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ABSTRACT  
   

Increased global demand for energy has led to prolific use of fossil fuels, which produce 

and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon 

dioxide affects the global weather system and has been cited as a cause for global warming. For 

humans to continue to meet demands for energy while reducing greenhouse emission, a 

sustainable, carbon-neutral energy source must be developed. In natural photosynthesis, 

organisms use chlorophyll as a chromophore to absorb the sun's energy. Bio-inspired systems 

use close analogues like porphyrins and phthalocyanines. In this dissertation, a soluble, 

semiconducting porphyrin polymer is reported. The polymer was synthesized via a Buchwald-

Hartwig style coupling of porphyrin monomers which produced a polyaniline-like chain with 

porphyrins incorporated into the backbone. Spectroscopic and electrochemical studies were 

performed, which show evidence of excited state intrachromophore charge transfer and a first 

oxidation potential of 0.58 V (vs SCE). These properties suggest that the polymer could be 

involved in excited state electron donation to fullerenes and other electron acceptors, which could 

be beneficial in organic photovoltaics, sensors, and other applications. Molecular dyads and 

triads capable of charge separation have been studied for decades, and the spectroscopic 

properties of two novel systems are reported in this dissertation. A peripherally-connected zinc-

phthalocyanine-C60 dyad was studied, and showed excited state electron transfer from the 

phthalocyanine excited state to the C60, with a long-lived charge separated state. An axially-

linked carotene-Si-pthalocyanine-C60 triad was studied. It showed excited state electron transfer 

to the phthalocyanine from the carotene, but fast recombination before electron transfer can 

occur to the fullerene. Analogues of the electron transport mechanisms used in many biological 

systems use iron-sulfur clusters to shuttle electrons from donors to acceptors. In this dissertation, 

the spectroscopic properties of a de novo protein were studied. Nanosecond transient absorption 

was used to characterize the electron and energy transfer from an excited porphyrin to the 

oxidized [FeS] clusters incorporated in the protein. The triplet state of the porphyrin was strongly 

quenched by the holo-protein without formation of a porphyrin cation, suggesting that only Dexter-

type energy transfer occurs between the sensitized porphyrin and the [FeS] clusters.  
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CHAPTER 1 

INTRODUCTION 

21.2 Significance 

Throughout the past century, human demand for energy has increased drastically and the 

primary energy source utilized to meet this demand has been fossil fuels
1
. Combustion of these 

fuels has increased atmospheric levels of carbon dioxide considerably since the industrial 

revolution (Figure 1). This heightened level of CO2 and other greenhouse gases has increased 

the average global temperature
2
 and will have unknown effects on the world’s oceans and 

weathersphere. Because of these effects, finding carbon neutral energy sources and utilizing 

sustainable technologies is of utmost importance. 



  2 

1960 1970 1980 1990 2000 2010

300

325

350

375

400

M
e
a
n
 C

O
2
 (

p
p
m

)

Year

 

Figure 1. Atmospheric carbon dioxide recorded at Mauna Loa Observatory by year. These data 

show the increase in atmospheric CO2 concentration as a function of time since 1959. CO2 is a 

greenhouse gas and has been implicated in global warming. The increase in CO2 is attributed to 

human consumption of fossil fuels
3
. 
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While there are many carbon neutral and sustainable technologies, sunlight is the ultimate source 

of energy for most of life on earth and any reasonable scheme for replacement of fossil fuels 

must incorporate solar power. The amount of solar energy hitting the earth’s surface far 

surpasses current human demands
4
 and will continue to do so for the foreseeable future. 

Humans must learn to harness this energy in an efficient and cost-effective manner if there is to 

be any hope of quelling the rise of atmospheric carbon dioxide levels.  

Humans have recently devised ways to capture solar energy, but nature has been doing so for 

billions of years via photosynthesis. Photosynthetic organisms convert solar energy into stored 

chemical energy in the form of sugars. This storage process allows the organism to use the fuel 

when there is no incident sunlight, which is a major stalling point of artificial solar energy 

conversion. In Photosystem I (PSI), these organisms use antennas made primarily of chlorophylls 

to absorb the sun’s light
5
. The excitons in these molecules can undergo charge separation, 

facilitated by nearby electron acceptors. The electrons can go on to be stored in new chemical 

bonds in the fuel. The oxidized chromophore will then be reduced by an electron transport chain 

which starts from water, which is oxidized at the oxygen evolving complex in Photosystem II
6
. 

For humans to efficiently harvest solar energy, there are many places in this pathway where they 

can draw inspiration. In this thesis, I will address bio-inspired light harvesting chromophores, 

molecules for efficient charge separation, and a de novo protein containing [FeS] clusters that 

draw inspiration from many biological systems, including PSI. 

Key in the understanding of any application of solar energy is deciphering the movement of 

electrons through the system of interest. The relationship between the absorption of photons and 

how those electrons move can be understood utilizing steady-state and transient spectroscopies, 

which will be the focus of this dissertation. 

1.2 Bio-Inspired Chromophores 

Photosynthetic organisms use chlorophyll as their primary chromophore to absorb solar energy. 

Chlorophyll is a cofactor in Photosystem I, an enzyme contained in the thylakoid membranes of 
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plants, algae, and cyanobacteria
6
. The absorption spectrum of the chromophore must have 

strong overlap with the solar irradiation spectrum, because the absorption of light drives all the 

reactions that occur within the cell. When these chromophores are excited, a high energy electron 

is created, which has the potential to facilitate chemistry around the enzyme. The chromophores 

are arranged in Photosystem II so that facile electron transfer can occur to other cofactors to 

reduce plastoquinone and from oxidized water in the oxygen evolving complex.
5
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Figure 2. Chromophores used in natural and bio-inspired solar energy conversion. Organisms 

use chlorophyll a (left) in natural photosynthesis and porphyrins (middle) and phthalocyanines 

(right) are used in bio-inspired solar energy conversion. Each chromophore absorbs a different 

region of the visible 5ysteine55netic spectrum and can be used for different applications. 
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Chlorophyll is difficult to synthesize in the laboratory because of its asymmetry, so structural 

analogues must be used if these bio-inspired systems will be utilized in a meaningful way. 

Chlorophyll is in a class of macrocyclic chromophores along with porphyrins and phthalocyanines 

(Figure 2), which have relatively facile syntheses. These two types of chromophores have 

different absorption spectra than chlorophyll, porphyrin absorbing strongly in the purple region 

and phthalocyanine in the red. They have very high extinction coefficients (ε), which allow them to 

absorb a large amount of light relative to their concentration I, per Beer’s Law 

                                                                                 (1) 

where absorption (A) is also defined by the path length (b) of the light. These chromophores can 

be used as units of polymers, parts of dyadic and triadic systems, and as sensitizers in electron 

transfer systems, among many other things. 

1.3 Bio-Inspired Charge Separation 

Photosynthetic organisms utilize photoinduced charge separation (PICS) in Photosystem I and II 

to oxidize water and reduce NADP
+
. PICS occurs when a chromophore is excited and there is a 

nearby molecule that can overcome the coulombic energy in the exciton and accept the electron. 

In natural photosynthesis, an electron in chlorophyll a (ChlA) is excited, and pheophytin accepts 

the excited electron. Pheophytin then reduces a tightly bound quinone, which reduces a loosely 

bound quinone, which finally reduces a plastoquinone, which is free to shuttle to Photosystem I 

where it will eventually complete the reduction of NADP
+
. 

7
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Figure 3. Carotenoid-Porphyrin-C60 molecular triad.  Upon excitation of the porphyrin, this 

molecular triad undergoes photoinduced charge separation, with the final charge-separated state 

C
+
-P-C60

-
. 
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Systems that undergo intramolecular photoinduced charge separation have been studied for 

decades. One such system is the Carotene-Porphyrin-C60 (C-P-C60) triad (Figure 3) which, upon 

excitation of the porphyrin (C-P
*
-C60) undergoes PICS to the C60 (C-P

+
-C60

-
) and then rapid 

electron transfer occurs from the carotene to the porphyrin (C
+
-P-C60

-
).

8
 This system has been the 

inspiration for many systems over the years and two such systems were studied in this 

dissertation. 

1.4 Bio-Inspired Electron Transport 

Organisms use iron-sulfur [FeS] clusters to shuttle electrons through proteins
7
. Active sites are 

often buried in the hydrophobic inner protein, inaccessible to redox mediators in solution. To work 

around this limitation, proteins have [FeS] clusters spaced between solvent accessible areas and 

active sites. These clusters have evolved to be placed between electron donors and acceptors. 

This distance maximizes electronic coupling between the clusters which increases the electron 

transfer rate between donor and acceptor
7
. This electron shuttling mechanism is employed 

across a vast array of proteins, but this dissertation will focus on the [FeS] clusters in 

photosystem I (Figure 4). 
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Figure 4. Structure of Photosystem I from cyanobacteria Synechococcus 9ysteine9. All of the 

systems in this dissertation draw inspiration from photosynthesis. Electrons from Photosystem II 

shuttle over to photosystem I via reduced plastquinone where three [FeS] clusters eventually 

reduce ferredoxin. Image generated from PDB.org code 1JB0
9
. 
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 In Photosystem II, chlorophyll a is excited, and those excited electrons are used to reduce 

plastoquinone
10

. Plastoquinone then shuttles over to b6f, where it reduces multiple [FeS] clusters 

to eventually reduce ferredoxin. To reduce the chromophore, electrons are transported from 

water via the oxygen evolving complex (OEC). The very beginnings of a system inspired by these 

elegant enzymes are being designed and tested by collaborators in this dissertation. 

1.5 Summary 

Through the study of biological photosynthesis, researchers have built an expansive body of 

work. As the need for alternative energy sources increases, scientists continue to tap into this 

body of work to incorporate the elegant designs of nature into technological solutions. The 

utilization of chromophores that are analogous to natural chlorophyll a allows efficient capture of 

solar radiation and is a robust field in itself. The design of systems that undergo photoinduced 

charge separation combats recombination of charge in solar cells. The new use of multiple [FeS] 

clusters in a de novo protein shows great promise for future incorporation in novel proteins. 

Transient spectroscopy is a great tool to study the photophysics of these bio-inspired systems. 

The following chapters will describe this technique, as well as research performed on bio-inspired 

systems. 
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CHAPTER 2 

METHODOLOGY 

Time-resolved spectroscopy is a powerful tool to directly measure chromophore system 

photophysics (Figure 5). The combination of transient fluorescence, which monitors emissive 

electronic transitions, and transient absorption, which monitors all electronic transitions, gives 

great insight into how the system behaves. The time resolution of these methods is determined 

by duration of the laser pulses employed in the studies and the time resolution of the detection 

system. Very stable amplified laser pulses with duration less than 10 femtoseconds (1 fs = 10
-15

 

s) are produced, enabling studies of transient systems with extremely high time resolution. 

Transient spectroscopy theory, technique, and data analysis are briefly described below. 
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Figure 5. Jablonski diagram of the different photophysical processes. Absorption (A) happens 

from the singlet ground state (S0) to a higher singlet electronic (thick lines) state (Sn). Absorption 

typically happens to a higher vibrational (thin lines) state of an electronic state, which then 

vibrationally relaxes down to the ground vibrational state of that electronic state. That state can 

undergo internal conversion (IC) to a lower electronic state, which can then fluoresce (Fl), which 

emits a photon, to the singlet ground electronic state. Another path can be intersystem crossing 

(ISC), where the electron flips spin to create a triplet excited state. After vibrational relaxation, this 

state can phosphoresce (Ph), which emits a photon, to the singlet ground electronic state. 
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2.1 Transient Absorption 

Each of these studies uses highly-colored chromophores and one way of investigating their 

properties is to measure their absorption of light. The absorbance, or optical density (OD), of any 

material that contains chromophores is defined by: 

  ( )      
 ( )

  ( )
                                                                       (2) 

Where I0(λ), the intensity of the incident light, and I(λ), the intensity of the light transmitted by the 

material are the parameters of interest. Optical density is recorded as a function of wavelength λ, 

resulting in an absorption spectrum of the material
1
. 

Part of this dissertation deals with transient absorption experiments, which record the time-

dependence of the absorption of a material after it has been excited. To be able to measure its 

time-dependent changes, the absorption change needs to be recorded at several distinct 

moments in time, rather than as a time-average, as in steady-state measurements. To capture 

effects that occur on ultrafast timescales the measurement of the absorption is performed with 

ultrashort laser-pulses. The use of a broad-band “white light” laser probe pulse facilitates the 

instantaneous recording of the absorption spectrum at a certain moment in time. 

The work in this dissertation hinges on pump probe spectroscopy. In a pump probe experiment, 

an intense laser pulse (pump), resonant with an electronic transition of the chromophore, is 

administered to the chromophore at some time before applying the probe pulse, and the 

difference in absorption ΔOD, induced by the pump pulse is recorded as a function of pump 

probe delay, t: 

   (   )    (   )     ( )       
 ( )   

 (   )  
                                                (3) 

Where OD(λ,t)on, I(λ,t)on and OD(λ)off, I(λ)off denote the OD measured respectively with and without 

applying the pump pulse
2
. 
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Figure 6. Jablonski diagrams of the processes of transient absorption. The system is first excited 

by a pumping laser beam, exciting an electron from S0 to S1. Excited state absorption (ESA) 

arises when a wavelength of light is resonant with a transition from S1 to Sn>1. ΔA is positive for 

this process. Ground state bleaching (GSB) occurs when a fraction of the population is excited 

and the probe light excites more molecules into their excited states. The absorption of the excited 

sample is less than that of the nonexcited sample so the ΔA is negative. In stimulated emission 

(SE), the probe pulse induces emission of a photon from an excited molecule, which relaxes to its 

ground state. Because of the increase in light intensity, ΔA is negative for this process. The 

asterisk denotes the location of the electron in the excited state. 
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In pump-probe experiments, the excited state absorbance at a given wavelength is measured as 

the difference between the absorbance with and without the first exciting laser pulse. The 

absorbance is proportional to the population of the different states and thus, both negative and 

positive signals can occur. Probing at a wavelength that matches the energy difference between 

excited states gives a positive signal (induced absorption), while probing at a wavelength where 

the ground state absorbs results in a negative signal. This is known as ground state bleaching 

and is a consequence of the absorption of the ground state being larger without the exciting 

pulse. The final type of signal is stimulated emission, which arises from the probe pulse matching 

the energy of the fluorescence spectrum of the molecule and inducing emission from the first 

excited state
2
 (Figure 6). Predicting where these processes will occur by studying the steady 

state spectrum is important. These phenomena often overlap, making eye inspection of the 

plotted data difficult.  
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2.1.1 Femtosecond Pump-Probe Apparatus 

 

Figure 7. Femtosecond transient absorption apparatus. Femtosecond pulses are derived from an 

Ti:S oscillator laser that is amplified by a regenerative amplifier. This 780 nm pulse is used to 

drive the optical parametric amplifier (OPA) which can be tuned throughout the visible spectrum. 

