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ABSTRACT

In the field of infectious disease epidemiology, the assessment of model robustness out-

comes plays a significant role in the identification, reformulation, and evaluation of pre-

paredness strategies aimed at limiting the impact of catastrophic events (pandemics or the

deliberate release of biological agents) or used in the management of disease prevention

strategies, or employed in the identification and evaluation of control or mitigation mea-

sures. The research work in this dissertation focuses on: The comparison and assess-

ment of the role of exponentially distributed waiting times versus the use of generalized

non-exponential parametric distributed waiting times of infectious periods on the quantita-

tive and qualitative outcomes generated by Susceptible-Infectious-Removed (SIR) models.

Specifically, Gamma distributed infectious periods are considered in the three research

projects developed following the applications found in [28, 29, 31, 22, 32, 33, 37, 38]. i)

The first project focuses on the influence of input model parameters, such as the transmis-

sion rate, mean and variance of Gamma distributed infectious periods, on disease preva-

lence, the peak epidemic size and its timing, final epidemic size, epidemic duration and

basic reproduction number. Global uncertainty and sensitivity analyses are carried out us-

ing a deterministic Susceptible-Infectious-Recovered (SIR) model. The quantitative effect

and qualitative relation between input model parameters and outcome variables are es-

tablished using Latin Hypercube Sampling (LHS) and Partial rank correlation coefficient

(PRCC) and Spearman rank correlation coefficient (RCC) sensitivity indices. We learnt

that: For relatively low (R0 close to one) to high (mean of R0 equals 15) transmissibil-

ity, the variance of the Gamma distribution for the infectious period, input parameter of

the deterministic age-of-infection SIR model, is key (statistically significant) on the pre-

dictability of the epidemiological variables such as the epidemic duration and the peak size

and timing of the prevalence of infectious individuals and therefore, for the predictability

these variables, it is preferable to utilize a nonlinear system of Volterra integral equations,

i



rather than a nonlinear system of ordinary differential equations. The predictability of

epidemiological variables such as the final epidemic size and the basic reproduction num-

ber are unaffected by (or independent of) the variance of the Gamma distribution for the

infectious period and therefore for the choice on which type of nonlinear system for the

description of the SIR model (VIE’s or ODE’s) is irrelevant. Although, for practical pro-

poses, with the aim of lowering the complexity and number operations in the numerical

methods, a nonlinear system of ordinary differential equations is preferred. The main con-

tribution lies in the development of a model based decision-tool that helps determine when

SIR models given in terms of Volterra integral equations are equivalent or better suited than

SIR models that only consider exponentially distributed infectious periods. ii) The second

project addresses the question of whether or not there is sufficient evidence to conclude

that two empirical distributions for a single epidemiological outcome, one generated us-

ing a stochastic SIR model under exponentially distributed infectious periods and the other

under the non-exponentially distributed infectious period, are statistically dissimilar. The

stochastic formulations are modeled via a continuous time Markov chain model. The sta-

tistical hypothesis test is conducted using the non-parametric Kolmogorov-Smirnov test.

We found evidence that shows that for low to moderate transmissibility, all empirical dis-

tribution pairs (generated from exponential and non-exponential distributions) for each of

the epidemiological quantities considered are statistically dissimilar. The research in this

project helps determine whether the weakening exponential distribution assumption must

be considered in the estimation of probability of events defined from the empirical distribu-

tion of specific random variables. iii) The third project involves the assessment of the effect

of exponentially distributed infectious periods on estimates of input parameter and the as-

sociated outcome variable predictions. Quantities unaffected by the use of exponentially

distributed infectious period within low transmissibility scenarios include, the prevalence

peak time, final epidemic size, epidemic duration and basic reproduction number and for
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high transmissibility scenarios only the prevalence peak time and final epidemic size. An

application designed to determine from incidence data whether there is sufficient statis-

tical evidence to conclude that the infectious period distribution should not be modeled

by an exponential distribution is developed. A method for estimating explicitly specified

non-exponential parametric probability density functions for the infectious period from epi-

demiological data is developed. The methodologies presented in this dissertation may be

applicable to models where waiting times are used to model transitions between stages, a

process that is common in the study of life-history dynamics of many ecological systems.
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Arlene Evangelista Morales, Ciera Rosario Duran, José Manuel Vega and family, Ka-
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Chapter 1

INTRODUCTION

1.1 Broad problem statement

Mathematical models are a critical research component in the life and social sci-

ences. Hence the importance of addressing the broad problem of evaluating the impact

of model assumptions and derived relationship on observed conclusions or hypotheses that

emerge from qualitative and quantitative model-based studies in the life and social sciences.

For example, model assessment provides useful insights that help modelers re-design or re-

vise research protocols that may prevent help identify limitations or flaws. Systematic

model assessment limits the likelihood of reporting incomplete or misguiding conclusions.

The case of Hurricane Katrina (2005), the deadliest Hurricane in the past 90 years of history

in the United States of America, helps exemplify our perspective. The impact of Katrina is

still being felt. Katrina’s death toll of about 1,500 people (see [8]) and the associated eco-

nomic property loss of around 96 billions that followed its aftermath (see [9]) highlight the

importance of assessing uncertainty. Models forecasted accurately Katrina’s path (approx-

imately) 56 hours ahead of time, that is, we had some of the information needed to execute

emergency plans (see [10]). However, lack of preparadeness and delayed response from

local and federal governments, worsened the consequences of this disaster (see [11, 12]).
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1.2 Particular problem statement

Systematic model assessment naturally also plays a critical role in the field of infec-

tious disease epidemiology, particularly within the study of a disease’s transmission dy-

namics and control, the kind of dynamics and interventions that take place over multiple

levels of organization and across highly distinct spatial and temporal scales. Hence, the

systematic assessment of the robustness of model’s outcomes plays a significant role in the

proposition, reformulation, and evaluation of preparedness strategies aimed at limiting the

impact of catastrophic events (pandemics or the deliberate release of biological agents) or

in the indentification and management of disease prevention, control or mitigation mea-

sures. An important step in model assessment, involves the systematic study of the effects

of modeling assumptions and such an assessment is the main theme of this dissertation.

The conclusions made from qualitative and or quantitative epidemiological studies of

infectious diseases are derived from: 1) an assessment of the effectiveness of implemented

intervention strategies and 2) the optimal allocation of limited resources. Such assessment

and resource re-distribution depend on a set of outcome (prediction) variables that include,

for example, the basic reproduction number or the final epidemic size (See Figure 1.1 for

more examples). These epidemiological quantities are derived from compartmental epi-

demiological models that approximately describe the underlying transmission dynamic of

infectious disease epidemics. Hence we must deal with two sources of uncertainty: in-

trinsic uncertainty, that is, the uncertainty associated with observable data (incidence of

infected individuals, mortality and morbidity) and structural sensitivity (for a detail expla-

nation on this topic please refer to [37]). Specifically, the research in this dissertation fo-

cuses on comparing and assessing the impact of the use of exponential or non-exponential

infectious period distributions on the quantitative and qualitative outcomes generated by

Susceptible-Infectious-Removed (SIR) models. The novelty and usefulness of our research
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relies on two facts: the applicability of the methodologies introduced as seen by the re-

search in all chapters and the flexibility of the methodology. Our approach allows for the

use and implementation of specified (arbitrary) parametric distributions for the infection

period. The Gamma probability density function is used to illustrate all the methodologies

developed since the Erlang distribution (a special case) is the most studied non-exponential

distribution for the infectious period (See [28, 29, 31, 22, 32, 33, 37, 38] for examples).

1.2.1 Background

Successful stories of modeling of infectious diseases

What is the role modeling assumptions on the results and conclusions of qualitative or

quantitative studies? How will they impact model-generated based policies aimed at im-

proving the quality of public health policy? How can model-generated based policies guide

and help decision makers? An example of this can be traced back to research carried out

at the beginning of the twentieth century namely, pioneer and seminal work of Sir Ronald

Ross. He introduced a Malaria transmission mathematical model in order to show that

lowering the vector population below a particular threshold was enough (theoretically) for

controlling this deadly disease (see [7] and references there in). Nearly ninety years af-

ter the formulation of the Ross’ Malaria model, Edward H. Kaplan and others studied the

dynamics of contaminated needles with the HIV as vectors in assessing the future of the

HIV epidemic among populations of intravenous drug users (see [4]). Kaplan’s model was

used as the core of a methodology to evaluate the effectiveness of the first legal needle ex-

change program implemented against the HIV epidemic among the population of injecting

drug users (see [5, 6]). Evidence of a significant reduction (of about 33 percent) in the

transmission rate of HIV among injecting drug users was found, thus changing the pub-

lic health perspective on the effectiveness of needle exchange programs, which were later
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decriminalized and extended to other states of the union (see [4]).

Why the need of systematic model assessment?

The need of systematic model assessment in the study of the dynamics of infectious dis-

eases over multiple levels of organization is supported by past experiences. The 1918-1919

influenza pandemic (known as the Spanish flu), the most devastating in recorded history,

had an estimated death toll in the 20 to 100 million range [13, 14] with an estimated case

fatality in the 2-6 percent levels [15, 16]. Most recently, the highly pathogenic avian in-

fluenza (HPAI) virus subtype H5N, first isolated in 1996 from farmed goose in Guangdong

Province, China, resulted in 628 humans known infected cases from direct contact with

infectious birds. From these 374/628 died, leading to a case fatality rate of 59.6% [18].

From these examples, we see that systematic model assessment is critical not only because

of the loss of life but also because of the economic consequences linked to epidemics and

pandemics. For example the cost of dealing with foot and mouth disease in Britain was es-

timated to be in the order of billions! Model-generated predictions suggest that the impact

from an avian influenza pandemic could be in the order of billions to trillions [17].

1.3 Thesis outline

The introduction of the thesis and research problem statement are provided in Chapter

one. In Chapter two the fundamental concepts needed for the understanding of the core

and common frameworks used throughout the subsequent chapters are introduced. Chapter

three focuses on studying the influence of input model parameters on outcome (prediction)

variables within a deterministic compartmental epidemic model under Gamma distributed

infectious period distributions. The stochastic aspect is explored in Chapter four via a

continuous time Markov chain model. The influence on model parameter estimates un-

der standard modeling assumptions and within a simple compartmental epidemic model
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is assessed in Chapter five. Last chapter (Chapter six) provides an overall discussion and

conclusions on the main contributions and results of the research in this thesis.
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Chapter 2

FUNDAMENTAL CONCEPTS AND CORE FRAMEWORKS

2.1 Global framework

The landscape where an infectious disease emerges and spreads is usually a net-

work of (sub)populations (i.e. a metapopulation) of individuals (humans, or poultry, or

cattle, etc.). In general, the contact structure (or network) among individuals (between

and within populations) and the the size of each population are dynamic and heterogenous

throughout time. For example, in Switzerland the poultry size in a farm (considering com-

mercial and non-commercial) on average is of 1,317 poultry, but it may vary from 12 to

3,807 poultry, with around 97 percent of all poultry farms having neighbor farms within

one kilometer of radius (see [3]) and the whole provides an example of a metapopulation

of poultry. The epidemiological models considered throughout this thesis are intended to

describe the dynamics, especially the transient dynamic of an epidemic at either the popu-

lation level when the population (or subpopulation) size(s) is (are) sufficiently large so that

the assumption of homogenous mixing approximately holds.

2.2 Model description

Compartmental epidemiological models are common components used to build

metatpopulation mathematical epidemiological models. The basic models consider epi-

demiological classes of individuals that include: Susceptible individuals, represented by

the letter (S), may acquired the infection or disease via a (“successful”) contact with an

infectious individual. Infectious individuals are represented by the letter (I) and are the

ones with the ability to spread the disease. After an infectious period, infectious individu-
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als progress towards the removed (or recovered) disease stage (R). In this work we do not

consider vital dynamics, that is, birth and deaths are neglected. This simple compartmental

epidemiological model is known as the Susceptible-Infectious-Recovered (or SIR) model

(see Figure 2.1). The following are the usual fundamental implicit assumptions considered

in the basic SIR model (adapted from the seminal article by W. O. Kermack and A. G.

McKendrick, 1927 [24]):

• (A1: Absence of spatiality) All individuals are in contact with each other, mathematically

as a complete graph;

• (A2: Homogenous transmissibility) All infected individuals have the same potential to

transmit the disease;

• (A3: Homogenous vulnerability) All susceptible individuals have the same chance of

acquiring the infection;

• (A4: Constant rate) The transmission rate denoted by β is constant throughout the whole

epidemic duration.

• (A5: Vital dynamic is neglected) The total population N is constant throughout the whole

epidemic duration.

Figure 2.1: Schematic diagram of a simple age-of-infection Susceptible-Infectious-
Removed model with force of infection λ and instantaneous transition rate for the infec-
tious period f

F̄ .
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2.2.1 Fundamental concepts and deterministic formulation

The basic and widely used deterministic Susceptible-Infectious-Recovered compart-

mental model is described by the nonlinear system of ordinary differential equations

dS
dt

(t) = −β

N
I(t)S(t) (2.1)

dI
dt

(t) =
β

N
I(t)S(t)− γI(t) (2.2)

dR
dt

(t) = γI(t) (2.3)

where is implicitly assumed an exponential distributed infectious period. In other words, it

is assumed that the infectious period is a random variable with probability density function

f (s) = γe−γs. In this case the recovery rate γ (also known as the failure or hazard rate) is

the inverse of the mean infectious period.

But an exponential distribution for the infectious period is a far from realistic choice:

In most cases one expects a bell-shaped distribution (see Figure 2.2).

For a general distributed infectious period with probability density function f (s)

(where s, the age-of-infection, is the time elapsed since infection), the probability that an

individual remains infected after a time s is given by the survivor function F̄(s) = 1−F(s)

where F(s) is the cumulative distribution function F(s) =
∫ s

0 f (t)dt.

The hazard rate is now a function of the age of infection (except for the case of expo-

nential distribution), γ(s) = f (s)
F̄(s) .
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Assuming the standard force of infection the age-of-infection Susceptible-Infected-

Removed model becomes the nonlinear system of Volterra integral equations:

S(t) = S0−
∫ t

0

β

N
I(s)S(s)ds (2.4)

I(t) = I0F̄(t)+
∫ t

0

β

N
I(s)S(s)F̄(t− s)ds (2.5)

R(t) = R0 + I0(1− F̄(t))+
∫ t

0

β

N
I(s)S(s)(1− F̄(t− s))ds = N−S(t)− I(t). (2.6)

In the above system N is represents the total population size, in this case constant, since

N(t) = S(t)+ I(t)+R(t) = S0 + I0 +R0 = N0. Where S(0) = S0, I(0) = I0, R(0) = R0

are the corresponding initial conditions for S, I and R. The rational of equation I is as

follows: the first term, accounts for the initial number of infectious individuals I0 (index

case) whom at time t still remain as infectious accordingly to the survivor function F̄ , the
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whole term then is I(0)F̄(t); The second term accounts for those susceptible individuals

S that acquired the disease with a force of infection β

N I at any time s between the initial

time of the epidemic 0 and the epidemic time t and whom at an age of infection t− s still

remain as infectious accordingly to the survivor function F̄ , the whole term is given by∫ t
0

β

N I(s)S(s)F̄(t− s)ds.

The nonlinear system (2.4)-(2.6) can be rewritten as an equivalent nonlinear system of

Volterra integro-ordinary differential equations through a differentiation under the integral

sign:

Ṡ(t) = −β

N
I(t)S(t) (2.7)

İ(t) =
β

N
I(t)S(t)−

(
I0[− ˙̄F(t)]+

∫ t

0

β

N
I(s)S(s)[− ˙̄F(t− s)]ds

)
(2.8)

Ṙ(t) = I0[− ˙̄F(t)]+
∫ t

0

β

N
I(s)S(s)[− ˙̄F(t− s)]ds =−(Ṡ(t)+ İ(t)). (2.9)

We define the point prevalence as the total number of infectives at time t (Gerstman,

B.B. 2003), that is I(t). Point prevalence is not a variable we can usually measure. The

incidence of the disease, on the other hand, is what commonly is reported and is defined as

the number of new cases on some period of time T (a week, a month, or a year, depending

on the disease) and in our model can be obtained as

∫ t+T

t

β

N
I(s)S(s)ds.

In this thesis we will consider Gamma distributed infectious periods. Gamma distribu-

tion presents a series of advantages. We can set its mean and variance in an independent

way. Furthermore when the square of the mean equals the mean, the Gamma distribution

become the exponential distribution and model (2.7)-(2.9) reduces to the basic ODE model

((2.1)-(2.3), see appendix A). Gamma distribution has two parameter known as the shape
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(k) and scale (θ ) parameters and it is defined as

f (t;k,θ) =


1

Γ(k)θ k tk−1e−
t
θ for t ≥ 0,

0 for t < 0,
(2.10)

and

(k,θ) =

(
τ2

Var
,
Var

τ

)
(2.11)

from where θ = τ

k .

Another useful feature of the Gamma distribution is that for positive integer values

for the shape parameter k it reduces to the Erlang distribution. In this case the nonlinear

model of Volterra integral equations (2.4)-(2.6) can be rewritten as an equivalent, but larger

dimensional nonlinear system of ordinary differential equations. This is done via a standard

method called linear chain trickery (see appendix B for details on the derivation).

Finally in the limiting case when the shape parameter tends to infinity the Gamma

distribution converges in distributional sense to the Dirac delta function. In this last case,

a nonlinear system of discrete delay differential equations is obtained from the original

system of Volterra integral equations (in (2.4)-(2.6)) (see appendix C for details on the

derivation).

2.2.2 Well-posedness of the model

The biological and mathematical well-posedness of the model above is studied by estab-

lishing the conditions for which the solutions of equations in (2.4)-(2.6) exist, are unique,

non-negative and bounded.

To facilitate the presentation of the theorems below, first, the following terms are de-

fined: Let P be a set with non negative elements, described by

P = {y ∈ R : 0 < y≤ N}×{y ∈ R : 0≤ y < N}2.
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~x : [0,a]→ P, where~x(t) =


S(t)

I(t)

R(t)

 , ~x(0) =


S(0)

I(0)

R(0)

=


S0

I0

R0

=~x0 ∈ P,

~h : [0,a]→ P, where~h(t) =


S0

I0F̄(t)

R0 + I0(1− F̄(t))

 and

~g : [0,a]2×P→{y ∈ R :−βN < y≤ 0}×{y ∈ R : 0≤ y < βN}2, where

~g(t,s,~x(s)) =


−β

N I(s)S(s)

β

N I(s)S(s)F̄(t− s)

β

N I(s)S(s)(1− F̄(t− s))

 .
The model in (2.4)-(2.6) can now be writing in vector form as:

~x(t) =~h(t)+
∫ t

0
~g(t,s,~x(s))ds ~x(t0) =~x0. (2.12)

The following theorems of (local) existence and uniqueness of solution for the model

in (2.12) are taken and adapted from the classical books by R. K. Miller [66] (chapter one)

and F. Brauer and J. A. Nohel [70] (chapter three).

