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ABSTRACT 

Rapid and reliable separation and analysis of proteins require powerful analytical 

methods. The analysis of proteins becomes especially challenging when only small 

sample volumes are available, concomitantly with low concentrations of proteins. Time 

critical situations pose additional challenges. Due to these challenges, conventional 

macro-scale separation techniques reach their limitations. While microfluidic devices 

require only pL-nL sample volumes, they offer several advantages such as speed, 

efficiency, and high throughput.  

This work elucidates the capability to manipulate proteins in a rapid and reliable 

manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein 

analysis can often be achieved through a combination of orthogonal techniques, adding 

DEP as a gradient technique to the portfolio of protein manipulation methods can extend 

and improve combinatorial approaches. To this aim, microfluidic devices tailored with 

integrated insulating obstacles were fabricated to create inhomogeneous electric fields 

evoking insulator-based DEP (iDEP).  

A main focus of this work was the development of pre-concentration devices 

where topological micropost arrays are fabricated using standard photo- and soft 

lithographic techniques. With these devices, positive DEP-driven streaming of proteins 

was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum 

albumin. Experimentally observed iDEP concentrations of both proteins were in excellent 

agreement with positive DEP concentration profiles obtained by numerical simulations. 

Moreover, the micropost iDEP devices were improved by introducing nano-constrictions 

with focused ion beam milling with which numerical simulations suggested enhancement 
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of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, 

concentration of β-galactosidase was observed, which seems to occur due to an interplay 

of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration 

polarization. A detailed study was performed to investigate factors influencing protein 

DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. 

Specifically, temperature rise within the iDEP device due to Joule heating was measured 

experimentally with spatial and temporal resolution by employing the thermosensitive 

dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to 

date. Therefore, this detailed study of protein DEP provides novel information to 

eventually optimize this protein migration method for pre-concentration, separation, and 

fractionation. 
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CHAPTER 1 

INTRODUCTION 

Manipulation of biomolecules poses serious analytical challenges in the area of 

biomedical and pharmaceutical research. Therefore, reliable and rapid separation 

techniques are in demand especially for proteins within extremely complex mixtures such 

as cell lysates, tissues, or body fluids. For instance, rapid separation techniques are 

necessary in time critical situations such as surgeries and with the analytes degrading 

rapidly over time. Moreover, low abundant proteins such as disease biomarkers need to 

be identified and detected with high sensitivity for further diagnostic purposes. Another 

analytical challenge arises for sample available only in limited amount. Therefore, 

powerful methods which require only low sample volumes with the ability to concentrate 

analytes are demanded.  

Dielectrophoresis (DEP) is a powerful analytical technique occurring in an 

inhomogeneous electric field that has the potential to facilitate many processing steps 

such as pre-concentration, purification, fractionation, and separation. Such a versatile 

applicability makes DEP an attractive analytical method for biological particles and 

biomolecules. For instance, a variety of DEP application has been demonstrated in the 

past including cell separation (Hu et al., 2005; Pethig, 1996), fractionation (X.-B. Wang 

et al., 2000, 2000; Yang, Huang, Wang, Becker, & Gascoyne, 1999), cytometry 

(Voldman, Gray, Toner, & Schmidt, 2002), and patterning (Albrecht, Underhill, 

Wassermann, Sah, & Bhatia, 2006). Moreover, DEP can be used to precisely manipulate 

and position cells (Gagnon, 2011) and even single molecules (Hölzel, Calander, 

Chiragwandi, Willander, & Bier, 2005), which makes it a very attractive candidate for 
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nanotechnological applications (Koh, 2007). This transport phenomenon occurs in an 

inhomogeneous electric field when particles suspended in an aqueous solution acquire an 

induced dipole and become polarizable. Since the biomolecule’s DEP response is based 

on their intrinsic properties, DEP can serve as a label-free technique which is important 

when further processing and/or characterization steps are necessary.  

The analysis of proteins often requires powerful separation, fractionation, and pre-

concentration techniques, which can in many cases only be achieved through the 

combination of orthogonal techniques. Adding a novel tool, such as DEP, to the portfolio 

of protein manipulation techniques has thus large potential to improve protein analysis 

techniques. As a gradient technique, DEP seems highly suited to extend current protein 

separation methods as it has the potential to both provide a concentration tool (note that 

proteins cannot be amplified in contrast to DNA) and improve current separation 

approaches especially in combination with other orthogonal techniques.  

The selectivity of DEP stems from the polarizability of biomolecules in the 

presence of electric field gradients. An excellent theoretical framework to describe 

polarizability mechanisms exists for large colloidal particles (Jones, 2005) and biological 

particles such as cells, viruses, and organelles. For example, DEP response of cells is 

described using a shell model which assigns different permittivities to each compartment 

of the cell in the form of layers of shells to calculate an overall effective cell permittivity 

(Gagnon, 2011; Jones, 2005; Pethig, 2010; Voldman, 2006). However, the models 

developed for these large cellular structures and viruses are not directly applicable to sub-

micrometer sized biomolecules such as DNA and proteins. In case of DNA, the 

theoretical DEP models are less developed and still under debate especially on the subject 
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of DNA length and frequency dependence (Henning, Bier, & Hölzel, 2010; Zhao, 

2011b). However, it is generally assumed that DNA polarization is mainly caused by the 

ion cloud surrounding the negatively charged DNA backbone. Nevertheless, a number of 

DNA DEP applications have been demonstrated including concentration (Swami, Chou, 

Ramamurthy, & Chaurey, 2009), fractionation (Washizu, Suzuki, Kurosawa, Nishizaka, 

& Shinohara, 1994), and separation (Huang et al., 2002; Regtmeier, Duong, Eichhorn, 

Anselmetti, & Ros, 2007; Regtmeier, Eichhorn, Bogunovic, Ros, & Anselmetti, 2010) 

ranging from Mbp down to ~40 bp DNA length.  

For proteins, the mechanism of polarization responsible for DEP transport is not 

well understood. Theoretically, DEP manipulation of sub-micrometer sized proteins is 

challenging since extremely high electric field gradients are required in order to generate 

DEP forces large enough to compete with particle diffusion, electrokinetic, and 

electrothermal forces. Regardless, nearly 20 groups have investigated protein DEP 

experimentally employing metal electrodes (Bakewell, Hughes, Milner, & Morgan, 1998; 

Hölzel et al., 2005; Washizu et al., 1994; Zheng, Brody, & Burke, 2004) , nanopipettes 

(Clarke, Piper, Ying, & Klenerman, 2007), carbon nanotubes (Maruyama & Nakayama, 

2008), and in droplets (Agastin, King, & Jones, 2009). For instance, Hölzel demonstrated 

single molecule DEP trapping by creating high     of 10
21 

V
2
/m

3
 (Hölzel et al., 2005). 

Moreover, protein DEP has been applied for patterning (Asokan et al., 2003; Washizu et 

al., 1994), bioprobe (Maruyama & Nakayama, 2008), and biosensor (Gong, 2010) 

applications. Recently several experimental studies have reported insulator-based DEP 

(iDEP) devices for proteins including the first work by Lapizco-Encinas (Lapizco-

Encinas, Ozuna-Chacón, & Rito-Palomares, 2008a) and the first protein DEP streaming 
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presented by our group (Nakano, Chao, Camacho-Alanis, & Ros, 2011). For protein 

iDEP trapping, designing a suitable device capable of generating extremely high electric 

field gradients is necessary, for example as demonstrated with nano-sized constriction 

devices (Camacho-Alanis, Gan, & Ros, 2012; Liao & Chou, 2012; Liao, Tsegaye, 

Chaurey, Chou, & Swami, 2012).  

 

DISSERTATION WORK METHODOLOGY  

The main objectives of this dissertation are to provide the field of protein DEP 

using insulator-based devices with: 

1. Development of iDEP devices which can create high enough electric field gradients 

suitable for protein manipulations. 

2. An experimental study of diagnostically relevant proteins such as immunoglobulin 

G (IgG) using tailored iDEP devices.  

3. Validation of the experimental investigations with the aid of numerical simulation 

tools.  

4. Extension of protein iDEP study to a wide variety of proteins, such as bovine serum 

albumin (BSA) and β-galactosidase.  

5. Systematic investigation of protein iDEP in order to achieve a better understanding 

of protein polarization mechanisms.  

This dissertation is organized into eight main chapters. Chapter 2 provides a brief 

review of protein DEP which mainly includes experimental work performed in the past. 

Chapter 3 explains simulation methodology used to model protein concentration 

distributions as well as temperature fields within a microfluidic iDEP device. Chapter 4 
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presents the experimental methods employed to perform iDEP experiments. Chapter 5 

presents protein iDEP experiments using micropost array iDEP devices under DC 

conditions and examines factors influencing protein DEP. Chapter 6 presents protein 

iDEP experiments using the improved iDEP device with integrated nano-constriction 

arrays. Chapter 7 presents the experimentally measured temperature distributions 

occurring due to Joule heating within the iDEP devices. Finally, Chapter 8 provides a 

summary of my work as well as suggestions for future work which extends the results 

of this dissertation.  

 

ELECTROKINETIC TRANSPORT IN MICROFLUIDIC DEVICES  

In this section, I will give a brief explanation of how electrokinetic transport 

occurs in a microfluidic system including electroosmosis (EO) and electrophoresis (EP).  

Electroosmosis. Electroosmosis is the motion of bulk fluid under the application 

of electric field, occurring due to the presence of an electrical double layer (EDL) 

adjacent to the charged walls of a microfluidic channel. The channel walls usually 

acquire charges on its surfaces when they are in contact with aqueous solutions. For 

instance, poly(dimethysiloxane) (PDMS) employed for many microfluidic applications 

has negatively changed walls at pHs between 3 and 5 at which surface silanol groups are 

deprotonated in an aqueous solutions (Iler, 1979). Such charged walls lead to the 

formation of a shielding layer where counterions are drawn towards the walls, while co-

ions are repelled away from them. This shielding layer termed EDL is comprised of the 

Stern layer and the diffuse layer. In order to balance the surface charge of the channel 

walls, counterions are absorbed onto the walls, leading to the formation of a charged 
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layer with immobilie ions (Stern layer). On the other hand, ions can move by diffusion at 

the outer layer, thus termed diffuse layer. As depicted schematically in Figure 1-1a, the 

magnitude of electrical potential decreases exponentially as moving away from the wall 

with the characteristic distance given by Debye length expressed as:  

    (
       

  ∑   
   

 
 

)
   

  (1. 1)  

where ε0 denotes the permittivity of free space, εr is relative permittivity, kB is the 

Boltzmann constant, T is temperature, e is the elementary charge, and   
 is the bulk 

volume density. 

Upon application of an external electric field, redistribution of ion in the vicinity 

of the interface leads to the increased local charge density, which in turn results in the 

motion of the fluid, termed electroosmosis (EO). EO is characterized by the bulk fluid 

motion, therefore the electroosmotic flow (EOF) shows a uniform velocity profile 

throughout the cross section of the channel and drops rapidly to zero at the solid-liquid 

interface as shown in Figure 1-1b. The electroosmotic velocity (ueof) is described by the 

following Smoluchowski equation (von Smoluchowski, M., 1914):  

               
  

 
   (1. 2) 

where µeof denotes the electroosmotic mobility, E is the electric field, ε is the medium 

permittivity, η is the buffer viscosity, and ζ is the zeta potential.  
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Figure 1-1. Schematic depiction of the electrical double layer (EDL) and the mechanism 

of electroosmosis. (a) EDL is formed at the interface of solid and liquid (not to scale). 

When the surface of a microfluidic channel (gray) acquires negative charges, counterions 

are absorbed onto the surface, resulting in the immobile layer (Stern layer). Diffuse layer 

is formed just beyond the Stern layer and it is responsible for the electrokinetic 

phenomena. Electrical potential (ψ) distribution (shown in blue line) decreases while 

moving away from the surface and becomes zero in the bulk. ζ indicates the zeta potential 

at the shear plane. (b) EOF profile inside of the microfluidic channel under an applied 

electric field (E). On the negatively charged wall (gray), positive counterions are 

adsorbed, creating an immobile Stern layer. Fluid velocity is uniform throughout the 

cross section of the channel and drops to zero at the interface (no-slip). 

 

Electrophoresis. Electrophoresis is defined as the motion of a particle freely 

suspended in a liquid medium, relative to a stationary liquid upon application of an 

electric field. Due to electrophoresis, the charged particles move along the electric field 

lines. For instance, a positively charged particle migrates in the cathodic direction, whereas 

the neutral particle remains stationary (Lyklema, J., 1995). When a particle migrates at a 

constant velocity under the application of a homogeneous electric field (E), the electrical 

force is in balance with the viscous drag and the electrophoretic velocity (uep) can be 

expressed as:   

          
 
 ⁄    (1. 3) 

where µep is the electrophoretic mobility, q is the charge on the particle, and f is the 

friction coefficient. Separation of multiple species can be achieved due to the difference 
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in the rate of migration which depends on the size, shape, and charge of each species 

(Lyklema, J., 1995).  

 

DIELECTROPHORESIS 

Theory of Dielectrophoresis. Dielectrophoresis (DEP) refers to the migration of 

a polarizable particle in an inhomogeneous electric field ( ). For most DEP applications, 

it is useful to describe the force acting on a polarizable particle. The DEP force (    ) 

acting on a particle is related to the apparent dipole moment,   (Pohl, 1978): 

      (   )   (1. 4) 

For an induced dipole moment, equation (1. 4) can also be expressed in terms of the 

particle polarizability   (Pohl, 1978): 

      
 

 
         (1. 5) 

where   denotes the particle volume. In classical DEP theory, the time averaged DEP 

force for a spherical particle in a medium of permittivity    is given as (Pohl, 1978): 

 〈    〉       
   [ ( )] |    |

   (1. 6) 

where   is the particle radius,   the angular frequency, Erms the root mean square electric 

field, and   [ ( )] the real part of the Clausius-Mossotti factor given as: 

   [ ( )]  (
  
    

 

  
     

 )  (1. 7) 

Here,   
  and   

  denote the complex permittivities of the particle (p) and medium (m), 

respectively. The complex permittivity for the particle (and similarly for the medium) is 

given by   
      

  

 
 , where    denotes the particle conductivity, and  =√    The 
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Clausius-Mossotti factor is characteristic for the DEP response. Depending on the sign of 

the Clausius-Mossotti factor, particles are attracted to the regions of highest electric fields 

or repulsed from those regions as shown schematically in Figure 1-2. These two cases 

refer to positive DEP (pDEP, see Figure 1-2a) and negative DEP (nDEP, see Figure 1-

2b), respectively. Equation (1. 6) demonstrates the frequency dependence of the 

dielectrophoretic response of a sphere and allows estimating the resulting forces in 

electric field gradients. At high frequency,      is typically governed by the particle 

permittivity, while at low frequency and under DC conditions the Clausius-Mossotti 

factor is dominated by the conductivity of the particle and the medium. Moreover, the 

frequency dependent change from positive to negative DEP is characterized by the so-

called crossover frequency where the Clausius-Mossotti factor reverses its sign. The 

polarization effects on particles are often studied by investigating the changes in 

crossover frequency. 

 

Figure 1-2. Schematic representation of a mechanism of DEP occurring under an 

inhomogeneous electric field by which a particle is transported (a) toward the higher 

electric field gradient (positive DEP) or (b) away from it (negative DEP).  
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Prior Work in Dielectrophoresis. The wide range of DEP applications allows 

not only for transport of particles or proteins along or against the electric field gradient, 

but also their concentration. These characteristics make DEP appealing for analytical 

applications such as fractionation, pre-concentration, and separation methods. Moreover, 

DEP has the potential to precisely manipulate and position small particles such as cells 

(Clow, Gaynor, & Oback, 2010; Jaber, Labeed, & Hughes, 2009; MacQueen, 

Buschmann, & Wertheimer, 2008) or even single molecules (Hölzel et al., 2005), which 

is important for a variety of nanotechnological applications (Koh, 2007). For example, 

DEP of biological particles has demonstrated widespread applications. Those include cell 

separation (H. Li & Bashir, 2002; Pommer et al., 2008), fractionation (X.-B. Wang et al., 

2000; Yang, Huang, Wang, Becker, & Gascoyne, 2000; Yang, Huang, Wang, Wang, et 

al., 1999), cytometry (Voldman et al., 2002), or patterning (Albrecht et al., 2006) and can 

be achieved selectively for various cell types. Additionally, DEP allows the manipulation 

of biological objects such as cells without labeling strategies (Jaber et al., 2009; 

MacQueen et al., 2008). This is also an important aspect for analytical applications of 

proteins where label-free strategies are desired. 

As DEP is expected to occur for particles with induced dipole, a dielectrophoretic 

response from biomolecules is also predicted. Among biomolecules, DNA has been 

characterized most intensively, although the mechanism of polarization and the length 

and frequency dependence remain still debated (Henning et al., 2010; Zhao, 2011b). 

Commonly, a polarization of the counterions surrounding the negatively charged DNA 

backbone is assumed to be responsible for DNA DEP. Theoretical models describing the 

DNA DEP response are available including influences from convection, diffusion, and 
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electrophoretic migration (Zhao & Bau, 2009; Zhao, 2011a), however they fail to 

describe DNA response in a general manner and do not apply to the variety of 

experimentally observed scaling laws and DNA DEP response. Nonetheless, various 

bioanalytical applications employing DEP of DNA have been demonstrated, including 

separation (Huang et al., 2002; Regtmeier et al., 2007, 2010), fractionation (Beech, 

Jönsson, & Tegenfeldt, 2009; Washizu et al., 1994), and concentration (Swami et al., 

2009). 

The potential of DEP for protein manipulation and analysis has been recognized 

and pioneered by Washizu et al. almost 20 years ago (Washizu et al., 1994). In their 

work, the possibility of fractionation of proteins was outlined as well as some 

fundamental characteristics of biomolecule DEP. Microfabricated electrodes were 

introduced to generate high electric field gradients in microchip devices in order to 

compensate for the small polarizability expected for proteins in comparison with 

micrometer-sized objects such as cells. Follow up work mainly by Hughes, Morgan, and 

coworkers showed a more detailed investigation of selected proteins on patterned 

microelectrodes as well as a characteristic frequency dependence of protein DEP 

(Bakewell et al., 1998; Michael Pycraft Hughes, 2002). In the last decade, the interest in 

protein DEP intensified due to the demand in protein analysis tools as well as the 

improvement of micro- and nanofabrication techniques applied to protein DEP (e.g. as 

sensing tools or in microfluidic devices) (Lapizco-Encinas & Rito-Palomares, 2007). The 

following chapter summarizes protein DEP experimental work performed in the past, 

selected simulations, and the applications utilizing protein DEP.  
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CHAPTER 2 

CURRENT STATUS OF DIELECTROPHORESIS 

DEVICES TO STUDY PROTEIN DEP 

Two types of devices have been used to create an inhomogeneous electric field 

necessary for DEP to occur: electrode-based DEP devices and insulator-based devices. In 

the former case, microelectrodes are integrated in a device employing microfabrication 

techniques. Some examples include interdigitated electrodes (Washizu et al., 1994), 

quadruple electrode geometries (Bakewell et al., 1998; Zheng et al., 2004), and pairs of 

triangular electrodes in close proximity to one another (Hölzel et al., 2005). These 

electrode-based DEP (eDEP) techniques have been employed most commonly in the field 

of protein DEP. Another relatively new technique termed insulator-based DEP (iDEP) 

utilizes insulating constrictions integrated within the device. Only a few examples can be 

found for protein iDEP including sawtooth constrictions (Staton et al., 2012), insulating 

post arrays with various geometries (Lapizco-Encinas et al., 2008a; Nakano et al., 2011), 

and nano-constrictions (Liao, Chaurey, Tsegaye, Chou, & Swami, 2011; Liao et al., 

2012; Liao & Chou, 2012).  

Figure 2-1 depicts eDEP and iDEP schematically as well as the typical ranges of 

E and     in these devices. In case of eDEP, metal microelectrodes are fabricated with a 

separation distance normally within the micrometer range requiring the application of 

low potential (up to ~ 20 V). In case of iDEP, the post geometry and dimension within a 

microfluidic channel greatly influence the acting field gradients. In contrast to eDEP, 

iDEP is mostly employed under DC condition with relatively high voltage applied. Thus, 

the resolution of the employed fabrication techniques limits the achievable electric fields 
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and gradients thereof. Commonly, photolithographic techniques are used, resulting in 

micrometer post sizes and distances. As shown in Figure 2-1, eDEP can generally create 

larger E and     with only a few volts applied and thus eDEP has been the major 

strategy for protein applications. However, these high gradients act only in the vicinity of 

the electrodes, which might become disadvantageous for separations in microchannels. In 

order to generate a comparable magnitude of E and     with iDEP devices, one can 

improve suitable geometries (Nakano et al., 2011) or even include nanometer-sized 

structures (Camacho-Alanis et al., 2012; Liao et al., 2011, 2012; Liao & Chou, 2012). 

However, iDEP prevents complicated processing steps, such as integrating metal 

electrodes in a microfluidic device, and moreover provides the non-uniform field over the 

entire depth of the microchannel, as compared to flat metal electrodes shown in Figure 2-

1c and d. Additionally, electrode reactions interfere less with the analytes manipulated by 

DEP since the electrodes are placed far away from the insulating post regions where DEP 

occurs. In the following section the device geometries used in protein DEP studies will be 

discussed in greater detail (see also Figure 2-2), together with the major experimental 

findings. More thorough details on other experimental techniques used for DEP studies 

which have not been applied to protein DEP can be found in other reviews (Michael P. 

Hughes, 2002; Lapizco-Encinas & Rito-Palomares, 2007; Martinez-Duarte, 2012; 

Meighan, Staton, & Hayes, 2009; Srivastava, Gencoglu, & Minerick, 2011; Zhang, 

Khoshmanesh, Mitchell, & Kalantar-zadeh, 2010). 
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Figure 2-1. Schematic depiction of eDEP and iDEP devices. (a, c) Represent a side view 

for an eDEP and (b,d) a top view of an insulator-based DEP geometry. (a) Shows the 

electric field distribution and (c)     values resulting within the eDEP device with 5 V 

applied between the metal microelectrodes. (b) shows the electric field distribution and 

(d)     created by an iDEP device with the application of 500 V/cm. Note that the 

potential is usually applied via electrodes immersed in reservoirs at the end of the 

microchannel and only a small portion of a post array is represented here.  
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Figure 2-2. Schematic depiction of experimental devices used to study protein DEP. (a) 

Quadruple electrode geometries (Bakewell et al., 1998; Zheng et al., 2004) to manipulate 

proteins under AC conditions. Proteins are trapped due to positive DEP (top image) 

between the electrodes where the electric field gradient is high or negative DEP at the 

low electric field gradient regions (bottom image). (b) A schematic image of a 

nanopipette (Clarke et al., 2007; Clarke, White, Zhou, Ying, & Klenerman, 2005): When 

a negative voltage is applied to the bath electrode, negatively charged protein G is moved 

electrophoretically into the opposite direction of positive DEP. Thus, DEP force and 

electrophoretic force are balanced and proteins are trapped at the nanopipette tip. (c) A 

circular insulating post array (Lapizco-Encinas et al., 2008a). Under DC conditions, the 

protein BSA is repelled from the constrictions where the electric field gradient is highest, 

indicating negative DEP. (d) Insulating constrictions with varying sawtooth shapes 

realized by Staton et al. (Staton et al., 2012). With the application of DC voltage, Aβ 

fibrils are trapped at the narrow constrictions by positive DEP. (e) A nano-constriction 

insulating device (Liao et al., 2011, 2012; Liao & Chou, 2012). Under AC conditions at a 

frequency of 100 kHz, the protein streptavidin is trapped due to positive DEP (top 

image). With the application of an appropriate AC voltage as well as a DC bias, proteins 

are accumulated continuously due to negative DEP (bottom image). (f) A triangular 

insulating post array (Nakano, Camacho-Alanis, Chao, & Ros, 2012; Nakano et al., 

2011). With the application of a DC voltage, IgG is focused in streamlines between the 

posts due to positive DEP (left image). Note that the flow direction is from left to right. 

By using tri-block copolymer F108 above the critical micelle concentration, IgG is 

encapsulated within micelles, resulting in protein-depleted streamlines due to negative 

DEP (right image). (g). Protein DEP focusing (streaming) used for a label-free protein 

detection sensor exhibiting high sensitivity (Gong, 2010).  
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PRIOR WORK IN PROTEIN DIELECTROPHORESIS WITH MICROFLUIDIC 

DEVICES 

Around 20 groups have investigated protein DEP experimentally. To provide an 

overview, the reported work is first classified into two categories, trapping and focusing, 

and gives a short overview of them. This classification is used since these categories are 

different in terms of force balances, thus one can utilize either of them for DEP protein 

manipulation depending on the intended purpose. Finally, some examples of applications 

are presented pertaining to protein DEP trapping and focusing. Figure 2-2 schematically 

depicts the representative device geometries discussed below and Table 2-1and Table 2-2 

lists both experimental DEP studies as well as applications. 

