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ABSTRACT

Learning by trial-and-error requires retrospective information that whether a past

action resulted in a rewarded outcome. Previous outcome in turn may provide infor-

mation to guide future behavioral adjustment. But the specific contribution of this

information to learning a task and the neural representations during the trial-and-

error learning process is not well understood. In this dissertation, such learning is

analyzed by means of single unit neural recordings in the rats’ motor agranular medial

(AGm) and agranular lateral (AGl) while the rats learned to perform a directional

choice task. Multichannel chronic recordings using implanted microelectrodes in the

rat’s brain were essential to this study. Also for fundamental scientific investigations

in general and for some applications such as brain machine interface, the recorded

neural waveforms need to be analyzed first to identify neural action potentials as

basic computing units. Prior to analyzing and modeling the recorded neural signals,

this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract

the action potentials from raw neural waveforms. The M-Sorter shows better or com-

parable performance compared with two other popular spike sorters under automatic

mode. With the sorted action potentials in place, neuronal activity in the AGm and

AGl areas in rats during learning of a directional choice task is examined. Systematic

analyses suggest that rats neural activity in AGm and AGl was modulated by pre-

vious trial outcomes during learning. Single unit based neural dynamics during task

learning are described in detail in the dissertation. Furthermore, the differences in

neural modulation between fast and slow learning rats were compared. The results

show that the level of neural modulation of previous trial outcome is different in fast

and slow learning rats which may in turn suggest an important role of previous trial

outcome encoding in learning.
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Chapter 1

INTRODUCTION

One fundamental question in the field of neuroscience is the elucidation of neural

mechanisms underlying alternations in behavior, such as cognitive learning. Multiple

brain areas are involved in learning. In the frontal cortex, recent researches find that

motor cortex plays important roles in high level cognition. Especially in experiments

which uses stereotypical movement as effector, they may be good candidates to study

behavioral changes. In recent decades, advancement in single unit recordings facil-

itates research in this area. Spike detection and classification are fundamental and

important topics in any chronic recording studies in neuroscience. This dissertation

uses the state-of-the-art electrophysiology to study the developmental mechanisms of

behavior in non-human animals. Specifically, I seek to analyze the behavioral changes

and patterns of neural activities among identifiable populations of neurons using a

properly designed behavioral protocol.

The first contribution of this dissertation is implementation of an advanced spike

detection and classification algorithm. Neural spike detection and classification, or

spike sorting, is the first and a critical step prior to any single unit based neuro-

scientific studies and applications. A good spike sorter is usually characterized by

high detection and classification accuracy, robust to changes in signal-to-noise ratio,

objectivity in detection results or less user dependency, and real-time applicability.

Here I present an automatic and robust spike detection and classification system, the

M-Sorter, based on the multiple correlation of wavelet coefficients (MCWC) detec-

tion algorithm in conjunction with template matching for classification. Unlike many

existing spike sorters that make use of a series of complex spike classifiers to deal

with the challenges resulted from a low performance spike detector, the M-Sorter
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relies on a high performance yet computationally efficient detection algorithm and

thus a simple classifier suffices to generate high quality spike sorting results. In this

dissertation I provide step by step implementation procedures of the M-Sorter. The

M-Sorter has been compared with other popular spike sorters and shows equivalent

or better performance over artificial and real neural data sets.

The second contribution of this dissertation is functional analysis in rats motor

cortical areas. The outcomes that result from previous behavior affects future choices

in several ways, but the neural mechanisms for these effects remain to be determined.

Previous studies have shown that the agranular lateral (AGl) and agranular medial

(AGm) areas of the rat frontal cortex, which correspond to the primary motor cortex

and one of the nonprimary motor areas in primates, respectively, are involved in the

learning and selection of action. Here I describe the activity of single neurons in AGl

and AGm as rats learn to perform a directional choice task. The analysis shows that

single-cell activity in AGl and AGm is modulated by the outcome of the previous trial.

A larger proportion of neurons encode the previous trial’s outcome shortly after cue

onset than during other time periods of a trial. Most of these neurons have greater

firing activity after correct trials than after error trials, a difference that reached its

peak during learning, compared to trials before and after learning. The number of

neurons encoding the previous trial’s outcome correlates positively with performance

accuracy. In summary, neurons in both AGl and AGm encode the outcome of the

immediately preceding trial, especially during learning, information that might play

a role in the successful selection of action based on past experience.

The third contribution of this dissertation is the analysis of neural activity of rats

with different characteristics when learning to perform a same directional choice task.

The way we learn something new and make decisions are different from individual to

individual. But whenever placing a group of individuals on learning the same task,

2



some master the task faster than others. However there is little literature about the

neural mechanism that gives rise to different learning outcomes. I use a rat model

aiming to address this very issue. Rats single unit neural activities in the AGm and

AGl are recorded while they learn to perform a directional choice task. Fast and slow

rats are identified according to their learning behavior. The fast rats start to improve

task performance immediately and reached high accuracy within 20 sessions while the

slow rats took a longer period to pick up. Also, the fast rats reach accuracy of 70%

steadily in fewer sessions compared with the slow rats. The analysis shows a larger

number of AGm and AGl neurons encoding previous trial outcome in the trial start

period for the fast rats than the slow rats. Furthermore, neurons recorded in fast rats

are associated with stronger neural firing rate modulation by previous trial outcome

than slow rats. These results suggest that previous trial outcome is correlated with

learning speed, which may be a neural mechanism separating fast from slow learning

rats.

In this dissertation, Chapter 2 presents the algorithm and performance of M-

Sorter, Chapter 3 presents the experimental design of directional choice task, Chapter

4 presents the study of cortical correlates to dynamic learning, and Chapter 5 presents

the study of individual difference in learning.

3



Chapter 2

THE M-SORTER: TOWARDS AN AUTOMATIC AND ROBUST SPIKE

DETECTION AND CLASSIFICATION SYSTEM

2.1 Introduction

Neural action potentials, also known as nerve impulses or spikes, play an impor-

tant role in the study of the central nervous system as they are considered the basic

computing units in the brain. Via multichannel arrays of microelectrodes, multiple

spiking neurons can be recorded simultaneously from behaving animals. This has

provided unprecedented opportunity for neuroscientists to study the brain at a high

spatial and temporal resolution. But several challenges need to be overcome. First

and foremost, noises from brain tissues, muscle movement of the subject, and other bi-

ological and instrumental interferences are inevitable, which contaminate the recorded

neural waveforms [2]. Second, identifying real neural spikes from noisy recordings of-

ten requires making assumptions about the consistency, shape, and individuality of

spike waveforms. This has resulted in many different approaches to spike sorting,

which can be supervised or unsupervised as discussed in [3] and [4]. Manual spike

sorting is a supervised method, which can be subjective to the user’s experience and

thus result in significantly variant outcomes [5, 6]. Unsupervised methods, or au-

tomatic methods, instead, are generally preferred to avoid the subjectivity and to

provide real-time applications such as brain-machine interface.

Spike sorting involves two steps - spike detection and spike classification. Exist-

ing automatic approaches to spike sorting usually make use of the simple threshold-

crossing detection plus a sophisticated clustering algorithm [4, 7, 8]. Thresholding

based detection algorithms [9, 10, 11] typically exploit simple measures such as root

mean square (RMS) estimation of the background noise [4, 8]. At the same time,
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many powerful clustering methods have been developed and introduced for spike sort-

ing [3, 7, 12]. Existing classification methods for spike sorting include shape based

and distribution based algorithms [13], principal components [14], wavelet basis [15],

template matching [5, 16, 17, 18], k-means, hierarchical clustering [3, 19], indepen-

dent component analysis (ICA) [20], fuzzy c-means, and a variety of artificial neural

network based unsupervised classification schemes [19].

Simple thresholding is intuitive and easy to implement, however, a proper choice

of the threshold level is not straightforward. Too high of a threshold value will likely

exclude real spikes buried within background noise, while too low of a threshold value

will allow a large number of segments of waveforms to be considered as potential

real spikes. To avoid missing detection of real spikes, typically a user selects a low

threshold value for spike sorting. This consequently creates a great challenge for

waveform feature extraction to be used in many of the above mentioned spike sorters.

Some advanced wavelet based detection techniques have been proposed to improve

detection accuracy [1, 21, 22]. Some reviews and comparisons of different detection

algorithms are available in [1].

In this dissertation, I present a complete spike sorting procedure, namely the M-

Sorter. The proposed sorter is based on multiple correlation of wavelet coefficients

(MCWC) [1] augmented with thresholding for detection, and template matching for

classification. I will show that this approach significantly reduces false positives in

the detection step and the overall detection and classification accuracy remains high.

As will be demonstrated later, the clustered results of the system are clear, robust to

noise, and consistent. Only a few parameters need to be selected and the choices for

the parameters are straightforward.

The M-Sorter aims for automatic spike sorting based on waveforms recorded from

microwire arrays. It will be shown later in the dissertation that the sorter works

5



just as well as other sorters if the waveform is of high quality, i.e., the signal-to-noise

(SNR) ratio is high. However, the M-Sorter is more effective and easier to use than

other methods when the SNR is low, or when the background noise is high. In theory

the M-Sorter can be applied to other forms of recorded signals including tetrodes,

or even possibly EEG waveforms. However, the wavelet functions may need to be

adjusted to reflect the nature of EEG spike characteristics. Some key parameters as

will be discussed in this dissertation may need to be adjusted to achieve automated

and robust spike sorting.

2.2 Materials and Methods

The M-Sorter consists of three major components as shown in Figure 2.1: template

generation, detection, and template matching. In the following, I first introduce the

MCWC detection algorithm, and then I introduce each of the three steps and provide

a summary of the implementation details as well as insight on parameter selection.

2.2.1 A Brief Overview of the Multiple Correlation of Wavelet Coefficients

The multiple correlation of wavelet coefficients (MCWC) is a high performance

spike detection algorithm [1, 23]. As demonstrated, it is characterized by high detec-

tion accuracy and low false positives, as well as few free parameters.

Let x(t) be a neural waveform, J be the width of the observation window of

the waveform under consideration which is used as the integration interval in the

calculation of wavelet coefficients. And let NJ be the number of samples in the

observation window J . The wavelet transform of x(t) is defined in (3.1). As can be

seen, Tx(ai, bj) is a measure of resemblance between the wavelet function ψ(t) and

the neural signal x(t) with proper translation and scaling parameters ai and bj.
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Figure 2.1: Schematic block diagram of the M-Sorter
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Tx(ai, bj) =

∫
J

x(t)
1
√
ai
ψ(
t− bj
ai

)dt. (2.1)

The two parameters in (3.1) are the time translation factor b and the scale factor

a, where b is from a set of NJ components:

b ∈ B = {0, 1, · · · , NJ − 1}. (2.2)

The scale factor a, on the other hand, determines the support of the wavelet

function. When applied to spike detection in neural recordings, it is chosen between

0.5ms and 1.5ms, i.e.,

a ∈ A = {0.5, 0.6, · · · , 1.5}. (2.3)

Given the wide range of wavelet families and their unique features, it is impor-

tant to select a suitable wavelet function for spike detection. It is noted in [24] that

the waveforms of extracellular neural action potentials typically appear mono-phasic,

bi-phasic and even tri-phasic. The research by [25] proves that the action potential

waveforms of single units in human peripheral nerves also consists of such three kinds

of waveforms. Since mono-phasic can be viewed as a building block of bi/tri-phasic

waveforms, and the latter can be represented approximately by a superposition of

mono-phasic waveforms, in the dissertation I focus on detection using an approxima-

tion of a mono-phasic wavelet function. The wavelet function ‘coiflets’ was selected

and used for neural spike detection in [22], [26] and [27]. It is also chosen in MCWC.

I choose ‘coiflets’ based on the following considerations. When the time support of

the wavelet function matches the duration of one phase of a neural waveform, the

corresponding wavelet transform coefficients become high. As such the mono-phasic

wavelet function is also able to generate high wavelet transform coefficients at one
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phase of the bi/tri-phasic neural spike waveform. But the waveforms of noise usually

do not resemble the wavelet function. Therefore the coefficients from noise have small

or close to zero magnitudes. By inspecting waveforms corresponding to high wavelet

transform coefficients, I can detect neural spikes even though they may have different

phases.

Let rS(ai, bj) be the correlation of wavelet coefficients defined in (3.1) among S

sampling scales.

rS(ai, bj) =
S−1∏
k=0

Tx(ai+k, bj). (2.4)

As can be seen from (2.4), rS(ai, bj) is a measure of the strength of resemblance

between the wavelet function ψ(t) and the neural signal x(t) with proper translation

and scaling parameters ai and bj. It does so by first computing the wavelet coefficient

Tx(ai+k, bj), and then enhanced by a verification from multiple sampling scales up to

S. As such, rS(ai, bj) defined by (2.4) can potentially produce a more pronounced

separation of the coefficients corresponding to neural spikes from those corresponding

to noise. Or in other words, this product can potentially reinforce the presence of

neural spikes, while it is reduced if x(t) contains mostly noise. The product across

multiple levels enhances the robustness of this measure.

