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ABSTRACT

As more and more stadia structures nowadays are being built by making use of
new high strength building materials which tend to be lighter than the “old” ones,
composite systems and also the fact that engineers, contractors and clients want their
structures as optimized as possible, in terms of minimal materials used, there is an
inevitable side effect that comes with this. The result is that structures are more flexible,
and thus they become susceptible to undergone vibration problems due to the action of
dynamic loading. Pop/rock concerts, exhibitions, boxing matches, and so forth are
staged to supplement the football/sport seasons. Consequently, stadia structures must
resist not only static loading, but also dynamic loading, such as the human induced loads
from various activities of the spectators which include, standing, jumping, stamping,
clapping and dancing, particularly in response to touchdowns (in football matches) or

musical beats (during concerts).

Active and passive models of humans are studied to see how they influence the
response in TCF Bank Stadium for different ranges in excitation frequencies, by
performing dynamic analyses and comparing the results with the ones obtained from

static analysis.

Parameter estimation and system identification in mechanical sciences and
structural engineering have become increasingly important areas of research in the last
three decades. Many nondestructive testing methods are based on the concepts of system

identification and parameter estimation.

In this document, two parameter estimation algorithms are studied, namely the
Equation Error Estimator and the Output Error Estimator, through the simulation of

modal data obtained from a computer structural analysis program and comparisons of
i



their results are presented so that future researchers are better informed about the two

and therefore can decide which one would give the best results for their application.
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1. INTRODUCTION

As more and more stadia structures nowadays are being built by making use of new
high strength building materials which tend to be lighter than the “old” ones, composite
systems and also the fact that engineers, contractors and clients want their structures as
optimized as possible, in terms of minimal materials used, there is an inevitable side
effect that comes with this. The result is that structures are more flexible, and thus they
become susceptible to undergone vibration problems due to the action of dynamic

loading.

Furthermore, vibration problems in stadia are becoming more prominent as sport
stadia become more multifunctional. Pop/rock concerts, exhibitions, boxing matches,
and so forth are staged to supplement the football/sport seasons. Consequently, stadia
structures must resist not only static loading, but also dynamic loading, such as
machinery or heavy equipment in operation, ambient loading (wind, traffic,
earthquakes) and/or human induced loads from various activities of the spectators
which include, standing, jumping, stamping, clapping and dancing, particularly in
response to touchdowns (in football matches) or musical beats (during concerts). These
movements increase the likelihood of vibration problems in the stadia structures since
the synchronized crowd movement may excite the natural frequencies of the structures

causing their resonance (Reynolds et al. 2004).

Parameter estimation and system identification in mechanical sciences and
structural engineering have become increasingly important areas of research in the last
three decades. Identification methods have been used to establish mathematical models
or to improve existing models (Banan and Hjelmstad, 1993). Many nondestructive

testing methods are based on the concepts of system identification and parameter

1



estimation. Identification has been used for structural monitoring of load carrying
systems such as aircraft, space structures, buildings, bridges, offshore platforms, and
mechanical systems (Cawley 1985; Chen and Garba 1987; Stubbs, et al. 1989; Natke
1989; Hajela and Soeiro 1990). In offshore structures, attempts have been made to assess
structural damage from changes in the frequency spectrum of the structure to ambient
excitations (Vandiver 1975; Duggan, et al. 1980; Kenley and Dodds 1980). Engineers
have been attracted to such methods because of the extreme difficulty and expense of
under-water inspection. The aerospace and automotive industries extensively use
identification techniques to verify or improve mathematical models for subsequent use
in simulation, design, and control studies (Thoren 1972; Collins, et al. 1974; Sheena, et
al. 1982; Flannelly and Berman 1983; Hashemi-Kia 1988; Kammer, et al. 1988; Stubbs,

et al. 1989; Jiang, et al. 1990; Holkamp and Batill 1991).

System identification is defined by Zadeh (1962) as "the determination on the basis
of input and output, of a system within a specified class of systems, to which the system
under test is equivalent." Equivalence is defined by an error or loss that is a function of
the process and the model input and output. If the value of the loss function is the same
for two models, then they are equivalent (Banan and Hjelmstad, 1993). Parameter
estimation is defined as the determination of values of the parameters that govern the

behavior of the model, assuming that the structure of the model is known (Eykhoff 1974).

System identification is used to model existing structures (Hart and Yao 1977;
Torkamani and Ahmadi 1988), assess structural changes in buildings after earthquakes
(Distefano and Pena-Pardo 1975 and 1976; Beck 1982; DiPasquale and Cakmak 1990),
evaluate seismic vulnerability of existing buildings (Ho and Aktan 1989; Aktan and Ho

1990), and identify critical collapse mechanisms of structures (Ellis, et al. 1990).



Parameter estimation has been used to evaluate performance of bridges from ambient,
earthquake, and force transient responses (Douglas and Reid 1982; Flesch and
Kernbichler 1988; Werner 1989; Raghavendrachar, et al. 1991). Another area of
application for identification techniques is the condition monitoring of machines to
enhance the efficiency of their maintenance and operation (Zimoch 1987; Tustin and
Mercado 1985; Foster and Mottershead 1990; Mottershead 1990). Mathematical models
have been derived to describe the mechanical behavior of composite materials (Hashin
1983; Zhang and Evans 1988; Courage, et al. 1990; Soeiro and Hajela 1990). These
models try to deal with characteristic mechanical behavior including anisotropy,
viscoelasticity, and deterioration phenomena like debonding or delamination.

1.1 Objectives
The main objectives of this thesis are as follows:

- Better understand the effect people jumping and/or dancing in synchronization
has on the response of the TCF Bank Stadium.

- Implement models that capture the behavior of the passive people present as well
as to determine how the location of standing or seated humans affect the
response of a structure, whether they increase or decrease the response, in terms
of displacements, accelerations, shear force or bending moment.

- Comparison between two parameter estimation algorithms from modal data in
order to determine which one would give the best results, analyzing as well the
effect of quantity of measurements, through incompleteness of data, and the

quality of measurements, through noise modeling.



1.2 Organization

Chapter 2 provides with enough background information on the human-structure
interaction problem, discussing the models developed in the past for active and passive
people. In addition the fundamentals for the parameter estimation algorithms is

presented, as well as the two methods that will be used in this study.

Chapter 3 presents the information that was required in order to create the finite
element models of the test subjects, particularly, a three span beam (TSB) supported by

four spring supports and the model for the TCF Bank Stadium.

Chapter 4 is devoted to the results obtained from static and dynamic analyses on
the test structures, implementing the concepts of the human-structure interaction
problem discussed in chapter 2. Comparisons between the static and dynamic analyses
are presented as well as the differences that arise by considering passive people

alongside active people in the structure.

Chapter 5 discusses the results obtained after running the parameter estimation
algorithms for both the TSB and the TCF Bank Stadium, by analyzing the statistical
indices, which are the normal check for this methods in order to see if they provide good

results, and the estimated parameters.

Chapter 6 provides a detail conclusion of the analyses that were carried out in
terms of the human-structure interaction problem and in terms of the parameter

estimation algorithms.



2. LITERATURE REVIEW
2.1 Background and overview

Excessive vibrations can sometimes produce damage to a structure, one example
of this is the accident that happened on April 25, 2008 where a part of a grandstand in
the Guillermo Plazas Alcid Stadium in Neiva, Colombia collapsed during a musical event
killing one person and injuring three more (Ortiz et al. 2009), thus complete and
accurate structural analysis of a structure that is exposed to the dynamic loadings
produced by people jumping/dancing in a synchronized fashion must be performed in
order to determine the level of stresses in critical elements of the structure. Vibrations
can also cause annoyance and discomfort in which case serviceability checks would have
to be strictly followed to determine whether or not a structure is suitable for a certain

type/level of dynamic excitation.

Most of the times these vibrations occur in structures that have a low stiffness
value and correspondingly a low value of the dominant natural frequency and also in
structures that have low damping. In modern stadia structures, aesthetical demands and
the requirement for an unobstructed view for spectators, combined with the fact that the
capacity of a stadium has to be maximized to ensure business profitability, have resulted
in the design of lighter and more slender structures, often including long cantilevers.
These structures often have relatively low natural frequencies that can lead to vibration

problems (Reynolds et al. 2004).
2.2 Human-Structure interaction fundamentals

The presence of spectators in stadia structures can be clearly divided into two:

active and passive crowds (Sim, 2006). It has been reported in (Ellis et al. 2000), that a



passive or stationary crowd will interact with the structure, whereas an active or jumping
crowd will act solely as a load. Next are presented some of the theoretical background
that will be needed in order to properly model both the active and passive crowds in the

TCF Bank Stadium structure.
2.2.1 Active models for people

If we want to analyze the response of any structure to a particular loading type, in
this case human-induced loads, we need to know what loads will act on the structure.
This requires an estimation of the number and weight of people who will be
jumping/dancing in the area of concern, or the load density. Also, there are many
different types of dancing and a wide range of beat frequencies for music; however,

dancing frequencies tend to be in the range 1.5-3.5 Hz (Ellis and Ji, 1994).

There are a number of different dances but, for analytical purposes, it is
convenient to split them into two categories. The first is when the dancer is always in
contact with the floor and the second involves jumping when contact with the floor is not
maintained. The first type of dancing is simple to model and is primarily a sinusoidal
load at the dance frequency (Supplement to the NBC, 1985). The second type of dancing
is more complex and potentially much more severe because energy is input at the dance
frequency and also at multiples of the dance frequency (Ellis and Ji, 1994). Throughout
the rest of this work, attention will be given to the second type of loading since the effect

that it could have on the structure is more severe than the first type of load mentioned.

There are two load models that will be discussed in this section. Both of them
have close forms of the sum of an infinite trigonometric series and it is also illustrated in
(Duarte and Ji, 2009) and (Parkhouse and Ewins, 2006) that using the first few terms is

enough in practice.



The first model assumes that the load time history of the jump/dance can be
described by a high contact force for a certain time t, (contact duration) followed by zero
force when the feet leave the floor. The function given in (Bachmann and Ammann,

1987) within one period is:

K Gsin(at/t 0<t<t
F (t) — p ( p ) p (2.1)
0 tp <t< Tp
where,
Kp is Fmax/G, impact factor
Fmax  is the peak dynamic load
G is the weight of dancers
tp is the contact duration
Tp is the period of dancing load
The contact duration t, can vary from o to Tj, corresponding to different
movements and activities. The contact ratio a is defined as follows:
L,
a=—x1.0 (2.2)
Tp

Thus different contact ratios a characterize different rhythmic activities. For

analysis purposes, it is useful to express Eqn. (2.1) in terms of Fourier series as

< 2n >, . 2N 2
F(t)= G(a0 +>a, cosT—ﬁt +> b, sin T_ﬁtJ = G{a0 +>°r, sin(z_;]—”t + 4, J] (2.3)
n=1 n=1 n=1

p p p



Where the Fourier coefficients and phase lags are determined as follows:

a, = (2.4)

r.=.a+b’ (2.5)

¢, =tan l[%} (2.6)
When 2na =1 for n=1,2,3,..

