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ABSTRACT  

   

Recognition memory was investigated for naturalistic dynamic scenes. Although 

visual recognition for static objects and scenes has been investigated previously and 

found to be extremely robust in terms of fidelity and retention, visual recognition for 

dynamic scenes has received much less attention. In four experiments, participants view a 

number of clips from novel films and are then tasked to complete a recognition test 

containing frames from the previously viewed films and difficult foil frames. Recognition 

performance is good when foils are taken from other parts of the same film (Experiment 

1), but degrades greatly when foils are taken from unseen gaps from within the viewed 

footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on 

recognition performance (Experiment 2). Across all experiments, presenting the films as 

a random series of clips seemed to have no effect on recognition performance. Patterns of 

accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-

search process. It is concluded that visual representations of dynamic scenes may be 

stored as units of events, and participant's old/new judgments of individual frames were 

better characterized by a cued-recall paradigm than traditional recognition judgments. 
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INTRODUCTION 

In a 2013 article in The New York Review of Books, famed American film 

director Martin Scorsese reflects on the origins of his love affair with motion pictures and 

the structures which contribute to movie magic. He describes the experience of cinema as 

an emergent one, “You take one shot, you put it together with another shot, and you 

experience a third image in your mind’s eye that doesn’t really exist in the two other 

images.” This decoupling of physical stimuli and mental representation, the difference 

between what the eye and mind see – and further what the eye saw and what the mind 

recalls- has always fascinated cognitive scientists.  

The current studies aim to investigate the visual component of our mental 

representations for dynamic scenes. Our memory for dynamic scenes must be able to 

produce both visual and temporal detail. For illustration purposes, consider the example 

of a televised trial. Visual memory could be stored like video footage, an eidetic and 

comprehensive representation of all that was observed. Although unlikely, visual memory 

for static objects has been called essentially unlimited (Standing, 1977) and is capable of 

containing a staggering amount of detail (Homa & Viera, 1988; Brady, Konkle, Alvarez, 

& Oliva, 2008). If this were the case, recall of a dynamic scene would simply be a 

processing of cueing up the correct footage. Alternatively, the temporal relations of the 

visual memory could be handled by a knowledge of the events and story of the trial 

(similar to a newspaper article about the trial) coupled with the visual knowledge of what 

the defendant, lawyers, and setting are. In this representation, recalling visual memories 

of the event is more of a reconstruction depending heavily on a higher level structure, 
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similar to story schema accounts of narrative comprehension (Thorndyke, 1977; 

Rumelhart, 1997). Both the eidetic and schema based representations lie on two ends of a 

spectrum which are broadly defined by bottom-up and top-down influences. Lying 

between the two is the possibility that the visual component of your memory for the event 

is mainly composed of the dramatic and surprising occurrences that happen within the 

trial, such as the defendant failing to fit a glove over his hand. This representation would 

be similar to the footage shown on the evening news which summarized the day’s events. 

All visual information that fails to surprise falls to the wayside. If some occurrence does 

not surprise you during encoding, it would be easy to assume or fill in during recall. A 

visual representation could also be like that of a courtroom sketch artist, who collapses 

visual information across an event into a single illustration. The sketches are produced in 

order to be representative of a period of time, such as a cross examination, rather than to 

capture all of the visual detail.   

While all of these possibilities seem plausible, the nature of visual memory for 

dynamic scenes is unlikely to be captured in a simple analogy. Visual memory is usually 

studied in by utilizing static images of either objects or scenes. The purpose of the current 

series of studies is to extend studies of visual recognition along a temporal dimension, 

and by doing so gain insight into the nature of the representations that perceiving 

dynamic scenes leave behind.  

Static visual memory 

Human’s memory for still images has been shown to be both highly efficient and 

massive. Shepard (1967) demonstrated this by showing subjects 612 images for a short 
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duration (6s) and then employing a two-alternative choice test 2 hours later. His subjects 

correctly identified the studied photographs at a rate of 98% correct. Standing (1973) 

expanded on Shepard’s finding by showing subjects 10,000 images for 15 seconds a 

piece over the course of 5 days. He found that subjects were able to recognize studied 

images 83% of the time, and images that were rated as “vivid” were recognized at an 

even higher rate. Some critics of these studies point out that subjects may be 

remembering a “gist” of the studied images rather than a rich visual representation (Chun, 

2003; Simons & Levin, 1997). However, several studies have employed related foils in 

the recognition test and still found evidence for a robust memory for images (Konkle, 

Brady, Alvarez, & Oliva, 2010; Homa & Viera, 1988; Brady, Konkle, Alvarez, & Oliva, 

2008). Homa and Viera (1988) varied the quality of foils by holding thematic detail 

constant but deleting extraneous physical detail, resulting in foils presented during 

recognition testing that had a very similar gist as those studied in a learning phase. They 

found that even when recognition testing was delayed 12 weeks, subjects were still able 

to reject the thematically related foils significantly above chance. Brady et al. (2008) had 

participants view thousands of unique objects in a single study session. Participants were 

then given a two-alternative forced choice test containing a studied object and a foil 

object that was either from a novel category, from the presented studied object’s same 

category, or the exact same object as the studied object but in a different position. Even 

with the extremely difficult foils, participants achieved recognition accuracy of above 

85% in every type of foil. These recognition accuracy rates suggest that representations 
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of static objects are not merely gist or basic-category level representations, but contain 

enough detail to enable accurate recognition in the face of highly similar foils. 

While visual memory for images of individual objects is certainly large in terms 

of both capacity and fidelity, real world visual memories are for objects embedded within 

scenes, or scenes themselves. At the very least, scenes provide important context for 

expectations and identification of objects on which we plan to attend, especially natural 

scenes which tend to be predictable (Kersten, 1987).  A great deal of information can be 

gathered about a scene from even a very short glance. Potter (1976) found that basic-level 

category knowledge (e.g., a birthday party scene) could be gathered by participants who 

were exposed to the images for less than 100ms. Even when images of scenes are 

distorted to the extent of disrupting individual object identification, the overall gist of a 

scene can still be obtained in very brief presentations. Schyns and Oliva (1994) presented 

images that contained the low special frequency information from a scene, thus 

destroying all fine detail and producing an image of a scene made up of fuzzy blobs. 

Participants were able to categorize the type of scene (highway, kitchen, hallway, etc.) 

even when presentation times were as short as 30ms. This quick identification of scenes, 

even in the absence of specific object information, may be due to a sort of ‘global 

processing’ which processes a scene as a whole and derives statistical regularities from it 

(Oliva & Torralba, 2001; Oliva, 2005).  Using longer study durations, scenes can also be 

easily memorized and discriminated amongst similar foils at a performance level similar 

to that seen in static object visual recognition tasks. A study by Konkle et al (2010) had 

participants study almost 3000 images from 128 scene categories consisting of 1,4,16, or 
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64 exemplars each. Recognition memory was assessed using a two-alternative force 

choice test with either a novel or same-category scene. Mean performance across all of 

the exemplar sizes was at 80% correct, and the highly-homogeneous 64 exemplar 

categories were at a 76% correct recognition rate. Konkle concluded that the remarkable 

performance suggested that the representation of these scenes, which were intentionally 

studied for later recall, was highly unlikely to be at a gist or basic-level. 

While some reports of vivid and accurate multimodal representations do exist, 

there is much more evidence that our perceptual system takes certain shortcuts in order to 

process important and salient information from our complex environment. Some of the 

most striking evidence for less than perfect visual representations of scenes come from 

the ‘change blindness’ literature (Simons  & Levin, 1997; Rensink et al.,1997).  Change 

blindness refers to the failure of observers to detect a large change in an environment 

such as actors being switched. While the extent to which observers are blind to changes is 

surprising, caution must be taken when taking change blindness as a condemnation of 

rich representations (Simons & Rensink, 2005). For instance, Hollingworth (2003) found 

excellent change detection when observers were cued to a potentially rotated object in a 

complex scene after the change took place. By accurately detecting the subtle changes in 

the complex scenes, the participants demonstrate that they still had access to a relatively 

rich pre-change representation, suggesting that some change blindness effects may be due 

to breakdowns in the comparison process rather than due to a sparse visual 

representation.  
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The majority of research on visual memory and recognition utilizes a design 

where single images are presented with study times ranging from 1 to 15 seconds. Rapid 

Serial Visual Presentation (RSVP) has also been used to investigate the temporal aspects 

of visual memory. Potter and Levy (1969) varied presentation times of thematically 

unrelated images from 113ms to 2,000ms.  They found that the subsequent recognition 

test was greatly affected by presentation time, with images studied for 125ms correctly 

identified as old only 16% of the time, while images studied for 2000ms were correctly 

identified as old 93% of the time. However, when the task was changed to detection of a 

previously cued image within a sequence of rapidly presented images, subjects were able 

to correctly detect the cued image 70% of the time. This finding suggests that rapidly 

presented and unrelated images do not fall below a threshold for encoding; rather they are 

swiftly discarded if not cued as a target beforehand. Intraub (1980, 1984) obtained similar 

results by manipulating the interstimuli interval (ISI) between brief (110ms) presentations 

of images and found that recognition performance with a blank ISI was almost equivalent 

to recognition performance of a persistent stimulus presentation, indicating some iconic 

persistence. However, when the ISI was filled with to-be-ignored images, recognition 

performance for the target image fell sharply. Subramaniam, Biederman, and Madigan 

(2000) also investigated RSVP and the effect of repetition to prime target images. Once 

again, they found that identification of cued target images within RSVP was possible 

with presentation rates down to sub 100ms times, but subsequent recognition tests were at 

chance unless the presentation rate grew to above 200ms. Furthermore, they found no 

effect of repeating an image up to 31 times before it became a target on identification 
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tasks at short presentation intervals (76-126ms). This lack of priming, even with a large 

amount of repetition exposure, once again suggests that the presentation rate is falling 

below some established threshold that allows for meaningful encoding. They offer a 

speculative neurological explanation for their findings based on a theory from Potter 

(1976), who suggested that a fast enough RSVP would present “conceptual masking” that 

interfered with memory consolidation. Images below a threshold can be shallowly 

processed, and thus identified in line, but the thematic and conceptual translation is 

interrupted by the next stimulus presentation, preventing assimilation into longer term 

memory stores that are probed by recognition tests. Images that are rapidly presented that 

share a common theme, such as a video, may be able to overcome the RSVP recognition 

thresholds. 

