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ABSTRACT   

Access control is necessary for information assurance in many of today's 

applications such as banking and electronic health record. Access control breaches are 

critical security problems that can result from unintended and improper implementation 

of security policies. Security testing can help identify security vulnerabilities early and 

avoid unexpected expensive cost in handling breaches for security architects and security 

engineers. The process of security testing which involves creating tests that effectively 

examine vulnerabilities is a challenging task.  

Role-Based Access Control (RBAC) has been widely adopted to support fine-

grained access control. However, in practice, due to its complexity including role 

management, role hierarchy with hundreds of roles, and their associated privileges and 

users, systematically testing RBAC systems is crucial to ensure the security in various 

domains ranging from cyber-infrastructure to mission-critical applications.  

In this thesis, we introduce i) a security testing technique for RBAC systems 

considering the principle of maximum privileges, the structure of the role hierarchy, and 

a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision 

Diagram) based representation of RBAC security policy including RHMTBDD (Role 

Hierarchy MTBDD) to efficiently generate effective positive and negative security test 

cases; and iii)  a security testing framework which takes an XACML-based RBAC 

security policy as an input, parses it into a RHMTBDD representation and then generates 

positive and negative test cases. We also demonstrate the efficacy of our approach 

through case studies.  
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CHAPTER 1 

      INTRODUCTION 

 

As technology is getting more and more sophisticated and connected, security is 

becoming an increasingly greater concern. Cyber systems in almost every domain 

including commercial, medical, and entertainment need to overcome adverse activities 

from various malicious entities.  Security policy is defined to accommodate the security 

needs for a system or an infrastructure. Security policy specifies security properties 

needed to be satisfied for a system. Traditional security properties include confidentiality, 

integrity, and availability (CIA) properties as well as usage property [1]. For example, a 

simple security property to ensure confidentiality could be that no senior-level person can 

write to a junior-level resource and no junior-level person can read a senior-level 

resource [1]. Such and more complex security properties can be specified using security 

policy languages such as XACML [2]. In addition, policy management is one of 

important security mechanisms to check the assurance of the specified security policies 

and enforce those policies. 

Several security mechanisms such as biometrics and crypto primitives have been 

developed to accomplish the required security properties [1]. Access control mechanisms 

are essential to accomplish many of the security properties including confidentiality. Two 

basic access control models are: discretionary access control (DAC) and mandatory 

access control (MAC) [1]. DAC based mechanism have been used in various operating 

systems and data bases systems but it is hard to manage since this mechanism is based on 

users’ complex intentions, whereas MAC based mechanisms are very common in the 
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military domain which is not applicable to most computing environments. To address 

inherent limitations in both the mechanisms, another access control model called Role 

based access control (RBAC) [3] was introduced and has become popular since 1) it is 

better aligned with how businesses operate – people are assigned various roles with 

specific privileges in the companies’ appropriate hierarchy and restrictions are put in 

place such as separation of duty (SoD) so that no single person can be over-privileged to 

make any severe harm to the company; and  2) the generality of RBAC can help enforce 

both DAC and MAC based mechanisms [3]. However, its flexibility can be problematic 

in ensuring access control requirements especially for large-scale companies with 

complex, and dynamic role hierarchies and constraints. Hence, automatic testing 

techniques are tremendously needed to ensure that the “implemented” RBAC is 

consistent with the “specified” RBAC. 

Even though security policy may be embedded correctly in the application, 

implementation of the policy may be affected by other factors such as compilers, 

conversions and platforms [4]. Critical consequences arise due to existing security 

vulnerabilities in the system and those vulnerabilities may also be caused by improper 

reuse of software modules such as Application Programming Interface (API) [5]. In 

general, security vulnerabilities are the weaknesses in the system. Often proper 

functioning of codes being tested relies on implicit assumptions such as appropriate use 

of the APIs and correct reuse of the existing software. These assumptions can lead to 

security vulnerabilities, when the code is reused in different contexts. When these 

security vulnerabilities get exploited or exposed, security violations may occur. These 
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violations may cause denial of service, loss of privacy, or even loss of life. Hence, these 

factors necessitate proper testing of the implemented security policy. 

There are four kind of security testing techniques depending upon the type of 

security vulnerabilities or insecurities [6], [7] (classified by their cause) they intend to 

expose, namely i) dependencies, ii) unanticipated user input, iii) design vulnerabilities, 

and iv) implementation vulnerabilities.  Insecurities caused by dependencies happen due 

to use of third party libraries and other interfaces.  Unanticipated user input can be caused 

by an undesirable insertion of input. A technique to expose design vulnerabilities is an 

example of inserting of interfaces in the application in order to perform testing. And, 

implementation vulnerabilities may be useful in determining insecurities such as the man-

in-the-middle attack [8] which is not considered in the application.  

In the context of security, a formal verification technique verifies security policy 

against the security properties whereas a formal validation technique validates the design 

and implementation of the policy [4]. Formal validation can be performed by applying 

test cases which could be of two types: positive and negative. The positive test cases 

correspond to authorization states which are allowed by the access control policy and the 

negative test cases correspond to authorization states which are not allowed by the access 

control policy [4]. Positive test cases basically test legitimacy, whereas the negative test 

cases test for security vulnerabilities e.g. unauthorized access to sensitive resources.  

Analyzing and managing security breaches can be expensive from various 

aspects. Nevertheless, security testing is inevitable. Furthermore, given the dynamic 

nature of RBAC access control, manual testing can be time consuming and tedious; and, 
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may not be even sufficient. Hence, developing automatic techniques for generating 

positive and negative test cases is very crucial.  

 Approach    1.1

In this thesis, we develop a technique for creating positive test as well as negative 

test cases for the correct enforcement of an access control policy based on an RBAC 

model. One of the incentives for adopting an RBAC model is to prevent Privilege 

Escalation. This can also happen during the implementation of the code. Privilege 

escalation occurs when a user or an application is allowed to perform an unauthorized 

action. For example, a user application may access kernel level codes in an operating 

system and a teller may perform an unauthorized action in the bank application so that it 

can lead to security violations in the system.   

There exists a family of RBAC models [9].  RBAC0 is the most basic model and it 

defines “roles” to be groupings of “privileges”; “users” can be “authorized” to multiple 

roles and could exercise only privileges associated with authorized roles that users have 

activated. More complex features such as role hierarchy and constraints are part of 

RBAC1 (Hierarchical RBAC) and RBAC2 (Constrained RBAC), respectively. Role 

hierarchy allows roles to be organized as a Directed Acyclic Graph (DAG) [10] which 

specifies “senior” roles can inherit privileges of “junior” roles. In essence, each role is 

associated with its own “unique” privileges as well as those inherited from roles in the 

role hierarchy. The most general model RBAC3 has all the aforementioned features. In 

this thesis, we first introduce a way to systematically test RBAC policies. Formally, we 

define the security goal for RBAC model and clarify how the positive and negative test 
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cases help fulfill the security goal. Further, we define the semantics of positive and 

negative test cases with respect to role hierarchy.  

In RBAC, a user can be simultaneously authorized to several roles and has the 

option of activating any subset of roles in a session. We espouse the principle of 

Maximum Privilege (as opposed to the principle of Least Privilege used in authorizing 

roles [1]) in order to reduce the number of testing scenarios. The rationale is that the 

potential to “harm” increases monotonically with the increased number of privileges. 

Hence, we generate tests under the assumption that each user activates all the roles 

simultaneously. Further, the reduction of test case is considered by avoiding generating 

duplicate test cases when the subDAG rooted at two authorized roles for a user overlaps. 

This leads to the following benefits for generating test cases: 1) positive test cases are 

generated only for a subset of senior-most non-dominating roles from the set of 

authorized roles, and 2) negative test cases are generated from the role hierarchy obtained 

by deleting the subDAGs rooted at these roles.  

Despite the above two optimizations there could be numerous test cases 

generated. Further, many of these test cases may not be necessary from the security 

testing perspective. For instance, if it is established that a user cannot obtain privileges 

associated with a given role then it may be futile to generate negative tests with respect to 

roles that is senior to this role. With this insight, we define a new coverage criterion for 

negative test cases: generate test cases with respect to the (mutually non-dominating) 

roles which are at most k “fronts” from the subDAG of the role associated with a user. A 

front is a set of roles that is at the “same distance” from a given role node in the role 
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hierarchy which is obtained by deleting the role’s subDAG from the entire role hierarchy. 