Then a, =0 bn = aK,

Otherwise

K . _
a - e [cos(2na 1)7[ 1 COS(2n06 +1)” 1} (2.7)
T 2na -1 2na +1
K i — [
b N7 [sm(Zna Yz sin(2na +1)7r} (2.8)
V4 2na -1 2na +1

It was experimentally observed in (Tuan and Saul, 1985) that the mean value of
the time history of a vertical load corresponding to rhythmic jumping was always equal
to the weight of the performer. This was later confirmed in (Ellis and Ji2, 1994).

Expressing this observation analytically gives

p

tp
Tinstin[tﬂJdtzG (2.9)
po



Which reduces to
K,=-— (2.10)

Thus the loads can be determined knowing the weight of the jumper, the period

of the jumping and the contact ratio.

Substituting Eqn. (2.10) into Eqn. (2.3) yields

= 2n >, . 2N 2
F(t)= G[l.O+Zan cosT—ﬁt +> b, sin T—”t] = G{l.0+2rn sin(zTn—”t + 4, j] (2.11)
n=1

p n=1 p n=1 p

a —
r, =+a’ +b? $, = tan ‘{—”J

b,
When 2na =1 for n=123,.
Then A =0 by = 71/
Otherwise i -
Q- Ols{cos(Zna ~Yr-1 cos2na+1)r _1}
” 2na -1 2na +1

b, = OB{sm(Zna ~Uz _sin(2na +1)71

2na -1 2na +1

—

The second model is based on the jumping and bobbing experiment carried out in
the University of Surrey, Parkhouse and Ewins (2006) have given the bouncing load in a
Fourier series form as shown in Eqn. 2.13. All measurements were made on an area, 0.8
m by 0.6 m, consisting of two AMTI BP400600MF-2000 force platforms (Sumit Medical

and Scientific, UK) rigidly fixed with the floor.
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F(t)= G{l.OJrirn cos(2n7zfpt—<,75n )} (2.13)

n=1

Where f,, is the frequency of the dancing/jumping load, r, and @, are both derived
from the mean of the bouncing load time history from the statistical analysis of selected

groups.

Considering both the reliability and the convenience for calculation, it was
concluded by Yang (2010) that the first model presented in equations 2.11 and 2.12 is
recommended for use, however, it may also need some adjustments from practice
because of its indoor test limitations, such as most of their tests carried out on simply

supported reinforced concrete beams and the omission of group effect analysis.
2.2.1.1 Frequency range for active people

Ellis and Ji (2004) suggested that the frequency range for individuals jumping is
approximately 1.5-3.5 Hz, but for a crowd the higher-frequency jumping cannot be
sustained and an upper limit of 2.8 Hz is more realistic. However, it was recognized that
further detailed information was required, examining the actual range at which people
can jump comfortably and where a crowd can achieve some degree of coordination.

To investigate the frequency range, the beat frequencies of a sample of 210 modern
popular songs were examined in (Ginty et al. 2001). The investigation included tests to
assess the frequency ranges for coordinated dance-type loads for individuals, small
groups (aerobics) and large groups (pop concerts). Some of the conclusions from this

work were that the frequency ranges are:

(a) 1.2-2.8 Hz for an individual jumping.
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(b) 1.5-2.5 Hz for a small group jumping (aerobics) with some degree of
coordination.
(c) 1.8-2.3 Hz for a large group jumping (pop concerts) with some degree of

coordination.

For the purpose of this study the frequency range between 1.8 and 2.3 Hz will be
used, since the number of people that can be present in the section of the stadium could

be considered as large (more than 3,000 people).

2.2.1.2 Dynamic crowd effect

In the previous section, the derivation to compute the load produced by one
person jumping was presented, however, when performing and analysis of a stadium
structure or part of the stadium there are more than one people jumping/dancing to the
beat of a particular song, therefore the actual load density and distribution of the crowd
should also be considered. Consideration should also be given to the dynamic crowd
effect, which describes the attenuation of load due to the imperfect coordination between

individuals in a group.

Although, it has been found that dynamic loads induced by groups of people are
higher than those induced by individuals, the human-induced forces do not increase
linearly with the number of people (Sache et al., 2002). This is so even if people are
synchronized by a prompt (Ebrahimpour and Sack, 1992; Kasperski and Niemann, 1993)
that can be provided by music, movements of other people, or perceptible movements of

the occupied structure (Fujino et al. 1993; van Staalduinen and Courage, 1994).

The dynamic crowd effect depends on the coordination of the people in the group,

the type of dancing and the beat frequency of the music. A theoretical investigation
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where the phase lag between individuals was treated as a random variable obeying a
normal distribution, showed a one-third reduction of the crowd loads for a large group of
people (Ji and Ellis, 1993). Furthermore, Annex A of the BS 6399-1:1996, specifies that a
factor of 0.67 should be included when computing the load induced by a crowd of people
jumping/dancing at a specific musical beat so that the effect of lack of synchronization

can be taken into consideration.

Considering the information presented in this section, the model that will be used
throughout the rest of this work is the one presented in the set of equations 2.11 and 2.12,

along with the synchronization factor of 0.67.

2.2.2 Passive models for people

Ellis et al. (2000) performed an experiment on a cantilever grandstand where a
stationary crowd was present. They monitored the grandstand before and after a rugby
match, mainly the vertical response of a cantilever section. They suggested that the
stationary or passive crowd acts as a spring-mass system, in addition to the fact that
passive crowd provides a significant increase in the damping of the entire system. Littler
(2000) presented a similar experiment that was performed in a retractable grandstand.
The results showed the inadequacy of representing a passive crowd just as an added
mass. Reynolds et al. (2004), Sachse et al. (2002), Ellis and Ji (1997) and Sachse (2002)

also agree that a crowd-occupied structure should be modelled as a dynamic system.

In order to determine mathematically the influence of the passive crowd, whether
they are standing or seating, on stadia structures or any other structure, there are a

limited number of dynamic models of human occupants. These models can be divided
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into damped and undamped models (Sache et al., 2003). In this section the damped

models are presented.
2.2.2.1 Damped models

Biomechanical research established that the human body is heavily damped. This
was recognized by civil engineers and led to the development and use of some damped

SDOF models of human occupants (Figures 1, 2 and 3).

Figure 2. 2-DOF (a) and 2-SDOF (b) human whole-body model
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Figure 3. SDOF (a) and 2-SDOF (b) human whole-body model with a non-
vibrating mass

Foschi and Gupta (1987) were the first to use a damped dynamic human model.
This was done to predict the vibration response of wooden floors to heel-drop excitation.
This, and subsequent research by Folz and Foschi (1991) and Foschi et al. (1995) into
response time histories to assess the serviceability of floors led to damped SDOF models
characterized by an assumed lumped mass myu equal to the total mass mr of the
impactor, a viscous dashpot cu = 1.25 kNs/m and a stiffness ku = 40 kN/m (Foschi et al.,

1995).

Falati (1999) added a viscous dashpot to his undamped SDOF model (fu = 10.43
Hz, my = mr/3) presented earlier and thus developed a damped SDOF model (Figure 1)
of a standing (not impacting) person (Table 1). To determine the damping ratio of the
damped SDOF human model, Falati computed responses of the structural DOF of
damped 2-DOF human-structure models and compared them to experimental time
histories. He identified the damping ratio to be within a range from 45% to 55% and

employed the median value of 50% to define a model of a standing person (Table 1).

Another damped SDOF model of a human occupant was used by Brownjohn
(1999) to predict the influence of a standing human occupant on his test structure. For

this purpose, he defined a damped SDOF model assuming the lumped mass my to be the
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total mass mr of the human occupant (Table 1). Brownjohn also choose the stiffness ku
and the viscous damping cy to lead to a natural frequency fu and a damping ratio {u
corresponding to the fundamental mode of a 4-DOF human model given by ISO 7962

(ISO, 1987).

Table 1. Characteristics of damped SDOF models of a standing human occupant

Human Spatial Modal
Model properties properties
Falati (1999) mu=mr/3(25kg) fu=10.43
ka=107kN/m  Hz Gi=50%
cu = 1.636 kNs/m
Brownjohn my = mr (80 kg) fu=4.9 Hz
(1999) ki = 82 kN/m Gi=37%
cu = 1.946 kNs/m

Brownjohn (2001) fitted a damped SDOF model into the apparent mass of a
single person with a total mass of 47 kg standing on a test structure. He obtained the best
SDOF circle-fit for fu= 5.8 Hz, {u = 38% and a lumped mass mu = 60 kg, thus exceeding
the weight of the occupant. Thus, Brownjohn found the natural frequency fu of a SDOF
model of a single standing person to be significantly higher than the 4.9 Hz of his first

human model (Brownjohn, 1999).

To determine the variability of the natural frequencies of standing humans,
Zheng and Brownjohn (2001) estimated natural frequencies fy of 30 standing
individuals. For this purpose, they used a 4 m long reinforced simply-supported concrete
plank that had a fundamental natural frequency of 12.8 Hz. Zheng and Brownjohn
(2001) estimated natural frequencies and damping ratios of the empty structure and of

the structure with each of the 30 test subjects standing at midspan.

15



Zheng and Brownjohn (2001) used these experimental natural frequencies and
damping ratios to compute the natural frequencies fiz and the damping ratios {y of
damped SDOF models of individual occupants. This calculation also used the modal
mass of the fundamental mode of the empty structure, which was probably calculated
from the spatial properties of the structure. Additionally, it required the lumped mass of
the SDOF occupant model to be known. Similar to most other researchers, Zheng and

Brownjohn (2001) set this mass my to be equal to the total mass of the occupant.

Zheng and Brownjohn (2001) concluded that fy and gy of the test subjects are
about 5.24 Hz and 39%, respectively. Thus, the identified natural frequencies fy match
biomechanical research (Tables 2 and 3) more closely than the significantly higher
identified by Ji (1995) and Falati (1999). However, Zheng and Brownjohn (2001) found
no clear dependency of fy on the total mass mr, the height, or the mass/height ratio of

individuals.
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Table 2. Characteristics of biomechanical models of a sitting human subjected to vertical
vibrations. Imperial units were converted into metric units employing Beranek (1988:
appendix B3)

a) Based on the mechanical impedances of 8 men.

b) Based on the mechanical impedances of 11 men.

c) Based on the apparent masses of 60 people.