Once rS(ai, bj) is obtained, it should be normalized so that the correlation of coef-

ficient measure is still based on the original neural signal scale level, not on different

sampling scales. This makes the correlation of coefficient measure comparable with

the wavelet coefficient.

Let r′S(ai, bj) be the power normalized correlation of wavelet coefficients defined

below,

PrS(ai) =
∑
j∈J

rS(ai, bj)
2, (2.5)
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PTx(ai) =
∑
j∈J

Tx(ai, bj)
2, (2.6)

r′S(ai, bj) = rS(ai, bj)×

√
PTx(ai)

PrS(ai)
. (2.7)

I are now ready for claiming the detection of a spike.

Let H0 be the null hypothesis that within the window of width J , x(t) does not

contain any neural spikes, and let H1 be the alternative hypothesis that within the

window of width J , x(t) contains a spike at bj. Or in other words, the hypothesis test

for the original MCWC [1] is:

H0: x(t) contains no spikes in the window of width J under consideration.

H1: x(t) contains a spike at bj in the window of width J under consideration.

Specifically, H0 holds, or no spike is detected if

|r′S(ai, bj)| ≤ |T (ai, bj)|, (2.8)

and H1 holds, or a spike is detected, if (2.9) is satisfied,

|r′S(ai, bj)| > |T (ai, bj)|. (2.9)

Let [t0, t1] ∈ J stand for a small sub-interval around bj such that H1 holds, and

let td be the instant of a spike,

td = max
ai∈[a0,··· ,aS−1], bj∈[t0,t1]

|r′S(ai, bj)|. (2.10)

As shown in [1], the MCWC detection algorithm actually is an adaptive threshold-

ing method. There is one tuning parameter, S, in the MCWC detection algorithm.

It automatically adjusts the level of threshold according to the SNR of the neural

recording and the tuning parameter, S (Figure 4 in [1]). More discussions on how S

affects the detection results can be found in [1].
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Once the MCWC has resulted in a pool of carefully detected potential spikes,

another simple threshold τ can be applied to eliminate waveforms with magnitude

right around the noise floor level, which may take the RMS value of the background

noise. However, unlike the detection algorithms based on thresholding, the selection

of τ is not as critical and can be easily set at the noise floor level. The introduction of τ

is beneficial since it helps remove waveforms with small magnitude and thus increase

robustness. Also note that the chosen spike instance td in MCWC, as defined in

(2.10), is the time instance with the largest power normalized correlation of wavelet

coefficients, but td may not coincide with the waveform peak value in the time domain.

Therefore, the resulted pool of potential spikes may not perfectly align in the time

domain. Consequently, this mis-alignment may complicate sorting. Under these

considerations, the MCWC hypothesis test is revised for application in the M-Sorter.

The hypothesis test for the revised MCWC is:

H0: no spike is detected if

|r′S(ai, bj)| ≤ |T (ai, bj)|, or (2.11)

| max
bj∈[t0,t1]

x(bj)| < τ.

H1: a spike is detected at bj, if the following conditions are satisfied,

|r′S(ai, bj)| > |T (ai, bj)|, and (2.12)

| max
bj∈[t0,t1]

x(bj)| ≥ τ.

The spike instance is thus chosen at

t′d = max
bj∈[t0,t1]

|x(bj)|. (2.13)

Therefore, in the revised hypothesis test, t′d is chosen at the instance of local peak

for peak alignment. The new alignment not only reduces computational overhead, but
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Figure 2.2: Flow graph of the revised MCWC

also improves classification accuracy. The flow graph of the revised MCWC algorithm

is shown in Figure 2.2.

2.2.2 Template Generation and Spike Detection

The first step in using the proposed M-Sorter is to create spike templates using

the MCWC algorithm introduced in 2.1 with a high S value in (2.4). By doing so only

high quality spike waveforms with high amplitudes and clear temporal characteristics

such as sharp rising and falling edges are identified by MCWC and therefore they can

be used as spike templates. Only a small segment of the recorded neural waveforms

is needed for template generation. For example, if original waveforms are collected

at 24kHz for an hour, the first 1 minute data will suffice for template generation.
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Let Z = {z1, z2, · · · , zp} be the set of p detected potential spikes with a high S

value, with S defined in (2.4). They are then classified using K-means to create the k

potential spike templates. K-means clustering aims to partition Z into k sets (k ≤ p),

Y = {Y1, Y2, · · · , Yk}, so as to minimize the within-cluster sum of squares (WCSS):

arg min
Y

k∑
i

∑
zj∈Yi

||zj −mi||2, (2.14)

where {m1, · · · ,mk} are the respective cluster centers of {Y1, Y2, · · · , Yk}.

Manual aggregation of clusters to optimize the templates can be performed here.

Given kt (kt ≤ k) as the final cluster number based on human selection, Y ′ =

{Y ′1 , · · · , Y ′kt} are the aggregated spike clusters with their respective centers at µi =

{µ1, · · · , µkt}. Finally, µi is regarded as the ith spike template.

Note that, even though a high S value is used in the above procedure for template

generation, but for actual spike detection, a low S value in (2.4) should be used.

As discussed in [1], a low S value corresponds with a relatively low threshold when

MCWC is viewed as an automatic and adaptive thresholding algorithm (Figure 4 in

[1]). The MCWC with a low S value selectively identifies potential spike waveforms

with their shape resemblance to real spikes. This step eliminates a large number of

waveform segments with high magnitude that may have been considered potential

spikes by simple thresholding methods. Once going through the detection step using

the original MCWC [1], by applying a new threshold τ in the revised spike detection

hypothesis in (2.11) and (2.12), the potential waveforms selected by MCWC will be

inspected and those with magnitude near noise level will be removed from the pool of

candidate spikes. As such, the revised MCWC detection can generate a high quality

pool of potential spike waveforms with good spike characteristics and magnitude

higher than the noise floor.
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2.2.3 Template Matching

After spike detection, template matching is performed. Let U = {u1, · · · ,

uj, · · · , un} be the detected potential spikes with a low S value. Simple correlation

coefficient and Euclidean distance are used here to measure similarity between the

templates and potential spike waveforms. Let N be the number of samples in a

template spike waveform, denote µi = [µi1, · · · , µiN ]T . Let µ̄i and σµi be the sample

mean and standard deviation of µi, respectively. By the same token, I define ūj and

σuj similarly. The correlation coefficient between each potential spike uj and template

µi is defined as

ρij =
E[(µi − µ̄i × e)T (uj − ūj × e)]

σµiσuj
, (2.15)

where e is an N-dimension column vector of all 1’s. And the Euclidean distance dij is

dij = ||uj − µi||2. (2.16)

For template matching, if the two criteria using the two measures ρij and dij are

met, i.e., ρij > ρ0 and dij < d0, then the potential spike uj is assigned to the ith spike

cluster according to (2.17),

i = arg min
i
dij. (2.17)

Overall, the M-Sorter, as shown in Figure 2.1, is designed for automatic process-

ing of spike detection and sorting based on the extracted templates. The first step

of template generation aims at extracting spike templates with good spike features.

Human supervision can be performed here to help choose the templates. The sec-

ond step of detection using the revised MCWC detects the possible spike waveforms

with magnitude larger than noise floor level. Based on the pool of well-shaped po-
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tential spikes, simple measures of similarity are utilized in the third step of template

matching.

2.2.4 Design Parameters

The M-Sorter is facilitated with three design parameters that are critical for the

performance. These parameters include the scale value S in (2.4), the threshold τ in

(2.11) or (2.12), and the cluster number k in (2.14).

S and τ are the two parameters reflecting the noise levels of the recorded wave-

forms. In the template generation step, a high S value should be chosen to produce

high quality spikes; while in the detection step, a low S should be used. The threshold

value τ , unlike in most thresholding based methods, is not crucial, and a relatively

small value around the root mean square value of the background noise will suffice

since it is used as a supplementary step to the MCWC. As for k, as shown in [3],

hierarchical clustering idea can be exploited. Practically, a large cluster number is

preferable if no prior information is available, and then aggregating similar clusters

can be done under human supervision during template generation. I will show the

corresponding results about these parameters in details in the next section.

Two other parameters, ρ0 and d0, are needed in template matching. Since they

both reflect on the similarity to a template while taking into consideration of back-

ground noise, the following choices are recommended: ρ0 ∈ [0.75, 0.85] and
√
d0 is

less than 10% of the spike magnitude, i.e., d0 < (10%× ||µi||)2.

For Matlab implementation of the M-Sorter, some additional parameters related

to the experimenter’s recording equipment setting need to be specified. They include

the recording system sampling frequency f , bandpass filter band flo and fhi. The M-

Sorter code is available at https://sites.google.com/site/jenniesisite/Home/

software.
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2.3 Test Data Description

Seven data sets from four different sources are used to demonstrate the use of

the M-Sorter and its efficiency. Comparisons with the Offline Sorter and the Wave

Clus [4] are provided. Three artificial data sets (A, B and C) were used by Wave

Clus [4] at two different noise levels. Two additional artificial data sets (D and E)

were from the Noisy Spike Generator [28] at six different noise levels. Data set F,

which contains 4 subsets, was downloaded from the Plexon website (http://www.

plexon.com/downloads.html$\#$Software). Since no truth data was provided in

association with the waveforms, data set F was considered for real neural recordings.

Finally, data set G was captured from two rats’ motor cortical areas while the rats

were freely moving around.

Data sets A, B and C were from Wave Clus [4]. Each of the three data sets

was 60 second long with three clusters. The waveforms in the three data sets were

constructed based on neural recordings in the neocortex and basal ganglia where

manually extracted spikes were contaminated by artificially adding different levels

of noise. Two levels of noise with standard deviations equal to 0.05 and 0.2 of the

original waveform were used in the data. Among the three data sets, data set A was

considered easy to sort while data sets B and C were difficult.

Data sets D and E were created using Noisy Spike Generator [28] under its default

setting with SNRs equal to 25, 15, 13, 12, 11 and 10. Each subset was 60 second long,

and sampled at 24kHz. Data set D had 3 clusters, and E had 2 clusters. The spike

waveform magnitudes were normalized to 1.

Data set F was obtained from Plexon website where the sampling frequency was

44.1kHz. Since no truth was provided, it was considered a real neural recording.
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Data set G contained 2 subsets of real neural recordings via tungsten microarrays

implanted in the rats’ motor cortical areas. Rats were moving freely when the record-

ings were taken. Each subset in G was 20 second long. The neural waveforms were

sampled at 24.414kHz.

All the signals were digitized, and bandpass filtered between 300Hz and 3kHz

using 3rd order butter-worth filter implemented in Matlab to eliminate low frequency

drift and high frequency noise.

2.4 Measures for Sorter Performance

For artificial datasets, I used the total error and total accuracy as our figures of

merit for each cluster of sorted spikes. The error and accuracy are defined as

Terr = 100× NFP +NFN

NTP +NFN

, (2.18)

Tacc = 100× NTP

NTP +NFN

, (2.19)

where NFP is the number of false positives, NFN is the number of false negatives, and

NTP is the number of true positives. A true positive spike is one that was detected

within an acceptance interval of ±0.5ms from the truth and was also correctly clus-

tered according to the truth. If a spike was announced without presence of a truth,

it was then counted as a false positive. If no spike was announced while there was

one according to the truth, then it was counted as a false negative.

However, these performance measures are not appropriate for applications to real

neural recordings since no true spike times and cluster information were available.

Thus, for real recordings, features such as spike duration, template reconstruction,
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spike shape, and intra cluster distance are investigated as indicators of spike sorting

performance.

To gain perspective on how the M-Sorter compares with other popular sorters, I

compared M-Sorter performance to two thresholding based systems: the Wave Clus

[4] and the Offline Sorter (Plexon Inc). For comparison purposes, for each data set,

I used different S values for the M-Sorter, different threshold values for the Offline

Sorter to minimize the total error while maximizing the total accuracy. The Wave

Clus algorithm automatically selects its threshold values.

2.5 Impact of the Free Parameters on the M-Sorter Performance

In this section I provide evaluations of the key parameters in the M-Sorter and

their impact on M-Sorter performance.

Data set C-2 (noise level 0.05) is used herein to demonstrate the impact of

free parameter selection on M-Sorter performance. The goal here is to test the

M-Sorter performance in the detection stage at different parameter settings. The

following set of parameters were used: S = {2, 3, · · · , 8} in (2.4) and thresholds

τ = {0, 15, 20, 25, 30}µV in (2.11) and (2.12). The corresponding correct detection

and false alarms are summarized using the ROC curves as shown in Figure 2.3.

In Figure 2.3a, the results of different thresholds are displayed. When τ = 0

(corresponds to the original MCWC algorithm, the line with the stars), it detected

the most true spikes (the top point on the starred line, when S = 2, Tacc = 97%) with

the most incorrectly detected spikes (Terr = 95%). As the threshold increased, the

ROC curves moved to the left. For example, by applying a threshold of τ = 15µV (the

solid line with triangles), the error rate reduced to Terr = 37% (when S = 2), while

the correct rate remained (Tacc = 94%). As the threshold increased from τ = 0 to

τ = 30µV , the error rates decreased, however, the true positive rates also decreased.
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A trade-off is thus necessary to select a good pair of S and τ . When the threshold

increased to an extremely high value, for example, 30µV (the dotted line with circles),

the error rate reached a small value (Terr = 0.4%); on the other hand, the correct

rate fell down to Tacc = 86%. Thus, the application of a threshold can remove part

of the noise if it is set appropriately, but too high a threshold will greatly reduce the

correct detection rate.