Local existence

Theorem 1. Suppose~h is a continuous function defined on an interval 0≤ t ≤ a. Suppose

~g and ∂~g
∂x j

( j = 1,2,3) are continuous in the region:

R = {(t,s,~x) : 0≤ s≤ t ≤ a and |~x(t)−~h(t)| ≤ b}.

Then there exist α > 0 and a continuous solution of equation (2.12) on [0,α].

The standard and core method of proof for the local existence, is called, Picard succes-

sive approximations. The proof of Theorem 1 can be follow line by line from the scalar

case of Theorem 8.1 in the book by R. K. Miller [66].
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Uniqueness

Theorem 2. Suppose~h is a continuous function defined on an interval 0≤ t ≤ a. Suppose

~g and ∂~g
∂x j

( j = 1,2,3) are continuous in the region:

R = {(t,s,~x) : 0≤ s≤ t ≤ a and |~x(t)−~h(t)| ≤ b}.

Then there exist α > 0 and a unique continuous solution of equation (2.12) on [0,α].

The main tool of proof for uniqueness, is called, Gronwall inequality. The proof of

Theorem 2 can be follow line by line from the scalar case of Theorem 8.1 in the book by

R. K. Miller [66].

Positive solutions

Theorem 3. The solution S of the equation (2.4) is a strictly positive function, while the

solutions I and R of equations (2.5) and (2.6), respectively, are non negative functions on

their domain of existence.

Proof: Recall that 0 < S0 ≤ N0. Define the function G1(s) = −β

N I(s), then S(t) =

S0 exp
∫ t

0 G1(s)ds and thus S(t) a strictly positive function as long as it exists. Recall that

0≤ I0 < N0. Define the function G2(s) =
β

N S(s)− 1
I(s)

(
I0 f (s)+

∫ s
0

β

N I(x)S(x) f (s− x)dx
)

,

then I(t) = I0 exp
∫ t

0 G2(s)ds and thus I(t) a non negative function as long as it exists. Recall

that 0 ≤ R0 < N0. Define the function G3(s) = 1
N0−(S(s)+I(s))

(
I0 f (s)+

∫ s
0

β

N I(x)S(x) f (s−

x)dx
)

, then R(t) = R0 exp
∫ t

0 G3(s)ds and thus R(t) a non negative function as long as it

exists.

Boundedness

Theorem 4. The solutions of equations (2.4)-(2.6), S, I and R are bounded on their domain

of existence, as follows:

0 < S∞ ≤ S≤ N, 0≤ I < N, 0≤ R < N.
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Proof: Since I and R are non negative solutions, then S = N − (I +R) ≤ N, Define

S∞ = limt→∞ S(t). From the final size relation (see appendix L for its derivation), S∞ 6=

0. Since S(t) is strictly positive monotonically decreasing function, then S(t) is bounded

below away from zero by S∞. Thus 0 < S∞ ≤ S≤ N. From Theorem 3, I is bounded below

by zero. From the equation for I:

I(t) = I0F̄(t)+
∫ t

0

β

N
I(s)S(s)F̄(t− s)ds

≤ I0 +
∫ t

0

β

N
I(s)S(s)ds

= I0 +
∫ t

0
[−Ṡ(s)]ds

= S0 + I0−S(t) = N0− (S(t)+R0)< N0 = N.

Thus 0 ≤ I < N. From Theorem 3, R is bounded below by zero. By definition R = N−

(S+ I)< N. Thus 0≤ R < N.

2.2.3 Transient and long term dynamics of the SIR model

Figure 2.3 illustrates the transient and long term dynamic of the solutions of model

(2.4)-(2.6) in the (S,I)-plane. Let R0 = βτ , defined in details in chapter three. If R0
S0
N is

less or equal than the epidemic threshold one, then the epidemic does not occur and the

solution of equation (2.5), I(t), decreases from I0 to extinction (zero) in the long term (as

t → ∞). Otherwise, if R0
S0
N > 1, then the epidemic does occur and I initially increases

from I0, reaches a unique maximum number of infected individuals and then decreases

to extinction (zero) in the long term (as t → ∞). The solution of equation (2.4) for the

susceptible individuals, S(t), is a non-increasing function bounded below away from zero to

its limit S∞ as t→ ∞. In the long term (as t→ ∞), all the steady-states solutions (S∞

N , I∞

N ) =

(S∞

N ,0) are neutrally stable if R0
S0
N < 1 and neutrally unstable if R0

S0
N > 1. As shown

graphically in the Figure 2.3, all the solutions (S(t), I(t)) of equations (2.4) and (2.5) are

contained on an epidemiologically feasible region (positively invariant) T = {(S, I) : S >

14



0, I ≥ 0,S+ I ≤N} color coded as yellow. The mathematical formalism of these qualitative

results can be found in theorem 5.1 in the seminal paper by H. W. Hethcote, [71].
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Figure 2.3: Qualitative dynamic of the age-of-infection Susceptible-Infectious-Removed
model in (2.4)-(2.6).

2.3 Core numerical schemes

Throughout this thesis we developed a 4th-stage Volterra-Runge-Kutta formula of Pouzet

type scheme which was used to solve numerically the nonlinear system of Volterra integral

equations (see appendix D). We also developed a 4th-stage VIODE-Runge-Kutta formula

of Pouzet type scheme used to solve numerically the nonlinear system of Volterra integro-

ordinary differential equations (see appendix E). This type of numerical schemes are de-

scribed in details in the book “The numerical solution of Volterra equations” by H. Brunner

and P. J. Van der Houwen (see [65]).
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2.4 Discussion

Although the simplest form of the SIR model reviewed here is considered as a phe-

nomenological model, still can be useful (with careful) for quantitative purposes.
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Chapter 3

GLOBAL UNCERTAINTY AND SENSITIVITY ANALYSES ON A SIMPLE

AGE-OF-INFECTION SUSCEPTIBLE-INFECTIOUS-RECOVERED MODEL

3.1 Introduction

In the literature on the effect of non-exponential distributions for the latent and or in-

fectious periods on disease dynamics the most commonly used distribution is the Erlang

distribution, a special case for the gamma distribution, obtained when the shape parameter

is restricted to take only on positive integer values (see [28, 29, 31, 22, 32, 33, 37, 38]).

The choice of the Erlang distribution, allows to replace Volterra integro-ordinary differen-

tial system like (2.7)-(2.9) by a system of ordinary differential equations. It is rare to find

in the literature, explicit efforts to account for the effect of the variability of the distribu-

tions via the use of different values for the shape parameter (see [29, 31, 22, 32, 33, 37]).

In this chapter we move beyond the use of the Erlang distribution and carry out a general

uncertainty and sensitivity analyses when the distribution used is a Gamma since we are

particular interested in the study of the effects of variations in the variance of the Gamma

distribution. It is worth recalling that when the variance is the square of the mean (shape pa-

rameter k = τ2

Var = 1) the gamma distribution is an exponential distribution and the Volterra

integro-ordinary differential system (2.7)-(2.9) turns into the basic ODE model (2.1)-(2.3).

Hence, our used of an extended framework and its analysis allows not only to explore the

effect of variability on the outputs of the model but also the study of effects associated with

model selection.
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3.1.1 Research questions of interest

In order to study the influence of parameters uncertainty and model structure on

disease dynamics we consider several outcome variables of epidemiological interest in-

cluding, the peak of the prevalence of infectious individuals; time at which the peak size

of the prevalence occurs; final epidemic size; epidemic duration and the basic reproduction

number (see Figure 1.1).

Some of questions that we would like to address are:

Question one: What is the qualitative relation between the variance of the Gamma proba-

bility density function for the infectious period and the outcome variables?

Question two: What is the level of (overall) prediction precision of the compartmental

epidemiological model (see Figure 2.1) with respect to the outcome variables?

Question three: What is the level of importance of the variance of the Gamma probability

density function for the infectious period on the prediction precision of the outcome

variables?

The application of a well known methodology for a global uncertainty and sensitivity

analyses via the Latin Hypercube Sampling (LHS) and the estimation of two sensitivity

indices to a simple age-of-infection Susceptible-Infectious-Recovered model described via

a nonlinear system of Volterra integral equations in 2.4-2.6 is the novel contribution of this

chapter.

This analysis provides:

i) Qualitative relations between the outcome variables (or prediction variables), derived

from an epidemiological model, and the input model parameters, with their associ-

ated (statistical) significance (P-values),
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ii) A quantification for the influence (quantitative effect) of input variables estimates on

the predictability of outcome variables,

iii) An overall model prediction precision.

The knowledge generated by the analysis serves as a research decision tool that helps

determine the type of a nonlinear system that it is more appropriate or suitable for model-

ing SIR dynamics. That is, do we use Volterra integral equations or ordinary differential

equations? This decision is made by identifying whether or not the variance of the infec-

tious period distribution is a key input parameter for the predictability of the outcome

variables of interest.

Surprisingly, a general global uncertainty and sensitivity analyses addressing these

questions had not been proposed yet in the field of infectious disease modeling, despite

the fact that the non-exponential infectious period distributions are most likely the norm.

Not carrying out an uncertainty quantification on the outcome variables as a function of

the infectious period distribution may lead to serious errors or even meaningless results. It

is clear, that any field in biology that relies on compartmental models can may use of the

methodology presented in this chapter and this dissertation.

3.1.2 Background

A general survivor function is incorporated explicitly in a Susceptible-Infected-

Removed type model via a system of nonlinear Volterra integral equations or Volterra

integro-ordinary differential equations (i.e., continuous distributed delay type system). These

type of equations were introduced in 1896 by Vito Volterra in a series of three papers [23].

In 1927, Voterra equations were used by W. O. Kermack and A. G. McKendrick to intro-

duce a general framework that allowed variable infectivity levels and removal rates on an

epidemiological model [24]. Empirical evidences and first attempts to estimate the distri-
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bution of the incubation period of some infectious diseases using a log-normal probability

density function were made in 1950, 1952 and 1966 in a series of papers by P. E. Sartwell

[25, 26, 27]. In 1964, N. T. J. Bailey obtained a deterministic SEIR model with general

χ2 distributed latent and infectious periods (a special case of the Gamma distribution) as

a result of a derivation of the equations for the stochastic means from a multidimensional

Markov process [28]. Later in 1980, D. Anderson and R. Watson considered the general

model formulated by N. T. J. Bailey in 1964 to assess the effect of the shape parameter of

the Gamma distribution for the infectious period on the distribution of the final epidemic

size [29]. In this work the authors also established a relation between the basic reproduction

number with the intrinsic epidemic growth rate and the corresponding shape parameters

from both distributions [29]. Recently, the role of the Gamma probability density function

in the estimation of key epidemiological distributions have been crucial, as was the case of

2003 SARS epidemic in Hong Kong, illustrated in the work of C. A. Donnelly et al. [30].

In this work, the authors observed that the shape of the estimated distributions, for some

disease stages, varied among age-groups and on which window of time was used for the

estimations, since at different windows of time different public health interventions were

applied [30]. The general relation between the basic reproduction number and the intrin-

sic epidemic growth rate established in 1980 by D. Anderson and R. Watson, was used in

2005 by H. J. Wearing et al. to study the effect of Gamma distributed latent and infectious

periods on the estimates of the basic reproduction number, and other epidemiological quan-

tities like the prevalence and incidence of infected individuals [31]. Based on the values

taken by epidemiological quantities like the final epidemic size, peak size of the epidemic

intensity and the control reproduction number, Z. Feng et al. in two papers published in

2007, illustrate that assuming different probability density functions for the latent and in-

fectious periods on a SEIR model with quarantine and isolation as public health strategies

lead to inconsistent conclusions about which strategy is more effective [22, 32]. In 2008,
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P. Yan assessed the impact that estimates of the intrinsic epidemic growth from data have

on the magnitude of the basic reproduction number by applying two formulas that relate

these key quantities; one was established by D. Anderson and R. Watson in 1980 and it as-

sumed a Gamma distributed latent and infectious periods and other one was established by

P. Yan, in this work, and it assumed inverse-gaussian distributed latent and infectious peri-

ods [33]. In 2007 in a master thesis by C. K. Yang and later in a 2008 paper in collaboration

with F. Brauer, the authors illustrated a way to calculate the basic and control reproduction

numbers using multiple stage age of infection models [34, 35]. C. K. Yang and F. Brauer

observed that the basic reproduction number does depend on the mean of the distribution of

the diseases stages and not on the distribution, while the control reproduction number does

depend on the distribution of the diseases stages [34, 35]. In the same year 2008, F. Brauer

established a simpler way of deriving the final size relation, in comparison to how was cal-

culated in 1927 by Kermack and McKendrick for the general model [36]. The results by C.

K. Yang and F. Brauer in [34, 35, 36] are the mathematical justification of the inconsistent

qualitative finding obtained by Z. Feng et al. in [22]. In 2009, A. L. Loyd, [37], assessed

the structural sensitivity of a SEIR model with Gamma distributed latent and infectious pe-

riods on the estimation of the basic reproduction number by applying the general relation

established by D. Anderson and R. Watson in 1980. In 2010, E. Vergu et al. assessed the

distributional effect of the Gamma family of distributions for the infectious period, on the

distribution of some epidemiological quantities obtained from realizations of a stochastic

metapopulation epidemic model [38].
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3.2 Methods

3.2.1 General approach

The influence of parameter uncertainty on the outcome variables (Questions one through

three) are addressed using a simple age-of-infection Susceptible-Infectious-Recovered model

(see 2.4-2.6) and a global uncertainty and sensitivity analyses using Latin Hypercube Sam-

pling (LHS). Two sensitivity indices, Partial Rank Correlation Coefficient (PRCC) and

Spearman’s Rank Correlation Coefficient (RCC) were used to quantify the order of signif-

icance.

3.2.2 Mathematical definition of the outcome or predicted epidemiological quantities of

interest

The mathematical definition of outcome or predicted epidemiological quantities of in-

terest previously mentioned are as follow:

•An important dimensionless quantity or ratio in the epidemiology of infectious diseases is

the so called the basic reproduction number, commonly denoted by R0. It represents the

average number of secondary new infected cases produced by a typical infectious individ-

ual, over its entire infectious period, introduced in a completely susceptible population (see

[68]). Mathematically, it is computed as the spectral radius of the next generation matrix

(see [69]). It quantifies the circumstances under which an epidemic will occur. “Generally”

speaking, if the basic reproduction number is strictly less than one (the epidemic threshold

or tipping point), then an epidemic will not occur while if it is strictly larger than one, then

an epidemic will occur, thus R0 is critical to the characterization of the qualitative behavior

of epidemic models. In addition, it helps identify the degree of intervention required to con-

trol an outbreak. For the age-of-infection SIR model in (2.4)-(2.6), the basic reproduction
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model is given by

R0 = β

(∫ ∞

−∞

t f (t;k,θ)dt
)
= β

(∫ ∞

0
F̄(t;k,θ)dt

)
= βτ, (3.1)

where β is the transmission rate, f is the Gamma probability density function for the infec-

tious period, F̄ is the survivor function and τ is the mean of f (see appendix F for details

on its derivation). Notice that the above expression for R0 does not depend on the variance

of the infectious period distribution nor the variance of the distribution of contacts as it is

in the Anderson M. Roy and Robert M. May’s non-homogeneous mixing model (1992).

• The peak size of the prevalence of infectious individuals is given by

Ipeak = max
t∈ℜ+

I(t). (3.2)

• Time at which the peak of the prevalence occurs is given by

tpeak = {t ∈ℜ
+ : and I(t) = Ipeak}. (3.3)

• Epidemic duration is given by

t f inal = min{t ∈ℜ
+ : and I(t)< 1}. (3.4)

• Number of cumulative newly infections at the end of the epidemic or final epidemic size

is given by

z =C(t f inal) = S0 +
( N

R0

)
W

(
−R0S0

N
e−R0

)
. (3.5)

In equation (3.5), W is a special function known as the Lambert W function. See appendix

G for details on a derivation of equation (3.5).

3.2.3 Global uncertainty and sensitivity analyses

The uncertainty analysis allows to assess the variability or prediction imprecision

of the outcome variables with respect to the uncertainty that comes from the estimates of
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the input parameters (Iman & Helton, 1988). The technique is global in the sense that

the uncertainty analysis is executed simultaneously for all the input model parameters of

interest. While the sensitivity analysis can be considered as an extension of the global

uncertainty analysis in the context that provides a rank of importance for each input param-

eters with respect to the prediction imprecision of the output variable of interest as well as

their qualitative relations. In other words, the global uncertainty and sensitivity analyses

combined provide great insights on how the variability or uncertainty in the values of the

input parameters affect the values of the outcome variables (Iman & Helton, 1988).

The methodology of global uncertainty and sensitivity analyses was introduced in 1979

by M. D. McKay et al. (see [39]), improved by R. L. Iman et al. during the 80’s decade

with a series of eight papers and was not until 1994 that S. M. Blower (see [40]) applied

it for the first time to an epidemiological model (an HIV model) described by a nonlinear

system of ordinary differential equations. To my knowledge this is the first work using

this methodology on an epidemiological model governed by a nonlinear system of Volterra

integral equations. Global uncertainty and sensitivity analyses were carried out following

these seven steps: Step 1: Assign a probability density functions to each of the K input

model parameters; Step 2: Choose a total number of simulations (Nsim); Step 3: Divide

the range of each of the K input parameters into Nsim equi-probable intervals; Step 4:

Determine the LHS matrix; Step 5: Sample the values for each of the K input parameters

by using the corresponding indices from the LHS matrix and execute Nsim simulations; Step

6: Perform a global uncertainty analysis; Step 7: Perform a global sensitivity analysis.

Four cases are considered:

Case 1A: Assumes low values for the basic reproduction number and exponentially dis-

tributed infectious period (R0 = 1.5 and k = 1 or Var = τ2).

Case 1B: Assumes low value for the basic reproduction number and Gamma distributed
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infectious period (R0 = 1.5 and k = 4 or Var = τ2

4 ).

Case 2A: Assumes high value for the basic reproduction number and exponentially dis-

tributed infectious period (R0 = 15 and k = 1 or Var = τ2).

Case 2B: Assumes high value for the basic reproduction number and Gamma distributed

infectious period (R0 = 15 and k = 4 or Var = τ2

4 ).

Step 1: Assignment of a probability density function to each of the K input model param-

eters.

The set of input model parameters (K = 4) consists of: β the constant transmission

rate; τ the mean of the Gamma probability density function for the infectious period; I0

the initial number of infectious individuals; and Var the variance of the Gamma probability

density function for the infectious period. The assignments of a distribution for each of

the input model parameters with corresponding entry values for the distributions for all

four cases (Cases 1A,1B, 2A and 2B) are illustrated in Tables 3.1 to 3.4. The input model

parameters I0 and Var are chosen to be Gamma distributed. While the parameters β and

τ are chosen to be truncated Gamma distributed, contained as β > 1 and τ > 1. These

constrains guarantee that an epidemic will always occur (R0 > 1).
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Table 3.1: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period) Assignment of the probability density functions with their correspond-
ing entry values for each input model parameter.