Memory for Dynamic Events 

 While static images are usually the topic of study when it comes to visual 

recognition research, our visual world is dynamic and real world recognition often 

involves recognizing moving objects or scenes.  There is some evidence that our internal 

representations of dynamic visual stimuli are themselves dynamic, as illustrated by the 

phenomenon known as representational momentum (Freyd & Finke, 1984). 

Representational momentum is a systematic illusion which seems to suggest the visual 

system takes physical properties into account during perception and storage (Freyd & 

Johnson, 1987). In a typical representational momentum experiment, a short movie is 

shown depicting a shape moving across a static background. When the movie is abruptly 

stopped and observers are asked to indicate the last position of the shape, their judgments 
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are biased based on the delay after the offset of the shape and the acceleration of the 

shape, indicating that their representation of the shape continued to move as it had been. 

 While the representational momentum work may suggest dynamic 

representations, or at least representations that include predictions, it does not speak 

much of the fidelity and abstraction of the visual memory. A handful of studies have 

looked at visual memory using more standard study-test procedures such as those studies 

discussed in the previous section. Goldstein, Chance, Hoisington, and Buescher (1982) 

had participants either view film footage or view static images drawn from film footage 

and then had then complete a recognition test consisting of dynamic clips or static 

images. Those who studied static images only took a static recognition test. They found 

that there was a general advantage for dynamic encoding regardless of the type of 

recognition test taken, with those who were shown dynamic footage at learning and test 

performing the best. Matthews, Benjamin and Osborne (2007) also found evidence for 

the superior encoding of dynamic images. Using a better controlled design than Goldstein 

et al. in terms of stimulus equivalency, they presented participants with hundreds of static 

images or very short dynamic clips featuring a wide variety of subjects and had them 

return a week and four weeks later for a recognition test. In all conditions, items that were 

learned with dynamic representations were recognized with greater accuracy. This 

advantage was deemed the dynamic superiority effect (Matthews, Benjamin, & Osborne, 

2007). It has since been demonstrated that there is a study-test congruence effect, where 

images are best recognized in their studied static or dynamic state (Burratto, Matthews & 

Lamberts, 2009).  
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. Dynamic presentation improves upon a visual memory system that has already 

been demonstrated to possess impressive capacity. Our own autobiographical memories 

can recall dynamic scenes with ease. Just how much are we encoding? One suggestion is 

that we are continuously sampling the world around us in an online fashion. An extreme 

example of such processing is found in the work of Penfield (1958).  He used electrodes 

to probe the cortex of patients and discovered they recalled rich and fluid past memories 

when stimulated at certain locations. These memories were reported as being very 

detailed and specific, as if the patients had rewound a video tape to a particular place and 

hit play. In describing one patient’s experience, Penfield (1958) wrote: 

When the electrode was applied in gray matter…, the patient observed: "I hear 

some music." Fifteen minutes later, the electrode was applied to the same spot 

again without her knowledge. "I hear music again," she said. "It is like radio." 

Again and again, then, the electrode tip was applied to this point. Each time, she 

heard an orchestra playing the same piece of music. (p.57) 

 

 Loftus and Loftus (1980) disputed Penfield’s claims and dismissed his findings 

as unscientific, citing how easily memory is manipulated by using leading questions and 

different testing procedures. However, an investigation by Hamani, Stone, Laxton, and 

Lozano (2007) produced a report of similar autobiographical memories evoked during 

deep brain stimulation of the hypothalamic/fornix region. As with Penfield’s findings, 

they reported very rich detailed memories that were consistently evoked when particular 

areas of the hypothalamic/fornix region were stimulated. 

The structure of an event seems to play a role in its representation. Narrative 

comprehension and memory have been found to be strongly sensitive to narrative 

structure (Mandler & Johnson, 1977; Thorndike, 1977).  Narrative structure is usually 
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presented as a hierarchical breakdown of the components of a story in which larger 

events can be broken down into sub component events. Mandler and Johnson (1977) 

analyzed folktales with the intent of identifying commonalities in structure among them 

and identified what could be referred to as a story grammar. This generic representation 

of narrative has been proposed in many different forms, but in general it contains a sort of 

scaffolding in which a story can rest. Thorndyke’s (1997) grammar contained a 

hierarchical tree structure which at the highest level contained high level units of the 

story like setting, theme, plot, and resolution. Each of these units contain optional 

subunits that further elucidate their superordinate level, such as the setting level being 

modified by subordinate levels of time and place.  Thorndyke found that participants’ 

recall and comprehension of a story fell sharply if the story was reorganized in such a 

way that it could not have come from a story grammar. It has also been demonstrated that 

when participants were asked to recall stories presented in ungrammatical ways, their 

recall tended to reorder the units of the story into a more grammatical order –even when 

asked to recall the story verbatim (Mandler & Johnson, 1977, Stein & Nezworski, 1978; 

Thorndyke, 1977; Rumelhart, 1975).  These results support the position that story 

grammars closely mirror our own hierarchical representations of narrative in memory.  

Given the importance of internalized structure in recall and conceptualization, it 

may be equally important in perception. In order for a structured perception to occur 

there must be some segmentation of the dynamic environment. Stroud (1956) proposed 

that perception was continually segmented on a temporal basis in his perceptual moment 

hypothesis. His theory speculated that perception was processed in discrete chunks of 
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time, usually around 100ms, and that separate events that occurred within that time 

period would be perceived as simultaneous. Although generally discounted, more recent 

neurological evidence has found evidence for oscillatory brain frequencies that predict 

detection of separate events (VanRullen & Koch, 2003; Smith, Cottrell, Gosselin, & 

Schyns, 2005). Another theory is that perception is segmented into variable units that are 

context dependent. One such theory chunks perception into units defined by 

“breakpoints” (Newtson & Enquist, 1976). Newtson and Enquist suggest these 

breakpoints structure perception of dynamic events into action units (1977). These 

breakpoints are points at which a new and distinct action unit is created relative to a 

previous action unit. They found empirical support for this theory by having one set of 

subjects view a short film and press a button when they believe the action had shifted. 

With these breakpoints identified, the same film was shown to subjects with a small 

number of frames removed from breakpoint or non-breakpoint areas. Breakpoint areas 

showed higher levels of detection- up to 78% for a .5 second deletion- versus non-

breakpoint deletions (a detection level of around 35%). In another experiment, they had 

one group of subjects watch a film and actively define breakpoints via button push, while 

another group passively watched the film. All subjects received a recognition test of both 

breakpoint and non-breakpoint frames. Breakpoint frames were recognized at a higher 

rate than non-breakpoint frames, and there were no significant differences between the 

passive and active groups when it came to recognition rate. Newtson and Enquist took 

this as evidence that subjects were automatically defining breakpoints, even when not 

explicitly told to do so.  
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Another theory of automatic and variable perceptual unit segmentation has been 

proposed by Zacks et al. (2007). In Newtson and Enquist’s form of event segmentation, 

activity was segmented when there was a shift in action. Zacks and colleagues suggest 

that activity was segmented whenever activity deviated from a prediction model. This 

theory, known as the Event Segmentation Theory (EST), suggests that a predictive model 

is built upon initial exposure to some dynamic event. As long as the model continues to 

correctly account for ongoing action, it remains. However, when predictions begin to 

accrue error to exceed a threshold, the current predictive model is scrapped and a new 

one is constructed. When segmentation occurs, a process of perceptual reorientation is 

triggered in order to build a new predicative model. In everyday perception, these models 

can exist on a timescale that lasts a few seconds up to ten minutes (Kurby & Zacks, 

2008). These events are said to be hierarchically structured, with smaller fine-grained 

events making up larger coarse-grained events. These fine-grained events are defined by 

boundaries that contain the “smallest natural and meaningful event,” and coarse-grained 

events have boundaries which contain larger events (Zacks, Speer, & Swallow, 2007). 

