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ABSTRACT 

Earth’s topographic surface forms an interface across which the geodynamic and 

geomorphic engines interact. This interaction is best observed along crustal margins 

where topography is created by active faulting and sculpted by geomorphic processes. 

Crustal deformation manifests as earthquakes at centennial to millennial timescales. 

Given that nearly half of Earth’s human population lives along active fault zones, a 

quantitative understanding of the mechanics of earthquakes and faulting is necessary to 

build accurate earthquake forecasts. My research relies on the quantitative documentation 

of the geomorphic expression of large earthquakes and the physical processes that control 

their spatiotemporal distributions. The first part of my research uses high-resolution 

topographic lidar data to quantitatively document the geomorphic expression of historic 

and prehistoric large earthquakes. Lidar data allow for enhanced visualization and 

reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar 

surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-

scale erosional landforms developed by repeated winter storm-driven erosion. The second 

part of my research employs a quasi-static numerical earthquake simulator to explore the 

effects of fault roughness, friction, and structural complexities on earthquake-generated 

deformation. My experiments show that fault roughness plays a critical role in 

determining fault-to-fault rupture jumping probabilities. These results corroborate the 

accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations 

show that the rupture jumping threshold distance is highly variable for rough faults due to 

heterogeneous elastic strain energies. Furthermore, fault roughness controls 

spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates 
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relative to their smooth counterparts. The central implication of these results lies in 

guiding the interpretation of paleoseismically derived slip rates that are used to form 

earthquake forecasts. The final part of my research evaluates a set of Earth science-

themed lesson plans that I designed for elementary-level learning-disabled students. My 

findings show that a combination of concept delivery techniques is most effective for 

learning-disabled students and should incorporate interactive slide presentations, tactile 

manipulatives, teacher-assisted concept sketches, and student-led teaching to help 

learning-disabled students grasp Earth science concepts. 
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Chapter 1 

INTRODUCTION 

OVERVIEW 

Nearly half of Earth’s human population lives on active plate boundaries with a 

10% exceedance probability of 0.4 g for earthquake-induced peak ground accelerations in 

the next fifty years (Giardini et al., 1999). As population densities along plate boundaries 

continue to rise, our understanding of earthquake processes and the mechanical behavior 

of seismogenic faults will become increasingly critical to guiding seismic hazard analyses 

and ensuring societal and economic security (Jordan et al., 2011). Therefore, a sound 

understanding of the mechanics of earthquakes and how they manifest in Earth’s 

topography is needed. 

Geologic datasets feed the fundamental building blocks of earthquake forecasts. 

Take the latest iteration of the Uniform California Earthquake Forecast (UCERF3) as an 

example (e.g., Field et al., 2013). Three of the four UCERF3 components rely on data 

obtained by geologic means, such as fault models (spatial geometry of fault systems), 

deformation models (fault slip rates used to compute seismic moment release), and 

earthquake-rate models (earthquake-recurrence behavior). Of particular importance to the 

above are earthquake-recurrence models that aid the interpretation of paleoseismically 

derived slip rates. Conceptual models of earthquake behavior were first developed by 

studies along the San Andreas fault (SAF) and Wasatch fault (Schwartz and 

Coppersmith, 1984; Sieh and Jahns, 1984). These resulted in the formulation of the 

characteristic and uniform-slip earthquake-recurrence models. Both models describe the 

magnitude of coseismic slip and the potential length of ruptures generated by large 
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earthquakes. The characteristic earthquake model posits that coseismic slip magnitude 

does not change at a point and that fault slip rate can vary along strike. The uniform-slip 

model describes constant slip magnitude during earthquakes and thus a constant slip rate 

along strike. Both models are attractive options for earthquake forecasts due to their 

simple description of earthquake recurrence (e.g., Field et al., 2013). But what really 

controls the shape of earthquake slip distributions and are the above models appropriate 

idealizations of surface slip in earthquake forecasts? We know that coseismic slip 

distributions are controlled by many factors. For example, structural and frictional 

complexities along faults may result in highly variable slip distributions for large 

earthquakes. These complexities may also control the long-term clustering of earthquakes 

in space and time. Therefore, slip rates determined at individual points along faults have 

the potential to vary significantly in space and time. 

Earthquake ruptures along crustal faults originate in the middle to lower depths of 

the seismogenic layer and transmit deformation to Earth’s surface by driving slip along 

faults (Fig. 1.1; e.g., Scholz, 2002; Titus et al., 2011). This process is evident in Earth’s 

topography via localized (e.g., fault scarps and fractures) or distributed (e.g., off-fault 

folding and warping) deformation (e.g., Oskin et al., 2012; Quigley et al., 2012). The 

extent to which these surficial features represent seismic moment release at depth is 

poorly understood, but is generally thought to be controlled by the geometrical 

complexity of faults and the spatiotemporal strength variations of the upper lithosphere 

(Sibson, 1977, 1982, 1986; Scholz, 1988, 2002). Because this manifestation is commonly 

expressed in the topography of fault zones as displaced geomorphic markers (e.g., Hilley 

and Arrowsmith, 2008; Arrowsmith and Zielke, 2009; Hilley et al., 2010; Zielke et al., 
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2010), their accurate characterization is important to test their fidelity in recording the 

magnitude of coseismic slip-per-event and the representation of coseismic slip at depth. 

Documenting the surface record of faulting relative to the seismic moment released at 

depth is therefore necessary to build an understanding of how fault systems operate 

through space and time. Site-specific paleoseismic studies provide detailed information 

about the rupture history of individual fault segments where strains are highly localized 

(e.g., Sibson, 2003; Rockwell and Ben-Zion, 2007; McCalpin, 2009). However, 

interpretations derived from these studies are unable to constrain overall fault behavior, 

especially when coseismic deformation is distributed across multiple fault strands that act 

as broad shear zones (Johnson et al., 1997) or has been modified post-seismically via 

after slip (Marone and Richardson, 2010). Similarly, coseismic slip histories derived from 

such studies ignore the detailed structure of fault zones by not accounting for strain 

partitioning along mechanically interacting faults or heterogeneities in crustal strength 

properties, despite their proven implications for rupture dynamics (e.g., Shi and Ben-

Zion, 2006).  

With the exception of very limited observations of active faults at depth (e.g., the 

San Andreas Fault Observatory at Depth), faults cannot be directly accessed in the 

seismogenic layer. However, advances in light detection and ranging (lidar) and 

numerical earthquake simulators allow for high-resolution and physically based analyses 

of surface manifestations of deep faulting processes (e.g., Haugerud et al., 2003; Sherrod 

et al., 2004; Bevis et al., 2005; Kondo et al., 2008; Zielke and Arrowsmith, 2008; 

Cochran et al., 2009; Cooke and Dair, 2011; Frankel et al., 2011; Nissen et al., 2012; 

Oskin et al., 2012; Tullis et al., 2012). This is done by allowing for the quantitative 
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documentation of coseismic deformation within 10s to a few 1000s of meters from fault 

ruptures. Such datasets help us interpret fracture patterns observed in the paleoseismic 

record (Lawson, 1908; Wallace and Schulz, 1983; Wallace, 1991; McCalpin, 2009) and 

enable surface ruptures to be interrogated for their fidelity in representing coseismic 

processes at depth (e.g., Nissen et al., 2012; Oskin et al., 2012). These datasets also 

provide important controls for measuring coseismic slip in the most recent event and slip 

accumulated over multiple earthquakes (e.g., Arrowsmith et al., 2011; Haddad et al., 

2011; Madden et al., 2011), thereby improving the understanding of fault system 

behavior and interactions through space and time. 