The parameter k could be adjusted to control the number of negative tests to be generated 

(and correspondingly the level of security assurance desired).  

RBAC is said to be policy neutral [3]. In other words, other security policies can 

be specified and enforced in conjunction with RBAC. Previously, Multi Terminal Binary 

Decision Diagram (MTBDD) based representation has been proposed to express complex 

security policies [11]. A policy represented in MTBDD is called PMTBDD (Policy in 

MTBDD). MTBDD corresponding to two different policies can be combined to obtain a 

PMTBDD for the combined policy. The advantages of using the PMTBDD for policy 

representation are its compactness and its capability in generating counter examples using 

theorem-proving techniques. In this thesis, we propose a Role Hierarchy MTBDD called 

RHMTBDD to express the RBAC’s role hierarchy and show how it can be combined 

with a PMTBDD. Further, we show how positive and negative test cases can be 

generated from an RHMTBDD. Intuitively, positive and negative test cases are generated 

by traversing specific paths from desired (role) nodes to the appropriate terminal node in 

the RHMTBDD. 

Building upon the security testing technique and RHMTBDD representation of 

RBAC, we also propose a security testing framework for RBAC policies. Our framework 

takes a RBAC security policy expressed in XACML – a language based on XML for 

specifying access control policies [12]. We use a Document Object Modeling (DOM) 

parser [13], [14] to extract role hierarchy information from the RBAC profile of XACML 

and generate the associated RHMTBDD. Further, we generate the positive and negative 
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test cases by traversing the appropriate paths in RHMTBDD and store them in a Java 

container class.  

We also evaluate our framework by generating test cases for a banking 

application. Our evaluation shows that both positive and negative test cases are correctly 

generated and that our framework can efficiently perform security testing for RBAC 

based systems. 

 Contributions  1.2

In summary, the contributions of this thesis are as follows: 

 We propose a security testing approach which incorporates the principle of 

Maximum Privileges, structure of the role hierarchy, and a new security test 

coverage criterion to efficiently generate positive and negative security test 

cases. 

 We introduce RHMTBDD that can combine various security policies to 

generate test cases for the more complex security policy. 

 We develop a security testing framework for RBAC policies which takes a 

RBAC security policy expressed in XACML, parses it into a RHMTBDD 

representation, and then generates positive and negative test cases. 

 We validate the proposed framework with in-house developed applications 

and the generated test cases. 
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 Thesis Outline 1.3

 The remainder of this thesis is organized as follows. We introduce and describe 

background concepts and the related work in Chapter 2. The theoretical foundations for 

RBAC policy testing are presented in Chapter 3. Chapter 4 explains our security testing 

framework, each phase of the implementation, and evaluation results.  Finally Chapter 5 

concludes this thesis with concluding remarks and future directions. 
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  CHAPTER 2 

          BACKGROUND AND RELATED WORK 

 

In this chapter, we present foundational concepts and related work with regards to the 

automated security testing for RBAC we present in this thesis. 

 Multi-Terminal Binary Decision Diagram (MTBDD) 2.1

 In this thesis, we adopt MTBDD to create security test cases to validate the 

implementation of the policy. MTBDD has been used in solution for many different 

problems. For example, it was used to create and analyze a large class of models [15]. 

This helped in reducing the "large state model" for a complex system to a "small scale 

component" and consequently harnessing state space explosion.  Further, it has been also 

used to map Boolean vectors to integers in order to verify electric circuits [16]. 

MTBDD is a data structure to compactly represent a Boolean function over a set 

of variables [17]. An MTBDD consists of nodes, edges and terminal nodes [11]. Each 

node represents a predicate whether the attribute assigned to value is true or false. Each 

edge represents the assignment value of the predicate. And each path represents the 

decision label of the result of the Boolean function of the predicates in the path. MTBDD, 

called PMTBDD, can be used to represent a policy. Figure 1 illustrates two policies: P1 

indicates that a faculty member (f) can assign grades (ag) and P3 says if a user is both a 

faculty member and a student, grade assignment is denied.                       
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Figure 1: Policy Representation in MTBDD. 

 MTBDD can be used to combine different policies [11]. For example, in Figure 2, P1 

allows faculty (f) to assign grades (ag), and P2 indicates student(s) can receive grades 

(rg). These two policies are combined to generate P3.   

 

Figure 2: Combining PMTBDDs to get PMTBDD for the aggregate policy.  

Access control policy can be represented with this data structure. Such 

representation is flexible and scalable. Further, it needs less storage space [11].  MTBDD 

can be suitable for finding violations and possible vulnerabilities in a policy. There are 

mainly three terminal nodes in the graph: Permitted, Deny and Not applicable. The 

Permitted (P) node terminates paths which allow the operation for a role in the policy. 

The Deny (D) node terminates paths which do not allow the operation for a role in the 

policy and not applicable (N) node terminates paths, which are not applicable for the 

policy.  
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In this thesis, we leverage MTBDD data structure and convert XACML-based 

RBAC policy into Role Hierarchical Multi Terminal Binary Decision Diagram 

(RHMTBDD).  

 JUnit 2.2

JUnit is a unit testing framework for Java [18] [19]. JUnit helps testers validate 

functionalities of source codes by using unit tests provided by the testers. A test method 

starts with annotation @ to differentiate from regular methods. JUnit has many features 

[18] [19], e.g. it offers many assertions as well as test runner for running test methods and 

showing the results for all test methods. Further, in JUnit testers can define a test suite 

which combines test classes consisting of test methods and run all the tests together.  

 Role-Based Access Control (RBAC)   2.3

 RBAC is one of the access control mechanisms to provide the access control 

based on organizational structure. Each user is assigned a set of roles. Each role is 

associated with a set of permissions. Furthermore, each role inherits permissions based on 

a hierarchy [9]. Hierarchical RBAC1 has following components and properties as defined 

in [9]. 

 Sets of Users (U), Roles (R), Permissions (P), and Session (S). 

 

 PA   P × R: permission to role assignment relation. 

 UA   U × R:  user to role assignment relation. 

 user: S   U , a function that maps each session to a single user. 

 RH   R × R, role hierarchy is a partial order on R. 
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 roles: S   2
R 

, where a user can activate a session with any combination of its 

assigned roles and roles junior to those assigned roles.  

 eXtensible Access Control XML (XACML) 2.4

XACML is a general access control policy language [12]. There are many features 

defined in this language such as Policy, PolicySet, Rules, and Target to achieve the 

objective of an access control policy. This language contains PolicySet to construct 

policies. A PolicySet can have multiple policies or PolicySet and vice versa. A single 

Policy can have only one access control policy denoted by Rule. Further, this policy 

contains Target, which contains resources and action for the subject.  XACML is used to 

express deny and permit actions based on the policy. XACML has a specific profile 

tailored for RBAC [20], which is used in this thesis. 

   RBAC profile is used for role based access control policy. Further, hierarchical 

RBAC model can be represented using this profile. RBAC profile contains four kinds of 

policies [20] such as Role <PolicySet>, Permission <PolicySet>, Role Assignment 

<Policy>, and HasPrivilegesOfRole <Policy> [20].  Role <PolicySet> determines a role 

attribute-value pair defined in this policy. Also, it points to the Permission <PolicySet> 

associated with a role. HasPrivilegesOfRole <Policy> is an option to query about the 

subject role in this profile. Permission <PolicySet> policy contains all the actions 

associated with a role attribute-value pair. Role Assignment <Policy> specifies which 

subjects are assigned to a role. Further, this can be used to restrict how many users (or 

combination of users) are allowed to activate the role. However, this policy is optional.  

Inheritance can be achieved in this profile by adding <PolicySetIdReference> and giving 
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reference to the desired role.  For example, if role1 is inheriting permissions from role2, it 

can be achieved by having a tag of <PolicySetIdReference> inside Permission 

<PolicySet> of the role1, where <PolicySetIdReference> is reference to the permissions 

of role2.  

 

1. ………………………………………………….. 

