
Development and Verification of a Library of Feature Fitting Algorithms for CMMs

by

Prashant Mohan

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved March 2014 by the

Graduate Supervisory Committee:

Jami Shah, Chair

Joseph Davidson

Gerald Farin

ARIZONA STATE UNIVERSITY

May 2014

©2014 Prashant Mohan

All Rights Reserved

 i

ABSTRACT

Conformance of a manufactured feature to the applied geometric tolerances is

done by analyzing the point cloud that is measured on the feature. To that end, a

geometric feature is fitted to the point cloud and the results are assessed to see whether

the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring

Machines (CMMs) use feature fitting algorithms that incorporate least square estimates

as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive

set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance

class is not available. Therefore, a Library of algorithms is developed to aid the process

of feature fitting, and tolerance verification. This paper addresses linear, planar, circular,

and cylindrical features only. This set of algorithms described conforms to the

international Standards for GD&T. In order to reduce the number of points to be

analyzed, and to identify the possible candidate points for linear, circular and planar

features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev

cylinders, geometric search algorithms are used. Algorithms are divided into three major

categories: least square, unconstrained, and constrained fits. Primary datums require one

sided unconstrained fits for their verification. Secondary datums require one sided

constrained fits for their verification. For size and other tolerance verifications, we

require both unconstrained and constrained fits

 ii

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Jami Shah for his valuable guidance and

support throughout this work. All of the progress made and things I learned would not

have been possible without his guidance. I would also like to thank Dr. Davidson and Dr.

Farin for taking out time to serve on my committee.

I am deeply thankful to my present members of DAL lab for their friendship,

support and guidance.

Finally, I would like to acknowledge the financial support from NSF (national

Science Foundation), Grant No. CMMI-0969821.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES…………………………………………………………...…….….....vii

LIST OF FIGURES……………………………………………………………....……. viii

CHAPTER

1 INTRODUCTION………………………………………………………….…………1

1.1 CMMs and their Applications ………………………………….…………………...1

1.1.1 CMM Machines………………………………………………………………....1

1.1.2 CMM Applications………………...…………………………………………....3

1.2 Background……………………………………..………………………………….....4

1.2.1 Definition of Feature………………………..…………………………………...5

1.2.2 Process of Tolerance Verification……..………………………………………..7

1.3 Problem Definition and Research Scope……..……………………………………..8

1.3.1 Assumptions……..……………………………………………………………..9

1.4 Thesis Organization……………………………….………………………...……..10

2 FEATURE FITTING - FIT TYPES……..………………………………..…………11

2.1 Least Square Fits……………………………………………………..…………….13

2.2 Unconstrained Fits………………………………….…...…………………………..14

2.2.1 One Sided Fits………………………………….…………………………….14

2.2.2 Minimum Zone Fits…………………….…………………………………….16

2.3 Constrained Fits………………………………………………...…………………..18

2.3.1 One Sided Constrained Fits……………...…………………………………..18

2.3.2 Minimum Zone Fits …………………………………………...……………..20

 iv

CHAPTER Page

3 LITERATURE REVIEW………………………………….…..………….…………23

3.1 Least Square Fits………………………………………..………………………….23

3.2 Unconstrained Minimum Zone and One Sided Fits ...…...………………….…….25

3.3 Constrained Fits………………………………………………...………………….28

3.4 State of Current Technology ………………………………………………...…….29

4 ALGORITHMS & IMPLEMENTATION………………………………………….31

4.1 Design Philosophy………………………………………………………………….31

4.1.1 Performance Factors………………………………………………………….32

4.2 Least Square Fits……………………………………..…………………………….32

4.2.1 Line Fit………………………………………………………………………..33

4.2.2 Plane Fit……………………..……………………………………………….34

4.2.3 Circle Fit………………………………………….…………………………..35

4.2.4 Cylinder Fit………………………………………….………………………..35

4.3 Unconstrained One sided Fits………………………..…………………………….36

4.3.1 Line Fit……………………………………………………………………….37

4.3.2 Plane Fit……………………………………………..………………………..38

4.3.3 Minimum Circumscribed Circle Fit………………………………………….38

4.3.4 Maximum Inscribed Circle Fit……………………………………………….40

4.3.5 Minimum/Maximum Cylinder Fit………………………..…………………..41

4.4 Unconstrained Minimum zone Fits……………………………………….………..43

4.4.1 Line Fit……………………………………………………………………….44

4.4.2 External Plane Fit…………………………………………………………….45

 v

CHAPTER Page

4.4.3 Internal Plane Fit………………………………….………………………….46

4.4.4 Circle Fit……………………………………………….……………………..47

4.4.5 Cylinder Fit………………………………………………….……………….49

4.5 Constrained One Sided Fits………………………………………….……………..49

4.5.1 Constrained One Sided Line Fit………………..……………………………..50

4.5.2 Constrained One Side Plane Fit……………………………..……………….51

4.5.3 Constrained One Side Minimum/Maximum Circle Fit……………..……….52

4.5.4 Constrained One Side Minimum/Maximum Cylinder Fit…………………...53

4.6 Constrained Minimum Zone Fits……………………….…………………………..55

4.6.1 Constrained Minimum Zone Line Fit…………………………………….…..56

4.6.2 Constrained Minimum Zone External Plane Fit…………………….………..57

4.6.3 Constrained Minimum Zone Internal Plane Fit……………..……………….58

4.6.4 Constrained Minimum Zone Circle Fit…………………………...………….60

4.6.5 Constrained Minimum Zone Cylinder Fit……………………….……….…..61

4.7 Implementation………………………………………....…………………………..61

5 VALIDATION & VERIFICATION……………………….…………..……………62

5.1 Virtual Testing and Verification………………………..…………………………..62

5.2 Comparative Study with Commercial CMM ………………………………..……..65

5.3 Comparative Studies with Manual Measurements………………………..………..67

5.4 Application of Feature Fitting in GD&T……………………………………..……69

5.4.1 Feature Fitting for Planar Features…………………………………………...70

5.4.2 Feature Fitting for Cylindrical Feature………………………………………71

 vi

CHAPTER Page

6 CONCLUSION, LIMITATIONS/ASSUMPTIONS & FUTUREWORK………......73

6.1 Conclusion…………………………….………………………..…………………..73

6.2 Limitations/Assumptions…..………………………………………………………76

6.3 Future Work………………………………….…..………...………………………..81

REFRENCES……………………………………………………………………..………83

APPENDIX A: FUNCTIONS DEFINITIONS OF THE LIBRARY……………………86

 vii

LIST OF TABLES

Table Page

1. Basic Feature Types and Applicable Tolerance Classes…………………………….6

2. Classification of Feature Fitting …………………………………………………...11

3. Feature Fitting Algorithms for Different Types of Features & Tolerance

Verification……………………………………………………………………...….12

4. Objective Functions for One Sided Circle/Cylinder Fit ……………………….…...16

5. Results for Virtual Test Cases……………………………………………………...63

6. CMM Testing and Verification Results…………………………………..………....67

7. Manual Measurements and Verification Results…………………………….………….68

8. Work Done on Each Algorithm……………………………………………………..74

9. Algorithm Execution Times for 100 Measured Points……………………...……..79

10. Complexity Associated with Each Algorithm……………………………………....80

 viii

LIST OF FIGURES

Figure Page

1. CMM Types…………………………………………….………………...…………2

2. Tolerance Classes and their Symbols…………………………………..…………...5

3. Relationship Between Real and Basic Features…………………………..…………6

4. Process of Tolerance Verification……………………………………..…………….7

5. Least Square Fits for Line, Plane, Circle, Cylinder………………………………..13

6. Unconstrained One Sided Fits for Line, Plane, Circle, Cylinder…………………..15

7. Unconstrained Minimum Zone for Line, Plane, Circle, Cylinder…………………17

8. Constrained One Sided Fits………………………………………………………...20

9. Constrained Minimum Zone Fits………………………….……………………….21

10. Actual Fit and Extrapolated Fit…………………………………………………….24

11. Least Square Fits for Different Sampling Schemes………………………………..24

12. Unconstrained One Sided Line Fit…………………………………………………37

13. Process for Minimum Circumscribed Circle……………………………………....40

14. Process for Maximum Inscribed Circle…………………………………………….41

15. Process for Unconstrained One Sided Cylinder Fit………………………………..43

16. Unconstrained Min Zone Line Fit………………………………………………….44

17. Unconstrained Min Zone Internal Plane Fit………………………………………..47

18. Constrained One Sided Line Fit…………………………………………………....51

19. Constrained Minimum Circumscribed Circle Fit……………………………….....53

20. Constrained One Sided Cylinder Fit ……………………………..……………......55

21. Constrained Minimum Zone Line Fit……………………………………………………...57

22. Constrained Minimum Zone Internal Plane Fit………………………………………60

 ix

23. Virtual Test cases…………………………………………………………………....63

24. Manufactured Parts with exaggerated Form Errors ………………..…..………….66

25. Planar Features on a Part…………………………………………………………...70

26. Cylindrical Feature on a Part……………………………………………………….71

27. Input File for Line, Plane and Circle Fit ………………………………..…………89

28. Input File for Cylinder Fit ………………………………………..……….……….89

29. Input File for One Sided Line Fit ………………………………………………….90

30. Input File for One Sided Plane Fit …………………………………...……………91

31. Input File for Unconstrained Minimum Zone Plane Fit ………………..…………94

32. Input File for Constrained One Sided Line Fit ……………………………………96

33. Input File Format for Constrained One Sided Plane Fit ……………………..……97

34. Input File Format for Constrained Circle Fit ………….…………………..………98

35. Input File Format for Constrained Cylinder Fit ………….………………..………99

36. Input File Format for Constrained Minimum Zone Line Fit …………..…...…….100

37. Input File Format for Constrained Minimum Zone Plane Fit ……………...….…101

 1

CHAPTER 1

INTRODUCTION

In 1988 GIDEP [1] issued an alert when it was discovered that the same coordinate

measurement data (point cloud generated for a manufactured part) processed by different CMM

algorithms, gave very different results on form tolerances. Subsequently NIST began its

algorithm testing program [2].

With continuous advances in engineering, precision and increasing complexity of parts,

tolerances applied to parts have also become tighter. This in turn creates a need for higher

accuracy in feature fitting algorithms, along with their need to comply with the standard [3].

Thus, there is a need for algorithms that are consistent with the standard and provide desirable

accuracy.

1.1 CMMs and their Applications

Coordinate measuring machines are now commonplace in the industry. They are used for

a variety of purposes, such as for the use in verifying dimensional accuracy of manufactured

parts, for the inspection purpose of manufactured parts, and to reverse engineer parts and

assemblies. This chapter gives the motivation and background of this research, followed by the

definition of the problem.

1.1.1 CMM Machines

Coordinated Measuring Machines commonly known as CMMs are used to measure the

dimensional accuracy of or to reverse engineer a manufactured part. These measuring machines

work by establishing a 3 dimensional, physical Cartesian coordinate system. There are many

types of CMM’s categorized on the basis of their capabilities and functional attributes. The most

 2

common CMM configurations are: Moving Bridge, Fixed Bridge, Cantilever, Horizontal Arm

and Gantry type. CMM’s are divided into two broad categories based on how they measure points

on the surface of a part or assembly: touch probe CMM’s (Figure 1a) and Laser CMM’s (Figure

1b).

 Figure 1a: Touch Probe Type CMM [4] Figure 1b: Non- Contact CMM [5]

A touch probe CMM works by either setting up a coordinate system based off measured

points or using the default coordinate system provided by the CMM (generally every CMM has a

default coordinate system). A touch probe (can be of various sizes, depending upon the desired

accuracy and the dimensions of the surface to be meaured) can be used to touch the surface and

obtain a measurement point in space. This process is carried out until the required number of

measurement points are obtained. The CMM software then evaluates these measured points and

performs specific operations requested by the user. Some measurements require a minimum

number of points to be measured. For example, to establish a plane, three non collinear measured

points are required. Touch probe CMM’s can be manual or automatic. A manual touch probe

CMM requires the user to manually move the robotic arm and touch various surfaces to obtain

measurements whereas an automatic CMM utilizes a computer and makes automatic

measurements using an algorithm [6, 7]. Non-contact CMM's can also be manual or automatic. A

 3

manual example is a hand-held laser scanner attached to an articulating arm CMM. An automatic

example is an optical distance sensor probe attached to a conventional Cartesian CMM.

Generally, non-contact systems are able to generate a lot of 3D measured points very quickly.

Along with measuring the geometric characteristics of a part, non-contact CMM’s can be used to

create three-dimensional images of the part itself [6, 7].

1.1.2 CMM Applications

CMM’s serve numerous purposes in different types of industries. CMM’s are used for

producing dimensional data which can be used for inspections and process control. Without a

CMM, a simple industry part may take several gauges to simulate datums and features, which is

not only time consuming but also introduces the possibility of human errors. CMM’s play a major

role in obtaining dimensional and tolerance measurements, and lead to fast and accurate quality

control as well as inspection of the parts produced. The scope of the CMM’s are not limited to

quality verification. In a manufacturing process, the parts are manufactured with respect to some

defined coordinate system which is defined by some surfaces of the part/fixtures. The orientation

of these parts can be corrected with respect to the defined coordinate system using information

gathered by CMM during the manufacturing process. CMM’s can also help to facilitate

measurements of large parts. CMM’s are widely used for the purpose of tolerance verification by

the process of feature fitting [6, 7].

 In general, an industrial CMM measures a set of points on the surfaces to be analyzed, of

a manufactured part. This point cloud is then fed to analysis software. Using a feature-fitting

algorithm, numerical analysis is carried out on the point cloud and a feature is fitted to it. The role

of feature fitting is not only limited to tolerance verification, but also extends to reverse

engineering. However, there are certain differences between the intent with which feature fitting

is utilized in both fields. Generally, in reverse engineering:

 4

 A laser scanner scans 3D geometry and generates a point cloud.

 The intent is to get the nominal geometry from the measured point cloud.

 We have a very large point cloud obtained from a 3D scanner. Whereas most CMMs

today use a touch probe and for the sake of efficiency, a relatively small number of

sample points, strategically placed, may be measured.

1.2 Background

Dimensional and geometric variations are allowed only within the tolerance zone specified by the

designer on a manufactured part. These tolerances are specified so that the parts can assemble and

perform the intended function. Since no machine can manufacture shapes or features that are

perfect, tolerances must be specified to allow machining variations while conforming to the

designer’s intent. Tolerances applied to a feature specify, not only the variation in the allowable

size of that feature, but also

its position, form, and orientation. Figure 2 shows different types of tolerance classes (size,

location, form, orientation, runout, profile) along with their tolerance symbols. Tolerance classes

within the scope of this project are shaded. Any deviation beyond the specified tolerance limits

does not conform to the manufactured part to the designer’s specified intent. This deviation

between the actual manufactured part and the specified limits is evaluated by fitting a feature to

the measured point cloud and comparing its form, size, position and orientation observed to the

specified allowable variation.

 5

1.2.1 Definition of Feature

Points measured by CMMs need to simulate particular features. Features are defined as a

combination of one or more faces of a part. From the GD&T point of view, there are two types of

features: basic and real. Basic features can be further divided into two categories. There are

features of size and planar features [3]. Features of size generally have a size parameter such as

radius, width, height etc. Depending upon the category of the features, different types of tolerance

classes are applicable to them. A list of different types of basic features is shown in Table 1,

along with all possible tolerance classes which can be applied to them. Real features are those

that exist on a manufactured part. They are modified or unmodified versions of basic features

according to the functionality and assemblability requirements of the manufactured part. Consider

the front plane of an ‘E’ shaped block (Figure 3a). This front plane is a real feature; however this

plane can be mapped to a front plane of a cuboid (Figure 3b). As all other planar features with

different shapes and sizes can be mapped to the front plane of the cuboid, it is a basic feature [8].

Similarly, all the features from which a real feature can be derived or mapped to are called basic

features.

Figure 2: Tolerance Classes and their Symbols

 6

Table 1: Basic Feature Types and Applicable Tolerance Classes

Feature Feature Type Tolerance Class

 Linear Edge Circular Edge

Line

Form, Orientation, Position,

Size

Circular Surface Rectangular Surface

Plane Form, Orientation, Size

Cylindrical Surface

Cylinder

(Pins and Holes)

(Features of Size)

Form, Orientation, Size,

Position

Tabular Surfaces

Tabs and Slots

(Feature of Size)

Form, Orientation, Size,

Position

 3a: Front plane-Real Feature 3b: Front plane-Basic Feature

Figure 3: Relationship Between Real and Basic Features

 7

1.2.2 Process of Tolerance Verification

Four of the commonly used features in tolerance verification are the line, plane, circle,

and cylinder.