DISSERTATION CHAPTER OUTLINE 

My dissertation is divided into seven chapters. The order of the chapters is 

organized such that geologic/paleoseismic data and their applications are presented first 

(Chapters 2 and 3) followed by numerical explorations in an earthquake simulator 

(Chapter 4) and its application in various seismotectonic settings (Chapter 5). The final 

chapter is a side project in which I took charge to develop Earth science lesson plans for 

elementary-school students with learning disabilities (Chapter 6). The following 

paragraphs provide an overview of the rationale and importance of each chapter. 

In Chapter 2, I evaluate various research applications of airborne and terrestrial 

lidar. I investigate lidar applications in paleoseismic trenching, fault scarp degradation 

monitoring, and imaging of precariously balanced rocks. Terrestrial lidar enables the 

rapid production of high-resolution 3D orthophotographs of stratigraphic and fault 

relationships in paleoseismic trenches. I then show how repeat topographic surveys using 

lidar can be used to quantify fault scarp degradation rates. The last case study that I 
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present in this chapter shows how both airborne and terrestrial lidar datasets can be used 

to document the 3D shape and geomorphic setting of precariously balanced rocks. This 

chapter was published in the Geological Society of America journal Geosphere. My co-

authors include Sinan Akçiz (University of California, Los Angeles), Ramón Arrowsmith 

(Arizona State University), Dallas Rhodes (Kennesaw State University), John Oldow 

(University of Texas at Dallas), Olaf Zielke (King Abdullah University of Science and 

Technology), Nathan Toké (Utah Valley University), Amanda Haddad (University of 

Southern California), Juergen Mauer (Z+F USA, Inc.), and Prabin Shilpakar (University 

of Texas at Dallas). 

Chapter 3 presents an analysis on how structural complexities control coseismic 

displacement distributions along faults and geomechanically derives predictions of 

topographic deformation. This chapter also provides a preliminary analysis of the3D 

displacement field of a section of the 2010 El Mayor-Cucupah earthquake as a proof of 

concept. The latter analysis was done by co-author Edwin Nissen (Colorado School of 

Mines) during his postdoctoral research with Ramón Arrowsmith. The importance of 

Chapter 3 lies in delineating the first-order controls on the complexity of surface ruptures 

through bedrock versus sedimentary basins, and the fault mechanics responsible for the 

observed topographic deformation (i.e. where should we expect 

uplift/subsidence/warping to occur?). This chapter will be published in the book Remote 

Sensing for Geoscientists: Integration and Analysis by Gary Prost (ConocoPhillips). Gary 

invited me to contribute this chapter to his book after learning about my lidar research 

during my 2011 internship with ConocoPhillips. The book will come out in late 2014. My 
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co-authors on this chapter are Edwin Nissen (Colorado School of Mines) and Ramón 

Arrowsmith (Arizona State University). 

In Chapter 4, I investigate the effects of fault structural and frictional complexities 

on earthquake-generated deformation using an earthquake simulator. The simulator was 

developed by Olaf Zielke as part of his PhD research with Ramón Arrowsmith at ASU. 

Olaf generously allowed me and helped me to modify the source code for his simulator to 

fit my experimental needs. I used the simulator to carry out numerical experiments with 

the goal of determining what effects fault structural complexities, frictional properties, 

and roughness have on individual and cumulative slip along seismogenic faults. I found 

that key relationships exist between the configuration of structural barriers, fault 

frictional properties, fault roughness, and the surface expression of coseismic 

deformation. Based on these relationships, I expanded upon our understanding of 

earthquake rupture processes (e.g., Wesnousky, 2008). The central implication of this 

chapter lies in guiding the interpretation of the surface manifestation of coseismic 

faulting, paleoseismic data, and the formulation of rupture jumping rules in future 

iterations of earthquake forecasts. I plan to submit this chapter to the Journal of 

Geophysical Research. My co-authors will include Olaf Zielke (King Abdullah 

University of Science and Technology) and Ramón Arrowsmith (Arizona State 

University). 

In Chapter 5, I present the results from earthquake simulations on two iconic 3D 

structures in California: the Garlock fault and the Hayward-Calaveras fault system. I find 

that earthquake simulators have a place in the formulation of future iterations of the 

Uniform California Earthquake Forecast. This chapter discusses the implications that my 
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results have for interpreting paleoseismic datasets in the context of spatiotemporal 

earthquake clustering and regional fault interactions. I close this chapter by presenting 

various implications that go into modeling fault-related deformation at the single- and 

multi-earthquake scales in terms of fault zone evolution. I plan to submit this chapter to 

the Bulletin of the Seismological Society of America or the Geophysical Journal 

International. My co-authors will be Olaf Zielke (King Abdullah University of Science 

and Technology) and Ramón Arrowsmith (Arizona State University). 

Chapter 6 presents a series of Earth science lesson plans that I designed to engage 

learning disabled (LD) students in the scientific method while helping them meet Arizona 

state-mandated Earth science curriculum standards. All lessons were developed with the 

sole purpose of adapting key Earth science concepts to the learning abilities of LD 

elementary school students. The two primary findings of this chapter are: (1) Earth 

science provides a highly engaging learning environment for LD students, and (2) hands-

on, student-led learning activities are paramount to enhancing the retention of Earth 

science concepts by LD students. I plan to submit this chapter to the Journal of 

Geoscience Education as a curriculum contribution following additional classroom 

observations and data analysis. My co-authors will be Amanda Haddad (University of 

Southern California), Mary Turner (Challenger Middle School), HyunTae Kim (Pukyong 

National University), Tsurue Sato (Arizona State University), and Vicki Mills (Arizona 

State University). 

I conclude my dissertation in Chapter 7 by presenting my thoughts on how my 

findings will serve as a framework upon which various avenues for future research can be 

constructed.



8 

FIGURES 

Figure 1.1. Synoptic overview of a fault zone as manifested in Earth’s surface and 

interior. In Earth’s interior, geologic and seismic properties of fault zones control how 

strain is transmitted through the seismogenic layer (outlined in red) to Earth’s surface. On 

Earth’s surface, the tectonic geomorphology of fault zones provides clues into the 

coseismic moment released at depth by preserving faulted geomorphic elements. The 

case shown here is for thick-skinned lithospheric deformation, although it may also occur 

in thin-skinned deformational settings. Derived from concepts that were developed by 

Vedder and Wallace (1970), Sylvester (1999), and Scholz (2002). Figure elements are not 

to scale.  
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Figure 1.1



10 

REFERENCES 

Arrowsmith, J. R., Madden, C. M., Haddad, D. E., Salisbury, J. B., and Weldon, R. J., 
2011, Compilation of slip in the last event data for high slip rate faults in 
California for input into slip-dependent rupture forecast: Eos Trans., no. AGU, 
S13B-06. 

