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ABSTRACT

Increasing interest in individualized treatment strategies for prevention and treatment

of health disorders has created a new application domain for dynamic modeling and control.

Standard population-level clinical trials, while useful, are not the most suitable vehicle for

understanding the dynamics of dosage changes to patient response. A secondary analysis

of intensive longitudinal data from a naltrexone intervention for fibromyalgia examined in

this dissertation shows the promise of system identification and control. This includes data-

centric identification methods such as Model-on-Demand, which are attractive techniques

for estimating nonlinear dynamical systems from noisy data. These methods rely on gener-

ating a local function approximation using a database of regressors at the current operating

point, with this process repeated at every new operating condition.

This dissertation examines generating input signals for data-centric system identification

by developing a novel framework of geometric distribution of regressors and time-indexed

output points, in the finite dimensional space, to generate sufficient support for the estima-

tor. The input signals are generated while imposing “patient-friendly” constraints on the

design as a means to operationalize single-subject clinical trials. These optimization-based

problem formulations are examined for linear time-invariant systems and block-structured

Hammerstein systems, and the results are contrasted with alternative designs based on

Weyl’s criterion. Numerical solution to the resulting nonconvex optimization problems is

proposed through semidefinite programming approaches for polynomial optimization and

nonlinear programming methods. It is shown that useful bounds on the objective function

can be calculated through relaxation procedures, and that the data-centric formulations

are amenable to sparse polynomial optimization. In addition, input design formulations are

formulated for achieving a desired output and specified input spectrum. Numerical exam-

ples illustrate the benefits of the input signal design formulations including an example of

a hypothetical clinical trial using the drug gabapentin.

In the final part of the dissertation, the mixed logical dynamical framework for hybrid

model predictive control is extended to incorporate a switching time strategy, where deci-

sions are made at some integer multiple of the sample time, and manipulation of only one
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input at a given sample time among multiple inputs. These are considerations important

for clinical use of the algorithm.
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Chapter 1

INTRODUCTION

1.1 Motivation

In the behavioral health and medical disciplines, there has been a shift towards rec-

ognizing the need for development of an effective paradigm for prevention, treatment and

management of chronic and relapsing health disorders [1, 2, 3, 4]. In particular, there is an

increasing interest in treatment strategies which are individualized and time-sensitive for

maximizing the treatment effect while minimizing risks and waste [5, 6, 7, 8]. This is a multi-

faceted problem involving modeling and manipulation of a complex system (a human being

and its environment) by incorporating scientific theories from natural and social sciences,

state-of-the-art mathematical tools and an ever-increasing access to experimental data. As

an open research problem, this is being addressed in different fields under topics such as

data-driven personalized medicine [1, 2], clinical decision support systems [7, 9], adaptive

interventions [5, 6, 10, 11] and just-in-time interventions [12] among others. Increasingly

diverse examples of focused strategies have been proposed in various health settings such

as, for example, in behavior change [13, 14], smoking cessation [15], gestational weight gain

[16], alcoholism [17], neuroscience [18], chemotherapy [19, 20], and management of pain

[21, 22], AIDS [23] and diabetes [24, 25] to cite a few examples.

A large number of phenomena that evolve over time can be modeled using a dynamical

systems approach [26, 27, 28]. Traditionally, it has been used to describe the dynamics

of inanimate systems, for example, in chemical processes [29], mechanical and aerospace

systems [30], power systems [31] and computing systems [32]. This approach has also been

recognized in the biological and behavioral sciences as a means for building a more predictive

model to describe the evolution of the system [33, 34, 35, 36, 37]. In particular, dynamical

systems are useful for translating theories in behavioral science and psychology into more
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predictive, falsifiable and testable forms [37, 38, 14, 39], which are amenable to optimal

decision making under dynamics and uncertainty using control theory [5, 28, 40, 41].

Recently, an important enabler for improved modeling and decision making has been

access to large amount of data [42, 43, 44]. Although building models from experimental

data has been a fundamental exercise in science and engineering, the ubiquitous nature of

sensor and computing devices is giving access to information previously untapped. Among

the various statistical methods lies the field of system identification which particularly

deals with building dynamical models from experimental data [45, 46]. Given that the

performance of a control system depends strongly on the quality of a model, mathematical

modeling continues to remain an important and challenging task in control design [47, 48].

However, not all data are created equal. Collected data may not be useful due to lack of

proper excitation and hence will lack critical information about the system. In particular,

the data is not conducive to infer dynamics if it does not show sufficient variations over time.

Thus, the process of choosing the nature and quality of collected data or experiment design

[49] is critical for building meaningful models. Experiment design in system identification

involves selecting, often a finite-dimensional, input signal u = [u(1), . . . , u(N)]T ∈ R
N such

that engineering requirements of performance and safety are satisfied while minimizing

certain cost criteria related to the estimation procedure [50, 51, 52, 53]. Indeed, generation

of this input signal is dependent upon certain assumptions on the model structure, its

size and complexity and the nature of the estimator [45]. This dissertation explores the

design of optimal input signals with focus on data-centric system identification estimators

[54, 55, 56] while addressing specific constraints of importance in clinical practice [57]. It is

argued that the better quality of data would lead to improved modeling and subsequently

better closed-loop performance. Towards this end, the dissertation proposes enhancements

to hybrid model predictive control to address clinical requirements, including switching time

constraints and choosing only one input among multi-inputs at a given time.
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This chapter is organized as following: Section 1.2 describes the nature of the exper-

imental data from clinical trials and introduces the concept of patient-friendly designs.

Section 1.3 discusses the questions in experiment design or input signal design for system

identification, and Section 1.4 describes the control systems approach for assigning dosages

over time. The research goals addressed in this dissertation are presented in Section 1.5.

The contribution of this dissertation are listed in Section 1.6. The chapter ends with infor-

mation on the organization of the dissertation and a list of publications in Section 1.7.

1.2 Experimental Data from Biological Systems and Clinical Trials

Biological and social systems are characterized by complexity and thus, use of experi-

mental data is critical towards unraveling the inner workings of these system. The exper-

imental procedures may involve testing the effect of external perturbations and measuring

outcomes end-points at select time intervals. The experimental data collected in a clini-

cal trial has historically yielded increased understanding, for example, in systems biology

[58, 59] and cancer biology [60]. This section describes the nature of clinical data using a

previously-conducted clinical experiment and contains a brief description of how input sig-

nal design can play a role in the development of more effective clinical trials that ultimately

lead to optimized treatments.

A clinical trial is a controlled scientific experiment conducted to determine the effects of

certain treatment procedure such as a new drug or a behavioral therapy such as counseling.

The design of a clinical trial involves both clinical and statistical aspects [61]. Knowl-

edge of drug pharmacokinetic-pharmacodynamic effects is also necessary for clinical trials

involving a pharmaceutical component [62]. Issues related to the clinical aspects include

recruitment of participants, preparation and implementation of a safe clinical protocol for

different phases of a clinical trial among other important considerations. More details on

this aspect can be found in [61]. From a modeling perspective, clinical trials are designed

as statistical experiments. In many population-level clinical trials, the participants are
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Figure 1.1: Plot of selected variables from naltrexone intervention of fibromyalgia as a
function of time. This participant received placebo followed by drug in a single blinded
trial. Decrease in FM Symptoms and increase in Overall Sleep over time indicate a dynamic
response to the treatment.

randomly assigned to different treatment groups. The process of randomization guaran-

tees independence between treatment procedure and desired outcome for causal inference

[63, 64]. More commonly, crossover designs are employed where the participants receive

different treatment in a sequential manner (e.g., drug followed by placebo). Furthermore,

the experiments are also generally blinded: a single blind study is a clinical trial in which

the participants do not know if they are taking the experimental treatment or a placebo.

Similarly, a double blind study involves the scenario where both the participant and the

experimenter are unaware of the actual treatment. Finally, many clinical trials measure the

outcomes of interests over a period of time to deduce the efficacy of the intervention.

These concepts are illustrated with a clinical trial of naltrexone, an opiate antagonist,

as a treatment for a pain disorder known as fibromyalgia [65, 66, 67, 68]. The study

was designed as a single-blind, placebo-control while employing a crossover design [67].

Figure 1.1 shows data for a single participant of the pilot study to determine the efficacy
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of this drug on fibromyalgia symptoms. In this blind controlled experiment, a unit dose

is provided over a long period of time, and corresponding changes in symptom reports

(on a scale of 0 − 100) are noted over the period of the trial. As shown in Fig. 1.1, the

participant in the trial reports lower overall fibromyalgia symptoms (primary endpoint),

and improved sleep as a consequence of the drug. In addition, secondary endpoints were

also measured during the course of the study [67]. The efficacy of the drug can be inferred

through standard statistical tools [61, 67, 68]. The use of this data for dynamical modeling

and subsequent closed-loop control is examined in Chapter 2. The secondary analysis of

data revealed certain limitations in the design for producing an informative dataset for the

purpose of system identification, and this has motivated this dissertation to address input

design by incorporating requirements from clinical practice. More details on this secondary

analysis can also be found in [21, 22, 69, 70].

As alluded to earlier, traditional population-level clinical data is generally not amenable

for constructing dynamical models. This is not surprising given they are typically designed

for ‘static’ systems and are geared towards hypothesis testing and finding treatment efficacy.

For example, the following statements are true for the data collected in the naltrexone

fibromyalgia trial:

• Continuous scales are used for variables measured in the study. Often data in clinical

trials is represented in terms of categorical variables (e.g., binary or ‘yes/no’ variables)

which are difficult to analyze using system identification.

• A rich dataset is available for many variables in this study. This is also know as

intensive longitudinal data (ILD) in social science literature [71] which implies that

many measurements were taken over time or that the signal was sampled fast enough

to capture the underlying dynamics.

There are still a number of issues regarding using such clinical data that limit its usefulness

for system identification such as:
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1. Only one dosage level is present in the input signal:

• Modeling perspective: The single step change in the dosage creates difficulties for

assessing nonlinearity or distinguishing between the effect of disturbances versus

the input, among other considerations.

• Pharmacological perspective: The single step change (i.e. fixed dosage) may

not cover the complete therapeutic window of the drug. This implies that it is

possible to vary the drug dosages over time and to observe corresponding changes

in reported pain condition. It is not uncommon to see flexible dosage trials [72]

in literature, although they may be designed in an ad-hoc way.

2. Given the nature of the protocol, e.g., the drug signal followed by the placebo signal

(Fig. 1.1), it is difficult to divide the dataset into estimation and validation subsets.

Considering some of these limitations, there has been increasing interest in using so-

called ‘n-of-1’ or single-subject clinical trials [73, 74, 75]. These design are highly indi-

vidualized and hence have specific advantages over population-level design by being more

objective driven, capable of leveraging recent proliferation of mobile devices and hence are

more compatible with the end goal of clinical practice [74, 75]. In the input signal approach,

the drug dosages (input signals) can be manipulated to satisfy system identification objec-

tives. Thus, the traditional shortcomings can be systematically addressed by approaching

part of single-subject clinical trial design as an input signal design problem, and hence

making the clinical data more useful for system identification [76].

However, embarking upon this task requires care, as many input design methods, even

the state-of-the-art, may not incorporate human participant requirements that extend be-

yond commonplace issues relevant in industrial applications. This can be illustrated for

pharmaceutical based proposed intervention for the drug gabapentin used to treat neuro-

pathic pain. The drug has a broad therapeutic window [77] although the change in dosages

should be slow. The following constraints are desired:
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1. Typical dosage: 1200− 3600 mg,

2. Length of protocol : 90− 240 days,

3. Dosage change size : 100, 300, 600, 900 mg,

4. Dosage assessment: 1 day (daily) to 7 days (weekly).

These constraints can be comprehensively addressed using input signal design proce-

dures as shown in more detail in Section 1.5.1. Fig. 1.2 shows a dynamic simulation example

to illustrate this point. The drug magnitude limit is translated as an amplitude constraint

and the limitation on dosage change over time is enforced through a constraint on the sig-

nal rate of change. The simulation also shows two periods of the input signal, under daily

assessment, along with a provision to gradually increase the drug dosage to 900 mg during

baseline and similarly gradually decrease during the washout period. During the period of

the experiment, the pain response is systematically manipulated under constraints. This

simulation example has been discussed in more detail in Chapter 5.

To illustrate this point further, consider another example of an intervention aimed for

improving physical activity among adults. The aim of the input design is to understand

the dynamics of rewards on human behavior. The design provides a binary input (i.e.

reward or no reward) such that the number of steps taken per day (by running or walking)

match the goals for that day as close as possible through operant conditioning, and hence

improve the physical activity of that individual [78]. The optimized experiment will take

advantage of the dynamical model developed from behavioral theory [38] to determine

optimal delivery of the intervention component over time. This optimization is performed

under constraints that reflect clinical and practical guidelines. Fig. 1.3 shows the dynamic

response to the optimal input for a simulation example. The optimized experiment is

expected to result in superior information within allowable constraints in a single-subject

fashion. This simulation example has been discussed in more detail in Chapter 6.
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Figure 1.2: Dynamic simulation of pain response (from baseline 50) to a nine-level, two
period input signal under daily assessment for the drug gabapentin. A first order system
is used to simulate the pain response. The dashed lines denote the span of pain response
which is a design variable in generating the input signal.

One of the aims of the dissertation is to address the issue of data-quality in a clinical

setting such that the resulting data will carry more meaningful information about the

response to different drug dosages. Based on this discussion, this section can be concluded

with the following definition:

Definition 1. The patient-friendly input signal design problem consists of the following:

• enhancements of single-subject clinical trial design by systematically addressing re-

quirements of clinical practice,

• incorporation of system modeling requirements,

• end-use in adaptive interventions and personalized medicine.
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1.3 Input Signal Design for System Identification

This section introduces input signal design for system identification with emphasis on

data-centric methods.

1.3.1 Constraints and Objectives in Input Signal Design

Input signal design is the key step for generating informative experimental data to be used

in system identification. Broadly speaking, the goal of input signal design is to increase

the information contained in the data by addressing the source of inaccuracy in the data

generating process. For a given noise in the system, it is well known that the accuracy

of the identified model is only a function of the design parameters chosen by the experi-

menter [49]. Conceptually, the input design problem in system identification can be posed

9



as an optimization problem

min
u

Objective (1.1)

subject to Time domain requirements

Frequency domain requirements

where the input signal u ∈ R
N is the decision vector. The constraints in the optimization

problem can be classified based on their native origin: time-domain and frequency domain.

Prior work on input signal design at Arizona State has considered the concept of “plant

friendliness” in input design to address practical time domain constraints that are part of

industrial process operation; this includes limits on the signal length, amplitude and its

rate of change.

One of the contributions of this dissertation is to explore how plant friendliness consid-

erations can be extended for applications in health and medicine to the concept of “patient-

friendly” input design. In addition to the traditional plant-friendly constraints, there may

exist additional considerations that arise from clinical practice. These are typically limits

on allowed drug dosages (e.g., number of treatment visits, medications, etc.) and their rate

of change. Also among them is the presence of categorical constraints resulting from the

fact that dosages cannot be continuously adjusted and can only assume certain discrete

values within an interval. Likewise, dosage changes may only occur at certain prescribed

time intervals (e.g., weekly) as a result of clinical requirements. The approach to “patient-

friendliness” philosophically parallels, but is distinct from the “human-friendly” concept

defined by [79] for patients with diabetes. Towards this goal, in previous work a simulta-

neous frequency and time domain formulation with plant-friendly constraints was shown in

[50, 80, 81] using multisine signals. The input signals are designed using a predefined discrete

power spectrum while the optimization procedure chooses the phases (and some amplitudes)

to minimize a desired plant-friendly metric, such as the signal crest factor [45, 82].
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The objective of the problem (1.1) relates to a certain metric of interest such as param-

eter variance of the identified model [45, 49, 83], input/output signal crest factor [81] or

distribution of regressors [84, 85]. In addition, frequency domain requirements arise from

aspects of persistence of excitation conditions on the input [45], robustness [86] and model

quality [87]. The optimization problem 1.1 is generally found to be intractable. Many

methods developed in literature take advantage of the fact that the inverse of the param-

eter covariance matrix is linear in the spectrum (which is the decision variable in those

problems) [45] and hence such formulations can be posed as convex optimization problems

[87]. However, they however have not been shown to explicitly consider all patient-friendly

constraints required for a clinical trial. A major part of this dissertation is devoted towards

developing tractable methods for solving a class of data-centric input design problems and

the problem (1.1) is solved directly in the input signal u. A survey of experiment design in

system identification is presented in Chapter 3.

1.3.2 Input Signal Design for Data-Centric System Identification Methods

The traditional philosophy in system identification is to derive a parsimonious mathemati-

cal model as the best description (in some sense) of the input-output data generated from a

dynamical system. The dataset is discarded following model validation and the estimated

model serves as the exclusive basis for predicting system behavior. Linear time-invariant

(LTI) system identification using prediction-error methods [45] and nonlinear identification

methods such as neural networks, Nonlinear AutoRegressive with eXogenous input (NARX)

and Hammerstein-Wiener models [45, 88] are few of the examples of this global approach.

In general, the choice of a suitable structure is nontrivial, and often the associated optimiza-

tion problem is nonconvex which may result in poor solutions. The data-centric approach,

meanwhile, offers an effective modeling alternative, where computationally tractable meth-

ods are used to estimate an unknown function near a local neighborhood of the current

operating point. In this approach, the data set is never discarded, but rather an estimate is

generated “on demand” at each new operating condition. Examples of this approach in the
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system identification literature include Model-on-Demand (MoD) estimation [55, 54, 89]

and Direct Weight Optimization (DWO) [56, 90]. These approaches, and corresponding

closed-loop design techniques, have been used in diverse applications, ranging from chemi-

cal process control to optimized behavioral interventions [55, 91].

With the advent of smart mobile devices, medical interventions can be conducted in

real-time with new data continuously becoming available [8], and hence are enablers for

data-centric methods. Data-centric system identification methods, such as MoD, build

predictions from the collected dataset using estimator such as

f̂(ϕ∗) =
N∑

k=1

w(k)y(k), (1.2)

where ϕ∗ is the current regressor point, y is the output and the weights w are determined by

an estimator specific algorithm. Thus, the success of data-centric methods hinges strongly

on the availability of informative data. Consequently, input signal design is of critical im-

portance for this class of methods. As argued earlier, recognizing constraints on the input

and output is necessary to achieve practical requirements such as plant-friendly and patient-

friendly operation [81, 57]. Input signal design requirements for data-centric methods are

unique given that no fixed model is available, instead an estimate is formed at a current op-

erating point, bounded by the dynamical constraints, on-line from a database of regressors.

In fact, as data-centric methods are regressor centric, conventional inputs used in system

identification, such as pseudo random binary sequence (PRBS) [45], may be suboptimal

given they do not directly address spread or distribution in the regressor space. The input

signal design framework proposed in this dissertation directly addresses distribution in the

regressor space. The concept of developing coverage can also be extended to the case of

highly interactive systems as discussed in Section 1.5.1. The arguments made in this section

can be summarized in the following proposition:
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Proposition 1. Design an input signal to generate an informative database for data-centric

system identification by achieving optimal coverage in the regressor and output space, and

thus enabling effective local function estimation under noisy conditions.

The overall aim of this dissertation is to combine the statements in Definition 1 and

Proposition 1, and hence to develop algorithms that can generate informative data for

data-centric methods while respecting clinical constraints.

1.4 Automated Dosage Assignment

The end-use of more accurate dynamical modeling of the system is to facilitate decision-

making. The decisions are based on desired goals of the intervention, dynamics, uncertainty

and constraints. As discussed in Section 1.2, many of the constraints under which clini-

cal systems operate are hard and deterministic. In addition, the problems concerning

automated dosage assignment may involve constraints which can be described only using

propositional logic [92] and temporal logic [93]. For example, in cancer chemotherapy, it is

common to provide a ‘cocktail’ of drugs to improve the efficacy of the treatment [60]. In

some situations, it may be necessary to impose restrictions such as that one of the drug

magnitude may not exceed a certain concentration unless the other drug has reached its

peak saturation in the body. In addition, it may be required that multiple drug dosages

are not changed at the same instant. These are examples of seemingly diverse constraints

that can be addressed using tools of control engineering in a robust fashion [5]. In this

dissertation, the following two requirements are considered:

• Switching time requirement. Due to clinical and resource considerations, it is often

desirable to make decisions at frequencies other than the regular sampling interval.

With more ubiquitous computing, samples can be collected as quickly as, for ex-

ample, every second; however it is generally undesirable to make decisions at those
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frequencies. The switching constraints gives the option to make decisions only at time

intervals generally chosen in consultation with the domain expert.

• Manipulating one input at a time requirement. Clinical interventions generally feature

multiple arms: some may be pharmaceutical in nature while some may be related

with the behavioral aspects such as counseling sessions. In many situations, it is

desired that only one of the components changes dosage at any given time. This

condition meets a clinical requirement, and thus reduces the potential harmful effects

of unknown interactions as much as possible.

These research questions are addressed, case-by-case, in the next section and, in detail,

in the rest of chapters of this dissertation.

1.5 Research Goals

This section presents the three main research goals addressed in this dissertation. Sec-

tion 1.5.1 contains the proposed algorithms for input signal design, Section 1.5.2 describes

the computational algorithms to solve the input design problems and Section 1.5.3 contains

the enhancement to the hybrid model predictive control algorithm. These topics are further

explored in detail in the subsequent chapters of this dissertation.

1.5.1 Input Signal Design

The research goals for patient-friendly input signal design are discussed under two cate-

gories: constraints and formulations.

1.5.1.1 Constraints

Satisfying these input constraints is achieved by formulating the input design problem

directly in the input variable u which produces a deterministic finite length input signal. To

illustrate the patient-friendly requirements, the previous example using the drug gabapentin

is used to show how the clinical constraints can be translated as mathematical constraints

for the input signal u(k) ∀k of length N :
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• Amplitude constraints: umin(k) ≤ u(k) ≤ umax(k) - typical dosage of 1200− 3600 mg.

• Limit on N : length of protocol of 90− 240 days.

• Move size constraint: |u(k+1)−u(k)| ≤ b(k) - dosage change size of 100, 300, 600, 900

mg.

• Switching constraint:
∑Tsw−1

j=1 (u(k) − u(k + j)) = 0 ∀k = 1 + nsw × Tsw, nsw =

0, 1, 2, . . . - dosage assessment or switching time Tsw of 1 day to 7 days.

The patient-friendly constraints can be represented through an intersection of linear inequal-

ities (amplitude and move size constraints) and equalities (switching constraint). Thus, the

feasible set U in the variable u is a convex set as described in Section 4.2 of Chapter 4.

1.5.1.2 Formulations

In this dissertation, three distinct input signal designs are developed to extend Definition 1

and Proposition 1. The first problem formulation directly addresses the data-centric meth-

ods and the goal of formulating patient-friendly data-centric input signal design is achieved

by developing a novel problem formulation using geometric distribution in the finite dimen-

sional space. The proposed design is suited for data-centric system identification methods

which do not produce a fixed parametric model. The other problem formulations address

achieving a desired input spectrum and output. These are now briefly described.

1. Input signal for data-centric estimation methods:

• Using distribution of regressors: The regressor is expressed as a function of the

input and the algorithm then distributes the regressors (in some sense, as de-

scribed later) to cover the regressor space under time domain constraints on the

input. This is developed for linear time-invariant systems where the subsequent

optimization problems correspond to nonconvex quadratic programs (which are

NP-hard [94]) and for Hammerstein systems, where the subsequent optimization
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problems are general nonconvex polynomial optimization problems. Two dis-

tinct problem statements are considered for distribution of regressors. The first

problem statement can be described as when given N regressor vectors of fixed

finite dimension, distribute the regressor points as far apart from each other as

possible in the regressor space under constraints on the input and output signals.

This can be represented as

max
u

N−1∑

i=1

N∑

j=i+1

dij (1.3)

s.t. u ∈ U

where dij is the distance between regressor ϕ(i) and ϕ(j) or the regressor distance

pair. The second problem statement can be described as when given N regressor

vectors of fixed finite dimension, distribute the regressor points such that any two

regressors can be as far apart as possible in the regressor space under constraints

on the input and output signals. This can be represented as

maxmin
u

dij (1.4)

s.t. u ∈ U

where dij is the regressor distance pair. The two problem statements are com-

pared and described in detail in Section 4.4.1. An initial formulation using

semidefinite relaxation of one of these nonconvex quadratic problems is pro-

posed in [84] with an extension proposed in [85]. The formulations developed

are solved through semidefinite and nonlinear programming methods. Numerical

examples and case studies are used to illustrate the proposed input design for-

mulations and assess their benefits. An extension to other structured nonlinear

systems such as Hammerstein-Wiener models and to multivariable scenarios is

also proposed.
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• Using distribution of outputs: For multivariable, highly interactive, ill-conditioned

dynamical systems, it is difficult to obtain information in the low gain direction

using convention open-loop input signal, and hence an input is required which

can achieve a more uniform coverage to excite both low and high gain directions

[95]. In this dissertation, it is proposed to spread the points in the output space

such that the minimum distance between any two points is maximized:

maxmin
u

dyij (1.5)

s.t. u ∈ U

where dyij is the distance between any two time-indexed output points. This

approach is described in Section 4.4.3.

• Using Weyl’s criterion: Weyl’s criterion:

lim
N→∞

1

N

N∑

k=1

e(2πℓx(k))i = 0 ∀ℓ ∈ Z− {0} (1.6)

gives the necessary and sufficient condition for a sequence x to be uniformly

distributed in [0, 1). To achieve uniform coverage, Weyl’s criterion on the output

is minimized as

min
u∈U∩I

1

N

N∑

k=1

e(2πℓy(k))i (1.7)

where U is the set defined by input constraints and I is the additional categorical

requirement on the input signal. Given the objective is a complex number, the

real and imaginary parts are individually represented as shown in Section 5.2.

The resulting optimization problem is nonlinear and nonconvex, and is solved

(locally) using nonlinear programming. Examples are shown to prove the use-

fulness of this method. This approach is described in Section 4.4.4.

2. Input signal for achieving a desired output under constraints. Under the condition

that the nature of output y is known a priori as ydes, the input signal design problem
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for LTI systems can be posed as convex optimization problem:

min
u

‖y − ydes‖ (1.8)

s.t. u ∈ U. (1.9)

This approach is described in Section 6.2. This is useful for applications where the

changes in output has a trend over time.

3. Input signal with a desired spectrum under time domain constraints. The input signal

design aim is to generate an input signal with a desired spectrum under time domain

constraints. A “flat” spectrum (Φu(ω)) over a bandwidth is generally desirable

Φu(ω) ≈ γ(ω) =







γa ω∗ ≤ ω ≤ ω∗

γb ω > ω∗
(1.10)

where the frequency range is determined by

ω∗ =
1

βsτHdom
≤ ω ≤ αs

τLdom
= ω∗ (1.11)

where typically αs = 2 and βs = 3 [81] and estimate of τdom is obtained from drug

pharmacokinetics metrics such as biological half-life. The problem is formulated as a

nonlinear programming problem

min
u∈U

|Φu(ω)− |γ(ω)|| (1.12)

where U is the set defined by input constraints. This approach is described in Sec-

tion 6.3.

In conclusion, the three formulations presented address the patient-friendly constraints.

They fundamentally differ in the specific objective function: for example, the data-centric

method’s goal is to distribute the regressors while the spectral formulation aims at achieving

desired input signal spectrum.
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1.5.2 Computational Tools

A major focus of this work is to rely on optimization to solve the input signal design

problems. As mentioned earlier, the problems are solved directly in the decision variable u.

While the constraint set is convex, the specific objective functions considered are nonconvex.

First, the problems can be locally solved using nonlinear programming. In many practical

situations, this yields reasonable solutions. To improve the solution of the proposed prob-

lem formulations, semidefinite relaxation of polynomial optimization has been explored to

approximate the original nonconvex problem. Using representation of nonnegative polyno-

mial using sum-of-squares and theory of moments, a hierarchy of convex relaxation can be

proposed as:

P
ξ
SOS : max

λ,s0,sj
λ (1.13)

s.t. g0(u)− λ = s0 +
m∑

j=1

sjgj , s0, sj ∈ Σ

deg(s0), deg(sjgj) ≤ 2ξ,

where Pξ
SOS can be written as a semidefinite program (SDP) to give a bound on the original

nonconvex objective as a function of the relaxation parameter ξ. For the particular case of

nonconvex quadratic programs, suboptimality bounds on the relaxation can also be found.

These are explored in more detail in Chapter 5.

1.5.3 Model Predictive Control for Enhanced Clinical Use

Model predictive control (MPC) is a successful control technology particularly suited for

use in clinical applications due to the flexibility it offers to address design objectives and

constraints. To address categorical constraints, a hybrid model predictive control with

three degree-of-freedom (3 DoF) tuning was developed in [96, 97]. The controller solves the

following mixed-integer quadratic optimization problem

min
{[u(k+i)]m−1

i=0
, [δ(k+i)]p−1

i=0
, [z(k+i)]p−1

i=0
}

p
∑

i=1

‖(y(k + i)− yr)‖2Qy
+

m−1∑

i=0

‖(∆u(k + i))‖2Q∆u
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+
m−1∑

i=0

‖(u(k + i)− ur)‖2Qu
+

p−1
∑

i=0

‖(δ(k + i)− δr)‖2Qd
+

p−1
∑

i=0

‖(z(k + i)− zr)‖2Qz
(1.14)

s.t. ymin ≤y(k + i) ≤ ymax, i ∈ Tp (1.15)

umin ≤u(k + i) ≤ umax, i ∈ Tm (1.16)

∆umin ≤∆u(k + i) ≤ ∆umax, i ∈ Tm (1.17)

E2δ(k) + E3z(k) ≤ E5 + E4y(k) + E1u(k)− Edd(k). (1.18)

at each sampling instant under dynamical constraints, while only the first instance of the

calculated optimal input is implemented as per the receding horizon framework. Specific

details of the formulation can be found in Chapter 2, where it is used to assign dosages of

naltrexone for treatment of fibromyalgia. This formulation allows inclusion of amplitude

constraints on the manipulated variable and the controlled variable as well as limits on the

rate of change of the manipulated signal, such as move size constraints. Logical constraints

are enforced through a mixed-integer linear inequality shown in (1.18). However, there

are certain clinical requirements which are not addressed in the current formulation. The

proposed enhancements, developed in detail in Chapter 7, address the issues raised in the

Section 1.4. They are as follows:

• Switching time strategy : In order to address the flexible assessment problem, it is pro-

posed to include an additional constraint which will block the manipulated input for

the fixed time, although the MPC algorithm is sampled at the original rate. Towards

this, a linear equality can be added to the original formulation subject to additional

constraints. This approach is described in Section 7.3.

• Selection of single input at a multi-input scenario: In order to address this require-

ment, additional binary variables φ and their associated logical specifications are intro-

duced. They are converted into linear inequalities, and are implemented by appending

them to (1.18) where the number of the additional binary variables will correspond
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to the number of the manipulated inputs. The optimization problem solves and finds

the solution such that only one input is manipulated. This approach is described in

Section 7.4.

1.6 Contributions of the Dissertation

This dissertation has presented a framework for generating input signal for data-centric

system identification under time-domain constraints which are inspired from the clinical

applications, and enhancements to hybrid model predictive control. The contributions of

this work in terms of input signal design can be summarized as follows:

• Enumeration of constraints on the input and output signal to address the requirements

of practical importance originating in clinical applications. The problem formulations

are written directly as a function of the input signal u thus seamlessly addressing the

patient-friendly requirements. This has allowed generation of finite length determin-

istic signals which can be applied in many applications.

• Development of a novel formulation for generating input signals using distribution in

the finite-dimensional regressor space. The regressor points are distributed such that

they generate sufficient support for the data-centric estimator.

• Development of a novel formulation for generating input signals for highly interactive

systems using distribution of time-indexed output points.

• Development of an input signal design formulation to achieve distribution using Weyl’s

criterion. This formulation has been compared with the previous two formulations

and has been shown for the case of gabapentin clinical trial.

• Development of an input signal design formulation for achieving desired output tra-

jectory and desired input spectrum under input constraints. This desired output

formulation has been shown for the case of physical activity intervention.
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• The problem formulations have been mathematically written as optimization prob-

lems. For LTI systems, it has been shown that these correspond to nonconvex

quadratic programs and for general block-structured nonlinear systems (which in-

cludes Hammerstein-Wiener systems), these correspond to polynomial optimization

whose degree depends on the degree of the system nonlinearity.

• This dissertation has proposed numerical solution of these problems using semidefinite

programming approaches for polynomial optimization and nonlinear programming. It

has been shown that under certain conditions, useful bounds on the objective and a

feasible input signal can be obtained.

• Enumeration of the condition under which the proposed input design problems are

composed of few monomials and hence sparse. It has been shown that the input

constraints are naturally sparse where as sparsity is induced by incorporating select

regressor distance pairs. An alternative methods which utilizes the fact that the

distances are already sum-of-squares has also been developed.

• The process of input signal design has been designed as a single-subject clinical trial

with a proof-of-concept presented through simulation of a hypothetical clinical trial.

It should be noted that the goal is to enhance, rather than replace the current clinical

trial protocols. Post randomization and blinding, the participants can be given dosage

plans which can be systematically designed using tools from system identification.

The contributions of this work in terms of updates to hybrid model predictive control

can be summarized in following two points:

• Improvement of the hybrid model predictive control algorithm, as presented in [96, 97],

to include constraints on the switching of the manipulated input. This updated im-

plement in accordance with the receding horizon framework enables the manipulated

input to change only at user supplied samples of importance to clinical practice.
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• Extension of the mixed-logical dynamical (MLD) constraint of the hybrid model pre-

dictive control algorithm to address selection of only one manipulated variable in a

multi-input scenario. Under this constraint, at any given sampling instants, only one

of the inputs can change its magnitude.

Although the contributions of this dissertation have been highlighted using clinical ap-

plications, the formulations have been developed without any loss of generality and hence

are capable of addressing requirements from other application areas. The ensuing section

discusses organization of the dissertation.

1.7 Organization of the Dissertation

Including this Introduction, the dissertation has been organized into eight chapters. In

brief, Chapter 2 describes modeling and control for fibromyalgia intervention. Chapter 3

provides a survey of data-centric methods in system identification. Chapter 4 describes the

problem statements for data-centric input signal design under constraints and Chapter 5

formulates those statements as optimization problems. Chapter 6 discusses input signal de-

sign under desired objectives. Chapter 7 discusses enhancements to hybrid model predictive

control. Finally, Chapter 8 summarizes the dissertation.

In detail, the document is organized as follows:

• Chapter 2 presents an optimized treatment plan for fibromyalgia using system identifi-

cation and hybrid model predictive control (HMPC). The system identification models

are developed from secondary analysis of actual clinical data and the application of

HMPC is shown using simulation.

• Chapter 3 presents a brief survey of experiment design for system identification and

mathematical optimization. The section on data-centric system identification meth-

ods serves as a reference for formulations developed in the ensuing chapters.
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• Chapter 4 describes the constraints in input signal design, and develops the prob-

lem statements for data-centric input signal design using distribution of regressors,

distribution of time-indexed output points and Weyl’s criterion.

• Chapter 5 formulates optimization problems using problem statements from the pre-

vious chapter. Numerical illustrations are provided to further convey efficacy of the

input design formulations. The problems are solved, separately for LTI and Ham-

merstein systems, using SDP relaxation of nonconvex quadratic programs, nonlinear

programming and sparse polynomial optimization.

• Chapter 6 presents input signal design under desired objectives which are distinct

from the previously developed data-centric designs. Numerical examples are shown

for achieving a desired output and desired input spectrum.

• Chapter 7 describes updates to hybrid model predictive control by incorporating

switching constraint and selection of one manipulated input in multi-input scenario.

Simple numerical examples for switching time constraints are shown to highlight the

proposed formulation.

• Finally, the document ends with summary and directions for future work in Chapter 8.

The chapter summarizes the major contributions related to data-centric input signal

design under constraints. The section on directions for future work presents some

ideas about interesting extensions of the proposed input design and hybrid model

predictive control problem formulations.

1.7.1 Publications

The material presented in this dissertation has been taken from a series of published and

submitted papers. In summary, the graduate work done at Arizona State has resulted in

ten peer-reviewed conference papers, four of which are under review, and three journal

publications of which one paper has been submitted for review, while one paper is being
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revised after conditional acceptance as of submission of this dissertation. The details of the

publications are as follows. The material for Chapter 2 has been taken from the following

papers:

1. S. Deshpande, N. N. Nandola, D. E. Rivera, and J. W. Younger. Optimized treat-

ment of fibromyalgia using system identification and hybrid model predictive control.

