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ABSTRACT  

   

Conformance of a manufactured feature to the applied geometric tolerances is 

done by analyzing the point cloud that is measured on the feature. To that end, a 

geometric feature is fitted to the point cloud and the results are assessed to see whether 

the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring 

Machines (CMMs) use feature fitting algorithms that incorporate least square estimates 

as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive 

set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance 

class is not available. Therefore, a Library of algorithms is developed to aid the process 

of feature fitting, and tolerance verification. This paper addresses linear, planar, circular, 

and cylindrical features only. This set of algorithms described conforms to the 

international Standards for GD&T. In order to reduce the number of points to be 

analyzed, and to identify the possible candidate points for linear, circular and planar 

features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev 

cylinders, geometric search algorithms are used. Algorithms are divided into three major 

categories: least square, unconstrained, and constrained fits. Primary datums require one 

sided unconstrained fits for their verification. Secondary datums require one sided 

constrained fits for their verification. For size and other tolerance verifications, we 

require both unconstrained and constrained fits 
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CHAPTER 1 

INTRODUCTION 

In 1988 GIDEP [1] issued an alert when it was discovered that the same coordinate 

measurement data (point cloud generated for a manufactured part) processed by different CMM 

algorithms, gave very different results on form tolerances. Subsequently NIST began its 

algorithm testing program [2].  

With continuous advances in engineering, precision and increasing complexity of parts, 

tolerances applied to parts have also become tighter.  This in turn creates a need for higher 

accuracy in feature fitting algorithms, along with their need to comply with the standard [3]. 

Thus, there is a need for algorithms that are consistent with the standard and provide desirable 

accuracy. 

1.1 CMMs and their Applications 

Coordinate measuring machines are now commonplace in the industry. They are used for 

a variety of purposes, such as for the use in verifying dimensional accuracy of manufactured 

parts, for the inspection purpose of manufactured parts, and to reverse engineer parts and 

assemblies. This chapter gives the motivation and background of this research, followed by the 

definition of the problem. 

1.1.1 CMM Machines 

Coordinated Measuring Machines commonly known as CMMs are used to measure the 

dimensional accuracy of or to reverse engineer a manufactured part. These measuring machines 

work by establishing a 3 dimensional, physical Cartesian coordinate system. There are many 

types of CMM’s categorized on the basis of their capabilities and functional attributes. The most 
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common CMM configurations are: Moving Bridge, Fixed Bridge, Cantilever, Horizontal Arm 

and Gantry type. CMM’s are divided into two broad categories based on how they measure points 

on the surface of a part or assembly: touch probe CMM’s (Figure 1a) and Laser CMM’s (Figure 

1b). 

                               

 Figure 1a: Touch Probe Type CMM [4]                       Figure 1b: Non- Contact CMM [5] 

A touch probe CMM works by either setting up a coordinate system based off measured 

points or using the default coordinate system provided by the CMM (generally every CMM has a 

default coordinate system). A touch probe (can be of various sizes, depending upon the desired 

accuracy and the dimensions of the surface to be meaured) can be used to touch the surface and 

obtain a measurement point in space. This process is carried out until the required number of 

measurement points are obtained. The CMM software then evaluates these measured points and 

performs specific operations requested by the user. Some measurements require a minimum 

number of points to be measured. For example, to establish a plane, three non collinear measured 

points are required. Touch probe CMM’s can be manual or automatic. A manual touch probe 

CMM requires the user to manually move the robotic arm and touch various surfaces to obtain 

measurements whereas an automatic CMM utilizes a computer and makes automatic 

measurements using an algorithm [6, 7]. Non-contact CMM's can also be manual or automatic. A 
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manual example is a hand-held laser scanner attached to an articulating arm CMM. An automatic 

example is an optical distance sensor probe attached to a conventional Cartesian CMM. 

Generally, non-contact systems are able to generate a lot of 3D measured points very quickly. 

Along with measuring the geometric characteristics of a part, non-contact CMM’s can be used to 

create three-dimensional images of the part itself [6, 7]. 

1.1.2 CMM Applications 

CMM’s serve numerous purposes in different types of industries. CMM’s are used for 

producing dimensional data which can be used for inspections and process control. Without a 

CMM, a simple industry part may take several gauges to simulate datums and features, which is 

not only time consuming but also introduces the possibility of human errors. CMM’s play a major 

role in obtaining dimensional and tolerance measurements, and lead to fast and accurate quality 

control as well as inspection of the parts produced. The scope of the CMM’s are not limited to 

quality verification. In a manufacturing process, the parts are manufactured with respect to some 

defined coordinate system which is defined by some surfaces of the part/fixtures. The orientation 

of these parts can be corrected with respect to the defined coordinate system using information 

gathered by CMM during the manufacturing process. CMM’s can also help to facilitate 

measurements of large parts. CMM’s are widely used for the purpose of tolerance verification by 

the process of feature fitting [6, 7]. 

 In general, an industrial CMM measures a set of points on the surfaces to be analyzed, of 

a manufactured part. This point cloud is then fed to analysis software. Using a feature-fitting 

algorithm, numerical analysis is carried out on the point cloud and a feature is fitted to it. The role 

of feature fitting is not only limited to tolerance verification, but also extends to reverse 

engineering. However, there are certain differences between the intent with which feature fitting 

is utilized in both fields. Generally, in reverse engineering: 
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 A laser scanner scans 3D geometry and generates a point cloud. 

 The intent is to get the nominal geometry from the measured point cloud. 

 We have a very large point cloud obtained from a 3D scanner. Whereas most CMMs 

today use a touch probe and for the sake of efficiency, a relatively small number of 

sample points, strategically placed, may be measured. 

1.2 Background 

Dimensional and geometric variations are allowed only within the tolerance zone specified by the 

designer on a manufactured part. These tolerances are specified so that the parts can assemble and 

perform the intended function. Since no machine can manufacture shapes or features that are 

perfect, tolerances must be specified to allow machining variations while conforming to the 

designer’s intent. Tolerances applied to a feature specify, not only the variation in the allowable 

size of that feature, but also 

its position, form, and orientation. Figure 2 shows different types of tolerance classes (size, 

location, form, orientation, runout, profile) along with their tolerance symbols.  Tolerance classes 

within the scope of this project are shaded. Any deviation beyond the specified tolerance limits 

does not conform to the manufactured part to the designer’s specified intent.  This deviation 

between the actual manufactured part and the specified limits is evaluated by fitting a feature to 

the measured point cloud and comparing its form, size, position and orientation observed to the 

specified allowable variation. 
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1.2.1 Definition of Feature 

Points measured by CMMs need to simulate particular features. Features are defined as a 

combination of one or more faces of a part. From the GD&T point of view, there are two types of 

features: basic and real. Basic features can be further divided into two categories. There are 

features of size and planar features [3]. Features of size generally have a size parameter such as 

radius, width, height etc. Depending upon the category of the features, different types of tolerance 

classes are applicable to them. A list of different types of basic features is shown in Table 1, 

along with all possible tolerance classes which can be applied to them. Real features are those 

that exist on a manufactured part. They are modified or unmodified versions of basic features 

according to the functionality and assemblability requirements of the manufactured part. Consider 

the front plane of an ‘E’ shaped block (Figure 3a). This front plane is a real feature; however this 

plane can be mapped to a front plane of a cuboid (Figure 3b). As all other planar features with 

different shapes and sizes can be mapped to the front plane of the cuboid, it is a basic feature [8]. 

Similarly, all the features from which a real feature can be derived or mapped to are called basic 

features. 

 
 

Figure 2: Tolerance Classes and their Symbols 



  6 

 

 

 

 

Table 1: Basic Feature Types and Applicable Tolerance Classes 

 

Feature Feature Type Tolerance Class 
 

                   
  Linear Edge             Circular Edge         

 

Line 

Form, Orientation, Position, 

Size 

 

                         
 

Circular Surface   Rectangular Surface 
 

Plane Form, Orientation, Size 

 

 
Cylindrical Surface 

 

Cylinder 

(Pins and Holes) 

(Features of Size) 

Form, Orientation, Size, 

Position 

 

 
 

Tabular Surfaces 
 

Tabs and Slots 

(Feature of Size) 

Form, Orientation, Size, 

Position 

 

 

                                         
                          3a: Front plane-Real Feature                             3b: Front plane-Basic Feature 

Figure 3:  Relationship Between Real and Basic Features 
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1.2.2 Process of Tolerance Verification 

Four of the commonly used features in tolerance verification are the line, plane, circle, 

and cylinder. 

Least squares, one sided and minimum zone fits, for both constrained and unconstrained 

fits, for the line, circle, plane, and cylindrical features, are required for the verification of different 

tolerance classes and datums. For the verification of primary datums, unconstrained one-sided fits 

are used. Secondary and tertiary datums are verified by using constrained one-sided fits. Size 

tolerances are verified by unconstrained minimum zone fits (for tabs and slots in general) and 

unconstrained one-sided fits (for pins and holes). Similarly, for doing form tolerance verification, 

unconstrained one sided and minimum zone fits are required. Orientation tolerances are verified 

using both categories, constrained and unconstrained fits, depending upon the type of orientation 

tolerance class. For the verification of position tolerances, both categories of feature fitting 

(constrained and unconstrained) are needed. A typical tolerance and datum verification process is 

shown in Figure 4. 

 

Primary, secondary and tertiary datums are established using the measured point cloud for datums 

and constrained and unconstrained fits. After the coordinate system is established, different 

 

Figure 4: Process of Tolerance Verification 

Measured 

Point Cloud 

for Datums

Primary 

datum

Secondary 

datum

Tertiary 

datum

Feature 

Fitting 

Algorithm

Established 

Coordinate 

System

Feature 

Fitting 

Algorithm

Measured 

Feature Data

Capture 

variation Compare

Allowable Tolerance

Fail

Pass
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tolerances can be verified using the measured point cloud for the feature and other types of 

feature fitting algorithms. Different types of feature fitting algorithms are used depending upon 

the type of tolerances to be verified. 

1.3 Problem Definition and Research Scope 

The objective of this research is to develop a library of feature fitting algorithms. This 

library should take into account the previous work done in this field, as well as develop new 

algorithms for the fits that do not have an existing algorithm. The algorithms developed should be 

consistent with the standard [3]. The purpose of this library is to be used in a mix and match style 

for tolerance and datum verification. 

The scope of this research work extends to following features: 

 Line 

 Circle 

 Plane 

 Cylinder 

Major tasks in this research include: 

 Investigate the existing algorithms for different types of fits and filter out those, 

which are consistent with the [3] standard. 

 Create algorithms for the fits that lack an existing one and improve existing 

algorithms for efficiency. 

 Bring all these feature-fitting algorithms together in one place and develop a 

software library for tolerance and datum verification. 
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 Create the library in an object oriented independent module style so that anyone 

can use them as API’s (Application Programming Interface). This also allows for 

modifications in individual algorithms without affecting other algorithms. 

 Perform a comparative study for the efficiency and accuracy of these algorithms 

by first creating virtual test cases and then using actual CMM data for parts 

manufactured by a CNC machine. 

1.3.1 Assumptions 

In tolerance verification, the nominal features are already defined on the manufactured part. The 

intent is to look at all different types of variations that the designer would like to control, as each 

of these require a different way of looking at the same data. The scope of this research work lies 

within the domain of the feature fitting part of CMM applications for tolerance verification. 

While doing this research work, certain assumptions are made about the measured point cloud. 

These are: 

 CMMs used to obtain the point cloud are properly setup and calibrated. 

 The measured points are generated by measuring manufactured parts. 

 Human errors while making the measurements are minimal in case of manual 

CMMs. 

 The problem of varying the setups for accessibility of measurements is well 

accounted for. 

 In case of touch probe CMM’s, the ball point diameter correction is taken into 

account while doing measurements i.e. The x,y,z point coordinates are related to 

points on the part and not the ball center. 
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 If points are measured using different setups, then they should be transformed to 

a single setup coordinate system. 

 It is assumed point sets are already associated with specific features 

1.4 Thesis Organization 

In chapter 2, definitions of different types of fit classes are discussed. Minimum 

requirements to do a fit type are also discussed. Chapter 3 is the literature review of different fit 

objectives. Problems with the least squares fits are also outlined. Algorithms and their 

implementation are discussed in chapter 4. Also, different testing methods and their results are the 

focus of chapter 5. Comparison among different results and of feature fitting libraries is 

demonstrated via two case studies in chapter 5. Afterwards, conclusion, limitations associated 

with algorithms developed during this research, along with assumptions and future work for this 

research are discussed in chapter 6. 
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CHAPTER 2 

FEATURE FITTING – FIT TYPES 

There are many objectives in feature fitting, but the ones considered in the scope of this 

research work are least squares fits, nominal one sided and two sided (zone) fits. The feature 

fitting algorithms discussed here are limited to the following features: line, circle, plane, and 

cylinder. To refer to these algorithms, reference labels were assigned to them during the course of 

this research work. These are not standard reference labels. Table 2 lists a set of feature-fitting 

algorithms along with their reference labels, which can be used for datum establishment and 

tolerance verification of the manufactured part from a measured point cloud.  

 

Table 2:  Classification of Feature Fitting 

Algorithm Type and Ref. Labels 

 Unconstrained Constrained orientation 

Least Square One sided Minimum Zone One sided Minimum Zone 

1A: line 1B: line 1C:  line zone 1D: line 1E:  line zone 

2A: circle 

2B-1: circumscribed 

circle 

2B-2: inscribed circle 

2C: annular zone 

2D-1: circumscribed 

circle 

2D-2: inscribed circle 

2E: annular zone 

3A: plane 3B: plane 
3C-1 external   

plane zone  

 3C-2 internal  

plane zone 

3D: plane 
3E-1 external  

planes zone 

 3E-2 internal  

plane zone 

4A: cylinder 

4B-1: circumscribed 

cylinder 

4B-2: inscribed 

cylinder 

4C: cylinder zone 

4D-1: circumscribed 

cylinder 

4D-2: inscribed 

cylinder 

4E: cylinder zone 
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For tolerance verification and datum simulation a combination of one or more of the 

algorithms mentioned in Table 2 are used. Table 3 shows the different tolerance types and what 

algorithms are required for its verification. 

Table 3: Feature Fitting Algorithms for Different Types of Features & Tolerance Verification 

Feature 
Tolerance Primary Datum Secondary 

Datum 

Tertiary 

Datum 

Feature 

 

Hole 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

Constrained one 

plane sided fit 

(3D) 

Constrained one 

plane sided fit 

(3D) 

Unconstrained 

maximum 

inscribed 

cylinder fit (4B-

2) 

 

Pin 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

Constrained one 

plane sided fit 

(3D) 

Constrained one 

plane sided fit 

(3D) 

Unconstrained 

minimum 

circumscribed 

cylinder fit (4B-

1) 

 

Tab 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

Constrained one 

plane sided fit 

(3D) 

Constrained one 

plane sided fit 

(3D) 

Unconstrained 

two sided 

internal zone fit 

(3C-2) 

 

Slot 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

Constrained one 

plane sided fit 

(3D) 

Constrained one 

plane sided fit 

(3D) 

Unconstrained 

two sided 

external zone fit 

(3C-1) 

 

Line 

 

 

 

 

  Unconstrained 

minimum zone 

line fit (1C) 

 

Plane 

 

 

   Unconstrained 

minimum zone 

plane fit (3C-1) 

 

Circle 

 

 

   Unconstrained 

minimum zone 

circle fit (2C) 

 

Cylinder 

 

 

 

 

  Unconstrained 

minimum zone 

cylinder fit (4C) 

 

Plane 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

  Constrained 

minimum zone 

fit (3E-1) 

 

Plane 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

  Constrained 

minimum zone 

fit (3E-1) 

 

Plane 

 

 

Unconstrained 

one sided plane 

fit 

(3B) 

  Constrained 

minimum zone 

fit (3E-1) 

A B C

A B C

A B C

A B C

A

A

A
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2.1 Least Squares Fits 

Least squares fits amount to best fit or nominal feature fit. Least squares fits are the most 

commonly and widely used feature fitting algorithms in industrial CMMs. The objective function 

of the least squares fits is given by [9]: 

  =  
 

 
∑     

  
         

Least squares fitting algorithms start with an initial guess of the feature to be fitted on the 

point cloud measured by a CMM on the manufactured part. The algorithm proceeds by 

calculating the sum of the squares of distances between the guessed feature and measured points, 

and minimizing the sum of the squares of distances. As the algorithm proceeds, the guessed 

feature is translated, rotated, and/or changed in size as appropriate, until the sum of the square of 

distances cannot be further minimized. Methods like the single value decomposition can be used 

for solving the linear least square fit. In case of the nonlinear least square fits, iterative methods 

can be employed to achieve a solution. Figure 5 shows different cases of least square fits (line, 

plane, circle and cylinder). 

