

Automated Testing for RBAC Policies

by

Poonam Gupta

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2014 by the

Graduate Supervisory Committee:

Gail-Joon Ahn, Chair

James Collofello

Dijiang Huang

ARIZONA STATE UNIVERSITY

May 2014

©2014 Poonam Gupta

All Rights Reserved

 i

ABSTRACT

Access control is necessary for information assurance in many of today's

applications such as banking and electronic health record. Access control breaches are

critical security problems that can result from unintended and improper implementation

of security policies. Security testing can help identify security vulnerabilities early and

avoid unexpected expensive cost in handling breaches for security architects and security

engineers. The process of security testing which involves creating tests that effectively

examine vulnerabilities is a challenging task.

Role-Based Access Control (RBAC) has been widely adopted to support fine-

grained access control. However, in practice, due to its complexity including role

management, role hierarchy with hundreds of roles, and their associated privileges and

users, systematically testing RBAC systems is crucial to ensure the security in various

domains ranging from cyber-infrastructure to mission-critical applications.

In this thesis, we introduce i) a security testing technique for RBAC systems

considering the principle of maximum privileges, the structure of the role hierarchy, and

a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision

Diagram) based representation of RBAC security policy including RHMTBDD (Role

Hierarchy MTBDD) to efficiently generate effective positive and negative security test

cases; and iii) a security testing framework which takes an XACML-based RBAC

security policy as an input, parses it into a RHMTBDD representation and then generates

positive and negative test cases. We also demonstrate the efficacy of our approach

through case studies.

 ii

DEDICATION

To my beloved parents

and in loving memory of my in-laws.

 iii

ACKNOWLEDGEMENTS

First, I would like to convey my sincere thanks to my advisor Professor Gail-Joon

Ahn. He has advised and guided me throughout my thesis journey. Second, I would like

to convey my sincere thanks to my supervisory thesis committee Professor James

Collofello and Professor Dijiang Huang. And special thanks to Carlos Rubio Medrano for

helping me with all aspects of the thesis.

I have been fortunate to have multiple internships at Intel Corp., Chandler, which

provided me opportunity to apply the knowledge I learned through course work at ASU

in an industry setting. The internships also enabled me to learn various other skills

necessary for pursuing a professional career.

Last but not the least I would like to convey my thanks to my family for their un-

conditional love and support.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION .. 1

 Approach .. 4 1.1

 Contributions ... 7 1.2

 Thesis Outline ... 8 1.3

 2 BACKGROUND AND RELATED WORK ... 9

 Multi-Terminal Binary Decision Diagram (MTBDD) .. 9 2.1

 JUnit ... 11 2.2

 Role-Based Access Control (RBAC) ... 11 2.3

 eXtensible Access Control XML (XACML) ... 12 2.4

 Security Module/Unit Testing .. 14 2.5

 Related Work ... 14 2.6

 3 SECURITY TESTING APPROACH .. 18

 Preliminaries .. 18 3.1

 3.1.1 RBAC Model .. 18

 v

CHAPTER Page

 3.1.2 Goal of Security Testing .. 19

 3.1.3 Positive and Negative Test Cases.. 20

 Security Testing Approach for RBAC .. 21 3.2

 3.2.1 Generating tests for single authorized role .. 21

 3.2.2 Optimizing tests for multiple authorized roles ... 22

 3.2.3 Optimizing Negative Test Cases .. 24

 Role Hierarchy MTBDD (RHMTBDD) .. 26 3.3

 3.3.1 Introduction of The Decision Node ... 29

 3.3.2 Structure of RHMTBDD ... 31

 4 SECURITY TESTING FRAMEWORK: IMPLEMENTATION DETAILS AND EVALUATION 33

 Security Testing Framework ... 33 4.1

 4.1.1 XACML Policy Parser ... 33

 4.1.2 Generation of Test Cases from RHMTBDD ... 37

 4.1.3 Approaches for Creating Positive Test Cases .. 39

 4.1.4 Approach for Creating Negative Test Cases ... 40

 Summary of Framework Implementation .. 40 4.2

 Execution of security test cases ... 41 4.3

 Evaluation ... 43 4.4

 4.4.1 Evaluation of Maximum Privileges ... 43

 4.4.2 Evaluation of Fronts Coverage Approach ... 46

 5 CONCLUSION AND FUTURE WORK .. 49

 Conclusions .. 49 5.1

 vi

CHAPTER Page

 Future Work ... 49 5.2

 5.2.1 Static Separation of Duty (SoD) .. 49

 5.2.2 Integration with JET .. 51

REFERENCES ... 52

 vii

LIST OF TABLES

Table Page

Table 1: Unique and Inherited Action for Figure 9a) and Figure 9b) 27

Table 2: Example of Positive Test Cases .. 39

Table 3: Example of Negative Test Cases .. 40

 viii

LIST OF FIGURES

Figure Page

Figure 1: Policy Representation in MTBDD. 10

Figure 2: Combining PMTBDDs to get PMTBDD for the aggregate policy. 10

Figure 3 : RBAC Policy in XACML [2]. 13

Figure 4: Positive and Negative Test Case for |auth(r)| = 1. 22

Figure 5: An example role hierarchy. 23

Figure 6: Optimizing test cases for mutual non-dominating role. 23

Figure 7: Reducing Negative Test Cases. 25

Figure 8 : Fronts Coverage Criteria. 26

Figure 9: Hierarchical RBAC examples. 27

Figure 10: RHMTBDD for Figure 9 (a). 29

Figure 11: RHMTBDD for Figure 9 (b). 30

Figure 12: Implementation framework for creating Test Cases. 33

Figure 13 : Parsing XACML Policy. 34

Figure 14 : Output of XACML Policy Parsing. 35

Figure 15: Security Test Cases. 42

Figure 16: Results of Security Test Cases. 43

Figure 17: Evaluation Results. 46

Figure 18: Example of a) role hierarchy for front coverage and b) the corresponding

unique actions associated with each role in the hierarchy. 47

Figure 19: Results of FCC for a) Teller role and b) Customer role; and c) Over all the

roles for various k values. 47

Figure 20: Representing Complex Security Policy. 50

1

CHAPTER 1

 INTRODUCTION

As technology is getting more and more sophisticated and connected, security is

becoming an increasingly greater concern. Cyber systems in almost every domain

including commercial, medical, and entertainment need to overcome adverse activities

from various malicious entities. Security policy is defined to accommodate the security

needs for a system or an infrastructure. Security policy specifies security properties

needed to be satisfied for a system. Traditional security properties include confidentiality,

integrity, and availability (CIA) properties as well as usage property [1]. For example, a

simple security property to ensure confidentiality could be that no senior-level person can

write to a junior-level resource and no junior-level person can read a senior-level

resource [1]. Such and more complex security properties can be specified using security

policy languages such as XACML [2]. In addition, policy management is one of

important security mechanisms to check the assurance of the specified security policies

and enforce those policies.

Several security mechanisms such as biometrics and crypto primitives have been

developed to accomplish the required security properties [1]. Access control mechanisms

are essential to accomplish many of the security properties including confidentiality. Two

basic access control models are: discretionary access control (DAC) and mandatory

access control (MAC) [1]. DAC based mechanism have been used in various operating

systems and data bases systems but it is hard to manage since this mechanism is based on

users’ complex intentions, whereas MAC based mechanisms are very common in the

2

military domain which is not applicable to most computing environments. To address

inherent limitations in both the mechanisms, another access control model called Role

based access control (RBAC) [3] was introduced and has become popular since 1) it is

better aligned with how businesses operate – people are assigned various roles with

specific privileges in the companies’ appropriate hierarchy and restrictions are put in

place such as separation of duty (SoD) so that no single person can be over-privileged to

make any severe harm to the company; and 2) the generality of RBAC can help enforce

both DAC and MAC based mechanisms [3]. However, its flexibility can be problematic

in ensuring access control requirements especially for large-scale companies with

complex, and dynamic role hierarchies and constraints. Hence, automatic testing

techniques are tremendously needed to ensure that the “implemented” RBAC is

consistent with the “specified” RBAC.

Even though security policy may be embedded correctly in the application,

implementation of the policy may be affected by other factors such as compilers,

conversions and platforms [4]. Critical consequences arise due to existing security

vulnerabilities in the system and those vulnerabilities may also be caused by improper

reuse of software modules such as Application Programming Interface (API) [5]. In

general, security vulnerabilities are the weaknesses in the system. Often proper

functioning of codes being tested relies on implicit assumptions such as appropriate use

of the APIs and correct reuse of the existing software. These assumptions can lead to

security vulnerabilities, when the code is reused in different contexts. When these

security vulnerabilities get exploited or exposed, security violations may occur. These

3

violations may cause denial of service, loss of privacy, or even loss of life. Hence, these

factors necessitate proper testing of the implemented security policy.