Arrowsmith, J. R., and Zielke, O., 2009, Tectonic geomorphology of the San Andreas 
Fault zone from high resolution topography: An example from the Cholame 
segment: Geomorphology, v. 113, no. 1-2, p. 70-81. 

Bevis, M., Hudnut, K., Sanchez, R., Toth, C., Grejner-Brzezinska, D., Kendrick, E., 
Caccamise, D., Raleigh, D., Zhou, H., Shan, S., Shindle, W., Yong, A., Harvey, 
J., Borsa, A., Ayoub, F., Elliot, B., Shrestha, R., Carter, B., Sartori, M., Phillips, 
D., Coloma, F., and Stark, K., 2005, The B4 Project: scanning the San Andreas 
and San Jacinto fault zones: Eos Trans. AGU 86(52), Fall Meet. Suppl., Abstract 
H34B-01. 

Cochran, E. S., Li, Y., Shearer, P. M., Barbot, S., Fialko, Y., and Vidale, J. E., 2009, 
Seismic and geodetic evidence for extensive, long-lived fault damage zones: 
Geology, v. 37, no. 4, p. 315-318. 

Cooke, M. L., and Dair, L. C., 2011, Simulating the recent evolution of the southern big 
bend of the San Andreas fault, Southern California: Journal of Geophysical 
Research, v. 116, no. B04405, p. 20. 

Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, 
K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., 
Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., and 
Zeng, Y., 2013, Uniform California Earthquake Rupture Forecast, Version 3 
(UCERF3)—The Time-Independent Model: U.S. Geological Survey Open-File 
Report 2013-1165. 

Frankel, K. L., Dolan, J. F., Owen, L. A., Ganev, P., and Finkel, R. C., 2011, Spatial and 
temporal constancy of seismic strain release along an evolving segment of the 
Pacific-North America plate boundary: Earth and Planetary Science Letters, v. 
304, no. 3-4, p. 565-576. 

Giardini, D., Grunthal, G., Shedlock, K., and Zhang, P., 1999, The Global Seismic 
Hazard Map. 

Haddad, D. E., Madden, C. M., Salisbury, J. B., Arrowsmith, J. R., and Weldon, R. J., 
2011, LiDAR-derived measurements of slip in the most recent ground-rupturing 
earthquakes along elements of the San Andreas fault system: SCEC Proceedings 
and Abstracts, v. 21. 



11 

Haugerud, R. A., Harding, D. J., Johnson, S. Y., Harless, J. L., Weaver, C. S., and 
Sherrod, B. L., 2003, High-resolution Lidar topography of the Puget Lowland, 
Washington—a bonanza for earth science: GSA Today, v. 13, no. 6, p. 4-10. 

Hilley, G. E., and Arrowsmith, J. R., 2008, Geomorphic response to uplift along the 
Dragon's Back pressure ridge, Carrizo Plain, California: Geology, v. 36, no. 5, p. 
367-370. 

Hilley, G. E., DeLong, S., Prentice, C., Blisniuk, K., and Arrowsmith, J., 2010, 
Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) 
data: Geophysical Research Letters, v. 37. 

Johnson, A. M., Fleming, R. W., Cruikshank, K. M., Martosudarmo, S. Y., Johnson, N. 
A., Johnson, K. M., and Wei, W., 1997, Analecta of structures formed during the 
28 June 1992 Landers-Big Bear, California earthquake sequence: U.S. Geological 
Survey. 

Jordan, T. H., Chen, Y., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., 
Papadopoulos, G., Sobolev, G., Yamaoka, K., and Zschau, J., 2011, Operational 
earthquake forecasting: state of knowledge and guidelines for utilization: Annals 
of Geophysics, v. 54, no. 4, p. 316-391. 

Kondo, H., Toda, S., Okamura, K., and Chiba, T., 2008, A fault scarp in an urban area 
identified by LiDAR survey: a Case study on the Itoigawa–Shizuoka Tectonic 
Line, central Japan: Geomorphology, v. 101, p. 731-739. 

Lawson, A., 1908, Report of the Earthquake Investigation Commission upon the 
California Earthquake of April 18, 1906: Carnegie Institution. 

Madden, C. M., Arrowsmith, J. R., Haddad, D. E., Salisbury, J. B., and Weldon, R. J., 
2011, Compilation of slip in the last earthquake data for high slip rate faults in 
California for input into slip-dependent rupture forecast: SCEC Proceedings and 
Abstracts, v. 21. 

Marone, C., and Richardson, E., 2010, Learning to read fault-slip behavior from fault-
zone structure: Geology, v. 38, no. 8, p. 767-768. 

McCalpin, J. P., 2009, Paleoseismology, International Geophysics Series: San Diego, 
Academic Press, p. 613. 

Nissen, E., Krishnan, A. K., Arrowsmith, J. R., and Saripalli, S., 2012, Three-
dimensional surface displacements and rotations from differencing pre- and post-
earthquake LiDAR point clouds: Geophysical Research Letters, v. 39. 

Oskin, M. E., Arrowsmith, J. R., Hinojosa, A. C., Elliott, A. J., Fletcher, J. M., Fielding, 
E. J., Gold, P. O., Garcia, J. J. G., Hudnut, K. W., Liu-Zheng, J., and Teran, O. J., 



12 

2012, Near-field deformation from the El Mayor-Cucupah earthquake revealed by 
differential LiDAR: Science, v. 335, no. 702. 

Quigley, M., Van Dissen, R., Litchfield, N., Duffy, B., Barrell, D., Furlong, K., Stahl, T., 
Bilderback, E., and Noble, D., 2012, Surface rupture during the 2010 Mw 7.1 
Darfield (Canterbury) earthquake: implications for fault rupture dynamics and 
seismic-hazard analysis: Geology, v. 40, no. 1, p. 55-58. 

Rockwell, T. K., and Ben-Zion, Y., 2007, High localization of primary slip zones in large 
earthquakes from paleoseismic trenches: Observations and implications for 
earthquake physics: Journal of Geophysical Research-Solid Earth, v. 112, no. 
B10. 

Scholz, C. H., 1988, The brittle-plastic transition and the depth of seismic faulting: 
Geologische Rundschau, v. 77, no. 1, p. 319-328. 

-, 2002, The mechanics of earthquakes and faulting, Cambridge, Cambridge Universiry 
Press, 496 p. 

Schwartz, D. P., and Coppersmith, K. J., 1984, Fault behavior and characteristic 
earthquakes; examples from the Wasatch and San Andreas fault zones: Journal of 
Geophysical Research, v. 89, p. 5681-5698. 

Sherrod, B. L., Brocher, T. M., Weaver, C. S., Bucknam, R. C., Blakely, R. J., Kelsey, H. 
M., Nelson, A. R., and Haugerud, R. A., 2004, Holocene fault scarps near 
Tacoma, Washington, USA: Geology, v. 32, p. 9-12. 

Shi, Z. Q., and Ben-Zion, Y., 2006, Dynamic rupture on a bimaterial interface governed 
by slip-weakening friction: Geophysical Journal International, v. 165, no. 2, p. 
469-484. 

Sibson, R. H., 1977, Fault rocks and fault mechanisms: Journal of the Geological Society 
of London, v. 133, p. 191-213. 