The false alarm rates for different combinations of S levels with τ values are

shown in Figure 2.3b. Without thresholding by τ , the rightmost points of each curve

indicate the largest false alarm rates within each S level. As the S value increased, the

error rates decreased, but the correct detection rates also decreased dramatically. By

combining MCWC with the threshold τ , the detection results became more robust

(e.g., when S = 2, the correct detection rates remain higher above the results for

S = {3, · · · , 8}, while the error rates decreased as τ was integrated). Therefore from

Figure 3, it is not difficult to see that a low S value (e.g., S = 2) plus a reasonable

threshold τ (e.g., τ set at the noise floor level) usually provides the most desirable

performance - high detection rate with low false alarms.

The false alarm rates for different S levels and threshold value combinations are

shown in Figure 2.4. It is clear that thresholding helped reduce noise most effectively

under small S values.

2.6 Comparisons of Sorters

In this section, I provide a comprehensive comparison among the three systems

(the M-Sorter, the Offline Sorter and the Wave Clus) on the seven data sets.
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2.6.1 The Offline Sorter and the Wave Clus

The Wave Clus has its own selection of threshold value τW , which has three

possible modes in detection: positive, negative and both, for a threshold crossing

from below, crossing from above, or either case, respectively.

τW = 4δn, (2.20)

where

δn = median{ |x|
0.6745

}. (2.21)

The Offline Sorter also provides several different thresholding methods including,

for example, raw signal and variations on energy of the signal. The energy E of a

signal is defined as

E(i) =
1

W

i+W/2∑
j=i−W/2

v2(j), (2.22)

where v(i) is the raw signal at time i, and W is the window width. In the dissertation,

W = 3 was used if the method Energy was chosen. In our comparison, I explored

different threshold values to reach a good compromise between accuracy and error.

The Offline Sorter is facilitated with several sorting methods including, for exam-

ple, T Distribution and Valley Seeking. Different methods usually produced different

results and spike clusters, and I manually chose the best result closest to the truth,

or the most reasonable result by human inspection. Since I used the T Distribution

option of the Offline Sorter, whenever Offline Sorter is used in this dissertation, it

refers to this specific mode.

When using the M-Sorter, a relatively low threshold was set as discussed in the

previous section. Different S values were tested, and the best results were chosen and

analysed.
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Figure 2.5: Results of data sets A-C

2.6.2 Comparing Sorters using Artificial Data Sets A-C

For artificial data sets A-C, the results are displayed in Figure 2.5. For high SNRs,

all three methods performed equally well, with low error rates (Terr < 20%) and high

accuracies (Tacc > 85%). However, when more noises were added to the signals, the

overall performance of the three methods degraded. Data set A was an easy case,

and the three methods were equivalent in performance, with accuracies around 60%

and error rates around 50%. For data sets B and C, the M-Sorter and the Wave Clus

were competitive with accuracies of 60% and error rates of 60%, while the Offline

Sorter was unable to discriminate between two very similar clusters, and therefore

producing low accuracy and high error rates.

For artificial data sets D and E, the results based on different SNRs were displayed

in Figure 2.6. Due to its automatic estimation of thresholds, the Wave Clus either

missed a large percent of true spikes, or resulted in significant false alarms. Overall,
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I again found that all algorithms performed remarkably well for high SNRs, where

the error rates were around 50% for data set D, and 15% for data set E, and the

accuracies were around 65% for data set D and 90% for data set E. Performance

differences were more pronounced for the more difficult cases with low SNRs, with

the error rates going up and accuracies going down.

While all algorithms showed a drop in performance as SNR decreased, the M-

Sorter and the Offline Sorter were competitive, with the former identified the largest

number of correct spikes and produced the least error. As shown in Figure 2.6a, both

produced accuracies around 90% and error rates around 20% when SNRs were high.

For SNR = 13 or lower, the M-Sorter showed its robustness in differentiating between

clusters. Although both systems had similar accuracies, the M-Sorter showed smaller

error rates than the Offline Sorter. In Figure 2.6b, they had competitive performance

for SNR > 12. As SNR went below 12, the M-Sorter showed a little advantage. In

summary, the M-Sorter was comparable to the Offline Sorter for high SNRs, and it

offered a little better performance than the Offline Sorter for low SNRs.

2.6.3 Comparing Sorters using Real Data by Plexon

For each of the four data sets in F provided by Plexon, no truth was available.

Thus, they were considered as real data. Spike clustering results were compared. For

the Offline Sorter, I lowered the threshold, to include as many potential spikes as

possible, and the threshold was set to 0.25. And Valley Seeking sorting program was

used. For M-Sorter program, S = 2 and a low threshold τ = 0.2 was used for all four

data sets in F.

23



10 15 25
0

20

40

60

80

100

120

SNR (dB)

T
ac

c / 
T er

r

(a) Results for data set D

10 15 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

T
ac

c / 
T er

r

 

 

M−Sorter error
M−Sorter accuracy
Offline error
Offline accuracy
Wave Clus error
Wave Clus accuracy

(b) Results for data set E

Figure 2.6: Performance comparison of artificial data sets D and E, where the solid
lines are for accuracy while the dashed line are for error rates.

The spike sorting results of the M-Sorter and the Offline Sorter are shown in

Figure 2.7, together with the averaged intra-cluster variance, which is defined as

v =
1

ni

ni∑
j=1

(uj − µi)2, (2.23)

where uj is the jth spike in cluster i, µi is the ith cluster center and ni is the total

number of spikes in cluster i.

For data set F-1, both sorters generated similar spike numbers. The Offline Sorter

had five clusters, where cluster 2 and 4 look similar. For the other data sets, the Offline

Sorter also detected more spikes than the M-Sorter in the total number for data sets

F-2 to F-4. For data set F-2, the Offline Sorter and the M-Sorter were similar in cluster

3 and 4, but the Offline Sorter generated higher spike numbers in cluster 1 and 2.

For F-4, the 1st cluster of the Offline Sorter had 47% spikes more than the M-Sorter.

Through the four data sets, the Offline Sorter and the M-Sorter performed equally

when comparing the variances. As an example, I provide the resulted waveforms for

F-4 in Figure 2.8.
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Figure 2.7: Detection and sorting results for data sets F-1 to F-4 using the Offline
Sorter and the M-Sorter.
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The averaged (grey curves) and sorted spike (black curves) waveforms are shown

in Figure 2.8. The M-Sorter and the Offline Sorter both generated three clusters.

For all the clusters, the spike duration were about 1ms. Cluster 1’s amplitude was

about 0.2, while the other 2 clusters were around 0.5. The spike numbers in cluster 2

and 3 were close. However, the spike numbers differed significantly for cluster 1. By

inspection, the Offline Sorter had a few false alarms, and the resulted waveforms had a

larger variance compared with the M-Sorter. This result agrees with those obtained by

investigating the artificial data sets previously that thresholding introduces significant

false alarms. By only using the waveform amplitude, other important features of a

spike were ignored.

2.6.4 Comparing Sorters using Rats’ Motor Cortical Data

I performed similar computations and comparisons for the 2 sets of real data G-1

and G-2, as did in the previous subsection for data sets F-1 to F-4. For the 2 sets of

real data, I ran the Wave Clus automatically, and selected the threshold carefully for

the Offline Sorter and the M-Sorter. By investigating the results briefly, the Wave

Clus produced results that were significantly deviated from those by human inspection

and was excluded in the following comparison.

For data set G-1, different threshold values were tested for the Offline Sorter, and

finally it was set to −35 µV . A total number of 716 spikes were detected and sorted

to 2 clusters plus a noise cluster, while only the spike clusters are summarized and

shown in Figure 2.9, and the noise cluster is not included. The M-Sorter detected

1860 spikes using S = 2 and threshold −25 µV , among which 481 and 304 spikes

were clustered. Similar variances in each cluster by each algorithm were observed.

For data set G-2, the Offline Sorter resulted in 1789 spikes and were sorted into

2 clusters (1200 and 549 spikes, respectively, Figure 2.9) plus a noise cluster (not
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Figure 2.8: Waveforms of sorted spikes for artificial data set F-4. The grey waves are
averaged results of respective spike clusters.
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Figure 2.9: Detection and sorting results for data sets G-1 to G-2 using Offline Sorter
and M-Sorter.

shown). The M-Sorter detected 2823 spikes, among which 1248 and 359 spikes were

from 2 neurons. For both sorters, cluster 1 had similar variances. The waveforms

were further studied and shown in Figure 2.10. The averaged waveforms (grey curves)

were similar, while the Offline Sorter had a larger variance. To investigate the sorter

performance in details, a period of the raw waveform and the sorted spikes are shown

and marked in Figure 2.11.

By comparing the results, the M-Sorter and the Offline Sorter resulted in similar

numbers of clusters and spikes, while the M-Sorter results appeared more resistant

and less sensitive to parameter changes. These results agree with those using artificial

data sets.

The results by the M-Sorter reported in this dissertation were all implemented

and tested using Matlab R2009a (Mathworks, Natick, MA). The computer where the

simulations were performed is equipped with an Intel Core (TM) 2 Quad CPU Q6600

2.40GHz with 3.50GB of RAM. As previously reported in [1], the MCWC algorithm
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was potentially real-time implementable. The M-Sorter is also potentially realizable

in real time. In-depth discussions on this issue will be provided elsewhere.

2.7 Conclusions

Given the powerful recording systems with the capability of simultaneously sam-

pling from dozens to hundreds of neurons, there is an urgent need to develop and

optimize methods to handle the massive amount of neural data. Reliable identifica-

tion of neural spikes provides a great opportunity for important future discoveries in

neuroscience. Our proposed M-Sorter is advantageous in the following aspects. First,

due to a reliable detection step prior to classification, the M-Sorter has produced

much less false alarms than the usual thresholding. Second, the extracted templates

used by the M-Sorter for spike sorting are selected from the original neural waveforms

with good quality and this is possible even when the quality of the waveforms are

not ideal. Third, the M-Sorter is potentially real-time applicable. Finally, only a

few parameters are up to the user’s choice and they are easy to select. As shown,

the M-Sorter is consistent in results, robust to parameter variations, and is especially

advantageous to use under less than ideal waveform conditions.
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Chapter 3

THE DIRECTIONAL CHOICE TASK

3.1 General

Male Long-Evans rats were cared for in accordance with the guidelines set forth

by the Institutional Animal Care and Use Committee at Arizona State University.

The animals weighed 50 g upon arrival into the laboratory. They were handled daily

and started the pre-training stage of this experiment when they reached 300 g.

During this initial stage, the rats were placed in a Skinner box (Med Associate

Inc., St Albans, VT) where two light-emitting diodes (LEDs), one on each side, were

placed right above two extensible paddles. It is equally likely to have one of the two

LEDs turned on as the start of a new trial. The control paddle on the same side under

the LED would extend 2.0 s later. Pressing the control paddle within 30.0 s would

turn off the LED and also lead to a 1 kHz reward tone and a sugar pellet reward. No

action within the time allowance would automatically terminate the trial and lead to

a punish tone of 12 kHz, no sugar pellet reward, and a 10.0 s timeout. The inter-trial

interval was 5.0 s.

The rats used in this study were trained for a mean of 72 (± 36, SD) sessions and

reached 90% accuracy. At the end of this stage of the experiment, the rats were not

only proficient with the association between an LED light cue and the paddle, but

they also had become skilled at paddle pressing.

After the pre-training stage and when the animals reached 400 g, they were im-

planted with microwire arrays. Upon recovery, the animals were placed in another

Skinner box (Med Associate Inc., St Albans, VT), and began learning the directional

choice task described below, while single-unit neural signals and behavioral perfor-

mance data were recorded simultaneously.
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Twelve (n = 12) rats (A, B, C, D, E, F, G, H, I, J, K, and L) were used for study

in Chapter 4. Within the 12 rats, 6 rats (Rats C, D, E, F, G, and H) were used

in behavioral and electrophysiological recordings; 4 rats (Rats I, J, K, and L) were

used in video recording; 2 rats (Rats A and B) were used in both behavioral and

electrophysiological recordings and video recording.

Ten (n = 10) rats (A, B, C, D, E, F, G, H, M, and N) were used for study in

Chapter 5. All the 10 rats provided behavioral and electrophysiological recordings.

3.2 Surgery

The surgical procedure was performed using aseptic techniques. Each rat was

anesthetized by injection of the KXA mixture (10.0 mg/ml ketamine, 2.0 mg/ml

xylazine, and 0.1 mg/ml acepromazine; 0.1cc/100g, administered intramuscularly).

