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ABSTRACT 

 As more and more stadia structures nowadays are being built by making use of 

new high strength building materials which tend to be lighter than the “old” ones, 

composite systems and also the fact that engineers, contractors and clients want their 

structures as optimized as possible, in terms of minimal materials used, there is an 

inevitable side effect that comes with this. The result is that structures are more flexible, 

and thus they become susceptible to undergone vibration problems due to the action of 

dynamic loading. Pop/rock concerts, exhibitions, boxing matches, and so forth are 

staged to supplement the football/sport seasons. Consequently, stadia structures must 

resist not only static loading, but also dynamic loading, such as the human induced loads 

from various activities of the spectators which include, standing, jumping, stamping, 

clapping and dancing, particularly in response to touchdowns (in football matches) or 

musical beats (during concerts). 

 Active and passive models of humans are studied to see how they influence the 

response in TCF Bank Stadium for different ranges in excitation frequencies, by 

performing dynamic analyses and comparing the results with the ones obtained from 

static analysis. 

Parameter estimation and system identification in mechanical sciences and 

structural engineering have become increasingly important areas of research in the last 

three decades. Many nondestructive testing methods are based on the concepts of system 

identification and parameter estimation.  

In this document, two parameter estimation algorithms are studied, namely the 

Equation Error Estimator and the Output Error Estimator, through the simulation of 

modal data obtained from a computer structural analysis program and comparisons of 
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their results are presented so that future researchers are better informed about the two 

and therefore can decide which one would give the best results for their application. 
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1. INTRODUCTION 

As more and more stadia structures nowadays are being built by making use of new 

high strength building materials which tend to be lighter than the “old” ones, composite 

systems and also the fact that engineers, contractors and clients want their structures as 

optimized as possible, in terms of minimal materials used, there is an inevitable side 

effect that comes with this. The result is that structures are more flexible, and thus they 

become susceptible to undergone vibration problems due to the action of dynamic 

loading.  

Furthermore, vibration problems in stadia are becoming more prominent as sport 

stadia become more multifunctional. Pop/rock concerts, exhibitions, boxing matches, 

and so forth are staged to supplement the football/sport seasons. Consequently, stadia 

structures must resist not only static loading, but also dynamic loading, such as 

machinery or heavy equipment in operation, ambient loading (wind, traffic, 

earthquakes) and/or human induced loads from various activities of the spectators 

which include, standing, jumping, stamping, clapping and dancing, particularly in 

response to touchdowns (in football matches) or musical beats (during concerts). These 

movements increase the likelihood of vibration problems in the stadia structures since 

the synchronized crowd movement may excite the natural frequencies of the structures 

causing their resonance (Reynolds et al. 2004).  

Parameter estimation and system identification in mechanical sciences and 

structural engineering have become increasingly important areas of research in the last 

three decades. Identification methods have been used to establish mathematical models 

or to improve existing models (Banan and Hjelmstad, 1993). Many nondestructive 

testing methods are based on the concepts of system identification and parameter 
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estimation. Identification has been used for structural monitoring of load carrying 

systems such as aircraft, space structures, buildings, bridges, offshore platforms, and 

mechanical systems (Cawley 1985; Chen and Garba 1987; Stubbs, et al. 1989; Natke 

1989; Hajela and Soeiro 1990). In offshore structures, attempts have been made to assess 

structural damage from changes in the frequency spectrum of the structure to ambient 

excitations (Vandiver 1975; Duggan, et al. 1980; Kenley and Dodds 1980). Engineers 

have been attracted to such methods because of the extreme difficulty and expense of 

under-water inspection. The aerospace and automotive industries extensively use 

identification techniques to verify or improve mathematical models for subsequent use 

in simulation, design, and control studies (Thoren 1972; Collins, et al. 1974; Sheena, et 

al. 1982; Flannelly and Berman 1983; Hashemi-Kia 1988; Kammer, et al. 1988; Stubbs, 

et al. 1989; Jiang, et al. 1990; Holkamp and Batill 1991). 

System identification is defined by Zadeh (1962) as "the determination on the basis 

of input and output, of a system within a specified class of systems, to which the system 

under test is equivalent." Equivalence is defined by an error or loss that is a function of 

the process and the model input and output. If the value of the loss function is the same 

for two models, then they are equivalent (Banan and Hjelmstad, 1993). Parameter 

estimation is defined as the determination of values of the parameters that govern the 

behavior of the model, assuming that the structure of the model is known (Eykhoff 1974). 

System identification is used to model existing structures (Hart and Yao 1977; 

Torkamani and Ahmadi 1988), assess structural changes in buildings after earthquakes 

(Distefano and Pena-Pardo 1975 and 1976; Beck 1982; DiPasquale and Cakmak 1990), 

evaluate seismic vulnerability of existing buildings (Ho and Aktan 1989; Aktan and Ho 

1990), and identify critical collapse mechanisms of structures (Ellis, et al. 1990). 
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Parameter estimation has been used to evaluate performance of bridges from ambient, 

earthquake, and force transient responses (Douglas and Reid 1982; Flesch and 

Kernbichler 1988; Werner 1989; Raghavendrachar, et al. 1991). Another area of 

application for identification techniques is the condition monitoring of machines to 

enhance the efficiency of their maintenance and operation (Zimoch 1987; Tustin and 

Mercado 1985; Foster and Mottershead 1990; Mottershead 1990). Mathematical models 

have been derived to describe the mechanical behavior of composite materials (Hashin 

1983; Zhang and Evans 1988; Courage, et al. 1990; Soeiro and Hajela 1990). These 

models try to deal with characteristic mechanical behavior including anisotropy, 

viscoelasticity, and deterioration phenomena like debonding or delamination. 

1.1 Objectives 

 The main objectives of this thesis are as follows: 

- Better understand the effect people jumping and/or dancing in synchronization 

has on the response of the TCF Bank Stadium. 

- Implement models that capture the behavior of the passive people present as well 

as to determine how the location of standing or seated humans affect the 

response of a structure, whether they increase or decrease the response, in terms 

of displacements, accelerations, shear force or bending moment. 

- Comparison between two parameter estimation algorithms from modal data in 

order to determine which one would give the best results, analyzing as well the 

effect of quantity of measurements, through incompleteness of data, and the 

quality of measurements, through noise modeling.  
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1.2 Organization 

 Chapter 2 provides with enough background information on the human-structure 

interaction problem, discussing the models developed in the past for active and passive 

people. In addition the fundamentals for the parameter estimation algorithms is 

presented, as well as the two methods that will be used in this study. 

 Chapter 3 presents the information that was required in order to create the finite 

element models of the test subjects, particularly, a three span beam (TSB) supported by 

four spring supports and the model for the TCF Bank Stadium.  

 Chapter 4 is devoted to the results obtained from static and dynamic analyses on 

the test structures, implementing the concepts of the human-structure interaction 

problem discussed in chapter 2. Comparisons between the static and dynamic analyses 

are presented as well as the differences that arise by considering passive people 

alongside active people in the structure. 

 Chapter 5 discusses the results obtained after running the parameter estimation 

algorithms for both the TSB and the TCF Bank Stadium, by analyzing the statistical 

indices, which are the normal check for this methods in order to see if they provide good 

results, and the estimated parameters. 

 Chapter 6 provides a detail conclusion of the analyses that were carried out in 

terms of the human-structure interaction problem and in terms of the parameter 

estimation algorithms.   
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2. LITERATURE REVIEW 

2.1 Background and overview 

Excessive vibrations can sometimes produce damage to a structure, one example 

of this is the accident that happened on April 25, 2008 where a part of a grandstand in 

the Guillermo Plazas Alcid Stadium in Neiva, Colombia collapsed during a musical event 

killing one person and injuring three more (Ortiz et al. 2009), thus complete and 

accurate structural analysis of a structure that is exposed to the dynamic loadings 

produced by people jumping/dancing in a synchronized fashion must be performed in 

order to determine the level of stresses in critical elements of the structure. Vibrations 

can also cause annoyance and discomfort in which case serviceability checks would have 

to be strictly followed to determine whether or not a structure is suitable for a certain 

type/level of dynamic excitation.  

Most of the times these vibrations occur in structures that have a low stiffness 

value and correspondingly a low value of the dominant natural frequency and also in 

structures that have low damping. In modern stadia structures, aesthetical demands and 

the requirement for an unobstructed view for spectators, combined with the fact that the 

capacity of a stadium has to be maximized to ensure business profitability, have resulted 

in the design of lighter and more slender structures, often including long cantilevers. 

These structures often have relatively low natural frequencies that can lead to vibration 

problems (Reynolds et al. 2004). 

2.2 Human-Structure interaction fundamentals 

 The presence of spectators in stadia structures can be clearly divided into two: 

active and passive crowds (Sim, 2006). It has been reported in (Ellis et al. 2000), that a 
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passive or stationary crowd will interact with the structure, whereas an active or jumping 

crowd will act solely as a load. Next are presented some of the theoretical background 

that will be needed in order to properly model both the active and passive crowds in the 

TCF Bank Stadium structure. 

2.2.1 Active models for people 

 If we want to analyze the response of any structure to a particular loading type, in 

this case human-induced loads, we need to know what loads will act on the structure. 

This requires an estimation of the number and weight of people who will be 

jumping/dancing in the area of concern, or the load density. Also, there are many 

different types of dancing and a wide range of beat frequencies for music; however, 

dancing frequencies tend to be in the range 1.5-3.5 Hz (Ellis and Ji, 1994). 

 There are a number of different dances but, for analytical purposes, it is 

convenient to split them into two categories. The first is when the dancer is always in 

contact with the floor and the second involves jumping when contact with the floor is not 

maintained. The first type of dancing is simple to model and is primarily a sinusoidal 

load at the dance frequency (Supplement to the NBC, 1985). The second type of dancing 

is more complex and potentially much more severe because energy is input at the dance 

frequency and also at multiples of the dance frequency (Ellis and Ji, 1994). Throughout 

the rest of this work, attention will be given to the second type of loading since the effect 

that it could have on the structure is more severe than the first type of load mentioned. 

 There are two load models that will be discussed in this section. Both of them 

have close forms of the sum of an infinite trigonometric series and it is also illustrated in 

(Duarte and Ji, 2009) and (Parkhouse and Ewins, 2006) that using the first few terms is 

enough in practice. 
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 The first model assumes that the load time history of the jump/dance can be 

described by a high contact force for a certain time tp (contact duration) followed by zero 

force when the feet leave the floor. The function given in (Bachmann and Ammann, 

1987) within one period is: 

 
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Where the Fourier coefficients and phase lags are determined as follows: 
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When   2nα = 1 for n = 1, 2, 3,… 
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It was experimentally observed in (Tuan and Saul, 1985) that the mean value of 

the time history of a vertical load corresponding to rhythmic jumping was always equal 

to the weight of the performer. This was later confirmed in (Ellis and Ji2, 1994). 

Expressing this observation analytically gives 

Gdt
t

t
GK

T

pt

p

p

p

















0

sin
1 

                                                                                                         (2.9) 
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Which reduces to 





2
pK                                                                                                                                   (2.10) 

Thus the loads can be determined knowing the weight of the jumper, the period 

of the jumping and the contact ratio. 

Substituting Eqn. (2.10) into Eqn. (2.3) yields 

 













  







1 1

2
sin

2
cos0.1

n n p

n

p

n t
T

n
bt

T

n
aGtF






























 



1

2
sin0.1

n

n

p

n t
T

n
rG 


   (2.11) 
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nnn bar    










 

n

n
n

b

a1tan  

When   2nα = 1 for n = 1, 2, 3,… 

Then  an = 0               bn = π/2 

Otherwise                      (2.12) 

   
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
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





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
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112cos
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







n

n

n

n
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   
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

















12

12sin

12

12sin
5.0









n

n

n

n
bn  

The second model is based on the jumping and bobbing experiment carried out in 

the University of Surrey, Parkhouse and Ewins (2006) have given the bouncing load in a 

Fourier series form as shown in Eqn. 2.13. All measurements were made on an area, 0.8 

m by 0.6 m, consisting of two AMTI BP400600MF-2000 force platforms (Sumit Medical 

and Scientific, UK) rigidly fixed with the floor. 
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   







 



1

2cos0.1
n

npn tfnrGtF                                                                                    (2.13) 

Where fp is the frequency of the dancing/jumping load, rn and φn are both derived 

from the mean of the bouncing load time history from the statistical analysis of selected 

groups. 

Considering both the reliability and the convenience for calculation, it was 

concluded by Yang (2010) that the first model presented in equations 2.11 and 2.12 is 

recommended for use, however, it may also need some adjustments from practice 

because of its indoor test limitations, such as most of their tests carried out on simply 

supported reinforced concrete beams and the omission of group effect analysis. 

2.2.1.1 Frequency range for active people 

Ellis and Ji (2004) suggested that the frequency range for individuals jumping is 

approximately 1.5-3.5 Hz, but for a crowd the higher-frequency jumping cannot be 

sustained and an upper limit of 2.8 Hz is more realistic. However, it was recognized that 

further detailed information was required, examining the actual range at which people 

can jump comfortably and where a crowd can achieve some degree of coordination. 

To investigate the frequency range, the beat frequencies of a sample of 210 modern 

popular songs were examined in (Ginty et al. 2001). The investigation included tests to 

assess the frequency ranges for coordinated dance-type loads for individuals, small 

groups (aerobics) and large groups (pop concerts). Some of the conclusions from this 

work were that the frequency ranges are: 

(a) 1.2-2.8 Hz for an individual jumping. 
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(b) 1.5-2.5 Hz for a small group jumping (aerobics) with some degree of 

coordination. 

(c) 1.8-2.3 Hz for a large group jumping (pop concerts) with some degree of 

coordination. 