Least squares, one sided and minimum zone fits, for both constrained and unconstrained

fits, for the line, circle, plane, and cylindrical features, are required for the verification of different

tolerance classes and datums. For the verification of primary datums, unconstrained one-sided fits

are used. Secondary and tertiary datums are verified by using constrained one-sided fits. Size

tolerances are verified by unconstrained minimum zone fits (for tabs and slots in general) and

unconstrained one-sided fits (for pins and holes). Similarly, for doing form tolerance verification,

unconstrained one sided and minimum zone fits are required. Orientation tolerances are verified

using both categories, constrained and unconstrained fits, depending upon the type of orientation

tolerance class. For the verification of position tolerances, both categories of feature fitting

(constrained and unconstrained) are needed. A typical tolerance and datum verification process is

shown in Figure 4.

Primary, secondary and tertiary datums are established using the measured point cloud for datums

and constrained and unconstrained fits. After the coordinate system is established, different

Figure 4: Process of Tolerance Verification

Measured

Point Cloud

for Datums

Primary

datum

Secondary

datum

Tertiary

datum

Feature

Fitting

Algorithm

Established

Coordinate

System

Feature

Fitting

Algorithm

Measured

Feature Data

Capture

variation Compare

Allowable Tolerance

Fail

Pass

 8

tolerances can be verified using the measured point cloud for the feature and other types of

feature fitting algorithms. Different types of feature fitting algorithms are used depending upon

the type of tolerances to be verified.

1.3 Problem Definition and Research Scope

The objective of this research is to develop a library of feature fitting algorithms. This

library should take into account the previous work done in this field, as well as develop new

algorithms for the fits that do not have an existing algorithm. The algorithms developed should be

consistent with the standard [3]. The purpose of this library is to be used in a mix and match style

for tolerance and datum verification.

The scope of this research work extends to following features:

 Line

 Circle

 Plane

 Cylinder

Major tasks in this research include:

 Investigate the existing algorithms for different types of fits and filter out those,

which are consistent with the [3] standard.

 Create algorithms for the fits that lack an existing one and improve existing

algorithms for efficiency.

 Bring all these feature-fitting algorithms together in one place and develop a

software library for tolerance and datum verification.

 9

 Create the library in an object oriented independent module style so that anyone

can use them as API’s (Application Programming Interface). This also allows for

modifications in individual algorithms without affecting other algorithms.

 Perform a comparative study for the efficiency and accuracy of these algorithms

by first creating virtual test cases and then using actual CMM data for parts

manufactured by a CNC machine.

1.3.1 Assumptions

In tolerance verification, the nominal features are already defined on the manufactured part. The

intent is to look at all different types of variations that the designer would like to control, as each

of these require a different way of looking at the same data. The scope of this research work lies

within the domain of the feature fitting part of CMM applications for tolerance verification.

While doing this research work, certain assumptions are made about the measured point cloud.

These are:

 CMMs used to obtain the point cloud are properly setup and calibrated.

 The measured points are generated by measuring manufactured parts.

 Human errors while making the measurements are minimal in case of manual

CMMs.

 The problem of varying the setups for accessibility of measurements is well

accounted for.

 In case of touch probe CMM’s, the ball point diameter correction is taken into

account while doing measurements i.e. The x,y,z point coordinates are related to

points on the part and not the ball center.

 10

 If points are measured using different setups, then they should be transformed to

a single setup coordinate system.

 It is assumed point sets are already associated with specific features

1.4 Thesis Organization

In chapter 2, definitions of different types of fit classes are discussed. Minimum

requirements to do a fit type are also discussed. Chapter 3 is the literature review of different fit

objectives. Problems with the least squares fits are also outlined. Algorithms and their

implementation are discussed in chapter 4. Also, different testing methods and their results are the

focus of chapter 5. Comparison among different results and of feature fitting libraries is

demonstrated via two case studies in chapter 5. Afterwards, conclusion, limitations associated

with algorithms developed during this research, along with assumptions and future work for this

research are discussed in chapter 6.

 11

CHAPTER 2

FEATURE FITTING – FIT TYPES

There are many objectives in feature fitting, but the ones considered in the scope of this

research work are least squares fits, nominal one sided and two sided (zone) fits. The feature

fitting algorithms discussed here are limited to the following features: line, circle, plane, and

cylinder. To refer to these algorithms, reference labels were assigned to them during the course of

this research work. These are not standard reference labels. Table 2 lists a set of feature-fitting

algorithms along with their reference labels, which can be used for datum establishment and

tolerance verification of the manufactured part from a measured point cloud.

Table 2: Classification of Feature Fitting

Algorithm Type and Ref. Labels

 Unconstrained Constrained orientation

Least Square One sided Minimum Zone One sided Minimum Zone

1A: line 1B: line 1C: line zone 1D: line 1E: line zone

2A: circle

2B-1: circumscribed

circle

2B-2: inscribed circle

2C: annular zone

2D-1: circumscribed

circle

2D-2: inscribed circle

2E: annular zone

3A: plane 3B: plane
3C-1 external

plane zone

 3C-2 internal

plane zone

3D: plane
3E-1 external

planes zone

 3E-2 internal

plane zone

4A: cylinder

4B-1: circumscribed

cylinder

4B-2: inscribed

cylinder

4C: cylinder zone

4D-1: circumscribed

cylinder

4D-2: inscribed

cylinder

4E: cylinder zone

 12

For tolerance verification and datum simulation a combination of one or more of the

algorithms mentioned in Table 2 are used. Table 3 shows the different tolerance types and what

algorithms are required for its verification.

Table 3: Feature Fitting Algorithms for Different Types of Features & Tolerance Verification

Feature
Tolerance Primary Datum Secondary

Datum

Tertiary

Datum

Feature

Hole

Unconstrained

one sided plane

fit

(3B)

Constrained one

plane sided fit

(3D)

Constrained one

plane sided fit

(3D)

Unconstrained

maximum

inscribed

cylinder fit (4B-

2)

Pin

Unconstrained

one sided plane

fit

(3B)

Constrained one

plane sided fit

(3D)

Constrained one

plane sided fit

(3D)

Unconstrained

minimum

circumscribed

cylinder fit (4B-

1)

Tab

Unconstrained

one sided plane

fit

(3B)

Constrained one

plane sided fit

(3D)

Constrained one

plane sided fit

(3D)

Unconstrained

two sided

internal zone fit

(3C-2)

Slot

Unconstrained

one sided plane

fit

(3B)

Constrained one

plane sided fit

(3D)

Constrained one

plane sided fit

(3D)

Unconstrained

two sided

external zone fit

(3C-1)

Line

 Unconstrained

minimum zone

line fit (1C)

Plane

 Unconstrained

minimum zone

plane fit (3C-1)

Circle

 Unconstrained

minimum zone

circle fit (2C)

Cylinder

 Unconstrained

minimum zone

cylinder fit (4C)

Plane

Unconstrained

one sided plane

fit

(3B)

 Constrained

minimum zone

fit (3E-1)

Plane

Unconstrained

one sided plane

fit

(3B)

 Constrained

minimum zone

fit (3E-1)

Plane

Unconstrained

one sided plane

fit

(3B)

 Constrained

minimum zone

fit (3E-1)

A B C

A B C

A B C

A B C

A

A

A

 13

2.1 Least Squares Fits

Least squares fits amount to best fit or nominal feature fit. Least squares fits are the most

commonly and widely used feature fitting algorithms in industrial CMMs. The objective function

of the least squares fits is given by [9]:

 =

∑

Least squares fitting algorithms start with an initial guess of the feature to be fitted on the

point cloud measured by a CMM on the manufactured part. The algorithm proceeds by

calculating the sum of the squares of distances between the guessed feature and measured points,

and minimizing the sum of the squares of distances. As the algorithm proceeds, the guessed

feature is translated, rotated, and/or changed in size as appropriate, until the sum of the square of

distances cannot be further minimized. Methods like the single value decomposition can be used

for solving the linear least square fit. In case of the nonlinear least square fits, iterative methods

can be employed to achieve a solution. Figure 5 shows different cases of least square fits (line,

plane, circle and cylinder).

A minimum of two points are required for a line fit; plane and circle fits require at least

three non collinear points and for cylinder fits, five points are required.

Figure 5. Least Squares Fits for Line, Plane, Circle, Cylinder

 14

2.2 Unconstrained Fits

Unconstrained fits are generally used to assess whether or not a used feature meets

tolerance specification for the determination of size, form, orientation, and position tolerances, as

well as for the purpose of establishing a primary datum. These types of fits are divided into

two categories: one sided fits and minimum zone fits.

2.2.1 One Sided Fits

One sided fits are generally used for verification of size, orientation and position. They

are also used to simulate datums. One sided fits fit a feature on one side of the measured point

cloud. In case of a linear fit, a point cloud and an initial direction from which the fit is to be done

are required as an input so, a minimum of two points are required for doing a one sided line fit for

a line (dictated by geometric entity).

The case of a one sided planar fit is different from the case of a one sided line fit in that,

three non collinear points are required instead of two points to define a plane in addition to the

initial direction from which the fitting is done (dictated by geometric entity).

A one sided circle fit has two variations. In the first one, a circle is fitted to the set of

measured points such that all the points are either inside or on the surface of the fitted circle.

These measured points correspond to an external feature like a pin. This type of fitting is called

the minimum circumscribed circle fit and it should satisfy the condition that it is the circle with

the smallest possible diameter. In the second type, a circle is fitted to the set of measured points

such that all measured points are either outside or on the surface of the fitted circle and these

points correspond to an internal feature, like a hole. This type of fitting is called the maximum

inscribed circle fit and it should satisfy the condition that this is the circle with the largest

diameter possible. To fit a maximum inscribed circle to a point cloud it should at least pass

through three points that are not collinear or, in short, if there are less than three points then the

 15

fitted circle to the measured point cloud will not be unique. However, in case of a minimum

circumscribed circle we should have at least two points to fit a circle to [16].

Similar to the one sided circle fit, the one sided cylinder fit also has two variations. There

is a Minimum Circumscribed cylinder and a Maximum Inscribed cylinder depending on whether

the points are measured on an external feature (concave) or an internal feature (convex). To fit a

cylinder to a set of measured points at least 5 points are required which are not collinear and not

coplanar, or conversely if there are less than five measured points we cannot fit a cylinder to it. A

point cloud, and an initial estimate of cylinder parameters, (a point on the axis of cylinder and

direction vector of the cylinder axis) are required as an inputs for fitting a cylinder [13]. Figure 6

shows different cases for one sided fits (line, plane, minimum circumscribed circle and cylinder

and maximum inscribed circle and cylinder).

 Line Fit Plane Fit Circumscribed Circle Circumscribed Cylinder

 Inscribed Circle Inscribed Cylinder

Figure 6: One Sided Fits

 16

Table 4 shows the objective functions that need to be satisfied for the one sided

maximum inscribed and the minimum circumscribed cylinder and circle fit.

2.2.2 Minimum Zone Fits

Minimum zone fits also known as Chebyshev fits are used for verification of form, size,

and orientation tolerances. In Minimum zone fits, a pair of parallel features is fitted to a measured

point cloud. These features are fitted such that the distance between the two is minimum. All the

points are either inside, or on the surface of the parallel features forming the boundaries to the

zone. The pair of features fitted to a point cloud should have parallel axes. The objective function

of a minimum zone fit is defined as:

 ()

Where | is absolute value of distance between the two fitted features, refers to maximum

and refers to minimum.

In addition to the standard geometric feature fitting requirements, minimum zone fits can

have cases where it is not necessary for features to have the required number of points on both or

only one of the features. For example, in the case of a minimum zone cylinder, it is not necessary

to have five points on the surface of one or both of the cylindrical shells that form the zone to

Table 4: Objective Functions for One Sided Circle/Cylinder Fit

 ()

For Min. circumscribed

circle, cylinder

 ()

For Max. Inscribed

circle, cylinder

R = Radius of the circle/cylinder to be fitted

 17

qualify for a minimum zone fit. The solution of a minimum zone cylinder fit could have five,

four, or even three points on the surface of the cylindrical shells. Algorithms used for minimum

zone fits should consider these cases and then search for the optimal solution. For doing a line

zone fit in two dimensions t there should be at least two points on one line and one point on the

other parallel line. A minimum zone plane fit finds two parallel planes of minimal separation that

envelope all the points. This requires either 1) three points on one plane and one point on the

parallel enveloping plane, or 2) two points on one plane and two points on the parallel enveloping

plane. The minimum zone circle needs three non-collinear points on one circle and one point on

the other concentric circle or two points on each of the inner and outer parallel features. To do a

cylinder zone fit two parallel cylinders are required (of minimal separation) that envelope all the

points. These points can be five points (non-collinear/coplanar) lying on one cylinder and one

point on the other cylinder or four on one and two on other cylinder and so on . A point cloud and

an initial estimate of cylinder parameters (a point on the axis of cylinder and direction vector of

the cylinder axis) are required as an input for fitting a cylinder. Figure 7 shows different cases for

minimum zone fits (line, plane, circle and cylinder).

Line Fit Plane Fit Circle Fit Cylinder Fit

Figure 7: Minimum Zone Fits

 18

2.3 Constrained Fits

Constrained fits are generally used for the verification of orientation and position

tolerances for the simulation of secondary and tertiary datums. These fits, as the name says, are

constrained with respect to some other feature. For example, a secondary datum is established

with respect to primary datum so its orientation is constrained with respect to the primary datum.

A tertiary datum is established with respect to a primary and secondary datum, so its orientation

is constrained with respect to the two features. Constrained fits are also divided into the same two

categories: one sided fits and minimum zone fits.

2.3.1 One Sided Constrained Fits

One sided fits are generally used for simulating secondary and tertiary datum’s. These

fits, as the name suggests, fit a feature to one side of the measured point cloud. However, since

these features have their orientation constrained, with respect to some other feature, a smaller

number of points are required for achieving the fit. For a one sided line fit, a minimum of one

points is required for the fit, in addition to the input line to which the fitted line should be

perpendicular/parallel to and an initial direction of fitting. A one sided plane fit requires an initial

direction of fitting and the equation of the constraining parallel or perpendicular plane. A

minimum of one points is required for doing a one sided constrained plane fit.

Like unconstrained fits, constrained circle fits also have two variations i.e. the minimum

circumscribed circle fit and the maximum inscribed circle fit. The minimum circumscribed circle

fit requires a point cloud and the center of circle to be fitted as input. There should be at least one

measured point on the circle to be fitted in case of center of circle being constrained. The

maximum inscribed circle fit also needs the point cloud and the center of the circle to be fitted as

input. To do a maximum inscribed circle fit there should be at least one point measured for the

circle to be fitted in case of center of circle being constrained. A one sided cylinder fit also has

 19

two variations: the minimum circumscribed cylinder and the maximum inscribed cylinder. For

finding the minimum circumscribed cylinder fit, a point cloud and an initial estimate of cylinder

parameters (a point on the axis of cylinder and direction vector of the axis of cylinder) are

required as an input, along with direction of the axis or normal of the plane constraining the

cylinder. There should be at least one measured point on the cylinder for it to be fitted in case of

axis of cylinder being constrained. The maximum inscribed circle needs the same parameters

required as an input for the minimum circumscribed circle. For doing a maximum inscribed circle

fit, there should be at least one measured point on the cylinder to be fitted (axis of cylinder being

constrained). Figure 8 shows different types of one sided constraint fits. Apart from the

constraints mentioned above there might be other constrained fit types such as constraining the

diameter and searching for the center or axis.

 Figure 8a: Line Fit Figure 8b: Plane Fit

Figure 8c: Minimum circumscribed circle Figure 8d: Maximum Inscribed circle

Constrained

Center

Fitted

Circle

Constrained

Center

Fitted

Circle

 20

The minimum requirement is just an industry factoid. Using the minimum requirement

may not be good inspection practice.

2.3.2 Minimum Zone Fits

Minimum Zone fits are generally used for simulating secondary and tertiary datums and

for the verification of orientation tolerances. Constrained minimum zone fits also fit a pair of

features to the point cloud. The pair of features fitted is such that all the points lie either on or

inside the zone formed by two features with minimum distance between the zone formed by the

two features. In addition, the orientation of the zone is constrained with respect to some other

feature, making it a constrained fit. Constraining the zone decreases the required number of

measured points for each type of zone fit.

For doing a constrained minimum zone line fit there should be at least two measured

points, one on each line. The direction vector of the constraining line/plane is also required as an

input along with the measured point cloud. A minimum zone plane requires a measured point

cloud and direction vector for the constraining plane as the input. There must be two measured

points in case the constraining plane is parallel and three measured points (two on one plane and

one on one plane) in case that the constraining plane is perpendicular. The zone circle fit requires

Figure 8e: Minimum circumscribed cylinder Figure 9f: Maximum Inscribed cylinder

Figure 8: Constrained One Sided Fits

 21

a minimum of two measured points. Coordinates of the constraining center and measured point

cloud are required as an input for the zone circle fit. A minimum zone cylinder fit requires the

direction vector of the constraining plane/axis and a measured point cloud as the input. A

minimum of four measured points (three on one cylinder and one on other cylinder) are needed

for doing the cylinder fit. Figure 9 shows different types of constrained minimum zone fits.