Heart rate and O2 saturation were continuously monitored. Once into an anesthetized

state, each rat was placed in a stereotaxic frame with ear bars inserted and front teeth

latched. The surgical area was then draped. Skin and fascia were removed to expose

bregma plus sufficient area for performing the craniotomy and placing anchoring

screws. A craniotomy of approximately 2mm×4mm centered at 2.0 mm lateral and

3.0 mm rostral from bregma was removed. This allowed the insertion of the microwire

array. The 16-channel (2×8) microwire array (Tucker Davis Technology or TDT,

Alachua, FL) was then lowered into the left hemisphere of each rats brain. The tips

of the microwire array were cut at 60 degrees. The electrode row spacing was 500 µm

(rats A, B and H) or 375 m (rats C, D, E, F and G). The electrode column spacing

was 500 µm. An acrylic head cap was fixed on the skull with three anchoring bone

screws. Sutures were used, if needed. Two supplemental doses of KXA (0.05 cc/100g)

were provided with approximately one hour separation during the procedure. A KX

(20 mg/ml of ketamine and 3 mg/ml of xylazine in 0.9% NaCl solution) update (0.05

32



cc/100g) was applied if needed after the two KXA supplements. Systemic antibiotics

and analgesics were administered for three days after the surgery.

3.3 Directional choice task

Upon recovery from the implant surgery, rats began a series of sessions in which

they learned the directional choice task. As they did so, we recorded single-unit neural

activity and behavioral data simultaneously. One experimental session of about an

hour was conducted per rat each day. Throughout the experiments, the rat was free

to move about inside the Skinner box.

Five LEDs were located on the front panel of the box as shown in Figure 3.1C:

one in the center, two on each side. Hereafter, when I refer to a “light” I identify one

LED that was illuminated while the others were not. There were three paddles that

the rat could press, one to the left, one in the center, and one to the right. The left

and right paddles were located lower than the center paddle, as illustrated in Figure

3.1C.

In order to obtain a sugar-pellet reward, the rat needed to press either the left or

right paddle to control the location of the illuminated light, which varied among the

five possible positions. The rat began each trial by pressing on the central paddle.

Later, a left-paddle press would shift the light to the right by one position and a

right-paddle press would shift the light to the left by one position. Thus, the correct

response was to press the paddle on the side of a light in order to shift it toward or

to the central position. No response was required to the center light.

Each trial proceeded as follows: as soon as the center paddle was depressed by

the rat, one of the five cue lights, chosen at random, was illuminated immediately. I

called this event “cue onset”. Both the left and right control paddles extended into

the testing box 2.0 s later. The rat was allowed 1.0 s to complete a first paddle press,

33



and another 4.0 s for a second paddle press if the cue light required two presses to

illuminate the center light. A trial would be terminated in any of the following three

conditions: (1) if the cue light was moved to the center by making the correct control

presses and the light remained in the center position for at least 1.0 s. In this case the

trial ended as a success. As a special case, trials with the center cues were successfully

ended if the rat did not press any paddle within 1.0 second; (2) if the cue light did not

reach the center location within the time allowance then the trial ended as a failure;

and (3) if the light was moved outside of the cue light area (i.e., farther to the left

when at the extreme left position or farther to the right when at the extreme right

position) then the trial was also considered a failure.

All successful trials were associated with an immediate low-frequency reward tone

of 1 kHz along with a sugar pellet reward 0.5 s later. Failed trials were associated

with a high-frequency tone of 12 kHz without any reward. The rat could start a new

trial after an inter-trial interval of 8 s for successful trials and 15 s for failed trials.

An example of a task sequence is given in Figure 3.1C. The trial cues were presented

randomly in blocks of 25 trials and the performance accuracy in response to each cue

was calculated for each block. After each block of 25 trials, the next 25 cues were

programmed in a way that a slightly larger number of cues would be those that had

resulted in a greater frequency of failed trials during the previous session.

3.4 Video acquisition

I captured image sequences with a spatial resolution of 0.47 mm/pixel at 25 frames

per second when the rats were performing the directional choice task. A video camera

was mounted at the back of the Skinner box facing the front control panel. Infrared

LEDs were placed inside the Skinner box as house light. Camera focus was tuned
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Figure 3.1: Implant site and illustration of the behavioral task. A, implant site and
hit map of the recorded units. A 16-channel (2×) microwire array with electrode
numbers labeled was implanted in the rat’s left hemisphere centered at 3 mm AP, 2
mm ML from the bregma. The delineation of AGm and AGl was made according
to the Rat Brain Atlas (Paxinos and Watson, 2005). The hit map is a summary of
all units from the 8 implanted rats. B, example spike waveforms and ISI histograms
in 2 different sessions. C, the behavioral control panel facing the rat and task trial
timelines. Three task periods were defined. The pre-cue task period lasted 1 second.
A 2.0-s cue-on task period followed immediately. The cue-on data window was 0.2 to
0.9 s after the cue onset. The response task period started from the instance of the
extension of side control paddles and lasted for 1.0 s.
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manually when needed prior to starting a new recording session. The rat’s head and

body positions were clearly visible on most frames.

3.5 Video analysis

For each video frame, I extracted three pairs of variables: the implant head cap

position (hx, hy), the left ear position (lx, ly) and the right ear position (rx, ry). The

rat head position for this frame is then calculated as the means of the three pairs of

variables: (Hx, Hy) = ((hx + lx + rx)/3, (hy + ly + ry)/3). Each trial usually consisted

of 59±5 frames, which amounted to 2.32±0.20 s from the trial cue onset through

the time when the rat made the response press. A sequence of rat’s head positions

were obtained accordingly. The exaction of these variables from the image sequences

was performed in a semi-automatic fashion with part of the procedures performed by

custom Matlab code (Mathworks, Natick, MA).

3.6 Analysis of trajectories, movement starting and ending time

After the head positions (Hx, Hy)for each trial, I calculated the rat’s movement

speed at the ith frame as si =
√

(H i+1
x −H i

x)
2 + (H i+1

y −H i
y)

2/40(pixel/ms). Let

the movement threshold parameter t = 0.5×
√

(1/n(s21 + s22 + · · ·+ s2n)), where n is

the number of frames in the trial. The movement start time S was considered as the

time when the rat’s speed rose above the threshold and remained so for 5 consecutive

frames while the movement end time E was considered as when the rat’s speed fell

below the threshold and remained so for 5 consecutive frames. By the end time E, the

control paddle was usually within reach by rats. The movement duration was thus

obtained as D = E−S. Corresponding to the start time, the movement start position

was the head position where the rat started to move. Similarly, the movement end

position was the rat’s head position at the end time.
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3.7 Recording session and spike sorting

Multi-channel chronic single unit recordings from the rat’s AGm and AGl areas

were obtained using either the RX5 Pentusa Base Station or the RX7 Microstimula-

tor Base Station (Tucker Davis Technology or TDT, Alachua, FL). Original neural

waveforms were digitized at 24.414 kHz and saved. Spike sorting and other processing

of the raw waveforms took place offline. The neural signals usually maintained strong

spike presence for approximately 20 30 recording sessions post surgery. All behavioral

event markers were recorded simultaneously with the neural signals.

The stored waveforms were extracted from TDT data tank and bandpass filtered

between 300 Hz-3 kHz. Offline spike detection and sorting was performed using the M-

Sorter from our own lab [57]. The sorter utilizes the multiscale correlation of wavelet

coefficients (MCWC) for spike detection [1].Then the k-Means clustering and template

matching algorithms were used to classify single units. The M-Sorter has been tested

extensively using artificial data sets and real neural recordings. Testing results by the

M-Sorter were comparable with or better than the automatic mode (T-Distrubution

E-M) of the Offline Sorter (Plexon Inc, Dallas, TX) and the Wave clus algorithm

[4]. The sorted spikes were further inspected by the authors to ensure accuracy.

The isolated putative single units were thus obtained. The spikes so obtained from

each unit were consistent in waveform shape, formed separable clusters in PCA space

from other neurons in inter-spike interval (ISI) histograms. The spike width was

usually larger than 0.5 ms. Isolated units and the time stamps of spiking events

along with behavioral event markers were then stored for the analyses performed in

this study. Figure 3.1B shows example neural spike waveforms and their respective

ISI histograms.
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3.8 Stimulation

To verify the recording sites, intracortical microstimulation was applied using the

RX7 Microstimulator Base Station and MS16 Stimulus Isolator by TDT. Passive

headstage was used in the procedure. Two rats, J and K, were stimulated after their

behavioral and neural data recording using the same implanted electrodes as those for

recording neural activities. The animals were lightly anesthetized using KX during

stimulation when a train of 13 cathodal pulses was presented at 312.5 Hz. Each pulse

was 0.2 ms in duration. Stimulation always started using a small current of 20 µA,

and increased up to 60 µA in most cases. In one case (rat J) the stimulation current

was increased to 100 µA. For rat J, electrodes 5-8 (Fig. 3.1A) elicited contralateral

whisker movements at 60 µA current. When the current was increased to 100 µA,

electrode 6 elicited right forelimb movements and whisker movement. For rat K,

electrodes 7 and 8 elicited contralateral whisker movements and neck movement at

60 µA current.

3.9 Performance accuracy measures

I calculated each rats performance accuracy, R, in each session. R was the ratio

between the number of successful trials Ns and the total number of trials N during the

session, expressed as percent correct, i.e., R = Ns/N×100%. Also, I let Ne denote the

number of failed trials. Post-error accuracy Res was the ratio between the number of

successful trials immediately after a failed trial Nes and Ne, also expressed as percent

correct, i.e., Res = Nes/Ne × 100%. Likewise, the post-success accuracy Rss was

based on the ratio between the number of successful trials immediately succeeding a

successful trial Nss and Ns, i.e., Rss = Nss/Ns× 100%. These two measures together
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with performance accuracy R were indicators of a rats ability to learn the task; the

larger the Res and Rss values, the higher the performance accuracy.

3.10 Task-related neurons

The following three task periods were identified based on the behavioral task pro-

tocol (Figure 3.1C): pre-cue (1s before cue onset to cue onset), cue-on (from cue onset

to 2s after), and response (from control paddle extension to 1s after). I considered

a neuron task-related if, during at least one of the above defined three task periods,

its trial averaged firing rate was significantly different from any of the other two task

periods (Mann-Whitney U test, p < 0.01), where the firing rates were calculated as

spike counts in 20-ms bins averaged over all trials during a session. The neural results

presented in this report were based on all trials that the rat responded with a paddle

press (left or right) with either successful or failed outcomes.

3.11 Neural modulation

To study neural modulations by previous trial outcome (success or failure) within

the cue-on task period, I compared trial averaged firing rates using 20-ms bins for

each task-related neuron. First, for each trial, a neuron’s firing rate in the cue-on

task period was represented by a 1×100 vector (2.0 s of data). Let Let fE(1) denote

a neuron’s firing rate vector averaged over all trials succeeding a previously failed

trial. Also, let fS(1) be a neuron’s average firing rate vector of all trials succeeding a

previously successful trial.

To study the firing rate difference between post-error trials and post-success trials,

I define the previous trial modulation measure I1 as:

I1 =
fE(1)− fS(1)

max(fE(1), fS(1))
, (3.1)
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where max(fE(1), fS(1)) denotes the largest element among fE(1) and fS(1), and

I1 = (I11 , I
2
1 , · · · , I i1, · · · , I1100) ∈ R100 with i denoting the time bins of the cue-on

task period (2.0 s) within a trial. In addition, for i = 11, 12, · · · , 45 it corresponds

with the cue-on data window. The measure I1 is an indicator of a neuron’s firing rate

difference in the three task periods in relation to previous trial outcome, respectively.

The range for the measure is from -1 to 1. If I i1 < 0, it means that the firing rates of

post-error trials were lower than the post-success trials at the ith time bin. Conversely,

if I i1 > 0, it means that the firing rates of post-error trials were higher than the post-

success trials at the ith time bin. In addition, the closer it is to +1 or 1, the more

significant differences exist in the compared firing rates.

Let |I1| be |I1| = (|I11|, |I12|, · · · , |I1100|). For each neuron, let τ1 = arg max |I1i|,i =

1, 2, · · · , 100, i.e., at time τ1, the difference in firing rates between post-error and post-

success trials was the largest among all time bins in a trial. Also, I define a scalar

Ī1 represents the averaged Ī1 = sum45
i=11I

i
1 representing the averaged values of I i1 over

the cue-on data window.

3.12 Neural modulation measured by ROC and AUC

To analyze differences in distributions of neural responses between post-error and

post-success trials, I used the receiver operating characteristics (ROC) [58]. The

ROC analysis provides a measure for the degree of overlap between two (post-error

vs. post-success, or left press vs. right press) neural response distributions, and it is

independent of the firing rate of a neuron [55, 59]. For an isolated unit in one recording

session, as an example, each trial in the session was first placed into either the post-

error trials category or the post-success trials category. Then frequency histograms

of the neurons’ firing rates were obtained for post-error trials and post-success trials,

respectively. Firing rate thresholds (ranging from the lowest to the highest selected
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from among all recorded units) were used when creating the ROC curves. Each point

(x, y) on the ROC curve corresponds to the two conditions, post-success and post-

error. The x (or y) value represents the proportion of post-success (or post-error)

trials that the firing rates were higher than the respective thresholds. Increased

separation of firing rate distributions between post-success and post-error trails leads

to an increased deflection of the ROC pushing toward the corner or away from the

diagonal. The area under the ROC curve (AUC) provides a measure of the level of

separation between the two compared distributions, the value of which ranges from

0.5 to 1. To interpret the separation level, a baseline ROC, and consequently AUC,

is obtained from using randomly shuffled data. In this study, a bootstrap analysis

was performed to estimate the chance-level AUC. For this purpose, neural data was

randomly placed into one of the two categories for obtaining an AUC. The same was

performed 1,000 times. The chance-level AUC was obtained as the average of the

1,000 sampled results. The farther an AUC value is from the chance-level AUC, or

the closer an AUC value is to 1, the larger the distinction between the two (post-error

vs. post-success, or left press vs. right press) neural response distributions.