 

A minimum of two points are required for a line fit; plane and circle fits require at least 

three non collinear points and for cylinder fits, five points are required. 

     

Figure 5. Least Squares Fits for Line, Plane, Circle, Cylinder 

 



  14 

2.2 Unconstrained Fits 

Unconstrained fits are generally used to assess whether or not a used feature meets 

tolerance specification for the determination of size, form, orientation, and position tolerances, as 

well as for the purpose of establishing a primary datum. These types of fits are divided into  

two categories: one sided fits and minimum zone fits.  

2.2.1 One Sided Fits 

One sided fits are generally used for verification of size, orientation and position. They 

are also used to simulate datums. One sided fits fit a feature on one side of the measured point 

cloud. In case of a linear fit, a point cloud and an initial direction from which the fit is to be done 

are required as an input so, a minimum of two points are required for doing a one sided line fit for 

a line (dictated by geometric entity). 

The case of a one sided planar fit is different from the case of a one sided line fit in that, 

three non collinear points are required instead of two points to define a plane in addition to the 

initial direction from which the fitting is done (dictated by geometric entity). 

A one sided circle fit has two variations. In the first one, a circle is fitted to the set of 

measured points such that all the points are either inside or on the surface of the fitted circle. 

These measured points correspond to an external feature like a pin. This type of fitting is called 

the minimum circumscribed circle fit and it should satisfy the condition that it is the circle with 

the smallest possible diameter. In the second type, a circle is fitted to the set of measured points 

such that all measured points are either outside or on the surface of the fitted circle and these 

points correspond to an internal feature, like a hole. This type of fitting is called the maximum 

inscribed circle fit and it should satisfy the condition that this is the circle with the largest 

diameter possible. To fit a maximum inscribed circle to a point cloud it should at least pass 

through three points that are not collinear or, in short, if there are less than three points then the 
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fitted circle to the measured point cloud will not be unique. However, in case of a minimum 

circumscribed circle we should have at least two points to fit a circle to [16]. 

Similar to the one sided circle fit, the one sided cylinder fit also has two variations. There 

is a Minimum Circumscribed cylinder and a Maximum Inscribed cylinder depending on whether 

the points are measured on an external feature (concave) or an internal feature (convex). To fit a 

cylinder to a set of measured points at least 5 points are required which are not collinear and not 

coplanar, or conversely if there are less than five measured points we cannot fit a cylinder to it. A 

point cloud, and an initial estimate of cylinder parameters, (a point on the axis of cylinder and 

direction vector of the cylinder axis) are required as an inputs for fitting a cylinder [13]. Figure 6 

shows different cases for one sided fits (line, plane, minimum circumscribed circle and cylinder 

and maximum inscribed circle and cylinder).  

 

 

 Line Fit                         Plane Fit              Circumscribed Circle      Circumscribed Cylinder 

 

                                         Inscribed Circle                    Inscribed Cylinder 

Figure 6: One Sided Fits  
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Table 4 shows the objective functions that need to be satisfied for the one sided 

maximum inscribed and the minimum circumscribed cylinder and circle fit.  

 

2.2.2 Minimum Zone Fits 

Minimum zone fits also known as Chebyshev fits are used for verification of form, size, 

and orientation tolerances. In Minimum zone fits, a pair of parallel features is fitted to a measured 

point cloud. These features are fitted such that the distance between the two is minimum. All the 

points are either inside, or on the surface of the parallel features forming the boundaries to the 

zone. The pair of features fitted to a point cloud should have parallel axes. The objective function 

of a minimum zone fit is defined as: 

   (       ) 

Where |    is absolute value of distance between the two fitted features,     refers to maximum 

and     refers to minimum. 

In addition to the standard geometric feature fitting requirements, minimum zone fits can 

have cases where it is not necessary for features to have the required number of points on both or 

only one of the features. For example, in the case of a minimum zone cylinder, it is not necessary 

to have five points on the surface of one or both of the cylindrical shells that form the zone to 

Table 4:  Objective Functions for One Sided Circle/Cylinder Fit  

               ( ) 

  

 

 

For Min. circumscribed 

circle, cylinder 

               ( ) 

 

 

 

For Max. Inscribed 

circle, cylinder 

 

R = Radius of the circle/cylinder to be fitted 
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qualify for a minimum zone fit. The solution of a minimum zone cylinder fit could have five, 

four, or even three points on the surface of the cylindrical shells. Algorithms used for minimum 

zone fits should consider these cases and then search for the optimal solution. For doing a line 

zone fit in two dimensions t there should be at least two points on one line and one point on the 

other parallel line. A minimum zone plane fit finds two parallel planes of minimal separation that 

envelope all the points. This requires either 1) three points on one plane and one point on the 

parallel enveloping plane, or 2) two points on one plane and two points on the parallel enveloping 

plane. The minimum zone circle needs three non-collinear points on one circle and one point on 

the other concentric circle or two points on each of the inner and outer parallel features. To do a 

cylinder zone fit two parallel cylinders are required (of minimal separation) that envelope all the 

points. These points can be five points (non-collinear/coplanar) lying on one cylinder and one 

point on the other cylinder or four on one and two on other cylinder and so on . A point cloud and 

an initial estimate of cylinder parameters (a point on the axis of cylinder and direction vector of 

the cylinder axis) are required as an input for fitting a cylinder. Figure 7 shows different cases for 

minimum zone fits (line, plane, circle and cylinder). 

 

 

 

Line Fit                         Plane Fit                                    Circle Fit                 Cylinder Fit 

Figure 7: Minimum Zone Fits 
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2.3 Constrained Fits 

Constrained fits are generally used for the verification of orientation and position 

tolerances for the simulation of secondary and tertiary datums. These fits, as the name says, are 

constrained with respect to some other feature. For example, a secondary datum is established 

with respect to primary datum so its orientation is constrained with respect to the primary datum. 

A tertiary datum is established with respect to a primary and secondary datum, so its orientation 

is constrained with respect to the two features. Constrained fits are also divided into the same two 

categories: one sided fits and minimum zone fits.  

2.3.1 One Sided Constrained Fits 

One sided fits are generally used for simulating secondary and tertiary datum’s. These 

fits, as the name suggests, fit a feature to one side of the measured point cloud. However, since 

these features have their orientation constrained, with respect to some other feature, a smaller 

number of points are required for achieving the fit. For a one sided line fit, a minimum of one 

points is required for the fit, in addition to the input line to which the fitted line should be 

perpendicular/parallel to and an initial direction of fitting. A one sided plane fit requires an initial 

direction of fitting and the equation of the constraining parallel or perpendicular plane. A 

minimum of one points is required for doing a one sided constrained plane fit. 

Like unconstrained fits, constrained circle fits also have two variations i.e. the minimum 

circumscribed circle fit and the maximum inscribed circle fit. The minimum circumscribed circle 

fit requires a point cloud and the center of circle to be fitted as input. There should be at least one 

measured point on the circle to be fitted in case of center of circle being constrained. The 

maximum inscribed circle fit also needs the point cloud and the center of the circle to be fitted as 

input. To do a maximum inscribed circle fit there should be at least one point measured for the 

circle to be fitted in case of center of circle being constrained. A one sided cylinder fit also has 
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two variations: the minimum circumscribed cylinder and the maximum inscribed cylinder. For 

finding the minimum circumscribed cylinder fit, a point cloud and an initial estimate of cylinder 

parameters (a point on the axis of cylinder and direction vector of the axis of cylinder) are 

required as an input, along with direction of the axis or normal of the plane constraining the 

cylinder. There should be at least one measured point on the cylinder for it to be fitted in case of 

axis of cylinder being constrained. The maximum inscribed circle needs the same parameters 

required as an input for the minimum circumscribed circle. For doing a maximum inscribed circle 

fit, there should be at least one measured point on the cylinder to be fitted (axis of cylinder being 

constrained). Figure 8 shows different types of one sided constraint fits. Apart from the 

constraints mentioned above there might be other constrained fit types such as constraining the 

diameter and searching for the center or axis. 

 

           

                           Figure 8a: Line Fit                            Figure 8b: Plane Fit 

                                        

Figure 8c: Minimum circumscribed circle           Figure 8d: Maximum Inscribed circle 
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The minimum requirement is just an industry factoid. Using the minimum requirement 

may not be good inspection practice. 

2.3.2 Minimum Zone Fits 

Minimum Zone fits are generally used for simulating secondary and tertiary datums and 

for the verification of orientation tolerances. Constrained minimum zone fits also fit a pair of 

features to the point cloud. The pair of features fitted is such that all the points lie either on or 

inside the zone formed by two features with minimum distance between the zone formed by the 

two features. In addition, the orientation of the zone is constrained with respect to some other 

feature, making it a constrained fit. Constraining the zone decreases the required number of 

measured points for each type of zone fit. 

For doing a constrained minimum zone line fit there should be at least two measured 

points, one on each line. The direction vector of the constraining line/plane is also required as an 

input along with the measured point cloud. A minimum zone plane requires a measured point 

cloud and direction vector for the constraining plane as the input. There must be two measured 

points in case the constraining plane is parallel and three measured points (two on one plane and 

one on one plane) in case that the constraining plane is perpendicular. The zone circle fit requires 

                      

Figure 8e: Minimum circumscribed cylinder               Figure 9f: Maximum Inscribed cylinder 

Figure 8: Constrained One Sided Fits 
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a minimum of two measured points. Coordinates of the constraining center and measured point 

cloud are required as an input for the zone circle fit. A minimum zone cylinder fit requires the 

direction vector of the constraining plane/axis and a measured point cloud as the input. A 

minimum of four measured points (three on one cylinder and one on other cylinder) are needed 

for doing the cylinder fit. Figure 9 shows different types of constrained minimum zone fits. 

 

 

The definition of different types of fits, shapes and uses illustrated in this chapter are in context to 

tolerance analysis and verification. Apart from this, there are more features like sphere, cone that 

                               
                   Figure 9a: Line Fit                                       Figure 9b: Plane Fit 

 

      

                   Figure 9c: Circle Fit                                               Figure 9d: Cylinder Fit 

Figure 9: Constrained Minimum Zone Fits 
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are also important from tolerance point of view. The tolerance classes considered for this library 

currently do not include the profile and runout tolerance classes. In the next chapter, an overview 

of work done by other researchers and current state of technology is discussed. Existing work 

which can be used or modified to serve the research  purpose is also specified. 
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CHAPTER 3 

LITERATURE REVIEW 

Apart from NIST and NPL, other researchers in the field of feature fitting algorithms 

have done a lot of research work.  Several different algorithms for different types of feature 

fitting cases have been developed. Some these algorithms are robust and achieve the results 

which better approximate the measured part. 

3.1 Least Square Fits 

Most of the algorithms used by CMMs in the industry use a least square method to 

evaluate the point cloud. Least square fits are easy to implement and give fast results. However, 

the results produced by this method are only an approximation of the measured feature and do not 

comply with the definition in the standard [3]. Additionally, the least square method does not 

conform to the way in which a hard gauge would simulate a datum or a feature on an actual 

manufactured part. Figures 10a and 10b show the results of an experiment (during this research 

work) of a minimum zone fit obtained by extrapolating the solution from least square fits and a 

solution from actual minimum zone. We observed that the minimum zone solution obtained by 

using the least square fits procedure approximates the actual solution for the minimum zone. Thus 

it can be concluded that the least square method fails in conforming to the original feature and in 

verifying different tolerance classes accurately. The zone obtained by least square fits in this case 

is somewhat larger than the actual solution. In this case, it will affect the verification of size and 

location tolerances. Another drawback is that the concentration of points in a point cloud also 

affects the solution generated by the least square fits method. This sensitivity of the least square 

fits solution leads to the problem that the same feature measured with different sampling schemes 
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will yield different results. Figure 11 shows the different results for doing least square fits on a 

point cloud of a circular feature using different sampling schemes. 

 

 

Both NPL [9] and NIST [10] have well established standard algorithms for least squares, 

fitting for all the features within the scope of this research. For the purpose of this research NPL’s 

least square fitting algorithms were taken into consideration. 

 

                                               

                       Figure 10a: Minimum Zone Fit by Extrapolating Least Square Fit 

                     

Figure 10b: Minimum Zone Fit by Using Zone Fits Algorithm  

Figure 10: Actual Fit and Extrapolated Fit 

                      
            11a                                   11b                                 11c                                  11d 

Figure 11: Least Square Fits for Different Sampling Schemes 
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3.2 Unconstrained Minimum Zone and One Sided Fits 

A lot of research work has been done by different researchers and several different 

algorithms have been proposed for achieving different types of unconstrained fits (one sided and 

minimum zone). Different approaches ranging from geometric algorithms to genetic algorithms 

were used to achieve different types of fits. 

Carr and Ferreira [11] developed a method for the verification of form tolerances. Their 

method could be applied to the straightness of a median line and cylindricity problems. Their 

method is a combination of methods of solving nonlinear minimax problems and solving 

nonlinear optimization problem using successive linear programs. Their algorithm begins by first 

forming a nonlinear discontinuous objective function and then converting it into continuous 

objective function.  This formulates a constrained nonlinear programming problem with a 

continuous linear objective function. A linearization technique using incremental variables (small 

displacement screw matrix) is utilized to linearize the nonlinear constraint formulation. 

Sequences of linear programs were solved iteratively to converge to a local solution upon given 

adequate initial conditions.  

Hsinyi Lai [12] proposed a heuristic approach which makes use of a genetic algorithm for 

evaluating cylindricity form errors. An objective function is defined depending upon the type of 

fit (minimum, maximum or zone fit). Using the objective function a fitness function is defined to 

be used as an indicator for global optimization in the proposed genetic algorithm. A numerical 

scheme is utilized to estimate initial axis of the cylinder and a point forming a projection plane 

normal to this axis. A circle is fitted to three most distant points from this initial point. Using the 

center of this fitted circle the projection plane point is updated and the process is repeated until 

the best fit circle (maximum, minimum or zone fit) is found. Once the best fit circle is obtained 
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the reference axis is transferred to the new circle center and the process is repeated. This process 

is repeated till the best fit cylinder is determined. 

Q. Zhang [13] stated that the linearization of the mathematical model for spatial 

straightness error evaluation cannot be done; a nonlinear mathematical model for straightness 

error evaluation was established. Their model assumes that for fitting a cylinder there must be 

five points lying on the cylindrical shell bounding the points, centered on the fit cylinder. 

Measured points are input in polar coordinates. Select the five equidistant points from an initial 

estimate of axis sequentially. A set of equations (in 4D) for cylinder parameters are formed using 

these five points. These equations are solved to determine the cylinder parameters. Maximal 

value points are extracted from these cylinder parameters and checked for minimum zone 

condition. If the minimum zone conditions are not satisfied, then one of the points in the five 

points is substituted with a new and the process is repeated again. 