There are four kind of security testing techniques depending upon the type of

security vulnerabilities or insecurities [6], [7] (classified by their cause) they intend to

expose, namely i) dependencies, ii) unanticipated user input, iii) design vulnerabilities,

and iv) implementation vulnerabilities. Insecurities caused by dependencies happen due

to use of third party libraries and other interfaces. Unanticipated user input can be caused

by an undesirable insertion of input. A technique to expose design vulnerabilities is an

example of inserting of interfaces in the application in order to perform testing. And,

implementation vulnerabilities may be useful in determining insecurities such as the man-

in-the-middle attack [8] which is not considered in the application.

In the context of security, a formal verification technique verifies security policy

against the security properties whereas a formal validation technique validates the design

and implementation of the policy [4]. Formal validation can be performed by applying

test cases which could be of two types: positive and negative. The positive test cases

correspond to authorization states which are allowed by the access control policy and the

negative test cases correspond to authorization states which are not allowed by the access

control policy [4]. Positive test cases basically test legitimacy, whereas the negative test

cases test for security vulnerabilities e.g. unauthorized access to sensitive resources.

Analyzing and managing security breaches can be expensive from various

aspects. Nevertheless, security testing is inevitable. Furthermore, given the dynamic

nature of RBAC access control, manual testing can be time consuming and tedious; and,

4

may not be even sufficient. Hence, developing automatic techniques for generating

positive and negative test cases is very crucial.

 Approach 1.1

In this thesis, we develop a technique for creating positive test as well as negative

test cases for the correct enforcement of an access control policy based on an RBAC

model. One of the incentives for adopting an RBAC model is to prevent Privilege

Escalation. This can also happen during the implementation of the code. Privilege

escalation occurs when a user or an application is allowed to perform an unauthorized

action. For example, a user application may access kernel level codes in an operating

system and a teller may perform an unauthorized action in the bank application so that it

can lead to security violations in the system.

There exists a family of RBAC models [9]. RBAC0 is the most basic model and it

defines “roles” to be groupings of “privileges”; “users” can be “authorized” to multiple

roles and could exercise only privileges associated with authorized roles that users have

activated. More complex features such as role hierarchy and constraints are part of

RBAC1 (Hierarchical RBAC) and RBAC2 (Constrained RBAC), respectively. Role

hierarchy allows roles to be organized as a Directed Acyclic Graph (DAG) [10] which

specifies “senior” roles can inherit privileges of “junior” roles. In essence, each role is

associated with its own “unique” privileges as well as those inherited from roles in the

role hierarchy. The most general model RBAC3 has all the aforementioned features. In

this thesis, we first introduce a way to systematically test RBAC policies. Formally, we

define the security goal for RBAC model and clarify how the positive and negative test

5

cases help fulfill the security goal. Further, we define the semantics of positive and

negative test cases with respect to role hierarchy.

In RBAC, a user can be simultaneously authorized to several roles and has the

option of activating any subset of roles in a session. We espouse the principle of

Maximum Privilege (as opposed to the principle of Least Privilege used in authorizing

roles [1]) in order to reduce the number of testing scenarios. The rationale is that the

potential to “harm” increases monotonically with the increased number of privileges.

Hence, we generate tests under the assumption that each user activates all the roles

simultaneously. Further, the reduction of test case is considered by avoiding generating

duplicate test cases when the subDAG rooted at two authorized roles for a user overlaps.

This leads to the following benefits for generating test cases: 1) positive test cases are

generated only for a subset of senior-most non-dominating roles from the set of

authorized roles, and 2) negative test cases are generated from the role hierarchy obtained

by deleting the subDAGs rooted at these roles.

Despite the above two optimizations there could be numerous test cases

generated. Further, many of these test cases may not be necessary from the security

testing perspective. For instance, if it is established that a user cannot obtain privileges

associated with a given role then it may be futile to generate negative tests with respect to

roles that is senior to this role. With this insight, we define a new coverage criterion for

negative test cases: generate test cases with respect to the (mutually non-dominating)

roles which are at most k “fronts” from the subDAG of the role associated with a user. A

front is a set of roles that is at the “same distance” from a given role node in the role

6

hierarchy which is obtained by deleting the role’s subDAG from the entire role hierarchy.

The parameter k could be adjusted to control the number of negative tests to be generated

(and correspondingly the level of security assurance desired).

RBAC is said to be policy neutral [3]. In other words, other security policies can

be specified and enforced in conjunction with RBAC. Previously, Multi Terminal Binary

Decision Diagram (MTBDD) based representation has been proposed to express complex

security policies [11]. A policy represented in MTBDD is called PMTBDD (Policy in

MTBDD). MTBDD corresponding to two different policies can be combined to obtain a

PMTBDD for the combined policy. The advantages of using the PMTBDD for policy

representation are its compactness and its capability in generating counter examples using

theorem-proving techniques. In this thesis, we propose a Role Hierarchy MTBDD called

RHMTBDD to express the RBAC’s role hierarchy and show how it can be combined

with a PMTBDD. Further, we show how positive and negative test cases can be

generated from an RHMTBDD. Intuitively, positive and negative test cases are generated

by traversing specific paths from desired (role) nodes to the appropriate terminal node in

the RHMTBDD.

Building upon the security testing technique and RHMTBDD representation of

RBAC, we also propose a security testing framework for RBAC policies. Our framework

takes a RBAC security policy expressed in XACML – a language based on XML for

specifying access control policies [12]. We use a Document Object Modeling (DOM)

parser [13], [14] to extract role hierarchy information from the RBAC profile of XACML

and generate the associated RHMTBDD. Further, we generate the positive and negative

7

test cases by traversing the appropriate paths in RHMTBDD and store them in a Java

container class.

We also evaluate our framework by generating test cases for a banking

application. Our evaluation shows that both positive and negative test cases are correctly

generated and that our framework can efficiently perform security testing for RBAC

based systems.

 Contributions 1.2

In summary, the contributions of this thesis are as follows:

 We propose a security testing approach which incorporates the principle of

Maximum Privileges, structure of the role hierarchy, and a new security test

coverage criterion to efficiently generate positive and negative security test

cases.

 We introduce RHMTBDD that can combine various security policies to

generate test cases for the more complex security policy.

 We develop a security testing framework for RBAC policies which takes a

RBAC security policy expressed in XACML, parses it into a RHMTBDD

representation, and then generates positive and negative test cases.

 We validate the proposed framework with in-house developed applications

and the generated test cases.

8

 Thesis Outline 1.3

 The remainder of this thesis is organized as follows. We introduce and describe

background concepts and the related work in Chapter 2. The theoretical foundations for

RBAC policy testing are presented in Chapter 3. Chapter 4 explains our security testing

framework, each phase of the implementation, and evaluation results. Finally Chapter 5

concludes this thesis with concluding remarks and future directions.

9

 CHAPTER 2

 BACKGROUND AND RELATED WORK

In this chapter, we present foundational concepts and related work with regards to the

automated security testing for RBAC we present in this thesis.

 Multi-Terminal Binary Decision Diagram (MTBDD) 2.1

 In this thesis, we adopt MTBDD to create security test cases to validate the

implementation of the policy. MTBDD has been used in solution for many different

problems. For example, it was used to create and analyze a large class of models [15].

This helped in reducing the "large state model" for a complex system to a "small scale

component" and consequently harnessing state space explosion. Further, it has been also

used to map Boolean vectors to integers in order to verify electric circuits [16].

MTBDD is a data structure to compactly represent a Boolean function over a set

of variables [17]. An MTBDD consists of nodes, edges and terminal nodes [11]. Each

node represents a predicate whether the attribute assigned to value is true or false. Each

edge represents the assignment value of the predicate. And each path represents the

decision label of the result of the Boolean function of the predicates in the path. MTBDD,

called PMTBDD, can be used to represent a policy. Figure 1 illustrates two policies: P1

indicates that a faculty member (f) can assign grades (ag) and P3 says if a user is both a

faculty member and a student, grade assignment is denied.

10

Figure 1: Policy Representation in MTBDD.