The AUCl and the AUCr were used to measure differences in the distributions of

neural responses between post-error and post-success trials among all left and right

side responses, respectively. Specifically, when calculating AUCl at a bin width of

100 ms, the units firing rates were calculated for all left side responses, and an AUC

value was obtained. This procedure was repeated for each time bin to cover the 3 task

periods. AUCr was calculated similarly. By the same token, the AUCs and the AUCe

were used to measure differences in distributions of neural responses between left and

right directional choices among all post-success and post-error trials, respectively.

The calculation for AUCs and AUCe was similar to the described above for AUCl.
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In this study, all analyses were performed using custom Matlab (Mathworks, Nat-

ick, MA) code.
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Chapter 4

CORTICAL NEURAL RESPONSES TO PREVIOUS TRIAL OUTCOME

DURING A DIRECTIONAL CHOICE LEARNING TASK

4.1 Introduction

Learning depends in large measure on adapting future actions based on previous

outcomes. Several areas in the frontal lobe of primates appear to encode outcomes,

including the prefrontal cortex (PFC), anterior cingulate cortex (ACC), ventral pre-

motor cortex, and supplementary eye field (SEF) [29, 30, 31, 33, 86], as well as other

medial frontal and motor areas [32, 72]. However, only recently have researchers

started to address how trial outcomes may be encoded in single neurons in relation

to future actions, especially during learning.

Neurophysiological evidence suggests that both the medial and lateral agranular

frontal areas of rats, AGm and AGl, respectively, are involved in predicting trial

outcome [37] and in learning [37, 53, 73, 121]. These findings are consistent with

those showing that the rats lateral agranular cortex (AGl), which is homologous to

the primary motor cortex in primates, shows considerable neuronal plasticity [44,

45, 48, 49, 51] and encodes information about task context [46, 47]. The medial

agranular cortex (AGm) is probably homologous to one of the nonprimary motor areas

in primates [38, 39, 74, 79]. Although some have argued for a homology of AGm to

one of the primate prefrontal areas [34, 42], AGm’s dense and direct projection to the

spinal cord makes this idea unlikely. In addition to its neurons encoding predicted

outcomes, lesions of AGm cause an increase in reaction time, which suggests an

involvement in movement preparation [35]. Additionally, AGm neurons encode the

action selected prior to movement onset in a value-based directional choice task [36].
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Collectively, the published results point to AGm and AGl as candidates for encod-

ing the outcome of previous trials, and suggest that this information plays a role in

improving performance during learning. Accordingly, in order to study neural corre-

lates of experience-based learning, I monitored the activity of single neurons in AGm

and AGl of rats, as they learned a directional choice task. I studied the progres-

sion of neuronal activity from nave or pre-learning stages, through the learning stage

and beyond. I found that single-unit activity was associated with two task factors:

directional choice (left vs. right) and previous trial outcome (success vs. failure).

4.2 Materials and Methods

Male Long-Evans rats (n=12) were used in this Chapter. The animals weighed 50

grams upon arrival. They were handled daily and started training when they reached

300 grams to become familiar with the control paddles in the task apparatus prior to

cortical array implant surgery. The 12 rats were trained extensively for an average

of 72 sessions. Therefore, the rats were skilled and proficient with paddle pressing.

Within the 12 rats, 6 rats (Rats C, D, E, F, G, and H) were used in behavioral

and electrophysiological recordings; 4 rats (Rats I, J, K, and L) were used in video

recording; 2 rats (Rats A and B) were used in both behavioral and electrophysiological

recordings and video recording. Approximately three months later, at which time

the animals usually reached 400 grams, they were implanted with microwire arrays.

Upon recovery, the animals were placed in a Skinner box (Med Associate Inc.) and

began learning the directional choice task while single unit neural signals as well as

behavioral performance data were recorded simultaneously.
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4.3 Results

Task performance and single-unit data from 8 rats (A, B, C, D, E, F, G, and H)

were used for the analysis of neural modulation in relation to the two task-related fac-

tors: previous trial outcome and directional choice of the current trial. In this study,

I considered the first paddle press within the response task period (Fig. 3.1C)when

analyzing the directional choice factor.

The recording sessions with insufficient trials for statistical analysis were excluded.

Units with firing rates below 1Hz were excluded from the analysis as well. For the

units used in this study, average firing rats were 34.16±23.53 (spikes/s). A total of

41,840 trials from 232 neural and behavioral recording sessions were obtained from

the 8 rats used in the analysis. Spikes were sorted offline after each recording session.

Isolated units from each session were treated independently, which resulted in 1,058

unit records from 8 rats, including 514 from AGm and 544 from AGl (Fig. 3.1A).

I recognize, however, that some cells remained the same from session to session, so

the number of unit records does not correspond to the number of isolated neurons.

The segregation of AGm from AGl cells was verified by intracortical microstimulation

(see Materials and Methods). In addition, 6 rats (A, B, I, J, K, and L) were used in

analyzing the movement characteristics such as start and end times and movement

speed (see Materials and Methods).

4.3.1 Performance accuracy and response latency

The rat’s performance accuracy, R, was obtained at the end of each recording

session. Among the 8 rats used in this study (A, B, C, D, E, F, G, and H), 5 of them

(A, D, E, G, and H) reached 80% or higher task performance accuracy. Specifically,

4 rats (A, D, E and H) reached 80% in about 21 sessions and Rat G reached 80% in
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30 sessions. The other 3 rats (Rats B, C, F) reached performance accuracy of around

60% by the 20th recording session, and did not achieve 80% even in their respective

last recording sessions. The learning curve for Rat A is displayed in Figure 4.1A as

an example.

Three learning stages were identified according to the behavioral performance

accuracy. The period after the rat’s performance accuracy reached 80% or higher for

at least 3 consecutive sessions was considered the learned stage. For the 3 rats (Rats

B, C and F) who learned slowly, no experimental sessions could be placed into this

category. Note also that some rats might have occasional fluctuations in performance

accuracy around 80% in the learned stage. The learning stage was defined as during

which the rats showed increasing trend in accuracy (t statistics, p < 0.05), e.g., from

session 8 to session 21 for Rat A (Fig. 4.1A). The average accuracy increased by (25%)

during the learning stage for the eight rats. The pre-learning stage was defined as

the first several sessions in which the rats’ performance accuracies fluctuated between

20% and 70% without displaying a clear and steady upward or downward trend (t

statistics, p > 0.05). The lengths of each learning stage usually varied for different

rats.

The response latency of each rat was computed for each session. The response

latency was defined as the time between extension of the control paddles and the first

paddle press by a rat. The response latency of rat A is shown as an example in Figure

4.1B and C. In summary, only occasional difference was found in response latency

between successful and failed trials, and between post-success and post-error trials.

4.3.2 Kinematic analysis

Video sequences were captured for 6 rats (A, B, I, J, K, and L) while they per-

formed the learning task. Rats A and B provided both neural and video data, while
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Figure 4.1: Examples of performance. A, Daily performance accuracy of rat A.
Three learning stages were defined based on daily accuracy: pre-learning, learning,
and beyond learning. B, C, Response latency for failed and successful trials (B) and
post-error and post-success trials (C) of rat A in each recording session.
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the other 4 rats (I, J, K, L) provided video data only. I analyzed the video sequences of

the rats from the start of a trial (directional cue onset) to the time of the first control

paddle press. For each of the 6 rats, the movement trajectories of the rat performing

left and right press trials within a single session were first extracted. Figure 4.2A-C

illustrates movement trajectories of rat J during one entire session where the x- and

y-coordinates represent the positions of the rat’s head over time from a front view.

Using the definition of movement start and stop time defined earlier (Materials and

Methods), from Figure 3B, C, we can see that the mean movement latency relative

to cue onset was 249 ms ( ± 20, SD) for left trials and 298 ms ( ± 23) for right trials

for rat J, respectively; the average end time was around 747 ( ± 35) ms and 818 (

± 39) ms. respectively. The respective start/end positions of the rats could then be

obtained based on the start and end time.

Figure 4.2D is an illustration of the movement start and end time as task learning

progressed by session. Apparently, they decreased significantly during the initial 3

sessions (one-way ANOVA, p < 0.05) and reached a stable state on the 4th day,

whereas movement duration decreased significantly (one-way ANOVA, p < 0.05) and

reached a stable state by the 3rd day. The data suggest that only the initial trials

during the first 3 or 4 sessions may have been modulated by movement kinematics.

Similar analysis was performed for the remaining 5 rats (A, B, I, L, and K), and

the same conclusion held true. The trend in those movement characteristics is in

accordance with the trend of response latency profile in Figure 4.1B. Together, these

data suggest that the rat’s movement parameters became stable after only a few

sessions. This finding probably reflects the fact that the rats were already trained for

paddle presses in association with a cue light but without directional choice prior to

their electrode implant. In addition to the sample results from some rats as shown in

Figure 3A-D, movement start time across trials of all 6 rats was 342 ± 87 ms (mean
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± 1SD), the end time was 829 ± 102 ms, and the movement duration was 487 ± 76

ms (Fig. 4.2E). Note that the start time and end time could vary from rat to rat.

The data displayed in Figure 4.2D was typical for each of the 6 rats. Namely, the

rats’ movement parameters became stable after the first few sessions.

To further test if previous trial outcome may affect movement parameters, start

and end time, movement duration, and movement start and stop positions were eval-

uated again as learning progressed. Video sequences of all trials from the 6 rats were

used (A, B, I, J, K, and L). Movement start and end times and movement durations

were compared between post-error and post-success trials using the U test. These

parameters were found not affected by previous trial outcome (p > 0.05). Figure 4.3

is an example showing movement trajectories organized according to previous trial

outcomes (error or success) in the x-coordinate. At each time point, the x-positions

for post-error and post-success trials were compared using one-way ANOVA for the

left press trials and right press trials, respectively. The comparison was repeated for

each time point from cue onset to approximately 2.0 s after. No significant difference

was found between post-error and post-success trials (p > 0.05). Similar observa-

tions held true for the y-coordinate. This result, together with the response latency

measurements (Fig. 4.1C), supported the idea that the movement parameters in

post-error and post-success trials did not differ significantly.

Thus, neither response latency nor movement kinematics varied according to the

current or previous trial outcome. However, our data clearly show that the first 2-3

sessions (Figs. 2 and 3) included a confounding factor involving motor skill acquisition

[37, 121], in addition to directional choice learning that is under study in this paper.

Since our data revealed that the rat’s movement parameters decreased mainly during

the initial sessions, while the percent of correct trials remained low, I removed the
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Figure 4.2: Movement characteristics. A, example movement trajectories from cue
onset to paddle press of rat J. The background is the front view of the control panel
facing the rat. The gray and the black curves represent the trajectories of left and right
trials, respectively. The dots represent movement onset and the squares represent
end of movement, which correspond to the rats head positions (see Materials and
Methods). B, C, the x- and y-positions corresponding to movement trajectory in rat
A along time. Error bars represent 1 SD. D, start time, end time, and movement
duration as a function of learning sessions of rat I. Movement start and end time
was longer in the first three sessions of learning and stays more stable afterwards. E,
histograms of start time, end time, and movement duration for all 6 rats (A, B, H, I,
J and K). Left, movement start time; center, movement end time; right, movement
duration.
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Figure 4.3: Rat’s movement was not dependent on the previous trial outcome. The
x-coordinate is plotted as a function of time. Black lines and gray lines represent
post-success and post-error trials, respectively. A, movement trajectories in an early
session (session 5) of learning of rat L, i.e., in the pre-learning stage. B, movement
trajectories in a later session (session 24) of rat K in the learning stage.

first 3 sessions of all rats from the data analysis performed next to eliminate the

potential impact of motor skill learning.

4.3.3 Effect of previous trial outcome on performance accuracy

Behavioral task performance data were then evaluated as a function of previous

trial outcome using all 8 rats A, B, C, D, E, F, G, and H. Trial outcomes immediately

after a successful trial and a failed trial were considered by means of post-success

accuracy, Rss, and post-error accuracy, Res, respectively. For each rat, the durations

(in terms of sessions) of each of the three learning stages were normalized by the

8-rat averages. They are: 5.0 sessions for the pre-learning stage (excluding the first 3

sessions), 14.9 sessions for the learning stage, and 8.6 sessions for the beyond learning

stage, respectively. The two measures developed in Materials and Methods, Rss (post-
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Figure 4.4: Behavioral performance in three learning stages for 8 rats. The x axis
represents the normalized session number, and the y axis represents Res and Rss in
black and red, respectively. The 4th order polynomial regression lines for Rss and
Res are provided separately in each of the learning stages. In the pre-learning stage,
Rss and Res first sharply increased and then leveled off. In the learning stage, Rss

and Res continuously increased. In the learned stage, Rss and Res were almost flat.
In learning stage, post-error accuracy Res was greater than post-success accuracy Rss

(paired t test, p < 0.05).

success accuracy) and Res (post-error accuracy), during each of the three normalized

learning stages are summarized in Figure 5. Two respective 4th order polynomial

regression lines are also shown for each learning stage to illustrate data trends. As

shown in Figure 5, only during the learning stage that the post-error accuracy Res

(65.7% ± 14.9%) was slightly higher than the post-success accuracy Rss (63.5% ±

14.2%) with statistical significance (paired t test, p < 0.05).