Conditionally accepted to IFAC Control Engineering Practice, 2014.

2. S. Deshpande, N. N. Nandola, D. E. Rivera, and J. Younger. A control engineering

approach for designing an optimized treatment plan for fibromyalgia. In Proceedings

of the 2011 American Control Conference, pages 4798–4803, June 2011.

3. S. Deshpande, D. E. Rivera, J. Younger, and N. N. Nandola. A control systems

engineering approach for designing optimized adaptive interventions: An illustration

from the treatment of fibromyalgia. Submitted to Translational Behavioral Medicine,

2014.

The survey presented in Chapter 3 is previously unpublished. The material for Chapter 4

and Chapter 5 have been adapted from the following papers:

4. S. Deshpande, D. E. Rivera, and J. Younger. Towards patient-friendly input signal

design for optimized pain treatment interventions. In Proceedings of the 16th IFAC

Symposium on System Identification, pages 1311–1316, July 2012.

5. S. Deshpande and D. E. Rivera. Optimal input signal design for data-centric esti-

mation methods. In Proceedings of the 2013 American Control Conference, pages

3930–3935, June 2013.

6. S. Deshpande and D. E. Rivera. Constrained optimal input signal design for data-

centric estimation methods. IEEE Transactions on Automatic Control (to appear),

2014.
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7. S. Deshpande and D. E. Rivera. A data-centric system identification approach to input

signal design for Hammerstein systems. In Proceedings of the 52nd IEEE Conference

on Decision and Control (CDC), pages 5192–5197, Dec. 2013.

8. S. Deshpande and D. E. Rivera. Data-centric input signal design for highly interactive

dynamical systems. Submitted to the 53rd IEEE Conference on Decision and Control,

2014.

9. S. Deshpande and D. E. Rivera. Towards data-centric input signal design using sparse

polynomial optimization. Submitted to the 53rd IEEE Conference on Decision and

Control, 2014.

The contents of Chapter 6 have been partially adapted into the following paper

10. C. A. Martin, S. Deshpande, E. B. Hekler, and D. E. Rivera. A system identification

procedure for behavioral interventions based on social cognitive theory. Submitted to

the 53rd IEEE Conference on Decision and Control, 2014.

The contents of Chapter 7 have been partially taken from the following paper

11. Y. Dong, S. Deshpande, D. E. Rivera, D. S. Downs, and J. S. Savage. Hybrid model

predictive control for sequential decision policies in adaptive behavioral interventions.

In Proceedings of the 2014 American Control Conference (to appear), 2014.

Finally, the following two papers are part of ongoing collaboration on developing linear

parameter varying (LPV) system identification for use in adaptive interventions; these two

papers have not been included in this dissertation. The following paper

12. P. L. dos Santos, S. Deshpande, D. E. Rivera, T.-P. A. Perdicoulis, J. A. Ramos,

and J. Younger. Identification of affine linear parameter varying models for adaptive

interventions in fibromyalgia treatment. In Proceedings of the 2013 American Control

Conference, pages 1976–1981, June 2013.

26



presents an alternate hypothesis that the secondary inputs only affect the perception of

fibromyalgia symptoms and not directly drive it, and hence an affine linear parameter

varying (A-LPV) system, where the secondary variables are the scheduling variables, can

be used to model the fibromyalgia dynamics. Finally, the following paper proposes using a

support vector machine approach to address basis selection problem in LPV identification.

13. P. L. dos Santos, T.-P. A. Perdicoulis, J. A. Ramos, S. Deshpande, D. E. Rivera, and

J. L. M. de Carvalho. LPV system identification using a separable least squares sup-

port vector machines approach. Submitted to the 53rd IEEE Conference on Decision

and Control, 2014.

1.7.2 Mathematical Notation

The mathematical notation used in this dissertation is fairly standard and as per the prevail-

ing conventions in system identification, automatic control and mathematical optimization

literature. The notation R
N is used denote real vector space of dimension N where the

elements of RN are denoted by column vectors. In most cases, the definition of a variable is

made clear in the context it has been used. In general, the scalar and vector variables are

denoted in lower case and matrix variables in upper case. The notation X � 0 implies that

the matrix X is positive semidefinite where as the notation u ≤ umax implies element-wise

inequality or in other words, that each element of the vector u is less that the corresponding

entry of the vector umax. Finally, the optimization problems are written in terms of more

informal semantics; for example as ‘max’ and ‘min’ assuming that the maxima and minima

are achieved and a ‘solution’ signifies a local solution unless noted otherwise.
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Chapter 2

OPTIMIZED TREATMENT OF FIBROMYALGIA USING SYSTEM

IDENTIFICATION AND HYBRID MODEL PREDICTIVE CONTROL

2.1 Introduction

With rising health care costs, there is increasing interest in the medical community

towards developing improved strategies for treating chronic diseases [106, 107]. Among

these lie adaptive interventions, which consider adjusting treatment dosages over time based

on participant response. Control engineering offers a broad-based solution framework for

optimizing the effectiveness of such interventions and has been proposed as an enabler for

more efficacious treatments that minimize waste, increase compliance, and enhance the

intervention potency [5, 108, 8].

Conventional medical practice is based on treatment plans designed for a standard

response that does not necessarily incorporate individual characteristics or optimization

procedures. Many of these dosage strategies are inspired from the acute care model and in

spite of effective drugs, are not necessarily efficient for relapsing, chronic disorders. The use

of adaptive dosage strategies, where dosages are adjusted based on participant response over

time, is the key motivation for use of control systems engineering principles. In particular,

this chapter is intended to demonstrate how control engineering can impact the treatment

of a pain condition known as fibromyalgia (FM) [65, 66, 67, 68, 22]. The method is based

on secondary analysis of information collected from a previously conducted clinical trial

using naltrexone for the treatment of FM. This problem is approached from a systems and

controls point-of-view: first, system identification techniques are applied to develop models

from daily diary reports completed by intervention participants. These diary reports include

self-assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and

additional external variables that affect these outcomes (e.g., stress, anxiety, and mood).
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The dynamical systems model serves as the basis for applying model predictive control

as a decision algorithm for dosage selection of naltrexone. The categorical/discrete-event

nature of the dosage assignment creates a need for hybrid model predictive control schemes.

Furthermore, instead of relying on conventional tuning using weight matrices, a multiple

degree-of-freedom formulation is evaluated in this chapter that enables the user to adjust

the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance

rejection independently in the closed loop system. Simulation results are presented to

illustrate the benefits of the proposed control scheme in addressing the hybrid dynamics,

clinical constraints and plant-model mismatch typically present in such applications.

The chapter is organized in the following sections: Section 2.2 briefly describes the in-

tervention and nature of the associated clinical data. Section 2.3 discusses the procedure

of building parsimonious models using system identification. The MPC formulation used

for dosage assignment is presented in Section 2.4. Section 2.5 demonstrates the applica-

tion of hybrid control for delivering adaptive interventions under disturbances and model

uncertainty. The chapter ends with a summary and conclusions in Section 2.6.

2.2 Naltrexone Intervention for Fibromyalgia

Fibromyalgia (FM) is a disorder characterized primarily by chronic widespread pain.

The characteristic symptoms of FM are diffuse musculoskeletal pain and sensitivity to me-

chanical stimulation at soft tissue tender points [109, 110]. Other important symptoms

of FM include fatigue, sleep irregularities, bowel abnormalities, anxiety, and mood dys-

function. While no specific laboratory test can confirm FM, most patients present with

a history of widespread pain and fatigue conditions. Another important issue with FM is

that its etiology is largely unknown and without any scientific consensus [111], although

the condition is suspected to involve central sensitization of pain processing [112]. As the

causes for FM are uncertain, unknown or disputed; and due to its chronic nature, it has

been difficult to single out a specific type of treatment for this disease. Depending on dif-
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ferent approaches for the mechanisms of the symptoms, there have been experiments with

various drugs. There is a good evidence to suggest that naltrexone, an opioid antagonist,

has a neuroprotective role and may be a potentially effective treatment for diseases like FM

[67, 113]. The data for this chapter has been taken from clinical trials of a low dose naltrex-

one (LDN) intervention conducted by Dr. Jarred Younger and colleagues at the Stanford

Systems Neuroscience and Pain Lab (SNAPL), Stanford University School of Medicine.

2.2.1 The Data

The study was conducted in two phases: a single blind pilot study on 10 participants and

a double blind full study on 30 participants (with longer protocol). A crossover design was

employed where participants received both treatments and hence act as their own control

(i.e. each participant takes both drug and placebo). A fixed naltrexone dose of concentration

4.5 mg was administered. In the pilot study, the participants received placebo followed by

drug (P-D protocol) where as the full study participants were randomized to receive either

drug first (D-P protocol) or placebo first (P-D protocol). The time line is split into baseline

(during this phase participants do not receive any kind of medication), placebo/drug and

finally washout phase (all kinds of medications are stopped) with the number of data points

ranging from 98 to 154 sampled daily (T = 1). Participants entered their responses in a

handheld computer to questions like ‘Overall, how well did you sleep last night?’ on a scale

of 0− 100 as well as visited a clinic every two weeks to undergo a series of physical sensory

tests. The daily diary data consists of one primary endpoint ‘Overall, how severe have

your FM symptoms been today?’ [FM sym] and 13 secondary endpoints: fatigue, sadness,

stress, mood, anxiety, satisfaction with life, overall sleep quality, trouble with sleep, ability

to think, headaches, average daily pain, highest pain and gastric symptoms [67]. Fig. 2.1

shows data of selected variables for two representative participants. It can be observed

that with introduction of drug, the participants report marked change in pain levels and

sleep quality. The appropriate description of this dynamical phenomena will be the focus

of modeling discussion further in the chapter. One of the important issues in data analysis
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Figure 2.1: Primary self-report variables associated with naltrexone intervention of fi-
bromyalgia as shown for two representative participants: participant from pilot study with
placebo-drug (P-D) protocol ((a),(b)) and participant from full study with drug-placebo
(D-P) protocol ((c),(d)). With introduction of drug, there is significant decrease in FM
symptoms and increase in sleep quality over time.

31



from human subject research, and particularly from clinical trials, has been on the focus

on a single subject (idiographic) vs multiple subject (nomothetic) analysis [114]. From

a perspective of adaptive interventions, the focus in this chapter has been on performing

single subject analysis where the participant is considered as a whole experiment in itself

and their changes in symptoms (if any) are analyzed.

2.2.2 General Description of Variables

From an input-output dynamical systems perspective, the variables from the naltrexone

trial can be classified as following:

• Outputs: There is a clinical interest in understanding the magnitude and speed at

which naltrexone affects various FM symptoms during the intervention. Hence typ-

ical symptoms like pain, fatigue, sleep disturbance, which correspond to dependent

variables in the system, are classified as outputs.

• Inputs: Drug and placebo are classified as the primary inputs in this analysis, as they

are introduced externally to the system and can be manipulated by the clinician. In

addition to these primary inputs, there are other exogenous or disturbance variables

affecting the outputs. Variables in the self-reports such as anxiety, stress, and mood

are treated as measured disturbance inputs that when coupled with the primary in-

puts can help better explain the output variance, and ultimately improve the overall

goodness-of-fit of the model.

As biological systems are characterized by complex interdependent components, it is diffi-

cult to define purely exogenous variables and dependent variables. This interconnection or

feedback mechanism (both positive and negative) can result in cross correlation between

endpoints and unmeasured noise collected from medical treatments and hence such experi-

ments can be classified, in a classical system identification sense, as closed loop experiments.

There may be a relationship between variables such that ‘output’ affects ‘input’ e.g., ele-

vated pain condition may effect anxiety levels, although the existence of the feedback path
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is not clear. In the absence of a priori information, this problem is tackled using direct

methods by considering it as an open loop system [45]. In ensuing section, the modeling

methodology does not attempt to model the internal mechanisms of FM but rather build

an overall pharmacodynamic response model on how the drug and external factors affect a

number of FM symptoms, so that the predictive information can be used by a controller to

assign dosages based on measured participant responses.

2.3 Using System Identification to Model FM Intervention Dynamics

In light of the unknown dynamics of FM, an empirical modeling approach is proposed

where input-output data of a single participant is used to build a model describing the effect

of drug and external factors on FM symptoms.

2.3.1 System Identification Procedure

The modeling process undertaken in this study can be summarized in three subparts as

follows:

1. Data preprocessing. Initially the data is pre-processed for missing entries using a

simple mean of immediate neighbors for single missing items, and interpolation for

multiple consecutive missing items. To reduce the high frequency content in the time

series, a three-day moving average filter L(q) is applied:

L(q) = (1 + q−1 + q−2)/3, (2.1)

where q is forward shift operator defined as qy(k) = y(k + 1).

2. Discrete-time modeling using multi-input ARX models. The filtered data is fitted to

a parametric multi-input ARX-[na nb nk] model:

A(q)y(k) =

nu∑

i=1

Bi(q)ui(k − nki) + e(k), ∀k = 1, 2, . . . (2.2)

where nu represents the number of inputs, na, nb and nk are model orders, e(k)

is the prediction error, and A(q) = 1 +
∑na

j=1 ajq
−j and Bi(q) =

∑nbi

j=1 bjq
−j+1 are

33



polynomials in q. The philosophy is to start with a simpler parametrization (ARX)

and add complexity as required. ARX models are computationally simple to estimate

and can be consistently estimated provided the inputs are persistently exciting and

the model structure is sufficiently high. In examination of multiple participants, ARX-

[4 4 1] models were the highest order needed, and in many cases ARX-[2 2 1] models

were suitable (as determined by the classical prediction-error validation criteria, per

[45]).

The procedure for the choice of input signals is to begin with drug and placebo, which

are expected to contribute significantly to FM symptoms for all participants. Addi-

tional input variables are then introduced sequentially to improve the goodness of fit.

From a statistical perspective, it can be shown that adding extra inputs results in im-

proved covariance of the parameter estimate (stronger for ARX/ARMAX structure)

under the assumption that they are independent [115]. Consequently, while increas-

ing the number of inputs improves the overall fit, an exceptionally high fit may not

necessarily imply a highly predictive model. As the protocol applied in this study

did not allow for a crossvalidation data set, proper judgement on the choice of input

variables that adequately describes the data across all participants must be made.

3. Simplification to a continuous time model. The step responses from the ARX model

are individually fit to a parsimonious continuous second-order model structure of the

form:

G(s) =
Kp(τas+ 1)

τ2s2 + 2ζτs+ 1
. (2.3)

From (2.3), useful dynamical system information such as gain, time constant, over-

shoot, rise and settling times for each input can be obtained which can be used to

classify participants as responders or non-responders to the drug. The estimation

procedure applied in this step follows according to the Process Models routine in

Matlab’s System Identification Toolbox.
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The use of prediction-error models, and ARX models in particular, is justified because one

can rely on well-established bias relations to obtain insight. For purposes of illustration,

consider a system described by one manipulated input (e.g., drug), one measured distur-

bance input (e.g., anxiety) and noise, with plant and estimated models as follows:

y(k) = p(q)u(k) + pd(q)d(k) +H(q)ν(k) (2.4)

= p̃(q)u(k) + p̃d(q)d(k) + p̃e(q)e(k). (2.5)

The one-step-ahead prediction error can be written as:

e(k) = p̃e(q)
−1(y(k)− (p̃(q)u(k) + p̃d(q)d(k))). (2.6)

Parseval’s theorem can be used to relate the filtered prediction-error (eF (k) = L(q)e(k))

with its power spectrum (ΦeF (ω)), which is defined as:

ΦeF (ω) =
|L(q)|2
|p̃e(q)|2

(
|p− p̃|2Φu(ω) + |pd − p̃d|2Φd(ω)

+ 2Re((p− p̃)(pd − p̃d)
∗)Φud(ω) + |H|2σ2ν

)
, (2.7)

where ν(k) is assumed to be uncorrelated with u(k) and d(k), L(q) is the prefilter, Re

denotes the real part of a complex number and ∗ is used to represent its complex conju-

gate. From (2.7), it is possible to obtain insights into how input power, model structure,

cross-correlation between signals, and other factors can influence the goodness-of-fit in the

identification process.

2.3.2 Case Studies

2.3.2.1 Participant from Pilot Study

In this subsection, the focus is on the application of the system identification modeling

procedure to a participant from the pilot study with data as seen in Fig. 2.1. Equation

(2.7) is used to systematically look at ways to minimize the role of model structures, inputs

signal spectral information and input cross correlations.
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• Model structure. An incorrect plant model structure corresponds to the |p− p̃| term

being non-zero and results in an asymptotic bias. Similarly incorrect structure p̃e

for the noise model will result in a bias. In this work, ARX models of reasonable

dimension were found to be sufficient and no improvement was observed with more

complex parametrization.

• Input signals. Input signals must show sufficient power in the frequency range of

interest. As in this secondary analysis, the excitation signals were not designed and

hence, the inference of estimated models is limited to the bandwidth provided by

the available signals. It was observed that input power spectrum bandwidth was

approximately 0.6 radians/day (Fig. 2.2).

• Input cross correlation. Since various variables are measured in the experiment, the

procedure is to choose inputs which have minimum cross spectra (Φud(ω)). The sample

cross correlation function [116] is used to better understand the relationship between

different variables and with drug and placebo. For this participant, the headache and

gastric variables (See Fig. 2.3b) have high degree of cross-correlation, and gastric

is also correlated with the FM symptoms output (See Fig. 2.3c). Adding them as

inputs did not yield good estimates. In comparison, anxiety and mood variable (See

Fig. 2.3d) are essentially uncorrelated and offer good estimates when included as

inputs. Details of this participant data with additional cases can be found in [22].

The multi-input ARX-[221] models (with respective input(s) and FM symptoms treated

as the primary output) are as follows:

1. Model 1 (Drug)

2. Model 2 (Drug, Placebo)

3. Model 3 (Drug, Placebo, Anxiety)

4. Model 4 (Drug, Placebo, Anxiety, Stress)
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Figure 2.2: Signal power spectrum comparison, calculated using the Welch’s method, for
variables used as inputs for participant from the pilot study.

5. Model 5 (Drug, Placebo, Anxiety, Stress, Mood)

6. Model 6 (Drug, Placebo, Anxiety, Stress, Mood, Gastric)

7. Model 7 (Drug, Placebo, Anxiety, Stress, Mood, Gastric, Headache)

8. Model 8 (Drug, Placebo, Anxiety, Stress, Mood, Gastric, Headache, Life)

9. Model 9 (Drug, Placebo, Anxiety, Stress, Mood, Gastric, Headache, Life, Sadness)

Fig. 2.4 shows the corresponding fits for models 1 through 9, which explain 46.57% to 79.69%

of the output variance. Beyond the five inputs noted in model 5, adding more variables did

not improve the fit significantly and ultimately (for model 9) results in overparameterization.

Hence, the inputs from model 5 are used as the base for multi-input ARX models for this

participant. Fig. 2.5 shows the step responses resulting for the ARX models for the specific
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(a) Drug and Stress.
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(b) Gastric and Headache.
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(c) FM sym and Gastric.
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(d) Anxiety and Mood.

Figure 2.3: Sample cross correlation function plots between drug and other variables with
two standard error bounds over ± 20 lags for participant from the pilot study.

38



10 20 30 40 50 60 70 80

0

20

40

60

80

100

y1. (sim)

y
1

model1%46.5726

(a) Model 1 (46.57%)

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

y1. (sim)

y
1

model2%59.261

(b) Model 2 (59.26%)
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(c) Model 3 (64.78%)
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(d) Model 4 (71.89%)
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(e) Model 5 (73.99%)
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(f) Model 6 (71.12%)
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(g) Model 7 (74.49%)
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(h) Model 8 (74.51%)
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(i) Model 9 (79.69%)

Figure 2.4: Estimated models 1 through 9, output vs. actual (FM sym) output using ARX
[2 2 1] structure for participant from the pilot study. The percent fits for each model are
shown in parenthesis. It can be observed that any significant improvement in model fit is
not obtained beyond model 5.
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case of the naltrexone drug input. The final model has a gain of −2.47, indicating a nearly

2.5 point drop in the pain report per mg dose of naltrexone. The negative gain for drug

classifies this participant as a responder to the treatment. A rise time (Tr) of slightly

over 5 days, and a 98% settling time (Ts) of nearly 11.5 days characterizes the naltrexone

response for this participant. Table 2.1 shows how including additional inputs improved

the goodness-of-fit for this participant.

Table 2.2 summarizes the transfer functions for all inputs (manipulated and disturbance)

for the Model 5 structure. For all these transfer functions the settling times and rise times

(with the exception of Mood-FM) are essentially similar. The positive gain for the placebo

input indicates that in the case of this participant, the administration of placebo has a

detrimental effect. The large magnitude of the placebo gain is in part a consequence of

how the input signal is coded (1 when present and 0 when not). Examining the gains for

the measured disturbance models (anxiety, stress, and mood), these correspond to 0.86,

2.29, and −0.091, respectively. The positive values for the anxiety and stress gains and

negative for mood agree with the clinical observations that increase in anxiety and stress

and decrease in mood should worsen FM symptoms. The low magnitude of the mood

gain, coupled with the relatively small contribution of this input to the percent variance

described by the model (approximately 2%) indicates the low importance of this variable as

a contributor to FM symptoms. Table 2.2 also includes the model resulting from the effect

of drug to overall sleep. The positive gain in this transfer function demonstrates improved

sleep quality with drug administration; however, the fact that τa < 0 for this model denotes

the presence of inverse response.

2.3.2.2 Full Study Participants

Table 2.3 shows the summary of participant response from the fully study for placebo-drug

protocol. In general for participants from the full study, additional inputs like sadness and

headache as well as ARX models with higher orders (e.g., [441]) were required for improved

fits. For example in case of most participants, the inputs corresponding to model 9 gave

40



0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
ARX model with Input : Drug and Output : FM sym step responses

Number of Days

O
u
tp

u
t 

R
e
s
p
o
n
s
e

model1%46.5726

model2%59.261

model3%64.786

model4%71.8943

model5%73.9943

Figure 2.5: ARX model step responses for the drug-FM symptoms transfer function. As
the model fit improves from model 1 to 5, the steady-state gain settles at approximately
-2.5.

Table 2.1: Model estimate summary for the drug-FM model for pilot study participant.
Percent (%) fit corresponds to the multi-input ARX-[2 2 1] model structure.

Model %fit Kp, τ, ζ, τa Tr(days) Ts(days)

1 46.5 -12.03, 5.67, 4.14, 21.3 75.5 139.69
2 59.2 -0.91, 3.5, 2.67, 44.4 0.43 75.06
3 64.7 -1.02, 2.09, 1.5, 15.3 0.43 25.6
4 71.8 -3.11, 1.62, 1.24, 0.22 7.53 14.38
5 73.9 -2.47, 1.57, 1.26, 1.96 5.12 11.49

a better fit. For a total 15 participants in this protocol, 9 were classified as responders

and 6 as non-responders based on the estimated model gain for drug as input and FM

sym as output (Kp(DFM)). Settling time (in days) for each case are also noted. The

gains for each participant are shown with one standard deviation on estimated gains (from
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Table 2.2: Model parameter tabulation for various inputs-FM continuous models as well as
the drug-overall sleep (Drug-Overall Sleep) model for pilot study participant. The partici-
pant shows reduction in pain and improvement in sleep with drug intake.

Model Kp, τ, ζ, τa Tr(days) Ts(days)

Drug-FM -2.47, 1.57, 1.26, 1.96 5.12 11.49
Placebo-FM 45.81, 1.57, 1.26, 1.15 6.59 13.06
Anxiety-FM 0.86, 1.57, 1.26, 0.24 7.45 14.24
Stress-FM 2.29,1.57, 1.26, 0.49 7.31 13.94
Mood-FM -0.091, 1.57, 1.26, 4.67 0.8 11.93

Drug-Overall Sleep 4.98, 2.13, 1.04, -3.35 7.06 15.83

system identification) where as, in rows corresponding to average values, the deviation of

mean of each participant’s response is noted. It can be noted that the average model gain

(Kp(DFM)) for responders was −3.56 where as for non-responders was 2.06. Overall, for

all participants of this protocol the gain was −1.31. Similarly gain for drug as input and

overall sleep as output (Kp(DS)) together with the settling time was also tabulated and it

was noted that the response of sleep to drug was not strong in many cases with average gain

for all participants being −0.23. In general, the drug response of full study participants

was weaker compared to cases in the pilot study as can be noted by the gain magnitudes

and large error bounds which make the classification of participants difficult.

2.3.3 Model Validation

The following standard methods are used to validate the estimated models [45]:

• Residual analysis. A residual analysis is conducted on all estimated models using

auto correlation of the residual and cross correlation between the inputs and residual.

For most of the participants in this study, ARX [2 2 1] or [4 4 1] models met classical

prediction error criteria.

• Step responses from estimated ARX models. After a model has passed residual anal-

ysis, the model step responses are analyzed. From second model onwards in Fig. 2.5,
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Table 2.3: Tabulation of system responses to drug for Placebo-Drug (PD) protocol for
selected participants from the full study. Corresponding model fits are also noted. Model
9 was used unless noted otherwise as ∗ implying input combination as {Drug, Placebo,
Anxiety, Stress, Mood, Life, Sadness and Gastric} and # where inputs corresponding to
model 7 are used. In case of bad data, no model was formed.

Responders
# % fit(DFM) Kp(DFM) Ts(DFM) % fit(DS) Kp(DS) Ts(DS)
1 64.92* -4.70*±7.67 23.23* 72.50 -3.28±6.98 27.24
2 48.71 -0.66±1.15 15.28 35.19 0.668±1.52 16.12
3 29.82 -0.6±1.71 15.89 23.17 -2.83±4 45.55
4 29.23# -11.66#± 12.36 67.01# 28.89 1.59±2.7 13.02
5 18.08 -0.83±2.3 10.51 29.87 -4.89±3.7 20.39
6 54.70 -2.79±1.88 23.11 17.93 0.4±2.77 11.57
7 40.00 -2.27±3.99 27.1 43.38 -0.92±1.16 17.19
8 54.13 -8.44±5.12 12.63 64.55 -1.88±1.46 19.11
9 59.00 -0.112±0.83 16.04 44.58 2.27±0.77 13.05

Average Values (std. deviation for nominal gain only)
— 44.28±15.8 -3.56±4 23.42±17.2 40±18.4 -0.98±2.4 20.36±10.5

Non Responders
10 44.68 3.96±3 33.05 — — —
11 2.19* 4.09*±3.96 39.21* 20.57 -2.53±2.47 15.54
12 27.99 0.82±1.73 30.37 38.45 1±1.16 17.8
13 31.17 1.94±2.07 34.97 22.47 6.23±4.94 42.46
14 40.31 0.37±1.24 16.24 26.7 0.85±1.33 22.67
15 34.57 1.17±2.85 15.4 49.14 0±1.16 18.34

Average Values (std. deviation for nominal gain only)
— 30.15±14.9 2.06±1.6 28.2±10 31.46±12 1.11±3.17 23.62±10.9

Total Average Values (std. deviation for nominal gain only)
— 38.63±16.5 -1.31±4.27 25.33±14.5 36.95±16.4 -0.23±2.77 21.43±10.4

the responses tend to settle to a steady state with some dynamics with improved

goodness-of-fit.

While it would have been desirable to have applied cross-validation to this analysis, when the

data was partitioned into estimation and validation sets, it was found to lack the excitation

required to support multi-input crossvalidation. This is a consequence of the limited number

of data points in this study and the experimental procedure that was followed for the

naltrexone and placebo dosages. Instead, how the percent fits improve with additional

inputs added to the model are noted, simultaneously examining the step response results
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to avoid the consequences of overparametrization (e.g., large changes in gain and settling

time with parameters that do not agree with physical insight).

In summary, most of the pilot study participants were adequately modeled with model

5 using the ARX [2 2 1] structure, and in the full study with model 9 using the ARX

[4 4 1] structure. It was noted that the response to drug was stronger in the pilot study

as compared to the full study; likewise, a large number of full study participants showed

placebo response. For those participants whom the modeling results would classify them

as responders to treatment, the estimated models are used as the basis for adapting the

intervention using control engineering. This is described in the next section.

2.4 Model Predictive Control of Naltrexone Intervention for Fibromyalgia

In this dissertation, model predictive control (MPC) is used as the algorithmic frame-

work for making systematic dosage assignments. This control technology effectively com-

bines the feedback-feedforward control action by on-line optimization of a cost function

using a receding horizon as shown in Fig. 2.6 [117]. The MPC approach allows for flexibil-

ity to integrate critical clinical objectives and constraints, and hence is particularly suited

for designing treatment regimens. It has seen medical applications from diabetes mellitus

control to HIV/AIDS management [118, 119]. To achieve the required performance, a three

degree-of-freedom (3 DoF) approach is used to tune the controller [120, 121]. This tuning

methodology enables performance requirements associated with setpoint tracking, antici-

pated measured disturbance rejection and unmeasured disturbance rejection to be adjusted

independently by varying parameters αr, αd and fa respectively (as discussed later). These

parameters can be adjusted between values 0 and 1; they in turn alter the response of a filter

which supplies a filtered signal to the controller (for setpoint tracking (αr) and measured

disturbance rejection (αd)) or adjust the observer gain (Kf ) for unmeasured disturbance

rejection (fa). The hybrid extension of this 3 DoF approach [97] is considered here.
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Figure 2.6: Receding horizon philosophy used in model predictive control. Only the first
control input value calculated using the optimization procedure is implemented and this
process is repeated at each sampling instant.

2.4.1 Clinical Goals

Adaptive interventions employ decision rules and repeated assessments of participant re-

sponse to improve outcomes. In this control engineering approach to adaptive interventions,

the controller assigns dosages to each participant as dictated by model dynamics, problem

constraints, and disturbances (both measured and unmeasured). The control system aims

at functionally performing the following three tasks:

• Setpoint tracking. Drug dosages are assigned to take an outcome of interest (such as

FM symptoms or overall sleep quality) to a desired goal. For example, clinician may

decide on a goal or setpoint of 45% reduction in general pain symptoms within two

weeks of drug administration.
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• Measured disturbance rejection. The controller manipulates drug dosages to mitigate

the effect from reported external influences using estimated disturbance models. For

instance, if some external event (e.g., anxiety) which can lead to elevated FM symp-

toms is known a priori, then dosages can be adjusted in anticipation to compensate

for that disturbance.

• Unmeasured disturbance rejection. The controller manipulates drug dosages to miti-

gate the effect of unknown and un-modeled external influences. For example, consider

a sudden event which leads to worsening pain (FM symptoms). In such cases, the

controller adjusts dosages to mitigate the unmeasured disturbance.

In addition to accomplishing the three functional modes of the control system, a number of

practical clinical requirements have to be integrated into the controller design. These are:

• Limit on possible dosages. Drug efficacy is generally defined on some dosage levels, as

well as dosage magnitudes has to be limited to certain bounds to ensure safe usage.

In this work, the drug naltrexone is varied for simulation purposes as

0 ≤ u(k) ≤ 13.5 mg ∀k ∈ {1, . . . , N}, (2.8)

where N is the length of simulation.

• Gradual change in dosages. Dosage changes should not be very abrupt due to concerns

with drug withdrawal and toxicity. This translates into limit on the move size of the

signal as:

∆umin ≤ |u(k + 1)− u(k)| ≤ ∆umax, (2.9)

• Discrete dosages. This is the most important clinical consideration which necessitates

the use of hybrid models. In this work, the hybrid control results are shown using

eight drug dosage levels defined in the range as

u(k) ∈ I = {0, 1.92, 3.85, 5.76, 7.68, 9.6, 11.58, 13.5} mg. (2.10)
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Subsequently in this chapter, the nomenclature hybrid MPC is used to define a con-

troller which assigns dosages categorically where as a continuous MPC will assign

dosages anywhere in the given range.

2.4.2 MPC Problem Formulation

The details of the proposed MPC formulation are now presented. As was pointed out

earlier, an important consideration in adaptive interventions is that intervention dosages

can assume only discrete levels, and therefore it is necessary to consider hybrid algorithms

[97]. A mixed logical dynamical (MLD) framework is used to represent linear hybrid systems

which are systems with real and integer states, inputs and constraints [92], as shown:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +Bdd(k) (2.11)

y(k) = Cx(k) + d′(k) + ν(k) (2.12)

E2δ(k) + E3z(k) ≤ E5 + E4y(k) + E1u(k)− Edd(k), (2.13)

where, in general, x ∈ R
nx and u ∈ R

nu represent states and inputs of the system. y ∈

R
ny is the output and d ∈ R

nd , d′ ∈ R
n
′

d and ν ∈ R
nν represent measured disturbances,

unmeasured disturbances and measurement noise signals respectively. δ ∈ {0, 1}nd and

z ∈ R
nz are discrete and continuous auxiliary variables respectively, which along with the

input u, output y and disturbance d form the linear inequality constraint shown in Equation

2.13 in order to enforce logical/discrete decisions. The effect of all unmeasured disturbances

is lumped as d′ in the measurement equation. Further, the MLD system is augmented with

the disturbance model:

xw(k + 1) = Awxw(k) +Bww(k)

d′(k + 1) = Cwxw(k + 1), (2.14)

where w is an integrated white noise and xw is the state of the noise model. This model

is motivated from process control where disturbances may be non-stationary and hence

this offers a general representation for a large class of scenarios. However in this chapter,
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Bw, Cw = I and Aw = diag{ᾱ1, . . . , ᾱny} = 0, given asymptotically step inputs, ᾱj = 0

[121]. The augmented model is written in difference form as follows:

X(k + 1) = AX(k) + B1∆u(k) + B2∆δ(k) + B3∆z(k) + Bd∆d(k) + Bw∆w(k) (2.15)

y(k) = CX(k) + ν(k) (2.16)

where,

X(k) = [∆xT (k) ∆xTw(k) yT (k)]T

A =









A 0 0

0 Aw 0

CA Aw I









; Bi =









Bi

0

CBi









, i = 1, 2, 3, d; Bw =









0

I

I









;

C = [0 0 I].

Equations 2.15-2.16 are used to generate system prediction which can then be used by an

optimizer. A standard quadratic cost function (|| ⋆ ||2Q⋆
= (⋆)TQ⋆(⋆)) is used to calculate

the decision vector as:

min
{[u(k+i)]m−1

i=0
, [δ(k+i)]p−1

i=0
, [z(k+i)]p−1

i=0
}

p
∑

i=1

‖(y(k + i)− yr)‖2Qy
+

m−1∑

i=0

‖(∆u(k + i))‖2Q∆u

+
m−1∑

i=0

‖(u(k + i)− ur)‖2Qu
+

p−1
∑

i=0

‖(δ(k + i)− δr)‖2Qd
+

p−1
∑

i=0

‖(z(k + i)− zr)‖2Qz
(2.17)

s.t. ymin ≤y(k + i) ≤ ymax, i ∈ Tp (2.18)

umin ≤u(k + i) ≤ umax, i ∈ Tm (2.19)

∆umin ≤∆u(k + i) ≤ ∆umax, i ∈ Tp, (2.20)

and also subjected to state and output equations with mixed integer constraints as shown

in (2.11)-(2.13), where p is the prediction horizon, m is the control horizon, Tp = {1, . . . , p}

and Tm = {0, . . . ,m− 1}. The vector 2-norm are weighted by matrix Q∗ as in

Qy, Q∆u, Qu, Qd, and Qz (2.21)
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Figure 2.7: A block diagram depicting the three degree-of-freedom (3 DoF) controller for-
mulation of model predictive control. p and pd are the system plants models, X(k/k), fa is
the observer block, Y(k + 1) is the predictor block, min J is the optimizer block, ρ is the
vector of the decision variables and f(q, α{r,d}) are the filters for reference and measured
disturbance signals respectively.

are the penalty weights on the error, move size, control signal, auxiliary binary variables and

auxiliary continuous variables, respectively. The problem is formulated as a tracking control

system using references yr, ur, δr and zr for output, input, discrete and continuous auxiliary

variables, respectively. Full details of the controller formulation, including applications to

preventive behavioral interventions and supply chain management, can be found in [97].

2.4.3 Controller Tuning

Fig. 2.7 shows the block diagram depicting 3 DoF controller formulation of model predictive

control. This tuning approach for MPC can be discussed broadly in two sub topics as:

• Setpoint tracking and measured disturbance rejection. In 3 DoF approach, the feedback

action (setpoint tracking) and feedforward action (measured disturbance rejection)

can be directly manipulated using a filter, and hence the closed loop response can be
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varied to achieve a desired performance. The choice of the filter depends on whether

the set point or disturbances changes are asymptotically step or ramp, and on type

of the system (integrating, for example). In this chapter, a Type I filter is used for

both cases, described as:

f(q, αr,d
j) =

(1− αr,d
j)q

q − αr,d
j
, j ∈ {1, . . . , ny}, (2.22)

where αr,d ∈ [0, 1) and ny is the number of outputs.