The definition of different types of fits, shapes and uses illustrated in this chapter are in context to

tolerance analysis and verification. Apart from this, there are more features like sphere, cone that

 Figure 9a: Line Fit Figure 9b: Plane Fit

 Figure 9c: Circle Fit Figure 9d: Cylinder Fit

Figure 9: Constrained Minimum Zone Fits

 22

are also important from tolerance point of view. The tolerance classes considered for this library

currently do not include the profile and runout tolerance classes. In the next chapter, an overview

of work done by other researchers and current state of technology is discussed. Existing work

which can be used or modified to serve the research purpose is also specified.

 23

CHAPTER 3

LITERATURE REVIEW

Apart from NIST and NPL, other researchers in the field of feature fitting algorithms

have done a lot of research work. Several different algorithms for different types of feature

fitting cases have been developed. Some these algorithms are robust and achieve the results

which better approximate the measured part.

3.1 Least Square Fits

Most of the algorithms used by CMMs in the industry use a least square method to

evaluate the point cloud. Least square fits are easy to implement and give fast results. However,

the results produced by this method are only an approximation of the measured feature and do not

comply with the definition in the standard [3]. Additionally, the least square method does not

conform to the way in which a hard gauge would simulate a datum or a feature on an actual

manufactured part. Figures 10a and 10b show the results of an experiment (during this research

work) of a minimum zone fit obtained by extrapolating the solution from least square fits and a

solution from actual minimum zone. We observed that the minimum zone solution obtained by

using the least square fits procedure approximates the actual solution for the minimum zone. Thus

it can be concluded that the least square method fails in conforming to the original feature and in

verifying different tolerance classes accurately. The zone obtained by least square fits in this case

is somewhat larger than the actual solution. In this case, it will affect the verification of size and

location tolerances. Another drawback is that the concentration of points in a point cloud also

affects the solution generated by the least square fits method. This sensitivity of the least square

fits solution leads to the problem that the same feature measured with different sampling schemes

 24

will yield different results. Figure 11 shows the different results for doing least square fits on a

point cloud of a circular feature using different sampling schemes.

Both NPL [9] and NIST [10] have well established standard algorithms for least squares,

fitting for all the features within the scope of this research. For the purpose of this research NPL’s

least square fitting algorithms were taken into consideration.

 Figure 10a: Minimum Zone Fit by Extrapolating Least Square Fit

Figure 10b: Minimum Zone Fit by Using Zone Fits Algorithm

Figure 10: Actual Fit and Extrapolated Fit

 11a 11b 11c 11d

Figure 11: Least Square Fits for Different Sampling Schemes

 25

3.2 Unconstrained Minimum Zone and One Sided Fits

A lot of research work has been done by different researchers and several different

algorithms have been proposed for achieving different types of unconstrained fits (one sided and

minimum zone). Different approaches ranging from geometric algorithms to genetic algorithms

were used to achieve different types of fits.

Carr and Ferreira [11] developed a method for the verification of form tolerances. Their

method could be applied to the straightness of a median line and cylindricity problems. Their

method is a combination of methods of solving nonlinear minimax problems and solving

nonlinear optimization problem using successive linear programs. Their algorithm begins by first

forming a nonlinear discontinuous objective function and then converting it into continuous

objective function. This formulates a constrained nonlinear programming problem with a

continuous linear objective function. A linearization technique using incremental variables (small

displacement screw matrix) is utilized to linearize the nonlinear constraint formulation.

Sequences of linear programs were solved iteratively to converge to a local solution upon given

adequate initial conditions.

Hsinyi Lai [12] proposed a heuristic approach which makes use of a genetic algorithm for

evaluating cylindricity form errors. An objective function is defined depending upon the type of

fit (minimum, maximum or zone fit). Using the objective function a fitness function is defined to

be used as an indicator for global optimization in the proposed genetic algorithm. A numerical

scheme is utilized to estimate initial axis of the cylinder and a point forming a projection plane

normal to this axis. A circle is fitted to three most distant points from this initial point. Using the

center of this fitted circle the projection plane point is updated and the process is repeated until

the best fit circle (maximum, minimum or zone fit) is found. Once the best fit circle is obtained

 26

the reference axis is transferred to the new circle center and the process is repeated. This process

is repeated till the best fit cylinder is determined.

Q. Zhang [13] stated that the linearization of the mathematical model for spatial

straightness error evaluation cannot be done; a nonlinear mathematical model for straightness

error evaluation was established. Their model assumes that for fitting a cylinder there must be

five points lying on the cylindrical shell bounding the points, centered on the fit cylinder.

Measured points are input in polar coordinates. Select the five equidistant points from an initial

estimate of axis sequentially. A set of equations (in 4D) for cylinder parameters are formed using

these five points. These equations are solved to determine the cylinder parameters. Maximal

value points are extracted from these cylinder parameters and checked for minimum zone

condition. If the minimum zone conditions are not satisfied, then one of the points in the five

points is substituted with a new and the process is repeated again.

 Venkaiah and Shunmugam [14] used a limacon-cylinder approach for the evaluation of

cylindricity error. Limacon is a curve formed when a point on the circle (half the radius) rolls

around the outside of a circle of equal radius. An assessment feature for cylindricity evaluation

(called limacon-cylinder) was established by extruding this limacon along a line. Computational

geometric techniques were utilized to establish the limacon-cylinder. Deviation of a point lying

outside the assessment cylinder was considered positive and a point lying inside deviation was

considered negative. Cylindricity error was determined as the absolute sum of maximum and

minimum deviations. Different circular sections of the limacon-cylinder along the axis were

evaluated to determine the best fit cylinder. The techniques developed were applied to the

evaluation of a minimum circumscribed, maximum inscribed and minimum zone cylinder. Data

for evaluation is also available in the literature.

 27

S. Hossein Cheraghi [15] presented a mathematical model for the evaluation of a

geometric characteristic that defines form and function of cylindricity and straightness of a

median line. This was achieved by transforming a 3D problem (cylinder) into 2D (circle) by

means of rotation and projection. The optimal solution is found by minimizing the circularity

error of the projected points as the cylindrical feature orientation is changed. Shakarji [16] posed

this problem as an optimization (minimization) problem and argued that the solution is hidden

among many local minima. He utilized the simulated annealing algorithm which is a probabilistic

method for finding a global optimum of a given function in a large search space. The fitting was

done by first fitting a least square feature. The fitted feature along with the measure data is rotated

and/or translated. This is done until either the center of the fitted feature lies at origin or the axis

aligns with the z axis of the coordinate system. A simulated annealing technique was applied to

the transformed data using the least square fit as initial guess to find the optimal solution.

Dawit H. Endrias [17] proposed a combinatorial optimization algorithm for evaluation of

minimum zone spatial straightness error. His algorithm works iteratively searching for points that

define a minimum spatial straightness zone. His algorithm also takes into account the degenerate

cases where a minimum zone solution for a cylinder might not have five points on the surface of

the cylinder. A convex hull (3D) for the measured point cloud is determined. Using the point

forming the vertices of the convex hull, all three points, four point and five point combinations

are searched for the optimal solution iteratively. Xiuming and Zhaoyao [18] utilized the concept

of convex hull for the minimum zone circle where they solved a mini-max solution by rapid

selection of iteration points using the convex hull. If the optimal solution is not found, new set of

data points are determined from the convex hull. On the other hand, Lee [19] used the convex

hull methodology for flatness tolerance evaluation. This is done by projecting the points on a 2D

plane with respect to each edges of the 3D convex hull. A 2D convex hull is constructed on the

projected points. Thus each sub problem becomes a simplified straightness problem. Once all

 28

these sub problems were solved, the best configuration among them was taken as the solution. Lei

Xianqing [20] proposed a geometric optimization searching algorithm for cylindricity error

evaluation. The algorithm works by creating hexagons on the starting and ending measured

sections of the reference cylinder. Vertices of one hexagon were joined to the other hexagon to

form lines. The shortest distance of each point in the point cloud was calculated from these lines

to find a better solution. This process goes on iteratively until no further improvement is possible.

This algorithm was utilized for evaluating the minimum zone, maximum inscribed and minimum

circumscribed cylinder.

In general, efficient algorithms have been proposed for doing minimum zone fits and one

sided fits except for the minimum zone internal plane fit and one sided line and plane fit. Existing

algorithms, which are robust and efficient for doing different types of fits are taken into

consideration in this research work.

3.3 Constrained Fits

Constrained fits are derivatives of unconstrained fits which have some parameters

constrained (like orientation, position etc.) with respect to some other feature. A secondary datum

is constrained in its orientation with respect to a primary datum. A tertiary datum is constrained

with respect to a primary and secondary datum in orientation and direction. GE, Q [21] outlines

an approach for simulating the datum reference frame. They used a nonlinear least square

minimization approach to simulate the primary, secondary and tertiary datums. The objective

function of the nonlinear least square fit is determined as the square of the sum of normal

deviations. Objective function is defined in terms of measured points and feature (to be fitted)

parameters. A bunch of nonlinear equation’s are generated, upon solving gives the best fit

parameters. Since secondary and tertiary datums need less parameters for their definition, the

objective function is modified accordingly.

 29

Bhat Vinod, De Meter, Edward C [22] did a comparison on datum establishment

methods. They compared three methods: a 3-2-1 method, a sequential least squares (SQLS)

method and a simultaneous least squares (SMLS) method. Results of the comparative studies

were also discussed. The 3-2-1 method fits a datum reference frame to six measured points. It

starts by fitting a plane to three points measured for primary datum. A secondary datum is

simulated by fitting a plane to the two points measured for secondary datum and forcing to be

perpendicular to the primary datum. The tertiary datum is simulated by fitting a plane to one point

measured and forcing it to be perpendicular to the primary and secondary datums. The SQLS

method also fits the datum planes sequentially to the measured data points as done by the 3-2-1

method. However, the SQLS method fits data to more than three measured points for simulating

each datum. The SMLS method fits all three datum planes orthogonally to the measured data

points simultaneously. The measured data points are greater than three for each datum plane. A

nonlinear least square model is formed which is solved by a sequential quadratic programming

technique.

As these fits are generally used to simulate secondary and tertiary datums and their

orientation, the amount of research work done for achieving these types of fits is considerably

less then compared to constrained fits. As a result, these fits lack existing algorithms that are

efficient and robust.

3.4 State of Current Technology

Least Square fits are one of the most commonly used methods for feature fitting. Both

NPL [9] and NIST [10] have standard algorithms for doing least square fits. For the purpose of

this research work NPL’s least square approach was used. These algorithms are robust and

efficient and no modifications are needed.

 30

A lot of work has been done in the field of unconstrained fits. The algorithm proposed by

Lei Xianqing [20] for minimum zone and one sided cylinder fit (unconstrained) is an efficient

algorithm. This algorithm is however dependent on a specific measurement scheme which has to

be modified to make it dependent on initial estimates for cylinder fit. Many algorithms have been

proposed for doing unconstrained circle fit (both minimum zone and one sided. Some of the

algorithms proposed use a convex hull approach which filters out the points which are important

for doing the fit. This is an important consideration if the point cloud is big. Venkaiah and

Shunmugam [23] proposed a method for defining an inner and outer convex hull. Their method

then iterates over all the points of the convex hull and iteratively updates the hull using

equiangular diagrams scheme. In order to bring down the computational complexity and avoid

going through all the possible combinations of circles their approach was modified. Gyula

Hermann [24] proposed an approach for doing minimum zone line and plane fit using convex hull

method. His approach for doing minimum zone line fit is robust and efficient and can be used as

it as. However, his approach for doing minimum zone plane does not works well for special cases

where measured data sets have a zone smaller than the actual desired zone fit. This appraoch was

modified to accommodate special cases. Uncosntrained one side line fit, plane and internal zone

plane fit lacks existing algorithms and hence they need to be developed.

Since, much less research work has been done in the field of constrained fits, they lack

existing efficient and robust aglorithms. All the algorithms within the cosntrained category (one

sided and minimun fit) need to be developed.

 31

CHAPTER 4

ALGORITHMS & IMPLEMENTATION

This chapter presents algorithms pertaining to each type of fit in different categories and

how that fit is done in this research work. All the algorithms were developed in C++ with the help

of Visual Studio.

4.1 Design Philosophy

The end goal of this research work is to develop a library of feature fitting functions.

These functions should be in form of API’s. This library set should be easy to embed in any

software and feature fitting algorithms could be called as function API’s for doing the fits and

getting results. Another important aspect of this library was adaptability and expandability. If a

better algorithm for doing any fit is developed in future then, the existing one in the library could

be replaced. This adaption of new algorithm should not affect the implementation of any other

algorithm/fit type. The library should also be easy to expand for addition of new feature types or

fit types without disturbing any other function call. All the mathematical functions developed

should be independent math functions so, that they can be reused again for different algorithms or

for new development.

For the sake of this purpose an object oriented style of programming was used. C++ was

chosen as the language for software development. Matrices were used to store the point cloud and

parameters of the feature fitted. Vectors and Matrices were used for storing intermediate data for

algorithm calculations. Open Source library “WYKOBI” has been used for doing 2D convex hull.

 32

4.1.1 Performance Factors

Feature fitting can be viewed as optimization problems. The purpose is to minimize the

objective function. Certain performance factors were taken into account for developing this

library. The performance factors that were taken into account are

 Robustness of the algorithms

 Efficiency of the algorithms selected.

 Accuracy of the solutions generated by the algorithms.

These factors influenced the choice of algorithm and approach used during the

development of this software library. A lot of testing was done to verify the accuracy and

robustness of these algorithm, the results of which are shown in subsequent chapters

4.2 Least Square Fits

Least Square fits are done using the least square fitting methods proposed by NPL [9]

because they are efficient and robust. Their approach begins by first defining parameters to define

shape, size, position and orientation of the geometric feature to be fitted and secondly to drive an

objective function. This objective function should define the sum of squares of the distances ()

of measured points to the geometric feature in terms of the defined parameters. Numerical

methods are then employed to minimize the sum of squares, depending upon the type of

geometric feature to be fitted. An initial guess of the geometric feature is required for these

algorithms to proceed.

Two methods are used for minimizing the distance function. In the case of a line and a

plane fit, their function is minimized using eigenvectors of a matrix. For a given matrix (m = n,

i.e. square matrix) an eigenvector v of matrix A is such that

 ,

 33

For a rectangular matrix (m ≥ n), Single Value Decomposition (SVD) is utilized to arrive

at eigenvectors of A, which is a more stable way to find eigen-values numerically. A can be

written as a product of

 ,

With S as the diagonal matrix containing singular values of A and U, V is the orthogonal matrices

of A.

In case of doing circle and cylinder fits, the Gauss-Newton algorithm is used to minimize

the distance function. The reason why the Gauss-Newton algorithm is used is because the

distance function () is a nonlinear function of the parameters. The algorithm starts by

linearizing the problem by replacing the initial function with its tangent. Next, the linear problem

is solved and the point where the tangent crosses the axis is determined. Furthermore, this

solution is used to update the initial solution and the process is repeated again. Finally, these

iterations are carried out until the objective function cannot be minimized any further. For

numerical accuracy these algorithms tend to maintain the centroid of data points (̅ ̅ ̅) near to

the origin. In order to do so, the centroid of the data points is calculated and then the data points

are translated by a value such that the centroid lies at origin.

The basic outline for doing least square fits for the geometric features within the scope of

this research is given below, a complete description of algorithms is given in “Least Squares Best

Fit Geometric Elements ”[9].

4.2.1 Line Fit

To define a line in 3D, two parameters are required i.e., a point on the line to be fitted and

direction vector of the line. The least square line fit in 3D is achieved by doing the following

steps:

 34

I. Let n be the number of input points with parameters (i = point).

II. Using the point cloud as input, calculate the centroid of the point cloud (̅ ̅ ̅). This

gives a point on the fitted line.

III. Construct a matrix A with size n×3 such that its row is ̅ ̅ ̅.

IV. Find the SVD of A.

V. The vector of SVD, which is corresponding to the largest single value, gives the

direction vector of the fitted line.

SVD is done by making use of an open source library, which uses the approach

suggested in “Numerical Recipes in C” [25].

4.2.2 Plane Fit

To define a plane in 3D, two parameters are required i.e., a point on the plane to be fitted

and a direction vector normal to the plane. The least square plane fit in 3D is done by following

the steps mentioned below:

I. Let n be the number of input points with parameters (i = point).

II. Using the point cloud as input, calculate the centroid of the point cloud (̅ ̅ ̅), this

gives a point on the fitted plane.