For the purpose of this study the frequency range between 1.8 and 2.3 Hz will be 

used, since the number of people that can be present in the section of the stadium could 

be considered as large (more than 3,000 people). 

2.2.1.2 Dynamic crowd effect 

In the previous section, the derivation to compute the load produced by one 

person jumping was presented, however, when performing and analysis of a stadium 

structure or part of the stadium there are more than one people jumping/dancing to the 

beat of a particular song, therefore the actual load density and distribution of the crowd 

should also be considered. Consideration should also be given to the dynamic crowd 

effect, which describes the attenuation of load due to the imperfect coordination between 

individuals in a group. 

Although, it has been found that dynamic loads induced by groups of people are 

higher than those induced by individuals, the human-induced forces do not increase 

linearly with the number of people (Sache et al., 2002). This is so even if people are 

synchronized by a prompt (Ebrahimpour and Sack, 1992; Kasperski and Niemann, 1993) 

that can be provided by music, movements of other people, or perceptible movements of 

the occupied structure (Fujino et al. 1993; van Staalduinen and Courage, 1994). 

The dynamic crowd effect depends on the coordination of the people in the group, 

the type of dancing and the beat frequency of the music. A theoretical investigation 
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where the phase lag between individuals was treated as a random variable obeying a 

normal distribution, showed a one-third reduction of the crowd loads for a large group of 

people (Ji and Ellis, 1993). Furthermore, Annex A of the BS 6399-1:1996, specifies that a 

factor of 0.67 should be included when computing the load induced by a crowd of people 

jumping/dancing at a specific musical beat so that the effect of lack of synchronization 

can be taken into consideration. 

 

Considering the information presented in this section, the model that will be used 

throughout the rest of this work is the one presented in the set of equations 2.11 and 2.12, 

along with the synchronization factor of 0.67. 

 
2.2.2 Passive models for people 

Ellis et al. (2000) performed an experiment on a cantilever grandstand where a 

stationary crowd was present. They monitored the grandstand before and after a rugby 

match, mainly the vertical response of a cantilever section. They suggested that the 

stationary or passive crowd acts as a spring-mass system, in addition to the fact that 

passive crowd provides a significant increase in the damping of the entire system. Littler 

(2000) presented a similar experiment that was performed in a retractable grandstand. 

The results showed the inadequacy of representing a passive crowd just as an added 

mass. Reynolds et al. (2004), Sachse et al. (2002), Ellis and Ji (1997) and Sachse (2002) 

also agree that a crowd-occupied structure should be modelled as a dynamic system. 

In order to determine mathematically the influence of the passive crowd, whether 

they are standing or seating, on stadia structures or any other structure, there are a 

limited number of dynamic models of human occupants. These models can be divided 
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into damped and undamped models (Sache et al., 2003). In this section the damped 

models are presented. 

2.2.2.1 Damped models 

Biomechanical research established that the human body is heavily damped. This 

was recognized by civil engineers and led to the development and use of some damped 

SDOF models of human occupants (Figures 1, 2 and 3). 

 

Figure 1. SDOF Human whole-body model 

 

 

Figure 2. 2-DOF (a) and 2-SDOF (b) human whole-body model 
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Figure 3. SDOF (a) and 2-SDOF (b) human whole-body model with a non-
vibrating mass 

 

Foschi and Gupta (1987) were the first to use a damped dynamic human model. 

This was done to predict the vibration response of wooden floors to heel-drop excitation. 

This, and subsequent research by Folz and Foschi (1991) and Foschi et al. (1995) into 

response time histories to assess the serviceability of floors led to damped SDOF models 

characterized by an assumed lumped mass mH equal to the total mass mT of the 

impactor, a viscous dashpot cH = 1.25 kNs/m and a stiffness kH = 40 kN/m (Foschi et al., 

1995). 

Falati (1999) added a viscous dashpot to his undamped SDOF model (fH = 10.43 

Hz, mH = mT/3) presented earlier and thus developed a damped SDOF model (Figure 1) 

of a standing (not impacting) person (Table 1). To determine the damping ratio of the 

damped SDOF human model, Falati computed responses of the structural DOF of 

damped 2-DOF human-structure models and compared them to experimental time 

histories. He identified the damping ratio to be within a range from 45% to 55% and 

employed the median value of 50% to define a model of a standing person (Table 1). 

Another damped SDOF model of a human occupant was used by Brownjohn 

(1999) to predict the influence of a standing human occupant on his test structure. For 

this purpose, he defined a damped SDOF model assuming the lumped mass mH to be the 
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total mass mT of the human occupant (Table 1). Brownjohn also choose the stiffness kH 

and the viscous damping cH to lead to a natural frequency fH and a damping ratio ζH 

corresponding to the fundamental mode of a 4-DOF human model given by ISO 7962 

(ISO, 1987). 

Table 1. Characteristics of damped SDOF models of a standing human occupant 

Human 
Model 

Spatial 
properties 

Modal 
properties 

Falati (1999) mH = mT/3 (25 kg) fH = 10.43 
Hz ζH = 50% kH = 107 kN/m 

cH = 1.636 kNs/m 

Brownjohn 
(1999) 

mH = mT (80 kg) fH = 4.9 Hz              
ζH = 37% kH = 82 kN/m 

cH = 1.946 kNs/m 
 

Brownjohn (2001) fitted a damped SDOF model into the apparent mass of a 

single person with a total mass of 47 kg standing on a test structure. He obtained the best 

SDOF circle-fit for fH= 5.8 Hz, ζH = 38% and a lumped mass mH = 60 kg, thus exceeding 

the weight of the occupant. Thus, Brownjohn found the natural frequency fH of a SDOF 

model of a single standing person to be significantly higher than the 4.9 Hz of his first 

human model (Brownjohn, 1999). 

 

To determine the variability of the natural frequencies of standing humans, 

Zheng and Brownjohn (2001) estimated natural frequencies fH of 30 standing 

individuals. For this purpose, they used a 4 m long reinforced simply-supported concrete 

plank that had a fundamental natural frequency of 12.8 Hz. Zheng and Brownjohn 

(2001) estimated natural frequencies and damping ratios of the empty structure and of 

the structure with each of the 30 test subjects standing at midspan. 
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Zheng and Brownjohn (2001) used these experimental natural frequencies and 

damping ratios to compute the natural frequencies fH and the damping ratios ζH of 

damped SDOF models of individual occupants. This calculation also used the modal 

mass of the fundamental mode of the empty structure, which was probably calculated 

from the spatial properties of the structure. Additionally, it required the lumped mass of 

the SDOF occupant model to be known. Similar to most other researchers, Zheng and 

Brownjohn (2001) set this mass mH to be equal to the total mass of the occupant. 

 

Zheng and Brownjohn (2001) concluded that fH and ζH of the test subjects are 

about 5.24 Hz and 39%, respectively. Thus, the identified natural frequencies fH match 

biomechanical research (Tables 2 and 3) more closely than the significantly higher 

identified by Ji (1995) and Falati (1999). However, Zheng and Brownjohn (2001) found 

no clear dependency of fH on the total mass mT, the height, or the mass/height ratio of 

individuals. 
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Table 2. Characteristics of biomechanical models of a sitting human subjected to vertical 
vibrations. Imperial units were converted into metric units employing Beranek (1988: 

appendix B3) 
a) Based on the mechanical impedances of 8 men. 
b) Based on the mechanical impedances of 11 men. 

c) Based on the apparent masses of 60 people. 
Model Spatial properties Modal 

properties 
Coermann (1962) a) 

Damped SDOF model 
mH = 86.2 kg (86200 dyne s2/cm) f1 = 5.0 Hz                             

ζ1 = 32% kH = 85.25 kN/m (85.25 dyne/cm) 

cH = 1.72 kNs/m (1.72X106 dyne 
s/cm) 

Suggs et al. (1969) b)                     
2-SDOF model 

mH1 = 36.3 kg (80 lb) f1 = 4.5 Hz                               
ζ1 = 23% kH1 = 28.45 kN/m (1952 lb/ft) 

cH1 = 474 Ns/m (32.5 lb s/ft) 

mH2 = 12.5 kg (27.6 lb) f2 = 5.5 Hz                             
ζ2 = 31% kH2 = 15.03 kN/m (1030 lb/ft) 

cH2 = 271 Ns/m (18.6 lb s/ft) 

Wei and Griffin (1998) c)       
2-SDOF model                             

with non-vibrating mass 

mH0 = 4.1 kg - 

mH1 = 46.7 kg  f1 = 4.9 Hz                             
ζ1 = 53% kH1 = 44.115 kN/m 

cH1 = 1.522 kNs/m 

Wei and Griffin (1998) c)       
2-SDOF model                             

with non-vibrating mass 

mH0 = 5.6 kg - 

mH1 = 36.2 kg f1 = 4.9 Hz                              
ζ1 = 36% kH1 = 35.007 kN/m 

cH1 = 815 Ns/m 

mH2 = 8.9 kg f2 = 9.7 Hz                                      
ζ2 = 44% kH2 = 33.254 kN/m 

cH2 = 484 Ns/m 
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Table 3. Characteristics of human models specified in ISO 5982 (ISO, 1981) 
Model Spatial properties Modal 

properties 
ISO 5982 (ISO 1981):                       

2-SDOF model                                         
of the seated human body 

mH1 = 69 kg f1 = 5.0 Hz                              
ζ1 = 36% kH1 = 68 kN/m 

cH1 = 1.54 kNs/m 

mH2 = 6 kg f2 = 10.1 Hz                             
ζ2 = 25% kH2 = 24 kN/m 

cH2 = 0.19 kNs/m 

ISO 5982 (ISO 1981):                       
2-SDOF model                                         

of the standing human 
body 

mH1 = 62 kg f1 = 5.0 Hz                              
ζ1 = 37% kH1 = 62 kN/m 

cH1 = 1.46 kNs/m 

mH2 = 13 kg f2 = 12.5 Hz                             
ζ2 = 46% kH2 = 80 kN/m 

cH2 = 0.93 kNs/m 

 

2.2.3 Analysis of the human-structure interaction problem 

 In order to analyze a structure subjected to human loading, more specifically 

jumping and/or dancing loads, it is convenient to treat the active people as just load, 

whereas the passive people should be considered as a spring-mass-damper system as 

reported by Ellis et al. (2000). This can be better described by looking at figure 4. 

 

Figure 4. Passive crowd-SDOF system subjected to crowd jumping load and a 
corresponding feedback system representation 
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2.3 Serviceability assessment after dynamic analysis 

For serviceability assessments related to human perception of vibrations, it is the 

acceleration levels which must be determined. However, the question of what are 

acceptable vibration levels must then be considered (Ellis and Littler, 2000). 

For guidance on acceptable vibration levels in grandstands subject to jumping 

loads, it seems appropriate to examine data obtained at such events. A number of 

experiments have been undertaken in Germany, (Kasperski M., 1996), and 

recommendations for low-frequency vibration are given in Table 4. 

Table 4. Reaction of people to various acceleration levels on grandstands 

Vibration 
level 

Reaction 

< 5% g Reasonable limit for passive 
persons 

< 18% g Disturbing 

< 35% g Unacceptable 

> 35% g Probably causing panic 

 

2.4 Parameter estimation problem from modal data 

2.4.1 Introduction 

Very few structural systems can be adequately modeled using theory alone; there 

are always parameters in an analytical model, particularly constitutive parameters, 

whose values must be assumed or empirically determined. Physical testing of a structure 

often provides valuable information that a theory cannot provide. However, test data are 

often incomprehensible without a theoretical framework to aid the data reduction. 

System identification and parameter estimation are the natural tools for bridging the gap 

between an analytical model and test data (Banan and Hjelmstad, 1993). 
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To build a mathematical model we begin with generally accepted physical laws. In 

structural mechanics these laws include balance of linear and angular momentum, 

kinematics of deformation, and the constitutive behavior of materials. The governing 

equations, based upon those things that we know well, provide the structure for our 

identification model. The aspects of the model that we do not know are parameterized 

and left to be estimated from the data. In a test we seek to excite the structure in a 

manner that will encourage a mode of response that will help the most in identifying the 

parameters of the model. In addition, we try to measure those quantities that are most 

indicative of the structural characteristics. It is often important to make those 

measurements as accurate as possible (Banan and Hjelmstad, 1993). 

Further, it is assumed that the structure is amenable to discretization using the 

finite element method. Even though we know that, in general, a real structural system 

will behave nonlinearly, one can often justify such a limitation by observing that a linear 

model is the first order approximation of any nonlinear system and that most structures 

respond linearly over some reasonably interesting range of excitation (Banan and 

Hjelmstad, 1993). 

 

One of the greatest challenges in performing a test on a large structural system 

lies in exciting the structure. A modal dynamic test relies on resonant excitation of the 

structure. The dynamic magnification at resonance for lightly damped structures is easily 

accomplished with a modest force. Such a force might be generated by rotating an 

eccentric mass at a fixed resonant frequency. Many modes can be excited by resonance, 

provided the integrity of the connection between the structure and the exciting device is 

not compromised by the motion. Some modal tests use free vibration data, generated, for 

example by imparting an initial displacement or an initial velocity to the structure. 
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Imparting an initial displacement is easily done in a laboratory, but may be impossible in 

the field. Imparting an initial velocity can be accomplished using falling weights or by 

impulsive forces generated by explosive cartridges or small rockets. For most structures, 

only the lowest few modes of vibration can be excited in free vibration (Banan and 

Hjelmstad, 1993). 

The process of system identification consists of three main stages (Banan and 

Hjelmstad, 1993); (1) defining a model and arranging some experiments to measure the 

response of the system (model selection), (2) using the chosen model and the measured 

response to estimate the unknown parameters of the model (parameter estimation), and 

finally (3) validating and refining the model if necessary (diagnostic check). 