As noted earlier, the tuning parameter to alter the setpoint response is denoted by

αr and the tuning parameter for measured disturbance filtering by αd. Hence the

controller can be tuned for slower rejection of measured disturbances, for example, by

more extensive filtering of the disturbance signals. Additional information on filters

can be found in [122].

• State estimation (unmeasured disturbance rejection). Considering the uncertain na-

ture of self reports and estimated models, the feedback loop is augmented with a

state observer to influence the error in system prediction. In this system, unmeasured

disturbances can be applied externally and/or can originate from the plant-model

mismatch. A parametrized observer [120, 121, 97] is used, where the observer gain

can be written as:

Kf =

[

0 F T
b F T

a

]T

(2.23)

Fa = diag{(fa)1, · · · , (fa)ny} Fb = diag{(fb)1, · · · , (fb)ny} (2.24)

(fb)j =
(fa)j

2

1 + ᾱj − ᾱj(fa)j
, j ∈ {1, . . . , ny}, (2.25)

where (fa)j is a tuning parameter that lies between 0 and 1. As (fa)j approaches

zero, the state estimator increasingly ignores the prediction error. Where as (fa)j

approaches 1, the state estimator tries to compensate for all prediction error and

hence may cause the controller to be extremely aggressive.
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2.5 Closed-Loop Simulation Results

This section demonstrates a drug dosage assignment problem on the representative par-

ticipant discussed in Section 2.3.2.1. The system under consideration is a five input-one

output dynamical model with one manipulated variable (drug), four disturbance variables

(placebo, anxiety, stress and mood) and one output (FM symptoms). The FM symptoms

variable serves as the primary outcome in the analysis, while anxiety (assumed to be re-

ported daily by the participant) serves as the measured disturbance signal. All other distur-

bances are set equal to zero. The drug dosages range from 0 to 13.5 mg with eight possible

values. The eight discrete inputs form an arithmetic progression and can be represented

logically in the MLD framework as:

δi(k) = 1 ⇔ zi(k) = 13.5− (i− 1)× 1.9286, i ∈ {1, 2, ..., 8} (2.26)

u(k) =
8∑

i=1

zi(k),
8∑

i=1

δi(k) = 1. (2.27)

These conditions and implications (⇔) are then converted into inequality constraints as

represented in (2.13). Further, the simulation parameter values are as follows. The predic-

tion horizon (p) is set to 25 days and the control horizon (m) to 15 days. As the 3 DoF

approach is used to tune the controller, the weights will not be manipulated and hence are

fixed as follows: Qy = 1, Q∆u = Qu = Qd = Qz = 0. The three “knobs” in the controller

are varied as: αr ∈ [0, 1), αd ∈ [0, 1), and fa ∈ (0, 1]. Finally for the single-output system

(ny = 1), it is assumed that there is no measurement noise in the system n = 0 and also

no input disturbance or di = 0. These simulation parameters are now used to generate the

closed-loop control results which are shown in two sections:

1. Evaluation of nominal performance for tracking and disturbance rejection (Section

2.5.1), and

2. Evaluation of robust performance under plant-model mismatch (Section 2.5.2).
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In this hypothetical simulation of a control-oriented naltrexone intervention, the goal is to

demonstrate how the 3 DoF formulation gives the flexibility to achieve a broad range of

time-domain responses, and hence the controller can be tuned as per clinical requirements.

An initial general proof-of-concept is followed by an analysis involving more rigorous per-

formance metrics.

2.5.1 Nominal Performance

This section evaluates the performance of the controller when a true model of the system

is known. Three independent events take place in the simulation: the setpoint tracking

starts at k = 0, a measured disturbance acts at 20 ≤ k ≤ 40 with magnitude 16.52 and

an unmeasured disturbance at k = 55 of magnitude 9.63. The output variable starts

with a baseline value of 50 and a change of −9.5 is applied at k = 0 as shown by the

reference in Fig. 2.8. The result is shown for tuning parameters set as: (αr, αd, fa) =

(0.5, 0.5, 0.5). The length of the simulation is N = 75 days. MPC where u(k) can

take any continuous value on its range and with no filtering represents the best possible

performance by the controller. Clinically, this can be the first benchmark which can be

used to get a sense of treatment regimen from the control system. Next, depending on

the clinical constraint of drug dosage levels, a new treatment regimen has to be generated

which can be contrasted with the continuous case. However, the drug dosage changes may

be perceived as too aggressive by the clinician and hence, in that scenario based upon

the exact requirements (e.g., pain reduction by 30%), the hybrid controller can be de-tuned

using 3 DoF tuning variables. For setpoint tracking, αr can be adjusted to suit the expected

response. Similarly, the response to disturbances can be varied by αd and fa to suit the

conditions at hand. In general, by increasing the filtering action, dosage assignments are

more smoother and clinically acceptable. For measured disturbances, continuous MPC

offers perfect compensation through the use of feedforward action where as in the case of

hybrid MPC, the action is less effective due to constraints. At k = 55 an abrupt change
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Figure 2.8: Performance of hybrid MPC (eight levels) with tuning parameter (αr, αd, fa) =
(0.5, 0.5, 0.5). The performance of hybrid MPC is also compared to the continuous MPC.
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in the pain report occurs due to an unmeasured disturbance; this change is not part of the

model prediction. The controller reacts by increasing the drug dosage to compensate.

Fig. 2.9 compares the performance of hybrid MPC for two set of tuning. The aim is

to show that the 3 DoF formulation allows the user to tune the controller independently

for setpoint tracking and disturbance rejection. The first case showcases a faster tuning

((αr, αd, fa) = (0.2, 0.2, 0.8)) and it is then compared with a slower case ((αr, αd, fa) =

(0.8, 0.8, 0.2)). The manipulated variable changes smoothly for the slower tuning but results

in more sluggish output response when compared to the case of faster tuning.

In practice, setpoint tracking has to be done in presence of disturbances and hence

it is now shown that the treatment scheduling algorithm used here is robust to events

occurring simultaneously. Both measured and unmeasured disturbance (of magnitude as

before) act at k = 0 as shown in Fig. 2.10. The tracking is considered under both measured

and unmeasured disturbances, where a smoother (but more aggressive controls) response is

obtained for αd = 0, fa = 1 where as the less aggressive controls for tuning αd = 0.9, fa =

0.2. In both of the cases, the variation of αr from 0 to 0.8 (as seen on the Y-axis) results

in more sluggish setpoint tracking speed for fixed set of tuning parameters αd, fa. It can

also be observed that to compensate the effect of disturbance, more dosage magnitude is

required. The length of the simulation is N = 20 days. In order to quantify the achieved

performance under different sets of tuning, two metrics are defined: first, related to square

of 2−norm of error e as:

Je =
N∑

k=1

e(k)T e(k), (2.28)

where e(k) = y(k)− yr and second, square of 2−norm of change in control (∆u) as:

J∆u =
N−1∑

k=1

∆uT∆u, (2.29)

where ∆u(k) = u(k+1)−u(k). These are tabulated in Table 2.4, where it can be observed

that de-tuning the controller (i.e. decreasing fa and increasing αr, αd ) results in higher Je

(more error) but lowering of J∆u (less aggressive controls).
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Figure 2.10: Setpoint tracking under both unmeasured and measured disturbance for var-
ious tuning (αr) values with two sets of settings for αd, fa. The setpoint is denoted by
dotted lines.
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Table 2.4: Performance index of the signal under different tuning for setpoint tracking under
disturbances. It can be observed that increases in αr (implying more filtering action) leads
to less aggressive control responses.

αd = 0.9, fa = 0.2 αd = 0, fa = 1

αr Je J∆u αr Je J∆u

0 602.93 107.86 0 108.41 92.98
0.2 628.82 63.22 0.2 131.51 78.1
0.4 710.67 48.35 0.4 167.88 70.66
0.6 855.79 48.35 0.6 235.03 48.35
0.8 1181.53 44.63 0.8 327.85 40.91

Table 2.5: Performance index of the hybrid MPC under stochastic unmeasured disturbance.
The observer gain can be varied to obtain a trade off between the metric of tracking error
(Je) and control moves (J∆u).

fa = 0.1 fa = 1

Je J∆u Je J∆u

9211.26 55.79 6203.99 1205.08

So far, only deterministic setpoint and disturbance signals have been considered. A

scenario of practical interest is when the unmeasured disturbance is of stochastic nature; this

is now introduced through an AutoRegressive Moving Average (ARMA) model to evaluate

the controller performance. By changing the observer gain through fa, it is possible to

influence disturbance rejection. Consider an ARMA model as follows:

d(k) =
(q − 0.3)

(q − 0.7)2
a(k) ∀k, a(k) ∼ N (0, 30), (2.30)

where d, a are discrete signals with q as the forward shift operator. The time plot of this

ARMA noise is shown in Fig. 2.11a where the unmeasured disturbance varies on a scale of

100. The length of the simulation is N = 90 days.

The two simulation cases are shown in Figure 2.11b. Two settings are considered to

change the observer gain: fa = 1 (which is more aggressive) and then fa = 0.1 (which

is more sluggish). Table 2.5 compares the performance indices related to the error and

change in control from both simulations. It can be noted that under fa = 1, a lower error

performance (Je) is observed but under a trade off with more aggressive control action
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57



where as using lower tuning value of fa = 0.1 results in higher Je with the corresponding

less change in control (J∆u). To conclude, the novel tuning gives the user enough flexibility

to choose the speed of response, for a given set of weight matrices, to satisfy certain clinical

requirements.

2.5.2 Robust Performance

It was previously indicated the importance of a suitable controller under model uncertainty

and participant variability. That scenario is now addressed where the performance of the

controller is evaluated when a perfect model is not available from the identification pro-

cedure. The approach used in this chapter is to showcase robustness via simulations. As

before, one plant (drug-FM) and one disturbance (anxiety-FM) model are considered. To

simulate model uncertainties, different parametric uncertainties on the estimated models

(as shown by Equation 2.3) are used to generate scenarios for plant-model mismatch. The

plant and disturbance model variations are chosen to illustrate participant variability ex-

pected in a cohort. For an individual treatment approach, these uncertainties may also

correspond to unmodeled dynamics. These cases are noted in Table 2.6 for drug-FM model

and anxiety-FM model. The modeling errors in plant will be compensated through the

feedback action alone, although the modeling errors in disturbance model will be partially

compensated by the feedforward action and the signal not compensated by the anticipation

will enter the feedback loop as an unmeasured disturbance. It is assumed that none of the

plant mismatch scenarios result in plant instability. Due to constraints on the input drug

dosage levels, the uncertainties were not chosen to be arbitrarily very large.

The results for robust performance are shown in two sections: first, different uncertain-

ties are evaluated for fixed tuning and the effect of different uncertainties (∆∗) is observed

as is shown in Section 2.5.2.1 and second, the uncertainty is fixed and the effect of tuning

(fa) on the response is observed as shown in Section 2.5.2.2.
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Table 2.6: Tabulation of parametric perturbations on drug-FM model (p or plant model)
and on anxiety-FM model (pd or disturbance model).

Case (p) ∆Kp ∆ζp ∆τp ∆(τa)p Case (pd) ∆Kd ∆ζd ∆τd ∆(τa)d
1 0 0 0 0 1 0 0 0 0
2 -29.1% 0 0 -23.46% 2 -15.1% 0 0 66.66%
3 29.1% 0 0 -23.46% 3 15.1% 0 0 66.66%
4 -29.1% 16.6% 259% -23.46% 4 -15.1% 16.6% 259% 66.66%
5 29.1% 79.3% -29.1% -23.46% 5 15.1% 79.3% 191% 66.66%

2.5.2.1 Robustness Evaluated under Fixed Tuning

The first case is now evaluated: effect of different uncertainties for a fixed instance of tuning

of the control system. Since the plant-model mismatch will contribute to an unmeasured

disturbance, it is not applied externally in the simulation. The observer gain is changed

through fa for tuning and other parameters are kept constant (αr = αd = 0). The setpoint

is kept constant at 50 and a measured disturbance is applied at k = 2 of magnitude 11.05.

The length of the simulation is N = 35 days. Before describing the results, it is important

to mention how the results are displayed for clinical inferences. The following two functional

groupings are used:

1. When a fixed nominal model is used. A nominal model is used as a basis by the con-

troller to assign dosages for different plants (typical robustness scenario). Clinically,

this can be interpreted in two ways: first, that the (estimated) nominal model is an

approximation of the true system (and hence the different scenarios represent differ-

ent uncertain plants) for an individual participant and second, the nominal model

represents an average or representative model for a population of participants (and

hence the different scenarios represent different participants). This is shown in Fig.

2.12a-2.12b.

2. When the true plant serves as the nominal model. For each scenario considered in the

previous case, the true plant is supplied as the nominal model to the controller. This

case can be understood as when accurate modeling (through system identification or
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otherwise) has been performed for each individual in a population. The key motivation

for this is to get a clinical insight as the user can now compare how the controls will

vary under plant-model mismatch and on the same page, it will help the user to assess

the case when the correct model is available to the controller. Hence, the user can

gauge the resultant change in dosing strategies due to modeling errors. This is shown

in Fig. 2.12c.

In Fig. 2.12 each scenario (on ‘Y’ axis) represents five cases of uncertainty combinations

of perturbations in both plant and disturbance model respectively. The following list shows

the uncertainty cases [P, Pd] used for simulation from Table 2.6: a) Scenario 1: [1,1]

b) Scenario 2: [4,5] c) Scenario 3: [3,3] d) Scenario 4: [5,3] e) Scenario 5: [4,3] As can

be noted, Scenario 1 in all plots is the case of nominal model (and hence no steady state

error). When fa is changed from fa = 0.2 (See Fig. 2.12a) to fa = 1 (See Fig. 2.12b), more

aggressive control are obtained, although this results in less output overshoot (max. pain)

as noted in Table 2.7. In Fig. 2.12c, all the cases are compared with respective scenarios

where a correct nominal model is available and it can be observed that the control is better

as expected. It can be noted that only one plot is shown for correct nominal model case

as both tuning values of fa result in the same response (no prediction error). Table 2.7

records the performance indices of this analysis; for fa = 0.2, Je is higher when compared

case-to-case with performance under tuning fa = 1. However, using larger values of fa may

result in aggressive control as in noted by some values of J∆u. The metrics when a correct

nominal model is available are also noted where, as expected, Je is lower with corresponding

large values of J∆u.

2.5.2.2 Robustness Evaluated under Fixed Uncertainty

The second case is now evaluated: tuning of the control system is varied with a fixed

uncertainty. If the user has some sense for the expected modeling uncertainties, different

control inputs under different tunings are observed; a clinician can choose certain tuning
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(a) Closed loop response with fa = 0.2.

0
10

20
30

1
2

3
4

5
45

50

55

Time (days)Scenario

F
M

 s
y
m

 r
e
s
p
o
n
s
e

0
10

20
30

1
2

3
4

5
0

1.92
3.85
5.76
7.68

9.6
11.58

13.5

Time (days)Scenario

D
ru

g
 (

m
g
)

(b) Closed loop response with fa = 1.
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(c) Closed loop response where true plant serves
as the nominal model (no plant model mismatch:
p = p̃, pd = p̃d).

Figure 2.12: Robustness evaluation when both plant model (drug-FM) and disturbance
model (anxiety-FM) are perturbed under measured disturbance, with tuning αr = αd = 0
under different fa. Plots (a) and (b) show the closed loop response with under model
mismatch (p 6= p̃, pd 6= p̃d where scenario 1 represents the nominal model) under different
tuning. Plot (c) shows the response under no plant-model mismatch hence independent of
fa.
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Table 2.7: Performance index under two sets of tuning for robust performance with different
scenarios of plant and disturbance model perturbations.

p 6= p̃, pd 6= p̃d p = p̃, pd = p̃d
Tuning Uncertainty

Case
(plant (p),
disturbance(pd))

Je J∆u Max. pain Je J∆u Max. pain

αr = αd = 0, fa = 0.2

1,1 2.88 7.43 51.25

2.88
0.39
6.78
8.55
0.25

7.43
126.46
63.23
70.66
252.92

51.25
50.23
50.56
50.72
50.17

4,5 44.47 37.19 51.55
3,3 48.05 26.03 52.99
5,3 75.48 52.07 53.7
4,3 307.28 55.79 55.12

αr = αd = 0, fa = 1

1,1 2.88 7.43 51.25
4,5 9.05 14.87 50.97
3,3 12.04 26.03 50.91
5,3 14.44 33.47 51.17
4,3 216.33 78.1 53.57

Table 2.8: Performance index under different tuning (fa) for robust performance under
fixed uncertainty of plant and disturbance model perturbations.

Uncertainty Case
(plant, distur-
bance)

fa Je J∆u Max. pain

4,3

0.2 345.87 81.827 55.12
0.4 249.28 96.704 54.42
0.6 248.51 63.23 53.9
0.8 195.46 63.23 53.9
1 226.92 89.265 53.57

parameters corresponding to the best possible treatment regimens. Fig. 2.13 shows how

the tuning affects the performance more precisely than previous section as the uncertainty

([p, pd = 4, 3]) is now fixed under different observer gains. It was further observed that used

uncertainty combination is the most oscillatory of the cases and hence use of different fa

can significantly vary the rate of change of dosing. Also, the simulation is run longer to

allow the responses to settle (N = 65 days). The performance metrics are noted in Table

2.8 along with the maximum output overshoot, where it can be seen that best trade off

between error and change in control is around fa = 0.8. The proper trade off between

modeling effort and controller performance will finally depend on clinical requirements.
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Figure 2.13: Robustness evaluation under different fa when both plant model (drug-FM)
and disturbance model (anxiety-FM) are perturbed using plant uncertainty case number
4 as ∆Kp,∆ζp,∆τp,∆(τa)p = (−29.1%, 16.6%, 259%,−23.46%) and and using disturbance
uncertainty case number 3 as ∆Kd,∆(τa)d = (15.1%, 66.66%).

2.6 Chapter Summary and Conclusions

This chapter demonstrated the design of an adaptive intervention for fibromyalgia that

relies on system identification modeling and hybrid model predictive control to assign appro-

priate dosage levels of naltrexone as a treatment for fibromyalgia, a chronic pain condition.

The approach described in this work generates models from clinical data and assigns cate-

gorical dosages by considering hybrid dynamics in a mixed logical dynamical (MLD) system

framework.

Given the absence of first principles models, a secondary data analysis is performed

to estimate parsimonious models from data available through clinical trials. Low-order

multi-input ARX models are estimated and approximated to continuous-time second order
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models. The effect of drug, placebo and other variables on outcomes of interest such as

general FM symptoms are systematically included in the modeling procedure. The model

yields the dynamical information that can be used to classify participants as responders or

non responders to drug, and to make dosage changes over time.

Models from a representative participant from the clinical trial are used to show how

model predictive control can be applied to assign dosages in the presence of disturbances

and model uncertainties. The use of an improved 3 DoF tuning approach is demonstrated

to give flexible independent tuning for a desired controller performance. The control results

developed are broadly classified under nominal performance and robust performance. Under

nominal performance, it is shown how by varying the three tuning parameters (αr, αd, fa) re-

lated to filters and state observer dynamics, independent tuning for setpoint tracking, mea-

sured and unmeasured (deterministic and stochastic) disturbance rejection can be achieved,

and their relationship to clinical goals in the intervention. In the robust performance evalu-

ation, the model parameters are perturbed to create conditions of a plant-model mismatch

which would be indicative of participant variability during the adaptive intervention. As

part of this scenario, two cases are further considered: first, where controller tuning is fixed

and the effect of different uncertainties are noted and second, when certain plant uncertainty

is fixed and the effect of tuning is evaluated on the resulting response.

The results presented in this chapter can impact not only the treatment of fibromyalgia,

but also the treatment of other chronic pain conditions and the development of adaptive

behavioral interventions in general. It is envisioned that control engineering concepts will

play a crucial role in novel individualized treatments, where a closed-loop system can adjust

treatment dosages based on daily patient reports of pain and other symptoms of importance.

In this way, an optimal dosage profile for that individual could be rapidly determined

without requiring frequent office visits or substantial physician involvement. Thus, adaptive

interventions relying on control systems engineering can be seen as a cost-effective and

efficient method for accomplishing personalized pain interventions.
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Finally, the secondary analysis conducted in this chapter has also pointed out the lim-

itations of inferring dynamics from population-level clinical data. An experimental design

where the drug dosages are adjusted to various signal levels will lead to significant observable

changes in the outcomes. This change of drug magnitude can be brought about system-

atically such that the resulting signal has favorable theoretical properties from a system

identification point-of-view under clinical constraints. Thus, the drug regimens changing

magnitude over time can be used as a means to operationalize single-subject clinical trials

and help create more informative intensive longitudinal dataset. The ensuing chapters dis-

cuss design of input signals to respect clinical constraints while achieving objectives derived

from methods in system identification.
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Chapter 3

SURVEY OF METHODS IN SYSTEM IDENTFICATION, EXPERIMENT DESIGN

AND OPTIMIZATION

3.1 Organization of the Chapter

This chapter presents a survey of methods in system identification, experiment design

or input signal design and mathematical optimization. The presentation in this chapter is

intended as a reference for development of problem formulations in subsequent chapters,

and also to provide a brief overview of developments in system identification and input

signal design. Given the mature nature of these fields, a comprehensive treatment will

be forbiddingly long and is beyond the scope of this dissertation. The material presented

in this survey is primarily based on texts on experiment design, system identification and

optimization [49, 45, 123], and on research papers which have been cited in appropriate

context. In particular, an overview of black-box modeling can be found in Sjöberg et al.

[88]. A comprehensive survey of results for experiment design for system identification

until the early 1970’s can be found in Mehra [51] and recent reviews on optimal experiment

design can be found in Pronzato [53] and Gevers et al. [52]. The material presented on

optimization is based on the textbook by Nocedal and Wright [124], which covers the basics

of numerical optimization and from the textbook by Boyd and Vandenberghe [123] which

offers a more formulation or modeling oriented approach with focus on convex optimization.

The chapter begins with a brief overview of modeling in Section 3.2. Section 3.3 illus-

trates particular methods in system identification with description of key results which will

serve as background for later chapters. The rest of the chapter focuses on survey of classical

and recent results in experiment design for system identification, which is generally, and

henceforth, referred to as input signal design in the context of dynamical systems. This

is described in Section 3.4. Section 3.5 contains description of optimization methods and
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related software. The chapter ends with a summary of described methods and conclusions

in Section 3.6.

3.2 Philosophy of Modeling

Scientific methods consists of analysis of observed phenomena by testing or falsification

of a proposed hypothesis using empirical, mathematical and logical techniques [125]. The

scientific explanation takes shape, generally speaking, as a mathematical statement or a

‘model’. In fact modeling forms the crux of the scientific enterprise, particularly in the nat-

ural sciences, where an accepted and validated model has both explanatory and predictive

power, and which offers the best approximation of the perceived reality. Consequently, mod-

eling is an important vehicle in building as well as complementing a scientific theory [126].

Without over stressing the explanatory role of mathematics in science, it should also be

mentioned that not all models be necessarily described mathematically or quantitatively.

This is sometimes observed in the social sciences where data and subsequently relationships

between variables may be defined qualitatively. In this work, the term model is used in the

sense of a mathematical model. Finally, the domain of model interpretation has to be care-

fully defined if the model is used as a way for predicting future behavior of the system. For

example, there is debate in social sciences on the focus on an idiographic (single subject)

vs nomothetic (multiple subject or towards generalization) analysis [13, 114].

Building of mathematical models using, and ultimately to explain, experimental data

is universal in science and engineering. Experimentation is fundamental to the scientific

method and hence model building is heavily dictated by data. Historical examples from

astronomy such as discovery of Kepler’s laws of planetary motion [127] and prediction

of planetary orbits [128], to recent discoveries of a new particle (Higgs-like boson) from

the Large Hadron Collider (LHC) experiment [129, 130] and evidence of cosmic inflation

from BICEP2 experiment [131] highlight importance of using data to build, validate and

falsify models. Learning from data is also a well observed behavior in living organisms,
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particularly humans. In engineering, which involves application of scientific principles,

models can also be constructed from known first principles. This is indeed true for the

inanimate systems generally found in traditional engineering domains like electronic and

electrical power systems, mechanical and aerospace systems, chemical processes and many

more. With a priori knowledge and physical insight, observed data can be used to construct

‘grey-box’ or semiphysical models [45]. However, in many scenarios, only ‘black-box’ models

from observed data can be constructed.

First and foremost, the collected data itself is the most basic model that can be con-

structed. In other words, in absence of any model structure, the best prediction that can

be made is the data itself. Data visualization or ‘eye balling’ could give interesting insights

in to the underlying dynamics such as possible nonlinear effects [132]. Generally, clinical

data is collected as a function of time, e.g., the data shown in Fig. 2.1 indicated decrease in

reported pain and improvement in sleep quality with drug intake. Hence, data visualization

continues to be important in many scientific studies [133].

P

e

u y

Figure 3.1: Input-output representation of a dynamical system.

Of particular interest in systems and control theory is the dynamical system framework,

generally represented using state-space techniques [134], to describe the evolution of the

system as a function of time. A dynamical system P, shown in Fig. 3.1, is characterized by

the fact that the value of a output variable y depends not only on the current value of the

input u but also on its previous values [45]. Consider a dynamical system whose evolution

in time as defined by a fixed rule:

P : y(k) = G(q, θ)u(k) +H(q, θ)e(k), k = 1, . . . , N (3.1)
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where the transfer function G,H are parametrized by θ and e(k) is the uncertainty or the

noise. In a stochastic framework, e(k) is a random variable where as in a set-membership

framework, the noise can be considered to be unknown but bounded.

Various types of dynamical models can be constructed: linear vs nonlinear, discrete-

time vs continuous-time, time-invariant vs time-varying. In systems and control literature,

the set of techniques for constructing dynamical models from data, usually with an exoge-

nous input, are called system identification [48]. In conclusion to this section, it should be

mentioned that like system identification, data-based modeling is pursued in many other

areas like statistics [116], machine learning [135], artificial neural networks [136], economet-

rics [137], business and marketing [138], each with its own requirements, assumptions and

conclusions. The method of system identification is discussed in the next section.

3.3 System Identification

System identification is the art and science of building dynamical models using observed

input-output data from an experiment. The origins of system identification can be traced

to early works in systems theory [26, 139]. Although a mature field now, significant interest

continues to exist to tackle various theoretical and practical challenges [140].

Consider that an output y is observed from a single-input single-output (SISO) dynam-

ical system P subject to an input u. The data collected in practice is finite and noisy. It is

often simpler to describe the modeling process as a mapping from the regressor space (which

contains finite lagged data about the dynamical system) to the output space [88]. Hence,

the modeling process would involve first construction of a regressor, and second a mapping

to the output. The AutoRegressive with eXogenous input (ARX) regressor structure is

commonly used [88, 54]:

ϕ(k) = [y(k − 1), ... , y(k − na), u(k − nk), ... , u(k − nb − nk + 1)]T , (3.2)

where y, u denote the output and input signals respectively, na, nb and nk denote the

69



number of previous instances of the output, input and the degree of delay in the model

and the regressor vector ϕ(k) ∈ R
m where m = na + nb. Along similar lines, the Finite

Impulse Response (FIR) regressor structure can be written as

ϕ(k) = [u(k − nk), ... , u(k − nb − nk + 1)]T . (3.3)

Given the regressor structure, consider a SISO process for which the dataset can be repre-

sented as ({y(k), ϕ(k)}Nk=1) through the relation

y(k) = f(ϕ(k)) + e(k) k = 1, ..., N, (3.4)

where y(k) ∈ R, f(·) is an unknown smooth (possibly nonlinear) mapping, ϕ(k) ∈ R
m is

the regressor vector and e(k) ∈ R is the noise [141]. Two broad approaches can be taken

for system identification. The first approach uses a fully parametric method where a fixed

model structure is estimated by minimizing a measure of model misfit for given model

complexity. This also forms part of the ‘global’ methods which involve construction of

fixed model to explain all of the data. The second approach involves use of nonparametric

methods where a weighted average of neighboring points is used to estimate the unknown

function for a given size of neighborhood. These ‘local’ methods involve construction of

models in only local vicinity of the current operating point and hence the model is built on

demand. These two approaches are now discussed in more detail.

3.3.1 ‘Global’ Methods

This section describes the prediction error methods which are among the most popular

methods developed in system identification literature [45, 46]. This approach is based on

minimization of certain cost function of observed data and parameter θ using classical

statistical regression methods. The variable nomenclature adopted in this section has been

taken from system identification literature (e.g., [45]). Consider that the true system can

be represented as

y(k) = G(q, θ0)u(k) +H(q, θ0)e(k) ∀k = 1, . . . , N, (3.5)
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where θ0 ∈ R
nθ is the true parameter vector, q is the forward-shift operator, {y(k), u(k)}Nk=1 =

ZN are the input-output pair and e(k) is zero mean white noise with variance σ2. A model

structure can be defined from a model set M as

y(k) = G(q, θ)u(k) +H(q, θ)ǫe(k) ∀k = 1, . . . , N (3.6)

where θ ∈ R
nθ . The one-step-ahead prediction can be defined as

ǫe(k, θ) = H−1(q, θ)(y(k)−G(q, θ)u(k)). (3.7)

Using the input-output data and quadratic criteria on the prediction error, the parameter

estimate can be written as

θ̂N = arg min
θ

{VN (θ, ZN )} (3.8)

=
1

N

N∑

k=1

ǫ2e(k, θ). (3.9)

If the true model is in the model set M, then the following statements are true asymptoti-

cally [45, 46]

√
N(θ̂N − θ0) → N (0, P (θ)) (3.10)

P (θ) = σ2(
1

N

N∑

k=1

[ψ(t, θ)ψ(t, θ)T ])−1|θ=θ0 (3.11)

ψ(k, θ) =
∂ŷ(k/k − 1, θ)

∂θ
= −∂ǫe(k, θ)

∂θ
(3.12)

where ŷ is the one-step-ahead prediction. It can be shown that ψ(k, θ) ∈ R
nθ is an affine

function of the input u(t) [45]. Equation (3.11) can be written in frequency domain using

Parseval’s theorem where it can be shown that inverse of the parameter covariance matrix is

an affine function of the input power spectrum [45]. This fundamental result is used for the

design of classical optimal inputs as discussed in Section 3.4.3. In other words, the quality

of the estimated parameter directly depends upon P (θ) ∈ R
nθ×nθ . These results can be

used to construct an ellipsoidal confidence region which includes the true parameter θ0

(θ − θ̂N )T (
P (θ)

N
)−1(θ − θ̂N ) ≤ χ2

α̃(nθ) (3.13)
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with probability α̃ as defined by P (θ) and the chi-squared distribution under sufficiently

large N i.e. N → ∞ [45, 142].

The nature of optimization problem solved in (3.8) depends on the nature of parametriza-

tion. Commonly, the following parametric structures are used in system identification: ARX

(Auto-Regressive with eXogeneous inputs), ARMAX (Auto-Regressive Moving-Average

with eXogeneous inputs), FIR (Finite Impulse Response), BJ (Box-Jenkins) and OE (Out-

put Error). The general structure describing these models can be written as

A(q)y(k) =
B(q)

F (q)
u(k − nk) +

C(q)

D(q)
e(k) (3.14)

where A,B,C,D and F are causal polynomials in q. The multi-input ARX equation was

shown in (2.2). For these linear in the parameter models, relationship can be further

represented using the regressor structure as

y(k) = ϕT (k, θ) + e(k) (3.15)

where for the FIR and ARX structure, the ϕT (k, θ) is independent of θ i.e. y(k) = ϕT (k)θ+

e(k) and hence the quadratic criteria function reduces the optimization problem to linear

least squares. For ARMAX, BJ and OE models, the optimization problem is nonlinear and

nonconvex in nature, and the solution is calculated using iterative optimization schemes.

Of course, global methods are not limited to linear models. There is a rich literature

of methods ranging from much flexible artificial neural networks, support vector machines

and fuzzy logic based models to more structured approaches such as Nonlinear AutoRe-

gressive with eXogenous input (NARX) and Hammerstein-Wiener models. The resulting

optimization problems in these structures may be nonconvex. Although many results, such

as shown in (3.11), generally hold true for any structure, the subsequent interpretations on

model quality are not so straight forward as for the linear case. Recent efforts have been

oriented to use the structural information in estimating nonlinear models [48].
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3.3.2 ‘Local’ Methods

The local method philosophy deviates from the conventional modeling philosophy as fixed

compact mathematical model as the best description is never derived; instead the input-

output data generated from a dynamical system is used on demand to build local models.

The methodology of building local linear models on-line is now briefly described. As before,

consider a SISO process for a given data set ({y(k), ϕ(k)}Nk=1) described by relationship as

y(k) = f(ϕ(k)) + e(k) k = 1, ..., N (3.16)

where ϕ(k) is composed of lagged output and input such as:

ϕ(k) = [y(k − 1), ... y(k − na), u(k − 1), ... u(k − nb)]
T . (3.17)

The local system identification methods such as Model-on-Demand (MoD) [55] attempt to

estimate output predictions based on a local neighborhood of desired operating point (ϕ∗)

in the regressor space. The predictor function f̂ is obtained by a linear combination of

observed outputs

f̂(ϕ∗) =
N∑

k=1

w(k)y(k) (3.18)

where the weights are, in general, dependent on the distance of regressors from the current

operating point (ϕ∗ − ϕ(k)), noise variance and properties of f . The weights emphasize

the size of the neighborhood from the desired operating point, and this is referred to as

‘bandwidth’ of the estimator. Thus, it governs the tradeoff between bias and variance errors

of the estimate. To select these weights, the following two methods can be used:

• Kernel-based approach: The weights are assigned as per a kernel or window func-

tion (W (·)) according to the distance of given regressors from ϕ∗ to asymptotically

minimize the mean square error of the estimate [55, 143, 45]

w(k) =W

(‖ϕ∗ − ϕ(k)‖M1

h

)

(3.19)
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where M1 ∈ R
m×m is scaling matrix for the Euclidean distance and h is the band-

width. The kernel function, which maps the regressors to weights, is generally of a

symmetrical shape where certain kernel choice be shown to be optimal in the mean

square error sense [143, 144]. In MoD [54, 89, 55], the bandwidth is selected using the

classical methods such as Akaike Information Criteria (AIC) and crossvalidation [54].

• Optimization-based approach: Another approach of selecting these weights is through

explicit use of optimization by minimizing the exact mean square error (MSE) or

worst case MSE

w = argmin
w

W (ϕ∗ − ϕ(1), . . . , ϕ∗ − ϕ(N), f, w) (3.20)

where w = [w(1), ..., w(N)]T and W (·) is some function of the MSE [56, 54]. Con-

sequently, some of the resulting weights are zero and thus the ‘bandwidth’ of the

estimator is automatically calculated. For example, these weights are obtained in the

direct weight optimization (DWO) approach by solving following convex quadratic

program (QP) at each time instant

min
w,s

1

4

(
N∑

k=1

st‖ϕ∗ − ϕ(k)‖2M2

)2

+ σ2
N∑

k=1

s(k)2 (3.21)

s.t. s(k) ≥ w(k)

s(k) ≥ −w(k)
N∑

k=1

w(k) = 1

N∑

k=1

w(k)‖ϕ∗ − ϕ(k)‖ = 0

whereM2 � 0 is a function of the Lipschitz constant and s is a vector of slack variables.

For affine estimates, a new variable w(0) can be defined. Since the choice of weights

using statistical measures is only as per asymptotic arguments, the optimization-based

approach is useful in practice when the number of data points is finite. Detailed

formulation and proof can be found in [145, 56].
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For both methods, predictions at other operating points in the regressor space can be

obtained by recalculating using the kernel or by solving a new optimization problem, which

will result in a new set of weights. The methods outlined so far have focused on obtaining

the function approximation f̂(ϕ∗). In the next step, a local linear model can be obtained

by solving

β̂ = argmin
β̂

N∑

k=1

ℓ(y(k)− m̂(ϕ∗ − ϕ(k), β̂))×W (ϕ(k)− ϕ∗) (3.22)

where ℓ(·) is a quadratic norm function,W (·) assigns weight as per the estimator bandwidth

and the local model structure can be:

m̂(ϕ∗ − ϕ(k), β̂) = β̂0 + β̂1(ϕ
∗ − ϕ(k)) (3.23)

which is linear in the unknown parameters, and hence an estimate can be computed using

least squares.