III. Construct a matrix A with size n×3 such that its row is ̅ ̅ ̅.

IV. Find the SVD of A.

V. The vector of SVD, which is corresponding to the smallest single value, gives the

direction vector of the fitted plane.

SVD is done by making use of an open source library, which uses the approach

suggested in “Numerical Recipes in C” [25].

 35

4.2.3 Circle Fit

The least squares circle fit is done in 2D. To define a circle in 2D two parameters are

required, a center () and a radius r. To find an initial estimate of the circle, an approximate

model, followed by Gauss Newton iteration to fit the circle, was utilized. The circle fit in 2D is

achieved by following the steps outlined below.

I. A linear function F (eq. 1.1) in terms of the measured points () is defined

to obtain an initial estimate of circle parameters

F = (

) (

) (1.1)

II. To obtain the estimates of () and r, the linear system of equations are

solved using a matrix approach of Ax = B, where A = (), and B =

(

).

III. Start a loop to do Gauss Newton Iterations using initial estimates as the starting

point.

IV. Create a Jacobian matrix J with rows as (

,

, -1) .

V. Create a right side vector d such that , where = distance of point

from .

VI. Solve the Jacobian matrix using Jx = b and obtain values of

 .

VII. Add these values to initial estimates of () and r, to obtain new estimates.

VIII. Repeat the iterations until the algorithm has converged.

4.2.4 Cylinder Fit

The least square cylinder fit is done in 3D. A cylinder requires three parameters, a point

() on its axis, a vector (a, b, c) along its axis, and a radius r to be defined completely. An

initial estimate of cylinder parameters is also required as an input for doing the cylinder fit

 36

followed by Gauss Newton iterations. The point cloud is rotated by a value such that the initial

estimate of the direction vector aligns with the z-axis or c = 1 and . The

cylinder fit in 3D is achieved by following the steps below.

I. The point cloud is translated such that the initial estimate of the point on the axis

lies at the origin.

II. Rotate the point cloud by a rotation matrix U such that the initial estimate of the

axis lies along the z-axis.

III. Construct a Jacobian matrix J with rows as (

), where

 = distance of the point from the cylinder axis.

IV. Construct a right hand side vector d such that , where is the

element of the vector.

V. Solve the system of linear equations Jx = -d to obtain the values

of

 .

VI. Update the initial estimate of the parameters. Rotate the obtained values

(multiplying with matrix). The radius and estimates of points on the axis are

updated by adding the new values to the existing ones. Direction vectors are

updated by taking the new values as the new estimates.

VII. The process is repeated until the algorithm converges.

VIII. Every time the iteration starts with an original copy of data, not the translated and

rotated data.

4.3 Unconstrained One Sided Fits

One-sided fits, fit a feature on one side of the point cloud to simulate a datum. We have

used two approaches during this research work for doing one-sided fits, a convex hull approach in

2D and 3D and a geometric optimization search algorithm. The convex hull in 2D is done using

 37

an open source library “WYKOBI” which makes use of a “Jarvis March’s” gift-wrapping

approach [26]. The 3D convex hull is done using a randomized incremental algorithm [27]. The

convex hull serves two purposes; it reduces the number of points to be analyzed and it gives a

good starting point.

4.3.1 Line Fit

A line fit is done in 2D. A line in 2D is defined by two points in the 2D space. The

convex hull (2D) along with the initial direction of fitting is used for doing a line fit.

I. By using the point cloud as an input from a text file, construct a convex hull.

II. Construct a vector V perpendicular to the initial direction of fitting (given as

input) such that it is also in counterclockwise direction.

III. Find the outer angles of all the lines of the convex hull with respect to the vector

V.

IV. Compare all the angles and find the smallest angle.

V. The line of the convex hull making the smallest angle with vector V gives the line

fit.

An outline of the line fit in 2D is given in the figure 12.

Figure 12 a: Generate a Figure 12 b: Find angles of initial Figure 12 c: Smallest angle

 Convex Hull direction of fit with lines of convex hull to direction of fit

Figure 12: Unconstrained One Sided Line Fit

 38

4.3.2 Plane Fit

The plane fit is done in 3D. A plane in 3D is defined by three points in space such that

they are not collinear. The convex hull (3D) along with the initial direction of fitting is used for

doing a plane fit.

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix.

II. Using the point cloud as an input, construct a convex hull.

III. Find the normal of all the planes of the convex hull such that the normal points

away from the hull.

IV. Find the outer angles of all of the normals of the planes of the convex hull, with

respect to the initial direction of fitting (given as input).

V. Compare all of the angles and find the smallest angle.

VI. The plane of the convex hull that makes the smallest angle with the initial

direction of fitting, gives the plane fit.

A plane fit follows the same procedure in 3D as a line fit follows in 2D, outlined in

Figure 12. In a line fit, the direction vector of the lines are used whereas in a plane fit, the

direction vectors of the normal of the plane are used.

4.3.3 Minimum Circumscribed Circle Fit

Minimum circumscribed circle fit is done in 2D. Two parameters are required to define a

circle in 2D, the center of the circle () and a radius r. The circle fitting makes use of the

outer convex hull approach suggested by “M.S. Shunmugam and N. Venkaiah” [23]. Convex hull

reduces the number of points to be evaluated and gives a good starting point. The approach is

modified so that the algorithm avoids going through all possible combinations of the circle to find

 39

the best one. This enables the algorithm to converge faster. Steps for doing the minimum

circumscribed circle are outlined below.

I. Store the point Data (n Points) in an n×2 matrix (figure 13a) after reading from a

text file.

II. Construct a convex hull from the Point Data (figure 13b).

III. Store the Points forming the convex hull (m points) in a different matrix m×2.

Where, m n.

IV. Iterate through all the points of the convex hull and find two points (mp1 and

mp2), that are farthest distance apart (d1) (figure 13c).

V. Using these two points (mp1 and mp2) iterate through all the points of the

convex hull taking one at a time (mp3) to form circles.

VI. Store all 3 points combinations (mp1, mp2 and mp3) forming circles, which have

all the points (n) either inside or on the circle formed by them (figure 13d).

VII. Iterate through all the points of the convex hull to find a set of two points that are

next most farthest distance apart (d2) (figure 13e).

VIII. Repeat step V and VI.

IX. Repeat steps VII and VIII until the distance (d) becomes less than or equal to the

90% of 0.5 × (diagonal of bounding box of the point data (n))

X. Compare all the combinations to find the circle with the smallest radius (d_s1).

XI. If no circle is found then find the two max. distance points and fit a circle to

them.

For the sake of efficiency, all of the circles (formed by three point combinations) are

tested for the interior angles. If any of the interior angles are greater than 90 degrees then that

combination is rejected. This follows the assumption that the measured data set should span the

surface of the geometry.

 40

4.3.4 Maximum Inscribed Circle Fit

The maximum inscribed circle fit is also done in 2D. Two parameters are required to

define a circle in 2D, the center of the circle () and a radius r. The circle fitting makes use

of the inner convex hull approach suggested by “M.S. Shunmugam and N. Venkaiah” [23] with

one modification. The approach for finding the best fit circle is modified to avoid going through

all the combinations possible.

I. Read the point data from a text file (n Points) and store it in an n×2 matrix (figure

14a).

II. Construct an inner convex hull from the Point Data (figure 14b).

III. Store the Points forming the convex hull (m points) in a different matrix m×2.

a) Where, m n.

IV. Iterate through all the points of the convex hull and find two points (mp1 and

mp2), that are farthest distance apart (d1) (figure 14c).

13a. Point cloud 13b. Convex Hull 13c. Max Distance Points

13d. Search for 3

rd
 Point 13e. Second Max. Dist. Points 13f. Final Circle (Reject

if point outside circle)

Figure 13. Process for Minimum Circumscribed Circle

 41

V. Using these two points (mp1 and mp2) iterate through all the points of the

convex hull taking one at a time (mp3) to form circles.

VI. Store all 3 points combinations (mp1, mp2 and mp3) forming circles, which have

all the points (n) either inside or on the circle formed by them (figure 14d).

VII. Compare all the combinations to find the circle with the largest radius (d_s1).

VIII. If no combination found go to step IX else go to step XI

IX. Iterate through all the points of the convex hull to find a set of two points that are

next most farthest distance apart (d2) (figure 14e).

X. Go to step V.

XI. Combination with the largest radius gives the maximum inscribed fit.

The efficiency measures taken for the minimum circumscribed fit (Section 4.3.3) are also

followed for the maximum inscribed fit.

4.3.5 Minimum/Maximum Cylinder Fit

One sided cylinder fit is done in 3D. Three parameters are required to define a cylinder, a

point on the axis of the cylinder (), direction vector of the axis of the cylinder (a, b, c)

14a. Point cloud 14b. Inner Convex Hull 14c. Max Distance Points

 14d. Invalid Combination 14e. Second Max. Dist. Points 14f. Final Circle

Figure 14. Process for Maximum Inscribed Circle

Max.

Dist.

max.

dist. 2

 42

and a radius r. The cylinder fit is done using the geometric optimization search algorithm based

on an approach suggested by Lei Xianqing [20]. The algorithm is modified to take the least

square cylinder fit as the starting point instead of depending on a specific measurement scheme in

the suggested approach. Following the steps mentioned below can do the cylinder fit.

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix.

II. Using the point cloud and initial estimates of the cylinder as input, find a least

square cylinder fit (F1 – figure 15a).

III. Rotate the axis of the F1 to align it with the Z axis and rotate the point cloud by

the same rotation matrix.

IV. Find the extreme ends (e1, e2) of the rotated cylinder.

V. Construct hexagons h1 and h2 on ends e1 and e2 such that they lie in an X-Y

plane, with the size of the hexagon = 10% of radius of the F1 cylinder (figure

15b).

VI. Connect all the points from hexagon h1 to hexagon h2 forming 36 combinations

of lines (figure 15c).

VII. Considering each line as an axis for the cylinder, check whether the fitted

cylinder is a better solution than the previous one (figure 15d).

VIII. If is a better solution then F1 then take this as the new estimate for the

cylinder, rotate the point cloud back to original position and repeat steps II, III,

IV, V and VI.

IX. If is not a better solution then F1 then reduce the size the hexagon by half and

repeat steps II, III, IV, V and VI.

X. Repeat the process till the size of the hexagon becomes less than 0.01% of the F1

cylinder radius.

 43

The convergence criteria for the algorithm (0.01% of the F1 cylinder radius) can be

modified as per desired accuracy. In case of the minimum circumscribed cylinder, the better

solution would be a cylinder with a smaller radius. For a maximum inscribed cylinder, the better

solution would be a cylinder with a bigger radius.

4.4 Unconstrained Minimum Zone Fits

Minimum zone fits aim to fit a set of parallel features to the point cloud (section 2.2.2).

These fits also use the convex hull approach (2D and 3D) and the geometric optimization search

algorithm as described for unconstrained one-sided fits. Line and plane fits are based on an

approach suggested by Gyula Hermann [24].

 15a: least square cyl. fit to the point cloud 15b: Create hexagons at both ends of the cyl.

15c: Join all the points of both hexagons (36 lines) 15d: find a max/min cyl. using each line as axis.

Figure 15. Process for Unconstrained One Sided Cylinder Fit

 44

4.4.1 Line Fit

The line fit is done in 2D. Two points () indicating one line and one point,

indicating the distance and position of the line forming the parallel zone in the 2D space, defines

a zone line fit. Line fit follows the approach suggested by Gyula Hermann [24] because it’s

efficient, robust and straightforward approach. Convex hull (2D) is used for a zone line fit.

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix

(figure 16a).

II. Fit a 2D convex hull to the Point Data (Figure 16b).

III. Store the Points forming the convex hull (m points) in a different matrix m×2 as

combinations forming lines of the hull

a) Where, m n.

IV. Iterate through all the lines of the convex hull and find the distance (d) of the

point that is farthest away (normal distance) from each line (Figure 16c)

V. Store all these distances (d) with lines and points between which they exist.

VI. Compare all these distances (d) to find the shortest distance (ds) (Figure 16d).

VII. The line and a line parallel to it passing through the point at this distance (ds) will

give the minimum zone line fit.

16a: Point cloud 16b: convex hull 16c: Combinations of each 16d: Combination

 line of hull to the farthest point with min. dist

Figure 16. Unconstrained Min Zone Line Fit

 45

4.4.2 External Plane Fit

The external zone plane fit is done in 3D. Three points () defining a plane (one

side of the zone) and a point indicating the position and distance of the plane forming the parallel

zone in space, define a zone plane fit in 3D. External plane follows the approach suggested by

Gyula Hermann [24]. This approach was modified because it does not work for the special cases

where another zone smaller than the desired zone exists. Convex hull (3D) is used for doing a

plane fit. An external plane is used for simulating internal features (ex. Slots). Steps for doing an

external plane zone fit are outlined below.

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix.

II. Fit a 3D convex hull to the Point Data.

III. Store the Points forming the convex hull (m points) in a different matrix m×3 as

combinations forming planes of the hull

a) Where, m n.

IV. Iterate through all the planes of the convex hull and find the distance (d) of the

point that is farthest away (normal distance) from each plane.

V. Store all these distances (d) with planes and points between which they exist.

VI. Compare all these distances (d) to find the shortest distance (ds).

VII. The plane and a plane parallel to it passing through the point at this distance (ds)

will give the minimum zone external plane fit.

The external plane fit zone follows the procedure as outlined by the line fit. A plane fit is done in

3D and a line fit is done in 2D. Normal distances from the planes are used to calculate distances

in a plane fit as compared to that of a zone line fit.

 46

4.4.3 Internal Plane Fit

An internal zone plane fit is done in 3D. Three points () defining a plane (one

side of the zone) and a point indicating the position and distance of the plane forming the parallel

zone in space, define a zone plane fit in 3D. Convex hull (3D) is used for doing a plane fit.

Internal plane fits are used to stimulate external features (ex. tabs). Steps for doing an internal

plane zone fit are outlined below (Figure 17).

I. Read the three measured points (for an initial guess) from a text file and store

them in a 3x3 matrix m.

II. Read the Point Data (n Points) from a text file as points on one side (left hand

side - ls) and another side (right hand side - rs) and store it in an n×3 matrix m1

and m2 (Figure 17a).

III. Do a least square fit to the 3 points (matrix m) to establish an initial reference

plane (Figure 17b).

IV. Fit a 3D convex hull (cls and crs) to both the point clouds (ls and rs point cloud)

(Figure 17c).

V. Compare the normal of the planes of the convex hull with that of a least square

plane.

VI. Ignore all the planes whose normals make an angle > 90 degrees with the normal

of the least square plane. (Selected planes are called innermost planes pls and

prs).

VII. Iterate through all the internal planes of the pls convex hull and find the angles

(d1) of the points in the rs point cloud that are closest to these planes (Figure

17d).

 47

VIII. Repeat the process with internal planes of prs convex hull and find distances (d2)

with respect to its point cloud.

IX. Find the angles (ang) of all the internal planes (of both same and opposite side)

with respect to the least square plane

X. Compare all of these angles to find the minimum angle.

XI. Select the plane combination with the minimum angle.

XII. The plane and a plane parallel to it passing through the point at this distance (ds)

will give the minimum zone internal plane fit (Figure 17e).

4.4.4 Circle Fit

A circle fit is done in 2D. A center (), inner radius r1 and an outer radius r2 is

needed to define a zone circle fit. An unconstrained minimum circumscribed circle fit and

maximum inscribed circle fit (section 4.2.3 and section 4.2.4) are done to establish an initial

guess for the zone circle fit. A geometric optimization search algorithm based on the approach

suggested by Lei Xianqing [20] is used afterwards to search for a better solution. The zone circle

fit follows the steps mentioned below.

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix.

17a: Point cloud 17b: Least Square 17c: 3D convex 17d: Dist. Of inner 17e: Comb. with

 Plane fit (divided hull (divided planes min. distance

 data set into two) data sets) innermost points

Figure 17. Unconstrained Min Zone Internal Plane Fit

planes

s

 48

II. Fit a minimum circumscribed circle (nc1_a) to this point set.

III. Using the center of the circle (nc1_a) find a circle (nc1_b) passing through the

point closest to the center of this circle (nc1_a).

IV. Store the distance between the two circles (nc1_a, nc1_b) as d1.

V. Fit a maximum inscribed circle to this point set (nc2_a).

VI. Using the center of the circle (nc2_a), find a circle (nc2_b) passing through the

point farthest from the center of this circle (nc2_a)

VII. Store the distance between the two circles (nc2_a, nc2_b) as d2.

VIII. Compare d1 and d2 and choose the combination of circle (cb1) with smaller d as

an initial guess.

IX. Form a polygon p (36 sides) using the center of this circle (cb1) with size = 1%

of the radius of the circle.