For instance, when participants were asked to segment a video of a woman changing the 

sheets on a bed based on fine-grained events, they placed event boundaries after she had 

removed the pillow case from each individual pillow. Those who were asked to segment 

based on coarse-grained events placed boundaries after she had removed the cases from 

all of the pillows (Zacks, Tversky, & Iyer, 2001). These fine grained events are the 

building blocks of the coarse-grained events, with fine event boundaries lining up with 

the coarse event boundaries. Unlike the earlier work of Newtson and Engquist, Zacks has 
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focused on finding implicit neurological evidence for segmentation. Using functional 

magnetic resonance imaging (fMRI), synchronized brain activity was observed among 

subjects that lined up with event boundaries in movies of people performing everyday 

tasks (Zacks et al., 2001). Furthermore, brain responses were larger for boundaries of 

coarse events than for fine gained events. Similar synchronicity was observed using EEG 

(Kurby & Zacks, 2007) and eye movements (Swallow and Zacks, 2006).  Zacks, Speer, 

Swallow and Maley (2010) had subjects watch an entire cinematic movie while in an 

fMRI machine and observed greater activity along event boundaries that coincided with 

new object interactions, changes in spatial locations, and goals. They theorize that these 

automatic responses along event boundaries form a structure for dynamic scenes that 

processes and stores ongoing action in terms of discrete units. A very complex dynamic 

scene that often defies the predictions of the observer is made up of many segments, 

while a simple and predictable scene is processed as relatively few segments. This sort of 

variable unit processing account of dynamic scenes allows a memory representation to be 

sparse when there is nothing of interest occurring or full of finely updated memory 

orientations when something complex or important occurs within the context of some 

ongoing action. 

Visual Memory Errors 

Visual illusions have long been used by psychologists to study perception. By 

isolating instances in which perception does not match objective reality, observations of 

the organizing principals of visual perception can be made. In the same way perceptual 

illusions inform us about perception, memory illusions or distortions inform us about 
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long term memory systems (Roediger, 1996). Despite the amazing visual memory 

discussed earlier, there are still situations where our memory for images falls short.  

Bartlett (1932) suggested that memory performs both reproductive and reconstructive 

tasks. Remembering a baseball glove seen in a learning task is highly reproductive, 

whereas remembering a highly contextualized item, such as the girl you sat next to in 

chemistry class in high school, is much more reconstructive. A classic example of 

reconstructive memory processes is demonstrated in the Deese-Roediger-McDermott 

(DRM) paradigm (Deese, 1959; Roediger & McDermott, 1995). In this task, subjects are 

usually read a list of words that semantically related to an unread target word. For 

instance, subjects may hear words like bed, nap, drowsy, blanket, night which are all 

semantically related to sleep. When later given a recognition test of the words heard 

earlier, subjects often false alarm to the target word (sleep) with a great deal of 

confidence. This paradigm has been repeated using visual stimuli, but to a lesser degree. 

Smith and Hunt (1998) either read a list of semantically related words or presented the 

written words visually. They found that subjects who auditorily encoded the word list 

recognized the un-heard target word at a similar rate to the rest of the words in the list, 

but those who visually saw the word list had an approximately 50% drop in false alarms. 

Israel and Schater (1997) found an even further decrease in false alarms when they 

presented line drawings instead of visual words.  

While the visual modality seems to be somewhat more resilient to the types of 

false memory displayed in a DRM procedure, there are cases where memory for visual 

events appears vulnerable. Loftus, Miller and Burns (1978) performed a landmark study 
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involving visual memory, discovering what they called the “misinformation effect.” In 

this study, participants saw a series of photographic slides of events leading up to a car 

accident. One group of subjects saw a car pulling up to a stop sign, and the other group 

saw a car pulling up to a yield sign. Subjects were later probed with questions that 

contained either consistent or inconsistent information regarding the traffic sign they 

observed in the slides. Finally, subjects were asked to identify slides that came from the 

original presentation of the car accident. Participants that were given inconsistent 

information in the probe questions later false alarmed to slides matching that inconsistent 

information. Miller and Gazzaniga (1998) also demonstrated fragile visual memory when 

they found that subjects often reported remembering the presence of items within a 

complex scene that were actually absent. They showed subjects a series of scenes that 

had a stereotypical item removed (for example, a beach scene with a beach ball 

removed). When subjects were later probed, they false alarmed to the absent but 

stereotypical items at similar rates to items that were actually present within the scene. 

Furthermore, subjects were often confident in their memory fabrications, as measured by 

remember/know judgments. 

While it is difficult to reconcile an incredible visual memory with an episodic 

memory that is easily corrupted, there could be, as Bartlett suggested, two distinct 

memory processes involved. A recent study investigated detail retention and false 

memories by varying the context of studied items during test (Guerin, Robbins, Gilmore, 

& Schacter, 2012).  Subjects studied everyday objects and then were given a recognition 

test that involved a choice between 3 items (or a choice of none). The triads consisted of 
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either a single related item and two novel items, two related items and one novel item, or 

a related item with a novel item and an item that was actually studied. They found that 

when either one or two related items were in the recognition triad, but an actually studied 

item was absent, they had false alarms between 35% and 50% of trials. However, when a 

studied item was presented alongside a related item, false alarms dropped to around 10%. 

This finding suggests that a detail-rich encoding of a studied item still persists, even 

when a relatively high amount of false alarms are occurring. While examples of memory 

distortions are usually presented as a breakdown within the memory system, some 

researchers have suggested that memory distortions are a result of a memory system that 

is constantly making predictions for future events (Schacter & Addis, 2007). Known as 

the constructive episodic simulation hypothesis (CESH), it is argued that episodic 

memories are retrieved and used to simulate possible outcomes in a person’s immediate 

future. These simulations benefit from episodic memories that can be manipulated to fit 

different situations.  CESH posits that memory distortions are a result of episodic 

memories that gain qualities from possible simulations and are replaced into their 

episodic memory store. Both CESH and Zach’s Event Segmentation Theory propose that 

prediction plays a central role in processing of dynamic events. Strickland and Keil 

(2011) had participants view a video clip of a person approaching a soccer ball as if they 

were about to kick it. Before contact was made, the video cut to either an image of the 

ball bouncing down the field (implied contact) or to an empty field (non-implied contact). 

Participants who saw the ending with the implied contact had higher false alarms to 

images of the contact occurring than the non-implied contact group. Strickland and Kiel 
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suggested that the high false alarms occurred because the false alarmed to images fit in 

with a cohesive event model. 

Other models of memory, proposed to account for false memory phenomena, fall 

into two broad categories, single and dual process models. Dual process models of 

memory propose two distinct types of memory play a part in recognition judgments: 

familiarity and recollection (see Yonelinas, 2002 for review). One of the dual process 

models often used to explain false memory is called Fuzzy Trace theory (Brainerd, 

Reyna, & Kneer, 1995). Fuzzy Trace theory (FTT) suggests that during encoding of some 

event, a number of traces are produced that vary on a continuum from gist to verbatim. 

Verbatim traces contain rich and specific detail. When a probed item is similar to a 

verbatim trace, it produces a strong feeling of recollection for that probed item within 

memory. When a probed item is compared to a gist trace, it is judged as being familiar. If 

this familiarity (the similarity to the gist trace) is sufficiently strong, it can cause a false 

recognition error (Brainerd et al, 1995). Single process models of memory suggest that 

subjective ratings of specific recall or general familiarity are not two distinct processes, 

but that strength of familiarity alone enables recognition judgments. If familiarity exceeds 

some threshold, an item is felt to be recognized. Global-matching models (Arndt & 

Hirshman, 1998; Hintzman, 1988; Hintzman, 1986) account for false recognition by once 

again suggesting that events are stored in traces that can be thought of as feature vectors. 

When an item is probed for recognition, the summed similarity of that item to all other 

relevant traces is calculated and it may or may not exceed a threshold for recognition- 

even if it is not an exact match of any stored probed item.  
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The current set of experiments utilize recognition judgments in order to assess the 

qualities of visual memory for dynamic scenes. The addition of a temporal dimension 

brings a host of new variables that studies utilizing pictures static objects or scenes have 

not needed to account for. The current experiments seek to build upon existing visual 

memory work by utilizing dynamic visual learning materials. Temporal structure and 

test-item similarity are manipulated in order to investigate the form which visual 

memories for dynamic scenes take. 
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EXPERIMENT 1 

 Experiment 1 examines the detail of visual memory for dynamic events. In many 

ways, it is similar to other studies that have found that our visual memory for static 

events is so massive (Standing, 1973; Shepard, 1967, Konkle et al., 2019; Brady et al., 

2008). Because our visual system evolved in a dynamic environment, it is tempting to 

assume that recognition for dynamic scenes would also be impressive. However, research 

has shown that memories for dynamic events can be manipulated by post-event 

misinformation (Wright, Loftus, & Hall, 2001; Loftus, Miller, & Burns, 1978; Clifasefi, 

Garry & Loftus, 2007). This malleability suggests that top down information plays an 

important part in recall. Given the effects of structure and its impact on recall of simple 

narratives (Thorndyke, 1977), how well a participant understands an event should have 

some effect on how well they encode and can later recall visual memories. 

 Participants watched three videos, each followed by a recognition task that has 

them make old/new judgments for frames that either come from the video they just 

watched or came from a highly similar scene containing the same characters in the same 

settings. There are two between subject conditions: a linear condition, in which 

participants watch the film clips as they were originally produced, and a jumbled 

condition, in which the film clips have been cut into many pieces and rearranged in order 

to cause some deficit in the perception of global narrative structure. The three videos 

chosen (12 Angry Men, Dr. Who, and Looney Tunes) were chosen because they had 

highly consistent settings, which aided in identifying foils. They also represented 

variation in terms of color versus black and white (Looney Tunes and Dr. Who versus 12 

Angry Men), and a continuum of the number of human faces (12 Angry men has many 
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faces in every scene, Dr. Who has half human faces and half alien masks, and Looney 

Tunes has no human faces). Both color (Wichmann, Sharpe, & Gegenfurtner, 2003; 

Matthews, Benjamin, & Osborne, 2007) and faces (Lander & Bruce, 2003) have been 

investigated in terms of their effects on memory for dynamic stimuli.  