A smaller part of the fundamental is focused on a sapphire plate for generation of a 

supercontiuum probe. The spectra are collected as a function of probe delay, which is shown as 

T1, T2, and T3. The corresponding pulses probe the sample at different times after excitation, 

leading to a plot of T vs ΔA. 
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The femtosecond transient absorption apparatus consisted of a pulsed laser source and a pump-

probe optical set-up. Femtosecond pulses were obtained from a Titanium:Sapphire (Ti:S) 

oscillator (Tsunami, Spectra-Physics) pumped by 5 W output of a frequency-doubled, diode-

pumped Nd:YVO4 laser (Millenia VS, Spectra-Physics). These pulses are further amplified by a 

regenerative Ti:S amplifier (Spitfire, Spectra-Physics) pumped by a Nd:YLF laser (Evolution, 

Coherent) producing 100 fs pulses at 800 nm. The pulses are split and part of the pulse is 

focused on a 3 mm sapphire plate to generate a white light continuum for the probe beam and 

then sent down a delay line. The other part is used to drive an optical parametric amplifier (OPA) 

(800-C, Spectra-Physics) for generation of excitation pulses, which were selected using a 

mechanical chopper (Figure 7). After traversing the delay line, the white light probe is 

compressed by prism pairs before being focused on the sample. After probing, the white light is 

dispersed by a 300 line grating spectrograph onto a charge-coupled device camera (DU420, 

Andor Tech). All data were analyzed using in house software (ASUFIT). 

2.1.2 Nanosecond Flash Photolysis Apparatus 

To measure formation of charge separated states, lifetimes of triplet and long-lived singlet excited 

states nanosecond pump probe spectroscopy was employed.  A Nd:YAG laser and a 150 W 

Xenon arc lamp were used for excitation and probe light sources, respectively. Excitation was 

provided from an optical parametric oscillator (OPO) pumped by the third harmonic (355 nm) of a 

Q-switched Nd:YAG laser (Ekspla NT 342B). The pulse width was 4-5 ns, and the repetition rate 

was 10 Hz.  

Q-switching provides laser pulses with relatively low repetition rates, high energy, and longer 

pulse durations relative to other pulsing methods, which is suitable for detection of triplet states
3
. 

The third harmonic was generated by first doubling the pump wave (1064 nm) in a lithium 

triborate crystal (LBO) and then mixing the pump and generated second harmonic (532 nm) in a 

barium borate crystal (BBO). Excitation wavelength is tuned in the OPO by generation of signal 

and idler waves generated from the third harmonic
4
. 

The probe signal was detected by a Proteus spectrophotometer (Ultrafast Systems).  Before 

excitation, the baseline voltage of the probe signal was detected. To measure the decay of the 
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states, the voltage of the probe signal is measured as a function of time while passing through the 

excited sample. The difference between these voltages is correlated to a change in optical 

density, which can later be locally or globally fit with respect to wavelength. 

2.2 Transient Fluorescence 

Time-resolved fluorescence is a very useful technique when used in conjunction with transient 

absorption measurements. In the fluorescence measurements only the signals from emitting 

states are recorded, therefore fewer spectral contributions from different states are observed as 

compared to transient absorption techniques, resulting in simpler overall picture. In the work 

presented in this thesis, time-correlated single photon counting (TCSPC) was employed. 
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2.2.1 Time Correlated Single Photon Counting Apparatus 

 

Figure 8. Diagram of the transient fluorescence time-correlated single photon counting set-up. An 

ultrafast pulse of photons from the laser source is split with one fraction hitting a photodiode, 

which starts the time-amplitude converter (TAC) voltage ramp. The other fraction of the pulse 

excites the sample, which emits photons, some of which are refracted by a lens and focused to 

the monochromator, which passes the selected wavelength to the microchannel plate 

photomultiplier tube (MCP). The MCP amplifies the signal, which is transmitted to the TAC, where 

it stops the voltage ramp, which can be correlated with a specific time in the multichannel 

analyzer (MCA). This data is then used to build a histogram on the graphical user interface (GUI), 

which corresponds to the decay of the excited state of the sample. 
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Excitation pulses were obtained using a Fianium Whitelase SC-400-2 supercontinuum fiber laser. 

The broadband laser is tuned by an acousto-optic tunable filter to select the desired wavelength. 

Since the tuning of the wavelength is still broad, interference filters must be used to narrow the 

spectral breadth before excitation of the sample. Fluorescence is collected at 90˚ to excitation 

and is detected at the magic angle (54.7˚) to polarization of the excitation beam.  Fluorescence is 

detected using a double grating monochromator (Jobin-Yohn, Gemini 180) and a microchannel 

plate photomultiplier tube (Hammamatsu R3809U-50). After signal amplification, a single photon 

counting card (Becker-Hickl SPC-830) was used for data acquisition. The instrument response 

function FWHM was typically ~50 ps. Data analysis was carried out using in house software 

(ASUFIT) to be described below. 

2.3 Data Analysis 

During time resolved experiments vast amounts of data are collected; a typical pump-probe 

dataset consists of tens of thousands of individual data points. To fit the decays, global analysis, 

a highly sophisticated method of analyzing data, is utilized. Global analysis analyzes the whole 

spectrum at once. Parameters are linked throughout the dataset across each decay, which 

reduces the total number of parameters. The whole mathematical formulation is beyond the 

scope of this dissertation, so only a qualitative outline of global analysis will be given. 

All systems in this dissertation contain chromophores with excited states with transitions resonant 

with visible light. These states interact with each other through excitation transfer and each state 

exhibits its specific decay dynamics. To estimate the parameters that govern these processes a 

model is proposed, which involves a kinetic scheme and is capable of capturing all the available 

information.  The kinetic scheme is made up of distinct compartments for different decays, which 

are linked by transition pathways. The suitability of a proposed model is judged by comparison to 

the spectra it estimates. The model can subsequently be modified and tested. Using such an 

iterative procedure one may eventually end up with a model that is both physically sound and 

describes the experimental data properly. Transient absorption datasets consist of numerous 

spectra measured by the white light probe at several delay points. The signal at any time t and 
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wavelength λ is modeled with contribution from the n different compartments of the system; if ελ is 

the spectrum of the l-th compartment and cl its contribution, then the signal (Ψ(λ,t)) is  

 (   )  ∑   ( )  ( )
 
                                                                  (4) 

Since the excitation and probe pulses have a finite width, cl(t) should account for the instrument 

response function (IRF) of the experimental setup
5
. This IRF can either be determined directly by 

performing a separate measurement in a material which has an instantaneous response to the 

excitation or that can be parameterized and integrated in the global analysis. This procedure will 

not be further elaborated here. 

The first step towards analyzing a data set is to fit the kinetic behavior of the system, using a 

model with a number of parallel, non-interacting compartments. This model yields a 

mathematically correct description of the data, in terms of a number of exponential decays and 

their corresponding concentrations, but generally does not relate directly to the photophysics of 

the system. The number of compartments is increased iteratively the introduction of an additional 

compartment does not lead to a significant improvement of the quality of the fit, which is judged 

on by inspection of structure present in the fit residuals and the chi-squared value. The parallel 

model yields estimates of the decay-associated difference spectra (DADS) which essentially 

represent the amplitude of each exponential component at every wavelength at time zero. The 

model also yields the rate constants, kl,  for each component
5
: 

  ( )   
(   )                                                                                            (5) 

After the number of exponential decays is ascertained, a different model is used to fit the kinetic 

behavior of the system. Evolution Associated Difference Spectra (EADS) can be fit, using the 

previously arrive upon decays, and assuming they convert into each other. EADS will more 

realistically model the system, as it assumes that the shorter components decay into the longer 

components
5
. This model can also be evaluated iteratively, honing the lifetimes until they best fit 

the experimental data. This model allows for a better overlap of the decay fits and transition 

theory. This level of analysis is as deep as this dissertation goes, but there are many more ways 

to globally fit transient data. 
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2.4 Summary 

Transient spectroscopy is an incredibly powerful technique. Combining transient fluorescence 

measurements with femto- and nanosecond transient absorption gives a complete picture of how 

the electronic states of a system change over time when perturbed by visible light. This 

dissertation only focuses on the electronic transitions in the visible electromagnetic spectrum, but 

these techniques extend into the UV and IR as well. Data analysis can be carried out very simply, 

with specialized software and high powered computing, but understanding how the data is fit 

allows for a holistic understanding of the system. This dissertation is built on steady-state and 

transient spectroscopy, and that foundation has allowed the study of many very different and 

interesting systems. 
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CHAPTER 3 

SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF A SOLUBLE SEMICONDUCTING 

PORPHYRIN POLYMER 

3.1 Author Contribution 

In this work, the author contributed all transient photophysical measurements, excluding 

anisotropy, as well as the electrochemistry. The author wrote the experimental sections for all 

photophysical and electrochemical studies.  

3.2 Manuscript 

Robert A. Schmitz, Paul Liddell, Gerdenis Kodis, Michael J. Kenney, Bradley J. Brennan, 

Nolan Oster, Thomas A. Moore,* Ana L. Moore,* and Devens Gust* 

A semiconducting porphyrin polymer that is solution processable and soluble in organic 

solvents has been synthesized, and its spectroscopic and electrochemical properties 

have been investigated. The polymer consists of diarylporphyrin units that are linked at 

meso-positions by aminophenyl groups, thus making the porphyrin rings an integral part 

of the polymer backbone. Hexyl chains on two of the aryl groups impart solubility. The 

porphyrin units interact only weakly in the ground electronic state. Excitation produces a 

local excited state that rapidly evolves into a state with charge-transfer character (CT) 

involving the amino nitrogen and the porphyrin macrocycle. Singlet excitation energy is 

transferred between porphyrin units in the chain with a time constant of ca. 210 ps. The 

final CT state has a lifetime of several nanoseconds, and the first oxidation of the 

polymer occurs at ca. 0.58 V vs SCE. These properties make the polymer a suitable 

potential excited state electron donor to a variety of fullerenes or other acceptor species, 

suggesting that the polymer may find use in organic photovoltaics, sensors, and similar 

applications. 
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Introduction 

Porphyrins and their tetrapyrrolic relatives are important compounds because of their 

various roles in biology as light absorbers, redox centers and binding sites for small 

molecules, and because of their applications (real and potential) in artificial 

photosynthesis, molecule-based (opto)electronics and data processing, sensing, medical 

imaging and treatment, and related areas. Many of these applications use both the light-

absorbing and redox properties of porphyrins to convert light energy into electrochemical 

potential. For actual device applications, the incorporation of porphyrins into conducting or 

semiconducting media is especially convenient because it allows photoinduced charge 

separation involving a porphyrin followed by charge migration to an electrode and thence 

into an electronic circuit. However, given the plethora of literature on porphyrin chemistry, 

relatively few conducting or semiconducting porphyrin polymers have been reported. The 

majority of the research on conducting porphyrin polymers has been carried out by 

electropolymerization of porphyrin monomers to give semiconducting films on electrodes,
1-

16
 although a few examples of chemical polymerization have been reported.

17-22
 We have 

reported the electrochemical preparation and properties of polyporphyrins
23,24

 and 

polyporphyrin-fullerene dyads
25

 based on monomers featuring both a free meso-position 

and a meso-aminophenyl group. Electropolymerization generates semiconducting 

polymers in which porphyrin macrocycles are joined by aminophenyl linkers reminiscent of 

polyaniline. Although these and other electropolymerized porphyrins are interesting and 

potentially useful materials, both their study and their applications are limited by the fact 

that they are bound as thin films to electrodes from which they cannot be removed, and 

are essentially insoluble in liquids. 

 We now report the synthesis and spectroscopic properties of a structurally closely 

related porphyrin polymer which is prepared by chemical reaction in solution, soluble in a 

variety of organic solvents, and solution processable via spin coating, drop casting or 

other methods. This polymer (P-(PN)n, Fig. 1) has the same polymeric backbone as the 
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electropolymers reported earlier, and features 3,5-dihexyl substituted phenyl groups at two 

meso-positions. These hexyl chains greatly increase the solubility of the polymer relative 

to the electrochemically produced polymers, which had mesityl groups at these two meso-

positions. 

Results and Discussion 

Synthesis and Characterization 

Zinc monomer PBr was synthesized from readily available precursors by a series of 

reactions (see Experimental Section), and the polymer P-(PN)n was prepared by 

palladium-catalyzed coupling of PBr (Fig. 9). The catalyst was prepared in situ in 

tetrahydrofuran by mixing palladium(II) acetate and bis[(2-diphenylphosphino)phenyl] 

ether, and then adding an excess of cesium carbonate. Polymerization ensued, leading to 

the zinc form of the polymer. Treatment with trifluoroacetic acid in dichloromethane 

removed the zinc to yield free base P-(PN)n. Column chromatography was used to remove 

impurities and any remaining monomer. Subsequently, chromatography was used to 

separate the polymer into three fractions, A, B, and C. Details of a typical preparation of 

the polymer are given in the Experimental Section. 
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Figure 9. Structure and synthesis of porphyrin polymer P-(PN)n. Synthetic details are given in the 

text. 
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 Based on the order of elution in column chromatography, fractions A, B, and C were 

postulated to contain P-(PN)n of increasing average molecular weight, respectively. 

Inductively coupled plasma elemental analysis showed that there was no detectable 

palladium in any of these fractions. Mass spectrometry was consistent with this 

assumption. Analysis was performed using MALDI-TOF instrumentation and a 

diphenylbutadiene matrix. This technique was not quantitative because the higher 

oligomers did not volatilize readily in the mass spectrometer. Thus, the ratios of peak 

heights does not correspond to the relative abundances of the various chains, but the 

technique verified the presence of the expected polymeric material and allowed some 

conclusions about average chain length to be drawn. All three fractions showed that no 

monomer was present, and chain lengths up to at least 13 units could be detected 

unambiguously. Longer chains were present in these samples, but their low volatility 

coupled with a tendency of the material to associate with itself in the mass spectrometer 

prevented their observation. The mass spectrum of fraction A showed large contributions 

of chains with 2-7 units plus longer chains. Fraction B was less easily volatilized in the 

mass spectrometer than A, and showed smaller signals for chains with 2, 3, 4 and 6 

porphyrins, but significant peaks for 5-unit and longer chains. Fraction C was dominated 

by high molecular weight polymer that did not volatilize, and the signal to noise obtained 

was therefore low. Chain lengths up to 13 were observed, but most of the material likely 

consists of longer chains. 

 The polymer was also investigated by 
1
H-NMR spectroscopy. Solutions of the polymer 

in deuterated chloroform were studied at 400 MHz. The spectra obtained were 

characterized by very broad resonances due to the long chain lengths and possible 

aggregation of the chains. The broadness of the resonances also accentuated resonances 

from minor impurities with sharp resonances, and this complicated analysis. However, for 

samples of all three types, resonances expected for the postulated structure were 

observed, thus confirming the structure. An attempt was made to estimate chain lengths 

by comparison of the integrals of unique protons at the ends of the polymer chains (i.e. the 
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meso- and beta-protons of the terminal porphyrin which lacks a meso-amino group, and 

the aryl and amino protons of the terminal porphyrin at the other end of the chain) with 

those of the aliphatic protons of the hexyl side chains of the internal porphyrins. This 

method was only approximate, as overlapping resonances and large differences in 

relaxation times are present, but suggested that fraction A contained significant amounts 

of chains with an average length of about 6 porphyrin units, whereas fractions B and C 

had average chain lengths of at least 20 units. 

