=20, 

                         timeout=180): 

        return False 

    print("RTL Complete") 

    return True 

 

def setup_rc(mavproxy): 

    '''setup RC override control''' 

    for chan in [1,2,4,5,6,7]: 

        mavproxy.send('rc %u 1500\n' % chan) 

    mavproxy.send('rc 3 1000\n') 

    mavproxy.send('rc 8 1800\n') 

 

# The mission script is loaded here  

 

def fly_mission(mavproxy, mav, filename, height_accuracy=-1, target_altitude=None): 

    '''fly a mission from a file''' 

    global homeloc 

    print("Flying mission %s" % filename) 

    mavproxy.send('wp load %s\n' % filename) 

    mavproxy.expect('flight plan received') 

    mavproxy.send('wp list\n') 

    mavproxy.expect('Requesting [0-9]+ waypoints') 

    mavproxy.send('switch 1\n') # auto mode 

    wait_mode(mav, 'AUTO') 

    if not wait_waypoint(mav, 1, 7, max_dist=60): 

        return False 

    if not wait_groundspeed(mav, 0, 0.5, timeout=60): 

        return False 

    print("Mission OK") 

    return True 
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def fly_ArduPlane(viewerip=None, map=False): 

    '''fly ArduPlane in SIL 

 

    you can pass viewerip as an IP address to optionally send fg and 

    mavproxy packets too for local viewing of the flight in real time 

    ''' 

    global homeloc 

 

    options = '--sitl=127.0.0.1:5501 --out=127.0.0.1:19550 --streamrate=10' 

    print "Getting ready to send" 

    if viewerip: 

        options += " --out=%s:14550" % viewerip 

 print "Sending on %st port 14550" % viewerip 

    if map: 

        options += ' --map' 

 

    sil = util.start_SIL('ArduPlane', wipe=True) 

    mavproxy = util.start_MAVProxy_SIL('ArduPlane', options=options) 

    mavproxy.expect('Received [0-9]+ parameters') 

 

    # setup test parameters 

    mavproxy.send("param load %s/ArduPlane.parm\n" % testdir) 

    mavproxy.expect('Loaded [0-9]+ parameters') 

 

    mavproxy.send("param fetch\n") 

 

    # restart with new parms 

    util.pexpect_close(mavproxy) 

    util.pexpect_close(sil) 

 

    cmd = util.reltopdir("Tools/autotest/jsbsim/runsim.py") 

    cmd += " --home=%s --wind=%s" % (HOME_LOCATION, WIND) 

    if viewerip: 

        cmd += " --fgout=%s:5503" % viewerip 

 

    runsim = pexpect.spawn(cmd, logfile=sys.stdout, timeout=10) 

    runsim.delaybeforesend = 0 

    util.pexpect_autoclose(runsim) 

    runsim.expect('Simulator ready to fly') 

 

    sil = util.start_SIL('ArduPlane') 

    mavproxy = util.start_MAVProxy_SIL('ArduPlane', options=options) 

    mavproxy.expect('Logging to (\S+)') 

    logfile = mavproxy.match.group(1) 

    print("LOGFILE %s" % logfile) 

 

    buildlog = util.reltopdir("../buildlogs/ArduPlane-test.tlog") 

    print("buildlog=%s" % buildlog) 

    if os.path.exists(buildlog): 

        os.unlink(buildlog) 

    try: 

        os.link(logfile, buildlog) 

    except Exception: 

        pass 

 

    mavproxy.expect('Received [0-9]+ parameters') 
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    util.expect_setup_callback(mavproxy, expect_callback) 

 

    expect_list_clear() 

    expect_list_extend([runsim, sil, mavproxy]) 

 

    print("Started simulator") 

 

    # get a mavlink connection going 

    try: 

        mav = mavutil.mavlink_connection('127.0.0.1:19550', robust_parsing=True) 

    except Exception, msg: 

        print("Failed to start mavlink connection on 127.0.0.1:19550" % msg) 

        raise 

    mav.message_hooks.append(message_hook) 

    mav.idle_hooks.append(idle_hook) 

 

    failed = False 

    e = 'None' 

    try: 

        if not fly_mission(mavproxy, mav, os.path.join(testdir, "ap1.txt"),   

        height_accuracy = 10, 

                           target_altitude=homeloc.alt+100): 

            print("Failed mission") 

            failed = True 

        if not log_download(mavproxy, mav, util.reltopdir("../buildlogs/ArduPlane- 

            log.bin")): 

            print("Failed log download") 

            failed = True 

    except pexpect.TIMEOUT, e: 

        print("Failed with timeout") 

        failed = True 

 

    mav.close() 

    util.pexpect_close(mavproxy) 

    util.pexpect_close(sil) 

    util.pexpect_close(runsim) 

 

    if os.path.exists('ArduPlane-valgrind.log'): 

        os.chmod('ArduPlane-valgrind.log', 0644) 

        shutil.copy("ArduPlane-valgrind.log", util.reltopdir("../buildlogs/ArduPlane-

valgrind.log")) 

 

    if failed: 

        print("FAILED: %s" % e) 

        return False 

    return True  
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APENDIX II 

GRAPHICAL ILLUSTRATION FOR DIRECTION COSINE MATRICES 
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