4.3.4 Neural activity modulated by task factors

For this analysis, I used neural data from 8 rats (A, B, C, D, E, F, G, and H).

Among the entire set of 1,058 isolated unit records of the 8 recorded rats, excluding

the initial three recording sessions, a total of 918 isolated unit records were included
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in the following neural analysis (AGm: n = 464, AGl: n = 454). Among the 918

unit records, 88.3% (n = 811) were found to be task-related, including 86.2% (400

out of 464) of AGm and 90.5% (411 out of 454) of AGl units, respectively. Neural

activities of these unit records were first inspected using the perievent time histograms

(PETHs). To analyze rats neural correlates during the directional choice learning,

two task-related factors were investigated: (1) directional choice (left press or right

press) of the current trial, and (2) previous trial outcome (success or failure).

Two examples of neural modulation represented in PETHs are shown in Figures

4.5 and 4.6 for an AGl neuron and an AGm neuron, respectively. Note that for clarity,

1/6 of the total trials in a session are uniformly sampled and displayed here.

Figures 4.5 and 4.6 show example records in which the average firing rate was

modulated by both the directional choice and previous trial outcome in the cue-on

and response periods. They also show that neural modulations were stronger in some

task periods than in others (top panels in Fig. 4.5 and 4.6). This property suggests

that the firing rates of these single units encode two factors, directional choice and

previous trial outcome, and do so dynamically.

To gain insight into these two factors, I evaluated them separately using ROC

analysis. The AUC’s over time were calculated using a time bin of 100 ms that was

slid in 20-ms steps. The time coverage spans from 1.0 s prior to cue onset to 3.0 s after

cue onset, which corresponds to the entirety of the 3 task periods (see Fig. 3.1C). The

AUCl and the AUCr provided measures of differences in the distributions of neural

responses between post-error and post-success trials among all left and right side

responses, respectively. The AUCs and the AUCe provided measures of differences

in distributions of neural responses between left and right directional choices among

all post-success and post-error trials, respectively. Results of the AUCs over time are

illustrated in the center panels of Figures 4.5 and 4.6.
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The first set of AUCs, AUCl and AUCr, showed that both left trials and right

trials were affected by previous trial outcome. And for the two example units (center

panels of Fig. 4.5 and 4.6), the firing rates of post-error trials was lower than those

of post-success trials. The second set of AUC’s, AUCe and AUCs, showed that post-

error or post-success trials still carried directional choice information.

4.3.5 Population analysis

Two-way ANOVAs were performed to study how single unit firing rates changed

dynamically over all three task periods (pre-cue, cue-on, and response) as a function

of the two task factors: previous trial outcome and the directional choice of the

current trial. I examined the statistical significance of the two task factors by the

following three p-values. Two single p-values were considered for the main effects: p1

for directional choice, p2 for previous trial outcome, and the additional p-value p3 for

two-factor interactions between directional choice and previous trial outcome.

The two-factor interaction terms were obtained for each unit record at each of

the 18 time points by two-way ANOVA. To inspect the interacting effect of the two

task factors, the number of unit records corresponding to a statistically significant

interaction (p3 < 0.01) was accounted for at each of the 18 time points. It turned

out that during the three task periods, few AGm and AGl unit records exhibited

significant two-factor interactions. On average (for time points 1-18), 2.7% (n = 10.9)

and 2.0% (n = 8.1) of the task-related AGm and AGl unit records, respectively, were

modulated by the interaction between directional choice and previous trial outcome.

These results indicate that the interacting effect of the task factors on the neural

firing rates was insignificant for most task-related units during the pre-cue, cue-on

and response task periods.
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(a)

(b)

(c)

Figure 4.5: Example AGl unit and its spike raster of rat D isolated from channel 7
on the 12th recording session. The x axis is the time course with event markers. The
top panel: spike raster plots from individually recorded trials and the average firing
rates. The center panel: AUCs to compare differences in neural responses between
post-success and post-error trials for a left (green) or right (black) directional choice,
respectively. The bottom panel: AUCs to compare differences in neural responses
between left and right directional choices after a successful trial (blue) or an error
trial (red), respectively. The respectively chance level AUC values are shown in
dashed lines in the center and bottom panels.
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(a)

(b)

(c)

Figure 4.6: Example AGm neuron spike raster for Rat E isolated from channel 14 on
the 16th recording session. The convention is the same as in Figure 4.5.
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Next, I show that neural modulations encoding the two task factors varied over

time. From Figure 4.7A, a large number of AGm unit records was modulated by

previous trial outcome in the pre-cue (34.8%, n = 139.0), cue-on (38.8%, n = 155.0),

and response (25.9%, n = 103.7) task periods. The largest number of unit records

encoding previous trial outcome was found at the 8th time point indicated by letter

“c” (400 − 900 ms after cue onset, 51.2% of units, n = 205). Also, an increasing

number of unit records was significantly modulated by directional choice after cue

onset and peaked at 55.0% (n = 220) in the 17th time point during the response task

period. Similarly for AGl units, previous trial outcome was modulated by previous

trial outcome in the pre-cue (39.1%, n = 160.5), cue-on (42.2%, n = 173.3), and

response (29.2%, n = 120.2) task periods (Fig. 8B). The largest number of unit

records encoding previous trial outcome was found at the 8th time point indicated by

letter ”d” (52.5% of units, n = 216). Also, an increasing number of unit records was

significantly modulated by directional choice after cue onset and peaked at 57.2% (n

= 235) in the 17th time point during the response task period. Therefore, the neural

activity in the cue-on task period, especially the beginning portion, appeared to be

modulated by previous trial outcome. As shown by the dark lines in Figures 8A and

B, a large portion of both AGl and AGm unit records was encoding the previous

trial outcome within the cue-on data window. Examining the cue-on data period

more closely, it is interesting to note that starting from the 11th (for AGm) or the

13th (for AGl) time point and onward, a larger number of AGm or AGl unit records

responded to directional choice than to the previous trial outcome.

I further investigated the distributions of p-value pairs of all task-related AGm and

AGl unit records based on the two task factors at the 8th time point corresponding to

points “c” and “d” in Figures 4.7A and 4.7B, respectively. The corresponding results

are shown in Figures 8C and D. The same calculation was then conducted for each
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of the time points from 5 to 18 as for point 8. Only a small portion of the task-

related AGm and AGl unit records were modulated by both directional choice and

previous trial outcome as main effects during the cue-on and response task periods

(10.7%, n=42.8 for AGm and 9.7%, n=40.1 for AGl), respectively. This indicates

that a single unit was predominately modulated by a single factor at a time.

4.3.6 Previous-outcome coding in the cue-on period

Since both AGm and AGl neural modulation was most affected by previous trial

outcome during the initial part of the cue-on window (dark lines in Fig. 4.7A, B),

which also corresponds to the period when the rats movement was stereotypical with

little variation (Fig. 4.2), I focused our analysis on this time period. To do so, I

used the previous trial modulation measure,I1, which is a 1×100 vector covering the

cue-on task period and providing a measure of discrimination in neural firing rates

between post-success and post-error trials. Since this is a collective account of all

task-related units and because the properties of AGm and AGl resembled each other

closely, I pooled AGm and AGl units for this analysis.

The differences in firing rates between post-success and post-error trials were

strongly affected by previous trial outcome at the time of the cue-on data window

(Fig. 4.8A). The time bin τ1 at which I1 achieved the highest value was computed

for each unit. From Figure 4.8B, the largest number of units (14.4% of total task

related numbers, n = 117) was found at τ1=600 ms after the cue onset. And 64.0%

of (n = 519) units had τ1 within the cue-on data window (Fig. 4.8B). This finding

provides further support for the idea that the greatest degree of modulation encoding

the previous trial outcome occurred during the cue-on data window.

For the 811 task-related AGm and AGl unit records, the average I i1(i = 11, · · · , 45,

corresponding to the cue-on data window) value over the cue-on data window was
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Figure 4.7: Summary of task-related neurons (n = 811) and their dynamic modula-
tions according to the two task factors: directional choice (left press or right press)
or previous trial outcome (success or error). A, B, Dynamic representations of the
percentages of task-related neurons that showed significant modulation to the two
task factors: directional choice (squares) and previous trial outcome (circles) using
two-way ANOVA (see text in Results), respectively. The solid circles represent the
fractions of neurons modulated by previous trial outcome during the cue-on data
window. C, D, Scatters of p value pairs of each task-related neuron. C, point “c” in
panel A corresponds with the 8th data point during the cue-on task period. 37.0%
(n = 149) of the AGm neurons were encoding previous trial outcome, 23.6% (n = 95)
were encoding directional choice, and 13.9% (n = 56) were encoding both. D, point
”d” in panel B corresponds with the 8th data point during the cue-on task period.
41.3% (n = 171) of the AGl neurons were encoding previous trial outcome, 23.4% (n
= 97) were encoding directional choice, and 10.9% (n = 45) were encoding both.
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denoted as Ī1. The histogram of the Ī1 values for all task-related units is displayed

in Figure 4.8C. Recall that I1 = fE(1)−fS(1)
max(fE(1),fS(1))

. The finding that the Ī1 was less

than 0 for the largest fraction of these units (73.8%, n = 599), indicates that most

units had greater activity in post-success trials than in post-error trials, thus encoding

positive outcomes. Figure 4.8A, B shows that differences in neural firing rates between

post-error and post-success trials changed dynamically during the time course of a

trial, with the differences being most pronounced during the cue-on data window.

Furthermore, the firing rates of most task-related units decreased after the rat made

an error.

4.3.7 Previous-outcome coding and performance accuracy

Next, I examined how performance accuracy correlated with the observed neu-

ral activities. Given that previous outcomes and chosen response direction did not

commonly have interactive effects, it was adequate to analyze the factors of previous

outcome and chosen direction independently. The firing rates of AGm and AGl units

in the cue-on data window (from 200ms to 900ms after cue onset, Fig. 3.1C) were

thus inspected using one-way ANOVA. The units showing significant neural modu-

lation (p < 0.01) in the cue-on data window in response to previous trial outcome

were classified as previous outcome selective, and unit records with this property were

analyzed separately for AGm and AGl. A total of 417 unit records including 52.2%

(209 out of 400) of AGm unit records and 50.6% (208 out of 411) of AGl unit records

encoded the previous outcome.

Of the eight rats included in this study, their behavioral task performance accuracy

over recorded sessions ranged from 33.4% to 92.1%. This distribution was equally

divided into 12 intervals ranging from 35% to 90% in 5% increments. The units

recorded in each session were placed into one of these 12 intervals. The intervals
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Figure 4.8: Summary of previous trial modulation measure I1 vector over the cue-on
task period for all task-related neurons (n = 817). A, The component-wise absolute
values of the I1 of each task-related neuron during the cue-on task period. Neurons
were sorted in ascending order according to the absolute values of Ī1. B, Distribution
of τ1 at 100 ms time bins. C, The histogram of all task-related neurons according to
Ī1.
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with fewer than 15 units were excluded from this analysis, resulting in performance

accuracies ranging from 40% to 85% for final examination. As a result, 37.6 ± 18.2

(mean ± SD) unit records in each of the 10 intervals for AGm and 37.9 ± 18.0 unit

records for AGl. The results from AGm and AGl are plotted separately in Figure 4.9.

In the cue-on data window, the fraction of previous trial outcome selective units were

found strongly correlated with performance accuracy for both AGm and AGl units

(correlation coefficient, r = 0.91 for AGm, and r = 0.96 for AGl, both of which were

highly significant, p << 0.001).

To answer the question of whether there is any significant difference between AGm

and AGl units in percentages as they were modulated by performance accuracy shown

in Figure 4.9, I performed a paired t test. No significant difference was found in the

percentages of AGm and AGl unit records (p=0.70).

4.3.8 Previous-outcome coding across the three learning stages

To examine previous-outcome coding across the three learning stages, I computed

the AUC’s between post-error trials and post-success trials. For each previous out-

come selective unit, firing rate from each trial in the cue-on data window (200-900 ms

after cue onset) was obtained and placed into either the post-error or the post-success

category, respectively. All trials within a session were used to obtain the AUC’s, which

is based on the neural response distributions of post-error or post-success trials. This

process was repeated for all previous outcome selective units.