Model Probability density p.d.f.’s parameter values

parameter function k θ µ σ2

I0 Gamma 50 0.1 5
µI0
10 = 0.5

β Truncated Gamma 12.23 0.1
√

R0 = 1.22 µβ

10 = 0.12

τ Truncated Gamma 12.25 0.1
√

R0 = 1.22 µτ

10 = 0.12

Var Gamma 15 0.1 µ2
τ = 1.5 µVar

10 = 0.15

Table 3.2: Case 1B (Low basic reproduction numbers and Gamma distributed in-
fectious period) Assignment of the probability density functions with their corresponding
entry values for each input model parameter.

Model Probability density p.d.f.’s parameter values

parameter function k θ µ σ2

I0 Gamma 50 0.1 5
µI0
10 = 0.5

β Truncated Gamma 12.23 0.1
√

R0 = 1.22 µβ

10 = 0.12

τ Truncated Gamma 12.25 0.1
√

R0 = 1.22 µτ

10 = 0.12

Var Gamma 3.75 0.1 µ2
τ

4 = 0.38 µVar
10 = 0.04
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Table 3.3: Case 2A (High basic reproduction numbers and exponentially distributed
infectious period) Assignment of the probability density functions with their correspond-
ing entry values for each input model parameter.

Model Probability density p.d.f.’s parameter values

parameter function k θ µ σ2

I0 Gamma 50 0.1 5
µI0
10 = 0.5

β Truncated Gamma 38.73 0.1
√

R0 = 3.87 µβ

10 = 0.39

τ Truncated Gamma 38.73 0.1
√

R0 = 3.87 µτ

10 = 0.39

Var Gamma 150 0.1 µ2
τ = 15 µVar

10 = 0.15

Table 3.4: Case 2B (High basic reproduction numbers and Gamma distributed in-
fectious period) Assignment of the probability density functions with their corresponding
entry values for each input model parameter.

Model Probability density p.d.f.’s parameter values

parameter function k θ µ σ2

I0 Gamma 50 0.1 5
µI0
10 = 0.5

β Truncated Gamma 38.73 0.1
√

R0 = 3.87 µβ

10 = 0.39

τ Truncated Gamma 38.73 0.1
√

R0 = 3.87 µτ

10 = 0.39

Var Gamma 37.5 0.1 µ2
τ

4 = 3.8 µVar
10 = 0.38
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Step 2: Choose a total number of simulations (Nsim).

The total number of simulation is: Nsim = 1000.

Step 3: Divide the range of each of the K input parameters into Nsim equi-probable inter-

vals.

Let x be one of the Kth random input model parameters, which follows a probability

density function f , cumulative distribution function F and inverse cumulative distribution

function F−1. Then, the Nsim equi-probable intervals [x1
min,x

1
max], [x

2
min,x

2
max], . . . , [x

Nsim
min ,x

Nsim
max ]

are chosen as follow:

x1
min = min

x
f (x) and xNsim

max = max
x

f (x),

xi
max = F−1

[
F(xi

min)+
1

Nsim

]
, since

∫ xi
max

xi
min

f (x)dx = F(xi
max)−F(xi

min) =
1
N

for i = 1, . . . ,Nsim−1,

xi+1
min = xi

max for i = 1, . . . ,Nsim−1.

Step 4: Determine the LHS matrix.

The Latin Hypercube Sampling (LHS) matrix is an Nsim by K matrix, in our case a

1000 by 4 matrix, where the elements in each column represent the ordered values (positive

whole numbers) or indices for the values of the input model parameters after sampling just

once every equi-probable interval, commonly known as sampling without replacement.

Permutation on the sample of each input model parameters were executed with the purpose

of reducing the correlation, if any, among the K samples. Box-plots, histograms and simple

descriptive statistics such as minimum, maximum, mean, median and variance are shown

in Figures 3.1 to 3.4 and Tables 3.5 to 3.8.
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Table 3.5: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period) Descriptive statistics from the uncertainty analysis.

Input variables
Baseline (sample) Statistics

values Min. Max. Mean Median Std.

I0 0.05 0.03 0.07 0.05 0.05 0.01

β 1.22 1.00 2.67 1.38 1.32 0.28

τ 1.22 1.00 2.58 1.38 1.32 0.29

Var 1.5 0.50 3.01 1.50 1.47 0.39

Table 3.6: Case 1B (Low basic reproduction numbers and Gamma distributed infec-
tious period) Descriptive statistics from the uncertainty analysis.

Input variables
Baseline (sample) Statistics

values Min. Max. Mean Median Std.

I0 0.05 0.03 0.08 0.05 0.05 0.01

β 1.22 1.00 2.66 1.38 1.32 0.28

τ 1.22 1.00 2.55 1.38 1.32 0.28

Var 0.38 0.03 1.36 0.38 0.34 0.19
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Table 3.7: Case 2A (High basic reproduction numbers and exponentially distributed
infectious period) Descriptive statistics from the uncertainty analysis.

Input variables
Baseline (sample) Statistics

values Min. Max. Mean Median Std.

I0 0.05 0.03 0.08 0.05 0.05 0.01

β 3.87 2.25 6.10 3.87 3.84 0.06

τ 3.87 2.18 6.46 3.87 3.84 0.63

Var 15 11.66 18.60 15.0 14.96 1.22

Table 3.8: Case 2B (High basic reproduction numbers and Gamma distributed infec-
tious period) Descriptive statistics from the uncertainty analysis.

Input variables
Baseline (sample) Statistics

values Min. Max. Mean Median Std.

I0 0.05 0.03 0.07 0.05 0.05 0.01

β 3.87 2.25 6.23 3.87 3.84 0.62

τ 3.87 2.27 6.41 3.87 3.84 0.63

Var 3.75 2.08 6.04 3.75 3.72 0.61
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Figure 3.1: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period): Box-plots and histograms from the samples for each of the input model
parameter.
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Figure 3.2: Case 1B (Low basic reproduction numbers and Gamma distributed in-
fectious period): Box-plots and histograms from the samples for each of the input model
parameter.
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Figure 3.3: Case 2A (High basic reproduction numbers and exponentially distributed
infectious period): Box-plots and histograms from the samples for each of the input model
parameter.
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Figure 3.4: Case 2B (High basic reproduction numbers and Gamma distributed in-
fectious period): Box-plots and histograms from the samples for each of the input model
parameter.
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Step 5: Use the sampled values for each of the K input parameters and perform Nsim

simulations.

The K sample sets for the input model parameters are used to performed Nsim simula-

tions where the outcome or prediction variables are storage in column vectors.

Step 6: Perform a global uncertainty analysis.

Characterization of each sample obtained for the outcome variables is done via box-

plots, histograms and simple descriptive statistics such as minimum, maximum, mean, me-

dian and variance. These are shown in Figures 3.5 to 3.8 and Tables 3.9 to 3.12.

Step 7: Perform a sensitivity analysis.

We also computed two sensitivity indices: Partial rank correlation coefficient (PRCC)

and Spearman rank correlation coefficient (RCC). The magnitude of a sensitivity index

measures how strong the qualitative relation is between an input model parameter and an

outcome variable. That is, it quantifies the statistical influence of the estimate of an input

model parameter to the prediction precision of an outcome variable. The sign of the sen-

sitivity index indicates how is the qualitative relation between an input model parameter

and an outcome variable; a positive value indicates that the value of the output variable

increases as the value of the input variable increases, otherwise, the value of the outcome

variable decreases as the value of the input variable increases. The associated probability

value (P-value) of the sensitivity index determines the statistical significance of the qual-

itative relation between an input model parameter and the outcome variable. Since the

samples for the input model parameters are not normally distributed, a two tailed non-

parametric statistical hypothesis test with null hypothesis under the assumption that the

sensitivity index equals zero is used. The PRCC sensitivity index assumes that the qualita-

tive relation between an input model parameter and an outcome variable is monotone. The

monotonicity assumption is validated via the scatters plots.
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3.2.4 Numerical implementation of the Global uncertainty and sensitivity analyses

The seven steps needed to perform the Global uncertainty and sensitivity analyses were

coded in MATLAB 8.1.0 (R2013a, The MathWorks). The truncated distributions were

obtained with the MATLAB built-in function truncate and the corresponding cumulative

distribution and inverse cumulative distribution functions with cdf and icdf. The random

number generators with Gamma and truncated Gamma distributions were obtained by ran-

dom. Random permutation for the vector of input model parameter values were done with

randperm. The descriptive statistics were obtained with: min, max, mean, median, var.

The numerical recipes to calculate the PRCC and its corresponding non parametric statis-

tical hypothesis test are explained in detail in the appendix A of [40]. These were written

in MATLAB with the following functions sort, tril, inv, tinv, tcdf. The numerical recipe

to calculate the RCC and its corresponding non parametric statistical hypothesis test were

taken from [72] (spear) and re-written in MATLAB.

3.3 Results

3.3.1 Interpretation of results from the global uncertainty analysis

Statements from the uncertainty analysis are based on simple descriptive statistics

(see Tables 3.9 to 3.12), box-plots and empirical distributions (see Figures 3.5 to 3.8).

The global uncertainty analysis illustrates that the overall prediction precision of the age-

of-infection SIR model with respect to the basic reproduction number, in all four cases,

is moderate. In the cases when the basic reproduction number is low (Cases 1A and 1B),

the overall prediction precision of the age-of-infection SIR model with respect to outcome

variables such as the peak size and peak timing of the prevalence of infectious individu-

als, final epidemic size and epidemic duration is low. While in the cases when the basic

reproduction number is high (Cases 2A and 2B), the overall prediction precision of the
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age-of-infection SIR model with respect to the peak size and peak timing of the prevalence

of infectious individuals and final epidemic size is moderate. However, for the epidemic

duration, the overall prediction precision of the age-of-infection SIR model is low under

the exponential assumption (Case 2A) and moderate under the gamma assumption (Case

2B).

37



Table 3.9: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period): Descriptive statistics from the uncertainty analysis.

Outcome variables
Baseline (sample) Descriptive Statistics

values Min. Max. Mean Median Std. CV= Std.
Mean VMR= Var.

Mean

Prevalence
6.34 0.15 68.22 15.20 12.84 11.52 0.76 8.73

peak size (%)

Prevalence
15.70 15.70 65.20 13.67 11.10 8.19 0.60 4.91

peak time

Final epidemic
58.32 11.55 99.43 69.39 74.21 18.84 0.27 5.12

size (%)

Epidemic
40.70 13.80 161.10 36.20 30.55 19.37 0.54 10.36

duration

Basic reproduction
1.50 1.06 5.20 1.89 1.83 0.54 0.29 0.16

number

Table 3.10: Case 1B (Low basic reproduction numbers and Gamma distributed infec-
tious period): Descriptive statistics from the uncertainty analysis.

Outcome variables
Baseline (sample) Descriptive Statistics

values Min. Max. Mean Median Std. CV= Std.
Mean VMR= Var.

Mean

Prevalence
10.08 0.16 76.36 21.53 18.52 15.06 0.70 10.53

peak size (%)

Prevalence
10.70 3.70 35 9.54 8.60 3.80 0.40 1.52

peak time

Final epidemic
58.33 8.68 99.18 69.26 72.28 18.45 0.27 4.92

size (%)

Epidemic
26.10 9.30 101.30 23.41 20.90 9.87 0.42 4.16

duration

Basic reproduction
1.50 1.04 4.85 1.89 1.77 0.56 0.30 0.17

number
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Table 3.11: Case 2A (High basic reproduction numbers and exponentially distributed
infectious period): Descriptive statistics from the uncertainty analysis.

Outcome variables
Baseline (sample) Descriptive Statistics

values Min. Max. Mean Median Std. CV= Std.
Mean VMR= Var.

Mean

Prevalence
75.27 33.56 95.42 73.34 74.68 10.62 0.14 1.54

peak size (%)

Prevalence
2.90 1.90 6.80 3.03 3 0.54 0.18 0.10

peak time

Final epidemic
100.00 99.67 100 99.998 100 0.02 1.9×10−4 3.6×10−6

size (%)

Epidemic
37.90 31.10 51.40 38.41 38.20 3.19 0.08 0.26

duration

Basic reproduction
15.00 5.74 27.02 15.02 14.75 3.50 0.23 0.81

number

Table 3.12: Case 2B (High basic reproduction numbers and Gamma distributed in-
fectious period): Descriptive statistics from the uncertainty analysis.

Outcome variables
Baseline (sample) Descriptive Statistics

values Min. Max. Mean Median Std. CV= Std.
Mean VMR= Var.

Mean

Prevalence
94.46 69.14 99.66 92.84 94.22 5.08 0.05 0.28

peak size (%)

Prevalence
3.00 2 5 3.06 3 0.45 0.15 0.07

peak time

Final epidemic
100.00 99.93 100 99.998 100 0.004 4.6×10−5 2.2×10−7

size (%)

Epidemic
17.50 13.90 22 17.70 17.60 1.38 0.08 0.11

duration

Basic reproduction
15.00 7.28 26.81 15.00 14.67 3.45 0.23 0.79

number
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Figure 3.5: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period): Box-plots and empirical distributions for a) the peak size of the preva-
lence of infectious individuals, b) the time at which the peak of the prevalence occurs, c)
the final epidemic size, d) the epidemic duration and e) the basic reproduction number
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Figure 3.6: Case 1B (Low basic reproduction numbers and Gamma distributed infec-
tious period): Box-plots and empirical distributions for a) the peak size of the prevalence
of infectious individuals, b) the time at which the peak of the prevalence occurs, c) the final
epidemic size, d) the epidemic duration and e) the basic reproduction number
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Figure 3.7: Case 2A (High basic reproduction numbers and exponentially distributed
infectious period): Box-plots and empirical distributions for a) the peak size of the preva-
lence of infectious individuals, b) the time at which the peak of the prevalence occurs, c)
the final epidemic size, d) the epidemic duration and e) the basic reproduction number
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Figure 3.8: Case 2B (High basic reproduction numbers and Gamma distributed infec-
tious period): Box-plots and empirical distributions for a) the peak size of the prevalence
of infectious individuals, b) the time at which the peak of the prevalence occurs, c) the final
epidemic size, d) the epidemic duration and e) the basic reproduction number
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3.3.2 Interpretation of results from the sensitivity analysis

Interpretation of the scatterplots

The univariate scatterplots reflect that the qualitative relation between each of the out-

come variables such as the peak size and peak timing of the prevalence of infectious indi-

viduals, the final epidemic size, the epidemic duration and the basic reproduction number

and each of the input model parameters such as the transmission rate (β ) and the mean

(τ) infectious period is monotone, with the exception of all the outcome variables and the

initial number of infectious individuals (I0) and the basic reproduction number and final

epidemic size and the variance (Var) of the Gamma distribution for the infectious period

(see Figures 3.9 a)-e) to 3.12 a)-e)). The latter results are expected since the analytical

expressions for the basic reproduction number and final epidemic size do not depend on

the variance (Var) of the Gamma distribution for the infectious period. Therefore, the

monotonicity assumption for the PRCC sensitivity index is validated, except for the initial

number of infectious individuals (I0) and in the expected cases mentioned for the variance

(Var) of the Gamma distribution for the infectious period.

The following results are all under the appropriate level of statistical significance

(α = 0.05).

Interpretation of the magnitude of the sensitivity indices

• Peak size of the prevalence of infectious individuals.

In all cases 1A, 1B, 2A and 2B, Tables 3.13 to 3.16 and Figures 3.13 to 3.16 in-

dicate that the input model parameters that statistically (with P-value < 0.05) influence the

most to the prediction precision of the peak size of the prevalence of infectious individuals

are the mean of the infectious period distribution τ , followed by the transmission rate β

and then the variance of the infectious period distribution Var in this order.
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• Time at which the peak of the prevalence occurs.

For the time at which the peak of the prevalence occurs, the input model parameters

that statistically (with P-value < 0.05) influence the most to its prediction precision are the

transmission rate β , in the first place, then the mean of the infectious period distribution τ

followed by: the variance of the infectious period distribution Var and the initial number of

infectious individuals I0 for low values of the basic reproduction number (cases 1A and 1B,

see Tables 3.13 and 3.14 and Figures 3.13 and 3.14), or the initial number of infectious

individuals I0 and the variance of the infectious period distribution Var for high values of

the basic reproduction number (cases 2A and 2B, see Tables 3.15 and 3.16 and Figures

3.15 and 3.16).

• Epidemic duration.

For low basic reproduction numbers (cases 1A and 1B), the input model parameters

that statistically (with P-value < 0.05) influence the most on the prediction precision of

the epidemic duration are the transmission rate β followed by the mean of the infectious

period distribution τ and then the variance of the infectious period distribution Var, in this

order (see Tables 3.13 and 3.14 and Figures 3.13 and 3.14). While for high basic repro-

duction numbers and under the exponential assumption (case 2A) the order changes with

the mean of the infectious period distribution τ , ranked first, followed by the variance of

the infectious period distribution Var and then the transmission rate β (see Table 3.15 and

and Figure 3.15). For high basic reproduction numbers and under the Gamma assumption

(case 2B) the order is the variance of the infectious period distribution Var, ranked first,

followed by the transmission rate β , the mean of the infectious period distribution τ and

the initial number of infectious individuals I0 (see Table 3.16 and Figure 3.16).

• Final epidemic size.

Under the exponential assumption (cases 1A and 2A), the input model parameters

that statistically (with P-value < 0.05) influence the most on the prediction precision of
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the final epidemic size are the transmission rate β and then the mean of the infectious

period distribution τ (see Tables 3.13 and 3.15 and Figures 3.13 and 3.15), while under

the Gamma assumption (case 1B and 2B) the order is reversed (see Tables 3.14 and 3.16

and Figures 3.14 and 3.16), but with the initial number of infectious individuals I0 in third

place for only high basic reproduction numbers (case 2B, see Table 3.16).

• Basic reproduction number.

The prediction precision of the basic reproduction number is statistically (with P-value

< 0.05) influenced the most by the input model parameters: the transmission rate β follow-

ing by the mean of the infectious period distribution τ (cases 1A, 2A and 2B, see Tables

3.13, 3.15 and 3.16 and and Figures 3.13, 3.15 and 3.16), with the only exemption that for

low basic reproduction numbers and under the Gamma distribution assumption (case 1B)

the order is reversed (see Tables 3.14 and Figure 3.14).

The variance of the infectious period distribution Var was not an input model parameter

with statistical influence in the prediction precision of the last two outcome variables men-

tioned: the final epidemic size and the basic reproduction number. For the particular model

considered here (see 2.4-2.6), this last result is expected by just observing the analytical

expressions for final epidemic size and reproduction number do not depend on the Var.