In conclusion, an important aspect for data based methods is availability of informative

data and hence experiment design for system identification is a fundamental exercise in

system identification. In the ensuing section, an overview of experiment design for system

identification is presented.

3.4 Experiment Design for System Identification

Based on the discussion in the previous sections and Chapter 2, the procedure for system

identification can functionally classified as:

1. Experiment design. This includes the task of selecting the input signal among other

considerations such as choosing the sampling rate.

2. Model structure. This step involves selection of a parametric (e.g., ARX, Hammerstein-

Wiener) or non parametric (e.g., frequency response) structure to capture the inherent

relationship in the data. Technically, the Model-On-Demand approach is a hybrid of

traditional parametric and nonparametric methods.
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3. Model estimation. This step involves solving a specific optimization problem using

the model structure previously selected. With assumptions on the stochastic nature

of noise, certain statistical properties can be assigned to the calculated estimate.

4. Model validation. The final step involves various procedures to validate the model

including quantifying the model fit.

The first stage of experiment design significantly determines the success of the later steps

and hence is the most important design variable associated with system identification.

Experiment design for system identification specifically involves the design of input signals

to achieve various design objectives such as minimum variance parameters, distribution of

regressors (as developed in this dissertation) or achieving desired input signal spectrum. A

brief timeline of development of input signal design is shown in Fig. 3.2. Specifically for a

dynamical system, the input design should address

1. Higher order moments of the input signal. For a linear system, the second order

moment or the input spectrum uniquely defines the asymptotic properties of the

estimated models [45]. This is discussed in Section 3.4.1, and

2. Shape of the input signal, i.e. the exact time domain realization of the input signal.

This requirement can be grouped in the ‘plant-friendly’ category where the input

signal should have limited amplitude and move sizes, among other considerations.

This is discussed in Section 3.4.2 and in detail, in Section 4.2.

The topic of input design is discussed in the ensuing sections with focus on persistence

of excitation in the signal, achieving plant-friendliness, and finally classical optimal input

design.

3.4.1 Input Signals for Persistent Excitation

In system identification, informative data sets are directly related to presence of the persis-

tence of excitation (PE) in the input signal. This implies that the data allows to discriminate
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Statistical results

Optimal designs,
multisines [146]

Variance results,
persistence of excitation

Identification for control,
plant friendly designs

LMI formulations

Figure 3.2: A brief timeline of development of input signal design. Early development in
the 1970’s utilized classical results from statistics for optimal designs. The later decades
saw incorporation of variance of transfer function and plant friendly designs. The last ten
years has seen resurgence of input design due to convex formulations.

between two rival models in a given model set and hence PE is a necessary condition to

facilitate estimation in an unambiguous manner. The signal u(k) is said to be persistently

exciting if the following covariance matrix is positive definite:

Definition 2. A quasi-stationary [45] input u(k) is persistently exciting of order nPE if

the matrix

R̂ =






ru(0) · · · ru(nPE − 1)

ru(nPE − 1) · · · ru(0)




 (3.24)

is positive definite (R̂ � 0),

where ru(n) is defined as

ru(n) =
∞∑

k=−∞

u(k)u(k + n). (3.25)

In the frequency domain, this concept can be related to a condition on the input spectrum

Φ(ω) as follows:

Definition 3. The input signal spectrum Φ(ω) for a PE signal of order nPE is non zero

for at least nPE distinct frequencies in 0 < ω < π:

Φ(ω) > 0 ∀ω ∈ (0, π). (3.26)
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In addition to the PE condition, based on results derived in Section 3.3.1, it can be

concluded that the parameter covariance matrix (or its inverse the information matrix) is

a function only the spectrum and not of the signal waveform and hence, an input spectrum

completely determines the quality of the LTI model. Historically, PE conditions have also

played an important role in adaptive control [147]. Classical input signals that can be

designed to satisfy this informative condition include [132]:

• Pseudo Random Binary Sequence (PRBS): These are deterministic, periodic signals

which can be uniquely defined by the number of shift registers nr and switching time

Tsw to excite the system bandwidth:

ω∗ =
1

βsτHdom
≤ ω ≤ αs

τLdom
= ω∗, (3.27)

where (τHdom, τ
L
dom) are the dominant time constant estimates of the system based

on the high (αs = 2) and low (βs = 3) frequency information [80], and [ω∗, ω
∗] is

bandwidth for a flat spectrum Φu(ω) defined as

Φu(ω) =







γa ω∗ ≤ ω ≤ ω∗

γb ω > ω∗,
(3.28)

where γa and γb are real numbers defining the magnitude. Correspondingly, the

switching time and the length of signal N = Ncyc ∗ Tsw can be calculated as:

Tsw ≤ 2.8τLdom
αs

, Ncyc = 2nr − 1 ≥ 2πβsτ
H
dom

Tsw
. (3.29)

• Multisine signals: These are deterministic, periodic signals designed to contain specific

frequency information

u(k) =

ns∑

i=1

aicos(ωikT + φi), (3.30)

where ns is the number of harmonics, T is the sampling time, ai ∈ R are constant

for all ns and frequencies ωi uniformly spread over the bandwidth. The phases φi

can be determined, for example, by the Schroeder method [146]. In other cases, these
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multisines can be designed to reach a desired plant friendly metric such as the crest

factor under time domain constraints by selecting phases through an optimization

procedure [81]. Finally, it can be shown the optimal input for a given information

matrix (see Section 3.4.3) has a discrete spectrum. This implies that any optimal

spectrum can be expressed using the multisine signal [52].

• Multi Level Pseudo Random Sequence (MLPRS): These are deterministic, periodic

signals designed to contain specific frequency information using the Galois field theory

[82]. For a signal with ml levels, the number of elements q in Galois field can be

defined where q ≥ ml to generate the pseudo-random numbers. Based on the given

bandwidth, the variable switching time can be calculated as

Tsw ≤ 2.78

ω∗
, ω∗ ≥

2π

Tsw(qnr − 1)
, (3.31)

for nr shift registers and ω∗, ω
∗ are as defined before. It should be noted that the

length of the signal can increase exponentially given by the expression

N = (qnr − 1) ∗ Tsw. (3.32)

MLPRS has a distinct advantage over PRBS signal for identification of nonlinear

systems due to limitation of PRBS to binary levels [45, 89].

• Uniform random input signal : These are random input signals directly sampled from

a uniform probability distribution

u(k) ∼ U(umin, umax) (3.33)

defined using the scalar amplitude bounds on the input signal. Indeed, an advantage

of uniform random design is the capacity to address hard bounds on the inputs. Input

signal derived from Gaussian distributions are also frequently in academic examples.
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3.4.2 Plant-Friendly Input Signals

Input signals used for system identification in practice need to take into consideration the

limitations imposed by the plant, such as the minimum and maximum signal levels and the

signal rate of change. In addition, they should contain a high enough signal-to-noise ratio

to offset noise components in the system. Input signals that take into account these and

other practical limitations are referred to as plant-friendly [50]. It can be noted that the

plant-friendly requirements can be in direct conflict with traditional goals of input design,

such as maximum power or high frequency excitation.

The design of plant-friendly signals has been a particular focus of the Control Systems

Engineering Laboratory (CSEL) at Arizona State University. Initial work in the lab focused

on design of input signals with low crest factor with connection to model uncertainty and

robust control [148]. By considering constraints on the amplitude and move size constraints

on both the input and output, multisine signals were used with a prescribed spectrum and

the phases were chosen to minimize the signal crest factor through an nonlinear optimization

procedure [89, 149, 81]. In an alternative algorithmic approach, plant-friendly multisine

signals were designed using the simultaneous perturbation stochastic approximation (SPSA)

methodology in [150, 151].

Later work on plant-friendly input design incorporated the issues associated with data-

centric methods. The methods based purely on crest factor do not address the distribution

required for data-centric methods. Towards this, a geometric discrepancy approach based

on Weyl’s criterion was used to address uniform distribution in the output space [152, 95].

Special attention was given to ill-conditioned plants to showcase the utility of the proposed

input design [80, 153]. The next section deals with design of optimal input for minimum

parameter variance.
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3.4.3 Optimal Input Signal Design

Optimal input signal design originated when the classical results from statistical experiment

design, which are designed for static systems were re-interpreted from a dynamical system

perspective. Thus, optimal experiment design for system identification deals with designing

an input signal for optimal parameter estimation of the dynamical system. Like traditional

statistical approaches, the central focus of optimal input signal design lies on the information

matrix or the inverse of the parameter covariance matrix [45, 142].

Much of recent interest in optimal input signal design has been due amenable repre-

sentation of these problems using linear matrix inequalities (LMI) as convex optimization

problems. It comes from the fact that the parameter covariance matrix is affine in the

input spectrum which itself is a linear function of the autocorrelation coefficients as shown

in (3.34). These problems can be written as semidefinite programming (SDP) problems

and can be efficiently solved. Recently, the MOOSE toolbox (Model Based Optimal In-

put Design Toolbox for MATLAB) [154] has been developed to implement these problems.

MOOSE adds an extra layer over CVX [155] and SeDuMi [156] for these convex problems

and offers much more simpler syntax for classical optimal input signal design.

Many formulations can be proposed to satisfy different design objectives for optimal

design [53, 52]. The classical objective is to maximize some measure of the information ma-

trix such as using determinant (D-optimal), eigenvalue (E-optimal) and trace (A-optimal)

based designs [49]. In this survey, two particular formulation are discussed. The first for-

mulation finds the specified input spectrum, whereas the second formulation minimizes the

total power subject to model quality as a constraint [87].

The first formulation generates an input signal representation to follow bounds on de-

sired input spectrum. The following equation

Φu(ω) = |U(ω)|2 =
∞∑

k=−∞

r(k)e−jωk ≥ 0, (3.34)
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is used to determine if there exists any autocorrelation coefficients which will result in a

desired spectrum, with more details in Section 4.2. First, recall the following definition

Definition 4. Positive Real (PR) Lemma [157]: Given a discrete time system, the transfer

function H(z) satisfies

H(ejω) +H∗(ejω) ≥ 0 ∀ω ∈ [0, 2π] (3.35)

iff for S = ST , the following linear matrix inequality is true:





S −ATSA CT −ATSB

C −BTSA D +DT −BTSB




 � 0 (3.36)

where (A,B,C,D) are state-space matrices for the dynamical system.

The first formulation is posed as a SDP feasibility problem. A critical notion here is to

use the PR lemma to derive a LMI describing the non-negative condition on the spectrum.

The power spectrum can be written as

Φu(ω) = H(ejω) +H∗(ejω) (3.37)

with the important requirement for Φu(ω) to qualify as a spectrum

Φu(ω) =
∞∑

k=−∞

r(k)e−jωk ≥ 0. (3.38)

Since the above relationship is linear, the spectrum parametrization can be used to find

A,B,C,D as a function of r(τ) and hence, using PR lemma, express the problem as SDP

[158]. This can be formally written as

find r (3.39)

s.t. |γL(ω)| ≤ Φu(ω) ≤ |γH(ω)|

ω ∈ [0, π]





S −ATSA CT −ATSB

C −BTSA D +DT −BTSB




 � 0
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where γL(ω) and γH(ω) are the high and low bounds on desired spectrum. The optimization

problem (3.39) is semi-infinite due to the presence of the variable ω which can take any

values in the interval [0, π]. This can be addressed by frequency gridding [158]. This

formulation is extended to account for time-domain constraints on the input in Section 6.3.

The second formulation aims to find a spectrum which is optimal with respect to model

uncertainty set expressed in terms of the parameter covariance matrix shown in (3.11) and

the objective is to minimize the input power [142]. It can be noted that since direct time

domain input bounds cannot be specified (and this is revisited later in Section 6.3.1), the

only way the signal can be restricted to not go too large is to minimize the total input

power which, by Parseval’s theorem, can be written as the area under the curve of the

input spectrum. The resulting optimization problem can be written as a SDP:

min
r

A (3.40)

s.t. (θ − θ0)
T (
P (θ)

N
)−1(θ − θ0) ≤ χ2

α̃(nθ)

1

2π

∫ π

−π

Φu(ω) dω ≤ A (3.41)






S −ATSA CT −ATSB

C −BTSA D +DT −BTSB




 � 0.

For both formulations, the final input signal is realized using spectral factorization as an

output of a linear system driven by white noise [158] with more details in [142, 154].

A key point has to be mentioned, which unfortunately may be easily overlooked, that

the optimal design requires knowledge of the (unknown) true parameter θ0 of the system

as shown in (3.11). In other words, design of optimal inputs requires knowledge of the

very parameters which the experiment is designed to estimate. Although this may seem

as a contradiction at first, some inspection should convince the reader that this is indeed

not surprising. To take an example from automatic control, ‘optimal’ control is optimal

only for the given model. Similarly, an ‘optimal’ input can only be designed when the true

parameters are known. Thus, the approach of optimal input is beneficial if a good initial
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estimate is available [45]. The long-accepted approach in this situation is to use the best

possible initial information and continue to refine it in an iterative fashion, as elucidated in

the following excerpt from the book System Identification: Theory for the User [45, p. 443]

“The optimal experiment design depends on the (unknown) true system and noise charac-

teristics. This is the normal situation for optimality results, and in practice it has to be

handled by using the best prior information available about the system”.

Recently, identification test monitoring [50], robust experiment design [86] and adaptive

experiment design [159] have been proposed in literature as iterative schemes to address

this issue. Finally in the context of optimal design, the following work address some plant

friendly requirements: design of optimal input signals under amplitude constraints using

dynamic programming is shown in [160], design of optimal input signals under input and

output amplitude constraints using convex relaxation is shown in [161] and work in [162]

specifically addresses input signal variance in an optimal input framework using Tchebysheff

systems.

3.5 Mathematical Optimization

Most problems in decision and control can be formally posed as mathematical opti-

mization problems. Historically, the interest in optimization has existed since antiquity.

First formal development took place in the 17th century, primarily by works of Euler and

Lagrange, on the subject of calculus of variations [163]. Over the years, many ideas from

Newton (particularly iterative algorithms) to Gauss and Legendre (least-squares [128]) were

further incorporated. The real birth of modern optimization took place during and imme-

diately after the Second World War as linear programming (LP) through the pioneering

works of Kantrovich, Dantzig, Von Neumann and many others [164]. LP was primarily

driven by economic and military needs for resource allocation. The word ‘programming’
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is now a vestigial term in the modern context where it was originally meant for general

algorithm design. Over the next decades, many theories related to necessary and sufficient

conditions related to optimality were quantified such as the Karush-Kuhn-Tucker (KKT)

conditions along with algorithms for large scale nonlinear constrained optimization, integer

constrained optimization and multiobjective optimization [124]. In addition, work was done

on the framework of computational complexity and a general consensus had emerged that

the fundamental structure of the optimization problem described in terms of the convexity

or nonconvexity of the involved functions and sets determines the tractability of that prob-

lem [165, 166]. Significantly, in the last two decades rapid development has taken place in

solving optimization problems, particularly convex problems, using interior point methods

with much success in many applications [123, 124]. For the interested reader, the book

‘Optimization Stories’ contains many interesting historical notes [167].

3.5.1 Constrained Optimization

Consider the following constrained optimization problem:

p∗ = min
x

f0(x) (3.42)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

where x is the decision vector of finite dimension, f0 is the objective function and the feasible

set for this problem is defined by the intersection of domains of the inequality constraint

functions fi and equality constraint functions hi. The optimal objective is denoted by p∗

corresponding to an optimal feasible decision vector x∗ where f0(x
∗) = p∗. For problem

(3.42), assuming that the functions are continuously differentiable, first-order optimality

conditions known as Karush-Kuhn-Tucker (KKT) conditions can be written as [123]:

fi(x
∗) ≤ 0, i = 1, . . . ,m (3.43)

hi(x
∗) = 0, i = 1, . . . , p, (3.44)
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λi
∗ ≥ 0 (3.45)

λi
∗fi(x

∗) = 0 i = 1, . . . ,m (3.46)

∇f0(x∗) +
m∑

i=1

λi
∗∇fi(x∗) +

p
∑

i=1

νi
∗∇hi(x∗) = 0 (3.47)

where x∗ is the primal optimal point and (λ∗, ν∗) are the dual optimal points. When the

objective function f0 is convex, the inequalities fi are convex and equalities hi are affine, the

problem is called convex optimization. In all other cases, the problem becomes nonlinear

and nonconvex. The defining characteristic of convex optimization problems is that any

local minimizer x∗ is also the unique global minimizer of (3.42). This implies that the KKT

conditions are both necessary and sufficient for optimality and there are efficient polynomial

time algorithms to solve the convex problem [166].

In brief, particular structure of optimization problems are now listed in increasing order

of generality. The simplest form of convex optimization is linear programming (LP) where

the constraints and the objective function are affine:

min
x

cTx+ d (3.48)

s.t. Ax ≤ b,

Cx = d.

When the objective function is convex quadratic, the optimization problem is quadratic

programming (QP):

min
x

xTQx+ cTx+ d (3.49)

s.t. Ax ≤ b,

Cx = d.

If Q is not positive semidefinite, the problem becomes nonconvex [94]. Further general-

ization can be made by including quadratic inequality constraints (only and not quadratic

equality constraints as they are nonconvex irrespective of properties of Q) resulting in
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quadratically constraint quadratic programs (QCQP). Least-squares problem, which has

historical origins in regression analysis, can also be written as unconstrained QP. The next

order of generalized problem structure are the second-order cone programming (SOCP)

problems, where the constraints can be written in 2-norm as:

min
x

cTx+ d (3.50)

s.t. ‖Ax‖2 ≤ pTx+ q, i = 1, . . . ,m,

Cx = d,

and semidefinite programming (SDP) can be defined by minimizing a linear function subject

to linear matrix inequalities (LMI):

min
x

cTx (3.51)

s.t. x1F1 + ...+ xnFn +G0 � 0

Ax = b

where matrices F1...Fn and G0 are symmetric. If the matrices are all diagonal, then the

SDP reduces to a LP. Finally, the structures mentioned above can be connected with a

more general, though abstract, notion of generalized inequalities [123].

Contrary to the common intuition, majority of optimization problems are difficult to

solve. As mentioned earlier, the ease of solvability of an optimization problem is deter-

mined by its fundamental structure: convex vs nonconvex. With the development of field

of computational complexity, many optimization problem structures can be classified as

NP-hard and hence, in the worst case, are essentially intractable and not solvable in poly-

nomial time (unless P=NP). Hence, nonconvex optimization problems are generally hard to

solve and methods based on KKT conditions may give poor local solutions with arbitrary

initial conditions. A powerful approach to approximately solve some of these problems is

through convex relaxation where the main source of nonconvexity is replaced with a ‘re-

laxed’ version that is convex and hence more tractable [165, 168, 169, 166, 170]. Convex
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relaxation gives a bound on the original objective function but generally no feasible solution

unless the relaxation is tight. Clearly, there has be to a meaningful relationship between

the original nonconvex problem and the relaxed convex problem. Semidefinite program-

ming (SDP) relaxation for the case of nonconvex quadratic problems has been particularly

successful in this regard. Since many of these structures can be represented as smooth

polynomial functions, stronger bounds through convex relaxation can be derived using the-

ory of moments and sum-of-squares representation of positive polynomials [171]. Through

convex relaxation, the original nonconvex problem is approximated by a SDP which can be

globally solved. Although limited by size of resulting SDP, the relaxation approach can be

useful for certain special optimization structures. This has been discussed in more detail in

Section 5.3.2.

3.5.2 Computational Tools

It is often more productive to have a higher-level language to ‘model’ the optimization

problem while leaving the low-level communications with the solver to an interface. This lets

the user focus on the problem formulation and worry less about syntax and other formalities

often associated with particular solvers. One of the earliest modeling languages were AMPL

[172] and GAMS [173]. Recent years has seen development of specialized interfaces, with

focus on convex optimization, such as CVX [155], YALMIP [174] and TOMLAB [175]. With

impressive advances in single and parallel computing, there has been significant increase in

efficiency of solvers as seen with introduction of web-based NEOS Server for Optimization

[176]. It should be mentioned that a large number of these interfaces are for the MATLAB

environment with recent increase in use of other open source software.

These specific interfaces interact with solvers which carry the algorithm to solve the

particular optimization. The most popular solvers for certain convex optimization are

Gurobi [177] and CPLEX [178] which can solve linear programming (LP), quadratic and

quadratically constrained programming (QP and QCP), and mixed-integer programming
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(MILP, MIQP, and MIQCP). For nonlinear programming, many options are available in-

cluding KNITRO [179] which is traditionally used with AMPL/GAMS interface. Some

other solvers are build as general purpose to solve complex nonlinear mixed integer pro-

gramming such as Couenne [180] and Bonmin [181]. For conic programs, and particularly

for SDP, SeDuMi [156], SDPT3 [182] and MOSEK [183] are the most popular solvers. In

the MATLAB environment, the MATLAB optimization toolbox [184] offers various algo-

rithms for convex and nonconvex programs include the useful general nonlinear programing

function fmincon.

The polynomial optimization algorithm is coded in following software in MATLAB:

GloptiPoly [185], YALMIP [174] and SparsePOP [186] among others. For polynomial opti-

mization problems, at the algorithmic layer, although these many of optimization problems

may be convex, the size of the resulting optimization problem is large for higher dimensional

problem and it is potentially difficult to solve these problems with present interior-point

based methods. The limitations are not only memory intensive but also relating to the

numerical stability of the solver. Towards this, recent efforts have focused on development

of so-called first-order methods for solving the convex problem approximately [187].

3.6 Chapter Summary

This chapter contained a brief treatment of developments in system identification, input

signal design and optimization. In system identification, the methods were broadly grouped

as global vs. local modeling and these two approach were described. The survey section for

input signal design focused on persistence of excitation in the input signal, quality of plant-

friendliness and finally on the topic of classical optimal input design. The chapter ended

with a brief overview of numerical optimization and a summary of computational tools that

will be relevant to the remainder chapters of the prospectus. The ensuing chapter discusses

the process of design of constrained input signals with particular focus on data-centric

system identification.
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Chapter 4

CONSTRAINED INPUT SIGNAL DESIGN FOR DATA-CENTRIC SYSTEM

IDENTIFICATION: PROBLEM STATEMENTS

4.1 Overview

A distinguishing feature of many engineering problems is operation under constraints.

Constraints or limitations naturally arise from the physics of a system such as, for example,

defined by conservation laws. In most cases, constraints are enforced to satisfy certain

performance and safety considerations. Typical examples of such restrictions are limits on

drug dosages in medical treatment, limits on the rate of change of the angle-of-attack in an

aircraft, actuator saturation in a chemical process plant, restrictions from environmental

regulations in various industries, inventory limits in a supply chain and limited factors of

production in economics.

This chapter develops problem statements to design input signals for data-centric system

identification methods under these constraints. The data-centric approach systematically

generates a local function approximation from a database of regressors at the current operat-

ing point. Broadly speaking, two approaches are presented to address unique requirements

of data-centric system identification given that, in these methods, a fixed parametric model

is not estimated. The first approach is a novel framework for input signal design based

on the geometric spread or distribution in the regressor and output space. The second

approach uses a classical result from discrepancy theory, the Weyl’s criterion, to uniformly

distribute the points in the feasible space. While the two approaches differ conceptually,

they both are developed to directly address the constraints of interest.

The first approach addresses the distribution of regressors in the finite dimensional re-

gressor space to generate sufficient support for the estimator [84, 85]. Two distinct problem

statements are developed to distribute the regressors under time domain constraints on the
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input, and this is shown by quantifying regressor distance pairs for the case of linear time-

invariant (LTI) systems and Hammerstein systems. In particular, this chapter addresses the

application of distribution of regressors to general multivariable and nonlinear systems to

establish the importance of these results for solving a broader class of problems for which

data-centric methods offer distinct advantages. Furthermore, to design input signals for

highly interactive systems, the distribution in the output space is proposed as a means to

additionally achieve uniform coverage. An alternative approach for achieving desired spread

is using the concept of geometric discrepancy through Weyl’s criterion, and this chapter

explores this approach by extending previous work on highly interactive systems [80].

This chapter is the first of the two chapters which address data-centric input signal

design. This chapter is arranged as follows: Section 4.2 describes the constraints considered

in the process of input signal design. Section 4.3 discusses the requirements for experiment

design in the context of data-centric methods. Section 4.4 develops the conceptual basis

of the problem formulations for data-centric input signal design. The chapter ends with a

summary and conclusions in Section 4.5. The ensuing Chapter 5 presents the mathematical

formulations and numerical solutions for the problem statements developed in this chapter.

4.2 Constraints in Input Signal Design

This work considers a dynamical system P driven by a finite-time exogenous variable

called the input u = [u(1), . . . , u(N)]T ∈ R
N . The constraints are directly expressed as a

function of time and are broadly grouped as: 1) those originating from operating con-

straints which directly define the ‘shape’ or the time-domain realization of the signals,

2) those defining frequency domain properties, and finally 3) those originating from re-

quirements on the spread or distribution of the signal in the given feasible signal space. It

should be noted that some of these requirements may be in direct conflict with the require-

ments for achieving excitation. For example, restricting how fast a signal may change over

time can limit the power of high frequency modes. Finally, since the constraints developed
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here are relevant to clinical applications, the clinical interpretation will be pointed out using

simple examples although the constraints considered in this work are universal in nature

and broadly applicable.

4.2.1 Constraints Regarding the Shape of the Signal

The three main constraints, which define the shape of the input signal, considered in this

work are as follows:

1. Amplitude constraints. These are limits on the signal bounds that correspond to

allowed maximum and minimum magnitude:

umin ≤ u ≤ umax. (4.1)

This constraint appears frequently in many practical applications mostly from point-

of-view of safety. In a clinical application, such limitations are particularly required

for medications with a smaller therapeutic window (e.g., anesthetic drugs such as

ketamine) or in cases where physicians want to limit dosage changes (e.g., with opioid

analgesics).

2. Move size constraints. These are limits on the rate of change of signal that correspond

to allowed maximum change:

|u(k + 1)− u(k)| ≤ b(k). (4.2)

This can be written as a linear inequality in u:

Au ≤ b (4.3)
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where b ∈ R
2N−2 and A ∈ R

2N−2×N is represented using two blocks of Toeplitz matrix

as: 
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. (4.4)

Frequently in clinical applications, for patient safety and comfort, the drug dosage

cannot be suddenly changed and hence has to be altered in a less abrupt manner.

For example, drug gabapentin has been proposed to treat neuropathic pain and there

the drug dosage profile over time cannot be abruptly modified [188]. This specific

example is discussed in context of input signal design in Section 5.2.

3. Switching time constraints. These consider fixing the signal magnitude over a period

of time (Tsw):

Tsw−1∑

j=1

(u(k)− u(k + j)) = 0 ∀k = 1 + nsw × Tsw, nsw = 0, 1, 2, . . . . (4.5)

This can be written as a linear equality in u:

ATsw
u = 0 (4.6)

where ATsw
∈ R

(Tsw−1) N
Tsw

×N is block diagonal matrix. This requirement is also

commonly observed in clinical practice. For example, patients may have to visit

a clinic to pick up their medication say every Monday. However, the dosages are

assigned for daily consumption. As a result, dosage change is possible only at weekly

frequencies Tsw = 7 rather than daily (Tsw = 1). For the case of weekly switching,
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the system is sampled on a daily basis and the weekly input change is produced using

switching time constraint. More broadly, this constraint satisfies the requirement that

the dosages are not changing very frequently. For algorithmic details on generation

of this constraint, see Section 7.3 where it has been developed in context of hybrid

model predictive control.

Definition 5. The constraints (4.1), (4.3) and (4.6) determine the shape of the input signal

and form the set U as:

U = {u ∈ R
N : umin ≤ u ≤ umax, Au ≤ b, ATsw

u ≤ 0, ATsw
u ≥ 0}, (4.7)

which is convex and semialgebraic1.

In addition to this convexity, the equations defining the set U are sparse in the variable u,

i.e., it is not composed of all the elements u(1) to u(N). This fact has important implications

for use in techniques from polynomial optimization. Without loss of generality, it can be

assumed that the origin lies in this set (e.g., by assuming that the amplitude constraints are

symmetric). Since the set U is defined by intersection of finite number of linear inequalities

and equalities, it is a polytope [123]. The importance of these facts are discussed in more

detail in Section 4.4 and Section 5.3.4. In addition to these three constraints, the following

requirements may be desired:

4. Length of signal (N) constraint. This considers a finite duration of the experiment

as the costs incurred during testing may depend directly on the length of the experi-

mentation [50]. Hence practical application of the condition under which asymptotic

results of system identification hold true, i.e. N → ∞, is not possible. For example, in

a clinical trial, there are limitations on the overall duration i.e. the test cannot go on

indefinitely. Typically the minimum length of the input signal design has to be such

1Loosely speaking, a semialgebraic set is defined by intersection of finite number of real polynomial
inequalities [189]. Clearly, such a set may not be convex. Also note that the linear equality constraint has
been written in terms of two inequality constraints.
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that the dynamical effects can be captured. Furthermore, for the ease of validation,

it is desirable that multiple periods of the signal can be implemented. Towards this,

experiment can be designed such that it yields smallest possible signal length or least

cost [190].

5. Integer constraints. These consider that input values can attain discrete or categorical

values from a finite set I ⊂ Z or in general:

u(k) ∈ I = {u−n, u−(n−1), . . . , u0, . . . , un−1, un}. (4.8)

In general, this constraint supersedes the amplitude constraints when both are en-

forced together. For example, the dosages of medication may be compounded into

pills of a standard concentration, and hence any subsequent increase in dosage can

be prescribed as an integer multiple of that basic dose. In other words, an arbitrary

dosage magnitude can not be generally assigned.

From an optimization perspective, this implies that the problems require integer pro-

gramming. To enable the use of tools from polynomial optimization, a reformulation

can be proposed: u(k) ∈ I can be replaced by a polynomial which has roots at the

desired integer points u(k) ∈ I iff

(u(k)− u−n)(u(k)− u1−n)...(u(k)− un−1)(u(k)− un) = 0 ∀k, (4.9)

and can be further relaxed as

u(k) ∈ I ≈ |
∏

i∈I

(u(k)− i)| ≤ ǫ ∀k (4.10)

where ǫ is the parameter used for accuracy. The equality constraint version of (4.10)

with ǫ = 0 is an exact reproduction of the integer constraints.

6. Norm constraints. These are limits on the 2-norm and 1-norm of the input signal. The

amplitude constraints (4.1) can be interpreted as limits on the infinity norm of the
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signal. Similarly, the input signal can be constrained to have finite power by limiting

the 2-norm of the finite signal

‖u‖22 =
N∑

k=1

u(k)2 ≤ lmax
2 (4.11)

which can be written as a quadratic function in u and is convex. Similarly, the sum

of absolute values can be constrained

‖u‖1 =
N∑

k=1

|u(k)| ≤ lmax
1 (4.12)

which can be written as a linear function of u.

7. Miscellaneous safety constraints. These include additional safety constraints such as

toxicity constraints based on how much drug has accumulated in the body and has

yet to be metabolized by the patient. These can be represented as capacity con-

straints in a production-inventory system. Considerations such as these are common

in cancer/chemotherapy trials, but will not be further developed in this dissertation.

In many practical situations, in addition to limitations on the input, there is a need to

limit aspects of the output from the system. Consider an output signal y = [y(1), . . . , y(N)]T ∈

R
N generated by a linear time-invariant, discrete-time, stable, single input-single output

system represented as

y = Gu, (4.13)

where G ∈ R
N×N is the Toeplitz matrix of system impulse response h:

G =












h(1) 0 0 · · · 0

h(2) h(1) 0 · · · 0

...
...

. . .
...

...

h(N) h(N − 1) h(N − 2) · · · h(1)












(4.14)

and N is chosen large enough to capture all of the dynamics. In other words, the output

y(k) is generated using discrete convolution. As shown for the input case, the following
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constraints can be implemented: Amplitude constraints limit the output signal bounds that

correspond to allowed maximum and minimum magnitudes:

ymin ≤ y ≤ ymax. (4.15)

For a clinical example, consider the pain treatment problem shown in Chapter 2. The

requirement is that the pain magnitude (measured on a scale of 0− 100) should be varied

within certain limits for patient comfort and safety where the output is generated as per

the linear dynamical constraint shown in (4.13). Next constraint considers limiting the rate

of change of output deviation:

|y(k + 1)− y(k)| ≤ by(k). (4.16)

In the pain intervention example, this constraint would limit the rate of change of reported

pain as a sharp, sudden increase in pain symptoms is undesirable. For LTI systems, rate of

change constraints on the output can be written as a linear inequality in u:

A(Gu) ≤ by (4.17)

where by ∈ R
2N−2 is a bound on output changes. Similarly, equality constraints can be

derived for switching time restrictions on the output. Since the output constraints for LTI

systems can be described using linear inequalities, these can be added to the definition of

set U. By extension, output constraints are important in nonlinear dynamical systems. For

example, the output from a Hammerstein system with input static nonlinearity I can be

written as:

y = GI(u). (4.18)

It should be noted that the underlying notion of convexity of the feasible set U may be lost

when output constraints are considered while it still remains semialgebraic. For example,

the requirement g(u) ≥ ymin is nonconvex when the nonlinearity g(·) is convex quadratic.
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In conclusion, the constraints considered in this work are defined as part of “plant-

friendly” or “patient-friendly” framework based on the fact that they cause minimum dis-

ruption to the normal operation of the system under constraints [81, 57]. As alluded in

the Introduction, plant or patient friendliness considers the generation of a deterministic

signal u to satisfy hard bounds defined by the practical requirements. The ensuing section

enumerates constraints defined in the frequency domain.

4.2.2 Constraints on the Spectral Properties of the Signal

As discussed in Section 3.4.1, an experiment is considered informative if it allows discrimi-

nation between two parametric models and towards this, a condition on the autocorrelation

or input spectrum (Φu(ω)) can be derived such that the input is persistently exciting [45].

Further, it can also be shown that the optimal input for minimum parameter variance for

LTI system can be expressed in terms of its spectrum [45]. Thus, the input signal spec-

trum is an important design parameter in input design for linear systems. This is further

discussed in Section 6.3.

The infinite dimensional variable (Φu(ω)) has to be properly parameterized to be used

by an optimization procedure. As before, consider a real signal u ∈ R
N. For the purpose of

illustration, quasi stationarity of the deterministic input is assumed [45]. The discrete-time

Fourier transform (DTFT) of the signal is given as

U(ω) =

N∑

k=1

u(k)e−jωk, ω ∈ [0, π]. (4.19)

Since the signal is finite (u(k) = 0 ∀k < 1, k > N) and bounded, the Fourier transform

always exists. Next, the spectrum of u is defined as the square of the magnitude of the

DTFT as

Φu(ω) = |U(ω)|2 = |
N∑

k=1

u(k)e−jωk|2. (4.20)
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It should be noted that a linear relation can be found using the Wiener-Khinchin theorem

as

Φu(ω) = |U(ω)|2 =
∞∑

k=−∞

r(k)e−jωk ≥ 0, (4.21)

where r(k) are the autocorrelation coefficients from the finite signal. However, it is difficult

to formulate the problem using (4.21) with time domain constraints. Hence, the relation

shown in (4.20) is used as the parametrization directly in u. Clearly, the DTFT shown

in (4.20) is a semi-infinite constraint. Computationally, this can be effectively handled by

defining a finite frequency grid

Ω =
{

ω : ω = k
π

M
∀k = 1, . . . ,M

}

. (4.22)

Equation (4.20) can be further simplified using Euler’s formula as:

|U(ω)|2 = (aTu)2 + (bTu)2 (4.23)

where,

a = [cosω . . . cosNω]T , (4.24)

b = [sinω . . . sinNω]T . (4.25)

It can be seen that (4.23) is a second-order polynomial in u which is greater than zero

∀ω ∈ Ω. Consequently, this sum-of-squares condition can be expressed as

|U(ω)|2 = uTQ(ω)u, Q(ω) � 0 ∀ω ∈ Ω. (4.26)

As the expression (4.26) is already in sum-of-squares form, the matrix Q(ω) can be obtained

by solving a SDP [174]. The requirement that the spectrum of the input signal exactly

satisfy a certain frequency function γ(ω) is represented using quadratic equality and hence

nonconvex:

uTQ(ω)u = γ(ω), ω ∈ Ω. (4.27)

Expanding the equality constraint as two contrasting inequality constraint, the condition

uTQ(ω)u ≤ γ(ω) is convex, where as the condition uTQ(ω)u ≥ γ(ω) is nonconvex. In
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addition to this nonconvexity, the objective is also not sparse in the variable u, i.e., the

function is composed of all the elements u(1) to u(N). This observation leads to the

conclusion that the spectrum function cannot be used by sparse polynomial optimization

procedures which work efficiently only when the objective and constraints are a function

of few of the elements from the decision vector. Finally, it should be also emphasized

here that these results hold true for a linear system where the information matrix can be

completely characterized by second order moments (or the spectrum) of the input signal.