2. <PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" 

3. PolicySetId="PPS_Manager" 

4. PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:permit-overrides"> 

5. <!-- Permissions specifically for the manager role --> 

6. <Policy 

7. PolicyId="Permissions:specifically:for:the:manager:role" 

8. RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-

overrides"> 

9. <!-- Permission to create an  account  --> 

10. <Rule 
11. RuleId="create a customer account" 
12. Effect="Permit"> 
13. <Target> 
14. <Resources> 
15. <Resource> 
16. <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
17. <AttributeValue 
18. DataType="http://www.w3.org/2001/XMLSchema#string">Account</AttributeValue> 
19. <ResourceAttributeDesignator 
20. AttributeId="resource-id" 
21. DataType="http://www.w3.org/2001/XMLSchema#string"/> 
22. </ResourceMatch> 
23. </Resource> 
24. </Resources> 
25. <Actions> 
26. <Action> 
27. <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
28. <AttributeValue 
29. DataType="http://www.w3.org/2001/XMLSchema#string">credit</AttributeValue> 
30. <ActionAttributeDesignator 
31. AttributeId="action-id" 
32. DataType="http://www.w3.org/2001/XMLSchema#string"/> 
33. </ActionMatch> 
34. </Action> 
35. </Actions> 
36. </Target> 
37. </Rule> 
38. </Policy> 
39. <PolicySetIdReference>PPS_Customer</PolicySetIdReference> 
40. </PolicySet> 
41. ……………………………………………………………… 

   
 

Figure 3 : RBAC Policy in XACML [2]. 
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Figure 3 is the example of Permission <PolicySet> in RBAC profile. As 

mentioned previously, this policy specifies the permissions associated with a role. In this 

example, the role is Manager, referencing the role <PolicySet> for Manager in Line 3. 

Line 12 tells “Effect” is permitted if role is Manager. Further, Line 18 and Line 29 show 

that Manager can perform an action “credit” on resource called “Account”.  There is 

reference to permissions associated with Customer in Lines 39 with XACML feature 

element <PolicySetIdReference>. This reference tells that Manager can inherit all the 

actions associated with the Customer role.  

  Security Module/Unit Testing 2.5

 Unit testing is obtained by three main actions arrange, act, and assert (AAA) 

[21].  For example, to verify the correctness of the subtract function, testers first need to 

act by arranging and assigning input parameters in its testing unit. Further, testers act by 

calling subtract function and finally assert the expected result with actual result by calling 

function under test.  Same technique can be applied while preforming security testing. 

For example, in hierarchical RBAC testing, arrange is done by creating a role object and 

its associated permission. Further, act is done by checking whether a particular role is 

allowed to perform its actions.  Then, the role object method is called only if it is asserted 

that this operation can be performed through this object. 

   Related Work 2.6

In this chapter, we describe how this thesis work is related to and different from 

other related work. Hu and Ahn [4] have done similar work to generate positive and 
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negative test cases. Their approach involved creating negative test cases by separating 

constraints from Access Control Model Specification (ACMF). Access Control Model 

Specification consists of Model (M), Function (F) and Constraints(C) [4]. In ACMF M 

represents security model and F represents specification such as operation. Constraints 

represents restriction in a policy such as which role is authorized to do what operation. 

After separation of C (Constraints) from ACMF, constraints are given as a separate input 

to the formal verifier. If the formal verifier yields the result as NOT OK, a sequence of 

counter examples gets created and these counter examples could be used to generate 

negative test cases. The process of generating positive test cases is similar; however, 

constraints are negated when C is separated from ACMF. The formal verifier yields the 

result as NOT OK and the counter examples are used to generate the positive test cases.  

Hu and Ahn's approach involves two steps. First, it takes RBAC model and converts into 

RCL2000 [22]; further RCL2000 is translated into ALLOY and given as an input to 

Alloy Analyzer. Finally, test cases are created. In the second step, the RBAC model gets 

translated into Unified Modeling Language (UML) class diagram. Codes are generated 

through UML and test cases created in the first step are validated against the codes. Hu 

and Ahn's method differs from our method. Unlike their method we are not using 

RCL2000 and Alloy analyzer. And they use UML to generate source codes from RBAC 

policy. In our approach we are using RHMTBDD inspired by MTBDD to create security 

test cases. Further, these test cases are incorporated with JUnit specification to validate 

implementation of the codes.  
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Hu and Ahn have extended their work in [23] and designed an authorization 

system for a Financial Service System. They have obtained an authorization system by 

defining requirements, classifying RBAC objects, relations and restrictions for banking 

applications and finally by designing and implementing a banking application system. 

Further, they perform “Conformance testing” on this system which they have designed 

and implemented through specification. They created positive and negative test cases for 

this system. Positive test cases are those cases, which are allowed by the access control 

authorization state. Negative test cases are those cases which are disallowed by access 

control policy. Creation of these test cases is similar to the one described in [4] by 

separating constraints C from ACMF and giving as a separate input to formal verifier. To 

create positive test cases, they created negative constraints and gave it as an input to 

verifier and converted the result into counter examples which become the positive test 

cases. Negative cases are generated through positive constraints and results are converted 

into counter examples which become negative test cases.  Our approach is different in 

generating positive and negative test cases. Their approach is based on logical model. In 

their approach, security testing is based on logical requirement and logical design of the 

system. In our approach first, we parse XACML policy to convert into RHMTBDD. 

Second we create positive and negative test cases by traversing the path in RHMTBDD.  

Hu, Kulkarni and Ahn’s approach used Binary Decision Diagram (BDD) in order 

to find out anomalies in web access control policy [24]. BDD is a special case of 

MTBDD [11]. It has only two terminal nodes: permitted and not permitted.  Their 
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approach does not involve traversing paths to create test cases [23]. They used BDD as a 

set operation to find anomalies in policies. 

 Fisler et al. used MTBDD to verify access control property against policy defined 

in XACML [11]. They used MTBDD to find the impact and existence of the 

vulnerabilities due to the policy changes [11]. Their approach used MTBDD to determine 

the impact through theorem-proving. We use MTBDD to create test cases to validate the 

implementation of the source code against the RBAC policy, whereas their approach is 

focused on analyzing policies. 

  In summary, our approach differs from previously proposed approaches in 

generating test cases.  Additionally, our approach utilizes MTBDD differently and 

modifies MTBDD to convert XACML policy into RHMTBDD with three terminal nodes 

“permitted”, “deny”, and “not applicable”. Our approach uses RHMTBDD to create test 

cases to validate the implementation of the code against RBAC model policy.  
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CHAPTER 3 

SECURITY TESTING APPROACH 

 

In this chapter we develop an approach for performing security testing of RBAC policy. 

We first start with some basic definitions followed by the detailed steps for the proposed 

approach. 

 Preliminaries 3.1

In RBAC, any privileges to perform actions on the information (objects) are 

controlled by grouping privileges into roles and assigning users to roles [1].  There are 

several models of RBAC [9]: RBAC0 is the most basic; RBAC1 includes all aspect of 

RBAC0 as well as role hierarchy; RBAC2 also includes all aspects of RBAC0 but has no 

role hierarchy, but instead it has constraints on roles, privileges, and other relations (e.g. 

separation of duty and cardinality constraints); and RBAC3 is the most comprehensive 

RBAC model and it inherits all aspects of both RBAC1 and RBAC2. In this thesis we will 

mainly focus on RBAC1.  

3.1.1 RBAC Model 

There are some basic definitions associated with RBAC (from [1], for RBAC0 

model [9]) required for explaining our framework. The set of authorized actions (called 

transactions in [1], permissions or privileges in [9]) for each role r is denoted as trans(r). 

Although [9] distinguishes between users and subjects (or sessions) – a user is associated 

with multiple subjects with several (subset) of its authorized role activated – in the 

following we use users and subjects interchangeably. The set of active roles of a user or a 
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subject s is denoted as actr(s). The set of authorized roles of a subject s is denoted as 

authr(s). The predicate canexecs(s,t) denotes whether a subject s can perform a 

transaction t (at a given time). The functions actr(), authr(), and canexec() are from [1] 

which we use in this thesis. 

Note that in the case of hierarchical RBAC (RBAC1 model [9]) the set of role 

authorized to a subject is governed by a role inheritance hierarchy (with an associated 

partial order role dominance relation ≥   R×R). Hence, the set of roles authorized to a 

subject s with primary authorized role r is all the roles r’ appearing in the subDAG 

rooted at r in the RBAC hierarchy, i.e., {r’ | r ≥ r’}. We call non-inherited actions 

associated with a role as its unique actions. 