   Venkaiah and Shunmugam [14] used a limacon-cylinder approach for the evaluation of 

cylindricity error. Limacon is a curve formed when a point on the circle (half the radius) rolls 

around the outside of a circle of equal radius. An assessment feature for cylindricity evaluation 

(called limacon-cylinder) was established by extruding this limacon along a line. Computational 

geometric techniques were utilized to establish the limacon-cylinder. Deviation of a point lying 

outside the assessment cylinder was considered positive and a point lying inside deviation was 

considered negative. Cylindricity error was determined as the absolute sum of maximum and 

minimum deviations. Different circular sections of the limacon-cylinder along the axis were 

evaluated to determine the best fit cylinder. The techniques developed were applied to the 

evaluation of a minimum circumscribed, maximum inscribed and minimum zone cylinder. Data 

for evaluation is also available in the  literature.  
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S. Hossein Cheraghi [15] presented a mathematical model for the evaluation of a 

geometric characteristic that defines form and function of cylindricity and straightness of a 

median line. This was achieved by transforming a 3D problem (cylinder) into 2D (circle) by 

means of rotation and projection. The optimal solution is found by minimizing the circularity 

error of the projected points as the cylindrical feature orientation is changed. Shakarji [16] posed 

this problem as an optimization (minimization) problem and argued that the solution is hidden 

among many local minima. He utilized the simulated annealing algorithm which is a probabilistic 

method for finding a global optimum of a given function in a large search space. The fitting was 

done by first fitting a least square feature. The fitted feature along with the measure data is rotated 

and/or translated. This is done until either the center of the fitted feature lies at origin or the axis 

aligns with the z axis of the coordinate system. A simulated annealing technique was applied to 

the transformed data using the least square fit as initial guess to find the optimal solution. 

Dawit H. Endrias [17] proposed a combinatorial optimization algorithm for evaluation of 

minimum zone spatial straightness error. His algorithm works iteratively searching for points that 

define a minimum spatial straightness zone. His algorithm also takes into account the degenerate 

cases where a minimum zone solution for a cylinder might not have five points on the surface of 

the cylinder. A convex hull (3D) for the measured point cloud is determined. Using the point 

forming the vertices of the convex hull, all three points, four point and five point combinations 

are searched for the optimal solution iteratively. Xiuming and Zhaoyao [18] utilized the concept 

of convex hull for the minimum zone circle where they solved a mini-max solution by rapid 

selection of iteration points using the convex hull. If the optimal solution is not found, new set of 

data points are determined from the convex hull. On the other hand, Lee [19] used the convex 

hull methodology for flatness tolerance evaluation. This is done by projecting the points on a 2D 

plane with respect to each edges of the 3D convex hull. A 2D convex hull is constructed on the 

projected points. Thus each sub problem becomes a simplified straightness problem. Once all 
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these sub problems were solved, the best configuration among them was taken as the solution. Lei 

Xianqing [20] proposed a geometric optimization searching algorithm for cylindricity error 

evaluation. The algorithm works by creating hexagons on the starting and ending measured 

sections of the reference cylinder. Vertices of one hexagon were joined to the other hexagon to 

form lines. The shortest distance of each point in the point cloud was calculated from these lines 

to find a better solution. This process goes on iteratively until no further improvement is possible. 

This algorithm was utilized for evaluating the minimum zone, maximum inscribed and minimum 

circumscribed cylinder.  

In general, efficient algorithms have been proposed for doing minimum zone fits and one 

sided fits except for the minimum zone internal plane fit and one sided line and plane fit. Existing 

algorithms, which are robust and efficient for doing different types of fits are taken into 

consideration in this research work. 

3.3 Constrained Fits 

Constrained fits are derivatives of unconstrained fits which have some parameters 

constrained (like orientation, position etc.) with respect to some other feature. A secondary datum 

is constrained in its orientation with respect to a primary datum. A tertiary datum is constrained 

with respect to a primary and secondary datum in orientation and direction. GE, Q [21] outlines 

an approach for simulating the datum reference frame. They used a nonlinear least square 

minimization approach to simulate the primary, secondary and tertiary datums. The objective 

function of the nonlinear least square fit is determined as the square of the sum of normal 

deviations. Objective function is defined in terms of measured points and feature (to be fitted) 

parameters. A bunch of nonlinear equation’s are generated, upon solving gives the best fit 

parameters. Since secondary and tertiary datums need less parameters for their definition, the 

objective function is modified accordingly. 
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Bhat Vinod, De Meter, Edward C [22] did a comparison on datum establishment 

methods. They compared three methods: a 3-2-1 method, a sequential least squares (SQLS) 

method and a simultaneous least squares (SMLS) method. Results of the comparative studies 

were also discussed. The 3-2-1 method fits a datum reference frame to six measured points. It 

starts by fitting a plane to three points measured for primary datum. A secondary datum is 

simulated by fitting a plane to the two points measured for secondary datum and forcing to be 

perpendicular to the primary datum. The tertiary datum is simulated by fitting a plane to one point 

measured and forcing it to be perpendicular to the primary and secondary datums. The SQLS 

method also fits the datum planes sequentially to the measured data points as done by the 3-2-1 

method. However, the SQLS method fits data to more than three measured points for simulating 

each datum. The SMLS method fits all three datum planes orthogonally to the measured data 

points simultaneously. The measured data points are greater than three for each datum plane. A 

nonlinear least square model is formed which is solved by a sequential quadratic programming 

technique.  

As these fits are generally used to simulate secondary and tertiary datums and their 

orientation, the amount of research work done for achieving these types of fits is considerably 

less then compared to constrained fits. As a result, these fits lack existing algorithms that are 

efficient and robust.  

3.4 State of Current Technology 

Least Square fits are one of the most commonly used methods for feature fitting. Both 

NPL [9] and NIST [10] have standard algorithms for doing least square fits. For the purpose of 

this research work NPL’s least square approach was used. These algorithms are robust and 

efficient and no modifications are needed. 
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A lot of work has been done in the field of unconstrained fits. The algorithm proposed by 

Lei Xianqing [20] for minimum zone and one sided cylinder fit (unconstrained) is an efficient 

algorithm. This algorithm is however dependent on a specific measurement scheme which has to 

be modified to make it dependent on initial estimates for cylinder fit. Many algorithms have been 

proposed for doing unconstrained circle fit (both minimum zone and one sided. Some of the 

algorithms proposed use a convex hull approach which filters out the points which are important 

for doing the fit. This is an important consideration if the point cloud is big. Venkaiah and 

Shunmugam [23] proposed a method for defining an inner and outer convex hull. Their method 

then iterates over all the points of the convex hull and iteratively updates the hull using 

equiangular diagrams scheme. In order to bring down the computational complexity and avoid 

going through all the possible combinations of circles their approach was modified. Gyula 

Hermann [24] proposed an approach for doing minimum zone line and plane fit using convex hull 

method. His approach for doing minimum zone line fit is robust and efficient and can be used as 

it as. However, his approach for doing minimum zone plane does not works well for special cases 

where measured data sets have a zone smaller than the actual desired zone fit. This appraoch was 

modified to accommodate special cases. Uncosntrained one side line fit, plane and internal zone 

plane fit lacks existing algorithms and hence they need to be developed. 

Since, much less research work has been done in the field of constrained fits, they lack 

existing efficient and robust aglorithms. All the algorithms within the cosntrained category (one 

sided and minimun fit) need to be developed. 
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CHAPTER 4 

ALGORITHMS & IMPLEMENTATION 

This chapter presents algorithms pertaining to each type of fit in different categories and 

how that fit is done in this research work. All the algorithms were developed in C++ with the help 

of Visual Studio.  

4.1 Design Philosophy 

The end goal of this research work is to develop a library of feature fitting functions. 

These functions should be in form of API’s. This library set should be easy to embed in any 

software and feature fitting algorithms could be called as function API’s for doing the fits and 

getting results. Another important aspect of this library was adaptability and expandability. If a 

better algorithm for doing any fit is developed in future then, the existing one in the library could 

be replaced. This adaption of new algorithm should not affect the implementation of any other 

algorithm/fit type. The library should also be easy to expand for addition of new feature types or 

fit types without disturbing any other function call. All the mathematical functions developed 

should be independent math functions so, that they can be reused again for different algorithms or 

for new development. 

For the sake of this purpose an object oriented style of programming was used. C++ was 

chosen as the language for software development. Matrices were used to store the point cloud and 

parameters of the feature fitted. Vectors and Matrices were used for storing intermediate data for 

algorithm calculations. Open Source library “WYKOBI” has been used for doing 2D convex hull. 
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4.1.1 Performance Factors 

Feature fitting can be viewed as optimization problems. The purpose is to minimize the 

objective function. Certain performance factors were taken into account for developing this 

library. The performance factors that were taken into account are 

 Robustness of the algorithms 

 Efficiency of the algorithms selected. 

 Accuracy of the solutions generated by the algorithms. 

These factors influenced the choice of algorithm and approach used during the 

development of this software library. A lot of testing was done to verify the accuracy and 

robustness of these algorithm, the results of which are shown in subsequent chapters 

4.2 Least Square Fits 

Least Square fits are done using the least square fitting methods proposed by NPL [9] 

because they are efficient and robust. Their approach begins by first defining parameters to define 

shape, size, position and orientation of the geometric feature to be fitted and secondly to drive an 

objective function. This objective function should define the sum of squares of the distances (  ) 

of measured points to the geometric feature in terms of the defined parameters. Numerical 

methods are then employed to minimize the sum of squares, depending upon the type of 

geometric feature to be fitted. An initial guess of the geometric feature is required for these 

algorithms to proceed. 

Two methods are used for minimizing the distance function. In the case of a line and a 

plane fit, their function is minimized using eigenvectors of a matrix. For a given matrix (m = n, 

i.e. square matrix) an eigenvector v of matrix A is such that 

      , 
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For a rectangular matrix (m ≥ n), Single Value Decomposition (SVD) is utilized to arrive 

at eigenvectors of A, which is a more stable way to find eigen-values numerically. A can be 

written as a product of 

      , 

With S as the diagonal matrix containing singular values of A and U, V is the orthogonal matrices 

of A.  

In case of doing circle and cylinder fits, the Gauss-Newton algorithm is used to minimize 

the distance function. The reason why the Gauss-Newton algorithm is used is because the 

distance function (  ) is a nonlinear function of the parameters. The algorithm starts by 

linearizing the problem by replacing the initial function with its tangent. Next, the linear problem 

is solved and the point where the tangent crosses the axis is determined. Furthermore, this 

solution is used to update the initial solution and the process is repeated again. Finally, these 

iterations are carried out until the objective function cannot be minimized any further. For 

numerical accuracy these algorithms tend to maintain the centroid of data points ( ̅  ̅  ̅) near to 

the origin. In order to do so, the centroid of the data points is calculated and then the data points 

are translated by a value such that the centroid lies at origin.  

The basic outline for doing least square fits for the geometric features within the scope of 

this research is given below, a complete description of algorithms is given in  “Least Squares Best 

Fit Geometric Elements ”[9]. 

4.2.1 Line Fit 

To define a line in 3D, two parameters are required i.e., a point on the line to be fitted and 

direction vector of the line. The least square line fit in 3D is achieved by doing the following 

steps: 
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I. Let n be the number of input points with parameters           (i =    point). 

II. Using the point cloud as input, calculate the centroid of the point cloud ( ̅  ̅  ̅). This 

gives a point on the fitted line. 

III. Construct a matrix A with size n×3 such that its     row is       ̅      ̅        ̅. 

IV. Find the SVD of A. 

V. The vector of SVD, which is corresponding to the largest single value, gives the 

direction vector of the fitted line. 

SVD is done by making use of an open source library, which uses the approach 

suggested in “Numerical Recipes in C” [25].  

4.2.2 Plane Fit 

To define a plane in 3D, two parameters are required i.e., a point on the plane to be fitted 

and a direction vector normal to the plane. The least square plane fit in 3D is done by following 

the steps mentioned below: 

I. Let n be the number of input points with parameters           (i =    point). 

II. Using the point cloud as input, calculate the centroid of the point cloud ( ̅  ̅  ̅), this 

gives a point on the fitted plane. 

III. Construct a matrix A with size n×3 such that its     row is       ̅      ̅        ̅. 

IV. Find the SVD of A. 

V. The vector of SVD, which is corresponding to the smallest single value, gives the 

direction vector of the fitted plane. 

SVD is done by making use of an open source library, which uses the approach 

suggested in “Numerical Recipes in C” [25].  
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4.2.3 Circle Fit 

The least squares circle fit is done in 2D. To define a circle in 2D two parameters are 

required, a center (      ) and a radius r. To find an initial estimate of the circle, an approximate 

model, followed by Gauss Newton iteration to fit the circle, was utilized. The circle fit in 2D is 

achieved by following the steps outlined below.  

I. A linear function F (eq. 1.1) in terms of the measured points (         ) is defined 

to obtain an initial estimate of circle parameters 

F =               (  
     

     )  (  
     

 )              (1.1) 

II. To obtain the estimates of (      ) and r, the linear system of equations are 

solved using a matrix approach of Ax = B, where A = (          ), and B = 

(  
     

 ). 

III. Start a loop to do Gauss Newton Iterations using initial estimates as the starting 

point. 

IV. Create a Jacobian matrix J with rows as ( 
     

  
, 
     

  
, -1) . 

V. Create a right side vector d such that         , where    = distance of     point 

from      . 

VI. Solve the Jacobian matrix using Jx = b and obtain values of    
    

   . 

VII. Add these values to initial estimates of (      ) and r, to obtain new estimates. 

VIII. Repeat the iterations until the algorithm has converged. 

4.2.4 Cylinder Fit 

The least square cylinder fit is done in 3D. A cylinder requires three parameters, a point 

(         ) on its axis, a vector (a, b, c) along its axis, and a radius r to be defined completely. An 

initial estimate of cylinder parameters is also  required as an input for doing the cylinder fit 
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followed by Gauss Newton iterations. The point cloud is rotated by a value such that the initial 

estimate of the direction vector aligns with the z-axis or c = 1 and             . The 

cylinder fit in 3D is achieved by following the steps below.  

I. The point cloud is translated such that the initial estimate of the point on the axis 

lies at the origin. 

II. Rotate the point cloud by a rotation matrix U such that the initial estimate of the 

axis lies along the z-axis. 

III. Construct a Jacobian matrix J with rows as ( 
  

  
  

  

  
  

    

  
  

    

  
   ), where 

   = distance of the     point from the cylinder axis. 

IV. Construct a right hand side vector d such that         , where    is the     

element of the vector. 

V. Solve the system of linear equations Jx = -d to obtain the values 

of    
    

         . 

VI. Update the initial estimate of the parameters. Rotate the obtained values 

(multiplying with matrix   ).  The radius and estimates of points on the axis are 

updated by adding the new values to the existing ones. Direction vectors are 

updated by taking the new values as the new estimates. 

VII. The process is repeated until the algorithm converges. 

VIII. Every time the iteration starts with an original copy of data, not the translated and 

rotated data.  

4.3 Unconstrained One Sided Fits 

One-sided fits, fit a feature on one side of the point cloud to simulate a datum. We have 

used two approaches during this research work for doing one-sided fits, a convex hull approach in 

2D and 3D and a geometric optimization search algorithm. The convex hull in 2D is done using 
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an open source library “WYKOBI” which makes use of a “Jarvis March’s” gift-wrapping 

approach [26]. The 3D convex hull is done using a randomized incremental algorithm [27]. The 

convex hull serves two purposes; it reduces the number of points to be analyzed and it gives a 

good starting point. 