Trapping. Trapping is defined as electric field-induced particle immobilization at 

certain regions in a microstructured device. This occurs when the DEP force overcomes 

other competing forces such as the electrokinetic force, electrothermal force, 

hydrodynamic force, and Brownian motion. Washizu et al. demonstrated the first 

molecular DEP studies using four proteins: avidin, concanavalin, chymotrypsinogen, and 

ribonuclease A. Using a field integrated circuit with a frequency up to 1 MHz, 

accumulation of proteins started with an applied voltage of 15 V, which is attributed to 

positive molecular DEP (Washizu et al., 1994). In contrast, Bakewell et al. demonstrated 

both positive and negative DEP of the same protein avidin using quadruple electrode 

geometries schematically shown in Figure 2-2a (Bakewell et al., 1998). A crossover 

frequency of 9 MHz was experimentally determined. Bakewell et al. concluded that 

positive DEP occurs at frequencies below 9 MHz, while negative DEP prevails in a 

frequency range between 9 MHz and 20 MHz (Bakewell et al., 1998). Using similar 
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quadruple electrode geometries, Zheng et al. reported DEP trapping of bovine serum 

albumin (BSA). The eDEP device was employed to position BSA between the electrode 

gap in order to measure protein conductance (Zheng et al., 2004). Hölzel et al. used 

different electrode geometries, namely pairs of microelectrodes as close as 500 nm 

(Hölzel et al., 2005). The expected value of     reaches 10
21 

V
2
/m

3
 with which single   

R-phycoerythrin molecules would experience a DEP force of 0.1 pN according to their 

model. The theoretical calculations suggested that the DEP force overcomes diffusion. It 

was further shown experimentally that R-phycoerythrin was successfully trapped due to 

positive DEP at the tip of the electrodes with an applied voltage of 10 V and a frequency 

of 0.1 ~5 MHz (Hölzel et al., 2005).  

Another iDEP approach can be performed by employing a nanopipette used by 

Clarke et al. to demonstrate the trapping of two proteins, protein G and immunoglobulin 

G (IgG) (Clarke et al., 2005), as schematically depicted in Figure 2-2b (Clarke et al., 

2005). The tip of this nanopipette has a 100 ~ 150 nm internal diameter creating an 

electric field strength of 10
6 

V/m. Using a physiological buffer to retain protein integrity, 

a maximum of 3000-fold protein concentration was achieved due to positive DEP with 

reversible protein accumulation (Clarke et al., 2005). Moreover, the same device was 

used to measure protein conductivity (Clarke et al., 2007).  

Furthermore, Lapizco-Encinas et al. reported protein trapping using an iDEP 

device, as schematically shown in Figure 2-2c (Lapizco-Encinas et al., 2008a). The 

authors showed that BSA could be manipulated via negative DEP under DC condition 

within a microfluidic device containing insulating circular post arrays. The DEP response 

was systematically studied by varying the buffer conductivity (25 ~ 100 µS/cm) and pH 
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(8 and 9) with an applied voltage of 700 ~ 1600 V/cm. The maximum protein 

concentration in the trapping region was observed using the highest conductivity buffer 

(100 µS/cm, pH 8) (Lapizco-Encinas et al., 2008a). In addition, Staton et al. fabricated 

insulating constrictions in a single microfluidic channel with varying sawtooth shape to 

construct an iDEP system (see Figure 2-2d) (Staton et al., 2012). They employed this 

device to study iDEP of amyloid-beta (Aβ) fibrils which play an important role in 

Alzheimer disease pathogenesis. With a DC-iDEP device they showed rapid and selective 

concentration of the Aβ species. While Aβ monomers exhibited streaming DEP, Aβ 

fibrils were captured and concentrated at the narrow constriction of the sawtooth structure 

demonstrating iDEP trapping (Staton et al., 2012).  

Most recently Liao et al. reported iDEP devices with nanometer-sized 

constrictions fabricated by a combination of photo- and electron beam lithography as 

depicted in Figure 2-2e (Liao & Chou, 2012) and further employed in the following work 

(Liao et al., 2011, 2012). Numerical simulations suggested that with a 100 nm 

constriction device the DEP force acting on a streptavidin molecule reaches                   

10
-10 

~ 10
-11 

N, whereas less than 10 pN DEP force is generated with 1 µm constrictions 

(Liao et al., 2011). They used a physiological buffer to maintain the protein's 

conformation and functionality, which poses a challenge due to significant Joule heating. 

However, using a 30 nm nano-constriction device at 200 ~ 300 Vpp/cm AC voltage and 

1 MHz frequency combined with a slight DC offset, concentration of the protein 

streptavidin was resulted due to negative DEP at regions of low electric field strength. 

The authors specifically selected a frequency range for negative DEP so that the protein 

would be trapped at the low electric field regions where a rise in temperature is less 
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significant. With this well-designed device, they achieved a > 10
5
-fold concentration 

increase within 20 seconds (Liao & Chou, 2012). 

Focusing. Unlike trapping, focused particles are not immobilized but flow as 

narrow or confined streams. To focus particles DEP has to overcome Brownian diffusion, 

whereas other bulk fluid flows such as electroosmosis overpower DEP. There are only a 

few groups that have investigated DEP focusing for proteins. DEP focusing can – despite 

the large bulk flow component – be employed as an analytical tool. For example, it has 

been shown that DEP focusing can be successfully employed to separate or sort cells and 

colloidal particles (K. H. Kang, Kang, Xuan, & Li, 2006; Y. Kang, Li, Kalams, & Eid, 

2008). Moreover, DEP focusing has been demonstrated with nanoparticles by Cummings 

and Singh (Cummings & Singh, 2003) and was applied to sub-micrometer bead sorting 

(B. Abdallah, Chao, Fromme, & Ros, 2012). It is thus expected that protein DEP focusing 

will be important for analytical applications as well as a general tool to investigate 

protein DEP. Our work presented herein is classified into this category of protein 

focusing with which the protein DEP behavior was tested using various proteins.  

A computational study on the DEP streaming behavior of myoglobin was 

presented by Gunda et al. (Gunda & Mitra, 2010). A detailed study on the electric field 

distribution along an electrode-based device was provided as well as the concentration 

distribution of myoglobin with a convection-diffusion model. The underlying protein 

DEP response was modeled for different shapes, such as ellipsoids as well as a sphere 

according to classical DEP theory, demonstrating that DEP forces overcome Brownian 

forces in the presented device geometry and computed electric fields. Furthermore, an 

electrode-based DEP device for protein streaming has been employed by Gong (Gong, 
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2010). This is an excellent application of streaming DEP and used in nanoelectronic 

devices for label-free, sensitive protein detection. This work is further detailed in the next 

section on applications.  

Applications. This section presents detailed applications utilizing DEP to 

manipulate proteins. There are three main applications in the past: separation, molecular 

patterning and bioprobes, and biosensors.  

Separations. For a successful separation of protein mixtures, forces acting on 

each species have to be significantly different. DEP has the potential to be applied as a 

separation method since DEP forces greatly depend on polarizability. Even though the 

theoretical framework detailing the mechanism of protein polarization and 

dielectrophoretic response has not been investigated for a large variety of proteins yet, 

current knowledge suggests a wide variety in DEP response including the occurrence of 

positive and negative DEP. Exploiting protein DEP has the advantage to probe a 

frequency dependent quantity rendering the separation process ‘tunable’. However, not 

only the frequency can be used to tailor DEP response, but also the magnitude of    . 

Microfabricated devices (either employing electrodes or using the iDEP approach) allow 

spatial tuning of the forces molecules experience within a separation experiment, for 

example along a separation channel. This can be exploited advantageously to improve 

resolution. Moreover, DEP response can be used as an enrichment or trapping approach 

prior to separation, in which particles with similar DEP properties can first be enriched 

before a higher resolution separation follows. This approach would also be useful for 

situations with low sample concentrations, such as is the case for many biomarkers. 
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Finally, sorting or fractionation approaches are also achievable with DEP as has been 

demonstrated with particles and cells (X.-B. Wang et al., 2000). 

Washizu et al. first demonstrated the potential use of DEP for protein separation 

employing the technique named "DEP chromatography" (Kawabata & Washizu, 2001; 

Washizu et al., 1994). In their device a pair of interdigitated electrodes is mounted on a 

substrate and the sample mixtures are driven into the device from the inlet at a constant 

flow velocity. Due to an electric field gradient created by the integrated electrodes, 

species experiencing larger DEP force retard from others. Therefore these species exhibit 

a longer elution time as detected by changes in fluorescence intensity at the outlet. Using 

this device Washizu et al. performed DEP experiments with DNA ranging from               

9 ~ 48 kbp and found that 48 kbp was separated from the others. Next, they conducted a 

similar experiment with the protein avidin at 1 kHz and could show that the protein was 

trapped upon application of voltage (Washizu et al., 1994). Furthermore, Kawabata et al. 

used a similar DEP chromatography device to extend Washizu’s study to a larger variety 

of proteins and DNAs including insulin, BSA, and Immunoglobulin M (Kawabata & 

Washizu, 2001). Even though no actual separation of the protein mixtures was performed 

in these two studies, they both showed that more polarizable and/or larger particles are 

trapped more efficiently by a DEP chromatography device. This work indicates that the 

development of a protein separation assay should be possible with careful device design 

and choice of proteins.  

Molecular Patterning and Bioprobes. DEP has been used to investigate the 

motility of biological motor systems in the field of microelectronics where molecular 

motor systems, such as the kinesin/microtubule system and actin/myosin system which 
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have attracted much interest due to their possible uses as microsensors and actuators 

(Heuvel & Dekker, 2007). Biological motor proteins as well as associated cytoskeletal 

motor proteins are responsible for a variety of cellular processes and functionalities 

including muscle contraction and segregation of chromosomes during cell division. 

Therefore, it is essential to understand and control the molecular motor-based motility as 

well as to investigate these interactions within a biological system. Asokan et al. applied 

DEP forces to pattern actin on a substrate using quadruple electrodes in order to 

investigate actin motility (Asokan et al., 2003). Upon the application of 7 Vpp AC voltage 

in a frequency range of 100 kHz ~ 30 MHz, they observed positive DEP and DEP 

orientation torques, resulting in an alignment of actin parallel to electric field lines. 

Additionally, the numerical simulations revealed the maximum     of 10
20

 V
2
/m

3
 which 

created DEP forces of ~ 0.4 pN (Asokan et al., 2003).  

In another application, Uppalapati et al. fabricated microelectrodes on glass 

substrates (Uppalapati, Huang, Jackson, & Hancock, 2008). In a low ionic strength 

buffer, bundles of microtubules were collected and oriented by the application of AC 

voltages. The combination of DEP forces, AC electroosmosis, and electrothermal forces 

controls particle motion in this device. By tuning the buffer conductivity and AC 

frequency, the apparent conductivity of taxol-stabilized microtubules was found to be   

250 mS/m. Using this particle conductivity value the maximum DEP force per unit length 

of microtubules was found to be 10 pN/µm at a frequency of 5 MHz (Uppalapati et al., 

2008).  

DEP has also been applied in order to develop carbon nanotube (CNT) bioprobes 

used as a force measurement probe in atomic force microscopy (AFM) by Maruyama et 
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al. (Maruyama & Nakayama, 2008). CNT bioprobes could be used to investigate protein 

dynamics by enabling site-specific and rotational specific force measurements. Under AC 

DEP conditions streptavidin-quantum dot conjugates as well as streptavidin molecules 

were covalently attached mainly to the tip of the CNTs due to positive DEP and 

effectively reduced the protein attachment on the sidewall (Maruyama & Nakayama, 

2008).  

Biosensors. DEP was also used to develop a label-free detection device for 

biomarkers with high sensitivity. Gong demonstrated a label-free attomolar detection 

system for prostate-specific antigen (PSA) which is considered a biomarker for prostate 

cancer. Gong integrated silicon nanowire field-effect transistors and planar electrodes on 

a sensor substrate (Gong, 2010). The nanowire surface was functionalized with PSA 

antibodies serving as receptors. In order to increase the sensor sensitivity, AC DEP was 

utilized: AC electroosmosis drives proteins to the receptors, and moreover proteins are 

pre-concentrated in the vicinity of receptors due to positive DEP. This transport 

mechanism is considered DEP streaming where a DEP component caused by AC 

excitation overlays with a convective electroosmotic flow (Gong, 2010). The pathogen 

binding events to the antibodies are detected by AC conductance. It was shown that the 

sensitivity of the nanowire device increased 10
4
-fold when compared to the mere 

diffusion controlled device. The lowest PSA concentration detected by the nanowire 

device was found to be 10 aM under the application of 0.5 V AC and a frequency of 

47 Hz (Gong, 2010). Another example for sensing probes was demonstrated with the 

detection of viruses with very high sensitivity (de la Rica, Mendoza, Lechuga, & Matsui, 

2008). De la Rica et al. developed a peptide-nanotube sensor platform on which peptide 
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nanotubes are aligned between the Au electrodes due to positive DEP at 10 Hz frequency 

and 5 Vpp. The surface of the peptide nanotubes was coated with antibodies specifically 

binding to a target pathogen, thus the target pathogens are selectively captured on the 

nanotube surface. Virus binding events on the nanotubes were detected by an AC 

capacitance change between the electrodes. This peptide-nanotube based sensor 

successfully detected a label-free herpes simplex virus type 2 (HSV-2) within 1 hour with 

a concentration as low as 10
2
 plaque forming units per ml (pfu/mL) which corresponds to 

the number of infective virus particles (de la Rica et al., 2008).  

Castillo et al. also studied self-assembled amyloid peptide nanotubes (SAPNT) 

employing DEP (Castillo, Tanzi, Dimaki, & Svendsen, 2008). SAPNT is known for 

excellent thermal and chemical stability as well as high mechanical strength, which can 

be used for nanotechnological applications such as biosensors and field effect transistors. 

In this study, bundles or a single SAPNT were successfully manipulated and deposited on 

top of the micro Au electrodes due to positive DEP with an application of 10 Vpp and a 

frequency of 1 MHz. In addition, the electrical properties of the nanotubes were studied 

by plotting I-V curves, which confirmed a low ohmic conductivity of SAPNT under 

applied potential (Castillo et al., 2008). 
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Table 2-1 

Fundamental studies of peptide and protein DEP. 

 

 

Type of 

DEP 

Devices References Proteins used 

Fundamental Studies 

Trapping  

 

 

 

 

Electrode 

EDP 

Interdigitated 

electrodes 

(Washizu et al., 1994) Avidin, concanavalin, 

chymotrypsinogen and 

ribonuclease A 

Multipole 

electrodes 

(Bakewell et al., 1998) 

(Zheng et al., 2004) 

(Asokan et al., 2003) 

Avidin 

BSA 

Actin 

Nanopipette (Clarke et al., 2007, 

2005) 

Yellow fluorescence protein  

Protein G  

IgG 

Planar electrodes (Hölzel et al., 2005),  

(Castillo et al., 2008) 

(Uppalapati et al., 

2008) 

R-phycoerythrin 

Amyloid peptide nanotubes  

Microtubules 

Others (Maruyama & 

Nakayama, 2008) 

 (Kawabata & Washizu, 

2001) 

(Hübner, Hoettges, 

McDonnell, Carter, & 

Hughes, 2007)  

Streptavidin 

Insulin, BSA, and IgM 

Albumin 

Insulator-

based DEP 

Nanoconstrictions (Liao et al., 2011, 2012; 

Liao & Chou, 2012) 

Streptavidin 

Post arrays (Lapizco-Encinas et al., 

2008a) 

BSA 

Sawtooth (Staton et al., 2012) Aβ amyloid 

Focusing Electrode 

DEP 

Planar electrodes (Gong, 2010) Prostate-specific antigen 

(PSA) 

Insulator 

-based DEP 

Post arrays (Nakano et al., 2012, 

2011) 

IgG, BSA  

Nanostructures (Camacho-Alanis et al., 

2012) 

BSA 

  



 

26 

Table 2-2 

Applications of peptide and protein DEP.  

Applications 

Separations Electrode 

DEP 

Interdigitated 

electrodes 

(Washizu et al., 1994) Avidin 

Electrode arrays (Kawabata & Washizu, 

2001) 

Insulin, BSA, and 

IgM 

 

Molecular 

patterning 

Electrode 

DEP 

Planar electrodes (Washizu et al., 1994) Avidin 

Multipole electrodes (Asokan et al., 2003) Actin 

Bioprobes  Carbon nanotube 

(CNT) tip 

(Maruyama & 

Nakayama, 2008) 

Streptavidin 

Biosensors Electrode 

DEP 

Planar electrodes (Gong, 2010) 

(de la Rica et al., 2008) 

(Castillo et al., 2008) 

PSA 

Peptide nanotubes 

Amyloid peptide 

nanotubes  
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CHAPTER 3 

NUMERICAL MODELING 

CONVECTION-DIFFUSION EQUATION TO MODEL CONCENTRATION 

DISTRIBUTION  

The anticipated DEP forces acting on biomolecules, i.e. proteins in our case 

represent an important aspect in iDEP devices. Little is known on the mechanisms 

involved in protein DEP up to date and a detailed model is lacking. Therefore, involved 

trapping forces are related to well-studied theories for solid particles, enabling the 

estimation of the anticipated trapping forces in accordance with micro- and nanoparticles. 

The DEP forces for different shapes of particle have been studied previously and a 

prolate ellipsoid model was employed for IgG and an oblate ellipsoid model for              

β-galactosidase. Clarke et al. (Clarke et al., 2007) previously related the trapping forces 

for protein DEP to a prolate ellipsoid model, assuming an overall prolate ellipsoid shape 

of proteins in solution. This seems reasonable in my case considering reported shape of 

IgG molecules in solution (Sandin, Öfverstedt, Wikström, Wrange, & Skoglund, 2004). 

For β-galactosidase, an oblate ellipsoid shape is assumed based on its dimension from x-

ray crystallography data (Jacobson, Zhang, DuBose, & Matthews, 1994). In the case of 

DC DEP, the DEP force acting on an ellipsoid particle is given as (Clarke et al., 2007; 

Morgan & Green, 1997):  

    
 

 
      (

     

    (   )  
)      (3. 1) 

where a, b, and c are the radii of the ellipsoid along x, y, and z axes, εm is the medium, 

i.e. surrounding buffer, permittivity, E the electric field and σm and σp the medium and 
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particle conductivity, respectively. Z indicates the geometrical polarization relaxation 

factor. The shape dependent factor Z is given in Appendix A 1 for a prolate ellipsoid and 

oblate ellipsoid case. 

The expression                     
     

    (   )  
                                     (3. 2) 

denotes the modified Clausius–Mossotti factor arising as a result of the ellipsoid model. 

The magnitude and sign of fMCM governs the DEP behavior and is responsible for DEP 

migration either to the regions of high field gradients (positive DEP) or away from these 

regions (negative DEP).  

Furthermore, considering convection due to electrokinetic forces, an 

electrokinetic velocity can be assigned as: 

          (       )          (3. 3) 

where µeo and µep are the electroosmotic and electrophoretic mobility, respectively. For 

the negatively charged species such as IgG and β-galactosidase at the employed pH of 8, 

electrophoretic transport of these proteins is in opposite direction to the electroosmotic 

bulk flow. Depending on the magnitude of µep relative to µeo this could considerable 

decrease the overall electrokinetic force or result in an overall reversed migration 

direction (for µep > µeo and in the case of opposite sign). In my study, µep is considerably 

smaller than µeo and of opposite sign because the experimental observations reflected a 

strong cathodic electroosmotic flow, confirming that electrophoresis counteracts 

electroosmosis only to a marginal extent. Therefore, our simulations were conducted 

using an overall electrokinetic mobility reflecting the actual flow direction. Thus, µeo = 
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1.5 × 10
-8

 m
2
/V s is used as previously reported under similar experimental conditions in 

PDMS microfluidic channels (Hellmich et al., 2005). 

Similar to the case of electrokinesis, one can assign a DEP mobility µdep to a 

particle traveling in a liquid due to DEP. The DEP force is assumed to be balanced with 

the particle’s drag force given by Probstein (Probstein, 2003): 

           ̅   (3. 4) 

where η is the medium viscosity, u is the particle velocity, and  ̅ is the mean translational 

coefficient (see Appendix A 1). Additionally the DEP velocity can be written as:  

            
  (3. 5) 

By balancing equation (3. 1) and (3. 4), the expression of µdep is resulted as: 

      
      

   ̅
      (3. 6) 

Similar to the early works on streaming DEP, a convection–diffusion model is 

employed to describe streaming DEP (Cummings, 2003; Lapizco-Encinas, Simmons, 

Cummings, & Fintschenko, 2004). I consider electroosmosis the convection component 

interplaying with diffusion and DEP. The total flux in our model can thus be expressed 

as: 

         (        )  (3. 7) 

where D is the diffusion constant and c is the concentration of the particles. Any pressure 

drop across the microchannels is not accounted for and thus the non-electrokinetic 

component of velocity can be neglected in the COMSOL model. Equation (3. 7) is solved 

at steady state:  

 
  

  
        (3. 8) 
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To solve this model, I used commercial software COMSOL Multiphysics 4.4. In 

particular, electric currents physics was first added to model the electric field distribution 

in the channel, whereas creeping flow was used to solve the electroosmotic component. 

Finally, to plot the concentration distributions using the convection-diffusion equation 

shown in equation (3. 7), transport of diluted species was employed with an initial 

concentration of unity.  

Using equation (3. 1) allows predicting protein DEP behavior with the prolate 

elliptic radii chosen as previously reported for IgG (a = 5 nm, b = c = 2.5 nm (Sandin et 

al., 2004)). An experimentally derived value for σp of proteins in solution was reported by 

Clarke et al. (Clarke et al., 2007) for yellow fluorescent protein. Thus this value was used 

for all calculations and a medium conductivity of 0.01 S/m adapted to the experimental 

conditions. The corresponding values are shown in Table 3-1. Based on these 

calculations, positive DEP is predicted for IgG according to a positive fMCM value. It is 

important to note that these equations were deduced for a prolate ellipsoid particle. While 

it is a reasonable assumption, the actual polarization behavior of the considered proteins 

may deviate from these values. However, this model can used to reasonably estimate the 

involved trapping forces for such nanoscale objects. This is very useful for the design of 

iDEP devices and for the understanding of future DEP-based separation mechanisms. 

Chapter 5 will further show that this model is in excellent agreement with the 

experimental observations. Note, a negative DEP case for each geometry is purposefully 

defined by assigning a particle conductivity of zero. The differences in positive and 

negative DEP will be discussed in detail in Chapter 5 and 6 in relation to experimental 

results. 
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In the case of β-galactosidase, its dimension can be estimated as an oblate 

ellipsoid of 4.5 × 4.5 × 8 nm from x-ray crystallography data (Jacobson et al., 1994). 

Based on the experimental results of which the position of protein concentration indicates 

negative DEP (see discussion in Chapter 6), parameters needed for numerical simulations 

can be determined using equation (3. 6). As shown in Table 3-1, an extreme negative 

DEP case was assumed, thus σp = 0 S/m was employed. 
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Table 3-1 

Input values used for numerical simulations.  

Protein σp 

[S/m] 

σm 

[S/m] 

fMCM DEP type µDEP
c
 

[m
4
/V

2
s] 

D 

[m
2
/s] 

α 

[F/m
2
] 

IgG 24.6 
a
 0.01 5.75 Positive 8.60*10

-24
 3.89*10

-11 d
 5.34*10

-34
 

β-galactosidase 0 
b
 0.01 -1.34 Negative -8.95*10

-24
 3.2*10

-11 e
 -1.15*10

-33
 

a 
Experimentally derived value σp of proteins reported for yellow fluorescent protein 

(Clarke et al., 2007). 
b 

Extreme negative DEP case is assumed with σp = 0 S/cm. 
c 
Calculated using equation (3. 6) and values corresponding to IgG. 

d
 From reference (Rosenqvist, Jøssang, Feder, & Harbitz, 1986). 

e
 Calculated using Stokes-Einstein equation.  