In [1] there are three basic rules associated with RBAC. The role assignment rule 

[canexcs(s,t) => actr(s) ≠ Ф] says that a subject s can perform a transaction only if s is a 

member of an active role. The role authorization rule [actr(s)   authr(s)] says that for 

any subject s, only an authorized role can be activated. Note that a user can have multiple 

active (authorized) roles at any given time. The rule of transaction authorization 

[canexecs(s, t) => t ∈ trans(actr(s))] says that a subject s can only perform its actions 

associated with its active roles. 

3.1.2 Goal of Security Testing 

Intuitively, any violation of these three rules is associated with corresponding 

security vulnerabilities in the system. For example, a violation of role assignment means 

that a subject is able to perform an action even if it has no active roles. There are other 

security problems which also need to be tested for. For example, those that can be 
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associated with availability: A user may be unable to perform an action which is in its 

active role set.  

Hence, a goal of security testing should be to ensure that for every user s the set 

of all permitted actions is equal to the set of all actions associated with all active roles, 

i.e. ,  {t | canexecs(s,t)} == trans(actr(s)). In the following, for the sake of simplicity we 

define canexecs(s) = {t | canexecs(s,t)}.  

3.1.3 Positive and Negative Test Cases 

In our approach we generate two types of test cases: 

1. Positive test cases: ensures P: ∀s canexecs(s) ⊇ trans(actr(s)). Every subject s 

can perform all the actions corresponding to all its active roles. This is done by 

generating positive test cases to check whether a subject with a particular active 

role r can perform all unique actions associated with r as well as all inherited 

actions (in case of hierarchical RBAC) associated with r. The predicate P is 

ensured when all the positive test cases “pass”. 

2. Negative test cases: ensures N: ⌐(∃s canexecs(s) ⊃ trans(actr (s))). There does 

not exist a subject s which can perform an action that does not correspond to any 

of its active roles. This is done by generating negative test cases to check whether 

a user cannot perform any of its non-unique non-inherited actions. Each negative 

test case passes if the subject is not granted access to perform such an action. The 

predicate N is implied if all the negative test cases pass. 

Combining these two sets of test cases ensures that for every subject s: 
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canexecs(s) ⊇ trans(actr(s))˄ ⌐( canexecs(s) ⊃ trans(actr (s))) 

i.e., canexecs(s) == trans(actr(s)). 

 

 Security Testing Approach for RBAC 3.2

In this section, we present our detailed approach for performing security testing for 

RBAC policy.  

3.2.1 Generating tests for single authorized role 

For a user with single authorized role R, the semantics of RBAC authorizes the 

user for all the roles in the subDAG from DAG(R) in the role hierarchy RH. The positive 

test cases are with regards to all the unique and inherited actions for all the roles in this 

subDAG.  The negative test cases are generated by deleting the DAG(R) from RH. This 

effectively implies that actions/privileges associated with roles in DAG(R) are not 

inherited by any roles in RH – DAG(R). Now the negative test cases are generated with 

respect to the actions associated with roles in RH – DAG(R). For example if a user is 

authorized to a single role R, positive test cases with regard to role R are associated with 

permissions in the subDAG rooted at R and negative test cases are related to all the 

privileges associated with RH – DAG(R) as shown in Figure 4. 
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Figure 4: Positive and Negative Test Case for |auth(r)| = 1. 

 

3.2.2 Optimizing tests for multiple authorized roles 

Although in general the active role set for a user in a session is a subset of 

authorized roles, for the sake of simplicity, we assume that actr(s) = authr(s), i.e., all the 

roles a subject is authorized to ought to be activated by the subject. In essence this 

assumption generates test cases under maximum privileges assigned to a user. The 

rationale is that under this assumption the most serious vulnerabilities (i.e. a user can 

perform actions which they are never allowed) and all inconveniences (i.e. a user is not 

allowed to perform an action even though he is authorized to). This considerably reduces 

the number of test cases since there are 2
|authr(s)|

 different actr(s) sets possible for a given 

authr(s). For example, in Figure 5 a user is authorized to a role, role2. Due to RH, 

authr(u) = {role2, role4, role5, role6}. There are 2
4  

possible subsets for this role so it 

creates test cases only for actr(u) = {role2, role4, role5, role6} instead of creating test 

cases for all different subsets. 
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                  Figure 5: An example role hierarchy. 

Further, assume that there exists a single most dominant role r in the authr(s), i.e. r = 

max≥ (authr(s)), the set of positive and negative test cases can be easily generated based 

on all the unique and inherited actions of role r. In case there is no unique most dominant 

role in authr(s), we can determine maximal subset T of authr(s) such that: 1) any pair of 

roles in T is mutually non-dominating, i.e., if r1, r2 in T then neither r1≥r2 nor r2≥ r1 

unless r1= r2; and 2) If r1 in T then there is no r2 in authr(s) such that r2 ≥ r1 unless r1= r2. 

Basically, T consists of senior-most mutually non-dominating roles from authr(s). The 

positive and negative test cases can now be computed by taking the union of all the 

unique and inherited actions of roles in T. This procedure avoids generating duplicate test 

cases since any role junior to multiple roles in T is only considered once.  

 

Figure 6: Optimizing test cases for mutual non-dominating role. 
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                  Consider roles R and S in Figure 6. They both are mutually non-dominating 

roles. Optimization in creating test cases can be achieved by not duplicating the test cases 

for overlapping area. Suppose in Figure 5 authr(s) = {role4, role5, role6}. We can 

calculate maximal subset T = {role4, role5}. Positive test cases can be generated by 

taking union of all unique and inherited actions of role4 and role5 (that is the union action 

of role4, role5 and role6). And negative test cases can be generated for which are not 

included in the union set of positive tests. Positive test cases = {union actions: inherited 

actions of role4} ∪ {union actions: inherited actions of role5}. Negative test cases are 

⌐{{union actions: inherited actions of role4} ∪ {union actions: inherited actions of 

role5}}. 

3.2.3 Optimizing Negative Test Cases  

This testing coverage criterion is to test for all vulnerabilities related to actions for 

each role. It creates positive test cases for every role’s unique action and inherited 

actions. And negative test cases are created based on all actions which are not inherited 

and unique actions for a role. However, despite the optimizations suggested in the 

previous chapters the number of test cases could be enormous.  

In this section, we first provide a motivating example and then describe a new test 

coverage criterion which can be used to balance the number test cases and the desired 

level of assurance. 
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Figure 7: Reducing Negative Test Cases. 

We can optimize negative test cases by considering only min under dominance 

role of non-authorized role r’s unique action such that r = min≥ (RH-authr(s)), where RH 

is the role hierarchy.  Negative test cases can be easily generated based on all the unique 

and inherited actions of role r. Consider if user is authorized to role2 in Figure 7. 

Negative test case for role1 relates to all the actions of min ≥ [{role1, role2 role3, role4, 

role5, role6, role7} – {role2, role5, Role7}] = min ≥{role1, role3, role4, role6} = role6. 

We can notice that this reduces the number of negative test cases by eliminating actions 

of role1, role3, and role4. This is under the assumption that if a user is unable to perform 

actions associated with a role r then the user would unlikely be able to perform actions 

associated with a role senior to r. In essence, we assume that the potential to harm 

monotonically increases with the number of privileges (active roles).  

3.2.3.1 Test coverage criteria 
 

Motivated by the above example, we suggest the following coverage criteria: 

generate test cases only with respect to the (mutually non-dominating) roles which are in 

at most k “fronts” from the subDAG of the role associated for a user. A front is a set of 
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roles which are the “same distance” from a given role node in the role hierarchy obtained 

from deleting the role’s subDAG from the entire role hierarchy. The parameter k could be 

adjusted to control the number of negative tests to be generated (and correspondingly the 

level of security assurance desired). Figure 8 illustrates the optimization of creating 

negative test cases. 