During the pre-learning stage, 193 unit records were obtained (AGm: n = 88,

AGl: n =105) of which 42.5% were previous outcome selective (AGm: n = 42, 47.7%;

AGl: n = 40, 38.1%). During the learning stage, 487 unit records were obtained

(AGm: n = 244, AGl: n =243), and 55.0% of them were previous outcome selective

(AGm: n = 133, 54.5%, AGl: n = 135, 55.5%). During the beyond learning stage,
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Figure 4.9: The percentage of previous trial outcome selective AGm and AGl neurons
as a function of daily accuracy R. Break-downs of 10 behavioral performance inter-
vals from 40% to 85% were used. The percentage of previous trial outcome selective
neurons in each interval was calculated as dividing the number of previous trial out-
come selective neurons by the total number of task-related neurons in the interval.
No significant difference was found between AGl and AGm neurons for the 10-point
data series (paired t test, p = 0.6969).

137 unit records were obtained (AGm: n =71, AGl: n =66), of which 48.9% were

previous trial outcome selective (AGm: n = 34, 47.9%, AGl: n = 33, 50.0%).

The chance-level AUC value was 0.55. The largest deviations of AUC values from

0.55 (t test, p < 0.01; Fig. 4.10) were associated with the learning stage (0.81±0.10 for

AGm, 0.83±0.09 for AGl), which was statistically significant by pair-wise comparisons

between the learning stage and the other two stages (one-way ANOVA, p < 0.05).

The AUC values were also significantly larger than the chance-level AUC for units
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Figure 4.10: The means and standard deviations of AUC values to measure differ-
ences in neural responses between post-error trials and post-success trials in the pre-
learning, learning, and beyond learning stage. The most significant distinction was
found to be during the learning stage for both AGm and AGl units, as compared to
the pre-learning and beyond learning stages. Dashed lines represent the neutral state
(chance-level AUC value). The farther the AUC values diverge from the chance-level,
the larger the differences in the firing activity between post-error and post-success
trials.

recorded in the pre-learning (0.75±0.08 for AGm, 0.76±0.08 for AGl; t test, p < 0.01)

and beyond learning (0.79±0.09 for AGm, 0.79±0.09 for AGl; t test, p < 0.01) stages.

Thus the most significant improvement in performance accuracy (Fig. 4.4) and the

most significant neural modulation by previous outcome (Fig. 4.10) occur during the

learning stage. This suggests a positive correlation between the firing rate modulation

by previous trial outcome and the behavioral performance adaptation during the

learning stage.

4.4 Discussion

A rat model was used in this report to examine behavioral and neural responses

during learning of a directional choice task. Two task related factors (previous trial
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outcome of either success or failure; current trial directional choice of ether left or

right) were analyzed in association with the rat’s neural activity and behavioral learn-

ing performances. Our study revealed that the recorded AGm and AGl units encoded

both current trial directional choice and previous trial outcome during the time course

of a single trial (Fig. 4.5-4.7). Our major findings were: (1) in the time course of a

trial, a large fraction of recorded individual AGm and AGl units were modulated by

previous trial outcome especially in the cue-on data window (Fig. 4.5-4.8); (2) more

units had greater activity post successful trials than post error trials in the cue-on

data window (Fig. 4.8C); (3) the number of previous trial outcome selective units was

highly correlated with the rat’s behavioral performance accuracy (Fig. 4.9); and (4)

for those previous trial selective units, the differences in the neural responses between

post-error and post-success trials were the greatest during the learning stage when

compared to trials before and after learning (Fig. 4.10). These results suggest that

the AGm and AGl of the rat frontal cortex are not static but adaptive at fine time

scales of seconds or sub-seconds. Our data may further suggest that modulations in

those units contributed to retrospective information processing for rats during the

learning process.

4.4.1 Task factors and single units

In our experiment, other factors that might also affect recorded neural activity

are summarized as follows. All the rats used in the study learned the contingency

between a light cue and a paddle press during pre-training prior to learning the

directional choice task. Furthermore, the variations in the rat’s kinematics measured

by response latency (Fig. 4.1B, C) and movement characteristics (Fig. 4.2) quickly

reduced to an insignificant level during the pre-learning stage. Hence the data used

in this analysis excluded the first 3 recording sessions (refer to discussions on Fig.

65



4.2) but only included the sessions when rat’s kinematics became stable. Given the

above considerations of those unlikely confounding factors to elicit additional neural

responses in the areas I recorded from, previous trial outcome and directional choice

are considered the two primary task factors.

Additionally for the issue of chronic recording from single units, one analysis of

macaque monkeys suggested that about one third of the chronically recorded primary

and premotor cortical neurons retained their isolation across sessions [60]. [61] sug-

gested that 50% of the original units were stable through 1 week and 10% were stable

through 2 weeks based on their motor cortical chronic recordings from two monkeys.

In this study, I treated each isolated unit from each recording session as an indepen-

dent sample, and our analysis did not rely on keeping track of the identity of each

neuron from session to session for two reasons. First, all our major results (Figures

4.6-4.9) were based on single unit firing rates computed over one recording session

when isolated units were believed to be stable during the hour long experimentation.

Second, the results were actually collective accounts of a neural population, similar to

that used previously [91, 121]. The results were not about neural adaptation of a sin-

gle unit before and after learning, but rather they were to describe how a population

of multiple single units adapted as behavioral learning progressed.

4.4.2 Distributed neural modulation of previous outcome

Significant evidence from primate and rodent studies indicated a widespread neu-

ral modulation in response to previous outcome during learning. Trial outcome as

a transient event was shown clearly encoded in single unit activity in PFC [91, 92],

ACC [70, 71], striatum [92], and hippocampus [67]. The signal was sustained in the

inter-trial interval and carried over to the next trial, which may have contributed to

linking past outcomes with future actions [68]. Additional evidence was also avail-
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able in human studies [69]. Among those brain areas, the PFC has been regarded as

an important node playing the role of top-down control of error processing, it may

require well-coordinated participation from a large network of cortical and even sub-

cortical areas. For instance, the monkey’s premotor cortex was shown to be involved

in abstract rule learning [55], and the ventral premotor was proposed for process-

ing and evaluating the behavior of previous decisions [99]. Our results for the first

time pointed to the rat’s AGm and AGl for their involvement in processing previous

outcome in relation to outcome-dependent behavioral adaptation.

By reviewing evidence based on cytoarchitectonics, topology, and corticostriatal

projection of rats with primates, [75] did not consider rat having a “granular” pre-

frontal cortex. While others disagree with this theory [34, 80, 81], some researchers

referred to the anterior cingulate, prelimbic, and infralimbic areas of rats as the pre-

frontal cortex and reported sustained trial outcome related signals in those areas,

or simply the rat’s PFC [91]. Even though the part of the AGm that we recorded

from does not overlap with the PFC in the sense just described, there has been clear

evidence that the AGm has reciprocal connections with the dorsomedial prefrontal

cortex (dmPFC) [41]. Specifically, it takes afferent projections from two subregions

of the dmPFC: the dorsal prelimbic cortex and pregenual anterior cingulate cortex

[82, 98]. And AGm is one of the few non-limbic cortical regions that project back

[78]. Additionally, the rat’s AGm has been proposed to be possibly homologous to

the premotor cortex, supplementary motor area and frontal eye field in primates

[41, 43, 79], and to be a multimodal association area [41, 43]. But agreement has not

been reached for a clear homology between the rat’s AGm and the primate’s counter

parts. Since the rat’s AGm projects to the spinal cord, it is adequately identified

to be homologous to one of the nonprimary motor areas in primates [39, 74] while

the specific identification of which one remains conjectural. On the other hand, the

67



rat’s AGl has been considered homologous to the primary motor cortex [39, 77], and

is connected reciprocally with AGm [41, 43, 76]. It is therefore not surprising that

previous trial outcome information could be conveyed to AGm and AGl to mediate

the rat’s future choice behavior.

4.4.3 Neural correlates to behavioral error correction

We recorded rat’s neural activity in the AGm and AGl areas along with rat’s

behavioral performance simultaneously during the entire process of rat’s learning the

directional choice task: from pre-learning stage, through the learning stage and be-

yond. This has given us the unique opportunity to correlate neural adaptation in rat’s

AGm and AGl areas with their behavioral performance accuracy. Specifically I found

that the number of previous trial selective neurons was positively correlated with the

rat’s learning performance and that during the learning stage, the difference in neural

responses between post-success and post-error trials was the greatest, compared to

trials before and after learning.

[91] recorded rats’ dorsomedial PFC and primary motor cortical neurons during

a reaction time task. [92] recorded PFC neurons in monkeys learning an arbitrary

stimulus-response association task. Both studies found that the firing rates of a

fraction of the recorded single neurons were modulated by previous trial outcome.

Furthermore, their study found about half of the recorded PFC neurons increased

their firing rates in post-success trials than post-error trials. For most of the recorded

primary motor cortical neurons in [91], the respective firing rates increased in post-

success trials than the post-error trials.

Even though our experiment is different from the reaction time or arbitrary

stimulus-response association tasks in [91] and [92], respectively, I also observed strong

neural modulation by previous outcome in a large number of AGm and AGl neurons.
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However, I have also realized differences of our results from theirs. Specifically, I found

about 70% AGm and AGL neurons had higher firing rates in post-success trials than

in post-error trials, while 30% had higher rates in post-error trials than in post-success

trials. These specific differences in the number of modulated neurons and the specific

modulation trend may be due to variations in experimental conditions and specific

recording sites. Nonetheless, these results together suggest that several areas in the

frontal cortex such as the AGm, AGl, and the PFC are important in processing and

passing error related information. As [68] pointed out that the widespread presence

of signals in different brain areas encoding previous outcome may not imply that they

serve the same functions. A better understanding of how information is processed at

each node requires further investigation about how exactly these areas coordinate to

process information from past experience in order to guide future actions.

Finally, our results together with previous studies demonstrate that neural adap-

tation to previous trial outcome may be a part of a general mechanism for learning and

such neural adaptation may involve a distributed system of several well-coordinated

brain areas.

69



Chapter 5

CORTICAL NEURAL MODULATION BY PREVIOUS TRIAL OUTCOME IS A

CONTRIBUTING FACTOR IN TRIAL-AND-ERROR LEARNING SPEED

5.1 Introduction

Learning to acquire new information or knowledge is essential for survival. We

usually learn from both positive and negative outcomes after taking certain selec-

tive actions such that positive outcomes are reinforced while negative outcomes are

avoided by adjusting action selection. The means used by individuals to learn from

previous errors varies as a result of many factors including adopted strategy and indi-

vidual experience. Recent studies reported that subjects usually learn a task in varied

length of time [110, 111, 112, 113]. Human studies have provided ample evidence that

individual difference in cognition-related behavior is correlated with prefrontal struc-

tures and their functions [114, 115, 116, 117, 118]. Yet, existing results were mostly

obtained through the means of fMRI, TMS, and EEG. How relationships between

single unit neural activity and behavior vary for individuals, however, has not yet

been systematically investigated.

I used a rodent model to understand cortical neural correlates to learning and

especially what at single unit level sets apart fast learning from slow learning. The

medial agranular cortex (AGm) and lateral agranular cortex (AGl), homologous to

one of the non-primary motor and the primary motor cortex of primates, respectively

[38, 39, 41, 79], may encode information other than movement kinematics [46, 47],

and involve in high level cognition [48, 49, 50, 51]. As a part of the frontal cortex,

the rodents AGm and AGl areas are being studied and their functions are gradually

becoming clear [34, 35, 36]. As shown in Chapter 4, neurons in rats’ AGl and AGm

encode previous trial outcome.
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Figure 5.1: Training task.

To investigate the behavioral and neural activity in relation to a learning process

in different individuals, I adopted the following experimental approach: (i) record

single-unit activity in AGm and AGl areas of rats, when they performed a directional

learning control task by trial-and-error; (ii) analyze behavioral performance and sepa-

rate the animals into fast and slow groups; and (iii) analyze neural activity modulated

by directional choice and previous trial outcome. Our analysis shows that the neural

activity in fast and slow rats differed significantly in representing task factors.

5.2 Materials and methods

5.2.1 General

The subjects, experimental procedure, surgery, and data acquisition follow the

same convention as described in Chapter 3. Briefly, 10 male Long-Evans rats arrived

at two weeks after birth, weighing 50 grams. They were handled daily and started

training when they reached 300 grams. Figure 5.1 shows an example training trial.

There are two lights and two paddles. One of the two paddles will extend at the same

time when the corresponding cue light is on. The rat is given a long time to press

the paddle to receive a reward pellet (mixture of grain pellets and sugar pellets). Ten

rats were trained for an average of 72 sessions and usually achieved 90% of training

accuracy in 15 sessions.
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Approximately after the rats weighed more than 400 grams they were implanted

with microwire arrays. The rats started the directional choice task upon recovery

from surgery.

5.2.2 Learning period

To define a proper learning period for each rat, linear regression was performed

on performance accuracy in any consecutive five sessions and regression slope was

obtained. The slope reflected whether the rats showed an improving trend (slope

larger than zero) or not (slope smaller or equal to zero). To efficiently evaluate the

learning period, starting and ending points were characterized. The starting point

of the learning period was defined as the first session from which the slope was non-

negative for at least two consecutive sessions. The end point of learning was defined

as the session that the rat reached 80% for three consecutive sessions, or the last

session if the rat did not reach 80% steadily. The sessions between the starting and

ending points are considered a learning period. Neural analysis was performed from

the sessions in the learning period.

