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ABSTRACT  
   

Cells live in complex environments and must be able to adapt to environmental changes 

in order to survive. The ability of a cell to survive and thrive in a changing environment depends 

largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal 

transduction cascades begin translating extracellular signals into intracellular messages. Such 

signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell 

movement, transcription, translation, proliferation and differentiation. This dissertation seeks to 

dissect and examine critical signaling pathways involved in the regulation of proliferation in neural 

stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; 

Chapter 3). In Chapter 2 of this dissertation, I hypothesize that the mTOR signaling pathway 

plays a significant role in the determination of neural stem cell proliferation given its control of cell 

growth, metabolism and survival.  I describe the effect of inhibition of mTOR signaling on neural 

stem cell proliferation using animal models of aging. My results show that the molecular method 

of targeted inhibition may result in differential effects on neural stem cell proliferation as the use 

of rapamycin significantly reduced proliferation while the use of metformin did not.  Abnormal 

signaling cascades resulting in unrestricted proliferation may lead to the development of brain 

cancer, such as GBM. In Chapter 3 of this dissertation, I hypothesize that the inhibition of the 

protein kinase, aPKCι/λ results in halted GBM progression (invasion and proliferation) due to its 

central location in multiple signaling cascades. Using in-vitro and in-vivo models, I show that 

aPKCι/λ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-

autonomous signaling converge on aPKCι/λ resulting in pathogenic downstream effects. This 

dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which 

are responsible for critical cellular effects such as proliferation, invasion and transcriptional 

regulation.  
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CHAPTER 1 

INTRODUCTION 

The work presented in this dissertation comprises two distinct topics which both involve 

cell signaling pathways in cells of the central nervous system (CNS). Chapter 2 describes 

mammalian target or rapamycin (mTOR) signaling and the use of mTOR inhibitors in the 

proliferation of neural stem cells in aging mice. This work is presented as a manuscript which was 

published in February 2013 in the journal Age. Chapter 3 describes an investigation of atypical 

protein kinase C (aPKC) signaling in Glioblastoma Multiforme (GBM).  Chapter 3 is currently in 

revision for publication. This introductory chapter will provide an overview for both Chapter 2 and 

Chapter 3, focusing on topics such as oncogenetic signaling, proliferation and differentiation – 

which are all processes controlled by signal transduction pathways. 

Signal Transduction 

 Cells live in a complex environment and must monitor and respond to stimuli in order to 

survive. They must be able to detect extracellular stimuli and transfer signals to the interior 

cytoplasm of the cell. Received signals are converted through a signaling pathway leading to a 

cellular response or change in cell behavior, such as gene transcription. There are multiple types 

of signaling, including endocrine signaling, paracrine signaling, and autocrine signaling. 

Endocrine signaling involves hormones which are secreted by an endocrine gland and travel to 

their effector cell where they regulate cellular changes. This type of signaling can involve 

hormones traveling over long distances to reach their effector cell which may lie anywhere in the 

body.  Paracrine signaling refers to signaling which takes place between cells in close proximity, 

affecting cells only in the local environment. Autocrine signaling occurs when a cell produces 

signals that it responds to itself. For instance, cancer cells produce their own signals, such as 

growth factors, which stimulate their proliferation and oncogenicity in an autocrine signaling 

manner. 
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 The signal transduction process initiates with a receptor on a target cell. Receptors are 

molecules that act as a gateway between the intracellular and extracellular space. Usually 

containing an extracellular and intracellular domain, receptors bind to ligands on the extracellular 

surface of the cell and transmit the signal through their intracellular domains downstream to 

effector proteins, eventually leading to an alteration in metabolism, gene expression, movement, 

or behavior. At any given point in time within the extracellular space, there are a multitude of 

extracellular signals a cell must interpret, including many proteins, peptides, amino acids, 

nucleotides, and other signal molecules. The specificity of receptors expressed by a target cell is 

the determining factor as to whether signaling occurs and/or a cellular response is initiated. 

Receptors bind with high affinity to their target protein, or ligand, which allows for specialized 

signal transduction cascades to occur.  

Enzyme-Coupled Surface Receptor Signaling: Receptor tyrosine kinases (RTKs) 

Enzyme-coupled receptors are receptor proteins containing a ligand binding domain on 

the extracellular surface of the plasma membrane and are capable of enzyme activity (either 

intrinsic or associated) in the intracellular cytosolic domain.  Receptor tyrosine kinases (RTKs) 

are the most abundant class of enzyme-coupled receptors. RTKs are able to directly 

phosphorylate tyrosine targets on their intracellular domain as well as on other intracellular 

tyrosine targets. Upon ligand binding, the receptor dimerizes, which allows for the cross-

phosphorylation (or transautophosphorylation) of the receptor chains (Figure 1.1). This increase 

in phosphorylated tyrosines creates docking sites for other signaling proteins. Signaling 

complexes can then be assembled at these docking sites in order to deliver the signal further 

downstream to other effector proteins. This signal cascade may eventually lead to the nucleus, 

causing a change in the transcriptional regulation of various genes. An example of such an RTK 

is the Epidermal Growth Factor Receptor (EGFR), which plays an important role in cell survival, 

proliferation, and cell growth. EGFR signaling is imperative for proper development and disruption 

of its signaling cascade can lead to detrimental effects, including cancer. EGFR activation, 
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initiated by epidermal growth factor (EGF) ligand binding to EGFR, leads to EGFR 

transautophosphorylation which activates downstream kinases such as phosphoinositide 3-

kinase (PI3K).   

The PI3K/PTEN/AKT Pathway 

PI3K is a kinase containing a Src homology domain region (SH2) which mediates binding 

to phosphorylated tyrosines. It is a plasma-membrane-bound enzyme which can bind to the 

intracellular RTK chains upon their transautophosphorylation.  Upon binding to intracellular 

phosphorylated RTK chains, PI3K is then responsible for phosphorylating the 3 position of the 

membrane inositol ring, which generates multiple phosphorylated lipids, or phosphoinositides, 

including the formation of active phosphatidylinositol 3,4,5-triphosphate (PIP3) from inactive 

phosphatidylinositol 4,5-biphosphate (PIP2). Phosphoinositides play an important role in signal 

transduction as they too act as a docking site and recruit other signaling molecules. PI3K is 

activated through various RTKs, including EGFR, and plays a role in the regulation of growth and 

cell survival signals. Mutations leading to activation of PI3K are common in cancer (including 

GBM; Figure 1.4) as active PI3K leads to unrestricted growth signals, proliferation, and cell 

survival (Figure 1.2). PI3K pathway inhibitors have the potential to improve clinical outcome in 

various cancers as inhibition of this oncogenic pathway could induce cell death, halt oncogenic 

proliferation, invasion and cell survival  (Wen, Lee, Reardon, Ligon, & Alfred Yung, 2012). 

Negative signal regulation also occurs in the cell.  Phosphatase and tensin homolog 

(PTEN) is a phosphatase that dephosphorylates PIP3 to the inactive PIP2. Loss of PTEN is 

oncogenic and occurs in multiple cancers including GBM, breast, endometrium and colon cancer, 

among others (Wong, Engelman, & Cantley, 2010).  Either the inactivation or the loss of PTEN 

and/or the activation of PI3K leads to uncontrolled downstream PI3K signaling resulting in 

unregulated growth signals and/or oncogenesis.  

Further downstream of PI3K and PTEN is the protein kinase AKT (also known as protein 

kinase B).  AKT is a serine/threonine protein kinase which contains a pleckstrin homology (PH) 
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domain, a protein-protein interaction domain that facilitates its binding to phosphoinositides on the 

cell membrane. In the case of EGFR signaling, EGF ligand initially binds to EGFR leading to 

transautophosphorylation which begins the signaling cascade. PI3K then binds to the intracellular 

dimerized receptor chains and catalyzes the formation of active PIP3 from inactive PIP2 at the 

membrane. Due to AKTs ability to associate with phosphoinositides, this phosphorylation of PIP2 

into PIP3 recruits AKT to the membrane where it binds to PIP3, leading to its activation (Figure 

1.2).  Upon binding, AKT is phosphorylated by 3-phosphoinositide-dependent kinase (PDK1) and 

the mammalian target of rapamycin complex 2 (mTORC2; (J. Wang et al., 2012). This 

subsequently leads to phosphorylation by Akt of numerous downstream targets involved in cell 

survival, proliferation and cell growth (J. Wang et al., 2012).  

The PI3K/AKT/mTOR Pathway 

The PI3K/AKT pathway regulates cell growth through the use of another serine/threonine 

kinase, mTOR. In the cell, mTOR can be found in 2 protein complexes which have different 

upstream activators and downstream effectors, mTOR complex 1 (mTORC1) and mTOR complex 

2 (mTORC2). mTORC1 associates with the protein raptor and is sensitive to the inhibitor 

rapamycin. mTORC2 associates with rictor and is rapamycin-insensitive. mTORC1 stimulates 

ribosome production and protein synthesis and thus encourages cell growth. Among other 

extracellular signals, various growth factors activate mTORC1 via the PI3K/AKT pathway and 

through a complex mechanism involving the GTPase Ras homolog enriched in brain (Rheb) and 

a protein heterodimer consisting of tuberous sclerosis 1 and 2 (TSC1and TSC2; (Laplante & 

Sabatini, 2012). The TSC1/TSC2 heterodimer acts as a GTPase-activating protein (GAP) for 

Rheb, a GTPase, which directly binds mTORC1 when in its active (GTP-bound) conformation 

(Figure 1.3).   When active GTP-bound Rheb binds to mTORC1, mTORC1 becomes activated 

and its kinase activity is stimulated (Laplante & Sabatini, 2012).  Negative regulation of mTORC1 

activity also occurs via the GAP TSC1/TSC2, as it converts Rheb into an inactive (GDP-bound) 

conformation causing Rheb and mTORC1 to disassociate.  Interestingly, mTORC1 participates in 
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negative feedback inhibition of its own activator, PI3K, through the downstream effector target of 

mTORC1, p70 s6 kinase (S6K1; Figure 1.3). mTORC1 activation leads to phosphorylation of 

S6K1, which then inhibits PI3K in a negative regulation feedback manner (J. Huang & Manning, 

2009; Laplante & Sabatini, 2012). 

Mammalian target of rapamycin (mTOR) Function  

mTORC is considered a signal integrator and is crucial for cell growth and homeostasis 

(Zoncu, Efeyan, & Sabatini, 2011). Cell growth depends heavily on the cells environment as 

increase in size or number of cells requires sufficient supply of nutrients and energy.  If conditions 

are favorable, the cell can synthesize new proteins, nucleic acids, and lipids for growth.  Through 

a myriad of downstream signaling processes, mTOR plays a critical role in cell growth processes, 

including, general protein synthesis, as well as lipid synthesis for proliferating cells, inhibition of 

cell degradation (autophagy), cell metabolism and ATP production.  This is due to mTORs central 

role in coordinating growth through its environment-dependent activation. For instance, mTORC1 

regulates the synthesis of ribosomal RNAs (rRNAS) by upregulating the activity of RNA PolI, the 

rRNA polymerase, allowing for the biogenesis of ribosomes. The synthesis of ribosomes is 

energetically costly to the cell, and thus occurs in times of energy and nutrient abundance. The 

mTORC1 GTPase Rheb has also been found to play a role in this process as a loss of Rheb 

inhibits mTORC1 activation during nutrient starvation (S. C. Johnson, Rabinovitch, & Kaeberlein, 

2013).  

mTORC1 also inhibits autophagy, which is an important process allowing for recycling of 

cellular components. If in an environment with low nutrient availability, the cell may participate in 

autophagy by way of recycling proteins and organelles in order to synthesize nutrients (Zoncu et 

al., 2011). During autophagy, intracellular components are isolated into autophagosomes and are 

later degraded by lysosomes. Interestingly, a strong correlation between autophagy and 

lifespan/aging has been well established in the literature (D. W. Lamming et al., 2012; Dudley W. 

Lamming, Ye, Sabatini, & Baur, 2013). As the aging process occurs, cellular physiology declines, 
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leading to the decreased function of cells and entire organs as well as a decrease in autophagy.  

The inactivation of genes necessary for autophagy results in a reduced lifespan in yeast, C. 

elegans and Drosophila while an increase in autophagy extended lifespan in Drosophila (Alvers 

et al., 2009; Hars et al., 2007; Lionaki, Markaki, & Tavernarakis, 2013), providing evidence for the 

prominent role of autophagy in aging and lifespan.  mTOR signaling has been proven to be a 

regulator of this process.  Inhibition of mTOR using rapamycin results in an increase in autophagy 

and extends lifespan in multiple organisms including mice (Cornu, Albert, & Hall, 2013).  In yeast, 

inhibition of mTOR through rapamycin treatment increased lifespan while mTOR stimulation 

decreased lifespan (Alvers et al., 2009). Furthermore, the use of another mTOR inhibitor, 

metformin, was also shown to extend life span in mice (Vladimir N. Anisimov et al., 2008; V. N. 

Anisimov et al., 2011). In addition to rapamycin and/or metformin treatment, dietary restriction, 

resulting in amino acid deprivation for cells, has been shown to extend lifespan (Levenson & 

Rich, 2007). The effect of dietary restriction on lifespan extension has been attributed to inhibition 

of mTOR (Cornu et al., 2013) due to its environment-dependent activation.  

mTOR signaling has also been shown to play a significant role in cell proliferation and 

cell cycle regulation in mouse and human cells (Fingar & Blenis, 2004; N. Gao et al., 2004; Ning 

Gao, Zhang, Jiang, & Shi, 2003; X. Gao, McDonald, Hlatky, & Enderling, 2013; Ohanna et al., 

2005; Sehgal, 1998). Although a defined mechanism has yet to be elucidated, rapamycin is 

considered a good immunosuppressant as mammalian B and T cells, when treated with 

rapamycin, undergo a G1-phase cell cycle arrest with little toxicity (Fingar & Blenis, 2004). In the 

CNS, activation of mTOR signaling is upregulated during neural stem cell differentiation in mouse 

neural stem cells (Han et al., 2008). In addition, rapamycin has been shown to reduce BrdU+ 

cells in the dentate gyrus (DG) of rats (Zeng, Rensing, & Wong, 2009) and mice treated with 

rapamycin displayed reduced hippocampal neurogenesis (Raman, Kong, Gilley, & Kernie, 2011; 

Raman, Kong, & Kernie, 2013). This data, among others, provides evidence of the role of 

mTORC1 in the regulation of cell proliferation both within and outside of the CNS.   
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Given the critical role of mTOR in the regulation of cell growth, nutrient sensing, cell 

proliferation and organism lifespan extension, we asked whether mTORC1 signaling was capable 

of impacting the age-related decline in neural progenitor proliferation. In Chapter 2, we tested the 

role of mTORC1 signaling in neural progenitor proliferation of aged-mice by using inhibitors of 

mTORC1, rapamycin and metformin. Not surprisingly, in aged mice, we found a decrease in 

proliferation compared to young mice. Unexpectedly, however, in aged mice treated with 

rapamycin, we found an even greater decrease compared to aged mice treated with vehicle alone 

or mice treated with metformin. While both rapamycin and metformin inhibit mTORC1, the two 

inhibitors mediate inhibition via different mechanisms. Rapamycin works by inhibition of mTORC1 

directly, while metformin activates adenosine monophosphate-activated protein kinase (AMPK), 

an inhibitor of mTOR. Given that rapamycin treatment extended lifespan in animal models, and 

given the prominent role of mTOR in cellular growth and proliferation, it was surprising to discover 

a rapamycin-mediated decrease in neural progenitor proliferation in aged mice.   This 

examination and its findings are presented as a published manuscript in Chapter 2. 

The EGFR/PI3K/PTEN/AKT pathway in Glioblastoma Multiforme (GBM) 

While the EGFR/PI3K/PTEN/AKT pathway activates mTOR (Figure 1.3), it also activates 

other downstream effector proteins and plays a central role in cellular signaling. The 

EGFR/PI3K/PTEN/AKT signaling pathway is an important regulator of oncogenesis. Activation of 

this pathway is oncogenic promotes various cancers including GBM (Wong et al., 2010). GBM is 

classified by the World Health Organization (WHO) as a grade IV astrocytoma, the highest grade 

of glioma.  It is the most common and most aggressive tumor of the CNS with tumor cells rapidly 

dividing and invading surrounding normal brain tissue. This devastating disease has an extremely 

poor prognosis with a 5-year survival rate of 5% (CBTRUS) despite receipt of the current 

standard of care which includes surgical resection, radiation, and chemotherapy with 

temozolomide (TMZ), an alkylating agent.  This aggressive treatment regimen fails often due to 

the tumor cells ability to evade radiation and chemotherapy as well as their stealth invasion into 
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surrounding areas.  In 2008, The Cancer Genome Atlas (TCGA) study profiled roughly 200 GBM 

tumor samples in an effort to describe the mutations leading to GBM formation (R. McLendon et 

al., 2008). The study was repeated with additional samples in 2013 by Brennan et al., (2013). The 

complementary results of these studies was the elucidation of several signal transduction 

pathways gone awry (Figure 1.4;(Brennan et al., 2013; Roger McLendon et al., 2008)).  

The most frequent genetic aberrations discovered included signaling pathways which 

lead to proliferation and survival, key aspects to the oncogenicity of GBM (Brennan et al., 2013; 

Roger McLendon et al., 2008). These are displayed in Figure 1.4.  For example, a homozygous 

deletion of CDKN2A/CDKN2B (P16/INK4A) is found in 61% of GBM samples. CDKN2A and 

CDKN2B are tumor suppressor proteins that inhibits CDK4, a cyclin dependent kinase found 

amplified in 14% of GBM samples (Brennan et al., 2013; Roger McLendon et al., 2008). CDK4 

phosphorylates retinoblastoma protein (RB), eventually allowing the cell to progress from G1 

phase to S. RB1, which controls cell cycle progression, is found to be deleted or mutated in 7.6% 

of tumors (Brennan et al., 2013; R. McLendon et al., 2008). These genetic mutations contribute to 

the highly proliferative and highly oncogenic aspect of GBM while also making it difficult to treat 

successfully.  

 Data from the TCGA study also found that EGFR amplification is seen in roughly 57% of 

GBM patients, while RTK signaling in general is mutated in 90% of patients overall (Figure 1.4; 

(Brennan et al., 2013; Roger McLendon et al., 2008).  The EGFRVIII mutation results in the 

deletion of exons 2-7 of EGFR and is frequently seen in GBM patients who already have an 

EGFR amplification mutation (Brennan et al., 2013; Roger McLendon et al., 2008). EGFRVIII 

leads to a loss of the extracellular domain of EGFR, leaving EGFR unresponsive to EGF ligand 

and resulting in constitutive activation of the EGFR signaling pathway (Brennan et al., 2013; 

Roger McLendon et al., 2008). However, the 2013 study elucidated other mutations which 

frequently occur to the EGFR gene. For instance, three different C-terminal mutations were 

discovered to alter the cytoplasmic terminals of EGFR, and these mutations have been shown to 
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be tumorigenic in mouse animal models of GBM (Brennan et al., 2013; Cho et al., 2011). In 

addition, deletions of exons 12-13 and exons 14-15 were found in 28% and 3% of GBM tumors, 

respectively (Brennan et al., 2013). Furthermore, roughly 25% of patients have a gain of function 

mutation in PIK3CA or PIK3R1, which encode for the PI3K subunits p110a and p85 respectively 

(Brennan et al., 2013; Roger McLendon et al., 2008).  In addition, approximately 40% of GBM 

cases have a deletion of PTEN, the negative regulator of PI3K, once again, leading to its 

unrestricted activation (Brennan et al., 2013; Roger McLendon et al., 2008).  The authors report 

that 89% of tumors had at least one mutation in the PI3K signaling pathway and roughly 40% had 

two or more mutations (Brennan et al., 2013).  Interestingly, these two mutations, PI3K and PTEN 

mutations were found to be mutually exclusive, as over 50% of tumors had a mutation in either 

PI3K or PTEN (Brennan et al., 2013).  Many of these genomic mutations (EGFR gain of function 

mutation, EGFRVIII, PI3K gain of function mutation, PTEN loss of function mutation) lead to an 

unrestricted downstream activation of PI3K, a master regulator of cell growth and proliferation. 

Unfortunately, many GBM patients present with multiple mutations affecting this pathway, 

allowing the tumor cells to be extremely aggressive and making the pathway difficult to control.  

 Due to the strong reliance on EGFR signaling in GBM, EGFR inhibitors have been tested 

as therapy for GBM patients (Brandes et al., 2008; Huse, Holland, & DeAngelis, 2013; Huse & 

Holland, 2010; Reardon et al., 2010; Uhm et al., 2011). However, despite the multitude of clinical 

trials studying EGFR inhibitors, they have mostly proven to be unsuccessful in improving patient 

survival (Brandes et al., 2008; Huse et al., 2013; Huse & Holland, 2010; Reardon et al., 2010; 

Uhm et al., 2011). Chapter 3 presents a manuscript submitted for publication which describes a 

novel therapeutic which we found to be more effective than EGFR therapy. This therapy involved 

the inhibition or silencing of atypical Protein Kinase C (aPKC), a kinase found to be downstream 

of both EGFR and PI3K in GBM cells (Chapter 3).  Inhibition and/or silencing of aPKC resulted in 

reduced EGFR-induced oncogenic proliferation, invasion and migration in glioma cells, as well as 

in animal models of GBM.   
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Atypical Protein Kinase C (aPKC)  

The protein kinase C (PKC) family of Ser/Thr kinases comprises ~2% of the human 

kinome and is broadly conserved.   12 isoforms exist in mammal species and are classified into 

three subgroups based on regulatory and functional characteristics (Figure 1.5a): conventional 

PKCs (cPKC), novel PKCs (nPKC) and atypical PKCs (aPKC). All subgroups maintain a 

conserved carboxy-terminal catalytic domain and an N-terminal regulatory domain, which are 

linked by a hinge region. In addition, all subgroups possess a psuedosubstrate domain, which 

acts to maintain inactivation by blocking kinase activity.  The cPKC subgroup consists of PKCα, 

PKCΒ, and PKCγ.  cPKC members have both a conserved region 1 (C1) and a conserved region 

2 (C2) domain, allowing them to be activated by diacylglycerol (DAG) and Ca2+, respectively. 

PKCδ, PKCε, PKCθ comprise the nPKC subgroup. Similar to cPKCs, nPKCs contain a C1 region 

and are DAG responsive. However, they lack a functioning C2 domain and thus are insensitive to 

Ca2+ stimulation.  Both the cPKC subgroup and the nPKC subgroup have two zinc fingers. The 

third subgroup of the PKC family, aPKCs, are atypical both in structure and function, having only 

one zinc finger and lacking a functioning C1 or C2 region.  There are two members of this 

subfamily, aPKCζ and aPKCλ/ι, and neither is activated by either DAG or Ca2+. Instead, aPKCs 

are activated by binding to other proteins through a Phox/Bem1 domain (PB1), which is not 

present in the cPKC or the nPKC subgroups. Differential PB1 domain binding may provide a 

means for downstream signaling specificity. For example, aPKC binding to partitioning defective 6 

(Par6) through its PB1 domain forms the aPKC-Par6 complex which has been shown to play 

important roles for cellular polarity, while the aPKC-p62 complex has been shown to regulate 

nuclear factor kappa b (NF- κΒ) activity (Figure 1.5b).  

Importantly, while Aplasia and Drosophila have only one aPKC gene, the aPKC subgroup 

in vertebrates is comprised of two genes, PRKCI and PRKCZ.  These genes encode for three 

distinct proteins. PRKCI encodes for aPKCλ/ι, while PRKCZ codes for aPKCζ (Figure 1.5c). 
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PKMζ arises from an alternative internal promoter of PRKCZ, which creates PKMζ, the shortened 

and constitutively active form of PKCζ which lacks the N-terminus entirely. Because aPKCζ and 

aPKCλ/ι share a 72% sequence homology, evidence regarding differences in aPKCλ/ι versus 

aPKCζ signaling cascades is lacking. This is likely due to a lack of specific reagents for 

discrimination. Nevertheless, more recent data has successfully analyzed the differential roles of 

the aPKC isoforms (Parker et al., 2013b). Interestingly, differential distribution of the isoforms in 

the CNS has been reported which revealed abundant expression of aPKCλ/ι and PKMζ with 

reduced expression of aPKCζ (Parker et al., 2013b).  

aPKC has been shown to respond to EGF ligand and participate in the EGF/PI3K/AKT 

pathway in various cell types (Akimoto et al., 1996; Herrera-Velit, Knutson, & Reiner, 1997; Hirai 

& Chida, 2003; Mary L. Standaert, Bandyopadhyay, Kanoh, Sajan, & Farese, 2001; M. L. 

Standaert et al., 1997). In rat 3Y1 cells (Akimoto et al., 1996), adipocytes (Mary L. Standaert et 

al., 2001) and monocytes (Herrera-Velit et al., 1997), aPKC was found to be activated 

downstream of PI3K.  Furthermore, aPKC has been shown to bind and phosphorylate AKT (Diaz-

Meco & Moscat, 2001) and it is phosphorylated by PDK1 at Thr-410 (Le Good et al., 1998; Mary 

L. Standaert et al., 2001). In addition, PIP3 was found to induce dose-dependent increases in 

aPKC activity (Mary L. Standaert et al., 2001), thus further implicating it as a player in the 

EGFR/PI3K/AKT pathway. As described in Chapter 3, we found aPKCλ/ι to play a significant role 

in EGFR/PI3K/AKT signaling in GBM cells as it’s silencing and/or inhibition lead to reduced 

EGFR-dependent gene transcription, migration, invasion, and proliferation. Interestingly, we 

found most GBM samples to have a significant over-expression of aPKCλ/ι while expressing little 

to no aPKCζ (Chapter 3). 

TNF-αααα, aPKC and NF-κΒκΒκΒκΒ signaling in GBM  

While we found aPKCλ/ι  to be activated downstream of EGFR signaling in GBM, we also 

found it to participate in NF- κΒ signaling.  Nuclear factor κΒ (NF-κΒ) is an important 
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heterodimeric transcription factor playing a critical role in the transcription of numerous genes. It 

consists of a heterodimer of p50 and p65 subunits, which when inactive, are found in the 

cytoplasm bound to IκΒ, an inhibitory protein. Upon stimulation, such as tumor necrosis factor 

alpha (TNF-α) ligand binding to TNFR, IKB is phosphorylated, dissociates from the NF- κΒ 

complex, and is degraded. This exposes the nuclear localization signal on NF- κΒ allowing it to 

translocate to the nucleus where it may bind to response elements on gene promoters and 

activate transcription of genes necessary for survival, inflammation, angiogenesis, invasion, 

apoptosis, and proliferation (Figure 1.6).  NF- κΒ is found to be constitutively active in most 

cancers (Chaturvedi, Sung, Yadav, Kannappan, & Aggarwal, 2011b) and high levels of NF- κΒ 

are considered a hallmark of inflammation.  Furthermore, several oncogenic signaling pathways 

involve NF- κΒ activation (Chaturvedi et al., 2011b) and its inhibition has been shown to result in 

better patient outcomes (Drappatz, Norden, & Wen, 2009; Yamagishi & H. Takebe, 1997; 

Zanotto-Filho et al., 2011). Specifically in GBM, heterozygous deletions of NFKBIA, the gene 

which encodes for the NF- κΒ inhibitor, IκΒα, are found in an estimated 25% of GBMs (Markus 

Bredel et al., 2011) and has been associated with poor patient outcome. Several factors influence 

activation of NF- κΒ in cancers, including inflammatory cytokines and chemokines such 

interleukin 1β (IL-1β) and TNF-α. Our comprehensive analyses found aPKCλ/ι  to be a mediating 

factor between TNF-α and NF- κΒ signaling in GBM cells (Chapter 3).  

 TNF-α is a cytokine that was isolated in 1984 from macrophage-conditioned media 

(Aggarwal, Schwarz, Hogan, & Rando, 1996; Pennica et al., 1984). Originally considered to be 

anti-tumorigenic, TNF-α is now recognized as a mediator of cancer (Aggarwal et al., 1996) as its 

activation of NF- κΒ controls oncogenic processes such as survival, proliferation, invasion, 

angiogenesis and metastasis (F. Balkwill, 2002). GBM cells have been shown to produce TNF-α 

and are also capable of responding to TNF-α through TNFRs (Aggarwal et al., 1996).  However, 

other cells in the tumor microenvironment may also be responsible for the production of TNF-α. 
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As a cytokine initially found in macrophages, we examined the production of TNF-α from brain 

tumor associated microglia in GBM (Chapter 3).  We found microglia to produce TNF-α upon their 

contact with GBM cells, thus indicating a paracrine signaling interaction between the two cell 

types. In recent years the tumor microenvironment has gained attention as providing a supportive 

environment for oncogenicity (Hanahan & Weinberg, 2011). For instance, inflammation is 

considered an enabling characteristic of cancer and is often called pro-tumorigenic (Hanahan & 

Weinberg, 2011). Various signaling molecules are secreted within the tumor microenvironment 

during the inflammatory response including growth factors, survival factors, and angiogenic 

factors, which may lead to an oncogenic environment. Paradoxically, we found microglia-

dependent TNF-α to be a pro-tumorigenic factor secreted by the tumor microenvironment 

(Chapter 3).  

Given that GBM cells express TNFR, we found that they were able to respond to the 

paracrine microglia secreted TNF-α signal by signaling through aPKC and leading to activation of 

NF- κΒ in GBM cells.   Thus, overall, we found aPKCλ/ι  to be a central player in the signaling of 

two pathways in GBM: the EGFR/PI3K/AKT signaling pathway and the microglia secreted 

TNFα/NF−κΒ signaling pathway. Inhibition or silencing of aPKC reduced GBM cell proliferation, 

invasion, and migration, thus proving aPKCλ/ι  to be a better therapeutic target than the targeting 

of EGFR or NF- κΒ alone.  This data is presented in full as a manuscript in Chapter 3.  
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Figure 1.1. Receptor tyrosine kinase (RTK) signaling. RTKs are able to directly phosphorylate 
tyrosines on their intracellular domain and on other intracellular signaling proteins. Upon ligand 
binding, the receptor dimerizes, which allows for the cross-phosphorylation (or 
transautophosphorylation) of the receptor chains. Adapted from Schlessinger, J. (Schlessinger, 
2000). 
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Figure 1.2. The PI3K/AKT signaling pathway. Upon ligand binding and 
transautophosphorylation, PI3K binds to phosphorylated tyrosine targets and converts inactive 
PIP2 into active PIP3. PTEN is a negative regulator of PI3k and converts active PIP3 back into 
inactive PIP2. AKT is recruited through an SH2 domain to bind to PIP3. Upon binding, AKT is 
phosphorylated by PDK1. This subsequently leads to AKT phosphorylation of numerous 
downstream targets involved in cell survival, proliferation, protein synthesis, cell growth, 
metabolism, and others.  Adapted from Hennessy et al. (Hennessy, Smith, Ram, Lu, & Mills, 
2005).  
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Figure 1.3. The PI3K/AKT/mTOR signaling pathway. Activation of AKT results in stimulation of 
the TSC1-TSC2 heterodimer complex. TSC1-TSC2 then acts as a GAP for Rheb, which binds to 
mTORC1 in its active GTP-bound conformation. mTORC1 kinase activity is then stimulated. 
Negative regulation of mTORC1 occurs via TSC1-TSC2 as it also converts Rheb into inactive 
GDP-bound conformation causing Rheb and mTORC1 to dissociate. mTORC1 also 
phosphorylates S6K1 which then inhibits PI3K in a negative feedback manner. Adapted from 
Laplante, M. and Sabatini, D.M. (Laplante & Sabatini, 2012). 
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Figure 1.4. TCGA analyses of GBM tumor mutations. The 2013 TCGA study profiled ~500 
cases of GBM in an effort to identify oncogenic mutations. Results showed an RTK signaling 
alteration in 90% of samples.  An EGFR amplification or gain-of-function mutation (EGFRVIII) 
was seen in 57%, while PI3K gain-of-function mutation was found in 25%. Homozygous loss of 
the PI3K negative regulator, PTEN, was found in 41% of cases. P53 signaling was altered in 86% 
overall, and (c) RB signaling was altered in 79% of cases studied.  Adapted from Brennan et al., 
2013 (Brennan et al., 2013). 
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Figure 1.5. Atypical Protein Kinase C.  The PKC family consists of 12 broadly conserved 
isoforms classified into three subgroups based on regulatory and functional characteristics (a). 
aPKCι/λ/ζ binds to proteins via its PB1 domain. When aPKC is associated with p62, it is usually 
found to participate in NF-κΒ signaling whereas its association with Par6 has been shown to be 
important for cell polarity functioning, such as astrocyte directional migration (b). Two distinct 
aPKC genes encode for three proteins (c). Adapted from Moscat, J., Diaz-Meco, M., and Wooten, 
M. (Jorge Moscat, Diaz-Meco, & Wooten, 2007; J. Moscat, Diaz-Meco, & Wooten, 2009b) and 
Parker et al. (Parker et al., 2013b) 

A 

B 
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Figure 1.6. TNF-αααα/NF-κκκκB Signaling. NF-κB is a heterodimer transcription factor found in the 
cytoplasm bound to IκΒ, an inhibitory protein. Upon TNF-α ligand binding to TNFR, IκΒ is 
phosphorylated, ubiquitinated and degraded, freeing NF-κB to enter the nucleus via its nuclear 
localization signal. Once in the nucleus, NF-κB binds to the DNA where it begins transcription of 
various genes including cytokines, chemokines, apoptotic factors, cell cycle genes, and 
inflammatory genes.  Adapted from Hayden, M.S., and Ghosh, S. (Hayden & Ghosh, 2008). 
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CHAPTER 2 

MTOR SIGNALING IN NEURAL DEVELOPMENT AND AGING 

INTRODUCTION TO MANUSCRIPT 

mTOR in Embryonic Neural Development & Neurodevelopmental Disorders 

 The development of the mammalian brain is a complex and highly regulated process 

involving numerous signaling pathways. Without appropriate signaling events and regulation, the 

embryo may not develop normally leading to birth defects and often death in-utero. The proper 

signaling cascades lead to brain development and the development of neurons, or neurogenesis. 

Prior to neurogenesis during embryonic development, polarized neuroepithelial cells function as 

neural stem cells and first undergo symmetrical cell divisions in order to expand their population. 

Neuroepithelial cells span from the ventricle to the basal membrane of the epithelial sheet and 

are polarized along their apical-basal axis.  They have compartmentalized expression of 

transmembrane proteins, such as the apical expression of the ternary complex aPKC/Par3/Par6 

and the basal expression of integrin a6, a receptor shown to bind to the basal lamina. As they 

divide, the cells undergo interkinetic nuclear migration (INM) along this polar axis, as the nucleus 

migrates basally for replication and back to the apical surface for mitosis. 

At approximately E9-E12 in the developing mouse embryo, these neuroepithelial cells 

begin to divide asymmetrically and produce radial glia, a related neuronal progenitor. While radial 

glia retain several aspects of the neuroepithlial cells, including their apical basal polarity (i.e., 

apical localization of aPKC/Par3/Par6); they also begin to express various astroglial properties, 

including the expression of GFAP and GLAST.  These cells extend a long process which contacts 

the basal lamina and a short process that maintains contact with the apical ventricular lumen, 

where aPKC/Par3/Par6 is located. Similar to neuroepithelial cells, radial glia also undergo INM. 

INM was first discovered in 1935 after Sauer observed and reported a differential nuclear 

positioning during different stages of cellular division (Sauer, 1935).   During replication, the 

nuclei travel basally and return to the apical surface for mitosis. Cells in G1 and G2 phase are 
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found in between the apical and basal regions. Therefore, apical-basal polarity may be critical for 

interkinetic nuclear movement and neural progenitor cell division in general or specifically for 

asymmetric cell division and differentiation. 

 In addition to the regulation of division by apical-basal polarity, various signaling 

mechanisms have been shown to regulate the appropriate proliferation and differentiation of 

radial glia. For example, Notch, a protein found apically localized, has been shown to impact the 

process of cellular differentiation (Dorsky, Chang, Rapaport, & Harris, 1997; Gaiano & Fishell, 

2002). Notch is a cell-surface receptor that upon ligand binding, undergoes cleavage of its 

intracellular domain which then eventually travels to the nucleus to regulate transcriptional 

programs. Activation of Notch has been shown to maintain the proliferative status of neural stem 

cells as well as radial glial cells and block their differentiation (Dorsky et al., 1997; Gaiano, Nye, & 

Fishell, 2000).  Through its ability to enter the nucleus and participate in transcriptional regulation, 

Notch is able to activate genes such as hes1 and hes5, which then block normal cell 

differentiation by neutralizing genes which promote neuronal identity (Gaiano et al., 2000; Iso, 

Kedes, & Hamamori, 2003). This, among other elegant studies, has shown the importance of the 

Notch signaling cascade in the control of neural stem cell proliferation and differentiation 

programs.  

In addition to Notch signaling, mTOR signaling has been implicated in embryonic neural 

development. Using transgenic mouse technologies, Shiota, et al (2006) disrupted the normal 

expression of rictor, a binding partner of mTORC2 (Shiota, Woo, Lindner, Shelton, & Magnuson, 

2006). At E9.5, rictor null embryos experience halted growth until death at E11.5. These embryos 

displayed reduced phosphorylation of AKT at Ser473, an mTORC2 phosphorylation site, 

indicating a significant reduction in mTORC2 signaling (Shiota et al., 2006). Furthermore, AKT-

null mice displayed in a reduction of mTOR activity as evidenced by ribosomal protein S6 

phosphorylation in the brain (Easton et al., 2005).  These mice developed significantly smaller 



 

22 

brains than their wild type littermates (Easton et al., 2005), thus providing evidence towards the 

important role of the PI3K/AKT/mTOR pathway in proper embryonic neural development.  

A striking report in 2012 by Lee, et al (2012) found that the PI3K/AKT/mTOR pathway 

was responsible for the development of hemimegalencephaly in postnatal children (J. H. Lee et 

al., 2012). This malformation, where one half of the brain becomes abnormally larger than the 

other, occurs during brain development and results in seizures and mental retardation. Patients 

with hemimegalencephaly may begin showing abnormal hemispheric growth in-utero (Sarnat, 

Flores-Sarnat, Crino, Hader, & Bello-Espinosa, 2012). Hemimegalencephalic brains display 

cortical dyslamination and abnormal immature neurons, which indicate abnormalities in neuroglial 

differentiation and migration (J. H. Lee et al., 2012). Using mass spectrometry and exome 

sequencing in samples from patients with hemimegalencephaly, Lee et al (2012) found gain of 

function mutations in PI3K/AKT/mTOR genes in 30% of cases. In addition, the authors reported 

an increase in S6 protein phosphorylation in the affected brain tissue, providing evidence of a 

deregulated and over-activated mTOR signaling (J. H. Lee et al., 2012). 

Interestingly, the pathological abnormalities found in hemimegalencephaly patients are 

also seen in patients with tuberous sclerosis (TS), which results from mutations in TSC1 and 

TSC2 (J. Huang & Manning, 2009; Inoki, Corradetti, & Guan, 2005). In addition to the abnormal 

neuronal differentiation and migration seen in patients with hemimegalencephaly, patients with 

TSC develop hamartomas in various organs (J. Huang & Manning, 2009; Inoki et al., 2005). 

During embryonic development and beyond, cortical tubers may appear, which are characterized 

by an abnormal pathologic disorganization of the laminar cortex. These cortical tubers may later 

become the cause of epileptic seizures. In addition, cells may appear abnormal, including 

dysplastic neurons and large astrocytes.  Furthermore, subependymal nodules may appear 

during fetal development in TSC patients (J. Huang & Manning, 2009; Inoki et al., 2005). These 

result from benign lesions within the ventricles of the brain, which eventually evolve into 

subependymal giant cell astrocytomas, a type of tumor.  The mutations of TSC1 and TSC2 in 
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patients with TSC typically result in reduction or loss of function of the TSC complex, leading to 

hyperactivated mTOR signaling, as in hemimegalencephaly (J. Huang & Manning, 2009; Inoki et 

al., 2005).  Furthermore, TSC patients often times present with symptoms of autism spectrum 

disorders (ASDs), including abnormal social interactions and inhibited intellectual ability.  Murine 

models of TSC and patients with TSC have been treated with rapamycin in order to inhibit mTOR 

and the results have proven encouraging (Franz et al., 2006; H. Kenerson, Dundon, & Yeung, 

2005; H. L. Kenerson, Aicher, True, & Yeung, 2002; Krueger et al., 2010; L. Lee et al., 2005; 

Meikle et al., 2008). For instance, treatment of TSC heterozygous mice with deficits in learning 

and memory, show significant improvement upon rapamycin treatment (Auerbach, Osterweil, & 

Bear, 2011) and several NIH clinical trials are currently underway to evaluate the efficacy of 

mTOR inhibitors for autism.  

Mice which lacked TSC1 in emx1-expressing embryonic telencephalic neural stem cells 

displayed the abnormal neuropathologies associated with TSC affected patients, including ASD 

phenotypes (Magri et al., 2011). A loss of TSC1 in these cells resulted in hyperactivation of the 

mTOR pathway which resulted in a variety of clinically relevant pathological symptoms. Due to an 

increase in embryonic SVZ neural stem cell proliferation and abnormal premature differentiation, 

the brains of these mice displayed cortical lamination defects, neuropathological lesions, and 

epileptic seizures (Magri et al., 2011), as seen in patients with TSC. Embryonically at E16.5, the 

mutant mice displayed differences in brain size and cortical thickness, indicating abnormal 

proliferation, differentiation, and lamination (Magri et al., 2011).  Using BrdU at E15.5, the authors 

found that the mutant mice had a significant increase in BrdU positive cells.  Furthermore, the 

amount of Pax6+ radial glial cells, TBR2+ and PH3+ intermediate progenitor cells participating in 

mitosis was significantly increased, which indicates that the proper differentiation of these 

progenitor cells was disrupted (Magri et al., 2011). Given that patients with TSC are generally 

treated with rapamycin, the authors treated these transgenic mice with rapamycin from p8-p60 to 

inhibit mTOR signaling. This treatment resulted in the cessation of seizures in the mice, and a 
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normalization of cortical thickness and layering which was identical to the wild type vehicle-

treated control (Magri et al., 2011).   