A model is a representation of the essential aspects of a system that contains 

knowledge of that system in a usable form (Eykhoff 1974). Model selection is basically 

governed by three choices (Banan and Hjelmstad, 1993): (1) the candidate class of 

models, (2) the structure and size of the chosen model, and (3) parameterization of the 

chosen model. The intended use of the model usually dictates the class of the model. 

Choosing the size of the model is not a trivial problem because the model is often a 

representation of an unknown process. The model should include only the essential 

features of the real system to avoid introducing unnecessary complication. The 

parameterization of the model should be guided by three important objectives 

(Niederlinski and Hajdasinski 1979): (1) the parameterization should be universal, i.e. 

the model should be applicable to all systems in the same class, (2) the number of 

parameters should be in accord with the limited information available, and (3) the model 

should be identifiable from the available information.  
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The main goal of designing an experiment is to provide maximum information 

about the parameters of the system to be identified. There are many factors involving in 

the design of an experiment. These include the intended application of the results, prior 

knowledge about the system, the structure of the model, the measure of equivalence to 

the real system, the parameter estimation method, and the operational constraints of the 

system (Banan and Hjelmstad, 1993). 

 

The essence of building a model for a real system is its capability to simulate 

and/or to predict the behavior of the system. The performance of the model can be 

evaluated by a loss function that indicates how well the model fulfills the intended tasks. 

It is natural to minimize the discrepancy between the model and the system by tuning 

the parameters of the model. The essence of parameter estimation is to find parameters 

which minimize a scalar measure of discrepancy known as the criterion of equivalency or 

loss function. A procedure for estimating parameters is referred to as a parameter 

estimator (Banan and Hjelmstad, 1993). In the statistical literature, a number of 

different estimators have been developed. These methods differ predominantly in the 

criterion of equivalency and in the use of available prior information about the statistics 

of the measurements and the parameters. 

 

There are two basic approaches for estimating the parameters: the off-line or 

batch method and the on-line or recursive method. In the batch approach the 

computational operations are carried out on the complete set of measurements as a 

whole. Another way of processing the measurements is to continuously update the 

estimation of parameters while working serially through the measurements. The 

recursive approach generates an updated estimation as it receives new information. The 

batch method is computationally more efficient and robust than the recursive method. 
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However, recursive methods are popular in the field of control and automation because 

they do not require the storage of raw data. 

 

A model obtained from the identification process has to be validated to ensure 

that it describes the system suitably for its intended application (Banan and Hjelmstad, 

1993). Model testing is the most difficult phase of the identification process and can be 

very subjective. In general, there are two approaches to examine the identified model. 

Compare the results of the model with the results of the best models from the other 

classes of models, or decide whether the properties of the model meet some reasonable 

requirements such as cross-validation, residuals, and consistency with a priori 

knowledge not used in the estimation. Model validation is subjective and, regardless of 

the validation criteria, one must judge for one's self to what extend the model really 

explains the behavior of the system (Banan and Hjelmstad, 1993). 

 

2.4.2 Parameter estimation algorithms 

In undamped free vibration a structure responds in modes governed by the 

following discrete eigenvalue problem 

 

  iii MuuxK   nmdi ,...,1                                                                                       (2.14) 

Where nmd is the number of measured modes, the eigenvalue λi is the square of 

the ith angular frequency, ui(nd x 1) is the ith mode shape (eigenvector), K(nd x nd) is the 

stiffness matrix, x is the vector of unknown constitutive parameters with dimension np, 

matrix M(nd x nd) is the mass matrix, and nd is the number of degrees of freedom. The 

eigenvalue problem has nd eigenpairs (λ, u) for a positive definite M and a positive semi-

definite K matrix. One will generally not have a complete set of measured eigenpairs (λi, 

ui), but rather a subset of them numbering nmd<nd, which might not contain all the 
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modes between the largest and the smallest measured frequencies. It is assumed that the 

mass matrix is completely known and only the stiffness parameters of the structure need 

to be estimated. 

 

One of the main difficulties in estimating the unknown parameters from modal 

data is that the mode shapes ui are often sparsely sampled in space. There are several 

reasons why sparsity of measurement locations is not exceptional. First, there may be 

regions of the structure that are inaccessible because they lie on the interior of a solid 

domain. Second, certain types of measurements may be impractical to make because of 

technological limitations, e.g. nodal rotations. Third, the number of sensors may be 

limited due to their cost. Even if one measures displacements at all of the degrees of 

freedom of a model, these measurements become sparse if we subdivide the mesh of the 

model. 

 

To overcome the problem of incomplete measurements, Banan and Hjelmstad 

(1993) partitioned the mode shape vector into two parts as follows 

 

 ii

i

i

i uu
u

u
u 










ˆ
                                                                                                                     (2.15) 

Where  1ˆˆ xnu di and  1xnu di are the vectors of measured and unmeasured modal 

displacements, respectively and dn̂  and dn are the number of measured and unmeasured 

degrees of freedom, respectively. The notation indicates that the total displacement 

vector u is a function of the unknown displacements. For practical purposes it is assumed 

that this partitioning is fixed for all measured modes. 

 

The discrete governing equation of the finite element model of a structure for 

undamped free vibration is given in Eqn. (2.14) which is refer to as the model equation. 
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Now, the known mass matrix of the model is partitioned into two matrices: a matrix 

corresponding to the measured displacements  dd nxnM ˆˆ and a matrix corresponding to 

the unmeasured displacements  dd nxnM and rewrite Eqn. (2.14) based on the partition 

in Eqn. (2.15) as follows 

 

      iiiii uMuMuxK 00ˆ     nmdi ,...,1                                               (2.16) 

In the right hand side of Eqn. (2.16) the first term is a completely known vector 

and the second term contains the unknown vector iu . Now, arranging Eqn. (2.16) we 

have 

 

       iiii uMuMxK 0ˆ0                                                                                           (2.17) 

 

And define a modified stiffness matrix Ki
*(x) and a force vector fi

* as follows 

 

     MxKxK ii 0*                                                                                                         (2.18) 

  iii uMf 0ˆ*   

 

By substituting equations (2.18) into Eqn. (2.17) the modified model equation 

becomes (Banan and Hjelmstad, 1993) 

 

  **

iii fuxK    nmdi ,...,1                                                                                       (2.19) 

 

Which is almost the same as the governing equation of a structure under nmd 

static load cases. The only difference between the modified model equation and a static 

equilibrium equation is in the definition of the stiffness matrix. In Eqn. (2.19) the 

modified stiffness matrix is a function of the eigenvalues, changing for each mode. The 
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stiffness matrix for a static problem is fixed for all load cases. All the operations used to 

derive Eqn. (2.19) from Eqn. (2.14) are reversible. If one finds a set of parameters x that 

satisfies the modified model Eqn. (2.19), these parameters also satisfy the eigenvalue 

problem (2.14). From now on Eqn. (2.19) is referred to as the model equation for an 

undamped free-vibration experiment. 

 

Consider a structure (sometime referred to as the real structure even though a 

simulation model will be used) subjected to N different excitation cases and the response 

at certain locations has been observed. Where N will be the number of observation sets: 

The number of measured modes for the free vibration problem. A finite element model of 

the subject structure is available, parameterized by certain constitutive properties. The 

unknown parameters of the finite element model are estimated by minimizing a scalar 

loss function J subject to a set of constraints, where the loss function indicates how well 

the model equation is satisfied. The parameter estimation problem can then be 

expressed as follows: 

 

 ux
imize
,

min     



N

i

iii uxeuxJ
1

2
,

2

1
,                                                                          (2.15) 

subject to           0xc  

The loss function J is the weighted summation of L2 norms of the individual error 

functions e for the various observation sets. These error functions reflect the discrepancy 

between the estimated response of the mathematical model and the observations from 

the real structure, and are a function of the constitutive parameters x of the model as well 

as the unmeasured response u of the structure.  
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The weight i  in Eqn. (2.15) reflects the degree of confidence to the ith set of 

observations. For example, in a free vibration experiment, since the lower modes are 

easy to measure reliably, their weights might be chosen larger than the weights for the 

higher modes. In a statistical sense, the best values for the weights are the inverse of the 

variance of the error functions. 

 

The constraints c(x) are used to enforce a priori knowledge of the parameters. 

The bounding constraints are the ones that are used for most problems for the unknown 

constitutive parameters, 

 

xxx                                                                                                                                    (2.16) 

 

Where x  and x  are the lower and upper bound vectors, respectively for the 

unknown parameters. These bounds define the feasible region and are important 

because they eliminate the possibility of converging to physically unreasonable solutions. 

For structural systems, if the constitutive, damping, and mass parameters are chosen to 

be the parameters of the model, the lower bound x  might be chosen greater than or equal 

to zero because theory insists that these parameters be positive. The upper bound x  is 

more difficult to select, but might, for example, be chosen in the neighborhood of the 

nominal design values. 

 

In order to solve the nonlinear constrained optimization problem described in 

Eqn. (2.15), the Matlab® Optimization Toolbox was employed using the Sequential 

Quadratic Programming (SQP). Appendix A present the basic theory behind the 

algorithm. 
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2.4.2.1 Equation Error Estimator (EEE) 

Banan and Hjelmstad (1993) proposed this method, where they defined an error 

function ei based on the residual force vector for mode i as follows 

      **, iiiiii fuuxKuxe                                                                              (2.17) 

Where x is the vector of unknown elemental constitutive parameters. The error 

function represents the amount of residual developed by failure to satisfy the model 

equation. Let  nmduuuu ,...,, 21 be the vector of unmeasured modal degrees of freedom 

for all measured modes. Based on the general form of the estimation problem (2.15), the 

nonlinear constrained optimization problem for the equation error estimator for modal 

parameter estimation can be stated as 

 ux
imize
,

min        



nmd

i

iiiii fuuxKuxJ
1

2
**

2

1
,                                             (2.18) 

subject to   xxx   

Where x  and x are the prescribed vectors of lower and upper bounds of the 

unknown constitutive parameters, respectively and αi is the weight associated to the ith 

mode which reflects the degree of confidence of the ith measured mode. The estimation 

problem (2.18) tries to satisfy the model equation in a least squares sense. The equation 

error estimator simultaneously estimates the unknown constitutive parameters and the 

unmeasured displacements for all measured modes. By adding simple bounding 

constraints on the unknown constitutive parameters the possibility of converging to 

infeasible solutions is eliminated. 

 

nmdi ,...,1
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2.4.2.2 Output Error Estimator (OEE) 

Banan and Hjelmstad (1993) defined an error function e to be the difference 

between the measured and computed mode shapes at the locations where the physical 

measurements are taken. They define a Boolean matrix Q such that ii Quu ˆ . In other 

words, Q extracts the measured modal deformation iû  from the complete vector of 

modal degrees of freedom iu  . It is assumed that Q is the same for all modes. The error 

function for the output error estimator is given by the following expression 

    iiii ufxQKxe ˆ*1* 


                                                                                                          (2.19) 

The vector of unknown variables contains only the unknown constitutive 

parameters x for the output error estimator. Thus, the nonlinear constrained 

optimization problem for the output error estimator can be stated as 

x
imizemin      






nmd
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iiii ufxQKxJ
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2
*1* ˆ

2

1
                                                (2.20) 

subject to   xxx   

Where the bound vectors x  and x and the weights αi are the same as those 

defined in Eqn. (2.18). The number of unknowns for the output error estimator is smaller 

than the number of unknowns for the equation error estimator. Consequently, the 

solution of the former is carried out in a space of smaller dimensional than the latter. On 

the other hand, the loss function of the output error estimator has a higher degree of 

nonlinearity than the loss function of the equation error estimator. 

 



30 
 

2.4.2.3 Initial values and identifiability criterion 

The equation error estimator and the output error estimator are based on 

nonlinear constrained optimization problems. Like any iterative process, to solve this 

nonlinear problem, initial values for the unknown variables are needed. The choice of 

starting point is one of the important factors which control the speed of convergence of 

the algorithm, and one should employ any prior knowledge about the parameters. 

 

Both of the estimators need initial values for the unknown constitutive 

parameters. One could use design values as a reasonable choice for the initial values of 

the unknown parameters. One could also use analytical methods and engineering 

modeling to generate initial values. In the absence of any a priori knowledge, one must 

guess the initial values for the unknown constitutive parameters x. lf for some parts of 

the structure parameters are known, then the known parameters xo can be used to guess 

initial values xo for the unknown parameters with the same nature. 

 

The equation error estimator also needs initial values for the unmeasured modal 

displacements ou . Banan and Hjelmstad (1993) found that the best way to generate ou is 

to compute the modal response from the model equation (2.19), with the modified 

stiffness matrix K* constructed analytically from the known parameters xo and initial 

values of the unknown parameters xo. To wit, 

 

  *1* , i

o

oi

o

i fxxPKu


   nmdi ,...,1                                                            (2.21) 

 

Where the matrix P is a Boolean matrix that picks the unmeasured displacements 

o

iu from the total computed displacements
o

iu . 
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Both estimators use the sequential quadratic programming (SQP) algorithm to 

minimize the loss function. The SQP algorithm is an iterative gradient search strategy 

that uses the local information about the gradient and curvature of the loss function at 

the current point in the space of optimization variables and computes a direction vector 

and a step length to reach the next point. 