 MTBDD can be used to combine different policies [11]. For example, in Figure 2, P1

allows faculty (f) to assign grades (ag), and P2 indicates student(s) can receive grades

(rg). These two policies are combined to generate P3.

Figure 2: Combining PMTBDDs to get PMTBDD for the aggregate policy.

Access control policy can be represented with this data structure. Such

representation is flexible and scalable. Further, it needs less storage space [11]. MTBDD

can be suitable for finding violations and possible vulnerabilities in a policy. There are

mainly three terminal nodes in the graph: Permitted, Deny and Not applicable. The

Permitted (P) node terminates paths which allow the operation for a role in the policy.

The Deny (D) node terminates paths which do not allow the operation for a role in the

policy and not applicable (N) node terminates paths, which are not applicable for the

policy.

11

In this thesis, we leverage MTBDD data structure and convert XACML-based

RBAC policy into Role Hierarchical Multi Terminal Binary Decision Diagram

(RHMTBDD).

 JUnit 2.2

JUnit is a unit testing framework for Java [18] [19]. JUnit helps testers validate

functionalities of source codes by using unit tests provided by the testers. A test method

starts with annotation @ to differentiate from regular methods. JUnit has many features

[18] [19], e.g. it offers many assertions as well as test runner for running test methods and

showing the results for all test methods. Further, in JUnit testers can define a test suite

which combines test classes consisting of test methods and run all the tests together.

 Role-Based Access Control (RBAC) 2.3

 RBAC is one of the access control mechanisms to provide the access control

based on organizational structure. Each user is assigned a set of roles. Each role is

associated with a set of permissions. Furthermore, each role inherits permissions based on

a hierarchy [9]. Hierarchical RBAC1 has following components and properties as defined

in [9].

 Sets of Users (U), Roles (R), Permissions (P), and Session (S).

 PA P × R: permission to role assignment relation.

 UA U × R: user to role assignment relation.

 user: S U , a function that maps each session to a single user.

 RH R × R, role hierarchy is a partial order on R.

12

 roles: S 2
R

, where a user can activate a session with any combination of its

assigned roles and roles junior to those assigned roles.

 eXtensible Access Control XML (XACML) 2.4

XACML is a general access control policy language [12]. There are many features

defined in this language such as Policy, PolicySet, Rules, and Target to achieve the

objective of an access control policy. This language contains PolicySet to construct

policies. A PolicySet can have multiple policies or PolicySet and vice versa. A single

Policy can have only one access control policy denoted by Rule. Further, this policy

contains Target, which contains resources and action for the subject. XACML is used to

express deny and permit actions based on the policy. XACML has a specific profile

tailored for RBAC [20], which is used in this thesis.

 RBAC profile is used for role based access control policy. Further, hierarchical

RBAC model can be represented using this profile. RBAC profile contains four kinds of

policies [20] such as Role <PolicySet>, Permission <PolicySet>, Role Assignment

<Policy>, and HasPrivilegesOfRole <Policy> [20]. Role <PolicySet> determines a role

attribute-value pair defined in this policy. Also, it points to the Permission <PolicySet>

associated with a role. HasPrivilegesOfRole <Policy> is an option to query about the

subject role in this profile. Permission <PolicySet> policy contains all the actions

associated with a role attribute-value pair. Role Assignment <Policy> specifies which

subjects are assigned to a role. Further, this can be used to restrict how many users (or

combination of users) are allowed to activate the role. However, this policy is optional.

Inheritance can be achieved in this profile by adding <PolicySetIdReference> and giving

13

reference to the desired role. For example, if role1 is inheriting permissions from role2, it

can be achieved by having a tag of <PolicySetIdReference> inside Permission

<PolicySet> of the role1, where <PolicySetIdReference> is reference to the permissions

of role2.

1. …………………………………………………..

2. <PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

3. PolicySetId="PPS_Manager"

4. PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:permit-overrides">

5. <!-- Permissions specifically for the manager role -->

6. <Policy

7. PolicyId="Permissions:specifically:for:the:manager:role"

8. RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-

overrides">

9. <!-- Permission to create an account -->

10. <Rule
11. RuleId="create a customer account"
12. Effect="Permit">
13. <Target>
14. <Resources>
15. <Resource>
16. <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
17. <AttributeValue
18. DataType="http://www.w3.org/2001/XMLSchema#string">Account</AttributeValue>
19. <ResourceAttributeDesignator
20. AttributeId="resource-id"
21. DataType="http://www.w3.org/2001/XMLSchema#string"/>
22. </ResourceMatch>
23. </Resource>
24. </Resources>
25. <Actions>
26. <Action>
27. <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
28. <AttributeValue
29. DataType="http://www.w3.org/2001/XMLSchema#string">credit</AttributeValue>
30. <ActionAttributeDesignator
31. AttributeId="action-id"
32. DataType="http://www.w3.org/2001/XMLSchema#string"/>
33. </ActionMatch>
34. </Action>
35. </Actions>
36. </Target>
37. </Rule>
38. </Policy>
39. <PolicySetIdReference>PPS_Customer</PolicySetIdReference>
40. </PolicySet>
41. ………………………………………………………………

Figure 3 : RBAC Policy in XACML [2].

14

Figure 3 is the example of Permission <PolicySet> in RBAC profile. As

mentioned previously, this policy specifies the permissions associated with a role. In this

example, the role is Manager, referencing the role <PolicySet> for Manager in Line 3.

Line 12 tells “Effect” is permitted if role is Manager. Further, Line 18 and Line 29 show

that Manager can perform an action “credit” on resource called “Account”. There is

reference to permissions associated with Customer in Lines 39 with XACML feature

element <PolicySetIdReference>. This reference tells that Manager can inherit all the

actions associated with the Customer role.

 Security Module/Unit Testing 2.5

 Unit testing is obtained by three main actions arrange, act, and assert (AAA)

[21]. For example, to verify the correctness of the subtract function, testers first need to

act by arranging and assigning input parameters in its testing unit. Further, testers act by

calling subtract function and finally assert the expected result with actual result by calling

function under test. Same technique can be applied while preforming security testing.

For example, in hierarchical RBAC testing, arrange is done by creating a role object and

its associated permission. Further, act is done by checking whether a particular role is

allowed to perform its actions. Then, the role object method is called only if it is asserted

that this operation can be performed through this object.

 Related Work 2.6

In this chapter, we describe how this thesis work is related to and different from

other related work. Hu and Ahn [4] have done similar work to generate positive and

15

negative test cases. Their approach involved creating negative test cases by separating

constraints from Access Control Model Specification (ACMF). Access Control Model

Specification consists of Model (M), Function (F) and Constraints(C) [4]. In ACMF M

represents security model and F represents specification such as operation. Constraints

represents restriction in a policy such as which role is authorized to do what operation.

After separation of C (Constraints) from ACMF, constraints are given as a separate input

to the formal verifier. If the formal verifier yields the result as NOT OK, a sequence of

counter examples gets created and these counter examples could be used to generate

negative test cases. The process of generating positive test cases is similar; however,

constraints are negated when C is separated from ACMF. The formal verifier yields the

result as NOT OK and the counter examples are used to generate the positive test cases.

Hu and Ahn's approach involves two steps. First, it takes RBAC model and converts into

RCL2000 [22]; further RCL2000 is translated into ALLOY and given as an input to

Alloy Analyzer. Finally, test cases are created. In the second step, the RBAC model gets

translated into Unified Modeling Language (UML) class diagram. Codes are generated

through UML and test cases created in the first step are validated against the codes. Hu

and Ahn's method differs from our method. Unlike their method we are not using

RCL2000 and Alloy analyzer. And they use UML to generate source codes from RBAC

policy. In our approach we are using RHMTBDD inspired by MTBDD to create security

test cases. Further, these test cases are incorporated with JUnit specification to validate

implementation of the codes.

16

Hu and Ahn have extended their work in [23] and designed an authorization

system for a Financial Service System. They have obtained an authorization system by

defining requirements, classifying RBAC objects, relations and restrictions for banking

applications and finally by designing and implementing a banking application system.

Further, they perform “Conformance testing” on this system which they have designed

and implemented through specification. They created positive and negative test cases for

this system. Positive test cases are those cases, which are allowed by the access control

authorization state. Negative test cases are those cases which are disallowed by access

control policy. Creation of these test cases is similar to the one described in [4] by

separating constraints C from ACMF and giving as a separate input to formal verifier. To

create positive test cases, they created negative constraints and gave it as an input to

verifier and converted the result into counter examples which become the positive test

cases. Negative cases are generated through positive constraints and results are converted

into counter examples which become negative test cases. Our approach is different in

generating positive and negative test cases. Their approach is based on logical model. In

their approach, security testing is based on logical requirement and logical design of the

system. In our approach first, we parse XACML policy to convert into RHMTBDD.