The deletion of PTEN in mice using different brain specific cres resulted in macrocephaly, 

hypertrophy and seizures. PTEN lies upstream of mTORC1 and participates as a negative 

regulator of the AKT pathway, thus increasing mTORC activity, mimicking a loss of TSC complex.  

Using the neuron specific Eno2 cre, PTENfl/fl mice displayed seizures, impaired learning abilities 

and impaired social interactions (Zhou et al., 2009).  These mice develop macrocephaly 

progressively as well as dendritic and axonal cortical neuron hypertrophy, beginning at 4-5 weeks 

of age, which correlates with their behavioral phenotypes (Zhou et al., 2009).  Interestingly, 

treatment of these PTEN mutant mice at 5-6 weeks of age inhibited the cellular abnormalities of 

cortical neuron hypertrophy, reduced the frequency of seizures, and improved the social ability of 

the mice (Zhou et al., 2009).  Similar positive results were obtained when PTENfl/fl;GFAP-cre 

mice, who display comparable symptoms, were treated with CC1-779, an analog of rapamycin  

(Kwon, Zhu, Zhang, & Baker, 2003).   

Various other neurodevelopmental diseases result from dysreugulation of the mTOR 

signaling pathway including Neurofibromatosis type 1 (NF1), Cowden Syndrome, Proteus 

syndrome and Lhermitte-Duclos disease (Inoki et al., 2005). These pathologies are caused by 

mutations in genes which regulate or participate in mTOR signaling and result in hamartomas in 

multiple organs including the brain, indicating abnormal proliferation regulation of CNS cells.  

Thus, the mTOR pathway is a critical component of appropriate neural stem cell proliferation and 

differentiation in the developing brain and dysregulation of its function may lead to 

neurodevelopmental disorders. 

mTOR in Adult Neural Stem Cell Proliferation, Differentiation, and Neurogenesis 

In the adult, neurogenesis occurs in two specialized regions of the brain – the 

subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate 

gyrus in the hippocampus.  In the SVZ, adult neural stem cells, or GFAP+ type-B cells, 
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differentiate to give rise to GFAP- type-C Cells, or transit amplifying cells. Type-C cells then 

divide to produce DCX+ type-A cells, or neuroblasts. Neuroblasts then leave the SVZ and migrate 

up to a distance of 5mm as a neuroblast chain through the rostral migratory stream (RMS) until 

reaching the olfactory bulb (OB). Upon reaching the olfactory bulb, the neuroblasts mature into 

NeuN+ granule or periglomerular neurons. In contrast to the SVZ, SGZ neural stem cells are 

classified as Type 1 GFAP+ hippocampal progenitors, which have a radial process spanning the 

granule layer.  These cells give rise to Type 2 GFAP- progenitors, which only have a short 

process. Type 2 transit amplifying cells then give rise to a DCX+ progenitor cell, which will mature 

to express mature neuronal markers, such as NeuN and Tuj1. Newborn neurons from the SGZ do 

not migrate nearly as far as SVZ neurons, as upon reaching the granule cell layer of the DG (from 

the SGZ), they stop migrating to become dentate granule cells. Both newborn neurons generated 

in the SVZ and SGZ become integrated into the existing circuitry and have been shown to receive 

functional input (Zhao, Deng, & Gage, 2008).  

Methods used to study neurogenesis and adult neural stem cell proliferation or 

differentiation include the use of 5’-bromo-2’-deoxyuridine (BrdU), a thymidine analog that 

incorporates into the DNA during S-phase of dividing cells as they undergo DNA synthesis. Cells 

which are born of the BrdU+ cell will maintain BrdU in their DNA, as well, as it is passed on to 

progeny through division. Based on the time of BrdU treatment, as well as the time after 

treatment and before sacrifice, different cell populations may be labeled, allowing the investigator 

to answer various experimental questions. For example, the intraperitoneal injection of BrdU 2-4 

hours prior to sacrifice will label the dividing type-B cells in the SVZ and type-1 cells in the SGZ, 

thus providing an idea of the cells in S-phase at the time of injection. The use of Ki67, a nuclear 

protein which is expressed from late G1 through cell cycle exit, as an endogenous marker of 

cellular proliferation is also quite popular in the neural stem cell and neurogenesis field.  

Furthermore, Ki67 is frequently used as a proliferation marker in cancer studies. The use of both 

BrdU and Ki67 provides further information regarding cellular proliferation. For example, the 
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injection of BrdU 24 hours prior to sacrifice and the co-immunostaining of brain tissue using anti-

Ki67 antibody as well as anti-BrdU antibody will result in BrdU+Ki67- cells and BrdU+Ki67+ cells. 

BrdU+Ki67- cells represent cells which were undergoing mitosis at the time of injection, but have 

since left the cell cycle and are no longer dividing.  Cells which are BrdU+Ki67+ represent cells 

which were dividing at the time of injection and still active through the cell cycle at the time of 

sacrifice. BrdU can also be injected and then “chased” with an interval of time at which point no 

more BrdU is given. An example of this experimental paradigm includes the consecutive injection 

of BrdU+ for 3 days, followed by 2 weeks sans BrdU prior to sacrifice. After fixation and 

immunostaining with anti-BrdU antibody, BrdU+ cells may be found in the SVZ, along the RMS, 

and within the OB. This is because the cells which were dividing at the time of injection may have 

since differentiated into type-C cells, progressed into type-A cells, and migrated through the RMS 

and made their way into the OB while still expressing BrdU. Thus the use of this experimental 

paradigm allows an overall snapshot of all of these processes, however does not provide the 

answer to specific questions such as the effect of an agent to the proliferation of type-B neural 

stem cells, or the effect of an agent on the migration of type-A neuroblasts. Other markers of 

proliferation include phosphor-histone H3, which is expressed during M-phase, proliferating cell 

nuclear antigen (PCNA), which is expressed most significantly during S-phase and MCM2, a 

protein required for initiation of S-phase and is expressed throughout the cell cycle.  Tools such 

as these have allowed for the discovery of adult neurogenesis in both the mouse and the human.  

 Studies examining the regulation of adult neurogenesis and the factors which promote it 

are extremely abundant. Evidence suggests that both intrinsic and extrinsic factors may control 

neurogenesis of neural stem cells (NSCs) in the adult brain (Lledo, Alonso, & Grubb, 2006). 

Extrinsic factors for SVZ neurogenesis include neurotransmitters such as serotonin (5-HT) and 

acetylcholinesterase (ACh), hormones such as thyroid hormone and prolactin, and growth factors 

such as brain derived neurotrophic factor (BDNF) and epidermal growth factor (EGF). Similar 

extrinsic factors regulate neurogenesis in the DG; however, in addition DG neurogenesis is also 



 

27 

regulated by environmental conditions, such as running, environmental enrichment, and stress (J. 

Brown et al., 2003). Katoh-Semba, et al. (2002) showed that stimulation of BDNF enhances DG 

neurogenesis and this BDNF-induced increased neurogenesis can be blocked by using 

antibodies specific to BDNF (Katoh-Semba et al., 2002). Early studies looked at the effect of 

BDNF for SVZ neurogenesis in-vitro (Ahmed, Reynolds, & Weiss, 1995; Kirschenbaum & 

Goldman, 1995). These studies found that BDNF supports the survival of newborn neurons in-

vitro, and therefore increases neurogenesis in the adult. Zigova, et al. (1998) confirmed that 

ventricular infusion of BDNF led to an in-vivo increase in BrdU+ cells in the OB (Zigova, Pencea, 

Wiegand, & Luskin, 1998).  Using a knock-in mouse with a variant form of BDNF which impairs its 

activity dependent secretion and a BDNF haploinsufficient mouse (BDNF+/-), Chen, et al., (2008) 

found no change in the proliferation of B cells in the SVZ (Z. Y. Chen, Bath, McEwen, 

Hempstead, & Lee, 2008). However, they did find a significant decrease in the number of BrdU+ 

A cells in the OB in both strains. The authors explored the mechanism of this effect and 

determined that BDNF, though TrkB receptors are critical for A cell survival and migration (Z. Y. 

Chen et al., 2008). An interesting study by Doetsch, et al., (2002) found that infusion of EGF into 

the ventricle of adult mice led to an increase in the number of B and C cells, and an increase in 

their mitotic index (dividing versus non-dividing cells) (F. Doetsch, Petreanu, Caille, Garcia-

Verdugo, & Alvarez-Buylla, 2002). They reported, however, no increase in neuroblasts, and 

therefore suggest that EGF infusion led to an increase in self-renewing divisions of the B cells 

and C cells, at the expense of new neuron production.  Therefore, EGF is acting to regulate the 

self-renewal of B cells and C cells in the SVZ, but not their differentiation into A cells. However, it 

is interesting to note that EGF had no proliferative effect on hippocampal precursor cells (Kuhn, 

Winkler, Kempermann, Thal, & Gage, 1997). Recently, another study described the importance of 

Insulin-like growth factor 2 (IGF2) in DG neurogenesis (Bracko et al., 2012). Using transcriptome 

analyses, the authors compared differences in gene expression between adult NSCs and 

immature neurons. They found significantly higher levels of IGF2 in DG NSCs compared to 
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immature neurons and knocked out IGF2 in-vivo to confirm a reduction in adult DG NSC 

proliferation (Bracko et al., 2012). Interestingly, another report found that IGF2 is secreted in the 

CSF by the choroid plexus and stimulates the proliferation of adult NSCs in the SVZ (Lehtinen et 

al., 2011).  

 Given the importance of growth factor signaling regulation of adult neural stem cell 

proliferation, differentiation and neurogenesis, it is not surprising to learn that mTOR has been 

shown to play a role as well.  BDNF, for example, can activate mTOR (Schratt, Nigh, Chen, Hu, & 

Greenberg, 2004; Slipczuk et al., 2009; Takei et al., 2004; Yang, Hu, Zhou, Zhang, & Yang, 

2013), and BDNF has been implicated in various psychiatric disorders, including depression.  

Successful treatment of depression using selective serotonin reuptake inhibitors (SSRIs) has 

been shown to require neurogenesis (David et al., 2009; Santarelli et al., 2003).  In addition, the 

infusion of BDNF into the hippocampus resulted in increased neurogenesis (Scharfman et al., 

2005) and reduced depression symptoms (Shirayama, Chen, Nakagawa, Russell, & Duman, 

2002).  Although these studies did not directly examine the effect of BDNF on mTOR signaling, it 

can be hypothesized that mTOR activity was increased due to its strong activation downstream of 

BDNF (Schratt et al., 2004; Slipczuk et al., 2009; Takei et al., 2004; Yang et al., 2013).  

 Perhaps more direct evidence of the role of mTOR in adult neurogenesis comes from a 

study by Paliouras et al (2012). These authors found mTOR activation to be increased in 

embryonic neurogenesis and maintained in the adult SVZ niche. Interestingly, within the SVZ, 

they found that approximately 95% of phosphorylated S6 positive cells were positive for Ki67, a 

proliferation marker. Their results also found that approximately 80% of the phosphorylated S6 

positive cells were also positive for Mash1, a neuronal progenitor cell marker. The authors 

infused rapamycin into the mouse ventricles and found a reduction in Ki67+ Mash1+ progenitors. 

No changes were found in caspase-3 staining, indicating that the effect of rapamycin on the 

neuronal progenitors in the SVZ was an effect of proliferation, rather than apoptosis (Paliouras et 

al., 2012). Furthermore, in-vitro treatment of neural progenitors grown as neurospheres with EGF 
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resulted in an increase in phosphorylated S6 and phosphorylated mTOR, indicating mTOR 

activation downstream of EGF stimulation in these cells. When these cells were treated with 

rapamycin or KU0063794, which inhibits both mTORC1 and mTORC2, the result was a reduction 

in the number and size of the neurospheres, indicating a deficit in progenitor cell proliferation 

caused by mTOR inhibition. In addition, the authors found that while mTOR was activated in 

neural progenitors expressing proliferative markers, it was reduced during differentiation (EGF-

withdrawal) of these cells (Paliouras et al., 2012).  

 Given that neural stem cell proliferation and neurogenesis declines with age, the authors 

conducted immunohistochemistry for phosphorylated S6 and Ki67 in the SVZ of aging mice 

(Paliouras et al., 2012). Their results showed a reduction in both of these markers, providing a 

correlation between decreased mTOR activation and reduced SVZ neural stem cell proliferation. 

Interestingly, upon infusion of EGF into the ventricles of aged mice, the authors found re-

activation of mTOR activity and increased proliferation of neural stem cells in the SVZ.  However, 

mice that received a co-infusion of EGF with rapamycin did not display the same effects. Instead, 

these mice failed to show an increase in proliferation or mTOR activation in SVZ neural 

progenitors (Paliouras et al., 2012).  

Kim, et al (2009) studied the function of Disrupted-in-schizophrenia 1 (DISC1) in adult 

hippocampal newborn neurons (Ju Young Kim et al., 2009). A DISC1 genetic alteration was 

discovered to correlate with schizophrenia, bipolar disorder and depression from studies 

examining a Scottish family (Blackwood et al., 2001; Ju Young Kim et al., 2009; Millar et al., 

2000). It is now well recognized that DISC1 is a risk factor for many psychiatric illnesses, 

including schizophrenia, bipolar disorder, and depression. In 2009, Kim, et al. found that 

suppression of DISC1 in newborn dentate granule cells of the hippocampus led to increased 

activation of AKT (J. Y. Kim et al., 2009). The authors note increased phosphorylation of S6 

ribosomal protein, indicating increased mTOR activation. These increased signaling changes 

resulted in defects in both the growth and morphogenesis of the adult newborn neurons and their 
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positioning in the dentate gyrus of the adult hippocampus. The newborn cells also displayed 

limited dendritic growth and reduced synapse formation. Furthermore, the treatment of these 

mice with rapamycin to inhibit AKT and mTOR activation was successful in rescuing the abnormal 

defects (Ju Young Kim et al., 2009). Given these results and the association of DISC1 with 

psychiatric disorders, some researchers have postulated that abnormal adult neurogenesis may 

play a significant role in the development of adult onset psychiatric disorders (Kimberly Christian, 

2010; Ming & Song, 2011).  This study, among others, and those described above in relation to 

embryonic neural stem cell proliferation and differentiation, provide evidence regarding the 

importance of mTOR signaling for these biological processes.  

Stabilization, Survival and Integration of Adult Newborn Neurons 

Initial proliferation and differentiation of NSCs is not the only important factor in 

neurogenesis, stabilization and survival of newborn neurons is also an important regulatory 

process. Evidence has shown that only ~50% of SVZ & DG-newborn neurons will survive longer 

than a month (Dayer, Ford, Cleaver, Yassaee, & Cameron, 2003; Petreanu & Alvarez-Buylla, 

2002). After young OB neurons are matured and have made stable synaptic connections, their 

survival is dependent on the level of activity they receive (Petreanu & Alvarez-Buylla, 2002). 

Similar conclusions can be drawn regarding the survival of newborn neurons in the DG. The full 

integration and synaptic connectivity of these newborn cells is important for their survival.  

 Data regarding the functional integration of adult-born young neurons came from studies 

using viral vectors. In 2002, Carlen, et al. injected a GFP-expressing virus into the brain which 

selectively infects and replicates in neurons (Carlen et al., 2002).  The virus is transported along 

axons and dendrites to infect other neurons in a functioning circuit. In order to investigate the 

integration of SVZ-born OB neurons, mice were given BrdU for 4 weeks, followed by a 3 week 

chase period. This chase allows for the subsequent detection of integrated newborn neurons. 

Newborn neurons are mostly periglomerular, and these neurons extend axons only locally. 

However, these new cells do receive inputs from other neurons in the OB which project axons to 
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the piriform cortex (projection neurons). Therefore, the investigators injected the GFP virus into 

the piriform cortex and upon analyses, found GFP expression in BrdU+ periglomerular neurons of 

the OB (Carlen et al., 2002). Because this virus requires synaptic transmission, this experiment 

indicates that the new neurons were connected into a functional circuit. They conducted a similar 

experiment to evaluate functional connectivity of SGZ-born neurons and found GFP expression in 

BrdU+ neurons of DG neurons. This initial report was one of the first to show successful synaptic 

connections on adult-newborn neurons (Carlen et al., 2002).  

 More recent evidence using patch clamp techniques and immunohistochemistry has 

shown that within 24hrs of reaching the OB, SVZ-newborn neurons receive GABAergic and 

glutamatergic input synapses (Panzanelli et al., 2009).  Three days later, cells take on a mature 

morphology and extend dendrites with clearly defined spines into the external plexiform layer 

(Panzanelli et al., 2009). Interestingly, OB neurons can generate either granule cells or 

periglomerular cells. The different fate acquired occurs at the maturation stage.  In periglomerular 

cells, voltage-dependent sodium current precedes synaptic contacts. However, granule cells first 

establish synaptic connections and then develop the sodium current (Belluzzi, Benedusi, 

Ackman, & LoTurco, 2003; Carleton, Petreanu, Lansford, Alvarez-Buylla, & Lledo, 2003).  

Although correlative, other evidence of fully functioning newborn neurons comes from decreased 

olfactory discrimination and odor memory upon genetic manipulation to reduce newborn cells in 

the OB (Breton-Provencher, Lemasson, Peralta, & Saghatelyan, 2009; Z. Y. Chen et al., 2008; 

Enwere et al., 2004; Gheusi et al., 2000).  

 Similar to the OB, in the DG, newborn neurons also make connections almost 

immediately after the immature neurons exit the cell cycle. Around 10 days after birth, mossy 

fibers are detected and will extend until reaching the CA3 region before mature spines are formed 

(Zhao et al., 2008). Recent evidence indicates that the newborn cells receive afferent projections 

from the entorhinal cortex between 14-21 days after birth (Zhao et al., 2008).  At this age they do 

have glutamate receptors, however, most synaptic currents are GABA-mediated (Overstreet 
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Wadiche, Bromberg, Bensen, & Westbrook, 2005). In addition, electron microscopy studies 

showed that by 30 days of age, newborn neurons receive synaptic inputs from axosomatic and 

axodendritic connections, closely resembling their already matured DG neuron neighbors (Lledo 

et al., 2006). Various electrophysiological studies have showed that newborn neuron synaptic 

integration follows the sequence that embryonic neurons undergo -- including initial excitatory 

GABAergic inputs which later convert to inhibitory inputs (Ben-Ari, 2002). Interestingly, while the 

newborn neurons seem to function as their mature neighbors, they do display enhanced synaptic 

plasticity (Schmidt-Hieber, Jonas, & Bischofberger, 2004). It has been suggested that this may 

facilitate long-term changes in the network, as the neuron is hyperactive and thus has an 

advantage over the mature neurons for stabilization of its synaptic connections (Tashiro, Sandler, 

Toni, Zhao, & Gage, 2006; Toni et al., 2008). Using confocal microscopy, Ramirez-Amaya, et al., 

(2006) examined the expression of the immediate early gene Arc (Ramirez-Amaya, Marrone, 

Gage, Worley, & Barnes, 2006). Arc mRNA and its protein have been reported to be induced by 

spatial exploration in the same cells which are electrophysically activated in the hippocampus. By 

the evaluation of Arc expression after giving mice BrdU and subjecting them to a behavioral 

paradigm, the investigators were able to identify BrdU+ cells that respond to behavioral 

exploration. They found that matured (5 month old) newborn granule cells do express Arc after 

behavioral exploration, and that that a larger amount of BrdU+ cells expressed Arc as opposed to 

BrdU- cells (Ramirez-Amaya et al., 2006).  This data adds to the convincing evidence in the field 

that newborn neurons participate in preexisting hippocampal networks. Upon maturation and full 

integration, these newborn neurons become a permanent part of the functioning circuit, as BrdU-

labeled neurons were found to be stable at least 11 months after their neurogeneration 

(Kempermann, Gast, Kronenberg, Yamaguchi, & Gage, 2003; Leuner et al., 2004).  

 mTOR signaling has been implicated in the survival and integration of newborn neurons. 

For instance, rapamycin treatment reduced dendritic complexity, or arborization, of growing 

neurons, and transfection of constitutively active PI3K and AKT results in increased dendritic 
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arborization and an increase in phosphorylated S6, or mTOR activation (Kumar, Zhang, Swank, 

Kunz, & Wu, 2005). mTOR activation has been shown to regulate local protein synthesis at the 

synapse, regulating synapse formation, which is required for newborn neurons to live (Jacinto & 

Hall, 2003). Interestingly, mTOR activation is induced upon ketamine administration, a drug 

shown to result in anti-depressant effects (N. Li et al., 2010).  In accordance with the hypothesis 

that a potential mechanism for anti-depressant efficacy requires increased synaptic connectivity, 

ketamine treatment in mice results in increased synaptic protein synthesis and increased synaptic 

spines as well as increased synaptic strength (N. Li et al., 2010). The infusion of rapamycin prior 

to ketamine administration completely blocks the synaptic effects of ketamine in addition to 

blocking the anti-depressive effects (N. Li et al., 2010), suggesting a role for mTOR in synaptic 

stabilization.  

 In conclusion, the study of adult neurogenesis is of extreme interest to the scientific field. 

Uncovering the signaling mechanisms regulating neurogenesis and the division of neural stem 

cells harbors enormous potential for the treatment of neurodegenerative diseases. Data over the 

past 20 years has elucidated the strong role of growth factors and signaling cascades on this 

process and this has implications for potential therapies.  Furthermore, advances in 

electrophysiological techniques, viral labeling techniques and transgenic mouse production has 

led to the confirmation of the long-held hypothesis that newborn neurons are indeed fully 

functioning and integrated into existing circuits. Data has shown that the newborn cells are 

capable of receiving and inducing signals, as well as releasing neurotransmitters. In addition, the 

newborn neurons are hyperactive, therefore giving them an advantage for survival and 

integration, as they can respond faster to stimuli. Although many advances have been made in 

this field, a further more detailed look at the role of these new neurons in learning and memory is 

warranted. In addition, very little knowledge of neurogenic regulation has been gleaned from 

higher species or humans. The future of this field should attempt to enter more into human 

studies, as learning how to regulate this process for human application will prove invaluable.  



 

34 

MANUSCRIPT: CONTRASTING EFFECTS OF CHRONIC, SYSTEMIC TREATMENT WITH 

MTOR INHIBITORS RAPAMYCIN AND METFORMIN ON ADULT NEURAL PROGENITORS IN 

MICE 

ABSTRACT 

The chronic and systemic administration of rapamycin extends lifespan in mammals. 

Rapamycin is a pharmacological inhibition of mTOR. Metformin also inhibits mTOR signaling, but 

by activating the upstream kinase AMPK. Here we report the effects of chronic and systemic 

administration of the two mTOR inhibitors, rapamycin and metformin, on adult neural stem cells of 

the subventricular region and the dentate gyrus of the hippocampus in mouse. While rapamycin 

decreased the number of adult neural stem cells, metformin-mediated inhibition of mTOR had no 

such effect. Adult-born neurons are considered important for cognitive and behavioral health, and 

may contribute to improved health span. Our results demonstrate that distinct approaches of 

inhibiting mTOR signaling can have significantly different effects on organ function and 

underscore the importance of screening individual mTOR inhibitors on different organs and 

physiological processes for potential adverse effects that may compromise health span. 

INTRODUCTION 

The mTOR signaling pathway has a conserved role in the regulation of replicative and 

chronological life span in yeast and organismal life span in Caenorhabditis elegans, Drosophila, 

and mammals (S. C. Johnson et al., 2013). The inhibition of mTOR signaling with chronic, 

systemic 2.24-mg/kg (14 ppm) administration of rapamycin, a product of the soil bacteria 

Streptomyces hygroscopicus, extends life span in mice, even when introduced late in life 

(Harrison et al., 2009). Rapamycin 4.7, 14, and 42 ppm in food also slows age-dependent 

pathology of the liver, heart, and tendons (Wilkinson et al., 2012). A recent study demonstrated 

that chronic 2.24-mg/kg rapamycin inhibits age-associated cognitive decline (Halloran et al., 

2012). Furthermore, rapamycin treatment was associated with anxiolytic and anti-depressive 

effects (Halloran et al., 2012). 
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While neurogenesis occurs primarily during embryonic and early postnatal mammalian 

development, the adult mammalian brain does retain the ability to produce new neurons. 

Cognitive functions, learning and memory, and behavioral health can be improved by increased 

adult neurogenesis (Deng, Aimone, & Gage, 2010; Lazarov, Mattson, Peterson, Pimplikar, & van 

Praag, 2010; Ramirez-Amaya et al., 2006). Additionally, antidepressants function by stimulating 

adult neurogenesis (Yun Li et al., 2008; Malberg, Eisch, Nestler, & Duman, 2000). Neurogenesis 

in an adult mammal occurs in specialized regions of the brain such as the subventricular zone 

(SVZ) and the subgranular zone of the dentate gyrus (DG) (Kriegstein & Alvarez-Buylla, 2009). In 

these regions, slowly cycling B cells (GFAP+), the self-renewing adult neural stem cell population, 

give rise to transient amplifying C cells (EGFR+), which in turn produce neuroblasts marked by 

the expression of doublecortin (DCX+). Adult-born neurons integrate into functional circuits (Yan 

Li, Mu, & Gage, 2009). Adult neurogenesis decreases with aging and the loss of neurogenesis 

can be correlated with cognitive and behavioral decline (Kuhn, Dickinson-Anson, & Gage, 1996; 

Lazarov et al., 2010). Conversely, caloric restriction, which extends life span, increases adult 

neurogenesis (Lazarov et al., 2010; Levenson & Rich, 2007). 

From Drosophila to mice, multiple steps during neurogenesis—neural progenitor 

proliferation, survival, and differentiation into neurons—have been reported to engage the mTOR 

signaling pathway(Fishwick, Li, Halley, Deng, & Storey, 2010; Han et al., 2008; Ju Young Kim et 

al., 2009; L. Li et al., 2010; McNeill, Craig, & Bateman, 2008; Palazuelos, Ortega, Diaz-Alonso, 

Guzman, & Galve-Roperh, 2012; Paliouras et al., 2012; Raman et al., 2011). For example, the 

loss of activators of mTOR signaling, IgfR1, in neural precursors, results in reduced proliferation 

in the SVZ and microcephaly (Kappeler et al., 2008; Lehtinen et al., 2011; W. Liu, Ye, O'Kusky, & 

D'Ercole, 2009). Conversely, increased Igf activity resulted in increased proliferation in the SVZ 

and macrocephaly (Lehtinen et al., 2011). Two independent mTOR complexes—mTORC1 and 

mTORC2—are found in mammalian cells (Laplante & Sabatini, 2012). Rapamycin is a well-

characterized mTORC1 inhibitor (Guertin & Sabatini, 2009). This macrolide first binds to the 
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cyclophilin FKBP12 in mammalian cells, and the complex subsequently interacts with mTOR and 

inhibits its function. Paliouras et al. (Paliouras et al., 2012) demonstrated that rapamycin infusion 

(0.5 mM) into the left ventricle of mice for 7 days results in a 48 % reduction of proliferating neural 

stem cell numbers (Paliouras et al., 2012). Furthermore, rapamycin reduces neural stem cell 

proliferation in vitro; both the size and number of neural stem cells grown as neurospheres were 

reduced following rapamycin treatment (Paliouras et al., 2012). Additionally, neural stem cells fail 

to differentiate normally in the presence of this drug (Paliouras et al., 2012). Four weeks of 

rapamycin treatment (10 mg/kg) significantly decreased social interaction time in mice (Zhou et 

al., 2009). In contrast, 1 and 4 weeks of rapamycin treatment (20 and 10 mg/kg, respectively) 

have been reported not to affect gross morphology of the important neurogenic niche, DG, or 

normal, newborn neurons and the performance of mice in open field behavioral tests (Ju Young 

Kim et al., 2009). 

Metformin represents an additional pharmacological approach to inhibit mTORC1 

signaling (Mihaylova & Shaw, 2011). This anti-diabetic biguanide acts by increasing AMP 

activated protein kinase (AMPK) activity (Shaw et al., 2005). When activated, AMPK negatively 

regulates mTOR activation (Laplante & Sabatini, 2012). AMPK activation slows aging in C. 

elegans (Apfeld, O'Connor, McDonagh, DiStefano, & Curtis, 2004; Mair et al., 2011) and is being 

considered as a calorie restriction mimetic (Ingram et al., 2006). Therefore, metformin has been 

used for life extension in mammals and, in some studies although not all, has demonstrated 

gerosuppressive effects (Vladimir N. Anisimov et al., 2008; V. N. Anisimov et al., 2011; Berstein, 

2012). Interestingly, 12 days of treatment with metformin has been shown to increase adult 

neurogenesis and spatial memory (J. Wang et al., 2012). However, the effect of longer term 

treatment remains unknown. 

We directly investigated the effects of a chronic, systemic rapamycin or metformin 

treatment on proliferating neural progenitor cells of the SVZ and DG in mice. Here we report that 

a 9-week chronic administration of rapamycin, but not metformin, reduces the number of 
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proliferating neural progenitors in the mammalian neurogenic niches in adult mice. Additionally, a 

similar decrease in proliferation and in neuronal differentiation was observed in murine adult 

neural stem cells cultured in vitro upon rapamycin treatment. In contrast, metformin treatment did 

not significantly reduce neural stem cell proliferation or differentiation. Our studies indicate that 

two distinct methods of inhibiting mTOR activity differentially affect mammalian adult neural stem 

cells. 

MATERIAL AND METHODS 

Mice 

Adult male (12 weeks) C57BL/6J mice were purchased from the Jackson Laboratory (Bar 

Harbor, ME). All mice were housed under specific pathogen-free conditions at the University of 

Arizona, maintained under a strict 12-h light cycle and given a regular chow diet. Upon arrival, the 

mice were rested for 1 week prior to manipulation. The mice were kept in individual metabolic 

cages for an initial 24-h adaptation period followed by a 24-h period during which food intake was 

measured. Baseline, 4- and 8-week measurements were performed. The mice were given free 

access to food and water for the entire study period. The mice were weighed before and after 

being placed into the metabolic cages. All experimental procedures were conducted with approval 

from the University of Arizona Institutional Animal Care and Use Committee. Rapamycin (LC 

Labs) and metformin (Sigma) were administered by daily i.p. injection during the treatment period. 

Rapamycin was administered in a high (2.5 mg/kg) or low (75 µg/kg) dose. Metformin was 

administered at a dose of 200 mg/kg. Control mice received daily PBS i.p. injections. BrdU (50 

mg/kg, Sigma) was given by i.p. injection every 12 h, beginning 48 h prior to harvest. 

Antibodies 

For immunoblotting, rabbit phospho-S6 ribosomal protein (Ser240/244, #5364) and 

mouse S6 ribosomal protein (#2317) antibodies were purchased from Cell Signaling and were 

used at a concentration of 1:1,000. For immunocytochemistry, mouse Tuj1 (MAB1637) and rabbit 

Nestin (MAB5922) antibodies were purchased from Millipore and used at a concentration of 1:250 



 

38 

and 1:500, respectively. For immunohistochemistry, rabbit DCX (ab18723), rat BrdU (ab6326), 

and rabbit Ki67 (ab16667) antibodies were purchased from Abcam and used at a concentration of 

1:100. Rabbit Phospho-S6 ribosomal protein (Ser235/236) conjugated to Alexa Fluor 647 was 

purchased from Cell Signaling (4851) and used at 1:100. Species-specific Alexa Fluor conjugated 

secondary antibodies were purchased from Invitrogen and used at 1:500. HRP-conjugated 

species-specific secondary antibodies were purchased from Promega and used at 1:2,000. 

Measurement of rapamycin and metformin 

Method was adapted from Streit et al (Streit, Armstrong, & Oellerich, 2002). 

Measurement of rapamycin and metformin in mouse blood were performed using a TSQ 

Quantum liquid HPLC-electrospray ionization-tandem mass spectrometry system (Thermo 

Finnigan, San Jose). Serial dilutions of a known amount of rapamycin or metformin spiked into 

blank EDTA mouse blood were used as internal standards for quantitation of the drugs in the 

blood. The scan for rapamycin was performed at 931.5 (M+NH4) +→864.7 at a collision energy of 

20 eV. Metformin was detected by selective reaction monitoring; parent mass/charge ratio for 

metformin is 130.1 and the fragment monitored is 71.1. The collision energy was 33 eV.  

Chemicals  

Rapamycin white powder was stored at -20 °C, Clarithromycin (internal standard; Sigma 

catalog # A3487) white powder stored at 4 °C, Methanol Optima LC/MS grade (Thermo Fisher 

Scientific), Zinc Sulfate (as heptahydrate) (Fisher Chemical), Water collected from an in-lab 

Barnstead water purification system.  Metformin white crystalline powder was stored at room 

temperature, Methanol Optima LC/MS grade (Thermo Fisher Scientific), Zinc Sulfate (as 

heptahydrate) (Fisher Chemical), Water collected from an in-lab Barnstead water purification 

system. 
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Immunohistochemistry 

Mice were euthanized and perfused with 30 mL PBS before the brains were quickly 

removed and flash frozen in isopentane. Specimens were then stored at −80 °C. The brains were 

mounted using OCT and sectioned at 14 µm. For BrdU staining, slides were first fixed in 4 % PFA 

for 15 min and subsequently washed 3× in PBS for 10 min each. Slides were denatured in 2 N 

HCl for 15 min at 37 °C, and then for  another 15 min in 2 N HCl at room temperature (RT). Slides 

were rinsed in boric acid buffer (0.2 M orthoboric acid, pH 8.4) and incubated for further 10 min at 

RT. They were then washed 3× in PBS, blocked in 5 % donkey serum with 0.1 % Triton X- 100 

for 2 h at RT. Sections were incubated in primary antibody in blocking buffer at 1:100 overnight at 

4 °C.  Slides were washed 3× in PBS with 0.1 % Triton X- 100 (PBST) for 10 min each and 

subsequently incubated with secondary antibodies for 2 h at RT. Slides were washed in 3× in 

PBS for 10 min, and fixed again in 4 % PFA. Slides were subsequently washed and denatured 

again prior to blocking and incubation in the second primary antibody (DCX) overnight at 4 °C. 

After overnight incubation, the slides were washed 3× in PBS and incubated for 10 min in 100 

ng/mL DAPI before being mounted in Prolong Gold Antifade Reagent (Invitrogen), cover-slipped 

and imaged using a Leica SP5 confocal microscope. For immunohistochemistry using p-S6 

ribosomal protein antibodies, sections were fixed in 4 % PFA, washed 3× in PBS and then 

blocked in 10 % donkey serum in PBST for 2 h at RT. Sections were incubated with primary 

antibody at 1:100 in blocking buffer overnight at 4 °C. Sections were washed 3× with PBS and 

incubated for 10 min in 100 ng/mL DAPI before being cover-slipped and imaged on a Leica SP5 

confocal microscope. 

Quantification of BrdU+ Cells 

Fourteen-micrometer sections were collected beginning at the olfactory bulbs and ending 

at the cerebellum. Series of every 15th section through each sample were processed for BrdU 

immunohistochemistry as described above and every adjacent section was stained with H&E. 

The SVZ was defined as beginning at the bregma 1.41 mm until −0.11 mm. Only cells existing 
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within 0.1 mm lateral to the ependymal lining were counted. No cells on the medial SVZ were 

considered. The total number of sections in which the SVZ appeared were ~85-100 (roughly 1.2 

mm rostralcaudal). The DG was defined as beginning at the bregma −1.077 mm until the bregma 

−3.39 mm. The total number of sections in which the DG appeared were ~130–170 (roughly 2 

mm rostral–caudal). The areas of the SVZ and DG were measured using ImageJ (NIH). For cell 

counting, the investigator was blinded to the experimental condition. BrdU-labeled cells were 

exhaustively counted on every 15th section through the entire DG or SVZ. 

Neural Stem Cell Isolation  

For both neurosphere and adherent neural stem cell culture, postnatal day 30 (p30) 

C57BL/6 mice were used. Briefly, the brains were removed and placed in ice-cold Leibovitz’s L15 

media (Invitrogen) for dissection. Using a microsurgery knife, a 1-mm coronal section was 

obtained corresponding to the region of the SVZ. Cuts were made vertically following the ventricle 

ventrally and horizontally following the ventricle dorsally. A small piece of SVZ was then dissected 

and placed into a 1.5-mL microcentrifuge tube containing 300 µL of 0.25 % Trypsin-EDTA in PBS 

and incubated at 37 °C for 20 min. Seven hundred mi croliter of complete media (see 

Supplementary Information) was added, and the tissue was gently triturated until single cell 

suspension was obtained. Cells were then plated either in complete media (for neurospheres) or 

N5 media (for adherent neural stem cell culture). The composition of N5 media is provided in the 

Supplementary Information. Overnight treatment with different concentrations of rapamycin and 

metformin were tested on neural stem cells and the concentrations showing maximal inhibition of 

mTOR (assayed by inhibition of rS6 phosphorylation) without significant cell death were used in 

the study (200 nM rapamycin and 500 µM metformin). 

Immunoblotting 

For immunoblotting, neurospheres were grown in the presence or absence of rapamycin 

or metformin for 3 h prior to lysing. For lysis, ice-cold 1 % NP-40 buffer (20 mM Tris–HCl at pH 8, 

137 mM NaCl, 10 % glycerol, 1 % NP-40) supplemented with phosphatase and protease 
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inhibitors (Halt protease and phosphatase inhibitor cocktail, Thermo Scientific) was used. Briefly, 

cells were washed 3× with ice-cold PBS and then resuspended in cold NP-40 buffer. Lysates 

were kept cold and sonicated ten times, 1 s each, and then centrifuged at 12,000×g for 5 min at 4 

°C. LDS sample loading buffer (Invitrogen) with DTT  was added, and the immunoprecipitates 

were boiled for 5 min prior to loading onto precast SDS-PAGE gels (Invitrogen). Gels were 

transferred onto methanol pre-soaked PVDF membranes and subsequently blocked with 5 % 

BSA in TBS for 2 h. The blot was incubated in phospho-S6 ribosomal protein antibody (Cell 

Signaling, #5364, 1:1,000) overnight at 4 °C, after  which blots were washed 3× with TBST 

(TBS+0.1 % Tween) for 15 min each, followed by incubation with secondary antibodies (1:2,000) 

for 1 h at RT. Blots were then washed 3× for 30 min each in TBST, with a final wash in TBS 

alone. Blots were stripped and reprobed using total S6 ribosomal protein antibody (Cell Signaling, 

#2317, 1:1,000) overnight at 4 °C prior to secondar y incubation and developing. All blots were 

developed using Super Signal West Dura (Thermo Scientific) on the UVP Imager. 

Neural Stem Cell Proliferation and Apoptosis  

Neurospheres and adherent neural stem cell cultures were treated overnight with 200 nM 

rapamycin and 500 µM metformin. For proliferation assays, cells were grown overnight in the 

presence of 10 µM BrdU. BrdU was detected using a BrdU-APC (BD Pharmingen #552598) kit 

according to manufacturer’s instructions. For cell cycle analysis, cells were washed 3× with PBS 

and resuspended in 1 mL of ice-cold PBS in polypropylene tubes. For fixation, cells were gently 

vortexed while adding 3 mL of ice-cold absolute ethanol dropwise and then fixed overnight at 4 

°C. For staining, cells were washed with ice-cold P BS and resuspended in 300 µL of propidium 

iodide solution (200 ng/mL RNAse A, 20 mg/mL propidium iodide, 0.1 % Triton X-100 in PBS) for 

15 min at 37 °C. Data were collected using an Accur i C6 (BD Biosciences) and was analyzed 

using FlowJo (Tree Star). In vitro apoptosis experiments were performed on dissociated adherent 

neural stem cells using the ApoDetect Annexin V-FITC kit (Invitrogen #33-1200) according to the 

manufacturers’ instruction. 
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Neural stem cell culture and differentiation 

Neurospheres were maintained in complete media. For differentiation, neurospheres 

were dissociated using TrypLE (Invitrogen) following manufacturer’s instructions and seeded onto 

acid-etched coverslips (70 % EtOH, 1 % HCL in PBS, 5 min followed by extensive PBS wash) in 

differentiation media #1 or without rapamycin or metformin for 2 days. The media was then 

changed to differentiation media #2 for 5 days with or without drug.  

For in vitro proliferation and differentiation experiments, rapamycin was used at 200 nM, 

metformin was used at 500 µM.  Differentiation Media #1 was composed of 49.9 mL Control 

Media, 100 µL heparin solution, and 0.5 µg bFGF2. Differentiation Media #2 consisted of 49 mL 

control media and 1 mL of FBS. 

Immunocytochemistry 

Following differentiation, coverslips were fixed with 4 % PFA for 15 min at RT, then 

washed 3× with PBS and permeabilized with PBST for 15 min at RT. Cells were blocked for 2 h 

with 2 % normal horse serum (Invitrogen) in PBS at RT. Primary antibodies were diluted in 2 % 

normal horse serum and cells were incubated overnight at 4 °C. Subsequently, coverslips were 

washed 3× with PBS and secondary antibodies (Alexa-Fluor-488 and 594) diluted in 2%normal 

horse serum were added for 2 h at RT. Following the secondary antibody incubation, cells were 

stained with 100 ng/mL DAPI for 10 min at RT. Finally, coverslips were washed 3× with PBS and 

mounted onto slides using ProLong Gold antifade reagent (Invitrogen) and sealed with nail polish. 