 

The estimators for modal problems are in the class of least-squares estimators, 

and thus cannot reliably make an estimation if less than a certain minimum amount of 

data are available. Confidence in the estimates increases with the amount of information 

above this minimum level. The basic identifiability criterion is 

 

  pd nnnmd  ˆ                                                                                                                            (2.22) 

Where  dnnmd ˆ  is the number of independent measurements and np is the 

number of unknown constitutive parameters. The identifiability criterion (2.22) is a 

quantitative index for the richness of the available information. If this criterion is not 

satisfied, then the estimates are totally unreliable. However, satisfaction of the 

identifiability criterion does not guarantee reliable estimates.  

 

2.4.3 Simulation environment 

The behavior of a parameter estimation procedure depends on two factors: the 

mathematical model and the richness of the data. The selection of an adequate model is 

difficult and often requires the intuition and judgement of an expert. The subjective step 

of model selection is avoided completely by simulation so that the focus can be on the 

problem of evaluating the issue of the richness of the data (Banan and Hjelmstad, 1993). 

To minimize model selection as a source of error, “real” data is generated by simulation 

with the model that will be used as the basis of the parameter estimation scheme (the 
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model created in Staad Pro). Thus, the assumed mathematical model is an exact 

representation of the "real" structure and is valid. The only factor affecting the behavior 

of the parameter estimation algorithm, then, is the richness of the measurements. 

The term richness is used as a descriptor for the information content in the data. 

It is related not only to the quantity of measurements but also to the quality of those 

measurements. One compromise to the quality of the data comes from the noise (e.g. 

from experimental errors) in the measurements. Experimental errors are developed from 

a variety of sources. Some of the errors are systematic and some of them are random. 

Whenever some aspect of a given problem has a random nature, the solution to 

that problem is a random variable. In a parameter estimation problem, the 

measurements can be considered to have a random error component, therefore the 

estimated parameters are random variables. The essential problem is to discover the 

statistical properties of the solution, in this case the statistics of the estimated 

parameters. Determination of the statistics of the solution is particularly difficult when 

the problem is nonlinear or complex (or both). Monte Carlo simulation provides a useful 

tool for these problems. 

In the parameter estimation problem, the parameters of a finite element model 

are estimated, by solving the constrained nonlinear optimization problem expressed by 

Eqn. (2.15). For a given finite element model, set of load cases, bounding constraints, 

and initial values, the solution x is a function only of the response u measured at certain 

locations. These response values will be polluted with noise. In the simulation 

environment the noisy response u is generated by adding a noise vector n to the 

computed response of the given finite element model uo as follows 
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nuu o                                                                                                                                      (2.23) 

Where n is a random vector with zero expected value and finite known variance. 

As schematically shown in Fig. 5, the experimental errors are modeled as a random noise 

vector n with an assumed distribution function. The response u, computed in accord with 

Fig. 5, is taken to be the measured response of the real structure. 

 

Figure 5. Simulation of actual response of the structure 

 

The estimated parameters x are functions of the noisy response u which is a 

random vector. Therefore, the solution x becomes a random vector whose distribution 

directly depends on the distribution of the noise vector n and the mathematical 

characteristics of the estimation problem (2.15). Through Monte Carlo simulation a 

population of random solutions x from noisy data whose statistics are completely known 

can be generated. Each individual member of the solution population corresponds to a 

certain noise vector.  

For a given mathematical model, bounding constraints, initial values, and load 

cases, Monte Carlo simulation uses a random number generator to produce a sequence 

of noisy responses as follows 

t

o

t nuu    Tt ,...,1                                                                          (2.24) 
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Where nt is the tth noise vector computed using the random number generator as 

explained in the next section and T is the sample size. For each individual noisy response 

ut, the parameter estimation algorithm computes an estimate of the parameters xt of the 

mathematical model. Hence, the simulation develops a sample {xt, t =1,...,T} of estimates 

(i.e. the solution population). Based on the law of large numbers, by increasing the 

sample size T, the statistical indices of the sample (e.g. the mean and standard deviation) 

converge to the actual statistics of the population. Monte Carlo simulation does not need 

the explicit form of the relationship among inputs and outputs of the algorithm and 

approximates the distribution of the estimated parameters by executing the algorithm 

repeatedly, each time altering only the values of the imposed noise. An individual 

execution of the estimator is referred to as a trial in the subsequent sections. The sample 

size T (number of trials) should be large enough to establish statistical significance of the 

estimates. The variation of the statistical indices of the sample with respect to the sample 

size becomes steady when the number of trials is large enough. 

 

2.4.3.1 Noise modeling  

In the simulation study, real measurements are not available, so noisy response is 

simulated by adding random noise to the computed response. There are many types of 

errors that can be introduced into a mathematical model to simulate noisy 

measurements. Due to the complexity of the measurement process, any single type of 

random error would fall short of modeling the actual error experienced in the field. 

Therefore, two simple types of random noise (error) are used to bound the problem of 

noise modeling. The first type is an absolute error of amplitude λ multiplying a uniform 

random variable ξ that takes values between plus and minus one. The error is added to 
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the computed response uo to simulate noisy measurements. Thus, the simulated absolute 

measurement error is modeled as 

t

io

t

i i
uu    dni ˆ,...,1  Tt ,...,1                                                     (2.25) 

Where dn̂ is the number of measured degrees of freedom for a load case, and T is 

the sample size for the simulation. The random variable ξ is constructed using a pseudo-

random number generator and has a zero expected value and variance equal to 1/3. 

Equation (2.25) shows that errors added at each measured degree of freedom for each 

trial 
t

i  are independent from one another. 

Absolute errors model actual experimental errors well when all instruments have 

the same sensitivity and are used to measure responses of the same type and order of 

magnitude. If some of the measurements are small, the absolute errors tend to 

overwhelm the actual responses. The smaller deformations may be unfairly penalized, 

because in practice, when the deformations are suspected to be small, the sensors would 

be set to a greater sensitivity. Also, if the same error amplitude is applied to 

measurements of different types (such as displacements and rotations) the errors can 

completely dominate the smaller response. 

The second type of error is the proportional error. This error is a fraction of the 

computed response multiplying a uniform random variable ξ defined in Eqn. (2.25). The 

simulated proportional measurement error is given by 

 t

io

t

i i
uu  1   dni ˆ,...,1   Tt ,...,1                                       (2.26) 
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Where  is a fraction of the computed deformation uo which controls the 

magnitude of error. Proportional errors are representative of actual measurement errors 

when all instruments are set to optimal sensitivity. True experimental errors lie 

somewhere between the bounds of absolute and proportional errors. The amplitude of 

absolute error λ, and the fraction parameter of proportional error   are referred to as 

the magnitude of noise in the rest of this study. 

 

2.4.3.2 Statistical indices 

In a noisy environment, the parameters being estimated behave as random 

variables. To study estimation algorithms and to find trends in the behavior of these 

estimators, statistical indices can be used to characterize the results. A few appropriate 

statistical indices are introduced for use in probing the behavior of the algorithms by 

simulation (Banan and Hjelmstad, 1993). 

The mean average x of the estimation sample {xt, t = 1,…, T} approximates the 

expected value of the estimated parameters E[x] and is computed as 





T

t

tx
T

x
1

1
                                                                                                   (2.27) 

Where xt is the vector of estimates for the tth trial. We refer to x as the vector of 

estimated parameters for a complete ensemble of trials. The mean average indicates the 

centroid of the distribution of the estimates in the space of parameters for a given 

experiment. 
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The quadratic bias   2
x̂xE  is a measure of the distance between the centroid 

(expected value) of the estimates and the actual parameters x̂  (which are known since 

simulation is being done). The average root quadratic bias (RQB) is defined as 

xn

xx
RQB

p
ˆ

ˆ
                                                                                                   (2.28) 

Where np is the number of parameters and xx ˆ  is the root quadratic bias of 

the sample. The RQB is normalized with respect to the norm of actual parameters. 

The average standard deviation (SD) of the estimates, normalized with respect to

x̂ is given by 
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                                                                        (2.29) 

The SD indicates the standard deviation, an approximation of the square root of 

the variance E[(x – E[x])2] of the estimates, and is a measure of scatter of the 

distribution of the estimates around the expected value. Bias and standard deviation are 

quantitative measures of accuracy and precision of an estimator, respectively. The 

smaller bias and standard deviation are, the more accurate and precise an estimator is. 

When the set of parameters contains different types of quantities, such as axial, 

shear, or flexural stiffnesses, the statistical indices are computed by weighted averaging. 

For example, if there are three different types of parameters, then the average root 

quadratic bias is calculated as follows 
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                                                                                    (2.30) 

Where 
ipn is the number of ith type parameters and RQBi is computed based on 

Eqn. (2.28) whose variables are calculated for the set of estimates and actual values for 

the ith type of parameters. 
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3. FINITE ELEMENT MODELS FOR THE TCF BANK STADIUM AND THE 

THREE SPAN BEAM (TSB) 

3.1 Finite element model for TCF Bank Stadium 

TCF Bank Stadium is a relatively new stadium constructed in 2009 that has a 

current capacity of 50,805 people with the possibility to increase it to 80,000 in the near 

future. Figure 6 provides a plan view of the stadium as it was in 2013. 

 

Figure 6. Plan View of the TCF Bank Stadium 2013 

 

The girders and the risers that make the upper and lower decks in addition to 

some columns in the lower deck were constructed using a precast, post-tensioned 

concrete structural system. Furthermore, structural steel was used in elements like 
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columns in the upper level, the flooring system in areas such as the main concourse and 

elements to provide lateral bracing in specific locations of the stadium. For this study, 

special consideration will be given to the east end of the stadium where the student 

section is located due to the fact that young people would be likely more involved in 

periodic or rhythmic motions such as jumping or dancing. 

The east lower deck is broken up into 8 typical sections. Each section is composed 

of precast seating single risers (stem equal to zero) resting on precast, post-tensioned, 

prismatic, concrete girders (rakers) or in some cases precast wall panels of 6” in 

thickness. There are also precast columns that support the main concrete girders. Figure 

7 shows an elevation view of the lower deck in the east end of the stadium. 

 

 

 

 

 

 

 

Figure 7. Elevation view of the lower deck in east end of stadium 

Likewise the east upper deck is broken up into 10 typical sections. Each section is 

composed of precast seating single risers (with stem different than zero) resting on 

precast, post-tensioned, prismatic, concrete girders. Steel columns support the main 
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girders in the upper deck. Figure 8 shows an elevation view of the upper deck in the east 

end of the stadium. 

 

 

Figure 8. Elevation view of the upper deck in east end of stadium 

The dimensions of the single risers with and without stem are presented in figure 

9. 

 

 

 

 

 

Figure 9. a) Single riser without stem and b) Single riser with stem 
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The finite element model of the east end of the stadium is created using the 

structural analysis program Staad.Pro V8i. To create the model, construction drawings of 

the east lower and upper decks of the TCF Bank Stadium were obtained from the 

consulting firm Magnusson Klemencic Associates. 

All structural precast concrete elements (columns, risers, girders, walls) should 

have a compressive strength of 5,000 psi as per construction drawings and reinforced 

with ASTM A615, grade 60 steel in accordance with ACI-318 2005. The unit weight of 

concrete is considered as 150 pounds per cubic foot. In addition, precast units contain 

prestress as required by the contractor’s design, which makes difficult the task of 

knowing exactly the reinforcement an element has. 

All steel conforms to the following (E = 29x106 psi): 

 W Shapes                 ASTM A992, Fy = 50 ksi 

            ASTM A913, Fy = 50 ksi 

 Square or rectangular structural tube (HSS)       ASTM A500, Grade B, Fy = 46 ksi 

 Round structural tube (HSS)          ASTM A500, Grade B, Fy = 42 ksi 

 

The precast girders used to construct the stadium are prismatic members, which 

made the modeling process easy to carry out with the only exception of the girders 

located in the cantilever upper deck section. In that case the girder was broken up into 

smaller elements, each with different cross sectional properties obtained through linear 

interpolation given the dimensions of the element as per the elevation view of the upper 

deck as in figure 8, and using the average cross sectional area and moment of inertia of 

that smaller element. The modulus of elasticity associated with the concrete is based on 

the concrete specified design strength of 5,000 psi and calculated using the ACI 318-05 

recommended equation: 
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          ksicfwE cc 825.286,4000,533150'33
5.15.1

  

The girder in the lower deck is modeled with hinges at the nodes where there is a 

column supporting it due to the fact that the girder is not a continuous element. 

However, the girders in the upper deck are modeled as a continuous element as shown in 

the construction drawings. The risers are modeled with hinges at both ends where they 

are supported by the girders, in other words, as simply supported beams. The precast 

and steel columns are modeled in such a way that the top end of the elements is released 

from bending moments, due to the fact that the connection between precast girders and 

columns is not fixed, actually simply supported, as opposed to cast in place elements 

where the degree of fixity is higher. 

 

The fact that only the east end of the stadium is modeled brings one difficulty as 

to what would be the appropriate boundary conditions where the “cut” was made. The 

approach that was used to model this is the following: 

 

 The complete beam (riser) that is truncated is analyzed in order to 

determine the deflection in the vertical direction due to concentrated 

vertical loads resembling the crowd loading using the method of virtual 

work or the “dummy load” at the location of the cut. 

 After computing the deflection in terms of the Young’s modulus and the 

moment of inertia, we compute the equivalent stiffness of the beam using 

the relation ku = f, where k is the stiffness, u is the vertical displacement 

and f is the set of concentrated forces acting on the beam. Note that the 

concentrated forces are assumed to be equal. 

 Having computed the stiffness, we put linear springs at the locations 

where the cut was made in the global directions (Y, X and Z). One 
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assumption made here is that the local x and z axes of the risers do not 

vary too much from the X and Z global directions. 

 

Figure 10 shows the beam used to determine the spring constants for the risers in 

the upper deck of the east end of the stadium using the procedure discussed previously. 

The red dot shown in the figure represents the location where the displacement was 

calculated. 