Second we create positive and negative test cases by traversing the path in RHMTBDD.

Hu, Kulkarni and Ahn’s approach used Binary Decision Diagram (BDD) in order

to find out anomalies in web access control policy [24]. BDD is a special case of

MTBDD [11]. It has only two terminal nodes: permitted and not permitted. Their

17

approach does not involve traversing paths to create test cases [23]. They used BDD as a

set operation to find anomalies in policies.

 Fisler et al. used MTBDD to verify access control property against policy defined

in XACML [11]. They used MTBDD to find the impact and existence of the

vulnerabilities due to the policy changes [11]. Their approach used MTBDD to determine

the impact through theorem-proving. We use MTBDD to create test cases to validate the

implementation of the source code against the RBAC policy, whereas their approach is

focused on analyzing policies.

 In summary, our approach differs from previously proposed approaches in

generating test cases. Additionally, our approach utilizes MTBDD differently and

modifies MTBDD to convert XACML policy into RHMTBDD with three terminal nodes

“permitted”, “deny”, and “not applicable”. Our approach uses RHMTBDD to create test

cases to validate the implementation of the code against RBAC model policy.

18

CHAPTER 3

SECURITY TESTING APPROACH

In this chapter we develop an approach for performing security testing of RBAC policy.

We first start with some basic definitions followed by the detailed steps for the proposed

approach.

 Preliminaries 3.1

In RBAC, any privileges to perform actions on the information (objects) are

controlled by grouping privileges into roles and assigning users to roles [1]. There are

several models of RBAC [9]: RBAC0 is the most basic; RBAC1 includes all aspect of

RBAC0 as well as role hierarchy; RBAC2 also includes all aspects of RBAC0 but has no

role hierarchy, but instead it has constraints on roles, privileges, and other relations (e.g.

separation of duty and cardinality constraints); and RBAC3 is the most comprehensive

RBAC model and it inherits all aspects of both RBAC1 and RBAC2. In this thesis we will

mainly focus on RBAC1.

3.1.1 RBAC Model

There are some basic definitions associated with RBAC (from [1], for RBAC0

model [9]) required for explaining our framework. The set of authorized actions (called

transactions in [1], permissions or privileges in [9]) for each role r is denoted as trans(r).

Although [9] distinguishes between users and subjects (or sessions) – a user is associated

with multiple subjects with several (subset) of its authorized role activated – in the

following we use users and subjects interchangeably. The set of active roles of a user or a

19

subject s is denoted as actr(s). The set of authorized roles of a subject s is denoted as

authr(s). The predicate canexecs(s,t) denotes whether a subject s can perform a

transaction t (at a given time). The functions actr(), authr(), and canexec() are from [1]

which we use in this thesis.

Note that in the case of hierarchical RBAC (RBAC1 model [9]) the set of role

authorized to a subject is governed by a role inheritance hierarchy (with an associated

partial order role dominance relation ≥ R×R). Hence, the set of roles authorized to a

subject s with primary authorized role r is all the roles r’ appearing in the subDAG

rooted at r in the RBAC hierarchy, i.e., {r’ | r ≥ r’}. We call non-inherited actions

associated with a role as its unique actions.

In [1] there are three basic rules associated with RBAC. The role assignment rule

[canexcs(s,t) => actr(s) ≠ Ф] says that a subject s can perform a transaction only if s is a

member of an active role. The role authorization rule [actr(s) authr(s)] says that for

any subject s, only an authorized role can be activated. Note that a user can have multiple

active (authorized) roles at any given time. The rule of transaction authorization

[canexecs(s, t) => t ∈ trans(actr(s))] says that a subject s can only perform its actions

associated with its active roles.

3.1.2 Goal of Security Testing

Intuitively, any violation of these three rules is associated with corresponding

security vulnerabilities in the system. For example, a violation of role assignment means

that a subject is able to perform an action even if it has no active roles. There are other

security problems which also need to be tested for. For example, those that can be

20

associated with availability: A user may be unable to perform an action which is in its

active role set.

Hence, a goal of security testing should be to ensure that for every user s the set

of all permitted actions is equal to the set of all actions associated with all active roles,

i.e. , {t | canexecs(s,t)} == trans(actr(s)). In the following, for the sake of simplicity we

define canexecs(s) = {t | canexecs(s,t)}.

3.1.3 Positive and Negative Test Cases

In our approach we generate two types of test cases:

1. Positive test cases: ensures P: ∀s canexecs(s) ⊇ trans(actr(s)). Every subject s

can perform all the actions corresponding to all its active roles. This is done by

generating positive test cases to check whether a subject with a particular active

role r can perform all unique actions associated with r as well as all inherited

actions (in case of hierarchical RBAC) associated with r. The predicate P is

ensured when all the positive test cases “pass”.

2. Negative test cases: ensures N: ⌐(∃s canexecs(s) ⊃ trans(actr (s))). There does

not exist a subject s which can perform an action that does not correspond to any

of its active roles. This is done by generating negative test cases to check whether

a user cannot perform any of its non-unique non-inherited actions. Each negative

test case passes if the subject is not granted access to perform such an action. The

predicate N is implied if all the negative test cases pass.

Combining these two sets of test cases ensures that for every subject s:

21

canexecs(s) ⊇ trans(actr(s))˄ ⌐(canexecs(s) ⊃ trans(actr (s)))

i.e., canexecs(s) == trans(actr(s)).

 Security Testing Approach for RBAC 3.2

In this section, we present our detailed approach for performing security testing for

RBAC policy.

3.2.1 Generating tests for single authorized role

For a user with single authorized role R, the semantics of RBAC authorizes the

user for all the roles in the subDAG from DAG(R) in the role hierarchy RH. The positive

test cases are with regards to all the unique and inherited actions for all the roles in this

subDAG. The negative test cases are generated by deleting the DAG(R) from RH. This

effectively implies that actions/privileges associated with roles in DAG(R) are not

inherited by any roles in RH – DAG(R). Now the negative test cases are generated with

respect to the actions associated with roles in RH – DAG(R). For example if a user is

authorized to a single role R, positive test cases with regard to role R are associated with

permissions in the subDAG rooted at R and negative test cases are related to all the

privileges associated with RH – DAG(R) as shown in Figure 4.

22

Figure 4: Positive and Negative Test Case for |auth(r)| = 1.

3.2.2 Optimizing tests for multiple authorized roles

Although in general the active role set for a user in a session is a subset of

authorized roles, for the sake of simplicity, we assume that actr(s) = authr(s), i.e., all the

roles a subject is authorized to ought to be activated by the subject. In essence this

assumption generates test cases under maximum privileges assigned to a user. The

rationale is that under this assumption the most serious vulnerabilities (i.e. a user can

perform actions which they are never allowed) and all inconveniences (i.e. a user is not

allowed to perform an action even though he is authorized to). This considerably reduces

the number of test cases since there are 2
|authr(s)|

 different actr(s) sets possible for a given

authr(s). For example, in Figure 5 a user is authorized to a role, role2. Due to RH,

authr(u) = {role2, role4, role5, role6}. There are 2
4

possible subsets for this role so it

creates test cases only for actr(u) = {role2, role4, role5, role6} instead of creating test

cases for all different subsets.

23

 Figure 5: An example role hierarchy.

Further, assume that there exists a single most dominant role r in the authr(s), i.e. r =

max≥ (authr(s)), the set of positive and negative test cases can be easily generated based

on all the unique and inherited actions of role r. In case there is no unique most dominant

role in authr(s), we can determine maximal subset T of authr(s) such that: 1) any pair of

roles in T is mutually non-dominating, i.e., if r1, r2 in T then neither r1≥r2 nor r2≥ r1

unless r1= r2; and 2) If r1 in T then there is no r2 in authr(s) such that r2 ≥ r1 unless r1= r2.

Basically, T consists of senior-most mutually non-dominating roles from authr(s). The

positive and negative test cases can now be computed by taking the union of all the

unique and inherited actions of roles in T. This procedure avoids generating duplicate test

cases since any role junior to multiple roles in T is only considered once.

Figure 6: Optimizing test cases for mutual non-dominating role.