-, 1982, Fault zone models, heat flow, and the depth distribution of earthquakes in the 
continental crust of the United States: Bulletin of the Seismological Society of 
America, v. 72, no. 1, p. 151-163. 

-, 1986, Earthquakes and rock deformation in crustal fault zones: Annual Reviews of 
Earth and Planetary Sciences, v. 14, p. 149-175. 

-, 2003, Thickness of the seismic slip zone: Bulletin of the Seismological Society of 
America, v. 93, no. 3, p. 1169-1178. 

Sieh, K. E., and Jahns, R. H., 1984, Holocene activity of the San Andreas fault at Wallace 
Creek, California: Geological Society of America Bulletin, v. 95, p. 883-896. 



13 

Sylvester, A. G., 1999, Rifting, transpression, and neotectonics in the Central Mecca 
Hills, Salton Trough, Santa Barbara, University of California, Santa Barbara, 52 
p. 

Titus, S. J., Dyson, M., DeMets, C., Tikoff, B., Rolandone, F., and Buergmann, R., 2011, 
Geologic versus geodetic deformation adjacent to the San Andreas fault, central 
California: Geological Society of America Bulletin, v. 123, no. 5-6, p. 794-820. 

Tullis, T. E., Sachs, M. K., Turcotte, D. L., Ward, S. N., Yikilmaz, M. B., Richards-
Dinger, K., Barall, M., Dieterich, J. H., Field, E. H., Heien, E. M., Kellogg, L. H., 
Pollitz, F. F., and Rundle, J. B., 2012, Generic Earthquake Simulator: 
Seismological Research Letters, v. 83, no. 6, p. 959-963. 

Vedder, J. G., and Wallace, R. E., 1970, Recent active breaks along the San Andreas fault 
between Cholame Valley and Tejon Pass, California: U.S. Geological Survey 
Miscellaneous Geological Investigations Map I-741, scale 1:24,000, 3 sheets. 

Wallace, R. E., 1991, The San Andreas Fault System, California: U.S. Geological Survey 
Open File Report. 

Wallace, R. E., and Schulz, S. S., 1983, Aerial views in color of the San Andreas fault, 
California: U S Geological Survey Open File Report. 

Wesnousky, S. G., 2008, Displacement and Geometrical Characteristics of Earthquake 
Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the 
Process of Earthquake Rupture: Bulletin of the Seismological Society of America, 
v. 98, no. 4, p. 1609-1632. 

Zielke, O., and Arrowsmith, J. R., 2008, Depth variation of coseismic stress drop 
explains bimodal earthquake magnitude-frequency distribution: Geophysical 
Research Letters, v. 35, no. 24. 

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., and Akciz, S. O., 2010, Slip in the 1857 
and earlier large earthquakes along the Carrizo Plain, San Andreas Fault (vol 327, 
pg 1119, 2010): Science, v. 329, no. 5990, p. 390-390. 

  



14 

Chapter 2 

APPLICATIONS OF AIRBORNE AND TERRESTRIAL LASER SCANNING TO 

PALEOSEISMOLOGY 

ABSTRACT 

Paleoseismic investigations aim to document past earthquake characteristics such 

as rupture location, frequency, distribution of slip, and ground shaking intensity – critical 

parameters for improved understanding of earthquake processes and refined earthquake 

forecasts. These investigations increasingly rely on high-resolution (<1 m) digital 

elevation models (DEMs) to measure earthquake-related ground deformation and 

perform process-oriented analyses. Three case studies demonstrate airborne and 

terrestrial laser scanning (ALS and TLS) for paleoseismic research: (1) Rapid production 

of accurate, high-resolution, and georeferenced three-dimensional (3D) orthophotographs 

of stratigraphic and fault relationships in trench exposures. TLS scans reduced the 

preparation time of the trench and provided 3D visualization and reconstruction of strata, 

contacts, and permanent digital archival of the trench. (2) Quantification of fault scarp 

degradation rates using repeat topographic surveys. The topographic surveys of the scarps 

formed in the 1992 Landers (California) earthquake documented the cm-scale erosional 

landforms developed by repeated winter storm-driven erosion, particularly in narrow 

channels crossing the surface rupture. Vertical and headward incision rates of channels 

reached up to ~6.25 cm/yr and ~62.5 cm/yr, respectively. (3) Characterization of the 3D 

shape and geomorphic setting of precariously balanced rocks (PBRs) that serve as 

negative indicators for strong ground motions. Landscape morphometry computed from 

ALS-derived DEMs showed that PBRs are preserved on hillslope angles between 10°-40° 
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and contributing areas (per unit contour length) between 5 m2/m and 30 m2/m. This 

situation refines interpretations of PBR exhumation rates and thus their effectiveness as 

paleoseismometers. In summary, given that earthquakes disrupt Earth’s surface at cm to 

m scales and that depositional and erosional responses typically operate on similar scales, 

ALS and TLS provide the absolute measurement capability sufficient to characterize 

these changes in challenging geometric arrangements, and thus demonstrate their value as 

effective analytical tools in paleoseismology. 
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INTRODUCTION

Determining the location, magnitude, rupture frequency, and associated ground 

motions of past earthquakes is a necessary step toward the formulation of accurate 

earthquake forecasts (e.g., WGCEP, 2008). Earthquake ruptures disrupt Earth’s 

topography and surface process responses (i.e. erosion and deposition) to this 

deformation operate at cm to m scales. The accurate measurement of earthquake-induced 

topographic deformation and the associated geomorphic process response rates in 

complex geometrical arrangements is a necessary step toward characterizing earthquakes 

and refining earthquake forecasts. 

 The detail and accuracy of digital topographic data collected by light detection 

and ranging (LiDAR) instruments provide an opportunity to quantitatively analyze 

earthquake-produced surface deformation. In paleoseismology, two primary LiDAR 

platforms are employed: airborne and terrestrial laser scanning (Fig. 2.1). Airborne laser 

scanning (ALS) employs an aircraft-mounted laser scanner that scans topography in side-

to-side swaths perpendicular to the aircraft’s flight path. Typical scan rates range from 

tens to several hundred kHz. The orientation (yaw, pitch, and roll) of the aircraft is 

monitored by an on-board inertial navigation measurement unit, and its location is 

determined by a high-precision kinematic global positioning system (GPS; El-Sheimy et 

al., 2005; Carter et al., 2007; Shan et al., 2007). Post processing places the LiDAR data in 

a global reference frame as a point cloud of the laser returns with typical shot densities >1 

m-2 (Fig. 2.1). Recent ALS campaigns have yielded digital representations of topography 

at resolutions sufficient to make measurements of earthquake-related surface deformation 

(e.g., Hudnut et al., 2002; Bevis et al., 2005; Oskin et al., 2007; Prentice et al., 2009; 
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DeLong et al., 2010; Hilley et al., 2010; Oskin et al., 2010a; Oskin et al., 2010b; Oskin et 

al., 2012). For example, ALS effectively depicts fault trace geometries and stream 

channels that are offset by structures such as the San Andreas fault (SAF; e.g., 

Arrowsmith and Zielke, 2009; DeLong et al., 2010). Systematic analyses of these data 

reveal geomorphic observations that are barely perceivable in the field, but can 

fundamentally change our inferences about paleoseismic records and fault segmentation 

(e.g., Zielke et al., 2010). Airborne laser scanning also assists in characterizing 

paleoseismic study sites by defining the local tectonic geomorphology of paleoseismic 

trench data (e.g., offset alluvial fans, pressure ridges, sags; e.g., Akçiz et al., 2010; Toké 

et al., 2011) and aiding in the location of potential paleoseismic sites. 