For a nonlinear system, the information matrix depends on higher order moments of the

input signal and additional conditions have to be derived.

4.2.3 Constraints on the Distribution of the Signal

Among the requirements of plant-friendliness is that the input (and output) signals are

distributed (in some sense) in the feasible signal space [50, 151]. In general, signal with

desired spectral property, for example with persistence of excitation, are not well distributed

over the signal span. Several criterion have been proposed in the literature to achieve certain

signal distribution [191, 192, 80].

Among the metrics that can be used to quantify this distribution is crest factor [146,

191, 82] which can be defined as

CF(x) =
xpeak
xrms

=
max
k

|x(k)|
√∑

k x(k)2

N

, (4.28)

where x = u or y is a signal of length N . The crest factor varies as 1 ≤ CF(x) < ∞ such

that a low crest factor implies a fully even distribution of the signal. Another metric is the

Performance Index for Perturbation Signals (PIPS) [192], which is defined as

PIPS(%) = 200×
√

x2rms − x2mean

max(x)−min(x)
. (4.29)

PIPS is expressed in percent form (0% ≤ PIPS(x) ≤ 100%). In practice, a high PIPS value

corresponds to a signal which has low crest factor. Since PIPS is expressed in percent form,

it can be argued that it is a more intuitive measure than the crest factor where higher PIPS

100



value suggests even signal distribution. Both metrics (crest factor and PIPS) force the

signal to spread near its extremities (i.e. the signal histogram has peaks at the end) which

gives it a better signal-to-noise ratio. The lower bound on the crest factor (i.e., CF(x) = 1)

can be obtained, for example, when the signal is binary and symmetric.

The spread in the extremities, however, is not always sufficient. In the case of a multi-

variable system, it is often necessary to have good directionality for all inputs. One of the

metrics to achieve uniform directionality is using results from discrepancy theory [193] such

as Weyl’s criterion [194]:

lim
N→∞

1

N

N∑

k=1

e(2πℓx(k))i = 0 ∀ℓ ∈ Z− {0}, (4.30)

which gives the necessary and sufficient condition for a sequence x to be uniformly dis-

tributed in [0, 1). A uniform distribution in the output is also an useful requirement for

data-centric system identification methods which rely on generating models based on the

current operating conditions. In general for data-centric methods, a more complete ap-

proach is to cover the regressor space. This has been discussed in more detail in Section 4.4.

From a computational point-of-view, the requirements shown in (4.28)-(4.30) are non-

convex and nonsparse in u, and hence present difficult optimization problems [81]. For

example, Figure 4.1 shows the surface plot of the crest factor function when the input sig-

nal is two dimensional. The function is nonconvex with multiple minimas. The minimum

value the function is one, which is obtained when signal is binary or constant (‘D.C.’).

On the other hand, for amplitude constrained signal, the PIPS metric can be written as a

smooth function by making the denominator constant. Thus, metrics such as PIPS can be

added as constraints in nonlinear optimization problems which are easier to solve than the

one involving crest factor. This can be written as

200×
√

x2rms − x2mean

max(x)−min(x)
≥ κx x = u or y, (4.31)

where κx is a minimum desired PIPS metric. It is generally not possible to know a priori

the minimum metric, hence one has to proceed in an iterative way such that a feasible
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Figure 4.1: Surface plot of the crest factor function (4.28) where u = [u(1), u(2)]T .

solution can be found. Finally, the expanded Weyl’s criterion

Re

{

1

N

N∑

k=1

e(2πℓx(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0} (4.32)

Im

{

1

N

N∑

k=1

e(2πℓx(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0}, (4.33)

can be used where δ is a relaxation parameter used to approximately satisfy Weyl’s criterion

(given that only finite data points are available) using integers from a finite set L ⊂ Z−{0}.

In the remainder of this dissertation, it is assumed that Weyl’s criterion is satisfied only

approximately. This assumption is not particular restrictive in practice, and good results

have been reported by using this approximation as long as the signal length is not too short

[153]. The ensuing section discusses data-centric estimation and associated experiment

design issues to address design of input signals.
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4.3 Data-Centric Estimation and Experiment Design

As before, consider a SISO process for a given data set ({y(k), ϕ(k)}Nk=1) as:

y(k) = f(ϕ(k)) + e(k), k = 1, . . . , N, (4.34)

where y(k) ∈ R, f(·) is an unknown smooth nonlinear mapping, ϕ(k) is the regressor vector

and e(k) ∈ R is the noise. In a data-centric framework, a predictor function f̂ can be

obtained from a linear combination of observed outputs

f̂(ϕ∗) =
N∑

k=1

w(k)y(k) = wT y. (4.35)

The weight w is chosen by a procedure (based on a kernel or through optimization as

discussed in Section 3.3.2) to minimize the mean square error (MSE) of the estimate

E{(f̂(ϕ∗)− f(ϕ∗))2} (4.36)

where E is the expectation operator. This error equation is a function of the distance of

regressors from the current operating point (ϕ∗−ϕ(k)), the noise variance and properties of

the mapping f(·) such as local smoothness [55, 90, 56]. In particular, the following factors

determine the quality of the estimate for data-centric methods:

1. The structure of the regressor vector ϕ(k) as a function of the input u. The regressor

structure should correspond to what is suitable for a local linear model (e.g., from

linearization of an a priori nonlinear model). Note that the distance between two

regressors can become prohibitively large for higher dimensions of the regressor space.

In practice, large number of systems can be well approximated with low dimension

regressors.

2. The properties of the mapping f(·) such as local smoothness. For some data-centric

estimators such as direct weight optimization (DWO), bounds on the Lipschitz con-

stant and the Hessian matrix also influence the estimate quality.
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3. The nature of the experimental data, for example, noise e(k) and the number of data

points (N). It is common to assume the stochastic nature of noise where e(k), k =

1, . . . , N can be defined using zero-mean, finite variance sequence of independent

random variables.

4. The location of the current point ϕ∗ and the distribution of regressors in the regressor

space.

For the case of global parametric methods, the classical optimal input signal design

problem is conducted in the parameter space, for a fixed model, by minimizing some scalar

measure of the parameter covariance matrix with specific requirements on higher order

properties of the input, such as signal spectrum [45, 52, 53]. It should also be pointed out

that the resulting design is optimized for that parametric structure and hence could be

quite poor if these assumptions are not accurate [45]. In contrast, data-centric methods

possess distinctive requirements, as the dataset is not expected to be captured by a single

fixed parametric model. From the parametric school of thought, the biggest challenge with

data-centric input signal design is that since no fixed parametric model is estimated, it is

difficult to quantify the accuracy of the estimates globally. For example, consider the case

of MoD estimator where a local linear model is estimated at each point [55]. Under certain

conditions, it can be shown that this linear estimator optimally minimizes the mean squared

error [144] as follows (for the 2-norm of the error):

min
N∑

k=1

{y(k)− (β0 + βT1 (ϕ(k)− ϕ∗))}2 ×W (ϕ(k)− ϕ∗) (4.37)

where W is a kernel function. The parameters, at point ϕ∗, are calculated by solving the

linear least square problem

β̂ = (X TWX )−1X TWY (4.38)

where X is formed using regressors ϕ(k) and ϕ∗. An optimal input can be designed to

maximize the information content for these parameters by minimizing some measure of the
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error ellipsoid or the maximizing the information matrix, for example:

max det(X TWX ) (4.39)

where det(·) is the determinant function and the optimal design is a function of ϕ∗. However,

the estimation problem will be repeated at a new point and a new set of parameters will

have to be identified. In other words, the optimal design can be performed only for a fixed

set of parameters but which keep on changing in data-centric system identification. Clearly,

an input can be design for fixed or known operating point ϕ∗ but such an approach may not

be directly practical for these class of methods. In a general function estimation setting,

it is assumed that the regressors are distributed using random or fixed designs [56, 195,

196, 54]. In the nonparametric statistical literature, designs have considered some notion

of parametric structure [197] or a Bayesian-based maxmin distance design for computer

experiments and not in the context of dynamical systems [198, 53].

As noted earlier, the factors that can be influenced by experimental design include the

distribution of regressors and the number of data points. For a dynamical system, the

regressor distribution has to be shaped by an input signal where the regressors tend to be

dependent. Frequently for data-centric estimation methods, a signal sampled from some

probability distribution is used, but this is generally an arbitrary choice and may not result

in an informative dataset. The other issue is limited length of data collected in experiments,

specially those in biology and medicine, which may violate the strong assumptions made on

the probability distribution of the uncertainty [58]. This chapter develops a novel method to

address input design for data-centric system identification by developing sufficient support

for the estimator by filling the regressors space. The formulation is inspired by its geometric

interpretation, is not explicitly dependent on ϕ∗, and does not place conditions on the

sources of uncertainty. Like other optimal designs, generating the optimal input requires

a priori knowledge of the true system [45], although the requirements are not as stringent

given the geometric nature of the formulation. This is achieved using two approaches:
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by directly addressing the geometric distribution of regressors and by using the Weyl’s

criterion. This is now discussed in the ensuing section.

4.4 Data-Centric Input Signal Design: Problem Statements

This section introduces the problem statements and thus provides a mental picture as-

sociated with two approaches for data-centric input signal design: one based on distribution

of regressors and output, and the other based on the Weyl’s criterion.

4.4.1 Distribution of Regressors for Dynamical Systems

As noted previously, it is often simpler to describe the modeling process in system iden-

tification as a mapping from the regressor space (which contains finite lagged data about

the dynamical system) to the output space [88]. Following two regressor structures are

commonly used [88, 54]:

1. Finite Impulse Response (FIR) structure

ϕ(k) = [u(k − nk) ... u(k − nb − nk + 1)]T (4.40)

2. AutoRegressive with eXogenous input (ARX) structure

ϕ(k) = [y(k − 1) ... y(k − na) u(k − nk) ... u(k − nb − nk + 1)]T , (4.41)

where y, u denote the output and input signals respectively, na, nb and nk denote the

number of previous instances of the output, input and the degree of delay in the model and

the regressor vector ϕ(k) ∈ R
m where m = na + nb. Consequently, the regressor vector

ϕ(k), as shown in (4.41), can be written in terms of u as:

ϕ(k) =






PkG

Qk




u, (4.42)
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where Pk ∈ R
na×N , Qk ∈ R

nb×N and the dynamical relation shown in (4.13). The case of

the Finite Impulse Response (FIR) regressor structure can be derived as a special case

ϕ(k) =






0na×N

Qk




u. (4.43)

The matrices Pk, Qk are sparse with rank equal to max{na, nb}. For the FIR case, the

dimension of the regressor m has to be generally large to capture all of the dynamics.

In contrast, a relatively low dimension is often suitable in the case of the ARX structure

[88, 54]. Finally, keeping the same structural relationship, other regressors structures can

be considered to incorporate separate noise models [54, 141].

The equation (4.42) establishes the relationship that the regressor is a function of the

input signal for a dynamical system. Given that the input lies in the set U, the regressor

lies in the set P defined as

P = {ϕ(k) ∈ R
m : ϕ(k) = fk(u), u ∈ U}. (4.44)

where fk is the unique mapping (depending on the system) for given k. Given the lagged

nature of the discrete-time representation of the dynamical system, the initial regressors

can be assumed to be at the origin. These observation leads to the following definition:

Definition 6. The set of regressors P is a projection of the feasible set of input U. For

linear dynamical systems, the set P is a polytope containing the origin [199]. For general

nonlinear dynamical systems, the projection is of nonlinear nature and hence, the convexity

of the set may be lost.

Since the aim of the formulation is to distribute the regressors points, the idea of regres-

sor distance pair has to be defined. This is introduced initially for linear systems for which

the set P is a polytope, and generalized later for block-structured nonlinear systems. The

notion of distance in the space R
m can be defined using any p-norm distance. In this work,

the Euclidean distance (2-norm distance) is used as the metric which is also used to calculate
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the bandwidth of the estimator as discussed in Section 3.3.2. Based on the parametrization

shown in (4.42), the square of the Euclidean distance between two regressor points can be

defined as:

d2ij = ‖ϕ(i)− ϕ(j)‖22 (4.45)

d2ij = (ϕ(i)− ϕ(j))T (ϕ(i)− ϕ(j)), (4.46)

which can be expanded as a polynomial

d2ij = uT






(Pi − Pj)G

Qi −Qj






T 




(Pi − Pj)G

Qi −Qj






︸ ︷︷ ︸

Qij∈RN×N

u, (4.47)

where dij is the distance between the ith and jth regressor as a function of the input. The

unique regressor distances form a finite set K:

K = {dij ∈ R : i ∈ {1, . . . , N − 1}, j ∈ {i+ 1, . . . , N}}, (4.48)

with the set cardinality given by N(N − 1)/2 which is polynomial in N , e.g., the number

of distance pairs ≃ N2/2 ∀N ≫ 1. In the case of a Hammerstein structure, the regressor

vector can be written as

ϕ(k) =






PkG

Qk




wH . (4.49)

Given that wH cannot be directly manipulated (as shown in Fig. 4.2), the regressor can be

expressed ultimately as a nonlinear function of the system input u

ϕ(k) =






PkG

Qk




 I(u). (4.50)

Based on the nonlinear relationship between the regressor and the input signal, the distance

between two regressor can be defined as:

d2ij = I(u)T





(Pi − Pj)G

Qi −Qj






T 




(Pi − Pj)G

Qi −Qj






︸ ︷︷ ︸

Qij

I(u). (4.51)
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Figure 4.2: Noise-free input-output representation of a Hammerstein system where I is the
static nonlinearity and L is the LTI system.

Similar expressions can be derived for the other block-structured systems such as Wiener

and Hammerstein-Wiener systems.

The main argument made in this approach is now presented. Consider that, in general,

a convex hull D can be constructed based on the available regressor points. Since the

estimate is formed by interpolation of available outputs, as shown in (4.35), if the current

operating point ϕ∗ lies beyond the convex hull D ⊂ R
m, the estimator would have to

extrapolate rather than interpolate. Hence, the central idea is to generate sufficient support

for the estimator where the extent of spread of regressors is fundamentally dictated by

the constraints under which the system is operating and can be optimized by the choice

of the input signal. On the other hand, the noise in the model is not a function of the

input and hence cannot be optimized. For LTI systems, when the regressor points are

vertices of the polytope P, the set D and P are same; in other words a larger hull cannot

be constructed [199]. The input signal design is achieved through two optimization-based

formulations which consider spreading the regressor points in two different ways. The first

formulation considers covering the complete regressor space under dynamical constraints.

Thus, the input signal can be designed to cover the full span in the regressor space, under

possible constraints, to generate enough support and thus to insure that the estimator is

interpolating. This formulation is particularly useful when the system is operating close to

saturation. These observations lead to the first problem statement:

Problem Statement 1. Given N regressor vectors of fixed finite dimension, distribute

the regressor points as far apart from each other as possible in the regressor space under

constraints on the input and output signals.
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Problem Statement 1 can be achieved by maximizing the sum of all the regressor dis-

tances:

J1 = max
u

N−1∑

i=1

N∑

j=i+1

dij (4.52)

s.t. u ∈ U

where i and j are selected to define unique distance pairs as per the finite set K.

The second formulation considers a more uniform distribution of regressors given that

the choice of weights is a function of the distance of ϕ∗ from the available regressor vectors

ϕ(k). This is more useful for kernel-based estimation methods, and leads to the second

problem statement:

Problem Statement 2. Given N regressor vectors of fixed finite dimension, distribute the

regressor points such that given any two regressors can be as far apart as possible in the

regressor space under constraints on the input and output signals.

Problem Statement 2 can be interpreted as maximizing the minimum regressor distance

pair:

J2 = maxmin
u

dij , dij ∈ K (4.53)

s.t. u ∈ U.

In Section 5.3, these two formulations are developed and analyzed for LTI and block-

structured nonlinear system under input constraints. In addition to the constraints on the

input for these problem statements, if the operating point ϕ∗ is known a priori to lie in a

convex polytope Dc ⊂ D, corresponding linear inequalities in u can be derived using (4.42)

[123]. Also, if the operating point ϕ∗ is fixed, the regressors can be centered around that

point as

1

N

N∑

k=1

ϕ(k) = ϕ∗, (4.54)
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which can be expressed as a linear equality (Aopu = bop) and added to the definition of set

U.

4.4.2 Extensions to Problem Statements Relating to the Distribution of Regressors

The problem statements developed in the previous section addressed distribution of regres-

sors under constraints. Various extensions can be proposed on these problem statements by

incorporating multivariable dynamics, alternative distance metrics and noise models. These

points are briefly described in the following paragraphs as themes for future research.

So far, the problem formulations have only considered single-input single-output (SISO)

systems. It is of interest to extend these approaches to multivariable systems which consist

of multiple manipulated inputs and disturbances interacting with multiple outputs, as these

are commonly found in many practical applications ranging from high-purity distillation

[80] to aerospace systems [41]. It is simple to show that the geometric concept of distribu-

tion of regressors can be logically extended to cases beyond SISO systems for data-centric

estimation methods in a multivariable setting.

For purpose of illustration, consider a multi-input single-output (MISO) system de-

scribed by nx inputs:

y(k) = P1(q)u1(k) + · · ·+ Pnx(q)unx(k) (4.55)

where P1(q), . . . , Pnx(q) represent open-loop stable transfer functions. In the worst case,

each individual transfer function is parametrized uniquely by a regressor of different dimen-

sions: ϕi(k) which are defined as per (4.41). To be used by the data-centric methods, these

individual regressors can be stacked together to form

ϕ(k) = [ϕ1(k)
T , ϕ2(k)

T , ϕ3(k)
T , . . . , ϕnx(k)

T ]T (4.56)

where the dimension of the new regressor space m is equal to the sum of dimensions of the

individual regressors

m =

nx∑

i=1

(nai + nbi), (4.57)
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where na and nb are defined as per (4.41). To achieve optimal distribution in the regressor

space, the stacked regressor replaces the SISO regressor in earlier derived formulations.

Hence, all the problem statements derived in Section 4.4.1 for SISO systems naturally

carry over to the MISO case. The multi-input multi-output (MIMO) case is handled on an

output-by-output basis (i.e. multiple MISO systems, one output at a time) by the data-

centric estimator. Since the input design based on distribution of regressors follows the

structure of data-centric estimator, the subsequent design procedure can be described on a

per output basis for MIMO systems. This implies that a regressor ‘matrix’ can be defined

where each column, which would correspond to a particular output, contains the stacked

regressors for the multiple inputs as shown in (4.56).

The other topic of interest is the parametrization of the regressor distance pairs. The 2-

norm distance or the Euclidean distance is the most natural metric for calculating distances.

In a finite dimensional vector space, the distance between two regressor can be measured in

other norms. In particular, the infinity norm or the Chebyshev distance may be used which

can offer distinct computational advantages as the distance dij can be expressed as linear

function of the input u. In that situation, selected distances pairs may be chosen so that

the regressor space is completely covered. From a computational aspect, choosing selective

Euclidean distance pairs in the context of inducing sparsity for polynomial optimization is

discussed in Section 5.3.4.

Next, the patient-friendly constraints on the output signal developed in Section 4.2

consider only the plant part of the dynamical model. In case a detailed noise model is

available, either through first principles or through system identification, the constraints

on the measured output can be appropriately updated. Using the standard framework in

parametric system identification [45], the dynamical model is updated as

y = Gu+He (4.58)

where G is defined in (4.14), H ∈ R
N×N is the Toeplitz matrix of impulse response of the
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noise model and e ∈ R
N is the noise. In the same parametric framework, e is generally

defined as vector of random variables with zero-mean and covariance matrix Λ. If the noise

contribution belongs to a uniform distribution, the amplitude bounds, for example, can

easily be shifted as the noise signal is known to be bounded. The Gaussian distribution,

on the other hand, is unbounded and hence data up to three standard deviation can be

included to approximately satisfy the amplitude constraints for Gaussian noise.

Progressing this further, the improved dynamical model implies that the distances dij are

now random variables. Consequently, the problem statements can be modified to account

for this uncertainty by satisfying the objectives on an average. For example, Problem

Statement 1 can be modified as

J1 = max
u

E

[N−1∑

i=1

N∑

j=i+1

dij

]

(4.59)

s.t. u ∈ U

where E is the expectation operator. Given the assumptions on the noise, it is simple to

derive the effect of noise on the regressor distance pairs. For example, for LTI systems

extending from (4.42), the regressor ϕ(k) can be written as

ϕ(k) =






PkG

Qk




u+






PkH

0




 e, (4.60)

and the regressor distance pairs d2ij = (ϕ(i)− ϕ(j))T (ϕ(i)− ϕ(j)) can be derived as

d2ij = eT






(Pi − Pj)H

0






T 




(Pi − Pj)H

0






︸ ︷︷ ︸

Qeeij

e+ eT






(Pi − Pj)H

0






T 




(Pi − Pj)G

Qi −Qj






︸ ︷︷ ︸

Qeuij

u

+ uT






(Pi − Pj)G

Qi −Qj






T 




(Pi − Pj)H

0






︸ ︷︷ ︸

Queij

e+ uT






(Pi − Pj)G

Qi −Qj






T 




(Pi − Pj)G

Qi −Qj






︸ ︷︷ ︸

Qij

u. (4.61)
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The expected value of the regressor distance pair can be written as

E[d2ij ] = Tr(QeeijΛ) + uT






(Pi − Pj)G

Qi −Qj






T 




(Pi − Pj)G

Qi −Qj






︸ ︷︷ ︸

Qij

u (4.62)

using the fact that the input is a deterministic signal, properties of the noise vectors and

expectation of a quadratic function [200]. Thus, the distribution of regressors under noisy

conditions for LTI systems is fundamentally dictated by the deterministic part plus a con-

stant term derived from noise. This brief analysis can be extended in more detail to work

out other cases where the distribution of regressors is optimal under noise.

Finally, although the problem formulation has been derived for the data-centric system

identification, the problem statements could be re-interpreted in the context of bounded-

but-unknown error in the parametric model. Experiment design approaches for set mem-

bership identification methods try to minimize the volume of the set that contains the

parameter [201], and a relationship could be derived in terms of distribution of regressors

in the set P.

4.4.3 Distribution of Time-Indexed Outputs for Highly Interactive Systems

Highly interactive dynamical systems are multi-input multi-output (MIMO) systems where

a given output of the system is affected by all or most of the inputs to the system. Quite nat-

urally, these systems are found throughout the application domain of systems and controls,

and in particular in chemical process control [202]. Invariably, there is a natural tendency

of highly interactive systems to exhibit gain directionality; in other words, certain inputs

have a stronger effect on the output compared to other inputs in the system. This behavior

is captured by the steady-state gain matrix, and hence independent of the frequency, where

the condition number of the gain matrix is high or the system is ill-conditioned [41]. Al-

though the dynamic system is linear and time invariant, the presence of gain directionality

due to ill-conditioning results in poor quality of input-output data, and hence these systems

are quite challenging for identification and closed-loop control [95].
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The MIMO distribution of regressors developed in the previous section, however, does

not directly address requirements of certain MIMO systems which are highly interactive.

The data-centric methods involve function estimation in only the local vicinity of the current

operating point, and hence for highly interactive systems, coverage in the output space is

important [80]. Fig. 4.3 shows a sample spread of output points, for a representative

model shown in (4.67), which will be obtained by using standard input signals such as

pseudo random binary sequence (PRBS). The natural system response is aligned along the

high gain direction with very little information about the low gain direction. Hence, the

resulting output data can be quite poor by using conventional inputs in system identification

and subsequently, may result in poor closed-loop performance. Previous work in system

identification literature has addressed design of input signal for highly interactive systems

with emphasis on the input signal spectrum. Some of the proposed methods consider using

correlated PRBS with high-amplitude colinear PRBS [203] and zippered multisines [95, 81]

among others. A recent comparison of different input signals for ill-conditioned systems can

be found in [204]. For data-centric methods, Weyl’s criterion has been proposed to achieve

uniform coverage in the output space [80, 153, 152].

Consider a 2× 2 linear time-invariant (LTI), stable, noise-free, continuous-time system

G(s):





y1(s)

y2(s)




 =






G11(s) G12(s)

G21(s) G22(s)











u1(s)

u2(s)




 (4.63)

where y1(s), y2(s) are the output variables and u1(s), u2(s) are the input variables. The

continuous-time models are discretized and by using the impulse response of each discrete-

time transfer function, an input-output matrix representation can be derived as shown in

(4.14). Subsequently, the MIMO system can be written as

y1 = G11u1 +G12u2 (4.64)

y2 = G21u1 +G22u2 (4.65)
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where Gij ∈ R
N×N are the Toeplitz matrices of system impulse responses hij

Gij =












hij(1) 0 · · · 0

hij(2) hij(1) · · · 0

...
...

. . .
...

hij(N) hij(N − 1) · · · hij(1)












, (4.66)

and ui = [ui(1), . . . , ui(N)]T ∈ R
N and yi = [yi(1), . . . , yi(N)]T ∈ R

N are the inputs and

outputs to the system respectively. In this dissertation, a simplified model inspired from

a low-order linear representation of high-purity distillation column [205] is used for the

purpose of illustration:

G(s) =
1

2s+ 1






87.8 −86.4

108.2 −109.6




 . (4.67)

Singular values from the singular value decomposition (SVD) of the steady-state gain matrix

are given by 




197.2 0

0 1.39




 (4.68)

where the condition number is γ is equal to 197.2
1.39 = 141.8. This implies that the system

is ill-conditioned and the output-space will be biased towards the high-gain direction as

shown in Fig. 4.3.

For this system, any point in the two dimensional output space can be index by time k

and hence can be written as

Y1 : (y1(1), y2(1))

Y2 : (y1(2), y2(2))

...

YN : (y1(N), y2(N)).

As shown in Fig. 4.3, the output points Y1, . . . ,YN are aligned along the high gain

direction. In order to cover more of the constrained space, the distance between any two
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Figure 4.3: Distribution of noise-free output components (y1(k), y2(k)) showcasing align-
ment along the high-gain direction model for a representative system as shown in (4.67).

points has to be increased. Using the framework of distances in a finite dimensional space,

the following input design problem statement is proposed:

Problem Statement 3. Given finite N data points Yk, distribute the points in the output

space such that any two points are as far apart as possible under constraints on the input

and output signals.

Problem Statement 3 can be interpreted as maximizing the minimum distance between

time-indexed output points:

J3 = maxmin
u

dyij , dyij ∈ Ky (4.69)

s.t. u ∈ U,
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where dyij is the distance between ith and jth output point as a function of the input and

the set Ky is defined as

Ky = {dyij ∈ R : i ∈ {1, . . . , N − 1}, j ∈ {i+ 1, . . . , N}}. (4.70)

Similar to the regressor distance pair dij in Section 4.4.1, the notion of distance between

two output points has to be quantified as a function of the input. The square of the

Euclidean or 2-norm distance dy2ij between ith and jth point in the output space can be

written as:

dy2ij = (y1(i)− y1(j))
2 + (y2(i)− y2(j))

2. (4.71)

Based on the dynamical equations shown in (4.64)-(4.65), this can be algebraically simplified

as:

dy2ij =
(
(G11(i, :)u1 +G12(i, :)u2)− (G11(j, :)u1 +G12(j, :)u2)

)2

+
(
(G21(i, :)u1 +G22(i, :)u2)− (G21(j, :)u1 +G22(j, :)u2)

)2
(4.72)

dy2ij =
(
(G11(i, :)−G11(j, :))u1 + (G12(i, :)−G12(j, :))u2

)2

+
(
(G21(i, :)−G21(j, :))u1 + (G22(i, :)−G22(j, :))u2

)2
(4.73)

where : denotes all the elements in the vector dimension, u1 ∈ R
N and u2 ∈ R

N . The

distance metric can be rearranged using matrix algebra

dy2ij =
(






(G11(i, :)−G11(j, :)) (G12(i, :)−G12(j, :))

(G21(i, :)−G21(j, :)) (G22(i, :)−G22(j, :))






︸ ︷︷ ︸

Πij

u
)T

(






(G11(i, :)−G11(j, :)) (G12(i, :)−G12(j, :))

(G21(i, :)−G21(j, :)) (G22(i, :)−G22(j, :))






︸ ︷︷ ︸

Πij

u
)

(4.74)
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dy2ij = uTΠT
ijΠiju = uTYiju (4.75)

where u = [u1T u2T ]T andYij ∈ R
2N×2N is the matrix capturing the quadratic relationship.

Section 5.4 presents the detailed mathematical formulation for design of inputs for highly

interactive system by considering distribution in the multi-output space.

4.4.4 Uniform Distribution using Weyl’s criterion

An alternative to the distance-based objectives discussed earlier, is to utilize a metric which

captures the ‘non-uniformity’ in space. One approach is to use concepts from discrepancy

theory which deals with even distribution of points in space [193]. More formally, the theory

tries to quantify discrepancy which tends to zero as the sequence of points are evenly

distributed. A metric frequently used to capture discrepancy is the Weyl’s Criterion, a

classical result from number theory, which quantifies condition for equi-distributed modulo

one sequences [194], and can be used to generate a low-discrepancy sequence.

To generate sufficient support for the data-centric estimator, the Weyl’s criterion for

uniform distribution can be applied either in the output space or in the regressor space.

For data-centric methods which work by averaging the measured output, the uniform dis-

tribution in the SISO output space is more useful conceptually for this objective as well as

it would be computationally more challenging to work in the regressor space. This leads to

the following problem statement:

Problem Statement 4. Given finite N data points, distribute the output signal uniformly

in the output space by minimizing the Weyl’s criterion under constraints on the input and

output signals.

This objective has been used earlier in context of input signal design for highly inter-

active multivariable systems [80, 95, 153, 152]. Section 5.2 presents input signal design

problem formulations using the Weyl’s criterion to produce an uniformly spread dataset for
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data-centric estimation methods using a hypothetical example of a clinical trial, and Sec-

tion 5.4 contrasts the Weyl’s criterion with the earlier proposed distribution in the output

space.

4.5 Chapter Summary and Conclusions

This chapter has presented problem statements for the design of constrained input

signals for data-centric estimation methods. After defining the time domain and frequency

domain requirements, a discussion is presented on experiment design issues for these class

of estimators and a general inference is derived on the nature of the problem to build up

on the ensuing problem statements. Problem statements for data-centric input design are

developed using two approaches: based on distribution in the regressor and output space,

and the other based on the Weyl’s criterion.

For the distribution of regressors, two formulations are proposed towards achieving

constrained input signal design for data-centric estimation methods. The objective is to

distribute regressors, as measured by their Euclidean distances, in a given finite dimensional

regressor space. The first formulation maximizes the total sum of all regressor pair distances

under input constraints, while the second formulation maximizes the minimum distance

pair under input constraints. These are developed subject to “plant-friendly” or “patient-

friendly” constraints on the input such as amplitude constraints, move size restrictions

and switching constraints. The chapter also briefly points out extensions of these problem

statements as future topics. For highly interactive systems, it is proposed to distribute the

time-indexed points in the output space. An alternative to the distance-based formulations

is the problem statement based on the Weyl’s criterion to achieve uniform distribution in the

feasible space under constraints. The ensuing chapter presents formulations and numerical

solutions for the Weyl design and distribution in regressor and output space methods.
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Chapter 5

CONSTRAINED INPUT SIGNAL DESIGN FOR DATA-CENTRIC SYSTEM

IDENTIFICATION: FORMULATIONS AND NUMERICAL SOLUTIONS

5.1 Overview

The general problem statements developed in Chapter 4 are formally posed as math-

ematical optimization problems in this chapter. The problem formulations are developed

and numerically solved for linear time-invariant (LTI) and Hammerstein systems under time

domain constraints on the input. In general, the resulting problems are challenging noncon-

vex optimization problems [94, 206]. The solution of these problems is proposed through

nonlinear programming and semidefinite programming based relaxation for polynomial op-

timization problems. In certain cases, it is shown that useful bounds can be obtained on

the objective under consideration. Numerical examples are used to illustrate the proposed

input design formulations and assess their benefits.

The first approach for input signal design addresses the distribution of regressors and

output in the finite dimensional space. For LTI systems, these correspond to nonconvex

quadratic programs and for Hammerstein systems, these correspond to a general polyno-

mial optimization problem, and are solved by building a hierarchy of convex relaxation and

nonlinear programming. For the other approach using Weyl’s criterion, the resulting opti-

mization problem is nonconvex nonlinear program not amenable to traditional relaxation

procedures though good solutions can be obtained through interior-point based nonlinear

programming techniques [153]. For the Weyl’s criterion formulation, numerical examples

are presented using a hypothetical single-subject clinical trial for gabapentin in a pain

treatment setting under categorical dosages.

The chapter is organized as follows: first, the problem formulations using the Weyl’s

criterion are discussed in Section 5.2 and the data-centric input design formulations using
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distribution of regressors are presented in Section 5.3. Section 5.4 presents the formulation

to achieve uniform coverage in the output space for highly interactive systems. The chapter

ends with a summary and conclusions in Section 5.5.

5.2 Data-Centric Input Signal Design using Weyl’s Criterion

This section mathematically formulates the problem statements using Weyl’s criterion,

introduced in Problem Statement 4 in Section 4.4.4, for data-centric input signal design to

estimate an unknown dynamical system. This section proposes two problem formulations:

one where the Weyl’s criterion is directly minimized and the other where the objective is

to achieve a desired input signal spectrum while Weyl’s criterion is applied as a constraint.

Both of these formulations are illustrated using a case study based on the drug gabapentin

to show usefulness of the proposed input design.

• Weyl’s Criterion as the Objective Function

This formulation achieves a uniform distribution by minimizing Weyl’s criterion under

time domain constraints:

min
u∈U∩I

1

N

N∑

k=1

e(2πℓy(k))i. (5.1)

This can be expanded as

min
u,δ

δ (5.2)

s.t. umin ≤ u ≤ umax

|u(k + 1)− u(k)| ≤ b(k)

u(k) ∈ I

Tsw−1∑

j=1

(u(k)− u(k + j)) = 0 ∀k = 1 + nsw × Tsw, nsw = 0, 1, 2, . . . .

LTI system output







ymin ≤ y ≤ ymax

|y(k + 1)− y(k)| ≤ by(k)
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Weyl’s criterion







Re

{

1

N

N∑

k=1

e(2πℓy(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0}

Im

{

1

N

N∑

k=1

e(2πℓy(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0}.

The numerical solution for this formulation is shown in Section 5.2.3 when the switch-

ing time is fixed to be weekly (Tsw = 7).

• Weyl’s Criterion as a Constraint

This formulation achieves desired input signal spectrum γ(ω) under minimum possible

bounds on Weyl’s criterion:

min
u,t

t (5.3)

s.t. − t+ |γ(ωj)| ≤ Φu(ωj) ≤ t+ |γ(ωj)|

0 ≤ ωj ≤ π, j = 1, ..,M

umin ≤ u ≤ umax

|u(k + 1)− u(k)| ≤ b(k)

u(k) ∈ I

ymin ≤ y ≤ ymax

|y(k + 1)− y(k)| ≤ by(k)

Re

{

1

N

N∑

k=1

e(2πℓy(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0}

Im

{

1

N

N∑

k=1

e(2πℓy(k))i

}

≤ δ ∀ℓ ∈ L ⊂ Z− {0}

where δ is chosen such that a feasible solution can be obtained. The switching time

constraint has been removed to help achieve the desired spectrum. Section 6.3 has

more details on achieving specified input spectrum under constraints. As observed

earlier, Weyl’s criterion and the spectrum constraint are nonconvex and nonsparse in
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u as well as optimization problem is integer constrained: u(k) ∈ I ∀k. The numerical

solution for this formulation is showed in Section 5.2.4.

5.2.1 Numerical Examples and Computational Challenges

The mixed integer nonlinear and nonconvex programs are, in general, NP-hard and hence

computationally intractable (for global solution) unless N is relatively small [206]. Based

on the specific intervention studied in Chapter 2 and nature of data for most (finite N)

clinical trials, the following specific observations can be made:

• The length of the clinical trial N is not very large for pain interventions (less than

200). Also in a general case for system identification, 200 data points are large enough

to assume the asymptotic results to hold true [45].