Although the magnitudes from both sensitivity indices (PRCC and RCC) were different,

the orders (or ranks) of statistical influence for the input model parameters on the prediction

precision of outcome variables were the same.

Interpretation of the sign of the sensitivity indices

• Sensitivity index with positive sign. For the following qualitative relationships, the

value of the outcome variable increases as the value of the input model parameter increases:

i) In all cases 1A, 1B, 2A and 2B, the value of outcome variables such as the peak size

of the prevalence of infectious individuals, the final epidemic size and the basic re-
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production number increases as the value of the input model parameters such as the

transmission rate β and the mean of the infectious period distribution τ increases (see

Tables 3.13 to 3.16 and Figures 3.13 to 3.16).

ii) In all cases 1A, 1B, 2A and 2B, the value of the epidemic duration increases as the value

of the variance of the infectious period distribution Var increases (see Tables 3.13 to

3.16 and Figures 3.13 to 3.16).

iii) In cases 1A, 1B and 2A, the value of the time at which the peak of the prevalence

of infectious individuals occurs increases as the value of the variance of the infec-

tious period distribution Var increases (see Tables 3.13 to 3.15 and Figures 3.13 to

3.15), with the exception of case 2B (high basic reproduction numbers and Gamma

distributed infectious period, see Table 3.16 and Figure 3.16).

iv) Only for high basic reproduction numbers and Gamma distributed infectious period

(case 2B), the value of the time at which the peak of the prevalence of infectious

individuals occurs increases as the value of the mean of the infectious period distri-

bution τ increases (see Table 3.16 and and Figure3.16).

v) Only for high basic reproduction numbers and Gamma distributed infectious period

(case 2B), the value of the final epidemic size increases as the value of the initial

number of infectious individuals I0 increases (see Table 3.16 and Figure 3.16).

• Sensitivity index with negative sign. For the following qualitative relationships the

value of the outcome variable decreases as the value of the input model parameter increases:

i) In all cases 1A, 1B, 2A and 2B, the value of the epidemic duration decreases as the value

of the input model parameters such as the transmission rate β and the mean of the

infectious period distribution τ increases (see Tables 3.13 to 3.16 and Figures 3.13

to 3.16).
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ii) In all cases 1A, 1B, 2A and 2B, the value of the peak size of the prevalence of infectious

individuals decreases as the value of the variance of the infectious period distribution

Var increases (see Tables 3.13 to 3.16 and Figures 3.13 to 3.16).

iii) In all cases 1A, 1B, 2A and 2B, the value of the time at which the peak of the prevalence

of infectious individuals occurs decreases as the value of the input model parameters

such as the transmission rate β and the initial number of infectious individuals I0

increases (see Tables 3.13 to 3.16 and Figures 3.13 to 3.16).

iv) In cases 1A, 1B and 2A, the value of the time at which the peak of the prevalence of

infectious individuals occurs decreases as the value of the mean of the infectious pe-

riod distribution τ increases (see Tables 3.13 to 3.15 and Figures 3.13 to 3.15), with

the exception of case 2B (high basic reproduction numbers and Gamma distributed

infectious period, see Table 3.16 and Figure3.16).

v) Only for high basic reproduction numbers and Gamma distributed infectious period

(case 2B), the value of the time at which the peak of the prevalence of infectious

individuals occurs decreases as the value of the variance of the infectious period

distribution Var increases (see Table 3.16).

vi) Only for high basic reproduction numbers and Gamma distributed infectious period

(case 2B), the value of the epidemic duration decreases as the value of the initial

number of infectious individuals I0 increases (see Table 3.16 and Figure 3.16).

The signs obtained from both sensitivity indices PRCC and RCC were identical.
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Figure 3.9: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period): Scatter plots for a) the peak size of the prevalence of infectious indi-
viduals, b) the time at which the peak of the prevalence occurs, c) the final epidemic size,
d) the epidemic duration and e) the basic reproduction number with respect to β , τ , I0 and
Var.

49



0 0.05 0.1
0

10

20

30

40

50

60

70

80

I0

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
S

i
z
e

1 2 3
0

10

20

30

40

50

60

70

80

β

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
S

i
z
e

1 2 3
0

10

20

30

40

50

60

70

80

τ

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
S

i
z
e

0 1 2
0

10

20

30

40

50

60

70

80

V ar

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
S

i
z
e

(a)

0 5 10
0

5

10

15

20

25

30

35

I0

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
T

i
m

e

1 2 3
0

5

10

15

20

25

30

35

β

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
T

i
m

e

1 2 3
0

5

10

15

20

25

30

35

τ

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
T

i
m

e

0 1 2
0

5

10

15

20

25

30

35

V ar

P
r
e
v
a
l
e
n
c
e
 
P

e
a
k
 
T

i
m

e

(b)

0 0.05 0.1
0

20

40

60

80

100

I0

F
in

a
l 
E

p
id

e
m

ic
 
S

iz
e

1 2 3
0

20

40

60

80

100

β

F
in

a
l 
E

p
id

e
m

ic
 
S

iz
e

1 2 3
0

20

40

60

80

100

τ

F
in

a
l 
E

p
id

e
m

ic
 
S

iz
e

0 1 2
0

20

40

60

80

100

V ar

F
in

a
l 
E

p
id

e
m

ic
 
S

iz
e

(c)

0 5 10
0

20

40

60

80

100

120

I0

E
p
id

e
m

ic
 
D

u
r
a
t
io

n

1 2 3
0

20

40

60

80

100

120

β

E
p
id

e
m

ic
 
D

u
r
a
t
io

n

1 2 3
0

20

40

60

80

100

120

τ

E
p
id

e
m

ic
 
D

u
r
a
t
io

n

0 1 2
0

20

40

60

80

100

120

V ar

E
p
id

e
m

ic
 
D

u
r
a
t
io

n

(d)

0 5 10
1

1.5

2

2.5

3

3.5

4

4.5

5

I0

B
a
s
ic

 
R

e
p
r
o
d
u
c
t
io

n
 
N

u
m

b
e
r

1 2 3
1

1.5

2

2.5

3

3.5

4

4.5

5

β

B
a
s
ic

 
R

e
p
r
o
d
u
c
t
io

n
 
N

u
m

b
e
r

1 2 3
1

1.5

2

2.5

3

3.5

4

4.5

5

τ

B
a
s
ic

 
R

e
p
r
o
d
u
c
t
io

n
 
N

u
m

b
e
r

0 1 2
1

1.5

2

2.5

3

3.5

4

4.5

5

V ar

B
a
s
ic

 
R

e
p
r
o
d
u
c
t
io

n
 
N

u
m

b
e
r

(e)

Figure 3.10: Case 1B (Low basic reproduction numbers and Gamma distributed in-
fectious period): Scatter plots for a) the peak size of the prevalence of infectious individu-
als, b) the time at which the peak of the prevalence occurs, c) the final epidemic size, d) the
epidemic duration and e) the basic reproduction number with respect to β , τ , I0 and Var.
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Figure 3.11: Case 2A (High basic reproduction numbers and exponentially dis-
tributed infectious period): Scatter plots for a) the peak size of the prevalence of in-
fectious individuals, b) the time at which the peak of the prevalence occurs, c) the final
epidemic size, d) the epidemic duration and e) the basic reproduction number with respect
to β , τ , I0 and Var.
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Figure 3.12: Case 2B (High basic reproduction numbers and Gamma distributed in-
fectious period): Scatter plots for a) the peak size of the prevalence of infectious individu-
als, b) the time at which the peak of the prevalence occurs, c) the final epidemic size, d) the
epidemic duration and e) the basic reproduction number with respect to β , τ , I0 and Var.
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Figure 3.13: Case 1A (Low basic reproduction numbers and exponentially distributed
infectious period): Partial rank correlation coefficients (PRCC)
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Figure 3.14: Case 1B (Low basic reproduction numbers and Gamma distributed in-
fectious period): Partial rank correlation coefficients (PRCC)
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Figure 3.15: Case 2A (High basic reproduction numbers and exponentially dis-
tributed infectious period): Partial rank correlation coefficients (PRCC)
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Figure 3.16: Case 2B (High basic reproduction numbers and Gamma distributed in-
fectious period): Partial rank correlation coefficients (PRCC)
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3.3.3 Local graphical approach

The qualitative relations between the outcome variables considered and the variance

of the distribution for the infectious period Var are illustrated graphically in Figures 3.17

and 3.20. The results from this local and graphical approach are in agreement with the

qualitative results obtained from the signs of the sensitivity indices.
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Figure 3.17: The prevalence of infectious individuals in time for various values for the
variance of the Gamma distribution of the infectious period (R0 = 1.5).
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Figure 3.18: The cumulative incidence of infectious individuals in time for various values
for the variance of the Gamma distribution of the infectious period (R0 = 1.5).
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Figure 3.19: The prevalence of infectious individuals in time for various values for the
variance of the Gamma distribution of the infectious period (R0 = 15).
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Figure 3.20: The cumulative incidence of infectious individuals in time for various values
for the variance of the Gamma distribution of the infectious period (R0 = 15).
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3.4 Conclusions

Based on the combined results from both sensitivity indices, namely the partial

rank correlation coefficient (PRCC) and the Spearman’s rank correlation coefficient (RCC),

the variance of the Gamma distribution for the infectious period embedded in the age-of-

infection SIR model is a key input parameter (statistically significant) on the predictability

of the following epidemiological variables: the epidemic duration and the peak size and

timing of the prevalence of infectious individuals. Therefore, for the predictability of these

variables is preferable to utilize a SIR model governed by a nonlinear system of Volterra

integral equations, which incorporates the variance of the Gamma distribution for the in-

fectious period as an input model parameter, rather than a nonlinear system of ordinary

differential equations; a less flexible option with constant variance for the exponentially

distributed infectious period (the “standard”). While for the predictability of epidemio-

logical variables such as the final epidemic size and the basic reproduction number the

choice on which type of nonlinear system for the description of the SIR model is irrelevant,

since the variance of the infectious period distribution does not play a role. Although, for

the latter case, and with the aim of lowering the complexity and number operations in the

numerical methods, a nonlinear system of ordinary differential equations is preferred.

3.5 Discussion

The novel application in this work serves as a research decision tool to determine

which type of nonlinear system is more appropriate or suitable to utilize for the description

of a model: if a Volterra integral equations or ordinary differential equations. This decision

is determined by identifying whether or not the variance of a distribution, embedded in a

model, is a key input parameter for the predictability of quantities of interest in a research.

The authors suggest to apply the methodology for global uncertainty and sensitivity
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analyses via Latin Hypercube Sampling and the computation of appropriate sensitivity in-

dices to epidemic models as a required tool and prior step in the research design, with the

potential to prevent (or at least identify) researchers to report incomplete (with respect to

the assumption over the disease stage distribution) or misguiding statements or conclusions

from quantitative and or qualitative studies or tasks.
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Chapter 4

THE EFFECT OF NON EXPONENTIAL DISTRIBUTED INFECTIOUS PERIOD IN A

SIMPLE STOCHASTIC AGE-OF-INFECTION

SUSCEPTIBLE-INFECTIOUS-RECOVERED MODEL

4.1 Introduction

4.1.1 Problem relevance

In the stochastic setting, the model prediction of an epidemic quantity is represented

by a random variable, which follows a probability density function. Probability density

functions are useful for calculating the probability of particular events. For example, the

probability that the basic reproduction number is greater than the epidemic threshold, in

other words, what is the probability that an epidemic will occur? can be computed from

the probability density function for the basic reproduction number. Another example, the

probability that no more than x percentage of the total population will be infected at the

end of an epidemic, can be determined from the probability density function for the final

epidemic size. A probability density function can be approximated by an empirically distri-

bution, which is obtained, simulation based, via a stochastic model. Hence, the importance

of assessing the effect that modeling assumptions and input model parameters have on the

estimation of the empirical distribution.

4.1.2 Research question

The aim of chapter four is to determine whether the empirical distributions for epidemic

quantities such as: epidemic duration, prevalence peak size, prevalence peak time and

final epidemic size, obtained by assuming exponential versus non-exponential (Gamma)
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distributed infectious period are drawn from the same probability distribution function.

4.1.3 Background

As previous work: in 1980, D. Anderson and R. Watson considered the general model

formulated by N. T. J. Bailey in 1964 to assess the effect of the shape parameter of the

Gamma distribution for the infectious period on the distribution of the final epidemic size

[29]; and more recently, in 2010 E. Vergu et al. assessed the distributional effect of the

Gamma family of distributions for the infectious period, on the distribution of some epi-

demiological quantities obtained from realizations of a stochastic metapopulation epidemic

model [38].

4.2 Methods

4.2.1 General approach

The research aim mentioned above is addressed by first, rewriting the deterministic

model governed by a system of Volterra integral equations (see equations 2.4-2.6), under

the assumption that the infectious period is Erlang distributed, into a larger dimensional

system of ordinary differential equations. This is done via the linear chain trickery (see

appendix B for details on the derivation). From the latter deterministic (ODE’s) model,

a corresponding simple stochastic age-of-infection susceptible-infectious-recovered model

is established, as a continuous time Markov chain model (see [29]). The stochastic model

is solved numerically via the Gillespie’s Direct algorithm (see [42]). A pair of empir-

ical distributions for each epidemiological quantity of interest is obtained. Finally, the

Kolmogorov-Smirnov test, which is a non-parametric statistical hypothesis test designed

to determine whether two empirical distributions (or samples) are drawn from the same

probability distribution function, is applied to each pair of empirical distributions.
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4.2.2 Stochastic epidemic model: Continuous-Time Markov Chain Model

A simple stochastic age-of-infection susceptible-infectious-recovered model is devel-

oped based on a multivariate Markov jump process

Xt = {(St , I1,t , . . . , InI ,t ,Rt) : t ∈ R+}

with state space ZnI+2
+ ∪ {0}. The model considers a total of nI + 1 events: infection,

progression from the infectious stage Ii to Ii+1 and removal. The stochastic rates of the

process or intensities are defined as:

Table 4.1: Stochastic events and their rates.

Event From To Rate

Infection X X +(e2− e1)
T βSI/N

Progression from the infectious X X +(ei+2− ei+1)
T nIγIi

stage Ii to Ii+1 for i = 1, . . . ,nI−1

Removal X X +(enI+2− enI+1)
T nIγInI

where ei = [0, . . . , 1︸︷︷︸
ith

, . . . ,0]T is a unit vector from the canonical basis. Notice that the

notation X +(ei+1−ei)
T = [X1, . . . ,Xi−1,Xi+1+1, . . . ,XnI+2] indicates the current state of

the process X after the occurrence of an event or “jump”.

The corresponding transition probabilities of the events are given by:

P(Xt+∆t−Xt = (e2− e1)
T ) =

βt

Nt
St

nI

∑
j=1

It∆t +o(∆t)

P(Xt+∆t−Xt = (ei+2− ei+1)
T ) = nIγIi,t∆t +o(∆t)

for i = 1, . . . ,nI−1

P(Xt+∆t−Xt = (enI+2− enI+1)
T ) = nIγInI ,t∆t +o(∆t)
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The absorbing states of the process X are

(S, I1, . . . , InI ,R) = (s,

nI︷ ︸︸ ︷
0, . . . ,0,N(textinction)− s),

where s ∈ {1, ...,N(t1)}, and the other states are transient. The waiting times or jump

times 0 < W1 < W2 < .. . have increments (interevent {Ti}) exponentially distributed with

parameter µ and are given by

P(Ti =Wi−Wi−1 > t|Wj, j ≤ i−1) = e−tµ(Wi−1),

where

µ(Wi−1) =

(
β (Wi−1)

N(Wi−1)
S(Wi−1)

( nI

∑
j=1

I j(Wi−1)
)
+nIγI1(Wi−1)+nIγI2(Wi−1)+ · · ·+nIγInI (Wi−1)

)−1

,

=

(
β (Wi−1)

N(Wi−1)
S(Wi−1)

( nI

∑
j=1

I j(Wi−1)
)
+nIγ

( nI

∑
j=1

I j(Wi−1)
))−1

=

(
β (Wi−1)

N(Wi−1)
S(Wi−1)I(Wi−1)+nIγI(Wi−1)

)−1

.

The implementation of the stochastic model (Gillespie’s Direct algorithm [42]) was

written in MATLAB (R2013a, The MathWorks).

4.2.3 Empirical distributions

For each epidemiological quantity of interest previously defined in equations 3.1, 3.2,

3.3, 3.4, 3.5, a pair of empirical distributions is obtained; one under the standard assump-

tion that the infectious period is distributed exponentially and the other one is under the

Gamma (or Erlang) distribution assumption (See Figure 4.1). Empirical distributions were

obtained by carrying out numerical simulations of the stochastic model (1,000 realizations)

with the following parameter values: model parameters: R0 = 1.5 and R0 = 15, β = τ =
√

R0, nI = 1 and nI = 4, Var = τ2

nI
; initial conditions: S0 = 990, I1,0 = 10, Ii,0 = 0, for i =

2, . . . ,nI−1, R0 = 0, N0 = Nt = 1,000.
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Figure 4.1: Infectious period distributions: (left panel) Exponential (nI = 1) and Erlang
(nI = 4) distributions, both under low basic reproduction numbers (R0 = 1.5) and (right
panel) Exponential (nI = 1) and Erlang (nI = 4) distributions, both under high basic repro-
duction numbers (R0 = 15).

4.2.4 Statistical hypothesis test

Each pair of empirical distributions were tested statistically by applying the non-parametric

Kolmogorov-Smirnov test, which is designed to determine whether two empirical distribu-

tions (or samples) are drawn from the same probability distribution function. The MAT-

LAB (R2013a, The MathWorks) built-in routine kstest2 was used for this task.

4.3 Results

Based on simple descriptive statistics (see Table 4.3) and empirical distributions

(see Figures 4.2 to 4.9) for each of epidemiological quantities considered (final epidemic
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size, epidemic duration, prevalence peak size and prevalence peak time): the uncertainty

of these is high for the case when the basic reproduction number is relatively low (around

R0 = 1.5). In contrast, for a high basic reproduction number (around R0 = 15), the un-

certainty of the variables mentioned previously is low, with the exemption of the epidemic

duration, which still remain high. These results are invariant from the two distribution

chosen and assumed for the infectious period, Exponential and Erlang.

Based on outcomes from the Kolmogorov-Smirnov tests: for low to moderate basic

reproduction numbers (around R0 = 1.5), all the pairs of empirical distributions for the

epidemiological quantities of interest resulted as statistically dissimilar, with a level of

significance of α = 0.05. While for high basic reproduction number (around R0 = 15), the

only pair of empirical distributions that resulted as statistically (α = 0.05) dissimilar was

the distribution corresponding to the epidemic duration.
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Table 4.2: Statistics, P-value and test conclusion of the Kolmogorov-Smirnov test for each
of the epidemiological variables of interest.