4.3.1 Line Fit 

A line fit is done in 2D. A line in 2D is defined by two points in the 2D space. The 

convex hull (2D) along with the initial direction of fitting is used for doing a line fit. 

I. By using the point cloud as an input from a text file, construct a convex hull. 

II. Construct a vector V perpendicular to the initial direction of fitting (given as 

input) such that it is also in counterclockwise direction. 

III. Find the outer angles of all the lines of the convex hull with respect to the vector 

V. 

IV. Compare all the angles and find the smallest angle. 

V. The line of the convex hull making the smallest angle with vector V gives the line 

fit. 

An outline of the line fit in 2D is given in the figure 12. 

 

                                                
Figure 12 a: Generate a             Figure 12 b: Find angles of initial                  Figure 12 c: Smallest angle 

             Convex Hull        direction of fit with lines of convex hull                    to direction of fit 

Figure 12: Unconstrained One Sided Line Fit 
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4.3.2 Plane Fit 

The plane fit is done in 3D. A plane in 3D is defined by three points in space such that 

they are not collinear. The convex hull (3D) along with the initial direction of fitting is used for 

doing a plane fit. 

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix. 

II. Using the point cloud as an input, construct a convex hull. 

III. Find the normal of all the planes of the convex hull such that the normal points 

away from the hull. 

IV. Find the outer angles of all of the normals of the planes of the convex hull, with 

respect to the initial direction of fitting (given as input). 

V. Compare all of the angles and find the smallest angle. 

VI. The plane of the convex hull that makes the smallest angle with the initial 

direction of fitting, gives the plane fit. 

A plane fit follows the same procedure in 3D as a line fit follows in 2D, outlined in 

Figure 12. In a line fit, the direction vector of the lines are used whereas in a plane fit, the 

direction vectors of the normal of the plane are used. 

4.3.3 Minimum Circumscribed Circle Fit 

Minimum circumscribed circle fit is done in 2D. Two parameters are required to define a 

circle in 2D, the center of the circle (      ) and a radius r. The circle fitting makes use of the 

outer convex hull approach suggested by “M.S. Shunmugam and N. Venkaiah” [23]. Convex hull 

reduces the number of points to be evaluated and gives a good starting point. The approach is 

modified so that the algorithm avoids going through all possible combinations of the circle to find 
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the best one. This enables the algorithm to converge faster. Steps for doing the minimum 

circumscribed circle are outlined below. 

I. Store the point Data (n Points) in an n×2 matrix (figure 13a) after reading from a 

text file. 

II. Construct a convex hull from the Point Data (figure 13b). 

III. Store the Points forming the convex hull (m points) in a different matrix m×2. 

Where,    m  n. 

IV. Iterate through all the points of the convex hull and find two points (mp1 and 

mp2), that are farthest distance apart (d1) (figure 13c). 

V. Using these two points (mp1 and mp2) iterate through all the points of the 

convex hull taking one at a time (mp3) to form circles. 

VI. Store all 3 points combinations (mp1, mp2 and mp3) forming circles, which have 

all the points (n) either inside or on the circle formed by them (figure 13d). 

VII. Iterate through all the points of the convex hull to find a set of two points that are 

next most farthest distance apart (d2) (figure 13e). 

VIII. Repeat step V and VI. 

IX. Repeat steps VII and VIII until the distance (d) becomes less than or equal to the 

90% of 0.5 × (diagonal of bounding box of the point data (n)) 

X. Compare all the combinations to find the circle with the smallest radius (d_s1). 

XI. If no circle is found then find the two max. distance points and fit a circle to 

them. 

For the sake of efficiency, all of the circles (formed by three point combinations) are 

tested for the interior angles. If any of the interior angles are greater than 90 degrees then that 

combination is rejected. This follows the assumption that the measured data set should span the 

surface of the geometry. 
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4.3.4 Maximum Inscribed Circle Fit 

The maximum inscribed circle fit is also done in 2D. Two parameters are required to 

define a circle in 2D, the center of the circle (      ) and a radius r. The circle fitting makes use 

of the inner convex hull approach suggested by “M.S. Shunmugam and N. Venkaiah” [23] with 

one modification. The approach for finding the best fit circle is modified to avoid going through 

all the combinations possible. 

I. Read the point data from a text file (n Points) and store it in an n×2 matrix (figure 

14a). 

II. Construct an inner convex hull from the Point Data (figure 14b). 

III. Store the Points forming the convex hull (m points) in a different matrix m×2.  

a) Where, m   n. 

IV. Iterate through all the points of the convex hull and find two points (mp1 and 

mp2), that are farthest distance apart (d1) (figure 14c). 

                                                            
13a. Point cloud                          13b. Convex Hull                 13c. Max Distance Points 

 

                                                  
13d. Search for 3

rd
 Point          13e. Second Max. Dist. Points              13f. Final Circle (Reject 

if point outside circle) 

 

Figure 13. Process for Minimum Circumscribed Circle 
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V. Using these two points (mp1 and mp2) iterate through all the points of the 

convex hull taking one at a time (mp3) to form circles. 

VI. Store all 3 points combinations (mp1, mp2 and mp3) forming circles, which have 

all the points (n) either inside or on the circle formed by them (figure 14d). 

VII. Compare all the combinations to find the circle with the largest radius (d_s1). 

VIII. If no combination found go to step IX else go to step XI 

IX. Iterate through all the points of the convex hull to find a set of two points that are 

next most farthest distance apart (d2) (figure 14e). 

X. Go to step V. 

XI. Combination with the largest radius gives the maximum inscribed fit. 

The efficiency measures taken for the minimum circumscribed fit (Section 4.3.3) are also 

followed for the maximum inscribed fit. 

 

4.3.5 Minimum/Maximum Cylinder Fit 

One sided cylinder fit is done in 3D. Three parameters are required to define a cylinder, a 

point on the axis of the cylinder (         ), direction vector of the axis of the cylinder (a, b, c) 

                                                       
14a. Point cloud                                   14b. Inner Convex Hull                           14c. Max Distance Points 

                                              
                14d. Invalid Combination         14e. Second Max. Dist. Points                14f. Final Circle 

Figure 14. Process for Maximum Inscribed Circle 
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and a radius r. The cylinder fit is done using the geometric optimization search algorithm based 

on an approach suggested by Lei Xianqing [20]. The algorithm is modified to take the least 

square cylinder fit as the starting point instead of depending on a specific measurement scheme in 

the suggested approach. Following the steps mentioned below can do the cylinder fit. 

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix. 

II. Using the point cloud and initial estimates of the cylinder as input, find a least 

square cylinder fit (F1 – figure 15a). 

III. Rotate the axis of the F1 to align it with the Z axis and rotate the point cloud by 

the same rotation matrix. 

IV. Find the extreme ends (e1, e2) of the rotated cylinder. 

V. Construct hexagons h1 and h2 on ends e1 and e2 such that they lie in an X-Y 

plane, with the size of the hexagon = 10% of radius of the F1 cylinder (figure 

15b). 

VI. Connect all the points from hexagon h1 to hexagon h2 forming 36 combinations 

of lines (figure 15c). 

VII. Considering each line as an axis for the cylinder, check whether the fitted 

cylinder    is a better solution than the previous one (figure 15d). 

VIII. If     is a better solution then F1 then take this as the new estimate for the 

cylinder, rotate the point cloud back to original position and repeat steps II, III, 

IV, V and VI. 

IX. If     is not a better solution then  F1 then reduce the size the hexagon by half and 

repeat steps II, III, IV, V and VI. 

X. Repeat the process till the size of the hexagon becomes less than 0.01% of the F1 

cylinder radius. 
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The convergence criteria for the algorithm (0.01% of the F1 cylinder radius) can be 

modified as per desired accuracy. In case of the minimum circumscribed cylinder, the better 

solution would be a cylinder with a smaller radius. For a maximum inscribed cylinder, the better 

solution would be a cylinder with a bigger radius. 

 

4.4 Unconstrained Minimum Zone Fits 

Minimum zone fits aim to fit a set of parallel features to the point cloud (section 2.2.2). 

These fits also use the convex hull approach (2D and 3D) and the geometric optimization search 

algorithm as described for unconstrained one-sided fits. Line and plane fits are based on an 

approach suggested by Gyula Hermann [24]. 

 

 

                                            

      15a: least square cyl. fit to the point cloud                       15b: Create hexagons at both ends of the cyl. 

                                       

15c: Join all the points of  both hexagons (36 lines)             15d: find a max/min cyl. using each line as axis. 

Figure 15. Process for Unconstrained One Sided Cylinder Fit 
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4.4.1 Line Fit 

The line fit is done in 2D. Two points (      ) indicating one line and one point, 

indicating the distance and position of the line forming the parallel zone in the 2D space, defines 

a zone line fit. Line fit follows the approach suggested by Gyula Hermann [24] because it’s 

efficient, robust and straightforward approach. Convex hull (2D) is used for a zone line fit. 

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix 

(figure 16a). 

II. Fit a 2D convex hull to the Point Data (Figure 16b). 

III. Store the Points forming the convex hull (m points) in a  different matrix m×2  as 

combinations forming lines of the hull  

a) Where, m   n. 

IV. Iterate through all the lines of the convex hull and find the distance (d) of the 

point that is farthest away (normal distance) from each line (Figure 16c) 

V. Store all these distances (d) with lines and points between which they exist. 

VI. Compare all these distances (d) to find the shortest distance (ds) (Figure 16d). 

VII. The line and a line parallel to it passing through the point at this distance (ds) will 

give the minimum zone line fit. 

 

                                           

16a: Point cloud                 16b: convex hull            16c: Combinations of each           16d: Combination  

                                                                                line of hull to the farthest  point              with min. dist 

Figure 16. Unconstrained Min Zone Line Fit 
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4.4.2 External Plane Fit 

The external zone plane fit is done in 3D. Three points (         ) defining a plane (one 

side of the zone) and a point indicating the position and distance of the plane forming the parallel 

zone in space, define a zone plane fit in 3D. External plane follows the approach suggested by 

Gyula Hermann [24]. This approach was modified because it does not work for the special cases 

where another zone smaller than the desired zone exists. Convex hull (3D) is used for doing a 

plane fit. An external plane is used for simulating internal features (ex. Slots). Steps for doing an 

external plane zone fit are outlined below. 

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix. 

II. Fit a 3D convex hull to the Point Data. 

III. Store the Points forming the convex hull (m points) in a  different matrix m×3  as 

combinations forming planes of the hull  

a) Where, m   n. 

IV. Iterate through all the planes of the convex hull and find the distance (d) of the 

point that is farthest away (normal distance) from each plane. 

V. Store all these distances (d) with planes and points between which they exist. 

VI. Compare all these distances (d) to find the shortest distance (ds). 

VII. The plane and a plane parallel to it passing through the point at this distance (ds) 

will give the minimum zone external plane fit. 

The external plane fit zone follows the procedure as outlined by the line fit. A plane fit is done in 

3D and a line fit is done in 2D. Normal distances from the planes are used to calculate distances 

in a plane fit as compared to that of a zone line fit. 
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4.4.3 Internal Plane Fit 

An internal zone plane fit is done in 3D. Three points (         ) defining a plane (one 

side of the zone) and a point indicating the position and distance of the plane forming the parallel 

zone in space, define a zone plane fit in 3D. Convex hull (3D) is used for doing a plane fit. 

Internal plane fits are used to stimulate external features (ex. tabs). Steps for doing an internal 

plane zone fit are outlined below (Figure 17). 

I. Read the three measured points (for an initial guess) from a text file and store 

them in a 3x3 matrix m. 

II. Read the Point Data (n Points) from a text file as points on one side (left hand 

side - ls) and another side (right hand side - rs) and store it in an n×3 matrix m1 

and m2 (Figure 17a). 

III. Do a least square fit to the 3 points (matrix m) to establish an initial reference 

plane (Figure 17b). 

IV. Fit a 3D convex hull (cls and crs) to both the point clouds (ls and rs point cloud) 

(Figure 17c). 

V. Compare the normal of the planes of the convex hull with that of a least square 

plane. 

VI. Ignore all the planes whose normals make an angle > 90 degrees with the normal 

of the least square plane. (Selected planes are called innermost planes pls and 

prs). 

VII. Iterate through all the internal planes of the pls convex hull and find the angles 

(d1) of the points in the rs point cloud that are closest to these planes (Figure 

17d). 
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VIII. Repeat the process with internal planes of prs convex hull and find distances (d2) 

with respect to its point cloud. 

IX. Find the angles (ang) of all the internal planes (of both same and opposite side) 

with respect to the least square plane 

X. Compare all of these angles to find the minimum angle. 

XI. Select the plane combination with the minimum angle. 

XII. The plane and a plane parallel to it passing through the point at this distance (ds) 

will give the minimum zone internal plane fit (Figure 17e). 

 

4.4.4 Circle Fit 

A circle fit is done in 2D. A center (      ), inner radius r1 and an outer radius r2 is 

needed to define a zone circle fit.  An unconstrained minimum circumscribed circle fit and 

maximum inscribed circle fit (section 4.2.3 and section 4.2.4) are done to establish an initial 

guess for the zone circle fit. A geometric optimization search algorithm based on the approach 

suggested by Lei Xianqing [20] is used afterwards to search for a better solution. The zone circle 

fit follows the steps mentioned below. 

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix. 

 

                            

17a: Point cloud    17b: Least Square         17c: 3D convex         17d: Dist. Of inner        17e: Comb. with 

                                Plane fit (divided          hull (divided                   planes                        min. distance 

                                data set into two)               data sets)                    innermost points 

Figure 17. Unconstrained Min Zone Internal Plane Fit 

 

planes
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II. Fit a minimum circumscribed circle (nc1_a) to this point set. 

III. Using the center of the circle (nc1_a) find a circle (nc1_b) passing through the 

point closest to the center of this circle (nc1_a). 

IV. Store the distance between the two circles (nc1_a, nc1_b)  as d1. 

V. Fit a maximum inscribed circle to this point set (nc2_a). 

VI. Using the center of the circle (nc2_a), find a circle (nc2_b) passing through the 

point farthest from the center of this circle (nc2_a) 

VII. Store the distance between the two circles (nc2_a, nc2_b) as d2. 

VIII. Compare d1 and d2 and choose the combination of circle (cb1) with smaller d as 

an initial guess. 

IX. Form a polygon p (36 sides) using the center of this circle (cb1) with size = 1% 

of the radius of the circle. 

X. Iterate around the center of combination cb1 using the vertices of the polygon p. 

XI. Using the vertices as new centers, draw concentric circles to the farthest and 

nearest points from that center to form combinations (cbm) of zones. 

XII. If the new combination has a distance (dm – between concentric circles) smaller 

than the previous combination (cb1), discard the previous combination and make 

this combination (cbm) the new guess (cb1). Repeat steps IX, X and XI. 

XIII. If the new combination has a distance (dm) greater than the previous combination 

(cb1), then multiply the search radius by 0.1 and repeat steps IX, X, XI and XII. 

XIV. Iterations are carried out until the search radius becomes less than 0.001of the 

radius of the initial guess. 

The convergence criteria (< 0.001 radius of the initial estimate) can be modified as per 

the desired efficiency. 
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4.4.5 Cylinder Fit 

A zone cylinder fit is done in 3D. Three parameters are required to define a cylinder: a 

point on the axis of the cylinder (         ), direction vector of the axis of the cylinder (a, b, c) 

and a radius r. A cylinder fit is done using a geometric optimization search algorithm based on an 

approach suggested by Lei Xianqing [20]. The algorithm is modified to take the least square 

cylinder fit as the starting point instead of depending on the specific measurement scheme in the 

referenced approach. Using the least square cylinder fit as basis, a zone cylinder is formed for the 

initial guess. A cylinder fit can be done by following the steps mentioned for achieving an 

unconstrained one-sided cylinder fit (section 4.3.5) and by making the changes for the initial 

estimates. The algorithm outlined in section 4.3.5 is modified to search for a minimum zone 

instead of a one sided fit. 