 

TEMPERATURE DISTRIBUTION IN A MICROFLUIDIC CHANNEL 

To elucidate the Joule heating effect in the iDEP device, a numerical model was 

developed using commercial simulation software COMSOL Multiphysics 4.4 (MA, 

USA). Both the fluid in the channel and the solid phase surrounding the channel in the 

numerical model were considered and solved for the electric current, flow field, and 

temperature field in 3D. First, the electric field distribution was simulated by applying the 

same potentials used in experiments (100 V, 1000 V, and 3000 V for a 1 cm long channel 

between the inlet and outlet) for each buffer conductivity (100 µS/cm and 1 mS/cm). All 

other channel walls were defined as electrically insulating.  

A buffer of pH 8 is assumed to match with the experimental conditions with 

which negatively charged PDMS and glass walls create bulk electroosmotic flow in 

cathodic direction. To simulate this flow field, the incompressive Navier-Stokes equation 

was solved along with the continuity equation. The electroosmotic mobility (µeo) was 
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applied as a boundary condition to the PDMS walls employing µeo of 1.5 × 10
-8

 m
2
/V s 

for PDMS channels coated with F108 prior to temperature measurements (Hellmich et 

al., 2005). 

The temperature field is created by Joule heating within the fluid in the channel 

and extended to the surrounding PDMS and glass walls. This Joule heating induced 

temperature field is governed by the energy equation expressed as (Bergman, Lavine, 

Incropera, & DeWitt, 2011a): 

     (
  

  
     )     

     (3. 9) 

where    and    denote the specific heat and thermal conductivity of the buffer, 

respectively, and they are assumed to be independent of temperature.    is the bulk flow 

velocity, T is the temperature, and Q is the heat generated by Joule heating:  

         (3. 10) 

where E is the electric field and J is the current density expressed as     ( )  of which 

 ( ) is the temperature dependent buffer conductivity. In addition, heat conduction 

through the solid walls plays a significant role in resultant temperature distributions and 

thus needs to be considered. The heat transfer through the solid is expressed with the 

following equation (Bergman et al., 2011a):  

       (
  

  
)     

     (3. 11) 

where    ,    , and    denote the density, specific heat, and thermal conductivity of the 

solid, respectively. Note that our iDEP device is fabricated with the combination of 

PDMS and glass whose thermal properties differ significantly. Therefore, different values 

of thermal properties were assigned for the top and side PDMS walls (ks = 0.18 W/mK, 
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cps = 1100 J/kgK, ps = 1030 kg/m
3
) and the bottom glass wall (ks = 1.4 W/mK, cps =    

835 J/kgK, ps = 2225 kg/m
3
). Isothermal boundary conditions were assumed for the inlet 

and outlet reservoirs since the volume of the reservoirs is much larger than that of the 

channel, and therefore expect the resultant temperature changes in the reservoir to be 

negligible. For the outside surface of the channel, the natural convection heat transfer 

with surrounding air was assumed as boundary conditions, and a heat transfer coefficient 

(h) of 20 W/m
2
 K was employed (Bergman, Lavine, Incropera, & DeWitt, 2011b). Upon 

performing the numerical modeling, the buffer viscosity, buffer electrical conductivity, 

and the buffer permittivity were treated as temperature dependent and were accounted for 

as expressed in the following (Haynes, 2012): 

  ( )                (     ⁄ ) (3. 12) 

  ( )    {      (    )} (3. 13) 

  ( )           (     ⁄ ) (3. 14) 

where λ0 is the electrical conductivity of the buffer at room temperature. 

Both steady-state and time-dependent temperature changes were simulated 

numerically. In the case of the steady-state simulation, all three physics were coupled by 

taking into account the aforementioned temperature dependent parameters in a 3D device. 

However, for time-dependent simulation, only the electric current and temperature field 

were solved with only accounting for the temperature dependency of the electrical 

conductivity. The electroosmotic velocity was entered in the Heat transfer in solids 

module as a bulk fluid flow velocity as indicated in equation (3. 9). Although this 

approach was chosen for the 3D time-dependent simulation due to the lack of 
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computation capability, the resultant temperature distribution was not affected by 

employing the simplified methodology.  

  



 

36 

CHAPTER 4 

EXPERIMENTAL METHODS 

In this chapter the device fabrication processes and the experimental procedures 

are described to perform iDEP experiments presented in Chapter 5 and 6. The iDEP 

devices used for experiments are categorized largely into two, micropost iDEP devices 

and nano-constriction iDEP devices, based on the dimensions of the constrictions and the 

corresponding techniques used to fabricate each device.  

 

MATERIALS AND CHEMICALS  

Si wafers (5 in.) were purchased from University Wafer. SU-8 2007 negative 

photoresist and developer were obtained from Microchem (Newton, MA, USA). 

(Tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane (TDTS), vinyl PDMS 

prepolymer, Pt calalyst (platinum divinyltetramethyldisiloxane), and hydrosilane 

prepolymer was purchased from Gelest Corp (Morrisville, PA, USA). Sylgard 184, 

composed of silicone elastomer base and curing agent for poly(dimethylsiloxane) 

(PDMS), was purchased from Dow Corning Corporation (Midland, MI, USA). Potassium 

phosphate monobasic, sodium phosphate dibasic, poly (ethylene glycol)-block-

poly(propylene glycol)-block-poly(ethylene glycol) (F108), 3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), acetone, 

isopropanol, and a modulator (2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Alexa Fluor 488 BSA and 

Alexa Fluor 488 chicken anti-rabbit IgG conjugates were obtained from Invitrogen 

(Carlsbad, CA, USA). Glass slides were obtained from Fisher Scientific, and Pt wire was 
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from Alfa Aesar (Ward Hill, MA, USA). Ultrapure water was supplied from a Synergy 

purification system (Millipore, USA). 

 

DEVICE FABRICATION  

To fabricate iDEP microfluidic devices with micropost arrays, a standard 

photolithographic technique (Duong et al., 2003) was employed to fabricate the inverted 

microstructure used as a master wafer for soft lithography. The fabrication steps are 

shown in Figure 4-1. In brief, SU-8 was spin coated on a Si wafer at a proper rpm to 

obtain a desired thickness of 10 µm (Figure 4-1 Step 1), exposed under UV light through 

a chrome on soda-lime photomask (Figure 4-1 step 2), and developed in SU-8 developing 

solution. After silanization of the wafer, the soft lithography step was performed by 

casting PDMS on the master wafer (Figure 4-1 step 5), followed by curing in an oven for 

4 h at 85 °C. Subsequently, the cured PDMS was peeled off from the wafer, and the 

2 mm diameter reservoir holes were manually punched through the PDMS piece at both 

ends of a 1 cm long channel. The resultant PDMS piece and 0.15 mm thick glass slide 

were sonicated in isopropanol and DI water baths and blow-dried with nitrogen. In order 

to tightly seal the PDMS with the glass slide, both surfaces were activated by oxygen 

plasma cleaner (PDC-001 Harrick Plasma, Harrick, USA) for 1 min at the highest RF 

setting. A 5 mm thick PDMS slab with 5 mm diameter reservoir holes was pressed on the 

top of the device above the microchip reservoirs to enlarge the reservoirs and to hold the 

Pt wire electrode in position. 

To fabricate a nano-constriction iDEP device, a combination of photolithography 

and focused ion beam milling (FIBM) was employed to fabricate an inverted Si master as 
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previously demonstrated (Camacho-Alanis et al., 2012). In short, a master relief of SU-8 

photoresist was first patterned on a Si wafer using a standard photolithographic technique 

as described above. This wafer was coated with 20 nm Cr layer (Figure 4-1 step 3) using 

Cressington 308R Evaporator (Ted Pella Inc. USA). Subsequently, FIBM was performed 

to mill nanoposts (Figure 4-1 step 4) with Nova 200 (FEI Company, USA) between the 

tips of the triangular microposts. For β-galactosidase DEP experiments using a nano-

constriction device, a composite of thin toluene-diluted h-PDMS layer supported by thick 

Sylgard184 PDMS was used as described previously (H. Kang, Lee, Park, & Lee, 2006) 

since mere Sylgard184 PDMS structure tends to cause roof and/or lateral collapse for 

shallow features (Odom, Love, Wolfe, Paul, & Whitesides, 2002) such as my device of 

2 µm height. Moreover, h-PDMS prevents deformation of the relief surface, resulting in 

sharper edges (H.-W. Li, Muir, Fichet, & Huck, 2003; Odom et al., 2002). The resultant 

h-PDMS piece was assembled by following the same procedures used for iDEP devices 

with micropost arrays. 
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Figure 4-1. The fabrication process for iDEP microfluidic device where an array of 

topological posts are integrated in the channel. For a device with micropost arrays, only 

step 1, 2, and 5 are required. 1) SU-8 negative photoresist (yellow) is spin coated on a Si 

wafer (blue) to a thickness of 10 µm, followed by exposure to UV light through a chrome 

on soda-lime photomask (gray). 2) SU-8 removal with developing solution. 5) Casting 

PDMS on the master wafer to make a PDMS mold (pink). For a nano-constriction iDEP 

device, additional steps of 3 and 4 are performed. 3) Deposition of 20 nm chrome layer 

on a master wafer. 4) FIBM to mill the nanoposts between the tips of the triangular 

microposts.  

 

EXPERIMENTAL SETUP  

Prior to the experiment, the channel was coated for approximately 10 hours with 

500 µM tri-block-copolymer F108 to reduce undesirable protein adsorption onto the 

PDMS surface. After the incubation in case of F108 static coating, F108 solution was 

washed three times and exchanged with the buffer used for the subsequent DEP 

experiment. On the other hand, channels operated under F108 dynamic coating 

conditions required no buffer exchange prior to DEP experiments. The experimental 

buffers were prepared with various conductivities and pHs including 32 µS/cm HEPES 
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buffer at pH 6.4, phosphate buffers with pH between 6.5 ~ 8 at conductivities from 

100 µS/cm to 1 mS/cm, acetate-acetic acid buffer at pH 4, and tris-HCl at pH 9. All 

buffer pHs and conductivities were assessed with a pH meter (SB70P sympHony, VWR, 

USA) and conductivity meter (ORION 3 STAR, Thermo scientific, USA). For the 

subsequent DEP experiments the inlet reservoir was filled with the sample buffer 

containing analyte proteins and the other reservoir was filled with 80 µL working buffer. 

Pt electrodes attached to both reservoirs were connected to the high voltage power supply 

(HVS448 6000V, LabSmith, Livermore, CA) for DC iDEP experiments. To operate 

under AC conditions, electrodes were connected to a high voltage amplifier (AMT-3B20, 

3000 V, Matsusada Precision, Inc.) to which an AC input was provided by a function 

generator (NI USB 6343, National Instruments, Columbus, OH). The AC signal 

generation was programmed using Labview version 2010 (National Instruments).  

Three different proteins were tested with tailored iDEP devices, including 

immunoglobulin G (IgG) (Invitrogen, USA), bovine serum albumin (BSA) (Invitrogen, 

USA), and β-galactosidase (Sigma-Aldrich, USA) with the concentration of 45 nM, 7nM, 

and 33 nM, respectively. Prior to the experiments, proteins required labeling with 

fluorescence for visual detection. Alexa Fluor 488 labeled IgG was used as received from 

the supplier and β-galactosidase was labeled using an Alexa Fluor 488 protein labeling 

kit (Invitrogen, USA) following the basic protocol. Labeled proteins were purified using 

a suitable molecular weight cutoff centrifugal filter (EMD Millipore Corp., USA) with 

which the purity was tested using TLC. Recovered protein concentration was determined 

using Bradford protein assay with a plate reader spectrophotometer (Synergy HT, BioTek 

Instruments, VT).  
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DETECTION AND DATA ANALYSIS 

For fluorescence microscopy imaging, an inverted microscope (IX 71, Olympus, 

Center Valley, PA, USA) with a 100x objective (LUCPlan FL N, Olympus, USA), a 

mercury burner (U-RFL-T, Olympus, USA), and fluorescent filter set (Olympus, USA) 

equipped with a 470/40 nm exciter, 495 nm dichroic, and 525/50 nm emitter was used. 

Images were acquired at a rate of 10 images per second using a CCD camera (Quantum 

512 SC, Photometrics, Tucson, AZ, USA) and Micro-Manager software (University of 

California, San Francisco, CA, USA) and analyzed with Image J software (version 1.43).  

A concentration factor, R, was calculated as: R = (ISC - INS) / (IB - IPDMS)*100. 

Here, ISC denotes the fluorescence intensity at concentrated regions when voltage was 

applied for DEP to occur, while INS is the intensity at the non-streaming regions. IB is the 

average fluorescence intensity with no applied voltage while no DEP streaming is 

observed. IPDMS is the intensity of PDMS background aside from the channel. The 

depletion factor was calculated similarly except ISC was substituted with ISD, which 

denotes the fluorescence intensity at depleted streaming regions when negative DEP is 

observed. For both concentration and depletion factor calculations the intensities were 

calculated as the average of a defined number of pixels in each area and averaged over a 

total of 10 frames. 
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CHAPTER 5 

PROTEIN DC INSULATOR BASED DIELECTROPHORESIS WITH 

MICROPOST ARRAYS  

INTRODUCTION 

Our study focuses on the manipulation of proteins by DEP to exploit its potential 

for bioanalytical applications. The potential of DEP arises from the manipulation of 

biomolecules in gel-free environment as well as rapid separation and pre-concentration 

capability. In DEP, electric field gradients evoke forces on polarizable objects leading to 

migration and/or trapping (Jones, 2005; Pohl, 1978). This technique thus contrasts 

electrophoresis, in which migration of charged species arises in a homogeneous electric 

field. Based on the dielectric properties of the analytes, a broad range of intrinsic 

characteristics, such as size, shape, charge, charge distribution and charge mobility, 

permittivity, and deformability can be probed with DEP (K. P. Chen, Pacheco, Hayes, & 

Staton, 2009). It thus provides a large parameter space which allows highly specific 

probing of analytes in complex samples.  

For proteins the mechanism of polarization responsible for DEP transport is not 

well understood with much less experimental work that has been performed in the past. 

Theoretically, DEP manipulation of sub-micrometer sized proteins is challenging since 

extremely high electric field gradients are required in order to generate DEP forces large 

enough to compete with particle diffusion, electrokinesis, and electrothermal flow. 

Washizu et al. who performed the very first protein DEP estimated that the electric field 

of 10
6
 ~ 10

7
 V/m is necessary for DEP manipulation of biomolecules of 1 ~ 5 nm in 

diameter (Washizu et al., 1994). Although this is just a rough estimation assuming the 
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Re[fCM] = 1 using the conventional DEP theory given in equation (3. 1), it served as our 

starting point to design a suitable iDEP device with which protein manipulation can be 

realized. 

In this chapter, iDEP geometries are optimized with the aid of numerical 

simulations which allow us to estimate the resultant electric field distributions, electric 

field gradients, and concentration profiles due to positive or negative DEP. Using the 

novel triangular and elliptical posts designs, our experimental results demonstrate 

streaming DEP under DC conditions using two different proteins, namely bovine serum 

albumin (BSA) and immunoglobulin G (IgG) molecules. In contrast to previous studies, 

the influence of protein aggregation is observed on DEP behavior and downscale the size 

of the post arrays to sizes smaller than 20 µm in an elastomeric platform. In addition a 

convection-diffusion model is developed that qualitatively captured this protein DEP 

streaming behavior in order to compare to our experimental observations. Even though 

DEP for IgG and BSA is not strong enough to completely trap these biomolecules, 

proteins were able to get concentrated along the streamlines in accordance with positive 

DEP, thus our study demonstrates that DEP is suitable to concentrate proteins in tailored 

microfluidic devices.  

Additionally, with both the experimental microfluidic tool and the theoretical 

model at hand, our previous studies are extended to investigate factors influencing 

protein DEP. In particular, I study the influence of pH, surfactant concentration, and 

electrokinesis resulting both from electrophoretic and electroosmotic components as well 

as aggregation on DEP. To the best of our knowledge, this is the first detailed study on 

protein DEP streamline concentration in a microfluidic iDEP device. This study thus 
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points towards the potential of protein DEP for future analytical applications such as 

separation or pre-concentration. 

 

DEVICE OPTIMIZATION WITH VARIOUS MICROPOST ARRAY 

GEOMETRIES 

Figure 5-1 shows the schematic of one of our array geometries used to create 

iDEP devices. Arrays of insulating posts are integrated in a microfluidic channel to create 

non-uniform electric field around the post. I used a linear channel exhibiting such iDEP 

arrays and applied potential to it via electrodes immersed in the channel reservoirs 

located at both side of the channel. Three insulating post geometries were designed, 

which creates unique electric field gradient as shown in the scanning electron microscopy 

(SEM) images in Figure 5-1d-f. In the first device triangular post arrays were created in 

which strong gradients are expected between the tips of the triangles facing each other. A 

second and third device consisted of elliptical and circular post arrays with a symmetric 

distribution of electric field gradients. These structures were fabricated using standard 

photo- and soft lithographic techniques. The resulting PDMS molds for each geometry 

were verified by SEM and I thus adapted numerical simulations of protein DEP in these 

devices to the actual post dimensions. 
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Figure 5-1. Schematic representation of insulating post arrays in the microfluidic device 

for iDEP protein manipulation and SEM images of different post geometries. (a) A 

straight iDEP channel with a DEP region indicated by blue. (b) The device contains 

periodic arrays of insulating topological posts which distort the electric field, thus 

creating non uniform electric fields. (c) A top view of the iDEP device, providing non-

uniform electric field lines in the presence of insulating triangular posts. (d-f) SEM 

images of a PDMS mold with an array of (d) triangular posts, (e) circular posts, and (f) 

ellipsoidal posts.  

 

I start the discussion on numerical simulations with each post array geometry. 

Figure 5-2 demonstrates the electric field and     at an applied potential of 3000 V for a 

1 cm channel for arrays of ellipsoidal, circular, and triangular posts. Figure 5-2 depict the 

electric field (a-c) and     (d-f) at 3000 V/cm in these geometries. In the case of the 

ellipsoid and circular posts, the highest electric field and     are located at the vertical 

edges of the ellipse or circle, corresponding to values of 6.7 × 10
5
 and 6.1 × 10

5
 V/m and 

4.1 × 10
17

 and 1.5 × 10
17

 V
2
/m

3 
, respectively. However, that the highest electric field 
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(8.22 × 10
5
 V/m) and strongest     values (4.25 × 10

17
 V

2
/m

3
) are obtained with the 

triangular post array. Additionally, the triangular post array creates the largest area of 

high electric field gradients. Therefore, the iDEP device with the triangular post array is 

expected to be most suited for manipulation of nanoscale objects such as proteins. 

In the case of an array of triangular posts, the vertices facing each other are the 

areas with the highest electric field. Therefore, in the case of positive DEP proteins would 

be attracted toward the triangular tips facing each other. Our iDEP geometry is compared 

with previously reported streaming DEP for 200 nm latex spheres. In their contributions, 

Cummings et al. (Cummings & Singh, 2003; Cummings, 2003) demonstrate that 

streaming behavior and concentration occurs when DEP overcomes diffusion but is too 

weak to overcome the electrokinetic flow. These findings occurred using 200 nm 

particles which are larger in size than IgG and performed in different iDEP post 

geometries at applied electric fields of 80 ~ 250 V/cm (Cummings & Singh, 2003). In our 

case, the arising ueo and udep can be estimated via the computed E and     values using 

equation (3. 3) and (3. 5), respectively. Thus the DEP force cannot overcome the 

electrokinetic flow. Therefore, DEP streaming behavior for proteins would be expected to 

be in accordance with previously reported data for nanoparticles (Cummings & Singh, 

2003; Cummings, 2003). To test the assumed DEP behavior, the concentration profile 

were computed for particles exhibiting positive (µdep = 8.60 × 10
-24

 m
4
/V

2
s) and negative 

(µdep = -7.14 × 10
-24

 m
4
/V

2
s) using convection-diffusion equation shown in (3. 7). Figure 

5-3 provides the resultant concentration distribution for each post geometry. When DEP 

is positive (Figure 5-3a-c), the protein concentration was obtained along the posts, 

whereas the very same regions became depleted in the case of negative DEP  
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(Figure 5-3d-f). As expected from the magnitude of     value resulted from each 

geometry, the most enhanced DEP effect was observed with the triangular post array with 

the maximum concentration of 7 % for positive DEP and depletion of 7 % for negative 

DEP. Note, that the concentration enhancement in the positive DEP case is more 

pronounced than the depletion in the negative DEP case. All the geometries therefore 

demonstrate highly distinct regions for DEP mode dependent enhancement (positive 

DEP) or depletion (negative DEP) that can be used to manipulate proteins within the 

microfluidic system. It is important to mention that potential electrolysis or Joule heating 

effects were not considered in our simulation. However, a separate study has been 

conducted to investigate the creation of pH gradients in iDEP experimentally as well as 

by numerical simulations (Gencoglu et al., 2011). This study showed that the pH changed 

toward the acidic range in time scales of ~ 10 mins under similar buffer conductivity and 

applied potentials. A lower pH (however pH above pKa of PDMS) can reduce the EOF in 

PDMS microchannels, thus resulting in increased overall contribution of DEP versus 

electroosmotic flow. As a consequence, protein concentration as a result of iDEP 

streaming can be enhanced. Indeed, our numerical simulation shows lower concentration 

factors as compared with our experiments (see the following section), indicating an 

overestimation of the electroosmotic component in simulations. Although Joule heating 

can, in principle, not be neglected in our case, little influence on protein DEP was found 

within the course of our experiments. Indeed temperature rise was found not to be too 

significant by temperature measurement experiments discussed thoroughly in Chapter 7. 
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Figure 5-2. Simulation results providing the electric field and     distribution at 3000 V 

for a 1 cm channel within the iDEP channel with arrays of insulating posts of various 

geometries including ellipsoid, circle, and triangle. (a-c) shows the electric field 

distribution and (d-f) for    . The scale bar is 20 µm.  
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Figure 5-3. Simulation results demonstrating the concentration distribution considering 

DEP, electroosmosis, and particle diffusion at 3000 V for a 1 cm channel. (a-c) 

concentration profile considering positive DEP in which µdep is calculated for IgG. (d-f) 

concentration profile considering negative DEP. Normalized concentration is simulated 

with the initial concentration of unity. The scale bar represents 20 µm.  

 

DIELECTROPHORETIC BEHAVIOR OF IMMUNOGLOBULIN G AND 

BOVINE SERUM ALBUMIN  

Various iDEP post geometry designs were tested for protein manipulation 

experimentally. The triangular geometry was first employed to test DEP behavior of IgG. 

The protein solution was filled in the inlet reservoir and transported toward the post array 

at low applied potentials via cathodic electroosmotic flow. Upon an increase in the 
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electric potential, trapping of protein was observed within the device (see Figure 5-4a). 

This indicates that in the respective trapping areas the DEP component overcame the 

electrokinetic flow. This was a surprising finding as according to the simulations only 

streaming DEP was expected. However, once the electric field was turned off, proteins 

diffused away from the trapping positions as large, cohesive aggregates. Hence, I 

speculated that under these experimental conditions, large protein aggregates may form, 

and subsequently become trapped. This could be attributed by Joule heating within the 

microdevice at higher electric fields potentially leading to protein denaturation and 

subsequent aggregate formation. This trapping behavior can be explained by the much 

larger size of the aggregates compared with individual proteins and thus larger DEP 

forces as can be derived from equation (3. 1). To prevent aggregate formation, the 

zwitterionic detergent CHAPS was added to the buffer. CHAPS is known to improve 

protein solubility in bioanalytical applications (Hjelmeland, Nebert, & Osborne, 1983) 

and reduced aggregate formation was expected with this buffer additive. Owing to the 

zwitterionic nature of CHAPS, the overall conductivity of the buffer was not significantly 

changed. While the proteins may still be denatured due to Joule heating, CHAPS clearly 

prevented the formation of larger aggregates. More importantly, completely different 

behavior of IgG was observed in the channel upon electric field application. Our results 

indicated DEP streamline formation at 3000 V/cm as demonstrated in Figure 5-4b. 

Interestingly, these streamlines are formed at the same locations as in our simulation in 

the case of positive DEP (see Figure 5-3c). This positive DEP behavior of IgG is in 

agreement with the previously reported result by Clarke et al. where IgG is trapped via 

positive DEP at the tip of the nanopipette (Clarke et al., 2005). Our numerical model is 
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thus in excellent qualitative agreement with experimental findings when aggregate 

formation was prevented by the additive CHAPS. In addition, we observed a slight 

increase in fluorescence in the direction of the bulk flow (see Figure 5-4b). This was also 

observed in the simulations with the triangular posts (Figure 5-3c) indicating that the 

concentration effect could be intensified with extended rows of insulating structures. 