Model Spatial properties Modal
properties
Coermann (1962) my = 86.2 kg (86200 dyne s2/cm) 1=5.0Hz
Damped SDOF model k;, = 85.25 kN/m (85.25 dyne/cm) G =32%
cu = 1.72 kNs/m (1.72X10°¢ dyne
s/cm)
Suggs et al. (1969) » my; = 36.3 kg (80 1b) fi=4.5Hz
2-SDOF model ki = 28.45 kN/m (1952 1b/ft) G =23%
¢ = 474 Ns/m (32.5 1b s/ft)
mpu, = 12.5 kg (27.6 1b) f, = 5.5 Hz
ku. = 15.03 kN/m (1030 1b/ft) G =31%
cu2 = 271 Ns/m (18.6 1b s/ft)
Wei and Griffin (1998) 9 muo = 4.1kg -
2-SDOF model M = 46.7 kg f, = 4.9 Hz

with non-vibrating mass ke, = 44.115 kKN/m G =53%
cm = 1.522 kNs/m
Wei and Griffin (1998) 9 MHo = 5.6 kg -
~ 2-SDOF model mu; = 36.2 kg fi=4.9 Hz
with non-vibrating mass ke, = 35.007 KN/m 4 =36%
cu = 815 Ns/m
mu. = 8.9 kg f2 =9.7Hz
ki = 33.254 kN/m G =44%

cu2 = 484 Ns/m
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Table 3. Characteristics of human models specified in ISO 5982 (ISO, 1981)

Model Spatial properties Modal
properties
ISO 5982 (ISO 1981): mpy; = 69 kg 1 =5.0 Hz
2-SDOF model ki = 68 kKN/m G =36%
of the seated human body cm = 1.54 KNs/m
mu. = 6 kg f.=10.1Hz
ki = 24 kKN/m = 25%
cuz = 0.19 kNs/m
ISO 5982 (ISO 1981): my; = 62 kg f,=5.0 Hz
2-SDOF model ki = 62 kN/m G=37%
of the stall)ldéng human cnr = 1.46 KNs/m
o mpu. = 13 kg f,=12.5 Hz
ki = 80 kN/m 2 = 46%

cuz = 0.93 kNs/m

2.2.3 Analysis of the human-structure interaction problem

In order to analyze a structure subjected to human loading, more specifically
jumping and/or dancing loads, it is convenient to treat the active people as just load,
whereas the passive people should be considered as a spring-mass-damper system as

reported by Ellis et al. (2000). This can be better described by looking at figure 4.

% % % % % Crowd + SDOF |, Displacement
jumping - structure Acceleration
| | load
l I Interaction
fi
Ms - oree Seated /
l Standing
F x crowd

Figure 4. Passive crowd-SDOF system subjected to crowd jumping load and a
corresponding feedback system representation
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2.3 Serviceability assessment after dynamic analysis

For serviceability assessments related to human perception of vibrations, it is the
acceleration levels which must be determined. However, the question of what are

acceptable vibration levels must then be considered (Ellis and Littler, 2000).

For guidance on acceptable vibration levels in grandstands subject to jumping
loads, it seems appropriate to examine data obtained at such events. A number of
experiments have been undertaken in Germany, (Kasperski M., 1996), and

recommendations for low-frequency vibration are given in Table 4.

Table 4. Reaction of people to various acceleration levels on grandstands

Vibration Reaction
level

<5%g Reasonable limit for passive
persons
<18% g  Disturbing

<35%g  Unacceptable
>35%g  Probably causing panic

2.4 Parameter estimation problem from modal data
2.4.1 Introduction

Very few structural systems can be adequately modeled using theory alone; there
are always parameters in an analytical model, particularly constitutive parameters,
whose values must be assumed or empirically determined. Physical testing of a structure
often provides valuable information that a theory cannot provide. However, test data are
often incomprehensible without a theoretical framework to aid the data reduction.
System identification and parameter estimation are the natural tools for bridging the gap

between an analytical model and test data (Banan and Hjelmstad, 1993).
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To build a mathematical model we begin with generally accepted physical laws. In
structural mechanics these laws include balance of linear and angular momentum,
kinematics of deformation, and the constitutive behavior of materials. The governing
equations, based upon those things that we know well, provide the structure for our
identification model. The aspects of the model that we do not know are parameterized
and left to be estimated from the data. In a test we seek to excite the structure in a
manner that will encourage a mode of response that will help the most in identifying the
parameters of the model. In addition, we try to measure those quantities that are most
indicative of the structural characteristics. It is often important to make those

measurements as accurate as possible (Banan and Hjelmstad, 1993).

Further, it is assumed that the structure is amenable to discretization using the
finite element method. Even though we know that, in general, a real structural system
will behave nonlinearly, one can often justify such a limitation by observing that a linear
model is the first order approximation of any nonlinear system and that most structures
respond linearly over some reasonably interesting range of excitation (Banan and

Hjelmstad, 1993).

One of the greatest challenges in performing a test on a large structural system
lies in exciting the structure. A modal dynamic test relies on resonant excitation of the
structure. The dynamic magnification at resonance for lightly damped structures is easily
accomplished with a modest force. Such a force might be generated by rotating an
eccentric mass at a fixed resonant frequency. Many modes can be excited by resonance,
provided the integrity of the connection between the structure and the exciting device is
not compromised by the motion. Some modal tests use free vibration data, generated, for

example by imparting an initial displacement or an initial velocity to the structure.
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Imparting an initial displacement is easily done in a laboratory, but may be impossible in
the field. Imparting an initial velocity can be accomplished using falling weights or by
impulsive forces generated by explosive cartridges or small rockets. For most structures,
only the lowest few modes of vibration can be excited in free vibration (Banan and

Hjelmstad, 1993).

The process of system identification consists of three main stages (Banan and
Hjelmstad, 1993); (1) defining a model and arranging some experiments to measure the
response of the system (model selection), (2) using the chosen model and the measured
response to estimate the unknown parameters of the model (parameter estimation), and

finally (3) validating and refining the model if necessary (diagnostic check).

A model is a representation of the essential aspects of a system that contains
knowledge of that system in a usable form (Eykhoff 1974). Model selection is basically
governed by three choices (Banan and Hjelmstad, 1993): (1) the candidate class of
models, (2) the structure and size of the chosen model, and (3) parameterization of the
chosen model. The intended use of the model usually dictates the class of the model.
Choosing the size of the model is not a trivial problem because the model is often a
representation of an unknown process. The model should include only the essential
features of the real system to avoid introducing unnecessary complication. The
parameterization of the model should be guided by three important objectives
(Niederlinski and Hajdasinski 1979): (1) the parameterization should be universal, i.e.
the model should be applicable to all systems in the same class, (2) the number of
parameters should be in accord with the limited information available, and (3) the model

should be identifiable from the available information.
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The main goal of designing an experiment is to provide maximum information
about the parameters of the system to be identified. There are many factors involving in
the design of an experiment. These include the intended application of the results, prior
knowledge about the system, the structure of the model, the measure of equivalence to
the real system, the parameter estimation method, and the operational constraints of the

system (Banan and Hjelmstad, 1993).

The essence of building a model for a real system is its capability to simulate
and/or to predict the behavior of the system. The performance of the model can be
evaluated by a loss function that indicates how well the model fulfills the intended tasks.
It is natural to minimize the discrepancy between the model and the system by tuning
the parameters of the model. The essence of parameter estimation is to find parameters
which minimize a scalar measure of discrepancy known as the criterion of equivalency or
loss function. A procedure for estimating parameters is referred to as a parameter
estimator (Banan and Hjelmstad, 1993). In the statistical literature, a number of
different estimators have been developed. These methods differ predominantly in the
criterion of equivalency and in the use of available prior information about the statistics

of the measurements and the parameters.

There are two basic approaches for estimating the parameters: the off-line or
batch method and the on-line or recursive method. In the batch approach the
computational operations are carried out on the complete set of measurements as a
whole. Another way of processing the measurements is to continuously update the
estimation of parameters while working serially through the measurements. The
recursive approach generates an updated estimation as it receives new information. The

batch method is computationally more efficient and robust than the recursive method.
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However, recursive methods are popular in the field of control and automation because

they do not require the storage of raw data.

A model obtained from the identification process has to be validated to ensure
that it describes the system suitably for its intended application (Banan and Hjelmstad,
1993). Model testing is the most difficult phase of the identification process and can be
very subjective. In general, there are two approaches to examine the identified model.
Compare the results of the model with the results of the best models from the other
classes of models, or decide whether the properties of the model meet some reasonable
requirements such as cross-validation, residuals, and consistency with a priori
knowledge not used in the estimation. Model validation is subjective and, regardless of
the validation criteria, one must judge for one's self to what extend the model really

explains the behavior of the system (Banan and Hjelmstad, 1993).
2.4.2 Parameter estimation algorithms

In undamped free vibration a structure responds in modes governed by the

following discrete eigenvalue problem

K(X)Jl :ﬂviMui i=1,...,nmd (2-14)

Where nmd is the number of measured modes, the eigenvalue A; is the square of
the ith angular frequency, ui(nq x 1) is the ith mode shape (eigenvector), K(nq x nq) is the
stiffness matrix, x is the vector of unknown constitutive parameters with dimension np,
matrix M(nq x ng) is the mass matrix, and nq is the number of degrees of freedom. The
eigenvalue problem has nq eigenpairs (A, u) for a positive definite M and a positive semi-
definite K matrix. One will generally not have a complete set of measured eigenpairs (A,

ui), but rather a subset of them numbering nmd<ng, which might not contain all the
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modes between the largest and the smallest measured frequencies. It is assumed that the
mass matrix is completely known and only the stiffness parameters of the structure need

to be estimated.

One of the main difficulties in estimating the unknown parameters from modal
data is that the mode shapes u; are often sparsely sampled in space. There are several
reasons why sparsity of measurement locations is not exceptional. First, there may be
regions of the structure that are inaccessible because they lie on the interior of a solid
domain. Second, certain types of measurements may be impractical to make because of
technological limitations, e.g. nodal rotations. Third, the number of sensors may be
limited due to their cost. Even if one measures displacements at all of the degrees of
freedom of a model, these measurements become sparse if we subdivide the mesh of the

model.

To overcome the problem of incomplete measurements, Banan and Hjelmstad

(1993) partitioned the mode shape vector into two parts as follows

u; = {H =u, (@) (2.15)

Where lji (ﬁd Xl) and U; (ﬁd Xl) are the vectors of measured and unmeasured modal

displacements, respectively and ﬁd and N are the number of measured and unmeasured

degrees of freedom, respectively. The notation indicates that the total displacement
vector u is a function of the unknown displacements. For practical purposes it is assumed

that this partitioning is fixed for all measured modes.

The discrete governing equation of the finite element model of a structure for

undamped free vibration is given in Eqn. (2.14) which is refer to as the model equation.
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Now, the known mass matrix of the model is partitioned into two matrices: a matrix
corresponding to the measured displacements M (nd XAy )and a matrix corresponding to

the unmeasured displacements I\W(nd Xn, )and rewrite Eqn. (2.14) based on the partition

in Eqn. (2.15) as follows

K(X)Ji :j’i[m O}Ji +ﬂ,,[0 M}Ji i=1,...,nmd (2.16)
In the right hand side of Eqn. (2.16) the first term is a completely known vector

and the second term contains the unknown vector U; . Now, arranging Eqn. (2.16) we

have

[K(x)-4f0 M, =AM o (2.17)

And define a modified stiffness matrix K;"(x) and a force vector f;* as follows

*

K/ (x)=K(x)-40 M] (2.18)

fi* =4 [M O}Ji

By substituting equations (2.18) into Eqn. (2.17) the modified model equation

becomes (Banan and Hjelmstad, 1993)
K (x), = f” i=1,....nmd (2.19)

Which is almost the same as the governing equation of a structure under nmd
static load cases. The only difference between the modified model equation and a static
equilibrium equation is in the definition of the stiffness matrix. In Eqn. (2.19) the

modified stiffness matrix is a function of the eigenvalues, changing for each mode. The
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stiffness matrix for a static problem is fixed for all load cases. All the operations used to
derive Eqn. (2.19) from Eqn. (2.14) are reversible. If one finds a set of parameters x that
satisfies the modified model Eqn. (2.19), these parameters also satisfy the eigenvalue
problem (2.14). From now on Eqn. (2.19) is referred to as the model equation for an

undamped free-vibration experiment.