 

 

                      

 

 

 

 

 

 

 

 Role Hierarchy MTBDD (RHMTBDD)     3.3

Figure 9 (a) is an example of a hierarchical RBAC model.  In this policy, a 

manager (a user with role Manager) can create and cancel the account, a customer (a user 

with role Customer) can transfer and change the account, and a teller (a user with role 

Teller) can deposit and withdraw the account. Furthermore, manager can inherit all the 

permissions from customer and teller. Customer can also inherit all the permissions from 

Teller. Figure 9 (b) is another example of hierarchical RBAC model, where Manager is 

inheriting from two same level junior role Customer and Agent. Further, Customer and 

Agent cannot inherit each other unique actions. Table 1 (top) and (bottom) has the unique 

Figure 8 : Fronts Coverage Criteria. 
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actions and inherited actions assigned to corresponding roles illustrated in Figure 9 (a) 

and Figure 9 (b), respectively. 

 

 

 

          

 a) linear hierarchy                          b) non-linear hierarchy 
 

 

Table 1: Unique and Inherited Action for Figure 9a) (top) and Figure 9b) (bottom). 

Role Unique Action Inherited Action 

Manager Credit, Cancel Transfer, Charge, Suspend 

Customer Transfer, Charge Deposit, Withdraw 

Teller Deposit, Withdraw None 

 

 

Role Unique Action Inherited Action 

Manager Credit, Cancel Transfer, Change, Suspend  

Customer Transfer, Check Deposit, Withdraw 

Teller Deposit, Withdraw None 

Agent Suspend Deposit, withdraw 

 

We construct RHMTBDD with role nodes, action nodes and decision nodes as well as 

three terminal nodes permitted (P), denied (D) and not applicable (N) (described later in 

Chapter 4. Note not every RHMTBDD may have all the three terminal nodes.). Each role 

node represents a predicate corresponding to a role attribute-value pair such as "role = 

Manager". Similarly, each action node represents predicate corresponding to an action 

attribute-value pair such as "action = credit". We introduce a new node called the 

decision node in order to distinguish between the two same level inheritances (if they 

Manager  

Customer  

 Teller  

Manager  

Customer  

 Teller  

Agent 

Figure 9: Hierarchical RBAC examples. 
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exist) for any role such as shown in Figure 9 (b). As defined in [11] MTBDD has three 

useful characteristics. We have adopted these characteristics to build RHMTBDD. First, a 

MTBDD enforces a fixed ordering among the various nodes and all “policy” paths are 

traversed from a root node (there can be multiple root nodes corresponding to senior most 

non-dominating roles in the role hierarchy) to a terminal node. Figure 10 and Figure 11 

are examples of RHMTBDD. The paths 101 (denoting a Manager can perform the cancel 

operation) and 011 (denoting a Customer can perform transfers) are examples of policy 

paths starting from the senior most Manager role node in Figure 10. Restricted or fixed 

ordering among the nodes enables MTBDD to be a canonical representation of the policy. 

Second, in MTBDD any sub tree can appear only once as is the case in Figure 10 and 

Figure 11. This property makes MTBDD a compact representation of the policy. Third, 

MTBDD deletes irrelevant nodes from the MTBDD. For example, in Figure 10, we do 

not have D terminal node since there are no paths lead to it. 

In our sample RHMTBDD, an ellipse shape corresponds to a role node, a 

rectangle with round corner corresponds to action nodes and a rectangle with sharp 

corner corresponds to terminal nodes. Figure 10 is a graphical representation of the 

policy. In this figure Manager (M), Customer (C), and Teller (T) are role nodes. Credit 

(cr), cancel (cn), transfer (tr), charge (ch), deposit (d), and withdraw (w) are action nodes. 

Further, a rectangle with sharp corner corresponds to the end of the path called terminal 

nodes and denotes as permitted (P) and not applicable (N). Each node has two outgoing 

edges. Left edge is labeled as 1 and right edge is labeled as 0 in each RHMTBDD. If the 
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left edge of the node is taken the attribute-value of the node corresponds to true 

otherwise, if the right edge is taken then it corresponds to false. 

  If we take the path starting from the root 0011 (Teller can deposit), 100001 

(Manager can deposit), and 1001 (Manager can transfer), we can see these paths 

correspond to valid actions. The process for creating positive test case is to follow paths 

from a desired node and follow until it has reached the permitted node. Previously 

mentioned paths 0011, 100001, and 1001 are all positive test cases because they lead to 

the permitted terminal node. 

 

Figure 10: RHMTBDD for Figure 9 (a). 

 

3.3.1  Introduction of The Decision Node 

We introduce a new node called Decision Node (DN) to create RHMTBDD for 

RBAC1 model. The objective of DN is to assist RHMTBDD, if there are two same level 

inheritances for a senior role. DN is created when a role object inherits from two different 

junior roles at the same level.  DN is added as the left child node of this role. And the first 
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junior role is added as the right child of this role node and the second junior role is added 

as the right child node of the first junior role node.   

Manager inherits two different role objects Customer and Agent at the same level 

in Figure 9 (b). DN is added to the left of the Manager node and the Customer node is 

added as the right child of the Manager node. Further the Agent node is added as the right 

child of the Customer node in the RHMTBDD. Figure 11 depicts how DN helps to 

determine if there are two same level inheritances (mutually non dominating roles) and 

how DN restricts to perform actions among mutually non dominating roles. In Figure 11 

there is no path from Agent to Customer action and vice versa. This implies that Agent 

cannot perform unique actions associated with Customer and Customer cannot perform 

Agent’s action as stated in Figure 9 (b). Manager can perform all the actions as it inherits 

from all the roles. We apply this algorithm with more complex hierarchical RBAC 

model, where DN helps disallow any role to perform its unauthorized action.  

 

Figure 11: RHMTBDD for Figure 9 (b). 
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3.3.2 Structure of RHMTBDD  

This section describes the layout of RHMTBDD. The RHMTBDD is defined by 

the following three rules: 

1. Role with no inheritances: In this rule, first unique action node of this role 

node is the left child for this role node; and, each subsequent unique action 

node is the right child of the previous unique action node.  Each unique action 

node’s left child is the terminal node P. Further, last unique action’s right child 

is the terminal node N. The right child of this role node is another role node or 

the terminal node N.  

2. Role with single inheritances: When a role in the inheritance hierarchy has a 

single inheritance (i.e. the role node inherits from a single junior role), the node 

for the first unique action of this role is its left child. Further, the right child of 

this role node is its junior role node; and, each subsequent unique action node 

is the right child of the previous unique action node. And finally, the last 

unique action’s right child is the left child of its junior role. 

3. Role with double inheritances: In this case, when there are two junior role 

inheritances; the left child of this role node is a DN. The right child of this role 

node is its first junior role node. Further, its first unique action is the left child 

of the DN; and, each subsequent unique action node is the right child of the 

previous unique action node. Further, each unique action’s left child is the 

permitted node. The DN’s right child is the left child of the first junior role 
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node; and, DN’s left child is its first unique action. Further, the last unique 

action’s right child is the left child of the second junior role. 
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CHAPTER 4 

SECURITY TESTING FRAMEWORK: IMPLEMENTATION DETAILS AND 

EVALUATION 

 

 Security Testing Framework 4.1

Our framework takes as input an RBAC policy specified in XACML. The Policy 

Parser converts the RBAC policy into a policy graph represented in RHMTBDD. Using 

RHMTBDD, it generates test cases by following appropriate paths in the RHMTBDD 

from the root node to a terminal node, creating respectively the positive and negative test 

cases for allowed and disallowed actions in the policy. These test cases can be used in 

testing tool such as JUnit for testing the system based on the specified RBAC policy. Our 

security testing framework is illustrated in Figure 12 . 

 

 

 

 

 

4.1.1  XACML Policy Parser 

 The Policy Parser parses the Permission<PolicySet> associated with each role in 

the RBAC profile of the input XACML file. The parser uses DOM APIs [13], [14] to 

accomplish this task. The parser basically keeps track of inheritance hierarchy and 

maintains a list of the unique actions and inherited actions for each role.  

RBAC 

XACML 

Policy 

Policy 

Parser 

Creation 

of Policy 

Graph 

Creation 

of Test 

Cases 

Validate 

Test 

Cases 

Figure 12: Implementation framework for creating Test Cases Figure 12: Implementation framework for creating Test Cases. 
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4.1.1.1 Implementation of parsing policy 
 

We used Java DOM API to parse policies written in XACML [14]. DOM stores XML 

file as a tree structure. This Parser sets the root node and returns all children associated 

with this node. In order to access all the children nodes and their attributes, DOM 

provides many APIs depending on the need of parsing [14]. Further, this parser extracts 

information related to every role, inheritance, and their action and stores such information 

in a linked list. Furthermore, we used this information to create RHMTBDD 

corresponding to the policy written in XML. Figure 13 is an excerpt of the Policy Parser 

code. It finds “PolicyId” associated with “Policy” for role and stores this 

information in new object called RoleCreator.  The RoleCreator Class stores the 

information of each role, its permission, and its inheritance. 