This finding of protein aggregation was also applicable to the smaller protein 

BSA employing our iDEP device with an array of elliptic posts (Nakano et al., 2011). 

Similar to the case of IgG, trapping of larger entities suggested the formation of protein 

aggregates. This indicates that protein aggregation is not limited to IgG, but also occurs 

with other proteins. It is therefore possible that most iDEP manipulations of proteins may 

require the control of protein aggregation. Similar to the larger IgG proteins, streamline 

DEP was observed once the zwitterionic agent was added (Nakano et al., 2011). The 

concentration of BSA was increased along streamlines developing between the center 

edge positions of the periodically arranged ellipsoidal posts as simulated using the 

convection-diffusion model shown in Figure 5-3a in which positive DEP was assumed. 

Similar to the case of IgG, concentration enhancement was observed for the positive DEP 

simulation in accordance with the observed streamline behavior. I thus conclude that 

BSA also demonstrated positive DEP behavior as well as IgG under our experimental 

conditions. 
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Figure 5-4. Fluorescence microscopy images of fluorescently labeled IgG obtained from 

iDEP experiments performed with pH 8 phosphate buffer.  (a) IgG aggregate trapping 

observed without CHAPS additive as indicated by the white arrow. (b-e) Streaming DEP 

with an applied potential of 3000 V for a 1 cm channel in the presence of 1.7 mM 

CHAPS at a buffer conductivity of (b) 0.01 S/cm, (c) 0.02 S/cm, (d) 0.03 S/m, and (e) 

0.04 S/cm. Flow is from top to bottom. The scale bars indicate 20 µm.  

 

FACTORS INFLUENCING PROTEIN DIELECTROPHORESIS 

Dependence on Buffer Conductivity. The influence of protein DEP was 

investigated in relation to the buffer conductivity as the change in buffer medium 

conductivity has influence on the calculated DEP force as shown in equation (3. 1). To 

this aim, we repeated the experiments with IgG in the presence of CHAPS, but varied the 

conductivity of the buffer between 0.01 and 0.04 S/m by changing the salt concentration. 

As demonstrated in Figure 5-4b-e, the intensity of the streamlines decreased with 

increasing buffer conductivity. This phenomenon was further investigated more 

quantitatively. Figure 5-5a shows the concentration factor determined at the streamline 

positions in relation to buffer conductivity. The highest concentration increase was 

achieved in the lowest conductivity case of 0.01 S/m. At an applied potential of 3000 V 

for a 1 cm long channel, this resulted in a concentration factor of 46 %. Interestingly, this 

corresponds to an order of magnitude higher concentration factor as compared with 

simulations. This is attributed to an overestimation of the electroosmotic component 

versus the electrophoretic migration of proteins in opposite direction. In fact when using 
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our numerical model and simulating the case of a reduced electroosmotic flow 

component higher concentration factors are found in accordance with experiments (data 

not shown). Furthermore, Figure 5-5a also shows that higher buffer conductivities 

resulted in an overall lower concentration factor down to 8% at 0.04 S/cm with the same 

applied potential. This behavior can be explained in the case of positive DEP from 

equation (3. 1). When increasing σm the fCMC factor is reduced, thus leading to lower DEP 

forces. As a consequence, concentration of proteins in streaming iDEP declines. Overall, 

the data demonstrated successful iDEP streaming of IgG proteins resulting in enhanced 

concentration of proteins at defined areas in the iDEP device. Additionally, the DEP 

behavior of protein is greatly influenced by the formation of aggregates as demonstrated 

the DEP trapping of IgG aggregates in contrast to iDEP streaming of IgG when aggregate 

formation is circumvented by the use of a surfactant.  

 

Figure 5-5.Normalized concentration factor as a function of conductivity and pH. (a) 

conductivity at 3000 V and (b) pH at 4200 V both for a 1 cm channel. 

 

It is important to note that the experimental streamline behavior of IgG is in 

excellent qualitative agreement with the performed numerical simulations as indicated by 
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the match of streaming iDEP concentration enhancement. Quantitatively, however, I find 

a discrepancy in the absolute magnitude of the concentration factor. While concentration 

up to a factor of 46 % is observed in the case of IgG in the triangular post geometry, only 

a maximum value of 7 % is obtained from the simulation (Figure 5-3c). This can be 

attributed to differences of the input parameters used for the numerical simulations in 

comparison to our detailed experimental conditions. Clearly, the limitation arises due to 

the lack of the reported data on protein conductivity and thus our simulation input 

parameters were adapted to the data most relevant to IgG in solution as previously 

reported by Clarke et al. (Clarke et al., 2007). Additionally, other influences may arise 

from deviations of the actual electroosmotic mobility in the microchannels. Again, the 

simulation parameters were adapted to our previously reported data in coated PDMS 

channels (Hellmich et al., 2005). In this study, however deviating buffer conductivity and 

pH were used, possibly giving rise to changes in the absolute value of µeo. As found in 

our simulation, slightly reduced µeo can increase the streaming concentration 

considerably (see “influence of electroosmosis“)  

Dependence on Buffer pH the influence of pH on the DEP behavior of IgG was 

investigated within a pH range of 4 ~ 9 in the presence of the zwitterionic additive 

CHAPS. I started with pH 8 at a conductivity of 0.01 S/cm and as a result, high 

fluorescence intensity was observed in streamlines along the posts (Figure 5-6a) 

resembling positive DEP streaming as described in the previous section. Then additional 

DEP experiments were performed with other pH values, while keeping the buffer 

medium conductivity at 0.01 S/m. As a result, two main effects were found. First, protein 

aggregates started to form below pH 6.5 and above 8 regardless of the presence of 
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CHAPS (Figure 5-6e-f). Immediately after applying a voltage, large amounts of 

aggregates started to flow within the channel and hindered further experiments by 

clogging the channel and adsorption on the PDMS surface. Interestingly, the DEP 

behavior has changed from streaming to trapping – a strong indicator for larger particles 

resulting from aggregate formation. I conclude that at pH below 6.5 and above 8, 

aggregation is favored even in the presence of CHAPS. This is attributed to a pronounced 

degradation and conformational changes within the protein. 

In contrast, in the pH range between 6.5 and 8, aggregate formation was not 

apparent and iDEP streaming according to positive DEP was observed. Figure 5-6a-d 

show streamlines resulting for pH 6.5 to pH 8, whereas the intensity profile at the 

midpoint line between the two rows of posts is plotted under each representative image. 

As clearly shown in Figure 5-6a-d, the protein concentration is enhanced with increasing 

buffer pH. This phenomenon was investigated more quantitatively by calculating the 

concentration factor. Figure 5-5b shows protein concentration factors with varying pH 

between 6.5 and 8. With an applied electric field of 4200 V/cm, the protein concentration 

is enhanced towards higher pH. The largest concentration factor of 71 % is obtained at 

pH 8 at 4200 V/cm. 

The variation of the pH clearly demonstrates a working range for IgG DEP 

streaming. Both below pH 6.5 and above pH 8, aggregation hampers protein streaming. 

This is in contrary to recently published results of the Lapizco-Encinas group on DC 

iDEP of bovine serum albumin (Lapizco-Encinas et al., 2008a). While this group reports 

on protein particle trapping in a DC iDEP device at similar solution conductivities, note 

that electric fields and gradients thereof are much larger in our device. Comparing their 
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data (Lapizco-Encinas et al., 2008a) with ours (Nakano et al., 2011), I conclude that even 

at an order of magnitude higher electric fields and 2 ~ 3 order of magnitude larger     

DC iDEP streaming is apparent, both theoretically and experimentally (this manuscript). 

This is remarkable, as a larger protein (150 kDa IgG compared to 60 kDa bovine serum 

albumin) was even employed (Lapizco-Encinas et al., 2008a)) from which a larger DEP 

force would be expected according to classical theory. I thus suspect that protein 

aggregation – barely resolvable in fluorescence microscopy studies – can enhance DEP 

forces leading to trapping at even lower electric fields. I furthermore find from 

calculations of the trapping criterion as developed previously (Baylon-Cardiel, Lapizco-

Encinas, Reyes-Betanzo, Chávez-Santoscoy, & Martínez-Chapa, 2009a; R. V. Davalos et 

al., 2008; Kwon, Maeng, Chun, & Song, 2008a) that the trapping condition is not 

satisfied in either iDEP device (see Appendix B 1). 
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Figure 5-6. Fluorescence microcopy images of IgG streaming iDEP in an array of 

triangular posts. The scale bar indicates 20 µm and the flow direction is from top to 

bottom. Below each image is a profile intensity plot at the position marked in a) (black 

line). (a-d) Streamlines are observed due to positive DEP at an applied electric field of 

4200 V/cm with pH buffer media in the range of pH 6.5 ~ 8: (a) pH 6.5, (b) pH 7, (c) pH 

7.5, (d) pH 8. Positive DEP streaming is increased from (a) to (d) while increasing the 

medium pH results as an increase of the concentration. (e, f) Protein aggregates are 

formed regardless of the presence of CHAPS at (e) pH 4 and (f) pH 9. 

 

It is interesting to note that the working pH range is relevant for diagnostic 

applications, in which circumneutral conditions are essential for affinity reactions of 

immunoglobulins with antigens. Although our experiments are carried out at low buffer 

conductivity, our work complements protein DEP studies under physiological conditions 

in nanometer-sized constriction devices, in which trapping was observed (Chaurey, 
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Polanco, Chou, & Swami, 2012; Liao & Chou, 2012). Thus, the resulting optimum pH 

range for iDEP as observed here is well suited for applications combining DEP 

manipulation with biological immunoassays. The concentration increase in the range of 

pH 6.5 ~ 8 additionally demonstrate that IgG streaming behavior is indeed influenced by 

pH. In the following section potential pH-dependent factors are thus investigated 

influencing iDEP migration such as electroosmosis and electrophoresis. 

Influence of Electroosmosis. In order to understand the influence of the 

electroosmotic transport on DEP streaming variations of µek (based on electrophoresis 

(EP) and electroosmotic flow (EOF)) were investigated. This is considered to be an 

important factor in protein streaming iDEP since strong electrokinetic transport 

counteracts DEP concentration. A reduction of the competing electrokinetic forces is 

therefore expected to result in a higher protein concentration effect. Therefore, the 

influence of the magnitude of EOF on IgG streaming DEP was studied by only 

considering an electroosmotic mobility, µeo, and its variations in our numerical model. 

Thus all variations in µeo correspond to changes in the overall µek. Figure 5-7a-c depict 

the concentration profiles for IgG (with positive DEP) in dependence of µeo. A typical µeo 

of 1.5 × 10
-8

 m
2
/Vs was first used for oxygen plasma treated PDMS with F108 coating 

according to a static coating procedure (Hellmich et al., 2005) and the mobility values 

were varied by up to an order of magnitude. 

Clearly, Figure 5-7a-c show that protein iDEP streaming is enhanced by reducing 

the electrokinetic component. The concentration factor can be significantly improved up 

to 11 % for the lowest employed µeo. Furthermore, this change in the overall µek 

contributes to the characteristic peak formation of the line profiles. Figure 5-7d shows the 
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concentration intensity plots with µeo ranging from 1.5 × 10
-8

 m
2
/Vs to 0.1 × 10

-8
 m

2
/Vs. 

Note that the regions of the highest streaming concentration shift inwards with increasing 

µeo. Further, these streamlines are broadened towards lower µeo values. 

The following discusses whether under our experimental conditions changes in 

the EOF could be responsible for the observed pH-dependence of the streaming iDEP. If 

µeo is decreased with increasing pH, improved streaming DEP should be expected, as our 

simulation results in Figure 5-7d suggests. It is well known that EOF on PDMS and glass 

stems from deprotonated silanol groups with a pKa of 3 ~ 5 (Tandon, Bhagavatula, 

Nelson, & Kirby, 2008). It is thus not likely that pH changes in the range of pH 6 ~ 9 

would considerably contribute to EOF changes. Additionally, the channel walls are 

coated with the tri-block copolymer F108. A pH influence is thus also not likely to occur 

under these conditions. To experimentally verify this assumption, µeo was measured in 

the range of pH 6 ~ 8 under static coating conditions employing F108 as the coating 

agent. As expected, no significant changes was observed in the magnitude of EOF (data 

not shown). 
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Figure 5-7. DEP streaming simulation with varying µek for IgG molecules within a 

triangular post array at 4200 V/cm. (a-c) Streaming concentration at steady-state 

according to positive DEP with varying µek of (a) 1.5 × 10
-8

 m
2
/V s, (b) 0.5 × 10

-8
 m

2
/V s 

and c) 0.1 × 10
-8

 m
2
/V s to reflect changes in EOF. (d) Profile plots of (a-c) at the 

midpoint line of the two rows of posts. µek is varied (reflecting changes in EOF) as 

indicated in the inset while other parameters remain constant with                                 

µdep= 8.6 × 10
-24

 m
4
/V

2 
s and D = 3.89 × 10

-11
 m

2
/s. 

 

Influence of Electrophoresis. Herein, the influence of the protein’s 

electrophoretic mobility (µep) is discussed, attributing to the overall electrokinetic 

transport. Under our experimental conditions, cathodic EOF was observed (Viefhues et 

al., 2011). Assuming that µeo found previously for PDMS/glass channels (Hellmich et al., 

2005) is in the same order of magnitude (10
-8

 m
2
/V s) as µep for proteins (Jachimska, 

Wasilewska, & Adamczyk, 2008), two scenarios are possible. First, the protein has a 

positive charge; as a consequence EOF and electrophoresis act in the same direction. The 

second case arises when EOF and electrophoresis counteract due to negatively charged 
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proteins. In the latter case, the overall electrokinetic transport should be lower in 

magnitude than in the first case, as a result of the reduced overall µek. If strong enough, 

the overall transport direction changes. As the proteins charge is critically influenced by 

the solution conditions, changes in the electrokinetic transport are expected for different 

pH.  

 

Figure 5-8. Numerically obtained concentration profile plots for varying µdep at the 

midpoint line of the two rows of posts while the other parameters stay constant; µek=     

1.5 × 10
-8

 m
2
/V s and D = 3.89 × 10

-11
 m

2
/s. 

 

In order to understand the influence of the protein charge on DEP streaming, our 

simulations are discussed for variations of µek in relation to our experimental data. First, 

an isoelectric point of the polyclonal IgG used in this experiment (see Appendix B 2) was 

determined to be pI ≤ 5. Thus, the negative charge of the protein should rise with an 

increase in pH. As electrophoresis counteracts EOF in pH > 5 for the employed IgG, a 

reduced µek would be expected. Thus, an overall stronger DEP streaming concentration 

would be expected with pH values above the pI due to the decreased µek. This is 

underlined by Figure 5-7d, indicating increased streaming concentration for lower µek. 
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Indeed, experimentally the streaming DEP concentration is enhanced towards higher pH 

(see Figure 5-5b and Figure 5-6a-d). 

Influence on DEP Mobility. With the change in a protein’s charge, such as 

induced through pH changes, the DEP behavior could also be influenced. Assuming that 

a larger amount of charges relates to a larger polarization of a protein, the DEP behavior 

would increase for pH conditions far from the pI of a protein. Our numerical simulations 

allow us to examine this scenario as well. Figure 5-8 shows the changes in the 

concentration profile arising from an increase in the protein µdep. As expected, higher 

µdep, arising from stronger DEP forces, increases the streaming concentration. Using 

similar arguments as above for the protein charge state, we conclude that our experiments 

are also in agreement with an increase in µdep possibly arising from an increased 

polarization of the double layer. While our experimental results do not allow us to 

distinguish between the two cases (increase of DEP or reduction of overall µek) I can 

nonetheless conclude from the simulations that the more pronounced concentration 

towards higher pH (up to pH 8) is reasonably well explained by the numerical model. 

Effect of Surfactants. Our preceding experimental and simulation data 

demonstrated that highest improvement in DEP concentration is expected around a pH of 

8, which can be tuned by decreasing the electrokinetic component and thus favoring DEP 

vs. streaming. In this study, adsorptive treatment with a tri-block-copolymer F108 was 

employed to prevent non-specific protein adsorption and control EOF (Alexandridis, 

Holzwarth, & Hatton, 1994). A recent report demonstrated that dynamic coating, in 

which the coating agent is apparent in the buffer throughout the entire experiment, is able 

to reduce EOF even further (Viefhues et al., 2011). Hence, this dynamic coating 
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procedure was employed in our experiments with 3 mM F108 as final concentration in 

the buffer and studied its effect on streaming DEP of IgG. 

As shown in Figure 5-9a, the streaming behavior changed drastically. The regions 

under which concentration were previously observed (Figure 5-3 and Figure 5-6) are 

now depleted. In order to further understand this astonishing DEP streaming behavior our 

results were compared to numerical simulations. Interestingly, simulations of negative 

DEP closely reflect our experimental observations (Figure 5-9b). Therefore, the dynamic 

coating procedure changed the streaming behavior from positive DEP concentration to 

negative DEP streaming depletion. To the best of our knowledge, our data are the first to 

demonstrate negative DC iDEP streaming of a protein caused by a surfactant. 

It is noteworthy that these experiments critically depend on the concentration of 

the dynamic coating agent F108. It has been reported, that the tri-block copolymer F108 

forms micelles in solution and that this micelle formation is dependent on temperature. 

Alexandridis et al.(Alexandridis et al., 1994) found a critical micelle concentration 

(CMC) of F108 at 25 ºC at 3 mM. Our experiments demonstrating negative DEP were 

performed with a CMC of 3 mM F108. I therefore propose that micelle formation and 

integration of IgG therein is responsible for the change in protein DEP behavior. This is 

likely to occur due to a reduced surface conductivity of the protein micelle so that the 

Clausius-Mossotti factor changes sign. Note that equation (3. 2) indicates that the 

Clausius-Mossotti factor is negative when the particle conductivity is lower than that of 

the medium. 

In order to investigate whether micelle formation is responsible for the change of 

DEP mode from positive to negative DEP, dynamic light scattering (DLS) measurements 
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were conducted using the same solutions employed for the iDEP experiments (see 

Appendix B 3). I studied the temperature dependent micellation of F108 alone and with 

CHAPS and/or IgG added. Our data clearly shows that micellation occurred at 3 mM 

F108 above 30 °C regardless whether CHAPS is added and independent of IgG addition. 

I thus conclude that the observed iDEP streaming depletion is due to F108 micelle 

formation. 

This negative DEP behavior was further investigated quantitatively by calculating 

the concentration depletion factor. Note that the depletion effect was enhanced with 

increasing the applied electric field from 1400 to 4200 V/cm as demonstrated in Figure 

5-10. The largest depletion of (54 %) was observed with the highest applied voltage of 

4200 V/cm in accordance with a similar trend in concentration increase for positive DEP 

streaming with applied potential. As previously observed in our numerical simulations 

(Nakano et al., 2011), DEP experiments demonstrated larger depletion than obtained in 

the simulation (only 15 %, see Figure 5-9b). The simulation was conducted using a µdep 

value of -1.28 × 10
-23

 m
4
/V

2
s calculated based on the size of the spherical micelle-IgG 

complex measured by DLS, as well as µeo of 0.14 × 10
-8

 m
2
/Vs for F108 dynamic coated 

PDMS channels (Viefhues et al., 2011). Note that the here employed numerical model for 

DC conditions does not capture the contribution of the double-layer to the protein 

polarizability in detail (Basuray & Hsueh-Chia Chang, 2010; Zhao, 2011a). I can 

however speculate that the contribution of double layer polarization and a decrease in the 

zeta potential due to the polyethylene glycol chains of F108 forming the micelles results 

in a lower protein conductivity and consequently negative Clausius-Mossotti factor. The 

influence of dynamic polarization phenomena on nanocolloid polarization was recently 
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reported (Ermolina & Morgan, 2005; Zhao, 2011a) and may also hold for proteins. In 

addition to the ionic transport in the double-layer, the electrophoretic motion of proteins 

may also be responsible for the here observed transition to negative DEP (Zhao, 2011a). 

The theoretical framework to fully understand protein DEP (including DC iDEP) needs 

yet to be fully developed and a further study of DC and AC protein DEP may provide 

more insight into protein polarization and DEP. 

 

Figure 5-9. Experimental and simulation results of negative iDEP streaming for 3 mM 

F108. (a) Fluorescence microcopy image of streaming iDEP of fluorescently labeled IgG 

molecules in a triangular post array for 3 mM F108. Concentration depletion along the 

streamlines is observed due to negative DEP at an applied electric field of 4200 V/cm at 

pH 8. (b) Normalized concentration as obtained from the simulation within a triangular 

post array at 4200 V/cm in the case of negative DEP (µdep =-1.28 × 10
-23

 m
4
/V

2 
s). The 

scale bar indicates 20 µm and the flow direction is from top to bottom. The color bar 

indicates concentration in arbitrary units. 
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Figure 5-10. Depletion factors under 3 mM F108 dynamic coating for an applied 

potential of 1400, 2800, and 4200 V for a 1cm channel. 

 

SECTION CONCLUSIONS 

In this chapter, I demonstrated successful iDEP-based manipulations of proteins 

with different geometries in a PDMS-based microfluidic system. Theoretical 

considerations predicted positive DEP behavior for proteins resulting in locally 

concentrated streamlines, which were accurately observed in experiments and were in 

excellent qualitative agreement with simulations. Moreover, this work demonstrates that 

protein aggregation readily occurs using standard phosphate buffers without the use of 

additives. These protein aggregates exhibit a different behavior (i.e. trapping) as opposed 

to individual proteins in the presence of a surfactant. Additionally, our experimental 

results demonstrated a thorough investigation of the factors affecting protein iDEP. The 

higher concentration is achieved with lower conductivity buffer in the range of 0.01 ~ 

0.04 µS/cm. Furthermore, a suitable pH range of pH 6 ~ 8 was revealed, under which IgG 

iDEP concentration can be performed without aggregation. Moreover, the influence of 

electrokinesis was studied thoroughly by numerical simulations. I postulate that the 

numerical modeling will be useful in the future, when more quantitative data obtained 
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from independent experimental techniques and theoretical models on biomolecule 

polarization become available. This will allow the prediction of migration differences for 

proteins and eventually reveal suitable separation and fractionation conditions for 

biomolecules based on DEP. Our work is thus an important step towards employing DEP 

as a new analytical tool for biomolecules. 

Moreover, this work demonstrated a clear distinction between positive and 

negative iDEP streaming of proteins. For the first time, both positive and negative DEP 

were demonstrated with the same protein species only by tuning the surrounding 

environment with a surfactant. Micelle formation was expected to be responsible for the 

observed negative DEP. Our results indicate the potential for manipulation of 

biomolecules with molecular dimension smaller than 10 nm thus highlighting the ability 

to manipulate proteins using DEP. Specifically, streaming DEP has demonstrated the 

ability to concentrate proteins within a microfluidic device thus providing an exciting 

new tool for protein analysis devices in microfluidic format. The enhancement of this 

iDEP concentration is anticipated by further optimization of the device geometry (see 

Chapter 6) with the aid of the theoretical model presented herein and the future 

application of iDEP for analytical applications of proteins on microfluidic platforms. 
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CHAPTER 6 

PROTEIN INSULATOR BASED DIELECTROPHORESIS WITH 

NANOCONSTRICTION DEVICES  

INTRODUCTION 

In the previous chapter, the potential of iDEP was demonstrated to manipulate 

proteins under DC conditions, providing the demonstration of protein iDEP streaming for 

the first time. Additionally, the buffer conditions were optimized to achieve the highest 

protein concentration by performing a thorough investigation of the factors influencing 

protein DEP, such as electrophoresis and electroosmosis. The previous investigations 

presented the potential of iDEP device with micropost arrays as a pre-concentration tool, 

however, they also showed that such micropost iDEP devices cannot create high enough 

electric field gradients with which DEP force overcomes electrokinetic force.  

To achieve such high electric field gradients for manipulation of sub-micrometer 

sized proteins, improvement of our pre-existing device with triangular microposts was 

attempted (Nakano et al., 2012). A gap distance of a few hundred nanometers was created 

by fabricating additional rectangular posts between the tips of the microposts by focused 

ion beam milling (FIBM). This nano-constriction device allowed the transition from 

streaming DEP to trapping DEP for λ-DNA with more than 10
3
-fold concentration 

enrichment (Camacho-Alanis et al., 2012). Here, protein DEP in this nano-constriction 

device are investigated with β-galactosidase and IgG under both DC and AC conditions. 

These experimental results are compared with numerical simulations in order to estimate 

the unknown experimental parameters, in particular, electrokinetic and DEP mobility to 
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aid our understanding of protein DEP response. Finally, I discuss additional factors 

influencing protein DEP concentration using this nano-constriction DC-iDEP device.  