Terrestrial laser scanning (TLS) systems employ a tripod-mounted laser scanner 

operated from various user-selected and near-field positions to ensure complete scan 

coverage of the feature of interest. Reflective targets with known geographic coordinates 

placed around the feature are used to align the final point cloud and place it in a global 

reference frame (Fig. 2.1). Shot densities for TLS point clouds can be >104 m-2 and the 

acquisition geometry provides a true three-dimensional (3D) representation of the 

scanned feature. Additionally, TLS systems employ high-resolution digital color 

photography where point attributes such as red-green-blue (RGB) values acquired by a 

TLS-mounted digital camera are used to color the point clouds and produce photorealistic 

images.  

The utility of ALS and TLS datasets for visualization and analysis is often 

demonstrated using gridded digital elevation models (DEMs) that are generated from the 

spatially heterogeneous point clouds (El-Sheimy et al., 2005). Where the point spacing is 
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less than the desired resolution of the DEM, a local binning algorithm is applied to 

compute values within a specified search radius, r, at each node and a predefined 

mathematical function (e.g., mean, minimum, maximum, inverse distance weighting; 

IDW; El-Sheimy et al., 2005). For the ALS and TLS analysis presented here, we used 

IDW (1/r2) and appropriate search radii to generate our high-resolution DEMs. 

In this paper, we present three case studies to demonstrate the utility of ALS and 

TLS in paleoseismic research (Fig. 2.2). The first case study employs TLS in a 

paleoseismic investigation of the SAF in the Carrizo Plain. Trenches excavated 

perpendicular to the SAF reveal fractures and coseismically disrupted strata, while fault-

parallel trenches are excavated across stream channels and alluvial fans to provide 

information about the history of aggradation, degradation, and channel geometry. Datable 

samples from both types of trenches constrain the timing of earthquakes and incision 

events. Next, we explore the utility of TLS in monitoring the geomorphic evolution of 

part of the 1992 Mw 7.3 Landers, California, earthquake fault scarp. Coseismically 

generated fault scarps provide information about the timing, frequency, and extent of the 

earthquakes that produced them. By assessing the initial forms and tracking the 

subsequent morphologic modification of these landforms, information about the 

earthquake’s timing and recurrence may be determined (e.g., Nash, 1980; Arrowsmith 

and Rhodes, 1994; Arrowsmith et al., 1996). Finally, we present ALS and TLS data that 

characterize the geomorphic setting and 3D form of precariously balanced rocks (PBRs). 

By serving as negative indicators for earthquake-induced strong ground motions, fragile 

geologic features such as PBRs provide information about past ground motions, their 

geographic extent, and intensity (Brune, 1993a, b, 1994, 1996; Brune and Whitney, 2000; 
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Brune et al., 2006). The geologic and geomorphic processes that operate in all of our case 

studies span spatiotemporal scales that range from cm to hundreds of m and decades to 

millennia. The case studies demonstrate TLS and ALS as promising technologies that 

provide a framework upon which the efficient and accurate characterization of 

earthquake processes may be constructed over a range of spatiotemporal scales. 

BACKGROUND

Paleoseismic Trenches and Offset Geomorphic Markers 

 Conventional paleoseismic logging of structures, strata, and samples is typically 

conducted either manually (e.g., tape measure and pencil on mm-grid paper) or on digital 

photomosaics of trench walls (McCalpin, 2009). The latter method involves taking up to 

hundreds of digital photographs perpendicular to the trench walls and creating a digital 

photomosaic of the stratigraphy and structures exposed in the trench walls. The footprint 

of each photograph depends on the aperture angle of the lens and the distance between 

the wall and the camera. In conventional 1 m-wide trenches, this footprint is 

approximately 1 m x 0.5 m. The final mosaics are then used as base maps on which the 

trench walls are logged. This method has several time-consuming drawbacks. For 

example, lens distortion introduces mismatches between photograph edges that lead to 

spatial distortions in the photomosaic. Similarly, unwanted parallax effects resulting from 

large vertical and horizontal photograph spacing lead to further spatial distortions in the 

final photomosaic. These problems are exaggerated by trench walls that have large 

surface irregularities, thereby introducing more geometrical inaccuracies in the final 

photomosaics. Issues such as these cannot be rectified without extensive post processing 

of the photographs. 
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 Paleoseismic investigations also include topographic surveys of paleoseismic sites 

for context or offset geomorphic markers (e.g., stream channels and terraces) that provide 

information about earthquake-generated vertical and lateral displacements. Conventional 

methods for measuring these features include performing dense total station surveys. 

Such surveys may consume many person hours to acquire a sufficiently large number of 

point measurements from which an adequate surface model of the offset marker can be 

made. 

Fault Scarp Formation and Degradation 

Surface-rupturing earthquakes often produce initially subvertical fault scarps that 

degrade to their angle of repose over time by diffusive processes (e.g., Wallace, 1977; 

Hanks et al., 1984; Pierce and Colman, 1986; Stewart and Hancock, 1990; Arrowsmith 

and Rhodes, 1994; Arrowsmith et al., 1998; Hanks, 2000). Stream channels crossing 

these scarps are steepened and the response is more vigorous than those portions of the 

landscape not dominated by surface runoff. Typical scarp modification occurs in three 

stages (Arrowsmith and Rhodes, 2000): (1) “set-up”: pre-earthquake drainage network 

upslope of the scarp is re-established and flow patterns are redefined, (2) “integration”: 

re-establishment of a connected drainage network via channel capture and multiple 

incisions that occurred across the scarp, and (3) “development”: establishment of the 

channel flow paths that extend headward into the drainage basin. The rate at which each 

stage modifies the fault scarp depends on climate, the complexity of the scarp’s initial 

form, and the geometry of the drainage basin. Post-earthquake monitoring of scarp 

degradation provides an essential step toward understanding the evolution of fault scarps. 

In addition, it helps evaluate the veracity of landscape evolution models to quantitatively 
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extract temporal information about the recurrence of earthquakes from landscape form 

(e.g., Gilbert, 1877; Davis, 1892, 1899; Gilbert, 1909; Hanks et al., 1984; Hilley and 

Arrowsmith, 2001, 2003). 