• The number of integer levels is a small finite number. Generally, it would be less

than 10 levels. If the number of integer levels are very large, it may be best to

simply approximate the continuous signal to the nearest integer. This is shown in

Section 5.2.2 for the case of multisine signal.

• For minimizing the Weyl’s criterion case, the criterion can be made close to zero. In

any case, given limited data points, the formula is only approximately true. This,

however, does not significantly affect the quality of the solution.

• For desired spectrum case, an ‘exact’ solution may not be necessary. In other words,

no significant benefit may be obtained form solving the problem to global optimality

(which is very difficult for nonconvex problems). If the procedure excites certain

frequencies more than others, the objective for a flat spectrum can be achieved.

• As shown in (4.10), the problems (5.2) and (5.3) can be posed as nonlinear optimiza-

tion by reformulating the integer constraints as polynomial equations.

A case study for input signal design is illustrated using a hypothetical clinical trial

to treat neuropathic pain. The drug used in this study is gabapentin which has a broad
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therapeutic window [77]. This implies that it is possible to vary the drug dosages over time

and to observe corresponding changes in reported pain condition. Some of the features of

the proposed trial are:

• Typical dosage: 1200− 3600 mg,

• Length of protocol : 3− 8 months or 90− 240 days,

• Dosage change size : 100, 300, 600, 900 mg,

• Switching time: 1 day to 7 days.

It is important that the drug dosage should be gradually increased to and from 1200 mg level

(baseline period) and similarly gradually decrease for washout period. This is achieved by

padding the input signal with ‘baseline’ and ‘washout’ dosages. In addition, it is desired that

the drug dosages do not change too abruptly between two samples and hence a maximum

input move size of 900 mg is applied. The input signal is first generated on a magnitude

of −4 to 4 and then scaled up to the desired drug concentrations of 1200 − 3600 mg.

Corresponding output is constrained and then scaled using a first order system with gain

Kp = −0.01235 per mg of drug. Time constant is assumed to be τ = 5 days. The simulation

results are shown for two periods and nine levels of the input signal, with added baseline

and washout periods. The corresponding parameters used for simulation are as follows:

• N = 100,M = 50,

• n = 4, I = {−n, 1− n, . . . , 0, . . . , n− 1, n} (9 levels),

• ω∗ = 0.4: (based on dominant time constant τ = 5),

• umax = n, umin = −n,

• b(k) = 3, by(k) → ∞,

• (Section 5.2.3) ymax,min = ±20, L = {−10, . . . , 10}, ǫ = 20

125



Table 5.1: Performance indices for different input signals generated in Section 5.2.2, Sec-
tion 5.2.3 and Section 5.2.4.

Signal x CF(x) PIPS(x) max(∆x)

Section 5.2.2 (multisine, Tsw = 1) u 1.74 57.21 600 mg
y 1.91 54.82 2.64%

Section 5.2.2 (multisine, Tsw = 4) u 1.96 57.91 900 mg
y 2.08 51.7 2.78%

Section 5.2.2 (multisine, Tsw = 7) u 1.61 61.59 1500 mg
y 2.03 51.5 3.39%

Section 5.2.3 (Weyl, Tsw = 7) u 1.82 54.66 900 mg
y 1.82 57.46 2.16%

Section 5.2.4 (Weyl, Tsw = 1) u 1.84 53.77 900 mg
y 1.88 54.45 2.55%

• (Section 5.2.4) γa = 3500, γb = 35, ymax,min = ±15, L = {−15, . . . , 15}, δ = 0.5, ǫ = 1.

The formulations are written in the AMPL modeling language [172], with KNITRO as the

nonlinear solver [179]. To overcome potentially poor local minima solutions, the solver is

initiated with the ‘multistart’ option to enable a more global search. It is found that the

relaxation approach for integer constraints results in good results for problems posed in this

dissertation.

5.2.2 Approach using Approximated Multisine

Before discussing the optimization based results, (integer) approximated multisine signals

are briefly considered. The desired properties of input design can also be satisfied by multi-

sine signals which are deterministic, periodic signals designed to contain specific frequency

information

u(k) =

ns∑

i=1

ai cos(ωikT + φi), (5.4)

where ns is the number of harmonics, T is the sampling time, ωi are specified by the user

and ai, φi are selected by an algorithm. These multisines can be designed to reach a desired

plant friendly metric such as the crest factor under time domain constraints [81]. But since

the amplitude at a give time k is expressed only as a sum of finite sinusoids, it may be
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infeasible for the signal to take only categorical values. A practical way to archive this goal

is to approximate average of the multisine signal over a predetermined switching time (Tsw)

to the nearest integer. This can be written as

ū(k : k + Tsw) = u∗I , ∀k ∈ {1, . . . , N − Tsw} (5.5)

s.t. argmin
uI

{|
∑k+Tsw

i=k u(i)

Tsw
− uI |}, uI ∈ I (5.6)

where N is the signal length, u∗I is the nearest integer value, u is the original multisine

and ū is the approximated signal. Clearly, this approximation is most accurate when the

number of categorical levels is large and the switching time is short. This can be now shown

for the gabapentin trial. The number of signal levels are assumed to be nine (i.e. minimum

dosage size of 300 mg). A comparison of original multisine with the approximated signal

is shown in Fig. 5.1. Dynamic simulation of pain response to an integer approximated

Schroeder-phased multisine signal is shown in Fig. 5.2 with two periods of 96 data points.

Fig. 5.6 shows comparison of the discrete power spectrum with increase in Tsw from daily

to weekly. It can be observed that increasing Tsw results in an unavoidable loss of power at

frequencies close to the desired bandwidth.

5.2.3 Weyl’s Criterion as the Objective Function under Weekly Switching Time

Constraint

Dosage changes that happen daily may be excessive or impractical in some health interven-

tion settings. In the joint input-output design, the aim is to obtain a signal that produces

uniform changes in the output, while respecting input constraints including a weekly dosage

change, i.e. Tsw = 7. The problem formulation shown in (5.2) is solved and the resulting

time-domain signals are shown with two periods in Fig. 5.3. The condition expressed in

(4.10) is used for (relaxed) integer constraints. Since the optimization-based design results

in an input signal which fully covers the useful span, the patient experiences longer stretches

of lower pain as a result of better utilization of the input. The optimization approach avoids

the drawback of the approximated multisine where the user has no direct control over the
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Figure 5.1: Comparison of Schroeder-phased multisine with a nine-level integer approxi-
mated multisine signal with daily switching (Tsw = 1). These signals are shown for one
cycle.
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Figure 5.2: Dynamic simulation of pain response (from baseline 50) to a nine-level integer
approximated Schroeder-phased multisine with daily switching (Tsw = 1).
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Figure 5.3: Dynamic simulation of pain response (from baseline 50) to a nine-level input
signal under Weyl’s criterion objective and constrained to a minimum weekly switching
interval (Tsw = 7).

final realization (e.g. large move sizes as noted in Table 5.1). To ascertain the distribution

of the output, the spread of y to the corresponding changes in y or ∆y = y(k+1)−y(k) can

be observed. In Figure 5.4, the distribution (y vs. ∆y) for these two signals is compared

where it can be observed that the Weyl design has a larger and more even distribution. It

should also be noted that the two signals are of slightly different lengths.

5.2.4 Weyl’s Criterion as a Constraint under a Desired Input Spectrum Objective

In this section, the problem formulation shown in (5.3) is now considered which satisfies

requirement on the input spectrum (flat over the desired bandwidth) and other time domain

constraints on the input and output. When the problem is solved, the minimum value of t

obtained is 0.00559212 which implies that the approximation is quite good and inaccuracies

only occur at higher frequencies in lower decibels, and the obtained input signal spectrum

is shown in Fig. 5.6. Fig. 5.5 shows the dynamic simulation of pain response to the cor-

responding input signal. The dosage is varied between 1200 − 3600 mg with maximum
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Figure 5.4: Comparison of distribution of output and rate of change of output for the
approximated multisine (top) and optimization-based signal (bottom) for weekly switching
(Tsw = 7) as discussed in Section 5.2.3.

move size of 900 mg as noted in Table 5.1. In Fig. 5.7, the integer constrained optimiza-

tion based method can be contrasted with the approximated multisine result (with daily

switching and on neglecting transients), where a more uniform spread of y was observed

with corresponding uniform changes in ∆y, under integer constraints, for the Weyl design.

To conclude, this section described design of input signals using Weyl’s criterion. This

has been illustrated using a hypothetical clinical trial using the drug gabapentin. The drug

dosage is manipulated over time to achieve variability in the pain response. It is shown in

the numerical illustrations that the output signal covers more span that an ad-hoc design

using multisine signals and thus provides better support for the estimator. As alluded to

earlier, an alternative problem formulation could be derived using the regressor space for

Weyl’s criterion in lieu of in the output space. However, doing so will increase the difficulty

of solving the resulting optimization problems given the higher dimension of the regressor

space. The ensuing section discusses the data-centric input signal design using distribution

of regressors which, unlike the Weyl’s criterion, is more amenable for methods from convex
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Figure 5.5: Dynamic simulation of pain response (from baseline 50) to a nine-level input
signal under output Weyl’s criterion constraints with daily switching (Tsw = 1) .
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Figure 5.7: Comparison of distribution of output and rate of change of output for the
approximated multisine (top) and optimization-based signal (bottom) for daily switching
(Tsw = 1) as discussed in Section 5.2.4.

relaxation and polynomial optimization.

5.3 Data-Centric Input Signal Design using Distribution of Regressors

This section mathematically formulates the problem statements using distance mea-

sures, introduced in Section 4.4.1, for data-centric input signal design to estimate an un-

known dynamical system. The regressor is expressed as a function of the input; the al-

gorithm then distributes the regressors to cover the regressor space under time domain

constraints on the input. First, this is developed for linear time-invariant systems where

the subsequent optimization problems correspond to nonconvex quadratic programs. Later

in the section, the problem formulations are extended by considering a more general formu-

lation by incorporating multivariable and nonlinear nature of the system in the definition

of the regressor. The resulting problems are nonconvex polynomial optimization problems.

An initial formulation using semidefinite relaxation of one of these nonconvex quadratic

problems was proposed in [84], and was improved by including both problem statements, as
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developed in Section 4.4.1, under additional time domain constraints and signal realization

techniques through randomization and nonlinear programming in [85]. An extension to

Hammerstein systems using nonlinear programming was proposed in [100].

The rest of the section is arranged as follows: mathematical formulations are developed

in Section 5.3.1 for LTI and Hammerstein systems. Section 5.3.2 provides a brief back-

ground on techniques in optimization over polynomials which are used in Section 5.3.3 and

Section 5.3.4 to build a hierarchy of convex semidefinite optimization problems of increasing

dimension to solve the input design problem. The remainder of the section presents numer-

ical illustrations: Section 5.3.5 shows input design for LTI systems using SDP relaxation of

nonconvex quadratic program, Section 5.3.6 shown input design for Hammerstein systems

using nonlinear programming and Section 5.3.7 shows data-centric input signal design using

sparse polynomial optimization.

5.3.1 Input Signal Design Formulations using Distribution of Regressors

Two problem statements were introduced in Section 4.4.1 which describe two distinct ways

of addressing distribution of regressors. These are first shown for LTI systems. The first

formulation, based on Problem Statement 1, distributes the points as far apart as possible

by maximizing the sum of regressor distances:

max
u

uTQu (5.7)

s.t. u ∈ U,

where Q =
∑N−1

i=1

∑N
j=i+1Qij . As uTQiju represents the square of the distance between

ith and jth regressor, Qij is positive semidefinite (Qij � 0). This implies that Q, the sum

of positive semidefinite matrices, is also positive semidefinite (Q � 0). Hence the resulting

quadratic maximization problem (or minimization of negative semidefinite problem) is NP-

hard [94].
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The second formulation, based on Problem Statement 2, distributes the points such that

the magnitude of the minimum distance pair is maximized:

max
u,t

t (5.8)

s.t. uTQiju ≥ t,

u ∈ U,

where i and j are selected to define unique distance pairs as per the set K. Given each

Qij is positive semidefinite (Qij � 0), the feasible set lies outside the ellipsoid defined

by Qij rendering the resulting problem nonconvex. Solution of these nonconvex quadratic

programs is discussed in Section 5.3.5 and Section 5.3.7.

In comparison to LTI systems, input signal design for nonlinear systems is more chal-

lenging due to complexity associated with the structure which often results in very diffi-

cult problems [89, 207]. A general block-structured nonlinear system called Hammerstein-

Wiener system, as represented in Fig. 5.8, is used to showcase the distribution of regressors

for nonlinear systems. These are characterized by a static input nonlinearity I which ac-

cepts the system input followed by a linear time-invariant dynamical system L and finally a

static output nonlinearity O whose output is measured. The internal signals wH , zW are as-

sumed to be unobservable. Note that this can be further generalized by incorporating noise

in the measured u, y and unmeasured wH , zW signals. It is also possible to replace the static

blocks with LTI blocks and vice-versa; this swapped system is called a Wiener-Hammerstein

system [208]. Although chosen to have a particular structure, these parametrizations have

been remarkably useful in practice [209]. Before discussing the input design formulations,

it should be mentioned that the static nonlinearities have to be differentiable (smooth) to

be used by most of the data-centric methods. Extensions to include the case of discon-

tinuous nonlinearities have been proposed in the literature, but are not considered in this

dissertation [210].
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Figure 5.8: Noise-free input-output representation of a Hammerstein-Wiener system.

The Hammerstein-only system, which is defined by static input nonlinearity I followed

by the LTI system L, is considered for developing input design formulations. For this struc-

ture, Problem Statement 1 translates into the following nonconvex polynomial problem:

max
u

I(u)TQI(u) (5.9)

s.t. u ∈ U

and for Problem Statement 2, it results in the following problem

max
u,t

t (5.10)

s.t. I(u)TQijI(u) ≥ t,

u ∈ U.

Both of these optimization problem follow a similar structure to the LTI case except

that the degree of the objective and that of the constraints is a function of the degree of

the input nonlinearity. Solution of these nonconvex polynomial programs is discussed in

Section 5.3.6 and Section 5.3.7.

Similar optimization problems can be derived for other block-structured nonlinear sys-

tems. For the simple purpose of illustration, consider the case of Wiener-only system where

the input nonlinearity is one (I = 1) and the output nonlinearity O is the power function

y(k) = (zW (k))nz = (hk
Tu)nz (5.11)

where hk is the row corresponding to the time instant k in the matrix G defined in (4.14).

The ARX-type regressor can be written as

ϕ(k) = [(hk
Tu)nz ... (hk−na

Tu)nz u(k − nk) ... u(k − nb − nk + 1)]T . (5.12)
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The square of the distance between two regressors can be calculated using

d2ij = (ϕ(i)− ϕ(j))T (ϕ(i)− ϕ(j)) (5.13)

which is a polynomial in u, and proceeding as earlier, can be used to formulate the polyno-

mial optimization problems to distribute the regressors.

5.3.2 Background on Convex Relaxation and Optimization over Polynomials

Nonconvex optimization problems are generally hard to solve; methods based on Karush-

Kuhn-Tucker (KKT) conditions may give poor local solutions. A powerful approach to

approximately solve some of these problems is through convex relaxation where the main

source of nonconvexity is replaced with a ‘relaxed’ version that is convex and hence more

tractable [168, 169, 170, 189]. The convex relaxation procedure provides a bound on the

original objective function but generally no feasible solution unless the relaxation is tight. In

some cases, feasible inputs can be generated using rank one approximation, randomization

and nonlinear programming [168, 170]. Semidefinite programming (SDP) relaxation for

the case of nonconvex quadratic problems has been particularly successful with proven

bounds on the suboptimality, in polynomial time, for many scenarios [170, 211]. For general

polynomial problems, effective solutions are possible under structured sparsity [212]. For

overview of these methods with introduction to the notation and terminology, the reader is

referred to the excellent review provided by Laurent [171].

Consider a general polynomial optimization problem P as follows:

P : min {g0(u) : u ∈ K} (5.14)

where g0 is a real valued polynomial, u ∈ R
N is the decision vector and K ⊂ R

N is a basic

closed semialgebraic set defined as:

K = {u ∈ R
N : gi(u) ≥ 0, i = 1, . . . ,m}. (5.15)

This structure accounts for large class of problems including linear, quadratic and integer

programming. The problem P is, in general, difficult to solve to global optimality [213].
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Given the smoothness of the underlying functions, local solutions can be generally found

using powerful nonlinear programming solvers like KNITRO [214, 179]; however there are

no guarantees on the quality of the solution. Recent work in real algebraic geometry and

theory of moments applied to optimization has proposed to approximate the problem P by

generating a hierarchy of convex relaxation by using representation of nonnegative poly-

nomials as sum of squares polynomials and moments sequences [171]. For the purpose of

explanation, in this section this relaxation approach is presented using the sum of squares

representation. A similar, and in fact dual, representation can be obtained by using the

theory of moments [215].

One of the central tools used in the construction of the relaxation procedure is that

of sum-of-squares. It is known that checking whether a polynomial is nonnegative i.e.

g(u) ≥ 0 ∀u is an intractable problem [171]. This requirement can be replaced with a

simpler condition to test if there exists a sum-of-squares (SOS) decomposition1

g(u) =

p
∑

i=1

pi(u)
2 = v(u)TVv(u) (5.16)

where v is the vector of chosen monomials and V � 0. This can be checked by solving a

SDP and is tractable in theory, and in practice, for many cases of interest [216]. This simple

but powerful idea can be applied for solution of unconstrained optimization. Consider the

following problem P shown earlier where the semialgebraic set K is the complete real space:

P : min {g0(u) : u ∈ R
N} (5.17)

which can be equivalently written as:

P : max λ s.t. g0(u)− λ ≥ 0. (5.18)

The relaxation of this problem involves replacing the intractable condition of nonnegativity

on the constraint polynomial by the condition that the polynomial is SOS [189]:

PSOS : max λ s.t. g0(u)− λ ∈ Σ, (5.19)
1In other words, if a polynomial can be decomposed as SOS, it also nonnegative but vice-versa is not

true. Hence, the set of SOS polynomials Σ lies in the set of nonnegative polynomials.
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and this relaxation procedure produces an lower bound on the objective

gSOS ≤ g∗. (5.20)

In other words, the global minima g∗ cannot exceed the bound provided through the re-

laxation. It should be noted that this bound may be trivial (i.e. −∞) but in many cases

meaningful bounds are obtained. Similarly, upper bound on the problem can be obtained

by any of the nonlinear optimization routines. These gradient-based methods will be de-

pendent on the initial point of search and thus using a randomly selected grid, a reasonable

upper bound can be obtained. As previously noted, since the relaxation procedure provides

a (lower) bound on the objective, it makes sense that no feasible minimizer can be directly

obtained and if such a minimizer can be extracted, then the minima is the global solution.

However, a feasible solution can always be obtained through the local nonlinear solver.

Using these insights from unconstrained optimization, a method can be proposed to solve

the general case when K is semialgebraic as shown in (5.14). Towards this, a representation

has to be found for the polynomial to be positive (or nonnegative) over the set K. This

is a significantly challenging task and several results in Positivstellensatze2 (Psatz) have

allowed for representation of this condition [217, 189]. One of the main result is called

Krivine-Stengle’s Psatz [189] for giving a certificate of positivity on any K

g > 0 on K ⇔ g =
1 + q

p
(5.21)

where p, q are polynomials from a preordered set [171, 189]. From an optimization perspec-

tive however, it does not allow for efficient representation due to the nonlinear product in

its equation [171]. If the set K is assumed to be compact, a more simpler representation

for strict positivity is known as Schmüdgen’s Psatz [189], and which can be used in an op-

timization framework although it involves 2m number of SOS condition where polynomials

are selected from a preordered set.

2German for ‘theorem of positives’, similar to Hilbert’s Nullstellensatz.
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To develop efficient relaxation procedures in polynomial optimization, a refinement of

previously stated Psatz conditions is required which is proposed in Putinar’s Psatz. Towards

this, first consider the following specific conditions based on the set K:

Definition 7. A set M

M(g1, . . . , gm) = {s0 +
m∑

j=1

sjgj , s0, sj ∈ Σ} (5.22)

is called the quadratic module of the polynomials g1, . . . , gm. The quadratic module is said

to be Archimedean if ∃Rp ∈ N for which

Rp −
N∑

k=1

u(k)2 ∈ M(g1, . . . , gm). (5.23)

Putinar’s Psatz states that if the quadratic module is Archimedean, the condition that

g > 0 on K, is true iff g ∈ M [218]. This representation is more efficient as it allows for

m SOS constraint for representing positivity over set K and can be checked by solving a

SDP. It is worth noting that the condition where the module M is Archimedean can be also

be checked by solving a SDP. Using these results, a hierarchy of semidefinite programing

relaxation can be proposed by relaxing the positivity condition on the polynomial by its

SOS representation

P
ξ
SOS : max

λ,s0,sj
λ (5.24)

s.t. g0(u)− λ = s0 +
m∑

j=1

sjgj , s0, sj ∈ Σ

deg(s0), deg(sjgj) ≤ 2ξ.

The parameter ξ is called the relaxation order where its lowest value is defined by the degree

of the objective and constraints [171]. The degree of conservativeness of the relaxed problem

depends inversely on the relaxation order ξ and the accuracy of the approximation can be

increased by increasing ξ and hence the order of SOS multipliers s0, sj . More specifically,

the optimum of the relaxed problem is guaranteed to converge monotonically to the global
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optimum g∗ of the nonconvex problem as ξ → ∞ [215, 171]. Recent results have also shown

finite convergence [219], and also for the case of non-compact sets [220]. As an alternative

interpretation, (5.24) can be understood as a generalized Lagrangian function formulation

where the multipliers are nonnegative polynomials in contrast to nonnegative scalars [215].

The relationship shown in (5.16) can be restated as

g(u) =

p
∑

i=1

pi(u)
2 = v(u)TVv(u) = Tr(vvTV) (5.25)

where Tr(·) is the trace operator. The matrix vvT is rank-one by construction and the

problem can be reparametrized in new variables for each entry of the matrix vvT . More

formally, it can be interpreted in terms of truncated moment sequences [217, 171]. Using this

understanding, a hierarchy of relaxation P
ξ
MOM can be proposed using moment sequences

which are shown to converge, as the SOS approach, to the global minimum [215]. Indeed,

the method of SOS is dual to theory of moments where both conditions can be expressed

as SDP. However, the moment approach has an unique advantage that it can allow for

extraction of global minimizers where as the SOS approach natively can only provide with

bounds on the minimum.

The size of the relaxed problem depends on the number of polynomial constraints of the

original nonconvex problem, their degrees and on the dimension of the decision variable.

The proposed relaxation approach P
ξ
SOS,P

ξ
MOM is often called ‘dense’ convex relaxation

[171] as it assumes that the polynomials g0, gi are composed of all the possible monomials

from all the elements u(1), . . . , u(N). To illustrate this point further, consider a polynomial

of degree 2 and composed of variable u(1), u(2). The possible monomial basis set for this

polynomial can be written as:

v = {1, u(1), u(2), u(1)2, u(1)u(2), u(2)2}. (5.26)

In general, for any given degree d, the number of elements in the basis set is given as
(
N+d
d

)
.

Clearly, the number of monomials can increase exponentially as the degree of the polynomial
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is increased even for fixed N . Furthermore, the number of variables for the relaxation in

(5.24) is bounded by O(N2ξ). Indeed, this is why the traditional dense approach is limited

to small sized problems. This is not surprising given that many of these problems are

intractable and unless P=NP, it cannot be expected to solve all of these problems efficiently.

However, in practice, many polynomials are composed of only select monomials and hence

a representation which inherently assumes dense structure is restrictive. In [212] and [221],

a ‘sparse’ convex relaxation procedure has been developed which utilizes the limited basis

these polynomials may have. Thus, the resulting SDP is significantly smaller which allows

solution of a larger sized problem. It is worth noting that just because a polynomial is

composed of few monomials, it may not necessarily lead to efficient computation. In other

words, a very specific condition is put on what is defined as sparse in [212, 221]. Consider

that the elements of the decision variable u = [u(1), . . . , u(N)]T ∈ R
N can be split in to p

sets I1, . . . , Ip, each containing only few of the elements of u. The polynomial optimization

problem is sparse under the following condition:

Definition 8. Running intersection property (RIP) [221] is satisfied iff

Ik̄+1 ∩
k̄⋃

j=1

Ij ⊆ Is, s ≤ k̄. (5.27)

This implies if there exits a special ordering of the sets I1, . . . , Ip, the optimization

problem is sparse. Earlier, a more specific requirement was developed in [212] based on the

condition that a correlative sparsity pattern (csp) matrix R has non-zero elements iff any

two elements from the decision variable appear in the monomial of the objective function

g0 or appear anywhere in the constraint gj . Subsequently, if R is sparse then the problem

is correlative sparse. However, the convergence of the resulting relaxation was not shown

in [212] and was later proved in [221] using the presence of RIP condition. Similarly, a

csp graph can be defined from which the sets I1, . . . , Ip can be found as maximal cliques of

a chordal extension of that graph, and thus the correlative sparsity condition is a subset

of the RIP condition. More importantly, the detection of sparsity via sets I1, . . . , Ip can
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be efficiently automated for the correlative sparsity method [186] while it is nontrivial to

arbitrarily find these sets in general.

Due to the specific construction by incorporating the algebraic structure, the complexity

of solving the optimization is reduced. The sparse hierarchy of convex relaxation can be

written as

P̃
ξ
SOS : max

λ,s0,sj
λ (5.28)

s.t. g0(u)− λ = s0 +

m∑

j=1

sjgj , s0, sj ∈ Σ(Ij)

deg(s0), deg(sjgj) ≤ 2ξ

where the polynomial multipliers sj are only function of variables as the constraint gj . The

number of variables for the relaxation in (5.28) is bounded by O(κ2ξ) where κ ≪ N is

the maximum number of variables in the each monomial of the objective or the constraint

polynomial [221]. It is worth noting the sparse relaxation is generally weaker than the

classical dense relaxation, although good numerical results have been reported in literature

[186, 222]. In the same way, testing Psatz condition using Putinar’s result is weaker than

the Krivine-Stengle’s result [217]. Other ways to reduce the computational complexity is to

exploit symmetry in the structure [171] and to use a user-defined basis for the polynomials

based on an a priori knowledge. As a general comment, it is worth mentioning that solving

the SOS problem is numerically challenging and use of reduced basis may induce further

degeneration of the resulting SDP [216].

In conclusion to this section, an interesting special case is mentioned. When the poly-

nomials are (nonconvex) quadratic functions, the ξ = 1 relaxation case corresponds to the

standard semidefinite relaxation of nonconvex quadratic programs [215]. As is generally

observed in the history of mathematics and science, this fact was discovered, formulated

and then rediscovered through the general theory involving hierarchy of convex relaxation.
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The construction of semidefinite relaxation for nonconvex quadratic programs involves

linearization of quadratic terms as:

uTQu = Tr(Q(uuT )) = Tr(QU), (5.29)

uuT = U = UT ∈ R
N×N , (5.30)

where Tr(·) is the trace operator. In this way, the problem is posed as minimizing a linear

functional subject to linear matrix inequalities which is essentially a semidefinite program.

This variable transformation is similar to as shown in (5.25) and this convex relaxation

procedure is a particular case of the general theory described earlier. The ensuing two

sections are organized as follows: first, convex relaxation is applied to the case of LTI

problems and it shown that useful bounds on the suboptimality of the relaxation can be

derived. The following section presents general application of convex relaxation for data-

centric input signal design with discussion focusing on addressing block-structured nonlinear

systems.

5.3.3 Semidefinite Relaxation of Data-Centric Formulations for LTI Systems

Semidefinite relaxation is used to approximately solve the nonconvex quadratic programs

shown in Section 5.3.1. Consider the first problem formulation which considers maximiza-

tion of sum of regressor distances as shown in (5.7). Using the variable transformation

shown in (5.29), the original problem is ‘lifted’ in the space (u, U) as:

max
u,U

Tr(QU) (5.31)

s.t. u ∈ U,

U = uuT ,

and this can be written as a SDP problem by relaxing the constraint (5.30) as U −uuT � 0

and writing it in Schur complement form as:





U u

uT 1




 � 0. (5.32)
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For the case of amplitude-only constraints on the input, this problem can also be expressed

as SDP by directly neglecting the rank constraint on U , as shown in [84]. Consider νQP

as the objective value of the original nonconvex problem shown in (5.7). Let the objective

of this SDP be νSDP with optimal variables U∗ and u∗, then the SDP relaxation gives an

upper bound on the nonconvex maximization problem i.e. νQP ≤ νSDP [170, 211]. In case

the rank r of U∗ is not unity, the relaxation is not tight. Subsequently, the generation of

input depends on the nature of the feasible set:

Theorem 1 ([213]). A convex (concave) function attains its global maximum (minimum)

over a compact set S at an extreme point of S.

Hence, the maximum values will be obtained at the extreme of respective constraints

e.g., when the input is either umin or umax and when the input changes the maximum allowed

move b. If rank r is low, an input ū can be generated using best rank one approximation:

U∗ =
r∑

j=1

λjqjq
T
j , ū =

√

λ1q1, λ1 ≥ λ2 ≥ · · · ≥ λr > 0, (5.33)

where λj is the jth eigenvalue and qj is the corresponding eigenvector. Alternatively, an

input can be generated using the process of randomization where an input ū ∼ N (u∗, U∗ −

u∗u∗T ) can be repeatedly sampled such that the best objective is obtained [168, 170, 166].

It should be noted that both of these approaches do not guarantee a feasible input and a

‘projection’ in to the feasible set U is required. For the case of amplitude-only constraints,

this is can be directly achieved by the signum function following Theorem 1. Moreover for

amplitude constraints only, there also exists hard bounds on the suboptimality as follows:

Theorem 2 (Nesterov [169], Ye [223], Manchester [161]). Given the quadratic optimization

problem (5.7) where Q � 0 under amplitude constraints only, the approximation bounds can

be given by

0.63νSDP ≤ νQP ≤ νSDP. (5.34)
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This result holds for both FIR and ARX type regressors. For the FIR case, Q has

additional properties and a tighter bound holds true:

Theorem 3 (Goemans and Williamson [168]). Given the quadratic optimization problem

(5.7) where Q � 0 and all off-diagonal elements are nonpositive (Q(c, d) ≤ 0, c 6= d) under

amplitude constraints only, the approximation bounds can be given by

0.87νSDP ≤ νQP ≤ νSDP. (5.35)

The structure of Q can be confirmed based on (4.43) and (4.47). Theorems 2 and 3

imply that the exact global maximum is not known through relaxation but only that it

lies inside the upper and lower bounds through SDP. Global solutions for NP-hard prob-

lems are difficult and may be found using branch-and-bound methods where the number of

branching nodes can grow exponentially. Recently, methods have been proposed based on

first-order KKT conditions and SDP relaxation using completely positive programs which

yield finite branching for global optimality [224]. The performance of the proposed relax-

ation method is compared with the global method in Section 5.3.5. Under general linear

equality and inequality constraints (u ∈ U), such bounds on suboptimality generally do not

exist [225]. Nevertheless, good objective values can be found using an input ū generated

through randomization and further refined to generate a feasible suboptimal solution using

nonlinear programming methods such as sequential quadratic programming (SQP).

Similarly, for the second problem formulation which maximizes the minimum of regressor

distances, semidefinite relaxation can be similarly constructed for problem formulated in

(5.8). Given large number of nonconvex quadratic constraints, additional constraints using

the reformulation-linearization technique (RLT) [226, 211] can be added to enforce stricter

bounds on the matrix variable U . The resulting SDP can be written as:

max
u,U,t

t (5.36)

s.t. Tr(QijU) ≥ t,
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u ∈ U,

U − uminu
T − uuTmin + uminu

T
min ≥ 0,

U − umaxu
T − uuTmax + umaxu

T
max ≥ 0,

U − uminu
T − uuTmax + uminu

T
max ≤ 0,






U u

uT 1




 � 0,

where i and j are selected to define unique distance pairs as per the set K. The optimal

solution includes the additional parameter t∗ which gives the upper bound on the maximum

distance between two nearest regressors. A feasible input can be generated through ran-

domization with further local refinement through nonlinear programming. To conclude, it

can be noted that the numerical complexity of the both formulations for LTI systems using

SDP relaxation is primarily a function of length of the input signal N and less dependent

on the dimension m of the regressor space.

5.3.4 Sparse Polynomial Optimization of Data-Centric Formulations

The relaxation procedure discussed in Section 5.3.2 is appealing from a theoretical point of

view since it provides a systematic way for constructing a hierarchy of convex semidefinite

relaxations guaranteed to converge to the global optimum of problem. However, due to the

possible large size of the obtained SDP problem, a blind application of the ‘dense’ method

to the input design problem is quite demanding in terms of computational resources due to

an exponential increase in the size of the resulting SDP. Present SDP solver technology is

in its infancy compared with solvers available for linear and quadratic programming which

can handle millions of variables. The SDP relaxation introduced in the previous section is

a special case applicable for approximate solution of LTI systems only. In other words, this

implies that the traditional SDP relaxation has limited practical application unless a more

efficient representation is found by exploiting the algebraic structure of the problem.
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In Section 5.3.2, this was proposed as sparse polynomial optimization, and the concept

of correlative sparsity and the running intersection property were introduced to detect

underlying sparse structure of a given problem. Loosely speaking, the monomials of the

objective and the polynomials in the constraint should be a function of only a few elements

of the input u. This section explores the application of those methods to data-centric

input signal design. The tractability of the numerical problem formulations developed in

Section 5.3.1, for both LTI and Hammerstein systems, primarily depends on the following

factors:

1. The nature of the input constraints expressed in the set U including the number of

possible dosage levels (i.e., number of elements in the set I), and the order of the

polynomials (u(k)− u−n)(u(k)− u1−n)...(u(k)− un−1)(u(k)− un) = 0.

2. The number of decision variable involved in the optimization problem or the length

N of the input signal u.

3. The parametrization of the regressor vector ϕ(k)

• ARX which involves all the past variables through the output for a dynamic

system,

• FIR which involves limited past variables (although the dimension m will be

high).

4. The number of regressor distance pairs (dij) as shown in (4.45) and the metric, e.g.

Euclidean distance vs Chebyshev distance, which is used to calculate the regressor

distances dij .

5. The nature of system nonlinearities. For block-structured nonlinear system, the degree

of the static nonlinearity I and O.

Another way to look at the problem formulations is to examine what factors constitute the

objective and what factors form part of the constraints. Based on the problem statements
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developed in Section 4.4, for Problem Statement 1, g0 is a function of regressor distance

pairs (dij) and K ≡ U, and for Problem Statement 2, g0 is linear and K ≡ U and constraints

involving the regressor distance pairs (dij). A natural first step is to detect the presence of

native sparsity in input design problems. It is quite clear that the constraints on the shape

of the input signal: amplitude, move size, switching constraint and integer constraint are

function of only few elements of u. For the purpose of illustration, consider the following

example:

Example 1. Assume that N = 5 and u = [u(1), u(2), u(3), u(4), u(5)]T . The optimization

problem P where the set K is defined by amplitude, move size, switching constraints and

three-level integer constraints can be written as

max
u

g0(u)

s.t. umin ≤ u(1) ≤ umax ⇒ {1}
...

umin ≤ u(5) ≤ umax ⇒ {5}

u(1)− u(2) ≤ ∆umax ⇒ {1, 2}
...

u(4)− u(5) ≤ ∆umax ⇒ {4, 5}

u(1)− u(2) = 0 ⇒ {1, 2}

u(1)− u(3) = 0 ⇒ {1, 3}

u(4)− u(5) = 0 ⇒ {4, 5}

(u(1)− u−1)(u(1)− u0)(u(1)− u1) = 0 ⇒ {1}

(u(2)− u−1)(u(2)− u0)(u(2)− u1) = 0 ⇒ {2}
...

(u(5)− u−1)(u(5)− u0)(u(5)− u1) = 0 ⇒ {5}
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where {·} shows the involved variables in each constraint. Based on this information, the

csp matrix R can be written as

R =















1 1 1 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1















(5.37)

which has a characteristic ‘band’ pattern [123, 212] implying that the input constraints are

inherently sparse.

It is interesting to note the input constraints are sparse irrespective of the objective g0

which will depend on the estimator. For example, for classical linear statistical models [49],

g0 is some measure of the information matrix. Hence, the following proposition, for any

input design problem under constraints, can be made:

Proposition 2. The input constraints defined in U are correlative sparse where the csp

matrix R ∈ R
N×N has a band structure.