X. Iterate around the center of combination cb1 using the vertices of the polygon p.

XI. Using the vertices as new centers, draw concentric circles to the farthest and

nearest points from that center to form combinations (cbm) of zones.

XII. If the new combination has a distance (dm – between concentric circles) smaller

than the previous combination (cb1), discard the previous combination and make

this combination (cbm) the new guess (cb1). Repeat steps IX, X and XI.

XIII. If the new combination has a distance (dm) greater than the previous combination

(cb1), then multiply the search radius by 0.1 and repeat steps IX, X, XI and XII.

XIV. Iterations are carried out until the search radius becomes less than 0.001of the

radius of the initial guess.

The convergence criteria (< 0.001 radius of the initial estimate) can be modified as per

the desired efficiency.

 49

4.4.5 Cylinder Fit

A zone cylinder fit is done in 3D. Three parameters are required to define a cylinder: a

point on the axis of the cylinder (), direction vector of the axis of the cylinder (a, b, c)

and a radius r. A cylinder fit is done using a geometric optimization search algorithm based on an

approach suggested by Lei Xianqing [20]. The algorithm is modified to take the least square

cylinder fit as the starting point instead of depending on the specific measurement scheme in the

referenced approach. Using the least square cylinder fit as basis, a zone cylinder is formed for the

initial guess. A cylinder fit can be done by following the steps mentioned for achieving an

unconstrained one-sided cylinder fit (section 4.3.5) and by making the changes for the initial

estimates. The algorithm outlined in section 4.3.5 is modified to search for a minimum zone

instead of a one sided fit.

A zone fit also follows the same convergence criteria as defined for the unconstrained

one-sided cylinder fit. The convergence criteria for the algorithm (0.01% of the F1 cylinder

radius) can be modified as per the desired accuracy.

4.5 Constrained One Sided Fits

Constrained one-sided fits are done with constraints on orientation and position. For

doing line and plane fits, the initial direction of fitting as well as the direction vector of the

constraining feature are taken into account. The convex hull approach in 2D/3D and the

geometric optimization search algorithm are also used for doing these fits. The convex hull in 2D

is created using an open source library “WYKOBI” which makes use of “Jarvis March’s” gift-

wrapping approach [26]. The 3D convex hull is done using a randomized incremental algorithm

[27]. Constrained fits are simpler in terms of algorithm and takes less computational time as

 50

compared to unconstrained fits. The reason constrained fits are easier to achieve is that some

parameters are already constrained with respect to another feature.

4.5.1 Constrained One Sided Line Fit

A constrained one-sided line fit can be constrained in its orientation with respect to

another line. A constraint could be a fit parallel to a constraining line or a fit perpendicular to the

constraining line. A line fit is done in 2D. A convex hull in 2D, initial direction of fitting and the

equation of the constraining line (in the form) are used for doing the fit. Two points

that do not lie at the same position are required to define a line. A line fit parallel to given line

(constraint = parallel to a given line) is done following the steps mentioned below.

I. Read the point data and store it in an m×2 matrix (Figure 18a).

II. Using the point cloud as an input, construct a convex hull (Figure 18b).

III. Compare the constraining line and the lines (n) of the convex hull (Figure 18c).

IV. Keep only the lines (m, where m є n) which are parallel to the constraining line

and reject all other lines (Figure 18d).

V. Construct a vector V perpendicular to the initial direction of fitting (given as

input) such that it is also in a counterclockwise direction.

VI. Find the outer angles of all the lines (m) with respect to the vector V (Figure

18e).

VII. Compare all the angles and find the smallest angle.

VIII. The line of the convex hull making the smallest angle with vector V gives the line

fit (Figure 18f).

In case of a line fit perpendicular to the constraining line, a line (l1) perpendicular to the

constraining line is first constructed. Using L1 as the new constraint, the algorithm mentioned

above is used to find the fit. Figure 18 shows the process of a constrained one sided line fit.

 51

4.5.2 Constrained One Sided Plane Fit

A constrained one-sided plane fit is constrained with respect to another plane in terms of

its orientation. A constraint could be a fit parallel to a constraining plane or a fit perpendicular to

the constraining plane. A plane fit needs an initial direction of fitting and the equation of the

constraining plane as an input. A convex hull in 3D along with the constraining plane is used for

doing the fit. Three non-collinear points in space define a plane fit. A constrained one-sided plane

fit is done according to the steps mentioned below:

I. Read the point data and store it in an m×2 matrix.

II. Using the point cloud as an input, construct a convex hull.

III. Define the normal vector of the planes such that they all point outside of the hull.

IV. Compare the constraining plane and the planes (n) of the convex hull.

V. Keep only the planes (m) which are parallel to the constraining plane and reject

all other planes.

a) Where, m n.

VI. Construct a vector V representing initial direction of fitting (given as input).

18a: Point cloud 18b: Convex hull 18c: Constrain - parallel 18d: Keep lines parallel

 to a given line to the constraining line

 18e: Find outer angles with 18f: Line with smallest angle

 Initial direction of fitting gives the fit.

Figure 18. Constrained One Sided Line Fit

 52

VII. Find the angle between the vector V and the planes (m).

VIII. Compare all the angles and find the largest angle (normal of the fit plane and

vector V will be opposite to each other).

IX. The plane of the convex hull making the largest angle with vector V gives the

plane fit.

Fits with constraint perpendicular to the given plane are done by first finding a normal vector V

perpendicular to the normal of the constraining plane. Secondly, using vector V as the new

constraint, the above mentioned approach is followed. The constrained one-sided plane fit

follows the same approach suggested by line fit as outlined in Figure 18.

4.5.3 Constrained One Sided Minimum/Maximum Circle Fit

A maximum inscribed circle and a minimum circumscribed circle fit is done in 2D. A

center (), and a radius are the parameters that define a circle in 2D space. A constrained

one-sided circle fit is constrained in its position (center already known). A circle fit follows the

steps mentioned below.

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix

(Figure 19a).

II. Read the constraint (coordinates for center c1) ()

III. In case of a minimum circumscribed circle: find a point with distance d1 that is

furthest away from c1.

IV. c1 as the center and d1 as the radius gives the fit (Figure 19c).

V. In case of the maximum inscribed circle, find a point with distance d1 that is

nearest to the center c1.

VI. c1 as the center and d1 as the radius gives the fit.

 53

4.5.4 Constrained One Sided Minimum/Maximum Cylinder Fit

A constrained one sided cylinder fit is done in 3D. A cylinder fit could be constrained in

its orientation with respect to a line or a plane. Constraints for a cylinder fit can be the axis of the

fit parallel to a given line or the axis of the fit perpendicular to a given plane. Three parameters

are required to define a cylinder: a point on the axis of the cylinder (), direction vector

of the axis of the cylinder (a, b, c) and a radius r. Unlike the unconstrained cylinder fit, a

constrained cylinder fit does not require an initial estimate of a cylinder as an input. A cylinder fit

is done using the geometric optimization search algorithm. This algorithm is an extension of an

approach suggested by Xianqing et al. [20]. A cylinder fit with the axis of the fit parallel to a line

can be done by following the steps mentioned below:

I. Read the point data from a text file and store it in a matrix m1 (mx3).

II. Read the direction vector () of the input line (Figure 20a).

III. Rotate the direction vector () by a rotation matrix Ur such that it aligns

with Z-axis.

IV. Rotate the input point cloud by the same rotation matrix Ur.

V. Ignore the all of the z coordinates from each point and store the () coordinate

in a new matrix m2 (mx2) (Figure 20b).

 19a: Point cloud 19b: Constrained center 19c: Distance of max. dist. point

 gives radius of circle.

Figure 19. Constrained Minimum Circumscribed Circle Fit

 54

VI. Using the points in m2 find two points (p1, p2) that are the farthest distance

apart. Find the mean point (c1) of p1 and p2 (Figure 20c).

VII. In case of the minimum circumscribed cylinder, fit a minimum circumscribed

circle (cr1) to m2 using c1 as an initial estimate for the center. The distance from

c1 to p1 gives an initial estimate for radius r1 (Figure 20d).

VIII. In case of the maximum inscribed cylinder, fit a maximum inscribed circle (cr2)

to m2 using c1 as an initial estimate for the center. The distance from c1 to the

nearest point in m2 gives the initial estimate of the radius r2.

IX. Construct a polygon around the center of the initial circle (cr1/cr2) with 36 sides

and with a size 10% of the initial estimate of radius (Figure 20e).

X. Using each vertex of the polygon as an estimate for the center point, search for a

better solution (max/min circle).

XI. If a better solution is found then make that as the new estimate for the center and

go to step IX.

XII. If no better solution is found then reduce the size of the polygon by half and go to

step IX.

XIII. Repeat the process until the size of the polygon becomes less than or equal to

0.01% of the initial estimate of the radius (<= 0.01% of (cr1/cr2) – Figure 20f).

XIV. Assign a Z coordinate to the obtained center within the limits (in the z direction)

of the rotated point cloud.

XV. Rotate the estimate of the center (cr) back by multiplying with the transpose of

the Ur.

XVI. The radius (r1/r2), direction vector of the constraining line () and the

rotated point (cr) gives the constrained one-sided cylinder fit (Figure 20g).

 55

In case of a constraint where the fitted cylinder axis is perpendicular to a plane, the vector

normal to the plane is taken and the algorithm outlined above for parallel to an axis constraint is

followed. The accuracy levels (0.01% of the initial estimate of the radius) and the sides of the

polygon (36) can be changed depending upon the accuracy and efficiency requirements.

4.6 Constrained Minimum Zone Fits

Constrained minimum zone fits also fit a set of parallel features to the point cloud. These

sets of parallel features however are constrained in orientation or position with respect to another

feature. Minimum zone fits require the point cloud and the parameters of the constraining feature

20a: Point Cloud & Const. Line 20b: Projected Points 20c: Mean of Max. Dist. Points

 20d: Initial Circle 20e: Fit a Polygon around center 20f: Fitted Circle

20g: Transform Back to Cylinder

Figure 20: Constrained One Sided Cylinder Fit

 56

as an input. These fits also use the geometric optimization search algorithm as described for

constrained one sided fits.

4.6.1 Constrained Minimum Zone Line Fit

A constrained minimum zone line fit is done in 2D. Two points () each indicating

the position of a line forming the zone parallel to the constraining line in 2D space, define a zone

line fit. The distance between the two lines passing through the two points is the distance of the

zone. The point cloud and the parameters () of the constraining line () are

required as an input for the fit. A constraint minimum zone line fit can be constrained as parallel

or perpendicular to a constraining line. A line fit with a constraint parallel to a given line is done

by following the steps mentioned below:

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix

(Figure 20a).

II. Read the parameters () of the constraining

line (L) from the text file (Figure 20b).

III. Find a point (p1) max distance from L.

IV. Construct a line (L1) at point p1 parallel to L (Figure 20c).

V. Find a point (p2) max distance from L1.

VI. Construct a line (L2) at point p2 parallel to L (Figure 20d).

VII. L1, L2 gives the zone fit and the distance between L1 and L2 gives the zone size.

For a constraint where the zone is perpendicular to a given line, a line perpendicular to

the constraining line is first constructed. Next, the algorithm outlined for a zone with a parallel

constraint (mentioned above) is followed to achieve the fit. Figure 21 shows the process of

constrained minimum zone line fit.

 57

4.6.2 Constrained Minimum Zone External Plane Fit

A constrained minimum zone external plane fit is done in 3D. A zone plane fit can be

done with planes of the zone constrained either parallel or perpendicular to a constraining plane.

Two points () each indicating the position of a plane forming the zone parallel to the

constraining plane defines a zone plane fit. For a perpendicular constraint, two points on one side

and one point on the other side define the two planes. The distance between the two planes

forming the zone is the distance of the zone. The point cloud and the parameters () of

the constraining plane () are required as an input. The plane fit with a

constraint parallel to a given plane is done by following the steps mentioned below:

I. Read the Point Data (n points) from a text file and store it in an n×3 matrix.

II. Read the parameters () of the

constraining plane (Pl) from the text file.

III. Find a point (p1) max distance from Pl.

IV. Construct a plane (Pl1) at point p1 parallel to Pl.

V. Find a point (p2) max distance from Pl1.

VI. Construct a plane (Pl2) at point p2 parallel to Pl.

21a: Point 21b: Constraining 21c: Max. dist. line from 21d: Max dist. line from

 cloud line constraining line point p1

Figure 21. Constrained Minimum Zone Line Fit

 58

VII. Pl1, Pl2 gives the zone fit and the distance between Pl1 and Pl2 gives the zone

size.

A constrained minimum zone plane fit follows the same approach as the constrained

minimum zone line fit (Figure 21). For the zone fit that has a constraint perpendicular to a given

plane, a different approach is followed, outlined below.

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix.

II. Read the parameters () of the

constraining plane (Pl) from the text file.

III. Rotate the normal vector of the constraining plane (Pl) by a rotation matrix (Ur)

such that it aligns with the z-axis.

IV. Rotate the point cloud by the same rotation matrix (Ur).

V. Construct a matrix m2 (nx2) with only () coordinate of the rotated point

cloud.

VI. An unconstrained minimum zone line fit is done on the matrix m2 data set

(section 4.3.2).

VII. A z coordinate is assigned to the output of the minimum zone line fit within the

limits of the rotated data set (limits in z direction).

VIII. Obtained points are rotated back by multiplying them with the transpose of the

rotation matrix (Ur).

4.6.3 Constrained Minimum Zone Internal Plane Fit

A constrained minimum zone internal plane fit is also done in 3D. A zone plane fit can be

done with planes of the zone constrained either parallel or perpendicular to a constraining plane.

Two points () each indicating the position of a plane forming the zone parallel to the

 59

constraining plane defines a zone plane fit. The distance between the two planes forming a zone

is the distance of the zone. The point cloud and the parameters () of the constraining

plane () are required as an input. A plane fit with a constraint parallel to a

given plane is done by following the steps mentioned below:

I. Read the Point Data (n Points) from a text file and store it in an m×3 matrix

(Figure 21a).

II. Read the parameters () of the

constraining plane (Pl) from the text file (Figure 21b).

III. Find a point (p1) max distance from Pl.

IV. Construct a plane (Pl1) at point p1 parallel to Pl (Figure 21c).

V. Find a point (p2) max distance from Pl1.

VI. Construct a plane (Pl2) at point p2 parallel to Pl (Figure 21d).

VII. Find a plane (Plm) parallel to Pl such that it lies in the middle of Pl1 and Pl2 and

is parallel to P1 (Figure 21e).

VIII. Find points (p3 and p4) nearest to plane Plm in each normal direction.

IX. Using the points p3 and p4 create planes (Pl3 and Pl4) such that they are parallel

to Plm.

X. Pl3, Pl4 gives the zone fit and the distance between Pl3 and Pl4 gives the zone

size (Figure 21f).

An outline of the constrained minimum zone internal plane fit is shown in figure 22.

 60

4.6.4 Constrained Minimum Zone Circle Fit

A constrained minimum zone circle fit is done in 2D. A center () and a radius (r1

for the inner circle and r2 for the outer circle) are the parameters that define a circle in 2D space.

A circle fit is constrained in its position (center already known). A circle fit follows the steps

mentioned below.

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix.

II. Read the constraint (coordinates for the center c1).

III. Find a point with distance d1 that is furthest away from c1.

22a: Point 22b: Constraining 22c: Max. dist. line from

 cloud plane constraining line

 22d: Max dist. line from 22e: Central plane 22f: Internal Zone fit

 point p1

Figure 22. Constrained Minimum Zone Internal Plane Fit

 61

IV. Find a point with distance d2 that is nearest to the center c1.

V. Set c1 as the center and d1 as the radius for the outer circle and d2 as the radius

for the inner circle gives the fit.

4.6.5 Constrained Minimum Zone Cylinder Fit

A constrained minimum zone cylinder fit is done in 3D. A cylinder fit could be

constrained in its orientation with respect to a line or a plane. Constraints for cylinder fits can be

the axis of the fit parallel to a given line or axis of the fit perpendicular to a given plane. Three

parameters are required to define a cylinder, a point on the axis of the cylinder (), the

direction vector of the axis of the cylinder (a, b, c) and a radius r. Unlike the unconstrained

cylinder fit, the constrained cylinder fit does not require an initial estimate of the cylinder as an

input. The cylinder fit is done using the geometric optimization search algorithm. This algorithm

is an extension of an approach suggested by Xianqing et al. [20]. A constrained cylinder zone fit

can be done by following the steps mentioned for a constrained one-sided cylinder fit (section

4.5.4). The algorithm outlined in section 4.5.4 is modified to search for a minimum zone instead

of a one-sided fit.

A zone fit also follows the same convergence criteria as defined for a constrained one-

sided cylinder fit. The convergence criteria for the algorithm (0.01% of the initial estimate of the

radius and the sides of the polygon (36) can be modified as per the desired accuracy and

efficiency.