 

 
Figure 10. Beam used to compute spring constant in the upper deck of stadium 

 

 

Similarly, figure 11 shows the beam used to determine the spring constants for the 

risers in the lower deck of the east end of the stadium. Again the red dot indicates the 

location where the displacement was computed. 

 

 
Figure 11. Beam used to compute spring constant in the lower deck of stadium 

 
 

The spring constants obtained were k = 9,907.45 lb/in for the risers in the upper 

deck of the stadium and k = 5,643.21 lb/in for the risers in the lower deck. For ease of 

analysis, these spring constants will be applied in the three global directions. Figure 12 

shows how the program Staad.Pro identifies linear springs. 

 



45 
 

 
Figure 12. Identification of linear springs in Staad.Pro (X = red, Y = green, Z = blue) 

 
 

Figure 13 shows the complete model of the east end of the TCF Bank Stadium that 

captures the presence of the linear springs as computed previously and the member 

releases (hinges) wherever marked on the construction drawings. 

 

 
Figure 13. Complete model of the east end of the stadium in Staad.Pro 
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3.2 Finite element model for TSB 

In order to gain more insight on the problem at hand and also to check the 

solution given by the Matlab program created to perform a modal analysis against the 

solution given by Staad.Pro, a three span beam model with the element properties of a 

riser in the upper deck will be used. The reason why a three span beam model is selected 

is mainly because that is the area where the length of the beams is greater, close to 43 

feet, thus it is expected a higher response, whether it is in terms of displacements, 

accelerations or stresses. 

Figure 14 presents the three span beam that will be used. It is interesting to note 

that the supports are modeled as linear springs since the risers are supported by the 

girders and also that there are hinges at both ends of the beams since the connection 

does not provide a total fixity condition, simulating a simply supported beam. 

 

Figure 14. Three span beam model 

 

In order to know the stiffness of those linear springs a procedure similar to that 

explained in the previous section is performed on the girders. The only difference being 

that the average stiffness is taken since there are several risers that are supported by the 

girder. Figure 15 shows the model of the girder used to compute the stiffness used in the 

TSB. 
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Figure 15. Girder model to compute the stiffness of the linear springs in the TSB 

 

All of the concentrated loads are equal to 0.867F due to the fact that the girder 

makes an angle of 29.885° with the horizontal. Using the method of virtual work the 

displacements are computed at the locations where the red dots are present. Knowing 

the 7 displacements in terms of the force F, elastic modulus E and moment of inertia I, 

we get 7 stiffnesses which later the average is computed and that is the value used for the 

TSB model shown in figure 14. The stiffness thus obtained is equal to 71,621.71 lb/in. 
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4. DYNAMIC ANALYSIS OF THE TCF BANK STADIUM AND TSB USING 

HUMAN-STRUCTURE INTERACTION CONCEPTS 

4.1 Results for the TSB from static analysis 

 Just for the sake of comparison, a static analysis was performed on the TSB with 

the loading of 100 lb/ft2 of live load specified in the ASCE 7-10. The load factors were 

taken as 1.2 for the dead load and 1.6 for the live load, as per the current codes (ASCE 7-

10, ACI 318-10). In addition, load factors of 1.4 and 1.7 for the dead and live loads 

respectively were used as per the older versions of the previously mentioned codes or 

standards. Table 5 presents the results of the static analysis in terms of the maximum 

displacement, maximum shear force and maximum bending moment in one of the risers 

of the upper level. 

Table 5. Results from static analysis in the TSB  

Static Analysis Max. 
Displacement 

(in) 

  Max. Shear 
Force (lb) 

Max. Bending 
Moment (kips 

in) 
Static (1.2 DL, 1.6 

LL) 
1.58 - 17,672.92 2,262.13 

Older load factors         
Static (1.4 DL, 1.7 

LL) 
1.76 - 19,718.99 2,524.03 

 

4.2 Results for the TSB from dynamic analysis 

4.2.1 All people in the TSB active 

 Table 6 presents the results of the dynamic analysis of the TSB for the case of 

having 60 people active (jumping/dancing) for different excitation frequencies. 
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Table 6. Results from dynamic analysis in the TSB for different excitation frequencies 

All active                             
(60 

people) 

Max. 
Displacement 

(in) 

Max. 
Acceleration  

(m/s2) 

Max. 
Shear 

Force (lb) 

Max. Bending 
Moment (kips 

in) 
1.8Hz 1.01 1.74 10,354.84 1,579.60 
1.97Hz 1.55 3.26 15,881.61 2,421.46 
2.13Hz 1.66 4.19 17,135.09 2,622.28 
2.3Hz 0.90 2.31 9,190.56 1,402.71 

 

 One thing worth mentioning is that the first natural frequency of the TSB is 4.327 

Hz. By looking at table 6 we can see that the 2.13 Hz excitation frequency produces the 

highest response, because the second harmonics (4.26 Hz) of this frequency is very close 

to the natural frequency of the TSB, therefore the possibility of resonance is increased for 

this particular case. Furthermore, we can see that the acceleration of 4.19 m/s2 is more 

than the limiting value given by Kasperski M. (1996) in table 4 of 35% of g (3.43 m/s2). 

In addition, this response is greater than the one predicted by the static analysis from 

table 5, using the load factors of 1.2 for dead load and 1.6 for live load, which means that 

a dynamic analysis must be performed in order to study the effects of people 

jumping/dancing at different frequencies. 

4.2.2 Maximum response in the TSB for different locations of active/passive 

people 

 Several cases were studied in order to determine how much of active and passive 

people would be required so that the response would be a maximum, whether it is in 

terms of displacement, acceleration, shear force and bending moment. Additionally, the 

location of the active and passive people was varied along the length of the TSB to see if 

this affects the response as well. The results are shown in table 7. 
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Table 7. Results from dynamic analysis in the TSB for different excitation frequencies, 
different number of active and passive people, and different location of the people  

With some 
passive 
people 

(standing) 

Max. 
Displacement 

(in) 

Max. 
Acceleration  

(m/s2) 

Max. 
Shear 
Force 

(lb) 

Max. Bending 
Moment (kips 

in) 

1.80 Hz 1.01 1.74 10,354.84 1,579.60 
1.97 Hz 1.55 3.26 15,881.61 2,421.46 
2.13 Hz 1.67 4.20 18,313.2 2,739.78 
2.30 Hz 1.15 3.29 13,794.3 2,133.30 

 

 For the cases of having an excitation frequency of 1.8 and 1.97 Hz, the maximum 

response was the same as the case of having all active people (table 6). However, for the 

cases of 2.13 and 2.30 Hz in excitation frequency, the maximum response was obtained 

by reducing the amount of active people and by changing the location of the passive 

people as can be seen in figures 16 and 17. 

 

Figure 16. Active people and passive people configuration for an excitation frequency of 
2.13 Hz that gives maximum response 

 

 

Figure 17. Active people and passive people configuration for an excitation frequency of 
2.30 Hz that gives maximum response 

 

 It is interesting to note as well that the natural frequencies for the TSB shown in 

figures 16 and 17 got reduced, due to the presence of passive people. The frequencies 

were 4.035 Hz and 3.987 Hz for the configurations in figures 16 and 17, respectively. 

Even though the second harmonic of the two excitation frequencies is not exactly equal 
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to the natural frequency of the TSB, it was observed that the frequencies of the higher 

modes (especially 2 and 3) were very close to the excitation frequencies of the active 

people.  

4.2.3 Response in the TSB for different locations with a ratio active/passive 

people equal to one 

 The case of having a ratio of active to passive people equal to one was studied, in 

other words, 30 people active and 30 people passive in the TSB. The results were carried 

out for the four excitation frequencies. 

 Figures 18 and 19 show the configurations of active and passive people that led to 

minimum and maximum responses, respectively for an excitation frequency of 1.80 Hz. 

In addition, table 8 shows the results for this excitation frequency. 

  

Figure 18. Configuration of active/passive people for minimum response (Excitation 
frequency of 1.8 Hz) 

 

 

Figure 19. Configuration of active/passive people for maximum response (Excitation 
frequency of 1.8 Hz) 

 

Table 8. Minimum and maximum response from dynamic analysis in the TSB for an 
active to passive ratio of one and excitation frequency of 1.8 Hz 

  Max. Vertical 
Displacement 

(in) 

Max. 
Acceleration 

(m/s2) 

Max. 
Shear 

Force (lb) 

Max. Bending 
moment (kip in) 

Min 0.627 1.07 6,517.30 977.59 

Max 0.687 1.3155 7,326.08 1,114.58 
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 For this case, the difference in responses is not that much different, possibly due 

to the fact that the natural frequencies of the beams in figures 18 and 19 are 4.055 and 

4.027 Hz, respectively which are roughly equal, thus similar responses are present. 

 Figures 20 and 21 show the configurations of active and passive people that led to 

minimum and maximum responses, respectively for an excitation frequency of 1.97 Hz, 

as well as table 9 where the responses are presented. 

 

Figure 20. Configuration of active/passive people for minimum response (Excitation 
frequency of 1.97 Hz) 

 

 

Figure 21. Configuration of active/passive people for maximum response (Excitation 
frequency of 1.97 Hz) 

 

Table 9. Minimum and maximum response from dynamic analysis in the TSB for an 
active to passive ratio of one and excitation frequency of 1.97 Hz 

  Max. Vertical 
Displacement 

(in) 

Max. 
Acceleration 

(m/s2) 

Max. 
Shear 

Force (lb) 

Max. Bending 
moment (kip in) 

Min 0.739 1.485 8,530.80 1,329.60 

Max 1.06 2.31 11,671.10 1,685.40 

 

 In this case the difference is more pronounced since the natural frequency of the 

TSB in figure 21 is 3.947 Hz, which is almost the same as the second harmonic of the 

excitation frequency of 1.97 Hz, whereas the frequency of the TSB in figure 20 is 4.072 

Hz. 



53 
 

 Furthermore, figures 22 and 23 show the configurations of active and passive 

people that led to minimum and maximum responses, respectively for an excitation 

frequency of 2.13 Hz, in addition to table 10 where the responses are presented. 

 

Figure 22. Configuration of active/passive people for minimum response (Excitation 
frequency of 2.13 Hz) 

 

 

Figure 23. Configuration of active/passive people for maximum response (Excitation 
frequency of 2.13 Hz) 

 

Table 10. Minimum and maximum response from dynamic analysis in the TSB for an 
active to passive ratio of one and excitation frequency of 2.13 Hz 

  Max. Vertical 
Displacement 

(in) 

Max. 
Acceleration 

(m/s2) 

Max. Shear 
Force (lb) 

Max. Bending 
moment (kip in) 

Min 0.482 1.1115 5,539.02 770.14 

Max 1.01 2.325 11,376.50 1,748.70 

 

 Similarly for this case, the second harmonic of the excitation frequency is closer 

to the natural frequency of the TSB shown in figure 23 of 4.055 Hz than it is to the 

natural frequency of the TSB in figure 22 of 3.975 Hz. The response in this case is bigger 

by a factor of 2 or so, for all of the responses studied. 

 Lastly, figures 24 and 25 show the configurations of active and passive people 

that led to minimum and maximum responses, respectively for an excitation frequency 

of 2.30 Hz, and table 11 that presents the computed responses.  
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Figure 24. Configuration of active/passive people for minimum response (Excitation 
frequency of 2.30 Hz) 

 

 

Figure 25. Configuration of active/passive people for maximum response (Excitation 
frequency of 2.30 Hz) 

 

Table 11. Minimum and maximum response from dynamic analysis in the TSB for an 
active to passive ratio of one and excitation frequency of 2.30 Hz 

  Max. Vertical 
Displacement 

(in) 

Max. 
Acceleration 

(m/s2) 

Max. Shear 
Force (lb) 

Max. Bending 
moment (kip in) 

Min 0.328 0.7395 3,601.28 542.32 

Max 1.11 3.21 13,106.99 2,035.85 

 

 The difference in this case is more pronounced, about a factor of 3.5 to 4 for all of 

the responses. Again, it seems that the second harmonic of the excitation frequency (4.60 

Hz) adds significant more energy into the system of figure 25, where the natural 

frequency is 4.124 Hz. The low values for the minimum case are an indicative that the 

configuration of figure 24 adds significant amount of damping into the system.  

4.3 Results for the TCF Bank Stadium from static analysis 

 A static analysis was performed on the section of the stadium in order to have 

some numerical values so we can compare them with the results obtained from the 

dynamic analyses. Table 12 shows the maximum response in three different elements, 

specifically riser, girder and cantilever. 

 



55 
 

Table 12. Maximum response in three different structural elements of the stadium from 
static analysis 

  Vertical 
Displacement (in) 

Shear Force 
(lb) 

Bending moment 
(Kip in) 

Cantilever 1.65 58,625.40 8,326.90 

Riser 1.58 17,672.92 2,262.13 

Girder 0.698 132,594.20 19,140.80 

 

4.4 Results for the TCF Bank Stadium from dynamic analysis 

4.4.1 All people active 

 Dynamic analyses were performed in the section of the stadium with four 

different excitation frequencies, 1.8, 1.97, 2.13 and 2.30 Hz, for the case of having all of 

the people active. Tables 13, 14 and 15 show the results for each of the structural 

elements and for each of the excitation frequencies. 