Case Epidemiological variables Statistics (P-value) Conclusion

Low R0

Final epidemic size 0.96(0) H0 is rejected

Epidemic duration 0.46(2×10−93) H0 is rejected

Prevalence peak 0.76(2×10−251) H0 is rejected

Prevalence peak time 0.56(4×10−140) H0 is rejected

High R0

Final epidemic size 0.947(0) Fails to reject H0

Epidemic duration 0.387(3×10−66) H0 is rejected

Prevalence peak 0.047(0.21) Fails to reject H0

Prevalence peak time 0.035(0.57) Fails to reject H0
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4.4 Conclusions

The only distinction between the two different established stochastic models is the

value for the variance of the (Erlang) distribution of the infectious period. The first model,

assumes exponentially distributed infectious period, or equivalently, Var = τ2 and a second

model, assumes Erlang distributed infectious period, or equivalently, Var = τ2

4 .

Hence, for relatively low basic reproduction number (around R0 = 1.5), the variance of

the infection period distribution, indirectly, is a key statistical significant (α = 0.05) input

model parameter in the estimation of empirical distributions of epidemiological variables

such as: final epidemic size, epidemic duration, prevalence peak size and prevalence peak

time. In other words, for relatively low basic reproduction number (around R0 = 1.5), the

distribution of the infection period is an important aspect to be considered in the estimation

of the probability of a particular event, defined from the empirical distribution of any of the

random variables of interest.

4.5 Discussion

In general, the framework introduced in this work can be applicable to other models,

with aim to determine whether or not the variance (or shape) of a Erlang distribution of a

stage, embedded in a model, is a key input parameter, on the estimation of the probability of

a particular event, definied from the empirical distribution of a random variable of interest.
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Chapter 5

PARAMETER ESTIMATION ON A SIMPLE AGE-OF-INFECTION

SUSCEPTIBLE-INFECTIOUS-RECOVERED MODEL

5.1 Introduction

5.1.1 Background

Parameter estimation from observed data using the least-square estimation procedure

has become a highly popular and useful tool in many scientific fields. The method helps

to determine estimates of significance for non-obvious quantities (i.e. transmission rate,

mean and variance for the infectious period distribution, etc.) obtained from mathemati-

cal models that describe the underlying mechanisms of a particular process, thus allowing

the possibility of predictions. In infectious diseases epidemiology, it has been applied in

studies of emerging and re-emerging infectious diseases such as Ebola [43], the Spanish

flu pandemic [44, 45], Degue fever [46], SARS [47], and Pneumococcal diseases [48], just

to mention a few. Typically, a parameter estimation problem is subject to a deterministic

epidemiological model governed by a system of nonlinear ordinary differential equations,

which implicitly assume exponential distributed disease stages. In this chapter, the standard

(exponentially distributed infectious period case) and a general case with respect to the in-

fectious period distribution are considered, where a parameter estimation problem is subject

to a deterministic epidemiological model described by a nonlinear system of Volterra inte-

gral equations. On the non-exponentially distributed disease stages case, there is not much

work done. There are two related studies that can be mentioned. A first study, in 2005,

where H. J. Wearing et al. observed that the exponentially distributed latent and infectious

periods assumption leads to overoptimistic results in comparison to the Erlang distributed
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latent and infectious periods [31]. This observation was based on predictions of the basic

reproduction number calculated from observed field data, indirectly, through the estimation

of parameters of various epidemiological models under the assumption of different com-

binations of the Erlang probability density functions for the latent and infectious periods

[31]. In their work, all the epidemiological models considered are described by nonlinear

systems of ordinary differential equations. A disadvantage of their approach (linear chain

trickery) is that it makes impossible the estimation of shape parameter or equivalently the

variance of the distribution for the latent and or infectious period, as input model param-

eters. More recently, a second study, in 2011, B. P. Holder and C. A. A. Beauchemin

obtained different estimates for key input parameters in SEIR models. The estimates are

computed indirectly via solving the least-square problem with deterministic models under

the assumption of different distributions for the diseases stages, such as: Exponential, fixed

period (or “δ” distribution), Normal and Log-normal [49]. In their work, the epidemiolog-

ical models considered are described by a nonlinear system of Volterra integral equations.

The parameters of the probability density functions are not estimated. They used a “modi-

fied Euler technique” as for the numerical scheme to solves the nonlinear system of Volterra

integral equations, which is not as accurate as using a 4th-stage Volterra-Runge-Kutta for-

mula of Pouzet type (see appendix D), and consequently the numerical inaccuracy could

have an impact on the reported results and main conclusions.

5.1.2 Research questions of interest

Chapter five is devoted to the exploration of the following research questions.

Question one: What is the quantitative effect of the standard modeling assumption of ex-

ponentially distributed infectious period on the estimates of input parameter and associated

predictions of outcome variables?

Question two: Can the probability density function for the infectious period of a particular
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infectious disease be identifiable from epidemiological data, indirectly, by using a SIR

model governed by a nonlinear system of Volterra integral equations?

5.2 Methods

5.2.1 General approach

The research questions are mainly addressed by pursuing estimations of input pa-

rameters of a simple age-of-infection Susceptible-Infectious-Recovered model (2.4-2.6),

indirectly, from artificially generated incidence data (see Figures 5.1), via the least-square

estimation procedure.

5.2.2 Model description

We considered the same simple age-of-infection Susceptible-Infectious-Recovered model

in (2.4-2.6) described in details in chapter two.

5.2.3 Description of data

Sets of artificially (or synthetic) generated data for the incidence are obtained by speci-

fying an explicit error term (or function) in the statistical model (see 5.1), which is a func-

tion of the deterministic states variables of the age-of-infection SIR model in (2.4-2.6).

Two scenarios are considered for the sets incidence data: low and high transmissibility.

Each scenario has three cases, which assume three types of infectious period distribution

(see Figures 5.1):

i) A Gamma probability density function with a larger variance than the variance for the

Exponential distribution (shape parameter k = 0.5);

ii) An Exponential distribution (the standard assumption k = 1);
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iii) A Gamma distribution with a lower variance than the variance for the Exponential

distribution (shape parameter k = 4).

The model parameters used to generate the incidence data are provided in Tables 5.1, 5.4

and 5.5.
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Figure 5.1: Incidence data (left panels) and prevalence baselines (left panels) of infectious
individuals for low (top panels) and high (bottom panels) transmissibility under different
infectious period distributions.
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5.2.4 Parameter estimation or inverse problem

The least-square approximation is applied to the age-of-infection SIR model in (2.4-2.6)

and the different synthetic sets of incidence data (see Figures 5.1). Two sets of model input

parameters to estimate are defined: i) a first set ~θ0,Exp, where the variance of the assumed

Exponentially distributed infectious period is fixed (Var = τ2) and for which case the model

is described as a nonlinear system of ordinary differential equations (see appendix A); and

a second set ~θ0,Γ, where the variance of the assumed Gamma distributed infectious period

is an input model parameter. The sets ~θ0,Exp and ~θ0,Γ are given by:

~θ0,Exp = (β ,τ)T ∈ RpExp
+ and ~θ0,Γ = (β ,τ,Var)T ∈ RpΓ

+ ,

with pExp = 2 and pΓ = 3, where RpExp
+ and RpΓ

+ are known as the corresponding sets

of admissible parameter values. To simplify the notation, denote ~θ0 as the set of “true”

parameter values of either ~θ0,Exp or ~θ0,Γ. The statistical model for the random process Yi

and its realization yi representing the incidence data are defined as:

Yi = f (ti,~θ0)+ f (ti,~θ0)
ξ

εi and yi = f (ti,~θ0)+ f (ti,~θ0)
ξ

εi for i = 1, . . . ,n, (5.1)

(see [64]) with n = 31. The mathematical model (or regression function) for the “observed”

incidence cases at weeks/days ti is

f (ti,~θ) =

 C(t1,~θ) if i = 1,

C(ti,~θ)−C(ti−1,~θ) if 2≤ i≤ n.
(5.2)

with C representing the cumulative incidence (see equation (3.5)). The observation errors

εi are assumed to be independent random variables from the same unspecified probability

density function with mean E[εi] = 0 and fixed variance Var[εi] = σ2
0 (see [53, 64, 48, 54]).

Equivalently, for the random process Yi the mean is E[Yi] = f (ti,~θ0) and the variance is

Var[Yi] = f (ti,~θ0)
2ξ σ2

0 (see [64]). The value of ξ determines the structure of the error
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function of the statistical model in (5.1). This was chosen to be ξ ≡ 0 (ordinary least-

squares), meaning that the variance of the random process Yi remains constant through

time (Var[Yi] =Var[εi] = σ2
0 ). This error structure is known as absolute noise (see [64]).

The random variable ~θLS, which is the least squares estimator for ~θ0, and its realiza-

tion ~̂θLS are obtained respectively by solving the minimization problem based on the cost

functionals:

Jn(~Y ,~θ) =
n

∑
i=1

wi|Yi− f(ti,~θ)|2 and Jn(~y,~θ) =
n

∑
i=1

ŵi|yi− f(ti,~θ)|2, (5.3)

~θLS = argmin
~θ∈Rp

+

Jn(~Y ,~θ) and ~̂θLS = argmin
~θ∈Rp

+

Jn(~y,~θ) (5.4)

where the weights wi and ŵi are given by

wi = (f(ti,~θ))−2ξ and ŵi = (f(ti,
~̂
θ))−2ξ for i = 1, . . . ,n. (5.5)

The estimates for ~̂θExp and ~̂θΓ for the sets ~θ0,Exp and ~θ0,Γ are provided in Tables 5.1, 5.4

and 5.5.

An algorithm for the implementation of the least squares approach is described in the

following pseudo-code:

Input Set the maximum number of iterations (Niter = 25); set the tolerance (TOL = 10−q),

where q(= 5) is the resolution desired for convergence; set the number of iterations

to zero ( j = 0); set the initial guess values ~̂θ (0)(≡~1), where the superscript represents

the number of iterations; and the weights are set to ŵ≡~1.

step 1 Do { step 2 to step 4 }While(( j ≤ Niter)&(||~̂θ ( j−1)− ~̂θ ( j)||2 ≥ TOL)).

step 2 Compute the j+1 estimate ~̂θ ( j+1) for the estimator ~̂θLS by solving

~̂θ ( j+1) = argmin
~̂θ∈Rp

+

Jn(~y,~̂θ ( j)). (5.6)
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step 3 Update the weights ŵi = (f(ti,~̂θ ( j+1)))−2ξ for i = 1, . . . ,n.

step 4 Increment the number of iteration by one j = j+1.

Output Set the estimator ~̂θLS = ~̂θ ( j).

The MATLAB 8.1.0 (R2013a, The MathWorks) built-in function fminsearch was used

to solve equation (5.6). Alternative functions are lsqnonlin and lsqcurvefit.

5.2.5 Residual plots

The validity of the assumptions of the statistical model (5.1) is studied through the

observation on the pattern from the residuals plots: If the pattern on the residuals (a real-

ization of εi) over time is a random (scattered all over the domain without a clear or obvious

trend), then it suggests that the errors (εi) are independent; Otherwise, if the pattern on the

estimated model ( f (t,~̂θLS)) versus the residuals is a non-increasing random pattern, then it

suggests that the assumption that the variance of the random process Yi remains constant

through time (Var[Yi] = σ2
0 ) is plausible (see for example Figures 5.3 and 5.4).

5.2.6 Confidence intervals for ~θ0,Exp and ~θ0,Γ

This subsection is devoted to describe how the confidence intervals of the estimated

sets of parameters ~θ0,Exp and ~θ0,Γ can be obtained. To simplify the notation, let ~θ0 be

either ~θ0,Exp or ~θ0,Γ and p be either pExp or pΓ. Given that the regularity and sampling

conditions are satisfied, then according to asymptotic theory (as n→ ∞) the least-squares

estimator ~θ n
LS follows a p-multivariable normal distribution with mean E[~θ n

LS] ≈ ~θ0 and

variance-covariance matrix Var[~θ n
LS]≈ ∑

n
0:

~θLS = ~θ n
LS ∼Np(~θ0,∑

n
0)≈Np(~θ0,σ

2
0 [χ

nT (~θ0)χ
n(~θ0)]

−1),

where σ2
0 is the variance of the errors εi (for i = 1, . . . ,n = 31) and χn(~θ0) is the sensitivity

matrix of the mathematical model in (5.2) (see [53, 48, 54] and the references therein).
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The sensitivity matrix is defined as χ(~θ) = χn(~θ) = {χn
i j}, where χn

i j(
~θ) = ∂ f (ti,~θ)

∂θ j
for i =

1, . . . ,n and j = 1, . . . , p are known as the sensitivity equations of f (ti,~θ) with respect to ~θ

[55] (see appendix H for a detailed derivation).

The variance σ2
0 is approximated by computing the bias adjusted estimate

σ
2
0 ≈ σ̂

2(~̂θLS) =
1

n− p
Jn(~y,~̂θLS), (5.7)

and an estimate of the variance-covariance matrix ∑
n
0 is given by

ˆ
∑

n
(~̂θLS) =

[
1

σ̂2(~̂θLS)
χ

T (~̂θLS)χ(~̂θLS)

]−1

, (5.8)

where the standard error for each θ̂LS j is given by SE j(~̂θLS) =

√
∑̂

n
j j(~̂θLS) (see [53, 48, 54,

56]).

Finally, an expression for the confidence interval for each θ0 j at a level of significance

α is provided by the following expression:

P{θ̂LS j − t1−α

2
SE j(~̂θLS)< θ0 j < θ̂LS j + t1−α

2
SE j(~̂θLS)}= 1−α, (5.9)

where t1−α

2
is Student-t distribution statistic with n− p degrees of freedom [53]. The 95th

percentile confidence intervals for the sets ~θ0,Exp are given in Table 5.1.

5.2.7 Estimation of the epidemiological quantities of interest and their confidence

intervals

The epidemiological quantities of interest such as: The peak size of the prevalence of

infectious individuals; Time at which the peak of the prevalence occurs; Final epidemic

size; Epidemic duration and Basic reproduction number (see Figure 1.1) are estimated as

described in the methods section of chapter three but using the estimates ~̂θExp and ~̂θΓ.

The variance of the epidemiological quantities mentioned above can be estimated in two

ways. The propagation of error method or “δ”-method is used for those epidemiological
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quantities that has explicit analytical functional description with the model parameters,

such as the basic reproduction number and the final epidemic size (see equations (3.1) and

(3.5)). While for the rest of the epidemiological quantities an indirect method such as

bootstrapping can be applied.

Propagation of error method or “δ”-method

Let f and g be the analytical description for the basic reproduction number and the final epi-

demic size, respectively given by f (~q0) = R0 and g(~q0) = z (see equations (3.1) and (3.5),

respectively), with ~q0 = (β0,τ)
T being the vector of “true” parameter values with corre-

sponding variance-covariance matrix ∑0. Then an approximation of the variance Var(R̂0)

and Var(ẑ) is obtained via the equations:

Var(R̂0)≈ ∇ f (~̂q)T ˆ
∑

n
∇ f (~̂q) and Var(ẑ)≈ ∇g(~̂q)T ˆ

∑∇g(~̂q) (5.10)

with standard error SE(R̂0) ≈
√

Var(R̂0) and SE(ẑ) ≈
√

Var(ẑ) (see [59] for details on

the “δ”-method).

Let x0 be the “true” value for either of the five epidemiological quantities of interest

mentioned above with mean x̂ and standard error SE(x̂), then the confidence intervals for

x0 at a level of significance α is obtained by

P{x̂− t1−α

2
SE(x̂)< x0 < x̂+ t1−α

2
SE(x̂)}= 1−α. (5.11)

The estimates, standard errors and 95th percentile confidence intervals for the five epidemi-

ological quantities of interest mentioned above are given in Tables 5.2 and 5.3.
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5.2.8 Residual sum of squares (RSS) based test or ANOVA test

An ANOVA (statistical) test is used to assess the validity of the common modeling

assumption of exponential distributed infectious period. This is executed indirectly by

testing if the value for the variance of the assumed Gamma distributed infectious period

equals the corresponding value for the exponential distribution, Var = τ2.

Let Q be the set of admissible parameters for a vector of parameters ~θΓ = (β ,τ,Var)T ,

then Q = RpΓ

+ , with pΓ = 3. Let QH be a subset of the set Q, with description

QH = {~θΓ ∈ Q : H~θΓ = c},

where H is a r× pΓ matrix with r = 1 defined as H = (0,0,1), and where c is a constant that

takes the value for the variance of the exponential distribution for the infectious period, c =

τ2. The null hypothesis H0 for the statistical test is then:

H0 : ~θ0,Γ ∈ QH or equivalently H0 : Var = τ
2.

A logically equivalent alternative interpretation for the null hypothesis H0 is that the SIR

model should be described by a nonlinear system of ordinary differential equations. While

the alternative hypothesis Ha, given by:

Ha : ~θ0,Γ /∈ QH or equivalently Ha : Var 6= τ
2

is interpreted as the SIR model being described by a nonlinear system of Volterra integral

equations, with the exception of having exponentially distributed infectious period.

The estimator ~θLS for ~θ0,Γ and its realization ~̂θLS are defined in (5.4) and the estimator

~θH for ~θ0,Γ and its realization ~̂θH are given by:

~θH = argmin
~θ∈QH

Jn(~Y ,~θ) and ~̂θH = argmin
~θ∈QH

Jn(~y,~θ). (5.12)
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A test statistic Tn and its realization T̂n are respectively defined as:

Tn(~Y ) = n(Jn(~Y ,~θH)− Jn(~Y ,~θLS)), (5.13)

T̂n(~y) = n(Jn(~y,~̂θH)− Jn(~y,~̂θLS)). (5.14)

The above test statistics is non-negative, since Jn(~y,~̂θH)≥ Jn(~y,~̂θLS).

An additional test statistic Un is defined as a function of the test statistics Tn as:

Un(~Y ) =
Tn(~Y )

Jn(~Y ,~θLS)
with realization Ûn(~y) =

T̂n(~y)

Jn(~y,~̂θLS)
. (5.15)

The veracity of the model comparison statistical (ANOVA) test depends on two plausi-

ble assumptions, under regularity and the way in which the sample or data is collected (see

[53] and references their for more details):

• The estimator ~θLS converges to ~θ0,Γ with probability one as n→ ∞;

• If the null hypothesis H0 is true, then Un converges in the distributional sense to

U ∼ χ2(r) as n→ ∞ where r represent the degrees of freedom in the χ2 distribution

and is determined by number of constrains imposed to the vector of parameter ~θΓ or

the number of rows in the H matrix.