4.7 Implementation

A library of functions were written in C++. Appendix A lists and explains the functions.

It also shows the input and output format used for each function call. In case of constrained fits,

different types of constraints with respect to which fit can be done are also summarized.

 62

CHAPTER 5

VALIDATION & VERIFICATION

In this chapter, various methods to validate and verify the algorithms proposed in this

research work are discussed along with their results. The algorithms were tested for their

efficiency, accuracy and robustness. Efficiency was measured by time taken to run test cases

ranging from five measured points to 100 measured points. Accuracy was measured as the

percentage error of the difference in fitted value by algorithm and the actual value. Actual value

was defined as obtained through manual measurements or through predefined values. Robustness

was measured by running test cases with outlier and with predefined errors in them. Testing was

also done to verify the differences between the CMM feature fitting and the actual feature fitting.

Three levels of testing were done to verify the proposed algorithms.

5.1 Virtual Testing and Verification

Virtual testing and verification were done by creating virtual data sets. Virtual data sets

were created for linear, planar, circular and cylindrical features. Test cases were created by

defining a nominal feature and random points around. Random points were defined within some

pre-defined distance from the nominal feature. Random points were generated by using a random

number generator. The points were generated such that they span the surface of the nominal

feature. Figure 23 shows the nominal geometry and the random distribution of points for virtual

test cases.

Figure 23a is a representation of a virtual test case for a line and a plane. In the case of a

plane, a depth of 10.0 units is added to the line test case. A zone of 0.025 units from the nominal

feature is established for the generation of random points. Figure 23b represents the virtual test

case for a circle and cylinder. A depth of 10.0 units is added in case of a virtual cylinder. The

 63

cylinder and circle virtual test cases also have a random point zone of 0.025 units around the

nominal feature (nominal feature thickness = 1 unit). The unit in which measurements were done

and test cases were created is inches. Table 5 shows the values of predefined virtual test cases and

the results of the algorithms for unconstrained fits.

Table 5a: Results for Virtual Test Cases

Unconstrained One Sided and Minimum Zone Fits

Type of Fit
Predefined

Nominal
Tolerance zone from
random generators

Obtained % Error =

Min Zone Line 2.975 0.05 (0.025 - both sides) 3.025 < 0.1

One Sided Line 0.025 0.025 < 0.1

Min Zone Plane
(External)

2.975 0.05 (0.025 - both sides) 3.025 < 0.1

Min Zone Plane
(Internal)

2.975 0.05 (0.025 - both sides) 2.97499 < 0.1

One Sided Plane 0.025 0.025 < 0.1

Min Zone Circle 1 (zone thickness) 0.05 (0.025 - both sides) 1.05 < 0.1

Max Insc. Circle 3 (outer radius) 0.025 0.025 < 0.1

Min Circum. Circle 4 (inner radius) 0.025 0.025 < 0.1

Min Zone Cyl. 1 (zone thickness) 0.05 (0.025 - both sides) 1.05 < 0.1

 23a: Line & Plane Virtual Test Case 23b: Circle & Cylinder Virtual Test Case

Figure 23. Virtual Test cases

 64

Max Insc. Cyl. 3 (outer radius) 0.025 0.025 < 0.1

Min Circum. Cyl. 4 (inner radius) 0.025 0.025 < 0.1

Table 5b: Results for Virtual Test Cases

Constrained One Sided and Minimum Zone Fits

Type of Fit
Predefined

Nominal
Constraining feature

Tolerance
zone from

random
generators

Obtained % Error =

Min Zone Line 2.975 Line parallel to y axis
0.05 (0.025 -
both sides)

3.025 < 0.1

One Sided Line 0 (form y axis) Line parallel to y axis 0 < 0.1

Min Zone Plane
(External)

2.975
Plane parallel to Y-Z

plane
0.05 (0.025 -
both sides)

3.02499 < 0.1

Min Zone Plane
(Internal)

2.975
Plane parallel to Y-Z

plane
0.05 (0.025 -
both sides)

2.976 < 0.1

One Sided Plane 0 (form y-z plane)
Plane parallel to Y-Z

plane
 0 < 0.1

Min Zone Circle
1 (zone

thickness)
center coordinates of

circle
0.05 (0.025 -
both sides)

1.04999 < 0.1

Max Insc. Circle 3 (outer radius)
center coordinates of

circle
0.025 2.97499 < 0.1

Min Circum.
Circle

4 (inner radius)
center coordinates of

circle
0.025 4.024999 < 0.1

Min Zone Cyl.
1 (zone

thickness)
axis parallel to Z axis

0.05 (0.025 -
both sides)

1.050001 < 0.1

Max Insc. Cyl. 3 (outer radius) axis parallel to Z axis 0.025 2.97499 < 0.1

Min Circum. Cyl. 4 (inner radius) axis parallel to Z axis 0.025 4.024999 < 0.1

In table 5a, the fifth column shows the results from running the virtual test case with the

algorithm. Second and third columns show the predefined tolerance zone and nominal features.

For Table 5b there is an additional column (3
rd

 column) which shows the constraining feature for

that type of fit. The last column of both the tables show the percentage error between the

predefined values of virtual test cases and the value obtained from running the constrained and

 65

unconstrained, minimum zone and one sided fits. By looking at the percentage error column we

can deduce that, the results from the algorithms closely match with the predefined results (up to

three decimal places). These errors could be due to numerical accuracy, round off errors or

measurement errors.

5.2 Comparative Study with Commercial CMM

CMM testing and verification are done by fitting features to a measured point cloud using

CMM software. Data for CMM’s were generated by doing reverse engineering. Parts were

created for the purpose of generating a point cloud with built-in form errors. Point cloud was

generated by taking measurements on these manufactured parts. The CMM software is used to fit

a feature to the measured point cloud. A feature is also fitted to the measured point cloud using

the algorithms proposed. The features obtained from CMM and the algorithms developed were

compared for verification of the results. A robotic arm CMM (Romer Series 3000i) was used for

measuring points on the manufactured parts. The points were measured in a way that spanned the

measured surface. Parts were created for a tab, slot, pin and hole (Figure 24).

24a: Manufactured Sample Pin

 66

24b: Manufactured Tab

24c: Manufactured Slot

24d: Manufactured Hole

Figure 24: Manufactured Parts with exaggerated Form Errors

 67

The units in which the parts were created were mm. For the tab and slot (Figure 24b and

24c) the nominal width between the two planes was 20 units with a deviation of 1.0 mm on both

sides of each plane. For pins and holes (Figure 24a and 24d), a nominal diameter of 30 units with

a variation of 1.0 mm on the inside as well as towards the outside of the feature was incorporated.

Table 6 shows the results for CMM testing and verification.

Table 6: CMM Testing and Verification Results for a Plane, Circle and Cylinder

Least Square Fits Results

 Least Square fit Ball dia Final value CMM Value % Error =

Zone Plane 1.01577 0.23622 0.77955 0.7839 0.561

Circle 1.422212864 0.23622 1.18599286 1.1862 (dia) 0.02

Cylinder 1.401193232 0.23622 1.16497323 1.1698 (dia) 0.41

The fifth column (in Table 6) is the fit values obtained from the CMM software. The

values in column four are the values obtained from the least square algorithms after doing

adjustments on the probe diameter. Column sixth shows the percentage errors between the results

obtained from CMMs and the result obtained from doing least squares fit. We can note from

Table 6 (column six) that the fit value obtained from the CMM and the one from the least square

fit match very closely to each other. These results also lead to an assumption that CMM software

computes the least square fits for doing feature fitting.

5.3 Comparative Studies with Manual Measurements

In this mode of verification, manual measurements and verification are done by fitting a

feature to the measured point cloud using proposed algorithms. Manufactured parts are measured

manually using vernier caliper and screw gauge. Results obtained from manual measurements are

compared in table 7 with the features fitted by the algorithm for verification. The same robotic

arm CMM (Romer Series 3000i) was used for measuring points on the manufactured parts. The

 68

points were measured in a way so that they spanned the measured surface. The parts used for

measuring the point cloud were manufactured with built-in exaggerated form errors. Parts were

created for a tab, slot, pin and hole (Figure 24). The units in which measurements were done is

inches. Table 7a shows the results for manual measurements along with the CMM measurements

and obtained values from algorithms. Table 7b shows how results of least square zones vary from

the actual desired zone

Table 7a: Manual Measurements and Verification Results

Unconstrained One Sided and Minimum Zone Fits

 Minimum Zone

CMM
value

Manual
Measurement Algorithm Val

Ball
Diameter Final Val

Min Zone Plane
External 0.7839 0.822 1.05813 0.23622 0.822

Min Zone Plane
Internal 0.7904 0.75 0.5147 0.23622 0.7509

Min Zone Circle 0.02 0.0702 0.07314 0.07314

Min Zone Cylinder 0.0199
0.0787 (from
cad model) 0.077 0.077

 One Sided - Distance from datum (value in inches)

CMM
value

Manual
Measurement Algorithm Val

Ball
Diameter Final Val

One sided Plane 1.1802 1.197 1.430923488 0.23622 1.195

Min. Circumscribed
circle

1.1862
(dia) 1.212 (dia) 1.45(dia) 0.23622 1.2138(dia)

Max. Inscribed circle
1.1662

(dia) 1.1418 (dia) 1.3828(dia) 0.23622 1.1466(dia)

Min. Circumscribed
cyl.

1.1698
(dia) 1.204 (dia) 1.4429 (dia) 0.23622

1.2067
(dia)

Max. Inscribed cyl. 1.1499(dia) 1.142 (dia) 1.37848(dia) 0.23622
1.14228

(dia)

 69

Table 7b: Percentage Error of Least Squares Zones to Desired Zones

Unconstrained Minimum Zone Fits

Least

Squares Fit
Manual

Measurement
Algorithm

Val
Ball

Diameter Final Val
% Error

Min Zone Plane
External 0.77955 0.822 1.05813 0.23622 0.822

5.2311

Min Zone Plane
Internal 0.77955 0.75 0.5147 0.23622 0.7509

3.808

Min Zone Circle 0.0781 0.0702 0.07314 0.07314 6.781

Min Zone
Cylinder 0.3373

0.0787 (from
cad model) 0.077 0.077

77

Column two of table 7 shows the value obtained by doing the fits using CMM software.

Column three shows the values obtained by doing manual measurements of the manufactured test

parts. Columns four and five show the values obtained by running the CMM point cloud through

algorithms and adjustment for the measuring probe diameter. Final results of the algorithms with

measuring probe diameter adjustments are summarized in sixth column (algorithm value + probe

ball diameter adjustment). By comparing columns two, three and six, we can derive a conclusion

that manual measurements are closer to algorithm measurements. It could be also deduced by

comparing tables 6 & 7 that CMM measurements results are closer to those obtained by least

squares fit. Hence, we can arrive at a conclusion that the CMM’s are using least square fits.

Looking at table 7b we can conclude that the zones obtained by least square fits differ from that

obtained by an actual zone fit.

5.4 Application of Feature Fitting in GD&T

Verification of different tolerance classes and simulation of datums require analyzing the

same point cloud in different ways. Since, in a real part both datums and tolerance features lie on

the same part, the measured point cloud can verify more than one tolerance classes. The

following case studies demonstrate the usage of different feature fitting algorithms in evaluation

 70

of machining variations to design tolerances. Two different cases are presented here to evaluate

size, form and orientation tolerances by analyzing the same data sets in different ways.

5.4.1 Feature Fitting for Planar Features

Two sets of point clouds were measured on the planar features of the manufactured part

(cube) as shown in Figure 25. One set was measured on the Datum [A], and the other on the plane

on the right hand side (controlled feature). Points are measured by a CMM on both the controlled

and the controlling plane.

For orientation error (parallelism tolerance) verification in a planar feature (Figure 25),

the planar feature should lie in a zone defined by two parallel planes such that the distance

between the two planes is less than or equal to the tolerance specified by the designer. In order to

verify this, a minimum zone fit for the planar feature, a one sided fit for the Datum feature are

required. An unconstrained one sided plane fit is done on the point cloud that was measured on

the controlling plane (datum) to establish the datum plane. An unconstrained minimum zone

plane fit is done on the controlled plane. The distance between the planes of minimum zone fit is

the estimation for the parallelism error. For verifying size tolerance, the part that is shown in

Figure 25: Planar Features on a Part

 71

Figure 25 is considered as a Tab feature. A minimum zone unconstrained plane fit is done on this

feature by combining both data sets. The distance between the planes of this zone can be

compared to the original size tolerance, and an estimation of error can be obtained. For evaluation

of the form tolerance, a minimum zone unconstrained plane fit is done on the point cloud for the

datum. The distance between those planes will give the form error.

5.4.2 Feature Fitting for Cylindrical Feature

A CMM measures a point cloud on both datum (controlling feature – plane A) and the

controlled feature (cylinder) as shown in Figure 26.

 An unconstrained one sided plane is fitted for the datum if it is a planar feature. If the

datum is an external cylindrical feature, a minimum circumscribed cylinder fit is used; otherwise

(for the internal feature) a maximum inscribed cylinder is fitted. Next, an unconstrained one sided

cylinder fit is done on the point cloud of the controlled feature depending upon whether it is an

internal or external feature. Two points are measured along the axis of the fitted cylinder for the

controlled feature such that the points lie on the extreme ends of the fitted feature. These points

are then projected onto a plane perpendicular to the fitted datum feature. The distance between

Figure 26. Cylindrical Feature on a Part

 72

the projections of these points in the projected plane gives the parallelism error. Size tolerance

verification can be done by doing a one sided cylinder fit for the controlled feature. A maximum

inscribed cylinder fit is done if the feature is an internal feature (e.g. a hole), or a minimum

circumscribed cylinder fit is done if it is an external feature (e.g. a pin). The size of a one sided

cylinder fit is used to verify the size tolerance. To verify a form tolerance, a minimum zone

cylinder fit is done for the controlled feature. The radial distance between the two concentric

cylindrical features gives the form error of the cylindrical feature.

 A detailed description of how different feature fitting algorithms should be utilized for verifying

different types of tolerances and establishing datums can be found in V. Prabath work [28]

 73

CHAPTER 6

CONCLUSION, LIMITATIONS/ASSUMPTIONS & FUTURE WORK

6.1 Conclusion

A library of a comprehensive set of working feature fitting algorithms (Table 2) was created.

Implementation of the algorithms was done in a software which complies with the standard [3].

The choice of algorithms was based on a few parameters such as accuracy, complexity of

algorithm, and execution runtime of an algorithm. More weigh was given to accuracy and

complexity parameters. All the unconstrained, constrained and least square feature-fitting

algorithms were implemented and tested. The algorithms were implemented through a concept of

object oriented programming so that if a better implementation of a certain feature fitting needs to

replace the older one, it can be done without affecting the rest of the code modules. Testing of

each algorithm type has revealed that a large number of data points affects the time of execution

of algorithms. The computation time increases with an increase in the number of measured points,

but not drastically for most of the cases. However, special cases like equally spaced points or

algorithms like min circumscribed circle time increase with very large number of points. All of

the algorithms employed for implementing different feature-fitting classes can be broadly divided

into three stages: organization of data for initialization of the algorithm, running the algorithm in

iterations, and finally comparing different solutions (from different iterations) to obtain the best

one. This research work has made the following contribution

 A library of feature algorithms was developed

A lot of research work was done by different researchers on different types of features

fits. Some of the feature fit types had multiple existing algorithms proposed different

researchers. All those algorithms were studied and compared. The algorithms which best

 74

suited our criteria (accuracy, efficiency, robustness) were selected. All such existing

algorithms for different types of fits were filtered and collected at one place for anyone to

use and implement.

 Developed new feature fitting algorithms and modified existing ones

Some of the feature fit types (like constrained fits) lacked existing efficient and robust

existing algorithms. New algorithms were created for the fit types which lacked existing

algorithms. In addition to lack of existing algorithms, some algorithms were either failing

for special cases or were not efficient enough. These existing algorithms were modified

accordingly to make them more robust and efficient. Table 8 shows which algorithms

existed, which were modified and which were created new

 Implemented a software for feature fitting algorithm in form of a function library

Software of these algorithms was made in form of a library. The library was made in

form of function API’s so that anyone can easily integrate these function calls into their

own software. Functions were developed in an object oriented style independent manner.

This was done so that the library could be expanded or a function could be modified

without affecting other function implementations.

 Analyzed and tested CMM software

Several test parts with exaggerated form errors were manufactured. These parts were

measured using CMMs. The point cloud was analyzed using CMM software as well as

using the algorithms developed and manual measurements. The results obtained were

compared and deductions about CMM software were made. After comparing the results it

was observed that results obtained from a CMM matched closely with those obtained

from least square fits. Thus, it can be assumed that the CMMs are using least square fits.