 Several model compounds were prepared, including a model
23

 MP for the porphyrin P 

at the end of the chain, a model MPN for the porphyrin at the amino end of the polymer 

chain, and a dimer MP-PN model for a two-porphyrin section of the polymer. These are 

shown in Fig. 10, and details of their preparation are reported in the Experimental Section. 
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Figure 10. Structures of model monomeric and dimeric porphyrins. 
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Spectroscopic Properties 

Monomers. The spectroscopic properties of model compounds were investigated in order 

to aid in the elucidation of the spectroscopic properties of the polymer. The absorption 

spectra in 2-methyltetrahydrofuran solution of model porphyrin MP, which has only 

hydrogen at meso-position 15, and model MPN, which has an aminotolyl group at the 

corresponding position, are shown in Fig. 11. The spectrum of MP is typical of free base 

porphyrins with a sharp Soret band at 413 nm and four Q-band maxima at 509, 544, 588 

and 642 nm. The spectrum of MPN, on the other hand, has a broad Soret band at 428 nm 

and broad Q-band absorption, with maxima at 521, ca. 570, ca. 590, and 675 nm. Thus, 

the presence of the meso-amino group in MPN leads to significant distortion of the 

spectrum, relative to those of other free base tri- or tetra-arylporphyrins. Differences are 

also seen in the fluorescence emission spectra (Fig. 11). The spectrum of MP is similar to 

that of other triarylporphyrins, with maxima at 649 and 713 nm. Molecule MPN, on other 

hand, shows an emission peak at 714 nm, with a shoulder at ca. 775 nm. 
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Figure 11. Spectra of model compounds in 2-methyltetrahydrofuran. Absorption spectra of MP 

(red), MPN (black), and MP-PN (blue) and corrected emission spectra of MP (red dash), MPN 

(black dash) and MP-PN (blue dash). All spectra have been normalized for ease in comparison. 
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 These results suggest that the excited state of MPN is significantly perturbed from that 

of other porphyrins due to the presence of the meso-amino group. We investigated the 

solvent dependence of the spectra in order to get more information about this 

perturbation. Five solvents were investigated: acetonitrile ( = 37.5), 1-decanol ( = 8.1), 2-

methyltetrahydrofuran ( = 7.0), toluene ( = 2.4) and cyclohexane ( = 2.0). The 

absorption spectra of MP and MPN showed relatively small solvent effects over this range 

of solvents. Porphyrin MP also showed only small shifts in emission. The shortest-

wavelength emission band of MP is found at 647 nm in both cyclohexane and acetonitrile. 

On the other hand, larger solvent effects were observed for MPN in emission (Fig. 12). 

The main emission band appears at 696 nm in cyclohexane and 720 nm in acetonitrile.  
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Figure 12. Fluorescence emission from a solution of MPN with excitation at 420 nm. The spectra 

are normalized at the emission maximum. Solvents were cyclohexane (solid), toluene (dashed), 

2-methyltetrahydrofuran (dash-dot), 1-decanol (dash-dot-dot), and acetonitrile (dot). 
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 It is clear from these studies that the energy of the relaxed first excited singlet state of 

MPN has a significant dependence on solvent polarity, as illustrated by the emission 

results, whereas that of MP shows only small effects. Upon increasing the dielectric 

constant of the solvent from 2.0 to 37.5, the shortest wavelength emission band of MPN 

shifts by 24 nm to longer wavelengths, whereas there is no observed shift in the 

corresponding emission of MP. The Stokes shift for MPN in 2-methytetrahydrofuran is 38 

nm, whereas that for MP is only 7 nm. Clearly, more polar solvents stabilize the excited 

state of MPN relative to the ground state. These data suggest that the excited state of 

MPN has significant charge-transfer (CT) character, and the more polar solvents stabilize 

the charge-transfer state. Presumably this state arises from increased electron donation 

from the amino group to the porphyrin macrocycle in the excited state, giving the amino 

group more positive character. 

 Because the excited state 35ysteine35 observed in MP and MPN is also expected to 

play a role in the photochemistry of the polymer, we investigated the emission of the 

model compounds as a function of time after excitation. Fluorescence decays were 

measured using the single photon timing technique. The emission spectrum of MP in 2-

methyltetrahydrofuran was measured at 8 wavelengths in the 620-760 nm region, and the 

spectra were fitted globally to derive decay-associated spectra (DAS). The data were fitted 

well as a single exponential decay (
2
 = 1.06) with a time constant of 9.53 ns. Such an 

excited state lifetime is typical for porphyrins of this general type. 

 The decay–associated spectra from time-resolved fluorescence experiments on MPN 

are shown in Fig. 13. The decays were multiexponential in all of the solvents investigated. 

Two components were observed in cyclohexane, 2-methyltetrahydrofuran and acetonitrile, 

and four components were seen in 1-decanol. In all solvents, a relatively long-lived 

component was observed. The shape of this component is similar to that of the emission 

spectra shown in Fig. 12: this is expected, as this component is mainly responsible for the 

steady-state emission spectrum. The lifetime ranges from 7.2 ns in cyclohexane, the least 
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polar solvent, to 4.9 ns in acetonitrile, the most polar solvent. We ascribe this emission to 

the charge-transfer excited state discussed above. 

 The shorter-lived components are assigned to local excited (LE) states of MPN that 

evolve into the final charge-transfer state with the indicated time constants. Consistent 

with this assignment is the fact that the emission maxima of these states are all found at 

slightly shorter wavelengths than those of the CT states, indicating that these LE states 

are of higher energy than the CT state. The results in decanol most clearly show that the 

decays of the emissions of these shorter-lived states (positive amplitudes in Fig. 13d) 

have the same time constants as a rise of emission amplitude in the region of CT 

emission (negative amplitudes in Fig. 13). This indicates that the LE states decay to give 

the CT state. Decanol is a viscous solvent that may retard intramolecular motions that 

accompany relaxation of the LE states to the CT state, and permit observation of 

relaxations that are too fast to measure in the other solvents. It is also possible that 

different hydrogen bonding interactions between decanol and the meso-amino group of 

MPN play a role. 

 Dimer. We now turn to dimer MP-PN, which features a porphyrin bearing a meso-

amino group linked via this moiety to a porphyrin with only a hydrogen atom at one meso 

position. Thus, it is a model for P-(PN)1. The absorption spectrum of MP-PN (Fig. 11) 

features a Soret maximum at 410 nm with a strong shoulder at ca. 425 nm. The Q-band 

region is broad, with absorption maxima discernable at 512, ca. 550, 587, and ca. 670 nm. 

The spectrum is essentially a linear combination of the spectra of MP and MPN, with very 

minimal changes due to interactions between the chromophores. The fluorescence 

emission spectrum of MP-PN with excitation at 520 nm is very similar to that of MPN (Fig. 

11). There is only minimal emission around 650 nm, where MP emits. Both porphyrins 

have some absorbance at 520 nm, yet emission from PN dominates the spectrum. This 

indicates that singlet excitation energy is rapidly transferred from the excited singlet state 

of MP to PN. This is expected because the linkage between the two chromophores is 

short, and the emission of MP overlaps well with the absorption of the longest-wavelength 



  37 

Q-band of PN. These conditions 37ystei rapid singlet-singlet energy transfer by the 

Förster-type (dipole-dipole) mechanism.
26,27

 Thus, in dimer MP-PN, the two chromophores 

appear to not interact strongly in the ground state, and to exhibit efficient energy transfer 

in the excited state. 
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Figure 13. Decay-associated emission spectra in various solvents of MPN with excitation at 520 

nm. (a) Cyclohexane: 7.2 ns (circles), 190 ps (squares); (b) 2-methyltetrahydrofuran: 5.7 ns 

(circles), 100 ps (squares); (c) acetonitrile: 4.9 ns (circles), 120 ps (squares); (d) 1-decanol: 5.4 

ns (circles), 1.96 ns (squares), 380 ps (diamonds), 63 ps (triangles). 
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 Additional information concerning MP-PN comes from time-resolved fluorescence 

studies. Fig. 14a shows the DAS for MP-PN in 2-methyltetrahydrofuran with excitation at 

520 nm. The DAS features a long-lived component (6.0 ns) with a shape similar to that of 

the CT emission from MPN which is assigned to decay of the MP-
1
PN charge-transfer 

state. Additional decay components of 540 ps and 36 ps have maxima at slightly shorter 

wavelengths than does the CT state, and the shapes of the DAS prove that these shorter 

components decay to form the final CT state. We ascribe these components to LE states 

similar to those noted above for MPN alone. It is tempting to ascribe one of these 

components instead to energy transfer from 
1
MP-PN. However, this could not be verified 

unambiguously. As mentioned earlier, MPN alone shows similar short components, 

especially in 1-decanol. In addition, a cyclic pentamer, PN5, has been prepared (to be 

described elsewhere), and its DAS in various solvents show similar components. Energy 

transfer from a porphyrin having only a hydrogen atom on a meso-position is impossible in 

this pentamer due to the absence of such a porphyrin. Thus, energy transfer from 
1
MP-PN 

to yield MP-
1
PN definitely occurs in MP-PN, but its time scale cannot be unambiguously 

deduced from our measurements. Ideally, excitation of MP only with observation of 

emission from 
1
PN could allow determination of such transfer, but as seen in Fig. 11, there 

is no suitable wavelength for such an experiment. 
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Figure 14. Decay-associated emission spectra with excitation at 520 nm in 2-

methyltetrahydrofuran solution. (a) MP-PN, 6.0 ns (circles), 540 ps (squares), 36 ps (triangles) (b) 

P-(PN)n, 5.4 ns (circles), 1.1 ns (triangles), 200 ps squares). 
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 Polymer. With the results for model compounds in hand, we now examine the 

spectroscopic properties of the polymer P-(PN)n. Experiments were performed on fraction B from 

the synthesis discussed above. The absorption spectrum in 2-methyltetrahydrofuran of the 

polymer, which consists of a range of chain lengths, is shown in Fig. 15, along with that of dimer 

MP-PN for comparison. The Soret band appears at 415 nm in the polymer (vs. 410 for MP-PN), 

and is very broad, with no sharp peak the region where MP absorbs. This is due to the higher 

ratio of PN to P in the oligomeric material. Absorption in the Q-band region is broad, with maxima 

at 520, 575, and 664. In fact, the Q-band region appears very similar to the corresponding region 

for MPN (Fig. 11). Thus, the spectrum indicates limited ground-state interaction between the 

porphyrin units. 
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Figure 15. Spectra in 2-methyltetrahydrofuran: Absorption of MP-PN (solid) and P-(PN)n (dash) 

and emission with excitation at 520 nm of MP-PN (dash-dot) and P-(PN)n (dot). The absorption 

spectra have been normalized at the Soret maximum. The emission spectra show emission 

intensity ratios with excitation of solutions of equal absorbance at 520 nm. 
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 Excitation of a solution of P-(PN)n in 2-methyltetrahydrofuran at 520 nm yielded the 

emission spectrum shown in Fig. 15. The shape of the emission is similar to that of the 

emission of MP-PN as well as that of MPN (Fig. 11), indicating that emission arises 

entirely from the PN subunits. With identical absorbance at the excitation wavelength, the 

emission of P-(PN)n is about 10 times weaker than that from MP-PN. 

 A time-resolved study of the emission of P-(PN)n was performed in 2-

methyltetrahydrofuran, with excitation at 520 nm. As shown in Fig. 6b, the main emission 

component has a decay time constant of 5.4 ns, which is only slightly shorter than that for 

MP-PN. Additional decay components were observed, as was the case with the dimer and 

MPN monomer. These had values of 200 ps and 1.1 ns. We assign these short 

components to LE states that decay to give the longer-lived CT state, as occurs in the 

monomer and dimer. We assume that the shorter-lived transient states in P-(PN)n and 

MP-PN decay into the longest-lived emitting states, as was seen in MP-PN. Without 

knowing the yields of the conversion of the LE states into the CT state for each molecule, 

we cannot determine whether a portion of the 10-fold quenching in emission intensity in 

the polymer relative to MP-PN may be due to differences in the rates of processes that 

occur in both compounds, or to processes not present in the model dimer. 

 Fluorescence anisotropy and energy transfer. In principle, singlet-singlet energy 

transfer between porphyrin units in the polymer is possible. We isolated, by careful and 

repeated chromatography, a fraction of polymer containing essentially pure P-(PN)3 in 

order to investigate this phenomenon. Fluorescence anisotropy decay measurements 

were carried out on MP-PN and P-(PN)3 in 2-methyltetrahydrofuran solution at ambient 

temperatures (Fig. 16). The molecules were excited at 680 nm where the porphyrins 

bearing meso-amino substituents absorb and the fluorescence anisotropy was measured 

at 780 nm, where emission is also from the PN components. Fluorescence anisotropy will 

decay with time constants related to overall tumbling of the molecule in solution and also 

energy transfer between porphyrins, which results, in effect, in reorientation of the 

transition dipole. The anisotropy decay for dimer MP-PN was well fitted by a single 
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exponential time constant of 635 ps. This is ascribed to rotational tumbling of the molecule 

in solution. The decay for tetramer P-(PN)3 required two exponential components with time 

constants of 105 ps (49% of the decay) and 1.49 ns (51% of the decay). The 1.49 ns 

component is due to overall tumbling of the molecule, and is longer than the 

corresponding component in MP-PN because of the larger size of the molecule. The 105 

ps component is assigned to energy transfer between adjacent meso-aminoporphyrins, 

and corresponds to an approximate time constant for singlet-singlet energy transfer of 210 

ps. Although two adjacent porphyrin moieties are relatively close together spatially their 

excited states are isoenergetic, which results in a relatively small spectral overlap integral 

in the Förster equation
27

 for singlet-singlet energy transfer and relatively slow energy 

transfer compared to systems in which the spectral overlap integral is large (e.g., energy 

transfer from zinc porphyrins to free base porphyrins). 
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Figure 16. Fluorescence anisotropy decays with excitation at 680 nm and detection at 780 nm. 

(a) Dimer MP-PN. The white line is a best exponential fit to the data with a time constant of 635 

ps. (b) Tetramer P-(PN)3. The white line is a best exponential fit to the data with a time constants 

of 105 ps and 1.49 ns. 
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Electrochemical Properties 

The cyclic voltammograms of the polymer and model compounds were obtained in 

benzonitrile solution with tetra-n-butylammonium hexafluorophosphate as supporting 

electrolyte. As reported previously,
23

 monomer MP shows two irreversible overlapping 

oxidation peaks in the region 0.9 – 1.1 V vs SCE and a third irreversible peak around 1.3 

V. These potentials are similar to the first and second oxidation potentials of 5,10,15,20-

tetraphenylporphyrin in benzonitrile (1.08 and 1.25 V)
28

 and the redox potential of aniline 

in acetonitrile (0.90 V).
29

 The lack of reversibility is consistent with formation of an 

electropolymerized film on the platinum electrode. Fig. 9a shows cyclic voltammograms 

for dimer MP-PN in benzonitrile. The solubility of the dimer and the polymer were low in 

this solvent, which resulted in a large capacitive current contribution to the voltammogram. 