Images were obtained using a Leica SP5 confocal microscope. 

Statistical analysis 

Differences between the means of experimental groups were analyzed with a two-tailed t 

test (Prism GraphPad Software, Inc.). P values≤0.05 were considered significant. A minimum of 

five mice per category (control, rapamycin 75 µg/kg, rapamycin 2.5 mg/kg and metformin-treated 

groups) were tested for all in vivo experiments described. In vitro experiments were performed in 

triplicates. 
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SUPPLEMENTARY MATERIAL AND METHODS 

Neural stem cell culture 

Complete Media was prepared as follows: 49.7 mL of Control Media, 200 mg BSA, 100 

µL heparin solution, 1 µg EGF, and 0.5 µg bFGF2. Control Media consisted of 415 mL 

DMEM/F12, 10 mL 30% glucose, 7.5 mL 7.5% NaHCO3, 2.5 mL 1M HEPES, 5 mL of 200 mM L-

glutamine, 50 mL hormone mix and 1% penicillin/streptomycin. 10X Hormone mix consisted of 

400 mL DMEM/F12, 8 mL 30% glucose, 6 mL 7.5% NaHCO3, 2 mL 1M HEPES, 400 mg Apo-

transferrin, 40 mL insulin solution, 40 mL putrescine solution, 40 µL 200 µM Progesterone and 40 

µL 3mM sodium selenite. The solution was sterilized by filtering through a 0.2 µm filter. N5 media 

consisted of DMEM/F12, 5% FCS, 35 µg/mL bovine pituitary extract, 20 ng/mL EGF, and 20 

ng/mL FGF2.   

Neural stem cell differentiation  

Differentiation Media #1 was composed of 49.9 mL Control Media, 100 µL heparin 

solution, and 0.5 µg bFGF2. Differentiation Media #2 consisted of 49 mL control media and 1 mL 

of FBS.  

Chemicals 

Rapamycin white powder was stored at -20 °C, Clarit hromycin (internal standard; Sigma 

catalog # A3487) white powder stored at 4*C, Methanol Optima LC/MS grade (Thermo Fisher 

Scientific), Zinc Sulfate (as heptahydrate) (Fisher Chemical), Water collected from an in-lab 

Barnstead water purification system. 

Analytical System 

Analysis was performed on a TSQ Quantum system (ThermoFinnigan, San Jose, CA) 

consisting of a Surveyor MS Pump, Surveyor autosampler and TSQ Quantum Ultra triple 

quadrupole mass spectrometer. Analysis was done in MS/MS mode. The scan for rapamycin was 

931.5 (M+NH4)+ 864.7 at a collision energy of 20 eV. The scan for clarithromycin was 747.9 

(M+H)+ 590.6 at a collision energy of 37 eV. Analytes were ionized using electrospray ionization 
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with spray voltage of 5000 V, sheath gas (nitrogen) and auxiliary gas at respective flow rates of 

49 and 24 arbitrary units (au) and a capillary temperature of 311°C. Argon was used as collision 

gas at a constant pressure of 0.8 mTorr. Chromatographic separation was achieved on a Luna C-

18(2) HPLC column 50 mm X 2.0mm, 5 with 4mm X 2.0 mm guard cartridge. Mobile phase 

consisted of 30 mM ammonium acetate (A) and methanol (B). The flow rate was 300 µl/min with 

initial solvent proportion of 20% B until 1 minute increasing to 97% B from 1 minute to 2 minutes, 

holding at 97% B from 2 minutes to 5 minutes with re-equilibration at 20% B from 5.1 minutes to 8 

minutes. Injection volume was 10 µl and total analysis time was 8 minutes. 

Preparation and Extraction of Standards and Samples 

25 µl of standard and 25 µl of clarithromycin internal standard were added and 

subsequently evaporated to dryness in a speed-vac. For unknown samples, only internal 

standard was added. 25 µl of whole blood was then added and vortexed. 150 µl of 70:30(v/v) 

Methanol:0.3 M ZnSO4 was added and vortexed to mix. Samples were then centrifuged at 12000 

rcf for 10 minutes at 4°C. 100 µl of supernatant was transferred to autosampler vials for analysis. 

Chemicals  

Metformin white crystalline powder stored at room temperature, Methanol Optima LC/MS 

grade (Thermo Fisher Scientific), Zinc Sulfate (as heptahydrate) (Fisher Chemical), Water 

collected from an in-lab Barnstead water purification system. 

Analytical System 

Analysis was performed on a TSQ Quantum Ultra triple-quadrupole mass spectrometer in 

conjunction with a Finnigan Surveyor Autosampler and Finnigan Surveyor quaternary HPLC 

pump (Thermo Finnigan, San Jose, CA). The mass spectrometer was operated in the positive 

ionization mode utilizing atmospheric pressure chemical ionization (APCI). Spray voltage was 

3500 V, sheath gas (nitrogen) flow was 21 (arbitrary units), auxiliary gas (nitrogen) flow was 5, 

vaporizer temperature was 395°C, capillary temperat ure was 200°C and argon was used as the 

collision gas at a pressure of 0.8 mTorr. Detection utilized selective reaction monitoring (SRM); 
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parent mass/charge ratio for metformin was 130.1 and the fragment monitored was 71.1. The 

collision energy was 33 eV. HPLC separation was achieved using a 3 BDS Hypersil Cyano 50 X 

4.6 mm column (Thermo Scientific, Bellefonte, PA). Mobile phase was 60:20:20 10 mM 

ammonium acetate:acetonitrile:methanol (v/v) Flow rate was 650 µl/minute.  

Injection volume was 20 µl. The autosampler needle was washed with 200 µl of 50% 

acetonitrile followed by 200 µl of 100% acetonitrile following each injection.  During the first 

minute of analysis time, eluent was diverted to waste.  Total analysis time was 5 minutes. 

Metformin eluted at ~2.6 minutes. 

Preparation and Extraction of Standards and Samples 

12.5 µl of standards (12. 5 µl of methanol for blank) were added to 25 µl of mouse serum 

and mixed by vortexing. Unknown samples were stored at -80°C and thawed before analyses. 

12.5 µl of methanol were added to the unknown samples and mixed by vortexing. 300 µl of cold 

acetonitrile was added and mixed by vortexing before centrifuging for 5 minutes at 12000 g at 

4°C. 100 µl of supernatant was transferred to autosampler vials for analysis. 

RESULTS 

Chronic and systemic administration of rapamycin, but not metformin, decreases BrdU 

incorporation in SVZ and DG neurogenic niches 

We used an ~9-week regimen of daily intraperitoneal (i.p.) injection of rapamycin at 75 

µg/kg (low dose) or 2.5 mg/kg (high dose), or metformin at 200 mg/kg daily in adult C57BL/6J 

mice (Fig. 2.1a). The low-dose rapamycin was selected to match previously reported dosage that 

enhanced CD8 memory T cell generation (Araki et al., 2009). The high rapamycin dosage was 

selected to match the concentration reported to extend life span (Miller et al., 2011). The animals 

were 3 months old at the beginning of the treatment. Age-matched controls received daily PBS 

injections. The mice did not show any increase in food intake or body weight during this study; 

mice on high-dose rapamycin showed weight loss (Table 2.1). Sixteen hours following the last 

injection, the mice were harvested, and rapamycin concentration in the blood and metformin 
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concentration in the plasma were quantitated (Fig. 2.1b). The inhibition of mTOR activity in the 

brain following the pharmacological treatments was confirmed by fluorescent 

immunohistochemical analyses of phosphoribosomal S6 (rS6~P) on brain sections. Our results 

demonstrate that both concentrations of rapamycin used in this study, as well as metformin, 

effectively reduced rS6~P-specific immunostaining, indicating that mTOR signaling is inhibited in 

the brain following rapamycin and metformin treatment (Fig. 2.1c). To quantitate adult neural 

stem cell numbers, the mice were injected with BrdU 2 days prior to sacrifice (Fig. 2.1a). BrdU is 

incorporated in the DNA during S-phase and has been utilized to detect slowly cycling B cells and 

the proliferating C cells in adult neurogenic niches (Kee, Sivalingam, Boonstra, & Wojtowicz, 

2002). First, BrdU incorporation in SVZ (Fig. 2.2a) was measured by analyses of serial sections 

encompassing the entire SVZ of adult mice. This experiment revealed that the number of BrdU+ 

cells was significantly decreased in both low and high-dose rapamycin-treated mice (Fig. 2.2b 

and c). Interestingly, metformin treatment did not significantly alter the number of BrdU+ cells 

(Fig. 2.2b and c). Next, the number of BrdU+ cells was quantified as described in the 

“Experimental procedures” section, and statistical analyses revealed a significant difference in 

BrdU incorporation between control and rapamycin-treated, but not in metformin-treated, mice 

(Fig. 2.2d). To independently confirm the reduction in neural progenitor numbers, SVZ sections 

were stained with Ki67. While BrdU can be incorporated in apoptotic cells, Ki67 is a cell cycle 

marker. Consistent with the effect of the drug treatment on BrdU incorporation, a decreased 

number of Ki67+ cells were detected following rapamycin, but not metformin treatment 

(Supplementary Fig. 2.S1). We also measured BrdU incorporation in the DG, an additional 

neurogenic niche (Fig. 2.3a). Sections corresponding to DG were stained with anti-BrdU antibody, 

and the number of BrdU+ cells were counted and compared between control, rapamycin-treated 

and metformin-treated mice. We observed fewer BrdU+ cells in the DG of the rapamycin-treated 

mice, in comparison to control or metformin-treated mice (Fig. 2.3b and c). Taken together, our 
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results demonstrate that chronic, systemic rapamycin, but not metformin, significantly reduced the 

number of cycling mammalian adult neural stem cells. 

Neural progenitor proliferation in vitro is reduced by rapamycin but remains unaffected by 

metformin 

To directly test the effects of rapamycin and metformin on neural progenitor proliferation, 

apoptosis and/or differentiation, we measured the effects of these drugs on primary, adult neural 

stem cells isolated from the SVZ of postnatal day 30 (p30) C57BL/6 mice and cultured in vitro. 

Neural stem cells were grown under two independent culture conditions, either as neurospheres 

or as an adherent monolayer. In vitro cultures were treated with 200 nM rapamycin or 500 nM 

metformin overnight, and the inhibition of mTOR was confirmed by rS6~P immunoblotting. Under 

these conditions, both rapamycin and metformin treatment inhibited mTOR activity in these neural 

stem cells (Fig. 2.4a).  

Next, proliferation of the neural stem cells was measured by BrdU incorporation. Cells 

were incubated overnight with BrdU in the presence of rapamycin or metformin. Rapamycin 

treatment significantly inhibited the rate of proliferation as indicated by decreased proportion of 

BrdU+ cells (Fig. 2.4b; Table 2.2). Unlike rapamycin, metformin treatment did not reduce the 

proliferation of neural stem cells in vitro. Finally, we performed cell cycle analyses of control, 

rapamycin, and metformin-treated adult neural stem cells. Neural stem cells were grown under 

adherent conditions in the presence of rapamycin or metformin, and cell cycle analyses were 

performed by propidium iodide (PI) labeling and FACS. Similar to previous reports (Bez et al., 

2003; Merlo et al., 2007), we found that under control conditions 78.73±1.59 % of neural stem 

cells was in G1 phase, 9.0±0.85 % in the S phase, and 11.40±0.35 % in the G2/M phase (Table 

2.3). Metformin treatment did not significantly alter this profile (Fig. 2.4c; Table 2.3). In contrast, 

rapamycin treatment increased the percentage of cells in the G1 phase and resulted in a 

consequent decrease in S and G2/M-phases (Fig. 2.4c; Table 2.3). Rapamycin is known to cause 

G1 arrest in differentiated cells (S. Huang, Bjornsti, & Houghton, 2003), and reduced S phase in 
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the presence of rapamycin may account for reduced BrdU incorporation observed in vivo. Neither 

rapamycin nor metformin induced significant apoptosis (Fig. 2.4d). Taken together, these results 

are consistent with our in vivo BrdU incorporation studies and suggest that rapamycin inhibits the 

proliferation of neural progenitors. 

Rapamycin, but not metformin, reduces neuronal differentiation 

We directly tested the effects of rapamycin and metformin on neuronal differentiation in 

vitro by using isolated neural stem cells. Following neurosphere cultures, differentiation was 

induced as described in the “Experimental procedures” section. Undifferentiated neural 

progenitors were identified as Nestin+, while differentiated neurons in culture were identified by 

Tuj1+ staining. Both control, as well as metformin treated cells lost their Nestin-expression, and 

some cells became Tuj1+ upon neuronal differentiation (Fig. 2.5). Treatment with rapamycin 

inhibited this differentiation in vitro. Rapamycin-treated cells failed to express Tuj1 and retained 

Nestin expression (Fig. 2.5). These results are also consistent with the longer G1 observed in 

rapamycin-treated neural stem cells in vitro. Alterations in the precise length of G1 phase in stem 

cells have been correlated with defects in differentiation (Lange, Huttner, & Calegari, 2009; V. C. 

Li, Ballabeni, & Kirschner, 2012). In summary, our in vitro results indicate that rapamycin inhibits 

neural progenitor proliferation and differentiation. 

Since the SVZ and DG neural progenitors are the source of adult born neurons, we 

hypothesized that neuronal differentiation may decrease following chronic, systemic rapamycin 

treatment. Consistent with this hypothesis, we observed that the number of DCX+ cells in the 

SVZ was reduced upon chronic, systemic rapamycin treatment in comparison to control brain 

(Supplementary Fig. 2.S2). DCX is a widely used marker for identifying neuroblasts and immature 

neurons in vivo (Mina J. Bissell & William C. Hines, 2011). However, metformin treatment did not 

alter the number of DCX+ cells (Supplementary Fig. 2.S2). Therefore, the reduced proliferation of 

neural progenitors observed in vivo and in vitro in this study, along with the inhibition of in vitro 
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differentiation, indicate that chronic, systemic rapamycin treatment results in reduced adult-born 

neurons. 

DISCUSSION 

Our experiments demonstrate that ~9-week systemic administration of the mTOR 

inhibitor rapamycin reduced the number of neural progenitor cells in the adult mammalian brain. 

In contrast, a different pharmacological strategy of inhibiting mTOR indirectly through AMPK 

activation, did not significantly affect proliferation in the neurogenic niche. The molecular 

mechanisms accounting for the observed differences between the mTOR inhibitor rapamycin and 

metformin remain unclear at this point and will be the subject of future analyses. Differential 

effects of rapamycin and metformin could be ascribed to the unique effects of these drugs on 

mTORC1 versus mTORC2 complex, differential inhibition of downstream signaling components 

or alternative engagement of feedback regulatory pathways. The first possibility is the reported 

effect of rapamycin on the mTORC2 complex. Prolonged rapamycin treatment has been reported 

to inhibit mTORC2 (Sarbassov et al., 2006). Similarly, rapamycin-induced insulin resistance 

results from the disruption of the mTORC2 complex (D. W. Lamming et al., 2012). It is possible 

that the inhibition of adult neurogenesis by rapamycin may result from similar undesirable effects 

on mTORC2. Metformin-dependent AMPK signaling is likely to be restricted to the regulation of 

the mTORC1 complex. Secondly, differential effects on mTORC1 substrates can also account for 

the observed differences. For example, 4E-BP1 is the major effector for the cell cycle effects of 

rapamycin (Dudkin et al., 2001). Additionally, unique targets of AMPK such as Acetyl CoA 

carboxylase (Mihaylova & Shaw, 2011), may offset the negative effects of rapamycin through 

unknown mechanisms. It will be interesting to perform an unbiased, comparative assessment of 

differential downstream target engagement in neural stem cells following chronic rapamycin and 

metformin treatment. Finally, differences in the response of the IRS/Akt or Grb10 feedback loops 

(Hsu et al., 2011; J. Huang & Manning, 2009) following rapamycin versus metformin treatment in 

neural progenitors may account for the observed effects. Metformin and rapamycin have been 
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reported to have opposing effects on Akt activation (Zakikhani, Blouin, Piura, & Pollak, 2010). 

Additionally, AMPK activation in sensory neurons inhibits incision-induced acute and chronic pain 

and neuropathic pain by the simultaneous attenuation of both mTOR and ERK signaling 

(Melemedjian et al., 2011). In contrast, we observe that both pharmacological and genetic 

inhibition of mTORC1 evokes spontaneous pain, mechanical hypersensitivity, and increased 

sensory neuron excitability (Melemedjian et al., 2011). Rapamycin releases the feedback 

inhibition of Grb10, which is an upstream regulator of MAPK pathway (Hsu et al., 2011)and has 

previously been shown to increase ERK activation in TSC2−/− murine embryonic fibroblasts 

(Ghosh et al., 2006). 

Adult neural progenitor cells and adult neurogenesis are generally considered positive 

characteristics that may improve or preserve cognitive function and behavioral health in aging. In 

our study, rapamycin reduces neural progenitor numbers. Additionally, rapamycin, or the 

inhibition of the mTORC1 and mTORC2 complexes, have been reported to inhibit dendritic 

arborization of hippocampal neurons (Urbanska, Gozdz, Swiech, & Jaworski, 2012). Therefore, 

chronic rapamycin treatment may have a paradoxical, negative effect on health span. It remains 

to be seen if metformin treatment, which lacked the adverse effects associated with rapamycin in 

our studies, would be suitable for extending both life span and health span across mammalian 

species. However, we cannot formally rule out the possibility that abnormal integration of adult-

born neurons into pre-existing circuits contributes to aging and the inhibition of adult 

neurogenesis may be beneficial to health span. It is interesting to note that at least in the 

nematode C. elegans, the loss of certain neurons has been correlated with extended life span 

(Alcedo & Kenyon, 2004). Careful assessment of a causal link between rapamycin effects on 

adult neurogenesis and learning, memory, and behavior in mammalian models of aging will be 

required for a comprehensive understanding of the impact of long term rapamycin treatment in 

cognitive health span. 
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In summary, our study reveals that distinct approaches of inhibiting the mTOR pathway, 

especially in the context of long-term, systemic treatment consistent with life span extension, can 

have significantly different outcomes in terms of physiological or pathological responses. The 

effects of mTOR inhibitors on cellular correlates of health span must therefore be carefully and 

comprehensively analyzed in individual organs and systems. While here we examine the effects 

of two distinct pharmacological approaches for mTOR inhibition only on adult neural progenitor 

cells, immune function, for example, will constitute another important physiological parameter for 

the assessment of improved health span. Rapamycin being an immunosuppressant, a thorough 

assessment of its effect on innate and adaptive immune function in old mice is merited. 
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Figure 2.1. Chronic, systemic rapamycin and metformin administration in mice inhibits 
mTOR activity in the brain. A) Schematic representation of chronic rapamycin and metformin 
treatment regimens and BrdU administration prior to tissue collection. Intraperitoneal (i.p.). B) 
Rapamycin and metformin concentration in the blood and plasma, respectively, collected from 
mice before tissue collection. The last dose of rapamycin and metformin were given 16 h before 
sacrificing the mice. C) Ribosomal S6 phosphorylation (rS6~P) as detected by 
immunofluorescence, in sections from the cortex of control mice or mice treated with the indicated 
doses of rapamycin or metformin. Scale bar=100µm. Data are presented as representative of >5 
mice per group 
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Table 2.1  

Neither rapamycin nor metformin significantly increase food intake or body weight 

 

Average food intake (per mouse per gram) during the study (A) and average body weight (per 
mouse) at the end of study (B) with standard error of the mean (SEM) 
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Figure 2.2. Chronic rapamycin treatment, but not metformin, inhibits the proliferation of 
neural progenitors in the SVZ region of the adult mammalian brain. A) Schematic indication 
a region of interest (boxed area) in SVZ. B) BrdU (red) incorporation as detected by 
immunofluorescence in the SVZ of control and treated mice. DAPI-stained nuclei are shown in 
blue. Scale bar=100µm. Arrows point to BrdU+ cells. C) BrdU (green) and DAPI (blue) in the SVZ 
of control and treated mice. Scale bar=25µm. D) Quantification of BrdU+ cells per square 
millimeter in the SVZ in control and treated mice. Data are presented as representative individual 
images or as mean+/- SEM from >5 mice per group. **p<0.01, ns is nonsignificant  
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Figure 2.3. Chronic rapamycin treatment, but not metformin, inhibits the proliferation of 
neural progenitors in DG. A) Schematic outlining DG. B) BrdU incorporation (red) and DAPI 
(blue), as detected by immunofluorescence, in DG of control and treated mice. Scale bar=100µm. 
Arrow points to BrdU+ cells. C) Quantification of BrdU+ cells per square millimeter in the DG in 
control and treated mice. Data are presented as representative individual images or as mean +/- 
SEM from >5 mice per group. **p<0.01, ns is nonsignificant 
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Figure 2.4. Rapamycin, but not metformin, inhibits proliferation of neural stem cells in 
vitro. A) Ribosomal S6 phosphorylation (rS6~P) and total ribosomal S6 in neural stem cells 
cultured in vitro, as detected by immunoblotting after overnight rapamycin or metformin treatment. 
B) Representative FACS plots of BrdU incorporation in adult neural stem cells after rapamycin or 
metformin treatment. C) Representative FACS cell cycle analysis of neural stem cells after 
rapamycin and metformin treatment. D) Representative FACS analysis of annexin V/PI staining in 
neural stem cells after rapamycin or metformin treatment. Data are presented as representative 
of three independent experiments 
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Table 2.2  
 
Rapamycin, but not metformin, inhibits the proliferation of neural progenitors in vitro 
 

 
Percentage inhibition of BrdU incorporation in neural stem cells isolated from p30 SVZ and grown 
in vitro as neurospheres or as an adherent monolayer. Data are presented as mean +/- SEM of 
greater than or equal to three independent experimental repeats 
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Table 2.3  
 
Rapamycin, but not metformin, causes G1 phase arrest in vitro 
 

 
Percentage of neural stem cells at different stages of the cell cycle following in vitro rapamycin 
and metformin treatment, as determined by PI staining and FACS analyses. Data are presented 
as mean +/- SEM of greater than or equal to three independent experimental repeats 
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Figure 2.5. Rapamycin, but not metformin, inhibits differentiation of neural stem cells in 
vitro. Representative images of undifferentiated or differentiated p30 neural stem cells after 
rapamycin or metformin treatment. Scale bar=30µm. Data are representative of three 
independent experiments 
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Figure 2.S1. Chronic rapamycin, but not metformin, treatment reduces neural progenitor 
numbers in the SVZ region of the adult mammalian brain. Ki67 staining in the SVZ of control 
and treated mice. Scale bar = 100µm. Arrow points to Ki67+ cells. Data are presented as 
representative images. >5 mice were included per group. 
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Figure 2.S2. Chronic rapamycin treatment, but not metformin, reduces neuroblasts and/or 
immature neuron numbers. DCX (green) and DAPI (blue), as detected by immunofluorescence, 
in the SVZ of control, rapamycin and metformin-treated mice. Scale bar =50µm. Data are 
presented as representative images. >5 mice were included per group. 
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CHAPTER 3 
 

SIGNALING IN GLIOBLASTOMA 
 

INTRODUCTION TO MANUSCRIPT 
 

Glioblastoma Multiforme 

Glioblastoma (GBM) is defined by the World Health Organization (WHO) as a grade IV 

diffuse glioma, a tumor arising from the astrocytic cells of the brain (Scherer, 1940). First 

identified by Rudolf Virchow in 1863 as a glial tumor (Virchow, 1863), GBM was originally referred 

to as a spongioblastoma multiforme until two physicians in 1926 renamed it by its current name, 

GBM (Bailey, 1926). It is the most common and most malignant of the variant glioma 

classifications (Kleihues, 2000). Prognosis for GBM patients is dismal due to the highly invasive 

and extreme heterogeneity of the cells comprising the GBM tumor. Interestingly, in 1928, a 

neurosurgeon named Walter Dandy removed the entire hemisphere of two GBM patients (Dandy, 

1928).  Unfortunately, both patients invariably died from GBM despite this aggressive surgery, 

providing evidence towards the highly invasive nature of GBM cells (Agnihotri, 2013; Dandy, 

1928). Standard of care therapy includes surgical resection, radiation and chemotherapy with 

temozolomide. Nevertheless, despite the aggressive tactics taken by clinicians at targeting GBM, 

the median survival remains roughly 15 months (Huse et al., 2013). This is likely due to the 

aggressive invasion of the cells and their ability to evade chemotherapy. In addition, the 

dysregulation of signaling pathways in these cells promoted by aggressive genetic mutations 

renders potential successful therapies obsolete.   

GBM tumors can be classified into either primary or secondary GBM, with primary GBM 

comprising more than 90% of surgically removed cases (Roger McLendon et al., 2008). Primary 

GBM arises de novo, without any previous history of disease, while secondary GBM arises from 

previously diagnosed low-grade glioma, such as low grade astrocytoma (WHO grade II) or 

anaplastic astrocytoma (WHO grade III). Interestingly, these two classifications develop through 

different genetic mutations, maintain different dysregulation of signaling mechanisms, and have 
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differential responses to treatment (Ohgaki & Kleihues, 2007). Furthermore, the age of onset 

differs quite significantly between those with primary and those with secondary GBM. The mean 

age of primary GBM patients is 62 years, while the mean age for secondary GBM patients is 35 

years (Ohgaki & Kleihues, 2007). Genetically, EGFR and/or PTEN mutations tend to occur more 

often in primary GBM patients. While TP53 mutations do occur in primary GBM patients, 

secondary GBM tumors more frequently experience this mutation. However, a loss of 

heterozgyozity (LOH) in 10q occurs in both primary and secondary GBM with nonsignificant 

differences, while LOH in 10p or complete loss of chromosome 10 presents more frequently in 

primary GBM (Ohgaki & Kleihues, 2007).  

Transcriptionally, distinct profiles comprise these two subgroups. Using microarray 

technologies, Tso et al., (2006) investigated the differences in gioblastoma-associated genes 

(GAG) within GBM tumors compared to low-grade astrocytomas (Tso et al., 2006). In comparison 

to low-grade astrocytomas, both primary and secondary GBMs shared 15 GAGs in common 

which included genes such as MET, a proto-oncogene (Boccaccio & Comoglio, 2006), and 

VEGF, an angiogenic factor (Ferrara & Henzel, 1989; Tso et al., 2006). Other common genes 

were shared between the primary and secondary GBM subgroups which the low-grade 

astrocytomas did not express including CDC2, ADM, and FCGBP, among others. Interestingly, 

however, these genes had quantitative differences between the primary and secondary subgroup. 

For instance, the expression of CDC2, a cell cycle regulation gene, was expressed higher in the 

secondary subgroup while the expression of ADM and FCGBP, extracellular response associated 

genes, were expressed higher in primary GBM samples. When compared to low grade 

astrocytomas, secondary GBM samples expressed genes such as GAS1 (growth arrest-specific 

1), CDKN2 (cyclin-dependent kinase inhibitor 3), CCNB1 (cyclin B1), and PRC1 (protein regulator 

of cytokinesis; (Tso et al., 2006) – which are genes associated with an intracellular cell cycle or 

mitotic response. In contrast, primary GBM tumors, when compared to low grade astrocytomas, 

expressed GAGs which were indicative of a tumor stromal response. VEGF was more highly 
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expressed in primary GBM, as was COL5A1, COL6A2 and MMP-9. COL5A1 and COL6A2 genes 

produce the proteins collagen type Vα1 and VIα2, which, along with MMP-9, are extracellular 

matrix remodeling factors. MMP-9 is a matrix metalloprotease which contributes to the 

invasiveness of GBM cells (Kessenbrock, Plaks, & Werb, 2010; Lakka et al., 2004). Other genes 

Tso et al., (2006) found to be expressed higher in primary GBM compared to low-grade included 

angiogenic factors such as IL-8, CA1 and CA2, as well as inflammation, coagulation, immune 

response genes such as SERPINA1/SERPINA3, SERPINE1, PTX3, TIMP1, among others (Tso 

et al., 2006). Overall, the authors concluded that the pattern of enriched GAGs associated with 

secondary GBM were linked with a more intracellular mitotic cell cycle regulation response and 

genes expressed in primary GBM were more associated with a stromal response, indicating a 

more extracellular signaling environment (Tso et al., 2006).  

The Heterogeneity of GBM  

 The name “multiforme” arises from early characterizations of GBM histology which 

identified many different cell types within a single tumor section (Rudy Bonavia, Cavenee, & 

Furnari, 2011). It was also found that these different subpopulations within the same tumor 

display different karyotypes as well as different growth characteristics (Shapiro, Yung, & Shapiro, 

1981). Even within a single GBM passaged cell line, early reports found differential antigen 

expressivity as well as significant differences in cellular karyotypes (Wikstrand, Bigner, & Bigner, 

1983).  In addition, studies have shown that different regions of GBM tumors will express different 

protein abnormalities (R. Bonavia, Inda, Cavenee, & Furnari, 2011).  For example, the various 

popular genetic mutations identified by the TCGA have been shown to be mutually exclusive. 

Subpopulations of EGFR amplified cells exist and subpopulations of PDGFRA amplified cells 

exist within the same tumor sample (Szerlip et al., 2012).  The proliferative marker, Ki67, was 

shown to be heterogeneously expressed within GBM tumors, and usually expressed significantly 

within clusters of cells (Coons & JOHNSON, 1993).  By studying multiple sections from the same 

tumor, Sottoriva et al (2012) found that different subtypes of GBM can be classified within the 
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same patient tumor (Sottoriva et al., 2013).  In fact, 6 out of 10 patients expressed different 

molecular subtype transcriptomes belonging in the proneural, neural, classical and mesenchymal 

subgroups (discussed below) (Sottoriva et al., 2013).   

In addition, EGFRVIII+ cells were found to be diffusely located within GBM tumors, and 

only 1/20 can be classified as displaying homogenous staining (Nishikawa et al., 2004). Inda et al 

(2010) hypothesized that this EGFRVIII+ subpopulation, although a minority within the tumor, is 

responsible for increased tumorigenicity as well as the maintenance of heterogeneity (Inda et al., 

2010).  Using non-tumorigenic primary EGFR wild-type over-expressing astrocytes from Ink4a/Arf 

-/- mice which have been previously shown unable to form a tumor in intracranial xenografts, the 

authors showed that co-injection with astrocytes overexpressing EGFRVIII in a 9:1 ratio resulted 

in increased tumor volumes (Inda et al., 2010). Furthermore, in-vitro, using the conditioned media 

from EGFRVIII cells to grow EGFR wild-type cells resulted in increased soft-agar colony 

formation while the reverse experiment did not (Inda et al., 2010). Both in-vitro and in-vivo, the 

authors found that a minority population of EGFRVIII+ cells was able to increase the proliferation 

and survivability of EGFR wild-type cells (Inda et al., 2010). Mechanistically, it was discovered 

that EGFRVIII+ cells up-regulate cytokines, such as IL-6, which can lead to tumor growth 

enhancement of the surrounding cells (Inda et al., 2010).  Thus, the authors concluded that a 

minor population of EGFRVIII cells mixed with EGFR wild-type expressing cells results in a more 

aggressive tumor.  

 Reasons for this differential expression of proteins within a single tumor may occur via 

multiple mechanisms. It is possible that each tumor represents various different cellular origins. 

That is, the tumor originated from multiple cells with varying oncogenic mutations, as opposed to 

one singular cell, giving rise to multiple different cell types. Furthermore, it is also possible that a 

single cell mutated and as it continued to pathologically proliferate, new mutations were gained 

based on the location of the cell. There are various tumor microenvironments within the GBM 

tumor itself. Within a single GBM tumor specimen, there are areas of necrosis, hypoxia, 
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angiogenesis and immune cell infiltration.  Therefore, a cell incurring beneficial oncogenic 

mutations to adapt to its environment may lead to the development of a heterogenous tumor.  

Furthermore, various cell types make up the tumor, including microglia, macrophages, astrocytes, 

oligodendrocytes, neurons, glial progenitors, and endothelial cells and this may lead to differential 

signaling between specific cells. This extreme heterogeneity in cell type, subtype, and micro-

environment within a single GBM tumor likely contributes to the lack of a breakthrough 

therapeutic.  

The GBM Tumor Stroma & Extracellular Signaling 

 Multiple cell types make up the GBM tumor microenvironment which can contribute to 

extracellular GBM signaling. These cells may include vascular cells, microglia, and peripheral 

immune cells, which may secrete signaling factors to which the GBM cells are capable of 

responding. It has been reported that microglia, the resident macrophages of the brain, may 

contribute up to 30% of the brain tumor mass. While the origin of GBM microglia has not yet been 

fully elucidated (Nikki A. Charles, Eric C. Holland, Richard Gilbertson, Rainer Glass, & Helmut 

Kettenmann, 2011), it has been shown that normal brain microglia are derived from blood 

monocytes which migrate into the brain tissue during embryonic fetal development (Davis, Foster, 

& Thomas, 1994). Furthermore, it is accepted that the microglia comprise a significant portion of 

the tumor and contribute to GBM cell signaling (Hoelzinger, Demuth, & Berens, 2007).  

  Activated microglia within the GBM tumor may secrete various interleukins such as IL-

12, IL-14, IL-1 and IL-1β (Watters, Schartner, & Badie, 2005). Interestingly, the quantity of 

microglia within the brain tumor has been correlated with grade (Roggendorf, Strupp, & Paulus, 

1996b), suggesting a pro-tumorigenic contribution. Furthermore, many of these cytokines have 

been found to increase glioma cell proliferation or invasion. For instance, IL-1β has been 

correlated with invasion and angiogenesis and its expression has been associated with an 

increase in TGF-β (Naganuma et al., 1996) in glioma cells. TGF-β is a protumorigenic factor 
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which has been shown to increase angiogenesis, proliferation and invasion of glioma cells 

(Watters et al., 2005). Interestingly, microglia have even been found to secrete EGF upon 

activation which leads to proliferation of the microglia themselves, in addition to the proliferative 

effect on the glioma cells (Briers, Desmaretz, & Vanmechelen, 1994; Nolte, Kirchhoff, & 

Kettenmann, 1997). Microglia are capable of secreting VEGF, a strong angiogenic factor and are 

also capable of responding to it, inducing their proliferation and migration (Forstreuter, Lucius, & 

Mentlein, 2002) as well as providing a pro-angiogenic environment for GBM.  

 In addition to microglia, other cell types have been shown to be present in GBM, as well. 

An increase in leukocytes was found by Farmer et al., (1989) and correlated with GBM grade 

(Farmer et al., 1989). T lymphocytes were identified to be present in GBM tissue in 1971 by 

Ridley and Cavanagh who found them in a third of the GBM tissues they examined (RIDLEY & 

Cavanagh, 1971). T lymphocytes are white blood cells able to secrete different cytokines, 

including IL-10 and adenosine, during an immune response. These signaling factors are not 

benign, as IL-10 and IL-6 have been reported to promote glioma cell proliferation (Goswami, 

Gupta, & Sharma, 1998; Huettner, Czub, Kerkau, Roggendorf, & Tonn, 1996) and increase in-

vitro glioma cell migration (Huettner et al., 1996). Regulatory T-cells (Tregs) are also found in 

GBM (Nikki A. Charles et al., 2011). They are thought to be attracted via the chemokines MCP-1 

secreted by glioma cells (Jordan & (C. E. Brown et al., 2007) and a positive correlation has been 

reported between Tregs and tumor grade (El Andaloussi & Lesniak, 2006, 2007). Given that 

Tregs express the surface antigen CD25, El Andalouissi and  Lesniak (2006) treated a mouse 

model of GBM with anti-CD25 antibodies and found treated mice to live significantly longer than 

nontreated GBM mice (Andaloussi, Han, & Lesniak, 2006), therefore providing evidence of a 

possible direct protumorigenic effect of Tregs on GBM growth.  

 The GBM tumor is highly vascularized and many vascular cells are present within the 

tumor, including endothelial cells, pericytes, and astrocytes (Nikki A. Charles et al., 2011). De 

Palma et al (2005) found that Tie2 receptor expressing monocytes (Tie2+CD11b+CD45+; termed 
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TEMs), a hematopoietic cell type, are recruited to the site of a mouse model of GBM and are 

proangiogenic (De Palma et al., 2005). Furthermore, they found that mice which were depleted of 

TEMs had on average smaller tumors than untreated mice. The TEM depleted tumors were 

mostly comprised of nonviable, necrotic tissue, unlike the non-treated control tumors (De Palma 

et al., 2005), indicating a strong reliance of tumor cells on TEMs and angiogenesis for 

proliferation and growth.  

 Interestingly, glial cells, the support system for the brain, have been reported to play an 

important protumorigenic role in glioma cell signaling as well (Hoelzinger et al., 2007). Astrocytes 

may secrete various neurotrophic factors such as GDNF, CXCL12 and TGF-α (Nikki A. Charles 

et al., 2011; Hoelzinger et al., 2007), and GBM cells have been shown to over-express the 

receptors necessary to respond to these factors (Wiesenhofer et al., 2000). Treating rat glioma 

cells with GDNF resulted in increased glioma cell migration (Song & Moon, 2006). In addition, co-

culture of glioma cells with astrocytes led to enhanced invasive capacities of glioma cells due to 

the astrocytic production of proMMP, a precursor matrix metalloprotease (Le et al., 2003). Thus, 

the astrocyte-glioma interaction provides protumorigenic signaling factors to the glioma cells, 

causing them to be more aggressive.   

 Given the infiltration of these various cell types within the GBM tumor stroma and given 

the ability for the glioma cells to respond to signaling factors secreted by these cell types, 

studying their contribution to GBM signaling may yield new therapeutic advances. For instance, a 

closer look at the ability to target TEMs within GBM patients is warranted, given the significant 

effects reported by De Palma et al., (2005). Furthermore, the ablation of Tregs led to increased 

survival in a GBM mouse model (Andaloussi et al., 2006). 

Primary GBM Intracellular Signaling 

Glioma cells are able to respond to the ligands, chemokines and cytokines that they 

themselves produce in an autocrine signaling manner. For example, glioma cells are capable of 
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producing their own growth factors such as EGF which stimulates motility, invasion and 

proliferation. In addition, glioma cells secrete factors such as G-CSF and MCP-1 which recruit 

microglia to the site of the tumor. While microglia are able to respond to these factors among 

others (Nikki A. Charles et al., 2011), glioma cells themselves have been shown to express 

receptors for both of these chemoattractants (Mueller et al., 1999; Platten et al., 2003) and thus 

may induce a protumorigenic signaling cascade autonomously. Signals such as MCP-1 and G-

CSF led to increased proliferation and increased migration in glioma cells upon exposure (Mueller 

et al., 1999; Platten et al., 2003).  

Other signaling aberrations occur in glioma cells as a consequence of their numerous 

oncogenic mutations. In 2008, The Cancer Genome Atlas (TCGA) profiled 206 GBM tumors 

using high-throughput genomic microarray technology in an effort to identify molecular targets for 

therapeutic discovery (Roger McLendon et al., 2008). This study was updated and expanded in 

2013 to 543 samples (Brennan et al., 2013). Using only tumor samples which had 80% glioma 

cells (so to exclude collecting data from cells within the environment), the researchers collected 

specimens from newly diagnosed GBM patients representing predominantly primary GBM. The 

results showed a strikingly significant amount of GBM specimens with mutations found in PTEN, 

EGFR, PIK3CA, PIK3R1 (Figure 1.5). 57% of tumors have an amplification or gain of function 

mutation in EGFR and 41% of tumors have a deletion or loss of function mutation in PTEN, the 

negative regulator of this over-activated RTK pathway (Brennan et al., 2013; R. McLendon et al., 

2008). Furthermore, 25% have an amplification or gain of function mutation in PIK3K, a 

downstream signaling kinase responsible for numerous oncogenic signaling events (reviewed in 

chapter 1) (Brennan et al., 2013; R. McLendon et al., 2008). A striking 61% of tumors have a 

deletion or loss of function mutation in CDKN2A/CDKN2B. CDKN2A and CDKN2B are genes 

involved in cell cycle control, and their deletions and/or mutations results in highly proliferative 

cells. Nearly 80% of all tumors have a dysregulation of cell cycle control due to a genetic 

aberration (Brennan et al., 2013; R. McLendon et al., 2008). These mutations produce a 
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compounding signaling effect resulting in extremely virulent oncogenic cells which are highly 

invasive, proliferative, and unresponsive to treatment.    

An analysis of the transcriptional data was conducted in order to delineate distinct 

subclasses within the analyzed GBM samples. Results revealed four subclasses of GBM – 

proneural, neural, classical and mesenchmyal (Phillips et al., 2006; Verhaak et al., 2010). These 

subgroups displayed differential associations between patients. For instance, younger patients 

were significantly more likely to present with the proneural subtype.  However, the proneural 

subtype patients failed to respond to aggressive therapy (Phillips et al., 2006; Verhaak et al., 

2010).  This is contrast to patients with classical or mesenchymal, who showed a significant 

beneficial response to aggressive therapy. Survival data was correlated with subtype, as the 

median survival of the proneural subtype was significantly longer when compared to the 

proliferative or mesenchymal subtypes (Verhaak et al., 2010). Interestingly, while it was 

previously thought that MGMT methylation was a predictor of therapy response (Hegi et al., 

2005), the authors did not find any correlation or association of MGMT methylation between 

subtypes (Phillips et al., 2006). However, the authors did find a significant correlation with PTEN 

loss and poor survival (Phillips et al., 2006).  