Precariously Balanced Rocks 

Fragile geologic features such as PBRs (Fig. 2.3) provide information about the 

timing of past ground motions, their geographic extent, and their intensity (Brune, 1993a, 

b, 1994, 1996; Brune and Whitney, 2000; Brune et al., 2006). The exposure time of a 

PBR’s basal contact with its pedestal is a proxy for the time since the PBR has remained 

balanced following its exhumation to the ground surface. Knowing the exposure time of 

the PBR’s pedestal aids in reconstructing its exhumation history using surface exposure 

dating methods (e.g., Bell et al., 1998; Stirling et al., 2002; Stirling and Anooshehpoor, 

2006; Rood et al., 2008; Stirling, 2008; Rood et al., 2009). However, a number of 

geomorphic factors can affect the surface exposure ages of a PBR and its pedestal 

(Heimsath et al., 2001; Haddad, 2010), and therefore the time since the PBR has been 

balanced. For example, the rates of soil production from bedrock and downslope soil 

transport are controlled by geomorphic parameters such as hillslope gradient and upslope 

drainage area (Gilbert, 1877, 1909; Penck, 1953; Schumm, 1967; Kirkby, 1971). These 

parameters are typically not considered in cosmogenically determined exhumation 

histories of PBRs. Therefore, assessing the local geomorphic settings of PBRs is 

important to defining their utility as physical validators of past ground motions. 

 A PBR’s 3D form and geometry control its static stability and survivability during 

earthquakes (Purvance, 2005; Purvance et al., 2008a). Furthermore, the PBR’s stability 

provides information about the upper limits of past earthquake-induced ground motions 
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that have occurred since the exposure of the PBR’s pedestal (e.g., Shi et al., 1996). 

Conventional methods for estimating the 3D form of a PBR involve photogrammetry 

(e.g., Anooshehpoor et al., 2007; Anooshehpoor et al., 2009). In this process, paper 

targets are attached to the PBR and up to hundreds of photographs are acquired from 

multiple viewpoints. Photogrammetric alignment techniques are then used to generate 

surface models of the PBR from which its 3D stability may be computed. A drawback to 

this method is its inability to accurately document the basal contact between the PBR and 

its pedestal. Because the geometry of the basal contact is integral to a PBR’s rocking 

response to ground motions (Purvance, 2005; Purvance et al., 2008a; Purvance et al., 

2008b), uncertainties can be introduced in applying measured seismic waveforms to 

documented PBRs (e.g., Hudnut et al., 2009a; Hudnut et al., 2009b). 

METHODS

Case Study I: Carrizo Plain 

Our first study site is located on the Bidart Fan in the Carrizo Plain section of the 

southern SAF (Figs. 2.2 and 2.4), which last ruptured in 1857. Data from over 20 

trenches that have been excavated since the late 1980s (Grant and Sieh, 1994; Akçiz et 

al., 2009; Akçiz et al., 2010) suggest that earthquakes along the SAF that ruptured the 

Carrizo Plain section were on average about every 90 years and caused surface 

displacements that ranged between ~1 m and ~5.5 m, at least during the last 700 years 

(Grant Ludwig et al., 2010; Zielke et al., 2010). These results call into question whether 

or not earthquake recurrence along the SAF strictly follows the characteristic earthquake 

model (e.g., Schwartz and Coppersmith, 1984; Sieh and Jahns, 1984). The first goal of 

this case study is to demonstrate the utility of TLS at efficiently producing an accurate 
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base image of paleoseismic trench walls. The second goal of this case study is to 

demonstrate how TLS can aid in measuring very subtle geomorphic markers by scanning 

a low-relief channel that crosses the SAF. 

 We implemented two TLS setups at the Bidart Fan site in 2009. The first included 

scanning a 5 m wide section of the southwest wall of a 3.5 m deep fault-parallel trench 

that exposed the stratigraphy of an offset stream channel (BDT18 in Fig. 2.4). The second 

setup included scans of a stream channel that crosses the SAF (BDT19 in Fig. 2.4). Both 

setups employed the short-range Zoller+Fröhlich (Z+F) Imager 5006i terrestrial laser 

scanner. Trench BDT18 was scanned at three equally spaced depths at which sets of four 

scans were performed. All scans were aligned to a single point cloud in the Z+F 

LaserControl point cloud registration software. Scan alignments were aided by targets 

that were strategically placed in the trench so that at least four targets were visible from 

each scan viewpoint. Each scan also included the acquisition of high-resolution digital 

photographs of the trench walls. For BDT19, the scanner was mounted on a standard 

survey tripod and employed in ten scan positions. All scans were registered using the 

Z+F LaserControl software to a single point cloud that totaled over 21 million points. A 

0.1 m DEM was generated from the point cloud using IDW binning and a 1 m search 

radius. We also employed a low-altitude (~200 m above ground level) camera lofted by 

balloon to provide high-resolution color photographs of the channel. 

Case Study II: Landers Earthquake Fault Scarp 

 This case study presents our observations of the initial form and subsequent 

geomorphic modification of the Landers fault scarp with the goal of evaluating the TLS 

method for measuring the scarp’s erosion rates, upstream drainage network evolution, 
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and knickzone migration rates nearly two decades following the 28 June 1992 Landers, 

California, earthquake (Mw 7.3; Figs. 2.2 and 2.5). Repeat surveys of the scarp were 

begun three days following the earthquake, followed by surveys in late 1992, mid 1993, 

mid 1994, mid 1995, mid 1997, late 1998, and early 2000 using conventional fault scarp 

measurement techniques (e.g., morphologic mapping, ground stereo photography, 

topographic, and channel profile surveys with an optical total station; Arrowsmith and 

Rhodes, 1994, 2000). In mid 2008, we repeated our monitoring efforts using TLS scans 

of the scarp. 

 In 1992, we established a control network and over the years focused on several 

channels that crossed the scarp (Fig. 2.5). In 2008, we used a Reigl LPM 321 terrestrial 

laser scanner to scan the study site. Eleven scan positions were tied together with as many 

as 18 control points and a total of 8.8 million points were collected. Shot densities varied 

from ~1 to 3.8 x104 m-2 (Fig. 2.5). Given the absolute GPS control from 2008, we rotated 

and translated the prior survey data into the 2008 UTM Zone 11 NAD83 coordinate 

system using least squares (<10 cm error in the network adjustments). Despite the 

numerous advantages of the TLS system for topographic survey (e.g., scanning in a few 

seconds what normally takes an entire day to do manually), the TLS could not illuminate 

the walls or floors of the narrow (few dm-wide), incised, and tortuous knick channels in 

the most rapidly eroding portions of the scarps. We augmented the scans in the 

knickpoint channels with kinematic GPS measures of points (~1 cm accuracy) using a 

plumb pole. Our study focuses on Gully 6 (Fig. 2.5) which has the greatest erosion signal 

and highest quality network adjustment of pre-2008 survey points. We extracted 416 

thousand points from the point cloud (TLS and GPS) and compared them with the 100 
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points measured at Gully 6 in the summer of 1993 (after modest winter erosion of the 

fault scarp). These comparisons were made in both projected cross sections of the points 

with knowledge that the GPS points indicated the local minima along the knick channels 

and by subtracting 5 cm DEMs with the same grid node positions to produce a 1993 to 

2008 erosion map. 

Case Study III: Precariously Balanced Rocks 

Our PBR study site is located in the Granite Dells precarious rock zone (GDPRZ), 

central Arizona (Fig. 2.2 and 2.6). The primary PBR-forming rock unit is the Proterozoic 

Dells Granite (1.110 Ga – 1.395 Ga; Dewitt et al., 2008; outlined in Fig. 2.6). With the 

exception of local compositional variations, the Dells Granite is as a massive, medium- to 

coarse-grained locally porphyritic granite. It forms a prominent pediment surface that is 

dissected by angular, joint-controlled drainage networks. A large population of PBRs 

resides in the GDPRZ on bedrock hillslopes that flank these drainages (Haddad, 2010). 