Method 

 

Participants 

A total of 54 Arizona State University undergrads from introductory psychology 

classes participated in Experiment 1 in order to fulfill a course requirement, 26 in the 

linear condition (no jumbling) and 28 in the jumbled condition. Subjects were randomly 

assigned to a condition.  At the conclusion, participants were queried if they had 

previously seen any or all the video clips. 

Materials and Apparatus 

Three video clips were chosen to reflect wide sampling of content and various 

levels of reality. One of the clips was a 5 minute section of the 1957 movie “12 Angry 

Men.” This black and white film was selected because of the low amount of variation in 

scenes and characters throughout the movie (the movie takes place in the same room with 

the same 12 men). Another 5 minute clip came from the BBC television series “Dr. Who” 

from 1984. This clip contained actors either in futuristic dress or in full makeup that 

completely hides facial features. The last 5 minute clip came from the cartoon Looney 

Tunes featuring a coyote chasing after a road runner. This clip was fully animated 

throughout and also contained no voices. For each of the three 5 minute clips chosen, a 

matching 5 minute clip was chosen from another point in the video from which to draw 
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the foils. The clips from which the foils were drawn were chosen because they contained 

the same characters in the same general setting. This was a non-issue for 12 Angry Men 

and Looney Tunes because the setting is consistent. The clips and foils from Dr. Who 

were chosen because they had the same characters in the same locations.  None of the foil 

clips immediately preceded or followed the presented videos. Subjects in both the linear 

and jumbled conditions received the same foils.  The “Dr. Who” and Looney Tunes clips 

had a frame rate of 25 frames per second (fps) and the “12 Angry Men” had an fps of 

23.97.  

In the jumbled condition, the video clips were cut into 27 pieces and randomly 

rearranged to produce clips that contained the same visual information as the original.  

The clips ranged from 7 to 12 seconds. 

For the subsequent recognition test, 50 individual frames were selected from both 

the experimental and foil video clips yielding 100 still images. 

All clips and still images were presented on a 19 inch LCD monitor using a 

640x480 resolution.   

Procedure 

Participants were randomly assigned to one of two conditions, linear and jumbled. 

In the linear condition the video clips were shown in the temporal order in which they 

were originally produced. In the jumbled condition, the video clips were sliced into 27 

pieces and ordered randomly. In each condition, participants were shown a 5 minute 

video clip immediately followed by 100 still images. Participants viewed the clip, with 

the included audio track, in a darkened room. The order of the images was randomized 



22 

 

for each subject. Participants gave old/new judgments for each still image by pressing the 

“o” or “n” key on a keyboard. They did not receive any feedback.  Images remained on 

the screen until a judgment was given.  Following the recognition test, the procedure was 

repeated for the second and third video clip in an identical procedure.  The order of the 

video clips and their respective recognition tests were randomized.   After the subjects 

completed the recognition test, they filled out a short survey assessing familiarity with the 

films shown.  

Results 

 Figure 1 shows the accuracy for each video, both in the linear and the jumbled 

condition.  Overall, the mean accuracy (the average of hits and correct rejections) for the 

linear condition was .791 and .775 for the jumbled condition, F(1, 52) = 0.77, MSe = 

.015, p > .05.  No subject in either condition performed worse than chance (.500).  The 

effect of movie was significant, F(2, 104) = 34.13, MSe = .007, η2 = .396; the interaction 

between condition (linear, jumbled) and movie was not significant, F(2, 104) = 1.17, p > 

.05.  Overall, subjects were most accurate in identifying frames from the Dr. Who clip 

(.854), worst on the 12 Angry Men movie (.723), and intermediate on the Looney Tunes 

clip (.  771). 
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Figure 1. Accuracy for the old/new recognition test in Experiment 1.  

 When queried at the conclusion of the study, only a few students (< 20%) claimed 

to have viewed the movie ’12 Angry Men’, with only slightly greater numbers 

recognizing the other two clips (20-30%).  A number of students were uncertain if they 

had viewed the particular clips.  Regardless, analysis of those who professed to have seen 

or may have seen the previous clips did not alter accuracy on the later recognition test, p 

> .20.  

Experiment 1 Discussion 

 In general, subjects correctly recognized 78% of the test frames, with minimal 

effect due to jumbling and only slightly modified by type of movie clip. This level of 

recognition performance is impressive and is consistent with previously discussed 

research examining recognition performance for static scenes (Konkle et al. 2010). A 

similar result was obtained by Zacks Speer, Vettel, and Jacoby (2006) when they had 
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normal controls and Alzheimer patients watch a movie of a mundane action and perform 

a recognition task. Zacks et al. had subjects watch a movie of an actor performing a 

mundane action such as watering a plant or washing a car. In the recognition task, 

subjects had to differentiate seen images from images from foil videos that depicted the 

same actor performing the same action on a different item (e.g. a different flower pot or a 

different car). They found that their normal control group was able to make this 

distinction at around 86%, which is in line with our own results.  

Zacks et al. (2006) also found that participants who had more agreement with the 

group about where to segment the videos (in the same process as Newtson & Enquist, 

1976) had higher recognition scores. However, this result is complicated by the fact that 

there did not seem to be any relation to the correct recognition of any one item and that 

items distance from a participant’s event segmentation. Our own participants did not 

seem to be affected by the temporal disruption brought on by clip reordering, which had 

to have at least some detrimental effect on understanding the narrative within each clip. 

This result appears to discount theories of encoding that relied on a strong schema or 

structure in order to make judgments at recognition as randomly reordering events within 

a movie should have at least some disruptive effect on the formation of any sort of 

framework for what is actually occurring in the movie (Thorndyke, 1977; Rumelhart, 

1975). 
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EXPERIMENT 2 

The high recognition accuracy in Experiment 1 could be explained by simply 

saying that subjects were able to correctly recollect the target frames in the recognition 

task. An alternative explanation could be that because of the amount of exposure 

participants had to the scenes from the clips they saw in the learning portion, they were 

able to easily build a representation that allowed them to easily reject the lure frames. We 

choose the stimuli and the lure images in an attempt to minimize this, but there is the 

possibility that the lures were too distinct to actually get a measure of recognition.  

Nonetheless, we opted to address this concern by removing all of the surrounding video 

from the frames that appear in the recognition test.  In effect, these subjects first viewed 

the 50 ‘old’ frames in the study phase, and then saw these same 50 frames intermixed 

with the same foils used previously in Experiment 1 in the test phase.  If the test frames 

functioned as a distinct group, then subjects should be able to discriminate these old from 

the new test frames. 

 The 50 test frames for each movie that functioned as test items in experiment 1 

functioned as the study set in experiment 2.  Again, half the subjects viewed the frames in 

a linear format (continuous in time) and half viewed the frames in a jumbled order.  As 

was the case in experiment 1, the three movies were presented in a random order. 
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Method 

 Participants. 

 The subjects were 55 Arizona State University undergraduates, selected from the 

same introductory classes as in Experiment 1.  A total of 27 subjects viewed the frames in 

a linear (correct temporal) order and 28 viewed the same frames in a jumbled order. 

Materials and Procedure. 

 The target images from the recognition test in Experiment 1 were used as learning 

stimuli in this experiment. Each image was displayed in its native resolution for 83ms (5 

refreshes of an LCD running at 60Hz). A black and white static mask was then displayed. 

An interstimulus interval of approximately 5 seconds separated each frame.  At the 

conclusion of the study phase, the recognition test phase was conducted in a manner 

identical to that of Experiment 1. 

Results 

 Figure 2 shows the accuracy for the linear and random conditions, separately for 

each movie.  Overall, the mean accuracy for the linear and jumbled conditions was .587 

and .600, respectively, a difference that failed to reach significance, F < 1, p > .20.  

However, the effect of movie was significant, F(2, 106) = 21.85, MSe = .005, η2 = .292, p 

< .001, with accuracy lowest on the movie ’12 Angry Men’ (.539) and higher on the 

Looney Tunes (.619) and Dr. Who (.622) movie clips.  Since chance was .50, 

significance on any movie would require that the subject correctly recognize (mean of 

hits and correct rejections) 60 of the 100 test items (z = 2.00, z-approximation to a 
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binomial).  For the linear condition, 12 of the 27 subjects had a recognition score of .60 

or higher; for the jumbled condition, 14 of 28 did so.   

 

Figure 2. Accuracy for old/new recognition test for Experiment 2. 

 A comparison of the results from Experiment 1 and 2 is shown in Figure 3 broken 

down by hits and false alarms.  A combined analysis of the two experiments revealed that 

performance was significantly higher in Experiment 1, F(1, 105) = 215.52, MSe = .019, 

η2 = .672, p < .001.   
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Figure 3. Hits and False alarms for Experiments 1 and 2 collapsed across different 

videos. 

Experiment 2 Discussion 

The removal of all non-test frames from the videos in Experiment 2 had a 

detrimental effect on recognition ability. Participants correctly recognized old frame at a 

level slightly above chance, which contrasts starkly with the recognition rates we saw in 

Experiment 1 (around 78% correct). The only difference between the two studies was the 

presence of the surrounding frames in experiment one. Dynamic presentation appears to 

be vital to the participant’s ability to recognize viewed frames from frames that come 

from later parts in the film.  