  The authors also discovered that the molecular signatures of these subtypes were 

altered upon recurrence, and tended to shift towards the mesenchymal subtype (Phillips et al., 

2006). Genes which are upregulated in the mesenchymal subtype included CD44, STAT3, VIM, 

and YKL40, all of which have shown to be protumorigenic signaling factors. YKL40 is a secreted 

protein shown to be upregulated in glioma, as well as other cancers, and is reported to be 

associated with overall shorter survival in addition to being a predictor of radio resistance 

(Pelloski et al., 2005).  

The possibility exists that these subtypes arise from different cells of origin in the brain 

and thus the study of their differences may prove imperative to reaching clinical success. 

Furthermore, it is important to consider the strong effects of the tumor microenvironment on GBM 
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signaling and its progression. Thus studying glioma cells in-vitro only may yield misleading 

results. It is now well accepted that mutations may arise from passaging cells in-vitro and can 

therefore change the signaling of the original specimen (Ajay Pandita, Kenneth D. Aldape, 

Gelareh Zadeh, Abhijit Guha, & C. David James, 2004). Therefore, the study of these tumors 

within their natural environment is a necessity to finding better, more successful therapeutics and 

impacting the prognosis for GBM patients.  
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MANUSCRIPT: TARGETING APKC DISABLES CELL AUTONOMOUS AND NON-CELL 

AUTONOMOUS ONCOGENIC SIGNALING IN GLIOBLASTOMA 

ABSTRACT 

EGFR kinase inhibitors have failed to improve survival in Grade IV Glioblastoma (GBM). 

Here we show that the activation of protein kinase aPKC (atypical Protein Kinase C) by TNF-α in 

the GBM microenvironment provides a molecular rationale for EGFR kinase inhibitor resistance. 

Additionally, we identify a bimodal signaling role of aPKC in both paracrine TNF α -dependent 

NF-κΒ activation, as well as in tumor cell-intrinsic receptor tyrosine kinase signaling. Inhibiting 

tumor cell autonomous and non-tumor cell autonomous oncogenic signaling by targeting aPKC is 

an effective pharmacological approach in mouse models of GBM, including in EGFR kinase 

inhibitor resistant GBM. Finally, aPKC expression and activity is significantly increased in human 

GBM tumor cells and high aPKC expression correlates with poor prognosis. 

INTRODUCTION 

WHO Grade IV glioblastoma or GBM is a frequently occurring brain tumor with poor 

prognosis (Furnari et al., 2007). The relative survival estimate for GBM indicates that only 4.46% 

of patients diagnosed between 1995-2006 survived five years post diagnosis (CBTRUS). While 

strategies to improve the currently dismal survival in GBM primarily involve identifying and 

targeting oncogenic signaling pathways (Furnari et al., 2007; Gilbert, 2011; Kesari, 2011; I. K. 

Mellinghoff, Schultz, Mischel, & Cloughesy, 2011; Ingo K. Mellinghoff, Schultz, Mischel, & 

Cloughesy, 2012), the therapeutic success of EGFR kinase inhibitors in vivo has been limited (I. 

K. Mellinghoff et al., 2005). The activation of additional receptor tyrosine kinases (RTK) and/or 

downstream tumor intrinsic mutations can provide oncogenic stimuli to GBM tumor cells and 

account for EGFR kinase inhibitor resistance (Ingo K. Mellinghoff et al., 2012; I. K. Mellinghoff et 

al., 2005). Identifying and targeting such pathways can provide improved therapeutic efficacy, 

despite the fact that such efforts may require simultaneously disabling multiple, parallel oncogenic 
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signals. The serine-threonine kinase atypical protein kinase C (aPKC) is activated downstream of 

multiple RTK (Akimoto et al., 1996; Victoria Aranda et al., 2006; Berra et al., 1993). We had 

demonstrated that aPKC regulates neural progenitor cell proliferation and migration during the 

embryonic development of the spinal cord (Ghosh et al., 2008a, 2008b). Abnormal activation and 

altered intracellular localization of aPKC resulted in increased proliferation, abnormal migration 

and rosette-like structures reminiscent of brain tumors (Ghosh et al., 2008a). Therefore, we 

hypothesized that the abnormal or unscheduled activation of the developmentally important aPKC 

signaling pathway may be associated with GBM progression and that aPKC inhibition may 

provide an improved avenue for molecular therapeutics in GBM. 

MATERIAL AND METHODS 

Animals 

Female 6- to 8-wk-old NOD-SCID mice were acquired from Charles River. TNFα
-/- 

(B6.129S6-Tnftm1Gkl/J, stock 5540) and control C57BL/6J (stock 664) were acquired from the 

Jackson laboratory. All animal procedures conformed to protocols approved by the University of 

Arizona Institutional Animal Care and Use Committee. 

Antibodies and Reagents 

Rabbit anti-aPKC (sc-216) and rabbit anti-p65-NF-κB phosphoSer311 (sc-101748) were 

purchased from Santa Cruz. Rabbit anti-aPKC phosphoThr410/403 (#9378), rabbit anti-p65-NF-

κB phosphoSer536 (#3033), rabbit anti-Akt phosphoSer473 (#9271), mouse anti-Akt (#2920), 

rabbit anti-Src phosphoTyr516 (#6943), rabbit anti-Src (#2123), rabbit anti-MAPK p44/42 (#4695), 

rabbit anti-p65 (#4764) and rabbit anti-IκBα (#9242) were obtained from Cell Signaling. Rabbit 

anti-PAR6 (ab49776), rabbit anti-aPKC phosphoThr560 (ab62372) and mouse anti-p62 

(ab56416) were purchased from Abcam. Rabbit anti-EGFR phosphoTyr1086 (44790) and mouse 

anti-EGFR (44796) were purchased from Invitrogen. Mouse anti-β-tubulin (T-2046) and mouse 
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anti-MAPK p44/42 phosphoThr183phosphoTyr185 (M-8159) were purchased from Sigma. Mouse 

anti-human CD68 antibody (#M0814) was purchased from Dako. Mouse anti-human TNFα 

neutralizing antibodies from Novus Biologicals (# NB120-10204) or from R&D (MAB2101) were 

used at a concentration of 100 ng/mL. Mouse IgG1 isotype control (MAB002) or (NBP1-97005) 

were purchased from Novus Biologicals and R & D Systems and used at identical concentrations 

as the TNFα neutralizing antibodies. Rat anti-mouse Cd11b-PE (#12-0112-85), mouse anti-

human TNFα-APC (#17-7349-82) and Mouse IgG1 isotype control (#17-4714-81) antibodies 

were acquired from eBioscience. PE-mouse anti-human TNFα (#502908), PE-mouse IgG1k 

isotype control (#400139), anti-human CD11b-PB (#101235), anti-human-CD64-AF647 

(#305012), anti-human CD23-APCCy7 (#338520), anti-human CD14-PECy7 (#325617), anti-

human CD80-FITC (#305205) and anti-human CD163 (#333608) antibodies used for FACS were 

obtained from Biolegend. Species-specific secondary antibodies for IHC/IF conjugated to Alexa 

488 or 594 were obtained from Life Technologies. Secondary antibodies for Western (anti-

mouse-HRP, anti-rabbit-HRP) were obtained from Promega. Erlotinib was purchased from 

Selleck Chemicals (S1023) and was used at a concentration of 10 µM. All other inhibitors were 

purchased from Calbiochem. AG1478 (#658548) was used at 10 µM, PI3K inhibitors LY294002 

(#44024) at 20 µM, Wortmannin (#681675) at 100 nM, MEK inhibitor U0126 (#662005) at 10 µM, 

and Src kinase inhibitor, SU6656 (#572636) was used at 10 µM. NF-κΒ-Reporter:GFP lentivirus 

was obtained from SA Biosciences (CLS-013G). The IκBαM adenovirus was purchased from 

Imgenex (IMG-2500). Lentiviruses expressing GFP or aPKC shRNA constructs were produced at 

Viral Vector Core, The Salk Institute according to methods described in Tiscornia et al (Tiscornia, 

Singer, & Verma, 2006). VSVg pseudotyped constitutively active IKK (S177, 181E) retrovirus was 

generated as described in Ghosh et al (Ghosh et al., 2006) with minor modifications. pCLXSN-

IKK Ser177,181E was transiently transfected into HEK293T cells using linear 25 Kd 
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polyethyleneimine (Polysciences Inc. PA, USA) with an N/P ratio of 10 (1 mg/ml in DPBS, pH 

4.5). Cells were co-transfected with pCL-CMV-GAG-POL and pMD2.G. Virus containing medium 

was harvested at 48 h and 72 h post transfection, treated with DNAse1 (1 µg/ml, Sigma) and 

filtered through a 0.22 µm filter (Durapore, Millipore USA) before aliquoting and storage at -80 °C. 

Infectious viral titers were determined by RT-qPCR of genomic DNA extracted from HEK293T 

cells 48 h post infection with a 10-fold dilution series of retroviral vector. PZ09 was synthesized in 

house following the procedure described in Trujillo et al (Trujillo et al., 2009) with some 

modifications and the inhibitor was validated by mass spectrometry and in vitro kinase assays. 

PZ09 was used at 10 µM. 

Cell lines and cell culture 

U87/EGFRvIII and U251/EGFR human GBM cell lines were a gift from Dr. Zhimin Lu, MD 

Anderson. GL261, a murine glioma cell line, was acquired from NCI. The primary GBM line 6 

(GBM6) was established directly from a patient surgical sample and maintained as a 

subcutaneous flank xenograft through serial passaging in immune deficient mice. GBM6 flank 

tumor xenografts were harvested, mechanically disaggregated, and grown in short-term culture 

(5–7 d) in DMEM containing 2.5 % fetal bovine serum, 1 % nonessential amino acids, 2 mmol/L 

glutamine, 100 units/mL penicillin, and 10 µg/mL streptomycin for lentiviral transduction (Giannini 

et al., 2005b). Primary glioma cells were dissociated from fresh patient tumors using Miltenyi 

Biotec brain tumor dissociation kit (#130-095-939) and the Miltenyi Gentle Macs Dissociator.  For 

isolation of glioma cells, the protocol published by Pistollato et al  (Pistollato, Persano, Puppa, 

Rampazzo, & Basso, 2011) was used with no modification.  Samples were taken from patients 

diagnosed with GBM and the use of the patient tissues received prior Barrow Neurological 

Institute/St. Joseph’s Hospital Institutional Review Board authorization. Unless indicated 

otherwise, all cell types were grown in DMEM supplemented with 10 % FBS and 1 % 
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penicillin/streptomycin (p/s) (Invitrogen) at 37 °C, 5 % CO2. THP1 cells were maintained in DMEM 

supplemented with 10 % FBS, 1 % penicillin and streptomycin and 0.05 mM 2-mercaptoethanol. 

THP1 cells were differentiated with 50 ng/mL PMA (Cell Signaling) overnight, and were 

subsequently washed 3 times with PBS. Media was then replaced and the cells were cultured for 

an additional 24 h prior to experiments. Transfection of siRNA and shRNA were done using 

Lipofectamine (Life Technologies) or Effectene (Qiagen), respectively. siRNAs were purchased 

from Life Technologies. Transfection was performed according to established protocols from the 

manufacturers. Cells were analyzed 48 h post-transfection. Average knockdown efficiency for 

PRKCZ, PRKCI, PAR6A, PAR6B and P62 relative to control (luciferase) siRNA is shown in 

Supplementary Fig. 1. U87/EGFRvIII cells were transduced with lentivirus GFP or with lentivirus 

aPKC-shRNA to generate stable lines (U87VIII-GFP and U87VIII-aPKC-shRNA). Glioma cells 

were incubated with 1:5,000 dilution of virus in serum-free media overnight. Subsequently the 

cells were washed 3 times with PBS and cultured according to standard protocols. The cells were 

cultured for additional 48 h post-infection before conducting experiments. For EGF and TNFα 

treatments, cells were serum starved for 24 h, and then treated with 100 ng/mL EGF (Millipore) or 

10 ng/ml TNFα (Calbiochem) for various time points. PZ09 was used at 10 µM. For other 

inhibitors, cells were serum starved overnight and pre-incubated with inhibitor for 30 m. For NF-

κΒ Reporter activity, U251/EGFR or U251/EGFR-aPKC-siRNA cells were incubated with 1:1,000 

dilution of Lenti NF-κΒ-Reporter:GFP in serum-free media overnight. Subsequently the cells were 

washed 3 times with PBS and cultured for 72 h prior to overnight serum starvation. After serum 

starvation cells were treated for 30 min with 10 ng/mL TNFα in serum free media in the presence 

or absence of 10 µM PZ09 or monoclonal anti-human TNFα antibody. Changes in GFP 

fluorescence was detected and quantified using a Tecan Infinite F500 microplate reader. Results 
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were normalized to NF-κΒ reporter transduced cells which were serum starved and not treated 

with TNFα.  

Human Monocyte isolation and monocyte-derived macrophages 

Peripheral blood mononuclear cells (PBMCs) were obtained from 50 mL of buffy coats 

(New York Blood Center) by Ficoll gradient centrifugation. Human monocytes were isolated by 

CD14 positive selection (STEMCELL) from PBMCs. CD14+ monocytes were co-cultured with 

GBM6 at 1:1 ratio for in-vitro proliferation or invasive assay.  300,000 to 500,000 CD14+ 

monocytes per mL were plated in RPMI 1640 plus 10 % of FBS and in vitro differentiated to 

macrophages by adding 25 ng/mL of M-CSF. IFN-γ (50 ng/mL), IL4 (40 ng/mL) or IL10 (50 

ng/mL) polarizing cytokines were added on day 3 and M0, M1, M2a and M2c monocytes-derived 

macrophages were harvested on day 7. Macrophage polarized phenotype was confirmed using 

anti human CD11b, CD64, CD23, CD80, CD163 and CD14 (Biolegend). Recombinant cytokines 

were purchased from R&D. 

Co-culture and ELISA 

For transwell co-culture experiments, 1x106 glioma cells were plated into a 6-well plate. 

Cell culture inserts (Millicell, 0.4 µm micropore polycarbonate filter) were placed in the wells. 

GBM6 cells were serum starved for 24 h before adding 1x105 GBM6 cells alone, plus 1x105 THP1 

cells or primary monocytes (CD14+) to the insert. After specified time points, cell culture inserts 

were removed and RNA was isolated from the GBM6 cells alone. In addition, media supernatants 

were collected, snap frozen with liquid nitrogen, and stored at -80 °C. The media from co-culture 

of macrophages and tumor cell lines were collected after 24 and 48 h and detection of TNFα in 

the supernatants was performed using an anti-TNFα ELISA kit (eBioscience). For proliferation 

assays, starved 1x105 GBM6 were co-cultured with 1x105 CD14+ monocytes in 6 well plate and 

EdU incorporation was assessed following manufacturer´s instruction (Click-iT® EdU Flow 
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Cytometry Assay Kit, Life Technologies). CD11b staining was included to discriminate 

monocytes. 

RNA isolation and RT-qPCR 

For acutely isolated in-vivo mouse brain mRNA analyses, whole mouse brain was 

homogenized in Trizol using a glass homogenizer. Samples were centrifuged and 0.2 mL 

chloroform per 1 mL of Trizol was added to the supernatant. Samples were vigorously shaken for 

15 seconds, incubated at RT for 3 min, and centrifuged for 15 min at 10,000 x g at 4 °C. Addition 

of chloroform and centrifugation was repeated. After second centrifugation, the aqueous phase 

containing RNA was precipitated by mixing with isopropyl alcohol for 20 min at -20 °C. RNA 

precipitants were washed 3 times with 75 % ethanol and spun at 7500 xg for 5 min at 4 °C. RNA 

was air dried, resuspended in RNase-free water and stored at -80 °C. For cellular mRNA 

analyses, total cellular RNA was isolated with RNeasy kit (QIAGEN). mRNA was reverse 

transcribed into cDNA using the Superscript III Kit (Life Technologies). Real-time PCR was 

performed on a 7900HT cycler with SYBR-Green Mastermix (Applied Biosystems), and primers 

(IDT) summarized in Supplementary Table. For NF-κΒ target gene profiling, cDNA was obtained 

as described and plated onto a custom TaqMan 96-well Gene Expression Signature Plate 

according to manufacturer’s instructions. Real-time PCR was performed on a 7900HT cycler with 

TaqMan Universal PCR Master Mix (Life Technologies). Primer sequences are provided in 

Supplementary Table. 

Immunofluorescence 

Glioma cells were seeded onto acid-etched coverslips (70 % EtOH, 1 % HCL in PBS, 5 

min) in a 24-well plate overnight. Upon confluency, media was removed and the cells were 

washed 3 times with PBS. The cells were fixed with 4 % PFA for 15 min at room temperature 

(RT), then washed 3 times with PBS and permeabilized with 0.1 % Triton-X-PBS for 15 min at 
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RT. Cells were blocked for 2 h with 2 % normal horse serum (Life Technologies) in PBS at RT. 

Primary antibodies were diluted in 2 % normal horse serum and cells were incubated overnight at 

4 °C. Subsequently, coverslips were washed 3 times with PBS and secondary antibodies (Alexa-

Fluor-488 and 594) diluted in 2 % normal horse serum were added for 2 h at RT. Following the 

secondary antibody incubation, cells were stained with DAPI (diluted at 1:5,000 in PBS) for 10 

min at RT. Finally, coverslips were washed 3 times with PBS and mounted onto slides using 

Prolong Gold Antifade Reagent (Life Technologies) and sealed with nail polish. Images were 

obtained using a Zeiss 710 confocal using a 63x objective lens.  

Flow Cytometry analysis 

Glioma cell lines, undifferentiated or PMA-differentiated THP1 cells, and CD14+ primary 

monocytes were cultured alone and together in complete DMEM medium at a 1:1 ratio. 6 h prior 

to harvesting, Brefeldin A was added to cells at a final concentration of 3 µg/ml. CD11b surface 

staining was included to discriminate primary monocytes from glioma cells. Cells were fixed with 

1 % PFA and permeabilized with 0.5 % saponin. Anti-TNFα antibody or isotype control was 

added to cells and incubated on ice for at least 30 min. Cells were then washed with Dulbecco-

PBS and suspended in 1 % BSA solution. For Ser536 phospho- NF-κΒ p65 (Cell Signaling 

Technology) staining, GBM6 were treated with 100 ng/mL of TNFα (Calbiochem) for 1 h. After 

harvesting, cells were immediately fixed with 1 % PFA for 15 min, washed 2 times with PBS and 

then permeabilized with cold methanol for 30 min on ice. Cells were washed 3 times, blocked with 

PBS + 5 % human AB serum for 15 min and then incubated with anti phospho-NF-κΒ p65 PE 

antibody for 30 min at 4 ºC. Cells were finally washed and re-suspended in PBS for FACS 

analysis. For BrdU incorporation experiments, 1x106 U87/EGFRvIII or GBM6 cells were plated in 

a 6-well plate. Cell culture inserts (Millicell, 0.4 µm micropore polycarbonate filter) were placed in 

the wells. Glioma cells were serum starved for 24 h before adding 1x105 U87/EGFRvIII or GBM6 



 

81 

cells and 1x105 THP1 to the insert. 10 µM BrdU (BD Pharmingen, 552598) was added to the 

media for 24 h.  Cell culture inserts were removed, and glioma cells were fixed, permeabilized 

and stained for BrdU using an APC BrdU Flow Kit (BD Pharmingen, 552598) according to 

manufacturer’s instructions. For EdU incorporation, starved 1x105 GBM6 were co-cultured with 

1x105 CD14+ monocytes isolated from PBMC in 6 well plate for 24 h. EdU was added into the 

culture at the last two hours. After harvesting, cells were immediately fixed with the fixative buffer, 

supplied with the kit (Click-iT® EdU Flow Cytometry Assay Kit, Life Technologies). Staining was 

performed following manufacturer´s instruction. CD11b staining was included to discriminate 

monocytes. For in-vivo phenotypic analyses of tumor infiltrating macrophages within human GBM 

tumors, 3 patient samples were dissociated using Miltenyi Biotec brain tumor dissociation kit and 

Gentle Macs dissociator. Dissociated cells were blocked using 3% FBS in PBS for 30 min on ice 

and subsequently stained with a cocktail of anti-human CD23, anti-human CD64 and anti-human 

CD11b in 3% FBS/PBS for 30 min on ice. Cells were washed 3 times with PBS and fixed in 1% 

PFA for 30 min on ice.  FACS calibur, FACS Aria or LSRII (BD) were used to analyze samples 

and WinMiDi software (freeware from The Scripps institute) or FlowJo were used to analyze and 

plot the data. 

Immunoblotting and immunoprecipitation 

Ice-cold 1 % NP-40 buffer (20 mM Tris-HCl at pH 8, 137 mM NaCl, 10 % glycerol, 1 % 

NP-40) supplemented with phosphatase and protease inhibitor (Halt Protease and Phosphatase 

Inhibitor Cocktail, Thermo Scientific) was used for protein isolation and immunoprecipitation. 

Briefly, cells were washed 3 times with ice-cold PBS and scraped in NP-40 buffer. Lysates were 

kept cold and sonicated 10 times, 1 sec each, and then centrifuged at 12,000 x g for 5 min at 4 

°C. For immunoprecipitation, the supernatant was pre-cleared using protein-A beads for 30 min at 

RT. The supernatant was subsequently added to protein-A beads pre-bound to aPKC antibody 
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(Santa Cruz, sc-216), and incubated overnight on a shaker at 4 °C. Immunoprecipitates were 

then washed 2 times with ice-cold NP-40 buffer, and a final wash with PBS. Sample loading 

buffer with DTT was added, and the immunoprecipitates were boiled for 5 min prior to loading 

onto precast SDS-PAGE gels (Life Technologies). Gels were transferred onto methanol pre-

soaked PVDF membranes and subsequently blocked with 5 % BSA in PBS for 2 h. Primary 

antibodies were incubated overnight at 4 °C, after which blots were washed 3 times with TBST 

(TBS + 0.1 % Tween) for 15 min each, followed by incubation with secondary antibodies (1: 

2000) for 2 h at RT. Blots were then washed 3 times for 30 min each in TBST, with a final wash in 

TBS alone. Blots were developed using Super Signal West Dura (Thermo Scientific) on the UVP 

Imager.  

Immunohistochemistry for Tissue microarrays 

Tissue microarrays were prepared from archival blocks of WHO grade IV glioblastoma 

formalin fixed paraffin embedded specimens. All tumor cases were histologically reviewed and 

representative tumor areas marked on the corresponding donor paraffin blocks. Blocks were cut 

at 4 µm thickness for routine hematoxylin and eosin (H&E) staining and immunohistochemistry. 

Sources for TMAs include TGen (Phoenix, AZ), Armed Forces Institute of Pathology (Bethesda, 

MD) and Barrow Neurological Institute (Phoenix, AZ).  Immunohistochemistry was performed 

using Ventana automated Discovery XT or Benchmark XT system (VMSI - Ventana Medical 

Systems, a Member of the Roche Group, Tucson, Arizona). All steps were performed on this 

instrument using VMSI validated reagents, including deparaffinization, cell conditioning (mild CC1 

for CD68 and standard CC1 for aPKC, phospho-aPKC and TNFα), primary antibody staining, 

detection and amplification using a biotinylated-streptavidin-HRP and ultraview Universal DAB 

(Diaminobenzidine) detection system and hematoxylin counterstaining. Primary antibodies were 

incubated for 30 min (CD68, TNFα) or 1 h (aPKC, phospho-aPKC) at 37 °C. Appropriate positive 
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and negative (secondary antibody only) controls were stained in parallel for each round of 

immunohistochemistry. Following staining on the instrument, slides were dehydrated through 

graded alcohols to xylene and coverslipped with mounting medium.  

Ex vivo Invasion assay 

Ex-vivo orthotopic invasion assays were performed as described by Valster et al (Aline 

Valster et al., 2005) with some modifications. Brains were obtained from 4-week-old rats and 

placed in ice-cold aCSF (126 mM NaCl, 3 mM KCl, 1.5 mM MgCl2, 24 mM CaCl2, 1.2 mM 

NaH2PO4, 11 mM glucose and 26 mM NaHCO3). Brains were sectioned into 400 µm slices on a 

vibratome in ice-cold aCSF. Slices were placed on a cell culture insert (Millicell, 0.4 µm micropore 

polycarbonate filter) in a 6-well plate with 1.5 mL DMEM with 10 % FBS and 1 % p/s 500 µL of 

media was added to the insert that was placed inside the wells of a 6-well plate. The brain slices 

were kept in the incubator under standard culture conditions (37 °C, 5 % CO2).  GFP+ GBM6 

and/or U87/EGFRvIII cells were resuspended in serum-free DMEM at 2x108 cells/ml. Prior to the 

addition of cells, media was removed from the upper chamber of the 6-well plate so the slice was 

semidry before implantation. 105 GFP+ GBM6 and/or U87/EGFRvIII cells were placed on the 

putamen in 0.5 µL volumes, and after 45 min, 500 µL of serum-free media was added back to the 

upper chamber. The plates were kept in the incubator for 4-5 days and subsequently fixed 

overnight in 4% PFA at 4 
°C. The polycarbonate membrane was carefully removed and the brains 

were placed on a slide for imaging on a confocal microscope. Imaging and quantification was 

performed as described by Valster et al (A. Valster et al., 2005). Fluorescence at various depths 

into the tissue was calculated after confocal imaging. Intensity at each layer was normalized to 

total intensity across all depths and linear regression analysis was performed to determine the 

slope of invasion for each replicate.  R2 (coefficient of determination) for each slope was 

calculated and was greater than 0.88 with an average value of 0.96.  Average inverse slope was 
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used to calculate the invasion index.  Error bars represent the standard deviation of at least three 

repeats. 

Orthotopic xenografts 

Female 6- to 8-wk-old NOD-SCID, TNFα-/- and control mice were anesthetized by i.p. 

injection of 1.25 % avertin (200 mg/kg). Cells (U87EGFRvIII-GFP, U87/EGFRvIII-aPKC-shRNA, 

or GL261) were resuspended in standard media (DMEM with 10 % FBS, 1 % p/s) at a 

concentration of 1.25 x 105 cells/µL and kept on ice until injection. Intracranial injections were 

performed using a Hamilton syringe (Hamilton Company, Reno, Nev.). Briefly, the animal was 

secured onto the small animal stereotaxic apparatus (Kopf Instruments) and a midline incision 

was made to expose the skull.  Subsequently, a burr hole was drilled 1 mm lateral and 2 mm 

anterior to bregma. Cells were injected at a rate of 1 µL/min (total 4 µL 5x105 cells) to a depth of 3 

mM below the skull, which corresponds to the area of the caudate nucleus. Following intracranial 

injection, mice were observed daily for changes in weight or modified gait, and were euthanized 

upon moribund symptoms. Brains were then removed and processed for histopathology.  

Statistical Analysis 

Data are expressed as mean ± SEM. Differences between the means of experimental 

groups were analyzed with either two-tailed Student's t-test or ANOVA (Prism GraphPad 

software, Inc.). Survival was calculated using Kaplan-Meier analysis (Prism GraphPad software, 

Inc.). P values ≤ 0.05 were considered significant. 

RESULTS 

aPKC expression inversely correlates with GBM survival and targeting aPKC reduces 

tumor progression in a mouse model of GBM resistant to EGFR kinase inhibitors 

We examined the expression of aPKC in human non-tumor brain and GBM tissue. 

Immunohistochemical staining of non-tumor brain tissue sections revealed very little aPKC 
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staining in the brain parenchyma (Fig. 3.1A). Some cytoplasmic staining was observed in neurons 

(fig. 3.S1A) and trace staining was occasionally detected in oligodendrocytes. In contrast, strong 

aPKC staining was observed in GBM tumor cells (Fig. 3.1B,C). The distribution of staining was 

consistent across variable histologic patterns that define GBM such as, pseudopalisading 

necrosis (Fig. 3.1C and fig. 3.S1B), areas of microvascular proliferation (fig. 3.S1C), infiltrative 

single cells, clusters and confluent cell sheets. Next, we stained tissue microarrays (TMA) 

consisting of 330 GBM cases. The aPKC staining was validated using both negative and positive 

staining on control cores of non-neoplastic cortical grey matter, white matter, cerebellum, 

placenta, testis, lung, liver, kidney, and tonsil within each TMA. Within most, but not all GBM 

cores, tumor cells showed increased aPKC staining relative to non-tumor cells. aPKC staining 

within tumor cells was compared to adjacent non-tumor cells within each core and the core was 

assigned a numerical score of 0, 1, 2 or 3 representing negative, weak positive, intermediate 

positive or bright staining. Interestingly, a subset of GBM tumors was aPKC bright (100/330), and 

other subsets had intermediate (73/330) or weak (107/330) positive levels. A smaller fraction of 

GBMs were aPKC negative (50/330). This indicates that GBM tumors overall tend to express 

higher levels of aPKC, however the expression level of aPKC between individual GBM tumors 

varies and GBM tumors can be stratified based on aPKC intensity (Fig. 3.1D). Furthermore, 

staining a smaller set of GBM TMA (44 cases) with the aPKC activation specific, phosphoThr 

410/403 antibody revealed that not only total protein level, but also aPKC activity is commonly 

high in GBM (Fig. 3.1E,F). The range of staining intensity for phosphorylated aPKC, compared to 

total aPKC, was somewhat reduced. This may be due to the reduced affinity of phosphorylation-

specific antibodies relative to total aPKC antibody. 

To further examine the clinical relevance of aPKC staining in GBM, we compared the 

association between aPKC immunoreactivity and survival. In a TMA annotated for survival data of 
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patients, 7 cases had no detectable aPKC staining, 17 cases were weak positive, and 20 cases 

showed bright aPKC staining. Statistical analyses demonstrated that there was a significant 

difference in overall survival between the bright aPKC staining and aPKC negative or weak 

positive cases (Log-rank [Mantel-Cox] test p= 0.0145). The decrease in survival was restricted to 

the aPKC bright group; statistically significant difference in survival between the lower categories 

of aPKC intensity was not detected. While the median survival of aPKC bright staining cases was 

176.5 days, aPKC weak positive had a median survival of 413 days and aPKC negative cases 

532 days (Fig. 3.1G). Survival was not found to correlate with gender and age in the sampled 

population. All together, these results demonstrate that increased aPKC expression is detected in 

GBM and that there is a strong negative correlation between aPKC protein expression and 

survival.  

To directly test the function of aPKC in GBM progression in vivo, we performed orthotopic 

xenograft experiments in NOD/SCID mice using U87/EGFRvIII and U87/EGFRvIII in which aPKC 

expression was silenced by shRNA. We used a viral vector encoding shRNA targeting both 

isoforms PRKCZ and PRKCI and obtained ~70-80% knockdown efficiencies (fig. 3.S2A). 0.5 x 

106 cells were stereotactically injected into the caudate nucleus and mice were euthanized upon 

detection of neurological symptoms as approved by IACUC. Tumor growth was confirmed by 

histopathological analyses. Silencing aPKC in U87/EGFRvIII cells resulted in a significant 

increase in median survival following orthotopic xenografts (Log rank [Mantel Cox] test p= 

0.0005). Mice bearing U87/EGFRvIII aPKC shRNA showed a median survival of 35 days, in 

comparison to the median survival of 11 days in WT U87/EGFRvIII (Fig. 3.1H). Histopathological 

examination 6 days post implantation revealed that tumors derived from U87/EGFRvIII aPKC 

shRNA were significantly smaller in size, in comparison to tumors derived from WT U87/EGFRvIII 

(Fig. 3.1I). Subsequently, we tested the efficacy of a small molecule, benzoimidazole ATP-
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competitive aPKC inhibitor PZ09 (Trujillo et al., 2009) in inhibiting tumor growth in vivo. 3 days 

post implantation, 10 µM PZ09 was delivered by ALZET osmotic minipumps directly at the site of 

U87/EGFRvIII tumors, similar to convection-enhanced delivery of molecules to the brain, for 7 

days. Mice were euthanized and tumor size was measured by sectioning the entire brain, staining 

with hematoxylin-eosin (H&E) and tumor volume was calculated using ImageJ. These 

experiments reveal that inhibition of aPKC reduced tumor volume by 64.68 ± 9.23 % after 7 days 

of treatment (Fig. 3.1J).  

Next, we tested the efficacy of aPKC inhibition in patient-derived, EGFR kinase 

insensitive, orthotopic xenografts. GBM6 patient-derived xenograft cells retain the clinically 

relevant biochemical characteristics of clinical GBM, including EGFR amplification and EGFRvIII 

mutation (Giannini et al., 2005a; A. Pandita, K. D. Aldape, G. Zadeh, A. Guha, & C. D. James, 

2004). Furthermore, GBM6 xenografts are insensitive to the EGFR kinase inhibitor erlotinib 

(Sarkaria et al., 2007). The acute inhibition of aPKC by PZ09 significantly reduced tumor volume 

in orthotopic xenografts.  2 x 106 GBM6 cells were implanted in the caudate nucleus and 10 µM 

PZ09 was delivered by ALZET minipumps, 3 days after implantation and for a treatment period of 

14 days.  At 10 µM, PZ09 effectively decreased aPKC activity in GBM6 cells in culture (Fig. 

3.S2D). 10 µM PZ09 in vivo resulted in 84.06  ± 6.27 % decrease of tumor volume after 14 day 

treatment (Fig. 3.1K). 

aPKC functions downstream of receptor tyrosine kinases in GBM 

 Both wild type (WT) EGFR and EGFRvIII are frequently co-expressed in GBM (Q. W. Fan 

et al., 2013) and both populations were detected in GBM6, albeit EGFRvIII was the predominant 

population (Fig. 3.S3A). Serum starved GBM6 showed an activation of aPKC following EGF 

stimulation (Fig. 3.2A). Similarly, U251 stably expressing EGFR (U251/EGFR) showed aPKC 

activation (Fig. 3.2B). The kinetics of phosphorylation of EGFR in GBM6 and U251/EGFR (Fig. 
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3.S3B,C) are faster than that of aPKC, suggesting that aPKC is an indirect downstream target of 

EGFR. Importantly, EGF-induced expression of CD44, MMP9 and VCAM were inhibited by PZ09 

treatment in GBM6 (Fig. 3.2C). Similarly, aPKC silencing with siRNA in U251/EGFR reduced the 

mRNA levels of EGF-induced genes (Fig. 3.2D). Therefore, aPKC mediates EGFR signaling in 

GBM. Our findings are consistent with the reported function of this kinase downstream of EGFR 

family in tumor progression in breast cancer and squamous cell carcinomas of head and neck (V. 

Aranda et al., 2006; Cohen et al., 2006). Why is inhibition of aPKC effective in EGFR-insensitive 

GBM? aPKC was also activated downstream of activated Ras, PI3-K and Src (Fig. 3.2E). EGFR 

kinase inhibitor resistance is often associated with PTEN mutations (I. K. Mellinghoff et al., 2005). 

Furthermore, multiple RTKs are simultaneously activated in GBM (Stommel et al., 2007) or 

compensatory pathways, such as the transcriptional upregulation of Met in EGFR kinase inhibitor-

resistant glioblastoma mouse models (Jun et al., 2011) render EGFR kinase inhibitors ineffective. 

Being a kinase which functions further downstream of PTEN and which participates in signaling 

downstream of Ras and Src, aPKC may function downstream of multiple RTKs and therefore has 

intrinsic advantages over EGFR as a target in GBM. 

TNFαααα functions as a paracrine oncogenic signal in GBM  

Another possibility why EGFR kinase inhibitor fails in vivo, whereas aPKC inhibition is 

effective, is the existence of paracrine factors and the induction of EGFR-independent, parallel 

oncogenic signals through non-cell autonomous mechanisms. For example, the tumor 

microenvironment is recognized to play a significant role in influencing tumor progression (M. J. 

Bissell & W. C. Hines, 2011; Bissell & Labarge, 2005; Coussens & Werb, 2002; Liotta & Kohn, 

2001; Lukashev & Werb, 1998). We detected significant CD68+ cell infiltration within the tumor 

area in GBM tissue (Fig. 3.3A), in contrast to non-tumor brain, in 37 of the 44 (~84 %) cases 

examined. Interestingly, the orthotopic GBM model using GBM6 implanted in NOD/SCID mice 
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also showed increased Iba1+ cells in the tumor microenvironment (fig. 3.S4A) in contrast to 

contralateral control regions (fig. 3.S4B). Furthermore, we characterized the phenotype of GBM 

infiltrating myeloid cells in three independent GBM cases. Freshly resected GBM samples were 

dissociated and GBM-associated macrophages were characterized by FACS analyses. While the 

predominant population was of the M2 macrophage subtype (CD23+), a smaller but significant 

population of M1 subtype (CD64+) macrophages was consistently observed upon FACS 

characterization of the tumor-associated CD11b+ myeloid cells (Fig. 3.3B). Pro-inflammatory 

cytokines such as TNFα are produced by tumor-associated myeloid cells and have been shown 

to promote tumor initiation and progression (F. R. Balkwill & Mantovani, 2012; Wynn, Chawla, & 

Pollard, 2013). In vitro differentiated M1 macrophages, as well as M2 macrophages, when 

activated, secreted TNFα (Fig. 3.S4C). Consistent with this observation, we detected TNFα 

expression in all GBM tissues (44 cases) examined, while TNFα was undetectable in non-tumor 

brain (Fig. 3.3C). 

Activation of the NF-κB pathway is a strong oncogenic signal in many tumors, including 

GBM (Atkinson, Nozell, & Benveniste, 2010; Ben-Neriah & Karin, 2011; Chaturvedi, Sung, Yadav, 

Kannappan, & Aggarwal, 2011a; Karin, 2009; Laver, Nozell, & Benveniste, 2009; Naugler & 

Karin, 2008; Staudt, 2010; H. Wang, Zhang, Huang, Liao, & Fuller, 2004). The deletion of 

NFKBIA, which encodes the NF-κB inhibitor IκBα, is seen in about 20 % of GBM cases (M. 

Bredel et al., 2011) and the activation of NF-κB predicts identical prognosis as EGFR gain-of-

function in GBM (M. Bredel et al., 2011). Nonetheless, the loss of IκBα overlaps with EGFR 

amplification in only 5 % GBM cases suggesting that these two independent tumor-intrinsic 

mutations do not occur simultaneously (M. Bredel et al., 2011). Loss of IκBα driving NF-κB 

activation is in fact rare in cancers; rather an inflammatory tumor microenvironment such as, 

paracrine TNFα more commonly drives NF-κB activation in cancers such as colon cancer 
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(Grivennikov & Karin, 2010; Karin, 2009; Mantovani, Allavena, Sica, & Balkwill, 2008). aPKC is a 

well-established regulator of NF-κB (Diaz-Meco et al., 1994; Duran, Diaz-Meco, & Moscat, 2003; 

Leitges et al., 2001). We hypothesized that aPKC regulates paracrine TNFα driven NF-κB 

activation in GBM and therefore targeting aPKC confers improved efficacy in GBM by dually 

inhibiting RTK and NF-κB pathways. First, we tested if NF-κB signaling is more active in GBM 

harboring EGFR gain-of-mutation but without IκBα loss of function. Freshly resected GBM tumor 

tissues were dissociated and tumor cells were confirmed to contain EGFR amplification and/or 

EGFRvIII mutation. Comparison of IκBα mRNA expression levels between GBM and normal 

human astrocytes revealed that IκB expression was unaffected. Furthermore, sequencing 

showed that the locus did not contain non-synonymous mutations in these samples (data not 

shown). Subsequently, these tumor cells were subjected to NF-κB-target gene profiling by RT-

qPCR. These GBM tumors had upregulated NF-κB target gene expression in comparison to 

normal human astrocytes (Fig. 3.3D). We also extended our analyses to orthotopic murine 

models of GBM described above. Acutely isolated tissue from the side of NOD/SCID mouse brain 

bearing GBM6 tumors showed NF-κB activation in comparison to contralateral, non-tumor 

bearing brain (Fig. 3.3E). Similarly, C57BL6 brains with GL261-derived tumors showed increased 

NF-κB-target gene expression in comparison to contralateral, non-tumor bearing brain (Fig. 

3.S4D). To validate the function of microenvironment-derived TNFα in GBM tumor progression in 

vivo, C57BL6-derived GL261 mouse glioma cells were stereotactically injected into the caudate 

nucleus in either WT control or mice lacking the TNFα gene (TNFα
-/-). The genetic ablation of 

TNFα resulted in a significant increase in survival after orthotopic xenograft of GL261 (Log rank 

[Mantel-Cox] test p = <0.0001). While WT mice bearing GL261 orthotopic xenografts had a 

median survival of 16.5 days, TNFα
-/- mice showed a median survival of 23 days (Figure 3.3E). 

These results demonstrate that NF-κB signaling is active in GBM, and is likely driven by paracrine 
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TNFα.  This TNFα/ NF-κB axis promotes GBM progression and acts as an EGFR-independent 

oncogenic signal. 

Paracrine TNFαααα-induces aPKC activation and EGFR kinase inhibitor resistance in GBM 

To directly test the role of myeloid cells and myeloid-cell derived factors, such as TNFα, 

on GBM proliferation and invasion, we isolated primary human monocytes from peripheral blood 

and co-cultured these cells with GBM6 in vitro. Co-culture of monocytes with GBM6 led to the 

production of TNFα by the monocytes (Fig. 3.4A, Fig. 3.S5A and B). We also detected high 

TNFα levels in the culture media when GBM6 cells were co-cultured with in vitro differentiated 

monocytic THP1 cells (Tsuchiya et al., 1982) (Fig. 3.S5C). Differentiated, but not undifferentiated 

THP1 cells were the source of TNFα production (Fig. 3.S5D). Co-culture of GBM6 with 

monocytes led to a significant increase in proliferation of GBM6 cells as assayed by EdU 

incorporation (Fig. 3.4B,C). This increased proliferation was blocked when an anti-human-TNFα 

antibody was included in the culture media to neutralize TNFα (Figure 3.4B,C and Fig. 3.S5E).  