A zone fit also follows the same convergence criteria as defined for the unconstrained 

one-sided cylinder fit. The convergence criteria for the algorithm (0.01% of the F1 cylinder 

radius) can be modified as per the desired accuracy. 

4.5 Constrained One Sided Fits 

Constrained one-sided fits are done with constraints on orientation and position. For 

doing line and plane fits, the initial direction of fitting as well as the direction vector of the 

constraining feature are taken into account. The convex hull approach in 2D/3D and the 

geometric optimization search algorithm are also used for doing these fits. The convex hull in 2D 

is created using an open source library “WYKOBI” which makes use of “Jarvis March’s” gift-

wrapping approach [26]. The 3D convex hull is done using a randomized incremental algorithm 

[27]. Constrained fits are simpler in terms of algorithm and takes less computational time as 
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compared to unconstrained fits. The reason constrained fits are easier to achieve is that some 

parameters are already constrained with respect to another feature. 

4.5.1 Constrained One Sided Line Fit 

A constrained one-sided line fit can be constrained in its orientation with respect to 

another line. A constraint could be a fit parallel to a constraining line or a fit perpendicular to the 

constraining line. A line fit is done in 2D. A convex hull in 2D, initial direction of fitting and the 

equation of the constraining line (in the form        ) are used for doing the fit. Two points 

that do not lie at the same position are required to define a line. A line fit parallel to given line 

(constraint = parallel to a given line) is done following the steps mentioned below. 

I. Read the point data and store it in an m×2 matrix (Figure 18a). 

II. Using the point cloud as an input, construct a convex hull (Figure 18b). 

III. Compare the constraining line and the lines (n) of the convex hull (Figure 18c). 

IV. Keep only the lines (m, where m є n) which are parallel to the constraining line 

and reject all other lines (Figure 18d). 

V. Construct a vector V perpendicular to the initial direction of fitting (given as 

input) such that it is also in a counterclockwise direction. 

VI. Find the outer angles of all the lines (m) with respect to the vector V (Figure 

18e). 

VII. Compare all the angles and find the smallest angle. 

VIII. The line of the convex hull making the smallest angle with vector V gives the line 

fit (Figure 18f). 

In case of a line fit perpendicular to the constraining line, a line (l1) perpendicular to the 

constraining line is first constructed. Using L1 as the new constraint, the algorithm mentioned 

above is used to find the fit. Figure 18 shows the process of a constrained one sided line fit. 
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4.5.2 Constrained One Sided Plane Fit 

A constrained one-sided plane fit is constrained with respect to another plane in terms of 

its orientation. A constraint could be a fit parallel to a constraining plane or a fit perpendicular to 

the constraining plane. A plane fit needs an initial direction of fitting and the equation of the 

constraining plane as an input. A convex hull in 3D along with the constraining plane is used for 

doing the fit. Three non-collinear points in space define a plane fit. A constrained one-sided plane 

fit is done according to the steps mentioned below: 

I. Read the point data and store it in an m×2 matrix. 

II. Using the point cloud as an input, construct a convex hull. 

III. Define the normal vector of the planes such that they all point outside of the hull. 

IV. Compare the constraining plane and the planes (n) of the convex hull. 

V. Keep only the planes (m) which are parallel to the constraining plane and reject 

all other planes. 

a) Where, m   n. 

VI. Construct a vector V representing initial direction of fitting (given as input). 

                                                    
18a: Point cloud       18b: Convex hull     18c: Constrain - parallel         18d: Keep lines parallel  

                                                                          to a given line                  to the constraining line                 

                                                          
                        18e: Find outer angles with                                   18f: Line with smallest angle  

                                 Initial direction of fitting                                            gives the fit. 

Figure 18. Constrained One Sided Line Fit 
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VII. Find the angle between the vector V and the planes (m). 

VIII. Compare all the angles and find the largest angle (normal of the fit plane and 

vector V will be opposite to each other). 

IX. The plane of the convex hull making the largest angle with vector V gives the 

plane fit. 

Fits with constraint perpendicular to the given plane are done by first finding a normal vector V 

perpendicular to the normal of the constraining plane. Secondly, using vector V as the new 

constraint, the above mentioned approach is followed.  The constrained one-sided plane fit 

follows the same approach suggested by line fit as outlined in Figure 18. 

4.5.3 Constrained One Sided Minimum/Maximum Circle Fit 

A maximum inscribed circle and a minimum circumscribed circle fit is done in 2D. A 

center (      ), and a radius are the parameters that define a circle in 2D space.  A constrained 

one-sided circle fit is constrained in its position (center already known). A circle fit follows the 

steps mentioned below. 

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix 

(Figure 19a). 

II. Read the constraint (coordinates for center c1          ) (          )  

III. In case of a minimum circumscribed circle: find a point with distance d1 that is 

furthest away from c1.  

IV. c1 as the center and d1 as the radius gives the fit (Figure 19c). 

V. In case of the maximum inscribed circle, find a point with distance d1 that is 

nearest to the center c1.  

VI. c1 as the center and d1 as the radius gives the fit. 
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4.5.4 Constrained One Sided Minimum/Maximum Cylinder Fit 

A constrained one sided cylinder fit is done in 3D. A cylinder fit could be constrained in 

its orientation with respect to a line or a plane. Constraints for a cylinder fit can be the axis of the 

fit parallel to a given line or the axis of the fit perpendicular to a given plane.  Three parameters 

are required to define a cylinder: a point on the axis of the cylinder (         ), direction vector 

of the axis of the cylinder (a, b, c) and a radius r. Unlike the unconstrained cylinder fit, a 

constrained cylinder fit does not require an initial estimate of a cylinder as an input. A cylinder fit 

is done using the geometric optimization search algorithm. This algorithm is an extension of an 

approach suggested by Xianqing et al. [20]. A cylinder fit with the axis of the fit parallel to a line 

can be done by following the steps mentioned below: 

I. Read the point data from a text file and store it in a matrix m1 (mx3). 

II. Read the direction vector (     ) of the input line (Figure 20a). 

III. Rotate the direction vector (     ) by a rotation matrix Ur such that it aligns 

with Z-axis. 

IV. Rotate the input point cloud by the same rotation matrix Ur. 

V. Ignore the all of the z coordinates from each point and store the (   ) coordinate 

in a new matrix m2 (mx2) (Figure 20b). 

                             

   19a: Point cloud                19b: Constrained center                19c: Distance of max. dist. point  

                                                                                                            gives radius of circle. 

Figure 19. Constrained Minimum Circumscribed Circle Fit 

 



  54 

VI. Using the points in m2 find two points (p1, p2) that are the farthest distance 

apart. Find the mean point (c1) of p1 and p2 (Figure 20c). 

VII. In case of the minimum circumscribed cylinder, fit a minimum circumscribed 

circle (cr1) to m2 using c1 as an initial estimate for the center. The distance from 

c1 to p1 gives an initial estimate for radius r1 (Figure 20d). 

VIII. In case of the maximum inscribed cylinder, fit a maximum inscribed circle (cr2) 

to m2 using c1 as an initial estimate for the center. The distance from c1 to the 

nearest point in m2 gives the initial estimate of the radius r2. 

IX. Construct a polygon around the center of the initial circle (cr1/cr2) with 36 sides 

and with a size 10% of the initial estimate of radius (Figure 20e). 

X. Using each vertex of the polygon as an estimate for the center point, search for a 

better solution (max/min circle). 

XI. If a better solution is found then make that as the new estimate for the center and 

go to step IX.  

XII. If no better solution is found then reduce the size of the polygon by half and go to 

step IX. 

XIII. Repeat the process until the size of the polygon becomes less than or equal to 

0.01% of the initial estimate of the radius (<= 0.01% of (cr1/cr2) – Figure 20f). 

XIV. Assign a Z coordinate to the obtained center within the limits (in the z direction) 

of the rotated point cloud.  

XV. Rotate the estimate of the center (cr) back by multiplying with the transpose of 

the Ur. 

XVI. The radius (r1/r2), direction vector of the constraining line (     ) and the 

rotated point (cr) gives the constrained one-sided cylinder fit (Figure 20g). 
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In case of a constraint where the fitted cylinder axis is perpendicular to a plane, the vector 

normal to the plane is taken and the algorithm outlined above for parallel to an axis constraint is 

followed. The accuracy levels (0.01% of the initial estimate of the radius) and the sides of the 

polygon (36) can be changed depending upon the accuracy and efficiency requirements. 

4.6 Constrained Minimum Zone Fits 

Constrained minimum zone fits also fit a set of parallel features to the point cloud. These 

sets of parallel features however are constrained in orientation or position with respect to another 

feature. Minimum zone fits require the point cloud and the parameters of the constraining feature 

         

20a: Point Cloud & Const. Line    20b: Projected Points     20c: Mean of Max. Dist. Points 

                       

     20d: Initial Circle                     20e: Fit a Polygon around center      20f: Fitted Circle 

 

20g: Transform Back to Cylinder 

Figure 20: Constrained One Sided Cylinder Fit 
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as an input. These fits also use the geometric optimization search algorithm as described for 

constrained one sided fits. 

4.6.1 Constrained Minimum Zone Line Fit 

A constrained minimum zone line fit is done in 2D. Two points (      )  each indicating 

the position of a line forming the zone parallel to the constraining line in 2D space, define a zone 

line fit. The distance between the two lines passing through the two points is the distance of the 

zone. The point cloud and the parameters (     ) of the constraining line (         ) are 

required as an input for the fit. A constraint minimum zone line fit can be constrained as parallel 

or perpendicular to a constraining line. A line fit with a constraint parallel to a given line is done 

by following the steps mentioned below: 

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix 

(Figure 20a). 

II. Read the parameters (                          ) of the constraining 

line (L) from the text file (Figure 20b). 

III. Find a point (p1) max distance from L. 

IV. Construct a line (L1) at point p1 parallel to L (Figure 20c). 

V. Find a point (p2) max distance from L1. 

VI. Construct a line (L2) at point p2 parallel to L (Figure 20d). 

VII. L1, L2 gives the zone fit and the distance between L1 and L2 gives the zone size. 

For a constraint where the zone is perpendicular to a given line, a line perpendicular to 

the constraining line is first constructed. Next, the algorithm outlined for a zone with a parallel 

constraint (mentioned above) is followed to achieve the fit. Figure 21 shows the process of 

constrained minimum zone line fit. 
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4.6.2 Constrained Minimum Zone External Plane Fit 

A constrained minimum zone external plane fit is done in 3D. A zone plane fit can be 

done with planes of the zone constrained either parallel or perpendicular to a constraining plane. 

Two points (         )  each indicating the position of a plane forming the zone parallel to the 

constraining plane defines a zone plane fit.  For a perpendicular constraint, two points on one side 

and one point on the other side define the two planes. The distance between the two planes 

forming the zone is the distance of the zone. The point cloud and the parameters (        )  of 

the constraining plane (            ) are required as an input. The plane fit with a 

constraint parallel to a given plane is done by following the steps mentioned below: 

I. Read the Point Data (n points) from a text file and store it in an n×3 matrix. 

II. Read the parameters (                                ) of the 

constraining plane (Pl) from the text file. 

III. Find a point (p1) max distance from Pl. 

IV. Construct a plane (Pl1) at point p1 parallel to Pl. 

V. Find a point (p2) max distance from Pl1. 

VI. Construct a plane (Pl2) at point p2 parallel to Pl. 

                  
21a: Point      21b: Constraining        21c: Max. dist. line from               21d: Max dist. line from  

        cloud                 line                           constraining line                              point p1 

Figure 21. Constrained Minimum Zone Line Fit 
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VII. Pl1, Pl2 gives the zone fit and the distance between Pl1 and Pl2 gives the zone 

size. 

A constrained minimum zone plane fit follows the same approach as the constrained 

minimum zone line fit (Figure 21). For the zone fit that has a constraint perpendicular to a given 

plane, a different approach is followed, outlined below. 

I. Read the Point Data (n Points) from a text file and store it in an n×3 matrix. 

II. Read the parameters (                                ) of the 

constraining plane (Pl) from the text file. 

III. Rotate the normal vector of the constraining plane (Pl) by a rotation matrix (Ur) 

such that it aligns with the z-axis. 

IV. Rotate the point cloud by the same rotation matrix (Ur). 

V. Construct a matrix m2 (nx2) with only (   ) coordinate of the rotated point 

cloud. 

VI. An unconstrained minimum zone line fit is done on the matrix m2 data set 

(section 4.3.2). 

VII. A z coordinate is assigned to the output of the minimum zone line fit within the 

limits of the rotated data set (limits in z direction). 

VIII. Obtained points are rotated back by multiplying them with the transpose of the 

rotation matrix (Ur). 

 

4.6.3 Constrained Minimum Zone Internal Plane Fit 

A constrained minimum zone internal plane fit is also done in 3D. A zone plane fit can be 

done with planes of the zone constrained either parallel or perpendicular to a constraining plane. 

Two points (         )  each indicating the position of a plane forming the zone parallel to the 
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constraining plane defines a zone plane fit.  The distance between the two planes forming a zone 

is the distance of the zone. The point cloud and the parameters (        )  of the constraining 

plane (            ) are required as an input. A plane fit with a constraint parallel to a 

given plane is done by following the steps mentioned below: 

I. Read the Point Data (n Points) from a text file and store it in an m×3 matrix 

(Figure 21a). 

II. Read the parameters (                                ) of the 

constraining plane (Pl) from the text file (Figure 21b). 

III. Find a point (p1) max distance from Pl. 

IV. Construct a plane (Pl1) at point p1 parallel to Pl (Figure 21c). 

V. Find a point (p2) max distance from Pl1. 

VI. Construct a plane (Pl2) at point p2 parallel to Pl (Figure 21d). 

VII. Find a plane (Plm) parallel to Pl such that it lies in the middle of Pl1 and Pl2 and 

is parallel to P1 (Figure 21e). 

VIII. Find points (p3 and p4) nearest to plane Plm in each normal direction. 

IX. Using the points p3 and p4 create planes (Pl3 and Pl4) such that they are parallel 

to Plm. 

X. Pl3, Pl4 gives the zone fit and the distance between Pl3 and Pl4 gives the zone 

size (Figure 21f). 

An outline of the constrained minimum zone internal plane fit is shown in figure 22. 
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4.6.4 Constrained Minimum Zone Circle Fit 

A constrained minimum zone circle fit is done in 2D. A center (      ) and a radius (r1 

for the inner circle and r2 for the outer circle) are the parameters that define a circle in 2D space. 

A circle fit is constrained in its position (center already known). A circle fit follows the steps 

mentioned below. 

I. Read the Point Data (n Points) from a text file and store it in an n×2 matrix. 

II. Read the constraint (coordinates for the center c1         ). 

III. Find a point with distance d1 that is furthest away from c1.  

                

22a: Point                             22b: Constraining                             22c: Max. dist. line from                       

        cloud                                      plane                                       constraining line                                   

 

 

                       

   22d: Max dist. line from                              22e: Central plane               22f: Internal Zone fit 

            point p1 

Figure 22. Constrained Minimum Zone Internal Plane Fit 
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IV. Find a point with distance d2 that is nearest to the center c1.  

V. Set c1 as the center and d1 as the radius for the outer circle and d2 as the radius 

for the inner circle gives the fit. 