The clips that were in color had better recognition rates than those without color. 

This is consistent with several studies that have shown that color gives an advantage in 

brief scene categorization (Wichmann, Sharpe, & Gegenfurtner, 2002; Oliva & Schyns, 
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1997). Other studies have demonstrated accurate scene classification and recognition at 

exposure durations that that were shorter than our own, however it is difficult to directly 

compare results because all of our stimuli were highly related where other studies used 

unrelated scenes (Greene & Oliva, 2009; Grill-Spector & Kanwisher, 2005; Joubert, 

Rousselet, Fize, & Fabre-Thorpe, 2007). Most of these studies describe the level of 

identification as gist-level or some understanding of global image properties. The 

constant setting of our stimuli should have helped guide attention towards salient objects 

or people within the scenes (Itti, Koch, & Niebur, 1998; Chun & Jiang, 1998), but the 

poor recognition rates suggest that the learning representations did not contain sufficient 

detail to differentiate from the foils.  

It seems paradoxical that recognition for target frames is aided by the inclusion of 

extraneous visual information (the non-target frames in Experiment 1), and 

discrimination drops when the extra information is removed. The results from experiment 

2 suggests that our visual memory for events relies on a sort of perceptual structure in 

which a certain amount or duration of exposure is necessary to build a lasting 

representation. Studies utilizing static scenes have suggested that different qualities about 

a scene are processed along different timelines. Scene category or gist is one of the 

quickest qualities derived from brief presentations of scenes (Hollingworth, 2003; Greene 

& Oliva, 2009). Layout or position of objects is processed later, and may provide a sort 

of map that can direct attention to areas within the scene that are likely to contain 

important visual information (Tatler, Gilchrist, & Rusted, 2003; Rensink, 2000). Scene 

category and layout information is largely invariant in natural scenes, and once they are 
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established attention can shift to objects within the scene that are harder to predict 

(Rensink, 2000, but see Hollingworth & Henderson, 2002 for an alternative theory). 

Dynamic scenes, such as the clips used in Experiment 1, would make establishing layouts 

of scenes even easier than that in static scenes because movement of an object within a 

scene provides excellent cues for depth (Rogers & Graham, 1979). The brief exposure 

times used in Experiment 2 may have created representations which contained little more 

than the gist of the scene. Because the lures used in the recognition phase were highly 

similar, the gist representation was unable to discriminate. The lack of discrimination 

between target and lure items in the recognition test in Experiment 2 suggests that in 

order to achieve recognition performance as high as was observed in Experiment 1, more 

detailed representations derived from dynamic scenes were needed.  Experiments 3 and 4 

investigate the dynamic representation’s fidelity by using foils that systematically vary in 

similarity compared to viewed dynamic events.  
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EXPERIMENT 3 

Experiment 1 showed that participants were able to identify seen frames and new 

frames from continuous movies with high accuracy regardless of if the movie was 

presented in a linear or random fashion. Experiment 2 showed that isolated exposure to 

individual frames was not enough to obtain high recognition performance and that old 

and new frames did not appear categorically different at test. The question remains, what 

is the mechanism in which visual recognition is aided by dynamic presentation? There 

are two general explanations that could be driving the superior performance for dynamic 

presentation. First, participants could be using the longer exposure to build a detailed 

representation of the scenes and the objects and actors contained within (Rensink, 2000; 

Hollingowrth & Henderson, 2002). This bottom-up approach would allow participants to 

make recognition judgments by comparing probe frames to stored rich representations. 

Another possibility is that participants are forming more general representations which 

are more akin to scripts, focusing on sparse event descriptions or goal-oriented actions of 

characters (Mandler & Johnson, 1977; Thorndike, 1977). The lack of any real difference 

between the linear and jumbled conditions makes it difficult to argue for a sort of visual 

representation which is based on a hierarchical narrative structure. However, it could be 

that the fine-grained events, which are the building blocks of the coarse-grained events, 

are preserved (Newtson & Engquist, 1976; Zacks, Tversky, & Iyer, 2001). These small-

unit events could be a theoretical unit of dynamic visual memory even if they are outside 

a hierarchical framework.  

Although the foils from Experiment 1 were from different parts of the same 

movie, they may not have been visually distinct enough from the viewed footage to 
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present much of a challenge. Alternatively, the process of presenting the film in a random 

order may have hindered the formation of an overall narrative or formation of coarse-

grained events, but it may have preserved fine-grained events. These fine event 

representations may enable a sort of simulation at the recognition test where the 

participants can ask, “Did I see this happen?/Could this have been a part of what I saw 

happen?”  Instead of pulling foils from before or after the viewed footage, Experiments 3 

and 4 pull foils from within the footage.  A clip from the movie A Touch of Evil (1956) 

was chosen because it utilized a series of long continuous shots. Several small gaps 

(ranging from .5 seconds to 30 seconds) were removed and the film was stitched back 

together. If the viewer notices the deletion, it appears that the film just skips ahead. Foils 

in the recognition test were then taken from the removed gaps. These foils are highly 

similar to the viewed footage, and that similarity approximately varies with the gap size. 

Frames from the .5 second gaps were similar to the viewed footage, whereas frames from 

the 30 second gaps were, on average, less similar.   

Methods 

Participants 

One hundred and fifteen Arizona State University students participated in order to 

fulfil a course requirement. None of the participants had seen A Touch of Evil within the 

past 3 years. 

Materials and Apparatus 

A 26 minute clip from the beginning of the Orson Well’s cut of A Touch of Evil 

(1956) was used. Twenty-four gaps were removed consisting of four repetitions of six 
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different gap sizes:.5 seconds, 1 second, 2.5 seconds, 5 seconds, 15 seconds, and 30 

seconds. The gaps were distributed pseudo-randomly ensuring that each gap size was 

represented within each quadrant of the movie. Gaps were also not allowed to occur over 

any hard cut (a change in scene location or cut away to a different event). Frames for the 

recognition test were sampled randomly from any point of the seen footage or any point 

from the removed gaps. 

The movie was presented on 16:10 monitors with black bars along the top and bottom to 

preserve the original aspect ratio. The original frame rate (23.976 frames per second) was 

also preserved. Frames from the recognition test were presented as the same size and 

aspect ratio as they would have appeared in the movie. 

Procedure 

The experiment proceeded in a similar way to that in Experiments 1&2. The 

footage was cut in half in order to maintain the attention of participants and prevent too 

much decay from frames appearing at the beginning of the clips. Participants were told 

they were to watch a clip from a movie with several small gaps removed from them. 

Whenever they detected that the film skipped forward, they were asked to press the 

spacebar as soon as possible. As soon as the clip was finished, they were presented with a 

recognition task consisting of 72 items: 36 seen frames and 36 frames from the gaps. 

They frames were presented individually, and the subjects were asked to identify if the 

frames were seen in the footage they just watched, or if the frame was new. The exact 

procedure repeated with the second half of the footage. In total, 144 recognition 

judgments, along with reaction times, were obtained from each subject. 
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Results 

Recognition Accuracy 

Subject’s overall recognition accuracy for test frames was near chance (M = .55, 

SD = .04). There is a significant difference in recognition accuracy for frames that were 

present in the displayed video (seen frames-M = .76, SD = .098) and for items that were 

pulled from the removed gaps of various sizes (new frames- M = .34, SD = .098). As 

seen in Figure 4, subject’s recognition performance seemed to be a function of the gap 

size form which the test frame was taken. A repeated measures ANOVA shows that 

accuracy is significantly different among the different gap sizes, F(6,684) = 270.5, p < 

.001,  η2 =.7. Pairwise comparisons between the six different gap sizes and seen items 

found that all item sources differed significantly from one another (p < .05) with the 

exception of the items from .5 second gaps and 1 second gaps, p = .48. 

 

Figure 4. Recognition accuracy for Experiment 3. Performance is broken down by item 

source, with foil items labeled by their gap size. 
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Recognition Reaction Time 

Reaction time was broken down by response in order to maintain an equivalent 

number of responses across all types of recognition test items. If we only analyzed 

reaction times on correct trials, almost half of the trials would be discarded, with some 

item sources losing over 80% of their responses. Subjects were slower to call recognition 

test items new (M = 2260ms, SE = 86.1ms) than seen (M = 1844ms, SE = 64.2ms), F(1, 

58) = 47.5, p < .001,  η2 =.45.  The main effect of item source was also significant, 

F(6,348) = 3.192, p < .01, η2 =.05. There was also a significant interaction between 

new/old response and recognition item source, F(6,348) = 3.4, p < .01, η2 =.06.  This 

interaction is a result of all item sources being slower identified as new except for those 

from the 30 second gap, which were called new at statistically similar speeds.  

 

Figure 5. Reaction time for the old/new recognition test in Experiment 3. Recognition 

test items are broken down by source and response, with foils labeled by their gap size. 

Recognition Test item position and accuracy 
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similarity to seen items that also border the gap. Each test item was assigned a quartile in 

which it appeared within each gap.  A repeated measures ANOVA of accuracy data 

found a significant main effect of quartile, F(3,340) = 5.1, p <.01, η2 =.07. Gap length 

was also a significant main effect, F(5,340) = 90.8, p < .001, η2 =.57. The quartile x gap 

length interaction was also significant, F (15, 1020) = 5.18, p < .001, η2 =.071.  Figure 6 

illustrates the interaction. The smaller gap sizes (.5s, 1s, 2.5s, and 5s) are relatively linear 

across all quartiles. For the 15s gap size, quartiles 2 and 3 are significantly more accurate 

than quartiles 1 and 4 (p < .05). The 30s gap seems to be driving the interaction, with the 

last two quartiles being significantly different than the first two (P < .05).  