Consider a structure (sometime referred to as the real structure even though a
simulation model will be used) subjected to N different excitation cases and the response
at certain locations has been observed. Where N will be the number of observation sets:
The number of measured modes for the free vibration problem. A finite element model of
the subject structure is available, parameterized by certain constitutive properties. The
unknown parameters of the finite element model are estimated by minimizing a scalar
loss function J subject to a set of constraints, where the loss function indicates how well
the model equation is satisfied. The parameter estimation problem can then be

expressed as follows:

1 N
mir(li[r)ﬂze J(X’U):Ezai ||€i (x,T, X|z (2.15)
xu i=1

subject to c(x)<o0

The loss function J is the weighted summation of L. norms of the individual error
functions e for the various observation sets. These error functions reflect the discrepancy
between the estimated response of the mathematical model and the observations from

the real structure, and are a function of the constitutive parameters x of the model as well

as the unmeasured response U of the structure.
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The weight @; in Eqn. (2.15) reflects the degree of confidence to the ith set of

observations. For example, in a free vibration experiment, since the lower modes are
easy to measure reliably, their weights might be chosen larger than the weights for the
higher modes. In a statistical sense, the best values for the weights are the inverse of the

variance of the error functions.

The constraints c(x) are used to enforce a priori knowledge of the parameters.
The bounding constraints are the ones that are used for most problems for the unknown

constitutive parameters,

(2.16)

IX
IA
X
IA
X

Where x and X are the lower and upper bound vectors, respectively for the

unknown parameters. These bounds define the feasible region and are important
because they eliminate the possibility of converging to physically unreasonable solutions.
For structural systems, if the constitutive, damping, and mass parameters are chosen to

be the parameters of the model, the lower bound x might be chosen greater than or equal

to zero because theory insists that these parameters be positive. The upper bound X is
more difficult to select, but might, for example, be chosen in the neighborhood of the

nominal design values.

In order to solve the nonlinear constrained optimization problem described in
Eqn. (2.15), the Matlab® Optimization Toolbox was employed using the Sequential
Quadratic Programming (SQP). Appendix A present the basic theory behind the

algorithm.
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2.4.2.1 Equation Error Estimator (EEE)

Banan and Hjelmstad (1993) proposed this method, where they defined an error

function e; based on the residual force vector for mode i as follows
ei(X,Ui):K:(X)Ji(Ui)— fi* i=1..nmd (2.17)

Where x is the vector of unknown elemental constitutive parameters. The error

function represents the amount of residual developed by failure to satisfy the model

equation. Let U = (Ul, Uy ye Uy )be the vector of unmeasured modal degrees of freedom

for all measured modes. Based on the general form of the estimation problem (2.15), the
nonlinear constrained optimization problem for the equation error estimator for modal

parameter estimation can be stated as

2

nmd
min imize I(x,0)= %Zai HKi*(X)ui(Ui)_ fi (2.18)
=

X, u

subject to X<X<X

Where x and X are the prescribed vectors of lower and upper bounds of the

unknown constitutive parameters, respectively and a; is the weight associated to the ith
mode which reflects the degree of confidence of the ith measured mode. The estimation
problem (2.18) tries to satisfy the model equation in a least squares sense. The equation
error estimator simultaneously estimates the unknown constitutive parameters and the
unmeasured displacements for all measured modes. By adding simple bounding
constraints on the unknown constitutive parameters the possibility of converging to

infeasible solutions is eliminated.
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2.4.2.2 Output Error Estimator (OEE)

Banan and Hjelmstad (1993) defined an error function e to be the difference

between the measured and computed mode shapes at the locations where the physical

measurements are taken. They define a Boolean matrix Q such that lji = QUi . In other
words, Q extracts the measured modal deformation lji from the complete vector of

modal degrees of freedom U; . It is assumed that Q is the same for all modes. The error

function for the output error estimator is given by the following expression
e,(x)= QK (x)f,” -, (2.19)

The vector of unknown variables contains only the unknown constitutive
parameters x for the output error estimator. Thus, the nonlinear constrained

optimization problem for the output error estimator can be stated as

1 1 o A2
min imize J(X)z > a, HQKi (X)fi -U; (2.20)
X i=1
subjectto X<Xx<X

Where the bound vectors X and X and the weights a; are the same as those

defined in Eqn. (2.18). The number of unknowns for the output error estimator is smaller
than the number of unknowns for the equation error estimator. Consequently, the
solution of the former is carried out in a space of smaller dimensional than the latter. On
the other hand, the loss function of the output error estimator has a higher degree of

nonlinearity than the loss function of the equation error estimator.
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2.4.2.3 Initial values and identifiability criterion

The equation error estimator and the output error estimator are based on
nonlinear constrained optimization problems. Like any iterative process, to solve this
nonlinear problem, initial values for the unknown variables are needed. The choice of
starting point is one of the important factors which control the speed of convergence of

the algorithm, and one should employ any prior knowledge about the parameters.

Both of the estimators need initial values for the unknown constitutive
parameters. One could use design values as a reasonable choice for the initial values of
the unknown parameters. One could also use analytical methods and engineering
modeling to generate initial values. In the absence of any a priori knowledge, one must
guess the initial values for the unknown constitutive parameters x. If for some parts of
the structure parameters are known, then the known parameters x, can be used to guess

initial values x° for the unknown parameters with the same nature.

The equation error estimator also needs initial values for the unmeasured modal
displacementsT°. Banan and Hjelmstad (1993) found that the best way to generate U°is
to compute the modal response from the model equation (2.19), with the modified
stiffness matrix K* constructed analytically from the known parameters X, and initial

values of the unknown parameters x°. To wit,

o’ = PKi*_l(xo,x")fi* i=1...,nmd (2.21)
Where the matrix P is a Boolean matrix that picks the unmeasured displacements

U from the total computed displacements U’ .
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Both estimators use the sequential quadratic programming (SQP) algorithm to
minimize the loss function. The SQP algorithm is an iterative gradient search strategy
that uses the local information about the gradient and curvature of the loss function at
the current point in the space of optimization variables and computes a direction vector

and a step length to reach the next point.

The estimators for modal problems are in the class of least-squares estimators,
and thus cannot reliably make an estimation if less than a certain minimum amount of
data are available. Confidence in the estimates increases with the amount of information

above this minimum level. The basic identifiability criterion is

(nmdxﬁd)z n (2.22)

p
Where (nm dx iy ) is the number of independent measurements and n;, is the

number of unknown constitutive parameters. The identifiability criterion (2.22) is a
quantitative index for the richness of the available information. If this criterion is not
satisfied, then the estimates are totally unreliable. However, satisfaction of the

identifiability criterion does not guarantee reliable estimates.
2.4.3 Simulation environment

The behavior of a parameter estimation procedure depends on two factors: the
mathematical model and the richness of the data. The selection of an adequate model is
difficult and often requires the intuition and judgement of an expert. The subjective step
of model selection is avoided completely by simulation so that the focus can be on the
problem of evaluating the issue of the richness of the data (Banan and Hjelmstad, 1993).
To minimize model selection as a source of error, “real” data is generated by simulation

with the model that will be used as the basis of the parameter estimation scheme (the
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model created in Staad Pro). Thus, the assumed mathematical model is an exact
representation of the "real" structure and is valid. The only factor affecting the behavior

of the parameter estimation algorithm, then, is the richness of the measurements.

The term richness is used as a descriptor for the information content in the data.
It is related not only to the quantity of measurements but also to the quality of those
measurements. One compromise to the quality of the data comes from the noise (e.g.
from experimental errors) in the measurements. Experimental errors are developed from

a variety of sources. Some of the errors are systematic and some of them are random.

Whenever some aspect of a given problem has a random nature, the solution to
that problem is a random variable. In a parameter estimation problem, the
measurements can be considered to have a random error component, therefore the
estimated parameters are random variables. The essential problem is to discover the
statistical properties of the solution, in this case the statistics of the estimated
parameters. Determination of the statistics of the solution is particularly difficult when
the problem is nonlinear or complex (or both). Monte Carlo simulation provides a useful

tool for these problems.

In the parameter estimation problem, the parameters of a finite element model
are estimated, by solving the constrained nonlinear optimization problem expressed by
Eqn. (2.15). For a given finite element model, set of load cases, bounding constraints,
and initial values, the solution x is a function only of the response u measured at certain
locations. These response values will be polluted with noise. In the simulation
environment the noisy response u is generated by adding a noise vector n to the

computed response of the given finite element model u, as follows
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U=u, +n (2.23)

Where n is a random vector with zero expected value and finite known variance.
As schematically shown in Fig. 5, the experimental errors are modeled as a random noise
vector n with an assumed distribution function. The response u, computed in accord with

Fig. 5, is taken to be the measured response of the real structure.

Simulated Struchare
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Figure 5. Simulation of actual response of the structure

The estimated parameters x are functions of the noisy response u which is a
random vector. Therefore, the solution x becomes a random vector whose distribution
directly depends on the distribution of the noise vector n and the mathematical
characteristics of the estimation problem (2.15). Through Monte Carlo simulation a
population of random solutions x from noisy data whose statistics are completely known
can be generated. Each individual member of the solution population corresponds to a

certain noise vector.

For a given mathematical model, bounding constraints, initial values, and load
cases, Monte Carlo simulation uses a random number generator to produce a sequence

of noisy responses as follows

u' =UO-H1t t=1,...T (2.24)
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Where nt is the tth noise vector computed using the random number generator as
explained in the next section and T is the sample size. For each individual noisy response
ut, the parameter estimation algorithm computes an estimate of the parameters x* of the
mathematical model. Hence, the simulation develops a sample {xt, t =1,...,T} of estimates
(i.e. the solution population). Based on the law of large numbers, by increasing the
sample size T, the statistical indices of the sample (e.g. the mean and standard deviation)
converge to the actual statistics of the population. Monte Carlo simulation does not need
the explicit form of the relationship among inputs and outputs of the algorithm and
approximates the distribution of the estimated parameters by executing the algorithm
repeatedly, each time altering only the values of the imposed noise. An individual
execution of the estimator is referred to as a trial in the subsequent sections. The sample
size T (number of trials) should be large enough to establish statistical significance of the
estimates. The variation of the statistical indices of the sample with respect to the sample

size becomes steady when the number of trials is large enough.