Table 13. Maximum response in risers from dynamic analysis 

  Vertical 
Displacement 

(in) 

Shear 
Force 

(lb) 

Bending 
moment 
(Kip in) 

Acceleration 
(m/s2) 

1.8 Hz 1.95 16,887.15 2,490.35 3.34 
1.97 Hz 2.22 20,054.80 2,984.70 4.74 
2.13 Hz 1.51 13,632.10 2,063.90 3.55 
2.30 Hz 1.04 10,481.10 1,603.20 2.58 

 

 It can be seen from the table that the excitation frequency of 1.97 Hz gives the 

highest response in the risers. The level of acceleration obtained is close to 0.5g which 

according to Kasperski M. (1996) would be considered as an acceleration that is causing 

panic in the audience. It can be seen that the response from the static analysis is greater 

than the one obtained for the excitation frequencies of 2.13 and 2.30 Hz. The possible 

reason for the difference in results from the TSB and the complete stadium is that 
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averages of spring constants were taken for the TSB, whereas for the stadium, the actual 

girder is supporting the risers. 

Table 14. Maximum response in girders from dynamic analysis 

  Vertical 
Displacement 

(in) 

Shear 
Force (lb) 

Bending 
moment 
(Kip in) 

Acceleration 
(m/s2) 

1.8 Hz 0.858 270,935.10 44,578.30 2.67 

1.97 Hz 0.802 158,507.90 27,944.50 1.8 

2.13 Hz 0.531 109,486.80 16,758.60 1.11 

2.30 Hz 0.432 96,812.40 14,626.30 0.77 

 

 For the case of the girders, the excitation frequency of 1.8 Hz gives the highest 

response, but in this case the levels of acceleration are below the limiting value defined in 

table 4, however the acceleration of 2.67 m/s2 is still in the range of “unacceptable”. 

Comparing these values against the ones obtained from static analysis, it can be observed 

that again the excitation frequencies of 1.8 and 1.97 Hz gave higher values for the 

quantities measured as was the case for the risers. 

Table 15. Maximum response in cantilever from dynamic analysis 

  Vertical 
Displacement 

(in) 

Shear 
Force (lb) 

Bending 
moment 
(Kip in) 

Acceleration 
(m/s2) 

1.80 Hz 1.52 45,837.70 6,839.16 1.51 

1.97 Hz 1.42 42,296.60 6,647.60 1.49 

2.13 Hz 1.81 61,481.04 8,474.48 1.695 

2.30 Hz 2.69 81,393.80 11,347.60 2.59 

 

 For the cantilever beams the excitation frequencies of 2.13 and 2.30 Hz gave 

responses higher than those obtained from static analysis. One of the reasons this is so 

for this type of beam is that the first mode shape of a riser or a girder which involves 

vertical motion might not be the same as for the cantilever beam, thus the excitation 

frequencies of 2.13 and 2.30 Hz might have excited a different mode shape for the 
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cantilever beams, as opposed for the risers and girders, where the excitation frequencies 

of 1.8 and 1.97 Hz gave the highest response.   

4.4.2 Response in the TCF Bank Stadium as per load cases determined from 

the TSB results 

 Tables 16 and 17 show the results from dynamic analyses with an excitation 

frequency of 1.8 Hz for the cases of having an active to passive ratio of one as per figures 

18 and 19, respectively. 

Table 16. Response in stadium with loading case as per figure 18, with 1.8 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.13 1.98 10,393.50 837.65 

Girder 0.54 0.88 153,456.70 26,788.50 

Cantilever 0.89 0.77 34,387.20 4,025.75 

 

Table 17. Response in stadium with loading case as per figure 19, with 1.8 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.39 2.37 14,675.50 1,231.70 

Girder 0.64 1.27 197,238.70 31,797.80 

Cantilever 1.01 0.86 40,387.60 4,873.20 

 

 From table 17 it can be observed that the responses in the three structural 

elements is between 65% and 75% of the response with all people active. Furthermore, in 

terms of serviceability and in particular the level of acceleration, the maximum observed 

in table 17 of 2.37 m/s2 or 0.24g is below the limiting value of 0.35g, but is between the 

levels of disturbing and unacceptable, thus a dynamic analysis like the one performed 

here would be appropriate for this excitation frequency. The absolute maximum 
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response for 1.8 Hz excitation frequency is still observed in tables 13, 14 and 15 for the 

risers, girders and cantilevers, respectively.   

Additionally, tables 18 and 19 show the results from dynamic analyses with an 

excitation frequency of 1.97 Hz for the cases of having an active to passive ratio of one as 

per figures 20 and 21, respectively. 

The response for this case of 1.97 Hz excitation frequency produces higher values 

of the measured parameters than those obtained in the previous case of 1.8 Hz. 

Compared to the values obtained from the case of having all active people, with a ratio of 

active/passive people of one, the response can be decreased from percentages of 30% to 

35%. For example, having all people active produces 4.74 m/s2 of acceleration in the riser 

which is clearly above the limit proposed by Kasperski, M. (1996), whereas the result in 

table 18 shows an acceleration of only 2.41 m/s2. Similar comparisons can be performed, 

but the point is that the location of the passive people can be varied in order to decrease 

the response in the stadium in any given moment.  

Table 18. Response in stadium with loading case as per figure 20, with 1.97 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.53 2.41 14,873.50 1,798.50 

Girder 0.51 0.81 102,729.40 13,275.24 

Cantilever 0.84 0.71 28,830.11 4,111.31 

 

Table 19. Response in stadium with loading case as per figure 21, with 1.97 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.91 3.01 18,713.20 2,273.10 

Girder 0.68 1.13 139,613.20 20,393.20 

Cantilever 1.20 0.97 39,757.30 5,873.31 
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Tables 20 and 21 show the results from dynamic analyses with an excitation 

frequency of 2.13 Hz for the cases of having an active to passive ratio of one as per figures 

22 and 23, respectively. Furthermore, table 22 shows the results from the loading case 

that gave the highest response with 2.13 Hz in the TSB, as per figure 16. 

Table 20. Response in stadium with loading case as per figure 22, with 2.13 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 0.64 1.41 6,713.70 1,104.50 

Girder 0.24 0.52 54,587.30 7,397.70 

Cantilever 0.77 0.72 25,726.80 3,706.80 

 

Table 21. Response in stadium with loading case as per figure 23, with 2.13 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.13 2.48 11,778.50 1,937.80 

Girder 0.39 0.88 95,767.30 12,978.50 

Cantilever 1.43 1.33 43,729.80 6,327.80 

 

Table 22. Response in stadium with loading case as per figure 16, with 2.13 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.61 4.13 17,813.90 2,639.80 

Girder 0.62 1.15 115,917.50 17,123.90 

Cantilever 1.79 1.63 57,879.50 8,018.90 

 

 From tables 20 and 21, it can be seen that for an equal number of active and 

passive people, the maximum response obtained is somewhere between 70% and 80% of 

the response obtained from the case of having all people active. In terms of how the 

location of the passive people reduces the acceleration of the risers and therefore all the 
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other structural elements, it can be noted that from an acceleration of 3.55 m/s2 in the 

riser having 60 active people gets reduced to 1.41 m/s2, or a reduction of 60%. 

 Table 22 shows that actually having all people active does not yield the maximum 

response in the structural elements of the stadium. The loading case shown in figure 16 

presents to the structure higher response. Acceleration level of 4.13 m/s2 can be seen, 

which is in the range of causing panic, the maximum displacement in the riser increased 

about 6%, the maximum displacement in the girder increased 16% and interestingly 

enough, the displacement in the cantilever decreased by 1.1%. One of the reason for this 

behavior is that the cantilever portion of the stadium, and in general any stadium, tend 

to have mode shapes, and therefore natural frequencies, that are different than those 

obtained for the risers or girders. One other possible reason is that this excitation 

frequency may be exciting, perhaps with the second harmonic, local modes of the risers 

within the stadium.  

Lastly, tables 23 and 24 show the results from dynamic analyses with an 

excitation frequency of 2.30 Hz for the cases of having an active to passive ratio of one as 

per figures 24 and 25, respectively. In addition, table 25 shows the results from the 

loading case that gave the highest response with 2.30 Hz in the TSB, as per figure 17. 

Table 23. Response in stadium with loading case as per figure 24, with 2.30 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 0.41 0.81 3,971.30 631.20 

Girder 0.17 0.55 87,373.50 11,724.30 

Cantilever 1.27 1.13 59,327.30 7,987.60 
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Table 24. Response in stadium with loading case as per figure 25, with 2.30 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 0.92 2.24 9,073.40 1,097.30 

Girder 0.39 0.62 88,213.30 13,878.30 

Cantilever 2.03 1.88 70,323.40 9,327.40 

 

Table 25. Response in stadium with loading case as per figure 17, with 2.30 Hz excitation 
frequency 

  Displacement 
(in) 

Acceleration 
(m/s2) 

Shear force 
(lb) 

Moment 
(Kip in) 

Riser 1.22 2.69 12,327.40 1,693.20 

Girder 0.47 0.83 99,798.20 15,203.40 

Cantilever 2.04 1.88 70,424.30 9,359.70 

 

 Table 25 presents the response that is greater than the response from having all 

60 people active. An acceleration of 2.69 m/s2 can be seen in the riser, which is in the 

unacceptable range, the maximum displacement in the riser increased about 17%, the 

maximum displacement in the girder increased 8.8% and the displacement in the 

cantilever decreased by 24.16%. The reasons described earlier for the previous case apply 

here as well.  

From tables 23 and 24, it can be seen that for an equal number of active and 

passive people, the maximum response obtained is somewhere between 75% and 93% of 

the response obtained from the case of having all people active. The acceleration of the 

risers and therefore all the other structural elements got reduced for the case of using the 

load case as depicted in figure 24, for instance, it can be noted that from an acceleration 

of 2.69 m/s2 in the riser from table 25, it gets reduced to 0.813 m/s2, or a reduction of 

69%. A reduction of 33% in acceleration of the girder is present and a reduction of 56% 

for the cantilever beam. 



62 
 

4.5 Summary 

After performing a dynamic analysis of the TSB, the results showed that for an 

excitation frequency of 2.13 Hz, the response of the TSB is greater than that produced by 

static analysis applying a load of 100 lb/ft2 plus dead loads, using the load factors as per 

ASCE 7-10. 

An analysis was carried out in order to determine the maximum response in the 

TSB for the four different excitation frequencies. The results showed that for the 

frequencies of 1.8 Hz and 1.97 Hz, the maximum response was obtained as a result of 

having 60 people active. The maximum response for an excitation frequency of 2.13 Hz 

was obtained for the configuration shown in figure 16, and the maximum response for an 

excitation frequency of 2.30 Hz was obtained for the configuration shown in figure 17. 

Dynamic analysis showed that the response of some structural elements in the 

stadium (riser, cantilever, and girder) is sometimes greater than that obtained from 

static analysis.  

After applying the different configurations of active/passive people for the 

specific cases of having an excitation frequency of 2.13 Hz and 2.30 Hz from figures 16 

and 17 into the section of the stadium, it was observed in general an increase in the 

response, especially for the risers and girders. Interestingly, the response in the 

cantilever showed lower values when using these configurations, indicating that a local 

mode, of the risers, was probably excited more easily than the cantilever mode shape.  
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5. PARAMETER ESTIMATION RESULTS 

5.1 Parameter estimation results for the TSB 

 In order to see whether or not the parameter estimation algorithms gave good 

results, analysis of the TSB was performed prior to the study of the section of the 

stadium for different combinations of number of measurements, number of degrees of 

freedom (dof’s) measured and different values of absolute and proportional error. The 

absolute error used for this analysis was from 0.003 to 0.03 and the proportional error 

was between 1% and 10%. 

5.1.1 Statistical indices 

 Figures 26 and 27 show the RQB and SD values for the TSB in the case of having 

measured 3 dof’s and having performed 3 measurements, or in other words, having 

determined the first 3 mode shapes of the TSB for both the EEE and the OEE.  

 

Figure 26. RQB values for TSB having 3 dof’s measured and 1 to 3 measurements 
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Figure 27. SD values for TSB having 3 dof’s measured and 1 to 3 measurements 

 

 By looking at the figures it can be seen that the results get better as we move from 

1 measurement to two measurements, however this behavior is not observed when going 

from 2 to three measurements, for both the estimators. The reason for this is that the 

third measurement does not add not enough new information for the system to obtain 

good values of the estimates, and in fact the new information produces worse results. 

One thing to notice as well is that the results are better all the time we have proportional 

error instead of having absolute error.   

Figures 28 and 29 show the RQB and SD values for the TSB in the case of having 

measured 6 dof’s and having performed 1 to 3 measurements for both the EEE and the 

OEE. 
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Figure 28. RQB values for TSB having 6 dof’s measured and 1 to 3 measurements 

 

 

Figure 29. SD values for TSB having 6 dof’s measured and 1 to 3 measurements 

 

This case shows a similar behavior as the previous one, where the estimates 

become better as we move from 1 to 2 measurements but this time only for results that 
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have absolute error. Having 3 measurements produces the best results of RQB for the 

OEE with proportional error and the best results of SD are obtained from the EEE with 

proportional error with only 1 measurement. 

Furthermore, figures 30 and 31 present the RQB and SD values for the TSB in the 

case of having measured 9 dof’s and having performed 3 measurements for both the EEE 

and the OEE. 