The first potential sweep shows oxidations at 0.58 V and 1.04 V that are essentially 

irreversible. The peak at 1.04 V is assigned to the first oxidation of the porphyrin with the 

free meso-position by analogy to monomer MP and the second oxidation of PN. The peak 

at 0.58 V is assigned to the first oxidation of porphyrin PN, which bears both a meso-

amino functionality and an aniline ring. This value is consistent with redox potentials for 

other porphyrins with meso-amino substituents.
30

 As can be seen in Fig. 17a, the second 

and subsequent voltage scans of MP-PN show irreversible 46ysteine46 under these 

conditions, and each sweep results in less current than the previous scan. This is 

consistent with formation of a film of some sort on the electrode, although MP-PN cannot 

form polymer chains, as does MP. 
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Figure 17. Cyclic voltammograms for (a) dimer MP-PN and polymer P-(PN)n in deaerated 

benzonitrile containing tetra-n-butylammonium hexafluoro-phosphate. Voltage was swept at 100 

mV s
-1

. 
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 Turning now to polymer P-(PN)n, the voltammograms in Fig. 17b, it is clear that the 

48ysteine48 is generally similar to that observed for the dimer MP-PN, although the peaks 

are not well resolved due to lack of solubility, the irreversible 48ysteine48 and deposition 

of a film on the electrode. Oxidation waves at ca. 0.6 and 1.0 V vs SCE are observed. The 

0.6 V wave is ascribed to oxidation of porphyrin molecules within the polymer chain, and 

the 1.0 V wave is due to the second oxidation of these porphyrins and any contributions 

from the terminal porphyrins. 

Experimental Section 

Synthesis. The preparation of MP was reported previously.
23

 The 
1
H NMR spectra were 

recorded on a Varian Inova 400 or a Varian Inova 500 spectrometer. Mass spectra were 

obtained on a matrix-assisted laser desorption/ionization time-of-flight spectrometer 

(MALDI-TOF). Ultraviolet-visible ground state absorption spectra were measured on a 

Shimadzu UV2100U spectrometer. 

 3,5-Dihexylbenzaldehyde (1) To a flask containing 4.0 g (13 mmol) of methyl-3,5-

dihexylbenzoate
31

 and 80 mL of tetrahydrofuran (THF) was added 0.50 g (13 mmol) of 

lithium 48ysteine48 hydride (LAH) in small quantities until the ester had been reduced to 

the corresponding alcohol. The progress of the reaction was followed by thin layer 

chromatography (THC) (hexanes/10% ethyl acetate). The reaction mixture was cooled in 

ice water and small lumps of ice were added to the reaction flask to quench excess LAH. 

The resulting suspension was filtered through celite and the residue was washed with 

dichloromethane/10% methanol. The filtrate was evaporated to dryness, and the residue 

was redissolved in dichloromethane (100 mL) and then washed with aqueous citric acid 

followed by aqueous sodium bicarbonate. The organic layer was dried over anhydrous 

sodium 48ysteine and concentrated to a viscous oil by evaporation of the solvent at 

reduced pressure. This material was dissolved in dichloromethane (100 mL) and to the 

stirred solution was added portions of activated manganese dioxide such that the alcohol 

was converted to the corresponding aldehyde. The progress of the reaction was followed 
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by TLC (hexanes/10% ethyl acetate). Once the reaction was complete, the suspension 

was filtered through Celite and the residue was washed with dichloromethane/20% 

methanol solution (100 mL). The filtrate was evaporated to dryness and the residue was 

chromatographed on silica gel (hexanes/5% ethyl acetate) to give 1 as a viscous oil (2.92 

g, 81% yield).
1
H NMR (400 MHz) δ 0.88(6H,t,J=6 Hz,-CH3), 1.31-1.38 (12H,m,-CH2-), 

1.59-1.67(4H,m,-CH2-), 2.65(4H,t,J=8 Hz,-CH2-), 7.26(1H,s,Ar-H partially obscured by 

CDCl3), 7.51(2H,s,Ar-H), 9.97(1H,s,-CHO); MALDI-TOF-MS m/z calcd. For C19H30O1 

274.2, obsd 273.8. 

 5,15-Bis-(3,5-dihexylphenyl)porphyrin (2). To a flask containing 3.30 g (22.6 mmol) 

of 2,2’-dipyrromethane, 6.20 g (22.7 mmol) of 3,5-dihexylbenzaldehyde (1) and 2.3 L of 

chloroform was added 1.72 mL of boron trifluoride diethyl etherate. Stirring under an argon 

atmosphere was carried out in the dark for 30 min. A 5.14 g portion of 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ) was added to the reaction mixture and stirring was 

continued for 1 h. The dark solution was reduced in volume to approximately 1 L by 

distillation of the solvent at reduced pressure and then gently shaken with aqueous 

sodium bicarbonate (1 L). Once the two layers had separated the organic phase was 

washed a further three times with fresh bicarbonate solution. The organic layer was then 

concentrated to a viscous oil by distillation of the solvent at reduced pressure and this oil 

was chromatographed on silica gel (hexanes/dichloromethane, 5:1 to 3:1). The 

appropriate fractions were combined, the solvent was evaporated and the residue was 

recrystallized from dichloromethane/methanol to give 3.56 g of 2 (40% yield). 
1
H NMR 

-NH), 0.92-0.95 (12H, t, J=7 Hz, -CH3), 1.37-1.45 (16H, 

m, -CH2-), 1.50-1.58 (8H, m, -CH2-), 1.92-1.85 (8H, m, -CH2-), 2.92 (8H, t, J=8 Hz,-CH2-), 

7.43 (2H, s, Ar-H), 7.91 (4H, s, Ar-H), 9.12 (4H, d, J=5 Hz, β-H), 9.38 (4H, d, J=5 Hz, β-H), 

10.30 (2H, s, meso-H); MALDI-TOF-MS m/z calcd. For C56H70N4 798.6, obsd. 798.5; 

UV/vis (CH2Cl2) 408, 503, 537, 576, 631 (nm). 

 5-Bromo-10,20-bis-(3,5-dihexylphenyl)porphyrin (3). To a flask containing 1.00 g 

(1.25 mmol) of 2 and 200 mL of chloroform was added 223 mg (1.25 mmol) of N-
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bromosuccinimide. After stirring the reaction mixture for 15 min, TLC 

(hexanes/dichloromethane, 2:1) indicated that the product was present together with 

lesser amounts of the starting material and the dibrominated porphyrin. The reaction 

mixture was concentrated to a viscous oil by evaporation of the solvent at reduced 

pressure and this oil was chromatographed on silica gel (hexanes/dichloromethane, 4:1 to 

3:1) to give 1.17 g of 3 (68% yield). 
1
H NMR (400 MHz) δ -2.97 (2H, s, -NH), 0.93 (12H, t, 

J=7 Hz, -CH3), 1.36-1.44 (16H, m, -CH2-), 1.48-1.56 (8H, m, -CH2-), 1.83-1.91(8H, m, -

CH2-), 2.89 (8H, t, J=8 Hz, -CH2-), 7.43 (2H, s, Ar-H), 7.85 (4H, s, Ar-H), 8.99 (2H, d, J=4 

Hz, β-H), 9.00 (2H, d, J=4 Hz, β-H), 9.28 (2H, d, J=4 Hz, β-H), 9.73 (2H, d, J=5 Hz, β-H), 

10.16 (1H, s, meso-H); MALDI-TOF-MS m/z calcd. For C56H69N4Br 876.5, obsd. 876.4; 

UV/vis (CH2Cl2) 416, 512, 547, 588, 645 (nm). 

 5-(4-t-Butylphenylcarbamate)-10,20-bis-(3,5-dihexylphenyl)porphyrin (4). To a 

heavy walled glass tube was added 1.00 g (1.14 mmol) of 3, 3.64 g (11.4 mmol) of 4-(boc-

amino)benzeneboronic acid pinacol, 4.83 g (22.8 mmol) of tribasic potassium phosphate 

and 20 mL of THF. The suspension was flushed with a stream of argon gas for 10 min, 

132 mg (0.11 mmol) of tetrakis-(triphenylphosphine)palladium(0) was added and the 

argon flushing procedure was continued for an additional 10 min. The tube was sealed 

with a Teflon
™

 screw plug and warmed to 67
°
C. After 17 h, the tube was cooled and TLC 

(hexanes/dichloromethane, 1:1) of the contents indicated that all the starting material had 

been consumed. The reaction mixture was filtered through Celite and the filtrate was 

concentrated to dryness by evaporation of the solvent. The residue was chromatographed 

on silica gel (hexanes/dichloromethane, 2:1 to 1:1) to give 985 mg (87% yield) of 4. 
1
H 

NMR (400 MHz) δ -2.98 (2H, s, -NH), 0.92 (12H, t, J=7 Hz, -CH3), 1.32-1.42 (16H, m, -

CH2-), 1.46-1.56 (8H, m, -CH2-), 1.64 (9H, s, -CH3), 1.82-1.88 (8H, m, -CH2-), 2.88 (8H, t, 

J=8 Hz, -CH2-), 6.83 (1H, s, -NH), 7.41 (2H, s, Ar-H), 7.75 (2H, d, J=8 Hz, Ar-H), 7.82 (4H, 

s, Ar-H), 8.13 (2H, d, J=8 Hz, Ar-H), 8.89 (2H, d, J=4 Hz, β-H), 8.93 (2H, d, J=4 Hz, β-H), 

9.04 (2H, d, J=4 Hz, β-H), 9.32 (2H, d, J=4 Hz, β-H), 10.19 (1H, s, meso-H); MALDI-TOF-
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MS m/z calcd. For C67H83N5O2 989.6, obsd. 989.6; UV/vis (CH2Cl2) 414, 510, 545, 584, 

639 (nm). 

 5-Bromo-15-(4-tert-butylphenylcarbamate)-10,20-bis-(3,5-dihexylphenyl)porphyrin 

(5). To a 1 L flask containing 2.90 g (2.93 mmol) of 4 and 400 mL of chloroform was 

added 547 mg (3.07 mmol) of N-bromosuccinimide. The solution was stirred for 20 min, 

after which time TLC (hexanes/dichloromethane, 1:1) indicated that the reaction was 

complete. The reaction mixture was washed with aqueous sodium bicarbonate, dried over 

anhydrous sodium 51ysteine, and concentrated to dryness by distillation of the solvent 

under reduced pressure. The resulting material was chromatographed on silica gel 

(hexanes/dichloromethane, 5:2 to 3:2) to give 2.81 g (90% yield) of 5. 
1
H NMR (400 MHz) 

δ -2.74 (2H, s, -NH), 0.91 (12H, t, J=7 Hz, -CH3), 1.34-1.41 (16H, m, -CH2-), 1.46-1.52 

(8H, m, -CH2-), 1.64 (9H, s, -CH3), 1.81-1.88 (8H, m, -CH2-), 2.87 (8H, t, J=8 Hz, -CH2-), 

6.82 (1H, s, -NH), 7.41 (2H, s, Ar-H), 7.75 (2H, d, J=8 Hz, Ar-H), 7.82 (4H, s, Ar-H), 8.10 

(2H, d, J=8 Hz, Ar-H), 8.82 (4H, s, β-H), 8.92 (2H, d, J=4 Hz, β-H), 9.65 (2H, d, J=5 Hz, β-

H); MALDI-TOF-MS m/z calcd. For C67H82N5O2Br 1067.6, obsd. 1067.5; UV/vis (CH2Cl2) 

422, 520, 556, 597, 654 (nm). 

 5-Bromo-15-(4-aminophenyl)- 10,20-bis-(3,5-dihexyl-phenyl)porphyrin (6). To a 

flask containing a solution of 1.5 g (1.40 mmol) of 5 dissolved in 40 mL of dichloromethane 

was added 60 mL of trifluoroacetic acid. The green solution was stirred under an argon 

atmosphere for 20 min, whereupon TLC (hexanes/dichloromethane, 1:1) indicated that the 

reaction was complete. The reaction mixture was diluted with 200 mL of dichloromethane 

and washed with water (200 mL) several times. The organic layer was then washed with 

aqueous sodium bicarbonate, dried over anhydrous sodium 51ysteine and then 

concentrated to dryness by evaporation of the solvent. The residue was chromatographed 

on silica gel (dichloromethane/hexanes, 3:4 to 1:1) to give 1.24 g (91% yield) of 6. 
1
H 

NMR (400 MHz) δ -2.71 (2H, s, -NH), 0.91 (12H, t, J=7 Hz, -CH3), 1.34-1.42 (16H, m, -

CH2-), 1.46-1.52 (8H, m, -CH2-), 1.81-1.88 (8H, m, -CH2-), 2.86 (8H, t, J=8 Hz, -CH2-), 

3.98 (2H, s, -NH), 7.02 (2H, d, J=8 Hz, Ar-H), 7.40 (2H, s, Ar-H), 7.82 (4H, s, Ar-H), 7.94 
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(2H, d, J=8 Hz, Ar-H), 8.84 (2H, d, J=5 Hz, β-H), 8.87 (2H, d, J=5 Hz, β-H), 8.92 (2H, d, 

J=5 Hz, β-H), 9.64 (2H, d, J=5 Hz, β-H); MALDI-TOF-MS m/z calcd. For C62H74N5Br 

967.5, obsd. 967.5; UV/vis (CH2Cl2) 423, 521, 559, 598, 656 (nm). 

 [5-Bromo-15-(4-aminophenyl)-10,20-bis-(3,5-dihexylphenyl)porphyrino]zinc(II) 

(PBr). To a flask containing 1.20 g (1.24 mmol) of 6 and 200 mL of dichloromethane was 

added 50 mL of a saturated solution of zinc acetate 52ysteine52 in methanol. After stirring 

for 1 h, TLC (hexanes/methylene chloride, 1:1) indicated that all the starting material had 

been consumed and a single product had formed. The pink reaction mixture was washed 

with water (200 mL) several times and then with aqueous sodium bicarbonate; it was then 

dried over anhydrous sodium 52ysteine. The solvent was evaporated at reduced pressure 

and the remaining solid was dried under high vacuum to give 1.21 g (95% yield) of PBr. 