 

NUMERICAL COMPARISON BETWEEN MICRO AND NANOPOST ARRAYS  

Our improved structure was fabricated based upon the existing iDEP device with 

triangular micropost arrays since this geometry was well-characterized for application of 

protein iDEP as demonstrated in the previous chapter. In addition to a standard optical 

lithography to fabricate triangular micropost arrays, focused ion beam milling (FIBM) 

was employed to create an additional rectangular post between the triangular posts where 

the vertices face each other. Figure 6-1c-d show the SEM images of the resulting PDMS 

structures of a triangular post array device and nano-constriction device of which the 

length of the constriction was found to be 100 ~ 500 nm. Note that due to the difficulty of 

FIBM, the size of the constriction is not uniform throughout the array. Table 6-1 and 

Figure 6-1a-b provide the comparison of maximum electric field strength and the 

distribution of     resulting from each device, revealing that the maximum electric field 

increases by nearly a factor of four. Moreover, the maximum     is enhanced by two 

orders of magnitude with which the resulting DEP force increases by up to two orders of 

magnitude in theory based on the relation in equation (3. 1).  
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Figure 6-1. Comparison of micropost iDEP device and nano-constriction device (a, b) 

   values simulated numerically (c,d) SEM images of a micropost array and nano-

constriction iDEP device.  

 

Table 6-1 

Comparison of maximum electric field strength and maximum     
  values resultant 

from a micropost array and nano-constriction iDEP device via numerical simulations. 

     [V/m]      
 [V

3
/m

2
] 

Micropost array 4.5 × 10
5
 3.5 × 10

17
 

Nano-constriction 1.6 × 10
6
 3.3 × 10

19
 

 

DIELECTROPHORETIC BEHAVIOR OF PROTEINS UNDER DC 

CONDITIONS  

Immunoglubulin G and beta-galactosidase Dielectrophoresis. The DEP 

behavior of the two proteins IgG and β-galactosidase was investigated using the nano-

constriction DC iDEP device shown in Figure 6-2. For DEP experiments, proteins were 

suspended in a low conductivity buffer (100 µS/cm) at pH 8 with the zwitterionic 
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additive CHAPS as previously used to reduce protein aggregation (Nakano et al., 2011). 

Upon application of 100 V for a 0.8 cm long channel, IgG was transported through the 

channel by anodic electrokinetic flow and was concentrated at the outlet side of the nano-

constriction (Figure 6-3a). This protein concentration was attributed to positive DEP 

based on the regions of the concentration and depletion around the nanoposts 

schematically depicted in Figure 6-3e. Protein concentration occurs at the outlet side of 

the nano-constriction since pDEP force is directed toward the nano-constrictions 

counteracting electrokinetic flow. On the other hand, protein depletion occurs at the inlet 

side since an overlay of pDEP with electrokinesis creates faster overall flow, resulting in 

depletion. This is in agreement with the pDEP behavior of IgG using an micropost iDEP 

device under DC conditions presented in the previous chapter (Nakano et al., 2012, 

2011).  

Subsequently, β-galactosidase was employed for iDEP experiments which is 

known to form a tetramer in native state with a molecular weight of 465 kDa (Jacobson et 

al., 1994). After the channel was filled with the protein and a steady state was 

established, β-galactosidase started to concentrate at the inlet side with an application of 

100 V for a 0.8 cm channel as shown in Figure 6-3b. As flow directions indicated by 

arrows in Figure 6-3b, β-galactosidase was transported by cathodic electrokinetic flow. 

Note that the direction of the bulk flow changed from anodic in case of IgG to cathodic 

flow, which was attributed to the change in electrokinetic velocity comprised of 

electrophoresis and electroosmosis. The isoelectric point of β-galactosidase (~4.6) is 

similar to that of IgG used in the previous experiment. However, the decreased 

electrophoretic component can be expected for β-galactosidase due to its larger size 
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which leads to a decrease of the charge density. Figure 6-3b shows that the                     

β-galactosidase concentration occurred at the inlet side of the nano-constrictions in 

contrast to IgG, while the outlet side resulted in protein depletion. As depicted 

schematically in Figure 6-3f, this concentration and depletion is characteristic to negative 

DEP interplaying with electrokinesis.  

 

Figure 6-2. Schematic of the nano-constriction iDEP device (not to scale) where an 

inhomogeneous electric field is created at the nano-constrictions as depicted in the zoom 

in representation. 
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Figure 6-3. Fluorescence microscopy images obtained from DC iDEP experiments and 

schematic images to explain DEP behavior with two different proteins, IgG and              

β-galactosidase and various buffer medium conductivities. Flow direction is from right to 

left. Scale bar indicates 10 µm. (a) IgG concentration at the outlet side of the nanoposts 

and slight depletion at the opposite side due to positive DEP with 100 µS/cm phosphate 

buffer with 250 V potential for a 1.5 cm channel. (b) β-galactosidase concentration at the 

inlet side of the nanoposts and depletion at the outlet side due to negative DEP with     

100 µS/cm phosphate buffer with 100 V for a 0.8 cm channel. (c) β-galactosidase 

concentration behavior with 32 µS/cm HEPES buffer with 100 V for a 0.8 cm channel. 

(d) β-galactosidase showing no apparent concentration change throughout the channel 

with 1 mS/cm phosphate buffer with 100 V for a 0.8 cm channel. (e-f) Schematics 

showing the flow directions due to DEP and electrokinesis and the resultant species 

concentration and depletion around the nanoconstriction. (d) Positive DEP counteracting 

electrokinesis at the outlet side of the nanopost, resulting in protein concentration at the 

outlet side, whereas depletion is apparent at the inlet side. (e) Protein concentrates at the 

inlet side of the post due to negative DEP interplaying with electrokinesis. 

 

FACTORS INFLUENCING PROTEIN DIELECTROPHORESIS UNDER DC 

CONDITIONS 

Dependence on Buffer Conductivity. Both DEP and electrokinesis are 

influenced by the buffer medium conductivity. Therefore, the influence on protein DEP 

concentration in relation to buffer conductivity was investigated. To this aim, the DEP 
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experiments were repeated with β-galactosidase using the following buffers: 32 µS/cm 

HEPES and 1 mS/cm phosphate buffer. Figure 6-3c showing the DEP behavior with     

32 µS/cm buffer conductivity demonstrates strong depletion around the nanoposts which 

even expands to the regions between the rows of the microposts. In case of higher 

conductivity buffer of 1 mS/cm, no concentration or depletion was observed as shown in 

Figure 6-3d. The lack of changes in the protein concentration at this medium 

conductivity is a surprising finding. Based on the classical theory, a somewhat stronger 

nDEP response would occur since the CM factor should be more negative with higher 

buffer medium conductivity. Additionally, a smaller electrokinetic mobility would be 

expected under higher medium conductivity. A similar conductivity dependency was 

previously reported in case of pDEP for IgG with which the iDEP concentration effect 

decreased with increasing the buffer conductivity (Nakano et al., 2011). I can speculate 

on the possible reason for this behavior in relation to the contribution of EDL polarization 

for sub-micrometer particles. It was previously shown that nanocolloidal particles with 

thick EDL exhibit extraordinary large EDP response largely due to their electrophoretic 

motion distorting the ion distributions within the EDL (Zhao & Bau, 2009). The EDL 

thickness is estimated to be 18 nm for 32 µS/cm buffer and 3 ~ 4 nm for 1 mS/cm. 

Therefore, proteins in the smaller buffer concentration would show increased DEP 

response compared to the ones in the higher conductivity buffer. Recently, Zhao and Bau 

demonstrated that a thick EDL accounts for a major contribution to the total dipole 

moment in the case of DNA (Zhao & Bau, 2010). Although this model has not yet been 

extended to proteins, it might hold for our experimental observations. 
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Magnitude of the Dielectrophoretic Mobility and Simulations. Even though a 

general model to describe protein polarization is lacking, it is of importance to estimate 

DEP force to understand the polarization behavior of proteins. For this purpose, 

numerical simulation serves as a helpful tool to compare with the experimental results. 

The concentration distribution within the iDEP device can be assessed by solving the 

convection-diffusion model presented in chapter 3 under steady state condition. The µdep 

value for β-galactosidase was first calculated based on the protein dimension  of              

9 × 7 × 5 nm measured via x-ray crystallography data (Jacobson et al., 1994) from which 

the shape as an oblate ellipsoid was approximated. Using the classical model developed 

for the shape (Rivette & Baygents, 1996) and assuming σm = 0 S/m to simulate an 

extreme nDEP case, a negative DEP mobility of -8.95 × 10
-24

 m
4
/V

2
s was obtained. 

However, using the apparent µek of 1.5 × 10
-8

 m
2
/Vs for PDMS statically coated with 

F108 (Hellmich et al., 2005), the result did not produce significant change in 

concentration distribution (less than 0.1 %) in simulations according to this model (data 

not shown). Considering that no appropriate model has been developed for protein DEP 

response, the classical theory developed to model solid particle DEP response might be 

over-simplified which does not accurately represent protein complexity. Moreover, it has 

been evidenced that nano-sized colloidal particles with thick EDL exhibit exceptionally 

large DEP response due to EDL polarization (Basuray & Chang, 2007; Ermolina & 

Morgan, 2005; N.G Green, Morgan, & Milner, 1997) as well as the particle’s 

electrophoretic motion (Zhao & Bau, 2009).  

Therefore, the concentration distribution was further investigated with various 

µdep and µek values attempting to match the experimentally observed distributions in 
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protein concentration in the nano-constriction under iDEP conditions with simulations. 

The µek was varied from 1.5 × 10
-7

 to 1.5 × 10
-9

 m
2
/V s and µdep ranging from                    

-4.5 × 10
-24

 to -4.5 × 10
-21

 m
4
/V

2 
s. As a result, two distinctive types of concentration 

distribution were found: type A in which the protein is depleted around the nanopost and 

type B in which the protein concentration is enhanced at the inlet side of the constriction 

as shown in the inset of Figure 6-4.  

These simulated concentration patterns were compared with the β-galactosidase 

iDEP experiment at a conductivity of 100 µS/cm as shown in Figure 6-3b. The type B 

distribution was found to qualitatively best represent the experimental results where the 

concentration enriches at the inlet side and depletes at the opposite side. By analyzing the 

variations of µek and µdep, I found that the parameter set of -4.5 × 10
-23

 m
4
/V

2
s ≥ µdep and 

µek ≥ 1.5 × 10
-8

 m
2
/V s show type B behavior similar to the experimentally observed 

concentration effect. It is interesting to know that previously a value of 1.5 × 10
-8

 m
2
/Vs 

was reported for µek under similar buffer conditions in PDMS devices (Hellmich et al., 

2005). This leads to the conclusion that µdep is underestimated with the classical model. 

The numerically obtained concentration patterns are also discussed in relation to 

variations in the medium conductivity with β-galactosidase. In the case of 32 µS/cm the 

simulation results indicate that the experimentally observed concentration matches a type 

A concentration distribution. This transition can be explained with the increase in the zeta 

potential of the channel surface, thus enhanced electrokinetic mobility induced through a 

decreased ion concentration of the buffer medium. Figure 6-3c clearly shows the 

transition of concentration distribution from type B to A with increased electrokinetic 

mobility.  
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Figure 6-4. The resultant concentration factors obtained by numerical simulations are 

plotted as a function of µdep for three different electrokinetic mobilities with 1.5 × 10
-7

, 

1.5 × 10
-8

, and 1.5 ×10
-9

 m
2
/V s . Different markers are used in order to represent the 

different types of concentration distributions: red circle markers and blue cross markers 

representing the type A and B concentration distributions, respectively. The inset shows 

representative images of these two types of concentration distributions, type A and type 

B. 

 

Applied Potential Dependency on Protein Concentration. Subsequently, the 

DEP behavior of β-galactosidase was investigated in dependence of the applied potentials 

in a range from 50 V to 500 V at a medium conductivity of 100 µS/cm. Fluorescent 

microscopy images shown in Figure 6-5a-d demonstrate a transition of concentration 

distribution with increasing applied potential. With only 10 ~ 20 V, β-galactosidase was 

depleted at the outlet side (data not shown). Subsequently, by gradually increasing the 

applied potential β-galactosidase started to concentrate at the inlet side, while depletion at 

the outlet side intensified (Figure 6-5a, at 50 V). This protein enrichment at the inlet side 

was enhanced with increasing the voltage further (Figure 6-5b, at 100 V) and a similar 
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concentration trend was observed with higher applied potentials up to 200 V (Figure 6-

5c). However, protein streaming from the inlet side started with applied potential higher 

than 200 ~ 300V (Figure 6-5d, at 500 V).  

It is interesting to discuss the transition of concentration distribution as shown in 

Figure 6-5a-d in dependence of applied potentials. To clearly visualize the concentration 

distribution around the nano-constriction regions where the higher electric field gradients 

are created, fluorescence intensity profiles perpendicular to the nanopost are plotted with 

different applied potentials (Figure 6-5h). For this operation, the fluorescence intensities 

are normalized with the intensities at the same region obtained at 0 V. Interestingly, the 

maximum concentration was observed ~ 5 µm away from the nanopost at the inlet side at 

50 V. By increasing the potential, the concentration maximum approached the nanopost 

and was closest to the nanopost at 200 V. Concomitantly, the peak maximum increases 

with increasing applied potential with a maximum concentration factor of 3.8 at 200 V. 

Assuming that DEP is the dominant cause for protein concentration around the nanopost, 

the highest concentration increase would be expected to coincide with the highest electric 

field gradient region (i.e. the corner of the nanoposts in our device). Thus, the observed 

variation of peak maximum cannot solely be explained through DEP. 

To further characterize the voltage dependent protein DEP behavior, numerical 

simulations were carried out to reveal concentration distribution in the iDEP device. 

Figure 6-5e-g shows the normalized concentration distribution around the post regions at 

50 V, 100 V, and 500 V estimating the following parameters for the simulation: µek =    

1.5 × 10
-8

 m
2
/V s and µdep = - 9 × 10

-22
 m

4
/V

2 
s for β-galactosidase exhibiting negative 

DEP. Simulation results using these parameters revealed type B concentration 
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distribution and a similar voltage dependency as observed in the experiments. 

Specifically, the region of protein concentration is located at the inlet side of the nanopost 

at 50 V (Figure 6-5e) and 100V (Figure 6-5f), whereas the opposite side is depleted. 

With the higher applied potential of 500 V, the concentration distribution changed its 

shape drastically as shown in Figure 6-5g where streamlines similar to the experimental 

observations were apparent. Although the concentration distribution obtained by 

simulation is similar to our experiments, I noticed a difference. The experimentally 

observed concentration at 50 ~ 200 V is more delocalized compared to the simulation 

where the protein concentration only occurs at very small region adjacent to the nanopost. 

This localized concentration would be expected considering that the high electric field 

gradient region is strongly localized around the corners of the rectangular nanoposts.  

It is likely that multiple phenomena contributing to protein migration play a role 

and change their balance in dependence of the applied potentials. For instance, numerical 

simulations previously showed that the change in electrophoresis, electroosmosis, and 

DEP influences the protein concentration profiles in DC iDEP (Nakano et al., 2012). 

However in the nano-constriction device as employed in this study, I suggest an 

additional factor influencing the concentration behavior due to the nanometer-sized 

constrictions. It is known that nanometer-sized channels with critical dimension of 10 ~ 

100 nm exhibit a unique ion permselectivity due to their overlapping electrical double 

layer, termed ion concentration polarization (ICP) (S. J. Kim, Li, & Han, 2009; S. M. 

Kim, Burns, & Hasselbrink, 2006; Napoli, Eijkel, & Pennathur, 2010; Y.-C. Wang, 

Stevens, & Han, 2005). The SEM images of our device revealed the smallest 

constrictions scale down to ~ 100 nm. These small constrictions are known to generate 
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ICP, which dynamically changes ion concentration gradients around the nano-

constriction under the ionic strengths employed here. At low voltages, protein transported 

through the channel by cathodic electrokinetic flow is depleted at the outlet side of the 

nanopost and concentrated on the opposite side due to nDEP in accordance with the 

simulation shown in Figure 6-5e-f. However, at the same time as DEP concentration, 

protein started to concentrate several micrometer away from the nanopost which is 

assumed to be triggered by ICP. Since ICP is known to create parabolic-like backflow at 

the ion depletion zone formed in front of the nanostructure (see Figure 6-6), ICP would 

enhance the protein concentration caused by nDEP. While increasing the voltage, the 

concentration zone due to ICP moves closer to the nanoposts since the forward 

electrokinetic flow increases. As the nanopost region is approached, nDEP protein 

concentration also enhances due to the larger electric field gradient at the nano-

constriction, resulting in the overall concentration enhancement adjacent to the 

nanoposts. 

This aforementioned scenario involving the interplay of DEP, EK, and ICP 

creates a unique voltage dependent concentration distribution caused by a dynamic 

change of the local environment (i.e. electric field distribution and ion distribution). 

Therefore, it is worthwhile to discuss the influence of the local changes on iDEP and the 

resultant concentration distribution. The presence of the nanostructure acting as a 

permselective membrane induces the formation of ICP with an overall ion depletion zone 

at the anodic side, whereas an ion enrichment zone on the opposite side of the 

nanostructure (Zangle, Mani, & Santiago, 2010). Thus, the formation of ICP leads to a 

dynamic change in local conductivity which results in a potential drop in the depletion 



 

81 

zone at the inlet side of the nanostructure. Specifically, considering our mico-/nanopost 

structure the influence of the dynamic changes can be discussed in two separate regions: 

anodic side (inlet side of a nanopost) and the cathodic outlet side. First, the inlet side of 

the nanopost is characterized by depleted ion concentration due to ICP. Kim et al. 

previously measured the electric field strength in the depletion zone to be as high as 

~1000 V/cm with the externally applied electric field of 30 V/cm (S. J. Kim et al., 2009). 

This largely enhanced electric field amplifies the electrokinetic migration at the inlet side 

of the nanostructure thereby counteracting DEP. In terms of DEP the CM-factor for 

nDEP results in a smaller negative value due to ion depletion (i.e. decreased σp) at the 

inlet side. Therefore, one can expect a declined DEP force. On the other hand, the local 

electric field at the outlet side of the nanopost is significantly lowered due to ICP, leading 

to a smaller electrokinetic migration. Moreover, one would expect the increase of nDEP 

forces since the CM-factor becomes more negative with increased σm at the outlet side 

due to ICP. Even though it is challenging to quantitatively assess the effect of ICP with 

our current device, I can conclude that the observed concentration distribution resulted 

from dynamic changes of electrokinesis and iDEP due to the change in ion concentration 

originating from ICP at nano-constrictions. Moreover, protein concentration can decrease 

at the anodic inlet side due to amplified electric fields (e.g. increased EK) as well as 

declined DEP forces. On the other hand, nDEP is enhanced at the cathodic outlet side.  
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Figure 6-5. Experimental results and numerical simulations for the nano-constriction 

iDEP device with integrated triangular microposts and rectangular nanoposts between the 

tips of the triangles. Flow direction is from right to left in the cathodic direction. Scale 

bar indicates 10 µm. Fluorescence microscopy images obtained by DC-iDEP experiments 

with β-galactosidase, demonstrating voltage dependent concentration distributions due to 

nDEP with the following applied voltages: (a) 50 V (b) 100 V, (c) 200 V, and (d) 500 V 

for a 0.8 cm long channel. (e-g) Numerical simulation results with the same external 

electric field as the experiments: (e) 63 V/cm, (f) 125 V/cm, and (g) 625 V/cm. The insets 

show the close-up around the nanopost region where the highest electric field gradient is 

expected. (h) Protein concentration profiles extracted from the concentration distribution 

at the regions perpendicular to the nanopost as indicated in the inset image and plotted as 

a function of voltages 50, 100, and 200 V applied potential for a 0.8 cm channel. 

Fluorescence intensity is normalized with the intensity at the same region at 0 V.  
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Figure 6-6. A schematic to explain the occurrence of ICP showing the micro- and 

nanopost region showing the frontal cross section of the triangular and variable width 

rectangular posts. The smallest constriction scales down to ~ 100 nm which can cause ion 

concentration polarization. An inset shows the force balance around the nano-constriction 

including electrokinesis, negative DEP, and ICP and resultant concentration distribution. 

 

Theoretical Considerations to Understand Dielectrophoretic Properties of 

Proteins. Our experimental results in comparison to the numerical simulation suggested 

that the DEP mobility calculated using the classical model might underestimate the actual 

DEP response of proteins. Therefore, factors contributing the overall DEP response of 

proteins are herein discussed.  

Proteins are polypeptides composed of amino acids forming a particular tertiary 

structure. A dipole arises in most proteins due to the spatial arrangements of polarizable 

groups originating from polarizable bonds in the polypeptide backbone. Polar and 

charged groups of the amino acid side chains (Pethig, 1979) or specific motifes such as 

-helices also contribute to some extent to the overall protein dipole (J. Antosiewicz, 

1995; Jan Antosiewicz & Porschke, 1989). Dipoles arising from the molecular 

composition of proteins are usually termed permanent dipoles with typical magnitudes of 

a few hundred Debye (J. Antosiewicz, 1995; Oleinikova, Sasisanker, & Weingärtner, 

2004; Sasisanker, Oleinikova, Weingärtner, Ravindra, & Winter, 2004; Takashima, 
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2002). Dipolar contributions from solvent (water) and solvent-protein interactions also 

contribute to the protein dipole moment. Moreover, the distribution of ions in the 

electrical double layer (EDL) characterized via the Debye layer thickness, D, can give 

rise to polarization influencing protein dielectrophoretic response (Michael Pycraft 

Hughes, 2002). In contrast to contributions from the permanent dipole, the polarization in 

the EDL can account for a characteristic frequency dependent DEP.  

Here, I attempt to calculate DEP force acting on a protein arising due to the 

protein’s permanent dipole using equation (1. 4). Previous work demonstrated that the 

protein dipole moment varies strongly among proteins ranging from < 100 D to several 

hundred D. For example, the protein lysozyme was reported to have a dipole moment of 

223 D, whereas the dipole moment of ribonuclease A with similar molecular weight 

amounts in ~ 400 D (Oleinikova et al., 2004). In the following, the DEP force arising due 

to protein’s permanent dipole is calculated. With the dipole moment of lysozyme of     

223 D reported previously (Matyushov, 2012a) as well as an experimental arrangement, 

in which an electric field gradient of 10
13

 V/m
2
 is established ( in case of nano-

constriction iDEP device shown in this chapter), the resulting DEP force acting on a 

protein can be estimated with equation (1. 4). For lysozyme, this results in a force of  

~ 10 fN. 

 Classical DEP theory using the well-described DEP response of nanoparticles was 

also used to quantitatively describe protein response. As shown in Table 3-1 in chapter 3, 

the polarizability of IgG and β-galactosidase was calculated using the classical theory 

formulated for a prolate ellipsoid for IgG (see numerical model in chapter 3) and oblate 

ellipsoid shape for β-galactosidase (see Appendix A 1), respectively. As a result, the 
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polarizability was 5.34 × 10
-34

 F/m
2
 for IgG and -1.15 × 10

-33
 F/m

2
 for β-galactosidase. 

Using equation (1. 6), the DEP force acting on IgG and β-galactosidase was calculated as 

~20 fN and ~40 fN, respectively, assuming the      
 = 3.3 × 10

19 
V

3
/m

2
 obtained via 

numerical simulations for the nano-constriction iDEP device.  

Additionally, to compare the magnitude of the electrokinetic force (Fek) with the 

DEP force (Fdep), Fek was evaluated using the following relation (Liao et al., 2012):  

            (7. 1) 

where f denotes the friction coefficient (      ̅) where  ̅ is calculated as a shape 

dependent factor (see Appendix A 1). In case of IgG, I calculated  ̅ = 3.29 × 10
-9

 m and   

f = 6.2 × 10
-11

 Ns/m. Similarly,  ̅ = 6.8 × 10
-9

 m and f = 1.28 × 10
-10

 Ns/m were 

obtained for β-galactosidase. Assuming Emax of 1.6 × 10
6
 V/m, Fek resulted in  

~ 1 pN for both proteins. This comparison of Fdep and Fek shows that DEP does not 

overcome electrokinesis with our iDEP device (see Table 6-2). However, I should note 

that the aforementioned calculation was a gross estimate performed using the maximum 

E and     not necessarily found at the same spatial location in the iDEP device. 

Additionally, electrophoresis was assumed to be negligible compared to the 

electroosmosis and the other contributing factors such as diffusion and electrothermal 

flow were also not accounted for in this comparison.  