2.4.3.1 Noise modeling

In the simulation study, real measurements are not available, so noisy response is
simulated by adding random noise to the computed response. There are many types of
errors that can be introduced into a mathematical model to simulate noisy
measurements. Due to the complexity of the measurement process, any single type of
random error would fall short of modeling the actual error experienced in the field.
Therefore, two simple types of random noise (error) are used to bound the problem of
noise modeling. The first type is an absolute error of amplitude A multiplying a uniform

random variable E that takes values between plus and minus one. The error is added to
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the computed response u, to simulate noisy measurements. Thus, the simulated absolute

measurement error is modeled as

uit =U, +/1/§it i=1,---,nd t=1,...T (2.25)

Where ﬁd is the number of measured degrees of freedom for a load case, and T'is

the sample size for the simulation. The random variable € is constructed using a pseudo-
random number generator and has a zero expected value and variance equal to 1/3.

Equation (2.25) shows that errors added at each measured degree of freedom for each

1ot .
trial £ are independent from one another.

Absolute errors model actual experimental errors well when all instruments have
the same sensitivity and are used to measure responses of the same type and order of
magnitude. If some of the measurements are small, the absolute errors tend to
overwhelm the actual responses. The smaller deformations may be unfairly penalized,
because in practice, when the deformations are suspected to be small, the sensors would
be set to a greater sensitivity. Also, if the same error amplitude is applied to
measurements of different types (such as displacements and rotations) the errors can

completely dominate the smaller response.

The second type of error is the proportional error. This error is a fraction of the
computed response multiplying a uniform random variable § defined in Eqn. (2.25). The

simulated proportional measurement error is given by

uf =u, 1+1&) i=1...A, t=1...T (2.26)
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Where A is a fraction of the computed deformation u, which controls the
magnitude of error. Proportional errors are representative of actual measurement errors
when all instruments are set to optimal sensitivity. True experimental errors lie
somewhere between the bounds of absolute and proportional errors. The amplitude of
absolute error ), and the fraction parameter of proportional error A are referred to as

the magnitude of noise in the rest of this study.
2.4.3.2 Statistical indices

In a noisy environment, the parameters being estimated behave as random
variables. To study estimation algorithms and to find trends in the behavior of these
estimators, statistical indices can be used to characterize the results. A few appropriate
statistical indices are introduced for use in probing the behavior of the algorithms by

simulation (Banan and Hjelmstad, 1993).

The mean average X of the estimation sample {x!, t = 1,..., T} approximates the

expected value of the estimated parameters E[x] and is computed as
X=X (2.27)

Where xt is the vector of estimates for the tth trial. We refer to X as the vector of
estimated parameters for a complete ensemble of trials. The mean average indicates the
centroid of the distribution of the estimates in the space of parameters for a given

experiment.
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The quadratic bias ||E[X] - )”(||2 is a measure of the distance between the centroid

(expected value) of the estimates and the actual parametersX (which are known since

simulation is being done). The average root quadratic bias (RQB) is defined as

[x — %

RQB= (2.28)

n, X

Where n, is the number of parameters and ||)_( — )A(” is the root quadratic bias of

the sample. The RQB is normalized with respect to the norm of actual parameters.

The average standard deviation (SD) of the estimates, normalized with respect to

”)2” is given by

SD{Tllfz“””(: |

Ny

A (2.29)
X

The SD indicates the standard deviation, an approximation of the square root of
the variance E[(x — E[x])?] of the estimates, and is a measure of scatter of the
distribution of the estimates around the expected value. Bias and standard deviation are
quantitative measures of accuracy and precision of an estimator, respectively. The

smaller bias and standard deviation are, the more accurate and precise an estimator is.

When the set of parameters contains different types of quantities, such as axial,
shear, or flexural stiffnesses, the statistical indices are computed by weighted averaging.
For example, if there are three different types of parameters, then the average root

quadratic bias is calculated as follows
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3
RQB= niZn; RQB, (2.30)

Where N, is the number of ith type parameters and RQB; is computed based on

Eqn. (2.28) whose variables are calculated for the set of estimates and actual values for

the ith type of parameters.
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3. FINITE ELEMENT MODELS FOR THE TCF BANK STADIUM AND THE

THREE SPAN BEAM (TSB)

3.1 Finite element model for TCF Bank Stadium

TCF Bank Stadium is a relatively new stadium constructed in 2009 that has a
current capacity of 50,805 people with the possibility to increase it to 80,000 in the near

future. Figure 6 provides a plan view of the stadium as it was in 2013.

Figure 6. Plan View of the TCF Bank Stadium 2013

The girders and the risers that make the upper and lower decks in addition to
some columns in the lower deck were constructed using a precast, post-tensioned

concrete structural system. Furthermore, structural steel was used in elements like
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columns in the upper level, the flooring system in areas such as the main concourse and
elements to provide lateral bracing in specific locations of the stadium. For this study,
special consideration will be given to the east end of the stadium where the student
section is located due to the fact that young people would be likely more involved in

periodic or rhythmic motions such as jumping or dancing.

The east lower deck is broken up into 8 typical sections. Each section is composed
of precast seating single risers (stem equal to zero) resting on precast, post-tensioned,
prismatic, concrete girders (rakers) or in some cases precast wall panels of 6” in
thickness. There are also precast columns that support the main concrete girders. Figure

7 shows an elevation view of the lower deck in the east end of the stadium.

.

gw =z I Single Risers

Girders 4|> T=n Precast Wall
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Column Precast
Columns

Figure 7. Elevation view of the lower deck in east end of stadium

Likewise the east upper deck is broken up into 10 typical sections. Each section is
composed of precast seating single risers (with stem different than zero) resting on

precast, post-tensioned, prismatic, concrete girders. Steel columns support the main
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girders in the upper deck. Figure 8 shows an elevation view of the upper deck in the east

end of the stadium.

Single Risers
w/stem

Girders

\ Steel

Column

Figure 8. Elevation view of the upper deck in east end of stadium

The dimensions of the single risers with and without stem are presented in figure

Figure 9. a) Single riser without stem and b) Single riser with stem
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The finite element model of the east end of the stadium is created using the
structural analysis program Staad.Pro V8i. To create the model, construction drawings of
the east lower and upper decks of the TCF Bank Stadium were obtained from the

consulting firm Magnusson Klemencic Associates.

All structural precast concrete elements (columns, risers, girders, walls) should
have a compressive strength of 5,000 psi as per construction drawings and reinforced
with ASTM A615, grade 60 steel in accordance with ACI-318 2005. The unit weight of
concrete is considered as 150 pounds per cubic foot. In addition, precast units contain
prestress as required by the contractor’s design, which makes difficult the task of

knowing exactly the reinforcement an element has.

All steel conforms to the following (E = 29x10° psi):
e W Shapes ASTM A992, Fy = 50 ksi
ASTM A913, Fy = 50 ksi
e Square or rectangular structural tube (HSS) = ASTM A500, Grade B, Fy = 46 ksi
e Round structural tube (HSS) ASTM A500, Grade B, Fy = 42 ksi

The precast girders used to construct the stadium are prismatic members, which
made the modeling process easy to carry out with the only exception of the girders
located in the cantilever upper deck section. In that case the girder was broken up into
smaller elements, each with different cross sectional properties obtained through linear
interpolation given the dimensions of the element as per the elevation view of the upper
deck as in figure 8, and using the average cross sectional area and moment of inertia of
that smaller element. The modulus of elasticity associated with the concrete is based on
the concrete specified design strength of 5,000 psi and calculated using the ACI 318-05

recommended equation:
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E, =(w, )°(33)/T'c)=(150/*(33)/5,000) = 4,28682%%s

The girder in the lower deck is modeled with hinges at the nodes where there is a
column supporting it due to the fact that the girder is not a continuous element.
However, the girders in the upper deck are modeled as a continuous element as shown in
the construction drawings. The risers are modeled with hinges at both ends where they
are supported by the girders, in other words, as simply supported beams. The precast
and steel columns are modeled in such a way that the top end of the elements is released
from bending moments, due to the fact that the connection between precast girders and
columns is not fixed, actually simply supported, as opposed to cast in place elements

where the degree of fixity is higher.

The fact that only the east end of the stadium is modeled brings one difficulty as
to what would be the appropriate boundary conditions where the “cut” was made. The

approach that was used to model this is the following:

e The complete beam (riser) that is truncated is analyzed in order to
determine the deflection in the vertical direction due to concentrated
vertical loads resembling the crowd loading using the method of virtual
work or the “dummy load” at the location of the cut.

e After computing the deflection in terms of the Young’s modulus and the
moment of inertia, we compute the equivalent stiffness of the beam using
the relation ku = f, where k is the stiffness, u is the vertical displacement
and f is the set of concentrated forces acting on the beam. Note that the
concentrated forces are assumed to be equal.

¢ Having computed the stiffness, we put linear springs at the locations

where the cut was made in the global directions (Y, X and Z). One
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assumption made here is that the local x and z axes of the risers do not

vary too much from the X and Z global directions.

Figure 10 shows the beam used to determine the spring constants for the risers in
the upper deck of the east end of the stadium using the procedure discussed previously.
The red dot shown in the figure represents the location where the displacement was

calculated.
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Figure 10. Beam used to compute spring constant in the upper deck of stadium

Similarly, figure 11 shows the beam used to determine the spring constants for the
risers in the lower deck of the east end of the stadium. Again the red dot indicates the

location where the displacement was computed.
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Figure 11. Beam used to compute spring constant in the lower deck of stadium

The spring constants obtained were k = 9,907.45 1b/in for the risers in the upper
deck of the stadium and k = 5,643.21 1b/in for the risers in the lower deck. For ease of
analysis, these spring constants will be applied in the three global directions. Figure 12

shows how the program Staad.Pro identifies linear springs.
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Figure 12. Identification of linear springs in Staad.Pro (X = red, Y = green, Z = blue)

Figure 13 shows the complete model of the east end of the TCF Bank Stadium that
captures the presence of the linear springs as computed previously and the member

releases (hinges) wherever marked on the construction drawings.
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Figure 13. Complete model of the east end of the stadium in Staad.Pro
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3.2 Finite element model for TSB

In order to gain more insight on the problem at hand and also to check the
solution given by the Matlab program created to perform a modal analysis against the
solution given by Staad.Pro, a three span beam model with the element properties of a
riser in the upper deck will be used. The reason why a three span beam model is selected
is mainly because that is the area where the length of the beams is greater, close to 43
feet, thus it is expected a higher response, whether it is in terms of displacements,

accelerations or stresses.

Figure 14 presents the three span beam that will be used. It is interesting to note
that the supports are modeled as linear springs since the risers are supported by the
girders and also that there are hinges at both ends of the beams since the connection

does not provide a total fixity condition, simulating a simply supported beam.