 

Figure 6. Recognition accuracy for gap items by quartile in Experiment 3. Accuracy 

displayed for each gap duration broken down by quartile. 
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recognition accuracy was performed, but frame distance was found to be an insignificant 

predictor (B=0, p=ns). Figure 7 shows the accuracy for frames as a function of distance 

from any previous gap.   

 

Figure 7. Recognition accuracy for seen frames as a function of distance from gap in 

Experiment 3. Gap distance is represented as number of frames presented between 

nearest gap and the seen frame. 
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calculating proportions necessary to carrying out signal detection analysis.  Regardless, 

using the 3000ms window, there were an average of 16.3 hits (SD = 4.4) and 10.12 false 

alarms (SD = 9.65). Gap detection probability differed significantly among gap sizes, 

F(1,114) = 35.1, p < .01. The probability that the half second and one second gaps were 

detected was significantly lower than the rest of the gap sizes. Gap detection percentages 

for each subject were calculated for each gap size, and the correlation among each of 

these percentages were significant among one another. This suggests that for each 

subject, the ability to detect a gap is relatively stable regardless of how large that gap 

was. However, gap detection of a certain gap size did not correlate with recognition 

performance for that particular gap size with the exception of the fifteen-second gap, 

suggesting that gap detection and recognition performance are not coupled.  
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EXPERIMENT 4 

Experiment 3 had strikingly different results from Experiment 1 in terms of 

recognition performance. Breaking down recognition performance by gap size shows 

some sort of lawful pattern relating image similarity to recognition probability. 

Interestingly, images taken from the very short gaps (<2.5s) are called “old’ more often 

than images that were actually present in the viewed footage.  

 Experiment 3 was different than Experiment 1 in two key ways. First, the foils in 

Experiment 3 were more similar to the target images within the viewed footage. Second, 

the foils used in Experiment 3 were heavily implied by the surrounding sequence of 

events. Although the gaps were noticeable, they did not totally disrupt the narrative the 

movie portrayed.  

 By jumbling the movie in the same way it was done in Experiment 1, the effect of 

perceptual and narrative implication is reduced. Although the same visual information is 

present in the jumbled version of the movie in Experiment 4 and the linear version in 

Experiment 3, the experience for the observer is quite different. The jumbled presentation 

will make developing a precise narrative structure more difficult, if not impossible. This 

should reduce the narrative implication which may be responsible for the high false 

alarms in Experiment 3. Also, the detection of the gaps will be rendered moot as the 

entire movie is full of rough cuts which jump from place to place. The reorganization of 

the movie preserves the visual detail while damaging potential top-down influences on 

visual recognition.  
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Method 

Participants 

One hundred and thirty-nine Arizona State University students participated in 

order to fulfil a course requirement. None of the participants had seen A Touch of Evil 

within the past 3 years. 

Materials and Procedure 

The movie from Experiment 3 was randomly cut into 138 clips with durations 

ranging from 6.2-12.7 seconds and an average duration of 9.95s. These clips were then 

ordered pseudo-randomly as to ensure that no two clips would have a consistent temporal 

order before and after randomization. The same target and foil frames from Experiment 3 

were employed. 

The experiment was carried out exactly as it was in Experiment 3 with the 

exception of the randomized movie. Participants received all of the same instructions as 

Experiment 3, with an additional statement explaining the randomization procedure. The 

recognition test portion of the experiment was identical in Experiments 3 and 4. 

Results 

Recognition Accuracy 

Recognition accuracy was very similar to that in Experiment 3. Overall accuracy 

was poor and close to chance (M = .55, SD = .05). Seen frames (M = .75, SD = .13) were 

identified with significantly more accuracy than gap frames (M = .35, SD = .12), t(138) = 

20.48, p < .05. Repeated measures ANOVA showed that accuracy was significantly 

different among the different gap sizes, F(6,828) = 261.1, p < .001, η2 =.65. Pairwise 

comparisons revealed that all gap sizes were different from one another with the 
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exception of the .5 second and 1 second gaps, p=.79. All of these results mirror those 

found in the previous experiment.  

 

Figure 8. Recognition accuracy for Experiment 4. Performance is broken down by item 

source, with foil items labeled by their gap size. 

Recognition Reaction time 

Reaction time was once again broken down by response. Subjects were slower to 

call recognition test items new (M = 2475ms, SE = 128ms) than seen (M = 1855ms,SE = 

80ms), F(1,52)=47.4, p < .001, η2 =.48. The main effect of item gap size was not 

significant, F(6,312) = .920,p = .34, η2 =.017. There was a significant interaction between 

item gap size and response, F(1,52) = 10.67, p < .005, η2 =.17. Pairwise comparisons 

found that seen responses were significantly faster for all gap sources except for 15s and 

30s gap items (p < .05). 
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Figure 9. Reaction time for the old/new recognition test in Experiment 4. Recognition 

test items are broken down by source, with foils labeled by their gap size. 

Recognition Accuracy and gap frame position 

Recognition accuracy was also examined according to a recognition test item’s 

position within the gap it was pulled from. Each gap was broken up into quartiles and 

recognition accuracy was assessed using a repeated measures design with item quartile 

and item gap source as main effects. Trends were much less lawful than they were in the 

previous experiment. Item quartile was a significant main effect, F(3,231) = 19, p < .001, 

η2  = .197. Items from the 4th quartile were identified with the highest accuracy (M = .42, 

SE = .02) and items from the 1st quartile were identified with the lowest accuracy (M = 

.3, SE = .02). The effect of item gap was also significant, F(5,385) = 18.6 ,p < .001, η2 

=.34, as was the interaction, F(15,1155)=36.3,p < .001, η2 =.32. Figure 10 illustrates the 

complicated interaction. Figure 10 shows that, much like in Experiment 3, the 30 second 

gaps drive the overall differences among the quartiles. 
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Experiment 3 & 4 Discussion 

Overall accuracy for Experiment 3 was at 54.8% and for Experiment 4 it was at 

54.7%. Performance in terms of accuracy in the recognition tests for both experiments 

were both strikingly similar and strikingly poor. Experiment 3 and 4 replicate the pattern 

seen in Experiments 1 and 2 in which the linear or jumbled presentation does not seem to 

have any effect on the recognition task. The lack of effect for the ordering of the movie 

goes against many findings from the text narrative comprehension literature that coherent 

and canonical narrative structure is best learned and recalled (Schwarz & Flammer, 1981; 

Stein & Nezworski, 1978; Mandler & Johnson,1977). One issue with comparing the 

current results to those found in the story grammar research is that many of these studies 
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assess narrative understanding through free recall of events contained within a story, 

which may be a different processes than that employed by recognition tests (Brown, 

1976). Yarkoni et al. (2008) had subjects read either a normal or scrambled version of a 

story followed by a recognition test containing sentences that were previously read or 

similar foils. Although their methodology is more analogous to that in the current studies, 

they found a significant decrease in recognition performance in the scrambled groups 

where we observed none. They concluded that sentence recognition was aided by 

structure, but that does not appear to be the case for the visual recognition task in the 

current study. 

 The addition of visual feedback is obviously the difference between the current 

task and similar narrative comprehension studies that found a difference for jumbled 

presentation. There are two possibilities for these results. The first is that the visual 

information in the presented visual narrative somehow bootstraps the process of 

hierarchical representation so well that participants in the jumbled condition are 

essentially able to reconstruct what is happening in the films. This process would have to 

be so efficient that the representations for the normal and jumbled conditions are 

equivalent at the recognition test. This is unlikely because there should have been some 

performance cost observed for the jumbled conditions if they were actively 

reconstructing at recognition or encoding. Instead, we see performance levels on 

recognition in Experiment 3 and 4 that are essentially equal. The second possibility is that 

participants are not constructing any sort of higher order representation that takes into 
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account narrative structure, or are at least not utilizing that structure at all when making 

recognition judgments.  

While overall accuracy was at around chance, there seems to be a lawful pattern 

that emerges whenever the foil items are broken down into the gap sizes from which they 

originate. In both experiments, accuracy correlates strongly with gap size. In both 

Experiments 3 & 4, accuracy for foils from the 30 second gaps was at 65%, while 

accuracy for the .5 and 1 second gaps is at less than 20% in both studies. In fact, items 

from the .5 second and 1 second gaps are called ‘old’ or seen more often than items that 

actually were seen in the viewing portion of the task. This false recognition effect has 

appeared in both of the reported studies here and in two separate pilots which employed 

different videos. While the gaps are referred to by their duration in comparison to an 

uncut version of the film, to the participants they are all just blips in the visual stream-if 

they are even detected at all. What the gaps really represent are different bins of variation 

from viewed footage. All of the frames within the smaller gaps are more similar to both 

themselves and to viewed footage. The within gap variance and the average similarity to 

seen images decreases as the gap sizes get larger. One potential explanation of the 

accuracy data is that recognition judgments are based on visual similarity alone. On 

average, the recognition test items from the 30 second gaps are less similar to seen 

images, so it is easier to recognize them as new. Although this explanation certainly 

accounts for some of patterns in the data, it fails to account for others. A pure similarity 

explanation would predict that new items that are near the edges of the gaps would be 

recognized with more accuracy than items in the middle of the gaps. As shown in Figure 
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6 and Figure 10, this is not the case. Any trend in item quadrant’s predictive ability for 

accuracy is driven by the 30 second gap. The rest of the trends remain flat across all 

quadrants. Table 1 shows the accuracy for items within 20 frames of the beginning or end 

of gap, collapsed across all subjects. Because gap items were randomly sampled across 

the entirety of the gap, there are a greatly reduced number of observations in the larger 

gap sizes. Additionally, because the smaller gaps have less than 40 frames, all of them are 

included. Large amounts of alpha inflation as a result of the number of observations for 

the smaller gap sizes, coupled with the wildly uneven number of observations between 

gap sizes suggests these numbers should be approached with caution. Regardless, the 

general trends of the whole gap accuracy are reflected in the accuracy for the items 

within 20 frames. If recognition accuracy was only a function of visual similarity, there 

would be no large difference between the accuracy for the 5-second-within-20-frames 

items versus the 30-second-within-20-frames items. 
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Table 1. Overall and near edge recognition performance for Exp. 3 & 4.Overall accuracy 

and accuracy for foil frames within 20 frames of a gap in Experiment 3 and 4. 