The first goal of this case study is to use ALS-generated DEMs to document the 

geomorphic setting of PBRs. The second goal of this case study is to demonstrate the 

effectiveness of TLS in illuminating the PBR’s basal contact. 

Landscape Morphometry 

 Airborne laser scanning data for this site were collected by the National Center 

for Airborne Laser Mapping (NCALM) and covered the entirety of the GDPRZ. The 

average aircraft elevation was 850 m above ground level. Over 350 million laser returns 

were collected, covering ~35 km2 and an average point density of 11.4 m-2. A 0.25 m 

DEM was then generated from the ALS data using the IDW algorithm and a 1 m search 

radius (Fig. 2.6; El-Sheimy et al., 2005). Finally, ground examinations were performed 
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on 261 PBRs and were located using a hand-held GPS unit (+/-2 m horizontal accuracy). 

The resolution of the DEM was fine enough to locate only large (>1 m diameter) PBRs. 

However, small PBRs were severely smoothed out by the DEM algorithm and thus not 

recognizable without the aid of high-resolution color aerial photographs.  

 Local hillslope angles were computing from the DEM by fitting a plane to a 3 x 3 

pixel computation window around each DEM and calculating the maximum slope value 

of the plane and assigning it to the node. The computation window then moves to the 

adjacent central cell and this process is repeated (DeMers, 2002). Stream channels were 

defined as grid cells using an upslope contributing area >100 m2 and the D  flow routing 

algorithm (Tarboton, 1997). The local hillslope angle and contributing area of each PBR 

x-y coordinate were then extracted from the gradient and contributing area rasters and 

plotted. 

PBR Basal Contact Imaging 

 We used TLS to scan one of the surveyed PBRs in the GDPRZ (Fig. 2.7). This 

provided a preliminary assessment of the PBR’s 3D static stability and tested the 

effectiveness of TLS in capturing the PBR’s basal contact. We used a tripod-mounted 

Riegl LPM 321 terrestrial laser scanner and scanned the PBR from six positions. All 

scans were aligned using the Riegl RiProfile software and the aid of six reflective targets. 

The final point cloud totaled ~3.4 million points.
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RESULTS AND DISCUSSION 

Case Study I: Carrizo Plain 

Trench BDT18 Scans 

 The final point cloud of our BDT18 trench scans totaled over 129 million points 

and was used to produce seamless color orthorectified base images of the trench walls 

(Fig. 2.8). Even though the scanner used a 5 MP digital camera compared to our 8 MP 

point-and-shoot camera with which we compared the results, overall image quality at 

1:10-scale image printouts were not noticeably different (Fig. 2.8). While the TLS-

produced images did not provide new insight or help to automate the identification of 

individual stratigraphic units, the efficiency and ease of orthomosaic production was 

greatly appreciated by the trench loggers. For example, the need for setting up reference 

grids was eliminated because the orthomosaics were automatically scaled by the scanner. 

Also, the subjectivity that is normally present when logging continuous contact traces 

that cross multiple mismatched photographs (by as much as 1-3 mm at the 1:10 scale) 

was significantly reduced (Fig. 2.8). Furthermore, total station surveys of contacts and 

locations of important features such as samples were not needed because the TLS-

generated base image was locally georeferenced by the scanner. The paleoseismic logs, 

contacts, and sample locations can be placed in a global coordinate system such that a 

complete integration of these data with other paleoseismic datasets is possible. This high-

accuracy geometric control is important for the 3D reconstruction of deformed features 

by retrodeforming offset channels and measuring vertical and horizontal components of 

displacement.  
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Trench BDT19 Scans 

 A 0.1-m DEM was prepared using the point cloud data obtained from the 

combined BDT19 scans (Fig. 2.9). The TLS-generated DEM is superior to the ALS-

generated DEM in the clarity with which the stream channel is shown (compare Figs. 2.4 

and 2.9). A ~5 m dextral bend in the channel is observable from the TLS-generated DEM 

as it crosses the SAF. However, whether this bend is a result of the most recent 

earthquake to rupture this section of the SAF or a deflection that occurred after this 

earthquake is inconclusive. Our TLS-generated DEM will aid in planning future 3D 

excavations across this channel to investigate its stratigraphy and relationship with past 

earthquakes in greater detail. Unlike the setup inside the trenches described above, our 

TLS scans of the channel could not automatically assign an RGB value for each scan 

point to generate a photomosaic of the offset channel. Our inability to keep the camera in 

the shade at all times caused sharp contrasts in the digital images during 360° scans and 

did not provide enough RGB data points to be locally referenced. However, the TLS-

generated DEM provided a detailed topographic surface to which our low-altitude 

balloon aerial photographs were georeferenced and draped (Fig. 2.10). 

Case Study II: Landers Earthquake Fault Scarp 

  The 2008 topographic survey provides a spectacular view of the original forms 

and initial modifications of the 16 year-old fault scarps produced in the Landers 

earthquake (Arrowsmith and Rhodes, 1994; Fig. 2.5). The discontinuous main and 

secondary scarps and the erosional responses to the ~1 m uplift of the northeastern block 

are well illustrated by the TLS data. Where runoff is poorly channelized, the scarps have 

begun to fail by block- and grain-scale diffusive processes. The largest changes are 
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evident in the channels that cross the scarp. Gully 6 is representative of that response 

(Fig. 2.11); the knick channels are ~10-20 cm wide and have incised ~1 m into the 

displaced block, resulting in a vertical incision rate of ~6.25 cm/yr of the knickpoint 

formed in Gully 6. The long profiles of the gully thalwegs now approach their pre-

seismic forms. At Gully 6, the vertical displacement of the channel across the fault 

created a knickpoint that has moved upslope about 10 m from the scarp, which 

corresponds to a headward incision rate of ~62.5 cm/yr. The thalweg profile remains 

irregular with the upslope knickpoint accommodating most of the relief change. Above 

the knickpoint, an erosional zone of a few 10s of cm communicates the knickpoint 

erosion headward (e.g., Gardner, 1983). 

Case Study III: Precariously Balanced Rocks 

Geomorphic Characterization of PBRs 

 We plotted the values of local hillslope angle versus upslope contributing area for 

all of the surveyed PBRs (Fig. 2.12). Only slope-area values that were extracted from the 

PBR locations are plotted (green dots). The remaining slope-area values are binned into a 

2-dimensional histogram to reduce clutter, and the density of the slope-area values is 

plotted as a color map. The surveyed PBRs are clustered in the bottom-right corner of 

slope-area space. Contributing areas per unit contour length for PBRs range between 5 

m2/m and 30 m2/m. Local hillslope angles on which PBRs are situated range between 10° 

and 40°.  

 The stark difference between the slope-area plot of the PBR landscape and that of 

a soil-mantled landscape likely reflects the differences in the geomorphic processes that 

operate in either setting. Slope-area plots for soil-mantled landscapes exhibit a 
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boomerang pattern that capture convexo-concave hillslopes bounded by stream channel 

elements. This pattern consists of slope values that vary inversely with contributing area 

for convergent parts of the landscape, and vice versa for divergent landscape elements 

(Dietrich et al., 1992; Roering et al., 1999). However, the wide range of slope-area values 

that we extracted from our DEM is indicative of the etched topographic nature of the 

GDPRZ, which is dominated by joint-controlled angular drainage networks and hillslope 

gradients that range between near vertical and near horizontal (e.g., Twidale, 1982). 