1
H NMR (400 MHz) δ 0.91 (12H, t, J=7 Hz, -CH3), 1.32-1.41 (16H, m, -CH2-), 1.45-1.51 

(8H, m, -CH2-), 1.80-1.88 (8H, m, -CH2-), 2.86 (8H, t, J=7 Hz, -CH2-), 3.82 (2H, s, -NH), 

6.93 (2H, d, J=8 Hz, Ar-H), 7.38 (2H, s, Ar-H), 7.82 (4H, s, Ar-H), 7.92 (2H, d,J=8 Hz, Ar-

H), 8.86 (2H, d, J=4 Hz, β-H), 8.90 (2H, d, J=4 Hz, β-H), 8.96 (2H, d, J=5 Hz, β-H), 9.70 

(2H, d, J=5 Hz, β-H); MALDI-TOF-MS m/z calcd. For C62H72N5BrZn 1029.4, obsd. 1029.4; 

UV/vis (CH2Cl2) 424, 517(sh), 553, 595 (nm). 

 Polymer P-(PN)n. To a 250 mL heavy walled glass flask was added 1.00g (0.97 mmol) 

of PBr, 78 mg (0.15 mmol) of bis[(2-diphenylphosphino)phenyl] ether, 442 mg (1.36 mmol) 

of cesium carbonate and 200 mL of THF. The suspension was flushed with a stream of 

argon for 15 min, 21 mg (0.01 mmol) of palladium(II) acetate was added and the argon 

flushing process was continued for a further 10 min. The flask was sealed with a Teflon ™ 

screw plug and the reaction mixture was stirred at 67
°
C for 42 h. A TLC on silica gel 

(dichloromethane/hexanes, 1:1) of the reaction mixture indicated that most if not all of the 

starting material had been consumed and that many other compounds (polymers of 

different chain lengths) had formed. The reaction mixture was filtered through Celite and 

the residual material was thoroughly washed with THF. The combined filtrate was 

concentrated by distillation of the solvent at reduced pressure and dried under high 
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vacuum. The residue was dissolved in a mixture of dichloromethane (200 mL) and 

trifluoroacetic acid (200 mL) and stirred under an argon atmosphere for 1 h. The reaction 

mixture was then diluted with dichloromethane (200 mL) and washed with water followed 

by aqueous sodium bicarbonate. The solvent was then evaporated and the residue was 

chromatographed on silica gel (dichloromethane/2% THF, dichloromethane/20% THF and 

finally dichloromethane/20% THF/10% methanol) to give three fractions A, B and C the 

weight of each being, 0.43 g, 0.33 g, and 0.21g. Characterization was performed as 

discussed in the Results and Discussion section. 

 5-Bromo-15-(4-tert-butylphenylcarbamate)-10,20-bis(2,4,6-

trimethylphenyl)porphyrin (7). To a flask containing a solution of 159 mg (0.203 mmol) 

of 10-(4-tert-butylphenylcarbamate)-5,15-bis(2,4,6-trimethylphenyl)porphyrin (8)
23

 and 50 

mL of chloroform was added 38 mg (0.21 mmol) of N-bromosuccinimide. The reaction 

mixture was stirred for 30 min, at which time the solvent was evaporated at reduced 

pressure and the residue was chromatographed on silica gel (dichloromethane/hexanes, 

1:1) to give 153 mg (92% yield) of 7. 
1
H NMR (300 MHz) δ -2.59 (2H, s, N-H), 1.63 (9H, s, 

-CH3), 1.83 (12H, s, Ar-CH3), 2.63 (6H, s, Ar-CH3), 6.82 (1H, s, N-H), 7.28 (4H, s, Ar-H), 

7.74 (2H, d, J=8 Hz, Ar-H), 8.10 (2H, d, J=8 Hz, Ar-H), 8.64 (2H, d, J=5 Hz, β-H), 8.73 

(2H, d, J=5 Hz, β-H), 8.78 (2H, d, J=4 Hz, β-H), 9.59 (2H, d, J=5 Hz, β-H); MALDI-TOF-

MS m/z calcd. For C49H46N5O2Br 815.28, obsd. 815.29; Uv/vis (CH2Cl2) 421, 520, 553, 

596, 653 (nm). 

 Carbamate-protected form of MP-PN (9). To a glass tube was added 86 mg (0.14 

mmol) of 10-(4-aminophenyl)-5,15-bis(2,4,6-trimethylphenyl)porphyrin,
23

 100 mg (0.122 

mmol) of 7, 56 mg (0.17 mmol) of cesium carbonate, 10 mg (0.018 mmol) of bis[(2-

diphenylphosphino)phenyl] ether and 20 mL of THF. The suspension was flushed with 

argon for 10 min, 3 mg (0.012 mmol) of palladium acetate was added and the flushing 

procedure was continued for an additional 5 min. The tube was sealed with a Teflon
®
 

screw plug and the reaction mixture was warmed to 67
°
C for 18 h. Once cool, the solvent 

was evaporated by distillation at reduced pressure and the residue was chromatographed 
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on silica gel (hexanes/15% ethyl acetate) to give 163 mg of 9 (97% yield). 
1
H NMR (300 

MHz) δ -2.88 (2H, s, N-H), -2.26 (2H, s, N-H), 1.63 (9H, s, -CH3), 1.82 (12H, s, Ar-CH3), 

1.89 (12H, s, Ar-CH3), 2.65 (12H, s, Ar-CH3), 6.82 (1H, s, N-H), 7.29 (4H, s, Ar-H), 7.30 

(4H, s, Ar-H), 7.3 (2H, m, Ar-H partially obscured), 7.73 (2H, d, J=8 Hz, Ar-H), 8.02 (2H, d, 

J=8 Hz, Ar-H), 8.05 (1H, s, N-H), 8.11 (2H, d, J=8 Hz, Ar-H), 8.65 (2H, d, J=5 Hz, β-H), 

8.73-8.81 (8H, m, β-H), 9.03 (2H, d, J=5 Hz, β-H), 9.23 (2H, d, J=5 Hz, β-H), 9.60 (2H, d, 

J=5 Hz, β-H), 10.06 (1H, s, meso-H); MALDI-TOF-MS m/z calcd. For C93H84N10O2 

1372.68, obsd. 1372.68; Uv/vis (CH2Cl2)  413, 426 (sh), 514, 551, 587, 647, 668 (nm). 

 Dyad MP-PN. Compound 9 (150 mg, 0.109 mmol) was added to a flask along with 30 

mL of trifluoroacetic acid. The green solution was stirred under a nitrogen atmosphere for 

20 min and then diluted with dichloromethane (150 mL). After washing with water and 

aqueous sodium bicarbonate, the solution was dried over sodium 54ysteine and then 

concentrated by distillation of the solvent at reduced pressure. The residue was 

chromatographed on silica gel (dichloromethane/20-5% hexanes) to give 125 mg of MP-

PN (90% yield).
 1

H NMR (300 MHz) δ -2.88 (2H, s, N-H), -2.25 (2H, s, N-H), 1.82 (12H, s, 

Ar-CH3), 1.89 (12H, s, Ar-CH3), 2.64 (12H, s, Ar-CH3), 3.98 (2H, s, N-H), 7.03 (2H, d, J=8 

Hz, Ar-H), 7.29 (4H, s, Ar-H), 7.30 (4H, s, Ar-H), 7.3(2H, m, Ar-H partially obscured), 7.96 

(2H, d, J=8 Hz, Ar-H), 8.02 (2H, d, J=8 Hz, Ar-H), 8.02 (1H, s, N-H), 8.65 (2H, d, J=4 Hz, 

β-H), 8.73-8.84 (8H, m, β-H), 9.03 (2H, d, J=5 Hz, β-H), 9.22 (2H, d, J=4 Hz, β-H), 9.59 

(2H, d, J=5 Hz, β-H), 10.06 (1H, s, meso-H); MALDI-TOF-MS m/z calcd. For C88H76N10 

1272.63, obsd. 1272.62; Uv/vis (CH2Cl2) 412, 426 (sh), 514, 554, 587, 649, 662 (nm). 

 Carbamate Protected Form of MPN (10). To a heavy walled glass tube was added 

190 mg (0.23 mmol) of 7, 75 mg (0.70 mmol) of p-toluidine, 106 mg (0.33 mmol) of cesium 

carbonate, 19 mg (0.04 mmol) of bis[(2-diphenylphosphino)phenyl] ether and 60 mL of 

THF. The mixture was flushed with argon gas for 15 min, 5.2 mg (0.02 mmol) of palladium 

acetate was added and the argon gas flushing process was continued for an additional 10 

min. The tube was sealed with a Teflon™ screw plug and the reaction mixture was 

warmed to 67
°
C. After 17 h the reaction mixture was cooled and TLC (hexanes/20% ethyl 
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acetate) indicated that all the starting porphyrin had been consumed. The reaction mixture 

was filtered through Celite and the residue was washed thoroughly with THF (100 mL). 

The filtrate was concentrated to dryness by removal of the solvent at reduced pressure 

and the residue was chromatographed on silica gel (hexanes/5-7.5% ethyl acetate) to give 

163 mg of 10 (83% yield). 
1
H NMR (400 MHz) δ -2.31 (2H, s, N-H), 1.63 (9H, s, -CH3), 

1.84 (12H, s, Ar-CH3), 2.26 (3H, s, Ar-CH3), 2.62 (6H, s, Ar-CH3), 6.81 (1H, s, N-H), 6.87 

(2H, d, J=8 Hz, Ar-H), 6.99 (2H, d, J=8 Hz, Ar-H), 7.26 (4H, s, Ar-H partially obscured), 

7.63 (1H, s, N-H), 7.73 (2H, d, J=8 Hz, Ar-H), 8.09 (2H, d, J=8 Hz, Ar-H), 8.59 (2H, d, J=5 

Hz, β-H), 8.60 (2H, d, J=5 Hz, β-H), 8.74 (2H, d, J=5 Hz, β-H), 9.27 (2H, d, J=4 Hz, β-H); 

MALDI-TOF-MS m/z calcd. For C56H54N6O2 842.4, obsd. 842.4; UV/vis (CH2Cl2) 423, 520, 

572, 590, 663 (nm). 

 MPN. To a flask containing 150 mg (0.18 mmol) of 10 and 20 mL of dichloromethane 

was added 20 mL of trifluoroacetic acid. The green solution was stirred at room 

temperature under an argon atmosphere for 30 min. A TLC (hexanes/20% ethyl acetate) 

indicated that the reaction was complete. The reaction mixture was diluted with 

dichloromethane (100 mL) and washed with water (2100 mL) and then with aqueous 

sodium bicarbonate (100 mL). The solution was dried over anhydrous sodium 55ysteine 

and filtered, and the filtrate was concentrated to a purple solid. This material was 

chromatographed on silica gel (hexanes/25% ethyl acetate) to give 120 mg of MPN (91% 

yield). 
1
H NMR (400 MHz) δ -2.31 (2H, s, N-H), 1.84 (12H, s, Ar-CH3), 2.26 (3H, s, Ar-

CH3), 2.62 (6H, s, Ar-CH3), 4.01 (2H, s, N-H), 6.86 (2H, d, J=8 Hz, Ar-H), 6.99 (2H, d, J=8 

Hz, Ar-H), 7.04 (2H, d, J=8 Hz, Ar-H), 7.24 (4H, s, Ar-H partially obscured), 7.61 (1H, s, N-

H), 7.95 (2H, d, J=8 Hz, Ar-H), 8.59 (2H, d, J=5 Hz, β-H), 8.61 (2H, d, J=5 Hz, β-H), 8.80 

(2H, d, J=5 Hz, β-H), 9.27 (2H, d, J=5 Hz, β-H); MALDI-TOF-MS m/z calcd. For C51H46N6 

742.4, obsd. 742.6; UV/vis (CH2Cl2) 427, 521, 570, 590, 665 (nm). 

 Electrochemical Measurements. The voltammetric characterization of the redox 

processes for the molecules was performed with a CHI 620 potentiostat (CH Instruments) 

using a Pt disk working electrode, a Pt wire mesh counter electrode, and a silver wire 
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quasi-reference electrode in a conventional three-electrode cell. Electrochemical studies 

were carried out in anhydrous benzonitrile containing 0.10 M tetra-n-butylammonium 

hexafluorophosphate as the supporting electrolyte. The working electrode was cleaned 

between experiments by polishing with diamond paste slurry, followed by solvent rinses. 

After each voltammetric experiment, ferrocene was added to the solution, and the 

potential axis was calibrated against the formal potential of the ferrocenium/ferrocene 

redox couple (taken as 0.45 V vs SCE in dichloromethane). 

 Steady-state spectroscopy. Absorption spectra were measured on a Shimadzu UV-

3101PC UV-vis-NIR spectrometer. Steady-state fluorescence spectra were measured 

using a Photon Technology International MP-1 spectrometer and corrected for detection 

system response. Excitation was provided by a 75 W xenon-arc lamp and single grating 

monochromator. Fluorescence was detected 90° to the excitation beam via a single 

grating monochromator and an R928 photomultiplier tube having S-20 spectral response 

and operating in the single photon counting mode. 

 Time-resolved fluorescence. Fluorescence decay kinetics were measured using the 

time-correlated single-photon counting technique. The excitation source was a fiber 

supercontinuum laser based on a passive modelocked fiber laser and a high-nonlinearity 

photonic crystal fiber supercontinuum generator (Fianium SC450). The laser provides 6-ps 

pulses at a repetition rate variable between 0.1 – 40 MHz. The laser output was sent 

through an Acousto-Optical Tunable Filter (Fianium AOTF) to obtain excitation pulses at 

the desired wavelength. Fluorescence emission was collected at 90° and detected using a 

double-grating monochromator (Jobin-Yvon, Gemini-180) and a microchannel plate 

photomultiplier tube (Hamamatsu R3809U-50). The polarization of the emission was 54.7° 

relative to that of the excitation. Data acquisition was done using a single photon counting 

card (Becker-Hickl, SPC-830). The instrument response function had a FWHM of 50 ps, 

as measured from the scattering of the sample at the excitation wavelength. The data 

were fitted with a sum of exponentials decay model at a single wavelength. 
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Conclusions 

The palladium 57ysteine57 coupling method described here for preparation of P-(PN)n 

yields a semiconducting polymer with the porphyrin moieties as part of the polymer 

backbone that is similar to the polymers previously prepared by electropolymerization.
23,25

 

Replacement of the mesityl groups used in the electropolymers with 3,5-dihexylphenyl 

groups yields a soluble polymer that can be studied easily in solution. It is amenable to 

spin-coating or other film-forming procedures and should be useful for making polymer 

phases intimately mixed with fullerene phases for construction of bulk heterojunction 

organic photoelectrochemical cells. Comparison of the spectroscopic properties of the 

polymer with those of the model compounds shows that linking the polymer rings via 

meso-aminophenyl groups allows the porphyrin moieties to retain many of the absorption 

and redox properties of the monomer, rather than generating a highly delocalized 

chromophoric system. At the same time, the close similarity in structure between P-(PN)n 

and the electropolymers studied previously
23,25

 suggest that the polymer chains form a 

semiconducting material through which positive charge is expected to flow readily. The 

relatively long excited singlet state lifetime observed for the polymer shows that this state 

is kinetically competent to inject charge into a suitably located electron acceptor. This in 

turn suggests that polymers of this type could be useful in organic photovoltaics or light 

emitting diodes, sensors, or other optoelectronic applications. 