 

Figure 30. RQB values for TSB having 9 dof’s measured and 1 to 3 measurements 

 

 From figure 30 it can be seen that for the OEE and proportional error the 

estimates are better when there are 3 measurements and the estimates are worse for the 

OEE and absolute error when there is only 1 measurement. For the EEE for both the 

absolute and proportional errors, the estimates are better when the measurements 

capture 3 mode shapes of the TSB. Similar outcome is present for the SD values shown in 

figure 31 with the only difference that the worst value of SD was obtained for the EEE 

and absolute error when there is only 1 measurement. 
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Figure 31. SD values for TSB having 9 dof’s measured and 1 to 3 measurements 

 

Figures 32 and 33 show the comparative results for all the cases presented 

previously for the RQB and SD values. Additionally, figure 34 shows the locations of the 

measured dof’s for the TSB. 
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Figure 32. RQB values for TSB having 3, 6 and 9 dof’s measured and 1 to 3 
measurements 

 

Figure 33. SD values for TSB having 3, 6 and 9 dof’s measured and 1 to 3 measurements 
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Figure 34. Location of the 3, 6 and 9 measured dof’s for the TSB 

Overall, RQB and SD values obtained using the OEE were lower than those 

obtained by the EEE for the TSB and having more data available does not necessarily 

mean better estimates or lower values of RQB and SD. Furthermore, it can be seen that 

the estimation algorithms have more sensitivity to absolute errors, due to the fact that 

some measurements, and especially small ones, may be controlled by a big absolute error 

value (λ), whereas for the proportional error, that possibility is eliminated by the use of a 

percent of the actual measurement as the error. 

5.1.2 Estimated parameter 

 Table 26 presents the maximum and minimum estimated parameter (EI) of the 

TSB, for both the estimators and for both the error types. 

Table 26. Maximum and minimum estimated parameter for the TSB 

  EEE OEE 

AE PE AE PE 

Actual EI 57,121,056,880.00 = 1.0 

max 1.02 1.02 1.02 1.00 

% Difference 1.99 1.61 1.95 0.46 

min 0.99 0.99 0.99 1.00 

% Difference 1.45 1.12 1.44 0.43 
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It can be seen from table 26 that % differences as much as 1.99 and as low as 0.43 

were obtained. It is clear that the OEE gave better results than the EEE, and it did also 

for the case of having proportional error as opposed to having absolute error.                                                                                                                                                

5.2 Parameter estimation results for the TCF Bank Stadium 

 Analysis of the section of the stadium was performed for different combinations 

of number of measurements, number of degrees of freedom (dof’s) measured and 

different values of absolute and proportional error. The absolute error used for this 

analysis was from 0.01 to 0.10 and the proportional error was between 3% and 30%. 

5.2.1 Statistical indices 

 Figures 35 and 36 show the RQB and SD values, respectively for the section of the 

stadium for the cases of having measured from 6 to 24 nodes (18 to 72 dof’s) and having 

performed from 1 to 4 measurements for the EEE with absolute error. Additionally, 

figures 37 and 38 present the values of RQB and SD but this time with the proportional 

error. 



71 
 

 

Figure 35. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with absolute error (EEE) 

 

 

Figure 36. SD values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with absolute error (EEE) 
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Figure 37. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with proportional error (EEE) 

 

 

Figure 38. SD values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with proportional error (EEE) 
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 From the previous figures it can be seen that the RQB and SD values are generally 

lower for the case of having introduced the proportional error. Additionally, it can be 

seen that the best estimates are not necessarily obtained when the full size of 

measurements are used (4 measurements and 24 nodes measured). For the case of  

having the absolute error, the best results were obtained with 3 measurements and 8 

nodes measured and for the case of having proportional error, the best results were 

obtained with 2 measurements and 24 nodes measured.  

 Figures 39 and 40 show the RQB and SD values, respectively for the section of the 

stadium for the cases of having measured from 6 to 24 nodes and having performed from 

1 to 4 measurements for the OEE with absolute error. Additionally, figures 41 and 42 

present the values of RQB and SD but this time with the proportional error. 

 

Figure 39. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with absolute error (OEE) 
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Figure 40. SD values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with absolute error (OEE) 

 

 

Figure 41. RQB values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with proportional error (OEE) 
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Figure 42. SD values for the stadium having 6 to 24 nodes measured and 1 to 4 
measurements with proportional error (OEE) 

 

 As can be seen by the previous four figures and similar to the results from the 

EEE, the RQB and the SD values obtained by the OEE with proportional error are lower 

than those obtained with absolute error. For this estimator, it seems that having more 

data helps getting better and better results, except for one case where the RQB value was 

the least for the case of having 2 measurements and 8 nodes measured. 

 Comparing the results obtained from the two estimators, it can be concluded that 

overall the OEE gives better estimates than the EEE for the same conditions on how 

many measurements are done or how many nodes are measured. This could be the case 

because in the EEE the estimated measurements increase by a considerable amount the 

number of unknowns in the optimization problem. 

 Figures 43, 44, 45 and 46 show the location of the 6, 8, 12 and 24 measured nodes 

in the section of the stadium, respectively. 
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Figure 43. Location of the 6 nodes measured 

 

 

Figure 44. Location of the 8 nodes measured 
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Figure 45. Location of the 12 nodes measured 

 

 

Figure 46. Location of the 24 nodes measured 

 

5.2.2 Estimated parameters 

 In a similar way as was done for the TSB, the maximum and minimum estimated 

parameters are presented in this following section and are compared against the actual 
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parameters (EA, EIz, EIy), in terms of percent difference. Figure 47 shows the structural 

elements for which the structural parameters were estimated.  

 

 

 

Figure 47. Structural members for which the estimated parameters are compared against 
the actual parameters 

 

5.2.2.1 Estimated parameters for riser # 1 

 Table 27 shows the maximum and minimum estimated parameters (EA, EIz, EIy) 

of the section of the stadium, for both the estimators and for both the error types. 

 It can be seen that in general the OEE gives better results than the EEE for all of 

the three parameters. The maximum and minimum % difference for the EA parameter 

were 14.96 and 0.03, respectively. In addition, the maximum and minimum % difference 

for the EIz parameter were 10.68 and 6.08, respectively. Lastly, the maximum and 

minimum % difference for the EIy parameter were 12.55 and 2.72, respectively. 

Riser # 1 

Riser # 2 

Cantilever # 1 Cantilever # 2 
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Table 27. Maximum and minimum estimated parameters of riser # 1 for the section of 
the stadium 

  EEE OEE 

AE PE AE PE 

Actual EA 1,556,639,502.06 = 1.0 

max 1.04 1.02 1.00 1.00 

% Difference 3.77 2.08 0.03 0.13 

min 0.85 0.85 0.88 0.88 

% Difference 14.96 14.79 12.50 12.09 

Actual EIz 57,121,056,880.00 = 1.0 

max 1.11 1.09 1.07 1.07 

% Difference 10.68 8.73 6.69 6.59 

min 0.91 0.91 0.93 0.94 

% Difference 9.31 8.95 6.52 6.08 

Actual EIy 198,006,270,215.00 = 1.0 

max 1.07 1.05 1.03 1.03 

% Difference 6.87 5.04 3.03 2.72 

min 0.87 0.88 0.90 0.91 

% Difference 12.55 12.07 9.71 9.36 

 

5.2.2.2 Estimated parameters for riser # 2 

 Table 28 shows the maximum and minimum estimated parameters (EA, EIz, EIy) 

of the section of the stadium, for both the estimators and for both the error types. 

 Similar results as for riser # 1 can be seen here for riser # 2 in that the best 

estimates come almost always from the OEE when having a proportional error that does 

not change the measured dof’s dramatically as the absolute error does in cases where the 

measured response is very small and the absolute error is comparatively larger. 

The maximum and minimum % difference for the EA parameter were 15.18 and 

0.15, respectively. In addition, the maximum and minimum % difference for the EIz 

parameter were 9.98 and 6.05, respectively. Lastly, the maximum and minimum % 

difference for the EIy parameter were 12.34 and 2.53, respectively. 
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Table 28. Maximum and minimum estimated parameters of riser # 2 for the section of 
the stadium 

  EEE OEE 

AE PE AE PE 

Actual EA 1,556,639,502.06 = 1.0 

max 1.03 1.02 1.00 1.00 

% Difference 3.11 1.92 0.28 0.15 

min 0.85 0.85 0.87 0.88 

% Difference 15.18 14.75 12.51 11.99 

Actual EIz 57,121,056,880.00 = 1.0  

max 1.10 1.09 1.06 1.07 

% Difference 9.98 8.67 6.17 6.52 

min 0.91 0.91 0.94 0.94 

% Difference 9.33 8.88 6.46 6.05 

Actual EIy 198,006,270,215.00 = 1.0 

max 1.06 1.05 1.03 1.03 

% Difference 6.28 4.96 2.53 2.75 

min 0.88 0.88 0.90 0.91 

% Difference 12.34 12.02 9.80 9.47 

 

5.2.2.3 Estimated parameters for cantilever # 1 

Table 29 shows the maximum and minimum estimated parameters (EA, EIz, EIy) 

for cantilever # 1 of the section of the stadium, for both the estimators and for both the 

error types. 

The maximum and minimum % difference for the EA parameter were 12.01 and 

5.74, respectively. In addition, the maximum and minimum % difference for the EIz 

parameter were 10.94 and 4.30, respectively. Lastly, the maximum and minimum % 

difference for the EIy parameter were 19.65 and 5.27, respectively. 

The estimated parameters for cantilever # 1 were better when the OEE was used 

compared when the EEE was used. This behavior of the estimators is observed 

throughout the study, and it seems that both the estimators are more sensitive to 
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absolute errors. In reality, an absolute error would be present when all of the 

instruments deployed in the stadium have the same sensitivity and are used to measure 

responses of the same type and order of magnitude, but clearly one would like to have 

different levels of sensitivity depending on whether they are measuring vertical or 

horizontal displacements. 

Table 29. Maximum and minimum estimated parameters of cantilever # 1 for the section 
of the stadium 

  EEE OEE 

AE PE AE PE 

Actual EA 2,297,641,800.00 = 1.0 

max 1.10 1.09 1.06 1.08 

% Difference 9.85 8.74 5.83 7.88 

min 0.88 0.91 0.89 0.94 

% Difference 12.01 8.53 11.45 5.74 

Actual EIz 379,158,000,000.00 = 1.0 

max 1.11 1.08 1.06 1.04 

% Difference 10.94 8.31 5.77 4.30 

min 0.91 0.94 0.94 0.93 

% Difference 8.82 6.21 5.84 6.72 

Actual EIy 27,571,701,600.00 = 1.0 

max 1.10 1.08 1.06 1.05 

% Difference 9.83 8.37 5.85 5.27 

min 0.80 0.89 0.92 0.93 

% Difference 19.65 10.78 7.81 6.61 

 

5.2.2.4 Estimated parameters for cantilever # 2 

Table 30 shows the maximum and minimum estimated parameters (EA, EIz, EIy) 

for cantilever # 2 of the section of the stadium, for both the estimators and for both the 

error types. 
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It can be seen that the estimated parameters for cantilever # 2 were better when 

the OEE with proportional error was used compared when the OEE with absolute error 

or when the EEE, with both types of errors, were used. 

The maximum and minimum % difference for the EA parameter were 10.80 and 

3.47, respectively. In addition, the maximum and minimum % difference for the EIz 

parameter were 12.46 and 1.31, respectively. Lastly, the maximum and minimum % 

difference for the EIy parameter were 13.48 and 4.62, respectively. 

Table 30. Maximum and minimum estimated parameters of cantilever # 2 for the section 
of the stadium 

  EEE OEE 

AE PE AE PE 

Actual EA 869,145,400.00 = 1.0 

max 1.10 1.08 1.08 1.03 

% Difference 10.03 8.46 7.84 3.47 

min 0.91 0.89 0.94 0.94 

% Difference 8.81 10.80 6.10 5.78 

Actual EIz 20,764,830,200.00 = 1.0 

max 1.10 1.03 1.06 1.01 

% Difference 9.52 3.43 5.84 1.31 

min 0.88 0.92 0.94 0.94 

% Difference 12.46 8.28 5.88 5.54 

Actual EIy 10,468,469,100.00 = 1.0 

max 1.13 1.08 1.10 1.06 

% Difference 13.48 7.99 9.84 5.85 

min 0.91 0.92 0.94 0.95 

% Difference 8.60 8.34 5.80 4.62 

 

5.3 Summary 

Overall for the TSB, the results get better as we move from 1 measurement to two 

measurements, however this behavior is not observed when going from 2 to three 

measurements, for both the estimators. The reason for this is might be that the third 
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measurement does not add well enough new information for the system to obtain good 

values of the estimates. One thing to notice as well is that the results are better all the 

time proportional error is present instead of having absolute error.  

Having 3 measurements and 6 dof’s gives the best results in terms of the RQB 

values for the OEE with proportional error and the best results of SD are obtained from 

the EEE with proportional error with only 1 measurement. 

In general, RQB and SD values obtained using the OEE were lower than those 

obtained by the EEE for the TSB and having more data available does not necessarily 

mean better estimates or lower values of RQB and SD.  

Percent differences for the TSB as much as 1.99 and as low as 0.43 were obtained 

for the structural parameter EI. It is clear that the OEE gave better results than the EEE, 

and it did also for the case of having proportional error as opposed to having absolute 

error. 

With regard to the section of the stadium, it is noted that the RQB and SD values 

are generally lower for the case of having introduced the proportional error. Additionally, 

it can be observed that the best estimates are not necessarily obtained when the full size 

of measurements are used. For the case of the having the absolute error, the best results 

were obtained with 3 measurements and 8 nodes measured and for the case of having 

proportional error, the best results were obtained with 2 measurements and 24 nodes 

measured. 

 Comparing the results obtained from the two estimators, it can be concluded that 

the OEE gives better estimates than the EEE for the same conditions on how many 

measurements are done or how many nodes are measured. This could be true because in 
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the EEE the estimated measurements increase by a considerable amount the number of 

unknowns in the optimization problem. 

The maximum and minimum % difference for the EA parameter were 15.18 and 

0.03, respectively. The maximum and minimum % difference for the EIz parameter were 

10.94 and 1.31, respectively and the maximum and minimum % difference for the EIy 

parameter were 19.65 and 2.53, respectively, for all the four structural elements for 

which the comparisons were made. 