Rapid invasion of GBM cells into the surrounding parenchyma is a defining characteristic 

of this disease and is believed to be an important contributor to the failure of surgery and directed 

radiotherapy. Therefore, we compared GBM6 invasion in the absence or presence of monocytes 

in a modified organotypic invasion assay (A. Valster et al., 2005). GBM6 cells were transduced 

with GFP lentivirus and were subsequently placed on an organotypic culture of rat brain slice and 

allowed to invade into the tissue for 4 days. The intensity of GFP fluorescence was calculated at 

10 µm increments from the top of the slice and the fluorescence intensity at each point was 

divided by the total intensity. The rate of invasion was defined as the inverse of the slope 

obtained by linear regression analysis of the normalized fluorescence at various depths. These 

experiments showed that GBM6 retained the ability to invade into the brain parenchyma. GBM6 

invasion was enhanced when implanted onto rat brain slices ex vivo together with monocytes, 
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while anti-human-TNFα antibody blocked this enhanced invasion (Fig. 3.4D). Similar results were 

obtained when GBM6 and differentiated THP1 cells were co-cultured. Differentiated THP1 

increased GBM6 proliferation (Fig. 3.S6A) and invasion (Fig. 3.S6B) and the effect of THP1 was 

inhibited by anti-human-TNFα antibody (Fig. 3.S6A,B). The effect of myeloid cells on GBM 

proliferation and invasion is independent of PTEN status of the GBM cells as similar increase in 

proliferation and invasion were observed in U87/EGFRvIII co-cultured with differentiated THP1 

(Fig. 3.S6C,D). Our results are consistent with the well-known role of tumor-associated 

macrophages in facilitating tumor-associated inflammation in cancers such as breast and colon 

cancer (Grivennikov & Karin, 2011; Mantovani & Sica, 2010; Ruffell, Affara, & Coussens, 2012; 

Terzic, Grivennikov, Karin, & Karin, 2010). Interestingly, aPKC phosphorylation status associated 

with monocyte-stimulated GBM proliferation and invasion. aPKC phosphorylation was enhanced 

in GBM6-monocyte co-cultures and was reduced when TNFα was neutralized under co-culture 

conditions (Fig. 3.4E,F). We also co-cultured B6-derived GL261 mouse glioma cells with mouse 

bone marrow-derived macrophages as an independent model of GBM-myeloid cell interaction. 

Analogous to GBM6-monocyte co-cultures, mouse primary macrophages also produced TNFα in 

the presence of GL261 (Fig. 3.S7A). Tumor cell proliferation (Fig. 3.S7B) and invasion (Fig. 

3.S7C) were increased in the presence of macrophages.  

Finally, we directly tested whether paracrine TNFα can indeed reduce the efficacy of 

EGFR kinase inhibitors in GBM. Treatment of GBM6 cells with the EGFR inhibitor erlotinib in vitro 

resulted in a significant inhibition of proliferation (Fig. 3.4G,H) and invasion (Fig. 3.4I). The 

addition of TNFα to GBM6 treated with erlotinib essentially obliterated these inhibitory effects 

(Fig. 3.4G,H,I). aPKC phosphorylation, but not EGFR phosphorylation, correlated with GBM6 

proliferation and invasion. Erlotinib reduced both aPKC and EGFR phosphorylation in GBM6, but 

addition of TNFα that led to increased GBM6 proliferation and invasion in the presence of 
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erlotinib, correlated with enhanced aPKC phosphorylation but failed to affect EGFR 

phosphorylation (Fig. 3.4J). Our results are consistent with myeloid cells increasing GBM cell 

proliferation, invasion and contributing to the reduced efficacy of EGFR kinase inhibitor through 

the production of TNFα in the tumor microenvironment.   

Oncogenic TNFαααα/NF-κκκκB signaling in GBM is dependent on aPKC activation 

Next, we directly tested if aPKC activity was increased in GBM6 cells in response to 

TNFα.  Phosphorylation of both aPKC and the p65 subunit of NF-κB (p65-NF-κB) were 

significantly increased in GBM6 following the addition of TNFα (Fig. 3.5A). Additionally, PZ09 

treatment resulted in a significant reduction of NF-κB targets induced by TNFα (Fig. 3.5B). 

Analyses of Ser536 phosphorylation on p65-NF-κB in GBM6 by FACS indicated that PZ09 

treatment inhibited the TNFα-dependent increase at this phosphorylation site (Fig. 3.5C). 

Similarly, aPKC (Fig. 3.5D) and p65-NF-κB (Fig. 3.S8A) was activated upon TNFα stimulation in 

the glioma cell line U251. Silencing aPKC in U251 cells using siRNA sequences targeting both 

PRKCI and PRKCZ inhibited TNFα induced NF-κB targets (Fig. 3.5E). Silencing aPKC in U251 

prevented the TNFα-dependent phosphorylation of Ser311 on p65-NF-κB (Fig. 3.5F). However, 

TNFα-induced IκBα degradation was not inhibited (Fig. 3.S9). These results are consistent with a 

previous report demonstrating that aPKC regulates IKK activity and/or p65-NF-κB 

phosphorylation in the NF-κB pathway in a cell type specific manner (Leitges et al., 2001). Finally, 

we tested the effect of PZ09 and aPKC siRNA on NF-κB:GFP reporter activity in U251 following 

TNFα stimulation. Both PZ09, as well as aPKC siRNA, reduced TNFα-dependent NF-κB:GFP 

reporter activity to levels comparable with neutralization of TNFα using an anti-human-TNFα 

antibody (Fig. 3.5G). 

We also tested the effects of inhibiting aPKC under GBM6-myeloid cell co-culture 

conditions. Co-culture of GBM6 and monocytes results in the phosphorylation of both aPKC and 
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p65 in GBM6 approximately 1 h following mixing of these cell types (Fig. 3.S8B). To assay 

monocyte induced NF-κB gene expression in GBM6 by qRT-PCR, we utilized a transwell culture 

system. GBM6 alone or GBM6 plus monocytes were grown in the top chamber of a transwell 

system, while GBM6, uncontaminated by monocytes, yet exposed to the co-culture media, were 

grown in the bottom chamber separated by a 0.4 µm filter. GBM6 from the bottom chamber of the 

transwell system described above were harvested and processed for RT-qPCR profiling. GBM6 

exposed to the co-culture media showed increased mRNA levels of a number of inflammatory 

cytokine genes and other NF-κB targets, such as COX2, IL-1β, IL6, IL8, MCP-1, MMP9, 

TNFα and VEGF, in comparison to GBM6 grown in as monoculture (Fig. 3.5H). Similar results 

were obtained when the human pre-monocytic cell line THP1 was differentiated in vitro (Tsuchiya 

et al., 1982) and co-cultured with GBM6. Under these conditions we observed aPKC 

phosphorylation in GBM6 in the lower chamber approximately 1 h following plating (Fig. 3.S10A). 

NF-κB gene expression in GBM6 (Fig. 3.S9B) or U87/EGFRvIII (Fig. 3.S9C) were enhanced 

under co-culture conditions with differentiated THP1. Importantly, treatment with PZ09 inhibited 

the induction of NF-κB target genes observed in GBM6-monocyte co-culture conditions (Fig. 

3.5H). These results demonstrate that tumor-associated myeloid cells activated aPKC-dependent 

NF-κB signaling. This aPKC-dependence is also observed in PTEN deficient U87/EGFRvIII cells 

indicating that aPKC functions downstream of PTEN. 

Consistent with our hypothesis that aPKC-dependent NF-κB signaling induced by 

myeloid cells contributes to GBM proliferation, PZ09 was also effective in inhibiting monocyte-

induced increase in GBM6 proliferation (Fig. 3.5I,J). Additionally, PZ09 was effective in inhibiting 

the monocyte-induced increase in invasion (Fig. 3.5K). PZ09 dependent inhibition of proliferation 

and invasion also correlated with inhibition of aPKC and p65-NF-κB phosphorylation (Fig. 

3.5L,M). In comparison to untreated GBM6-differentiated THP1 co-cultures, PZ09 treatment of 
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co-cultured GBM6 with differentiated THP1 similarly reduced proliferation (Fig. 3.S11A) and 

invasion (Fig. 3.S11B). We silenced aPKC expression in PTEN deficient U87 cells stably 

expressing EGFRvIII (U87/EGFRvIII) by using shRNA. In comparison to U87/EGFRvIII-

differentiated THP1 co-cultures, U87/EGFRvIII aPKCshRNA cells co-cultured with differentiated 

THP1 showed reduced proliferation (Fig. 3.S11C) and invasion (Fig. 3.S11D). Neither, PZ09 or 

aPKC siRNA affected the levels of EGFR or EGFR phosphorylation in GBM6 or U251/EGFR (Fig. 

3.S12A,B).  

Distinct aPKC-containing signaling complexes mediate oncogenic TNFαααα and RTK 

signaling  

Does GBM cell autonomous EGFR and paracrine TNFα signals converge on a unique 

aPKC-containing signal module in GBM cells? While both EGF and TNFα signaling in GBM 

resulted in aPKC activation and were critically dependent on aPKC, these pathways resulted in 

largely distinct transcriptional outputs at early time points. For example, EGF-induces CD44, 

MMP9, VCAM and uPAR in U251/EGFR at 6 h (Fig. 3.S13A), while TNFα treatment for 1 h led to 

the expression of a different set of genes including IL-1β, IL-8, MCP-1 and TNFα (Fig. 3.S13B). 

This discrete expression profile is not apparent after overnight treatment since long term TNFα 

treatment leads to increase in EGF. Furthermore, the ERK-inhibitor U0126 treatment indicated 

that MAPK signaling downstream of aPKC was mostly relevant to EGF-specific gene expression 

and not TNFα-dependent gene expression (Fig. 3.S13C,D). In contrast, IκBαM inhibited only 

TNFα-dependent gene expression, and not EGF-dependent gene expression with the exception 

of MMP9 indicating that aPKC-dependent NF-κB signaling was specifically required for the 

expression of the TNFα-dependent genes (Fig. 3.S13E,F). These results indicate that while 

aPKC participates in both signaling pathways, these pathways do not merely converge on aPKC. 
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To further investigate aPKC signaling downstream TNFα and EGF, we investigated the 

PB1-domain scaffolds necessary for aPKC activation in the context of these specific signals. EGF 

induced/stabilized an aPKC-Par6 complex (Fig. 3.6A). EGFR kinase inhibitor, PI3-K inhibitors or 

Src-inhibitor that effectively inhibited their targets (Fig. 3.S14), reduced aPKC activation and also 

reduced aPKC-Par6 co-immunoprecipation in U87/EGFRvIII (Fig. 3.6B). The effect of aPKC 

silencing was phenocopied by Par6 silencing, but not p62 silencing, for EGF-induced genes (Fig. 

3.6C). In contrast, the NF-κB signaling was dependent on the adaptor p62. Silencing p62 

phenocopied aPKC silencing in the inhibition of NF-κB signaling (Fig. 3.6D). Furthermore, Par6 

and p62 had distinct intracellular localization profiles. Immunofluorescence experiments 

demonstrated that the majority of cellular Par6 localized with actin at the leading edge of EGF-

treated U251/EGFR cells. In contrast, p62 was detected in an intracellular compartment, away 

from the leading edge, in TNFα treated U251/EGFR cells (Fig. 3.6E). Therefore, TNFα and EGF 

signaling pathways, despite sharing the important downstream kinase aPKC, use alternative 

PB1-domain scaffold proteins – p62 versus Par6. In vitro structural studies indicate that the PB1 

scaffolds Par6 and p62 compete for aPKC binding (Hirano et al., 2004; Noda et al., 2003; Wilson, 

Gill, Perisic, Quinn, & Williams, 2003) and this may explain the specificity of TNFα and EGF 

signaling. Interestingly, the constitutively active myr-aPKCζ indiscriminately activated CD44, 

MMP9, VCAM, uPAR, IL-1β, IL-8, MCP-1 and TNFα (Fig. 3.6F). Taken together, our results show 

that activation of aPKC is not only indispensable, but also sufficient for the induction of both EGF 

and TNFα dependent genes, and that the specificity of these pathways is determined by the 

differential use of adaptors Par6 and p62.  

DISCUSSION 

The success of single agent anti-tumor therapy can be limited by downstream mutations 

or the induction of parallel oncogenic pathways in tumor cells. EGFR gain-of-function accounts for 
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~45 % of GBM, while the homozygous deletion of PTEN leading to downstream PI3-K activation 

is seen in ~36 % cases and overall PI3-K activation (due to other RTK pathway activation) is 

seen in ~88 % of GBM (R. McLendon et al., 2008). Cancer cells with mutant EGFR are 

particularly sensitive to inhibition of NF-κB, and NF-κB activation through deletion of IκBα 

rescues EGFR-mutant cancer cells from the cytotoxic effects of the EGFR kinase inhibitor 

erlotinib (Bivona et al., 2011). Our results indicate that a pro-inflammatory microenvironment also 

increases the therapeutic challenge of targeting GBM tumor intrinsic mutations by providing 

parallel oncogenic signals (Fig. 3.7). Infiltration of innate immune cells within the GBM tumor 

mass has been described previously (Badie & Schartner, 2000; N. A. Charles, E. C. Holland, R. 

Gilbertson, R. Glass, & H. Kettenmann, 2011; Hussain et al., 2006; Parney, Waldron, & Parsa, 

2009; Roggendorf, Strupp, & Paulus, 1996a). However, traditionally, GBM is not considered an 

inflammation-driven tumor and macrophages/activated microglia in GBM have often been 

described as anti-tumorigenic (Galarneau, Villeneuve, Gowing, Julien, & Vallieres, 2007; Zhang 

et al., 2009). Here we demonstrate that the interaction of GBM tumor cells with tumor infiltrating 

myeloid cells leads to paracrine production of TNFα that contributes to tumor growth and spread, 

and renders EGFR kinase inhibitors less effective. These results are consistent with reports that 

macrophage/microglia enhance glioma invasion and growth. Microglia, but not oligodendroglia or 

endothelial cells, has been reported to increase GL261 glioma cell migration in vitro (Bettinger, 

Thanos, & Paulus, 2002; Zhai, Heppner, & Tsirka, 2011). Depletion of macrophage/microglia by 

treatment with clodronate liposomes in an ex vivo organotypic brain slice culture assay also 

reduced GL261 invasion (Markovic, Glass, Synowitz, Rooijen, & Kettenmann, 2005). In vivo 

deletion of macrophages/microglia in the brain or the inhibition of CSF-1R significantly reduced 

glioma growth (Coniglio et al., 2012; Markovic et al., 2009; Pyonteck et al., 2013). Additionally, 

higher grade gliomas, such as GBM and WHO Grade III anaplastic astrocytomas, show the 
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largest increase in macrophage infiltration, in contrast to lower grade gliomas (Roggendorf et al., 

1996a). A recent report has ascribed radio resistance in GBM to TNFα/NF-κB signaling and 

conversion to a more aggressive, mesenchymal-subtype (Bhat et al., 2013). Thus, targeting the 

tumor microenvironment can provide unique therapeutic opportunities (Coussens, Zitvogel, & 

Palucka, 2013; Shiao, Ganesan, Rugo, & Coussens, 2011). 

Intriguingly, aPKC has critical roles in distinct, but concurrent oncogenic signaling 

pathways. It functions downstream of EGFR and RTK signaling in GBM cells. It is also essential 

for tumor microenvironment-induced TNFα/NF-κB oncogenic signaling in GBM. Altered 

expression of the kinase aPKC has been reported to be associated with cancer, including GBM 

(do Carmo, Balca-Silva, Matias, & Lopes, 2013). However, the identity of the aPKC isoforms 

involved and the mechanism of aPKC function have heretofore remained unclear with frequently 

contrasting reports. For example, one isoform of aPKC, aPKCζ, has been reported to be both 

upregulated and down regulated in cancer, including specifically in GBM (do Carmo et al., 2013; 

J. Moscat, Diaz-Meco, & Wooten, 2009a). aPKCι, and not aPKCζ, is the aPKC isoform detected 

in most brain regions, except for cerebellum (Parker et al., 2013a). Our analyses reveal that most 

GBM tumor cell lines, as well as patient-derived xenografts show increased expression of aPKCι 

protein (fig. S15A,B). Interestingly, aPKC mRNA levels in GBM were not increased in comparison 

to normal human astrocytes, suggesting that aPKC expression in GBM is regulated through post-

translational mechanisms (fig. S15D,E). Targeting the bi-modal activity of aPKC in tumor cell 

autonomous and non-tumor cell autonomous signaling may provide a paradigm that affords 

simultaneously disabling of tumor intrinsic, as well as microenvironment-induced oncogenic 

signals in GBM. 
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Figure 3.1. Clinical association and therapeutic efficacy of targeting aPKC in mouse 
models of GBM. (A) Representative example of non-tumor brain parenchyma shows low aPKC 
staining, while (B,C) aPKC staining is increased in GBM.  (D) Stratification of 330 GBM cases 
according to immunohistochemical scores of aPKC. (E) Representative examples of aPKC 
phosphoThr410/403 staining in GBM tissue microarray. (F) Stratification of 44 GBM cases 
according to immunohistochemical scores of aPKC phosphoThr410/403 staining. (G) Kaplan-
Meier survival curve of 44 GBM cases showing correlation of bright aPKC staining with poor 
survival in human patients (p=0.0145). 
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Figure 3.1, cont. (H) Kaplan-Meier survival curves of mice bearing U87/EGFRvIII intracranial 
xenografts stably transfected with control or aPKCshRNA (p=0.0005). (I) Representative images 
of transplanted U87/EGFRvIII control and U87/EGFRvIII aPKCshRNA tumors after 6 days post-
implantation. Dashed lines circumscribe the tumor areas. Tumor volume quantification from 
U87/EGFRvIII (J) or EGFR kinase inhibitor-insensitive GBM6 (K) intracranial xenografts infused 
with 10 µM PZ09 through an Alzet osmotic minipump for 7 and 14 days respectively, beginning 3 
days post tumor implantation. Data are presented as representative individual samples or as 
mean ± SEM of at least 3 independent samples per group. *p < 0.05. 
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Figure 3.2. aPKC is activated downstream of tumor-intrinsic oncogenic RTK signaling 
pathways. (A) Activation of aPKC in GBM6 cells after 100 ng/mL EGF treatment for the indicated 
times. Active aPKC was detected after aPKC immunoprecipitation followed by aPKC 
phosphoThr410/403 immunoblotting. Total aPKC is shown as loading control. (B) Expression of 
indicated genes in GBM6 cells upon treatment with 100 ng/mL EGF treatment alone or in the 
presence of 10 µM of PZ09 or 10 µM of erlotinib (30 min pretreatment) for 6 h, as detected by 
RT-qPCR and normalized to GBM6 control. (C) Activation of aPKC in U251/EGFR cells after 100 
ng/mL EGF treatment for the indicated times. Total aPKC is shown as loading control. (D) 
Expression of indicated genes in U251/EGFR cells, U251/EGFR cells treated with 10 µM of 
erlotinib (30 min pretreatment) or in U251/EGFR cells treated with aPKC siRNA, upon treatment 
with 100 ng/mL EGF treatment for 6 h, as detected by RT-qPCR and normalized to U251/EGFR 
control. (E) Activation of aPKC in U251/EGFR cells after 48 h of transfection with vector alone or 
active Ras (H-RasV12), active PI3K (CAAXp110), or active Src (v-Src). Total aPKC is shown as 
loading control. Data are presented as representative images or as mean ± SEM of at least 3 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3.3.  Myeloid cells, paracrine TNFα and NF-κB signature are detected in GBM and 
favor progression. (A) Representative images showing increased CD68+ in GBM tissue in 
comparison to non-tumor brain. (B) Representative FACS analysis (top) and percentage of 
CD11b+ in GBM (bottom, n=3). (C) Representative images showing increased TNFα staining in 
GBM tissue in comparison to non-tumor brain. (D) NF-κB target gene profiling of primary human 
GBM cells from two independent patients vs. normal human astrocytes, as detected by RT-qPCR 
array. Gene expression of GBM cells was normalized to the gene expression in astrocytes. (E) 
Expression of NF-κB target genes in acutely isolated tissue from the side of NOD/SCID mouse 
brain bearing GBM6 tumors in comparison to contralateral, non-tumor bearing brain as detected 
by RT-qPCR. (F) Kaplan-Meier survival curves of wildtype (WT) and TNFα-/- mice bearing GL261 
intracranial xenografts (p =< 0.0001). 
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Figure 3.4. Myeloid cell-derived TNFα promotes GBM proliferation, invasion and EGFR 
kinase inhibitor resistance and correlates with aPKC activation. (A) Concentration of TNFα 
in conditioned media from monocytes, GBM6 cells, or GBM6 cells co-cultured with monocytes, as 
detected by ELISA. (B) Representative FACS analysis and (C) percentage (%) of EdU 
incorporation in GBM6 cells alone, GBM6 co-culture with monocytes in the presence of 100 
ng/mL monoclonal anti-human-TNFα antibody or an isotype control at 24 h. (D) Invasion Indices 
of GBM6 plus monocytes in the presence of 100 ng/mL monoclonal anti-human-TNFα antibody or 
isotype control. (E) Representative FACS histograms and (F) mean fluorescence intensity (MFI) 
of aPKC Thr560 phosphorylation in GBM6 cells alone, upon co-culture with monocytes in the 
presence of an isotype control antibody or upon co-culture with monocytes in the presence of 
monoclonal anti-human-TNFα antibody.  
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Figure 3.4, cont. (G) Representative FACS analysis and (H) percentage (%) of EdU 
incorporation in GBM6 cells alone, or in the presence of 10 µM erlotinib alone or together with 10 
ng/mL TNFα at 24 h. (I) Invasion indices of GBM6 alone, plus 10 µM erlotinib and plus 10 µM 
erlotinib and 10 ng/mL TNFα. (J) Representative FACS histograms of EGFR Tyr1086 
phosphorylation (left) and aPKC Thr560 phosphorylation (right) in GBM6 cells alone, or in the 
presence of 10 µM erlotinib alone or together with 10 ng/mL TNFα. Data are presented as 
representative individual samples or as mean ± SEM of at least 3 independent samples per 
group. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3.5. TNFα-induced NF-κB signaling in GBM is dependent on aPKC. (A) 
Representative FACS histograms of aPKC Thr560 phosphorylation (left) and NF-κB p65 Ser536 
phosphorylation (right) at the indicated times in GBM6 cells or GBM6 cells treated with 10 ng/mL 
TNFα. (B) Expression of NF-κB target genes in GBM6 cells upon treatment with 10 ng/mL TNFα 
alone or in the presence of 10 µM of PZ09 for 1 h, as detected by RT-qPCR. mRNA levels were 
normalized to GBM6 control. (C) FACS analysis of phosphoSer536 p65 in GBM6 cells left 
untreated or treated with 10 ng/mL TNFα for 1 h in the presence or absence of 10 µM PZ09. 
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Figure 3.5, cont. (D) Activation of aPKC in U251/EGFR cells treated with 10 ng/mL TNFα for the 
indicated times. (E) Expression of NF-κB target genes in U251/EGFR cells or U251/EGFR cells 
treated with aPKC siRNA, upon treatment with 10 ng/mL TNFα for 1 h, as detected by RT-qPCR. 
mRNA levels were normalized to U251/EGFR control. (F) phosphoSer311 p65 immunoblots from 
U251/EGFR control or aPKC siRNA transfected cells after 10 ng/mL TNFα treatment for 1 h. 
Total p65 and β-tubulin immunoblots were used as loading controls and aPKC antibodies show 
the extent of aPKC silencing. (G) NF-κB fluorescent reporter activity following 30 min of 
incubation with 10 ng/mL TNFα in U251/EGFR cells alone or in the presence of 100 ng/mL anti-
human TNFα antibody, U251/EGFR transfected with aPKC siRNA or U251/EGFR in the 
presence of 10 µM PZ09. 
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Figure 3.5, cont. (H) Expression of NF-κB target genes in GBM6 alone, GBM6 exposed to 
monocyte co-culture media and exposed to co-culture media in the presence of 10 µM PZ09, as 
detected by RT-qPCR and normalized to GBM6 alone samples. (I) Representative FACS analysis 
and (J) percentage (%) of EdU incorporation in GBM6 cells alone or when co-cultured with 
monocytes for 24 h, with or without 10 µM PZ09. 
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Figure 3.5, cont. (K) Invasion indices of GBM6 cells alone or when co-cultured with monocytes 
with or without 10 µM PZ09. (L) Representative FACS histograms and (M) mean fluorescence 
intensity (MFI) of aPKC Thr560 phosphorylation (left) and NF-κB p65 Ser536 phosphorylation in 
GBM6 cells alone or when co-cultured with monocytes with or without 10 µM PZ09. Data are 
presented as representative images or as mean ± SEM of at least 3 independent samples per 
group. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3.6. Bimodal function of aPKC in EGF and TNFα induced-signaling in GBM cells. (A) 
Co-immunoprecipitation of Par6 with aPKC in serum-starved U251/EGFR cells after treatment 
with 100 ng/mL EGF for 6 h. aPKC was immunoprecipitated and immunoblots were sequentially 
probed with Par6 and aPKC antibodies. Total aPKC is shown as loading control. (B) Activation of 
aPKC (top panel) and co-immunoprecipitation of Par6 (bottom panel) in U87/EGFRvIII cells 
grown in serum after incubation with 10 µM AG1478, 100 nM wortmannin, 20 µM LY294002 or 10 
µM SU6656 for 30 min. Total aPKC is shown as loading control. aPKC was immunoprecipitated 
and immunoblots were sequentially probed with phospho-aPKC Thr410/403 and aPKC or Par6 
and aPKC antibodies. (C) Expression of indicated genes after treatment with 100 ng/mL EGF for 
6 h in U251/EGFR control cells or transfected with aPKC, Par6 or p62 siRNA, as determined by 
RT-qPCR. Expression was normalized to EGF treated U251/EGFR control samples. (D) 
Expression of indicated genes after treatment with 10 ng/mL TNFα for 1 h in U251/EGFR control 
cells or transfected with aPKC, Par6 or p62 siRNA, as determined by RT-qPCR. Expression was 
normalized to TNFα treated U251/EGFR control samples.  
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Figure 3.6, cont. (E) Representative images showing the co-localization of aPKC and Par6 with 
phalloidin at the lamellipodia after EGF stimulation for 6 h in U251/EGFR cells (white arrows, left 
and middle panels), and co-localization of aPKC and p62 in the intracellular compartment after 
TNFα treatment for 1 h (white arrows, right panel). Some aPKC was detectable at the 
lamellipodia of the cells (grey arrow). (F) Expression of indicated genes in U251/EGFR cells 48 h 
after myr-aPKCζ transfection, as determined by RT-qPCR. Expression was normalized to mRNA 
level in U251/EGFR. Data are presented as representative images or as mean ± SEM of at least 
3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns is non-significant. 
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Figure 3.7. Schematic illustrating aPKC-containing signaling complexes in cell 
autonomous RTK and non cell-autonomous TNFα/NF-κB oncogenic signaling in GBM. 
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Table 3.S1. 

List of primers 
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Table 3.S2.  

List of siRNA and shRNA Sequences 
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Figure 3.S1. aPKC expression in non-tumor brain and in histologically characteristic 
regions of GBM. Representative images of aPKC staining in (A) normal basal ganglia, (B) 
regions of pseudopalisading necrosis in GBM and (C) microvascular proliferation in GBM.  
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Figure 3.S2. Validation of aPKC knockdown efficiencies and PZ09 inhibitory effect. (A) 
Immunoblots of aPKC expression in U87/EGFRvIII control cells and U87/EGFRvIIIaPKCshRNA 
cells used for in vivo intracranial orthotopic xenograft experiments. (B) Immunoblots of aPKC 
expression in U251/EGFR cells transfected with luciferase or aPKC siRNA. (C) Immunoblot of 
Par6 expression in U251/EGFR cells transfected with luciferase or Par6 siRNA. (D) Graphical 
representation of knockdown efficiencies in U251/EGFR cells for each indicated genes, 
normalized to control (luciferase) siRNA, as measured by RT-qPCR. (E) Inhibition of aPKC 
activation in GBM6 with increasing concentration of PZ09 detected after aPKC 
immunoprecipitation followed by aPKC phosphoThr410/403 or phosphoThr560 immunoblotting. 
Blots were stripped and reprobed with aPKC antibodies for loading control. Data are presented as 
representative images or as mean ± SEM of at least 3 independent experiments. 
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Figure 3.S3. EGFR isoforms expression in GBM6 and EGFR phosphorylation kinetics in 
GBM6 and U251/EGFR. (A) Expression of EGFR WT and EGFRvIII in GBM6 as detected by RT-
PCR.U87EGFR (WT) and U87EGFRvIII were included as positive controls. (B) Representative 
FACS histograms of EGFR phosphorylation (p-Y1086) kinetics in GBM6. Serum was used to 
stimulate serum-starved GBM6 cells or serum-starved GBM6 cells pretreated for 30 min with 10 
µM erlotinib.(C) Representative immunoblots for EGFR phosphorylation (p-Y1086) in serum-
starved U251/EGFR cells at various time points as indicated after stimulation with 100 ng EGF 
alone or 100 ng EGF after 30 min pre-treatment with 10 µM erlotinib. Data are presented as 
representative images of at least 3 independent experiments. 
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Figure S3.4. Myeloid cells, TNFα production and NF-κB activation in mouse models of 
GBM. (A) Representative images of Iba1 staining of NOD/SCID mouse brain bearing GFP+ 
U87vIII/EGFR tumors in comparison to (B) contralateral, non-tumor bearing brain. (C) 
Representative FACS analysis of TNFα production by unstimulated human monocyte-derived 
macrophages (M0) and M0, M1, M2a or M2c stimulated with Ionomycin/PMA. (D) Expression of 
NF-κB target genes in acutely isolated tissue from the side of C57B6 mouse brain bearing GL261 
tumors in comparison to contralateral, non-tumor bearing brain as detected by RT-qPCR. Data 
are presented as representative images or as mean ± SEM of at least 3 independent 
experiments. 
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Figure 3.S5. TNFα is produced by myeloid cells when in contact with GBM cells. (A) 
Representative FACS analysis and (B) mean fluorescence intensity (MFI) of TNFα expression in 
CD11b+ human monocytes upon culture with GBM6 cells. (C) TNFα concentration as measured 
by ELISA in conditioned media from GBM6 cells alone, THP1 cells alone, or indicated cells upon 
co-culture. (D) Representative FACS analysis of TNFα from undifferentiated or differentiated 
THP1 cells upon culture with or without GBM6 cells expressing GFP. (E) TNFα concentration as 
measured by ELISA in conditioned media from GBM6 cells, monocytes, GBM6 co-cultured with 
monocytes alone or in the presence of 100 ng/mL of TNFα neutralizing antibody. Data are 
presented as representative plots or as mean ± SEM of at least 3 independent experiments. *p < 
0.01, ***p < 0.001. 
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Figure 3.S6. Human myeloid cell-derived TNFα contributes to increased GBM proliferation 
and invasion. (A) Proliferation of GBM6 cells upon culture with differentiated THP1 cells in the 
presence of isotype control or neutralizing monoclonal anti-TNFα antibody and normalized to the 
proliferation of GBM6 alone. (B) Invasion indices of GBM6 cells upon culture with differentiated 
THP1 cells in the presence of isotype control or neutralizing monoclonal anti-TNFα antibody and 
normalized to invasion index of GBM6 cells alone. (C) Proliferation of U87/EGFRvIII cells upon 
culture with differentiated THP1 cells and normalized to control. (D) Invasion indices of U87/ 
EGFRvIII cells upon culture with differentiated THP1 cells and normalized to control. Data are 
presented as mean ± SEM of at least 3 independent experiments. *p < 0.05, **p < 0.01,  
***p <0.001, ns is non-significant. 
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Figure 3.S7. Murine myeloid cell-derived TNFα contributes to increased GBM proliferation 
and invasion. (A) TNFα concentration as measured by ELISA in culture media of GL261 cells 
alone, primary mouse macrophages alone, or GL261 cells upon culture with primary mouse 
macrophages. (B) Representative FACS analysis (left panel) and percentage (%, right panel) of 
EdU incorporation in GL261 cells upon culture with primary mouse macrophages. (C) Invasion 
index of GL261 cells upon culture with primary mouse macrophages. *p < 0.05. 
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Figure 3.S8. Phosphorylation of aPKC precedes phosphorylation of p65. (A) Representative 
FACS histograms of aPKC Thr560 (left) and NF-κB p65 Ser536 (right) phosphorylation at the 
indicated times in U251 cells alone and upon stimulation with 10 ng/mL TNFα. (B) Representative 
FACS histograms of aPKC Thr560 (left) and NF-κB p65 Ser536 (right) phosphorylation in GBM6 
cells alone and upon coculture with monocytes at the indicated time points. Data are presented 
as representative histograms of at least 3 independent experiments. 
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Figure 3.S9. TNFα induced IκΒα degradation is not affected by aPKC silencing. Immunoblot 
of IκBα in control U251/EGFR (controlsiRNA) cells or U251/EGFR cells in which aPKC 
expression has been silenced (aPKCsiRNA) after 10 ng/mL TNFα treatment for the indicated 
times. β-tubulin blotting was used for loading control. 
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Figure 3.S10. Activation of aPKC and induced NF-κB gene signature in GBM cells upon 
coculture with myeloid cells. (A) GBM6 cells were grown on the bottom compartment of a 
transwell culture system and GBM6 together with differentiated THP1 cells were co-cultured on 
the top for the indicated times. Active aPKC in GBM6 from the bottom compartment at the 
indicated times was detected after aPKC immunoprecipitation followed by aPKC 
phosphoThr410/403 immunoblotting. Total aPKC is shown as loading control. (B) Expression of 
indicated genes in GBM6 cells and (C) U87/EGFRvIII cells upon culture with differentiated THP1 
cells for 24 h as measured by RT-qPCR. GBM6 cells or U87/EGFRvIII cells were grown on the 
bottom compartment of a transwell culture system and GBM6 or U87/EGFRvIII cells together with 
differentiated THP1 cells were co-cultured on the top for the indicated times. Data are presented 
as representative images or as mean ± SEM of at least 3 independent experiments. 
  



 

124 

 
Figure 3.S11. Myeloid cell-induction of GBM proliferation and invasion is dependent on 
aPKC . (A) Proliferation (percentage) of GBM6 cells upon culture with THP1 cells in the presence 
or absence of 10 µM PZ09. (B) Invasion indices of GBM6 cells upon culture with THP1 cells in 
the presence or absence of 10 µM PZ09. (C) Proliferation (percentage) of U87/EGFRvIII cells or 
U87/EGFRvIII-aPKCshRNA cells upon culture with differentiated THP1 cells. (D) Invasion indices 
of U87/EGFRvIII cells or U87/EGFRvIII-aPKCshRNA cells upon culture with differentiated THP1 
cells. Data are presented as mean ± SEM of at least 3 independent experiments. *p < 0.05, **p < 
0.01, ***p < 0.001. 
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Figure 3.S12. Erlotinib, but not aPKC inhibition, suppresses EGFR phosphorylation. (A) 
Immunoblots of EGFR phosphorylation in U251/EGFR cells alone (control), upon incubation with 
10 µM concentration of erlotinib, in U251/EGFR cells in which aPKC expression has been 
silenced (aPKCsiRNA) or upon incubation with 10 µM of PZ09. Total EGFR was used as a 
loading control. (B) Immunoblots of aPKC phosphorylation and total aPKC after 
immunoprecipitation (I.P.) in U251/EGFR cells treated as in A (top panels). Immunoblots of ERK 
phosphorylation and total ERK in U251/EGFR cells treated as in A (bottom panels). (C) 
Immunoblots of EGFR phosphorylation in GBM6 cells alone (control), upon incubation with 10 µM 
of erlotinib or 10 µM of PZ09. Total EGFR was used as a loading control. (D) Immunoblots of 
aPKC phosphorylation and total aPKC after immunoprecipitation (I.P.) in GBM6 cells treated as in 
C. Data are presented as representative blots of at least 3 independent experiments. 
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Figure 3.S13. Induction of distinct sets of genes by EGF and TNFα signaling in GBM cells. 
(A) Expression of indicated genes in U251/EGFR cells treated with 100 ng/mL EGF for 6 h or (B) 
10 ng/mL TNFα for 1 h, as detected by RT-qPCR. (C) Expression of indicated genes in 
U251/EGFR cells treated with 100 ng/mL EGF for 6 h or (D) 10 ng/mL TNFα for 1 h with or 
without 10 µM U0126, as detected by RT-qPCR. (E) Expression of indicated genes in 
U251/EGFR cells transduced with IκBαM virus and treated with 100 ng/mL EGF for 6 h or (F) 10 
ng/mL TNFα for 1 h. Data are presented as mean ± SEM of at least 3 independent experiments. 
*p < 0.05, **p <0.01, ***p < 0.001, ns is non-significant. 
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Figure 3.S14. Validation of EGFR, AKT and Src inhibition in U87/EGFRvIII. (A) Immunoblots 
of phospho-EGFR, total EGFR, phospho-ERK and total ERK in cell lysates from U87/EGFRvIII 
control or after incubation with 10 µM of erlotinib or 10 µM of AG1478 for 30 min. (B) 
Immunoblots of phospho-AKT and total AKT in cell lysates from U87/EGFRvIII control or after 
incubation with 20 µM of LY294002 for 30 min. (C) Immunoblots of phospho-Src and total Src in 
cell lysates from U87/EGFRvIII control or after incubation with 10 µM of SU6656 for 30 min. Data 
are presented as representative blots of at least 3 independent experiments. 
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Figure 3.S15. PRKCI is the predominant GBM-associated isoform of aPKC. (A) Relative 
expression of aPKCι (PRKCI) and aPKCζ (PRKCZ) in patient-derived xenografts (GBM8, 
GBM10, GBM12, GBM14) and GBM cell lines (SF767, SNB19, T98G, U251, U373) as detected 
by RT-qPCR using isoform specific primers. Relative expression levels of the isoforms 
normalized to PRKCI are shown. (B) Expression of aPKCι and aPKCζ as detected by 
immunoblotting using isoform specific antibodies. Total aPKC was immunoprecipitated and 
probed with isoform specific antibodies. (C) Validation of isoform specific antibodies on HEK293 
cells expressing aPKC-GFP fusion protein as detected by western blotting using total aPKC 
antibody and isoform specific aPKC antibodies. (D) Relative expression of aPKCι in the indicated 
cells as detected by RT-qPCR using isoform-specific primers and normalized to human 
astrocytes. (E) Expression of total aPKC as detected by immunoblotting in the indicated cells. 
Tubulin is shown as loading control. The numbers below each lane indicate the relative 
expression of aPKC in the respective cell type normalized to its expression in human astrocytes. 
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CHAPTER 4 

DISCUSSION AND IMPLICATIONS 

mTOR Signaling in GBM 

Signaling pathways rarely operate in isolation. Although Chapter 2 and Chapter 3 

describe seemingly separate signaling pathways, evidence in the literature exists of the shared 

association and cross-talk between the signaling components. For example, mTOR signaling in 

GBM has been well characterized, given that mTOR is a downstream component of the highly 

mutated PI3K/AKT pathway (Akhavan, Cloughesy, & Mischel, 2010; Q.-W. Fan et al., 2009; Hu et 

al., 2005). Fan et al (2009) showed that mTOR phosphorylation and activation was directly 

correlated with EGFR abundance in PTEN wild-type GBMs and that phosphorylated mTOR could 

be used as a marker of EGFR inhibition (Q.-W. Fan et al., 2009). Another study showed that 

mTOR was required for the survival of GBM cells as inhibition of mTOR led to their apoptosis (Hu 

et al., 2005), Furthermore, several in-vivo mouse studies have showed the efficacy of mTOR 

inhibition for GBM with various mTOR inhibitors (Eshleman et al., 2002; Prasad et al., 2011). 

After showing successful inhibition of the PI3K/mTOR signaling pathway in GBM cells in-vitro, 

Prasad et al (2011) treated a mouse model of GBM with XL765, a dual mTOR and PI3K inhibitor. 

While control mice succumbed to the tumor by day 55, on average, mice treated with XL765 

survived on average 13 days longer (p=0.05).  Furthermore, although TMZ alone effectively 

increased the survival of these mice (p=0.001), the additive effect of combining XL765 with TMZ 

in these mice was also significant (p<0.001). Using rapamycin, Eshleman et al (2002) found a 

reduction of GBM cell proliferation in-vivo as well as increased efficacy to radiation therapy with 

rapamycin treatment in mice with GBM flank xenografts (Eshleman et al., 2002). Interestingly, in 

GBM stem-like cells (described below), Sunayama et al (2010) found that treatment with 

rapamycin led to a reduction in sphere formation and the decreased transcription of stem-like 

markers, indicating a change of cellular identity with rapamycin treatment (Sunayama et al., 

2010).  Furthermore, treatment of these cells with NVP-BEZ235, a dual rapamycin and a PI3K 
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inhibitor, led to the increased expression of differentiation markers, as well as a significant 

reduction in the tumorigenicity of the cells (Sunayama et al., 2010).  Given the potent tumorigenic 

properties of these stem-like cells in GBM and the hypothesis that they are capable of populating 

new tumors (see below), finding an effective therapeutic which targets their signaling cascades 

directly may prove to efficacious to human patients.  