 
1. NodeList nList = doc.getElementsByTagName("PolicySet");  
2. for (int temp = 0; temp < nList.getLength(); temp++){ 
3. Node nNode = nList.item(temp);                
4. NodeList children = nNode.getChildNodes(); 
5. for (int j = 0; j < children.getLength(); j++) { 

a. Node child = children.item(j); 
b. String childName = child.getNodeName(); 
c. RoleCreator rolecreator; 
d. if (childName.equals("Policy")) { 

i. Element eElement = (Element) child; 

ii. rolecreator = new RoleCreator(); 

iii. String role = eElement.getAttribute("PolicyId"); 

iv. rolecreator.setRoleName(role); 

i. …………………………………… 

 

Figure 13 : Parsing XACML Policy. 

Figure 14 has the output through parsing RBAC policy written in XACML. Lines 2, 

7, 11, and 14 have role content such as Manager, Employee, Teller, and Agent, 

respectively. Further, lines 3, 8, 12 and 15 have RuleId as to what action they can 
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perform. Lines 4 and 5 display that Manager can inherit from Employee as well as Teller. 

Further, Lines 17 displays roles, permission and inheritance described in policy. 

1. Permissions:specifically:for:the:manager:role 

2.  manager 

3.  RuleId="sign a purchase order" 

4.  ChildContentPPS_Employee 

5.  ChildContentPPS_Teller 

6. Permissions:specifically:for:the:employee:role 

7.  employee 

8.  RuleId="create a purchase order" 

9.  ChildContentPPS_Teller 

10. Permissions:specifically:for:the:teller:role 

11.  teller 

12.  RuleId="look at purchase order" 

13. Permissions:specifically:for:the:agent:role 

14.  agent 

15.  RuleId="update a purchase order" 

16.  ChildContentPPS_Teller 

17. [|manager: [sign], [PPS_Employee, PPS_Teller]|, |employee: [create], [PPS_Teller]|, |teller: [look], 

[none]|, |agent: [update], [PPS_Teller]| 

 

Figure 14 : Output of XACML Policy Parsing. 

4.1.1.2 Implementation of RHMTBDD 
 

This section describes the algorithm called DAGCreator to generate RHMTBDD 

corresponding to the parsed RBAC policy. DAGCreator starts with the roles in reverse 

topological order in the role hierarchy. This ensures that RHMTBDD is already 

constructed for all the junior roles when a senior role is processed. It checks if the current 

role node has one or two inheritances at the same level. The algorithm can be generalized 

if the role inherits from more than two junior roles at the same level – a role hierarchy in 

which a node inheriting from more than two junior roles can be converted into a 

hierarchy with each node having only two juniors by introducing some “virtual” or 

dummy roles.  A similar technique of introducing additional roles is used to prevent 
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inheritance of certain “private” privileges in the role hierarchy [25]. The structure of 

RHMTBDD for a role hierarchy in which there are at most two junior roles for any role 

node has been described in the previous chapter. Recall that, if the role inherits from just 

a single junior role, then the first unique action as an action node – a node which denotes 

a privilege - is added as the left child of the role node. Note that the edge label for the 

edge to the left child is always 1 – denoting “true” - and that to the right child is 0 – 

denoting “false” value for the predicate corresponding to the node from which the edge 

originates. Subsequently each unique action of this role node is added as the right child of 

each of the subsequent action node.  Each action node’s left child is the permitted node 

(P) since these actions are permitted by the policy. The role node corresponding to the 

junior role becomes the right child of the role node. Additionally, the first unique action 

of the junior role node is added as the right child of the last unique action of the role 

node. The action nodes corresponding to remaining unique actions of the junior role are 

added in a similar manner to those for the role node. Further, the least privileged node 

ends with not applicable (N) node. Figure 9 (a) is an example of this inheritance type.  

 If a role inherits from two junior roles, then the algorithm adds one Decision Node 

(DN) as the left child of the role node. Further, it adds the first junior role node as the 

right child and the second junior role node as the right child of the first junior role node. 

The action node corresponding to the first unique action of this role node is added as the 

left child of DN. The first unique action node of the first junior role becomes the right 

child of the DN.  And the first unique action node of the second junior role becomes the 

right child of the last unique action of this role node. The rest of the rule remains the 
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same as the one in a single level inheritance. Figure 9 (b) has this kind of role hierarchy 

and their corresponding RHMTBDD in Figure 11. 

4.1.2 Generation of Test Cases from RHMTBDD   

The test cases can be easily generated by traversing paths over the RHMTBDD as 

follows: 

 Generating positive test case for a given (single authorized) role: it simply 

performs depth-first search (DFS) [10] on the left subDAG of the role node. A 

positive test case is generated for each action node which can reach the permit 

terminal node.  

 Generating positive test case for a multiple authorized role:  We consider 

state-preserving (links that have been already visited) invocation of a sequence 

of DFS, subsequently starting from role nodes in the authorized set. The links 

visit while each DFS are marked and preserved for subsequent invocation of DFS. 

Each invocation of DFS traverses only those links which have not yet been visited 

by any previous DFS invocation.  Positive test cases are generated by the steps of 

the previous case (i.e., whenever an action node can reach the permit terminal 

node). The state preserving invocation ensures that the duplicated test cases are 

not generated (i.e., conceptually it performs the union of subDAGs rooted at the 

role nodes in the authorized set (see Section 3.2.2)).  

 Generating negative test case for single (multiple) authorized role: We again 

use the state preserving invocation of DFS. In this case, the DFS starts with 

RHMTBDD with the link state of all the links visited during generation of 
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positive test cases preserved. Further, the permitted P terminal node is replaced by 

denied D. The negative test cases is now generated by performing DFS for the 

role nodes which were not covered during the positive test case generation which 

is similar to the way for generating positive test cases – with a simple difference 

that the paths are traversed to the D terminal and consequently test-cases now are 

negative test cases. Intuitively, this process simply deletes the subDAGs 

corresponding to authorized roles from the overall RHMTBDD and generates 

(negative) test cases on the remaining RHMTBDD. 

 The above process for generating negative test cases can be refined to generate 

test cases only up to certain fronts given the role nodes in the fronts which can be 

obtained from the RH. In this case, it only generates the test cases for role nodes 

in the fronts following the above procedure started with the marked RHMTBDD 

obtained after generating all the positive test cases. The computation of the front 

on the role hierarchy is as follows. First, it removes the subDAGs associated with 

the roles in the authorized set from RH. The first front is the set of leaf node in the 

remaining DAG. The second front is the set of leaf role nodes, which in the DAG 

is obtained by deleting the first front and so on. 

Since the complexity of performing DFS is O(n+m), where n is the number of nodes 

and m is the number of edges in the graph, the complexity for generating all the test 

cases is same, where n is the number of nodes and m is the number of edges in the 

RHMTBDD. This can be established by the simple observation that the execution of 
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all the (mini) DFSes simply amounts to the execution of one (large) DFS over the 

entire RHMTBDD due to the state-preserving nature of the invocations. 

4.1.3 Approaches for Creating Positive Test Cases 

There are two approaches for creating positive test cases. The first approach is 

used when a desired role and desired action are given and it finds the result by traversing 

RHMTBDD till it reaches a terminal node which would be either “permitted” node or 

“not permitted” node. Table 2 shows the first approach for generating positive test cases 

for CheckOperation(Role, Roles’ authorized action). This method 

finds the role’s authorized action and checks whether the path ends with the terminal 

node “permitted”. The second approach is to generate all the positive tests associated 

with a given role. Table 2 lists positive test cases for CheckAllOperations(Role) 

to find role and associated results for all unique and inherited actions by traversing 

RHMTBDD. For example, in Table 2 the positive test cases will return “true” because 

they lead to a permitted node in RHMTBDD shown in Figure 10. 