24

 Consider roles R and S in Figure 6. They both are mutually non-dominating

roles. Optimization in creating test cases can be achieved by not duplicating the test cases

for overlapping area. Suppose in Figure 5 authr(s) = {role4, role5, role6}. We can

calculate maximal subset T = {role4, role5}. Positive test cases can be generated by

taking union of all unique and inherited actions of role4 and role5 (that is the union action

of role4, role5 and role6). And negative test cases can be generated for which are not

included in the union set of positive tests. Positive test cases = {union actions: inherited

actions of role4} ∪ {union actions: inherited actions of role5}. Negative test cases are

⌐{{union actions: inherited actions of role4} ∪ {union actions: inherited actions of

role5}}.

3.2.3 Optimizing Negative Test Cases

This testing coverage criterion is to test for all vulnerabilities related to actions for

each role. It creates positive test cases for every role’s unique action and inherited

actions. And negative test cases are created based on all actions which are not inherited

and unique actions for a role. However, despite the optimizations suggested in the

previous chapters the number of test cases could be enormous.

In this section, we first provide a motivating example and then describe a new test

coverage criterion which can be used to balance the number test cases and the desired

level of assurance.

25

Figure 7: Reducing Negative Test Cases.

We can optimize negative test cases by considering only min under dominance

role of non-authorized role r’s unique action such that r = min≥ (RH-authr(s)), where RH

is the role hierarchy. Negative test cases can be easily generated based on all the unique

and inherited actions of role r. Consider if user is authorized to role2 in Figure 7.

Negative test case for role1 relates to all the actions of min ≥ [{role1, role2 role3, role4,

role5, role6, role7} – {role2, role5, Role7}] = min ≥{role1, role3, role4, role6} = role6.

We can notice that this reduces the number of negative test cases by eliminating actions

of role1, role3, and role4. This is under the assumption that if a user is unable to perform

actions associated with a role r then the user would unlikely be able to perform actions

associated with a role senior to r. In essence, we assume that the potential to harm

monotonically increases with the number of privileges (active roles).

3.2.3.1 Test coverage criteria

Motivated by the above example, we suggest the following coverage criteria:

generate test cases only with respect to the (mutually non-dominating) roles which are in

at most k “fronts” from the subDAG of the role associated for a user. A front is a set of

26

roles which are the “same distance” from a given role node in the role hierarchy obtained

from deleting the role’s subDAG from the entire role hierarchy. The parameter k could be

adjusted to control the number of negative tests to be generated (and correspondingly the

level of security assurance desired). Figure 8 illustrates the optimization of creating

negative test cases.

 Role Hierarchy MTBDD (RHMTBDD) 3.3

Figure 9 (a) is an example of a hierarchical RBAC model. In this policy, a

manager (a user with role Manager) can create and cancel the account, a customer (a user

with role Customer) can transfer and change the account, and a teller (a user with role

Teller) can deposit and withdraw the account. Furthermore, manager can inherit all the

permissions from customer and teller. Customer can also inherit all the permissions from

Teller. Figure 9 (b) is another example of hierarchical RBAC model, where Manager is

inheriting from two same level junior role Customer and Agent. Further, Customer and

Agent cannot inherit each other unique actions. Table 1 (top) and (bottom) has the unique

Figure 8 : Fronts Coverage Criteria.

27

actions and inherited actions assigned to corresponding roles illustrated in Figure 9 (a)

and Figure 9 (b), respectively.

 a) linear hierarchy b) non-linear hierarchy

Table 1: Unique and Inherited Action for Figure 9a) (top) and Figure 9b) (bottom).

Role Unique Action Inherited Action

Manager Credit, Cancel Transfer, Charge, Suspend

Customer Transfer, Charge Deposit, Withdraw

Teller Deposit, Withdraw None

Role Unique Action Inherited Action

Manager Credit, Cancel Transfer, Change, Suspend

Customer Transfer, Check Deposit, Withdraw

Teller Deposit, Withdraw None

Agent Suspend Deposit, withdraw

We construct RHMTBDD with role nodes, action nodes and decision nodes as well as

three terminal nodes permitted (P), denied (D) and not applicable (N) (described later in

Chapter 4. Note not every RHMTBDD may have all the three terminal nodes.). Each role

node represents a predicate corresponding to a role attribute-value pair such as "role =

Manager". Similarly, each action node represents predicate corresponding to an action

attribute-value pair such as "action = credit". We introduce a new node called the

decision node in order to distinguish between the two same level inheritances (if they

Manager

Customer

 Teller

Manager

Customer

 Teller

Agent

Figure 9: Hierarchical RBAC examples.

28

exist) for any role such as shown in Figure 9 (b). As defined in [11] MTBDD has three

useful characteristics. We have adopted these characteristics to build RHMTBDD. First, a

MTBDD enforces a fixed ordering among the various nodes and all “policy” paths are

traversed from a root node (there can be multiple root nodes corresponding to senior most

non-dominating roles in the role hierarchy) to a terminal node. Figure 10 and Figure 11

are examples of RHMTBDD. The paths 101 (denoting a Manager can perform the cancel

operation) and 011 (denoting a Customer can perform transfers) are examples of policy

paths starting from the senior most Manager role node in Figure 10. Restricted or fixed

ordering among the nodes enables MTBDD to be a canonical representation of the policy.

Second, in MTBDD any sub tree can appear only once as is the case in Figure 10 and

Figure 11. This property makes MTBDD a compact representation of the policy. Third,

MTBDD deletes irrelevant nodes from the MTBDD. For example, in Figure 10, we do

not have D terminal node since there are no paths lead to it.

In our sample RHMTBDD, an ellipse shape corresponds to a role node, a

rectangle with round corner corresponds to action nodes and a rectangle with sharp

corner corresponds to terminal nodes. Figure 10 is a graphical representation of the

policy. In this figure Manager (M), Customer (C), and Teller (T) are role nodes. Credit

(cr), cancel (cn), transfer (tr), charge (ch), deposit (d), and withdraw (w) are action nodes.

Further, a rectangle with sharp corner corresponds to the end of the path called terminal

nodes and denotes as permitted (P) and not applicable (N). Each node has two outgoing

edges. Left edge is labeled as 1 and right edge is labeled as 0 in each RHMTBDD. If the

29

left edge of the node is taken the attribute-value of the node corresponds to true

otherwise, if the right edge is taken then it corresponds to false.

 If we take the path starting from the root 0011 (Teller can deposit), 100001

(Manager can deposit), and 1001 (Manager can transfer), we can see these paths

correspond to valid actions. The process for creating positive test case is to follow paths

from a desired node and follow until it has reached the permitted node. Previously

mentioned paths 0011, 100001, and 1001 are all positive test cases because they lead to

the permitted terminal node.

Figure 10: RHMTBDD for Figure 9 (a).

3.3.1 Introduction of The Decision Node

We introduce a new node called Decision Node (DN) to create RHMTBDD for

RBAC1 model. The objective of DN is to assist RHMTBDD, if there are two same level

inheritances for a senior role. DN is created when a role object inherits from two different

junior roles at the same level. DN is added as the left child node of this role. And the first

30

junior role is added as the right child of this role node and the second junior role is added

as the right child node of the first junior role node.

Manager inherits two different role objects Customer and Agent at the same level

in Figure 9 (b). DN is added to the left of the Manager node and the Customer node is

added as the right child of the Manager node. Further the Agent node is added as the right

child of the Customer node in the RHMTBDD. Figure 11 depicts how DN helps to

determine if there are two same level inheritances (mutually non dominating roles) and

how DN restricts to perform actions among mutually non dominating roles. In Figure 11

there is no path from Agent to Customer action and vice versa. This implies that Agent

cannot perform unique actions associated with Customer and Customer cannot perform

Agent’s action as stated in Figure 9 (b). Manager can perform all the actions as it inherits

from all the roles. We apply this algorithm with more complex hierarchical RBAC

model, where DN helps disallow any role to perform its unauthorized action.

Figure 11: RHMTBDD for Figure 9 (b).

31

3.3.2 Structure of RHMTBDD

This section describes the layout of RHMTBDD. The RHMTBDD is defined by

the following three rules:

1. Role with no inheritances: In this rule, first unique action node of this role

node is the left child for this role node; and, each subsequent unique action

node is the right child of the previous unique action node. Each unique action

node’s left child is the terminal node P. Further, last unique action’s right child

is the terminal node N. The right child of this role node is another role node or

the terminal node N.