1536"

512" | 512" ! 512"
I I

Figure 14. Three span beam model

Riser of upper deck

In order to know the stiffness of those linear springs a procedure similar to that
explained in the previous section is performed on the girders. The only difference being
that the average stiffness is taken since there are several risers that are supported by the
girder. Figure 15 shows the model of the girder used to compute the stiffness used in the

TSB.
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Figure 15. Girder model to compute the stiffness of the linear springs in the TSB

All of the concentrated loads are equal to 0.867F due to the fact that the girder
makes an angle of 29.885° with the horizontal. Using the method of virtual work the
displacements are computed at the locations where the red dots are present. Knowing
the 7 displacements in terms of the force F, elastic modulus E and moment of inertia I,
we get 7 stiffnesses which later the average is computed and that is the value used for the

TSB model shown in figure 14. The stiffness thus obtained is equal to 71,621.71 Ib/in.

47



4. DYNAMIC ANALYSIS OF THE TCF BANK STADIUM AND TSB USING

HUMAN-STRUCTURE INTERACTION CONCEPTS
4.1 Results for the TSB from static analysis

Just for the sake of comparison, a static analysis was performed on the TSB with
the loading of 100 Ib/ft2 of live load specified in the ASCE 7-10. The load factors were
taken as 1.2 for the dead load and 1.6 for the live load, as per the current codes (ASCE 7-
10, ACI 318-10). In addition, load factors of 1.4 and 1.7 for the dead and live loads
respectively were used as per the older versions of the previously mentioned codes or
standards. Table 5 presents the results of the static analysis in terms of the maximum

displacement, maximum shear force and maximum bending moment in one of the risers

of the upper level.
Table 5. Results from static analysis in the TSB
Static Analysis Max. Max. Shear Max. Bending
Displacement Force (1b) Moment (kips
(in) in)

Static (1.2 DL, 1.6 1.58 - 17,672.92 2,262.13
LL)

Older load factors

Static (1.4 DL, 1.7 1.76 - 19,718.99 2,524.03
LL)

4.2 Results for the TSB from dynamic analysis
4.2.1 All people in the TSB active

Table 6 presents the results of the dynamic analysis of the TSB for the case of

having 60 people active (jumping/dancing) for different excitation frequencies.
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Table 6. Results from dynamic analysis in the TSB for different excitation frequencies

All active Max. Max. Max. Max. Bending
(60 Displacement Acceleration Shear Moment (kips
people) (in) (m/s2) Force (1Ib) in)
1.8Hz 1.01 1.74 10,354.84 1,579.60
1.97Hz 1.55 3.26 15,881.61 2,421.46
2.13Hz 1.66 4.19 17,135.09 2,622.28
2.3Hz 0.90 2.31 9,190.56 1,402.71

One thing worth mentioning is that the first natural frequency of the TSB is 4.327
Hz. By looking at table 6 we can see that the 2.13 Hz excitation frequency produces the
highest response, because the second harmonics (4.26 Hz) of this frequency is very close
to the natural frequency of the TSB, therefore the possibility of resonance is increased for
this particular case. Furthermore, we can see that the acceleration of 4.19 m/s2 is more
than the limiting value given by Kasperski M. (1996) in table 4 of 35% of g (3.43 m/s2).
In addition, this response is greater than the one predicted by the static analysis from
table 5, using the load factors of 1.2 for dead load and 1.6 for live load, which means that
a dynamic analysis must be performed in order to study the effects of people

jumping/dancing at different frequencies.

4.2.2 Maximum response in the TSB for different locations of active/passive

people

Several cases were studied in order to determine how much of active and passive
people would be required so that the response would be a maximum, whether it is in
terms of displacement, acceleration, shear force and bending moment. Additionally, the
location of the active and passive people was varied along the length of the TSB to see if

this affects the response as well. The results are shown in table 7.
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Table 7. Results from dynamic analysis in the TSB for different excitation frequencies,
different number of active and passive people, and different location of the people

With some Max. Max. Max. Max. Bending
passive Displacement Acceleration Shear Moment (Kkips
people (in) (m/s2) Force in)

(standing) (Ib)

1.80 Hz 1.01 1.74 10,354.84 1,579.60
1.97 Hz 1.55 3.26 15,881.61 2,421.46
2.13 Hz 1.67 4.20 18,313.2 2,739.78
2.30 Hz 1.15 3.29 13,794.3 2,133.30

For the cases of having an excitation frequency of 1.8 and 1.97 Hz, the maximum
response was the same as the case of having all active people (table 6). However, for the
cases of 2.13 and 2.30 Hz in excitation frequency, the maximum response was obtained
by reducing the amount of active people and by changing the location of the passive

people as can be seen in figures 16 and 17.

Figure 16. Active people and passive people configuration for an excitation frequency of
2.13 Hz that gives maximum response

Figure 17. Active people and passive people configuration for an excitation frequency of
2.30 Hz that gives maximum response

It is interesting to note as well that the natural frequencies for the TSB shown in
figures 16 and 17 got reduced, due to the presence of passive people. The frequencies
were 4.035 Hz and 3.987 Hz for the configurations in figures 16 and 17, respectively.

Even though the second harmonic of the two excitation frequencies is not exactly equal
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to the natural frequency of the TSB, it was observed that the frequencies of the higher
modes (especially 2 and 3) were very close to the excitation frequencies of the active

people.

4.2.3 Response in the TSB for different locations with a ratio active/passive

people equal to one

The case of having a ratio of active to passive people equal to one was studied, in
other words, 30 people active and 30 people passive in the TSB. The results were carried

out for the four excitation frequencies.

Figures 18 and 19 show the configurations of active and passive people that led to
minimum and maximum responses, respectively for an excitation frequency of 1.80 Hz.

In addition, table 8 shows the results for this excitation frequency.

Figure 18. Configuration of active/passive people for minimum response (Excitation
frequency of 1.8 Hz)

Figure 19. Configuration of active/passive people for maximum response (Excitation
frequency of 1.8 Hz)

Table 8. Minimum and maximum response from dynamic analysis in the TSB for an
active to passive ratio of one and excitation frequency of 1.8 Hz

Max. Vertical Max. Max. Max. Bending
Displacement Acceleration Shear moment (Kkip in)
(in) (m/s2?) Force (1b)
Min 0.627 1.07 6,517.30 977.59
Max 0.687 1.3155 7,326.08 1,114.58
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For this case, the difference in responses is not that much different, possibly due
to the fact that the natural frequencies of the beams in figures 18 and 19 are 4.055 and

4.027 Hz, respectively which are roughly equal, thus similar responses are present.

Figures 20 and 21 show the configurations of active and passive people that led to
minimum and maximum responses, respectively for an excitation frequency of 1.97 Hz,

as well as table 9 where the responses are presented.

Figure 20. Configuration of active/passive people for minimum response (Excitation
frequency of 1.97 Hz)

Figure 21. Configuration of active/passive people for maximum response (Excitation
frequency of 1.97 Hz)

Table 9. Minimum and maximum response from dynamic analysis in the TSB for an
active to passive ratio of one and excitation frequency of 1.97 Hz

Max. Vertical Max. Max. Max. Bending
Displacement  Acceleration Shear moment (kip in)
(in) (m/s2) Force (1b)
Min 0.739 1.485 8,530.80 1,329.60
Max 1.06 2.31 11,671.10 1,685.40

In this case the difference is more pronounced since the natural frequency of the
TSB in figure 21 is 3.947 Hz, which is almost the same as the second harmonic of the
excitation frequency of 1.97 Hz, whereas the frequency of the TSB in figure 20 is 4.072

Hz.
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Furthermore, figures 22 and 23 show the configurations of active and passive
people that led to minimum and maximum responses, respectively for an excitation

frequency of 2.13 Hz, in addition to table 10 where the responses are presented.

Figure 22. Configuration of active/passive people for minimum response (Excitation
frequency of 2.13 Hz)

Figure 23. Configuration of active/passive people for maximum response (Excitation
frequency of 2.13 Hz)

Table 10. Minimum and maximum response from dynamic analysis in the TSB for an
active to passive ratio of one and excitation frequency of 2.13 Hz

Max. Vertical Max. Max. Shear Max. Bending
Displacement Acceleration Force (Ib) moment (kip in)
(in) (m/s?)
Min 0.482 1.1115 5,539.02 770.14
Max 1.01 2.325 11,376.50 1,748.70

Similarly for this case, the second harmonic of the excitation frequency is closer
to the natural frequency of the TSB shown in figure 23 of 4.055 Hz than it is to the
natural frequency of the TSB in figure 22 of 3.975 Hz. The response in this case is bigger

by a factor of 2 or so, for all of the responses studied.

Lastly, figures 24 and 25 show the configurations of active and passive people
that led to minimum and maximum responses, respectively for an excitation frequency

of 2.30 Hz, and table 11 that presents the computed responses.
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Figure 24. Configuration of active/passive people for minimum response (Excitation
frequency of 2.30 Hz)

Figure 25. Configuration of active/passive people for maximum response (Excitation
frequency of 2.30 Hz)

Table 11. Minimum and maximum response from dynamic analysis in the TSB for an
active to passive ratio of one and excitation frequency of 2.30 Hz

Max. Vertical Max. Max. Shear = Max. Bending
Displacement Acceleration Force (Ib) moment (kip in)
(in) (m/s?)
Min 0.328 0.7395 3,601.28 542.32
Max 1.11 3.21 13,106.99 2,035.85

The difference in this case is more pronounced, about a factor of 3.5 to 4 for all of
the responses. Again, it seems that the second harmonic of the excitation frequency (4.60
Hz) adds significant more energy into the system of figure 25, where the natural
frequency is 4.124 Hz. The low values for the minimum case are an indicative that the

configuration of figure 24 adds significant amount of damping into the system.
4.3 Results for the TCF Bank Stadium from static analysis

A static analysis was performed on the section of the stadium in order to have
some numerical values so we can compare them with the results obtained from the
dynamic analyses. Table 12 shows the maximum response in three different elements,

specifically riser, girder and cantilever.
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Table 12. Maximum response in three different structural elements of the stadium from
static analysis

Vertical Shear Force Bending moment
Displacement (in) (Ib) (Kip in)
Cantilever 1.65 58,625.40 8,326.90
Riser 1.58 17,672.92 2,262.13
Girder 0.698 132,594.20 19,140.80

4.4 Results for the TCF Bank Stadium from dynamic analysis
4.4.1 All people active

Dynamic analyses were performed in the section of the stadium with four
different excitation frequencies, 1.8, 1.97, 2.13 and 2.30 Hz, for the case of having all of
the people active. Tables 13, 14 and 15 show the results for each of the structural

elements and for each of the excitation frequencies.

Table 13. Maximum response in risers from dynamic analysis

Vertical Shear Bending Acceleration
Displacement Force moment (m/s2)
(in) (b) (Kip in)
1.8 Hz 1.95 16,887.15 2,490.35 3.34
1.97 Hz 2.22 20,054.80 2,084.70 4.74
2.13 Hz 1.51 13,632.10 2,063.90 3.55
2.30 Hz 1.04 10,481.10 1,603.20 2.58

It can be seen from the table that the excitation frequency of 1.97 Hz gives the
highest response in the risers. The level of acceleration obtained is close to 0.5g which
according to Kasperski M. (1996) would be considered as an acceleration that is causing
panic in the audience. It can be seen that the response from the static analysis is greater
than the one obtained for the excitation frequencies of 2.13 and 2.30 Hz. The possible

reason for the difference in results from the TSB and the complete stadium is that
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averages of spring constants were taken for the TSB, whereas for the stadium, the actual

girder is supporting the risers.