  



 

86 

Table 6-2 

Gross estimates of the magnitude of DEP and electrokinetic force 

DEP force due to protein’s 

permanent dipole 

DEP force using classical 

theory
b
 

Electrokinetic force 

~ 10 fN (lysozyme)
a
 ~ 20 fN (IgG) 

~40 fN (β-galactosidase) 

~ 1 pN 

a
 Calculated using the dipole moment of lysozyme of 223 D (Matyushov, 2012a) 

b
 Calculated using the classical DEP theory for a prolate ellipsoid shape for IgG and 

oblate ellipsoid model for β-galactosidase. 

 

However, this estimation/comparison suggests that the classical DEP theory 

underestimates the DEP response of proteins. This classical approach might be over-

simplified and does not account for detailed protein structure, solvent interactions, or 

EDL polarization. 

In order to account for the complexity of protein dielectrophoresis, polarization 

effects in the EDL should play an important role influencing the dielectrophoretic 

behavior of proteins (Michael Pycraft Hughes, 2002). Thus, the DEP response should 

deviate from the classical cell and particle models. In analogy, it has been experimentally 

evidenced that sub-micrometer particles with EDL thickness comparable to the particle 

diameter show different DEP behavior than similar micrometer-sized particles (Nicolas 

G. Green & Morgan, 1999). Polarization and induced dipoles due to the EDL surrounding 

a nanometer-sized particle should thus play an important role in DEP behavior of 

proteins. Two major mechanisms are considered to contribute to the EDL polarization. 

The first contribution is attributed to ionic currents caused by ion migration and 

convection within the EDL. In addition, the electrophoretic motion of the particle 

modifies the ion distribution around it, leading to changes in the induced dipole moment 
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(Dukhin, 1993). The classical Maxwell-Wagner-O’Konski (MWO) model accounts only 

for ion migration and convection as a surface conductivity.  

Recently, Basuray and Chang (Basuray & Chang, 2007; Basuray, Wei, & Chang, 

2010) proposed another modified MWO theory by accounting for a normal current 

component in the diffuse layer as well as the classical tangential current. Their model 

extends to situations where the radius of the particle is comparable to the thickness of the 

Debye layer. The normal component of the ion migration within the diffuse layer leads to 

ion adsorption on the Stern layer at the particle poles, thus inducing capacitive properties 

in the EDL which influence the polarization. Interestingly, the induced dipole moment 

results in one order of magnitude larger than predicted by the classical MWO theory 

(Basuray & Chang, 2007). This larger induced dipole moment has important 

experimental implication, as smaller electric field gradients could be used for protein 

DEP manipulations. Experimentally, indeed DEP of proteins was achieved in devices 

exhibiting electric field gradients not significantly differing to those manipulating large 

DNA molecules (Nakano et al., 2011; Regtmeier et al., 2010). 

Furthermore, another theoretical approach was presented to assess nanoparticle’s 

DEP property arising due to the presence of the EDL accounting for ion migration, 

convection, diffusion in the EDL as well as the electrophoretic particle motion based on 

Poisson-Nernst-Plank (PNP) equations (Zhao & Bau, 2009; Zhao, 2011a). Their results 

attributed a major contribution of the polarization to the total dipole moment due to 

electrophoretic motion within the thick EDL, which is significantly larger than the 

particle radius (Zhao & Bau, 2009). This model could predict the DEP mobility of large 

DNA adequately at low frequency (Zhao, 2011b), but was not extended to proteins yet. 
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This model indicates that a more complex mechanism is necessary to describe 

biomolecule DEP (here DNA) and will most likely be needed to fully describe frequency 

dependent protein DEP response.  

Based on these aforementioned proposed mechanisms, a more complex 

relationship than developed for nanoparticles seems likely to be necessary to describe 

protein DEP, which should strongly depend on protein type and surrounding electrolyte. 

Unfortunately, there is currently no comprehensive study including a variety of proteins 

and experimental conditions to elaborate the mechanism of protein DEP in more detail. 

The experimental conditions as well as experimental setups studying protein DEP further 

differ significantly, making it difficult to draw generally applicable conclusions from 

these studies. Note that a detailed analysis and theoretical model of frequency dependent 

protein dipolar response was recently reported by Matyushov (Matyushov, 2012a, 

2012b). In his work, Matyushov predicted a complex dipolar behavior taking into account 

intrinsic protein polarization, protein-water and long-range solvent polarization 

employing molecular dynamics simulations for selected proteins. Matyushov predicted 

negative DEP to occur for the protein ubiquitin over a large frequency range (Matyushov, 

2012a, 2012b), while positive DEP was predicted for charged proteins such as 

cytochrome B and lysozyme (Matyushov, 2012a) in the MHz to GHz range. These results 

are interesting as they account for intrinsic DEP characteristics of proteins, which could 

be exploited for their guided manipulation. 

I conclude that the dipolar response of proteins is complex and that equation (1. 6) 

and (3. 1) oversimplify protein polarization. Current models including details on the 

effects contributing to polarization in the EDL for nanoparticles should be extended to 
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estimate DEP forces exerted on proteins. These models based on non-conducting 

particles do not take into account structural influences of proteins on DEP or influences 

on the polarization due to the amphoteric nature of proteins. Theoretical frameworks such 

as the one developed by Matyushov (Matyushov, 2012a, 2012b) need to be extended to a 

larger pool of proteins to reveal scaling laws and more detailed predictions for DEP 

response. It is further necessary to relate the experimental investigations to the existing 

models in more detail. Future frequency dependent DEP studies on a larger variety of 

proteins should thus allow confirming the theoretically predicted dielectrophoretic 

response of proteins and eventually allow refining current theoretical models. 

 

DIELECTROPHORETIC BEHAVIOR OF PROTEINS UNDER AC 

CONDITIONS  

β-galactosidase and Immunoglobulin G iDEP Behavior at Low Frequencies. 

Subsequently, iDEP experiments were performed under AC conditions using the same 

nano-constriction iDEP device with an application of 100 and 500 Vpp for a 0.8 cm long 

channel. For these experiments the voltage applied to the device was an AC step function 

of frequencies ranging from 0 to 5 kHz. First, the results using the low frequency of 1 Hz 

are discussed for both β-galactosidase and IgG. Figure 6-7 shows the representative 

fluorescence microscopy images of protein iDEP trapping at the positive and negative 

half cycles. For the positive half cycle, β-galactosidase was concentrated at the right side 

of the post, while the concentration was observed at the opposite side for IgG. Similar to 

the case under DC conditions, these concentration behaviors can be explained by the 

direction of the total force, namely DEP, EOF, and EP. For the positive half cycle at the 
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right hand of the post, EK points toward the nano-constriction, while nDEP is directed 

away from it, leading to the β-galactosidase concentration on the right side of the post. 

On the other hand, pDEP balances with EK at the left side of the post, thus IgG 

concentration occurs at the left side. These concentration behaviors were in accordance 

with the results under DC conditions where IgG and β-galactosidase were concentrated at 

the opposite sides of the posts due to positive and negative DEP, respectively.  

 

Figure 6-7. iDEP protein trapping at 1Hz voltage modulation with amplitude of 500 V 

for a 0.8 cm and 1.5 cm channel for β-galactosidase and IgG, respectively. (a) 

Fluorescence microscope images with an application of 1 Hz AC step function of 

500 Vpp. At the positive half cycle, β-galactosidase is concentrated on the right side of the 

post, while IgG concentration occurs on the opposite side. At the negative half cycle, the 

region of each protein concentration changes the sides. (b-c) ) Protein concentration 

profiles at the positive half cycle (red) and negative half cycle (blue) of (b) IgG and (c)  

β-galactosidase extracted from the concentration distribution at the regions perpendicular 

to the nanopost as highlighted with the green rectangle in (a). Fluorescence intensity is 

normalized with the intensity at the same region at 0 V.  
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Frequency Dependence. Subsequently, the frequency dependency on protein 

iDEP concentration was investigated. Figure 6-8 shows the representative fluorescence 

microscopy images at frequencies of 5, 100, and 500 Hz, demonstrating the change in 

magnitude of protein concentration as well as the locations where the protein is 

concentrated. Figure 6-8 reveals that there are two main locations of protein 

concentration: sides of the triangular microposts and the middle of the rectangular 

nanoposts. These locations correspond to the regions of the low electric field gradients, 

revealing that β-galactosidase exhibits nDEP. The observed frequency dependent 

concentration is expected to be caused by the combination of electrokinesis, DEP, and 

diffusion. At relatively low frequencies (e.g. 5 Hz, see Figure 6-8a) electrokinetic 

transport still prevails, thus proteins can move from one DEP trap to the other locations. 

This is evident from the stream-like patterns shown in Figure 6-8a, which is expected to 

occur due to the significant contribution of EK. On the other hand, when the frequency is 

increased to 100 Hz in Figure 6-8b, the protein concentration is more localized to the 

regions of low electric field gradient since particle transport via EK is decreased. As 

shown in Figure 6-9, the protein concentration decreases with increasing applied 

frequency and almost disappears at 5 kHz with 500 Vpp applied potential. Moreover, the 

protein concentration disappears at lower frequency than compared to 5000 Hz when 

100 Vpp was applied (data not shown). This was unexpected finding since a higher 

concentration effect would be expected with increased frequency since EK is suppressed 

at high frequencies. The potential reasoning for this experimental observation is 

frequency dependent double layer polarization (Beltramo & Furst, 2012, 2013). At high 

frequencies, ions does not have time to be transported to the end of the particle, thus 
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double layer polarization declines while increasing the applied frequency. I can also 

potentially explain such frequency dependency with AC electroosmosis which exhibits 

frequency dependent velocity (N. G. Green, Ramos, González, Morgan, & Castellanos, 

2000). Additionally, recently Wirth et al. reported electrolyte dependent particle motion 

arising from the polarization of the particle’s diffuse layer, which affects the particle’s 

electrophoretic mobility (Wirth, Sides, & Prieve, 2013). They also reported that the 

mobility is not only electrolyte dependent but also frequency dependent (Wirth et al., 

2013), which can potentially explain the observed frequency dependent concentration 

effects.  

This work demonstrated low frequency AC iDEP behaviors of IgG and               

β-galactosidase, revealing that the protein concentration is indeed strongly frequency 

dependent. The iDEP experiments performed in the range of 0.5 ~5 kHz showed that the 

β-galactosidase concentration decreases with increasing frequency and also                     

β-galactosidase changes the regions of the concentration. Interestingly, at high 

frequencies around 5000 Hz, protein concentration effect ceased in contrary to our 

expectations. Protein iDEP with such low AC frequencies has not reported previously, 

thus further studies are needed to understand the observed AC iDEP behaviors. 
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Figure 6-8. Fluorescence microscopy images of β-galactosidase concentrated due to 

negative DEP as a function of frequency (5, 100, and 500 Hz) at 500 V applied for a 

0.8 cm channel. Scale bar is 10 µm.  

 

 

Figure 6-9. Normalized concentration factor of β-galactosidase as a function of frequency 

with an application of 500 V for a 0.8 cm long channel.  
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CHAPTER 7 

TEMPORAL AND LOCAL TEMPERATURE VARIATION IN MICROFLUIDIC 

CHANNELS  

INTRODUCTION  

Dielectrophoresis (DEP) is a powerful technique often implemented in 

microfluidic platforms and has shown to serve as a versatile tool in many bioanalytical 

applications for cells, organelles, crystals, and biomolecules (B. G. Abdallah, Chao, 

Kupitz, Fromme, & Ros, 2013; Pethig, 2010; Voldman, 2006; Zhang et al., 2010). The 

analytical applications span a number of methods such as separation, fractionation, 

purification, pre-concentration, and sorting. DEP is referred as translational motion of a 

particle or biomolecule under the influence of an inhomogeneous electric field, which 

results in particle transport toward the region of high electric field gradient (positive 

DEP) or away from it (negative DEP). The electric field gradients necessary for the 

occurrence of DEP can be created by mainly two strategies. The most traditional 

approach is integrating microelectrodes on a substrate (Martinez-Duarte, 2012). The 

second and somewhat newer approach employs insulating topological structures within a 

microfluidic channel and is named insulator-based dielectrophoresis (iDEP) (Lapizco-

Encinas & Rito-Palomares, 2007; Srivastava et al., 2011). 

The application of iDEP has been demonstrated with a variety of designs 

including constrictions with various shapes (Hawkins, Smith, Syed, & Kirby, 2007; K. H. 

Kang, Kang, Xuan, & Li, 2006; Y. Kang et al., 2008), oil droplets (Barbulovic-Nad, 

Xuan, Lee, & Li, 2006), insulating post arrays with various geometries (Chou et al., 

2002; Cummings, 2003; Gallo-Villanueva, Rodríguez-López, Díaz-de-la-Garza, Reyes-
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Betanzo, & Lapizco-Encinas, 2009; Lapizco-Encinas, Davalos, Simmons, Cummings, & 

Fintschenko, 2005; Lapizco-Encinas et al., 2008a, 2004; Nakano et al., 2012, 2011; 

Regtmeier et al., 2007, 2010), sawtooth devices (Pysher & Hayes, 2007; Staton et al., 

2012), and serpentine channels (Zhu, Tzeng, Hu, & Xuan, 2009). With iDEP devices, 

problems prevalent to electrode based DEP, such as electrode fouling and electrode 

reactions interfering with DEP can be eliminated in the regions where DEP occurs. 

Additionally, most of the iDEP experiments were performed under DC conditions where 

particles can be transported by electrokinesis, thus eliminating the need of hydrodynamic 

pumps.  

Despite the aforementioned advantages over the electrode-based applications, 

iDEP requires relatively high applied potentials to create significant electric field 

gradients necessary to manipulate sub-micrometer particles or even biomolecules. The 

application of high electric fields leads to Joule heating which may result in temperature 

elevation within the device. Elevated temperatures can have detrimental influence on 

biological analytes of interest by affecting their viability, biological functionality, and/or 

stability. Moreover, one would expect a higher temperature rise at the regions of the 

localized electric field (e.g. constrictions) in iDEP devices due to the large electric fields 

necessary to manipulate sub-micrometer biological objects such as organelles or 

biomolecules. Arising temperature gradients may create an additional electrothermal flow 

interfering with DEP. For the aforementioned reasons most experimental iDEP studies 

have been performed with low conductivity buffers. Although some work has been 

reported with high conductivity buffers or even physiological buffers (Chaurey et al., 

2012; Clarke et al., 2005; Liao & Chou, 2012; Liao et al., 2012), the direct influence of 
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Joule heating on samples has to be alleviated in some ways. Nevertheless, the degree of 

Joule heating mostly depends on the buffer conductivity, applied potential, device 

dimension, and insulating structure geometries. Therefore, for realization of iDEP as a 

reliable analytical tool, it is of extreme importance to monitor and control temperatures 

within the device.  

A variety of methods have been employed to measure temperature in microfluidic 

devices, such as the popular use of thermocouples integrated in the device (T. Chen & 

Garimella, 2006; de Mello, Habgood, Lancaster, Welton, & Wootton, 2004; Lagally, 

Medintz, & Mathies, 2001; Lee, Garimella, & Liu, 2005). However, thermocouples only 

enable the assessment of the external temperatures, which may not match with the 

temperature within the channel. Unlike the externally attached thermocouples, resistive 

sensors inside the channel can determine the in-channel temperature (Jaeger, Mueller, & 

Schnelle, 2007). However, this method lacks the spatial resolution since the temperature 

can only be measured at the locations of resistors, thus not over an entire device 

geometry. Nuclear magnetic resonance (NMR) thermometry (Lacey, Webb, & Sweedler, 

2000) was also employed to monitor the in-channel liquid temperature by measuring the 

proton resonance shift from water molecules. Although NMR thermometry provides a 

non-invasive approach to assess in-channel temperature, it also suffers from the low 

spatial resolution. Infrared (IR) thermography (Jaeger et al., 2007) is another technique to 

track the temperature, providing excellent longitudinal resolutions. However, IR 

thermography can only assess the temperature on the outer surface of the device. 

High spatial temperature resolution can be achieved by addition of 

thermosensitive substances to the working solutions such as liquid crystalline probes 
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(Chaudhari, Woudenberg, Albin, & Goodson, 1998; Fujisawa, Funatani, & Katoh, 2005; 

Richards & Richards, 1998), semiconductor nanocrystals (Mao, Yang, & Cremer, 2002; 

S. Wang, Westcott, & Chen, 2002), and dyes with temperature dependent optical 

properties (Gielen, Pereira, deMello, & Edel, 2010; Ross, Gaitan, & Locascio, 2001; 

Ross & Locascio, 2002). Among those approaches, the use of thermosensitive dyes is 

popular due to its accessibility and cost-effectiveness. Rhodamine B (RhB) is the most 

commonly used temperature sensitive dye which exhibits strong temperature dependent 

fluorescence in the range of 0 ~ 100 ºC (Coppeta & Rogers, 1998). However, a serious 

issue arises when RhB is used for polymer-based devices such as poly(dimethylsiloxane) 

(PDMS), commonly used for microfluidic applications. Small hydrophobic analytes such 

as RhB are known to strongly adsorb on the PDMS surface and diffuse into the PDMS 

due to its hydrophobic nature (Mukhopadhyay, 2007). Such dye adsorption leads to the 

fluctuation of the baseline fluorescence intensity, resulting in false temperature reading.  

A variety of approaches were attempted to overcome the RhB incompatibility 

with PDMS by modifying the PDMS surface properties. The main approaches were 

carried out by dynamic coating of PDMS with chemical agents such as a nonionic 

surfactant Triton X-100 at high concentrations (J. Kang et al., 2005), sodium dodecyl 

sulfate (Roman, McDaniel, & Culbertson, 2006), polybrene solution (Erickson, Liu, 

Venditti, Li, & Krull, 2005), a combination of ionic liquid and nonionic surfactant (Xu, 

Jiang, & Wang, 2007), and the immobilization of ~ 10 nm SO2 particles onto the PDMS 

surface to prevent the dye diffusion into PDMS (Roman, Hlaus, Bass, Seelhammer, & 

Culbertson, 2005). The undesirable fluorescence signal derived from the adsorbed dye 

can also be distinguished from the dye in free solution and eliminated by using 
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fluorescence life time imaging (Robinson et al., 2009). Moreover, Samy et al.(Samy, 

Glawdel, & Ren, 2008) employed an assembly where thin PDMS saturated with RhB is 

sandwiched in between two glass slides. By introducing such assembly, RhB can be 

physically separated from the PDMS surface, therefore completely eliminating the 

adsorption problem.  

Temperature changes for DEP applications have been investigated previously. 

While experimental measurements were reported for eDEP, Joule heating effects were 

not yet assessed experimentally in iDEP to the best of our knowledge. For example 

Jaeger et al. employed a variety of methods to measure the temperature change for cell 

handling in dielectrophoretic cages employing eDEP (Jaeger et al., 2007). Additionally, 

Otto et al. recently measured the in-situ temperature of an eDEP silicon based chip using 

RhB dye under AC conditions (Otto, Kaletta, Bier, Wenger, & Hölzel, 2014). In iDEP, 

several studies assessed temperature in iDEP devices with theoretical models. For 

example, Hawkins et al. investigated Joule heating and the effect of the resultant 

electrothermal flow in iDEP (Hawkins & Kirby, 2010). The influence of Joule heating on 

electroosmotic flow was discussed by Sridharan et al. where the temperature field was 

solved using numerical simulations (Xuan, 2008). Another example was performed by 

Chaurey et al. where temperature rise in a nano-constriction device was numerically 

simulated (Chaurey et al., 2013). Recently, Gallo-Villanueva et al. numerically simulated 

a temperature increase in PDMS iDEP devices (Gallo-Villanueva, Sano, Lapizco-

Encinas, & Davalos, 2014). 

In this work temperature is experimentally investigated via fluorescence 

thermometry using RhB dye for iDEP applications in PDMS/glass hybrid devices with 
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two methods. The first method enables in-channel temperature measurement by 

introducing a zwitterionic additive to the buffer in order to prevent RhB adsorption onto 

the PDMS microchannel surface. For the second method, the sandwich approach by 

Samy et al.(Samy et al., 2008) was adapted, where temperature was measured on a thin 

film of PDMS located about 150 µm below the iDEP channel. Results from both methods 

show similar temporal temperature variation trends, however, the sandwich method 

provides ~ 20 ºC smaller temperature change than the in channel measurement method. 

In addition, a numerical model is presented and showed excellent agreement with the 

experimental results. Furthermore, this temperature measurement technique was applied 

to the same conditions as previously employed to study iDEP behavior of mitochondria. 

Our study revealed that the temperature changes are marginal for low conductivity 

buffers and therefore the viability of mitochondria and other biological species is not 

significantly influenced through temperature variations in iDEP. 

 

EXPERIMENTAL PROCEDURES 

Chemicals and Materials. Si wafers (5 in.) were obtained from University 

Wafer. The negative photoresist SU-8 2007 and developer were purchased from 

Microchem (Newton, MA, USA). (Tridecafluoro-1,1,2,2-

tetrahydrooctyl)dimethylchlorosilane (TDTS) was purchased from Gelest (Morrisville, 

PA, USA). Sylgard184, composed of the silicon elastomer base and the curing agent for 

poly(dimethylsiloxane) (PDMS) was obtained from Dow Corning Corporation (Midland, 

MI, USA). Rhodamine B, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

poly(ethylene glycol)-block-poly (propylene glycol)-block-poly(ethylene glycol) (F108), 
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potassium hydroxide, sucrose, potassium phosphate monobasic, sodium phosphate 

dibasic,  and 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Deionized water was 

supplied from a Synergy purification system (Millipore, USA). 

Microchip Fabrication. As shown schematically in Figure 7-1, the microfluidic 

device has dimensions of 100 µm width and 10 µm height with triangular insulating post 

arrays integrated in the 1 cm long channel. The device was fabricated with standard 

photo- and soft lithographic techniques as described previously.(Nakano et al., 2011) 

Briefly, the master relief of SU-8 negative photoresist was patterned on Si wafer via 

photolithography, followed by PDMS casting on the master wafer. Subsequently, the 

cured PDMS mold was peeled off from the master wafer and 2 mm reservoir holes were 

manually punched at the both ends of the 1 cm long channel. 

For in-channel temperature measurement experiments (method A), the resultant 

PDMS piece as well as a pre-cleaned 150 µm thick glass slide was treated with oxygen 

plasma (PDC-001 Harrick Plasma, Harrick, USA) for 60 s at the highest RF setting to 

obtain a tight seal. For temperature measurement experiments using a thin film of PDMS 

doped in RhB (method B), the previously reported experimental procedures were 

followed (Samy et al., 2008). Briefly, PDMS was first spin coated on a 1 mm thick glass 

slide at 3000 rpm for 60 s, resulting in an approximately 30 µm thick film. After 

polymerization, thin film PDMS was submersed into 1 mM RhB solution for 5 days in 

the dark to prevent photobleaching and was dried completely. To form a tight seal 

between the thin film PDMS/glass substrate and a 150 µm thick cover glass, both pieces 

were treated with oxygen plasma. The resultant substrate, where PDMS was sandwiched 
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between the glass slide and the cover glass, was plasma treated and bonded to the PDMS 

channel mold. A 5 mm thick PDMS slab with 5 mm diameter reservoir holes was pressed 

on the top of the device above the microchip reservoirs to enlarge the reservoirs. Pt 

electrodes attached to both reservoirs were connected to a high voltage power supply 

(HVS448 6000V, LabSmith, CA) to apply DC voltages. 

Mitochondria iDEP Experiments. After assembly, the microfluidic channels 

were immediately filled with Buffer A (1 mM F108, 10 mM HEPES, pH adjusted to    

7.2 ~ 7.4 with KOH) by capillarity and the chip was placed in a humid environment 

overnight. Then buffer A was removed by vacuum suction, and the channels were 

washed with Buffer B (10 µg/mL RhB, 25 mg/mL CHAPS and 250 mM sucrose 

dissolved in Buffer A) three times and refilled by adding Buffer B to the outlet reservoirs. 

The conductivity of buffer B is ~300 µS/cm. A potential of 3000 V was applied for a 1cm 

long channel for the iDEP experiments using mitochondria.  

Temperature Measurement Experiments with iDEP Devices. For method A 

the assembled iDEP channel was filled with the desired buffers. Three different buffers 

were tested: pH 8 phosphate buffers at conductivities of 100 µS/cm and 1 mS/cm with 

10 µg/mL RhB and 25 mg/mL CHAPS added and Buffer B at 300 µS/cm to examine the 

temperature rise under the same conditions used in mitochondria iDEP experiments. To 

each buffer 10 µg/mL RhB and 25 mg/mL CHAPS were added. For method B the iDEP 

channel was filled with the buffer after assembly. To compare with the result from 

method A the phosphate buffers at the same conductivities (100 µS/cm and 1 mS/cm) 

was used. For both method A and B fluorescence intensities were recorded upon the 

application of potentials between the inlet and outlet. For each applied potential 
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experiments were repeated three times to test reproducibility. For each trial a single 

nominal temperature value was calculated by averaging the temperature from the entire 

channel within the image. The average temperature values from three trials were plotted 

as a function of duration of potential application.  