2. Role with single inheritances: When a role in the inheritance hierarchy has a

single inheritance (i.e. the role node inherits from a single junior role), the node

for the first unique action of this role is its left child. Further, the right child of

this role node is its junior role node; and, each subsequent unique action node

is the right child of the previous unique action node. And finally, the last

unique action’s right child is the left child of its junior role.

3. Role with double inheritances: In this case, when there are two junior role

inheritances; the left child of this role node is a DN. The right child of this role

node is its first junior role node. Further, its first unique action is the left child

of the DN; and, each subsequent unique action node is the right child of the

previous unique action node. Further, each unique action’s left child is the

permitted node. The DN’s right child is the left child of the first junior role

32

node; and, DN’s left child is its first unique action. Further, the last unique

action’s right child is the left child of the second junior role.

33

CHAPTER 4

SECURITY TESTING FRAMEWORK: IMPLEMENTATION DETAILS AND

EVALUATION

 Security Testing Framework 4.1

Our framework takes as input an RBAC policy specified in XACML. The Policy

Parser converts the RBAC policy into a policy graph represented in RHMTBDD. Using

RHMTBDD, it generates test cases by following appropriate paths in the RHMTBDD

from the root node to a terminal node, creating respectively the positive and negative test

cases for allowed and disallowed actions in the policy. These test cases can be used in

testing tool such as JUnit for testing the system based on the specified RBAC policy. Our

security testing framework is illustrated in Figure 12 .

4.1.1 XACML Policy Parser

 The Policy Parser parses the Permission<PolicySet> associated with each role in

the RBAC profile of the input XACML file. The parser uses DOM APIs [13], [14] to

accomplish this task. The parser basically keeps track of inheritance hierarchy and

maintains a list of the unique actions and inherited actions for each role.

RBAC

XACML

Policy

Policy

Parser

Creation

of Policy

Graph

Creation

of Test

Cases

Validate

Test

Cases

Figure 12: Implementation framework for creating Test Cases Figure 12: Implementation framework for creating Test Cases.

34

4.1.1.1 Implementation of parsing policy

We used Java DOM API to parse policies written in XACML [14]. DOM stores XML

file as a tree structure. This Parser sets the root node and returns all children associated

with this node. In order to access all the children nodes and their attributes, DOM

provides many APIs depending on the need of parsing [14]. Further, this parser extracts

information related to every role, inheritance, and their action and stores such information

in a linked list. Furthermore, we used this information to create RHMTBDD

corresponding to the policy written in XML. Figure 13 is an excerpt of the Policy Parser

code. It finds “PolicyId” associated with “Policy” for role and stores this

information in new object called RoleCreator. The RoleCreator Class stores the

information of each role, its permission, and its inheritance.

1. NodeList nList = doc.getElementsByTagName("PolicySet");
2. for (int temp = 0; temp < nList.getLength(); temp++){
3. Node nNode = nList.item(temp);
4. NodeList children = nNode.getChildNodes();
5. for (int j = 0; j < children.getLength(); j++) {

a. Node child = children.item(j);
b. String childName = child.getNodeName();
c. RoleCreator rolecreator;
d. if (childName.equals("Policy")) {

i. Element eElement = (Element) child;

ii. rolecreator = new RoleCreator();

iii. String role = eElement.getAttribute("PolicyId");

iv. rolecreator.setRoleName(role);

i. ……………………………………

Figure 13 : Parsing XACML Policy.

Figure 14 has the output through parsing RBAC policy written in XACML. Lines 2,

7, 11, and 14 have role content such as Manager, Employee, Teller, and Agent,

respectively. Further, lines 3, 8, 12 and 15 have RuleId as to what action they can

35

perform. Lines 4 and 5 display that Manager can inherit from Employee as well as Teller.

Further, Lines 17 displays roles, permission and inheritance described in policy.

1. Permissions:specifically:for:the:manager:role

2. manager

3. RuleId="sign a purchase order"

4. ChildContentPPS_Employee

5. ChildContentPPS_Teller

6. Permissions:specifically:for:the:employee:role

7. employee

8. RuleId="create a purchase order"

9. ChildContentPPS_Teller

10. Permissions:specifically:for:the:teller:role

11. teller

12. RuleId="look at purchase order"

13. Permissions:specifically:for:the:agent:role

14. agent

15. RuleId="update a purchase order"

16. ChildContentPPS_Teller

17. [|manager: [sign], [PPS_Employee, PPS_Teller]|, |employee: [create], [PPS_Teller]|, |teller: [look],

[none]|, |agent: [update], [PPS_Teller]|

Figure 14 : Output of XACML Policy Parsing.

4.1.1.2 Implementation of RHMTBDD

This section describes the algorithm called DAGCreator to generate RHMTBDD

corresponding to the parsed RBAC policy. DAGCreator starts with the roles in reverse

topological order in the role hierarchy. This ensures that RHMTBDD is already

constructed for all the junior roles when a senior role is processed. It checks if the current

role node has one or two inheritances at the same level. The algorithm can be generalized

if the role inherits from more than two junior roles at the same level – a role hierarchy in

which a node inheriting from more than two junior roles can be converted into a

hierarchy with each node having only two juniors by introducing some “virtual” or

dummy roles. A similar technique of introducing additional roles is used to prevent

36

inheritance of certain “private” privileges in the role hierarchy [25]. The structure of

RHMTBDD for a role hierarchy in which there are at most two junior roles for any role

node has been described in the previous chapter. Recall that, if the role inherits from just

a single junior role, then the first unique action as an action node – a node which denotes

a privilege - is added as the left child of the role node. Note that the edge label for the

edge to the left child is always 1 – denoting “true” - and that to the right child is 0 –

denoting “false” value for the predicate corresponding to the node from which the edge

originates. Subsequently each unique action of this role node is added as the right child of

each of the subsequent action node. Each action node’s left child is the permitted node

(P) since these actions are permitted by the policy. The role node corresponding to the

junior role becomes the right child of the role node. Additionally, the first unique action

of the junior role node is added as the right child of the last unique action of the role

node. The action nodes corresponding to remaining unique actions of the junior role are

added in a similar manner to those for the role node. Further, the least privileged node

ends with not applicable (N) node. Figure 9 (a) is an example of this inheritance type.

 If a role inherits from two junior roles, then the algorithm adds one Decision Node

(DN) as the left child of the role node. Further, it adds the first junior role node as the

right child and the second junior role node as the right child of the first junior role node.

The action node corresponding to the first unique action of this role node is added as the

left child of DN. The first unique action node of the first junior role becomes the right

child of the DN. And the first unique action node of the second junior role becomes the

right child of the last unique action of this role node. The rest of the rule remains the

37

same as the one in a single level inheritance. Figure 9 (b) has this kind of role hierarchy

and their corresponding RHMTBDD in Figure 11.

4.1.2 Generation of Test Cases from RHMTBDD

The test cases can be easily generated by traversing paths over the RHMTBDD as

follows:

 Generating positive test case for a given (single authorized) role: it simply

performs depth-first search (DFS) [10] on the left subDAG of the role node. A

positive test case is generated for each action node which can reach the permit

terminal node.

 Generating positive test case for a multiple authorized role: We consider

state-preserving (links that have been already visited) invocation of a sequence

of DFS, subsequently starting from role nodes in the authorized set. The links

visit while each DFS are marked and preserved for subsequent invocation of DFS.

Each invocation of DFS traverses only those links which have not yet been visited

by any previous DFS invocation. Positive test cases are generated by the steps of

the previous case (i.e., whenever an action node can reach the permit terminal

node). The state preserving invocation ensures that the duplicated test cases are

not generated (i.e., conceptually it performs the union of subDAGs rooted at the

role nodes in the authorized set (see Section 3.2.2)).

 Generating negative test case for single (multiple) authorized role: We again

use the state preserving invocation of DFS. In this case, the DFS starts with

RHMTBDD with the link state of all the links visited during generation of

38

positive test cases preserved. Further, the permitted P terminal node is replaced by

denied D. The negative test cases is now generated by performing DFS for the

role nodes which were not covered during the positive test case generation which

is similar to the way for generating positive test cases – with a simple difference

that the paths are traversed to the D terminal and consequently test-cases now are

negative test cases. Intuitively, this process simply deletes the subDAGs

corresponding to authorized roles from the overall RHMTBDD and generates

(negative) test cases on the remaining RHMTBDD.

 The above process for generating negative test cases can be refined to generate

test cases only up to certain fronts given the role nodes in the fronts which can be

obtained from the RH. In this case, it only generates the test cases for role nodes

in the fronts following the above procedure started with the marked RHMTBDD

obtained after generating all the positive test cases. The computation of the front

on the role hierarchy is as follows. First, it removes the subDAGs associated with

the roles in the authorized set from RH. The first front is the set of leaf node in the

remaining DAG. The second front is the set of leaf role nodes, which in the DAG

is obtained by deleting the first front and so on.