5.2.3 Definition of fast and slow rats

Two criteria were used to place the rats into one of the two categories of either fast

or slow learning: (1) the number of sessions that the rats took to reach an accuracy

of 70% steadily. This measure reflected the rats ability to achieve a high accuracy.

(2) the averaged 5-session learning slopes during the entire learning period. This

measures the learning ability during the learning period.
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5.2.4 Neural firing rate vs. two task factors

The major procedures of recording, data analysis were the same as described in

Chapter 3. In this chapter, the effect of the two task factors (directional choice and

previous trial outcome) were analyzed using two-way ANOVAs. Each task-related

neuron was taken into account. A window of 500 ms traversed the timeline in 200 ms

steps starting from the pre-cue task period to the end of the response task period.

For each trial, the firing pattern in a trial timeline (including three task periods) was

represented by an 18-point data series, as described in Chapter 4. Two-way ANOVA

could then be applied at each time point. The significance was assessed by the p

values obtained with the significance level chosen as p < 0.01.

5.3 Results

5.3.1 General

Task performance data and single-unit data from 10 rats (A, B, C, D, E, F, G, H,

M and N) were used for the analysis of neural modulation in relation to the two task-

related factors: previous trial outcome and directional choice of the current trial. As

the results shown in Chapter 4, a handful of sessions at the beginning might involve

in motor skill learning. As a result, in the following analysis, both the behavioral and

neural data in the first three sessions were removed.

5.3.2 Fast and slow rats, learning period

Behavioral performance was analyzed first for each of the ten rats. The rats

usually showed distinct learning characteristics. Some rats increased performance

accuracy right after a few sessions since they started the directional choice task while

some rats took a longer period to learn. Starting and end points of learning period

73



were calculated for each rat. On average, the starting point was at 6.3 sessions, and

the ending point was at 24.8 sessions.

According to the two criteria, 5 of the 10 rats (A, D, E, H, and N) were identified

as fast rats and the other five (B, C, F, G, and M) slow rats (Fig. 5.2). According

to the data, the fast rats achieved accuracy greater than 60% in the 15th session, and

the slow rats accuracy was lower than 60% in the 15th session. The fast and slow rats

improved behavioral performance during the learning process with an average starting

point at 5.6 sessions. The slow rats showed a longer period prior to learning (average

starting point at 7.0 session). The difference between the performance accuracy of

the two groups was tested using one-way ANOVA. From the 7th session, the fast rats’

accuracy was significantly higher than the slow rats (p < 0.05).

However, by looking at the average accuracy, the slow rats did not seem improving

immediately since the 7th session. The average learning rate in the learning period

was calculated using 1st order linear regression. The accuracy of slow rats in the

first 12 sessions (named SP rats) remained leveled with the learning rate being 0.38

(percent/session). The fast rats exhibited steady improvement since the starting point

(FL rats). Similarly, the slow rats improved steadily after 12th session. The learning

rate is 1.73 and 1.96 (percent/session) for the FL and SL rats, respectively. This

shows that the fast rats started to improve once into the learning period. However,

the slow rats experienced an extended period prior to learning.

Here, the age of rats and training experience were not affecting the learning results.

The fast and slow rats started around similar age (fast rats started on 132.2 ± 39.6

and slow rats started on 154.4 ± 42.3, no statistical significance, one-way ANOVA,

p = 0.42). The rats were extensively trained with paddle pressing prior to learning

the directional choice task and reached accuracy higher than 90%. The fast rats were

trained for 71.6 ± 41.6 sessions and slow rats were trained for 72.6 ± 34.8 sessions
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Figure 5.2: Averaged learning slope and number of sessions taken to reach 70% of
fast and slow rats. X axle, averaged 5-session slope during the learning period; Y
axle, number of sessions taken to reach 70% steadily.Red line indicates the separation
of fast and slow rats.

(no statistical significance between two groups, p = 0.68, one-way ANOVA). Note

that, although the fast rats and slow rats seemed to differ in the learning rate at the

beginning of learning the directional choice task, they did not differ during conditional

training (left panel of Fig. 5.3).

5.3.3 Neural modulation by directional choice and previous trial outcome

To compare the neural activity in fast and slow rats effectively, neurons recorded in

the learning period of each rat were used in neural analysis. A total of 684 single unit

neural records were obtained from slow (381) and fast (303) rats in the ten rats. 591

of them were task-related (325 from slow rats, 266 from fast rats). As demonstrated

in Figure 4.7 and Figure 4.9 in Chapter 4, no significant difference existed between

AGm and AGl neurons. Therefore, I pooled AGm and AGl neurons together in the

neural analysis performed in this chapter.

75



5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100 * * * * * * * * * * * * * * * *

*: p<0.05
1−way ANOVA

Session

A
cc

ur
ac

y 
R

 (
%

)

FL, slope=1.73

SP, slope=0.38

SL, slope=1.96

B

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Fast rats

Slow rats

Session

A
cc

ur
ac

y 
R

 (
%

)

A

Figure 5.3: Behavioral performance in the training phase (A) and the learning phase
(B). (A) The training accuracy of the first 28 sessions is shown for the fast and slow
rats. Both groups of rats improved steadily and reached 80% in about 20 sessions.
No significant difference was found between the training accuracy between the fast
and slow rats. (B) The learning accuracy of session 3 to session 24 is shown for the
fast and slow rats. The fast rats improved steadily while the slow rats started to
improve from about 12 sessions on average. Three stages were identified for the fast
and slow rats, respectively (see text). Three linear regression lines are provided for
the FL, SP, and SL rats.

Single neuron firing rates were modulated by directional choice and previous trial

outcome 5.4. Three types of firing rate modulation were therefore identified. First,

the neurons were modulated by directional choice only (center panel of Fig. 5.4).

Second, the neurons were modulated by previous trial outcome only (bottom panel

of Fig. 5.4). Third, the neurons were modulated by both task factors (top panel of

Fig. 5.4).

To ask if the neural activities were modulated by the two task factors in the neu-

ron population, two-way ANOVA (directional control × previous trial outcome) was

performed for fast and slow rats, respectively using a 200 ms window of a single trial

timeline. Not many neurons (3.1%, average of the 3 task periods) show interactive
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effects by the two task factors, which indicates that the two factors have independent

effects in modulating firing rate. From the cue onset, fewer neurons in the fast rats

were directional selective compared with slow rats (χ2 test, p < 0.05; left panel of

Fig. 5.5). However, more neurons were previous trial outcome selective in fast rats

compared with slow rats in the cue-on period and even prior to the cue onset (χ2

test, p < 0.05; right panel of Fig. 5.5).

Among the neurons with directional selectivity and/or previous trial outcome

selectivity, a large portion of neurons were modulated by either previous trial outcome

or directional choice (average of the cue on task period, slow rats: direction selective

only, 38%; previous trial outcome selective only, 15%; fast rats, direction selective

only, 16%; previous trial outcome selective only, 32%), while a few neurons showed

selectivity for both (average of the cue on task period, 8% for slow rats, 15% for fast

rats). This indicates that the two task factors were represented by separate groups

of neurons.

5.3.4 Neural modulation by previous trial outcome

To investigate whether single units were differentially engaged in representing

previous trial outcome for fast and slow rats, I analyzed the firing rate modulations

by previous trial outcome measured I1 (Fig. 5.6). The differences in firing rates

between post-success and post-error trials were strongly affected by previous trial

outcome in the cue-on data window. The averaged values of |I1| (top panel of Fig.

5.6) varied greatly from the pre-cue to the cue-on period, and they were the most

prominent in the cue-on data window. The rate modulation was higher for fast group

than the slow group.

To demonstrate changes in firing rates between fast and slow rats, I computed the

Ī1 values in the cue-on data window for each neuron (Fig. 3B; slow: −0.1315±0.1633;
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Figure 5.4: Neuronal representations reflecting previous trial outcome and directional
choice. Example rasters and firing rates over trials of different movement directions
and previous trial outcomes. Dark blue, the left press trials with previous trial out-
come being successful. Light blue, the right press trials with previous trial being an
error. Black, the left press trials with previous trial outcome being successful. Gray,
the right press trials with previous trial being an error. Top left, rat D, channel 7,
session 12. Top right, rat E, channel 14, session 16. Middle left, rat A, channel 12,
session 12. Middle right, rat E, channel 7, session 11. Bottom left, rat H, channel 12,
session 9. Bottom right, rat G, channel 16, session 16.
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Figure 5.5: Fraction of neurons modulated by the two task factors in a trial timeline
including three task periods. Blue asterisks indicate significant difference between
the selective neuron fractions of fast and slow rats (χ2 test, p < 0.05).

fast: −0.1767 ± 0.2118). The slow rats showed less firing rate differences between

post-success and post-error trials than the fast rats.

Recall that I1 = (fE(1)−fS(1))
(max(fE(1),fS(1)))

. Overall, the finding that the Ī1 value was less

than 0 for a large fraction of the units for fast (86%) and slow rats (75%). More

neurons in the fast rats were associated with lower firing rates in post-error trials

than in post-success trials, than compared with the slow rats.

5.3.5 Effect of previous trial outcome on directional selectivity

What is the effect of previous trial outcome on directional selectivity? To inves-

tigate, I compared the level of directional selectivity in post-error and post-success

trials. The AUC values for directional choices were computed in post-error and post-

success trials, respectively. The post-error trials had a more pronounced difference

between left and right press trials than post-success trials in the fast rats (Fig. 5.7).

This indicates that the post-error trials carried more information about directional
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Figure 5.6: Modulation index of the previous trial outcomes for slow rats (left) and
fast rats (right) in the cue-on data window. Top panel, the modulation index for all
neurons recorded from slow rats (left) and fast rats (fast rats) in the pre-cue, cue-on,
and response task periods. Bottom panel, Ī1 in the cue-on data window.

choice in the fast rats. However, for the slow rats, the directional selectivity in post-

error and post-success trials does not differ.

5.4 Discussion

The work presented here makes a number of points about the learning process

of fast and slow rats. First, although the rats were trained similarly and performed

identical task, the fast rats and slow rats exhibited quite different learning curves.

A group of fast rats achieved 70% steadily in a shorter time and on average showed

higher 5-session learning slopes than the group of slow rats. Second, the neural

activity in fast and slow rats differed when encoding previous trial outcome and
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Figure 5.7: Histograms of AUC values showing difference in directional selectivity in
post-error and post-success trials.

directional choice. The analysis based on neural data indicates that more neurons

in the fast rats encoded previous trial outcome than the slow rats. The fast rats

attended to the previous trial outcome more than the slow rats. The slow rats, on

the other hand, did not pay attention to previous trial outcome and consequently

resulted in poor learning performance.

Despite these differences in fast and slow rats, they also shared some common fea-

tures. The fast rats and slow rats were handled and trained in the same way. Although

the two groups of rats differed in learning performance, their training performance

revealed no significant difference. This seems to indicate that rats were made of sim-

ilar executive control capacity when they solve tasks that bear low cognitive load.

Even though I have shown that the learning speed sets apart the fast rats from the

slow rats, both slow and fast rats were able to improve their task performance and

reached a performance accuracy of 70% or higher.
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5.4.1 Learning from errors

Recent studies using rats and human subjects suggest that they may share similar

traits in learning [120]. Learning relies on processing and integrating previous actions

and feedbacks when making a new decision. Ohlsson proposed a theory of char-

acterizing human learning from performance errors [119]. Error happens when the

knowledge is available only in a general form. Such learning process contains two steps

according to Ohlsson: error detection, and error correction. Recent research reveals

that neural signals in humans medial frontal cortex (MFC) predict post-error adapta-

tions. Changes in cognitive control performance can be predicted using error-related

activity [134]. In another study, Hester and colleagues found individual differences

in MFC activity also correlated with behavioral performance [135]. Human subjects

with high levels of neural activity had better overall recall performance and higher

error-correction rates. The MFC plays an indirect role in driving behavior change

through its influence on other task-related regions.

5.4.2 Individual difference shown in neural activity

Individuals differ in their behavioral choices when they are confronted with de-

cision uncertainty, develop elaborative strategies to learn a new task or skill [110],

perform error-processing and introspective consciousness [117, 122, 123, 124], to name

a few. Individuals also differ in reading abilities [125, 126]. Such differences may be

influenced by age [122, 127, 128], sex [122, 129, 130, 131], genetic program [115] and

intellectual abilities [110, 132]. However, in many experiments, individual difference

is often omitted by averaging data across participants or subjects. Recently, the au-

thors of [133] found that two monkeys, who were trained similarly and performed

identical tasks, used different approaches when planning obstacle-avoidance reaches.

82



Also the decoding of population level firing activity suggests that neural activities in

PMd activity are modulated by the particular planning strategy being used. In this

study, two groups of rats performed the same task, while their learning characteristics

were distinct.

In summary, individual differences, which may carry rich and important clues to

neural information processing, are explored and exploited here to reveal the neural

basis of higher order information processing task. Fast and slow rats showed difference

in behavioral learning and neural activity. There may be a possible brain-behavior

correlation between the neural activities encoding the previous trial outcome and the

behavioral performance.
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