Table 8: Work Done on Each Algorithm

Algorithm Type Reference Work Done

 75

Label

Least Square Line Fit 1A
Existing –Modified to

generate initial guess

Least Square Circle Fit 2A
Existing –Modified to

generate initial guess

Least Square Plane Fit 3A
Existing –Modified to

generate initial guess

Least Square Cylinder Fit 4A Existing

Unconstrained One Sided Line Fit 1B Created New

Unconstrained Circumscribed Circle Fit 2B - 1
Adaptation of an existing

algorithm

Unconstrained Inscribed Circle Fit 2B - 2
Adaptation of an existing

algorithm

Unconstrained One Sided Plane Fit 3B Created New

Unconstrained Circumscribed Cylinder Fit 4B - 1
Existing – Modified to get a

good start point

Unconstrained Inscribed Cylinder Fit 4B - 2
Existing – Modified to get a

good start point

Unconstrained Minimum Zone Line Fit 1C Created New

Unconstrained Minimum Zone Circle Fit 2C
Adaptation of an existing

algorithm

Unconstrained Minimum Zone External

Plane Fit
3C - 1

Existing – Modified to give

better results

Unconstrained Minimum Zone Internal

Plane Fit
3C - 2 Created New

Unconstrained Minimum Zone Cylinder Fit 4C
Existing – Modified to get a

good start point

Constrained One Sided Line Fit 1D Created New

Constrained Circumscribed Circle Fit 2D - 1 Created New

Constrained Inscribed Circle Fit 2D - 2 Created New

Constrained One Sided Plane Fit 3D Created New

Constrained Circumscribed Cylinder Fit 4D - 1 Created New

Constrained Inscribed Cylinder Fit 4D - 2 Created New

Constrained Minimum Zone Line Fit 1E Created New

Constrained Minimum Zone Circle Fit 2E Created New

 76

Unconstrained Minimum Zone External

Plane Fit
3E - 1 Created New

Unconstrained Minimum Zone Internal

Plane Fit
3E - 2 Created New

Unconstrained Minimum Zone Cylinder Fit 4E Created New

It is observed that the uniformity of sampling scheme would also affect the results of

least squares fit algorithms. A non-uniform scheme will shift the fitted least square feature

towards a denser zone of the measured point cloud. This will change the orientation as well as

location of the fitted feature. Figure 11 shows the case of rotating a non-uniform data set. When a

feature (circle) was fitted to these rotated data sets it was observed all of the fitted circles vary in

their position. In case of unconstrained and constrained one sided and minimum zone fit, the

effect of outliers is minimized by taking the direction of fitting into consideration.

6.2 Limitations/Assumptions

The algorithms developed during this research have certain limitations associated with

them. These limitations originate from certain assumptions that were made regarding the

sampling scheme and type of data that goes into these algorithms. An assumption that is common

to all the algorithms proposed in this research is that measured points should span the surface of

the feature. Moreover, the time taken by algorithms goes up with the number of measured points

as well as the type of fit to be done. A constrained circle fit will take less time than a

unconstrained circle fit for same number of measured points. The Unconstrained cylinder fit takes

more time than the unconstrained plane fit for a given number of measured points because the

number of parameters to locate a cylinder is greater than the number required for a plane.

Following are the assumptions/limitations made during the development of this library.

 77

 Least Square Fits

Least square fits are done using the NPL [9] approach. Since, least squares fits work by

minimizing the sum of squares of distance to the initial feature, data sets with a high

number of outlier points affect the solutions of the least square fits. For doing a least

square cylinder fit, it was assumed that the initial estimates of cylinder parameters (points

on the axis, radius and direction vector of axis) would be provided (from cad model).

This brings a limitation that if the initial estimates are too far off from the required fitted

feature, it will affect the results given by the least square fit.

 Unconstrained One Sided Fits

One sided line and circle fits work with 2D points cloud only whereas, one sided plane

and cylinder fit works with 3D point cloud. It was assumed that for doing one sided line

and plane fits an initial estimate of direction vector from which the fitting is done would

be provided along with the point cloud. It was also assumed that initial estimate for

cylinder parameters (points on the axis, radius and direction vector of axis) would be

provided (from cad model). Since, these initial estimates initialize the algorithms their

values affect the results of the fit type. The closer these estimates are to the fit type the

faster and more accurately the algorithms work.

 Unconstrained Minimum Zone Fits

Zone line and circle fits work for 2D points only and zone plane and cylinder fits work

for 3D points only. External and internal zone plane fits requires three measured points

for establishment of an initial reference plane. Since, the zone plane fit is done with

reference to this plane, the results of the zone plane fit are limited by the orientation of

the initial reference plane. Zone cylinder fit also needs the estimate of initial cylinder

parameters and the results of the cylinder fit are affected by the initial estimates. In

 78

addition to these limitations, all zone fits must have the minimum number of required

points on the feature forming the zone as dictated by their geometric entities.

 Constrained One Sided Fits

Constrained one-sided fits require the direction vector of the constraining feature for

doing the fit. If the direction vector of the constraining feature is not well defined or is

just an approximation it will affect the results of the constrained fits. This effect of

direction will vary as how bad the approximation is. A very bad approximation can alter

the results by substantial amount. Constrained one-sided fits were limited for doing fits

with respect to parallel and perpendicular features only. It was assumed that for doing a

constrained one-sided line and plane fit, the direction vector of the constraining feature

along with the estimate of initial direction of fitting would be provided.

 Constrained Minimum Zone Fits

Constrained minimum zone fits results are also affected by accuracy and definition of the

constraining features. Constrained minimum zone fits for a line and a circle works for 2D

point’s only, and constrained minimum zone fit for a plane and a cylinder works with 3D

point’s only.

Apart from limitations, the execution time of algorithms is also important in evaluating

their effectiveness. It was observed that the time required for algorithms to execute

depends upon:

 The number of parameters associated with the feature/ type of feature to be fitted.

 The number of points measured (point cloud).

 What type of fit it is (constrained, unconstrained or least squares).

Table 9 summarizes the time that different algorithms took for a set of 100 measured

points. These times are not CPU times but approximate times observed during the execution of

 79

algorithms. Table 10 shows the complexity associated with each algorithm type. The complexity

is calculated in big ‘O’ terms.

Table 9: Algorithm Execution Times for 100 Measured Points

Fit Type Algorithm and their

Reference Numbers

Time Taken to Execute (in

seconds)

Least Squares

1A: line 2 approx.

2A: circle 2 approx.

3A: plane 3 approx.

4A: cylinder 3 approx.

Unconstrained One Sided

Fits

1B: line 3 approx.

2B-1: circumscribed circle

2B-2: inscribed circle
3 approx.

3B: plane 4 approx.

4B-1: circumscribed cylinder

4B-2: inscribed cylinder

4 approx.

Unconstrained Minimum

Zone Fits

1C: line zone 3.5 approx.

2C: annular zone 3.5 approx.

3C-1 external plane zone

3C-2 internal plane zone

4.2 approx.

4C: cylinder zone 4.2 approx.

Constrained One Sided Fits

1D: line 2 approx.

2D-1: circumscribed circle

2D-2: inscribed circle
2 approx.

3D: plane 2.5 approx.

4D-1: circumscribed cylinder

4D-2: inscribed cylinder

3 approx.

Constrained Minimum Zone
1E: line zone 2 approx.

 80

Fits 2E: annular zone 2 approx.

3E-1 external plane zone

 3E-2 internal plane zone

3 approx.

4E: cylinder zone 3 approx.

Table 10: Complexity Associated with Each Algorithm

Algorithm Type Reference

Label

Complexity

Least Square Line Fit 1A O(n^2)

Least Square Circle Fit 2A O(n^2)

Least Square Plane Fit 3A O(n^2)

Least Square Cylinder Fit 4A O(n^2)

Unconstrained One Sided Line Fit 1B O(n)

Unconstrained Circumscribed Circle Fit 2B - 1 O(n^2)

Unconstrained Inscribed Circle Fit 2B - 2 O(n^2)

Unconstrained One Sided Plane Fit 3B O(n^2)

Unconstrained Circumscribed Cylinder Fit 4B - 1 O(n^2)

Unconstrained Inscribed Cylinder Fit 4B - 2 O(n^2)

Unconstrained Minimum Zone Line Fit 1C O(n^2)

Unconstrained Minimum Zone Circle Fit 2C O(n^2)

Unconstrained Minimum Zone External Plane Fit 3C - 1 O(n^2)

Unconstrained Minimum Zone Internal Plane Fit 3C - 2 O(n^2)

Unconstrained Minimum Zone Cylinder Fit 4C O(n^2)

Constrained One Sided Line Fit 1D O(n)

 81

Constrained Circumscribed Circle Fit 2D - 1 O(n)

Constrained Inscribed Circle Fit 2D - 2 O(n)

Constrained One Sided Plane Fit 3D O(n^2)

Constrained Circumscribed Cylinder Fit 4D - 1 O(n^2)

Constrained Inscribed Cylinder Fit 4D - 2 O(n^2)

Constrained Minimum Zone Line Fit 1E O(n)

Constrained Minimum Zone Circle Fit 2E O(n)

Unconstrained Minimum Zone External Plane Fit 3E - 1 O(n)

Unconstrained Minimum Zone Internal Plane Fit 3E - 2 O(n)

Unconstrained Minimum Zone Cylinder Fit 4E O(n^2)

6.3 Future Work

Future work involves further testing of the proposed algorithms with a variety of test

cases and modifications of algorithms if necessary. Also, the feature library needs to be further

expanded to accommodate more feature types (spheres, cones etc.). If a better, algorithm or

method is found to do a certain type of fit, then the existing ones need to be replaced with a new

tested ones. Tolerance classes like profile and run out tolerances are right now not supported by

the library. Development and implementation of these algorithm classes will also be one the tasks

for future.

Another important aspect of the library is the usage of the library. Once the various feature fits

are available, they need to be used in a certain order or combination in order to correctly verify

the tolerance classes and datum simulation. The next task would be to interpret the standard [3]

and using this library to make recommendations. These recommendations should specify the

 82

correct combination or sequence of these feature-fitting functions for verification of different

tolerance classes and datum simulation.

 83

REFERENCES

[1] GIDEP 1988 GIDEP Alert X1-A-88-02, Welber R, CMM Form Tolerance Algorithm Testing,

GIDEP DOD, Washington D.C.

[2] http://www.nist.gov/pml/div683/grp01/cst-algorithmtesting.cfm

[3] ASME Y14.5, 1994, Dimensioning and Tolerancing, The American Society of Mechanical

Engineers, New York.

[4] http://news.thomasnet.com

[5] http://www.made-in-china.com/showroom/qingdaoleader/productdetailWMUxYTBvqGRL/C

 hina-3D-Coordinate-Measurement-Machine-LEADER-CMM-.html

[6] Bosch John A., 1995, “Coordinate Measuring Machine and Systems”, Marcel Dekker, Inc,

ISBN 0824795814, Volume 42, xi, 444

[7] Hocken, Robert J and Pereira, Paulo H, “Coordinate measuring machines and systems”, 2012,

2nd ed., Manufacturing engineering and materials processing, ISBN 9781574446524,

Volume 76

[8] Zhengshu Shen, Jami J. Shah, Joseph K. Davidson, “Analysis Neutral Data Structure for

GD&T”, J Intell Manuf (2008) 19:455–472.

[9] Alistair B Forbes, 1991 (Revised Edition), “Least Squares Best Fit Geometric Elements”, NPL

Report DITC 140/89.

[10] Craig M. Shakarji, 1998, “Least Squares Fitting Algorithms of the NIST Algorithm Testing

System”, Journal of research of the National Institute of Standards and Technology, 103(6).

[11] Carr K, Ferreira P, 1995, “Verification of form tolerances, part II: cylindricity and

straightness of a median line”. Precision Engineering, 17(2), pp. 144-56.

[12] Hsinyi Lai, Wenyuh Jywe, Cha’OKuang Chen, et al., 2000, “Precision modeling of form

errors for cylindricity evaluation using genetic algorithms”. Precision Engineering, 24, pp.

310-9.

[13] Q. Zhang, K.C. Fan, Z. Li, 1999, “Evaluation method for spatial straightness errors based on

minimum zone condition”. Precision Engineering, 23, pp. 264-72.

[14] N. Venkaiah, M.S. Shunmugam, 2007, “Evalaution of form data using computational

geometric techniques-Part II: Cylindricity error”. International Journal of Machine Tools &

Manufacture, 47, pp. 1237-945.

[15] S. Hossein Cheraghi, Guohua Jiang, Jamalsheikh Ahmad, 2003, “Evaluating the geometric

characteristics of cylindrical features”. Precision Engineering, 27, pp. 195-204.

 84

[16] Craig M. Shakarji, 2004, “Reference Algorithm for Chebyshev and One-Sided Data Fitting

for Coordinate Meteorology”. CIRP Annals – Manufacturing Technology, 53(1), pp. 439-442.

[17] Dawit H. Endrias, His-Yung Feng, Ji Ma, Lihui Wang, M. Abu Taher, 2012, “A

combinatorial optimization approach for evaluating minimum-zone spatial straightness

errors”. Measurement, 45, pp. 1170-1179.

[18] Li Xiuming, Shi Zhaoyao, 2008, “Application of convex hull in the assessment of roundness

error”. International Journal of Machine Tools & Manufacture, 48, pp. 711-714.

[19] Moon-Kyu Lee, 2009, “An enhanced convex-hull edge method for flatness tolerance

evaluation”. Computer-Aided Design, 41, pp. 930-941.

[20] Lei Xianqing, Song Hongwei, Xue Yujun, Li Jishun, Zhou Jia, Duan Mingde, 2011, “Method

for cylindricity evaluation error evalaution using Geometry Optimization Searching

Algorithm”, Measurement, 44, pp. 1556-1563.

[21] GE Q, Chen B, Smith P, Menq C. H, “Tolerance Specification and Comparative Analysis for

Computer-Integrated Dimensional Inspection”, International Journal of Production

Research, ISSN 0020-7543, 09/1992, Volume 30, Issue 9, pp. 2173 – 2197.

[22] Bhat Vinod, De Meter, Edward C, “An Analysis of the Effect of Datum-Establishment

Methods on the Geometric Errors of Machined Features”, International Journal of Machine

Tools and Manufacture, ISSN 0890-6955, 2000, Volume 40, Issue 13, pp. 1951 – 1975.

[23] N. Venkaiah, M.S. Shunmugam, 2007, “Evalaution of form data using computational

geometric techniques-Part I: Circularity error”. International Journal of Machine Tools &

Manufacture, 47, pp. 1229-1236.

[24] Gyula Hermann, “Robust Convex Hull-based Algoritm for Straightness and Flatness

Determination in Coordinate Measuring”, Acta Polytechnica Hungarica, ISSN 1785-8860,

12/2007, Volume 4, Issue 4, pp. 111 – 120.

[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, "Numerical Recipes in C",

Cambridge Univ. Press.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, 2001,

“Introduction to Algorithms (2nd ed.)”, MIT Press and McGraw-Hill, pp. 955–956.

[27] K. L. Clarkson, K. Mehlhorn, and R. Seidel. “Four results on randomized incremental

constructions. Comput. Geom.” Theory Appl., 3(4):185–212, 1993.

 [28] Vemullapali Parbath, Jami Shah, J.K. Davidson, 2013, “ Reconciling the Differences

Between Tolerance Specification and Measurement Methods”. Proceedings of the ASME

2013 International Manufacturing Science and Engineering Conference, MSEC- 2013 1206.

[29] G.T. Anthony, B.P. Butler, M.G. Cox, A.B. Forbes, S.A. Hannabay, P.M. Harris, 1993,

“Chebyshev Refernce Software for the Evaluation of Coordinate Measuring Machine Data”,

Commission of the European Communities, EUR 15304 EN

 85

 [30] Shakarji C.M, Srinivasan, V, 2012, “ Fitting Weighted Total Least-Squares Planes and

Parallel Planes to Support Tolerancing Standards”. Proceedings of the ASME 2012

International Design Engineering Technical Conferences & Computers and Information in

Engineering Conference, Chicago, August 2012.

[31] Vijay Srinivasan, Craig M. Shakarji, Edward P. Morse, 2012, “ On the Enduring Appeal of

Least-Squares Fitting in Computational Coordinate Metrology”. J. Comput. Inf. Sci. Eng,

Volume 12, Issue 1, 011008.

 86

APPENDIX A: FUNCTIONS DEFINITIONS OF THE LIBRARY

 87

Least Square Line Fit:

Function Call: line fit has two functions calls one for 2D and one for 3D. The Functions calls

are listed below:

 // Least Square line 2D fitting
 bool LeasSquareLine2D(const matrix<T>& A, matrix<T>& B);

 //least square line in 3D fitting
 bool LeasSquareLine3D(const matrix<T>& A, matrix<T>& B);

Input: The Input to the line fit function is a matrix (A) which contains 2D or 3D coordinates of

the measured points (Figure 27).