The statistical test is stated is as follow: If the probability-value P{U ∼ χ2(r)≥ Ûn} is

strictly less than the α level of significance, then there is sufficient evidence to reject the

null hypothesis H0 and thus accept the alternative hypothesis Ha, meaning that the exponen-

tial probability density function is not a suitable option for the infectious period distribution

which is equivalent to say that the SIR model should not be described by a nonlinear system

of ordinary differential equations; otherwise rejection of the the null hypothesis H0 fails,

concluding that there is not sufficient evidence that suggest that a the SIR model should be

described by a nonlinear system of Volterra integral equations.
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5.3 Results

5.3.1 Results using the mathematical model f assuming Exponentially distributed

infectious period

The mathematical model f used to describe the observable incidence cases, under the

assumption that the infectious period is exponentially distributed, provided a good fit to

the data for the scenarios where the transmissibility is either low or high and for all the

cases where the “true” (or baseline) infectious period distribution is either exponential or

non-exponential (Gamma) (see Figure 5.2, left panels). The parameter estimates for the

set ~̂θExp = (β̂ , τ̂)T are in agreement with the “true” values (~θ0,Exp), on both scenarios, only

for the case where the “true” (or baseline) infectious period distribution is exponential (see

Table 5.1). For high transmissibility, the estimate of mean infectious period τ is a sensi-

tive parameter for the cases where the “true” (or baseline) infectious period distribution is

non-exponential (Gamma) (see Table 5.1). In both scenarios, the predicted prevalence of

infected individuals does not capture the transient trend of the “true” prevalence whenever

the baseline infectious period distribution is non-exponential (Gamma) (see Figure 5.2,

right panels), with an exception for high transmissibility, only at the very early stage of the

epidemic (see Figure 5.2, bottom-right panel). When the baseline infectious period distri-

bution is Exponential, as expected, the predicted prevalence is in agreement with the “true”

transient trend of the prevalence (see Figure 5.2, right panels). For the low transmissibility

scenario and all cases the prediction of the outcome variables such as: the prevalence peak

time, final epidemic size, epidemic duration and basic reproduction number are in close

agreement with the “true” values (see Table 5.2). For the high transmissibility scenario

and all cases the prediction of the outcome variables such as: the prevalence peak time and

final epidemic size are in close agreement with the “true” values (see Table 5.3). For high

transmissibility, predicted values for the epidemic duration and basic reproduction number
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tend to be underestimated whenever the baseline variance of the Gamma distributed infec-

tious period is greater than the variance of the Exponential distribution, on the contrary,

these values tend to be overestimated whenever the baseline variance of the Gamma dis-

tributed infectious period is less than the variance of the Exponential distribution (see Table

5.3). The opposite occur to the predicted values for the prevalence peak size, but for both

scenarios, these tend to be overestimated whenever the baseline variance of the Gamma

distributed infectious period is greater than the variance of the Exponential distribution,

or on the hand, overestimated whenever the baseline variance of the Gamma distributed

infectious period is less than the variance of the Exponential distribution (see Tables 5.2

and 5.3). In all scenarios and cases considered, the random pattern of the residuals over

time (see Figures 5.3 and 5.4, left panels) provide strong evidence that validates the sta-

tistical modeling assumption that the errors (ε) are independent. Also, the non-increasing

random pattern of the residuals ε versus the estimated incidence model f suggests that

the assumption that the variance of the random process Yi remains constant through time

(Var[Yi] = σ2
0 ) (see Figures 5.3 and 5.4, right panels).
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Figure 5.2: Incidence data (left panels, in dotted-dash lines) and prevalence baselines (left
panels, in dash line) of infectious individuals for low (top panels) and high (bottom panels)
transmissibility under different infectious period distributions. The predictions from the
SIR model under Exponentially distributed infectious period are in solid lines.
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(a) The case of low transmissibility, R0 = 1.5 and Gamma distributed infectious period as: Gamma(k =

0.5,θ =
√

1.5
0.5 ),Var = 3.0.
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(b) The case of low transmissibility, R0 = 1.5 and Exponentially distributed infectious period as:

Exp( 1√
1.5

),Var = 1.5.
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(c) The case of low transmissibility, R0 = 1.5 and Gamma distributed infectious period as: Gamma(k =

4,θ =
√

1.5
4 ),Var = 0.375.

Figure 5.3: On the left graphs, the residuals (ε) over time and on the right graphs, the
residuals (ε) versus the estimated incidence model ( f ) under the Exponentially distributed
infectious period assumption.
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(a) The case of high transmissibility, R0 = 15 and Gamma distributed infectious period as: Gamma(k =

0.5,θ =
√

15
0.5 ),Var = 30.
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(b) The case of high transmissibility, R0 = 15 and Exponentially distributed infectious period as:
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Figure 5.4: On the left graphs, the residuals (ε) over time and on the right graphs, the
residuals (ε) versus the estimated incidence model ( f ) under the Exponentially distributed
infectious period assumption.
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5.3.2 Results using the mathematical model f assuming Gamma distributed infectious

period

As expected, the fit to all the incidence data sets considered (see Figure 5.5, left pan-

els) and the predicted prevalence (see Figure 5.5, right panels) from using the mathematical

model f for the incidence under the Gamma distributed infectious period assumption are

notably better than in the case previously discussed in the subsection 5.3.1. For low trans-

missibility, all cases, the parameter estimates for the set ~̂θΓ = (β̂ , τ̂, ˆVar)T are in agreement

with the “true” values (~θ0,Γ) (see Table 5.4). For high transmissibility the parameter esti-

mates for the set ~̂θΓ =(β̂ , τ̂, ˆVar)T are in agreement with the “true” values (~θ0,Γ), only when

the “true” variance of the Gamma distributed infectious period is greater than the variance

of the Exponential distribution (see Table 5.5). For high transmissibility, the estimate of

the mean τ and variance Var of the infectious period distribution are sensitive parameters

for the cases where the “true” variance of the Gamma distributed infectious period is less or

equal than the variance of the Exponential distribution (see Table 5.5). Nevertheless, in all

scenarios and cases, still the predicted infectious period distribution is identifiable and in

agreement with the “true” probability density function for the infectious period (see Figure

5.6). In both scenarios, all cases, the predicted prevalence of infected individuals capture

nicely the transient trend of the “true” prevalence (see Figure 5.5, right panels). For all

scenarios and cases the prediction of the outcome variables are in close agreement with the

“true” values (see Figures 5.5 and 5.6). The conclusions of the statistical test are expected,

since when the “true” infectious period distribution is assumed to be non-Exponential, then

the test suggest the rejection of the null hypothesis H0 and the acceptance of the Ha, which

state that the infectious period is Gamma, but non-exponentially distributed and when the

“true” infectious period distribution is assumed to be Exponential, then it fails to reject

the null hypothesis H0 (see Table 5.6). There is only one exceptional case where the test
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did not provided the correct suggestion and it is for high transmissibility when the “true”

variance of the Gamma distributed infectious period is less than the variance of the Expo-

nential distribution. This might be due to numerical roundoff error or inaccuracies in the

numerical solver used, since there is a lot of almost zero values in the incidence when the

transmissibility is high.
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Figure 5.5: Incidence data (left panels, in dotted-dash lines) and prevalence baselines (left
panels, in dash line) of infectious individuals for low (top panels) and high (bottom panels)
transmissibility under different infectious period distributions. The predictions from the
SIR model under Gamma distributed infectious period are in solid lines.
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Figure 5.6: Baseline (in dash lines) and estimated (in solid lines) probability density func-
tion for the infectious period for low (top panel) and high (bottom panel) transmissibility.
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5.4 Conclusions

The epidemiological quantities whose prediction are not affected by the standard

Exponentially distributed infectious period modeling assumption are: for the low trans-

missibility scenario the prevalence peak time, final epidemic size, epidemic duration and

basic reproduction number and for the high transmissibility scenario the prevalence peak

time and final epidemic size. This conclusion is particular to the SIR model considered

and regardless if the estimates of the input model parameters are either close or not too far

off from the “true” parameters values. However, in comparison with the SIR under Expo-

nentially distributed infectious period, the SIR model governed by a nonlinear system of

Volterra integral equations will produce a more accurate fit of the data, estimates for the

input parameters and therefore more accurate predictions for the outcome variable. For this

reason and to avoid problems of either significant under or overestimation on prediction,

we suggest the used of the SIR model governed by a nonlinear system of Volterra inte-

gral equations for outcome variables such as the epidemic duration and basic reproduction

number for high transmissibility and the prevalence peak size for both scenarios. Lastly,

an advantage of the latter model over the standard SIR model is that the probability den-

sity function for the infectious period of a specific infectious disease can be identifiable

from epidemiological data, this, indirectly by estimating the distribution parameters, which

are input parameters in the SIR model governed by a nonlinear system of Volterra integral

equations. This last conclusion is particular to the SIR model considered and regardless

if the estimates of the input model parameters are either close or not too far off from the

“true” parameters values.
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5.5 Discussion

The main contributions on this chapter are:

Method one: The development of a new application which test statistically whether or not

the infectious period distribution is non-Exponentially distributed.

Method two: In addition, a method for estimating the probability density function for the

infectious period of a particular disease from epidemiological data is provided, by

considering the parameters of a general infectious period distribution (Gamma in our

case) as input model parameters in the SIR model governed by a nonlinear system of

Volterra integral equations.

Further work can be done on assessing the robustness and power of Method one by ap-

plying it to generated incidence data from agent based-like stochastic models. Method two

can be expanded for generating a uncertainty bound where the “True” probability density

function for the infectious period will be contained.
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Chapter 6

DISCUSSION AND CONCLUSIONS

6.1 Summary of main conclusions: What we learnt?

From the first core project, chapter three, we learnt that, for relatively low (R0 close

to one) to excessively high (mean of R0 equals 15) transmissibility, the variance of the

Gamma distribution for the infectious period, input parameter of the deterministic age-of-

infection SIR model, is key (statistically significant) for the predictability of epidemiolog-

ical variables such as the epidemic duration and the peak size and timing of the prevalence

of infectious individuals. Hence, it is preferable to utilize a nonlinear system of Volterra

integral equations, rather than a nonlinear system of ordinary differential equations if the

goal is to have better predictions or forecasting. On the other hand, the predictability of

epidemiological variables such as the final epidemic size and the basic reproduction num-

ber are unaffected by (or independent of) the variance of the Gamma distribution (for the

infectious period) and therefore independent on the choice of the type of nonlinear system

used for the description of the SIR model (VIE’s or ODE’s). Although, practical proposes

(with the aim of lowering the complexity and number operations in the numerical methods)

supports the use of a nonlinear system of ordinary differential equations.

From the second core project, Chapter four, we learned that, for relatively low trans-

missibility (around R0 = 1.5), the variance of the Gamma distribution for the infectious

period, input parameter of the stochastic age-of-infection SIR model, is key (statistically

significant) for the estimation of the probability of a particular event; as defined from the

empirical distribution of random epidemiological variables such as the final epidemic size,

epidemic duration, prevalence peak size and prevalence peak time. For the case of high
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transmissibility (around R0 = 15), the variance of the Gamma distribution for the infec-

tious period is a key (statistically significant) parameter on the estimation of the probability

of a particular event, defined from the empirical distribution of the epidemic duration. By

relating the main conclusions from Chapters three and four, it can be concluded that, for rel-

atively low transmissibility (around R0 = 1.5) and eventhough, in the deterministic sense,

the variance of the Gamma distribution for the infectious period does not play any role in

the predictability of the final epidemic size, the fact is, that in the stochastic (distributinal)

sense, it does. However, for high transmissibility (around R0 = 15), even though, in the

deterministic sense, the variance of the Gamma distribution for the infectious period is a

key input parameter in the predictability of variables such as the peak size and timing of the

prevalence of infectious individuals, the fact is, that in the stochastic (distributinal) sense,

it does not. Generally speaking, these discrepancies are justifiable, attributed or induced by

the stochasticity, which was introduced on the time at which infection and recovery events

occur.

From the third core project, Chapter five, we learned that, the epidemiological quanti-

ties unaffected (in terms of prediction) by the standard Exponentially distributed infectious

period modeling assumption are: for the low transmissibility scenario the prevalence peak

time, final epidemic size, epidemic duration and basic reproduction number and for the

high transmissibility scenario the prevalence peak time and final epidemic size. However,

when compared with the SIR under Exponentially distributed infectious period, it turns out

that the SIR model governed by a nonlinear system of Volterra integral equations, actually

produces more accurate fit to the data, estimates for the input parameters and therefore

more accurate predictions for the outcome variables. For this reason and to avoid problems

of either significant under or overestimation on prediction, we suggest the used of the SIR

models governed by a nonlinear system of Volterra integral equations, in particular, when

we are interested in outcome variables that include epidemic duration, basic reproduction
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number for high transmissibility, and the prevalence peak size for both high and low sce-

narios. Lastly, an advantage of the nonlinear system of Volterra integral equations over

the standard SIR model, is that the probability density function for the infectious period

of a specific infectious disease can be identifiable directly from epidemiological data. By

relating the main conclusions from Chapters three and five, it can be concluded that, for

relatively low transmissibility (around R0 = 1.5), even though, in the deterministic sense,

the variance of the Gamma distribution for the infectious period is a key input parameter

in the predictability of variables such as the peak timing of the prevalence of infectious

individuals and the epidemic duration, in the parameter estimation (or inverse problem)

context, it does not. However, for high transmissibility (around R0 = 15), even though, in

the deterministic sense, the variance of the Gamma distribution for the infectious period is

a key input parameter in the predictability of peak timing of the prevalence of infectious

individuals, in the parameter estimation (or inverse problem) context, it does not. Another

observation, for high transmissibility (around R0 = 15), is that while in the deterministic

sense, the variance of the Gamma distribution for the infectious period does not play any

role in the predictability of the basic reproduction number, in the parameter estimation (or

inverse problem) context, it does. Generally speaking, these discrepancies are justifiable,

attributed or induced by the ill-posedness nature of the parameter estimation (or inverse)

problem.

6.2 Summary of main contributions

In summary, the main contributions of the work included in this dissertation are:

• From Chapter three the main contribution lies in the development of a model based

decision-tool that helps determine when Volterra integral equations are equivalent or better

suited than ordinary differential equations models in predicting epidemiological outcome

variables considered.
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• The application in Chapter four is designed to determine whether the non-exponential

(Erlang) distribution for the infection period is an important aspect to be considered in the

estimation of the probability of an event, defined from the empirical distribution of any of

the random variables considered.

• From Chapter five an application designed to determine from incidence data whether

there is sufficient statistical evidence to conclude that the infectious period distribution is

non-Exponentially distributed is developed. In addition, a method for estimating the ex-

plicitly specified non-exponential parametric probability density function for the infectious

period from epidemiological data is developed.

6.3 Future work

Further explorations to be considered for the methodologies presented are:

• Moving beyond the homogenous mixing assumption for the contact of individuals so as

to include population structure.

• Moving beyond the constant parameters thought time assumption by applying the Opti-

mal Control Theory to epidemiological models; that is, we would like to consider control

functions in the formula of the distribution of the infectious period.

• As an effort to bring all the methodologies presented in this dissertation into practice two

essential tasks need to be considered: First, enhancement of the codes and programs used

for the implementation of all the methodologies through high performance computing (or

parallel computing) and second, increase the accessibility to a general audience through

graphical user interfaces and the creation of applications, where users may be capable to

build their own SIR-type model by choosing the compartments, distributions associated

and input parameter values and which results (or graphs) wish to produce and display.
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APPENDIX A

REWRITING A NONLINEAR SYSTEM OF VOLTERRA INTEGRO-ORDINARY
DIFFERENTIAL EQUATIONS INTO A NONLINEAR SYSTEM OF ORDINARY

DIFFERENTIAL EQUATIONS: THE CASE OF EXPONENTIALLY DISTRIBUTED
INFECTIOUS PERIOD
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Lets assume that the survivor function is of the form:

F̄(t) =
{

e−
1
τ

t for t ≥ 0,
0 for t < 0,

or equivalently, lets assume that the probability density function for the infectious period
has the following form:

[− ˙̄F(t)] =
{

1
τ
e−

1
τ

t for t ≥ 0,
0 for t < 0,

then

dI
dt

(t) =
β

N
I(t)S(t)−

(
I0[− ˙̄F(t)]+

∫ t

0

β

N
I(s)S(s)[− ˙̄F(t− s)]ds

)

=
β

N
I(t)S(t)−

(
I(0)

1
τ

e−
1
τ

t +
∫ t

0

β

N
I(s)S(s)

1
τ

e−
1
τ
(t−s)ds

)

=
β

N
I(t)S(t)− 1

τ

(
I(0)e−

1
τ

t +
∫ t

0

β

N
I(s)S(s)e−

1
τ
(t−s)ds

)
dI
dt

(t) =
β

N
I(t)S(t)− 1

τ

(
I0F̄(t)+

∫ t

0

β

N
I(s)S(s)F̄(t− s)ds,

)
︸ ︷︷ ︸

By definition this expression is I(t).

,

dS
dt

(t) = −β

N
I(t)S(t),

dI
dt

(t) =
β

N
I(t)S(t)− 1

τ
I(t).
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APPENDIX B

REWRITING A NONLINEAR SYSTEM OF VOLTERRA INTEGRO-ORDINARY
DIFFERENTIAL EQUATIONS INTO A LARGER DIMENSIONAL NONLINEAR

SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS VIA THE LINEAR CHAIN
TRICKERY: THE CASE OF ERLANG DISTRIBUTED INFECTIOUS PERIOD
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Lets assume that the probability density function for the infectious period has the fol-
lowing form:

[− ˙̄F(t)] =

 tk−1e
− t
( τ

k )

(k−1)!( τ

k )
k for t ≥ 0,

0 for t < 0,
=

{
(k 1

τ
)ktk−1e−(k

1
τ )t

(k−1)! for t ≥ 0,
0 for t < 0,

where k denotes the shape parameter and τ

k the scale parameter, then

dI
dt

(t) =
β

N
I(t)S(t)−

(
I0[− ˙̄F(t)]+

∫ t

0

β

N
I(s)S(s)[− ˙̄F(t− s)]ds

)

=
β

N
I(t)S(t)

−

(
I0

(
(k 1

τ
)ktk−1e−(k

1
τ
)t

(k−1)!

)
+
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0

β

N
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(
(k 1

τ
)k(t− s)k−1e−(k

1
τ
)(t−s)

(k−1)!
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ds

)
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β

N
I(t)S(t)

− (k
1
τ
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(
I0

(
(k 1

τ
)k−1tk−1e−(k

1
τ
)t

(k−1)!

)
+
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0
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N
I(s)S(s)

(
(k 1

τ
)k−1(t− s)k−1e−(k
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τ
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ds

)
︸ ︷︷ ︸

Define this term as Ik(t).

d
dt

I(t) =
β

N
I(t)S(t)− (k

1
τ
)Ik(t),
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Computing the time derivative of Ik(t) we obtain:

Ik(t) = I0

(
(k 1

τ
)k−1tk−1e−(k

1
τ
)t

(k−1)!