Table 14. Maximum response in girders from dynamic analysis

Vertical Shear Bending Acceleration
Displacement Force (Ib) moment (m/s2?)
(in) (Kip in)
1.8 Hz 0.858 270,935.10 44,578.30 2.67
1.97 Hz 0.802 158,507.90 27,944.50 1.8
2.13 Hz 0.531 109,486.80 16,758.60 1.11
2.30 Hz 0.432 96,812.40 14,626.30 0.77

For the case of the girders, the excitation frequency of 1.8 Hz gives the highest
response, but in this case the levels of acceleration are below the limiting value defined in
table 4, however the acceleration of 2.67 m/s2 is still in the range of “unacceptable”.
Comparing these values against the ones obtained from static analysis, it can be observed
that again the excitation frequencies of 1.8 and 1.97 Hz gave higher values for the

quantities measured as was the case for the risers.

Table 15. Maximum response in cantilever from dynamic analysis

Vertical Shear Bending Acceleration
Displacement Force (Ib) moment (m/s2?)
(in) (Kip in)
1.80 Hz 1.52 45,837.70 6,839.16 1.51
1.97 Hz 1.42 42,296.60 6,647.60 1.49
2.13 Hz 1.81 61,481.04 8,474.48 1.695
2.30 Hz 2.69 81,393.80 11,347.60 2.59

For the cantilever beams the excitation frequencies of 2.13 and 2.30 Hz gave

responses higher than those obtained from static analysis. One of the reasons this is so

for this type of beam is that the first mode shape of a riser or a girder which involves

vertical motion might not be the same as for the cantilever beam, thus the excitation

frequencies of 2.13 and 2.30 Hz might have excited a different mode shape for the
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cantilever beams, as opposed for the risers and girders, where the excitation frequencies

of 1.8 and 1.97 Hz gave the highest response.

4.4.2 Response in the TCF Bank Stadium as per load cases determined from

the TSB results

Tables 16 and 17 show the results from dynamic analyses with an excitation
frequency of 1.8 Hz for the cases of having an active to passive ratio of one as per figures

18 and 19, respectively.

Table 16. Response in stadium with loading case as per figure 18, with 1.8 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (Ib) (Kip in)
Riser 1.13 1.98 10,393.50 837.65
Girder 0.54 0.88 153,456.70 26,788.50
Cantilever 0.89 0.77 34,387.20 4,025.75

Table 17. Response in stadium with loading case as per figure 19, with 1.8 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (b) (Kip in)
Riser 1.39 2.37 14,675.50 1,231.70
Girder 0.64 1.27 197,238.70 31,797.80
Cantilever 1.01 0.86 40,387.60 4,873.20

From table 17 it can be observed that the responses in the three structural
elements is between 65% and 75% of the response with all people active. Furthermore, in
terms of serviceability and in particular the level of acceleration, the maximum observed
in table 17 of 2.37 m/s2? or 0.24g is below the limiting value of 0.35g, but is between the
levels of disturbing and unacceptable, thus a dynamic analysis like the one performed

here would be appropriate for this excitation frequency. The absolute maximum
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response for 1.8 Hz excitation frequency is still observed in tables 13, 14 and 15 for the

risers, girders and cantilevers, respectively.

Additionally, tables 18 and 19 show the results from dynamic analyses with an
excitation frequency of 1.97 Hz for the cases of having an active to passive ratio of one as

per figures 20 and 21, respectively.

The response for this case of 1.97 Hz excitation frequency produces higher values
of the measured parameters than those obtained in the previous case of 1.8 Hz.
Compared to the values obtained from the case of having all active people, with a ratio of
active/passive people of one, the response can be decreased from percentages of 30% to
35%. For example, having all people active produces 4.74 m/s2? of acceleration in the riser
which is clearly above the limit proposed by Kasperski, M. (1996), whereas the result in
table 18 shows an acceleration of only 2.41 m/s2. Similar comparisons can be performed,
but the point is that the location of the passive people can be varied in order to decrease

the response in the stadium in any given moment.

Table 18. Response in stadium with loading case as per figure 20, with 1.97 Hz excitation

frequency
Displacement Acceleration Shear force @~ Moment
(in) (m/s?) (b) (Kip in)
Riser 1.53 2.41 14,873.50 1,798.50
Girder 0.51 0.81 102,729.40 13,275.24
Cantilever 0.84 0.71 28,830.11 4,111.31

Table 19. Response in stadium with loading case as per figure 21, with 1.97 Hz excitation

frequency
Displacement Acceleration Shear force @ Moment
(in) (m/s?) (b) (Kip in)
Riser 1.01 3.01 18,713.20 2,273.10
Girder 0.68 1.13 139,613.20 20,393.20
Cantilever 1.20 0.97 39,757.30 5,873.31
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Tables 20 and 21 show the results from dynamic analyses with an excitation
frequency of 2.13 Hz for the cases of having an active to passive ratio of one as per figures
22 and 23, respectively. Furthermore, table 22 shows the results from the loading case

that gave the highest response with 2.13 Hz in the TSB, as per figure 16.

Table 20. Response in stadium with loading case as per figure 22, with 2.13 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (b) (Kip in)
Riser 0.64 1.41 6,713.70 1,104.50
Girder 0.24 0.52 54,587.30 7,397.70
Cantilever 0.77 0.72 25,726.80 3,706.80

Table 21. Response in stadium with loading case as per figure 23, with 2.13 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (b) (Kip in)
Riser 1.13 2.48 11,778.50 1,937.80
Girder 0.39 0.88 95,767.30 12,978.50
Cantilever 1.43 1.33 43,729.80 6,327.80

Table 22. Response in stadium with loading case as per figure 16, with 2.13 Hz excitation

frequency
Displacement Acceleration Shear force @ Moment
(in) (m/s?) (b) (Kip in)
Riser 1.61 4.13 17,813.90 2,639.80
Girder 0.62 1.15 115,917.50 17,123.90
Cantilever 1.79 1.63 57,879.50 8,018.90

From tables 20 and 21, it can be seen that for an equal number of active and
passive people, the maximum response obtained is somewhere between 70% and 80% of
the response obtained from the case of having all people active. In terms of how the

location of the passive people reduces the acceleration of the risers and therefore all the
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other structural elements, it can be noted that from an acceleration of 3.55 m/s2 in the

riser having 60 active people gets reduced to 1.41 m/s2, or a reduction of 60%.

Table 22 shows that actually having all people active does not yield the maximum
response in the structural elements of the stadium. The loading case shown in figure 16
presents to the structure higher response. Acceleration level of 4.13 m/s2 can be seen,
which is in the range of causing panic, the maximum displacement in the riser increased
about 6%, the maximum displacement in the girder increased 16% and interestingly
enough, the displacement in the cantilever decreased by 1.1%. One of the reason for this
behavior is that the cantilever portion of the stadium, and in general any stadium, tend
to have mode shapes, and therefore natural frequencies, that are different than those
obtained for the risers or girders. One other possible reason is that this excitation
frequency may be exciting, perhaps with the second harmonic, local modes of the risers

within the stadium.

Lastly, tables 23 and 24 show the results from dynamic analyses with an
excitation frequency of 2.30 Hz for the cases of having an active to passive ratio of one as
per figures 24 and 25, respectively. In addition, table 25 shows the results from the

loading case that gave the highest response with 2.30 Hz in the TSB, as per figure 17.

Table 23. Response in stadium with loading case as per figure 24, with 2.30 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (ab) (Kip in)
Riser 0.41 0.81 3,971.30 631.20
Girder 0.17 0.55 87,373.50 11,724.30
Cantilever 1.27 1.13 59,327.30 7,087.60
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Table 24. Response in stadium with loading case as per figure 25, with 2.30 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (b) (Kip in)
Riser 0.92 2.24 9,073.40 1,097.30
Girder 0.39 0.62 88,213.30 13,878.30
Cantilever 2.03 1.88 70,323.40 9,327.40

Table 25. Response in stadium with loading case as per figure 17, with 2.30 Hz excitation

frequency
Displacement Acceleration Shear force Moment
(in) (m/s?) (b) (Kip in)
Riser 1.22 2.69 12,327.40 1,603.20
Girder 0.47 0.83 99,798.20 15,203.40
Cantilever 2.04 1.88 70,424.30 9,359.70

Table 25 presents the response that is greater than the response from having all
60 people active. An acceleration of 2.69 m/s2 can be seen in the riser, which is in the
unacceptable range, the maximum displacement in the riser increased about 17%, the
maximum displacement in the girder increased 8.8% and the displacement in the
cantilever decreased by 24.16%. The reasons described earlier for the previous case apply

here as well.

From tables 23 and 24, it can be seen that for an equal number of active and
passive people, the maximum response obtained is somewhere between 75% and 93% of
the response obtained from the case of having all people active. The acceleration of the
risers and therefore all the other structural elements got reduced for the case of using the
load case as depicted in figure 24, for instance, it can be noted that from an acceleration
of 2.69 m/s2 in the riser from table 25, it gets reduced to 0.813 m/s2, or a reduction of
69%. A reduction of 33% in acceleration of the girder is present and a reduction of 56%

for the cantilever beam.
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4.5 Summary

After performing a dynamic analysis of the TSB, the results showed that for an
excitation frequency of 2.13 Hz, the response of the TSB is greater than that produced by
static analysis applying a load of 100 Ib/ft2 plus dead loads, using the load factors as per

ASCE 7-10.

An analysis was carried out in order to determine the maximum response in the
TSB for the four different excitation frequencies. The results showed that for the
frequencies of 1.8 Hz and 1.97 Hz, the maximum response was obtained as a result of
having 60 people active. The maximum response for an excitation frequency of 2.13 Hz
was obtained for the configuration shown in figure 16, and the maximum response for an

excitation frequency of 2.30 Hz was obtained for the configuration shown in figure 17.

Dynamic analysis showed that the response of some structural elements in the
stadium (riser, cantilever, and girder) is sometimes greater than that obtained from

static analysis.

After applying the different configurations of active/passive people for the
specific cases of having an excitation frequency of 2.13 Hz and 2.30 Hz from figures 16
and 17 into the section of the stadium, it was observed in general an increase in the
response, especially for the risers and girders. Interestingly, the response in the
cantilever showed lower values when using these configurations, indicating that a local

mode, of the risers, was probably excited more easily than the cantilever mode shape.
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5. PARAMETER ESTIMATION RESULTS
5.1 Parameter estimation results for the TSB

In order to see whether or not the parameter estimation algorithms gave good
results, analysis of the TSB was performed prior to the study of the section of the
stadium for different combinations of number of measurements, number of degrees of
freedom (dof’s) measured and different values of absolute and proportional error. The
absolute error used for this analysis was from 0.003 to 0.03 and the proportional error

was between 1% and 10%.
5.1.1 Statistical indices

Figures 26 and 277 show the RQB and SD values for the TSB in the case of having
measured 3 dof’s and having performed 3 measurements, or in other words, having

determined the first 3 mode shapes of the TSB for both the EEE and the OEE.