Since the complexity of performing DFS is O(n+m), where n is the number of nodes

and m is the number of edges in the graph, the complexity for generating all the test

cases is same, where n is the number of nodes and m is the number of edges in the

RHMTBDD. This can be established by the simple observation that the execution of

39

all the (mini) DFSes simply amounts to the execution of one (large) DFS over the

entire RHMTBDD due to the state-preserving nature of the invocations.

4.1.3 Approaches for Creating Positive Test Cases

There are two approaches for creating positive test cases. The first approach is

used when a desired role and desired action are given and it finds the result by traversing

RHMTBDD till it reaches a terminal node which would be either “permitted” node or

“not permitted” node. Table 2 shows the first approach for generating positive test cases

for CheckOperation(Role, Roles’ authorized action). This method

finds the role’s authorized action and checks whether the path ends with the terminal

node “permitted”. The second approach is to generate all the positive tests associated

with a given role. Table 2 lists positive test cases for CheckAllOperations(Role)

to find role and associated results for all unique and inherited actions by traversing

RHMTBDD. For example, in Table 2 the positive test cases will return “true” because

they lead to a permitted node in RHMTBDD shown in Figure 10.

Table 2: Example of Positive Test Cases.

Approach 1 Approach 2

 CheckOperation(Role, Role's authorized

actions)

 CheckAllOperations(Role)

 1. CheckOperation(Manger, Credit) 1. CheckAllOperations(Manager)

 2. CheckOperation(Customer, Transfer) 2. CheckAllOperations(Customer)

 3.CheckOperation(Manager, Cancel) 3. CheckAllOperations(Teller)

 4.CheckOperation(Customer, Withdraw)

40

Table 3: Example of Negative Test Cases.

checkOPerationNegative(Role, Roles non unique

action and non-inherited action)

 checkOPerationNegative(Role)

 1. CheckOPerationNegative(Teller, credit) 1. CheckOPerationNegative (Manger)

 2. CheckOPerationNegative (Teller, cancel) 2. CheckOPerationNegative (Customer)

 3. CheckOPerationNegative (Teller, transfer) 3. CheckOPerationNegative (Teller)

4.1.4 Approach for Creating Negative Test Cases

Creating negative test case is to find all actions which are not unique and inherited

action for any role in RHMTBDD and generate test cases for those actions. This

approach enables to test all the vulnerabilities for all those actions on which a role should

not perform. Intuitively, we need to generate a list for unique actions and inherited

actions for each role. Further, we create a function in which we take out all the unique

and inherited actions out of this list and create negative test cases with these actions.

Table 3 is an example of negative test cases for RHMTBDD in Figure 10. As mentioned

earlier state preserving DFS is used for this purpose.

 Summary of Framework Implementation 4.2

 In summary, we keep all the information such as unique actions (for a role) and

its inherited list (the list of roles junior to this role) during the parsing in an object called

RoleCreator. The Parser object returns a list of RoleCreator objects

corresponding to all the roles in the role hierarchy. We give this information to the class

called DAGCreator. This class looks at each role’s unique actions and inheritances

and creates the RHMTBDD. Further, we have created a class called container, where

we store all security test cases from RHMTBDD for all the roles.

41

 Execution of security test cases 4.3

Test cases generated from RHMTBDD are validated in JUnit by developing a small

banking application to find security violations. The banking application contains

Account, Bank, Manager, Customer, and Teller class. Account class contains methods for

querying information such as who is the owner of the account and for operations such as

withdraw fund, deposit fund and check fund for the account. Further, Bank class contains

information about manager, a list of customers and a list of tellers. Hierarchy of this role

is as illustrated Figure 9 (a). In this policy, Manager can perform “credit” and “cancel”

actions. Customer can perform “deposit” and “withdraw” action. And Teller can perform

unique actions “check”.

Since JUnit does not have access control mechanism, we use the same mechanism

for generating the test cases in simulating the access control during run-time, i.e.,

traversing an RHMTBDD to find whether an action is permitted or not for a given role.

Note that the RHMTBDD used for generating the test case is different from RHMTBDD

used during testing, since RHMTBDD corresponds to the policy that is actually

implemented by the system. In summary, we used the following step for validating our

testing framework: 1) We used the correct RHMTTBDD to generate the test cases as well

as to simulate the implemented access control – in this case all tests, both positive and

negative, were passed; and 2) We used the correct RHMTBDD to generate the test cases

and incorrect RHMTBDDs for simulation -- in this case we verified whether the test

cases which needed to be failed or passed return the valid results.

42

Figure 15: Security Test Cases.

 Figure 15 displays an excerpt of security test cases generated for the application.

The first test case testCustomerDeposit() is a positive test case. In it a customer

account is created and bt.checkOperation is called. The object bt is an RHMTBB

object which represents the implemented RBAC policy. The method

bt.checkOperation basically traverses the RHMTBDD to determine whether

according to implemented policy this action is permitted or not – it returns true when the

operation is permitted. Then deposit action is asserted by calling deposit method.

Further, the test asserts whether the amount has been credited to the customer account by

checking the current fund in the account. The last part is actually not part of security

testing but functional testing. We have considered this portion here to simply show how

security and functional testing can be performed together.

The second test testTellerWithdrawNegative() is an example of

negative test case. We follow the same steps for asserting negative test cases as we go

through for the positive test cases. The difference is that a different object,

43

bt.checkNegativeOperation is called which returns true when the operation

should fail according to the RHMTBDD of bt.

 Figure 16 shows an output of running all the test cases. For example,

“testCustomerWithdrawPositive” and “testCustomerDepositPositive” are

the results of positive test cases. And “testTellerWithdrawNegative” and

“testTellerDepositNegative” are the results of negative test cases. As we can

notice, there exist two errors. These show if the policy is implemented correctly and

which operation failed as well.

Figure 16: Results of Security Test Cases.

 Evaluation 4.4

4.4.1 Evaluation of Maximum Privileges

In this section, we evaluate our strategy for reducing the number of test cases.

Recall that we generate tests under maximum privilege actr(s) = authr(s). Additionally,

it exponentially reduces the number of test cases. In order to quantify the advantage of

this strategy we study the following three scenarios:

44

1. Flat scenario, where role hierachy is not considered. Each role is considered to

be independent role.

2. RH scenario, where RH is considered. That is, if a user has activated a role, it

means it has actived all the role in the subDAG rooted at the very node in the RH.

3. Maximum privilege scenario: in this case a user is assumed to have activated the

maximum privileges pertained to her roles in accodance to the role hiearchy.

For our evaluation we consider the example role hierarchy shown in Figure 9 (b)

where there are four roles: Manager, Customer, Agent, and Teller. Assume that the

Manager role (rm) has one unique permission; Customer (rc) and Agent (ra) roles have two

unique permissions; and Teller (rt) role has one unique permission. In the following we

analyze the number of positive and negative test cases alsong with the total number of

test cases that will be generated for the above-mentioned three scenarios when the user is

authorized to various roles in the hierarchy.

First, consider a user is authorized to all the four roles under the flat RBAC

scenario. There are 2
4

active sets. For each active, set we calculate the unique permission

over all the active roles in that set. For example, if an active set has only Manager and

Agent roles then the number of positive test cases would be 3 since the Manager is

authorized to one permission and the Agent is authorized to two permissions. Further, the

number of negative test cases will also be 3, since the number of permissions over the

two other roles, Customer and Teller, sums to three. We carried out similar computation

for all the subsets and obtained the number of positive and negative test cases.

45

In the second senario, we considered RH. In this case there are only 6 distinct

active set {},{rm}, {rc}, {ra}, {rc, ra}, {rt}. The reason is all other active set are equivalent

to one of these active sets. For example if we take {rm,ra}, this simply equals to {rm}

because Manager inherits Agent. We calculated (number of positive, number of negative)

test cases for these six representative active sets and we get the following results,

repectivley: (0,6), (6,0), (3,3), (3,3), (5,1), (1,5), producing the total of 18 positive and 18

negative test cases.

In the third scenario, we considered RH + MP. In this case, there is only one

active set which is {rm} where all the roles are active since manager inherits all the roles.

We have 6 positive and 0 negative test cases.