)
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N
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d
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+
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This term is δ1,k, since 00=1
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β
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︸ ︷︷ ︸
This term is Ik−1. This is possible since the term k 1

τ
as a whole is considered a symbol (the rate parameter).
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1
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β
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︸ ︷︷ ︸

This term is Ik

d
dt

Ik(t) =
β

N
I(t)S(t)δ1,k +(k

1
τ
)Ik−1− (k

1
τ
)Ik.
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As the results from the last equation above we obtained the following reduction to a
system of non-linear ordinary differential equations:

d
dt

S(t) = −β

N
I(t)S(t),

d
dt

I(t) =
β

N
I(t)S(t)− (k

1
τ
)Ik(t),

d
dt

Ik(t) = (k
1
τ
)Ik−1− (k

1
τ
)Ik,

d
dt

Ik−1(t) = (k
1
τ
)Ik−2− (k

1
τ
)Ik−1,

...
d
dt

I2(t) = (k
1
τ
)I1− (k

1
τ
)I2,

d
dt

I1(t) =
β

N
I(t)S(t)− (k

1
τ
)I1. (from the second equation in previous page)

Given that I(t)= I1(t)+I2(t)+ · · ·+Ik(t), the system above can be solved without including
the d

dt I(t) equation. Therefore the system can be rewritten as follows:

d
dt

S(t) = −β

N
I(t)S(t),

d
dt

I1(t) =
β

N
I(t)S(t)− (k

1
τ
)I1,

d
dt

I2(t) = (k
1
τ
)I1− (k

1
τ
)I2,

...
d
dt

Ik−1(t) = (k
1
τ
)Ik−2− (k

1
τ
)Ik−1,

d
dt

Ik(t) = (k
1
τ
)Ik−1− (k

1
τ
)Ik.

126



APPENDIX C

REWRITING A NONLINEAR SYSTEM OF VOLTERRA INTEGRO-ORDINARY
DIFFERENTIAL EQUATIONS INTO A NONLINEAR SYSTEM OF DISCRETE
DELAY DIFFERENTIAL EQUATIONS: THE CASE OF FIXED INFECTIOUS

PERIOD
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Lets assume that the survivor function is of the form:

F̄(t) =
{

1 for 0≤ t < τ,
0 otherwise,

then

I(t) = I0F̄(t)+
∫ t

0

β

N
I(s)S(s)F̄(t− s)ds

= I0F̄(t)+
∫ t

0

β

N
I(t− s)S(t− s)F̄(s)ds

=

{
I0 +

∫ t
0

β

N I(t− s)S(t− s)ds for 0≤ t < τ,∫
τ

0
β

N I(t− s)S(t− s)ds otherwise

=

{
I0 +

∫ t
0[−Ṡ(t− s)]ds for 0≤ t < τ,∫

τ

0 [−Ṡ(t− s)]ds otherwise

=

{
I0 +

∫ 0
t Ṡ(s)ds for 0≤ t < τ,∫ t−τ

t Ṡ(s)ds otherwise

I(t) =

{
I0 +S0−S(t) for 0≤ t < τ,
S(t− τ)−S(t) otherwise,

dI
dt

(t) =

{
−Ṡ(t) for 0≤ t < τ,
Ṡ(t− τ)− Ṡ(t) otherwise

dI
dt

(t) =

{
β

N I(t)S(t) for 0≤ t < τ,
β

N I(t)S(t)− β

N I(t− τ)S(t− τ) otherwise,

dS
dt

(t) = −β

N
I(t)S(t),

dI
dt

(t) =

{
β

N I(t)S(t) for 0≤ t < τ,
β

N I(t)S(t)− β

N I(t− τ)S(t− τ) otherwise.
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APPENDIX D

A 4TH-STAGE VOLTERRA-RUNGE-KUTTA FORMULA OF POUZET TYPE
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• 4th-stage PVRK formula:

Yn, j = F̃n(tn + c jh)+h
4

∑
i=1

a j,ik(tn + c jh, tn + cih,Yn,i), j = 1, . . . ,4

yn+1 = F̃n(tn +h)+hΦ̃n(tn +h), n = 0, . . . ,N−1

• Lag term formula:

F̃n(t) := g(t)+h
n−1

∑
l=0

4

∑
j=1

b jk(t, tl + c jh,Yl, j), n = 0, . . . ,N−1

• PVRK formula:

Φ̃n(t) :=
4

∑
j=1

b jk(t, tn + c jh,Yn, j)

• Butcher array:

c A
bT =

c1 a1,1 · · · a1,4
...

...
...

c4 a4,1 · · · a4,4
b1 · · · b4

=

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

• The 4th-stage PVRK formula is explicit since A is strictly lower triangular matrix
Adapted from the 1986 book by H. Brunner and P. J. Van der Houwen on “The Nu-
merical Solution of Volterra Equations”.
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APPENDIX E

A 4TH-STAGE VIODE-RUNGE-KUTTA FORMULA OF POUZET TYPE
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• 4th-stage PVDRK formula:

Yn, j = yn +h
4

∑
i=1

a j,i f (tn + cih,Yn,i, F̃n(tn + cih)+hΦ̃n(tn + cih)), j = 1, . . . ,4

with y0 = y(0)

yn+1 = yn +h
4

∑
j=1

b j f (tn + c jh,Yn, j, F̃n(tn + c jh)+hΦ̃n(tn + c jh)), n = 0, . . . ,N−1

• Lag term formula:

F̃n(t) := h
n−1

∑
l=0

4

∑
j=1

b jk(t, tl + c jh,Yl, j), n = 0, . . . ,N−1

• PVDRK formula:

Φ̃n(t) :=
4

∑
l=1

ai,lk(t, tn + clh,Yn,l)

• Butcher array:

c A
bT =

c1 a1,1 · · · a1,4
...

...
...

c4 a4,1 · · · a4,4
b1 · · · b4

=

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

• This 4th-stage PVDRK formula is explicit since A is strictly lower triangular matrix
Adapted from the 1986 book by H. Brunner and P. J. Van der Houwen on “The
Numerical Solution of Volterra Equations”.

132



APPENDIX F

DERIVATION OF THE BASIC REPRODUCTION NUMBER R0 FOR THE
AGE-OF-INFECTION SIR MODEL
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When the epidemiological model is described by a system of ordinary differential equa-
tions, the basic reproduction number is traditionally calculated via the next generator oper-
ator (see [69]). For the age-of-infection SIR model in (2.4)-(2.6) the same method does not
apply. Here we derive the basic reproduction number in two different ways.

The first and easy way is a heuristic approach. Strictly by definition we have that β is
the transmission rate, which by simplicity can be composed by two main terms, the average
number of contacts that a single individual have, times the probability of the individual to
infect others. The expected infectious period of an individual τ by definition is given by∫

∞

−∞
t f (t)dt or by a simple integration by parts

∫
∞

0 F̄(t)dt. Then heuristically, by definition
of the basic reproduction number, it is given by:

R0 = β

(∫ ∞

−∞

t f (t)dt
)
= β

(∫ ∞

0
F̄(t)dt

)
= βτ.

The second approach is via the stability analysis of the endemic equilibrium of a sim-
ilar model as the age-of-infection SIR model in (2.4)-(2.6), but with demographic terms,
constant and identical births and deaths rates. Consider the following model:

S(t) =
∫ t

0
N(µe−µ(t−s))ds−

∫ t

0

β

N
I(s)S(s)e−µ(t−s)ds+S0e−µt ,

I(t) = I0F̄(t)e−µt +
∫ t

0

β

N
I(s)S(s)F̄(t− s)e−µ(t−s)ds,

R(t) = R0e−µt +
∫ t

0

[
I0 f (s)e−µs +

∫ s

0

β

N
I(τ)S(τ) f (s− τ)e−µ(s−τ)dτ

]
e−µ(t−s)ds

By integrating the first term in the S(t) equation, a change of variable (u = t− s) in the
second term of the S(t) and I(t) equations and changing the order of integration in the R(t)
equation we have:

S(t) = N(1− e−µt)−
∫ t

0

β

N
I(t− s)S(t− s)e−µ(s)ds+S0e−µt ,

I(t) = I0F̄(t)e−µt +
∫ t

0

β

N
I(t− s)S(t− s)F̄(s)e−µsds,

R(t) = R0e−µt +
∫ t

0
I0 f (s)e−µse−µ(t−s)ds+

∫ t

0

∫ t

τ

β

N
I(τ)S(τ) f (s− τ)e−µ(s−τ)e−µ(t−s)dsdτ

S(t) = N(1− e−µt)−
∫ t

0

β

N
I(t− s)S(t− s)e−µ(s)ds+S0e−µt ,

I(t) = I0F̄(t)e−µt +
∫ t

0

β

N
I(t− s)S(t− s)F̄(s)e−µsds,

R(t) = R0e−µt + I0e−µt(1− F̄(t))+
∫ t

0

β

N
I(τ)S(τ)

(∫ t

τ

[−ṖI(s− τ)]ds

)
e−µ(t−τ)dτ
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S(t) = N(1− e−µt)−
∫ t

0

β

N
I(t− s)S(t− s)e−µ(s)ds+S0e−µt ,

I(t) = I0F̄(t)e−µt +
∫ t

0

β

N
I(t− s)S(t− s)F̄(s)e−µsds,

R(t) = R0e−µt + I0e−µt(1− F̄(t))+
∫ t

0

β

N
I(s)S(s)(1− F̄(t− s))e−µ(t−s)ds

By changing the order of integration in the R(t) equation we have:

S(t) = N(1− e−µt)−
∫ t

0

β

N
I(t− s)S(t− s)e−µ(s)ds+S0e−µt ,

I(t) = I0F̄(t)e−µt +
∫ t

0

β

N
I(t− s)S(t− s)F̄(s)e−µsds,

R(t) = R0e−µt + I0e−µt(1− F̄(t))+
∫ t

0

β

N
I(t− s)S(t− s)(1− F̄(s))e−µsds

The endemic equilibrium of the model is obtained as follows:

S∞ = lim
t→∞

S(t) = lim
t→∞

(
N(1− e−µt)+S0e−µt

)
−
∫

∞

0

β

N
I∞S∞e−µ(s)ds,

I∞ = lim
t→∞

I(t) = lim
t→∞

I0F̄(t)e−µt +
∫

∞

0

β

N
I∞S∞F̄(s)e−µ(s)ds,

R∞ = lim
t→∞

R(t) = lim
t→∞

(
R0e−µt + I0e−µt(1− F̄(t))

)
+
∫

∞

0

β

N
I∞S∞(1− F̄(s))e−µsds

S∞ = N−
∫

∞

0

β

N
I∞S∞e−µsds,

I∞ =
∫

∞

0

β

N
I∞S∞F̄(s)e−µsds,

R∞ =
∫

∞

0

β

N
I∞S∞(1− F̄(s))e−µsds

S∞ = N− β

N
I∞S∞

∫
∞

0
e−µsds,

I∞ =
β

N
I∞S∞

∫
∞

0
F̄(s)e−µsds,

R∞ =
β

N
I∞S∞

(∫
∞

0
e−µsds−

∫
∞

0
F̄(s)e−µsds

)
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S∞ = N− β

N
I∞S∞

1
µ
,

I∞ =
β

N
I∞S∞

∫
∞

0
F̄(s)e−µsds,

R∞ =
β

N
I∞S∞

(
1
µ
−
∫

∞

0
F̄(s)e−µsds

)
Assuming that I∞ 6= 0, we solve for S∞ in the equation for I.

1 =
β

N
S∞

∫
∞

0
F̄(s)e−µsds,

S∞ =
N

β
∫

∞

0 F̄(s)e−µ(s)ds
=

N
R̃0

,

We solve for I∞ in the equation for S.

S∞ = N− β

N
I∞S∞

1
µ
,

1 =
N
S∞

− β

N
I∞

1
µ
,

I∞ =
( N

S∞

−1
)Nµ

β
,

I∞ =
( N

N
R̃0

−1
)Nµ

β
=

Nµ

β

(
R̃0−1

)
,

We solve for R∞ in the equation for R.

R∞ =
β

N
I∞S∞

(
1
µ
−
∫

∞

0
F̄(s)e−µsds

)

R∞ =
1
N

I∞S∞

(
β

µ
−β

∫
∞

0
F̄(s)e−µsds

)

R∞ =
1
N

(
Nµ

β

(
R̃0−1

))( N
R̃0

)(
β

µ
− R̃0

)
Endemic equilibrium:

(S∞, I∞,R∞) =

(
N
R̃0

,
Nµ

β

(
R̃0−1

)
,

1
N

(
Nµ

β

(
R̃0−1

))( N
R̃0

)(
β

µ
− R̃0

))

136



The stability analysis of the endemic equilibria of the model is as follows. Lineariza-
tion: Since the total population is constant, we only focused on the I(t) and R(t) equa-
tions. First we translate the endemic equilibria to the origin by re-writing the model with
I(t) = I∞ +V (t) and R(t) = R∞ +W (t):

[
I(t)
R(t)

]
=

[
I0F̄(t)e−µt +

∫ t
0

β

N I(s)S(s)F̄(t− s)e−µ(t−s)ds
R0e−µt + I0e−µt(1− F̄(t))+

∫ t
0

β

N I(s)S(s)(1− F̄(t− s))e−µ(t−s)ds

]
[

I∞ +V (t)
R∞ +W (t)

]
=

[
I0F̄(t)e−µt +

∫ t
0

β

N (I∞ +V (s))(N− (I∞ +V (s))− (R∞ +W (s)))F̄(t− s)e−µ(t−s)ds
R0e−µt + I0e−µt(1− F̄(t))+

∫ t
0

β

N (I∞ +V (s))(I∞ +V (s))(N− (I∞ +V (s))− (R∞ +W (s)))(1− F̄(t− s))e−µ(t−s)ds

]
[

V (t)
W (t)

]
=

[
−I∞ + I0F̄(t)e−µt +

∫ t
0

β

N (I∞ +V (s))(S∞− (V (s)+W (s)))F̄(t− s)e−µ(t−s)ds
−R∞ +R0e−µt + I0e−µt(1− F̄(t))+

∫ t
0

β

N (I∞ +V (s))(S∞− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)ds

]
[

V (t)
W (t)

]
=

[
−I∞ + I0F̄(t)e−µt

−R∞ +R0e−µt + I0e−µt(1− F̄(t))

]
+
∫ t

0

[
β

N (I∞S∞ +S∞V (s)− (V (s)+W (s)))F̄(t− s)e−µ(t−s)

β

N (I∞S∞ +S∞V (s)− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)

]
ds

[
V (t)
W (t)

]
=

[
I0F̄(t)e−µt

R0e−µt + I0e−µt(1− F̄(t))

]
−
[

I∞

R∞

]
+
∫ t

0

[
β

N I∞S∞F̄(t− s)e−µ(t−s)

β

N (I∞S∞(1− F̄(t− s))e−µ(t−s)

]
ds

+
∫ t

0

[
β

N (S∞V (s)− (V (s)+W (s)))F̄(t− s)e−µ(t−s)

β

N (S∞V (s)− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)

]
ds

[
V (t)
W (t)

]
=

[
I0F̄(t)e−µt

R0e−µt + I0e−µt(1− F̄(t))

]
−
∫

∞

0

[
β

N I∞S∞F̄(s)e−µs,
β

N I∞S∞(1− F̄(s))e−µs

]
ds+

∫ t

0

[
β

N I∞S∞F̄(t− s)e−µ(t−s)

β

N (I∞S∞(1− F̄(t− s))e−µ(t−s)

]
ds

+
∫ t

0

[
β

N (S∞V (s)− (V (s)+W (s)))F̄(t− s)e−µ(t−s)

β

N (S∞V (s)− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)

]
ds

[
V (t)
W (t)

]
=

[
I0F̄(t)e−µt

R0e−µt + I0e−µt(1− F̄(t))

]
−
∫ 0

−∞

[
β

N I∞S∞F̄(−s)eµs,
β

N I∞S∞(1− F̄(−s))eµs

]
ds−

∫ 0

−t

[
β

N I∞S∞F̄(−s)eµs

β

N (I∞S∞(1− F̄(−s))eµs

]
ds

+
∫ t

0

[
β

N (S∞V (s)− (V (s)+W (s)))F̄(t− s)e−µ(t−s)

β

N (S∞V (s)− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)

]
ds

[
V (t)
W (t)

]
=

[
I0F̄(t)e−µt

R0e−µt + I0e−µt(1− F̄(t))

]
−
∫ −t

−∞

[
β

N I∞S∞F̄(−s)eµs,
β

N I∞S∞(1− F̄(−s))eµs

]
ds

+
∫ t

0

[
β

N (S∞V (s)− (V (s)+W (s)))F̄(t− s)e−µ(t−s)

β

N (S∞V (s)− (V (s)+W (s)))(1− F̄(t− s))e−µ(t−s)

]
ds

[
V (t)
W (t)

]
=

[
I0F̄(t)e−µt −

∫−t
−∞

β

N I∞S∞F̄(−s)eµsds
R0e−µt + I0e−µt(1− F̄(t))−

∫−t
−∞

β

N I∞S∞(1− F̄(−s))eµsds

]

+
∫ t

0

[
β

N F̄(t− s)e−µ(t−s) 0
β

N (1− F̄(t− s))e−µ(t−s) 0

]
×
[

S∞V (s)− (V (s)+W (s))
0

]
ds

X(t) = H(t)+
∫ t

0
A(t− s)G(X(s))ds
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The characteristic equation is obtained as follows:
Consider the model:[

V (t)
W (t)

]
=

[
I0F̄(t)e−µt−

∫−t
−∞

β

N I∞S∞F̄(−s)eµsds
R0e−µt + I0e−µt(1− F̄(t))−

∫−t
−∞

β

N I∞S∞(1− F̄(−s))eµsds

]

+
∫ t

0

[
β

N F̄(t− s)e−µ(t−s) 0
β

N (1− F̄(t− s))e−µ(t−s) 0

]
×
[

S∞V (s)− (V (s)+W (s))
0

]
ds

X(t) = H(t)+
∫ t

0
A(t− s)G(X(s))ds

The characteristic equation of the linearization of the model above is given by:

det
(

Identity−
∫

∞

0
e−λ tA(t)JG(0,0)dt

)
= 0

where JG(0,0) is the Jacobian of G evaluated at the origin.
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0 = det
(

Identity−
∫

∞

0
e−λ tA(t)JG(0,0)dt

)
=

∣∣∣∣∣
[

1 0
0 1

]
−
∫

∞

0 e−λ t

[
β

N F̄(t)e−µ(t) 0
β

N (1− F̄(t))e−µ(t) 0

]
×
[

S∞− I∞ I∞

0 0

]
dt

∣∣∣∣∣
=

∣∣∣∣∣
[

1 0
0 1

]
−
∫

∞

0 e−λ t

[
β

N (S∞− I∞)F̄(t)e−µ(t) −β

N I∞F̄(t)e−µ(t)

β

N (S∞− I∞)(1− F̄(t))e−µ(t) −β

N I∞(1− F̄(t))e−µ(t)