Among other factors affecting the problem tractability, the number of input samples

in the input sequence N and the degree of the polynomials is dictated by the system

dynamics, and thus does not provide scope for reformulation. The remaining factors in the

optimization problem are how to parametrize the regressor vector and regressor distance

pairs dij , and thus this is the central issue to be analyzed for data-centric input signal

design. Towards this, in this dissertation two methods are developed:

1. First, a smaller set J ⊂ K of distance pairs dij is selected to make the problem

amenable for sparse polynomial optimization as defined in [212, 221],

2. Second, using the fact that the distance dij is already expressed as sum-of-squares to

formulate a reduced-basis convex relaxation problem.
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5.3.4.1 Selected Regressor Distance Pairs

Since the regressor vector is parametrized, in general, by past inputs and past outputs,

considering all the distance pairs from the set K will include polynomial equations which

are dense and hence undesirable for sparsity-based methods. In other words, the distance

pairs, unlike the input constraints, do not have inherent sparsity. This statement can be

further clarified by the following example:

Example 2. Consider the problem analyzed in Example 1. Assume that the regressor vector

ϕ(k) is composed to only past input i.e. FIR-type regressor with order m = 2

ϕ(k) = [u(k − 1) u(k − 2)]T . (5.38)

The regressor vectors can be enumerated as3

ϕ(1) = [0 0]T

ϕ(2) = [u(1) 0]T

ϕ(3) = [u(2) u(1)]T

ϕ(4) = [u(3) u(2)]T

ϕ(5) = [u(4) u(3)]T

and the total number of distance pairs is given by N(N−1)
2 = 5×4

2 = 10, and can be written

as

d12 = fd(u(1))

d13 = fd(u(1), u(2))

d14 = fd(u(2), u(3))

d15 = fd(u(3), u(4))

3For simplicity, entries for ‘negative time’ are assumed to be zero and regressor vector upto k = N are
considered.
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d23 = fd(u(1), u(2))

d24 = fd(u(1), u(2), u(3))

d25 = fd(u(1), u(3), u(4))

d34 = fd(u(1), u(2), u(3))

d35 = fd(u(1), u(2), u(3), u(4))

d45 = fd(u(2), u(3), u(4))

where fd(·) is a function to quantify the distance. The csp matrix R for the all the distance

pairs is dense:

R =















1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1















. (5.39)

It is proposed in this work to chose select distance pairs such that they form a set

J ⊂ K, and leads to the following problem statement:

Problem Statement 5. Chose the distances dij to form the set J such that running

intersection property for sparse polynomial optimization is satisfied as well as the distance

pairs provide enough coverage in the regressor space as argued in Section 4.4.

More precisely, Problem Statement 5 argues that there are two aspects in choosing the

distance pairs, first that the RIP condition is satisfied, and secondly that selected regres-

sors pairs should make geometric sense in addition to satisfying the sparse property. As

alluded to earlier, it is difficult to come up with sets Ij for sparse polynomial optimization.

Fortunately, for dynamical systems the regressor is not arbitrary and has a structure. For

example, in the FIR-type regressor, each ϕ(k) is distinct from ϕ(k − 1) and ϕ(k + 1) by

one element of the vector as shown in Example 2. Thus, regressors closer in time k are
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also located closer geometrically in the vector space, and spreading these closer points will

also force spreading of all other points in the regressor space. One of the possibilities is

to consider the consecutive distances i.e. d12, d23, d34, d45, . . . and so on. In addition, from

an algebraic point-of-view, it is easy to see that the consecutive distances are sparse as

they satisfy RIP. Furthermore, the consecutive distances are more appealing for Problem

Statement 2 as it maximizes the minimum distance and for regressors closely indexed by

time, this may achieve a similar effect as choosing all the distance pairs. Thus, (5.8) and

(5.10) are modified to include only selected distance pairs and upon analysis, the csp matrix

for this selection has a band structure:

R =















1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

0 0 1 1 1

0 0 0 1 1















(5.40)

and hence is sparse. Since the nonlinearity in block-structured systems is assumed to be

memoryless or static, the sparse property is conserved for those systems. This idea can be

extended by considering a cluster of near-by distances, for example, for ϕ(k), distance two

time indexes earlier and two time indexes later can be considered. Finally, this leads to the

following proposition:

Proposition 3. The qualified set of distance pairs can be obtained by selecting regressors

which are close to each other as indexed by time k. In particular, the problem is sparsest if

consecutive distance pairs are considered.

Numerically it was observed that the minimum size of the maximum clique of the

chordal extension of the csp graph is a bounded by the dimension of the FIR regressor m.

This result is not difficult to understand based on the nature of resulting matrix R due to

consecutive distances and square of the distances calculated using the 2-norm. The exact
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value of the clique sizes will depend on the actual number of distance pairs included in the

design. Thus from a computational aspect, the number of variables appearing together κ

is only a function of m where N ≫ m [221], and hence significant computational savings

can be obtained for smaller m. Although very appealing in theory, it can be observed that

the practical application of this method is quite limited if the dimension m of the impulse

response vector of the system is large. In that case, an approach is to make the impulse

response vector h as sparse as possible, for example by minimizing the ‘zero-norm’ of the

impulse response vector h of a given linear dynamical system:

min
h

‖h‖0 (5.41)

s.t. dynamical constraints are satisfied.

It is well known that this is a nonconvex optimization problem and can be relaxed by con-

sidering instead the 1-norm. Such specialized algorithms have been proposed in literature

for FIR filter design [227]. In addition, a simple practical method is to approximate the

small elements of h to zero based on a user defined tolerance level. This approximation can

result in considerable reduction in computational burden and has been using in example

shown in Section 5.3.7. As an alternative, the system can be resampled at lower rate to

reduce the dimension of the FIR regressor.

Finally, in conclusion to this section, it is important to note that there are many other

possibilities to choose the distance pairs other than those pointed out earlier as long as the

running intersection property is satisfied. For dynamical system, choosing nearby regressor

vectors and coupled with Problem Statement 2, was found to provide useful results as shown

in Section 5.3.7.

5.3.4.2 Regressor Distance Pairs as Sum-of-Squares

In developing convex relaxation procedures, so far the fact that distance is always nonneg-

ative dij ≥ 0 as well as is already in sum-of-squares (SOS) form (e.g., for LTI systems:

d2ij = uTQiju) has been neglected. The complexity of the solving the SDP for checking
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SOS condition is dependent upon length of the monomial vector v as defined in (5.16). The

SOS module in MATLAB-based toolbox YALMIP offers many in-built functions aimed at

reducing the size of the SDP problem by finding a better representation for the basis vector

[216]. The following example compares the size reduction using YALMIP and size reduction

by using the fact that the distances are already SOS.

Example 3. Consider a Hammerstein system with input nonlinearity I = 2.2u(k)2 +

1.5u(k)3 and with L = 1
s+1 . The system is discretized at unit sampling and length of input

signal is fixed at N = 10. The objective for problem formulation (5.10) is defined as sum

of all the regressor distance pairs d2ij which can be written as

g(u) = I(u)TQI(u) (5.42)

using notation from (5.16). The polynomial g(u) is tested for SOS property by solving a

SDP using YALMIP with features for dimensionality reduction turned on such as newton

reduction, symmetry reduction and special post-processing developed in [216]. The size

of the resulting V matrix is found to be 126 × 126. The problem is now solved with all

dimensionality options tuned off while supplying the vector of monomials based on (5.42).

The size of the resulting V is found to be 20×20, where the monomial vector can be written

as

v = [u(1)2, . . . , u(10)2, u(1)3, . . . , u(10)3]T . (5.43)

Thus, the reduction in size is significant when the polynomial is known to be structured

compared to using standard methods based on newton polytope and symmetry.

The traditional sparse procedure developed in [212, 221] are developed for general poly-

nomials and hence cannot make use of this specialized structure. The approach of using

a priori structure has been previously used for unconstrained minimization in [222], and
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hence can be conceptually extended to the case of constrained minimization. Towards this,

the sparse SOS relaxation (5.28) can be modified as:

P̃
ξ
SOS : max

λ,s0,sj
λ (5.44)

s.t. g0(u)− λ = s0 +
m∑

j=1

sjgj , s0 ∈ Σ∗, sj ∈ Σ(Ij)

deg(s0), deg(sjgj) ≤ 2ξ

where the multiplier s0 ∈ Σ∗, as shown in (5.44), is supplied by the user based on a priori

knowledge of the distance pairs and the multipliers sj are function of only those variables

which appear in respective constraints. However, unlike the sparse polynomial optimization

introduced in previous sections where the convergence is guaranteed [221, 228], increasing

the order of relaxation does not guarantee convergence and hence global solution cannot

be certified for custom hierarchy developed in (5.44). If the constraints defined satisfy

the Archimedean property, it could be shown that the solution can converge to the global

minimum as argued in [228]. The formal analysis of convergence using these reduced basis

formulation is not presented in this chapter and is an open research topic.

Instead, in this chapter, it is proposed that the SDP relaxation developed in (5.44) can

be used to certify the quality of solution for any of the developed problem formulations from

nonlinear programming. The proposed hierarchy has a distinct advantage over approaches

using correlative sparsity and RIP condition that all of the regressor distance pairs from the

set K can be considered irrespective of their parametrization (i.e. both FIR and ARX). This

can be of help to calculate useful bounds on the local solution from nonlinear programming

as discussed in Section 5.3.2. Similar bounding technique has been developed in Section 5.4

for highly interactive systems. The ensuing sections present numerical solution of the devel-

oped formulation using semidefinite relaxation of polynomial programs and using nonlinear

programming.
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5.3.5 Numerical Illustration: SDP Relaxation for LTI System Formulations

Consider a continuous-time second order system with a zero

G(s) =
Kp(τas+ 1)

τ2s2 + 2ζτs+ 1
, (5.45)

where Kp = 1, τa = 2, τ = 3 and ζ = 0.6. This model is discretized at unit sampling

(T = 1) using a zero-order hold which can be fully parameterized by an ARX regressor of

order [2 2 1]

ϕ(k) = [y(k − 1) y(k − 2) u(k − 1) u(k − 2)]T , (5.46)

ŷ(k) = ϕ(k)T θ, (5.47)

where θ = [1.58,−0.6703, 0.2282,−0.1375]T .

Input signal design for data-centric methods is illustrated by comparing the two optimal

inputs with the traditional pseudo random binary sequence (PRBS) [229] and Schroeder-

phased multisine input [146]. Design of standard inputs in system identification is discussed

in Section 3.4.1. The PRBS input is designed with switching time Tsw = 2 for nr = 5

shift registers (see also [230] for the PRBS guidelines used) such that the length N is 62.

Similarly, a multisine signal u(k) =
∑ns

i=1 ai cos(ωikT +φi) was designed of same the length

(N = 62) with ns = 10, ai ∈ R are constant for all ns, frequencies ωi uniformly spread over

the desired bandwidth and phases φi determined by the Schroeder method [230, 146]. The

input constraint set is defined by: Ũ = {u ∈ R
N : umin ≤ u ≤ umax} ⊂ U where umin = −1

and umax = 1 for the first optimal input and PRBS; for the second optimal input and the

multisine signal, the amplitude was increased to umin = −1.5 and umax = 1.5 to achieve

a similar span in the regressor space for all cases. The SDP is coded in MATLAB with

YALMIP [174] interface using SeDuMi [156] as the SDP solver, quadprogbb is used as the

global solver for nonconvex quadratic program [224] and MATLAB function fmincon is

used as the SQP nonlinear solver.
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Table 5.2: Tabulation of sum of unique distances between all regressors for problem (5.7).

Objective Value

Upper bound (νSDP) 16038
Lower bound (0.63νSDP) 10104

Best objective from low rank approximation 14921 ≃ (0.93νSDP)
PRBS objective 10065

Multisine objective 4829
Nonlinear programming objective 12212
Global objective from quadprogbb 14927

First, the optimization formulation for maximizing the sum of regressor distances, as

shown in (5.7) and (5.31), is solved. Extending the result from [84], the semidefinite re-

laxation is compared with the global solver and the standalone nonlinear solver. Upon

solving the SDP (5.31)-(5.32), νSDP = 16038 is the maximum value that can be attained

by the maximization problem (5.7). Based on Theorem 2, a lower bound on the objective

is 10104. The rank r of U was found to be equal to 3. Hence, a feasible solution can

be generated through low rank approximation (or through randomization) with projection

using the signum function. An objective function value J1 of 14921 was obtained using

the best rank one approximation and the corresponding optimal input signal is shown in

Figure 5.9a. In comparison, the objective function values for PRBS and multisine signals

are 10065 and 4829 respectively, which are lower than the guaranteed objective from the

optimal input. In fact, randomization gave an objective function value improvement of

48.2% over the PRBS objective and 208.9% over the multisine objective. The global solu-

tion from [224] was found to be 14927, which is very close to the solution obtained from

SDP relaxation (within 0.04%). Finally, using standalone nonlinear programming with 100

random initializations, the best objective function value achieved was only 12212. All these

different objective values are noted in Table 5.2.

Similarly, the second optimization formulation for maximizing the minimum regressor

distance pair, as shown in (5.8) and (5.36), is solved. The optimal input corresponding to
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maximum t from randomization and subsequent local refinement is selected and is shown in

Figure 5.9a. A dynamical simulation for both optimal inputs is also shown in Figure 5.9a,

with the distribution of regressors using the first two elements of the regressor in (5.46):

y(k−1) and y(k−2) depicted in Figure 5.9b. The first optimal input switches less frequently

to cover a larger output span, and thereby places elements towards the boundary of the set

as shown in Fig. 5.10; in contrast, the second input switches more often, thus accomplishing

a better fill-in of the regressor space. The solution presented in this section were computed

on quadcore XEON machines using 16 GB RAM. Both the input design were run for

N = 62. On the first problem, the solution times were quick, for example, it took around

15 sec to run the SDP problem. The second formulation is much harder to solve than the

first formulation and thus takes longer time. For the second formulation, the SDP problem

took around 58 sec to solve. To generate a feasible solution, one iteration of randomization

plus local NLP refinement took 9 sec. This process of generating feasible input was repeated

for 50 times and the best input was chosen. Thus, the total time for this execution was

around 10 min.

It is interesting to evaluate the performance of data-centric estimators (such as MoD

and DWO) for the two optimal inputs in comparison with traditional signals under noisy

conditions. The two optimal inputs, PRBS and multisine signal, with their correspond-

ing outputs are used to form a database of regressors which defines the estimation set.

Two cycles of a test signal consisting of a combination of slow and fast dynamics with its

corresponding output (as shown in Figure 5.9a) is used to form the validation set. The

validation output is further corrupted by a zero mean Gaussian noise with standard devi-

ation σval ranging from no noise (σval = 0) to very noisy (σval = 2). The distribution of

regressor components (y(k − 1), y(k − 2)) for used inputs and validation (noisy and noise-

free) is shown in Fig. 5.11-Fig. 5.13. The function values are estimated from the MoD and

DWO estimators and compared with the true predictions as per (5.47) using the validation

dataset. The average root mean square (rms) errors calculated over 100 simulations for
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Figure 5.9: (a) Input-output dynamic simulation for both amplitude constrained optimal
inputs (solid line) and the validation input. The corresponding outputs are shown by dashed
lines. (b) Distribution of regressor components (y(k− 1), y(k− 2)) for both optimal inputs.
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Figure 5.10: Comparison of convex hull for optimal input I and PRBS as shown for regressor
components y(k−1), y(k−2). The PRBS hull is almost entirely contained in the hull formed
by the optimal input.

both estimators are tabulated in Table 5.3. Under low noise in the validation data, for in-

stance σval = 0.05, the average rms error from the second optimal input was superior to the

first optimal input, PRBS and multisine signal. This is a result of the greater uniformity in

the regressor space for this design, leading to better estimates from both MoD and DWO

estimators. As the noise in the validation set is increased (e.g, σval = 1 and σval = 2), the

validation data regressors start to lie outside the range of estimation database, resulting

in poorer estimates. Here, the first optimal input offers the lowest rms error as a result of

maximally distributed regressors which minimize the effect of extrapolation for both esti-

mators. Finally, one observes that for the first optimal input, the estimates from DWO are

better than those from MoD, while for the second optimal input, the MoD estimates are

generally better than those from DWO.
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Figure 5.11: Distribution of regressor components (y(k−1), y(k−2)) for noise-free validation
dataset, both optimal inputs, prbs input, multisine input, and the noisy validation dataset
with σval = 0.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y(k−1)

y
(k

−
2
)

Noise−free validation set

optimal input 1

optimal input 2

prbs

multisine

Noisy validation set

Figure 5.12: Distribution of regressor components (y(k−1), y(k−2)) for noise-free validation
dataset, both optimal inputs, prbs input, multisine input, and the noisy validation dataset
with σval = 0.1.
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Figure 5.13: Distribution of regressor components (y(k−1), y(k−2)) for noise-free validation
dataset, both optimal inputs, prbs input, multisine input, and the noisy validation dataset
with σval = 1.

5.3.6 Numerical Illustration: Nonlinear Programming for Hammerstein System

Formulations

Consider the discrete-time LTI system L considered in Section 5.3.5. Assume that the input

nonlinearity I is the power function

wH(k) = (u(k))nI ∀k. (5.48)

Based on this relation, the regressor can be written as

ϕ(k) =






PkG

Qk




 I(u) =






PkG

Qk




 [u(1)nI , . . . , u(N)nI ]T . (5.49)

In the subsequent numerical example, power nonlinearity is set to degree two, i.e. nI = 2.

The input signal is amplitude constrained as umin ≤ u ≤ umax where umin = −2 and

umax = 2 so as to amplify (since nI > 1) the input signal which should help increase the

power, specially in the case of classical inputs.
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Design of standard inputs in system identification is discussed in Section 3.4.1. For

PRBS, based on τHdom = τLdom = τdom = 2.14 (or nr = 5, Tsw = 2), the length is found to be

N = Ncyc ∗ Tsw = 62 as shown in Fig. 5.14. For MLPRS, the design variables are chosen

as ml = 3, q = 3, Tsw = 2 to satisfy the high frequency limit and nr = 4 to satisfy the low

frequency limit. The length of the signal is N = 160 as shown in Fig. 5.15. The length of

the uniform random signal was chosen to be as long the MLPRS to give enough power to

this input as shown in Fig. 5.16.

The optimal input is generated by solving the problem (5.9) under amplitude constraints

only and using a random initialization over 50 iterations. The length of the signal can be

fixed rather arbitrarily (N = 60) and this feature has distinct advantages over the classical

designs. The dynamic simulation of optimal input is shown in Fig. 5.17. To test the MoD

estimator performance under various inputs, an independent noise-free validation dataset

is created containing slow and fast dynamics of length N = 124 as shown in Fig. 5.18 using

the true system shown in (5.47) and the regressor shown in (5.49). In comparison to the

other inputs, the optimal signal naturally has more than two levels and it switches less often

thus allowing the system to reach its maximum value, thus covering the regressor space.

Table 5.4 shows the root mean square error (RMS) and maximum error (MAX) from the

MoD estimator for simulation using a fixed validation dataset and fixed set of MoD settings.

The lowest RMS is obtained for the optimal input which is a 16.6% improvement over the

next best signal MLPRS, although MLPRS is almost three times as long as the optimal

input. Further, it should be mentioned that the optimal input allows for inclusion of other

input constraints such as move size constraints (4.3) which is not possible in the MLPRS

design. The uniform random signal also does not cover the available span and gives higher

RMS values although it is as long as the MLPRS signal. Finally, the PRBS gave the worst

result because it is restricted to be binary.
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Figure 5.14: Dynamic simulation of PRBS signal (u) under amplitude constraints, inter-
mediate signal (wH) and the corresponding output y.
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Figure 5.17: Dynamic simulation of optimal signal (u) under amplitude constraints, inter-
mediate signal (wH) and the corresponding output y.

166



0 20 40 60 80 100 120

0

2

4

y
v
a
l

0 20 40 60 80 100 120

−2

0

2

u

0 20 40 60 80 100 120
−5

0

5

w
H

Time

Figure 5.18: Dynamic simulation of validation signal (u), intermediate signal (wH) and the
corresponding output y.

Table 5.4: Tabulation of root mean square error (RMS) and maximum error (MAX) from
the MoD estimator for simulation using a fixed validation dataset for problem (5.9).

Input signal RMS MAX

PRBS (N = 62) 2.0814 3.971
MLPRS (N = 160) 0.4764 0.9738

Uniform random (N = 160) 1.2407 2.879
Optimal input (N = 60) 0.39702 1.08

5.3.7 Numerical Illustration: Sparse Polynomial Optimization for Data-Centric

Formulations

In this section, application of sparse polynomial optimization using selective distance pairs

is shown. Consider a linear first order system L:

G(s) =
Kp

τs+ 1
(5.50)

where Kp = 1 and τ = 0.5. The system is discretized at unit sampling and the resulting

system can be represented using FIR-type regressor of dimension m = 3, which can be
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written as: ϕ(k) = [u(k − 1) u(k − 2) u(k − 3)]T . The numerical example is shown for

amplitude-only constraint: umin ≤ u ≤ umax where umin = −2 and umax = 2. Consequently,

the regressor space is defined by a cube (polytope) and can be visually analyzed. For

Hammerstein system, similar dynamics and constraints are considered where the input

nonlinearity is assumed to a square nonlinearity I = u(k)2. The optimization problems are

coded in MATLAB with the YALMIP toolbox [174] interfaced with the SparsePOP solver

[186]. It is observed that the problems converge to optimal solution for finite value of the

relaxation order ξ ≤ 3.

First, problem formulations for LTI systems are solved. The problem formulation shown

in (5.7) is solved by considering only consecutive distance pairs. Figure 5.19 shows the

resulting input signal and the spread of the regressor in the regressor space (m = 3). Due

to the objective to maximize the sum of all distance which are consecutive to each other,

the resulting input switches very fast. In addition, the spread in the regressor space is

also not very impressive as many regressor points overlap although the sum of distances

are maximized. Next, Fig. 5.20 shows the input signal (N = 30) and the distribution of

regressors for the problem formulation shown in (5.8). Since the optimization maximizes

the minimum distance (which in this case is consecutive distances including the regressor at

the origin), the regressor points lie on the boundary (and vertices) of the polytope defining

the region and hence cover the regressor space. Fig. 5.21 shows the same problem but

with increased signal length (N = 60) and additional limit on the move size of the input

|∆u| ≤ 3.5. The input signal now cannot switch the whole span due to move size limitation

and the corresponding regressor spread reflects this behavior. Finally, for the Hammerstein

system, Fig. 5.22 shows the resulting input signal under amplitude constraints and the

spread in the regressor space for problem formulation (5.10). Since the input nonlinearity

is square, the input automatically selects three levels to distribute the regressors. In both

dynamical systems, it is observed that the regressors are well spread in the feasible space

even though the formulation considered selected distance pairs with significantly longer
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Table 5.5: Tabulation of objective values as lower bound from nonlinear programming and
an upper bound from SDP relaxation of polynomial optimization for Hammerstein systems.

NLP objective SDP objective

53269.17 63424 (ξ = 3)

signal length (N = 30, 60) which are traditionally unsolvable through dense SDP relaxation.

Finally, the custom SOS hierarchy of SDP relaxation is used to generate useful bounds

on the objective function. Consider the problem formulation solved for Hammerstein system

in Section 5.3.6. For the length of the input signal N = 60, the best objective from NLP

solver was found to be 53269.17. As argued earlier, by itself the NLP objective does not

convey the quality of the solution. The problem methodology shown in (5.44) by supplying

the following custom basis to the YALMIP SOS module:

v = [1, u(1), . . . , u(60), u(1)2, . . . , u(60)2, u(1)3, . . . , u(60)3]T , (5.51)

and the relaxation order ξ = 3. The resulting objective value from solving the SDP is found

to be 63424. Thus, it can be noted that the NLP solution is not arbitrarily bad and the

global maximum lies between the two objective values found from NLP and SDP approach

as shown in Table 5.5.

5.4 Input Signal Design for Highly Interactive Systems

This section proposes numerical solution for an representative highly interactive dynam-

ical system shown in (4.67). As alluded to earlier, it is difficult to obtain information in the

low gain direction using convention open-loop input signals and hence an input is required

which can achieve a more uniform coverage by exciting both low and high gain directions

[95]. In previous work, this was achieved using results from discrepancy theory [193] and

the input design formulation minimizes the Weyl’s criterion

min
u∈U

1

N

N∑

k=1

e(2πi(ℓ1y1(k)+ℓ2y2(k))) (5.52)
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Figure 5.19: Optimal input for LTI system (N = 30) using problem formulation (5.7) and
the resulting distribution of regressors.
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Figure 5.20: Optimal input for LTI system (N = 30) using problem formulation (5.8) and
the resulting distribution of regressors.
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Figure 5.21: Optimal input for LTI system (N = 60) using problem formulation (5.8) and
the resulting distribution of regressors under additional move size restriction |∆u| ≤ 3.5.
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Figure 5.22: Optimal input for Hammerstein system (N = 30) using problem formulation
(5.10) and the resulting distribution of regressors.
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under constraints on the input to achieve uniform coverage in the output space [80, 153].

In this section, the problem formulation is developed on Problem Statement 3 which

tries to maximize the minimum distance between output points in order to cover the space

under constraints:

max
u,t

t (5.53)

s.t. uTYiju ≥ t,

u ∈ U,

where Yij is selected as per the set Ky. It should be pointed out that additional constraints

can be imposed on (5.53) to comply with certain directions in the output space. For LTI

systems, such constraints can be written as a quadratic function of the variable u. For

example, the optimization problem can be forced to excite the low-gain direction only by

the following condition

y1y2 ≤ 0 (5.54)

based on the partition of the output space into grids for high gain and low gain [95].

Similar to problems formulated for LTI systems in Section 5.3.1, the optimization prob-

lem (5.53) is a nonconvex quadratic program since Yij � 0 as the distance dyij ≥ 0 is

always nonnegative. As noted earlier, the nonconvex quadratic programs are, in general,

NP-hard [94] and hence difficult to solve to global optimality. Since (5.53) is composed of

smooth functions, it can be solved locally using standard nonlinear programming methods

[124]. For example, the MATLAB function fmincon can used with the interior-point or se-

quential quadratic programming (SQP) algorithm where the best solution is chosen based

on a random initialization over a finite number of runs.

Other than the clear drawback of local solution not necessarily being global, there is no

certificate on the quality of the solution. An approach to construct bounds on nonconvex

quadratic optimization is through relaxing the problem as a semidefinite program. As

discussed in previous sections, the relaxation procedure involves replacing the nonconvexity
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of the problem with a convex condition which is, in theory, more tractable [170]. For

completeness, the procedure of developing SDP relaxation is restated for this problem.

For the case of quadratic objective and constraints, the procedure involves linearization as

follows:

uTYiju = Tr(Yij(uu
T )) = Tr(YijU), (5.55)

U = uuT = UT ∈ R
2N×2N ⇐⇒ U � 0, rank(U) = 1 (5.56)

where Tr(·) is the matrix trace operator. Using the variable transformation shown in (5.55),

the problem (5.53) can be written as

max
u,U,t

t (5.57)

s.t. Tr(YijU) ≥ t,

u ∈ U,





U u

uT 1




 � 0

where (5.56) has been relaxed and written in the Schur complement form [85]. As before,

more stricter bounds can be added on the matrix variable U by adding redundant constraints

through the reformulation-linearization technique [226]:

U − uminu
T − uuTmin + uminu

T
min ≥ 0, (5.58)

U − umaxu
T − uuTmax + umaxu

T
max ≥ 0, (5.59)

U − uminu
T − uuTmax + uminu

T
max ≤ 0. (5.60)

where umin = [uTmin1u
T
min2]

T and umax = [uTmax1u
T
max2]

T .

Unlike nonlinear programming, the semidefinite relaxation procedure does not yield a

feasible input unless the relaxation is tight. The optimal variable t∗ provides an upper

bound on the minimum distance between two points in the output space while the best

nonlinear solution will provide the lower bound on the maximization problem. Thus the
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SDP relaxation at least provides a certificate for the quality of solution from nonlinear

techniques.

Numerical examples are now shown to highlight the proposed method by comparing

the results from optimization-based formulation with the input design based on Weyl’s

criterion. Consider the 2× 2 system shown in (4.67). The system is discretized using zero-

order hold with unit sampling resulting in discrete-time relationship, as shown in (4.64)-

(4.65), where the length of the input signal is chosen to be N = 50. In this section, the

optimization (5.53) is solved using nonlinear programming and the solution is certified by

solving a relaxed version using semidefinite programming as shown in (5.57). The program

is coded in MATLAB with YALMIP interface [174], with MOSEK as the SDP solver [183]

and fmincon as the nonlinear solver using the SQP algorithm. For both problems, the

amplitude of the output variable is restricted while no restriction is imposed on the input

signal

−∞ < ui(k) <∞ ∀k (5.61)

−200 ≤ yi(k) ≤ 200 ∀k. (5.62)

Fig. 5.23 shows the optimal input and resulting noise-free output signals. Based on the ill-

conditioned system (4.67), in order to excite the low gain direction, it is expected that large

changes are required as is observed in Fig. 5.23. The optimization formulation naturally

generates high amplitude correlated inputs to excite both low and high gain regions. The

best objective from nonlinear programming was found to be J = 4275.8 where as the upper

bound from SDP relaxation was found to be t∗ = 12042. As discussed in earlier sections, the

global solution lies between these two values and the SDP relaxation provides a reference

for the quality of the solution as shown in Table 5.6.

The optimization-based results are contrasted with the Weyl’s criterion based design

shown in (5.52). More details on the computational aspects of Weyl design can be found

in [95, 153]. Since Weyl’s criterion is true only asymptotically, for a fairer comparison the
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Table 5.6: Tabulation of objective values as lower bound from nonlinear programming and
an upper bound from SDP relaxation of nonconvex quadratic programs for highly interactive
systems.

NLP objective SDP objective

4275.8 12042 (ξ = 2)

length of the input signal is increased to N = 100. Fig. 5.24 shows the input using Weyl’s

criterion and the resulting noise-free output. Similar conclusion can be drawn as for the

optimization inputs that large changes have to be made to excite the low gain direction.

The difference between two approaches can be seen in the output distribution as shown in

Fig. 5.25. The Weyl design suffers primarily because of finite length of the input signal

where as the geometric objective in the optimization-based design performs much better

by offering a more uniform coverage at input length half of the Weyl design. In addition,

the optimization-based approach is computationally less intensive than the Weyl design, as

well as can be complemented by SDP relaxation approaches where as the Weyl design is

not amenable to traditional relaxation methods.

5.5 Chapter Summary and Conclusions

This chapter presented the problem formulations and their numerical solutions for con-

strained input signals for data-centric estimation methods. Broadly, the data-centric input

design is shown using two approaches: one based on Weyl’s criterion, and the other based

on distribution of regressors and outputs.

To accomplish the Weyl design, a time-domain approach for input signal synthesis is

presented which is motivated by the requirements of clinical trials for pain treatment in-

tervention. This design considers constraints on signal magnitude, move sizes, and the

categorical nature of the input signal. A joint input-output design is presented to achieve

a uniform distribution in the output. The resulting optimization problems are integer-
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Figure 5.23: Optimal input (N = 50) for problem formulation (5.53) under constraints on
the output for system shown in (4.67).
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Figure 5.24: Weyl input (N = 100) for problem formulation (5.52) under constraints on the
output for system shown in (4.67).

177



−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

250

y
1

y
2

Optimal input

Weyl input
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optimization-based design and Weyl design for system shown in (4.67).

constrained nonlinear programming problems. A polynomial-based static relaxation for the

integer constraints is used so that the problem can be solved by nonlinear programming.

A hypothetical gabapentin-based clinical trial is shown to illustrate the usefulness of the

proposed design. Best optimization results in comparison to approximated multisines are

obtained when a minimum weekly switching time is required between dosage changes.

For the distribution of regressors, two formulations are proposed towards achieving

constrained input signal design for data-centric estimation methods. The objective is to

distribute regressors, as measured by their Euclidean distances, in a given finite dimensional

regressor space. The first formulation maximizes the total sum of all regressor pair distances

under input constraints, while the second formulation maximizes the minimum distance pair

under input constraints. These are developed for LTI systems subject to patient-friendly

constraints on the input such as amplitude constraints, move size constraints and switching

constraints. The resulting nonconvex quadratic optimization problems are approximately

solved through the method of semidefinite relaxation. For the case of amplitude-only con-
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straints in the first formulation, hard bounds exist on the suboptimality. A numerical

example contrasts the proposed input signal designs, including their relative performance

for MoD and DWO estimation. For Hammerstein systems, the problem formulation are

solved using nonlinear programming and sparse polynomial optimization. It is shown that

the optimal input performs better than ad-hoc inputs with added flexibility of addressing

different input constraints.

This chapter also proposes a method to generate data-centric input signals for highly

interactive dynamical systems. The objective of the formulation is to distribute the time-

indexed output points in the output space under constraints on the input to achieve uniform

coverage. The resulting optimization problem is derived as nonconvex quadratic optimiza-

tion which is solved using nonlinear programming and semidefinite relaxation methods. A

numerical example is shown using 2×2 LTI approximation of high-purity distillation column

under amplitude constraints on the output signal, where an improved spread is obtained

using distance-based formulation over the design based on Weyl’s criterion in presence of

finite data.

Finally, in this chapter the possibility of using methods from semidefinite programming

approaches for polynomial optimization has been explored. It is shown that the input

constraints defined in the set U and the integer constraints are naturally correlative sparse.

The regressor distance pairs, on the other hand, are not sparse. To solve the input design

problems using sparse polynomial optimization, two approaches have been proposed: first,

by choosing selected distance pairs such that the distance pairs are sparse and secondly, by

developing a custom SOS hierarchy of SDP relaxation based on the monomial basis supplied

based on the fact that distance pairs are already sum-of-squares. Numerical examples are

shown for applicability of convex relaxation in data-centric input signal design.
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Chapter 6

CONSTRAINED INPUT SIGNAL DESIGN FOR DESIRED OBJECTIVES

6.1 Overview

The previous two chapters presented input signal design for data-centric system identifi-

cation methods under time-domain constraints. On the other hand, the input signal design

formulations discussed in this chapter are generated to achieve a desired objective function,

and do not require setting of data-centric estimation. In some cases, the desired objective

function is known a priori, for example, in the context of human behavior change [78] and

in other cases, as a way to guarantee persistence of excitation in LTI system identification

[45, 46]. As illustrated in the previous chapters, the input design formulations are posed as

optimization problem in the decision variable u to address time domain constraints. The

formulations are grouped based on their primary focus on:

1. Achieving a desired output trajectory under constraints. Based on domain knowledge,

it is desired that the output signal profile follow a set trajectory over time. In this

formulation, the input signal is design to achieve this goal and the problem is solved

using convex optimization. Numerical examples are presented to showcase the utility

of the proposed formulation including an example from single-subject clinical design

for improving physical activity.

2. Achieving a desired input spectrum under constraints. The persistence of excitation

condition quantifies a necessary requirement on the input signal for linear parametric

system identification. The problem formulation generates a deterministic input signal

to achieve input spectrum under time-domain constraints on the input. The minimum

parameter variance optimal input design under constraints is also discussed.
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The chapter is organized in the following sections: Section 6.2 proposes generating input

signal for desired output under constraints. Section 6.3 deals with generation of input signal

under requirements on the input signal spectrum. The chapter ends with a summary in

Section 6.4.

6.2 Achieving a Desired Output under Constraints

The traditional focus of input design formulations has been on reducing the estimation

error by choosing, for example, the input signal spectrum or distribution of regressors

[52, 53, 85]. This section develops an input signal design formulation without considering

the specifics of the estimator, but rather by forcing the output y of the system to reach a

certain goal ydes. In addition, the goals must be reached under patient-friendly constraints

for applications in behavioral health and medicine. The requirement of a priori knowledge

of desired output (ydes) might seem as very narrow and hence restrictive, but in many

practical scenarios the user has access to a desired output for data generation. Indeed, the

desired output itself becomes a design variable and influences the quality of resulting data.

To motivate this further, consider an experiment to test the effect of rewards over time

to reinforce the behavior of taking part in physical activity [231]. With increasing use of

smart and connected devices, there is an opportunity to implement real-time algorithms

to make decisions using behavioral theories such as social cognitive theory [38]. A single-

subject clinical design for improving physical activity can be proposed by designing the

input (reward) over time to test the dynamics of rewards to physical activity (such as

number of steps taken per day). Standard input signals used in system identification such

as PRBS or optimal inputs designed in previous chapter may not be typically used in such

behavioral setting as it would cause large unwanted changes in behavior. In fact, what is

required is that the input signal should cause systematic progression or drift in the observed

behavior as a consequence of applied rewards. Hence, the input-output data observed in

experiments designed to reach a desired goal can better capture the dynamical relationship
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in certain behavioral settings [78]. Another situation which may warrant such a requirement

is generation of a ‘grid’ or spread of operating points under amplitude constraints [232, 233].