 

Table 2: Example of Positive Test Cases. 

Approach 1 Approach 2 

 CheckOperation(Role, Role's authorized 

actions) 

 CheckAllOperations(Role) 

   1. CheckOperation(Manger, Credit)    1. CheckAllOperations(Manager) 

   2. CheckOperation(Customer, Transfer)    2. CheckAllOperations(Customer) 

   3.CheckOperation(Manager, Cancel)    3. CheckAllOperations(Teller) 

   4.CheckOperation(Customer, Withdraw)  

 

 

 



40 

 

Table 3: Example of Negative Test Cases. 

checkOPerationNegative(Role, Roles non unique 

action and non-inherited action ) 

    checkOPerationNegative(Role ) 

             1. CheckOPerationNegative(Teller, credit )                    1. CheckOPerationNegative (Manger ) 

             2. CheckOPerationNegative (Teller, cancel )                    2. CheckOPerationNegative (Customer ) 

             3. CheckOPerationNegative (Teller, transfer )                    3. CheckOPerationNegative (Teller ) 

 

4.1.4 Approach for Creating Negative Test Cases 

Creating negative test case is to find all actions which are not unique and inherited 

action for any role in RHMTBDD and generate test cases for those actions. This 

approach enables to test all the vulnerabilities for all those actions on which a role should 

not perform. Intuitively, we need to generate a list for unique actions and inherited 

actions for each role. Further, we create a function in which we take out all the unique 

and inherited actions out of this list and create negative test cases with these actions. 

Table 3 is an example of negative test cases for RHMTBDD in Figure 10. As mentioned 

earlier state preserving DFS is used for this purpose. 

 Summary of Framework Implementation 4.2

  In summary, we keep all the information such as unique actions (for a role) and 

its inherited list (the list of roles junior to this role) during the parsing in an object called 

RoleCreator. The Parser object returns a list of RoleCreator objects 

corresponding to all the roles in the role hierarchy. We give this information to the class 

called DAGCreator.  This class looks at each role’s unique actions and inheritances 

and creates the RHMTBDD. Further, we have created a class called container, where 

we store all security test cases from RHMTBDD for all the roles.  
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  Execution of security test cases 4.3

Test cases generated from RHMTBDD are validated in JUnit by developing a small 

banking application to find security violations.  The banking application contains 

Account, Bank, Manager, Customer, and Teller class. Account class contains methods for 

querying information such as who is the owner of the account and for operations such as 

withdraw fund, deposit fund and check fund for the account. Further, Bank class contains 

information about manager, a list of customers and a list of tellers. Hierarchy of this role 

is as illustrated Figure 9 (a). In this policy, Manager can perform “credit” and “cancel” 

actions. Customer can perform “deposit” and “withdraw” action. And Teller can perform 

unique actions “check”.  

Since JUnit does not have access control mechanism, we use the same mechanism 

for generating the test cases in simulating the access control during run-time, i.e., 

traversing an RHMTBDD to find whether an action is permitted or not for a given role. 

Note that the RHMTBDD used for generating the test case is different from RHMTBDD 

used during testing, since RHMTBDD corresponds to the policy that is actually 

implemented by the system. In summary, we used the following step for validating our 

testing framework: 1) We used the correct RHMTTBDD to generate the test cases as well 

as to simulate the implemented access control – in this case all tests, both positive and 

negative, were passed; and 2) We used the correct RHMTBDD to generate the test cases 

and incorrect RHMTBDDs for simulation -- in this case we verified whether the test 

cases which needed to be failed or passed return the valid results. 
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Figure 15: Security Test Cases. 

 Figure 15 displays an excerpt of security test cases generated for the application. 

The first test case testCustomerDeposit() is a positive test case. In it a customer 

account is created and bt.checkOperation is called. The object bt is an RHMTBB 

object which represents the implemented RBAC policy. The method 

bt.checkOperation basically traverses the RHMTBDD to determine whether 

according to implemented policy this action is permitted or not – it returns true when the 

operation is permitted. Then deposit action is asserted by calling deposit method. 

Further, the test asserts whether the amount has been credited to the customer account by 

checking the current fund in the account. The last part is actually not part of security 

testing but functional testing. We have considered this portion here to simply show how 

security and functional testing can be performed together. 

The second test testTellerWithdrawNegative() is an example of 

negative test case. We follow the same steps for asserting negative test cases as we go 

through for the positive test cases. The difference is that a different object, 
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bt.checkNegativeOperation is called which returns true when the operation 

should fail according to the RHMTBDD of bt. 

 Figure 16 shows an output of running all the test cases. For example, 

“testCustomerWithdrawPositive” and “testCustomerDepositPositive” are 

the results of positive test cases. And “testTellerWithdrawNegative” and 

“testTellerDepositNegative” are the results of negative test cases. As we can 

notice, there exist two errors. These show if the policy is implemented correctly and 

which operation failed as well. 

 

Figure 16: Results of Security Test Cases. 

 Evaluation 4.4

4.4.1 Evaluation of Maximum Privileges 

In this section, we evaluate our strategy for reducing the number of test cases. 

Recall that we generate tests under maximum privilege actr(s) = authr(s). Additionally, 

it exponentially reduces the number of test cases. In order to quantify the advantage of 

this strategy we study the following three scenarios:  
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1. Flat scenario, where role hierachy is not considered. Each role is considered to 

be independent role.  

2. RH scenario, where RH is considered.  That is,  if a user has activated a role, it 

means it has actived all the role in the subDAG rooted at the very node in the RH. 

3. Maximum privilege scenario: in this case a user is assumed to have activated the 

maximum privileges pertained to  her roles in accodance to the role hiearchy. 

For our evaluation we consider the example role hierarchy shown in Figure 9 (b) 

where there are four roles: Manager, Customer, Agent, and Teller. Assume that the 

Manager role (rm) has one unique permission; Customer (rc) and Agent (ra) roles have two 

unique permissions; and Teller (rt) role has one unique permission. In the following we 

analyze the number of positive and negative test cases alsong with the total number of 

test cases that will be generated for the above-mentioned three scenarios when the user is 

authorized to various roles in the hierarchy. 

First, consider a user is authorized to all the four roles under the flat RBAC 

scenario. There are 2
4 

active sets. For each active, set we calculate the unique permission 

over all the active roles in that set. For example, if an active set has only Manager  and 

Agent  roles then the number of positive test cases would be 3 since the Manager is 

authorized to one permission and the Agent is authorized to two permissions. Further, the 

number of negative test cases will also be 3, since the number of permissions over the 

two other roles, Customer and Teller, sums to three. We carried out  similar computation 

for all the subsets and obtained the number of positive and negative test cases. 
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In the second senario, we considered RH. In this case there are only 6 distinct 

active set {},{rm}, {rc}, {ra}, {rc, ra}, {rt}. The reason is all other active set are equivalent 

to one of these active sets. For example  if we take {rm,ra}, this simply equals to {rm} 

because Manager inherits Agent. We calculated (number of positive, number of negative) 

test cases for these six representative active sets and we get the following results, 

repectivley: (0,6), (6,0), (3,3), (3,3), (5,1), (1,5), producing the total of 18 positive and 18 

negative test cases. 

In the third scenario, we considered RH + MP. In this case, there is only one 

active set which is {rm} where all the roles are active since manager inherits all the roles. 

We have 6 positive and 0 negative test cases. 

Figure 17 that RH+MP substantially reduces the number of test cases. For 

example, for the total number of security test cases, the case for RH+MP has only 24 test 

cases whereas RH scenario generated almost 78 test cases and the flat scenario had over 

154 test cases. 
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Figure 17: Evaluation Results. 

4.4.2 Evaluation of Fronts Coverage Approach 

In this chapter we evaluate the effectiveness of front coverage approach. Consider 

the role hierarchy in Figure 18 (a). The table in Figure 18 (b) gives the unique actions 

corresponding to each role in the role hierarchy.  
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a)       b) 

Figure 18: Example of a) role hierarchy for front coverage and b) the corresponding unique 

actions associated with each role in the hierarchy. 

 

 
a)                                             b)                                             c) 

Figure 19: Results of FCC for a) Teller role and b) Customer role; and c) Over all the roles 

for various k values. 