A recent study published in the journal Science examined the differences in genetic 

mutations between initial low-grade glioma samples and recurrent glioma arising in the same 

patient (B. E. Johnson et al., 2014).  As described in the Introduction to Chapter 3, low-grade 

gliomas can recur with the same pathological grade, or can acquire new mutations and recur as a 

high-grade glioma (Westphal & Lamszus, 2011).  Over half of the TMZ-treated initial low-grade 

glioma patients whose tumor recurred as high-grade experienced new oncogenic mutations in the 

mTOR pathway (B. E. Johnson et al., 2014).  Specifically, the authors identified a TMZ-

associated mutation in PIK3CA in which glutamic acid is subsitutited by lysine at residue 542 was 

found to hyperactivate AKT and lead to mTOR activation and oncogenesis (B. E. Johnson et al., 

2014). Tumors which recurred as a grade IV GBM recurred with a heterozygous loss or a loss of 

function mutation in PTEN, while those recurring as grade II or III did not (B. E. Johnson et al., 

2014). Another low-grade glioma treated with TMZ recurred with a mutation in the MTOR gene 

itself. This mutation was a phenylalanine subsitution for a serine at 2215 (MTOR S2215F) and 

resulted in constitutive activation of mTOR. Sections of the tumor which immunostained strongly 

for mTORC1 showed increased Ki-67 staining, a proliferative marker described in the Introduction 

to Chapter 2. Importantly, the authors note that none of the low-grade recurrences displayed new 

mutations in the mTOR pathway, thus indicating the importance of this pathway as a possible 

driver of malignancy.   

Rapamycin, among other mTOR inhibitors, have not only been used in animal models 

and in-vitro on GBM cells, they have additionally been used in clinical studies to treat GBM 

patients (Cloughesy et al., 2008; Doherty et al., 2006; Galanis et al., 2005; Kreisl et al., 2009; 
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Prasad et al., 2011; Sami & Karsy, 2013). However, it should be noted that conflicting data exists 

in these studies. For instance, in 2005, a phase II study was conducted on 65 GBM patients who 

were treated with temsirolimus (CCI-779), a small molecule inhibitor of mTOR (Galanis et al., 

2005).  36% of treated patients showed radiographic improvement and experienced a longer time 

to progression than non-treated patients (Galanis et al., 2005).  The authors conclude that 

patients whose tumors express a high level of phosphorylated p70s6 kinase, a downstream 

effector of mTOR, are more likely to benefit from mTOR inhibition, and this may account for the 

lack of response in other non-treated GBM patients from this study (Galanis et al., 2005).  

Furthermore, patients were treated only weekly with rapamycin, and although the authors noted 

mTOR inhibition was successful, other clinical studies have since used daily rapamycin 

treatment. Enrolling only patients with a mutation in PTEN leading to reduced expression, a 

phase I neoadjuvant trial of daily rapamycin treatment was conducted in 2008 (Cloughesy et al., 

2008). This study showed that mTOR inhibition in the tumor cells was variable, although 50% of 

the patients showed a significant reduction in intratumoral Ki67 staining after 1 week of rapamycin 

treatment (Cloughesy et al., 2008). Given that rapamycin is an mTORC1 specific inhibitor, it is not 

surprising that 50% of rapamycin treated patients in this study experienced AKT activation which 

resulted in a reduced time to progression (Cloughesy et al., 2008).  This effect is likely due to the 

loss of negative feedback as mTORC1 negatively regulates the AKT pathway through 

phosphorylation of insulin receptor substrate 1 (IRS1) via S6K.  PRAS40 is a direct target of AKT 

phosphorylation and can be used as a marker of AKT activation. Patients who experienced a 

reduced time to progression had significantly increased levels of phosphor-PRAS40 (threonine 

246), indicating that in deed AKT activation correlated with lack of rapamycin efficacy (Cloughesy 

et al., 2008). While these studies reported rapamycin efficacy in GBM patients, others have failed 

to find such an effect. Another Phase II clinical study which administered weekly doses of CCI-

779 to 43 GBM patients found no evidence of efficacy (Chang et al., 2005).  Of 28 GBM patients 

treated with both an EGFR inhibitor and an mTOR inhibitor, 19% of patients showed a partial 



 

133 

response and 50% had stable disease, or a lack of tumor progression (Doherty et al., 2006). In 

another study of 22 patients treated with both an EGFR inhibitor and an mTOR inhibitor, while 

14% showed a partial response to treatment, the responses were not stable and the tumor 

eventually progressed so that only 1 patient remained progression free at 6 months (Kreisl et al., 

2009).  However, it is important to note that these studies are difficult to truly assess as most had 

small sample sizes and many other factors were not controlled, such as pretreatment with other 

modalities and genetic status of the tumors.  

In-vitro, metformin has proved promising for the treatment of GBM (Ferla, Haspinger, & 

Surmacz, 2012; Sato et al., 2012; Ucbek, Özünal, Uzun, & GepdĐremen, 2014). Treating the GBM 

cell line, T98G with metformin resulted in increased apoptosis and reduced viability (Ucbek et al., 

2014) and metformin treatment of LN18 and LN229 resulted in reduced inhibition of migration 

(Ferla et al., 2012). Furthermore, mice with intracranial xenografts that were pre-treated with 

metformin in-vitro survived significantly longer than mice treated with vehicle alone, as tumor 

formation was significantly delayed in the pre-treated metformin mice (Sato et al., 2012).  In-vivo, 

mice with intracranial xenografts that were treated systemically with metformin for 5 days only 1 

day after GBM implantation survived on average 12 days longer than mice treated with vehicle 

only (Sato et al., 2012).  Furthermore, mice treated for 10 days with metformin following this 

experimental paradigm survived an additional 12 days, on average, indicating the overall 

improved survival with systemic metformin treatment was approximately 25 days (Sato et al., 

2012).  Although currently no published data is available on the use of metformin in clinical trials, 

a phase I clinical trial is currently actively recruiting patients to assess the efficacy of neoadjuvant 

metformin therapy on progression free survival in GBM patients.  Given the promising in-vitro and 

animal model studies, an increase in progression free survival is hypothesized. However, given 

the complicated signaling mechanisms, it will be important to evaluate the genetic status of the 

tumors to account for other downstream signaling possibilities.  
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Given the complexity of GBM, studies continue to investigate other inhibitors with the 

hopes of increasing the survival for GBM patients. Current therapies are simply not effective 

enough and it may be that our strategies for treatment need to change. Similar to our findings 

presented in Chapter 3, a study by Huang et al (P. H. Huang et al., 2007) found that the use of an 

EGFR kinase inhibitor coupled with the use of a c-MET kinase inhibitor was significantly more 

effective in stopping glioma progression than the use of an EGFR inhibitor alone.   Given that 

prior studies using monotherapies have failed to prolong survival in patients with GBM 

(Sathornsumetee et al., 2007), targeting multiple signaling pathways by using combinatorial 

therapies may provide better therapeutic efficacy (Bello et al., 2004; Doherty et al., 2006; 

Sathornsumetee et al., 2007; Thaker & Pollack, 2009). Indeed, the future of GBM therapies may 

lie in combinatorial targeting, especially considering the complexity of genetic mutations and 

aberrant signaling pathways in GBM.  

aPKC and mTOR Signaling in Neural Stem Cell Proliferation and Differentiation 

Signaling pathways do not occur in isolation, as evidenced by GBM, where aberrant 

mutations lead to abnormal signaling resulting in oncogenesis. Oncogenesis can be considered 

development gone awry; many of the same pathways that contribute to cancer are relevant for 

embryonic neural development and neurogenesis. Multiple signaling pathways contribute to the 

appropriate patterning of the CNS.  While mTOR signaling has been shown to play a role in this 

process (Chapter 2); aPKC signaling (Chapter 3) has also been implicated in neurogenesis.  

Furthermore,  aPKC signaling is known to associate within the mTOR signaling pathway in NSCs 

as it has been shown to be activated upon metformin treatment (J. Wang et al., 2012).  

Using shRNA against aPKCζ and aPKCι, in separate experiments, Wang et al. (2012) 

described the role of aPKC in neural stem cell proliferation and differentiation. Given that in-vivo 

aPKC is localized apically along the ventricles in embryonic neural precursors, the author’s 

electroporated the shRNAs into the cortices of E13/14 mice and found differential effects of 

aPKCζ versus aPKCι knockdown (J. Wang et al., 2012). While there was no effect on cell 



 

135 

survival, aPKCζ knockdown led to a decrease in cells in the cortical plate and an increase in cells 

which were in the intermediate zone (J. Wang et al., 2012). This was explained by a decrease in 

neurogenesis and an increase in radial precursors. The authors concluded that aPKCζ is 

essential for neurogenesis in-vitro and in-vivo as it promotes differentiation of neural precursors 

into neurons.  

Interestingly, however, knockdown of aPKCι did not have the same effect in the cortical 

precursors. Instead, knockdown of aPKCι led to an alteration in the population of precursor cells 

(J. Wang et al., 2012).  The number of Pax6+ and Sox2+ radial precursors was significantly 

decreased, while the number of Tbr2+ basal progenitors was increased (J. Wang et al., 2012). 

Therefore, while aPKCζ functions to increase neurogenesis (as knockdown of aPKCζ led to a 

reduction of newborns neurons in-vitro and in-vivo), aPKCι functions to maintain radial precursors 

in their stem-like undifferentiated state.  

In-vitro treatment with metformin of cortical precursors resulted in a significant increase in 

neurons and a decrease in Pax6+ and Sox2+ precursors (J. Wang et al., 2012). In addition, 

metformin treatment in these cells led to an increase in aPKC phosphorylation. When aPKC was 

knocked down in the neural precursors and they were treated with metformin, there was an 

inhibition of the metformin-induced increase in neurogenesis (J. Wang et al., 2012).  Furthermore, 

the authors found metformin treatment in-vitro resulted in an increase in GFAP+ astrocytes, as 

well as A2B5+ oligodendrocyte precursors (J. Wang et al., 2012). Thus, metformin signals through 

aPKC to affect both neuro and gliogenesis.  

Downstream of aPKCζ, the authors discovered a role for the CREB binding protein 

(CBP), a histone acetyltransferase that has been shown to cause Rubinstein-Taybi syndrome 

(RTS), a genetic disorder that results in cognitive dysfunction. Knockdown of CBP in-vitro and in-

vivo results in reduced neurogenesis and gliogenesis and aPKCζ phosphorylation of CBP was 

found to be an essential event in its appropriate functioning (J. Wang et al., 2010).  When aPKCζ 
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was knocked down, the authors noted a loss of CBP phosphorylation, as well as a decrease in 

neurons and glia and an increase in Pax6+ radial precursors (J. Wang et al., 2010). Furthermore, 

CBP overexpression resulted in increased gliogenesis, and knockdown of aPKCζ, but not aPKCι, 

resulted in normal gliogenesis (J. Wang et al., 2010). Therefore, an mTOR/aPKC/CBP signaling 

pathway plays an important role in embryonic gliogenesis and neurogenesis.  

SVZ Niche, Polarity and Neural Stem Cell Proliferation and Differentiation 

It should be noted that the role of aPKC in neurogenesis has not completely been 

elucidated. While these studies point to aPKC playing an important role downstream of mTOR 

signaling, another study found no effect of aPKC knockout on neurogenesis in an mouse (Imai et 

al., 2006).  In this study, control brains expressed BrdU+ neuroepithelial cells in the middle layer 

of the ventricular zone, while aPKCι
-/-;Nestin-Cre+ brains had BrdU+ neuroepithelial cells 

dispersed throughout the ventricular zone, indicating that interkenetic nuclear migration of 

neuroepithelial cells was altered by the loss of aPKCι. Interestingly, the authors found that the 

apical cellular process of these cells was detached from the ventricular surface, while basal 

processes remained attached (Imai et al., 2006).  Given the importance of polarity signaling in 

proper neural development (discussed below) and given the importance of aPKC in mTOR-

mediated regulation of neurogenesis (discussed above), the conclusion of the authors that 

regulation of neurogenesis is independent of aPKCι and/or adherens junctions warrants further 

study (Imai et al., 2006).  However, there are several factors which may account for their lack of 

response. For instance, the conditional nestin-cre mouse used in this study is expressed at E15; 

which may be too late to affect the appropriate progenitor type which relies on aPKC signaling 

and polarity signaling for proper differentiation. It has been shown that outer radial glia cells 

(oRG; nestin+,Sox2+, Pax6+, Tbr2-), shown to be present at E14.5 do not make contact with the 

ventricle, only contain a basal process, and do not undergo interkinetic nuclear migration during 

division (X. Wang, Tsai, LaMonica, & Kriegstein, 2011).  Radial glial cells, however, as well as 
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intermediate progenitor cells, have been shown to make apical contact with the ventricle 

(Mirzadeh, Merkle, Soriano-Navarro, Garcia-Verdugo, & Alvarez-Buylla, 2008). Furthermore, it 

has been shown that Tbr2+ intermediate progenitors in the E14.5 cortex do not express nestin 

(Englund et al., 2005); thus, it is possible that the use of a different conditional cre to target other 

neural progenitor cells may have a significant effect despite these results.  In addition, there may 

be significant compensatory mechanisms activated in the aPKCι
-/-;Nestin-Cre+ mice, and this was 

not investigated.   

One important finding from this report which was not emphasized was a loss of the 

ependymal layer by p3 in the aPKCι
-/-;Nestin-Cre+ mice and the eventual development of 

hydrocephalus leading to brain malformations and death (Imai et al., 2006). While the authors 

state the presence of a well maintained neuronal structure in the knockout mice, they do note the 

absence of an ependymal layer. The ependymal layer has been shown to be an important 

regulator of neurogenesis through its robust expression of Noggin, a strong antagonist of BMPs, 

which are expressed by neural stem cells (Lim et al., 2000). Ectopic expression of Noggin 

promoted neuronal differentiation of neural stem cells and the authors conclude that Noggin 

protein derived from the ependymal cells in vivo aids in creating a neurogenic environment in the 

adult SVZ (Lim et al., 2000). Therefore, the results of this study showing that aPKCι
-/-;Nestin-Cre+  

mice did not have an effect on the proliferation or differentiation in the embryonic brain are 

surprising as many factors of the SVZ micro-environment, including the cytoarchitecture of the 

cells and the existence of ependymal cells has shown to be essential in appropriate embryonic 

development as well as adult neurogenesis.  

In the adult, the SVZ has been classified as a neurogenic niche due to its structure and 

microenvironment which contains signals to regulate stem cell behavior (Alvarez-Buylla & Lim, 

2004). The stem cell niche is made up of membrane bound molecules, such as adhesion junction 

proteins, extracellular matrix, and diffusible factors. These factors have been shown to be 
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instrumental in regulating the stemness of the cells, as transplantation studies have shown that 

the cells require this specialized niche in order to proliferate and differentiate normally (Gage, 

2002). In addition to this micro-environmental niche displaying polarity, the type-B cells 

themselves, like neuroepithelial cells, have a polarized cell body, with a contact maintained at the 

basal lamina and a process extending to the ventricular surface (Chapter 2). Adult type-B cells 

have been shown to contain an apical process allowing direct contact to the ventricle, through the 

ependymal layer (Mirzadeh et al., 2008). In addition, the cells were shown to extend a basal 

process which extends on to vasculature (Mirzadeh et al., 2008). Furthermore, earlier work 

showed that some B cells residing in the subventricular zone (SVZ) have part of their membrane 

contacting the ventricle and that upon stimulation of proliferation, the number of apical contacts at 

the ventricle increases (Fiona Doetsch, Caille, Lim, García-Verdugo, & Alvarez-Buylla, 1999). 

Studies have shown this organization to be instructive to the fate of B cells, as this polarity allows 

for the regulation of the tightly controlled process of interkinetic nuclear migration. For example, 

Shen, et al (2008) showed that infusion of GoH3, an a6 integrin-blocking antibody into the lateral 

ventricle of adult mice, which results in loss of B-cell adhesion to the blood vessels, led to a 

33.6% increase in proliferation of SVZ lineage cells (Shen et al., 2008).  

This microenvironmental polar structure of the SVZ interestingly mirrors the polarity of the 

embryonic stem cells, for which the role of polarity in neural stem cell proliferation and 

differentiation has been better examined.  Data has shown the importance of apical-basal polarity 

and aPKC/Par proteins for proliferation and differentiation in Caenorhabditis elegans and 

Drosophila melongaster. The evolutionarily conserved polarity genes were first discovered in 

studies of C. elegans and D. melanogaster. Work on early embryonic patterning in C. elegans 

identified the genes as responsible for the development of the anterior-posterior polarity axis.  

Genetic manipulation of these genes in the 1-cell embryo led to dramatic polarity defects and loss 

of the polarity axis (Bowerman & Shelton, 1999; Kemphues & Strome, 1997; Tabuse et al., 1998). 

C. elegans embryos which lack aPKC are embryonic lethal due to the effect on polarity (Tabuse 
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et al., 1998), which leads to defects in embryonic cell division. Similar phenotypes resulted from 

experiments with Par-3 (Tabuse et al., 1998) and with Par-6(Hung & Kemphues, 1999; Watts et 

al., 1996; Watts, Morton, Bestman, & Kemphues, 2000). 

It has previously been shown that the aPKC/Par3/Par6 complex is present during E12-

E14 stage at the apical surface of the mouse ventricular zone, and its expression is reduced in 

E16 (Costa, Wen, Lepier, Schroeder, & Götz, 2008). Along with the reduction of the polarity 

protein expression by E16, there is similarly a reduction in the pool of progenitors. Using shRNA, 

Costa et al. (2008) knocked-down expression of Par3 by in-utero injection at E12-E14 and found 

a lack of cell proliferation and an early progenitor cell cycle exit. This mirrors what is seen post-

E16, when Par3 expression is reduced and there is a considerable reduction in cell proliferation. 

Bultje, et al. (2009) provided evidence that Par-3 plays an important role for radial glia 

differentiation and proliferation during embryonic development (Bultje et al., 2009). In radial glial 

progenitors, Par-3 was found to be localized at the lateral membrane, specifically at the 

ventricular endfeet during interphase, but was delocalized as the cell cycle progressed. To disrupt 

the polarity of the glial progenitors, the authors used both removal of Par-3 and ectopic 

expression, which similarly led to a decrease in asymmetric divisions. Removal of Par-3, led to an 

increase in production of neurons; while the ectopic expression of Par-3, led to an increase in the 

production of radial glia progenitors (Bultje et al., 2009). More recently, Kim et al. (2010) found 

that disruption of the apical complex via Pals1, an evolutionarily conserved scaffold protein which 

can bind to the ternary complex, led to premature cell cycle exit and excessive neuron production 

(S. Kim et al., 2010). Similarly, Loulier, et al. (2009) examined the role of the NSC adhesion 

complex at the apical surface by disrupting the attachment of the apical process from the 

ventricular surface, using a B1 integrin antibody during important embryonic neurogenic periods 

(E12-E15) (Loulier et al., 2009). Interestingly, they found an increase in NSC proliferation and 

alteration in the cleavage planes, indicating an increase in asymmetric division (Loulier et al., 

2009).  In the developing chick embryo, Ghosh, et al. (2008) found aPKC to localize at the apical 
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membrane of proliferating neural stem cells, but not postmitotic cells. In addition, expression of 

myr-aPKC, a constitutive active construct, led to increased proliferation of the cells (Ghosh et al., 

2008b). Also in chick embryos, Das & Storey (2014) found aPKC localization to be restricted to 

an apical particle of Tuj1+ newborn neurons (Das & Storey, 2014).  The cell retracts this apical 

process, losing its polarity to mediate membrane detachment from the ventricular surface.  This 

process was also found to occur in Tuj1+ cells of the mouse spinal cord.  Cells which maintain 

their apical contact were found to express early neuronal markers, but not late neuronal markers 

or post-mitotic cell markers, indicating that cells with an aPKC containing apical protrusion are not 

post-mitotic, or have not exited the cell cycle (Das & Storey, 2014).  In addition, it has been 

previously shown that inheritance of polarity proteins determines asymmetric vs. symmetric 

division in neuroepithelial cells of E10-E12.5 mouse. In neuroepithelial cells that divided and 

inherited unequal distribution of the apical membrane, the daughter cell which inherited the apical 

membrane maintained its’ stem cell fate, while the daughter cell who did not receive the apical 

membrane became a neuron (Kosodo et al., 2004). Therefore, this overwhelming evidence points 

to the microenvironmental polar niche being instructive for the proliferation and differentiation of 

NSC in embryonic and adult SVZ.   

TNF-αααα and EGFR Signaling in Neural Stem Cell Proliferation and Differentiation 

Interestingly, microglia-derived-TNF-α and/or exogenous TNF-α has been shown to have 

an effect on NSC proliferation, although the evidence is contradictory (Cacci, Ajmone‐Cat, Anelli, 

Biagioni, & Minghetti, 2008; Iosif et al., 2006; Monje, Toda, & Palmer, 2003; Rubio-Araiz et al., 

2008; Widera, Mikenberg, Elvers, Kaltschmidt, & Kaltschmidt, 2006).  For instance, incubation of 

NSCs in conditioned media from acute activated microglia, which expressed increased TNF-α, 

among other cytokines such as IL-6, IL-1β and IL-1α, resulted in reduction of NSC survival, 

increased glial differentiation and prevention of neuronal differentiation (Cacci et al., 2008).  In 

addition, another study found that mice which lack TNFR1 or TNFR2 had increased proliferation 
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in the SGZ, indicating that signaling through TNFR negatively regulates NSC proliferation (Iosif et 

al., 2006). However, through upregulation of cyclin D1, TNF-α treated NSCs displayed a 

significant increase in NSC proliferation as evidenced by BrdU incorporation and increased 

neurosphere volume (Widera, Mikenberg, Elvers, et al., 2006).  Furthermore, this effect was 

attenuated by disrupting NF-κΒ activity through IKK-β knockdown and by use of the NF-κΒ super-

repressor IκΒα (Widera, Mikenberg, Elvers, et al., 2006; Widera, Mikenberg, Kaltschmidt, & 

Kaltschmidt, 2006).  The role of NF-κΒ in neural stem cell proliferation and differentiation remains 

to be elucidated, however, studies in human embryonic stem cells showing NF-κΒ activation in 

undifferentiated cells and down-regulation in differentiated cells points to a potential role for NF-

κΒ in stem-like maintenance (Armstrong et al., 2006; Dreesen & Brivanlou, 2007).  

Studies also suggest EGFR signaling is an important determinant in NSC proliferation 

and differentiation (Ferron et al., 2010; Y. Sun, Goderie, & Temple, 2005). For instance, infusion 

of EGF into the lateral ventricles results in a highly significant expansion of proliferation of NSC in 

the SVZ (Craig et al., 1996). As the cells divide asymmetrically, unequal inheritance of EGFR 

leads to a differential ability to proliferate and differentiate, as neural stem cells with higher EGFR 

levels form 2-fold more neurospheres than those with low EGFR levels (Ferron et al., 2010; Y. 

Sun et al., 2005).  In addition, it has been shown that both wtEGFR over-expression and 

EGFRvIII expression in postnatal NSCs leads to unrestricted proliferation and increased survival 

(Ayuso-Sacido et al., 2010). EGFR is frequently over-expressed in GBM and EGFRvIII is a 

common mutation which results in a truncated extracellular domain, creating a ligand-

independent constitutively active EGFR kinase. Complimentary to an increase in proliferation, 

postnatal NSCs with wtEGFR and EGFRVIII expression in subjected to differentiation conditions, 

fail to differentiate, as none of the cells express Tuj1 7 days post-differentiation, compared to 25% 

of control cells (Ayuso-Sacido et al., 2010). Therefore, EGFR is an important determinant in the 
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proliferation and differentiation of neural stem cells in addition to its role in oncogenic signaling 

presented in Chapter 3.  

EGFR Signaling and NF-κΒκΒκΒκΒ 

It is important to note that although our studies in GBM (Chapter 3) examined 2 distinct 

signaling pathways both activating aPKC, recent studies have provided evidence of cross-talk 

between the intracellular EGFR signaling pathway and activation of NF-κΒ signaling in GBM 

(Pianetti, Arsura, Romieu-Mourez, Coffey, & Sonenshein, 2001; Tanaka et al., 2011; Wu, Abe, 

Inoue, Fujiki, & Kobayashi, 2004). For instance, in 2012, Bonavia et al (R. Bonavia et al., 2012)  

found that glioma cells expressing the constitutive active mutant EGFRVIII displayed increased 

angiogenesis and oncogenicity through activation of NF-κΒ, signaling through the PI3K/AKT 

pathway. Similarly, Wu et al (Wu et al., 2004) found that EGFRVIII expressing glioma cells were 

less oncogenic when NF-κΒ activity was blocked using IκΒαM, the NF-κΒ super-repressor. 

Interestingly, a report by Tanaka et al found that mTORC2 was stimulated downstream of 

EGFRVIII in glioma cells and that this led to NF-κΒ activation (Tanaka et al., 2011). Furthermore, 

they found that this mTORC2/NF-κΒ signaling pathway was responsible for glioma cell 

chemotherapy resistance (Tanaka et al., 2011).  

As described in Chapter 3, an analysis of human GBM samples led to the discovery of a 

frequent deletion of NFKBIA, the negative inhibitor of NF-κΒ (M. Bredel et al., 2011). Interestingly, 

this deletion is mutually exclusive with EGFR amplification as 52.5% of tumors had either 

amplification of EGFR or a deletion of NFKBIA, while only 5% had both. The reexpression of 

NFKBIA in NFKBIA-deleted-GBM led to reduced proliferation, migration, colony formation, as well 

as increased sensitivity to TMZ treatment, indicative of the tumor-suppressor activity of NFKBIA, 

as it acts to inhibit NF-κΒ activity. In GBM cells with amplification of EGFR, expression of NFKBIA 

reduced cell viability and decreased oncogenesis. However, in cells with a normal dose of EGFR, 

this effect was not apparent (M. Bredel et al., 2011).  
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Although not in glioma cells, Sun & Carpenter (1998) showed that EGF activates NF-κΒ 

in A-431 carcinoma cells. Like GBM cells, these cells over-express EGFR.  They found treatment 

with EGF led to a degradation of IΚΒα, allowing NF-κΒ to enter the nucleus (L. Sun & Carpenter, 

1998). In prostate cancer cells which express EGFR, Le Page et al. (2005) showed EGF induced 

phosphorylation of IΚΒα on serine 32/36, leading to IΚΒα degradation and NF-κΒ activation (Le 

Page, Koumakpayi, Lessard, Mes‐Masson, & Saad, 2005). Furthermore, the expression of a 

dominant negative IΚΒα Serine32/36 was able to block NF-κΒ activation downstream of EGFR, 

showing the direct association of EGFR and NF-κΒ activation.  

Similar to our work presented in Chapter 3, a recent study found EGF treatment of GBM 

cells to lead to up-regulation of vascular cell adhesion molecule-1 (VCAM-1) (Zheng, Yang, 

Aldape, He, & Lu, 2013).  However, the authors found this to be via a different signaling 

mechanism than we proposed. Their results showed VCAM-1 was up-regulated after EGF 

treatment in a PKCε and NF-κΒ dependent manner (Zheng et al., 2013).   Furthermore, the levels 

of EGFR activation in GBM samples was correlated with macrophage infiltration and EGF 

stimulation led to increased macrophage binding to GBM cells (Zheng et al., 2013).  This 

increased binding was inhibited when the cells were incubated in an EGFR inhibitor.  In addition, 

EGF-induced VCAM-1 up-regulation was inhibited in the presence of an NF-κΒ inhibitor or PKCε 

shRNA (Zheng et al., 2013), indicating that EGF is signaling through PKCε to activate NF-κΒ  

transcription of VCAM-1 in GBM cells.  VCAM-1 expression was found to be crucial for 

macrophage to GBM cell binding.  Similar to our results in chapter 3, this increased binding led to 

an increase in GBM cell invasion and VCAM-1 shRNA was able to block the increase in invasion 

(Zheng et al., 2013).  While this study elucidated one potential mechanism for EGF induced NF-

kB activation, other studies have discovered alternative signaling mechanisms as well.  

For instance, one study hypothesized the mechanism of EGFR induced NF-κΒ activation 

to be similar to TNFR induced NF-κΒ activation (Habib et al., 2001). Upon TNFR activation, an 
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adaptor protein, TRADD, associates with the receptor, which then recruits RIP and TRAF2. Co-

transfection of EGFR with TRADD or Fas-associated death domain protein (FADD; an adaptor 

protein which also associates with TNFR upon activation) failed to show any association in 293 

human embryonic kidney cells (HEK; these cells are used for their ease of transfection) (Habib et 

al., 2001). However, co-transfection of EGFR with RIP resulted in a physical association; and a 

kinase-inactive mutant of EGFR was unable to bind RIP. This association was seen in both HEK 

cells as well as MDA-MB-468 breast cancer cells (Habib et al., 2001). Therefore, EGFR is 

thought to recruit RIP in order to activate NF-κΒ.  In addition, EGFR was shown to associate with 

NF-κΒ inducing kinase (NIK) (Habib et al., 2001), a kinase which integrates signals downstream 

of TNFR and upstream of NF-κΒ.  In this study, the use of a PI3K inhibitor showed no effect on 

EGF-induced NF-κΒ activation although it blocked EGF induced AKT phosphorylation (Habib et 

al., 2001); indicating that this signaling pathway does not signal through AKT.  

However, other reports have shown that TNF-α signaling can activate AKT and lead to 

NF-κΒ activation. For instance, in EGFR+ breast cancer cells, the use an EGFR antibody blocked 

NF-κΒ activation, as well as a PI3K inhibitor, and Go6976, an NF-κΒ inhibitor, as evidenced by 

an NF-κΒ DNA binding assay (Biswas, Cruz, Gansberger, & Pardee, 2000). In GBM cells 

following EGF stimulation in-vitro, an increased association between Grb2-associated binder 1 

(Gab1) and SHP-2 (a tyrosine phosphatase with 2 SH2 domains) was identified (Kapoor, Zhan, 

Johnson, & O'Rourke, 2004).  This Gab1/SHP-2 complex was shown to regulate AKT activation 

as transfection of these proteins in GBM cells led to a threefold increase in AKT activity. 

Furthermore, treatment with EGF resulted in a change in NF-κΒ electromobility shift assay 

(EMSA), indicating NF-κΒ activation via DNA binding.  Active AKT transfection led to increased 

NF-κΒ activation via an NF-κΒ luciferase assay while mutant-inactive AKT transfection resulted in 

no change (Kapoor et al., 2004).  Co-transfection of the Gab1/SHP-2 complex led to a significant 
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increase in NF-κΒ activation and an EMSA showed an increase in NF-κΒ DNA binding (Kapoor et 

al., 2004). Thus, EGFR may directly lead to NF-κΒ activation, through various mechanisms.  

While these reports may contradict the results presented in Chapter 3, it does not 

preclude them. Multiple signaling pathways cooperate to promote oncogenesis.  Furthermore, we 

found that EGF treatment in GBM cells led to an increase in TNF-α ligand transcription and TNF-

α treatment led to an increase in EGF ligand transcription. Thus, there may be a feedback loop 

which is leading to coincidental activation of multiple signaling pathways within minutes of 

stimulation and receptor activation.  While we did not investigate the activation of PKCε, it is also 

possible that other PKC family members may be associated with these signaling cascades as 

various other PKCs have been implicated in GBM pathogenesis (do Carmo et al., 2013).  

The glioma stem cell hypothesis 

 Discovering the molecular mechanisms underlying neural stem cell proliferation (as in 

Chapter 2) and differentiation may provide insight into novel therapeutics for the treatment of 

GBM.  GBM tumors are extremely heterogeneous and contain many different cell types making 

them difficult to treat. Recently, the discovery of glioma stem cells (GSCs) has shifted the GBM 

research field into studying mechanisms which control GSC proliferation (Ignatova et al., 2002; 

Singh et al., 2004). Like neural stem cells, GSCs are also capable of proliferative self-renewal 

and multipotent differentiation into neurons, astrocytes and oligodendrocytes in vitro (Ignatova et 

al., 2002). While it requires 1 million glioma cells to initiate a tumor in mice, it was found that only 

100-1,000 glioma stem cells were required to form a tumor, providing evidence regarding their 

strong proliferation capacity in vivo (Ignatova et al., 2002; J. Lee et al., 2006). In addition, GSCs 

are resistant to radiation and chemotherapy, which has led to the hypothesis that GSCs remain 

undetected in the brain during treatment, and later return to establish a new tumor (Bao et al., 

2006; Jian Chen et al., 2012; X. Gao et al., 2013; G. Liu et al., 2006; J. Wang et al., 2012).  A 

recent study elegantly described the resistant nature of GSCs by the use of transgenic mice 
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which expressed GFP in adult SVZ NSCs and GSCs. After using a chemotherapy agent to arrest 

the initial growth of a GBM model in these transgenic mice, Chen et al. (Jian Chen et al., 2012) 

found that the tumor regrowth began with GFP+ stem cells. Furthermore, upon ablation of these 

GFP+ stem cells, the authors were able to show significantly reduced tumor growth, thus 

providing evidence for the virulent nature of these GSCs.  

 What are the signaling cascades which signal to the GSC to begin proliferation? Multiple 

signals have been identified as important regulators in this process. For instance, the platelet-

derived growth factor receptor (PDGFR) signaling pathway has also been implicated in GSC 

function. Interestingly, Kim et al. (Y. Kim et al., 2012) found that while PDGFRα is expressed on a 

subset of GBM cases, PDGFRβ is preferentially expressed by GSCs. The blockade of the 

PDGFRβ signaling cascade in GSCs led to reduced proliferation, oncogenicity and invasion of 

GBM mouse models in addition to increased survival. Downstream of PDGFRβ, the authors 

found that signaling was dependent upon the transcription factor STAT3 as constitutively active 

STAT3 rescued the inhibited PDGFRβ phenotype (Y. Kim et al., 2012).  

Given the importance of polarity signaling in stem cell regulation (described above & 

Chapter 2), the possibility exists that a loss of polarity may be one of the defining characteristics 

of neural stem cell oncogenic proliferation.  Quinones-Hinojosa & Chaichana (2007) described 

the similarities between NSCs and GSCs, in that they both undergo self-renewal and multiply 

(Quiñones-Hinojosa & Chaichana, 2007).  Therefore, it can be hypothesized that the polarity 

complex may regulate the proliferation and differentiation of GSCs. Aberrant function of the 

polarity signaling pathway may directly contribute to transformation of neural stem cell into glioma 

initiating cells. However, currently no data exists on this subject although it has been 

hypothesized that the regulation of asymmetric cell division may lead to GBM (Berger, Gay, 

Pelletier, Tropel, & Wion, 2004), indicating a potential important role for cellular polarity.  
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In line with this hypothesis, Lathia et al. (2011) found asymmetric distribution of CD133 in 

GSCs (Lathia et al., 2011).  CD133 (also known as prominin-1) has been used for the last decade 

as a GSC marker despite little evidence of its signaling function (Yan, Yang, & Rich, 2013). Using 

CD133+ GSCs isolated from GBM patients, Lathia et al. (2011) found that the majority of GSCs 

underwent symmetric division in order to expand the stem cell population. However, upon growth 

factor starvation, the cells switched to asymmetric division, indicating that growth factor signaling 

may be responsible for the expansion and survival of GSCs within the tumor (Lathia et al., 2011).  

CD133 was unequally distributed in GSCs and CD133 expression leads to increased survival.  

Therefore, cells which inherit CD133 through symmetrical divisions maintain the stem population 

and experience better survival and proliferation. However, asymmetric divisions may lead to an 

increase in differentiated cell types, increasing the cellular heterogeneity of the tumor. Recently 

Wei et al. (Wei et al., 2013) showed that CD133 signals through the PI3K/AKT signaling pathway 

in GSCs. Furthermore, they showed that silencing of CD133 inhibited the PI3K/AKT pathway and 

resulted in reduced GSC proliferation and oncogenicity (Wei et al., 2013). Currently a phase I 

clinical trial is underway to evaluate the efficacy of ICT-121, a vaccine which targets CD133 (Yan 

et al., 2013). 

The Eph RTKs have also been described as regulators of GSC tumor propagation (Day 

et al., 2013). While GBM tumors are made of extremely heterogeneous cell types, cells which 

display high EphA2 RTK expression correlated with tumor propagation capacity. The silencing of 

EphA2 in these cells led to reduced GSC proliferation and oncogenicity. Similar results were 

obtained by another group studying EphA3, however, it was found to signal through the mitogen-

activated protein kinase (MAPK) cascade, a strong regulator of cell growth and proliferation (Day 

et al., 2013).  

 The discovery of signaling pathways responsible for the regulation of GSC oncogenicity 

may lead to promising new therapeutic targeting. GBM patient prognosis remains abysmal and 

new therapies are desperately needed. If researchers can identify the signaling pathway which 
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may directly contribute to the transformation of NSCs into GSCs, we may be able to increase the 

current prognosis for this disease.  

Inhibitors in GBM Clinical Trials  

 New developments are on the horizon in the treatment of GBM. The search for inhibitors 

in GBM on the NIH Clinical Trials website reveals over 300 studies.  In addition to the 

aforementioned clinical trials underway, including CD133 inhibitor, EGFR and c-MET co-

inhibition, as well as the clinical trials investigating mTOR inhibition for GBM, there are other 

inhibitors of signaling molecules being tested. For instance, a phase I clinical trial investigating 

MK-1775, an inhibitor of wee1, a tyrosine kinase is currently recruiting subjects with GBM. Wee1 

is a tyrosine kinase that has been shown to impair the G2 DNA damage checkpoint, which may 

result in increased efficacy of TMZ or other chemotherapeutic agents. Expression of wee1 in 

GBM tumors was negatively correlated with survival and treatment of GBM cells in-vitro with a 

wee1 inhibitor resulted in increased sensitivity to TMZ (Mir et al., 2010). In-vivo, mice with GBM 

intracranial xenografts which were treated with radiation showed no increase in survival. 

However, mice whose xenografted GBM cells were knocked out for wee1 showed a significant 

increase in survival and those with wee1 knock out GBM cells and radiation treatment showed a 

very significant increase in survival. Similar results were obtained using a wee1 inhibitor (Mir et 

al., 2010).  The inhibition of the kinase wee1 in GBM patients may hopefully provide better 

response to chemotherapy and radiation, resulting in increased prognoses and survival.  

 A phase II clinical trial is currently underway investigating RO4929097, a gamma-

secretase/notch signaling inhibitor. Notch signaling has been shown to maintain the stem-like 

cells of the tumor, and promote chemoresistance (Capaccione & Pine, 2013). Using a gamma-

secretase/notch inhibitor, Chen et al (2010) treated GBM-derived neurospheres in-vitro and found 

a significant reduction in cell growth and proliferation (Jie Chen et al., 2010).  In another study, 

induced expression of active notch in GSCs led to increased tumor growth, while the use of 

gamma secretase/notch inhibitors reduced GSC neurosphere growth (X. Fan et al., 2010). 
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Furthermore, implantation of GSCs pre-treated with inhibitor failed to form tumors (X. Fan et al., 

2010).  The authors found this effect to be mediated via AKT signaling, as AKT phosphorylation 

was decreased in inhibitor treated cells (X. Fan et al., 2010).  

 Another phase II study is investigating the efficacy of Dovitinib (also known as receptor 

tyrosine kinase inhibitor TKI258), an inhibitor of FGFR3, which has been shown effective in other 

solid tumors (André et al., 2013; Huynh et al., 2012).  This inhibitor may also inhibit other RTKs 

such as VEGFR, FGFR1, PDGFRA (Angevin et al., 2013), and thus may result in a significant 

blockade in oncogenic signaling.  Furthermore, given the strong reliance on RTK signaling 

pathways in GBM, a general RTK inhibitor may prove more effective than singular RTK targeting. 

In patients with PTEN-/- GBM tumors, a phase I clinical trial is investigating the use of 

Buparlisib (BKM120), a PI3K pathway inhibitor, and INC280, a c-MET receptor tyrosine kinase 

inhibitor. The use of a PI3K inhibitor in patients without PTEN should yield better clinical outcome 

than the treatment with an EGFR inhibitor, as PTEN loss downstream of EGFR results in active 

PI3K despite EGFR inhibition.  c-MET signaling has been implicated in the propagation and 

survival of GSCs specifically (Joo et al., 2012; Y. Li et al., 2011; Rath et al., 2013), and inhibition 

of c-MET has been shown to disrupt GBM pathogenesis in-vitro and in-vivo (Joo et al., 2012).  

Therefore, targeting c-MET may allow for direct targeting of GSCs, and targeting PI3K may target 

both GSCs and differentiated astrocytic GBM cells, leading to significantly reduced oncogenesis 

and increased survival.  

In patients with EGFR amplification or EGFRVIII mutation, a phase II study is assessing 

the efficacy of dacomitinib, an irreversible pan-EGFR inhibitor. This inhibitor is effective in 

preventing the transautophophorylation, and thus activation, of EGFR, HER2, and HER4, 

resulting in abrogated downstream signaling. Recently tested in those with non-small cell lung 

cancer (NSCLC), the results were unfortunately disappointing as the inhibitor failed to show any 

improvement in survival when compared to erlotinib, the EGFR inhibitor. In patients with NSCLC 

who received no benefit from chemotherapy or erlotinib treatment, dacomitinib also provided no 
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benefit. In-vitro data was recently published with dacomitinib on primary GBM cells and while the 

inhibitor did decrease phosphorylation of EGFR, it failed to have an effect on cell viability.  

However, the use of a PI3K/mTOR inhibitor in addition to dacomitinib inhibited cell proliferation in 

GBM cells with both EGFR amplification and PI3K activation through PI3K mutation or PTEN loss 

(Zhu & Shah, 2014).  This study emphasizes the importance of targeting the appropriate patients 

with the appropriate treatments.  