Temperature Calibration. To determine the correlation between the 

fluorescence intensities of RhB and the corresponding temperature change, the following 

experiments were performed for each temperature measurement methodology. For the in-

channel temperature measurement experiment (method A) fluorescent intensities at 

various temperatures were measured within a 1 cm diameter chamber for temperature 

calibration. A Ni-Cr alloy wire (Omega, CT, USA) was embedded inside of the PDMS 

surrounding the chamber to control the temperature by resistance heating. A solution 

containing 10 µg/mL RhB dissolved in pH 8 phosphate buffer with a conductivity of 

100 µS/cm was freshly prepared and filtered through a 0.22 µm syringe filter prior to use. 

The PDMS chamber containing 1 mL of this buffer was heated by supplying current 

through the resistive wire. The temperature change was monitored using a K-type 

thermocouple probe (Omega, CT, USA) in specific increments. For each increment 

fluorescence intensity was recorded after a constant temperature was reached. 

For the method employing the RhB saturated PDMS thin film (method B), the 

resistive heating wire was directly embedded onto the RhB doped PDMS thin film to 

control the PDMS surface temperature. The K-type thermocouple probe was attached 

onto the PDMS to assess the surface temperature. For both methods, images were 

acquired at various temperatures from room temperature up to ~ 90 ºC. For the 

calibration curve, fluorescent intensity measured at each temperature was normalized 
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with the intensity measured at room temperature. The resultant data sets (normalized 

intensity vs. temperature) were fitted with a third order polynomial, as was previously 

performed for temperature measurement with RhB (Ross et al., 2001). 

Detection and Data Analysis. RhB fluorescence intensity was recorded either in 

the microchannel (method A) or in a sandwiched thin PDMS layer underneath the 

microchannel (method B). For fluorescence microscopy imaging, an inverted microscope 

(IX 71, Olympus, USA) with a 40x objective (Olympus, USA), a mercury burner (U-

RFL-T, Olympus, USA), and an appropriate fluorescent filter set (Olympus, USA) 

containing a 531/40 nm exciter, 562 nm dichroic, and 593/40 nm emitter was used. 

Throughout the experiments, two neutral density filters of 12 and 25 % were used in 

order to reduce the excitation light from the source. In addition, sample exposure to the 

incoming light was controlled by using an automatic shutter (Prior scientific, MA, USA) 

in order to minimize photobleaching of the dye. Images were acquired at 10 ms/frame for 

the calibration experiments and 100 ms/frame for the measurement in the microfluidic 

devices using a CCD camera (Quantum 512 SC, Photometrics, USA) and Micro-Manager 

software (University of California, USA). Resultant images were analyzed with Image J 

software (version 1.43).  

 

RESULTS AND DISCUSSIONS 

The quantification of temperature changes in iDEP experiments is important, 

specifically for biological species such as cells and their organelle constituents or for 

iDEP with biomolecules. These biological entities could be degraded, altered, deactivated 

or form aggregates upon exposure to high electric fields and thereof arising temperature 
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increases. For small species, such as biomolecules, specifically proteins and organelles 

such as mitochondria, large potentials in the order of several hundred up to a few 

thousand Volts are typically applied in iDEP streaming and trapping. For example, 

numerical simulations performed previously by our group showed that the magnitude of 

the electric field in iDEP application can reach up to 10
6
 V/m and corresponding electric 

field gradients amount in as high as 10
17

 V
2
/m

3
 (Camacho-Alanis et al., 2012). 

A typical iDEP structure is schematically shown in Figure 7-1. In the past iDEP 

experiments were performed with biomolecules such as DNA (Gan, Chao, Camacho-

Alanis, & Ros, 2013) and proteins (Nakano et al., 2012, 2011) with similar structures and 

more recently studied the iDEP behavior of cell organelles such as mitochondria in 

similar devices. Figure 7-1b provides a top view of the iDEP regions where the DEP 

force acts on particles in the presence of inhomogeneous electric fields created by the 

triangular insulating posts.  

Figure 7-1c shows a snapshot of the iDEP trapping of semimembranosus muscle 

mitochondria under DC conditions in a triangular post device. These experiments were 

carried out at a medium pH of ~ 7.4 and 300 µS/cm conductivity (Luo, Abdallah, 

Wolken, Arriaga, & Ros, 2014). Mitochondria were fluorescently labeled with 

MitoTracker Green to enable the visualization under a fluorescence microscope. As 

shown in Figure 7-1c, we observed negative DEP of mitochondria under DC conditions 

with the application of 3000 V for a 1cm channel. The mitochondria showed three 

different modes of iDEP, related to wiggling in-between posts, trap hopping or iDEP 

trapping. Such effects could arise due to aggregates of mitochondria exhibiting different 

DEP properties than the single mitochondrion. The formation of aggregates might be 
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triggered by temperature increases under iDEP operation. In the following temperature 

changes are thus assessed related to DC iDEP applications. Experimental observations 

are compared with numerical simulations and two different methods are tested to measure 

temperature. 

 

Figure 7-1. Schematic of the iDEP device, the produced electric field distribution, and 

fluorescence microscopy image of mitochondria DEP. (a) Schematic of the iDEP 

microfluidic device (not to scale). Arrow represents the direction of applied electric field 

(E). Sizes shown are the actual device dimensions (without reservoirs for simplification) 

used for the experiments and applied to the numerical modeling. The dimensions are the 

following: L (device length) = 1 cm, W (device width) = 2 cm, Wc (channel width) =   

100 µm, Hc (channel depth) = 10 µm, Hglass (thickness of the bottom glass slide)= 150 µm 

for method A and 1 mm for method B, and HPDMS (thickness of the top PDMS wall)=   

0.5 mm. (b) Numerically simulated electric field distribution at 3000 V/cm inside of the 

channel where the insulating triangular posts are integrated to create an inhomogeneous 

electric field necessary for DEP.(c) The result of mitochondria DEP experiment, 

providing a fluorescence microscopy image of mitochondria obtained under DC 

conditions at 3000 V/cm. White dash lines indicate the edges of the channel and that of a 

row of posts, and the other rows of posts are indicated by triangles. Scale bar is 30 µm. 

As shown in the figure, mitochondria were either wiggling in-between adjacent rows of 

posts or trapped at the edges of posts, which could be caused by electroosmotic flow, 

electrophoretic force, and negative DEP force on mitochondria.  

 

Calibration of the Temperature Dependent Dye. The temperature dependent 

fluorescence of RhB dye was utilized to probe temperature within the iDEP device. RhB  

was selected since it is known to have a highly temperature dependent quantum yield in a 

wide temperature range (0 ~ 100 ºC), while it is insensitive to pH changes over a solution 

pH above 6 (Coppeta & Rogers, 1998). The latter point is important especially when 
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using low ionic strength buffers commonly used in iDEP applications since the buffers 

are susceptible to the pH change within the order of ~ 10 min under the application of 

large electric fields (Gencoglu et al., 2011). 

First, a calibration curve was constructed to determine the dependency of 

fluorescence intensity on temperature. As described in the Method section, two methods 

were examined: method A to measure temperature in a microfluidic channel and method 

B where temperature measurements were carried out with a thin PDMS film sandwiched 

between two glass slides slightly below the iDEP channel (see Figure 7-2). Therefore, 

each method required a separate temperature calibration. For method A, RhB was directly 

added to the working solution and its temperature dependent fluorescence intensity was 

measured in a large chamber (1 mL in volume) where the solution temperature was 

carefully controlled. For method B, a thin layer of PDMS was first spin coated on a glass 

slide and cured to form a thin film. Subsequently, the PDMS film was saturated with RhB 

dye by immersing it in 1 mM RhB dye solution. The calibration experiment for method B 

was performed by directly heating the thin PDMS film and measuring the fluorescence 

intensities at various temperatures. 

For both methods, the resulting fluorescence intensities measured at each 

temperature were normalized to 25 ºC and plotted as a function of temperature as shown 

in Figure 7-3. Square markers and triangular markers show the sets of data points 

obtained from method A and B, respectively. The resultant calibration curve is shown 

with corresponding polynomial fits for method A (blue) and B (red). I confirmed that the 

temperature dependent fluorescence occurs reversibly by performing the calibration 

experiment with increasing as well as decreasing temperature. Both calibration curves 
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were similar to the previously reported results by Ross et al. (Ross et al., 2001) for the in-

channel calibration curve and Samy et al. (Samy et al., 2008) for the thin-film calibration. 

 

Figure 7-2. Schematic representation of two methodologies employed to measure 

temperature in iDEP microfluidic devices. The 2D schematics correspond to the cross-

section view of the iDEP device shown in Figure 7-1 (not to scale). (a) In method A, the 

channel (dotted line) is filled with the RhB containing buffer (pink). (b) In method B, a 

thick and thin glass slide sandwich the RhB doped thin PDMS film located 150 µm 

below the channel. Channel is filled with the desired working buffer which does not 

contain RhB (light blue).  

 

 

Figure 7-3. Normalized fluorescence intensity plotted as a function of temperature to 

calibrate the temperature dependent fluorescence of RhB. Both sets of data obtained from 

method A (■) and B (▲) are fitted with a third polynomial as indicated in the graph. 
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The Choice of Buffer Additive for In-channel Temperature Measurements. 

Using the aforementioned calibration curves, the temperature change within our iDEP 

device due to Joule heating can be measured by monitoring the fluctuation of the 

fluorescence intensity. First, the in-channel temperature measurement was performed by 

adding RhB dye to the working buffer. Note that RhB is known to be incompatible with 

the hydrophobic PDMS surfaces on which RhB tends to get strongly adsorbed 

(Mukhopadhyay, 2007). Indeed, when using the unmodified PDMS an increase of the 

baseline fluorescence intensity was observed even without applying potential, which is 

translated to a temperature decline below room temperature. Since this is physically 

highly unlikely, this is assumed to be caused by RhB adsorption onto the PDMS surface. 

The amount of the adsorbed dye increases over time and the adsorption kinetics can vary 

depending on the conditions in the channel (e.g. temperature) (J. D. Wang, Douville, 

Takayama, & ElSayed, 2012). Therefore, the dye adsorption onto the PDMS surface is 

difficult to quantify and can consequently lead to false temperature reading. 

However, when adding the zwitterionic surfactant CHAPS, the RhB adsorption 

was greatly suppressed. For further testing, a series of dye adsorption experiments was 

performed using various CHAPS concentrations within a large PDMS chamber similar to 

the ones used for the calibration experiment. These experiments showed that the chemical 

modification of the PDMS surface via CHAPS dynamic coating above its critical micelle 

concentration (CMC) significantly suppresses the dye adsorption onto the PDMS (data 

not shown). Although it has been previously demonstrated that the chemical modification 

of PDMS reduces RhB adsorption (J. Kang et al., 2005; Roman et al., 2006), the use of 

CHAPS as a surface modification agent has not been reported to the best of our 
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knowledge. Using CHAPS as a surface modification agent has several advantages for 

iDEP applications. First, CHAPS is known to improve protein solubility in bioanalytical 

applications (Hjelmeland et al., 1983) and has already been used for iDEP applications as 

an additive to reduce protein aggregation (Nakano et al., 2011). Moreover, owing to the 

zwitterionic nature of CHAPS, addition of CHAPS does not significantly change the 

overall buffer conductivity. The latter point is important since relatively low conductivity 

buffers are commonly used for iDEP experiments and thus increasing buffer conductivity 

would lead to larger Joule heating effects (see below). 

In-channel Temperature Measurements (Method A). First, in-channel 

temperature measurements were performed by monitoring the fluorescence intensity 

fluctuation with addition of 25 mg/mL CHAPS and 10 µg/mL RhB in the same working 

buffer used for the mitochondria DEP experiment. Note that the severe photobleaching of 

the dye can lead to large intensity variations, thus sample exposure to the incoming light 

was minimized by using an automated shutter. Additionally, the extent of photobleaching 

was assessed prior to the temperature measurement experiments by acquiring an image 

sequence without applying a potential. Since the intensity fluctuations fall within the 

error obtained from the calibration measurements, I concluded that the contribution of 

photobleaching to the overall fluorescence intensity is negligible with this approach. 

Subsequently, the maximum potential used for the mitochondria DEP experiments 

(3000 V for a 1cm channel) was applied to study the maximum temperature rise within 

the channel. Figure 7-4 shows the temperature surface plot at time t after the initiation of 

the potential application. These four images at t = 22, 102, 222, and 322 s show the 

temperature evolution within the channel, revealing that the in-channel temperature 
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reaches the steady temperature of ~ 34 ºC in ~ 3 min since the amount of the generated 

heat in the system becomes equal to the dissipated heat to the surroundings. 

 

Figure 7-4. Temperature surface plot at various times after applying a DC potential of 

3000 V for a 1 cm channel. Temperature evolution within the iDEP channel reveals that 

the temperature does not exceed 34 °C. White lines indicate the edges of the channel and 

that of triangular insulating posts. The scale bar is 20 µm. 

 

 The temperature measurement was subsequently performed within the channel at 

a conductivity of 100 µS/cm and 1 mS/cm prepared with phosphate buffer. Since these 

two conductivities are in the range of commonly used iDEP buffers, it is worthwhile to 

exploit the temperature change with these conditions. Our iDEP device was filled with 

each conductivity buffer containing 25 mg/mL CHAPS and 10 µg/mL RhB and three 

different potentials (100 V, 1000 V, and 3000 V) were tested for a 1cm channel. Figure 

7-5a-b show the in-channel temperature plotted as a function of duration of potential 

application. In theory, larger Joule heating is expected by the enhanced current density 

due to the localized high electric fields between the tips of the triangular posts. However, 

the observed spatial temperature variation in the vicinity of the insulating post regions is 

less than the temperature resolution of 1 ºC estimated from the standard deviation of 
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residuals from the polynomial fit. Furthermore, as shown in Figure 7-5a, the temperature 

increases less than 5 ºC when using the 100 µS/cm conductivity buffer even with the 

application of the highest potential (3000 V). Significant temperature increase up to    

~70 ºC (Figure 7-5b) was observed only when using 1 mS/cm buffer with the highest 

potential of 3000 V. Figure 7-5a-b also show the temporal temperature transition, 

demonstrating that it takes longer to reach a steady state temperature for larger applied 

potentials. For example, in case of 3000 V with 1 mS/cm conductivity buffer, the 

temperature equilibrates at ~ 70 ºC after 150 sec of potential application, while it takes 

only 5 sec in the case of 1000 V with 1 mS/cm buffer. The small absolute temperature 

changes of ~ 2 ºC in the case of 100 µS/cm conditions are within the range of the 

experimental error (Figure 7-5a). The experimental method thus does not allow resolving 

the temporal temperature changes in this case. 



 

112 

 

Figure 7-5. Experimentally and numerically obtained temperature resulted from Joule 

heating inside of the iDEP channel, tested with various conductivities and applied 

potentials. (a-b) Experimentally measured temporal temperature variations using a 

phosphate buffer with conductivity of (a) 100 µS/cm (~0.6 mM) and (b) 1 mS/cm        

(~5 mM). Three different potentials were tested for each conductivity of 100 µS/cm 

(triangles) and 1 mS/cm (dots): 100 V (green), 1000 V (red), and 3000 V (blue) for a 1cm 

long channel. (c) Numerical simulation results showing the steady state temperatures as a 

function of applied potential for the buffer conductivity of 100 µS/cm (triangles) and       

1 mS/cm (dots). Inset shows the spatial temperature variations, revealing that the 

temperature variation is ~1.5 ºC within the channel. (d) Temporal temperature variations 

obtained numerically for 100 µS/cm (triangles) and 1 mS/cm (dots) when 3000 V is 

applied. 

 

To support the experimental results presented above, numerical simulations were 

performed to model the Joule heating inside of the channel. First, steady-state simulations 

were performed to study the temperature reached with each set of conductivities and 
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applied potentials. As shown in Figure 7-5c, the temperature rise is less than 5 ºC for all 

cases except when 3000 V is applied with 1 mS/cm conductivity where the temperature 

increases significantly up to ~90 ºC. The absolute temperature increase was in excellent 

agreement with the experimental results at 100 V and 1000 V, however deviated by about 

20 ºC for 3000 V applied at 1 mS/cm buffer conductivity. This discrepancy is attributed 

to the increase in RhB adsorption onto the PDMS at exceptionally high temperatures 

since adsorption kinetics is enhanced with increasing temperature. Additionally, the 

spatial temperature changes were investigated in the iDEP post regions. The temperature 

variation was negligible for the low conductivity and low applied potentials. The 

numerical simulation result with 1 mS/cm at 3000 V however shows that the highest 

temperature was obtained between the tips of the posts and the overall temperature varies 

spatially by ~ 1.5 °C (see inset of Figure 7-5c). This variation could not be detected in 

experiments, since the numerically obtained temperature variations fall within the 

experimental error. 

Subsequently, the temperature transitions during the potential application were 

investigated by performing time dependent simulations. Figure 7-5d provides the 

resultant temporal variations in temperature with the highest applied potential (3000 V) 

for 100 µS/cm and 1 mS/cm conductivity. The saturation temperature of ~ 90 ºC is higher 

than the experimentally obtained temperature of ~70 ºC (see Figure 7-5b), similar to the 

steady state case (Figure 7-5c). Again, this discrepancy with measured temperatures can 

be attributed to the enhanced RhB adsorption at elevated temperatures. Moreover, I found 

that the numerical simulation also depends strongly on the chosen heat transfer 

coefficient value (h), which in turn greatly depends on the surrounding environment (i.e. 
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air flow rate). Especially for larger temperatures, this factor can affect absolute 

temperature changes in the order of 10 ºC (See Appendix C 1). Nonetheless, we found 

that the kinetics of both experimental and simulation results are in agreement. In case of 

the low conductivity buffer, temperature equilibrates within a short period of time          

(< 20 s), while it takes much longer (~ 150 s) with the high conductivity buffer.  

Thin-PDMS Film Temperature Measurement (Method B). The temperature 

measurement in the iDEP device was performed by using the thin-PDMS film 

methodology exploited previously.(Samy et al., 2008) The experiment was performed 

using the 100 µS/cm and 1 mS/cm buffer. However, no RhB or CHAPS were added to 

these buffers. The change in fluorescence intensity was recorded for each applied 

potential (100 V, 1000 V, and 3000 V) and analyzed similarly to the previous in-channel 

experiment. The resulting temperature variations experimentally measured in the film 

located 150 µm below the channel reveal a large temperature rise up to ~ 49 °C only 

when using 1 mS/cm conductivity at 3000 V (see in Figure 7-6a-b). In contrast, the 

temperature increase is less than 2 °C for the lower potentials (100 and 1000 V) with 

1 mS/cm as well as all potentials tested with 100 µS/cm. 

 Next, the numerically obtained temperature transitions were also compared to the 

experimental results for method B. The temperature values were obtained 150 µm below 

the channel from the same numerical model as the in-channel cases however with a 

geometry adapted to the sandwich method. For simplicity, a 1.15 mm thick glass 

composite at the bottom of the channel was employed in the simulation domain instead of 

the sandwiched assembly. Figure 7-6c demonstrates the temporal temperature variation 

with 100 µS/cm and 1 mS/cm conductivity at 3000 V, revealing that the numerical model 
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resulted in slightly lower values than the experiments. The largest discrepancy between 

the experimentally measured and numerically obtained temperatures on the film was 

found with 1 mS/cm conductivity at 3000 V as the steady temperature of ~ 45 °C 

numerically, while ~ 49 °C experimentally. This small inconsistency between the 

experiment and simulation can be explained with deviations in the actual heat transfer 

coefficient value (see above) or from the simplified geometry used in the numerical 

simulation assuming a single thick glass layer (and not the glass/thin-PDMS sandwich). 

Despite the discrepancy, the numerical simulation generally captures the trend presented 

by experiments such as the time frame to reach the steady state temperature (~ 150 sec). 

Moreover, the same numerical model allows the estimation of in-channel temperatures 

which resulted in 3 ~ 4 °C higher than the temperature in the film (see Figure 7-6c).  

 

 

Figure 7-6. Experimentally and numerically obtained temperature resulted from Joule 

heating with various conductivities and applied potentials. Temperature was measured on 

thin PDMS film located ~150 µm below the iDEP channel. (a-b) Experimentally 

measured temporal temperature variations using a phosphate buffer with conductivity of 

(a) 100 µS/cm (~0.6 mM) and (b) 1 mS/cm (~5 mM). Three different potentials were 

tested for each conductivity: 100 V (green), 1000 V (red), and 3000 V (blue) for a 1cm 

long channel. (c) Temporal temperature variations obtained numerically for 100 µS/cm 

(triangles), 1 mS/cm on the film (filled circles), and in the channel (non-filled circles) 

when 3000 V is applied. 
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Comparison of the Two Approaches for Temperature Measurements. The 

two temperature measurement methods (method A and B) can be used complimentarily 

depending on the circumstances. Method A enables the direct temperature measurement 

within the iDEP channel. Moreover, the measurement of temporal and spatial variations 

is possible with this method. However, when employing the in-channel method, to 

circumvent the issue of RhB dye adsorption onto the PDMS surface, it is necessary to use 

an additional surfactant such as CHAPS as additive to buffers used for iDEP experiments. 

As seen in Figure 7-5a-b (method A) and Figure 7-6a-b (method B), larger errors are 

found using method A, which could be attributed to fluorescence intensity fluctuations 

due to largely reduced but still not entirely suppressed dye adsorption onto the PDMS 

even with the addition of CHAPS. Adsorption of RhB onto the PDMS surface increases 

the baseline fluorescence intensity, leading to underestimated temperature values as 

indicated by a comparison to the numerical simulations especially at exceptionally 

elevated temperatures. On the other hand, for method B the incompatibility issue of RhB 

and PDMS is overcome by physically separating RhB from the channel walls with a 

150 µm thick glass slide. Moreover, the thin film method could be used in parallel with 

the iDEP experiment when the set up allows detecting dual fluorescence from sample 

analytes and RhB dye even though the temperature can be only measured at 150 µm 

below the channel.  

As a result of the numerical simulations, the temperature increase was found to be 

marginal for all the conductivity and potential cases using both method A and B except 

when the highest potential of 3000 V was applied at 1 mS/cm conductivity. In this case, 

the temperature increased up to ~ 90 ºC with method A and ~ 45 ºC in the film located 
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150 µm below the channel with which the in-channel temperature can be estimated to be 

~49 ºC by numerical simulation. Experimentally, the results from both methods are in 

excellent agreement with the numerical simulation for potentials < 1000 V and low 

conductivity, showing marginal temperature increases. Only in the case of 3000 V at       

1 mS/cm conductivity the temperature changed significantly. In this case, method A 

resulted in the saturation temperature of ~ 70 ºC as obtained from experiments, whereas  

~ 49 ºC was measured using method B experimentally. Note both experimentally and 

numerically temperatures obtained by method A are higher than the temperature 

measured using method B. This might be caused by the difference in thickness of the 

bottom glass slides employed in the two methods (i.e. 150 µm in method A and 1 mm for 

method B). I assume that the heat dissipation is enhanced with the thicker glass slide 

(method B) with the conditions employed in the study, leading to the lower saturation 

temperature. Furthermore, the time to reach the steady state is similar for both methods. 

For example, the system takes ~ 150 s to reach the saturation temperature in the case of   

1 mS/cm at 3000 V using both methods (see Figure 7-5b and Figure 7-6b), indicating 

that the time scale to reach the steady state is similar for both within the channel and in 

the film. 

Additionally, the temperature change was assessed under the same conditions 

where mitochondria iDEP was performed. Our results demonstrated that the in-channel 

temperature does not exceed 34 ºC in iDEP experiments considering the application of an 

extreme potential as high as 3000 V. Thus, it is expected that the mitochondria viability is 

not significantly affected by Joule heating during iDEP experiments and thus viable 

mitochondria can be subsequently used for further analysis in other assays. Our work also 
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shows conditions under which degradation of biomolecules is little affected by 

temperature changes. 

 Apart from biomolecules and bioparticle degradation Joule heating can also create 

electrothermal flow interfering with DEP. In the past, numerical simulations were 

performed to assess the temperature change due to Joule heating in iDEP devices as well 

as to evaluate the effect of electrothermal flow on DEP (Hawkins & Kirby, 2010). 