Output: Output to the line fit function is a matrix (B). First line of B contains the contain

coordinates of a point on line and second line contains component of the direction vector

of the fitted line.

Least Square Plane Fit:

Function Call: The Functions calls for the plane fit (in 3D) is listed below

 // Least Square Plane fitting
 bool LeasSquarePlane(const matrix<T>& A, matrix<T>& B);

Input: The Input to the plane fit function is a matrix (A) which contains 3D coordinates of the

measured points (Figure 27).

Output: Output to the plane fit function is a matrix (B). First line of B contains the contain

coordinates of a point on plane and second line contains component of the direction

vector of normal to the fitted plane.

 88

Least Square Circle Fit:

Function Call: Circle fit has two functions calls one for 2D and one for 3D. The Functions calls

are listed below:

 //Least Square Circle 2D Fitting
 bool LeasSquareCircle2D (const matrix<T>& A, matrix<T>& B, double& C);

 //Least Square Circle 3D fitting
 bool LeasSquareCircle3D (const matrix<T>& A, matrix<T>& B, double& C);

Input: The Input to the circle fit function is a matrix (A) which contains 2D or 3D coordinates of

the measured points (Figure 27).

Output: Output to the circle fit function is a matrix (B) and parameter C. First line of B contains

the contain coordinates of the center of the fitted circle in case of 2D. In case of 3D

circle fit, first line of matrix B contains center of the fitted circle. Second line contains

components of the vector, normal to the plane of the fitted circle. Parameter C contains

the radius of the fitted circle.

Least Square Cylinder Fit:

Function Call: The Functions calls for the cylinder fit (in 3D) is listed below

 //Least Square Cylinder fitting
bool LeasSquareCylinder (const matrix<T>& A, matrix<T>& D, double& C,
matrix<T>& B, double& R);

Input: The Input to the cylinder fit function are matrices A & D and parameter C. Matrix D

contains 3D coordinates of the measured points. Matrix A contains an initial estimate of a

point on the axis of cylinder in the first line. Second line of matrix A contains an initial

estimate of direction vector of the axis of cylinder. Parameter C contains an initial estimate

of the radius of the fitted cylinder (Figure 28).

Output: Output to the cylinder fit function is a matrix (B) and parameter R. First line of B

contains the contain coordinates of a point on the axis of the fitted cylinder. Second line

 89

contains component of the direction vector of the axis of the fitted cylinder. Parameter R

contains the radius of the fitted cylinder.

 Figure 27 a: Input File for 2D Points Figure 27 b: Input File for 3D Points

Figure 27: Input File for Line, Plane and Circle Fit

Figure 28: Input File for Cylinder Fit

Unconstrained One Sided Line Fit:

Function Call: line fit his done in 2D. The Functions calls are listed below:

 90

 // One sided line 2D fitting
 bool Line_Fit_2D(const matrix<T>& A, matrix<T>& B, matrix<T>& D);

Input: The Input to the line fit function is a matrix (A) which contains 2D coordinates of the

measured points and a matrix (D), which contains the direction from which the fitting

should be done (Figure 29).

Output: Output to the line fit function is a matrix (B). First line of B contains the contain

coordinates of a one point on line. Second line contains the coordinates of the second

point on the fitted line.

Figure 29: Input File for One Sided Line Fit

Unconstrained One Sided Plane Fit:

Function Call: The Functions calls for the plane fit (in 3D) is listed below

 //One sided plane fit
 bool Plane_Fit_3D(const matrix<T>& A, matrix<T>& B, matrix<T>& D,
 std::vector<double>& direc_vec);

Input: The Input to the plane fit function is a matrix (A) which contains 3D coordinates of the

measured points and a matrix (D), which contains the direction from which the plane fit

should be done (Figure 30).

 91

Output: Output to the plane fit function is a matrix (B) and a vector (direc_vec). First, Second

and Third line of B contains the coordinates of points forming the fitted plane. direc_vec

contains the vector components of the normal to the fitted plane.

Figure 30: Input File for One Sided Plane Fit

Unconstrained One Sided Circle Fit:

Function Call: Circle fit has two functions calls one for minimum circumscribed and one for

maximum inscribed circle fit. The Functions calls are listed below:

 //Minimum circumscribed circle
 bool Min_Circum_Fit_2D(const matrix<T>& A, matrix<T>& B);

 //Maximum Inscribed circle
 bool Max_Ins_Fit_2D(const matrix<T>& A, matrix<T>& B);

Input: The Input to the circle fit function is a matrix (A) which contains 2D coordinates of the

measured points (Figure 27 a).

Output: Output to the circle fit function is a matrix (B). First line of B contains the contain

coordinates of the center of the fitted circle in case of 2D. Second line of the B contains

the radius of the fitted circle.

Unconstrained One Sided Cylinder Fit:

 92

Function Call: The Functions calls for the cylinder fit (in 3D) are given below. Cylinder fit also

has two variations, maximum inscribed cylinder and minimum circumscribed

cylinder.

 //Minimum circumscribed cylinder
bool Min_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D,
matrix<T>& B);

 //Maximum Incribed cylinder

bool Max_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D,
matrix<T>& B);

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates

of the measured points. Matrix D contains an initial estimate of a point on the axis of

cylinder in the first line. Second line of matrix A contains an initial estimate of direction

vector of the axis of cylinder. Third line of matrix D contains an initial estimate of the

radius of the fitted cylinder (Figure 28).

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain

coordinates of a point on the axis of the fitted cylinder. Second line contains component

of the direction vector of the axis of the fitted cylinder. Third line contains the radius of

the fitted cylinder.

Unconstrained Minimum Zone Line Fit:

Function Call: line fit his done in 2D. The Functions calls are listed below:

 // Least Square line 2D fitting
 bool Min_Zone_Line_Fit_2D(const matrix<T>& A, matrix<T>& B, double&
 Distance);

Input: The Input to the line fit function is a matrix (A) which contains 2D coordinates of the

measured points (Figure 27 a).

Output: Output to the line fit function is a matrix (B) and parameter Distance. First and Second

line of B contains the contain coordinates of points forming one side of the fit. Third line

 93

contains the coordinates of the point forming other side of the fit. Parameter Distance

contains distance of the zone fit.

Unconstrained Minimum Zone Plane Fit:

Function Call: The Functions calls for the plane fit (in 3D) are outlined below. Plane fit has two

variations i.e. External zone plane fit and internal zone plane fit.

 //for doing external fit
 bool Min_Zone_Plane_Fit_3D_Ex(const matrix<T>& A, matrix<T>& B,
double&
 Distance, std::vector<double>& direc_vec);

 //for doing internal fit
 bool Min_Zone_Plane_Fit_3D_In(const matrix<T>& A, matrix<T>& B,
double&
 Distance, std::vector<double>& direc_vec);

Input: The Input to the plane fit function is a matrix (A) which contains (in 3D) coordinates of

the measured points. For the external plane fit, first line contains the number of points for

initial estimate of least square fits as well as the count of number of measured points

(Figure 31 b). For an internal plane fit, first line contains the count for number of points

for initial estimate of least square fit. It also contains the count for points measured on

right hand side and left hand side points (Figure 31 a).

Output: Output to the plane fit function is a matrix (B), a vector (direc_vec) and a parameter

Distance. First, Second and Third line of B contains the coordinates of points forming

one side of fitted zone plane. Fourth line of the B contains coordinates of a point

forming other side of the fitted zone. direc_vec contains the vector components of the

normal to the fitted plane. Distance contains the distance of the fitted zone

 94

Figure 31 a: Input File for Internal Plane Figure 31 b: Input File for External Plane

Figure 31: Input File for Unconstrained Minimum Zone Plane Fit

Unconstrained Minimum Zone Circle Fit:

Function Call: Circle fit is done in 2D. The Functions call for the circle is given below:

 // Minimum Zone Circle 2D fitting
 bool Min_Zone_Circle_Fit_2D(const matrix<T>& A, matrix<T>& B);

Input: The Input to the circle fit function is a matrix (A) which contains 2D coordinates of the

measured points (Figure 27 a).

Output: Output to the circle fit function is a matrix (B). First line of B contains the contain

coordinates of the center of the fitted circle in case of 2D. Second line of the B contains

the minimum and maximum radius of the fitted zone circle.

Unconstrained Minimum Zone Cylinder Fit:

Function Call: The Functions call for the cylinder fit (in 3D) are given below.

 //Minimum Zone Cylindern 3D fitting
bool Min_Zone_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D,
matrix<T>& B);

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates

of the measured points. Matrix D contains an initial estimate of a point on the axis of

 95

cylinder in the first line. Second line of matrix A contains an initial estimate of direction

vector of the axis of cylinder. Third line of matrix D contains an initial estimate of the

radius of the fitted cylinder (Figure 28).

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain

coordinates of a point on the axis of the fitted cylinder. Second line contains component

of the direction vector of the axis of the fitted cylinder. Third line contains the minimum

and maximum radius of the fitted cylinder.

Constrained One Sided Line Fit:

Function Call: line fit his done in 2D. Constrained line fit has two variations, one with respect

to a parallel line and other with respect to a perpendicular line. The Functions

calls are listed below:

 //parallel to al line
bool Cons_Line_Fit_2D_parl(const matrix<T>& A, matrix<T>& B,
matrix<T>& D);

 //perpendicular to a line

bool Cons_Line_Fit_2D_pd(const matrix<T>& A, matrix<T>& B,
matrix<T>& D);

Input: The Input to the line fit function are matrices A & D. Matrix A contains 2D coordinates of

the measured points. Matrix D contains the direction from which the fitting should be done

and the equation of the constraining line (Figure 32).

Output: Output to the line fit function is a matrix (B). First line of B contains the contain

coordinates of a one point on line. Second line contains the coordinates of the second

point on the fitted line.

 96

Figure 32: Input File for Constrained One Sided Line Fit

Constrained One Sided Plane Fit:

Function Call: The Functions calls for the plane fit (in 3D) are listed below. Plane fits are done

with respect to a constraining parallel plane.

 //One sided plane fit
 bool Cons_Plane_Fit_3D(const matrix<T>& A, matrix<T>& B, matrix<T>& D);

Input: The Input to the plane fit function is a matrix A and D. A contains 3D coordinates of the

measured points. First line of D contains the direction from which the plane fit should be

done. Second line of D contains the equation of the constraining plane (Figure 33).

Output: Output to the plane fit function is a matrix (B). First line of B contains the vector

components of the normal to the fitted plane. Second line of B contains the coordinates

of point forming the fitted plane.

 97

Figure 33: Input File Format for Constrained One Sided Plane Fit

Constrained One Sided Circle Fit:

Function Call: Circle fit has two functions calls one for minimum circumscribed and one for

maximum inscribed circle fit. Circle fit is done with respect to its true position

(center) being constrained. The Functions calls are listed below:

 //Constrained Minimum circumscribed circle
bool Cons_Min_Circum_Fit_2D(const matrix<T>& A, matrix<T>& B,
matrix<T>& D);

 //Constrained Maximum Inscribed circle

bool Cons_Max_Ins_Fit_2D(const matrix<T>& A, matrix<T>& B, matrix<T>&
D);

Input: The Input to the circle fit function is matrices A & D. A contain 2D coordinates of the

measured points. D contains estimates of the true position (center) of the fitted circle

(Figure 34).

Output: Output to the circle fit function is a matrix (B), which gives the radius of the fitted

circle.

 98

Figure 34: Input File Format for Constrained Circle Fit

Constrained One Sided Cylinder Fit:

Function Call: Cylinder fit also has two variations, maximum inscribed cylinder and minimum

circumscribed cylinder. Cylinder fit can be done with respect to constraining

parallel line or normal to a constraining plane. The Functions calls for the

cylinder fit (in 3D) are given below.

 //Constrained Minimum circumscribed cylinder - parallel to a linb
 bool Cons_Min_Cyl_Fit_3D_Parl(const matrix<T>& A, const matrix<T>& D,
 matrix<T>& B);

 //Constrained Maximum Incribed cylinder - parallel to a line
 bool Cons_Max_Cyl_Fit_3D_Parl(const matrix<T>& A, const matrix<T>& D,
 matrix<T>& B);

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates

of the measured points. Matrix D contains the direction vector of the constraining line (in

3D) or normal vector to the constraining plane (Figure 35).

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain

coordinates of a point on the axis of the fitted cylinder. Second line contains radius of

the fitted cylinder. Direction vector of the axis of the fitted cylinder comes from the

constraining direction vector.

 99

Figure 35: Input File Format for Constrained Cylinder Fit

Constrained Minimum Zone Line Fit:

Function Call: line fit his done in 2D. Constrained line fit has two variations, with respect to

constraining parallel line and with respect to a constraining perpendicular line.

The Functions calls are listed below:

 // Constrained Min Zone line fitting for a given parallel line
bool Cons_Min_Zone_Line_Fit_2D_Parl(const matrix<T>& A, matrix<T>&
B, matrix<T>& C, double& Distance);

 // Constrained Min Zone line fitting for a given perpendicular line

bool Cons_Min_Zone_Line_Fit_2D_Perpnd(const matrix<T>& A, matrix<T>&
B, matrix<T>& C, double& Distance);

Input: The Input to the line fit function is matrices A & C. Matrix A contains 2D coordinates of

the measured points. Matrix C contains the equation of the constraining line (Figure 36).

Output: Output to the line fit function is a matrix (B) and parameter Distance. First line of B

contains the contain coordinates of points forming one side of the fit

parallel/perpendicular to constraining line. Second line contains the coordinates of the

point forming other side of the fit. Parameter Distance contains distance of the zone fit.

 100

Figure 36: Input File Format for Constrained Minimum Zone Line Fit

Constrained Minimum Zone Plane Fit:

Function Call: The Functions calls for the plane fit (in 3D) are outlined below. Plane fit has two

variations i.e. External zone plane fit and internal zone plane fit. Plane Fit can

also be done parallel or perpendicular with respect to a constraining plane.

 //Constrained Min Zone Plane fitting for a given parallel Plane
bool Cons_Min_Zone_Plane_Fit_3D_Ex_Parl(const matrix<T>& A,
matrix<T>& B, matrix<T>& C, double& Distance);

 //Constrained Min Zone Plane fitting for a given perpendicular Plane

bool Cons_Min_Zone_Plane_Fit_3D_Ex_Perpend(const matrix<T>& A,
matrix<T>& B, matrix<T>& C, double& Distance);

 //Constrained Min Zone Plane fitting for a given parallel Plane

bool Cons_Min_Zone_Plane_Fit_3D_In_Parl(const matrix<T>& A,
matrix<T>& B, matrix<T>& C, double& Distance);

Input: The Input to the plane fit function is a matrix A & C. A contains (in 3D) coordinates of

the measured points. C contains the equation of the constraining plane (Figure 37).

Output: Output to the plane fit function is a matrix (B), and a parameter Distance. In case of

parallel constraining plane, first line of B contains the coordinates of a point forming

one side of fitted zone plane. Second line of the B contains coordinates of a point

forming other side of the fitted zone. In case of perpendicular constraining plane, first

and second line of B contains the coordinates of points forming one side of fitted zone

 101

plane. Third line of the B contains coordinates of a point forming other side of the fitted

zone. Distance contains the distance of the fitted zone

Figure 37: Input File Format for Constrained Minimum Zone Plane Fit

Constrained Minimum Zone Circle Fit:

Function Call: Circle fit is done with respect to its true position (center) being constrained. The

Functions calls are listed below:

 // Constained Minimum Zone Circle 2D fitting
 bool Cons_Min_Zone_Circle_Fit_2D(const matrix<T>& A, matrix<T>& B,
 matrix<T>& C);

Input: The Input to the circle fit function is matrices A & C. A contain 2D coordinates of the

measured points. C contains estimates of the true position (center) of the fitted circle

(Figure 34).

Output: Output to the circle fit function is a matrix (B), which gives the minimum and maximum

radius of the fitted zone circle.

Constrained Minimum Zone Cylinder Fit:

Function Call: Cylinder fit can be done with respect to constraining parallel line or normal to a

constraining plane. The Functions calls for the cylinder fit (in 3D) are given

below.

 102

 //Minimum Zone Cylindern 3D fitting
bool Cons_Min_Zone_Cyl_Fit_3D_Parl(const matrix<T>& A, const
matrix<T>& D, matrix<T>& B);

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates

of the measured points. Matrix D contains the direction vector of the constraining line (in

3D) or normal vector to the constraining plane (Figure 35).

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain

coordinates of a point on the axis of the fitted cylinder. Second line contains radius of

the fitted cylinder. Direction vector of the axis of the fitted cylinder comes from the

constraining direction vector