]
dt

∣∣∣∣∣
=

∣∣∣∣∣ 1−
∫

∞

0 e−λ t β

N (S∞− I∞)F̄(t)e−µ(t)dt
∫

∞

0 e−λ t β

N I∞F̄(t)e−µ(t)dt
−
∫

∞

0 e−λ t β

N (S∞− I∞)(1− F̄(t))e−µ(t)dt 1+
∫

∞

0 e−λ t β

N I∞(1− F̄(t))e−µ(t)dt

∣∣∣∣∣
=

(
1−

∫
∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

)(
1+

∫
∞

0
e−λ t β

N
I∞(1− F̄(t))e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
(S∞− I∞)(1− F̄(t))e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

= 1+
∫

∞

0
e−λ t β

N
I∞(1− F̄(t))e−µ(t)dt

−
∫

∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

−

(∫
∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞(1− F̄(t))e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
(S∞− I∞)(1− F̄(t))e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

= 1+
∫

∞

0
e−λ t β

N
(I∞−S∞F̄(t))e−µ(t)dt

−

(∫
∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞e−µ(t)dt−

∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
(S∞− I∞)e−µ(t)dt−

∫
∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

)

×

(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

= 1+
∫

∞

0
e−λ t β

N
(I∞−S∞F̄(t))e−µ(t)dt

−

(∫
∞

0
e−λ t β

N
(S∞− I∞)F̄(t)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
(S∞− I∞)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)
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0 = 1+
∫

∞

0
e−λ t β

N
I∞e−µ(t)dt−

∫
∞

0
e−λ t β

N
S∞F̄(t)e−µ(t)dt

−

(∫
∞

0
e−λ t β

N
S∞F̄(t)e−µ(t)dt−

∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
S∞e−µ(t)dt−

∫
∞

0
e−λ t β

N
I∞e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

= 1+
∫

∞

0
e−λ t β

N
I∞e−µ(t)dt−

∫
∞

0
e−λ t β

N
S∞F̄(t)e−µ(t)dt

−

(∫
∞

0
e−λ t β

N
S∞F̄(t)e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞e−µ(t)dt

)

+

(∫
∞

0
e−λ t β

N
S∞e−µ(t)dt

)(∫
∞

0
e−λ t β

N
I∞F̄(t)e−µ(t)dt

)

= 1+
β

N
I∞

1
λ +µ

− β

N
S∞

∫
∞

0
F̄(t)e−(λ+µ)tdt

−

(
β

N
S∞

∫
∞

0
F̄(t)e−(λ+µ)tdt

)(
β

N
I∞

1
λ +µ

)

+

(
β

N
S∞

1
λ +µ

)(
β

N
I∞

∫
∞

0
F̄(t)e−(λ+µ)tdt

)

= 1+
β

N
I∞

1
λ +µ

− β

N
S∞

∫
∞

0
F̄(t)e−(λ+µ)tdt

Let L(λ ) = β
∫

∞

0 F̄(t)e−(λ+µ)tdt, then the characteristic equation is rewritten as:

0 = 1+
β

N I∞

λ +µ
− S∞

N
L(λ )

At the endemic equilibrium (S∞, I∞,R∞) the characteristic equation can be rewritten as:

λ +µR̃0

λ +µ
=

L(λ )
R̃0

Assume that λ is of the form a+ ib, with a≥ 0. Then

λ +µR̃0

λ +µ
=

(a+µ)(a+µR̃0)+b2

(a+µ)2 +b2 + i
µb(1− R̃0)

(a+µ)2 +b2

Where if R̃0 > 1, then

Re
(

λ +µR̃0

λ +µ

)
=

(a+µ)(a+µR̃0)+b2

(a+µ)2 +b2 > 1.
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On the right hand side of the equation we have that

L(λ )
R̃0

=
β
∫

∞

0 F̄(t)e−(a+ib+µ)tdt
R̃0

=
β
∫

∞

0 F̄(t)e−µte−ate−ibtdt
R̃0

=
β
∫

∞

0 F̄(t)e−µte−at(cos(bt)+ isin(bt))dt
R̃0

Where

Re
(L(λ )

R̃0

)
=

β
∫

∞

0 F̄(t)e−µte−at cos(bt)dt
R̃0

<
β
∫

∞

0 F̄(t)e−µtdt
R̃0

= 1

Therefore λ is not a root of the characteristic equation at the endemic equilibrium if
Re(λ ) = a≥ 0, which implies that the endemic equilibrium if locally asymptotecally stable
if the epidemic threshold R̃0 is greater than 1.

Lastly, the basic reproduction number for the original age-of-infection SIR model in
(2.4)-(2.6), without demographic terms is given by:

R0 = lim
µ→0

R̃0 = lim
µ→0

β

∫
∞

0
F̄(t)e−µtdt = β

∫
∞

0
F̄(t)dt = β

∫
∞

−∞

t f (t)dt = βτ.
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APPENDIX G

DERIVATION OF THE FINAL SIZE RELATION AND FINAL SIZE FORMULA
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Consider the age-of-infection SIR model in (2.4)-(2.6). The final size relation is derived
as follows:

− Ṡ(t)
S(t)

=
β

N
I(t)

−l̇n(S(t)) =
β

N

(
I0F̄(t)+

∫ t

0

β

N
I(s)S(s)F̄(t− s)ds

)
∫

∞

0
−l̇n(S(t))dt =

∫
∞

0

β

N

(
I0F̄(t)+

∫ t

0

β

N
I(t− s)S(t− s)F̄(s)ds

)
dt

−(ln(S∞)− ln(S0)) =
I0

N

(
β

∫
∞

0
F̄(t)dt

)
+
∫

∞

0

β

N

∫ t

0
[−Ṡ(t− s)]F̄(s)dsdt

ln
( S0

S∞

)
=

I0

N
R0 +

∫
∞

0

β

N
F̄(s)

(∫
∞

s
[−Ṡ(t− s)]dt

)
ds

ln
( S0

S∞

)
=

I0

N
R0 +

(S0−S∞)

N

(
β

∫
∞

0
F̄(s)ds

)

ln
( S0

S∞

)
= R0

(
(S0 + I0)−S∞

N

)

ln
( S0

S∞

)
= R0

(
1− S∞

N

)
(final size relation)
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Let z be the cumulative incidence at the end of an epidemic, namely the final epidemic
size. For the SIR model in (2.4)-(2.6) the final epidemic size can be defined as z = S0−S∞,
then the final size formula can be derived in the following way:

ln
( S0

S∞

)
= R0

(
1− S∞

N

)

ln
( S0

S0− z

)
= R0

(
1− S0− z

N

)

− ln
(S0− z

S0

)
= R0

(
S0 + I0− (S0− z)

N

)

ln
(

1− z
S0

)
= −R0

(
I0 + z

N

)

1− z
S0

= exp

(
−R0

(
I0 + z

N

))

1− z
S0

= exp

(
−R0

I0

N
+

(
−R0

N

)
z

)

Define the transformation:

z =−

(
t +
(
−R0

N

)
1(

− 1
S0

) )(
− R0

N

) =
tN
R0

+S0

and substitute this into the final size formula to obtain an expression of the final epidemic
size explicitly as a function of the Lambert W function:

1− z
S0

= exp

(
−R0

I0

N
+

(
−R0

N

)
z

)

1−
( tN

R0
+S0

)
S0

= exp

(
−R0

I0

N
+

(
−R0

N

)( tN
R0

+S0

))

1− tN
R0S0

−1 = exp

(
−R0

I0

N
− t−

(
R0

S0

N

))
− tN

R0S0
= e(−R0−t)

tet = −R0S0

N
e−R0 ≡ t =W

(
−R0S0

N
e−R0

)
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t = W

(
−R0S0

N
e−R0

)

−
(
−R0

N

)
z−

((
− R0

N

)
1(

− 1
S0

) ) = W

(
−R0S0

N
e−R0

)
(R0

N

)
z−
(R0

N

)
S0 = W

(
−R0S0

N
e−R0

)

z = S0 +
( N

R0

)
W

(
−R0S0

N
e−R0

)
(final size formula)
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Original system of VIE’s:

S(t) = S0−
∫ t

0
λ (s)S(s)ds,

I(t) = I0F̄(t)+
∫ t

0
λ (s)S(s)F̄(t− s)ds,

R(t) = R0 + I0(1− F̄(t))+
∫ t

0
λ (s)S(s)(1− F̄(t− s))ds,

N(t) = S(t)+ I(t)+R(t) = S0 + I0 +R0 = N0,

S(0) = S0, I(0) = I0, R(0) = R0,

Sensitivity equations as VIE’s:

∂S
∂β

(t) = −
∫ t

0

( 1
N

I(s)S(s)+
β

N
I(s)

∂S
∂β

(s)+
β

N
∂ I
∂β

(s)S(s)
)

ds,

∂ I
∂β

(t) =
∫ t

0

( 1
N

I(s)S(s)+
β

N
I(s)

∂S
∂β

(s)+
β

N
∂ I
∂β

(s)S(s)
)

F̄(t− s)ds,

∂R
∂β

(t) = −
(

∂S
∂β

(t)+
∂ I
∂β

(t)
)

∂S
∂τ

(t) = −
∫ t

0

(
β

N
I(s)

∂S
∂τ

(s)+
β

N
∂ I
∂τ

(s)S(s)
)

ds,

∂ I
∂τ

(t) = I0
∂ F̄
∂τ

(t)+
∫ t

0

(
β

N
I(s)

∂S
∂τ

(s)+
β

N
∂ I
∂τ

(s)S(s)
)

F̄(t− s)ds,

+
∫ t

0

β

N
I(s)S(s)

∂ F̄
∂τ

(t− s)ds

∂R
∂τ

(t) = −
(

∂S
∂τ

(t)+
∂ I
∂τ

(t)
)

∂S
∂Var

(t) = −
∫ t

0

(
β

N
I(s)

∂S
∂Var

(s)+
β

N
∂ I

∂Var
(s)S(s)

)
ds,

∂ I
∂Var

(t) = I0
∂ F̄

∂Var
(t)+

∫ t

0

(
β

N
I(s)

∂S
∂Var

(s)+
β

N
∂ I

∂Var
(s)S(s)

)
F̄(t− s)ds,

+
∫ t

0

β

N
I(s)S(s)

∂ F̄
∂Var

(t− s)ds

∂R
∂Var

(t) = −
(

∂S
∂Var

(t)+
∂ I

∂Var
(t)
)

∂S
∂β

(0) =
∂ I
∂β

(0) =
∂R
∂β

(0) =
∂S
∂τ

(0) =
∂ I
∂τ

(0) =
∂R
∂τ

(0) =
∂S

∂Var
(0) =

∂ I
∂Var

(0) =
∂R

∂Var
(0) = 0
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Sensitivity equations as VIODE’s: Lets use the notation: Xy =
∂X
∂y

dSβ

dt
(t) = −

( 1
N

I(t)S(t)+
β

N
I(t)

∂S
∂β

(t)+
β

N
∂ I
∂β

(t)S(t)
)
,

dIβ

dt
(t) =

1
N

I(t)S(t)+
β

N
I(t)

∂S
∂β

(t)+
β

N
∂ I
∂β

(t)S(t)

−
∫ t

0

( 1
N

I(s)S(s)+
β

N
I(s)

∂S
∂β

(s)+
β

N
∂ I
∂β

(s)S(s)
)
[− ˙̄F(t− s)]ds,

dRβ

dt
(t) = −

(dSβ

dt
+

dIβ

dt

)
dSτ

dt
(t) = −

(
β

N
I(t)

∂S
∂τ

(t)+
β

N
∂ I
∂τ

(t)S(t)
)
,

dIτ

dt
(t) =

β

N
I(t)

∂S
∂τ

(t)+
β

N
∂ I
∂τ

(t)S(t)+
β

N
I(t)S(t)

∂ F̄
∂τ

(0)−

(
I0

∂ [− ˙̄F ]

∂τ
(t)

+
∫ t

0

(
β

N
I(s)

∂S
∂τ

(s)+
β

N
∂ I
∂τ

(s)S(s)
)
[− ˙̄F(t− s)]ds+

∫ t

0

β

N
I(s)S(s)

∂ [− ˙̄F ]

∂τ
(t− s)ds

)
dRτ

dt
(t) = −

(dSτ

dt
+

dIτ

dt

)
dSVar

dt
(t) = −

(
β

N
I(t)

∂S
∂Var

(t)+
β

N
∂ I

∂Var
(t)S(t)

)
,

dIVar

dt
(t) =

β

N
I(t)

∂S
∂Var

(t)+
β

N
∂ I

∂Var
(t)S(t)+

β

N
I(t)S(t)

∂ F̄
∂Var

(0)

−

(
I0

∂ [− ˙̄F ]

∂Var
(t)+

∫ t

0

(
β

N
I(s)

∂S
∂Var

(s)+
β

N
∂ I

∂Var
(s)S(s)

)
[− ˙̄F(t− s)]ds

+
∫ t

0

β

N
I(s)S(s)

∂ [− ˙̄F ]

∂Var
(t− s)ds

)
dRVar

dt
(t) = −

(dSVar

dt
+

dIVar

dt

)
∂S
∂β

(0) =
∂ I
∂β

(0) =
∂R
∂β

(0) =
∂S
∂τ

(0) =
∂ I
∂τ

(0) =
∂R
∂τ

(0) =
∂S

∂Var
(0) =

∂ I
∂Var

(0) =
∂R

∂Var
(0) = 0
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Lets consider the case when the probability density function has the form of a gamma
distribution function [− ˙̄F(t;k,θ)], where k = τ2

Var , the shape parameter and the scale pa-
rameter is θ = Var

τ
, where tau and Var are the mean and variance of the gamma distribution

for the infectious period: then

[− ˙̄F(t;k,θ)] =
[
− ˙̄F

(
t;

τ2

Var
,
Var

τ

)]
= f
(

t;
τ2

Var
,
Var

τ

)
=

{
1

Γ(k)θ k tk−1e−
t
θ for t ≥ 0,

0 for t < 0,

∂ [− ˙̄F(t;k(τ,Var),θ(τ,Var))]
∂τ

=
∂ f
(

t;k(τ,Var),θ(τ,Var)
)

∂τ

=
∂ f
∂k

∂k
∂τ

+
∂ f
∂θ

∂θ

∂τ

=
∂ f
∂k

( 2τ

Var

)
+

∂ f
∂θ

(
− Var

τ2

)
∂ [− ˙̄F(t;k(τ,Var),θ(τ,Var))]

∂Var
=

∂ f
(

t;k(τ,Var),θ(τ,Var)
)

∂Var

=
∂ f
∂k

∂k
∂Var

+
∂ f
∂θ

∂θ

∂Var

=
∂ f
∂k

(
− τ2

Var2

)
+

∂ f
∂θ

(1
τ

)
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Where,
∂ f
∂k

=
∂

∂k

(
1

θ k
1

Γ(k)
tk−1e−

t
θ

)
=

∂

∂k

(
e−

t
θ t−1

( t
θ

)k 1
Γ(k)

)
= e−

t
θ t−1 ∂

∂k

(( t
θ

)k 1
Γ(k)

)

= e−
t
θ t−1

(
∂

∂k

(( t
θ

)k
)

1
Γ(k)

+
( t

θ

)k d
dk

(
Γ(k)

)−1
)

= e−
t
θ t−1

((
ln
( t

θ

)( t
θ

)k
)

1
Γ(k)

+
( t

θ

)k(
−Γ(k)

)−2 d
dk

Γ(k)

)

=

(
1

θ k
1

Γ(k)
tk−1e−

t
θ

)(
ln
( t

θ

)
− Γ(k)ψ0(k)

Γ(k)

)
= f (t;k,θ)

(
ln
( t

θ

)
−ψ0(k)

)

∂ f
∂θ

=
∂

∂θ

(
1

θ n
1

Γ(k)
tk−1e−

t
θ

)
=

tk−1

Γ(k)
∂

∂θ

(e−
t
θ

θ k

)
=

tk−1

Γ(k)
∂

∂θ

(
e−

t
θ θ
−k
)

=
tk−1

Γ(k)

(
e−

t
θ

(
− kθ

−k−1
)
+
(te−

t
θ

θ 2

)
θ

k
)
=

(
1

θ k
1

Γ(k)
tk−1e−

t
θ

)(
t

θ 2 −
k
θ

)

= f (t;k,θ)

(
t

θ 2 −
k
θ

)
lastly we have:

∂ f
(

t;k(τ,Var),θ(τ,Var)
)

∂τ
= f (t;k,θ)

(
ln
( t

θ

)
−ψ0(k)

)( 2τ

Var

)
+ f (t;k,θ)

(
t

θ 2 −
k
θ

)(
− Var

τ2

)
=

1
Var

f (t;k,θ)

[(
ln
( tτ

Var

)
−ψ0(

τ2

Var
)− 1

2

)
2τ + t

]

∂ f
(

t;k(τ,Var),θ(τ,Var)
)

∂Var
= f (t;k,θ)

(
ln
( t

θ

)
−ψ0(k)

)(
− τ2

Var2

)
+ f (t;k,θ)

(
t

θ 2 −
k
θ

)(1
τ

)
=

τ

Var2 f (t;k,θ)

[(
ψ0(

τ2

Var
)− ln

( tτ
Var

)
−1

)
τ + t

]
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From appendix N the final epidemic size is given by

z = S0 +
( N

R0

)
W

(
−R0S0

N
e−R0

)
.

Derivation of the sensitivity equation of the final epidemic size with respect to the basic
reproduction number:

z = S0 +
( N

R0

)
W

(
−R0S0

N
e−R0︸ ︷︷ ︸

=Y

)
(I.1)

∂ z
∂R0

= −
( N

R2
0

)
W (Y )+

( N
R0

)dW
dY

∂Y
∂R0

(I.2)

∂ z
∂R0

= −
( N

R2
0

)
W (Y )+

( N
R0

)( W (Y )
Y (1+W (Y ))

)(
− S0

N
e−R0 +

R0S0

N
e−R0

)
(I.3)

∂ z
∂R0

= S0e−R0
(

1− 1
R0

)( W (Y )
Y (1+W (Y ))

)
−
( N

R2
0

)
W (Y ) (I.4)

∂ z
∂R0

= S0e−R0
(

1− 1
R0

)( W (Y )(
− R0S0

N e−R0
)
(1+W (Y ))

)
−
( N

R2
0

)
W (Y ) (I.5)

∂ z
∂R0

=
N
R0

( 1
R0
−1
)( W (Y )

1+W (Y )

)
−
( N

R2
0

)
W (Y ) (I.6)

∂ z
∂R0

= − N
R0

(
W (Y )(W (Y )+R0)

R0(1+W (Y ))

)
(I.7)

∂ z
∂R0

= − N
R0

(
W (−R0S0

N e−R0)(W (−R0S0
N e−R0)+R0)

R0(1+W (−R0S0
N e−R0))

)
(I.8)
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