 The spectroscopic studies of the polymer and model compounds suggest that the 

presence of an amino group at the meso-position of a porphyrin leads to formation of 

initial local excited states that quickly evolve into excited states with charge-transfer 

character. Presumably, the lone pair electrons of the amino group are somewhat 

delocalized into the porphyrin macrocycle, leaving a partial positive charge on the amino 

substituent and a partial negative charge on the macrocycle. The formation of charge 

transfer states of this general type in molecules with an amino group attached to an 

aromatic residue with some electron accepting character is widely observed and has been 
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extensively studied, although the exact nature of the CT state has been greatly debated 

and is still not completely understood.
32

 

 Energy transfer between porphyrin units along the polymer chain is moderately rapid. 

The singlet state lifetimes suggest that in a film structure, energy transfer could also occur 

between adjacent polymer chains. The electrochemical experiments show that the 

polymer chain is readily oxidized at ca. +0.6 V vs SCE, indicating that the excited states of 

the porphyrin moieties are thermodynamically competent to inject charge into a wide 

variety of electron acceptors, including typical fullerenes. Thus, porphyrins of this general 

type have properties that could prove useful in a variety of optoelectronic, sensing and 

solar energy conversion applications. 
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CHAPTER 4 

SYNTHESIS AND PHOTOPHYSICAL STUDIES OF A CAROTENOID SILICON-

PHTHALOCYANINE C60 TRIAD 

4.1 Author Contribution 

The author contributed all of the photophysics for this paper. The author wrote the experimental 

section for the photophysics as well as the discussion section 

4.2 Manuscript 

Jaro Arero, Robert A. Schmitz Gerdenis Kodis, Thomas Moore, Ana Moore, Devens Gust 

Introduction 

 Phthalocyanines (Pcs) are structural analogues of porphyrins which have strong absorption in 

the visible region and near-infrared. They have been extensively investigated for their promising 

electrical, optoelectronic, photochemical and catalytic properties.
1
 Due to the presence of an 18 

π-electron aromatic cloud, most phthalocyanines have cofacial intermolecular π-π interactions 

even at low concentrations and this causes aggregation which leads to fluorescence quenching 

and poor solubility.
2
  However, owing to the steric effect of axial substituents, silicon 

phthalocyanines have been shown to exhibit a non-aggregation characteristics and solubility in 

common organic solvents. 
3
 

Phthalocyanines with two symmetrical fullerene substituents connected axially through a central 

silicon have been reported in the last few years. 
4-7

 In addition to improving the solubility by 

diminishing intermolecular interactions fullerenes bring special properties to the phthalocyanine 

molecule. Fullerenes (C60) are good electron acceptors and have low reorganization energy, λ 
8
 . 

C60-SiPc-C60 triads are good mimics for aspects of the photosynethic reaction center. However, 

to develop a better mimic of natural photosynthesis, artificial photosynthesis will require a system 

with two electron donors and one acceptor where a long-lived charge separation can be achieved 

via a step-wise electron transfer.
9
 

In the present work, the synthesis and photophysical properties of a carotene-silicon 

phthalocyanine-fullerene (C-SiPc-C60) triad is reported. In natural photosynthesis the roles of 

carotenoids include transferring excitation energy to the photosynthetic reaction center
10

 as well 
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as photoprotection by quenching chlorophyll triplet states to prevent generation of the cell 

damaging reactive singlet oxygen species.
10,11

 Under stress conditions of Mn-depleted PSII or 

low temperature, β-carotene has been observed to be an electron donor to the highly oxidizing 

P680+.
12

  

The development and study of a simple artificial photosynthetic system consisting of a carotene, 

phthalocyanine and a fullerene acceptor will give an insight into the electron transfer process in 

natural photosynthesis. Incorporating carotenoids in organic photovoltaic devices will come with 

the benefit of long-lived charge separated states and photoprotection. Also use of carotene and 

phthalocyanine together will ensure access to a wider spectral window of solar radiation. 

To the best of our knowledge an asymmetrical linkage on a Si phthalocyanine with a potential 

electron donor on one side and a potential electron acceptor on the other side has not been 

reported. In the current work, we are presenting synthesis of carotene and fullerene axially 

connected to phthalocyanine 1 (Scheme 21). Electron transfer and energy transfer processes in 

the triad were investigated by use of spectroscopic and electrochemical methods.    

  

Results and Discussion 

Femtosecond transient absorption measurements were taken of the system and its models. The 

models were measured in benzonitrile and excited with 695 nm radiation. In the carotene-

phthalocyanine model (C-Pc), electron transfer was seen from the carotene to the phthalocyanine 

to create the C+--Pc- charge separated (CS) state in 3.3 ps. This CS state decayed in 13.3 ps. 

There is also a 940 ps decay of the CS state (Figure 18). There is a long component that decays 

on a scale longer than the detection limit of the apparatus. 
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Figure 18. Femtosecond pump-probe measurement of C-Pc model. Charge separated state 

formation occurs in 3.3 ps (black), CS decay occurs in 13 ps (red), another conformation of the 

dyad decays in 940 ps (green), there is some phthalocyanine impurity that does not decay on the 

time scale of the detector (blue). 
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In the model phthalocyanine-C60 (Pc-C60) energy transfer was seen from the Pc to the C60 in 24 

ps. There is formation of the CS state in 540 ps. There is formation of the C60 triplet state that 

occurs before formation of the CS state, which decays on a time scale longer than the detection 

limit. The CS state decays in 4.5 ns (Figure 19). 
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Figure 19.  Femtosecond transient absorption DADS of Pc-C60 model dyad. Energy transfer 

occurs from the excited phthalocyanine to the C60 in 24 ps (black). The CS state forms in 540 ps 

(red). The C60 triplet excited state is formed and decays on a timescale longer than the detection 

limit of the apparatus (blue). The CS state decays in 4.5 ns (green). 
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In the triad (C-Pc-C60), very fast electron transfer is seen in 2.5 ps to form the C+-Pc—C60 

species. This CS state decays in 17 ps. There is also a CS conformation that decays in 940 ps. 

There is no evidence of charge transfer to the C60. There is a component that does not decay 

that is attributed to phthalocyanine monomer in solution (Figure 20).  
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Figure 20. Femtosecond pump-probe DADS spectra of the C-Pc-C60 triad. The C+-Pc—C60 CS 

state occurs in 2.5 ps (black). One conformation of the CS state decays in 17 ps (red) and 

another in 945 ps (green). There is a decay longer than the detection limit of the apparatus (blue) 

that is attributed to free phthalocyanine in solution. 
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Synthesis 

  

Axially substituted phthalocyanine 2 was afforded by a reaction between a commercially available 

silicon phthalocyanine dihydroxide with 4-iodobenzoate and 4-formylbenzoate (1:1) as shown in 

Scheme 1. By column purification, phthalocyanine 2 was obtained in 30 % yield. An amination 

reaction between phthalocyanine 2 and 7’-apo-7’-(4-aminophenyl)-β-carotene13 in presence of a 

commercially obtained mixture of tris(dibenzylidene acetone) dipalladium (0): BINAP: sodium tert-

butoxide  (1:3:4) at 80oC followed by column purification gave a 31 % yield of silicon 

phthalocyanine carotene dyad 3. Triad 1 was afforded by a single Prato reaction from (p-7’-apo-

7’-(4-aminophenyl)-β-carotenobenzoate)-(p-formylbenzoate)(2,9,16,23-tetra-tert-

butylphthalocyaninato)silicon 3 in 62 % yield after purification by silica column chromatography.   
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Figure 21. The SiPc 4, SiPc-C60 6 dyad and C60 7 reference compounds were synthesized as 

shown in Scheme 2. Compound 1-7 were fully characterized by 1H NMR, UV-Vis, and MALDI-

TOF. 
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Figure 22. Synthetic scheme of Pc-C60 dyad. 
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NMR 

1H NMR (CDCl3) spectrum of phthalocyanine 2 shows an upfield shift of the signals of benzoate 

protons to the range 6.67-4.83 ppm as opposed to the expected signals at around 8 ppm for 

benzoate protons. This observation confirms the influence of the shielding effect of the 

phthalocyanine π cloud. In addition, the presence of four distinct benzoate signals at 6.73, 4.58, 

5.26 and 4.83 ppm gives further support to the presence of an asymmetric axial linkage on the 

phthalocyanine. On the other hand, attachment of the carotene to the phthalocyanine to form 

dyad 3 had no effect on the resonance signals of either of the components, i.e. phthalocyanine 

and carotene. The 1H NMR (CDCl3) spectrum of carotene-phthalocyanine dyad 3 was a linear 

combination of the spectra of the two parts. This could be attributed to the presence of the phenyl 

rings that separates the two components and hence protects the carotene from the shielding 

effect of the phthalocyanine. In contrast an earlier work by our group showed that when carotene 

is directly attached to Si phthalocyanine axially there was a very significant shift in the resonance 

signals of the carotene protons.
14

 On attaching the C60 to form the triad 1, the upfield shift of the 

benzoate protons and pyrollidine linker between the C60 and the phthalocyanine was similar to 

the one reported by Martin-Gomis and co-workers. 
5
 The signal of the benzoate protons adjacent 

to C60, pyrrollidine protons and N- CH3 protons were all shifted upfield when compared to the 

corresponding protons of the C60 model 7. Benzoate protons were shifted from 7.84 to 5.17, the 

pyrrolidine protons at 4.97, 4.96, and 4.25 were moved to 4.63, 4.28, and 3.84; and the N-CH3 

protons were shifted from 2.78 to 2.17. This observation suggests that the attached C60 is in the 

range of the strong aromatic current of the Pc 

UV/Vis  

The absorption spectrum of the triad 1 shows that the Q-band of the phthalocyanine is 

unperturbed on formation of the triad (Figure 23), the addition of the carotenoid pigment causes a 

larger increase in absorption in the middle of the spectrum. Figure 24 shows that the carotenoid 

moiety at 480 nm in carotene-Si Phthalocyanine dyad 2 is red-shifted compared to model 4-

aminophenyl-β-carotene, which has absorbance at 475 nm. The carotene moiety absorption 

maximum is at 479 nm in triad 1, which is not a significant change from that observed in the 
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carotene-phthalocyanine 3 dyad. Overall the absorption spectrum of the triad Car-SiPc-C60 triad 

1 in dichloromethane is a close superposition of the spectra of the component chromophores 

making up the triad. This is an indication that there is not much ground state electronic interaction 

between the individual chromophores, particularly between the phthalocyanine moiety and the 

C60. In addition the sharp Q-bands are indications of non-aggregation of the axially substituted Si 

Phthalocyanines. 

 

Figure 23. Absorption spectrum of triad 1 with those of reference compounds normalized at 

λ=694 nm 

 



  73 

 

Figure 24. Absorption spectrum of triad 1 with those of reference compounds normalized at 

λ=480 nm 
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Experimental 

General analytical:  UV–Visible spectroscopy was performed using a Shimadzu UV-3101PC UV–

Visible spectrophotometer.  Mass spectrometry was performed by the MALDI-TOF method using 

a Voyager DE STR from Applied Biosystems in reflector mode.  1H NMR spectra were obtained 

in deuterated chloroform using a Varian 400 MHz instrument with tetramethylsilane as internal 

reference. 

Materials: All reagents and chemicals were obtained from commercial sources unless noted.  All 

solvents were distilled prior to use. Silica gel chromatography was performed using 230-400 

mesh silica gel (Silicycle, Siliflash F60).   

 

Synthesis 

 (p-iodobenzoate)-(p-formylbenzoate)(2,9,16,23-tetra-tert-butylphthalocyaninato)silicon 2 

4-iodobenzoic acid (242 mg, 1.0 mmol), 4-formylbenzoic acid (150 mg, 1.0 mmol) and 

(tBu)4SiPc(OH)2 (92 mg, 0.115 mmol) in 25 mL anhydrous DMF were stirred at 165oC under 

argon atmosphere for 10 h. The mixture was cooled to room temperature and solvent removed 

under reduced pressure and the crude purified by flash chromatography (SiO2, 

Dichloromethane/Hexane-7:3) to yield  39 mg (30 %) of SiPc 2 as a bluish green solid. 1H NMR 

(400 MHz, CDCl3) δ 9.74-9.56 (8H,m, Pc-Ar-H ), 9.37 (1H, s, CHO), 8.45-8.43 (4H, m, Pc-Ar-H ), 

6.73 (2H, d, J=8 Hz, Ph-Ar-H), 6.58 (2H, d, J=8 Hz, Ph-Ar-H), 5.26 (2H, d, J=8 Hz, Ph-Ar-H), 4.83 

(2H, d, J=8 Hz, Ph-Ar-H), 1.80-1.79 (36H, m, 4×(CH3)3). UV/Vis (λmax/nm, CH2Cl2): 694, 662, 

624, 360. MALDI-TOF-MS (Terthiophene matrix) m/z calcd for C63H57IN8O5Si 1160.33 obsd 

1160.35 

 

Synthesis of (p-7’-apo-7’-(4-aminophenyl)-β-carotenobenzoate)-(p-formylbenzoate)(2,9,16,23-

tetra-tert-butylphthalocyaninato)silicon 3 

SiPc 2 (53 mg, 0.053 mmol), p-7’-apo-7’-(4-aminophenyl)-β-carotene (31 mg, 0.0608 mmol) and 

41 mg of a commercially obtained mixture of tris(dibenzylidene acetone) dipalladium (0): BINAP: 

sodium tert-butoxide  (1:3:4) were stirred in freshly distilled and degassed toluene (28 mL) at 
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80oC under argon atmosphere for 48 h until almost all of the starting material have been 

consumed. The solution was then allowed to cool to room temperature. The solvent was 

evaporated at reduced pressure and the crude purified by chromatography (SiO2, 

Hexane/Dichloromethane/EtOAc-8:1.5:0.5) to obtain 17.6 mg (31 %) of the dyad 3.  1H NMR 

(400 MHz, CDCl3) δ 9.68-9.51 (8H, m, Pc-Ar-H), 9.32 (IH, s, CHO), 8.39-8.37 (4H, m, Pc-Ar-H), 

7.01-6.99 (2H, m, Ph-Ar-H), 6.68-6.66 (2H,  m, Ph-Ar-H), 6.62-6.44 (8H, m), 6.30-625 (2H, m), 

6.19-6.08 (6H, m), 5.75 (2H, d, J=8 Hz, Ph-Ar-H), 5.20 (2H, d, J=8 Hz, Ph-Ar-H), 5.13 (1H, br s, 

NH), 4.98 (2H, d, J=9 Hz, Ph-Ar-H),1.97-1.87 (m, 14H), 1.74-1.64 (m, 36H), 1.58-1.53 (m, 4H), 

1.41-1.38 (m, 3H), 0.97-0.96 (m, 6H). UV/Vis (λmax/nm, CH2Cl2): 694, 661, 623, 508 (sh), 480, 

450 (sh), 341. MALDI-TOF-MS (Terthiophene matrix) m/z calcd for C100H103N9O5Si 1538.79 

obsd 1538.60 

 

Bis(p-methylbenzoate)(2,9,16,23-tetra-tert-butylphthalocyaninato)silicon 4 and  (p-

formylbenzoate)-(p-methylbenzoate)(2,9,16,23-tetra-tert-butylphthalocyaninato)silicon 5 

A portion of 4-toluic acid (136 mg, 1.0 mmol), 4-formylbenzoic acid (150 mg, 1.0 mmol) and 

(tBu)4SiPc(OH)2 (92 mg, 0.115 mmol) in 25 ml anhydrous DMF were stirred at 170oC under 

argon atmosphere for 10 h. The mixture was cooled to room temperature and solvent removed 

under reduced pressure and the crude purified by flash chromatography (SiO2, 

Dichloromethane/Hexane-8:2). The symmetrical SiPc 4 was eluted first, yielding 20.5 mg (17%), 

followed by asymmetrical SiPc 5 32. 7 mg (27 %). 