4.6.5 Constrained Minimum Zone Cylinder Fit 

A constrained minimum zone cylinder fit is done in 3D. A cylinder fit could be 

constrained in its orientation with respect to a line or a plane. Constraints for cylinder fits can be 

the axis of the fit parallel to a given line or axis of the fit perpendicular to a given plane. Three 

parameters are required to define a cylinder, a point on the axis of the cylinder (         ), the 

direction vector of the axis of the cylinder (a, b, c) and a radius r. Unlike the unconstrained 

cylinder fit, the constrained cylinder fit does not require an initial estimate of the cylinder as an 

input. The cylinder fit is done using the geometric optimization search algorithm. This algorithm 

is an extension of an approach suggested by Xianqing et al. [20]. A constrained cylinder zone fit 

can be done by following the steps mentioned for a constrained one-sided cylinder fit (section 

4.5.4).  The algorithm outlined in section 4.5.4 is modified to search for a minimum zone instead 

of a one-sided fit. 

A zone fit also follows the same convergence criteria as defined for a constrained one-

sided cylinder fit. The convergence criteria for the algorithm (0.01% of the initial estimate of the 

radius and the sides of the polygon (36) can be modified as per the desired accuracy and 

efficiency. 

4.7 Implementation 

A library of functions were written in C++. Appendix A lists and explains the functions. 

It also shows the input and output format used for each function call. In case of constrained fits, 

different types of constraints with respect to which fit can be done are also summarized. 
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CHAPTER 5 

VALIDATION & VERIFICATION 

In this chapter, various methods to validate and verify the algorithms proposed in this 

research work are discussed along with their results. The algorithms were tested for their 

efficiency, accuracy and robustness. Efficiency was measured by time taken to run test cases 

ranging from five measured points to 100 measured points. Accuracy was measured as the 

percentage error of the difference in fitted value by algorithm and the actual value. Actual value 

was defined as obtained through manual measurements or through predefined values. Robustness 

was measured by running test cases with outlier and with predefined errors in them. Testing was 

also done to verify the differences between the CMM feature fitting and the actual feature fitting. 

Three levels of testing were done to verify the proposed algorithms.  

5.1 Virtual Testing and Verification 

Virtual testing and verification were done by creating virtual data sets. Virtual data sets 

were created for linear, planar, circular and cylindrical features. Test cases were created by 

defining a nominal feature and random points around. Random points were defined within some 

pre-defined distance from the nominal feature. Random points were generated by using a random 

number generator. The points were generated such that they span the surface of the nominal 

feature. Figure 23 shows the nominal geometry and the random distribution of points for virtual 

test cases. 

Figure 23a is a representation of a virtual test case for a line and a plane. In the case of a 

plane, a depth of 10.0 units is added to the line test case. A zone of 0.025 units from the nominal 

feature is established for the generation of random points. Figure 23b represents the virtual test 

case for a circle and cylinder. A depth of 10.0 units is added in case of a virtual cylinder. The 
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cylinder and circle virtual test cases also have a random point zone of 0.025 units around the 

nominal feature (nominal feature thickness = 1 unit). The unit in which measurements were done 

and test cases were created is inches. Table 5 shows the values of predefined virtual test cases and 

the results of the algorithms for unconstrained fits. 

 

Table 5a: Results for Virtual Test Cases  

Unconstrained One Sided and Minimum Zone Fits 

Type of Fit 
Predefined 

Nominal 
Tolerance zone from 
random generators 

Obtained % Error = 

Min Zone Line 2.975 0.05 (0.025 - both sides) 3.025 < 0.1 

One Sided Line   0.025 0.025 < 0.1 

Min Zone Plane 
(External) 

2.975 0.05 (0.025 - both sides) 3.025 < 0.1 

Min Zone Plane 
(Internal) 

2.975 0.05 (0.025 - both sides) 2.97499 < 0.1 

One Sided Plane   0.025 0.025 < 0.1 

Min Zone Circle 1 (zone thickness) 0.05 (0.025 - both sides) 1.05 < 0.1 

Max Insc. Circle 3 (outer radius) 0.025 0.025 < 0.1 

Min Circum. Circle 4 (inner radius) 0.025 0.025 < 0.1 

Min Zone Cyl. 1 (zone thickness) 0.05 (0.025 - both sides) 1.05 < 0.1 

                                   

               23a: Line & Plane Virtual Test Case                 23b: Circle & Cylinder Virtual Test Case 

Figure 23. Virtual Test cases 
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Max Insc. Cyl. 3 (outer radius) 0.025 0.025 < 0.1 

Min Circum. Cyl. 4 (inner radius) 0.025 0.025 < 0.1 

 

Table 5b: Results for Virtual Test Cases  

Constrained One Sided and Minimum Zone Fits  

Type of Fit 
Predefined 

Nominal 
Constraining feature 

Tolerance 
zone from 

random 
generators 

Obtained % Error = 

Min Zone Line 2.975 Line parallel to y axis 
0.05 (0.025 - 
both sides) 

3.025 < 0.1 

One Sided Line 0 (form y axis) Line parallel to y axis   0 < 0.1 

Min Zone Plane 
(External) 

2.975 
Plane parallel to Y-Z 

plane 
0.05 (0.025 - 
both sides) 

3.02499 < 0.1 

Min Zone Plane 
(Internal) 

2.975 
Plane parallel to Y-Z 

plane 
0.05 (0.025 - 
both sides) 

2.976 < 0.1 

One Sided Plane 0 (form y-z plane) 
Plane parallel to Y-Z 

plane 
  0 < 0.1 

Min Zone Circle 
1 (zone 

thickness) 
center coordinates of 

circle 
0.05 (0.025 - 
both sides) 

1.04999 < 0.1 

Max Insc. Circle 3 (outer radius) 
center coordinates of 

circle 
0.025 2.97499 < 0.1 

Min Circum. 
Circle 

4 (inner radius) 
center coordinates of 

circle 
0.025 4.024999 < 0.1 

Min Zone Cyl. 
1 (zone 

thickness) 
axis parallel to Z axis 

0.05 (0.025 - 
both sides) 

1.050001 < 0.1 

Max Insc. Cyl. 3 (outer radius) axis parallel to Z axis 0.025 2.97499 < 0.1 

Min Circum. Cyl. 4 (inner radius) axis parallel to Z axis 0.025 4.024999 < 0.1 

 

In table 5a, the fifth column shows the results from running the virtual test case with the 

algorithm. Second and third columns show the predefined tolerance zone and nominal features. 

For Table 5b there is an additional column (3
rd

 column) which shows the constraining feature for 

that type of fit. The last column of both the tables show the percentage error between the 

predefined values of virtual test cases and the value obtained from running the constrained and 



  65 

unconstrained, minimum zone and one sided fits. By looking at the percentage error column we 

can deduce that, the results from the algorithms closely match with the predefined results (up to 

three decimal places). These errors could be due to numerical accuracy, round off errors or 

measurement errors. 

5.2 Comparative Study with Commercial CMM 

CMM testing and verification are done by fitting features to a measured point cloud using 

CMM software. Data for CMM’s were generated by doing reverse engineering. Parts were 

created for the purpose of generating a point cloud with built-in form errors. Point cloud was 

generated by taking measurements on these manufactured parts. The CMM software is used to fit 

a feature to the measured point cloud. A feature is also fitted to the measured point cloud using 

the algorithms proposed. The features obtained from CMM and the algorithms developed were 

compared for verification of the results. A robotic arm CMM (Romer Series 3000i) was used for 

measuring points on the manufactured parts. The points were measured in a way that spanned the 

measured surface. Parts were created for a tab, slot, pin and hole (Figure 24).  

 

      

24a: Manufactured Sample Pin 
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24b: Manufactured Tab 

        

24c: Manufactured Slot 

      

24d: Manufactured Hole 

Figure 24: Manufactured Parts with exaggerated Form Errors 
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The units in which the parts were created were mm. For the tab and slot (Figure 24b and 

24c) the nominal width between the two planes was 20 units with a deviation of 1.0 mm on both 

sides of each plane. For pins and holes (Figure 24a and 24d), a nominal diameter of 30 units with 

a variation of 1.0 mm on the inside as well as towards the outside of the feature was incorporated. 

Table 6 shows the results for CMM testing and verification. 

Table 6: CMM Testing and Verification Results for a Plane, Circle and Cylinder 

Least Square Fits Results 

  Least Square fit Ball dia Final value CMM Value % Error = 

Zone Plane 1.01577 0.23622 0.77955 0.7839 0.561 

Circle 1.422212864 0.23622 1.18599286 1.1862 (dia) 0.02 

Cylinder 1.401193232 0.23622 1.16497323 1.1698 (dia) 0.41 

 

The fifth column (in Table 6) is the fit values obtained from the CMM software. The 

values in column four are the values obtained from the least square algorithms after doing 

adjustments on the probe diameter. Column sixth shows the percentage errors between the results 

obtained from CMMs and the result obtained from doing least squares fit. We can note from 

Table 6 (column six) that the fit value obtained from the CMM and the one from the least square 

fit match very closely to each other. These results also lead to an assumption that CMM software 

computes the least square fits for doing feature fitting. 

5.3 Comparative Studies with Manual Measurements 

In this mode of verification, manual measurements and verification are done by fitting a 

feature to the measured point cloud using proposed algorithms. Manufactured parts are measured 

manually using vernier caliper and screw gauge. Results obtained from manual measurements are 

compared in table 7 with the features fitted by the algorithm for verification. The same robotic 

arm CMM (Romer Series 3000i) was used for measuring points on the manufactured parts. The 
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points were measured in a way so that they spanned the measured surface. The parts used for 

measuring the point cloud were manufactured with built-in exaggerated form errors. Parts were 

created for a tab, slot, pin and hole (Figure 24).  The units in which measurements were done is 

inches. Table 7a shows the results for manual measurements along with the CMM measurements 

and obtained values from algorithms. Table 7b shows how results of least square zones vary from 

the actual desired zone 

Table 7a: Manual Measurements and Verification Results 

Unconstrained One Sided and Minimum Zone Fits 

  Minimum Zone 

  
CMM 
value 

Manual 
Measurement Algorithm Val 

Ball 
Diameter Final Val 

Min Zone Plane 
External 0.7839 0.822 1.05813 0.23622 0.822 

Min Zone Plane 
Internal 0.7904 0.75 0.5147 0.23622 0.7509 

Min Zone Circle 0.02 0.0702 0.07314   0.07314 

Min Zone Cylinder 0.0199 
0.0787 (from 
cad model) 0.077   0.077 

  One Sided - Distance from datum (value in inches) 

  
CMM 
value 

Manual 
Measurement Algorithm Val 

Ball 
Diameter Final Val 

One sided Plane 1.1802 1.197 1.430923488 0.23622 1.195 

Min. Circumscribed 
circle 

1.1862 
(dia) 1.212 (dia) 1.45(dia) 0.23622 1.2138(dia) 

Max. Inscribed circle 
1.1662 

(dia) 1.1418 (dia) 1.3828(dia) 0.23622 1.1466(dia) 

Min. Circumscribed 
cyl. 

1.1698 
(dia) 1.204 (dia) 1.4429 (dia) 0.23622 

1.2067 
(dia) 

Max. Inscribed cyl. 1.1499(dia) 1.142 (dia) 1.37848(dia) 0.23622 
1.14228 

(dia) 
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Table 7b: Percentage Error of Least Squares Zones to Desired Zones 

Unconstrained Minimum Zone Fits  

  
Least 

Squares Fit 
Manual 

Measurement 
Algorithm 

Val 
Ball 

Diameter Final Val 
% Error 

Min Zone Plane 
External 0.77955 0.822 1.05813 0.23622 0.822 

 
5.2311 

Min Zone Plane 
Internal 0.77955 0.75 0.5147 0.23622 0.7509 

3.808 

Min Zone Circle 0.0781 0.0702 0.07314   0.07314 6.781 

Min Zone 
Cylinder 0.3373 

0.0787 (from 
cad model) 0.077   0.077 
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Column two of table 7 shows the value obtained by doing the fits using CMM software. 

Column three shows the values obtained by doing manual measurements of the manufactured test 

parts. Columns four and five show the values obtained by running the CMM point cloud through 

algorithms and adjustment for the measuring probe diameter. Final results of the algorithms with 

measuring probe diameter adjustments are summarized in sixth column (algorithm value + probe 

ball diameter adjustment). By comparing columns two, three and six, we can derive a conclusion 

that manual measurements are closer to algorithm measurements. It could be also deduced by 

comparing tables 6 & 7 that CMM measurements results are closer to those obtained by least 

squares fit. Hence, we can arrive at a conclusion that the CMM’s are using least square fits. 

Looking at table 7b we can conclude that the zones obtained by least square fits differ from that 

obtained by an actual zone fit. 

5.4 Application of Feature Fitting in GD&T 

Verification of different tolerance classes and simulation of datums require analyzing the 

same point cloud in different ways. Since, in a real part both datums and tolerance features lie on 

the same part, the measured point cloud can verify more than one tolerance classes. The 

following case studies demonstrate the usage of different feature fitting algorithms in evaluation 
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of machining variations to design tolerances. Two different cases are presented here to evaluate 

size, form and orientation tolerances by analyzing the same data sets in different ways. 

5.4.1 Feature Fitting for Planar Features 

Two sets of point clouds were measured on the planar features of the manufactured part 

(cube) as shown in Figure 25. One set was measured on the Datum [A], and the other on the plane 

on the right hand side (controlled feature). Points are measured by a CMM on both the controlled 

and the controlling plane. 

 

For orientation error (parallelism tolerance) verification in a planar feature (Figure 25), 

the planar feature should lie in a zone defined by two parallel planes such that the distance 

between the two planes is less than or equal to the tolerance specified by the designer. In order to 

verify this, a minimum zone fit for the planar feature, a one sided fit for the Datum feature are 

required. An unconstrained one sided plane fit is done on the point cloud that was measured on 

the controlling plane (datum) to establish the datum plane. An unconstrained minimum zone 

plane fit is done on the controlled plane. The distance between the planes of minimum zone fit is 

the estimation for the parallelism error. For verifying size tolerance, the part that is shown in 

 
Figure 25: Planar Features on a Part 
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Figure 25 is considered as a Tab feature. A minimum zone unconstrained plane fit is done on this 

feature by combining both data sets. The distance between the planes of this zone can be 

compared to the original size tolerance, and an estimation of error can be obtained. For evaluation 

of the form tolerance, a minimum zone unconstrained plane fit is done on the point cloud for the 

datum. The distance between those planes will give the form error. 

5.4.2 Feature Fitting for Cylindrical Feature 

A CMM measures a point cloud on both datum (controlling feature – plane A) and the 

controlled feature (cylinder) as shown in Figure 26.  

 

 An unconstrained one sided plane is fitted for the datum if it is a planar feature. If the 

datum is an external cylindrical feature, a minimum circumscribed cylinder fit is used; otherwise 

(for the internal feature) a maximum inscribed cylinder is fitted. Next, an unconstrained one sided 

cylinder fit is done on the point cloud of the controlled feature depending upon whether it is an 

internal or external feature. Two points are measured along the axis of the fitted cylinder for the 

controlled feature such that the points lie on the extreme ends of the fitted feature. These points 

are then projected onto a plane perpendicular to the fitted datum feature. The distance between 

 

Figure 26.  Cylindrical Feature on a Part 
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the projections of these points in the projected plane gives the parallelism error. Size tolerance 

verification can be done by doing a one sided cylinder fit for the controlled feature. A maximum 

inscribed cylinder fit is done if the feature is an internal feature (e.g. a hole), or a minimum 

circumscribed cylinder fit is done if it is an external feature (e.g. a pin). The size of a one sided 

cylinder fit is used to verify the size tolerance. To verify a form tolerance, a minimum zone 

cylinder fit is done for the controlled feature. The radial distance between the two concentric 

cylindrical features gives the form error of the cylindrical feature. 