 

We compute the number of negative test cases that will be generated for various 

roles in the hierarchy while the value of k (the number of fronts that are considered) 

varies. Figure 19 (a) shows the number of negative test cases generated for k=1 through 5 

for the Teller role. Similarly, Figure 19 (b) shows the number of negative test cases 

generated for k=1 through 5 for the Customer role. Finally, Figure 19 (c) shows the 

number of negative test cases generated for k=1 through 5 over all the roles in the role 

hierarchy in Figure 18. From this example, we could observe that the substantial 
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reduction in the number of test cases was obtained for a lower k value. For example, for k 

=1, almost 54% reduction was occurred while 26% reduction was observed for k=2. 

Obviously this reduction may vary with the structure of the role hierarchy as well as the 

distribution of unique privileges over the roles in the hierarchy. However, our evaluations 

clearly demonstrate the feasibility and practicality of our approach.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 CONCLUSIONS 5.1

In this thesis, we have developed a technique for testing RBAC policies. It is 

critical to test RBAC policies since each policy is essential to meet and enforce the 

security requirements for preventing and detecting any security violations in the context 

of the access control requirements. Our technique incorporates the principle of maximum 

privileges, the structure of role hierarchy and a new security test coverage criterion to 

efficiently generate positive and negative security test cases. We developed RHMTBDD 

which is an extension of MTBDD to represent the RBAC policy. Further, we designed 

and implemented security framework to validate RBAC policies. This framework first 

parses the policy written in XACML to create RHMTBDD and then generates test cases 

by traversing the RHMTBDD. These test cases are created and stored in a container class. 

We validated and evaluated our security testing framework using JUnit as well as 

evaluated the saving obtained by our security testing technique through case studies. 

 Future Work 5.2

There are several future research directions for our work presented in this thesis. We list a 

few of potential future research tasks. 

5.2.1 Static Separation of Duty (SoD) 

One of the main reasons for popularity of RBAC is that it is easy to specify 

separation of duty constraints. Such constraints are part of RBAC2 (as well as RBAC3). 

(Static) SoD constraints specify mutually exclusive roles and prevent security 
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vulnerabilities which may be caused by a user having multiple roles which may allow 

him to commit fraud. For example in a bank application, the Billing Clerk role and the 

Account Receivable role should not be assigned to the same user. Hence, these roles can 

be declared to be mutually exclusive by a SoD constraint. Note that with respect to the 

given role hierarchy, if r1 and r2 are mutually exclusive roles then r1 cannot be a senior 

(containing) role to r2 or vice versa.  

Clearly, checking for violation of SoD constraints is part of the negative testing. 

For example, negative test cases for a user who is assigned to Billing Clerk role, will 

include a test where it would check whether the user can perform unique actions of the 

Account Receivable role. Hence, SoD constraints can be easily considered and these 

constraints can become part of negative test cases. 

RHMTBDD can be combined with SoD PMTBDD.  For example, in Figure 20 

policy P1+ P2 PMTBDD and P3 PMTBDD are combined to obtain (rightmost) 

PMTBDD  for P1+P2+P3. 

 

Figure 20: Representing Complex Security Policy. 

In general, our future work is to determine whether RHMTBDD can be combined with 

any arbitrary PMTBDD and come up with a procedure to create positive and negative test 

cases from the combined PMTBDD. 
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5.2.2 Integration with JET 

The test cases generated from our framework can be given to tool JET [26], [27] 

to validate the implementation of the code in the context of checking security violation as 

well as functional violations based on Java Modeling Language specification. JML has 

many characteristics and its own syntax [28]. JML can be used as a test oracle for the 

automated validation/verification of Java source code. 

  



52 

 

REFERENCES 

 

 

[1]  M. Bishop, Introduction to COMPUTER SECURITY, Addison-Wesley, 2004.  

 

[2]  "http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf," [Online].  

 

[3]  S. Osborn, R. Sandhu and Q. Munawer, "Configuring role-based access control to 

enforce mandatory and discretionary access control policies," ACM Transactions on 

Information and System Security (TISSEC), vol. 3, no. 2, pp. 85-106, 2000. 

  

[4]  H. Hu and G.-J. Ahn, "Enabling verification and conformance testing for access control 

model," in Proceedings of the 13th ACM symposium on Access control models and 

technologies. ACM, 2008.  

 

[5]  M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh and V. Shmatikov, "The most 

dangerous code in the world: validating ssl," in Proceedings of the 2012 ACM 

conference on Computer and communications security. ACM, 2012.  

 

[6]  H. H. Thompson, "Why security testing is hard," IEEE Security & Privacy, vol. 1, no. 4, 

pp. 83-86, 2003.  

 

[7]  H. H. Thompson and J. A. Whittaker, How to break software security, Addison Wesley, 

2003. 

  

[8]  J. F. Kurose and K. W. Ross, Computer Networking A Top-Down Approach Featuring 

the Internet, Addison Wesley, 2003.  

 

[9]  R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, "Role-based access control 

models.," in IEEE computer , 1996.  

 

[10]  J. Kleinberg and E. Tardos, Algorithm Design, PEARSON Addison Wesley, 2006.  

 

[11]  K. Fisler, S. Krishnamurthi, L. A. Meyerovich and M. C. Tschantz, "Verification and 

Change-Impact Analysis of Access-Control Policies," in In Proceedings of the 27th 

international conference on Software engineering, ACM, 2005.  

 

[12]  "http://sunxacml.sourceforge.net/," [Online].  

 

[13]  "http://docs.oracle.com/javase/tutorial/jaxp/dom/index.html," [Online].  

 



53 

 

[14]  "http://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#i1013320," 

[Online].  

 

[15]  H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker and M. Siegle, "On the use of 

MTBDDs for performability analysis and verification of stochastic systems," The 

Journal of Logic and Algebraic Programming , vol. 56, no. 1, pp. 23-67, 2003.  

 

[16]  E. Clarke, M. Fujita and X. Zhao, "Applications of multi terminal binary decision 

diagrams (No. CMU-CS-95-160)," Carnegie-Mellon Univ. Pittsburgh PA Dept Of 

Computer Science., 1995. 

 

[17]  M. Fujita, P. C. McGeer and J.-Y. Yang, "Multi-Terminal Binary Decision Diagrams:An 

Efficient Data Structure for Matrix Representation," Formal methods in system design , 

vol. 10, no. 2-3, pp. 149-169, 1997.  

 

[18]  "http://junit.org/," [Online].  

 

[19]  "http://www.tutorialspoint.com/junit/," [Online].  

 

[20]  "http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html," [Online].  

 

[21]  "http://msdn.microsoft.com/en-us/library/hh694602.aspx," [Online].  

 

[22]  G.-J. Ahn and R. Sandhu, "Role-based authorization constraints specification," ACM 

Transactions on Information and System Security (TISSEC),, vol. 3, no. 4, pp. 207-226, 

2000.  

 

[23]  H. Hu and G.-J. Ahn, "Constructing Authorization Systems Using Assurance 

management Framework," Systems, Man, and Cybernetics, Part C: Applications and 

Reviews, IEEE Transactions, vol. 40, no. 4, pp. 396-405, 2010. 

  

[24]  H. Hu, G.-J. Ahn and K. Kulkarni, "Discovery and Resolution of Anomalies in Web 

Access Control Policies," IEEE transactions on dependable and secure computing, vol. 

10, no. 6, 2013.  

 

[25]  R. Sandhu, F. David and R. Kuhn, "The NIST model for role-based access control: 

towards a unified standard," in ACM workshop on Role-based access control, 2000.  

 

 

[26]  Y. Cheon, "Automated Random Testing to Detect Specification-Code Inconsistencies," 

in in Proceedings of the 2007 International Conference on Software Engineering Theory 

and Practice, 2007.  



54 

 

 

[27]  C. E. Rubio-Medrano, G.-J. Ahn and K. Sohr, "Verifying Access Control Properties with 

Design by Contract: Framework and Lessons Learned," in Proceedings of the 2013 IEEE 

37th Annual Computer Software and Applications Conference. IEEE Computer Society, 

2013.  

 

[28]  L. Burdy, D. R. Cok, Y. Cheon, M. D. Ernst, J. R. Kiniry and G. T. Leavens, "An 

overview of JML tools and applications," International journal on software tools for 

technology transfer, vol. 7, no. 3, pp. 212-232, 2005.  

 

 