SiPc 4 1H NMR (400 MHz, CDCl3) δ 9.75-9.48 (8H, m, Pc-Ar-H), 8.35-8.33 (4H, m, Pc-Ar-H), 

5.95 (4H, d, J= 8 Hz, Ph-Ar-H), 4.96 (4H, d, J= 8 Hz, Ph-Ar-H), 1.73-1.72 (36H, m, 4× (CH3)3), 

1.60 (3H, s, 2×CH3). UV/Vis (λmax/nm, CH2Cl2): 693, 662, 623, 361. MALDI-TOF-MS 

(Terthiophene) m/z calcd for C64H62N8O4Si 1034.47 obsd 1034.45.  

 

SiPc 5 1H NMR (400 MHz, CDCl3) δ 9.69-9.50 (8H, m, Pc-Ar-H), 9.30 (IH, s, CHO), 8.37-8.35 

(4H, m, Pc-Ar-H), 6.67 (2H, d, J= 8 Hz, Ph-Ar-H), 5.95 (2H, d, J= 8 Hz, Ph-Ar-H), 5.20 (2H, d, J= 

8 Hz, Ph-Ar-H), 4.97 (2H, d, J= 8 Hz, Ph-Ar-H), 1.73-1.72 (36H, m, 4×(CH3)3), 1.60 (3H, s, CH3) 
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. UV/Vis (λmax/nm, CH2Cl2): 693, 662, 623, 361. MALDI-TOF-MS (Terthiophene) m/z calcd for 

C64H60N8O5Si  1048.45 obsd 1048.46 

 

(p-methylbenzoate)-[p-(N-methyl-3’,4’-fulleropyrrodin-2’-yl)benzoate](2,9,16,23-tetra-tert-

butylphthalocyaninato)silicon 6 

SiPc 5 (32 mg, 0.0305 mmol), C60 (55 mg, 0.0764 mmol), sarcosine (30 mg, 0.337 mmol) in o-

dichlorobenzene (12 mL) were stirred at 140oC under argon atmosphere for 2 h. The mixture was 

cooled and solvent removed under reduced pressure. The crude was purified on silica gel 

(toluene) yielding 52 mg (94 %) of SiPc-C60 dyad 7 as green solid. 1H NMR (400 MHz, CDCl3) δ 

9.73-9.55 (8H, m, Pc-Ar-H), 8.42-8.40 (4H, m, Pc-Ar-H), 6.68 (2H, br s, Ph-Ar-H ), 6.01 (2H, d, 

J=8 Hz, Ph-Ar-H), 5.23 (2H, br s, Ph-Ar-H), 4.59 (2H, d, J=8 Hz, Ph-Ar-H), 4.59 (1H, d, J=8 Hz, 

CHHN), 4.25 (1H, s, CHN), 3.83 (1H, d, J=8 Hz, CHHN), 2.17 (3H, s, N-CH3), 1.79-1.78 (36H, m, 

4×(CH3)3), 1.66 (3H, s, CH3). (λmax/nm, CH2Cl2):694, 663, 623, 360, 331. MALDI-TOF-MS 

(Terthiophene) m/z calcd for C126H65N9O4Si 1795.49 obsd 1795.35  

 

N-Methyl-2-(p-methylbenzoate)-3, 4-fulleropyrrolidine 7 

A mixture of C60 (50 mg, 0.0694 mmol), methyl-4-formylbenzoate (30 mg, 0.183 mmol) and 

sarcosine (28 mg, 0.314 mmol) in toluene (10 mL) were heated to reflux under argon atmosphere 

for 3 hrs. The mixture was then cooled to room temperature and solvent removed and crude 

purified by flash chromatography (silica, toluene:/EtOAc-19:1) yielding 9 mg (14 %) of 8 as a 

brown solid. 1H NMR (400 MHz, CDCl3/CS2 1:1) δ 8.03 (2H,d,J=8 Hz, Ar-H), 7.83 (2H, br s, Ar-

H), 4.96-4.94 (2H, m,  CHHN & CHN), 4.25 (1H, d, J=9.6 Hz, CHHN), 3.84 (3H, s, N-CH3), 2.77 

(3H, s, CH3). ). (λmax/ nm, toluene): 703, 432. MALDI-TOF-MS (Terthiophene) m/z calcd for 

C71H13NO2 911.09 obsd 910.61 

Synthesis of [p-7’-apo-7’-(4-aminophenyl)-β-carotenobenzoate]-[p—(N-methyl-3’,4’-

fulleropyrrodin-2’-yl)benzoate](2,9,16,23-tetra-tert-butylphthalocyaninato)silicon 1 

Dyad 3 (23 mg, 0.015 mmol), C60 (54 mg, 0.07 mmol), sarcosine (42 mg, 0.471 mmol) in 

anhydrous toluene (20 mL) were stirred at 105oC under argon atmosphere for 24 h. The mixture 
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was then cooled and the solvent removed under reduced pressure. The crude was purified on 

silica gel (toluene) yielding 21 mg (62 %) of triad 1. 

1H NMR (400 MHz, CDCl3) δ 9.68 (m, 8H, Pc-Ar-H), 8.36-8.34 (m, 4H, Pc-Ar-H ), 7.00-6.98 (d, 

2H, J=8, Ph-Ar-H), 6.72-6.43 (m, 10H, vinyl H, Ph-Ar-H), 6.30-6.03 (m, 8H, vinyl H, Ph-Ar-H ), 

5.75-5.72 (d, 2H, J=12, Ph-Ar-H), 5.18-5.16 (br, d, 2H, Ph-Ar-H ), 4.96-4.94 (d, 2H, J=8, Ph-Ar-H  

), 4.63-4.62 (d, 1H, J=4, CHHN), 4.28 (br s, 1H, CHN ), 3.85-3.83 (d, 1H, J=8, CHHN ), 2.17 (s, 

3H, N-CH3), 1.97-1.88 (m, 14H, CH3-18C, CH3-20C, CH3-19’C, CH3-20’C, CH2-4C), 1.75-1.65 

(m, 36H, 4× (CH3)3 ), 1.57-1.53 (m, 3H, CH3-19C), 1.41-1.38 (m, 4H, CH2-2C, CH2-3C), 0.97-

0.96 (m, 6H, CH3-16 and CH3-17C)   

UV/Vis (λmax/nm, CH2Cl2): 693, 663, 623, 508 (sh), 479, 455 (sh), 360, 329. 

MALDI-TOF-MS (Terthiophene) m/z calcd for C162H108N10O4Si 2284.83 obsd 2284.50 
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CHAPTER 5 

DE NOVO DESIGN AND SYNTHESIS OF AN ARTIFICIAL SYNTHETIC FERREDOXIN 

5.1 Author Contribution 

The author performed all photophysical experiments, as well as wrote the photophysical 

experimental section and contributed to the results and discussion section. 

5.2 Manuscript 

Anindya Roy, Dayn Joseph Sommer, Robert A. Schmitz, Andrei Astachkine, Chelsea 

Brown, Giovanna Ghirlanda 

Introduction: 

In nature, redox proteins often employ chains of various [FeS] clusters to shuttle electrons from 

electron donors to electron acceptors. Individual metallocenters are optimally spaced from one 

another to allow electronic coupling between them, increasing the rate of electron transfer 

between the two. Examples of these multi-cluster proteins are the [FeFe] and [NiFe] 

hydrogenases, enzymes responsible for reversible proton reduction
1
. The active site of these 

enzymes is deeply buried in protein matrix and electronically coupled to the surface of the protein 

via series of suitably spaced [4Fe4S] clusters [Fig 25]. Very often, these coupled 2[4Fe-4S] 

clusters appear to adopt a so-called ‘’ fold or ferredoxin fold
2, 3

 [Figure 26]. In general, for 

2[4Fe-4S] clusters, a single polypeptide chain folds into two domains that bind each of the 2[4Fe-

4S] clusters. The structure often exhibits a pseudo two-fold symmetry that is indicative of ancient 

sequence/gene duplication
2
. Despite of their structural similarity, 2[4Fe-4S] clusters differ 

substantially in their 79ystei-chemical properties. This diversity emerges from the difference in 

primary amino acid sequence of the ferredoxins and the specific stereo-electronic properties of 

the environment surrounding the clusters. Owing to their perceptible importance in redox and 

non-redox catalysis, there has been a substantial amount of work in the field of de novo design 

attempting to model clusters into peptide maquettes to mimic the natural cluster environment, 

with the eventual aim to incorporate these model peptides into engineered redox enzymes
4-10

. 

However, many of these peptides have been designed to incorporate a single, electronically 

isolated cluster, limiting their usefulness as electron conduits in vitro. To address this problem, we 
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recently developed a general method to design Bis-[4Fe4S] cluster binding peptide using 

symmetry parameters. We have shown, as a proof of concept, that multiple [4Fe-4S] clusters can 

be incorporated inside the hydrophobic core of helical bundle separated by a predetermined 

distance
11

. We report here characterization of a variant peptide that moves the two clusters to 

within 12 Å of one another, a biologically relevant distance for effective electron transfer. This 

designed system shows proof-of-concept redox activity, implicating its use in engineered redox 

proteins. 
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Figure 25. Structure of [FeFe] hydrogenase from Desulfovibrio desulfuricans (PDB 1HFE) 

(adapted from ref.). The ferrodoxin-like domain is highlighted on the left. All molecular figures 

were created with PyMOL (DeLano, W.L. (2002). The PyMOL Molecular Graphics System. 
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Experimental: 

Peptide Synthesis and Purification 

 Peptide variants were synthesized on a Liberty microwave-assisted solid phase peptide 

synthesizer (CEM). The synthesis was carried out utilizing standard Fmoc protection procedures. 

Briefly, Rink Amide resin was doubly deprotected using 20% piperidine, 0.1 M HOBt in DMF. 

Following deprotection, appropriate amounts of 0.45 M HBTU in DMF, 2M Ethyl-Diisopropylamine 

(DIEA) in N-Methyl-2-Pyrrolidone, and 0.2 M Fmoc protected amino acid (Novabiochem) were 

added to the reaction vessel, followed by irradiation with microwaves. Peptides were acetylated 

on the N-terminus via addition of acetic anhydride in coupling conditions. 

 Peptides were cleaved from resin utilizing 94% TFA, 2.5% H2O, 2.5% EDT, and 10% TIS 

for 3 hours, followed by ether precipitation. Crude, lyophilized peptide was purified utilizing C18 

preparatory reverse-phase high performance liquid chromatography (HPLC), with a linear 

gradient of 99.9% water with 0.1% TFA to 95% Acetonitrile, 4.9% water, and 0.1% TFA, flowing 

at 10 mL/min. Peptide identity was confirmed by matrix-assisted laser desorption ionization time-

of-flight mass spectrometry (MALDI-TOF-MS) and purity by C18 analytical HPLC. Peptide was 

lyophilized to yield a white powder, >99% purity. 

Cluster Incorporation 

 Iron-sulfur clusters were incorporated into peptide variants following well-established 

methodologies
7, 11

. All reactions were performed in an anaerobic chamber (Coy Scientific), with a 

95% N2 and 5% H2 environment. To a solution of 150 μM peptide in 100 mM Tris-HCl, pH 8.5, 

was added sequentially in 20 minute intervals to a final concentration: 0.8% (v/v) β-

mercaptoethanol, 3 mM ferric chloride (FeCl3_, and 3 mM sodium sulfide (Na2S). Peptide was 

incubated overnight at 4 °C anaerobically. 

 The dark brown solution was subjected to desalting utilizing a PD10 G25 column (GE 

Healthcare) that was equilibrated with 100 mM Tris, pH 7.5. Peptide was characterized 

immediately or flash frozen and stored at -80 °C. 

Gel Filtration 
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 Size exclusion chromatography was preformed on a G-25 gel filtration column fit to an 

Agilent Technologies 1260 Insight FPLC system. To a column pre-equilibrated in 100 mM Tris-

HCl, pH 7.5, was injected 200 μL of 150 μM apo or holo peptide. Apo peptide was pre-treated 

with tris(2-carboxyethyl)phosphine (TCEP) 30 minutes before injection to eliminate any disulfides 

formed from air oxidation. 

 

Circular Dichroism Spectroscopy 

 Spectra were recorded on a JASCO J-815 spectropolarimeter over a range of 260 to 190 

nm. Data were recorded every 1 nm and averaged over 3 scans in a 1 mm path length, quartz 

cuvette. The holo-peptide was sealed in the cuvette to maintain an anaerobic environment.  

Concentration of apo and holo-peptide was kept at 50 μM in 100 mM Tris, pH 7.5. Apo-peptide 

measurements contained an excess amount of TCEP to remove any disulfides formed. Chemical 

denaturations were performed through iterative additions of an 8M stock of Gu-HCl, followed by 

mixing and incubation for 5 minutes to allow equilibration. 

Electron Paramagnetic Resonance Spectroscopy 

 Holo-peptide obtained from PD10 desalting was concentrated in a 3000 MWCO 

centrifuge concentrator to approximately 1 mM peptide concentration. Reduced samples were 

adjusted to pH 10 by addition of 100 mM sodium dithionite in 1 M glycine buffer, to a final 

concentration of 10 mM dithionite. EPR samples were prepared by addition of 10% (v/v) glycerol 

as a cryoprotectant to either oxidized or reduced samples, and placed in quartz EPR tubes. 

Samples were flash frozen and stored under liquid N2 until measurement. 

 Samples were measured on a X-band EPR spectrometer Elexsys E500 (Bruker), utilizing 

continuous wave methodology (mw frequency, 9.340 GHz; mw power, 2 mW; field modulation 

amplitude, 0.5 mT). Measurement temperatures ranged from 5-50 K. 

Transient Absorption Spectroscopy: 

Three buffered solutions of tetra-malonate porphyrin monomers were prepared. The solutions 

had a Q-band absorption of 0.25 OD at 560 nm. Samples contained: porphyrin, porphyrin and 

apo-protein (30 μM), and porphyrin and holo-protein (30 μM). Samples were excited at 560 nm 
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with a Nd:YAG laser (EKSLPA) and probed with a 150 W Xenon arc lamp. Probe light was 

detected by a Proteus system (Ultrafast) and analyzed using in-house fitting software ASUFIT. 