Multiple studies are underway targeting multiple signaling pathways in GBM including 

many others not discussed here.  By identifying the type of mutations a patient has, we can 

directly target the signaling pathways leading to oncogenic progression.  For example, if a patient 

does not have an EGFR amplified tumor, treatment with an EGFR inhibitor may not be effective. 

However, if the same patient has an activating mutation in PI3K, the use of a PI3K inhibitor may 

provide efficacious results. In addition, the identification of the GBM classification (pro-neural, 

neural, mesenchymal, classical) would be advantageous as the identification of multiple aberrant 

signaling pathways associated with each classification has been discovered. The future of GBM 

treatment, therefore, lies in personalized medicine.   

 

   

  



 

151 

REFERENCES 

Aggarwal, B. B., Schwarz, L., Hogan, M. E., & Rando, R. F. (1996). Triple helix-forming 
oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit 
TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. 
Cancer research, 56(22), 5156-5164.  

Agnihotri, S., Burrell, KE, Wolf, A, Jalali, S, Hawkins, C, Rutka, JT, Zadeh, G. . (2013). 
Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models & Novel 
Therapeutic Strategies. Arch. Immunol. Ther. Exp., 61, 25-41.  

Ahmed, S., Reynolds, B. A., & Weiss, S. (1995). BDNF enhances the differentiation but not the 
survival of CNS stem cell-derived neuronal precursors. J Neurosci, 15(8), 5765-5778.  

Akhavan, D., Cloughesy, T. F., & Mischel, P. S. (2010). mTOR signaling in glioblastoma: lessons 
learned from bench to bedside. Neuro-oncology, 12(8), 882-889.  

Akimoto, K., Takahashi, R., Moriya, S., Nishioka, N., Takayanagi, J., Kimura, K., . . . Ohno, S. 
(1996). EGF or PDGF receptors activate atypical PKClambda through 
phosphatidylinositol 3-kinase. The EMBO journal, 15(4), 788-798.  

Alcedo, J., & Kenyon, C. (2004). Regulation of< i> C. elegans</i> Longevity by Specific Gustatory 
and Olfactory Neurons. Neuron, 41(1), 45-55.  

Alvarez-Buylla, A., & Lim, D. A. (2004). For the long run: maintaining germinal niches in the adult 
brain. Neuron, 41(5), 683-686.  

Alvers, A. L., Wood, M. S., Hu, D., Kaywell, A. C., Dunn, W. A., Jr., & Aris, J. P. (2009). 
Autophagy is required for extension of yeast chronological life span by rapamycin. 
Autophagy, 5(6), 847-849.  

Andaloussi, A. E., Han, Y., & Lesniak, M. S. (2006). Prolongation of survival following depletion of 
CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. Journal of 
neurosurgery, 105(3), 430-437.  

André, F., Bachelot, T., Campone, M., Dalenc, F., Perez-Garcia, J. M., Hurvitz, S. A., . . . 
Deudon, S. (2013). Targeting FGFR with dovitinib (TKI258): preclinical and clinical data 
in breast cancer. Clinical Cancer Research, 19(13), 3693-3702.  

Angevin, E., Lopez-Martin, J. A., Lin, C.-C., Gschwend, J. E., Harzstark, A., Castellano, D., . . . 
Shi, M. (2013). Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR 
inhibitor, in advanced or metastatic renal cell carcinoma. Clinical Cancer Research, 
19(5), 1257-1268.  

Anisimov, V. N., Berstein, L. M., Egormin, P. A., Piskunova, T. S., Popovich, I. G., Zabezhinski, 
M. A., . . . Poroshina, T. E. (2008). Metformin slows down aging and extends life span of 
female SHR mice. Cell Cycle, 7(17), 2769-2773.  



 

152 

Anisimov, V. N., Berstein, L. M., Popovich, I. G., Zabezhinski, M. A., Egormin, P. A., Piskunova, 
T. S., . . . Poroshina, T. E. (2011). If started early in life, metformin treatment increases 
life span and postpones tumors in female SHR mice. Aging, 3(2), 148-157.  

Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S., & Curtis, R. (2004). The AMP-activated 
protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. 
Genes & development, 18(24), 3004-3009.  

Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., . . . Ahmed, 
R. (2009). mTOR regulates memory CD8 T-cell differentiation. Nature, 460(7251), 108-
112.  

Aranda, V., Haire, T., Nolan, M. E., Calarco, J. P., Rosenberg, A. Z., Fawcett, J. P., . . . 
Muthuswamy, S. K. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized 
epithelial organization from proliferation control. Nat Cell Biol, 8(11), 1235-1245.  

Aranda, V., Haire, T., Nolan, M. E., Calarco, J. P., Rosenberg, A. Z., Fawcett, J. P., . . . 
Muthuswamy, S. K. (2006). Par6–aPKC uncouples ErbB2 induced disruption of polarized 
epithelial organization from proliferation control. Nature cell biology, 8(11), 1235-1245.  

Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., . . . Evans, J. (2006). 
The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human 
embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and 
functional analysis. Hum Mol Genet, 15(11), 1894-1913.  

Atkinson, G. P., Nozell, S. E., & Benveniste, E. T. (2010). NF-kappaB and STAT3 signaling in 
glioma: targets for future therapies. Expert Rev Neurother, 10(4), 575-586.  

Auerbach, B. D., Osterweil, E. K., & Bear, M. F. (2011). Mutations causing syndromic autism 
define an axis of synaptic pathophysiology. Nature, 480(7375), 63-68.  

Ayuso-Sacido, A., Moliterno, J. A., Kratovac, S., Kapoor, G. S., O’Rourke, D. M., Holland, E. C., . 
. . Boockvar, J. A. (2010). Activated EGFR signaling increases proliferation, survival, and 
migration and blocks neuronal differentiation in post-natal neural stem cells. Journal of 
neuro-oncology, 97(3), 323-337.  

Badie, B., & Schartner, J. M. (2000). Flow cytometric characterization of tumor-associated 
macrophages in experimental gliomas. Neurosurgery, 46(4), 957-961; discussion 961-
952.  

Bailey, P., Cushing H. (1926). A classification of the tumors of the Glioma group on histogenetic 
basis with correlated study of prognosis. Lipponcott, Philadelphia, 175.  

Balkwill, F. (2002). Tumor necrosis factor or tumor promoting factor? Cytokine & growth factor 
reviews, 13(2), 135-141.  

Balkwill, F. R., & Mantovani, A. (2012). Cancer-related inflammation: common themes and 
therapeutic opportunities. Semin Cancer Biol, 22(1), 33-40. 



 

153 

Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., . . . Rich, J. N. (2006). 
Glioma stem cells promote radioresistance by preferential activation of the DNA damage 
response. Nature, 444(7120), 756-760.  

Bello, L., Lucini, V., Costa, F., Pluderi, M., Giussani, C., Acerbi, F., . . . Bikfalvi, A. (2004). 
Combinatorial administration of molecules that simultaneously inhibit angiogenesis and 
invasion leads to increased therapeutic efficacy in mouse models of malignant glioma. 
Clinical cancer research : an official journal of the American Association for Cancer 
Research, 10(13), 4527-4537.  

Belluzzi, O., Benedusi, M., Ackman, J., & LoTurco, J. J. (2003). Electrophysiological 
differentiation of new neurons in the olfactory bulb. J Neurosci, 23(32), 10411-10418.  

Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nat 
Rev Neurosci, 3(9), 728-739.  

Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the 
matchmaker. Nat Immunol, 12(8), 715-723.  

 
Berger, F., Gay, E., Pelletier, L., Tropel, P., & Wion, D. (2004). Development of gliomas: potential 

role of asymmetrical cell division of neural stem cells. The lancet oncology, 5(8), 511-514.  

Berra, E., Diaz-Meco, M. T., Dominguez, I., Municio, M. M., Sanz, L., Lozano, J., . . . Moscat, J. 
(1993). Protein kinase C ζ isoform is critical for mitogenic signal transduction. Cell, 74(3), 
555-563.  

Berstein, L. M. (2012). Metformin in obesity, cancer and aging: addressing controversies. Aging, 
4(5), 320-329.  

Bettinger, I., Thanos, S., & Paulus, W. (2002). Microglia promote glioma migration. Acta 
Neuropathol, 103(4), 351-355.  

Bez, A., Corsini, E., Curti, D., Biggiogera, M., Colombo, A., Nicosia, R. F., . . . Parati, E. A. 
(2003). Neurosphere and neurosphere-forming cells: morphological and ultrastructural 
characterization. Brain research, 993(1), 18-29.  

Bhat, K. P., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., 
. . . Aldape, K. (2013). Mesenchymal Differentiation Mediated by NF-kappaB Promotes 
Radiation Resistance in Glioblastoma. Cancer Cell, 24(3), 331-346.  

Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the 
microenvironment in restraining cancer progression. Nat Med, 17(3), 320-329.  

 
Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the 

microenvironment in restraining cancer progression. Nature medicine, 17(3), 320-329.  

Bissell, M. J., & Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells 
also regulated by the microenvironment? Cancer Cell, 7(1), 17-23.  



 

154 

Biswas, D. K., Cruz, A. P., Gansberger, E., & Pardee, A. B. (2000). Epidermal growth factor-
induced nuclear factor κB activation: A major pathway of cell-cycle progression in 
estrogen-receptor negative breast cancer cells. Proceedings of the National Academy of 
Sciences, 97(15), 8542-8547.  

Bivona, T. G., Hieronymus, H., Parker, J., Chang, K., Taron, M., Rosell, R., . . . Sawyers, C. L. 
(2011). FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant 
EGFR. Nature, 471(7339), 523-526.  

 
Blackwood, D. H., Fordyce, A., Walker, M. T., St Clair, D. M., Porteous, D. J., & Muir, W. J. 

(2001). Schizophrenia and affective disorders--cosegregation with a translocation at 
chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 
findings in a family. Am J Hum Genet, 69(2), 428-433.  

Boccaccio, C., & Comoglio, P. M. (2006). Invasive growth: a MET-driven genetic programme for 
cancer and stem cells. Nature reviews cancer, 6(8), 637-645.  

Bonavia, R., Cavenee, W. K., & Furnari, F. B. (2011). Heterogeneity maintenance in 
glioblastoma: a social network. Cancer research, 71(12), 4055-4060.  

Bonavia, R., Inda, M. M., Cavenee, W. K., & Furnari, F. B. (2011). Heterogeneity maintenance in 
glioblastoma: a social network. Cancer Res, 71(12), 4055-4060.  

Bonavia, R., Inda, M. M., Vandenberg, S., Cheng, S. Y., Nagane, M., Hadwiger, P., . . . Furnari, 
F. B. (2012). EGFRvIII promotes glioma angiogenesis and growth through the NF-
kappaB, interleukin-8 pathway. Oncogene, 31(36), 4054-4066.  

Bowerman, B., & Shelton, C. A. (1999). Cell polarity in the early< i> Caenorhabditis elegans</i> 
embryo. Current opinion in genetics & development, 9(4), 390-395.  

Bracko, O., Singer, T., Aigner, S., Knobloch, M., Winner, B., Ray, J., . . . Jessberger, S. (2012). 
Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 
as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10), 3376-3387.  

Brandes, A. A., Franceschi, E., Tosoni, A., Blatt, V., Pession, A., Tallini, G., . . . Ermani, M. 
(2008). MGMT promoter methylation status can predict the incidence and outcome of 
pseudoprogression after concomitant radiochemotherapy in newly diagnosed 
glioblastoma patients. Journal of clinical oncology : official journal of the American 
Society of Clinical Oncology, 26(13), 2192-2197.  

Bredel, M., Scholtens, D. M., Yadav, A. K., Alvarez, A. A., Renfrow, J. J., Chandler, J. P., . . . 
Harsh, G. R. t. (2011). NFKBIA deletion in glioblastomas. N Engl J Med, 364(7), 627-637.  

Bredel, M., Scholtens, D. M., Yadav, A. K., Alvarez, A. A., Renfrow, J. J., Chandler, J. P., . . . 
Tagge, M. J. (2011). NFKBIA deletion in glioblastomas. New England Journal of 
Medicine, 364(7), 627-637.  

Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., . . . 
Chin, L. (2013). The somatic genomic landscape of glioblastoma. Cell, 155(2), 462-477.  



 

155 

Breton-Provencher, V., Lemasson, M., Peralta, M. R., 3rd, & Saghatelyan, A. (2009). 
Interneurons produced in adulthood are required for the normal functioning of the 
olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci, 
29(48), 15245-15257.  

Briers, T. W., Desmaretz, C., & Vanmechelen, E. (1994). Generation and characterization of 
mouse microglial cell lines. Journal of neuroimmunology, 52(2), 153-164.  

Brown, C. E., Vishwanath, R. P., Aguilar, B., Starr, R., Najbauer, J., Aboody, K. S., & Jensen, M. 
C. (2007). Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor 
tropism of adoptively transferred T cells. The Journal of Immunology, 179(5), 3332-3341.  

Brown, J., Cooper-Kuhn, C. M., Kempermann, G., Van Praag, H., Winkler, J., Gage, F. H., & 
Kuhn, H. G. (2003). Enriched environment and physical activity stimulate hippocampal 
but not olfactory bulb neurogenesis. Eur J Neurosci, 17(10), 2042-2046.  

Bultje, R. S., Castaneda-Castellanos, D. R., Jan, L. Y., Jan, Y.-N., Kriegstein, A. R., & Shi, S.-H. 
(2009). Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling 
in the developing neocortex. Neuron, 63(2), 189-202.  

Cacci, E., Ajmone‐Cat, M. A., Anelli, T., Biagioni, S., & Minghetti, L. (2008). In vitro neuronal and 
glial differentiation from embryonic or adult neural precursor cells are differently affected 
by chronic or acute activation of microglia. Glia, 56(4), 412-425.  

Capaccione, K. M., & Pine, S. R. (2013). The Notch signaling pathway as a mediator of tumor 
survival. Carcinogenesis, 34(7), 1420-1430.  

Carlen, M., Cassidy, R. M., Brismar, H., Smith, G. A., Enquist, L. W., & Frisen, J. (2002). 
Functional integration of adult-born neurons. Curr Biol, 12(7), 606-608.  

Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A., & Lledo, P. M. (2003). Becoming a 
new neuron in the adult olfactory bulb. Nat Neurosci, 6(5), 507-518.  

Chang, S. M., Wen, P., Cloughesy, T., Greenberg, H., Schiff, D., Conrad, C., . . . Raizer, J. 
(2005). Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. 
Investigational new drugs, 23(4), 357-361.  

Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., & Kettenmann, H. (2011). The brain 
tumor microenvironment. Glia, 59(8), 1169-1180.  

Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., & Kettenmann, H. (2011). The brain 
tumor microenvironment. Glia, 59(8), 1169-1180.  

Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2011a). NF-
kappaB addiction and its role in cancer: 'one size does not fit all'. Oncogene, 30(14), 
1615-1630.  

 
Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2011b). NF-κB 

addiction and its role in cancer:‘one size does not fit all’. Oncogene, 30(14), 1615-1630.  



 

156 

Chen, J., Kesari, S., Rooney, C., Strack, P. R., Chen, J., Shen, H., . . . Griffin, J. D. (2010). 
Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor 
neurospheres. Genes & cancer, 1(8), 822-835.  

Chen, J., Li, Y., Yu, T.-S., McKay, R. M., Burns, D. K., Kernie, S. G., & Parada, L. F. (2012). A 
restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 
488(7412), 522-526.  

Chen, Z. Y., Bath, K., McEwen, B., Hempstead, B., & Lee, F. (2008). Impact of genetic variant 
BDNF (Val66Met) on brain structure and function. Novartis Found Symp, 289, 180-188; 
discussion 188-195.  

Cho, J., Pastorino, S., Zeng, Q., Xu, X., Johnson, W., Vandenberg, S., . . . Dutt, A. (2011). 
Glioblastoma-derived epidermal growth factor receptor carboxyl-terminal deletion 
mutants are transforming and are sensitive to EGFR-directed therapies. Cancer 
research, 71(24), 7587-7596.  

Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., . . . Youngkin, D. 
(2008). Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-
deficient glioblastoma. PLoS medicine, 5(1), e8.  

Cohen, E. E., Lingen, M. W., Zhu, B., Zhu, H., Straza, M. W., Pierce, C., . . . Rosner, M. R. 
(2006). Protein kinase C zeta mediates epidermal growth factor-induced growth of head 
and neck tumor cells by regulating mitogen-activated protein kinase. Cancer research, 
66(12), 6296-6303.  

Coniglio, S. J., Eugenin, E., Dobrenis, K., Stanley, E. R., West, B. L., Symons, M. H., & Segall, J. 
E. (2012). Microglial stimulation of glioblastoma invasion involves epidermal growth factor 
receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med, 
18, 519-527. doi: 10.2119/molmed.2011.00217 

Coons, S. W., & JOHNSON, P. C. (1993). Regional heterogeneity in the proliferative activity of 
human gliomas as measured by the Ki-67 labeling index. Journal of Neuropathology & 
Experimental Neurology, 52(6), 609-618.  

Cornu, M., Albert, V., & Hall, M. N. (2013). mTOR in aging, metabolism, and cancer. Current 
opinion in genetics & development, 23(1), 53-62.  

Costa, M. R., Wen, G., Lepier, A., Schroeder, T., & Götz, M. (2008). Par-complex proteins 
promote proliferative progenitor divisions in the developing mouse cerebral cortex. 
Development, 135(1), 11-22.  

Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867.  
 
Coussens, L. M., Zitvogel, L., & Palucka, A. K. (2013). Neutralizing tumor-promoting chronic 

inflammation: a magic bullet? Science, 339(6117), 286-291.  

Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S., & Van der Kooy, D. 
(1996). In vivo growth factor expansion of endogenous subependymal neural precursor 



 

157 

cell populations in the adult mouse brain. The Journal of Neuroscience, 16(8), 2649-
2658.  

Dandy, W. (1928). Removal of right cerebral hemisphere for certain tumors with hemiplegia: 
preliminary report. JAMA, 90(3), 101.  

Das, R. M., & Storey, K. G. (2014). Apical Abscission Alters Cell Polarity and Dismantles the 
Primary Cilium During Neurogenesis. Science, 343(6167), 200-204.  

David, D. J., Samuels, B. A., Rainer, Q., Wang, J.-W., Marsteller, D., Mendez, I., . . . Guilloux, J.-
P. (2009). Neurogenesis-dependent and-independent effects of fluoxetine in an animal 
model of anxiety/depression. Neuron, 62(4), 479-493.  

Davis, E., Foster, T., & Thomas, W. (1994). Cellular forms and functions of brain microglia. Brain 
research bulletin, 34(1), 73-78.  

Day, B. W., Stringer, B. W., Al-Ejeh, F., Ting, M. J., Wilson, J., Ensbey, K. S., . . . Offenhäuser, C. 
(2013). EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma 
multiforme. Cancer Cell, 23(2), 238-248.  

Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M., & Cameron, H. A. (2003). Short-term and 
long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol, 460(4), 563-
572.  

De Palma, M., Venneri, M. A., Galli, R., Sergi, L. S., Politi, L. S., Sampaolesi, M., & Naldini, L. 
(2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for 
tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer 
Cell, 8(3), 211-226.  

Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: how does adult 
hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 
11(5), 339-350.  

Diaz-Meco, M. T., Dominguez, I., Sanz, L., Dent, P., Lozano, J., Municio, M. M., . . . Moscat, J. 
(1994). zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. 
Embo J, 13(12), 2842-2848.  

Diaz-Meco, M. T., & Moscat, J. (2001). MEK5, a new target of the atypical protein kinase C 
isoforms in mitogenic signaling. Molecular and cellular biology, 21(4), 1218-1227.  

do Carmo, A., Balca-Silva, J., Matias, D., & Lopes, M. C. (2013). PKC signaling in glioblastoma. 
Cancer Biol Ther, 14(4), 287-294.  

Doetsch, F., Caille, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). 
Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 
97(6), 703-716.  

Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2002). EGF 
converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem 
cells. Neuron, 36(6), 1021-1034.  



 

158 

Doherty, L., Gigas, D. C., Kesari, S., Drappatz, J., Kim, R., Zimmerman, J., . . . Wen, P. Y. 
(2006). Pilot study of the combination of EGFR and mTOR inhibitors in recurrent 
malignant gliomas. Neurology, 67(1), 156-158.  

Dorsky, R. I., Chang, W. S., Rapaport, D. H., & Harris, W. A. (1997). Regulation of neuronal 
diversity in the Xenopus retina by Delta signalling. Nature, 385, 67-70. 

Drappatz, J., Norden, A. D., & Wen, P. Y. (2009). Therapeutic strategies for inhibiting invasion in 
glioblastoma. Expert Review of Neurotherapeutics, 9(4): 519-534. 

Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. 
Stem cell reviews, 3(1), 7-17.  

Dudkin, L., Dilling, M. B., Cheshire, P. J., Harwood, F. C., Hollingshead, M., Arbuck, S. G., . . . 
Houghton, P. J. (2001). Biochemical correlates of mTOR inhibition by the rapamycin 
ester CCI-779 and tumor growth inhibition. Clinical cancer research : an official journal of 
the American Association for Cancer Research, 7(6), 1758-1764.  

Duran, A., Diaz-Meco, M. T., & Moscat, J. (2003). Essential role of RelA Ser311 phosphorylation 
by zetaPKC in NF-kappaB transcriptional activation. Embo J, 22(15), 3910-3918.  

Easton, R. M., Cho, H., Roovers, K., Shineman, D. W., Mizrahi, M., Forman, M. S., . . . Oltersdorf, 
T. (2005). Role for Akt3/protein kinase Bγ in attainment of normal brain size. Molecular 
and cellular biology, 25(5), 1869-1878.  

El Andaloussi, A., & Lesniak, M. S. (2006). An increase in CD4+ CD25+ FOXP3+ regulatory T 
cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncology, 
8(3), 234-243.  

El Andaloussi, A., & Lesniak, M. S. (2007). CD4+ CD25+ FoxP3+ T-cell infiltration and heme 
oxygenase-1 expression correlate with tumor grade in human gliomas. Journal of neuro-
oncology, 83(2), 145-152.  

Englund, C., Fink, A., Lau, C., Pham, D., Daza, R. A., Bulfone, A., . . . Hevner, R. F. (2005). 
Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor 
cells, and postmitotic neurons in developing neocortex. The Journal of Neuroscience, 
25(1), 247-251.  

Enwere, E., Shingo, T., Gregg, C., Fujikawa, H., Ohta, S., & Weiss, S. (2004). Aging results in 
reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, 
and deficits in fine olfactory discrimination. J Neurosci, 24(38), 8354-8365.  

Eshleman, J. S., Carlson, B. L., Mladek, A. C., Kastner, B. D., Shide, K. L., & Sarkaria, J. N. 
(2002). Inhibition of the Mammalian Target of Rapamycin Sensitizes U87 Xenografts to 
Fractionated Radiation Therapy. Cancer research, 62(24), 7291-7297.  

Fan, Q.-W., Cheng, C., Knight, Z. A., Haas-Kogan, D., Stokoe, D., James, C. D., . . . Weiss, W. A. 
(2009). EGFR signals to mTOR through PKC and independently of Akt in glioma. 
Science signaling, 2(55), ra4.  



 

159 

Fan, Q. W., Cheng, C. K., Gustafson, W. C., Charron, E., Zipper, P., Wong, R. A., . . . Weiss, W. 
A. (2013). EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and 
progression in glioblastoma. Cancer Cell, 24(4), 438-449.  

Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., . . . Maciaczyk, J. (2010). 
NOTCH Pathway Blockade Depletes CD133‐Positive Glioblastoma Cells and Inhibits 
Growth of Tumor Neurospheres and Xenografts. Stem cells, 28(1), 5-16.  

Farmer, J.-P., Antel, J. P., Freedman, M., Cashman, N. R., Rode, H., & Villemure, J.-G. (1989). 
Characterization of lymphoid cells isolated from human gliomas. Journal of neurosurgery, 
71(4), 528-533.  

Ferla, R., Haspinger, E., & Surmacz, E. (2012). Metformin inhibits leptin-induced growth and 
migration of glioblastoma cells. Oncology letters, 4(5), 1077-1081.  

Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding 
growth factor specific for vascular endothelial cells. Biochemical and biophysical research 
communications, 161(2), 851-858.  

Ferron, S. R., Pozo, N., Laguna, A., Aranda, S., Porlan, E., Moreno, M., . . . Arbonés, M. L. 
(2010). Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell 
division is critical for EGFR-mediated biased signaling. Cell stem cell, 7(3), 367-379.  

Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth 
factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 
23(18), 3151-3171.  

Fishwick, K. J., Li, R. A., Halley, P., Deng, P., & Storey, K. G. (2010). Initiation of neuronal 
differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. 
Developmental biology, 338(2), 215-225.  

Forstreuter, F., Lucius, R., & Mentlein, R. (2002). Vascular endothelial growth factor induces 
chemotaxis and proliferation of microglial cells. Journal of neuroimmunology, 132(1), 93-
98.  

Franz, D. N., Leonard, J., Tudor, C., Chuck, G., Care, M., Sethuraman, G., . . . Crone, K. R. 
(2006). Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. 
Annals of neurology, 59(3), 490-498.  

Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., . . . Cavenee, 
W. K. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. 
Genes & development, 21(21), 2683-2710.  

Gage, F. H. (2002). Neurogenesis in the adult brain. The Journal of Neuroscience, 22(3), 612-
613.  

Gaiano, N., & Fishell, G. (2002). The role of notch in promoting glial and neural stem cell fates. 
Annual Review of Neuroscience, 25(1), 471-490.  



 

160 

Gaiano, N., Nye, J. S., & Fishell, G. (2000). Radial glial identity is promoted by Notch1 signaling 
in the murine forebrain. Neuron, 26(2), 395-404.  

Galanis, E., Buckner, J. C., Maurer, M. J., Kreisberg, J. I., Ballman, K., Boni, J., . . . Walsh, D. J. 
(2005). Phase II Trial of Temsirolimus (CCI-779) in Recurrent Glioblastoma Multiforme: A 
North Central Cancer Treatment Group Study. Journal of Clinical Oncology, 23(23), 
5294-5304.  

Galarneau, H., Villeneuve, J., Gowing, G., Julien, J. P., & Vallieres, L. (2007). Increased glioma 
growth in mice depleted of macrophages. Cancer Res, 67(18), 8874-8881.  

 
Gao, N., Flynn, D. C., Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., . . . Jiang, B. H. (2004). G1 

cell cycle progression and the expression of G1 cyclins are regulated by 
PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. American journal of 
physiology.Cell physiology, 287(2), C281-291. 

Gao, N., Zhang, Z., Jiang, B.-H., & Shi, X. (2003). Role of PI3K/AKT/mTOR signaling in the cell 
cycle progression of human prostate cancer. Biochemical and biophysical research 
communications, 310(4), 1124-1132.  

Gao, X., McDonald, J. T., Hlatky, L., & Enderling, H. (2013). Acute and fractionated irradiation 
differentially modulate glioma stem cell division kinetics. Cancer research, 73(5), 1481-
1490.  

Gheusi, G., Cremer, H., McLean, H., Chazal, G., Vincent, J. D., & Lledo, P. M. (2000). 
Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. 
Proc Natl Acad Sci U S A, 97(4), 1823-1828.  

Ghosh, S., Marquardt, T., Thaler, J. P., Carter, N., Andrews, S. E., Pfaff, S. L., & Hunter, T. 
(2008a). Instructive role of aPKCzeta subcellular localization in the assembly of adherens 
junctions in neural progenitors. Proc Natl Acad Sci U S A, 105(1), 335-340.  

Ghosh, S., Tergaonkar, V., Rothlin, C. V., Correa, R. G., Bottero, V., Bist, P., . . . Hunter, T. 
(2006). Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB 
activation and cell survival. Cancer Cell, 10(3), 215-226.  

Giannini, C., Sarkaria, J. N., Saito, A., Uhm, J. H., Galanis, E., Carlson, B. L., . . . James, C. D. 
(2005b). Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive 
intracranial xenograft model of glioblastoma multiforme. Neuro-oncology, 7(2), 164-176.  

Gilbert, M. R. (2011). Recurrent glioblastoma: a fresh look at current therapies and emerging 
novel approaches. Semin Oncol, 38 Suppl 4, S21-33. doi: 
10.1053/j.seminoncol.2011.09.008 

Goswami, S., Gupta, A., & Sharma, S. K. (1998). Interleukin‐6‐mediated autocrine growth 
promotion in human glioblastoma multiforme cell line U87MG. J Neurochem, 71(5), 1837-
1845.  

Grivennikov, S. I., & Karin, M. (2010). Inflammation and oncogenesis: a vicious connection. Curr 
Opin Genet Dev, 20(1), 65-71.  



 

161 

Grivennikov, S. I., & Karin, M. (2011). Inflammatory cytokines in cancer: tumour necrosis factor 
and interleukin 6 take the stage. Ann Rheum Dis, 70 Suppl 1, i104-108.  

 
Guertin, D. A., & Sabatini, D. M. (2009). The pharmacology of mTOR inhibition. Science 

signaling, 2(67), pe24.  

Habib, A. A., Chatterjee, S., Park, S.-K., Ratan, R. R., Lefebvre, S., & Vartanian, T. (2001). The 
Epidermal Growth Factor Receptor Engages Receptor Interacting Protein and Nuclear 
Factor-κB (NF-κB)-inducing Kinase to Activate NF-κB: IDENTIFICATION OF A NOVEL 
RECEPTOR-TYROSINE KINASE SIGNALOSOME. Journal of Biological Chemistry, 
276(12), 8865-8874.  

Halloran, J., Hussong, S. A., Burbank, R., Podlutskaya, N., Fischer, K. E., Sloane, L. B., . . . Hart, 
M. J. (2012). Chronic inhibition of mammalian target of rapamycin by rapamycin 
modulates cognitive and non-cognitive components of behavior throughout lifespan in 
mice. Neuroscience, 223, 102-113.  

Han, J., Wang, B., Xiao, Z., Gao, Y., Zhao, Y., Zhang, J., . . . Dai, J. (2008). Mammalian target of 
rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors 
induced by insulin. Molecular and Cellular Neuroscience, 39(1), 118-124.  

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 
646-674.  

Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., . . . Carter, C. S. 
(2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. 
Nature, 460(7253), 392-395.  

Hars, E. S., Qi, H., Ryazanov, A. G., Jin, S., Cai, L., Hu, C., & Liu, L. F. (2007). Autophagy 
regulates ageing in C. elegans. Autophagy, 3(2), 93.  

Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-κB signaling. Cell, 132(3), 344-362.  

Hegi, M. E., Diserens, A.-C., Gorlia, T., Hamou, M.-F., de Tribolet, N., Weller, M., . . . Mariani, L. 
(2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. New 
England Journal of Medicine, 352(10), 997-1003.  

Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT 
pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4(12), 988-1004.  

Herrera-Velit, P., Knutson, K. L., & Reiner, N. E. (1997). Phosphatidylinositol 3-kinase-dependent 
activation of protein kinase C-zeta in bacterial lipopolysaccharide-treated human 
monocytes. The Journal of biological chemistry, 272(26), 16445-16452.  

Hirai, T., & Chida, K. (2003). Protein kinase Czeta (PKCzeta): activation mechanisms and cellular 
functions. Journal of Biochemistry, 133(1), 1-7.  

Hirano, Y., Yoshinaga, S., Ogura, K., Yokochi, M., Noda, Y., Sumimoto, H., & Inagaki, F. (2004). 
Solution structure of atypical protein kinase C PB1 domain and its mode of interaction 
with ZIP/p62 and MEK5. J Biol Chem, 279(30), 31883-31890.  



 

162 

Hoelzinger, D. B., Demuth, T., & Berens, M. E. (2007). Autocrine factors that sustain glioma 
invasion and paracrine biology in the brain microenvironment. Journal of the National 
Cancer Institute, 99(21), 1583-1593.  

Hsu, P. P., Kang, S. A., Rameseder, J., Zhang, Y., Ottina, K. A., Lim, D., . . . Sabatini, D. M. 
(2011). The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-
mediated inhibition of growth factor signaling. Science (New York, N.Y.), 332(6035), 
1317-1322.  

Hu, X., Pandolfi, P. P., Li, Y., Koutcher, J. A., Rosenblum, M., & Holland, E. C. (2005). mTOR 
promotes survival and astrocytic characteristics induced by Pten/AKT signaling in 
glioblastoma. Neoplasia (New York, NY), 7(4), 356.  

Huang, J., & Manning, B. D. (2009). A complex interplay between Akt, TSC2 and the two mTOR 
complexes. Biochemical Society transactions, 37(Pt 1), 217-222.  

Huang, P. H., Mukasa, A., Bonavia, R., Flynn, R. A., Brewer, Z. E., Cavenee, W. K., . . . White, F. 
M. (2007). Quantitative analysis of EGFRvIII cellular signaling networks reveals a 
combinatorial therapeutic strategy for glioblastoma. Proceedings of the National 
Academy of Sciences of the United States of America, 104(31), 12867-12872.  

Huang, S., Bjornsti, M.-A., & Houghton, P. J. (2003). Mechanism of Action and Cellular 
Resistance. Cancer biology & therapy, 2(3), 222-232.  

Huettner, C., Czub, S., Kerkau, S., Roggendorf, W., & Tonn, J. (1996). Interleukin 10 is 
expressed in human gliomas in vivo and increases glioma cell proliferation and motility in 
vitro. Anticancer Res, 17(5A), 3217-3224.  

Hung, T.-J., & Kemphues, K. J. (1999). PAR-6 is a conserved PDZ domain-containing protein that 
colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development, 126(1), 127-
135.  

Huse, J. T., Holland, E., & DeAngelis, L. M. (2013). Glioblastoma: molecular analysis and clinical 
implications. Annual Review of Medicine, 64, 59-70.  

Huse, J. T., & Holland, E. C. (2010). Targeting brain cancer: advances in the molecular pathology 
of malignant glioma and medulloblastoma. Nature reviews cancer, 10(5), 319-331.  

Hussain, S. F., Yang, D., Suki, D., Aldape, K., Grimm, E., & Heimberger, A. B. (2006). The role of 
human glioma-infiltrating microglia/macrophages in mediating antitumor immune 
responses. Neuro Oncol, 8(3), 261-279.  

 
Huynh, H., Chow, P. K. H., Tai, W. M., Choo, S. P., Chung, A. Y. F., Ong, H. S., . . . Shi, M. M. 

(2012). Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models 
of hepatocellular carcinoma. Journal of hepatology, 56(3), 595-601.  

Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. 
(2002). Human cortical glial tumors contain neural stem‐like cells expressing astroglial 
and neuronal markers in vitro. Glia, 39(3), 193-206.  



 

163 

Imai, F., Hirai, S.-i., Akimoto, K., Koyama, H., Miyata, T., Ogawa, M., . . . Ohno, S. (2006). 
Inactivation of aPKCλ results in the loss of adherens junctions in neuroepithelial cells 
without affecting neurogenesis in mouse neocortex. Development, 133(9), 1735-1744.  

Inda, M. M., Bonavia, R., Mukasa, A., Narita, Y., Sah, D. W., Vandenberg, S., . . . Furnari, F. 
(2010). Tumor heterogeneity is an active process maintained by a mutant EGFR-induced 
cytokine circuit in glioblastoma. Genes Dev, 24(16), 1731-1745.  

Ingram, D. K., Zhu, M., Mamczarz, J., Zou, S., Lane, M. A., Roth, G. S., & DeCabo, R. (2006). 
Calorie restriction mimetics: an emerging research field. Aging cell, 5(2), 97-108.  

Inoki, K., Corradetti, M. N., & Guan, K.-L. (2005). Dysregulation of the TSC-mTOR pathway in 
human disease. Nature genetics, 37(1), 19-24.  

Iosif, R. E., Ekdahl, C. T., Ahlenius, H., Pronk, C. J., Bonde, S., Kokaia, Z., . . . Lindvall, O. 
(2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation 
in adult hippocampal neurogenesis. The Journal of neuroscience : the official journal of 
the Society for Neuroscience, 26(38), 9703-9712.  

Iso, T., Kedes, L., & Hamamori, Y. (2003). HES and HERP families: multiple effectors of the 
Notch signaling pathway. Journal of cellular physiology, 194(3), 237-255.  

Jacinto, E., & Hall, M. N. (2003). Tor signalling in bugs, brain and brawn. Nature reviews 
Molecular cell biology, 4(2), 117-126.  

Johnson, B. E., Mazor, T., Hong, C., Barnes, M., Aihara, K., McLean, C. Y., . . . Tatsuno, K. 
(2014). Mutational analysis reveals the origin and therapy-driven evolution of recurrent 
glioma. Science, 343(6167), 189-193.  

Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing 
and age-related disease. Nature, 493(7432), 338-345.  

Joo, K. M., Jin, J., Kim, E., Ho Kim, K., Kim, Y., Gu Kang, B., . . . Nam, D. H. (2012). MET 
signaling regulates glioblastoma stem cells. Cancer Res, 72(15), 3828-3838.  

Jun, H. J., Acquaviva, J., Chi, D., Lessard, J., Zhu, H., Woolfenden, S., . . . Charest, A. (2011). 
Acquired MET expression confers resistance to EGFR inhibition in a mouse model of 
glioblastoma multiforme. Oncogene.  

 
Kapoor, G. S., Zhan, Y., Johnson, G. R., & O'Rourke, D. M. (2004). Distinct domains in the SHP-

2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappaB 
activation through Gab1 in glioblastoma cells. Mol Cell Biol, 24(2), 823-836.  

Kappeler, L., De Magalhaes Filho, C., Dupont, J., Leneuve, P., Cervera, P., Périn, L., . . . 
Epelbaum, J. (2008). Brain IGF-1 receptors control mammalian growth and lifespan 
through a neuroendocrine mechanism. PLoS biology, 6(10), e254.  

Karin, M. (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring 
Harb Perspect Biol, 1(5), a000141.  



 

164 

Katoh-Semba, R., Asano, T., Ueda, H., Morishita, R., Takeuchi, I. K., Inaguma, Y., & Kato, K. 
(2002). Riluzole enhances expression of brain-derived neurotrophic factor with 
consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J, 
16(10), 1328-1330.  

Kee, N., Sivalingam, S., Boonstra, R., & Wojtowicz, J. M. (2002). The utility of Ki-67 and BrdU as 
proliferative markers of adult neurogenesis. Journal of neuroscience methods, 115(1), 
97-105.  

Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., & Gage, F. H. (2003). Early 
determination and long-term persistence of adult-generated new neurons in the 
hippocampus of mice. Development, 130(2), 391-399.  

Kemphues, K. J., & Strome, S. (1997). 13 Fertilization and Establishment of Polarity in the 
Embryo. Cold Spring Harbor Monograph Archive, 33, 335-359.  

Kenerson, H., Dundon, T. A., & Yeung, R. S. (2005). Effects of rapamycin in the Eker rat model of 
tuberous sclerosis complex. Pediatric research, 57(1), 67-75.  

Kenerson, H. L., Aicher, L. D., True, L. D., & Yeung, R. S. (2002). Activated mammalian target of 
rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. 
Cancer research, 62(20), 5645-5650.  

Kesari, S. (2011). Understanding glioblastoma tumor biology: the potential to improve current 
diagnosis and treatments. Semin Oncol, 38 Suppl 4, S2-10.  

Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor 
microenvironment. Cell, 141(1), 52-67.  

Kim, J. Y., Duan, X., Liu, C. Y., Jang, M.-H., Guo, J. U., Pow-anpongkul, N., . . . Ming, G.-l. 
(2009). DISC1 regulates new neuron development in the adult brain via modulation of 
AKT-mTOR signaling through KIAA1212. Neuron, 63(6), 761-773.  

Kim, S., Lehtinen, M. K., Sessa, A., Zappaterra, M. W., Cho, S.-H., Gonzalez, D., . . . Gambello, 
M. J. (2010). The apical complex couples cell fate and cell survival to cerebral cortical 
development. Neuron, 66(1), 69-84.  

Kim, Y., Kim, E., Wu, Q., Guryanova, O., Hitomi, M., Lathia, J. D., . . . Rich, J. N. (2012). Platelet-
derived growth factor receptors differentially inform intertumoral and intratumoral 
heterogeneity. Genes & development, 26(11), 1247-1262. doi: 10.1101/gad.193565.112; 
10.1101/gad.193565.112 

Kimberly Christian, H. s. a. G.-l. M. (2010). Adult neurogenesis as a cellular model to study 
schizophrenia. Cell Cycle, 9(4), 636-637.  

Kirschenbaum, B., & Goldman, S. A. (1995). Brain-derived neurotrophic factor promotes the 
survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl 
Acad Sci U S A, 92(1), 210-214.  



 

165 

Kleihues, P. C. W. (2000). World Health Organization classification of tumors: pathology and 
genetic: tumors of the nervous system. . IARC Press, Lyon.  

Kosodo, Y., Röper, K., Haubensak, W., Marzesco, A. M., Corbeil, D., & Huttner, W. B. (2004). 
Asymmetric distribution of the apical plasma membrane during neurogenic divisions of 
mammalian neuroepithelial cells. The EMBO journal, 23(11), 2314-2324.  

Kreisl, T. N., Lassman, A. B., Mischel, P. S., Rosen, N., Scher, H. I., Teruya-Feldstein, J., . . . 
Abrey, L. E. (2009). A pilot study of everolimus and gefitinib in the treatment of recurrent 
glioblastoma (GBM). Journal of neuro-oncology, 92(1), 99-105.  

Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem 
cells. Annual Review of Neuroscience, 32, 149-184.  

Krueger, D. A., Care, M. M., Holland, K., Agricola, K., Tudor, C., Mangeshkar, P., . . . Franz, D. N. 
(2010). Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. New 
England Journal of Medicine, 363(19), 1801-1811.  

Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of 
the adult rat: age-related decrease of neuronal progenitor proliferation. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 16(6), 2027-2033.  

Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J., & Gage, F. H. (1997). Epidermal growth 
factor and fibroblast growth factor-2 have different effects on neural progenitors in the 
adult rat brain. J Neurosci, 17(15), 5820-5829.  

Kumar, V., Zhang, M.-X., Swank, M. W., Kunz, J., & Wu, G.-Y. (2005). Regulation of dendritic 
morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signaling pathways. The 
Journal of Neuroscience, 25(49), 11288-11299.  

Kwon, C.-H., Zhu, X., Zhang, J., & Baker, S. J. (2003). mTor is required for hypertrophy of Pten-
deficient neuronal soma in vivo. Proceedings of the National Academy of Sciences, 
100(22), 12923-12928.  

Lakka, S. S., Gondi, C. S., Yanamandra, N., Olivero, W. C., Dinh, D. H., Gujrati, M., & Rao, J. S. 
(2004). Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via 
RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. 
Oncogene, 23(27), 4681-4689.  

Lamming, D. W., Ye, L., Katajisto, P., Goncalves, M. D., Saitoh, M., Stevens, D. M., . . . Baur, J. 
A. (2012). Rapamycin-induced insulin resistance is mediated by mTORC2 loss and 
uncoupled from longevity. Science (New York, N.Y.), 335(6076), 1638-1643.  

Lamming, D. W., Ye, L., Sabatini, D. M., & Baur, J. A. (2013). Rapalogs and mTOR inhibitors as 
anti-aging therapeutics. J.Clin.Invest, 123(3), 980-989.  

Lange, C., Huttner, W. B., & Calegari, F. (2009). Cdk4/cyclinD1 overexpression in neural stem 
cells shortens G1, delays neurogenesis, and promotes the generation and expansion of 
basal progenitors. Cell stem cell, 5(3), 320-331.  



 

166 

Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 
149(2), 274-293.  

Lathia, J., Hitomi, M., Gallagher, J., Gadani, S., Adkins, J., Vasanji, A., . . . Wu, Q. (2011). 
Distribution of CD133 reveals glioma stem cells self-renew through symmetric and 
asymmetric cell divisions. Cell death & disease, 2(9), e200.  

Laver, T., Nozell, S., & Benveniste, E. N. (2009). The NF-kB Signaling Pathway in 
GBMs:Implications for Apoptotic and Inflammatory Responses and Exploitation for 
Therapy. CNS Cancer Models, Markers, prognostic Factors, Targets, and Therapeutic 
Approaches, Chapter 42, 1011-1036.  

Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W., & van Praag, H. (2010). When 
neurogenesis encounters aging and disease. Trends in neurosciences, 33(12), 569-579.  

Le, D. M., Besson, A., Fogg, D. K., Choi, K.-S., Waisman, D. M., Goodyer, C. G., . . . Yong, V. W. 
(2003). Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism 
involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator–
plasmin cascade. The Journal of Neuroscience, 23(10), 4034-4043.  

Le Good, J. A., Ziegler, W. H., Parekh, D. B., Alessi, D. R., Cohen, P., & Parker, P. J. (1998). 
Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein 
kinase PDK1. Science (New York, N.Y.), 281(5385), 2042-2045.  

Le Page, C., Koumakpayi, I. H., Lessard, L., Mes‐Masson, A. M., & Saad, F. (2005). EGFR and 
Her‐2 regulate the constitutive activation of NF‐kappaB in PC‐3 prostate cancer cells. 
The Prostate, 65(2), 130-140.  

Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., . . . Zhang, W. (2006). Tumor 
stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the 
phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer 
Cell, 9(5), 391-403.  

Lee, J. H., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., . . . Funari, V. (2012). 
De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause 
hemimegalencephaly. Nature genetics, 44(8), 941-945.  

Lee, L., Sudentas, P., Donohue, B., Asrican, K., Worku, A., Walker, V., . . . El‐Hashemite, N. 
(2005). Efficacy of a rapamycin analog (CCI‐779) and IFN‐γ in tuberous sclerosis mouse 
models. Genes, Chromosomes and Cancer, 42(3), 213-227.  

Lehtinen, M. K., Zappaterra, M. W., Chen, X., Yang, Y. J., Hill, A. D., Lun, M., . . . Ye, P. (2011). 
The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 
69(5), 893-905.  

Leitges, M., Sanz, L., Martin, P., Duran, A., Braun, U., Garcia, J. F., . . . Moscat, J. (2001). 
Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB 
pathway. Mol Cell, 8(4), 771-780.  



 

167 

Leuner, B., Mendolia-Loffredo, S., Kozorovitskiy, Y., Samburg, D., Gould, E., & Shors, T. J. 
(2004). Learning enhances the survival of new neurons beyond the time when the 
hippocampus is required for memory. J Neurosci, 24(34), 7477-7481.  

Levenson, C. W., & Rich, N. J. (2007). Eat less, live longer? New insights into the role of caloric 
restriction in the brain. Nutrition reviews, 65(9), 412-415.  

Li, L., Xu, B., Zhu, Y., Chen, L., Sokabe, M., & Chen, L. (2010). DHEA prevents Aβ< sub> 25–
35</sub>-impaired survival of newborn neurons in the dentate gyrus through a 
modulation of PI< sub> 3</sub> K-Akt-mTOR signaling. Neuropharmacology, 59(4), 323-
333.  

Li, N., Lee, B., Liu, R.-J., Banasr, M., Dwyer, J. M., Iwata, M., . . . Duman, R. S. (2010). mTOR-
dependent synapse formation underlies the rapid antidepressant effects of NMDA 
antagonists. Science, 329(5994), 959-964.  

Li, V. C., Ballabeni, A., & Kirschner, M. W. (2012). Gap 1 phase length and mouse embryonic 
stem cell self-renewal. Proceedings of the National Academy of Sciences of the United 
States of America, 109(31), 12550-12555.  

Li, Y., Li, A., Glas, M., Lal, B., Ying, M., Sang, Y., . . . Laterra, J. (2011). c-Met signaling induces a 
reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl 
Acad Sci U S A, 108(24), 9951-9956.  

Li, Y., Luikart, B. W., Birnbaum, S., Chen, J., Kwon, C.-H., Kernie, S. G., . . . Parada, L. F. (2008). 
TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive 
treatment. Neuron, 59(3), 399-412.  

Li, Y., Mu, Y., & Gage, F. H. (2009). Development of neural circuits in the adult hippocampus. 
Current topics in developmental biology, 87, 149-174.  

Lim, D. A., Tramontin, A. D., Trevejo, J. M., Herrera, D. G., García-Verdugo, J. M., & Alvarez-
Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult 
neurogenesis. Neuron, 28(3), 713-726.  

Lionaki, E., Markaki, M., & Tavernarakis, N. (2013). Autophagy and ageing: Insights from 
invertebrate model organisms. Ageing research reviews, 12(1), 413-428.  

Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 
411(6835), 375-379.  

 
Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., . . . John, S. Y. (2006). Analysis of 

gene expression and chemoresistance of CD133 cancer stem cells in glioblastoma. 
Molecular cancer, 5(1), 67.  

Liu, W., Ye, P., O'Kusky, J. R., & D'Ercole, A. J. (2009). Type 1 insulin‐like growth factor receptor 
signaling is essential for the development of the hippocampal formation and dentate 
gyrus. Journal of neuroscience research, 87(13), 2821-2832.  



 

168 

Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in 
neuronal circuits. Nat Rev Neurosci, 7(3), 179-193.  

Loulier, K., Lathia, J. D., Marthiens, V., Relucio, J., Mughal, M. R., Tang, S.-C., . . . Patton, B. 
(2009). β1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS 
biology, 7(8), e1000176.  

Lukashev, M. E., & Werb, Z. (1998). ECM signalling: orchestrating cell behaviour and 
misbehaviour. Trends Cell Biol, 8(11), 437-441.  

Magri, L., Cambiaghi, M., Cominelli, M., Alfaro-Cervello, C., Cursi, M., Pala, M., . . . Minicucci, F. 
(2011). Sustained activation of mTOR pathway in embryonic neural stem cells leads to 
development of tuberous sclerosis complex-associated lesions. Cell stem cell, 9(5), 447-
462.  

Mair, W., Morantte, I., Rodrigues, A. P. C., Manning, G., Montminy, M., Shaw, R. J., & Dillin, A. 
(2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 
and CREB. Nature, 470(7334), 404-408.  

Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant 
treatment increases neurogenesis in adult rat hippocampus. The Journal of neuroscience 
: the official journal of the Society for Neuroscience, 20(24), 9104-9110.  

Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 
454(7203), 436-444.  

 
Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, 

and diversity. Curr Opin Immunol, 22(2), 231-237.  
 
Markovic, D. S., Glass, R., Synowitz, M., Rooijen, N., & Kettenmann, H. (2005). Microglia 

stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. 
J Neuropathol Exp Neurol, 64(9), 754-762.  

Markovic, D. S., Vinnakota, K., Chirasani, S., Synowitz, M., Raguet, H., Stock, K., . . . 
Kettenmann, H. (2009). Gliomas induce and exploit microglial MT1-MMP expression for 
tumor expansion. Proc Natl Acad Sci U S A, 106(30), 12530-12535.  

 
McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, G. M., . . . 

Aldape, K. (2008). Comprehensive genomic characterization defines human glioblastoma 
genes and core pathways. Nature, 455(7216), 1061-1068.  

McNeill, H., Craig, G. M., & Bateman, J. M. (2008). Regulation of neurogenesis and epidermal 
growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in 
Drosophila. Genetics, 179(2), 843-853.  

Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M., & Kwiatkowski, D. J. (2008). 
Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin 
(mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and 
function. The Journal of Neuroscience, 28(21), 5422-5432.  



 

169 

Melemedjian, O. K., Asiedu, M. N., Tillu, D. V., Sanoja, R., Yan, J., Lark, A., . . . Lepow, T. (2011). 
Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical 
models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain, 
7(1), 70.  

Mellinghoff, I. K., Schultz, N., Mischel, P. S., & Cloughesy, T. F. (2011). Will Kinase Inhibitors 
Make it as Glioblastoma Drugs? Curr Top Microbiol Immunol.  

Mellinghoff, I. K., Schultz, N., Mischel, P. S., & Cloughesy, T. F. (2012). Will kinase inhibitors 
make it as glioblastoma drugs? Therapeutic Kinase Inhibitors (pp. 135-169): Springer. 

Mellinghoff, I. K., Wang, M. Y., Vivanco, I., Haas-Kogan, D. A., Zhu, S., Dia, E. Q., . . . Mischel, P. 
S. (2005). Molecular determinants of the response of glioblastomas to EGFR kinase 
inhibitors. N Engl J Med, 353(19), 2012-2024.  

 
Merlo, S., Calafiore, M., Vancheri, C., Luigi Canonico, P., Copani, A., & Sortino, M.-A. (2007). 

Astrocyte-like cells as a main target for estrogen action during neuronal differentiation. 
Molecular and Cellular Neuroscience, 34(4), 562-570.  

Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, 
autophagy and metabolism. Nature cell biology, 13(9), 1016-1023.  

Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., . . . 
Porteous, D. J. (2000). Disruption of two novel genes by a translocation co-segregating 
with schizophrenia. Hum Mol Genet, 9(9), 1415-1423.  

Miller, R. A., Harrison, D. E., Astle, C. M., Baur, J. A., Boyd, A. R., de Cabo, R., . . . Strong, R. 
(2011). Rapamycin, but not resveratrol or simvastatin, extends life span of genetically 
heterogeneous mice. The journals of gerontology.Series A, Biological sciences and 
medical sciences, 66(2), 191-201.  

Ming, G.-l., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers 
and significant questions. Neuron, 70(4), 687-702.  

Mir, S. E., De Witt Hamer, P. C., Krawczyk, P. M., Balaj, L., Claes, A., Niers, J. M., . . . Kaspers, 
G. J. (2010). In silico analysis of kinase expression identifies WEE1 as a gatekeeper 
against mitotic catastrophe in glioblastoma. Cancer Cell, 18(3), 244-257.  

Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. 
(2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in 
neurogenic regions of the adult brain. Cell stem cell, 3(3), 265-278.  

Monje, M. L., Toda, H., & Palmer, T. D. (2003). Inflammatory blockade restores adult 
hippocampal neurogenesis. Science (New York, N.Y.), 302(5651), 1760-1765.  

Moscat, J., Diaz-Meco, M. T., & Wooten, M. W. (2007). Signal integration and diversification 
through the p62 scaffold protein. Trends in biochemical sciences, 32(2), 95-100.  



 

170 

Moscat, J., Diaz-Meco, M. T., & Wooten, M. W. (2009). Of the atypical PKCs, Par-4 and p62: 
recent understandings of the biology and pathology of a PB1-dominated complex. Cell 
Death & Differentiation, 16(11), 1426-1437.  

Mueller, M. M., Herold-Mende, C. C., Riede, D., Lange, M., Steiner, H.-H., & Fusenig, N. E. 
(1999). Autocrine growth regulation by granulocyte colony-stimulating factor and 
granulocyte macrophage colony-stimulating factor in human gliomas with tumor 
progression. Am J Pathol, 155(5), 1557-1567.  

Naganuma, H., Sasaki, A., Satoh, E., Nagasaka, M., Nakano, S., Isoe, S., & Nukui, H. (1996). 
Modulation of transforming growth factor-beta secretion from malignant glioma cells by 
interleukin-1 beta. Neurologia medico-chirurgica, 36(3), 145-150.  

Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. 
Curr Opin Genet Dev, 18(1), 19-26.  

 
Nishikawa, R., Sugiyama, T., Narita, Y., Furnari, F., Cavenee, W. K., & Matsutani, M. (2004). 

Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in 
glioblastoma. Brain Tumor Pathol, 21(2), 53-56.  

Noda, Y., Kohjima, M., Izaki, T., Ota, K., Yoshinaga, S., Inagaki, F., . . . Sumimoto, H. (2003). 
Molecular recognition in dimerization between PB1 domains. J Biol Chem, 278(44), 
43516-43524.  

 
Nolte, C., Kirchhoff, F., & Kettenmann, H. (1997). Epidermal growth factor is a motility factor for 

microglial cells in vitro: evidence for EGF receptor expression. European Journal of 
Neuroscience, 9(8), 1690-1698.  

Ohanna, M., Sobering, A. K., Lapointe, T., Lorenzo, L., Praud, C., Petroulakis, E., . . . Pende, M. 
(2005). Atrophy of S6K1−/− skeletal muscle cells reveals distinct mTOR effectors for cell 
cycle and size control. Nature cell biology, 7(3), 286-294.  

Ohgaki, H., & Kleihues, P. (2007). Genetic pathways to primary and secondary glioblastoma. Am 
J Pathol, 170(5), 1445-1453.  

Overstreet Wadiche, L., Bromberg, D. A., Bensen, A. L., & Westbrook, G. L. (2005). GABAergic 
signaling to newborn neurons in dentate gyrus. J Neurophysiol, 94(6), 4528-4532.  

Palazuelos, J., Ortega, Z., Diaz-Alonso, J., Guzman, M., & Galve-Roperh, I. (2012). CB2 
cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. 
The Journal of biological chemistry, 287(2), 1198-1209.  

Paliouras, G. N., Hamilton, L. K., Aumont, A., Joppe, S. E., Barnabe-Heider, F., & Fernandes, K. 
J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-
amplifying progenitor pool in the adult and aging forebrain. The Journal of neuroscience : 
the official journal of the Society for Neuroscience, 32(43), 15012-15026.  

Pandita, A., Aldape, K. D., Zadeh, G., Guha, A., & James, C. D. (2004). Contrasting in vivo and in 
vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes 
Chromosomes Cancer, 39(1), 29-36.  



 

171 

Pandita, A., Aldape, K. D., Zadeh, G., Guha, A., & James, C. D. (2004). Contrasting in vivo and in 
vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes, 
Chromosomes and Cancer, 39(1), 29-36.  

Panzanelli, P., Bardy, C., Nissant, A., Pallotto, M., Sassoe-Pognetto, M., Lledo, P. M., & Fritschy, 
J. M. (2009). Early synapse formation in developing interneurons of the adult olfactory 
bulb. J Neurosci, 29(48), 15039-15052.  

Parker, S. S., Mandell, E. K., Hapak, S. M., Maskaykina, I. Y., Kusne, Y., Kim, J. Y., . . . Ghosh, 
S. (2013a). Competing molecular interactions of aPKC isoforms regulate neuronal 
polarity. Proc Natl Acad Sci U S A, 110(35), 14450-14455.  

Parney, I. F., Waldron, J. S., & Parsa, A. T. (2009). Flow cytometry and in vitro analysis of human 
glioma-associated macrophages. Laboratory investigation. J Neurosurg, 110(3), 572-582.  

 
Pelloski, C. E., Mahajan, A., Maor, M., Chang, E. L., Woo, S., Gilbert, M., . . . Blair, H. (2005). 

YKL-40 expression is associated with poorer response to radiation and shorter overall 
survival in glioblastoma. Clinical Cancer Research, 11(9), 3326-3334.  

Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., . . . 
Goeddel, D. V. (1984). Human tumour necrosis factor: precursor structure, expression 
and homology to lymphotoxin. Nature, 312(5996), 724-729.  

Petreanu, L., & Alvarez-Buylla, A. (2002). Maturation and death of adult-born olfactory bulb 
granule neurons: role of olfaction. J Neurosci, 22(14), 6106-6113.  

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., . . . Soroceanu, 
L. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a 
pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 
157-173.  

Pianetti, S., Arsura, M., Romieu-Mourez, R., Coffey, R. J., & Sonenshein, G. E. (2001). Her-2/neu 
overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated 
degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene, 
20(11).  

Pistollato, F., Persano, L., Puppa, A. D., Rampazzo, E., & Basso, G. (2011). Isolation and 
expansion of regionally defined human glioblastoma cells in vitro. Current protocols in 
stem cell biology, 3.4. 1-3.4. 10.  

Platten, M., Kretz, A., Naumann, U., Aulwurm, S., Egashira, K., Isenmann, S., & Weller, M. 
(2003). Monocyte chemoattractant protein–1 increases microglial infiltration and 
aggressiveness of gliomas. Annals of neurology, 54(3), 388-392.  

Prasad, G., Sottero, T., Yang, X., Mueller, S., James, C. D., Weiss, W. A., . . . Aftab, D. T. (2011). 
Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination 
therapy with temozolomide. Neuro-oncology, 13(4), 384-392.  



 

172 

Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., . . . 
Joyce, J. A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma 
progression. Nat Med, 19(10), 1264-1272.  

Quiñones-Hinojosa, A., & Chaichana, K. (2007). The human subventricular zone: a source of new 
cells and a potential source of brain tumors. Experimental neurology, 205(2), 313-324.  

Raman, L., Kong, X., Gilley, J. A., & Kernie, S. G. (2011). Chronic hypoxia impairs murine 
hippocampal development and depletes the postnatal progenitor pool by attenuating 
mammalian target of rapamycin signaling. Pediatric research, 70(2), 159-165.  

Raman, L., Kong, X., & Kernie, S. G. (2013). Pharmacological inhibition of the mTOR pathway 
impairs hippocampal development in mice. Neuroscience letters, 541, 9-14.  

Ramirez-Amaya, V., Marrone, D. F., Gage, F. H., Worley, P. F., & Barnes, C. A. (2006). 
Integration of new neurons into functional neural networks. The Journal of neuroscience : 
the official journal of the Society for Neuroscience, 26(47), 12237-12241.  

Rath, P., Lal, B., Ajala, O., Li, Y., Xia, S., Kim, J., & Laterra, J. (2013). In Vivo c-Met Pathway 
Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells. 
Transl Oncol, 6(2), 104-111.  

Reardon, D. A., Desjardins, A., Vredenburgh, J. J., Gururangan, S., Friedman, A. H., Herndon Ii, 
J. E., . . . Sampson, J. H. (2010). Phase 2 trial of erlotinib plus sirolimus in adults with 
recurrent glioblastoma. Journal of neuro-oncology, 96(2), 219-230.  

RIDLEY, A., & Cavanagh, J. (1971). Lymphocytic infiltration in gliomas: evidence of possible host 
resistance. Brain, 94(1), 117-124.  

Roggendorf, W., Strupp, S., & Paulus, W. (1996). Distribution and characterization of 
microglia/macrophages in human brain tumors. Acta Neuropathologica, 92(3), 288-293.  

Rubio-Araiz, A., Arévalo-Martín, Á., Gómez-Torres, O., Navarro-Galve, B., García-Ovejero, D., 
Suetterlin, P., . . . Molina-Holgado, F. (2008). The endocannabinoid system modulates a 
transient TNF pathway that induces neural stem cell proliferation. Molecular and Cellular 
Neuroscience, 38(3), 374-380.  

Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the 
tumor microenvironment. Trends Immunol, 33(3), 119-126.  

Sami, A., & Karsy, M. (2013). Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: 
novel therapeutic agents and advances in understanding. Tumor Biology, 34(4), 1991-
2002.  

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., . . . Arancio, O. (2003). 
Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. 
Science, 301(5634), 805-809.  



 

173 

Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J.-H., Hsu, P. P., Bagley, A. F., . . . Sabatini, 
D. M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. 
Molecular cell, 22(2), 159-168.  

Sarkaria, J. N., Yang, L., Grogan, P. T., Kitange, G. J., Carlson, B. L., Schroeder, M. A., . . . 
James, C. D. (2007). Identification of molecular characteristics correlated with 
glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft 
test panel. Mol Cancer Ther, 6(3), 1167-1174.  

Sarnat, H., Flores-Sarnat, L., Crino, P., Hader, W., & Bello-Espinosa, L. (2012). 
Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal 
lipidosis. Folia Neuropathol, 50(4), 330-345.  

Sathornsumetee, S., Reardon, D. A., Desjardins, A., Quinn, J. A., Vredenburgh, J. J., & Rich, J. 
N. (2007). Molecularly targeted therapy for malignant glioma. Cancer, 110(1), 13-24.  

Sato, A., Sunayama, J., Okada, M., Watanabe, E., Seino, S., Shibuya, K., . . . Kayama, T. (2012). 
Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. 
MEDICINE, 1, 000-000.  

Sauer, F. C. (1935). Mitosis in the neural tube. Journal of Comparative Neurology, 62(2), 377-
405.  

Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., & Croll, S. (2005). Increased 
neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult 
rats. Experimental neurology, 192(2), 348-356.  

Scherer, H. (1940). Cerebral astrocytomas and their derivatives. American Journal of Cancer, 40, 
159-198.  

Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2), 211-225.  

Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly 
generated granule cells of the adult hippocampus. Nature, 429(6988), 184-187. doi: 
10.1038/nature02553 

Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L., & Greenberg, M. E. (2004). BDNF regulates the 
translation of a select group of mRNAs by a mammalian target of rapamycin-
phosphatidylinositol 3-kinase-dependent pathway during neuronal development. The 
Journal of Neuroscience, 24(33), 7366-7377.  

Sehgal, S. N. (1998). Rapamune®(RAPA, rapamycin, sirolimus): mechanism of action 
immunosuppressive effect results from blockade of signal transduction and inhibition of 
cell cycle progression. Clinical biochemistry, 31(5), 335-340.  

Shapiro, J. R., Yung, W. K., & Shapiro, W. R. (1981). Isolation, karyotype, and clonal growth of 
heterogeneous subpopulations of human malignant gliomas. Cancer Res, 41(6), 2349-
2359.  



 

174 

Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., . . . Cantley, L. 
C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic 
effects of metformin. Science (New York, N.Y.), 310(5754), 1642-1646.  

Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.-M., Goderie, S. K., . . . Temple, S. (2008). 
Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell 
interactions. Cell stem cell, 3(3), 289-300.  

Shiao, S. L., Ganesan, A. P., Rugo, H. S., & Coussens, L. M. (2011). Immune microenvironments 
in solid tumors: new targets for therapy. Genes Dev, 25(24), 2559-2572.  

Shiota, C., Woo, J.-T., Lindner, J., Shelton, K. D., & Magnuson, M. A. (2006). Multiallelic 
Disruption of the< i> rictor</i> Gene in Mice Reveals that mTOR Complex 2 Is Essential 
for Fetal Growth and Viability. Developmental cell, 11(4), 583-589.  

Shirayama, Y., Chen, A. C.-H., Nakagawa, S., Russell, D. S., & Duman, R. S. (2002). Brain-
derived neurotrophic factor produces antidepressant effects in behavioral models of 
depression. The Journal of Neuroscience, 22(8), 3251-3261.  

Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., . . . Dirks, P. B. (2004). 
Identification of human brain tumour initiating cells. Nature, 432(7015), 396-401.  

Slipczuk, L., Bekinschtein, P., Katche, C., Cammarota, M., Izquierdo, I., & Medina, J. H. (2009). 
BDNF activates mTOR to regulate GluR1 expression required for memory formation. 
PLoS One, 4(6), e6007.  

Song, H., & Moon, A. (2006). Glial cell-derived neurotrophic factor (GDNF) promotes low-grade 
Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. 
Neuroscience Research, 56(1), 29-38.  

Sottoriva, A., Spiteri, I., Piccirillo, S. G. M., Touloumis, A., Collins, V. P., Marioni, J. C., . . . 
Tavaré, S. (2013). Intratumor heterogeneity in human glioblastoma reflects cancer 
evolutionary dynamics. Proceedings of the National Academy of Sciences, 110(10), 
4009-4014.  

Standaert, M. L., Bandyopadhyay, G., Kanoh, Y., Sajan, M. P., & Farese, R. V. (2001). Insulin 
and PIP3 activate PKC-ζ by mechanisms that are both dependent and independent of 
phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. 
Biochemistry, 40(1), 249-255.  

Standaert, M. L., Galloway, L., Karnam, P., Bandyopadhyay, G., Moscat, J., & Farese, R. V. 
(1997). Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase 
during insulin stimulation in rat adipocytes. Potential role in glucose transport. The 
Journal of biological chemistry, 272(48), 30075-30082.  

Staudt, L. M. (2010). Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol, 2(6), 
a000109.  

 



 

175 

Stommel, J. M., Kimmelman, A. C., Ying, H., Nabioullin, R., Ponugoti, A. H., Wiedemeyer, R., . . . 
DePinho, R. A. (2007). Coactivation of receptor tyrosine kinases affects the response of 
tumor cells to targeted therapies. Science, 318(5848), 287-290.  

 
Streit, F., Armstrong, V. W., & Oellerich, M. (2002). Rapid liquid chromatography-tandem mass 

spectrometry routine method for simultaneous determination of sirolimus, everolimus, 
tacrolimus, and cyclosporin A in whole blood. Clinical chemistry, 48(6 Pt 1), 955-958.  

Sun, L., & Carpenter, G. (1998). Epidermal growth factor activation of NF-κB is mediated through 
IκBα degradation and intracellular free calcium. Oncogene, 16(16).  

Sun, Y., Goderie, S. K., & Temple, S. (2005). Asymmetric distribution of EGFR receptor during 
mitosis generates diverse CNS progenitor cells. Neuron, 45(6), 873-886.  

Sunayama, J., Sato, A., Matsuda, K.-i., Tachibana, K., Suzuki, K., Narita, Y., . . . Tomiyama, A. 
(2010). Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma 
stem-like cells. Neuro-oncology, 12(12), 1205-1219.  

Szerlip, N. J., Pedraza, A., Chakravarty, D., Azim, M., McGuire, J., Fang, Y., . . . Brennan, C. W. 
(2012). Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA 
amplification in glioblastoma defines subpopulations with distinct growth factor response. 
Proceedings of the National Academy of Sciences, 109(8), 3041-3046.  

Tabuse, Y., Izumi, Y., Piano, F., Kemphues, K. J., Miwa, J., & Ohno, S. (1998). Atypical protein 
kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis 
elegans. Development, 125(18), 3607-3614.  

Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., & Nawa, H. (2004). 
Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent 
local activation of translation machinery and protein synthesis in neuronal dendrites. The 
Journal of Neuroscience, 24(44), 9760-9769.  

Tanaka, K., Babic, I., Nathanson, D., Akhavan, D., Guo, D., Gini, B., . . . Mischel, P. S. (2011). 
Oncogenic EGFR signaling activates an mTORC2-NF-kappaB pathway that promotes 
chemotherapy resistance. Cancer discovery, 1(6), 524-538.  

Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, 
cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105), 929-
933.  

Terzic, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. 
Gastroenterology, 138(6), 2101-2114 e2105.  

 
Thaker, N. G., & Pollack, I. F. (2009). Molecularly targeted therapies for malignant glioma: 

rationale for combinatorial strategies. Expert review of neurotherapeutics, 9(12), 1815-
1836.  

Tiscornia, G., Singer, O., & Verma, I. M. (2006). Production and purification of lentiviral vectors. 
Nat Protoc, 1(1), 241-245.  



 

176 

Toni, N., Laplagne, D. A., Zhao, C., Lombardi, G., Ribak, C. E., Gage, F. H., & Schinder, A. F. 
(2008). Neurons born in the adult dentate gyrus form functional synapses with target 
cells. Nat Neurosci, 11(8), 901-907.  

Trujillo, J. I., Kiefer, J. R., Huang, W., Thorarensen, A., Xing, L., Caspers, N. L., . . . Li, X. (2009). 
2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent 
and isoform selective PKC-zeta inhibitor. Bioorg Med Chem Lett, 19(3), 908-911.  

Tso, C.-L., Freije, W. A., Day, A., Chen, Z., Merriman, B., Perlina, A., . . . Mischel, P. S. (2006). 
Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer 
research, 66(1), 159-167.  

Tsuchiya, S., Kobayashi, Y., Goto, Y., Okumura, H., Nakae, S., Konno, T., & Tada, K. (1982). 
Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. 
Cancer Res, 42(4), 1530-1536.  

Ucbek, A., Özünal, Z. G., Uzun, Ö., & GepdĐremen, A. (2014). Effect of metformin on the human 
T98G glioblastoma multiforme cell line. Experimental and Therapeutic Medicine, 7(5), 
1285-1290.  

Uhm, J. H., Ballman, K. V., Wu, W., Giannini, C., Krauss, J. C., Buckner, J. C., . . . Flynn, P. J. 
(2011). Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 
astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. International 
Journal of Radiation Oncology* Biology* Physics, 80(2), 347-353.  

Urbanska, M., Gozdz, A., Swiech, L. J., & Jaworski, J. (2012). Mammalian target of rapamycin 
complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of 
hippocampal neurons. The Journal of biological chemistry, 287(36), 30240-30256.  

Valster, A., Tran, N. L., Nakada, M., Berens, M. E., Chan, A. Y., & Symons, M. (2005). Cell 
migration and invasion assays. Methods, 37(2), 208-215.  

 
Verhaak, R. G. W., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., . . . Hayes, D. 

N. (2010). Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of 
Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. 
Cancer Cell, 17(1), 98-110.  

Virchow, R. (1863). Die Krankhaften Geschwulste. H. Hirschwald, Berlin.  

Wang, H., Zhang, W., Huang, H. J., Liao, W. S., & Fuller, G. N. (2004). Analysis of the activation 
status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest, 84(8), 941-951.  

 
Wang, J., Gallagher, D., DeVito, L. M., Cancino, G. I., Tsui, D., He, L., . . . Miller, F. D. (2012). 

Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and 
enhance spatial memory formation. Cell stem cell, 11(1), 23-35.  

Wang, J., Weaver, I. C., Gauthier-Fisher, A., Wang, H., He, L., Yeomans, J., . . . Miller, F. D. 
(2010). CBP histone acetyltransferase activity regulates embryonic neural differentiation 
in the normal and Rubinstein-Taybi syndrome brain. Developmental cell, 18(1), 114-125.  



 

177 

Wang, X., Tsai, J.-W., LaMonica, B., & Kriegstein, A. R. (2011). A new subtype of progenitor cell 
in the mouse embryonic neocortex. Nature neuroscience, 14(5), 555-561.  

Watters, J. J., Schartner, J. M., & Badie, B. (2005). Microglia function in brain tumors. Journal of 
neuroscience research, 81(3), 447-455.  

Watts, J. L., Etemad-Moghadam, B., Guo, S., Boyd, L., Draper, B. W., Mello, C. C., . . . 
Kemphues, K. J. (1996). par-6, a gene involved in the establishment of asymmetry in 
early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development, 
122(10), 3133-3140.  

Watts, J. L., Morton, D. G., Bestman, J., & Kemphues, K. J. (2000). The C. elegans par-4 gene 
encodes a putative serine-threonine kinase required for establishing embryonic 
asymmetry. Development, 127(7), 1467-1475.  

Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., . . . Jiang, J. (2013). Activation of PI3K/Akt 
pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. 
Proceedings of the National Academy of Sciences of the United States of America, 
110(17), 6829-6834.  

Wen, P. Y., Lee, E. Q., Reardon, D. A., Ligon, K. L., & Alfred Yung, W. K. (2012). Current clinical 
development of PI3K pathway inhibitors in glioblastoma. Neuro-oncology, 14(7), 819-829.  

Westphal, M., & Lamszus, K. (2011). The neurobiology of gliomas: from cell biology to the 
development of therapeutic approaches. Nature Reviews Neuroscience, 12(9), 495-508.  

Widera, D., Mikenberg, I., Elvers, M., Kaltschmidt, C., & Kaltschmidt, B. (2006). Tumor necrosis 
factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling. BMC 
neuroscience, 7(1), 1-18.  

Widera, D., Mikenberg, I., Kaltschmidt, B., & Kaltschmidt, C. (2006). Potential role of NF-κB in 
adult neural stem cells: the underrated steersman? International journal of developmental 
neuroscience, 24(2), 91-102.  

Wiesenhofer, B., Stockhammer, G., Kostron, H., Maier, H., Hinterhuber, H., & Humpel, C. (2000). 
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are 
strongly expressed in human gliomas. Acta Neuropathol, 99(2), 131-137.  

Wikstrand, C. J., Bigner, S. H., & Bigner, D. D. (1983). Demonstration of complex antigenic 
heterogeneity in a human glioma cell line and eight derived clones by specific monoclonal 
antibodies. Cancer Res, 43(7), 3327-3334.  

Wilkinson, J. E., Burmeister, L., Brooks, S. V., Chan, C. C., Friedline, S., Harrison, D. E., . . . 
Wood, L. K. (2012). Rapamycin slows aging in mice. Aging cell, 11(4), 675-682.  

Wilson, M. I., Gill, D. J., Perisic, O., Quinn, M. T., & Williams, R. L. (2003). PB1 domain-mediated 
heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase 
C with Par6 and p62. Mol Cell, 12(1), 39-50.  



 

178 

Wong, K.-K., Engelman, J. A., & Cantley, L. C. (2010). Targeting the PI3K signaling pathway in 
cancer. Current opinion in genetics & development, 20(1), 87-90.  

Wu, J. L., Abe, T., Inoue, R., Fujiki, M., & Kobayashi, H. (2004). IκBαM suppresses angiogenesis 
and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma 
cells. Neurological research, 26(7), 785-791.  

Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, 
homeostasis and disease. Nature, 496(7446), 445-455. doi: 10.1038/nature12034 

Yamagishi, J. M., & H. Takebe, N. (1997). Enhanced radiosensitivity by inhibition of nuclear factor 
kappaB activation in human malignant glioma cells. International journal of radiation 
biology, 72(2), 157-162.  

Yan, K., Yang, K., & Rich, J. N. (2013). The evolving landscape of glioblastoma stem cells. 
Current opinion in neurology, 26(6), 701-707.  

Yang, C., Hu, Y.-M., Zhou, Z.-Q., Zhang, G.-F., & Yang, J.-J. (2013). Acute administration of 
ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming 
test. Upsala journal of medical sciences, 118(1), 3-8.  

Zakikhani, M., Blouin, M.-J., Piura, E., & Pollak, M. N. (2010). Metformin and rapamycin have 
distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast cancer 
research and treatment, 123(1), 271-279.  

Zanotto-Filho, A., Braganhol, E., Schröder, R., de Souza, L. H. T., Dalmolin, R. J. S., Pasquali, M. 
A. B., . . . Moreira, J. C. F. (2011). NFκB inhibitors induce cell death in glioblastomas. 
Biochemical pharmacology, 81(3), 412-424.  

Zeng, L. H., Rensing, N. R., & Wong, M. (2009). The mammalian target of rapamycin signaling 
pathway mediates epileptogenesis in a model of temporal lobe epilepsy. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 29(21), 6964-6972.  

Zhai, H., Heppner, F. L., & Tsirka, S. E. (2011). Microglia/macrophages promote glioma 
progression. Glia, 59(3), 472-485.  

Zhang, L., Alizadeh, D., Van Handel, M., Kortylewski, M., Yu, H., & Badie, B. (2009). Stat3 
inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia, 
57(13), 1458-1467.  

Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult 
neurogenesis. Cell, 132(4), 645-660.  

Zheng, Y., Yang, W., Aldape, K., He, J., & Lu, Z. (2013). Epidermal Growth Factor (EGF)-
enhanced Vascular Cell Adhesion Molecule-1 (VCAM-1) Expression Promotes 
Macrophage and Glioblastoma Cell Interaction and Tumor Cell Invasion. Journal of 
Biological Chemistry, 288(44), 31488-31495.  

Zhou, J., Blundell, J., Ogawa, S., Kwon, C. H., Zhang, W., Sinton, C., . . . Parada, L. F. (2009). 
Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral 



 

179 

abnormalities in neural-specific Pten knock-out mice. The Journal of neuroscience : the 
official journal of the Society for Neuroscience, 29(6), 1773-1783.  

Zhu, Y., & Shah, K. (2014). Multiple lesions in receptor tyrosine kinase pathway determine 
glioblastoma response to pan-ERBB inhibitor PF-00299804 and PI3K/mTOR dual 
inhibitor PF-05212384. Cancer biology & therapy, 15(6), 0--1.  

Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of 
BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol 
Cell Neurosci, 11(4), 234-245.  

Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, 
diabetes and ageing. Nature reviews Molecular cell biology, 12(1), 21-35.  

 

 

 

 

 

 

 

 

 

 



 

180 

APPENDIX A 
 

CURRICULUM VITAE 
 

  



 

181 

CURRICULUM VITAE 
 

Yael Kusne, PhD. 
1117 E. Palm Lane 
Phoenix, AZ 85006 

602-509-5283 
yael.kusne@asu.edu 

 
 
Education: 

2014-2018  Medical Student, Class of 2018 
University of Arizona College of Medicine-Phoenix 

2008-2014  PhD Candidate 
    Interdisciplinary Neuroscience PhD Program 

Arizona State University with Barrow Neurological Institute           
2002-2007  Bachelor of Arts, Arizona State University 

     Major Program:  Psychology  
 
 
Awards: 
 2008-2009  ASU-BNI Interdisciplinary Neuroscience Fellowship 
     2013-2014        ARCS Foundation Scholarship 

 
 
Positions and Employment: 

2014-2018  Medical Student 
2008-2014  Graduate Student 
2006-2008  Laboratory Researcher, Barrow Neurological Institute, Phoenix 
2003-2007  Accounts Manager, Gianfranco Ristorante, Scottsdale 
Fall 2006 PGS499, Research Assistant for Dr. Nagoshi, Professor of Psychology, 

Arizona State University, Tempe 
Spring 2006 PGS399, Research Assistant for Dr. Nagoshi, Professor of Psychology, 

Arizona State University, Tempe 
2003-2006  Accounts Manager, North Desert Management, Scottsdale 
 

 
Peer Reviewed Articles:  

Valla J, Yaari R, Wolf AB, Kusne Y, Beach TG, Roher AE, et al (2010). Reduced Posterior 
Cingulate Mitochondrial Activity in Expired Young Adult Carriers of the APOE ε4 Allele, the 
Major Late-Onset Alzheimer's Susceptibility Gene. Journal of Alzheimer's Disease, 
22(1):307-13. 

Nicholson R, Kusne Y, Nowak LA, LaFerla FM, Reiman EM, Valla J (2010). Regional cerebral 
glucose uptake in the 3xTG model of Alzheimer's disease highlights common regional 
vulnerability across AD mouse models. Brain Research, 1347:179-185. 

Wolf AB, Braden BB, Bimonte-Nelson H, Kusne Y, Young N,  Engler-Chiurazzi E, et al (2012). 
Broad-based nutritional supplementation in 3xTG mice corrects mitochondrial function and 
indicates sex-specificity in response to Alzheimer's disease intervention. Journal of 
Alzheimer's disease, 32(1):217-232.                                                          

Parker S, Mandell E, Hapak S, Maskaykina I, Kusne, Y, et al (2013). Competing molecular 
interactions of aPKC isoforms regulate neuronal polarity. PNAS, 110(35):14450-14455.  



 

182 

Mirzadeh, Z, Bina, R, Kusne, Y, Coons, SW, Spetzler, RF, Sanai, N (2014). Predictors of 
functional recovery in adults with posterior fossa ependymomas. Journal of Neurosurgery, 1-
6. 

Kusne Y, Goldberg E, Parker SS, Maskaykina I, Price TJ, Ghosh S (2014). Contrasting effects of 
chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural 
progenitors in mice. Age, 36: 199-212. 

Kusne Y, Perry AS, Rushing EJ, Jabbour ME, Mandell EK, Mirzadeh Z, et al (2014). Tumor 
intrinsic EGFR and macrophage induced TNF-a signaling cooperate to promote GBM 
progression through aPKC. Science Signaling, in revision. 

 
 
Volunteer Experiences: 
May 14-16, 2013 Judge ISEF 
January 2012 – September 2012 Medical Animals in Need Volunteer 
January 2012 – current  Rockstar Rescue volunteer foster 

 

 

 