 A detailed description of how different feature fitting algorithms should be utilized for verifying 

different types of tolerances and establishing datums can be found in V. Prabath work [28] 
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CHAPTER 6 

CONCLUSION, LIMITATIONS/ASSUMPTIONS & FUTURE WORK 

6.1 Conclusion 

A library of a comprehensive set of working feature fitting algorithms (Table 2) was created. 

Implementation of the algorithms was done in a software which complies with the standard [3]. 

The choice of algorithms was based on a few parameters such as accuracy, complexity of 

algorithm, and execution runtime of an algorithm. More weigh was given to accuracy and 

complexity parameters. All the unconstrained, constrained and least square feature-fitting 

algorithms were implemented and tested. The algorithms were implemented through a concept of 

object oriented programming so that if a better implementation of a certain feature fitting needs to 

replace the older one, it can be done without affecting the rest of the code modules. Testing of 

each algorithm type has revealed that a large number of data points affects the time of execution 

of algorithms. The computation time increases with an increase in the number of measured points, 

but not drastically for most of the cases. However, special cases like equally spaced points or 

algorithms like min circumscribed circle time increase with very large number of points. All of 

the algorithms employed for implementing different feature-fitting classes can be broadly divided 

into three stages: organization of data for initialization of the algorithm, running the algorithm in 

iterations, and finally comparing different solutions (from different iterations) to obtain the best 

one. This research work has made the following contribution 

 A library of feature algorithms was developed 

A lot of research work was done by different researchers on different types of features 

fits. Some of the feature fit types had multiple existing algorithms proposed different 

researchers. All those algorithms were studied and compared. The algorithms which best 
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suited our criteria (accuracy, efficiency, robustness) were selected. All such existing 

algorithms for different types of fits were filtered and collected at one place for anyone to 

use and implement. 

 Developed new feature fitting algorithms and modified existing ones 

Some of the feature fit types (like constrained fits) lacked existing efficient and robust 

existing algorithms. New algorithms were created for the fit types which lacked existing 

algorithms. In addition to lack of existing algorithms, some algorithms were either failing 

for special cases or were not efficient enough. These existing algorithms were modified 

accordingly to make them more robust and efficient. Table 8 shows which algorithms 

existed, which were modified and which were created new 

 Implemented a software for feature fitting algorithm in form of a function library 

Software of these algorithms was made in form of a library. The library was made in 

form of function API’s so that anyone can easily integrate these function calls into their 

own software. Functions were developed in an object oriented style independent manner. 

This was done so that the library could be expanded or a function could be modified 

without affecting other function implementations. 

 Analyzed and tested CMM software  

Several test parts with exaggerated form errors were manufactured. These parts were 

measured using CMMs. The point cloud was analyzed using CMM software as well as 

using the algorithms developed and manual measurements. The results obtained were 

compared and deductions about CMM software were made. After comparing the results it 

was observed that results obtained from a CMM matched closely with those obtained 

from least square fits. Thus, it can be assumed that the CMMs are using least square fits. 

Table 8: Work Done on Each Algorithm 

Algorithm Type Reference Work Done 
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Label 

Least Square Line Fit 1A 
Existing –Modified to 

generate initial guess 

Least Square Circle Fit 2A 
Existing –Modified to 

generate initial guess 

Least Square Plane Fit 3A 
Existing –Modified to 

generate initial guess 

Least Square Cylinder Fit 4A Existing 

Unconstrained One Sided Line Fit 1B Created New 

Unconstrained Circumscribed Circle Fit 2B - 1  
Adaptation of an existing 

algorithm 

Unconstrained Inscribed Circle Fit 2B - 2 
Adaptation of an existing 

algorithm 

Unconstrained One Sided Plane Fit 3B Created New 

Unconstrained Circumscribed Cylinder Fit 4B - 1 
Existing – Modified to get a 

good start point 

Unconstrained Inscribed Cylinder Fit 4B - 2 
Existing – Modified to get a 

good start point 

Unconstrained Minimum Zone Line Fit 1C Created New 

Unconstrained Minimum Zone Circle Fit 2C 
Adaptation of an existing 

algorithm 

Unconstrained Minimum Zone External 

Plane Fit 
3C - 1 

Existing – Modified to give 

better results 

Unconstrained Minimum Zone Internal 

Plane Fit 
3C - 2 Created New 

Unconstrained Minimum Zone Cylinder Fit 4C 
Existing – Modified to get a 

good start point 

Constrained One Sided Line Fit 1D Created New 

Constrained Circumscribed Circle Fit 2D - 1  Created New 

Constrained Inscribed Circle Fit 2D - 2 Created New 

Constrained One Sided Plane Fit 3D Created New 

Constrained Circumscribed Cylinder Fit 4D - 1 Created New 

Constrained Inscribed Cylinder Fit 4D - 2 Created New 

Constrained Minimum Zone Line Fit 1E Created New 

Constrained Minimum Zone Circle Fit 2E Created New 



  76 

Unconstrained Minimum Zone External 

Plane Fit 
3E - 1 Created New 

Unconstrained Minimum Zone Internal 

Plane Fit 
3E - 2 Created New 

Unconstrained Minimum Zone Cylinder Fit 4E Created New 

 

It is observed that the uniformity of sampling scheme would also affect the results of 

least squares fit algorithms. A non-uniform scheme will shift the fitted least square feature 

towards a denser zone of the measured point cloud. This will change the orientation as well as 

location of the fitted feature. Figure 11 shows the case of  rotating a non-uniform data set. When a 

feature (circle) was fitted to these rotated data sets it was observed all of the fitted circles vary in 

their position. In case of unconstrained and constrained one sided and minimum zone fit, the 

effect of outliers is minimized by taking the direction of fitting into consideration.  

6.2 Limitations/Assumptions 

The algorithms developed during this research have certain limitations associated with 

them. These limitations originate from certain assumptions that were made regarding the 

sampling scheme and type of data that goes into these algorithms. An assumption that is common 

to all the algorithms proposed in this research is that measured points should span the surface of 

the feature. Moreover, the time taken by algorithms goes up with the number of measured points 

as well as the type of fit to be done. A constrained circle fit will take less time than a 

unconstrained circle fit for same number of measured points. The Unconstrained cylinder fit takes 

more time than the unconstrained plane fit for a given number of measured points because the 

number of parameters to locate a cylinder is greater than the number required for a plane. 

Following are the assumptions/limitations made during the development of this library. 
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 Least Square Fits 

Least square fits are done using the NPL [9] approach. Since, least squares fits work by 

minimizing the sum of squares of distance to the initial feature, data sets with a high 

number of outlier points affect the solutions of the least square fits. For doing a least 

square cylinder fit, it was assumed that the initial estimates of cylinder parameters (points 

on the axis, radius and direction vector of axis) would be provided (from cad model). 

This brings a limitation that if the initial estimates are too far off from the required fitted 

feature, it will affect the results given by the least square fit.  

 Unconstrained One Sided Fits 

One sided line and circle fits work with 2D points cloud only whereas, one sided plane 

and cylinder fit works with 3D point cloud. It was assumed that for doing one sided line 

and plane fits an initial estimate of direction vector from which the fitting is done would 

be provided along with the point cloud. It was also assumed that initial estimate for 

cylinder parameters (points on the axis, radius and direction vector of axis) would be 

provided (from cad model). Since, these initial estimates initialize the algorithms their 

values affect the results of the fit type. The closer these estimates are to the fit type the 

faster and more accurately the algorithms work.  

 Unconstrained Minimum Zone Fits 

Zone line and circle fits work for 2D points only and zone plane and cylinder fits work 

for 3D points only. External and internal zone plane fits requires three measured points 

for establishment of an initial reference plane. Since, the zone plane fit is done with 

reference to this plane, the results of the zone plane fit are limited by the orientation of 

the initial reference plane. Zone cylinder fit also needs the estimate of initial cylinder 

parameters and the results of the cylinder fit are affected by the initial estimates. In 
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addition to these limitations, all zone fits must have the minimum number of required 

points on the feature forming the zone as dictated by their geometric entities. 

 Constrained One Sided Fits 

Constrained one-sided fits require the direction vector of the constraining feature for 

doing the fit. If the direction vector of the constraining feature is not well defined or is 

just an approximation it will affect the results of the constrained fits. This effect of 

direction will vary as how bad the approximation is. A very bad approximation can alter 

the results by substantial amount. Constrained one-sided fits were limited for doing fits 

with respect to parallel and perpendicular features only. It was assumed that for doing a 

constrained one-sided line and plane fit, the direction vector of the constraining feature 

along with the estimate of initial direction of fitting would be provided. 

 Constrained Minimum Zone Fits 

Constrained minimum zone fits results are also affected by accuracy and definition of the 

constraining features. Constrained minimum zone fits for a line and a circle works for 2D 

point’s only, and constrained minimum zone fit for a plane and a cylinder works with 3D 

point’s only. 

Apart from limitations, the execution time of algorithms is also important in evaluating 

their effectiveness.  It was observed that the time required for algorithms to execute 

depends upon: 

 The number of parameters associated with the feature/ type of feature to be fitted. 

 The number of points measured (point cloud). 

 What type of fit it is (constrained, unconstrained or least squares). 

Table 9 summarizes the time that different algorithms took for a set of 100 measured 

points. These times are not CPU times but approximate times observed during the execution of 
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algorithms. Table 10 shows the complexity associated with each algorithm type. The complexity 

is calculated in big ‘O’ terms. 

Table 9: Algorithm Execution Times for 100 Measured Points 

Fit Type Algorithm and their 

Reference Numbers 

Time Taken to Execute (in 

seconds) 

Least Squares 

1A: line 2 approx. 

2A: circle 2 approx. 

3A: plane 3 approx. 

4A: cylinder 3 approx. 

Unconstrained One Sided 

Fits 

1B: line 3 approx. 

2B-1: circumscribed circle 

2B-2: inscribed circle 
3 approx. 

3B: plane 4 approx. 

4B-1: circumscribed cylinder 

4B-2: inscribed cylinder 

4 approx. 

Unconstrained Minimum 

Zone Fits 

1C:  line zone 3.5 approx. 

2C: annular zone 3.5 approx. 

3C-1 external   plane zone 

3C-2 internal  plane zone 

4.2 approx. 

4C: cylinder zone 4.2 approx. 

Constrained One Sided Fits 

1D: line 2 approx. 

2D-1: circumscribed circle   

2D-2: inscribed circle 
2 approx. 

3D: plane 2.5 approx. 

4D-1: circumscribed cylinder  

4D-2: inscribed cylinder 

3 approx. 

Constrained Minimum Zone 
1E:  line zone 2 approx. 
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Fits 2E: annular zone 2 approx. 

3E-1 external   plane zone     

 3E-2 internal  plane zone 

3 approx. 

4E: cylinder zone 3 approx. 

 

Table 10: Complexity Associated with Each Algorithm 

Algorithm Type Reference 

Label 

Complexity 

Least Square Line Fit 1A O(n^2) 

Least Square Circle Fit 2A O(n^2) 

Least Square Plane Fit 3A O(n^2) 

Least Square Cylinder Fit 4A O(n^2) 

Unconstrained One Sided Line Fit 1B O(n) 

Unconstrained Circumscribed Circle Fit 2B - 1  O(n^2) 

Unconstrained Inscribed Circle Fit 2B - 2 O(n^2) 

Unconstrained One Sided Plane Fit 3B O(n^2) 

Unconstrained Circumscribed Cylinder Fit 4B - 1 O(n^2) 

Unconstrained Inscribed Cylinder Fit 4B - 2 O(n^2) 

Unconstrained Minimum Zone Line Fit 1C O(n^2) 

Unconstrained Minimum Zone Circle Fit 2C O(n^2) 

Unconstrained Minimum Zone External Plane Fit 3C - 1 O(n^2) 

Unconstrained Minimum Zone Internal Plane Fit 3C - 2 O(n^2) 

Unconstrained Minimum Zone Cylinder Fit 4C O(n^2) 

Constrained One Sided Line Fit 1D O(n) 
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Constrained Circumscribed Circle Fit 2D - 1  O(n) 

Constrained Inscribed Circle Fit 2D - 2 O(n) 

Constrained One Sided Plane Fit 3D O(n^2) 

Constrained Circumscribed Cylinder Fit 4D - 1 O(n^2) 

Constrained Inscribed Cylinder Fit 4D - 2 O(n^2) 

Constrained Minimum Zone Line Fit 1E O(n) 

Constrained Minimum Zone Circle Fit 2E O(n) 

Unconstrained Minimum Zone External Plane Fit 3E - 1 O(n) 

Unconstrained Minimum Zone Internal Plane Fit 3E - 2 O(n) 

Unconstrained Minimum Zone Cylinder Fit 4E O(n^2) 

 

6.3 Future Work 

Future work involves further testing of the proposed algorithms with a variety of test 

cases and modifications of algorithms if necessary. Also, the feature library needs to be further 

expanded to accommodate more feature types (spheres, cones etc.). If a better, algorithm or 

method is found to do a certain type of fit, then the existing ones need to be replaced with a new 

tested ones.  Tolerance classes like profile and run out tolerances are right now not supported by 

the library. Development and implementation of these algorithm classes will also be one the tasks 

for future.  

Another important aspect of the library is the usage of the library. Once the various feature fits 

are available, they need to be used in a certain order or combination in order to correctly verify 

the tolerance classes and datum simulation. The next task would be to interpret the standard [3] 

and using this library to make recommendations. These recommendations should specify the 
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correct combination or sequence of these feature-fitting functions for verification of different 

tolerance classes and datum simulation. 
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APPENDIX A: FUNCTIONS DEFINITIONS OF THE LIBRARY 
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Least Square Line Fit: 

Function Call:  line fit has two functions calls one for 2D and one for 3D.  The Functions calls 

are listed    below: 

                        // Least Square line 2D fitting 
             bool LeasSquareLine2D(const matrix<T>& A, matrix<T>& B); 

             //least square line in 3D fitting 
       bool LeasSquareLine3D(const matrix<T>& A, matrix<T>& B); 

Input: The Input to the line fit function is a matrix (A) which contains 2D or 3D coordinates of 

the    measured points (Figure 27). 

Output: Output to the line fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on line and second line contains component of the direction vector 

of the fitted line. 

Least Square Plane Fit: 

Function Call:  The Functions calls for the plane fit (in 3D) is listed below 

                       // Least Square Plane fitting 
            bool LeasSquarePlane(const matrix<T>& A, matrix<T>& B);    
   

Input: The Input to the plane fit function is a matrix (A) which contains 3D coordinates of the 

measured points (Figure 27). 

Output: Output to the plane fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on plane and second line contains component of the direction 

vector of normal to the fitted plane. 
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Least Square Circle Fit: 

Function Call:  Circle fit has two functions calls one for 2D and one for 3D.  The Functions calls 

are listed below: 

                       //Least Square Circle 2D Fitting 
      bool LeasSquareCircle2D (const matrix<T>& A, matrix<T>& B, double& C); 
 
      //Least Square Circle 3D fitting 
      bool LeasSquareCircle3D (const matrix<T>& A, matrix<T>& B, double& C); 
 

Input: The Input to the circle fit function is a matrix (A) which contains 2D or 3D coordinates of 

the    measured points (Figure 27). 

Output: Output to the circle fit function is a matrix (B) and parameter C. First line of B contains 

the contain coordinates of the center of the fitted circle in case of 2D. In case of 3D 

circle fit, first line of matrix B contains center of the fitted circle. Second line contains 

components of the vector, normal to the plane of the fitted circle. Parameter C contains 

the radius of the fitted circle. 

Least Square Cylinder Fit: 

Function Call:  The Functions calls for the cylinder fit (in 3D) is listed below 

                       //Least Square Cylinder fitting 
bool LeasSquareCylinder (const matrix<T>& A, matrix<T>& D, double& C,  
matrix<T>& B, double& R);  
  

Input: The Input to the cylinder fit function are matrices A & D and parameter C. Matrix D 

contains 3D coordinates of the measured points. Matrix A contains an initial estimate of a 

point on the axis of cylinder in the first line. Second line of matrix A contains an initial 

estimate of direction vector of the axis of cylinder. Parameter C contains an initial estimate 

of the radius of the fitted cylinder (Figure 28). 