Cytochrome C550 Reduction Assay 

 PD10 fractions of the holo-peptide were reduced via slow addition of dithionite, 

monitoring the loss of signal at 410 nm. After no more change was seen, and a slight dithionite 

signal arose at 300 nm, the holo-peptide was subjected to a PD10 column. The first 1.5 mL of the 

total 3.5 mL elution volume were concentrated to a protein concentration of 300 μM. To 500μL of 

a solution of Cytochome C550 isolated from Thermosynechococcus elongates (7 μM protein 

concentration as assayed by absorbance at 550 nm, ε550 = 21000 M
-1

 cm
-1

) was added 1 μL of 

reduced holo-peptide. After each addition, UV-Vis spectra were obtained with an Ocean Optics 

USB4000 detector with a USB-ISS-UV-Vis light source attached. Data were fit to linear 

regression curves before and after saturation to determine the mole equivalents required to 

obtain full reduction of the heme. 

Protein Design and Synthesis: 

DSD-Fdm was designed following a similar protocol as described before {roy:2013vd}. Briefly, We 

searched for i, i+3 leucine residues inside the hydrophobic core of the helical bundle of DSD 

12
(PDB Code 1G6U) that is compatible with ligating  a [4Fe-4S] cluster at the N-term of the helix. 

The first coordination sphere of [4Fe-4S] cluster binding site from Thermotoga 84ysteine (PDB ID 

2G36)
13

 was then docked manually inside the hydrophobic core of the DSD to find other two 

positions geometrically compatible to chelate the [4Fe-4S] clusters [Fig 26]. This resulted in 

translation of the cluster binding site one heptad down, along the axis of the 3-helix bundle as 

compared to our previous design
11

. Owing to the inherent two-fold symmetry of the designed 

protein, DSD-Fdm, incorporates two [4Fe-4S] clusters in the hydrophobic core which is 

reminiscent of the natural ferredoxin fold. Mutation of eight core leucine to 84ysteine initially 

causes formation of a polar cavity inside the helical bundle in the apo peptide, while the cavity 

gets completely occupied by the clusters in Holo Peptide [fig XXXX]. Resulting 49 amino acid 

residue peptide was synthesized utilizing standard Fmoc chemistry with Microwave-Assisted 

Solid Phase Peptide Synthesis with high yield and homogeneity. Crude peptide was purified via 
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reverse-phase HPLC to >95% purity, as assessed by analytical HPLC. Identity of the construct 

was confirmed with MALDI-TOF Mass Spectrometry. 
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 Figure 26. Design Strategy for DSD-Fdm (Left Panel); Polar cavity generated by Leucine to 

Cystine mutation gets occupied by [4Fe-4S] cluster (Top View, right panel) 
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Cluster Incorporation, Protein Structure and Stability: 

We performed in situ cluster incorporation reaction following standard protocol,
7, 11

. Briefly, β-

mercaptoethanol reduced peptide was incubated overnight with 20 molar equivalents of FeCl3 

and Na2S. This entropically favorable reaction was quenched via desalting on a PD10 column, 

removing unbound Fe and S equivalents. In agreement with previously characterized peptides, 

the holo DSD-Fdm shows broad absorbance at 415 and 360 nm, characteristic of [Fe-S] cluster 

charge transfer bands, which disappear upon reduction [Figure XXX]. This characteristics are 

typical of a cuboidal [4Fe-4S] cluster 
14, 15

 whereas incorporated [4Fe-4S]
2+ 

cluster undergo 

dithionite mediated reduction to [4Fe-4S]
1+

. 

We investigated the oligomeric state for apo and holo DSD-Fdm using a combinatorial analytical 

centrifugation and gel filtration approach. Apo-DSD-Fdm exists predominantly in dimeric form in 

solution at ~100M loading concentration (data not shown). When analyzed by gel filtration, both 

apo and holo DSD-Fdm elutes at comparable volume of elution buffer as shown in Figure 27. For 

holo peptide, the elution profile contains an additional absorbance at 410 nm, indicating the 

presence of the [4Fe-4S] cluster.  



  88 

Figure 27. Gel filtration data of Apo and Holo DSD-Fdm. Both Apo and Holo peptide elutes at 

similar elution volume, confirming same oligomeric state. 
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The peak centered around 40 min for apo peptide comes from TCEP.HCl used for reduction, 

which was confirmed from a blank injection of TCEP.HCl by itself (data not shown). 

       The presence of two clusters was subsequently confirmed through characterization of Fe and 

protein concentration. Utilizing the same sample, analysis of Fe content via a Ferrozine assay 

and protein concentration via a Bradford assay, we found that the peptide contains 4.3 ± 0.9 

Fe/monomer. Variation in Fe concentration may arise from non-specific binding of Fe
2+

 to the 

exterior of the DSD-Fdm peptide. 

        We investigated the secondary structure of both apo and holo DSD-Fdm using far-UV 

Circular Dichroism (CD) spectroscopy. Both the apo and holo DSD-Fdm shows two minima  

 

 

 

 

Figure 28. UV-Vis (left panel) spectra of holo DSD-Fdm before and after dithionite reduction. CD 

Spectra of Apo and Holo DSD-Fdm in the UV range showing two minima around 222nm and 

208nm. 

 

 



  90 

Centered around 208nm and 222nm, which is indicative of high helical content of both peptides. 

Cluster incorporation does not interfere with the folding of the peptide, which is reflected by the 

similar molar ellipticity value of the holo peptide as compared to the apo peptide.  

We also assessed the stability of the Apo and holo peptide towards chemical denaturation 

procedure in circular dichroism. Briefly, molar ellipticity of apo and holo peptide was monitored  



  91 

 

  Figure 29. Guanidine.HCl melt of apo and holo DSD-Fdm monitored by CD at 222nm. 
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At 222nm as a function of chaotropic agent concentration (Guanidine hydrochloride). A 

remarkable and unambiguous increase in stability towards denaturant was observed from apo to 

holo DSD-Fdm as shown in Fig 29. Apo peptide denatures at 2.1 (M) Gdn.HCl concentration, 

while Holo DSD-Fdm denatures at 4.4 (M) Gdn.HCl concentration. This increase in stability can 

be attributed to cluster incorporation, which results in formation of four 92ysteine-SH to [Fe] bond 

formation. 

EPR Spectroscopy and redox properties of the cluster: 

In vitro reconstitution of cuboidal iron sulfur proteins results in formation of [4Fe-4S]
2+

 clusters , 

which is EPR silent because of antiferromagnetic coupling of unpaired spins. As reconstituted 

holo DSD-Fdm shows no EPR signal, whereas upon dithionite reduction a rhombic signal arises 

confirming incorporation of an intact [4Fe-4S] cluster (Fig 30).  



  93 

 

Figure 30. CW EPR spectra of dithionite reduced holo DSD-Fdm, Experimental conditions, 

Temperature 12K, Microwave Power 2mW. 
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We also probed the redox properties of DSD-Fdm using cyclic voltammetry. A solution of DSD-

Fdm in 100mM Tris, pH 7.5, 100mM NaCl shows no observable redox process by cyclic 

voltammogram in the range from 0 to -1 (V) vs SHE, presumably because of the absence of 

interaction between electrode surface and the electroactive species. Neomycin has long been 

reported to stabilize and enhance interaction of ferredoxin type protein with electrode surface. 

After addition of 3.5 mM Neomycin, we observed a quasi-reversible process with a cathodic and 

anodic wave centered around -0.438 and -0.521 V vs SHE respectively, as shown in Figure 31. 

The estimated redox potential value -0.479 V vs SHE falls in the reported window for low potential 

[4Fe-4S] clusters in literature confirming presence of a [4Fe-4S]
2+/1+

 cluster. 
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Figure 31. Cyclic voltammogram of holo DSD-Fdm with neomycin. 
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In nature, Ferredoxin type proteins are involved in numerous electron transfer processes leading 

up to redox catalysis
17-20

. Thus, designed systems should also have these capabilities with the 

ultimate aim of engineering bio-hybrid catalysts that incorporate artificial and natural counterpart, 

each with fine tunable redox properties. Keeping this in mind, we turned our effort to investigate 

electron transfer properties of holo DSD-Fdm, with external redox active species. Firstly, to 

assess the possibility of the holo-DSD-Fdm to function in dye-sensitized solar cells, we 

characterized the kinetics of electron transfer from a porphyrin photosensitizer to the oxidized 

cluster utilizing Nanosecond Transient Absorption Spectroscopy. In the presence of the holo-

peptide, the triplet state of the utilized porphyrin was quenched 10 times faster relative to the 

porphyrin in the presence of the apo-protein, indicating interaction with the clusters as shown in 

Figure 33. Experiments were done to probe the possibility of electron transfer between the 
3
P

*
 

and the [4Fe4S], but no oxidized porphyrin could be detected. This result points to the possibility 

of triplet-triplet energy transfer. Because this type of energy transfer is dipole-forbidden, the 

exchange mechanism must be of the Dexter type, which requires the donor and acceptor to be 

within 10 Å for sufficient orbital overlap to occur. Enhanced intersystem crossing could also be 

occurring, meaning that no energy transfer at all is occurring. 

Finally, as a proof-of-concept study for the ability of this construct to be incorporated into a de 

novo designed, fully functional redox enzyme, the ability to transfer an electron to oxidized 

Cytochome C was assayed. Holo DSD-Fdm was reduced by sequential addition of sodium 

dithionite, monitoring the loss of absorbance at 410 nm, stopping addition after no more change 

in signal was seen. Reduced peptide was desalted on a PD10 column to remove possible 

dithionite excess, and concentrated to an appropriate molarity. 

The reduced peptide was then titrated into an air-oxidized Cytochrome C550 sample, isolated from 

Thermosynechococcus elongates, while monitoring the UV-Vis spectra. The change in 

absorbance in the soret and q-bands indicate reduction of the protein-bound heme. Fitting the 

data of the change of absorbance as a function of molar equivalents of holo DSD-Fdm indicated 

an approximate 1:1 molar ratio of reduction. 
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Figure 32. Cytochrome C assay. Decreasing absorbance of the protein bound heme indicate 

reduction of the heme. Plotting that change versus equivalents of Cytochrome C shows a 1:1 

reduction. 
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Figure 33. Nanosecond transient absorption DADS investigating energy/electron transfer 

between sensitized porphyrin monomer and protein. Porphryin q-band was excited at 560 nm and 

probed at 450 nm to monitor decay of porphyrin triplet state. Porphyrin monomer triplet state  

decayed in ~1000 μs in the solutions with only porphyrin (grey) and porphyrin + ApoDSDFDM 

(black). In the solution with porphyrin + HoloDSDFDM (blue), the triplet state decayed in 110 μs. 

There was no evidence of oxidized porphyrin formation, pointing to energy transfer between 

excited triplet state and protein. 
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In conclusion, here we have extended our previous effort
11

 to design a more realistic artificial 

model of electron transfer protein assembly where redox active species are separated by a 

distance biologically relevant for effective electron transfer . Using symmetry property of a de 

novo designed homo-dimeric protein DSD
12

, we rationally designed 2[4Fe-4S] cluster binding site 

in the hydrophobic core the helical bind. Total 8-leucine residues in the core were designed to be 

replaced by 8-cystine residues that serve as ligands to the [4Fe-4S] clusters. Resulting peptide 

binds 2[4Fe-4S] cluster with high yield and both apo and holo peptides are highly helical and 

dimeric in nature. Cofactor binding induces a significant amount of stability towards chemical 

denaturation, as often seen in designed metalloproteins
21

. Most importantly, for the first time, we 

show here de novo designed Holo DSD-Fdm is able to partake in electron transfer process 

involving an excited photosensitizer and also soluble, biologically relevant, small electron transfer 

protein, Cyt-C. This  artificial redox proteins opens up new avenue for designing redox catalysts 

in a modular way, where different component of an engineered redox pathway can be 

disembodied and fine-tuned as desired for optimization of the whole system.  
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CHAPTER 6 

SUMMARY AND PERSPECTIVE 

A soluble, semiconducting porphyrin polymer has been synthesized and characterized. Because 

the polymer is soluble, it can be incorporated into bulk heterojunction solar cells or any other 

application that was previously inaccessible because of solubility concerns. The chemical nature 

of its polymerization means that it can be deposited onto any substrate, and not just electrodes. 

The semiconducting nature of the polymer will likely allow it to shuttle holes down its backbone, 

which has broad application, including solar cells.  There are many other interesting facets of 

these polymers that have yet to be studied. 

Two separate charge separating molecules have been studied. The first, a peripherally connected 

zinc-phthalocyanine-C60 dyad has shown charge transfer behavior, according to photophysical 

data. The second, an axially connected carotene-Si-phthalocyanine-C60 triad has shown limited 

charge transfer behavior. There is evidence of initial charge transfer from the carotene to the 

phthalocyanine, but rapid recombination must occur, as there is no signal for a C60 anion. This 

result is disappointing, as this was the first asymmetrically modified phthalocyanine triad. 

A de novo protein with iron-sulfur clusters has been studied for its ability to accept charge/energy 

from an excited porphyrin in solution. Nanosecond flash photolysis showed that the triplet excited 

state of the porphyrin was quenched by a factor of 10 when in solution with the holo-protein 

relative to with the apo-protein and compared to the triplet lifetime of the porphyrin. There was no 

growth of the porphyrin cation signal, which means that there was likely no electron transfer 

occurring. This leaves energy transfer as an explanation, but since the porphyrin was in its triplet 

excited state, only the Dexter method of energy transfer is reasonable. This result is 

disappointing, because definitive electron transfer would have shown that these [FeS] clusters 

could be readily sensitized and act as electron shuttles. The result does not mean that they are 

not capable of that, but this experiment did not prove that they are. 
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This dissertation has described a broad range of bio-inspired systems, ranging from polymer 

studies to de novo protein design, all with respect to their photophysical behavior. Transient 

spectroscopy is one of the most powerful tools available for looking that the electronic transitions 

in chromophoric systems and it will continue to be used to elucidate photophysical behavior for 

many years to come. Future work will likely include synthesis of polymers similar to the one 

described here, with a different small molecule electropolymer substituted for aniline. Since the 

porphyrin polymer was made more soluble by the addition of hexyl chains, electropolymerization 

is a viable option for the monomer used in the study. Incorporating these polymers into bulk 

heterojunction solar cells will be the next step after their syntheses. There are many other 

molecular triads that await characterization, and future studies will compare types of linkages 

(axial or peripheral) between moieties, electron donors, or electron acceptors. The de novo 

protein has incredible potential as an electron shuttle between electron donors and acceptors. 

Since this is the first of its kind to incorporate two clusters that are electronically coupled, there 

are myriad possibilities for applications. Mimicking the active sites of many different redox active 

enzymes can easily be imagined. All of these projects fall under the umbrella of bio-inspired 

chemistry, and this dissertation has described some of the newest advancements in their 

respective fields as well as outlined future directions for progress. 
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