RQB 3 dof's measured
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Figure 26. RQB values for TSB having 3 dof’s measured and 1 to 3 measurements

63



SD 3 dof's measured
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Figure 27. SD values for TSB having 3 dof’s measured and 1 to 3 measurements

By looking at the figures it can be seen that the results get better as we move from
1 measurement to two measurements, however this behavior is not observed when going
from 2 to three measurements, for both the estimators. The reason for this is that the
third measurement does not add not enough new information for the system to obtain
good values of the estimates, and in fact the new information produces worse results.
One thing to notice as well is that the results are better all the time we have proportional

error instead of having absolute error.

Figures 28 and 29 show the RQB and SD values for the TSB in the case of having
measured 6 dof’s and having performed 1 to 3 measurements for both the EEE and the

OEE.
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Figure 28. RQB values for TSB having 6 dof’s measured and 1 to 3 measurements
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Figure 29. SD values for TSB having 6 dof’s measured and 1 to 3 measurements

This case shows a similar behavior as the previous one, where the estimates

become better as we move from 1 to 2 measurements but this time only for results that
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have absolute error. Having 3 measurements produces the best results of RQB for the
OEE with proportional error and the best results of SD are obtained from the EEE with

proportional error with only 1 measurement.

Furthermore, figures 30 and 31 present the RQB and SD values for the TSB in the

case of having measured 9 dof’s and having performed 3 measurements for both the EEE

and the OEE.
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Figure 30. RQB values for TSB having 9 dof’s measured and 1 to 3 measurements

From figure 30 it can be seen that for the OEE and proportional error the
estimates are better when there are 3 measurements and the estimates are worse for the
OEE and absolute error when there is only 1 measurement. For the EEE for both the
absolute and proportional errors, the estimates are better when the measurements
capture 3 mode shapes of the TSB. Similar outcome is present for the SD values shown in
figure 31 with the only difference that the worst value of SD was obtained for the EEE
and absolute error when there is only 1 measurement.
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SD OEE 9 dof's measured
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Figure 31. SD values for TSB having 9 dof’'s measured and 1 to 3 measurements

Figures 32 and 33 show the comparative results for all the cases presented
previously for the RQB and SD values. Additionally, figure 34 shows the locations of the

measured dof’s for the TSB.
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Fig

Figure 33.

RQB for 3, 6 and 9 dof's measured
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SDfor 3, 6 and 9 dof's measured
0012

0.01

L ] [ .
5 0.008 L
=
=
B - . - e OEEAE
= ¢ . e OEEPE
=}
s . " EEE AE
£ 0004
. ® EEE PE
. [ ] [ ]
0.002 . . ¢
o &
& ] .
~ . .
. m 221 m [Vs) [1=] w UI'1 CP EP
& N ™ 4 4 ™ - ™ ]

Mumber of measurements

SD values for TSB having 3, 6 and 9 dof’s measured and 1 to 3 measurements

68



Figure 34. Location of the 3, 6 and 9 measured dof’s for the TSB

Overall, RQB and SD values obtained using the OEE were lower than those
obtained by the EEE for the TSB and having more data available does not necessarily
mean better estimates or lower values of RQB and SD. Furthermore, it can be seen that
the estimation algorithms have more sensitivity to absolute errors, due to the fact that
some measurements, and especially small ones, may be controlled by a big absolute error
value (M), whereas for the proportional error, that possibility is eliminated by the use of a

percent of the actual measurement as the error.
5.1.2 Estimated parameter

Table 26 presents the maximum and minimum estimated parameter (EI) of the

TSB, for both the estimators and for both the error types.

Table 26. Maximum and minimum estimated parameter for the TSB

EEE OEE
AE PE AE PE

Actual EI 57,121,056,880.00 = 1.0
max 1.02 1.02 1.02 1.00
% Difference  1.99 1.61 1.95 0.46
min 0.99 0.99 0.99 1.00
% Difference 1.45 1.12 1.44 0.43
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It can be seen from table 26 that % differences as much as 1.99 and as low as 0.43
were obtained. It is clear that the OEE gave better results than the EEE, and it did also

for the case of having proportional error as opposed to having absolute error.
5.2 Parameter estimation results for the TCF Bank Stadium

Analysis of the section of the stadium was performed for different combinations
of number of measurements, number of degrees of freedom (dof’s) measured and
different values of absolute and proportional error. The absolute error used for this

analysis was from 0.01 to 0.10 and the proportional error was between 3% and 30%.
5.2.1 Statistical indices

Figures 35 and 36 show the RQB and SD values, respectively for the section of the
stadium for the cases of having measured from 6 to 24 nodes (18 to 72 dof’s) and having
performed from 1 to 4 measurements for the EEE with absolute error. Additionally,
figures 37 and 38 present the values of RQB and SD but this time with the proportional

error.
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RQB Variation with Absolute Error (EEE)
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Figure 35. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with absolute error (EEE)
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Figure 36. SD values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with absolute error (EEE)
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RQB Variation with Proportional Error (EEE)
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Figure 37. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with proportional error (EEE)
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Figure 38. SD values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with proportional error (EEE)
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From the previous figures it can be seen that the RQB and SD values are generally
lower for the case of having introduced the proportional error. Additionally, it can be
seen that the best estimates are not necessarily obtained when the full size of
measurements are used (4 measurements and 24 nodes measured). For the case of
having the absolute error, the best results were obtained with 3 measurements and 8
nodes measured and for the case of having proportional error, the best results were

obtained with 2 measurements and 24 nodes measured.

Figures 39 and 40 show the RQB and SD values, respectively for the section of the
stadium for the cases of having measured from 6 to 24 nodes and having performed from
1 to 4 measurements for the OEE with absolute error. Additionally, figures 41 and 42

present the values of RQB and SD but this time with the proportional error.

RQB Variation with Absolute Error (OEE)
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Figure 39. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with absolute error (OEE)
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SD Variation with Absolute Error (OEE)
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Figure 40. SD values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with absolute error (OEE)

RQB Variation with Proportional Error (OEE)
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Figure 41. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with proportional error (OEE)
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Figure 42. SD values for the stadium having 6 to 24 nodes measured and 1 to 4
measurements with proportional error (OEE)

As can be seen by the previous four figures and similar to the results from the
EEE, the RQB and the SD values obtained by the OEE with proportional error are lower
than those obtained with absolute error. For this estimator, it seems that having more
data helps getting better and better results, except for one case where the RQB value was

the least for the case of having 2 measurements and 8 nodes measured.

Comparing the results obtained from the two estimators, it can be concluded that
overall the OEE gives better estimates than the EEE for the same conditions on how
many measurements are done or how many nodes are measured. This could be the case
because in the EEE the estimated measurements increase by a considerable amount the

number of unknowns in the optimization problem.

Figures 43, 44, 45 and 46 show the location of the 6, 8, 12 and 24 measured nodes

in the section of the stadium, respectively.
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Figure 43. Location of the 6 nodes measured
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Figure 44. Location of the 8 nodes measured
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Figure 45. Location of the 12 nodes measured
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Figure 46. Location of the 24 nodes measured

5.2.2 Estimated parameters

In a similar way as was done for the TSB, the maximum and minimum estimated

parameters are presented in this following section and are compared against the actual

77



parameters (EA, Elz, Ely), in terms of percent difference. Figure 47 shows the structural

elements for which the structural parameters were estimated.

Riser # 2
Riser # 1 gg e ——
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Cantilever # 1 Cantilever # 2

Figure 47. Structural members for which the estimated parameters are compared against
the actual parameters

5.2.2.1 Estimated parameters for riser # 1

Table 27 shows the maximum and minimum estimated parameters (EA, Elz, Ely)

of the section of the stadium, for both the estimators and for both the error types.

It can be seen that in general the OEE gives better results than the EEE for all of
the three parameters. The maximum and minimum % difference for the EA parameter
were 14.96 and 0.03, respectively. In addition, the maximum and minimum % difference
for the EIz parameter were 10.68 and 6.08, respectively. Lastly, the maximum and

minimum % difference for the EIy parameter were 12.55 and 2.72, respectively.
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Table 27. Maximum and minimum estimated parameters of riser # 1 for the section of
the stadium

EEE OEE
AE PE AE PE

Actual EA 1,556,639,502.06 = 1.0

max 1.04 1.02 1.00 1.00
% Difference 3.77 2.08 0.03 0.13

min 0.85 0.85 0.88 0.88
% Difference 14.96 14.79 12.50 12.09
Actual Elz 57,121,056,880.00 = 1.0

max 1.11 1.09 1.07 1.07
% Difference 10.68 8.73 6.69 6.59

min 0.91 0.91 0.93 0.94
% Difference 9.31 8.95 6.52 6.08
Actual Ely 198,006,270,215.00 = 1.0

max 1.07 1.05 1.03 1.03
% Difference 6.87 5.04 3.03 2.72

min 0.87 0.88 0.90 0.91
% Difference 12.55 12.07 9.71 9.36

5.2.2.2 Estimated parameters for riser # 2

Table 28 shows the maximum and minimum estimated parameters (EA, Elz, Ely)

of the section of the stadium, for both the estimators and for both the error types.

Similar results as for riser # 1 can be seen here for riser # 2 in that the best
estimates come almost always from the OEE when having a proportional error that does
not change the measured dof’s dramatically as the absolute error does in cases where the

measured response is very small and the absolute error is comparatively larger.

The maximum and minimum % difference for the EA parameter were 15.18 and
0.15, respectively. In addition, the maximum and minimum % difference for the Elz
parameter were 9.98 and 6.05, respectively. Lastly, the maximum and minimum %

difference for the Ely parameter were 12.34 and 2.53, respectively.
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Table 28. Maximum and minimum estimated parameters of riser # 2 for the section of
the stadium

EEE OEE
AE PE AE PE

Actual EA 1,556,639,502.06 = 1.0

max 1.03 1.02 1.00 1.00
% Difference 3.11 1.92 0.28 0.15

min 0.85 0.85 0.87 0.88
% Difference 15.18 14.75 12.51 11.99
Actual Elz 57,121,056,880.00 = 1.0

max 1.10 1.09 1.06 1.07
% Difference 9.98 8.67 6.17 6.52

min 0.91 0.91 0.94 0.94
% Difference 9.33 8.88 6.46 6.05
Actual Ely 198,006,270,215.00 = 1.0

max 1.06 1.05 1.03 1.03
% Difference 6.28 4.96 2.53 2.75

min 0.88 0.88 0.90 0.91
% Difference 12.34 12.02 9.80 9.47

5.2.2.3 Estimated parameters for cantilever # 1

Table 29 shows the maximum and minimum estimated parameters (EA, Elz, Ely)
for cantilever # 1 of the section of the stadium, for both the estimators and for both the

error types.

The maximum and minimum % difference for the EA paramet