For both riser # 1 and riser # 2, the best estimates come almost always from the 

OEE when having a proportional error that does not change the measured dof’s as much 

as the absolute error does in cases where the measured response is very small and the 

absolute error is comparatively larger. 

The estimated parameters for cantilever # 1 were better when the OEE was used 

compared when the EEE was used. It can be observed that the estimated parameters for 

cantilever # 2 were better when the OEE with proportional error was used compared 

when the OEE with absolute error or when the EEE, with both types of errors, were used. 
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6. CONCLUSIONS 

6.1 Dynamic analysis of the TCF Bank Stadium and TSB using human-

structure interaction concepts 

 The main conclusions that can be drawn out of the series of dynamic analyses on 

the TSB and the section of the stadium are as follows: 

 Dynamic analysis showed that for a particular excitation frequency, the response 

of the TSB is greater than that produced by static analysis applying a load of 100 

lb/ft^2 plus dead loads, using the load factors as per ASCE 7-10. 

 The location of the passive people changes the response of the structure, either 

increasing or decreasing the response. 

 The location of the passive people affects the response of the TSB. For the cases of 

2.13 Hz and 2.30 Hz and 67% active – 33% passive produced the maximum 

response. 

 Dynamic analysis showed that the response of some structural elements in the 

stadium (riser, cantilever, and girder) is sometimes greater than that obtained 

from static analysis. 

 Reductions in the response of the stadium as much as 70% were obtained when 

using the different configurations (from figure 18 to figure 25) derived from the 

TSB, for an active/passive ratio of one. 

 After applying the different configurations of active/passive people for the 

specific cases of having an excitation frequency of 2.13 Hz and 2.30 Hz from 
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figures 16 and 17 into the section of the stadium, an increase in the response, 

especially for the risers and girders was observed.  

 Interestingly, the response in the cantilever beams of the stadium showed lower 

values when using the configurations from figures 16 and 17, indicating the 

presence of a local mode for the risers. 

 Dynamic analysis using the concepts of human-structure interaction should be 

performed in structures that will be subjected to crowd-induced loading in order 

to avoid excessive deflections and vibrations that can be felt by the crowd. 

6.2 Parameter estimation results 

 After having performed the parameter estimation study with two algorithms 

(EEE and OEE), the following conclusions can be made: 

 RQB and SD values obtained using the OEE were lower than those obtained by 

the EEE for both the TSB and the stadium. 

 For the TSB, having more data available does not necessarily mean better 

estimates or lower values of RQB and SD. 

 The estimation algorithms have more sensitivity to absolute error. 

 Overall, the OEE showed better results than the EEE in terms of the statistical 

indices and the % difference from the actual parameter values. 

 For the case of the stadium and similar to the TSB case, having 4 measurements 

at 24 nodes does not guarantee the best estimates of the unknown parameters. 
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 % differences from the actual parameter values of as much as 19.65% and as low 

as 0.03% were obtained, meaning that the estimated parameters are in close 

agreement to the actual values.  

 Lastly, the OEE performed better than the EEE for the great majority of the cases 

studied. Additionally, the presence of absolute error made the estimates less 

reliable due to the fact that an absolute error can overwhelm the response of dof’s 

that have small measurements.  
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SQP methods represent state-of-the-art in nonlinear programming methods. 

Schittowski (1985), for example, has implemented and tested a version that out performs 

every other tested method in terms of efficiency, accuracy, and percentage of successful 

solutions, over a large number of test problems. 

 

Based on the work of Biggs (1975), Han (1977), and Powell (1978), the method 

allows anyone to closely mimic Newton’s method for constrained optimization just as is 

done for unconstrained optimization. At each major iteration an approximation is made 

of the Hessian of the Lagrangian function using a quasi-Newton updating method. This 

is then used to generate a QP sub-problem whose solution is used to form a search 

direction for a line search procedure. An overview of SQP is found in Fletcher (1980), 

Gill et al. (1981), Powell (1983). The general method, however, is stated here. Given the 

problem description in Eqn. A.1 the principal idea is the formulation of a QP sub-

problem based on a quadratic approximation of the Lagrangian function. 

 

nx
imize


min   xf  

Subject to: 0xGi  emi ,...,1  

    0xGi  mmi e ,...,1                                                  (A.1) 

  ul xxx   

Where x is the vector of design parameters, f(x) is the objective function that returns a 

scalar value, and the vector function G(x) returns the values of the equality and 

inequality constraints evaluated at   mnxGx : . 

 

     



m

i

ii xgxfxL
1

,                                                                                                       (A.2) 
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Here Eqn. A.1 is simplified by assuming that bound constraints have been 

expressed as inequality constraints. The QP sub-problem is obtained by linearizing the 

nonlinear constraints. 

QP Subproblem 

nd
imize


min    dxfdHd
T

kk

T 
2

1
 

    0 ki

T

ki xgdxg  emi ,...1                                                                           (A.3) 

    0 ki

T

ki xgdxg  mmi e ,...1  

This sub-problem can be solved using any QP algorithm. The solution is used to 

form a new iterate kkkk dxx 1  

 

The step length parameter αk is determined by an appropriate line search 

procedure so that a sufficient decrease in a merit function is obtained. The matrix Hk is a 

positive definite approximation of the Hessian matrix of the Lagrangian function (Eqn. 

A.2). Hk can be updated by any of the quasi-Newton methods, although the BFGS 

method appears to be the most popular. 

 

A nonlinearly constrained problem can often be solved in fewer iterations than an 

unconstrained problem using SQP. One of the reasons for this is that, because of limits 

on the feasible area, the optimizer can make well-informed decisions regarding 

directions of search and step length. 

 

SQP Implementation 

 

The MATLAB SQP implementation consists of three main stages, which are 

discussed briefly in the following sub-sections: 

- Updating of the Hessian matrix of the Lagrangian function 
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- Quadratic programming solution 

- Line search and merit function calculation 

 

Updating the Hessian Matrix 
 

At each major iteration a positive definite quasi-Newton approximation of the 

Hessian of the Lagrangian function, H, is calculated using the BFGS method where i (i = 

1,...,m) is an estimate of the Lagrange multipliers. 

 

Hessian Update (BFGS) 

kk

T

k

k

T

k

k

T

k

T

kk

kk
sHs

HH

sq

qq
HH 1  

kkk xxs  1                                                                                           (A.4) 

       







 





n

i

kiik

n

i

kiikk xgxfxgxfq
11

11   

Powell (1978) recommends keeping the Hessian positive definite even though it 

may be positive indefinite at the solution point. A positive definite Hessian is maintained 

providing 
k

T

k sq  is positive at each update and that H is initialized with a positive definite 

matrix. When 
k

T

k sq  is not positive, kq is modified on an element by element basis so that

0k

T

k sq  . The general aim of this modification is to distort the elements of kq , which 

contribute to a positive definite update, as little as possible. Therefore, in the initial 

phase of the modification, the most negative element of kk sq *  is repeatedly halved. This 

procedure is continued until 
k

T

k sq  is greater than or equal to 1e-5. If after this procedure, 

k

T

k sq  is still not positive, kq is modified by adding a vector v multiplied by a constant 

scalar w, that is, 
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wvqq kk                                                                                                                     (A.5) 

       ,11 kikikikii xgxgxgxgv    

Where 0iv  if   0wq
ik  and     0

ikik sq  otherwise  mi ,...1  

And w is systematically increased until 
k

T

k sq becomes positive. 

Quadratic Programming Solution 

 

At each major iteration of the SQP method a QP problem is solved of the form 

where Ai refers to the ith row of the m-by-n matrix A. 

nd
imize


min    dcHdddq TT 
2

1
  

                             ii bdA    emi ,...1                                                 (A.6) 

               ii bdA    mmi e ,...1  

The method used in the Optimization Toolbox is an active set strategy (also 

known as a projection method) similar to that of Gill et al. (1991). It has been modified 

for both LP and QP problems. 

 

The solution procedure involves two phases: the first phase involves the 

calculation of a feasible point (if one exists), the second phase involves the generation of 

an iterative sequence of feasible points that converge to the solution. In this method an 

active set is maintained, Ak, which is an estimate of the active constraints (i.e., which are 

on the constraint boundaries) at the solution point. Virtually all QP algorithms are active 

set methods. This point is emphasized because there exist many different methods that 

are very similar in structure but that are described in widely different terms. 
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Ak is updated at each iteration, k, and this is used to form a basis for a search 

direction
kd̂ . Equality constraints always remain in the active set, Ak. The notation for 

the variable,
kd̂ ,is used here to distinguish it from kd  in the major iterations of the SQP 

method. The search direction,
kd̂ , is calculated and minimizes the objective function 

while remaining on any active constraint boundaries. The feasible subspace for 
kd̂  is 

formed from a basis, Zk whose columns are orthogonal to the estimate of the active set 

Ak. Thus a search direction, which is formed from a linear summation of any 

combination of the columns of Zk, is guaranteed to remain on the boundaries of the 

active constraints. 

 

The matrix Zk is formed from the last m-l columns of the QR decomposition of 

the matrix Ak, where l is the number of active constraints and l < m. That is, Zk is given 

by 

 mlQZk :1:,   Where 









0

R
AQ T

k

T
                                                              (A.7) 

Having found Zk, a new search direction 
kd̂ is sought that minimizes q(d) where 

kd̂ is the null space of the active constraints, that is, 
kd̂ is a linear combination of the 

columns of Zk: kd̂ = Zkp for some vector p. Then if we view our quadratic as a function of 

p, by substituting for 
kd̂ , we have 

  pZcpHZZppq k

T

k

T

k

T 
2

1
                                                                           (A.8) 

Differentiating this with respect to p yields 

  cZpHZZpq kk

T

k                                                                              (A.9) 
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 pq is referred to as the projected gradient of the quadratic function because it 

is the gradient projected in the subspace defined by Zk. The term 
k

T

k HZZ is called the 

projected Hessian. Assuming the Hessian matrix H is positive definite, then the 

minimum of the function q(p) in the subspace defined by Zk occurs when   0 pq , 

which is the solution of the system of linear equations 

cZpHZZ T

kk

T

k                                                                                         (A.10) 

 

 

A step is then taken of the form 

kkk dxx ˆ
1 

 where pZd T

kk 
ˆ                                                             (A.11) 

 

At each iteration, because of the quadratic nature of the objective function, there 

are only two choices of step length α. A step of unity along 
kd̂  is the exact step to the 

minimum of the function restricted to the null space of Ak. If such a step can be taken, 

without violation of the constraints, then this is the solution to QP (Eqn. A.7). Otherwise, 

the step along 
kd̂  to the nearest constraint is less than unity and a new constraint is 

included in the active set at the next iterate. The distance to the constraint boundaries in 

any direction 
kd̂  is given by 

 

 











 



ki

iki

i dA

bxA

ˆ
min    mi ,...,1                                                (A.12) 

 

Which is defined for constraints not in the active set, and where the direction kd̂

is towards the constraint boundary. When n independent constraints are included in the 

active set, without location of the minimum, Lagrange multipliers, λk are calculated that 

satisfy the nonsingular set of linear equations 
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cA k

T

k                                                                                                       (A.13) 

 

If all elements of λk are positive, xk is the optimal solution of QP (Eqn. A.7). 

However, if any component of λk is negative, and it does not correspond to an equality 

constraint, then the corresponding element is deleted from the active set and a new 

iterate is sought. 

Initialization 

 

The algorithm requires a feasible point to start. If the current point from the SQP 

method is not feasible, then a point can be found by solving the linear programming 

problem 

nx
im ize

 ,
min


   

  ii bxA   emi ,...,1                                                             (A.14) 

  ii bxA   mmi e ,...,1  

 

The notation Ai indicates the ith row of the matrix A. A feasible point (if one 

exists) to Eqn. A.14 can be found by setting x to a value that satisfies the equality 

constraints. This can be achieved by solving an under- or over-determined set of linear 

equations formed from the set of equality constraints. If there is a solution to this 

problem, then the slack variable γ is set to the maximum inequality constraint at this 

point. 

 

The above QP algorithm is modified for LP problems by setting the search 

direction to the steepest descent direction at each iteration where gk is the gradient of the 

objective function (equal to the coefficients of the linear objective function) 
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k

T

kkk gZZd ˆ                                                                                                     (A.15) 

 

If a feasible point is found using the above LP method, the main QP phase is 

entered. The search direction 
kd̂ is initialized with a search direction 

1d̂ found from 

solving the set of linear equations 

 

kgdH 1
ˆ                                                                                                      (A.16) 

Where gk is the gradient of the objective function at the current iterate xk. If a 

feasible solution is not found for the QP problem, the direction of search for the main 

SQP routine 
kd̂ is taken as one that minimizes γ. 

 

Line Search and Merit Function 

 

The solution to the QP sub-problem produces a vector kd , which is used to form a 

new iterate  

kkk dxx 1                                                                                                     (A.17) 

 

The step length parameter αk is determined in order to produce a sufficient 

decrease in a merit function. The following merit function has been used in this 

implementation 

Merit function 

         
 


0

01 1

,0max
m

i

m

mi

iiii xgrxgrxfx                                               (A.18) 

Powell recommends setting the penalty parameter 

 

    








  iiki
i

iki rrr 
2

1
,max1   mi ,...,1                                  (A.19) 
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This allows positive contribution from constraints that are inactive in the QP 

solution but were recently active. In this implementation, initially the penalty parameter 

ri is set to 

 

 xg

xf
r

i

i



                                                                                                     (A.20) 

Where represents the Euclidean norm. 

This ensures larger contributions to the penalty parameter from constraints with 

smaller gradients, which would be the case for active constraints at the solution point. 

 

 

 