  

Less than 20 frames from an edge Whole Gap 

  

Gap 

Size Accuracy SE N Accuracy SE N 

Linear 

0.5 .167 .011 1380 .167 .012 1380 

1 .180 .011 1380 .180 .012 1380 

2.5 .230 .013 912 .219 .012 1380 

5 .327 .019 437 .345 .012 1380 

15 .462 .034 145 .461 .012 1380 

30 .544 .049 68 .653 .012 1380 

Random 

0.5 .158 .010 1662 .158 .011 1662 

1 .162 .010 1662 .162 .011 1662 

2.5 .269 .012 1063 .253 .011 1662 

5 .347 .017 559 .376 .011 1662 

15 .425 .030 186 .491 .011 1662 

30 .557 .043 88 .646 .011 1662 

 

Distance from a gap also did not seem to affect judgments for seen items, as seen 

in Figure 7. This is somewhat surprising, especially considering how dynamic events are 

said to be segmented. Event Segmentation Theory (EST) suggests that ongoing events are 

monitored and a prediction model is formed (Zacks et al, 2007). As the events deviate 

from the model, errors begin to accrue and eventually the model is reset, resulting in an 

event boundary. When a new model is formed, the scene is examined resulting in 

increased processing of scene details. The sudden termination of action that would occur 

when a gap occurred should have been surprising enough to trigger a new boundary, but 

we saw no evidence of increased processing near a gap. It could be the case that EST’s 

prediction of increased processing could be focusing on more semantic forms of 

information within the scene, and not reflected in our visual recognition test.  
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Participants were faster to judge items as seen regardless of the recognition item’s 

origin. In general (although not significant in Experiment 4), participants were fastest to 

incorrectly judge items from the .5 second gaps as seen. Reaction times for incorrect 

judgments for the gap items increased with the gap size, which may suggest that there is a 

search function which is sensitive to item variance. New judgments were reliably slower 

regardless of item origin. In both Experiment 3 and Experiment 4, the smallest difference 

between reaction times for old and new judgments was for items from the 30 second 

gaps, and the largest difference was for items from the smaller gaps (.5 and 1 second). 

There are two main general trends that emerge from examining the reaction time in 

Experiments 3 and 4. First, reaction time was usually quicker to call an item old rather 

than new. This is unsurprising given that the majority of memory models that can predict 

reaction times give the ‘negative’ response (this frame was NOT seen before) as the 

default (Sternberg, 1966; Ratcliff, 1978; Hintzman, 1988). The second general trend 

present in the reaction time data is that reaction times for ‘old’ responses were shorter for 

the smaller gap sizes than they were for the longer gap sizes. Keeping in mind that for all 

of the gap items an ‘old’ response is incorrect, it is interesting to note that as gap size 

(and dissimilarity and foil variance) increase, so does reaction time.  

General Discussion 

It is difficult to gaze within our minds and examine the structure and ingredients 

of our own memories. To most people, the process of determining if a television show is 

a rerun or not is a quick and automatic judgment. To a psychologist, this act is much 

more complicated and most likely involves a complex interaction of visual memory and 
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various top down factors. The experiments reported here sought to examine the form 

(which itself is an echo of function) that visual memories for events take. Experiment 1 

showed that recognition memory for images from movies was good (around 78%), but 

most interestingly, recognition memory for these movies seems unaffected by jumbling 

up the presentation of the movies. Experiment 2 showed that visual recognition declines 

sharply when non-target frames are dropped, which suggests that the encoding or 

retrieval process need some sort of visual scaffolding in order to form a good memory. 

Experiments 3 and 4 employed the use of much more difficult foils, and found that 

recognition performance like that seen in Experiments 1 and 2 quickly broke down for 

foils taken from very small gaps within the viewed movie. This performance degradation 

seemed to be a function of the size of the gap from which the foils were taken, and in 

both Experiments 3 and 4, items taken from the very smallest gap sizes were called ‘old’ 

more often than the items the participant actually observed.  

Considering the wide range of performance we observed, it is questionable that 

any one model of recognition memory can describe our results. Broadly, most models of 

recognition assume that in a recognition test a probe item is compared to items in 

memory and a decision through the contributions of familiarity and recollection, or that 

of familiarity alone. A recognition judgment based on recollection arises from a match 

between a test probe and an item in memory. This comparison is a serial process because 

items in the memory set are compared one at a time to the probe item. While recollection 

based recognition is slow, it is also characterized by high confidence and high accuracy 

(Yonelinas, 2001, 1999). Given the terrible accuracy in Experiments 3 and 4, recollection 



50 

 

is probably not a strong contributor to the recognition judgment. This of course does not 

discount recollection as a contributor to normal recognition judgments or that dual 

process models are incorrect, only that the recognition judgments here are unlikely to 

involve the recollection process for the majority of the decisions. If it did, we would see 

higher accuracy that was more stable across gap sizes. Reduced reliance on recollection 

has been found when attentional resources or other task demands are manipulated, and it 

could be the case that our task did not foster memory representations that promoted 

recollection (Yonelinas, 2002).  

On the other hand, recognition judgments based on familiarity are characterized 

by being a parallel process where activation to a probed item is summed over set of 

traces/vectors/representations in memory. Single and dual process models of memory 

utilize this parallel process of familiarity in order to account for quick recognition 

decisions that arrive early in the decision making process, even if there is a large memory 

set (Gronlund & Ratcliff, 1989; Hintzman & Curran,1994; Yonelinas, 2002). Familiarity 

based judgments are often more inaccurate and could offer an explanation for why 

participants performed better in Experiment 1 than they did in Experiments 3 and 4. 

However, the lack of relation between the distance from seen items and accuracy 

demonstrated in Experiment 3 casts doubt on the theory that judgments are made via 

familiarity via visual similarity. Familiarity is summed over all stored traces in order to 

account for its general advantage in speed over recollection, and to be able to model 

results which find similar latencies in old/new decisions (Gillund & Shiffrin, 1984). 

Familiarity produces a single score that represents the activation of the probe item on the 
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memory set. If this score exceeds a criterion, the probe item is called ‘old,’ otherwise it is 

called ‘new.’ For example, Nobel and Shiffrin (2001) examined reaction times in a 

simple word list recognition paradigm and found equivalent latency distributions for 

hits/correct rejections (‘old’/’new’) and false alarms/misses (‘old’/’new’). This was 

consistent with performance based on familiarity, which would output a recognition 

decision following the summation of activations to stored memory items. However, in 

our own data, reaction times for correct and incorrect judgments in Experiments 3 and 4 

(Figure 5 and Figure 9) display a different pattern. Keeping in mind the terrible accuracy, 

response latencies of the positive responses (‘old,’ meaning they recognize it) appear to 

be a function of the gap size from which the lures were taken. Also, negative responses 

generally had longer response latency than positive responses, which is a feature that is 

normally found in models involving a serial search. 

In order for recognition memory to account for our findings in terms of accuracy 

and response latency, we would need to borrow and rearrange the predictions of the 

processes which underlie recognition models. We would need the serial search of 

recollection to account for response latencies, without any of its accuracy. We would 

need the more abstract familiarity that could produce poor accuracy given highly similar 

foils, but we would need to ignore its parallel nature. Also, by applying a recognition 

model to the data from these studies, we are assuming there is a parity in structure 

between the probe item (a single frame) and the memory representation. Formalized 

models of recognition which depend on a direct comparison or an activation score 

assume that the probe item could just as easily be a memory set item. If recognition 



52 

 

memory is unable to describe our current results, the reason might be that the parity 

assumption has been violated and the performance patterns observed are more reflective 

of a different memory process. 

Performance on a recognition task is not the only measure of how well items 

presented in a study session are retained in memory. Nobel and Shiffrin (2001) 

demonstrated this by having participants study a list of word pairs and using different 

procedures to measure performance. When they presented single words or word pairs at 

test and had participants indicate if they had seen them before within any of the studied 

word pairs, they found a pattern of recognition that indicated decisions were made using 

a measure of familiarity. Specifically, they found responses were fast and did not differ as 

a function of positive or negative response. However, when they presented participants 

with word pairs and asked them to judge if they were identical to study or if they were 

rearranged (associative recognition) or they presented participants with one of half of a 

studied word pair and had them produce the other (cued-recall), they found a much 

slower pattern of response. They concluded that while recognition decisions may be 

based on a single strength of signal response, the associative recognition and cued recall 

performance indicated that there was a slower sequential memory search occurring. In 

order to find a match in the cued-recall condition, participants were comparing a single 

word to the word pairs in memory. Because the single probe word did not have parity 

with the items in the memory set, items from the memory set were having to be 

considered one at a time in order to determine a match. The lack of parity between 
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recognition probe and the memory representation of the movie could indicate that our 

own study is more like a cued-recall task than a recognition task. 