Output: Output to the cylinder fit function is a matrix (B) and parameter R. First line of B 

contains the contain coordinates of a point on the axis of the fitted cylinder. Second line 
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contains component of the direction vector of the axis of the fitted cylinder. Parameter R 

contains the radius of the fitted cylinder. 

                            

       Figure 27 a: Input File for 2D Points            Figure 27 b: Input File for 3D Points 

Figure 27: Input File for Line, Plane and Circle Fit 

 

Figure 28:  Input File for Cylinder Fit 

 

Unconstrained One Sided Line Fit: 

Function Call:  line fit his done in 2D.  The Functions calls are listed below: 
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                         // One sided line 2D fitting 
         bool Line_Fit_2D(const matrix<T>& A, matrix<T>& B, matrix<T>& D); 
              

Input: The Input to the line fit function is a matrix (A) which contains 2D coordinates of the 

measured points and a matrix (D), which contains the direction from which the fitting 

should be done (Figure 29). 

Output: Output to the line fit function is a matrix (B). First line of B contains the contain 

coordinates of a one point on line. Second line contains the coordinates of the second 

point on the fitted line. 

 

Figure 29: Input File for One Sided Line Fit 

Unconstrained One Sided Plane Fit: 

Function Call:  The Functions calls for the plane fit (in 3D) is listed below 

                       //One sided plane fit 
            bool Plane_Fit_3D(const matrix<T>& A, matrix<T>& B, matrix<T>& D,  
            std::vector<double>& direc_vec);   
 

Input: The Input to the plane fit function is a matrix (A) which contains 3D coordinates of the 

measured points and a matrix (D), which contains the direction from which the plane fit 

should be done (Figure 30). 
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Output: Output to the plane fit function is a matrix (B) and a vector (direc_vec). First, Second 

and Third line of B contains the coordinates of points forming the fitted plane. direc_vec 

contains the vector components of the normal to the fitted plane. 

 

Figure 30: Input File for One Sided Plane Fit 

Unconstrained One Sided Circle Fit: 

Function Call:  Circle fit has two functions calls one for minimum circumscribed and one for 

maximum inscribed circle fit.  The Functions calls are listed below: 

                        //Minimum circumscribed circle 
             bool Min_Circum_Fit_2D(const matrix<T>& A, matrix<T>& B); 
 
       //Maximum Inscribed circle 
             bool Max_Ins_Fit_2D(const matrix<T>& A, matrix<T>& B); 
 

Input: The Input to the circle fit function is a matrix (A) which contains 2D coordinates of the    

measured points (Figure 27 a). 

Output: Output to the circle fit function is a matrix (B). First line of B contains the contain 

coordinates of the center of the fitted circle in case of 2D. Second line of the B contains 

the radius of the fitted circle. 

Unconstrained One Sided Cylinder Fit: 
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Function Call:  The Functions calls for the cylinder fit (in 3D) are given below. Cylinder fit also 

has two variations, maximum inscribed cylinder and minimum circumscribed 

cylinder.  

                         //Minimum circumscribed cylinder 
bool Min_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D,   
matrix<T>& B); 

 
  //Maximum Incribed cylinder 

bool Max_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D, 
matrix<T>& B);  

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates 

of the measured points. Matrix D contains an initial estimate of a point on the axis of 

cylinder in the first line. Second line of matrix A contains an initial estimate of direction 

vector of the axis of cylinder. Third line of matrix D contains an initial estimate of the 

radius of the fitted cylinder (Figure 28). 

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on the axis of the fitted cylinder. Second line contains component 

of the direction vector of the axis of the fitted cylinder. Third line contains the radius of 

the fitted cylinder. 

Unconstrained Minimum Zone Line Fit: 

Function Call:  line fit his done in 2D.  The Functions calls are listed below: 

                         // Least Square line 2D fitting 
             bool Min_Zone_Line_Fit_2D(const matrix<T>& A, matrix<T>& B, double&  
             Distance);    
           

Input: The Input to the line fit function is a matrix (A) which contains 2D coordinates of the 

measured points (Figure 27 a). 

Output: Output to the line fit function is a matrix (B) and parameter Distance. First and Second 

line of B contains the contain coordinates of points forming one side of the fit. Third line 
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contains the coordinates of the point forming other side of the fit. Parameter Distance 

contains distance of the zone fit. 

Unconstrained Minimum Zone Plane Fit: 

Function Call: The Functions calls for the plane fit (in 3D) are outlined below. Plane fit has two 

variations i.e. External zone plane fit and internal zone plane fit. 

                          //for doing external fit 
  bool Min_Zone_Plane_Fit_3D_Ex(const matrix<T>& A, matrix<T>& B, 
double& 
              Distance, std::vector<double>& direc_vec); 
 
  //for doing internal fit 
  bool Min_Zone_Plane_Fit_3D_In(const matrix<T>& A, matrix<T>& B, 
double&  
             Distance, std::vector<double>& direc_vec); 

Input: The Input to the plane fit function is a matrix (A) which contains (in 3D) coordinates of 

the measured points. For the external plane fit, first line contains the number of points for 

initial estimate of least square fits as well as the count of number of measured points 

(Figure 31 b). For an internal plane fit, first line contains the count for number of points 

for initial estimate of least square fit. It also contains the count for points measured on 

right hand side and left hand side points (Figure 31 a). 

Output: Output to the plane fit function is a matrix (B), a vector (direc_vec) and a parameter 

Distance. First, Second and Third line of B contains the coordinates of points forming 

one side of fitted zone plane. Fourth line of the B contains coordinates of a point 

forming other side of the fitted zone. direc_vec contains the vector components of the 

normal to the fitted plane. Distance contains the distance of the fitted zone 
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Figure 31 a: Input File for Internal Plane        Figure 31 b: Input File for External Plane 

Figure 31: Input File for Unconstrained Minimum Zone Plane Fit 

 

Unconstrained Minimum Zone Circle Fit: 

Function Call:  Circle fit is done in 2D. The Functions call for the circle is given below: 

                        // Minimum Zone Circle 2D fitting 
             bool Min_Zone_Circle_Fit_2D(const matrix<T>& A, matrix<T>& B); 

Input: The Input to the circle fit function is a matrix (A) which contains 2D coordinates of the    

measured points (Figure 27 a). 

Output: Output to the circle fit function is a matrix (B). First line of B contains the contain 

coordinates of the center of the fitted circle in case of 2D. Second line of the B contains 

the minimum and maximum radius of the fitted zone circle. 

Unconstrained Minimum Zone Cylinder Fit: 

Function Call:  The Functions call for the cylinder fit (in 3D) are given below. 

                         //Minimum Zone Cylindern 3D fitting 
bool Min_Zone_Cyl_Fit_3D(const matrix<T>& A, const matrix<T>& D, 
matrix<T>& B); 

  

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates 

of the measured points. Matrix D contains an initial estimate of a point on the axis of 
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cylinder in the first line. Second line of matrix A contains an initial estimate of direction 

vector of the axis of cylinder. Third line of matrix D contains an initial estimate of the 

radius of the fitted cylinder (Figure 28). 

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on the axis of the fitted cylinder. Second line contains component 

of the direction vector of the axis of the fitted cylinder. Third line contains the minimum 

and maximum radius of the fitted cylinder. 

Constrained One Sided Line Fit: 

Function Call:  line fit his done in 2D.  Constrained line fit has two variations, one with respect 

to a parallel line and other with respect to a perpendicular line. The Functions 

calls are listed below: 

                           //parallel to al line 
bool Cons_Line_Fit_2D_parl(const matrix<T>& A, matrix<T>& B, 
matrix<T>& D); 

 
  //perpendicular to a line 

bool Cons_Line_Fit_2D_pd(const matrix<T>& A, matrix<T>& B, 
matrix<T>& D); 

              

Input: The Input to the line fit function are matrices A & D. Matrix A contains 2D coordinates of 

the measured points. Matrix D contains the direction from which the fitting should be done 

and the equation of the constraining line (Figure 32). 

Output: Output to the line fit function is a matrix (B). First line of B contains the contain 

coordinates of a one point on line. Second line contains the coordinates of the second 

point on the fitted line. 



  96 

 

Figure 32: Input File for Constrained One Sided Line Fit 

Constrained One Sided Plane Fit: 

Function Call:  The Functions calls for the plane fit (in 3D) are listed below. Plane fits are done 

with respect to a constraining parallel plane. 

                     //One sided plane fit 
           bool Cons_Plane_Fit_3D(const matrix<T>& A, matrix<T>& B, matrix<T>& D);   
 

Input: The Input to the plane fit function is a matrix A and D. A contains 3D coordinates of the 

measured points. First line of D contains the direction from which the plane fit should be 

done. Second line of D contains the equation of the constraining plane (Figure 33). 

Output: Output to the plane fit function is a matrix (B). First line of B contains the vector 

components of the normal to the fitted plane. Second line of B contains the coordinates 

of point forming the fitted plane. 
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Figure 33: Input File Format for Constrained One Sided Plane Fit 

Constrained One Sided Circle Fit: 

Function Call:  Circle fit has two functions calls one for minimum circumscribed and one for 

maximum inscribed circle fit.  Circle fit is done with respect to its true position 

(center) being constrained. The Functions calls are listed below: 

                         //Constrained Minimum circumscribed circle 
bool Cons_Min_Circum_Fit_2D(const matrix<T>& A, matrix<T>& B, 
matrix<T>& D); 

 
       //Constrained Maximum Inscribed circle 

bool Cons_Max_Ins_Fit_2D(const matrix<T>& A, matrix<T>& B, matrix<T>& 
D); 

 

Input: The Input to the circle fit function is matrices A & D. A contain 2D coordinates of the 

measured points. D contains estimates of the true position (center) of the fitted circle 

(Figure 34). 

Output: Output to the circle fit function is a matrix (B), which gives the radius of the fitted 

circle. 
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Figure 34: Input File Format for Constrained Circle Fit 

Constrained One Sided Cylinder Fit: 

Function Call:  Cylinder fit also has two variations, maximum inscribed cylinder and minimum 

circumscribed cylinder. Cylinder fit can be done with respect to constraining 

parallel line or normal to a constraining plane. The Functions calls for the 

cylinder fit (in 3D) are given below. 

                         //Constrained Minimum circumscribed cylinder - parallel to a linb 
       bool Cons_Min_Cyl_Fit_3D_Parl(const matrix<T>& A, const matrix<T>& D,  
             matrix<T>& B); 
 
       //Constrained Maximum Incribed cylinder - parallel to a line 
       bool Cons_Max_Cyl_Fit_3D_Parl(const matrix<T>& A, const matrix<T>& D,  
             matrix<T>& B); 
  

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates 

of the measured points. Matrix D contains the direction vector of the constraining line (in 

3D) or normal vector to the constraining plane (Figure 35). 

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on the axis of the fitted cylinder. Second line contains radius of 

the fitted cylinder. Direction vector of the axis of the fitted cylinder comes from the 

constraining direction vector. 
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Figure 35: Input File Format for Constrained Cylinder Fit 

Constrained Minimum Zone Line Fit: 

Function Call:  line fit his done in 2D.  Constrained line fit has two variations, with respect to 

constraining parallel line and with respect to a constraining perpendicular line. 

The Functions calls are listed below: 

              // Constrained Min Zone line fitting for a given parallel line 
bool Cons_Min_Zone_Line_Fit_2D_Parl(const matrix<T>& A, matrix<T>&  
B, matrix<T>& C, double& Distance); 

 
              // Constrained Min Zone line fitting for a given perpendicular line 

bool Cons_Min_Zone_Line_Fit_2D_Perpnd(const matrix<T>& A, matrix<T>& 
B, matrix<T>& C, double& Distance);    

           

Input: The Input to the line fit function is matrices A & C. Matrix A contains 2D coordinates of 

the measured points. Matrix C contains the equation of the constraining line (Figure 36). 

Output: Output to the line fit function is a matrix (B) and parameter Distance. First line of B 

contains the contain coordinates of points forming one side of the fit 

parallel/perpendicular to constraining line. Second line contains the coordinates of the 

point forming other side of the fit. Parameter Distance contains distance of the zone fit. 
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Figure 36: Input File Format for Constrained Minimum Zone Line Fit 

Constrained Minimum Zone Plane Fit: 

Function Call: The Functions calls for the plane fit (in 3D) are outlined below. Plane fit has two 

variations i.e. External zone plane fit and internal zone plane fit. Plane Fit can 

also be done parallel or perpendicular with respect to a constraining plane. 

                          //Constrained Min Zone Plane fitting for a given parallel Plane 
bool Cons_Min_Zone_Plane_Fit_3D_Ex_Parl(const matrix<T>& A, 
matrix<T>& B, matrix<T>& C, double& Distance); 

 
  //Constrained Min Zone Plane fitting for a given perpendicular Plane 

bool Cons_Min_Zone_Plane_Fit_3D_Ex_Perpend(const matrix<T>& A, 
matrix<T>& B, matrix<T>& C, double& Distance); 

 
  //Constrained Min Zone Plane fitting for a given parallel Plane 

bool Cons_Min_Zone_Plane_Fit_3D_In_Parl(const matrix<T>& A, 
matrix<T>& B, matrix<T>& C, double& Distance); 

 

Input: The Input to the plane fit function is a matrix A & C. A contains (in 3D) coordinates of 

the measured points. C contains the equation of the constraining plane (Figure 37). 

Output: Output to the plane fit function is a matrix (B), and a parameter Distance. In case of 

parallel constraining plane, first line of B contains the coordinates of a point forming 

one side of fitted zone plane. Second line of the B contains coordinates of a point 

forming other side of the fitted zone. In case of perpendicular constraining plane, first 

and second line of B contains the coordinates of points forming one side of fitted zone 
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plane. Third line of the B contains coordinates of a point forming other side of the fitted 

zone. Distance contains the distance of the fitted zone 

 

Figure 37: Input File Format for Constrained Minimum Zone Plane Fit 

Constrained Minimum Zone Circle Fit: 

Function Call:  Circle fit is done with respect to its true position (center) being constrained. The 

Functions calls are listed below: 

                         // Constained Minimum Zone Circle 2D fitting 
             bool Cons_Min_Zone_Circle_Fit_2D(const matrix<T>& A, matrix<T>& B,  
             matrix<T>& C); 
 

Input: The Input to the circle fit function is matrices A & C. A contain 2D coordinates of the 

measured points. C contains estimates of the true position (center) of the fitted circle 

(Figure 34). 

Output: Output to the circle fit function is a matrix (B), which gives the minimum and maximum 

radius of the fitted zone circle. 

Constrained Minimum Zone Cylinder Fit: 

Function Call:  Cylinder fit can be done with respect to constraining parallel line or normal to a 

constraining plane. The Functions calls for the cylinder fit (in 3D) are given 

below. 
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                          //Minimum Zone Cylindern 3D fitting 
bool Cons_Min_Zone_Cyl_Fit_3D_Parl(const matrix<T>& A, const 
matrix<T>& D, matrix<T>& B); 

  

Input: The Input to the cylinder fit function is matrices A & D. Matrix A contains 3D coordinates 

of the measured points. Matrix D contains the direction vector of the constraining line (in 

3D) or normal vector to the constraining plane (Figure 35). 

Output: Output to the cylinder fit function is a matrix (B). First line of B contains the contain 

coordinates of a point on the axis of the fitted cylinder. Second line contains radius of 

the fitted cylinder. Direction vector of the axis of the fitted cylinder comes from the 

constraining direction vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