Figure 17 that RH+MP substantially reduces the number of test cases. For

example, for the total number of security test cases, the case for RH+MP has only 24 test

cases whereas RH scenario generated almost 78 test cases and the flat scenario had over

154 test cases.

46

Figure 17: Evaluation Results.

4.4.2 Evaluation of Fronts Coverage Approach

In this chapter we evaluate the effectiveness of front coverage approach. Consider

the role hierarchy in Figure 18 (a). The table in Figure 18 (b) gives the unique actions

corresponding to each role in the role hierarchy.

47

a) b)

Figure 18: Example of a) role hierarchy for front coverage and b) the corresponding unique

actions associated with each role in the hierarchy.

a) b) c)

Figure 19: Results of FCC for a) Teller role and b) Customer role; and c) Over all the roles

for various k values.

We compute the number of negative test cases that will be generated for various

roles in the hierarchy while the value of k (the number of fronts that are considered)

varies. Figure 19 (a) shows the number of negative test cases generated for k=1 through 5

for the Teller role. Similarly, Figure 19 (b) shows the number of negative test cases

generated for k=1 through 5 for the Customer role. Finally, Figure 19 (c) shows the

number of negative test cases generated for k=1 through 5 over all the roles in the role

hierarchy in Figure 18. From this example, we could observe that the substantial

48

reduction in the number of test cases was obtained for a lower k value. For example, for k

=1, almost 54% reduction was occurred while 26% reduction was observed for k=2.

Obviously this reduction may vary with the structure of the role hierarchy as well as the

distribution of unique privileges over the roles in the hierarchy. However, our evaluations

clearly demonstrate the feasibility and practicality of our approach.

49

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 CONCLUSIONS 5.1

In this thesis, we have developed a technique for testing RBAC policies. It is

critical to test RBAC policies since each policy is essential to meet and enforce the

security requirements for preventing and detecting any security violations in the context

of the access control requirements. Our technique incorporates the principle of maximum

privileges, the structure of role hierarchy and a new security test coverage criterion to

efficiently generate positive and negative security test cases. We developed RHMTBDD

which is an extension of MTBDD to represent the RBAC policy. Further, we designed

and implemented security framework to validate RBAC policies. This framework first

parses the policy written in XACML to create RHMTBDD and then generates test cases

by traversing the RHMTBDD. These test cases are created and stored in a container class.

We validated and evaluated our security testing framework using JUnit as well as

evaluated the saving obtained by our security testing technique through case studies.

 Future Work 5.2

There are several future research directions for our work presented in this thesis. We list a

few of potential future research tasks.

5.2.1 Static Separation of Duty (SoD)

One of the main reasons for popularity of RBAC is that it is easy to specify

separation of duty constraints. Such constraints are part of RBAC2 (as well as RBAC3).

(Static) SoD constraints specify mutually exclusive roles and prevent security

50

vulnerabilities which may be caused by a user having multiple roles which may allow

him to commit fraud. For example in a bank application, the Billing Clerk role and the

Account Receivable role should not be assigned to the same user. Hence, these roles can

be declared to be mutually exclusive by a SoD constraint. Note that with respect to the

given role hierarchy, if r1 and r2 are mutually exclusive roles then r1 cannot be a senior

(containing) role to r2 or vice versa.

Clearly, checking for violation of SoD constraints is part of the negative testing.

For example, negative test cases for a user who is assigned to Billing Clerk role, will

include a test where it would check whether the user can perform unique actions of the

Account Receivable role. Hence, SoD constraints can be easily considered and these

constraints can become part of negative test cases.

RHMTBDD can be combined with SoD PMTBDD. For example, in Figure 20

policy P1+ P2 PMTBDD and P3 PMTBDD are combined to obtain (rightmost)

PMTBDD for P1+P2+P3.

Figure 20: Representing Complex Security Policy.

In general, our future work is to determine whether RHMTBDD can be combined with

any arbitrary PMTBDD and come up with a procedure to create positive and negative test

cases from the combined PMTBDD.

51

5.2.2 Integration with JET

The test cases generated from our framework can be given to tool JET [26], [27]

to validate the implementation of the code in the context of checking security violation as

well as functional violations based on Java Modeling Language specification. JML has

many characteristics and its own syntax [28]. JML can be used as a test oracle for the

automated validation/verification of Java source code.

52

REFERENCES

[1] M. Bishop, Introduction to COMPUTER SECURITY, Addison-Wesley, 2004.

[2] "http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf," [Online].

[3] S. Osborn, R. Sandhu and Q. Munawer, "Configuring role-based access control to

enforce mandatory and discretionary access control policies," ACM Transactions on

Information and System Security (TISSEC), vol. 3, no. 2, pp. 85-106, 2000.

[4] H. Hu and G.-J. Ahn, "Enabling verification and conformance testing for access control

model," in Proceedings of the 13th ACM symposium on Access control models and

technologies. ACM, 2008.

[5] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh and V. Shmatikov, "The most

dangerous code in the world: validating ssl," in Proceedings of the 2012 ACM

conference on Computer and communications security. ACM, 2012.

[6] H. H. Thompson, "Why security testing is hard," IEEE Security & Privacy, vol. 1, no. 4,

pp. 83-86, 2003.

[7] H. H. Thompson and J. A. Whittaker, How to break software security, Addison Wesley,

2003.

[8] J. F. Kurose and K. W. Ross, Computer Networking A Top-Down Approach Featuring

the Internet, Addison Wesley, 2003.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, "Role-based access control

models.," in IEEE computer , 1996.

[10] J. Kleinberg and E. Tardos, Algorithm Design, PEARSON Addison Wesley, 2006.

[11] K. Fisler, S. Krishnamurthi, L. A. Meyerovich and M. C. Tschantz, "Verification and

Change-Impact Analysis of Access-Control Policies," in In Proceedings of the 27th

international conference on Software engineering, ACM, 2005.

[12] "http://sunxacml.sourceforge.net/," [Online].

[13] "http://docs.oracle.com/javase/tutorial/jaxp/dom/index.html," [Online].

53

[14] "http://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#i1013320,"

[Online].

[15] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker and M. Siegle, "On the use of

MTBDDs for performability analysis and verification of stochastic systems," The

Journal of Logic and Algebraic Programming , vol. 56, no. 1, pp. 23-67, 2003.

[16] E. Clarke, M. Fujita and X. Zhao, "Applications of multi terminal binary decision

diagrams (No. CMU-CS-95-160)," Carnegie-Mellon Univ. Pittsburgh PA Dept Of

Computer Science., 1995.

[17] M. Fujita, P. C. McGeer and J.-Y. Yang, "Multi-Terminal Binary Decision Diagrams:An

Efficient Data Structure for Matrix Representation," Formal methods in system design ,

vol. 10, no. 2-3, pp. 149-169, 1997.

[18] "http://junit.org/," [Online].

[19] "http://www.tutorialspoint.com/junit/," [Online].

[20] "http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html," [Online].

[21] "http://msdn.microsoft.com/en-us/library/hh694602.aspx," [Online].

[22] G.-J. Ahn and R. Sandhu, "Role-based authorization constraints specification," ACM

Transactions on Information and System Security (TISSEC),, vol. 3, no. 4, pp. 207-226,

2000.

[23] H. Hu and G.-J. Ahn, "Constructing Authorization Systems Using Assurance

management Framework," Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions, vol. 40, no. 4, pp. 396-405, 2010.

[24] H. Hu, G.-J. Ahn and K. Kulkarni, "Discovery and Resolution of Anomalies in Web

Access Control Policies," IEEE transactions on dependable and secure computing, vol.

10, no. 6, 2013.

[25] R. Sandhu, F. David and R. Kuhn, "The NIST model for role-based access control:

towards a unified standard," in ACM workshop on Role-based access control, 2000.

[26] Y. Cheon, "Automated Random Testing to Detect Specification-Code Inconsistencies,"

in in Proceedings of the 2007 International Conference on Software Engineering Theory

and Practice, 2007.

54

[27] C. E. Rubio-Medrano, G.-J. Ahn and K. Sohr, "Verifying Access Control Properties with

Design by Contract: Framework and Lessons Learned," in Proceedings of the 2013 IEEE

37th Annual Computer Software and Applications Conference. IEEE Computer Society,

2013.

[28] L. Burdy, D. R. Cok, Y. Cheon, M. D. Ernst, J. R. Kiniry and G. T. Leavens, "An

overview of JML tools and applications," International journal on software tools for

technology transfer, vol. 7, no. 3, pp. 212-232, 2005.