Chaurey et al. numerically simulated the temperature change within a nano-constriction 

iDEP device and found that the temperature increased up to 43.4 ºC with application of 

350 V/cm field at the 100 nm constrictions using 1 S/m conductivity buffer (Chaurey et 

al., 2013). In another example, Sridharan et al. reported 52 ºC temperature enhancements 

with 470 µS/cm conductivity buffer with 600 V/cm (Xuan, 2008). A larger temperature 

increase of 71 ºC was reported by Gallo-Villanueva et al. at conductivity of 100 µS/cm 

under an application of 750 V/cm in an iDEP device (Gallo-Villanueva et al., 2014). 

As demonstrated in these examples, the degree of Joule heating mainly depends 

on the buffer conductivity, applied potential, device dimension, insulating structure 

geometries, and the microchannel material. Our experimental temperature measurements 

fall in the range of these previously reported theoretical studies. The direct comparison of 

temperature measurements with the numerical simulations as presented in this study 

shows excellent agreement for all cases and is still reasonable for 1 mS/cm and the 

largest applied potential. I thus postulate that the presented approach is robust and can be 

used for a variety of iDEP applications in the future. 
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SECTION CONCLUSIONS 

In this study, the temperature change was experimentally quantified in iDEP 

devices, which occurs due to Joule heating upon application of high electrical potentials. 

For an assessment of the arising temperature variations, the thermosensitive optical 

property of RhB was utilized by monitoring its temperature dependent fluorescence 

intensities. Two measurement methods were applied and evaluated experimentally: 

directly in the microfluidic channel and slightly below in a thin film. With the former 

method, in-channel temperature measurement becomes possible in iDEP devices with 

temporal and spatial resolution with the addition of the surfactant such as CHAPS used in 

this study to prevent RhB adsorption onto the PDMS surface. With this in-channel 

method the incompatibility issue of RhB and PDMS is greatly reduced and the 

experimental results showed excellent agreement with the numerical simulations. Only at 

larger conductivity (1 mS/cm) and applied potential (3000 V) the experimental results 

start deviating from the numerical models. The second method employing thin RhB 

saturated PDMS film underneath the microchannel showed similar temporal trends than 

the in-channel methods, however absolute temperature changes were smaller both 

experimentally and numerically. The thicker glass layer is thus advantageous to reduce 

temperature increases due to Joule heating in iDEP devices under the conditions 

employed in our protein and mitochondria iDEP studies. Moreover, this method will 

allow for elegant iDEP studies with fluorescent analytes, while observing temperature 

changes with adequate fluorescence optics simultaneously. 

 The two temperature measurement methods investigated in this work are easy to 

implement in iDEP microfluidic devices and complimentary. In summary, our study 
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provides useful guidelines for experimental temperature determination in iDEP devices 

which allows assessing Joule heating effects in future iDEP applications but also provides 

suitable numerical methods to estimate these changes prior to iDEP experiments with 

precious biological samples.  
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CHAPTER 8 

SUMMARY AND CONCLUSIONS  

In summary, successful iDEP-based manipulations of proteins was demonstrated 

with different geometries in a PDMS-based microfluidic system. Our iDEP device design 

ranges from devices with various geometries of topological micropost array for which the 

fabrication processes only require equipment for standard photo- and soft lithography, to 

the nano-constriction devices for which the implementation of FIBM as an additional step 

is required. In the case of micropost array devices, positive DEP behavior was 

demonstrated using diagnostically relevant IgG and BSA proteins resulting in locally 

concentrated streamlines, which were confirmed theoretically by performing numerical 

simulations. Both numerical simulation and the experiments show excellent qualitative 

agreement. Moreover, this work demonstrates that protein aggregation readily occurs 

using low conductivity phosphate buffers without the use of additives. These protein 

aggregates exhibit a different behavior (i.e. DEP trapping) as opposed to individual 

proteins in presence of a surfactant, CHAPS. Our results indicate the potential for 

manipulation of biomolecules with molecular dimension smaller than 10 nm, thus 

highlighting the ability to manipulate proteins using DEP. Specifically, streaming DEP 

demonstrated the ability to concentrate proteins within a microfluidic device, thus 

providing an exciting new tool for protein analysis devices in microfluidic format. 

Furthermore, a detailed investigation of factors influencing DEP of IgG molecules 

was demonstrate using insulator-based DEP under DC conditions. The pH range in which 

concentration of IgG due to streaming iDEP occurs without aggregate formation was 

found to match the pH range suitable for immunoreactions (pH 6 ~ 8). Numerical 
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simulations of the electrokinetic factors pertaining to DEP streaming in this range further 

suggested that the protein charge and electroosmotic flow significantly influence iDEP 

streaming. These predictions are in accordance with the experimentally observed pH-

dependent iDEP streaming profiles as well as the determined IgG molecular properties. 

Moreover, a transition in the streaming behavior caused by a change from positive to 

negative DEP was observed. This transition is expected to occur through micelle 

formation and the experimentally observed protein concentration showed excellent 

qualitative agreement with numerical simulations. Our study thus relates molecular 

immunoglobulin properties to observed iDEP, which will be useful for the future 

development of protein pre-concentration or separation methods based on DEP. 

 Another factor which can influence protein iDEP is temperature rise in iDEP 

devices due to Joule heating. In this regard, the temperature change in iDEP devices was 

experimentally quantified for the first time to the best of our knowledge. For an 

assessment of the arising temperature variations occurring due to Joule heating upon 

application of high electrical potentials, the thermosensitive optical property of RhB was 

utilized by monitoring its temperature dependent fluorescence intensities. Two 

measurement methods were applied and evaluated experimentally: directly in the 

microfluidic channel and slightly below in a thin film. With the former method, in-

channel temperature measurement becomes possible in iDEP devices with temporal and 

spatial resolution with the addition of the surfactant such as CHAPS used in this study to 

prevent RhB adsorption onto the PDMS surface. With this in-channel method the 

incompatibility issue of RhB and PDMS is greatly reduced and the experimental results 

showed excellent agreement with the numerical simulations. Only at larger conductivity 
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(1 mS/cm) and applied potential (3000 V) the experimental results start deviating from 

the numerical models. The second method employing thin RhB saturated PDMS film 

underneath the microchannel showed similar temporal trends than the in-channel 

methods, however absolute temperature changes were smaller both experimentally and 

numerically. The thicker glass layer is thus advantageous to reduce temperature increases 

due to Joule heating in iDEP devices under the conditions employed in our protein and 

mitochondria iDEP studies. Moreover, this method will allow for elegant iDEP studies 

with fluorescent analytes, while observing temperature changes with adequate 

fluorescence optics simultaneously. 

 The two temperature measurement methods investigated in this work are easy to 

implement in iDEP microfluidic devices and complimentary. Thus, our study provides 

useful guidelines for experimental temperature determination in iDEP devices which 

allows assessing Joule heating effects in future iDEP applications but also provides 

suitable numerical methods to estimate these changes prior to iDEP experiments with 

precious biological samples.  

For iDEP using the nano-constriction devices, the enhancement of this iDEP 

concentration was observed by further optimization of the device geometry. Numerical 

simulation suggests significant increase of     as high as 10
19

 V
2
/m

3
. With the improved 

iDEP device,     was enhanced by two orders of magnitude from the previous micropost 

array devices. With these devices, DEP experiments were performed with two proteins, 

IgG and β-galactosidase and positive DEP of IgG was observed with 12-fold 

concentration enhancement, while negative DEP for β-galactosidase. Additionally, 

observation of a unique voltage dependent protein concentration suggested the possibility 
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of ion concentration polarization occurring at the nano-constrictions. Furthermore, the 

comparison of numerical simulation to the experimental results suggested that the DEP 

force calculated using the conventional DEP theory expressed with equation (1. 6) and (3. 

1) might underestimate the actual DEP force acting on the proteins. Indeed the past work 

on nanoparticles with think EDL reported the significantly larger DEP force than 

estimated by the classical theory. One of the causes of such DEP force enhancement is 

the electrophoretic motion of the particle which modifies the ion distribution around it 

and changes the induced dipole moment (Zhao & Bau, 2009; Zhao, 2011a). Our study 

estimated the DEP force using the classical DEP theory to be 20 ~ 40 fN for IgG and     

β-galactosidase, respectively, however the nanoparticle DEP reported in the past as well 

as our numerical simulations indicates that the DEP force acting on the protein might be 

underestimated.  

 

FUTURE WORK  

Microfluidic iDEP Device Improvement. The critical step in the microfluidic 

device design consists in the implementation of DEP traps for proteins. We aim for 

improved microfluidic device designs which can increase DEP force acting on proteins 

for separations by a) pre-concentration and b) the specific removal of molecular species 

but the protein of interest. For proteins with size of several nanometers, a significantly 

high field gradient has to be created by improving the device design such as via the use of 

FIBM presented in our work. However, FIBM requires long milling time to create 

multiple holes extending throughout the length of the entire channel, which might not be 

best suited for our ultimate purpose of protein separation requiring long post arrays 
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extended to a few cm long. Therefore, two layer designs (such as shown in Figure 8-1) 

that can be fabricated within a short time with only standard optical lithography setting 

are more ideal. Various device designs can be tested by numerical simulations to predict 

the generated electric field gradients. Such devices are expected to result in pre-

concentration factors as high as presented with a nano-constriction device in this work. 

This method may find use in the purification of other low abundant species in serum and 

has further high significance to proteome studies, as the pre-concentration can be 

performed in gel-free solution. 

 

Figure 8-1. Schematic representation providing a side view of a two-layer iDEP device  

which can be fabricated using only standard photo- and soft lithographic techniques. 

 

Extension of Protein iDEP Studies to Biomarker Separations. Ultimately, our 

plan is to explore Aβ oligomer separation in our microfluidic DEP device. Evidence 

points towards a key role of soluble Aβ oligomer species in Alzheimer’s disease 

(Roychaudhuri, Yang, Hoshi, & Teplow, 2009; Walsh & Selkoe, 2007). However, a 

systematic investigation of the cytotoxicity of Aβ oligomers is hampered by the lack of 

reliable experimental techniques which are able to separate these species. Factors 

influencing the Aβ oligomer separation are the long time necessary for traditional 
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separation (low molecular weight species may already have built up high molecular 

weight species) and the interfering interaction with the separation medium. Investigation 

of Aβ oligomeric species is proposed by ultra-fast separations using our iDEP devices in 

the order of a few minutes and separate oligomers from monomers as well as Aβ 

oligomeric aggregates. Investigation can be performed using the synthetic Aβ wild-type 

with a fluorescent marker at the N-terminus. It has previously been shown that oligomer 

formation is still induced in the end-labeled Aβ (Sengupta et al., 2003) and the amyloid 

peptide α-synuclein (Thirunavukkuarasu, Jares-Erijman, & Jovin, 2008), giving this end-

labeling method a clear preference to cumbersome post-column labeling strategies for the 

native peptide. Our preliminary study shows that the different sized Aβ species can be 

prepared using the commercially available Aβ 1-42 monomers (see Appendix D 1). Our 

goal is to attach different Aβ species such as monomers, oligomers, and aggregates to 

specific anti-amyloid antibodies which are fluorescently labeled for detection. Another 

important example of amyloidogenic monomeric precursor protein is lysozyme of which 

oligomeric species are known for its toxicity to cells which leads to  cell dysfunction or 

eventual death (Frare et al., 2009; Hill, Miti, Richmond, & Muschol, 2011). In his regard, 

our preliminary study demonstrates the formation of lysozyme oligomers (see Appendix 

D 2). Investigation of these lysozyme species are also of our interest. Therefore, these 

amyloidogenic species exhibiting the different dielectric properties in solutions are then 

separated with our DEP microfluidic device.  
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Appendix A 1: Theoretical DEP models for a prolate and oblate ellipsoid. 

For IgG estimating the prolate ellipsoidal shape with its dimension of a = 5 nm,   

b = c = 2.5 nm (Sandin et al., 2004), Z is calculated as (Clarke et al., 2007; Morgan & 

Green, 1997):  
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)    ]  (A 1) 

where e corresponds to eccentricity given as: 
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Additionally, the mean translational coefficient   ̅ is given as:  

  ̅    ⁄   (A 3) 

For a prolate ellipsoid, S amounts in (Probstein, 2003): 
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 For an oblate ellipsoidal particle, such as β-galactosidase with the dimension 

approximated as 4.5 × 4.5 × 8 nm  from the crystallography data (Jacobson et al., 1994), 

Z is calculated as:  
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where   
 

 
 and       .  

In the case of oblate ellipsoid, S is given as: 
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Using equation (A 3) and (A 4),  ̅ = 3.29 × 10
-9

 m for IgG. Similarly,  ̅ = 6.8 × 10
-9

 m 

can be obtained for β-galactosidase using equation (A 3) and (A 6).  
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Appendix B 1: Definition of Trapping Condition. 

In a trapping DEP flow, the particle motions are strongly governed by DEP, and 

the direction of the flux is perpendicular to the electric field E (     ) (Baylon-

Cardiel, Lapizco-Encinas, Reyes-Betanzo, Chávez-Santoscoy, & Martínez-Chapa, 2009b; 

R. Davalos et al., 2008; Kwon, Maeng, Chun, & Song, 2008b). Using equation (3. 7) 

from the main manuscript while neglecting the diffusion term, one can write: 

    (        ) (B 1) 

Arranging equation (B 1), we arrive at: 

  
      

 

    
 
      (B 2) 

Equation (B 2) allows us to determine the trapping condition. DEP dominates 

over the electrokinetic term when equation (B 2) is greater than 1. For values smaller than 

one electrokinesis dominates. Hence, trapping does not occur and streaming DEP is 

observed. In Figure B-1, the results from equation (B 2) computed with COMSOL 

Multiphysics are presented with an applied potential of 4200 V in a 1cm long channel. 

The mobilities for both cases were dep = 8.6 × 10
-24

 m
4
/V

2
s and ek = 1.5 × 10

-8
 m

2
/Vs. I 

thus conclude that the trapping condition is not satisfied for this device because all values 

are in the order of 1 × 10
-4

 or smaller. Therefore, streaming behavior is expected to occur 

for proteins in this iDEP device. Note that streaming DEP is indeed observed in the here 

presented device experimentally. Thus, a possible cause for experimentally observed 

trapping in devices with similar or even larger post distances could originate from 

aggregate formation, as for example reported by Lapizco-Encinas et al.(Lapizco-Encinas, 
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Ozuna-Chacón, & Rito-Palomares, 2008b) With IgG, this is the case at pH ranges below 

6 and above 8 in the here presented triangular post array (see main manuscript). 

 

Figure B-1. Plotting the trapping condition (equation (B 2)) using COMSOL for proteins 

in the triangular structure as employed in the main manuscript. The applied potential is 

4200 V in a 1cm long channel, dep of 8.6 × 10
-24

 m
4
/V

2
s and ek of 1.5 × 10

-8
 m

2
/Vs. 

 

Appendix B 2: Isoelectric focusing. 

To investigate the isoelectric point of IgG used for DEP experiments, isoelectric 

focusing (IEF) was performed as reported earlier(Chao, Kalinowski, Nyalwidhe, & 

Hansmeier, 2010) with slight modifications. In short, protein samples were first desalted 

using centrifugal filters (Amicon Ultra-0.5 Ultracel-50 Membrane 50 kDa, Millipore, 

MA, USA). Subsequently, 100 µL of 2 mg/mL IgG protein (Invitrogen, Carlsbad, CA, 

USA) with or without 3 µL of IEF protein standard (Bio-Rad, Hercules ,CA, USA) were 

suspended in 350 µL rehydration buffer composed of 50 % glycerol and 2 % w/v 

CHAPS. The protein solution was loaded on IPG strips (Bio-rad, Hercules , CA, USA) of 

24 cm length and linear pH gradient of 3 ~ 10 by means of passive rehydration. Protein 

was focused using a Protein IEF cell (Bio-rad) at 20 °C using a rapid ramp up to 8000 V 
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continuing until 80 kVh were reached. After IEF, the strips were fixed for 2 ~ 3 hours in 

a fixation solution composed of 10 % acetic acid, 40 % ethanol and water. Scanning of 

strips was performed with a scanner (Scanmaker i800, Microtek, CA, USA). 

Figure B-2a-b shows the IPG strips for a) IEF protein standard of pI range        

4.45 ~ 9.6 (Bio-rad, CA, USA) and b) the polyclonal Alexa488-labelled IgG, 

respectively. Numbers denote (1) phycocyanin with pI 4.45, 4.65 and 4.7, (2) myoglobin 

with pI 6.8 and 7 and (3) cytochrome C with pI 9.6 are naturally colored, thus they can be 

visualized without staining (see Figure B-2a), while for the strips with Alexa488-IgG a 

broad, yellow band is observed (Figure B-2b). The pI range is expected to be broad due 

to the polyclonal origin of IgG as well as glycosylation. Upon comparison of two strips 

the pI of Alexa488-IgG was found to be below 5.  

 Figure B-2. IEF of protein standard and polyclonal IgG protein. (a) The IPG strip 

contains IEF isoelectric point (pI) protein standards: (1) phycocyanin (pI 4.45, 4.65, 

4.75), (2) myoglobin (6.8, 7.0) and (3) cytochrome c (9.6). (b) The IPG strip of 

fluorescently labeled Alexa488-IgG. 

 

Appendix B 3: Dynamic light scattering (DLS). 

Dynamic light scattering (DLS) was employed in order to investigate F108 

micelle formation above the critical micelle concentration (CMC) in relation to the 

negative DEP behavior observed under F108 dynamic coating condition. DLS 

measurement was performed using a DynaPro NanoStar instrument (Wyatt Technology 

Corp. Santa Barbara, CA, USA). Data collection and analysis were performed with the 

instrument’s software DYNAMICS. For sample preparation, all buffers were filtered with 

a 20 nm filter with IgG protein.  
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The temperature dependent micellation of F108 was studied with a 3.3 nM IgG 

sample diluted with pH 8 phosphate buffer containing 3 mM F108 and 1.6 mM CHAPS. 

Figure B-3a shows that the light scattering intensity increases drastically above 25 °C, 

indicating the formation of larger species at this temperature presumably arising from 

F108 micelle formation. The size distribution in Figure B-3b at temperatures below and 

above the critical micelle concentration clearly indicates the formation of large species at 

elevated temperature. The observed size of this species (~ 9.7 nm) in our experiment is in 

excellent agreement with the previously reported value of ~ 10 nm for F108 micelles by 

Alexandridis et al..(Alexandridis, Nivaggioli, & Hatton, 1995) I thus conclude that F108 

micelles are present at iDEP conditions used in our study (see main manuscript). 

  

Figure B-3. Results of DLS study: (a) scattering light intensity plotted as a function of 

temperature from 20 °C to 50 °C. The abrupt increase in light scattering intensity at 30 °C 

indicates the formation of F108 micelles. (b) radius distribution in terms of % intensity 

for a 3 mM F108 containing 3.3 nM Alexa488-IgG sample and 1.6 mM CHAPS.  
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Appendix C 1: Influence of heat transfer coefficient on temperature.   

This supplemental information demonstrates the influence of the variation of heat 

transfer coefficient (h) value on the resultant temperature in the iDEP device via 

numerical modeling.  

To numerically model temperate distribution in the iDEP device, numerical 

simulations were performed as described in the Method section of the main manuscript. 

Upon solving the model, the condition of the outer surface of the device was set as a 

natural convection heat transfer with surrounding air for which the value of 

10 ~ 20 W/m
2
 s can be reasonably employed. However, instead of h = 20 W/m

2
 s (results 

shown in the main text), h = 30 W/m
2
 s was herein employed to investigate the influence 

of variation of h on temperature.  

Figure C-1a shows the temporal temperature variations simulated numerically 

using the domain employed in method A for each buffer conductivity (100 µS/cm and 

1 mS/cm), revealing that the saturation temperature resulted in lower value than the 

temperature simulated using h = 20 W/m
2
 s. Especially in the case of 1 mS/cm at 

3000 V/cm, the saturation temperature declined by 18 ºC (90 ºC with h = 20 as shown in 

the main manuscript).  

In Figure C-1b, the temporal temperature variations were numerically calculated 

for method B where temperature value was obtained 150 µm below the channel. Similar 

to the previous temperature variations in method A, the overall temperature values 

decreased compared to the temperature at h = 20. Specifically in the case of 1 mS/cm at 

3000 V/cm, the saturation temperature resulted in ~ 39 ºC in contrast to ~ 45 ºC obtained 

employing h = 20.  
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Figure C-1. (a) Temporal temperature variations obtained numerically in method A for 

100 µS/cm (triangles) and 1 mS/cm (dots) when 3000 V is applied. (b) Temporal 

temperature variations obtained numerically in method B for 100 µS/cm (triangles), 

1 mS/cm on the film (filled circles), and in the channel (non-filled circles) when 3000 V 

is applied. 
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Appendix D 1: Preparation of Aβ monomers and oligomers  

Aβ peptides 1-42 (American peptide company, Sunnyvale CA, USA) are very 

hydrophobic and will almost immediately aggregate in water-soluble buffers. This 

preparation will retard the rate of aggregation. 

The received Aβ peptides were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP) (100%) at a peptide concentration of 1 mM to avoid forming aggregates. HFIP 

breaks hydrogen-bond used to eliminate pre-existing structural inhomogeneities in the 

received Aβ peptides. Subsequently, Aβ peptides were sonicated at a water bath at 37 ºC 

for 1.5 hours to completely solubilize them, separated in aliquots of 100 µL each, dried 

under vacuum overnight, and stored at ~ 20 ºC until future use (Liu, Barkhordarian, 

Emadi, Park, & Sierks, 2005). For monomer preparation, Aβ peptides were prepared 

immediately before used to minimize potential aggregation. First, Aβ peptides were 

resuspended in DMSO to 5 mM concentration, briefly vortexed, and sonicated for 5 min 

at room temperature. Subsequently, Aβ peptides were further diluted to 50 µg/mL 

(11 µM) concentration in 1x PBS (Ryan, Narrow, Federoff, & Bowers, 2010), vortexed 

for 15 sec, and used immediately. For oligomer preparation, Aβ peptides were first 

resuspended in DMSO to 5 mM concentration, briefly vortexed, sonicated in a water bath 

for 5 mins, and filtered through a sterile 0.22 µm filter. Aβ peptides/DMSO solution were 

mixed slowly with cold PBS (pH 7.4) and 0.05 % SDS to 100 µM (Ryan et al., 2010). In 

the mixture sonicated for 10 min at room temperature, aggregation was allowed to 

proceed for 24 hours at 4 ºC. Finally, the peptide solution was further diluted with PBS to 

50 µg/mL and incubated for 2 weeks at 4 ºC to facilitate higher order aggregation.  
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The resultant Aβ species were imaged via atomic force microscopy with 

intermittent contact mode with a MFP-3D BIO (Asylum Research, Goleta, CA, USA) 

which confirmed the formation of Aβ species (see Figure D-1). The size of resultant Aβ 

species ranges widely, including 4 ~ 7 nm height and ~ 30 nm lateral dimension, ones of 

6 ~ 8 nm height and ~ 50 nm lateral dimensions, and larger species of > 15 nm height. 

The smallest observed size is similar to the reported dimension of the high MW Aβ 

oligomers, while the 6 ~ 8 nm height and ~ 50 nm lateral dimensions are close to the size 

of protofibrils (Mastrangelo et al., 2006; Stine, Dahlgren, Krafft, & LaDu, 2003). Note 

the small species such as monomers are difficult to be observed with our AFM due to the 

external noise.  

 

Figure D-1. Atomic force microscopy image of prepared Aβ species with 100 nM peptide 

concentration. 
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Appendix D 2: Preparation of lysozyme oligomers  

Lysozyme (Sigma-Aldrich, St. Louis, MO, USA) was originally dissolved in a 

buffer of 25 mM sodium acetate pH 4.5 in 50 % glycerol. Therefore, the buffer was 

exchanged to a buffer containing 20 mM HEPES and 40 mM NaCl at pH 7 using a 3 kDa 

centrifugal filter (Amicon Ultra-0.5 Ultracel-50 Membrane, Millipore, MA, USA). After 

the buffer exchange, the solution was placed in a water bath at 70 º C. After 22 hours of 

incubation, size distribution of lysozyme was determined by AFM (see Figure D-2), 

revealing the presence of species (4 ~ 5 nm height, ~ 10 nm lateral dimension) matching 

with the size previously reported for lysozyme oligomers (Frare et al., 2009; Hill et al., 

2011). 

 

Figure D 2. Atomic force microscopy image of lysozyme with 150 nM concentration.  
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