The desired output input signal design can be posed as an open-loop finite-time optimal

control problem:

min
u

‖y − ydes‖ (6.1)

s.t. u ∈ U

where U is defined by constraints on the input signal as defined in Section 4.2. Assuming

the linear system description developed in (4.13) and (4.58), the problem formulation (6.1)

can be expanded as:

min
u

‖Gu− ydes‖ (6.2)

s.t. umin ≤ u ≤ umax

Au ≤ b

u(k) ∈ I

ymin ≤ y ≤ ymax

A(Gu) ≤ by

by incorporating additional categorical constraints on the input signal and constraints on

the output signal. The resulting optimization problem (6.2) is a convex mixed-integer sec-

ond order cone program (or equivalently a quadratically constrained quadratic program).

This can be globally solved, without integer constraints, in polynomial time using several

optimization solvers. For the case of integer constraints, modern solver technology allows

efficient solution of hundreds of variables in reasonable time [177, 178]. It should be men-

tioned that the requirement on persistent of excitation in the input is not enforced in the

design but can always be evaluated a posteriori. Simulation examples are shown in the

ensuing section to illustrate how this requirement can be satisfied under constraints.

182



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

(a)

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 Desired Output

(b)

Figure 6.1: (a) Histogram and (b) time plot of desired output sampled from a uniform
probability distribution U with bounds equal to ymin = −2.5, ymax = 2.5 with N = 100.

6.2.1 Numerical Examples

Consider a first order continuous-time system

G(s) =
Kp

τps+ 1
(6.3)

where Kp = 5 and τp = 5. The desired output is assumed to be sampled from a uniform

distribution

y(k) ∼ U(ymin, ymax) (6.4)

defined using scalar amplitude bounds on the output signal. Fig. 6.1 shows the histogram

of desired output vector sampled from a uniform probability distribution with amplitude

bounds corresponding to ±2.5 with length of input signal N = 100. The aim of the input

design is to follow the desired output profile as closely as possible. The problem is coded

in MATLAB using the YALMIP interface [174] and Gurobi [177] as the MIQCP solver.

The first simulation is shown in Fig. 6.2 under only the amplitude constraints on the

input as −4 ≤ u ≤ 4. The simulated output is compared with the desired output in Fig. 6.2a

with the corresponding optimal input shown in Fig. 6.2b. The objective value is found to be

0.7903. The second simulation, shown in Fig. 6.3, considers previous amplitude constraints
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Figure 6.2: (a) Simulation output compared with desired output, as shown in Fig. 6.1,
under amplitude constraints on the input. The input-output model used is as shown in
(6.3). The corresponding optimal input is shown in (b). The objective value is 0.7903.

and move size constraints |u(k + 1) − u(k)| ≤ 4 on the input. The simulated output is

compared with the desired output in Fig. 6.3a with the corresponding optimal input shown

in Fig. 6.3b. The objective value is found to be 3.4587, higher than the first simulation

due to restrictions on the input. The third simulation, shown in Fig. 6.4, considers three

constraints: amplitude constraints, move size constraints as previous simulation and adds

switching constraints Tsw = 2 on the input. The simulated output is compared with the

desired output in Fig. 6.4a with the corresponding optimal input shown in Fig. 6.4b. The

objective value is found to be 10.3134, higher than the first and second simulations due to

more restrictions on the input.

The fourth and final simulation for this numerical example, shown in Fig. 6.5, shows the

case when amplitude constraints, move size constraints and integer constraints u(k) ∈ I are

imposed on the input. It is well known that the problem is now NP-hard, and in this case

is solved within 12% of global optimality (given enough time, the solution will converge to

the global solution). The simulated output is compared with the desired output in Fig. 6.5a

with the corresponding optimal input shown in Fig. 6.5b. The objective value (for up to

12% of global optimality) is found to be 4.3134. In conclusion, the simulations show that
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Figure 6.3: (a) Simulation output compared with desired output, as shown in Fig. 6.1,
under amplitude constraints and move size constraints on the input. The input-output
model used is as shown in (6.3). The corresponding optimal input is shown in (b). The
objective value is 3.4587.

0 20 40 60 80 100
−3

−2

−1

0

1

2

3 Desired Output

System Output

(a)

0 20 40 60 80 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

Optimal Input

(b)

Figure 6.4: (a) Simulation output compared with desired output, as shown in Fig. 6.1,
under amplitude constraints, move size constraints and switching constraints on the input.
The input-output model used is as shown in (6.3). The corresponding optimal input is
shown in (b). The objective value is 10.3134.
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Figure 6.5: (a) Simulation output compared with desired output, as shown in Fig. 6.1,
under amplitude constraints, move size constraints and integer constraints on the input.
The input-output model used is as shown in (6.3). The corresponding optimal input is
shown in (b). The objective value (for up to 12% of global optimality) is 4.3134.

the output from the dynamical system tracks the desired output under constraints where

with additional restrictions on the input, the tracking performance deteriorated.

To briefly illustrate the desired output design applied to a behavioral problem, consider

the previously described example of an intervention aimed for improving physical activity.

The goal of the input design is provide generate a binary input (i.e. reward or no reward)

such that the number of steps taken by the participant per day match daily goals as close as

possible under other factors. This will help understand the complex relationship, through

experimental data, between rewards and their effect on improving the physical activity of

that individual [78]. The optimized experiment takes advantage of the dynamical model

developed from behavioral theory, specifically social cognitive theory [38], to determine the-

orized “optimal” delivery of the intervention component over time. This optimization is

performed under constraints that reflect clinical and practical guidelines. Fig. 6.6 shows

the optimal input for a simulation. Using a dynamical system informed from experimental

data [38], which is found to be closed to an integrating system, it is interesting to observe

that the optimal input naturally ‘dies off’ towards the end of the time period as the ob-
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Figure 6.6: Dynamic simulation of steps per day (from baseline of 5000 steps) to a binary
reward input for an intervention aimed at improving physical activity among adults. The
weekly goals are derived from averaging the daily goal setpoint.

served behavior is closer to the goal. Typical input signals in system identification such as

PRBS will continue to switch on and off, and hence are not beneficial in such applications.

The optimized experiment is expected to result in superior information within allowable

constraints in a single-subject fashion. The proposed input design can be extended to in-

corporate other manipulated variables as well as logical conditions on the delivery of these

components such as rewards will be not be assigned unless the previous day goals have been

reached [78].

Finally, it is worth mentioning that simple extensions can be proposed to the input

design formulation shown in this section. For example, it can be used injunction with

minimum parameter variance optimal input design, as described in Section 3.4.3, to satisfy

the patient friendly requirements. The optimal design procedure yields an optimal spec-

trum and an input can be found using the method of spectral factorization [142, 154]. In

general, the spectral factorization procedure does not guarantee that any patient friendly
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requirements are satisfied. In such a scenario, the desired output is known from the opti-

mal design, and hence an input can be designed to reach this output while satisfying time

domain constraints as shown in (6.2). Some of the properties of the optimal spectrum may

be lost but as a trade-off to satisfy time-domain constraints. The problem formulation can

also be extended to include an a priori model uncertainty which can be formulated in terms

of impulse response coefficients

G = G0 +∆ (6.5)

where G0 is the true model as described in (4.14) and ∆ ∈ R
N×N is a matrix capturing

the model uncertainty on the impulse response parameters. The input design problem (6.1)

can be modified and posed as a robust optimization problem.

6.3 Input Signal Design for a Desired Spectrum under Constraints

Frequency domain requirements, discussed in Section 4.2, are enforced as a way to satisfy

persistence of excitation of the input signal. Section 3.4.3 presented design of optimal input

using the parametrization in terms of the autocorrelation coefficients. The aim of the input

signal design formulation in this section is to find a realization of the signal, under time

domain constraints, such that the signal spectrum (Φu(ω)) approximates a desired spectrum

(γ(ω)). In many circumstances, very little a priori knowledge of the system is available, so

a “flat” spectrum over a bandwidth is a reasonable approximation

Φu(ω) ≈ γ(ω) =







γa ω∗ ≤ ω ≤ ω∗

γb ω > ω∗,
(6.6)

where γa and γb are real numbers defining the magnitude and ω∗ denotes the desired

bandwidth. Based on the discussion in previous chapters, the following properties are

desired from an input signal:

• Frequency range of interest. The input signal should be persistently exciting with

significant power over the required bandwidth. Since the model may be intended for

188



control design, the signal bandwidth should cover the frequency range of interest for

control. Such bounds can be approximately calculated using dominant time constant

estimates (τHdom, τ
L
dom) of the system based on the high (αs) and low (βs) frequency

information as:

ω∗ =
1

βsτHdom
≤ ω ≤ αs

τLdom
= ω∗, (6.7)

where typically αs = 2 and βs = 3 [80].

• Periodicity. Applying multiple cycles of a periodic input makes it possible to obtain

estimation and validation data sets, thus facilitating crossvalidation. Also, a periodic

input creates a natural time window for the identification experiment, allowing the

user to examine the data while the clinical trial is underway. Hence the input design

can be modified after the end of a period to better conform to the observed dynamics.

• Change in levels. Having multiple levels in the input signal can be beneficial, partic-

ularly if the plant under study is nonlinear in nature [45].

Using the parametrization developed in Section 4.2, the condition expressed in (6.6) is

considered, i.e. when a particular spectrum must be matched exactly. This Chebychev

type of problem [158] can be stated as

min
u

|Φu(ω)− |γ(ω)||, (6.8)

and can be reformulated by using an auxiliary variable t, as:

|Φu(ω)− |γ(ω)|| ≤ t (6.9)

or,− t ≤ Φu(ω)− |γ(ω)| ≤ t (6.10)

or,− t+ |γ(ω)| ≤ Φu(ω) ≤ t+ |γ(ω)|, (6.11)
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and hence the original problem (6.8) can be written as

min
u∈U∩I

|Φu(ω)− |γ(ω)|| ≡







min
u,t

t

s.t. −t+ |γ(ω)| ≤ Φu(ω) ≤ t+ |γ(ω)|

ω ∈ [0, π]

umin ≤ u ≤ umax

|u(k + 1)− u(k)| ≤ b(k)

u(k) ∈ I.

The following can be said regarding the optimization problem (6.8):

• The spectrum is parametrized using the relation shown in (4.20).

• In addition to this optimization being mixed-integer nonlinear constrained problem,

(6.11) makes the problem semi-infinite due to the continuous variable ω ∈ [0, π]. A

numerical approach to address this is to use a discretized spectral space [234] on finite

(M) numbers. This is shown in (6.12).

• The constraint −t+ |γ(ω)| ≤ Φu(ω) is nonconvex as discussed in Section 4.2. It is also

non-sparse given it involves all the decision variables (samples u(k)) in a fully coupled

way. In other words, the problem does not enjoy any particular sparsity structure.

• The optimization problem is integer constrained: u(k) ∈ I ∀k. This makes the problem

NP-hard. One way to handle this is to replace it with polynomial inequalities as shown

in (4.10).

Consequently, the optimization problem can now be restated as:

min
u,t

t (6.12)

s.t. − t+ |γ(ωj)| ≤ Φu(ωj) ≤ t+ |γ(ωj)|

0 ≤ ωj ≤ π, j = 1, . . . ,M
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umin ≤ u ≤ umax

|u(k + 1)− u(k)| ≤ b(k)

|
∏

i∈I

(u(k)− i)| ≤ ǫ

The problem (6.12) can be solved using standard nonlinear programming tools to obtain

a local solution. Numerical solution have been discussed in the context of Weyl design

in Section 5.2.4 to show the quality of the numerical solution, where Fig. 5.6 shows the

comparison of various input spectrum with desired spectrum. The optimization (6.12) can

also be used to implement input spectrum obtained from minimum parameter variance op-

timal designs [80]. The ensuing section discusses input signal design to minimize parameter

variances under time-domain constraints.

6.3.1 Classical Minimum Parameter Variance Input Design under Constraints

This section briefly discusses generalization of persistence of excitation on the input signal in

terms of size of the parameter covariance matrix or in the maximum likelihood framework,

size of the Fisher information matrix. Primarily for computational reasons, the classical

optimal input design problems are parametrized in terms of input spectrum (or the auto-

correlation coefficients) which can be posed as convex optimization problems [162], where

it is difficult to directly address critical time domain constraints. In fact, the only definite

way to address the time domain constraints is to formulate the information matrix directly

as function of the input.

For FIR and ARX model structure, the estimation problem is linear least squares and

hence the estimated parameter θ̂ ∈ R
nθ can be written as

θ̂ = (XTX)−1XTY (6.13)

where X is a matrix formed using the regressors ϕ(k) and Y is a vector of observed out-

puts. The term XTX ∈ R
nθ×nθ captures the associated estimation error [46], and hence
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minimization (in some sense using function µ typically matrix trace or determinant [49]) of

that term would yield smaller error for the given signal-to-noise ratio

max
u

µ(XTX) (6.14)

s.t. u ∈ U.

In general, the information matrix can be written in terms of quadratic functions

I(u) =









uTF T
1 F1u · · · uTF T

1 Fnθ
u

... · · · ...

uTF T
nθ
F1u · · · uTF T

nθ
Fnθ

u









∈ R
nθ×nθ (6.15)

where nθ is the order of the model and the derivation of specific quadratic forms (F1, . . . , Fnθ
)

can be found in [161, 51]. In [161], this has been posed as a maximization of a convex

function under affine constraints and was solved using the method of SDP relaxation of

nonconvex quadratic programs.

In particular, for the FIR case, the average information matrix is known to be

I(u) =
1

N

N∑

k=1

ϕ(k)ϕ(k)T =
1

N

N∑

k=1









u2(k − 1) · · · u(k − 1)u(k − nθ)

... · · · ...

u(k − nθ)u(k − 1) · · · u2(k − nθ)









.

(6.16)

based on relationship shown in (3.11). It can be noted that the off diagonal terms are

related to the autocorrelation of the input signal. Thus, an input signal which is a white

will make the off-diagonal terms zero and hence is optimal for D-optimal designs [46, 235].

In addition, due to the FIR structure, the problem (6.14) is sparse and hence can be solved

using sparse polynomial optimization with details as discussed in Section 5.3.2. For the

purpose of simple illustration, consider the example system in Section 5.3.5 parametrized

using FIR regressor of order nθ = 25. The resulting input signal and its autocorrelation

for N = 50 is shown in Fig. 6.7. It can be observed that the relaxation based procedure

naturally procedures an input signal which is finite length, deterministic and white. Thus,
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Figure 6.7: (a) Optimal input to minimize the trace of the information matrix under am-
plitude constraints shown in (6.14). The input signal autocorrelation is shown in (b).

this provides an approach to generate persistently exciting input signal of arbitrary length,

under constraints, as defined in Section 3.4.1. Further model quality constraints, which

are expressed as a function of the information matrix, could be represented in terms of the

input. In future work, other cases where the optimization problem (6.14) is sparse can be

analyzed.

6.4 Chapter Summary

This chapter proposed input signal design under user-specified objective function. Broadly,

two formulation are presented: where a desired output trajectory is defined and the other

formulation where the desired input signal spectrum is defined under time domain con-

straints. The desired output formulation is posed as convex optimization problem with

illustration using an input signal design for a physical activity intervention. The desired

input spectrum problem formulation is posed as a nonlinear program. Additional discus-

sion is also presented in posing the minimum parameter variance input design problem

using sparse optimization, and a numerical example is used to show that a finite length

persistently exciting input signal can be generated using the optimization procedure.

193



Chapter 7

EXTENSIONS TO HYBRID MODEL PREDICTIVE CONTROL

7.1 Overview

This chapter extends the hybrid model predictive control (HMPC) formulation intro-

duced in Chapter 2. The improvement is proposed in two ways: first, by incorporating

requirements on switching time of the manipulated inputs and secondly, by enabling ma-

nipulation of one input at a time among multiple inputs. This is achieved by extending

the traditional mixed logical dynamical (MLD) framework, first introduced in [92], by rep-

resenting the desired requirements as linear equality constraints and mixed-integer linear

inequality constraints respectively. It is worth mentioning that the necessity for considera-

tions of hybrid dynamics arises from the fact that the dosages of intervention components

may be required to take only categorical values. In this dissertation, the two proposed up-

dates are expressed using the inputs applied externally to the system, where the states and

the outputs of the dynamical system are assumed to vary continuously. Numerical examples

are shown using the previous problem of treatment plan for fibromyalgia as discussed in

Chapter 2.

The rest of the chapter is organized in the following sections: Section 7.2 re-states the

hybrid model predictive control formulation for completeness. Section 7.3 describes the

switching time strategy for HMPC with numerical illustration and Section 7.4 describes

the procedure for manipulating one input at a time among multiple inputs. The chapter

summary is presented in Section 7.5.

7.2 HMPC as a Decision Framework

Model predictive control (MPC) is an online optimization based control technique where

a finite-horizon, open-loop, discrete-time optimal control problem is solved at any given time
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k over the horizon m. The resulting optimization problems for LTI systems can be shown

to be a convex quadratic programs (QP) [236] and for LTI hybrid system as convex mixed-

integer quadratic programs (MIQP) [92]. Next, only the first value of the calculated optimal

input is applied to system, and the process is repeated for the next sampling instance. This

‘receding-horizon’ framework ensures that the final control law is closed-loop and resolving

the problem at each instance makes the control system more robust to uncertainty and

disturbances. The MPC technology is particularly suited to be used in clinical applications

due to the flexibility it offers to address design objectives and constraints. Examples of

application of HMPC in behavioral interventions can be found in [21, 16, 103, 237].

In this chapter, a formulation for hybrid model predictive control with three degree-of-

freedom (3 DoF) tuning developed in [96, 97] is used as the basis for making updates. The

optimal control is obtained by solving the following mixed-integer quadratic optimization

problem based on a quadratic cost function

min
ρ={[u(k+i)]m−1

i=0
, [δ(k+i)]p−1

i=0
, [z(k+i)]p−1

i=0
}

p
∑

i=1

‖(y(k + i)− yr)‖2Qy
+

m−1∑

i=0

‖(∆u(k + i))‖2Q∆u

+
m−1∑

i=0

‖(u(k + i)− ur)‖2Qu
+

p−1
∑

i=0

‖(δ(k + i)− δr)‖2Qd

+

p−1
∑

i=0

‖(z(k + i)− zr)‖2Qz
(7.1)

s.t. ymin ≤ y(k + i) ≤ ymax, i ∈ Tp (7.2)

umin ≤ u(k + i) ≤ umax, i ∈ Tm (7.3)

∆umin ≤ ∆u(k + i) ≤ ∆umax, i ∈ Tm (7.4)

Dynamics







x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +Bdd(k)

y(k) = Cx(k) + d′(k) + ν(k)

(7.5)

MLD

{

E2δ(k) + E3z(k) ≤ E5 + E4y(k) + E1u(k)− Edd(k) (7.6)

where Tp = {1, . . . , p}, p is the prediction horizon, Tm = {0, . . . ,m − 1}, m is the control

horizon, yr is the reference, Q∗ are the penalty weights. Specific details of the formulation
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can be found in Chapter 2 where it was used to assign dosages of naltrexone for treatment

of fibromyalgia.

The enhancements suggested in this chapter assume linear dynamics and incorporate the

desired requirements on the manipulated inputs, thus creating the functionality needed by

the control algorithm to make decisions within a receding horizon framework. The flexibility

associated with HMPC is used to incorporate two requirements frequently desired in clinical

applications:

1. Switching time constraints,

2. Manipulating one input at a time among multiple inputs.

The ensuing sections discusses these two formulations to meet requirements of decision

policies in adaptive interventions.

7.3 Switching Time Strategy

Due to clinical and resource considerations, it is often desirable to make decisions at

frequencies other than the regular sampling interval. For example, the participant may

visit the clinic, say, every other Monday (the assessment cycle) while data is collected daily

through self-monitoring. In this situation, it is desirable to make decisions on intervention

components on a weekly or multi-weekly basis, despite daily sampling of intervention out-

comes. In other words, the control decisions are required to be made at an a priori known

integer multiple Tsw of the system sample time T in addition to the previously discussed

constraints. This section describes the algorithm for making the control decisions at such

known samples of time. It should be noted that this requirement is different from specifica-

tions of multirate control as all the variables considered are sampled at the same rate. It is

also distinct from move blocking strategies [238] which are aimed at computational burden

reduction.
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Figure 7.1: Control horizon m = 7 for HMPC at any time k for switching time Tsw = 2.
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Figure 7.2: Control horizon m = 7 for HMPC at any time k+1 for switching time Tsw = 2.

k k + 1 k + 2 k + 3 k + 5 k + 7 k + 10

Figure 7.3: Control horizon m = 7 for HMPC at any time k+2 for switching time Tsw = 2.

This algorithm is referred to in this chapter as a switching time strategy and this is

achieved by enforcing control move size ∆u(k) to be zero over the control horizon except

when decisions have to be made. Fig. 7.1 shows the control horizon m = 7 for any given

time k when the switching time Tsw = 2. The sample points in time where the control

decision has to be made is shown by longer vertical lines in Fig. 7.1-Fig. 7.3. As the horizon

moves forward for the next iteration at sample k + 1 as shown in Fig. 7.2, the points

where the control decisions are made have moved relative to the horizon. Similarly, for

the next iteration at sample k + 2, the horizon is shown in Fig. 7.3. Thus, the constraints

describing the switching behavior have to be updated by taking the receding horizon nature

of HMPC into account, and this can be written as time-dependent linear equality constraint:
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ATsw
(k)u = 0. The matrix ATsw

(k) has a block-diagonal structure, for example,
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(7.7)

where rows with ⋆ entries and 0 (row of zeros) are assigned by the algorithm. The rest of

the entries in the matrix are zero. One of the ways to generate this matrix at each sampling

instant k is as following:

1. Given the control horizon m and switching time Tsw(≤ m), calculate the number

of blocks numblocks = ⌊m−1
Tsw

⌋ + 1. If the numblocks ≥ 3, define number of block

excluding the first and last block: midblocks = numblocks− 2. The term ‘switching

sample’ will be used to denote sample when the control is allowed to change its value

i.e. iff rem( k
Tsw

) = 0, where rem is the remainder.

2. The matrix ATsw
(k) is populated by 0, 1 or −1 to implement the move size restric-

tion, and its size is determined by length of control horizon and size of numblocks:

ATsw
(k) ∈ R

(Tsw+midblocks×(Tsw−1)+rem(m−1

Tsw
)+1)×m.

3. The rows in ATsw
(k) corresponding to switching samples will be set to zero; otherwise

the rows will be populated to implement ∆u(k + i) = 0.
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Figure 7.4: Performance of hybrid MPC (eight levels) with tuning parameter (αr, αd, fa) =
(0.5, 0.5, 0.5) under Tsw = 2 for fibromyalgia problem considered in Chapter 2.

4. Finally, the first sample u(k) is assigned the previously calculated optimal value i.e.

u(k) = u∗ when k does not correspond to the switching sample (as per the receding

horizon framework).

This algorithm can be demonstrated using the example problem considered in Sec-

tion 2.5.1 for nominal performance. The simulations are repeated under same parameter

values with additional enforcement of the switching constraint. Fig. 7.4 shows the case

when the switching time is 2 days or, the control input can change every other day. Simi-

larly, Fig. 7.5 shows the case for switching time of 5 days and Fig. 7.6 shows the case when

the switching time is 7 days or weekly. With this additional constraint, there is a natural

degradation in performance as changes in the input are not allowed at every sample.

Finally, while mathematically the switching time strategy is similar to move blocking

strategies used in MPC [238], the difference, besides the process of generating the matrix
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Figure 7.5: Performance of hybrid MPC (eight levels) with tuning parameter (αr, αd, fa) =
(0.5, 0.5, 0.5) under Tsw = 5 for fibromyalgia problem considered in Chapter 2.

ATsw
(k), lies in the fact that in move blocking strategies, the idea is to decrease the di-

mension of the decision variable to reduce the computational burden, whereas here the

requirement is to apply controls only at specified samples while the size of the decision vari-

able remains the same, and is enforced as a constraint in the HMPC optimization problem.

7.4 Selection of Single Input in a Multi-Input Scenario

Many adaptive interventions usually require that only one component or input may

change dosage at any given time. This may be necessary to prevent the participant from

being uncomfortable due to any dramatic unknown interactions between different compo-

nents of the treatment. This basically implies that the controller can only choose one input

to incur change at each sampling time, and the other input changes have to be zero at that

time instant. Of course, there is no restriction on which input among given inputs should
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Figure 7.6: Performance of hybrid MPC (eight levels) with tuning parameter (αr, αd, fa) =
(0.5, 0.5, 0.5) under Tsw = 7 for fibromyalgia problem considered in Chapter 2.

change at given time. Thus, the HMPC problem should be formulated in such a way that

the controller chooses an input to change based on goals, dynamics and a logical statement

describing the selection of single input in a multi-input scenario.

The HMPC problem formulated in (7.1)-(7.6) contains the following vector of decision

variables

ρ =
[
[u(k + i)]m−1

i=0 , [δ(k + i)]p−1
i=0 , [z(k + i)]p−1

i=0

]T
. (7.8)

In this section, selection of one input at a time is enforced by forcing the move size of other

inputs as zero. Towards this, additional binary variables φ are augmented to the decision

vector to achieve this functionality. In the following, the associated logical specifications

are derived and converted into linear inequalities, and are implemented by appending them

to the MLD equation.

For the purpose of illustration, consider a multi-input system with nx manipulated
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inputs. The number of the additional binary variables corresponds to the number of the

manipulated inputs or, in other words, nx binary variables (φ1, φ2, . . . , φnx) are augmented

into the vector of binary variables δ in (7.8). The selection of one input change can be

logically expressed as follows,

φ1(k) = 1 ⇔







|∆u1(k)| > 0,

∆u2(k) = · · · = ∆unx(k) = 0

(7.9)

φ2(k) = 1 ⇔







|∆u2(k)| > 0,

∆u1(k) = · · · = ∆unx(k) = 0

(7.10)

... (7.11)

φnx(k) = 1 ⇔







|∆unx(k)| > 0,

∆u1(k) = · · · = ∆unx−1(k) = 0

(7.12)

φ(k)⊙∆u(k)min ≤ ∆u(k) ≤ φ(k)⊙∆u(k)max (7.13)

nx∑

i=1

φi(k) ≤ 1 (7.14)

where φ(k) = [φ1(k) φ2(k) . . . φnx(k)]
T (7.15)

∆u(k) = [∆u1(k) ∆u2(k) . . . ∆unx(k)]
T (7.16)

∆u(k)max = [∆u1(k)max ∆u2(k)max . . . ∆unx(k)max]
T (7.17)

∆u(k)min = [∆u1(k)min ∆u2(k)min . . . ∆unx(k)min]
T (7.18)

and ⊙ is the Hadamard product. The logical specifications in (7.9) - (7.13) can be ex-

pressed as linear inequalities related with u(k) over the m control horizon, and φ(k) over

the p prediction horizon, (7.14) is augmented after the linear inequalities of binary vari-

ables δ(k) in (7.8) over the p prediction horizon. The resulting optimization remain a

mixed-integer quadratic program (MIQP) with additional binary variables to determine

which input should change at a given time instant. For brevity, a numerical illustration is
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not shown in this section. This algorithm has been applied to the problem of managing

gestational weight gain (GWG) among pregnant women where different intervention com-

ponents such as healthy eating and physical activity cannot change simultaneously and is

shown with a numerical illustration in [103].

7.5 Chapter Summary

In summary, this chapter has introduced two specific concepts relating to improvements

in hybrid model predictive control: a switching time strategy and selection of a single input

in a multi-input scenario. Both conditions are proposed as an extension of the mixed logi-

cal dynamical (MLD) framework and are implemented as a time-dependent linear equality

and mixed-integer linear inequality constraints. For the switching time scenario, numerical

examples are presented to show the effect of switching constraint on the performance of

HMPC for the simulated fibromyalgia intervention. This work demonstrates the poten-

tial for real-world applications of an adaptive intervention by employing control-oriented

approach and the flexibility associated with the model predictive control framework. The

HMPC formulation proposed in this dissertation can also be extended to incorporate fully

time dependent constraints developed using linear temporal logic. It should be noted that

these clinically-motivated enhancement do not guarantee recursive feasibility and ultimately

closed-loop stability of this improved HMPC formulation, and other methods have to be

developed to address this issue. Future work will analyze the issues of stability and recursive

feasibility in a 3 DoF tuning framework.

In conclusion, the MPC framework can also be modified to include more complicated

nonlinear models as long as they can be written in predictive forms. On the other hand,

the controller can be also built to utilize local models for such nonlinear cases. Once such

example is called Model-On-Demand Model Predictive Control (MoDMPC) [54, 89, 91].

In this approach, a local linear model (as shown in (3.23)) is obtained from the MoD

estimator at each sampling time. This model can be converted to the standard state-space
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MLD structure by rearranging (3.23) in output predictor format as shown in [91]. Since

the model is changed at each sampling instant, it can capture autonomous events in hybrid

systems [239, 240] where as the non-autonomous events are captured by the original MLD

equation [91, 92]. With optimal input signal design for data-centric methods introduced

in earlier chapters, a more informative dataset can be obtained. This in turn will lead

to better local models which can be directly used by the controller for improved closed-

loop performance. Analysis of the effect of input signal design on MoDMPC represents an

interesting topic for future research.
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Chapter 8

SUMMARY AND FUTURE WORK

8.1 Summary of the Dissertation

The design of input signals for system identification under constraints on the input and

output signals is examined in this dissertation. A major emphasis of this work has been

to integrate the requirements originating from clinical practice with the requirements for

data-centric system identification methods such as Model-On-Demand (MoD). The concept

of “patient-friendly” design has been introduced by making a case for how the current

approaches to population-level clinical trials may fall short of producing informative data

for identifying dynamics through system identification. Hence an improved design can

be systematically obtained through the use of input signals as a means to operationalize

single-subject clinical trials. For data-centric methods, a novel framework using geometrical

distribution of regressors in the finite dimensional regressor space has been proposed. It

has been extended for highly interactive systems by addressing distribution of time-indexed

output points in the finite dimensional output space. Extension to the case of multi-input

single-output multivariable systems has also been proposed.

The formulated problems are difficult nonconvex optimization problems and hence

tractable relaxations have been proposed for an efficient solution. The set of input con-

straints from the set U and set I which are shown to be naturally sparse. In addition, it is

shown that the data-centric formulations are amenable to sparse polynomial optimization

under selected regressor distances pairs using FIR parametrization and user-defined custom

monomial basis. Numerical examples are presented to illustrate the benefit of proposed

input design formulations for both LTI systems and Hammerstein systems, and are con-

trasted with design based on the Weyl’s criterion. Through numerical examples, a case

has also been made for the utility of the convex relaxation procedures by generating useful
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bounds on the objective function value.

Additional input design formulations have also been proposed to achieve a desired out-

put under constraints, specific input spectrum under input constraints and minimization of

the parameter uncertainty in a least-squares type estimator in system identification. The

process of input design is complemented by showcasing a secondary data analysis of naltrex-

one intervention for fibromyalgia, and its limitations, with subsequent closed-loop control

using simulation.

As the end-use of informative data is better models and improved closed-loop per-

formance, the mixed logical dynamical framework for hybrid model predictive control is

extended to incorporate a switching time strategy, where the decisions are made at some

integer multiple of the sample time, and for enabling manipulation of only one input at a

given sample time among multiple inputs. Numerical examples are shown for the case of

switching time by using the problem for the naltrexone intervention for fibromyalgia under

two days, five days and weekly switching time.

The major contributions of this dissertation can be listed as:

• Proof-of-concept secondary analysis of fibromyalgia clinical data for identification and

control. Chapter 2 shows a secondary data analysis conducted on a clinical trial data

where a linear parametric model is derived and is used by a hybrid model predictive

controller to assign dosages over time. Various cases of relevance to clinical practice

have been considered.

• Elucidation of various constraints for identification and control originating from the

demands of practice. In particular, the focus has been on requirements from the

fields of behavioral health and medicine resulting in patient-friendly designs. The

constraints considered include limits on signal amplitude, rate of change, switching

time and categorical levels as discussed in Section 4.2.
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• The input design problems are formulated to directly address time domain constraints.

Hence, the decision variable is the finite dimensional deterministic input signal u.

Specifically, to address the requirements of data-centric estimation methods, broadly

two designs approaches are proposed:

– Design based on Weyl’s criterion,

– Design based on optimal distribution of regressors and time-indexed output

points using two methods:

∗ Maximize the sum of all distance pairs,

∗ Maximize the minimum of all distance pairs.

• A design approach based on Weyl’s criterion results in uniform distribution in the

output space. Numerical examples are based on a hypothetical clinical trial and

various simulations based on practical scenarios are conducted.

• A design approach based on distribution of regressors is aimed to cover the regressor

space so as to generate sufficient support for the estimator. The subsequent optimiza-

tion problem for LTI systems and Hammerstein systems is solved using nonlinear

programming, SDP relaxation of nonconvex quadratic program and sparse polyno-

mial optimization.

• A design approach using distribution of time-indexed output points is aimed to gener-

ate uniform coverage in the ill-conditioned output space. The subsequent optimization

problem for LTI systems is solved using nonlinear programming and SDP relaxation

of nonconvex quadratic program.

• Input signal design problems are also developed for desired objectives. For a de-

sired output trajectory over time, the optimization problem is shown to be convex

mixed-integer quadratic programming problem. The formulation is illustrated on a
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hypothetical intervention for improving physical activity using the dynamical model

derived from social cognitive theory (SCT).

• Extensions to the hybrid model predictive control formulation through incorporation

of two logical conditions on the input change which are frequently encountered in

practice: switching time constraint and manipulation of only one input in a multi-

input scenario.

The ensuing section discusses directions for future work.

8.2 Directions for Future Work

There are many interesting open research problems in the context of data-centric input

signal design, and automated dosage assignment in behavioral health and medicine settings

using control systems. Among the future topics of interest for constrained input signal

design problem are:

1. For data-centric input signal design, a useful extension would be to analyze the direct

effect of distribution of regressors on the estimation error globally. In other words,

it would be interesting to derive stronger statistical arguments for the objective of

distribution of regressors.

2. The problem formulations can be extended to include distribution of regressors and

output points under uncertainty. In Chapter 4, it is shown that for a linear system

under noise with zero mean and known covariance, the average distribution of re-

gressor is same as the deterministic objective. A comprehensive exploration can be

conducted for the cases where such results holds true.

3. Extension of the method of distribution of regressors to other block-structured system

such as Hammerstein-Wiener (H-W) systems and other nonlinear system written in

the regressor form.
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4. Additional interesting cases can be examined for highly interactive systems such as

distribution of output points when the input is amplitude or power constrained and

excitation of only certain region in the output space. The presented input design

approach can also be compared with other input design methods in literature for

ill-conditioned systems.

5. More efficient parametrization of the regressor distance pairs can be explored from a

computational point-of-view so that the formulation is more suited for sparse poly-

nomial optimization methods without sacrificing any of the distance pairs. This can

include using the ℓ∞ distance and an affine transformation of the decision variable u

to some other variable x such that x = Zu where Z is chosen to induce sparsity.

For automated dosage assignment using hybrid model predictive control, additional

improvements can be made in the following areas:

• Incorporation of local linear dynamical models from data-centric estimators such as

MoD as a means for implementing nonlinear control. The effect of focused data-centric

input design on the closed-loop performance can also be quantified.

• The logical constraints such as switching constraints and choosing one input only

can be further generalized by incorporating more complicated conditions, such as, for

example, the first input may change only when the second input has reach a particular

value, using linear temporal constraints.

• It is arbitrarily difficult to assign ‘exact’ setpoints in many clinical problems. More-

over, the measurements are often faulty and corrupted by noise and hence, it is more

practical to require the controller to keep the controlled variables in a desired setpoint

band rather than a fixed setpoint. The HMPC formulation can be the modified such

that the setpoint tracking is not part of the objective (Qy = 0) and specific setpoint
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band is enforced through a constraint added to the original formulation including

output prediction considering uncertainty.

In conclusion, this dissertation has tried to address problems arising from requirements

of clinical practice together with local modeling in system identification. It is hoped that

this will motivate future work in this area towards addressing open problems of theoretical

and practical nature.
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