Cued recall is usually modeled as a serial process because response times are 

often shown to be much longer and more dependent on participant response or set size 

(Raaijmakers & Shiffrin, 1980, 1981; MacLeod & Nelson, 1984). The Search of 

Associative Memory (SAM) model illustrates how one such serial process might occur 

(Raaijmakers & Shiffrin, 1981). Let us consider a cued-recall task similar to the one 

described above from Nobel and Shiffrin (2001). SAM conceptualizes representations in 

memory as “images,” which contain item and associative information. During the study 

phase, participants are shown a list of word pairs and each of the word pairs is then 

encoded and represented as a separate image. When a single word is presented at test, it 

acts as a cue which activates a number of images that the cue may be a part of. This 

activation strength is a measure of global activation, and behaves much like familiarity in 

the context of a recognition test. Because cued-recall is not assuming there to be a direct 

match in the search set, this measure of activation is not selecting an exact match to the 

cued word, but rather a set of items to serve as the search set that have the highest 

probability of containing a match. Individual images within this search set are then 

randomly sampled. If the cued word is found to exist within a selected image, then that 

image is recalled. If the selected image does not contain the cued word, then a different 

image is selected from the set. The process terminates after a certain amount of time or 

after a certain number of failed retrievals. SAM and other similar models that account for 

performance on cued-recall would predict a response latency for the negative response 
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that was consistently higher than that for the positive response, much like we observe in 

our own study.  

If our own results suggest that a direct comparison between test item and memory 

representation is not occurring, then we must ask what the nature of the memory 

representation is in our task. We know our cue was a single frame, but what is it cueing in 

memory? Returning back to the analogy of the televised courtroom drama, we are able to 

eliminate some possibilities of representation based on our results. Memory for dynamic 

scenes is not like playing back recorded footage from a video camera. Although 

performance was good in Experiment 1, poor accuracy in later experiments suggest that 

visual memory for dynamic scenes cannot be explained solely by what visual information 

was observed. Likewise, a representation that is more like a script or a newspaper article 

does not explain our results either. One of the clearest trends with the current data is that 

jumbling the presentation order of the movies did not have any effect for performance on 

any of our measures. These data suggests that performance on the recognition test did not 

rely on a visual event representation that necessitated or utilized a structure such as a 

story schema in order to encode the visual event. This does not necessarily mean that 

structure is irrelevant to visual event memory. Effects of the jumbling would probably 

emerge if the experimental task probed broad plot points or required free recall of events 

which occurred within the movie. If that were the case, then the lack of effect in the 

current study could be explained as a levels of processing effect. But it would not change 

the fact that our task was possible, even with a jumbled presentation, in Experiment 1. 



55 

 

The establishment of a broad story schema does not appear to be a prerequisite to 

preforming the frame identification task. 

We cannot, however, ignore all structure and explain the current results. The 

dissociation between performance in Experiment 1 and that of Experiments 3 and 4 may 

be a result of structural violations rather than solely a product of using more similar foils. 

The results of Experiment 3 showing the lack of relation between where a lure item was 

drawn and its ability to elicit a false alarm, both in terms of quadrant and absolute 

location, suggest that more than just similarity is contributing to false alarms. Experiment 

2 also suggested that the target and lure frames in Experiment 1 were perceptually 

similar, yet they were easily identified. Confusability and temporal proximity data used 

as an indicator of similarity does bring along an implicit suggestion that the 

representation that the recognition probe is being compared to within memory is itself 

static or could produce a static representation. This is not necessarily the case. Whatever 

form the mental representations from the movies are taking, they were well formed in 

Experiment 1 but not in Experiment 2. Likewise, these representations caused high false 

alarms in some cases in Experiments 3 and 4, but did not in Experiment 1. If our 

recognition task was in actuality a cued-recall task, then the pattern of results could be 

explained by mental representations that are characterized by local, but not global 

structure. These representations would need to be sensitive enough to the episodic nature 

of the dynamic scene that they are encoding that they would be able to detect if a cue did 

not occur within their bounds, such as the lures from outside the movie in Experiment 1. 
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However, they cannot be so rich of a representation that they are not fooled by the lures 

from the short gaps in Experiments 3 and 4.  

The most likely candidate for such a unit of representation is what Newton and 

Enquist (1976) termed a fine-grained event. As previously discussed, event segmentation 

is thought to be an automatic process during perception (Zacks et al, 2007; Zacks et al., 

2010). Fine grained events emerge when people are asked to segment dynamic scenes in 

terms of the smallest natural and meaningful unit of activity, and neuroimaging tests 

show increased activity at event boundaries even if a participant is not consciously told to 

segment ongoing dynamic events (Zacks et al., 2010). Fine-grained events are nested 

within coarse-grained events as measured by the alignment of their event boundaries. 

These larger coarse-grained events are theorized to be nested within higher-order 

structures like story grammars and scripts (Zacks, Tversky, & Iyer, 2010). However, 

event segmentation is usually found using videos with a very simple structure, such as a 

man washing a car or making a sandwich. By jumbling the footage in our own 

experiment, we certainly have disrupted the canonical narrative structure that had been 

found to aid comprehension and recall in written story experiments, but our chunks of 

approximately 10 seconds most likely still contained many fine-grained events. The 

temporal length of fine or coarse events depends on their context, with fine-grained 

events having lengths of between 5-10 seconds with a great deal of variability (Zacks, 

Tversky, & Iyer, 2001; Zacks et al. 2006).  

 The findings of all 4 experiments are reconciled if the visual information obtained 

from encoding a dynamic scene is composed of fine-grained events. For the experiments 
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that feature dynamic scenes (1,3, and 4), the recognition test behaved more like a cued-

recall test because of the lack of parity between the static frame test item and the memory 

representations of the movie. The static frame acted as a cue which activated a memory 

set consisting of similar events. Events from the memory set were selected and compared 

until a match was found based on probability of association, or a termination limit was 

reached. This resulted in negative responses (‘new’) having consistently higher response 

latencies than positive responses. In Experiment 1, none of the events in memory were 

directly associated with the test probe, leading to high performance in frame 

classification and low false alarms. In Experiments 3 and 4 there was a greater degree of 

total activation between the static frames and the events in memory compared to 

Experiment 1. Any frame, seen or not, that sufficiently activated the stored event from 

which it was pulled would be called old. If a frame cue came from the middle of a fine 

grain event, it would result in extremely high levels of false alarms because the 

representations are at the fine event level. In fact, these false alarms could only really be 

classified as errors by a privileged observer who can deconstruct an event as a series of 

frames. To the participant who encoded the fine grained event, a frame coming from a 

small gap of half a second within the event is equivalent to a seen frame, because the 

representations are referenced at event level. This explains the lawful (and awful) pattern 

of recognition accuracy in Experiments 3 and 4. Smaller gap items are more likely to be 

completely inside fine-grained events that are perfectly well represented. Frames from the 

longer gaps may be from fine-grained events that exist completely within the gap, and so 

they are consistently called ‘new.’ Reaction time variations are explained in a similar 
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way. A static frame coming from a small gap would activate a smaller memory set 

consisting of higher activated events compared to an item from a large gap. Positive 

responses for the smaller gap items would come quicker because of their smaller memory 

set, and the opposite would be true for the larger gap items.  

 By conceptualizing the participant’s visual memory for dynamic scenes as a set of 

fine-grained events we are able to unify all of the results from the current study. These 

results do not demonstrate that the fine-grained events cannot be further reduced or 

nested within any higher order structure. Representations may be structured within a folk 

taxonomy in a similar way to cognitive categories. Individual objects can be identified at 

a superordinate level (e.g., tool), a basic level (hammer), or a subordinate level (ball-

peen). Within this taxonomy, the level that is used most often in naming tasks and is also 

shown to be the level that is first used to categorize an object is the basic level (Rosch et 

al, 1976). This is because the basic level representation of an object contains the highest 

cue validity, leading it to be more differentiated from other categories (Rosch, 1978). 

While this is generally true, depending on the task or expertise, the privileged level of 

representation can shift to higher or lower levels on the taxonomy. For example, Tanaka 

and Taylor (1991) found that experts’ subordinate-level categories were as differentiated 

as their basic level categories, and so the subordinate level was used in naming and 

categorization tasks. In the current study, the fine-grained event was the preferred level of 

representation.  
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General Conclusions 

  The present study investigated the representations for dynamic scenes within 

memory. These representations were found to contain enough visual detail to 

discriminate between images that occurred within or outside of a particular viewed 

movie, suggesting that the representations are visually rich. There did not seem to be any 

effect of the disruption of the movie’s sequences within any of our experiments. While 

this does not discount canonical structure for episodic memories, it does suggest that such 

a structure was not necessary in order to encode the visual information. Old/new 

judgments of individual frames that came from within a viewed movie exhibited a pattern 

of accuracy and response latency that was not consistent with recognition performance 

that assumes parity in form between a test cue and an item within memory. Instead, the 

data suggests that visual information from this task was represented at the event level.   
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