Therefore, our application of the slope-area threshold approach (e.g., Dietrich et al., 

1992) must be made with caution because it assumes that the landscape is in dynamic 

denudational equilibrium. As a result, present-day geomorphic processes bounded by the 

landform process thresholds may not apply to our PBRs because they are preserved in 

pre-existing etched landscapes. However, the slope-area approach allows us to extract 

fundamental information about the present-day geomorphic situation, preservation, and 

exhumation histories of PBRs on a first-order basis. 

 The preservation potential of PBRs appears to be controlled by their location in a 

drainage basin. Most of the PBRs in the GDPRZ are located in the upper reaches of 

catchments near drainage divides. This may indicate that the geomorphic conditions in 

the upper reaches of a drainage basin are conducive to forming and preserving PBRs. 

Because spatially variable soil production and transport rates affect the subsurface 

formation of corestones from bedrock (e.g., Heimsath et al., 2001), geomorphic rates in 

the upper reaches of catchments may be ideal for PBRs to survive subsurface chemical 

attack and their subsequent exhumation. After exhumation, the survival of the PBRs is 

controlled by the local geomorphology (e.g., hillslope gradient and upslope drainage 
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area) during the evolution of the catchment. These geomorphic complexities illustrate 

that caution should be taken when PBR exhumation histories are reconstructed from 

surface exposure ages because these histories do not account for the overall geomorphic 

setting of the PBRs in a drainage basin, and thus do not provide a complete understanding 

of the processes that act to exhume the PBRs. 

PBR Basal Contact Assessment 

 The PBR’s 3D form is captured with great detail that shows the intricacies of the 

PBR’s basal contact (Fig. 2.13). Closer examination of this contact shows that a 

significant overhang exists between the PBR’s width and its basal contact. Detailed 

inspection of this contact would not have been possible with the use of conventional 

photogrammetry. Therefore, an overestimation in the width of the PBR’s basal contact, 

and thus its stability, may have likely resulted from photogrammetric methods. Our 

scans, however, show that careful documentation of this contact is made possible using 

TLS and that uncertainty in the PBR’s 3D stability can be significantly reduced. 

CASE STUDY CONCLUSIONS 

 Our TLS work in the Carrizo Plain demonstrates that, with careful consideration 

to the scanner setup and lighting conditions, TLS is an effective tool for imaging subtle 

paleoseismic features. TLS-generated images produce superior base maps (in both 

functionality and geometric accuracy) on which trenches can be logged when compared 

to their photomosaicked counterparts. For both sets of scans, TLS proved to be an 

efficient alternative to conventional surveying techniques and base image production 

from mosaicked photographs. In addition to its analytical value, a significant potential for 

TLS lies in its utility as a digital archival and educational tool in paleoseismic research. 
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Digital archives of trench records will facilitate reviews of paleoseismic interpretations 

by other members of the paleoseismological community. Furthermore, digital records of 

the trenches provide valuable educational tools for students who are engaged in 

paleoseismic trench interpretations and exercises.  

 Our results from the Landers fault scarp demonstrate that TLS is an effective tool 

for the rapid and detailed characterization of the original forms and evolution of 

earthquake-produced surface ruptures. Initially steep fault scarps begin to fail by block- 

and grain-scale diffusive processes. Vertical and headward incision rates of knickpoints 

in stream channels that cut across fault scarps can reach up to several cm/year and several 

dm/yr, respectively. This underlines the importance of rapidly documenting surface 

ruptures using TLS prior to their complete geomorphic degradation. Recent scans of the 

El Mayor-Cucupah Mw 7.2 earthquake in northern Baja California (Oskin et al., 2010a; 

Oskin et al., 2010b; Gold et al., 2012) alone and nested within ALS (Oskin et al., 2010a) 

have shown the exquisitely fine original character of the brittle deformation along the 

surface rupture. Repeat scans with TLS can also be used to measure the surface process 

response to the change in base level of local stream channels and postseismic surface 

deformation. Unlike our study, in which the original forms of scarps were represented 

crudely with manual surveys and roughly matched to dm-accuracy network adjustments, 

cm-accurate ultrahigh-resolution repeat TLS will measure those changes in an 

unprecedented manner. Not only can the original forms and initial geomorphic 

modifications be measured, but also postseismic changes can be measured in future high-

resolution surface rupture studies with TLS (e.g., Wilkinson et al., 2010).  
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 The ALS-derived DEMs allowed us to characterize PBRs geomorphically at the 

drainage basin scale. They showed that PBRs are preserved in the upper reaches of 

drainage basins on moderately steep hillslope gradients. Gentle hillslopes may not 

promote sufficient soil production rates to form the corestones prior to their exhumation 

as PBRs. Conversely, steep hillslopes may drive transport rates too high for the PBRs to 

remain preserved in a landscape. At a finer scale, surface and volumetric analyses from 

TLS may be used to validate the accuracy of 2-dimensional (2D) static stability 

estimators (e.g., Haddad, 2010) versus their 3D implementations (e.g., Purvance, 2005; 

Anooshehpoor et al., 2007; Anooshehpoor et al., 2009). Because the stability and 

survivability of PBRs during ground motion events are controlled by the geometry of a 

PBR’s basal contact, TLS scans of PBRs provide valuable views into the complexity of 

the PBR’s basal contact. Therefore, high-resolution TLS-derived surface models of PBRs 

can refine simulations of coseismic ground motions (e.g., Hudnut et al., 2009a; Hudnut et 

al., 2009b). 

SUMMARY

 Paleoseismic research is significantly enhanced by the use of airborne and 

terrestrial LiDAR data. Our three case studies include examples of these data at different 

spatial scales. A nested combination of ALS and TLS will become an integral 

paleoseismic tool to study m- and cm-scale fault-related deformation. In addition, ALS 

and TLS can refine our understanding of the geologic and geomorphic processes that act 

within the earthquake cycle by allowing us to study these processes at multiple 

spatiotemporal scales and at the appropriately fine (cm to dm) scales at which the 
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relevant surface and deformational processes operate. The work presented here should aid 

paleoseismologists in planning ALS and/or TLS campaigns for future investigations. 

 A challenging yet important task in using a nested LiDAR approach for 

paleoseismic research is the multiscale integration of DEM preparation and distribution 

capabilities. Facilities such as OpenTopography (http://www.opentopography.org – 

where most of the data discussed here are available) facilitate this task for ALS data and 

are spearheading the integration of TLS with ALS datasets to produce customized DEM 

products (e.g., Krishnan et al., 2011). The integration of these datasets with short-range 

photographic and multispectral imaging provides detailed material property information 

with excellent geometric control (e.g., Xu, 2000; Ragona et al., 2006). These integrated 

products enhance the interpretation and analysis of the 3D targets while allowing for their 

virtual reviews and digital archival. This integration will therefore be an important step 

toward the management of scientifically meaningful LiDAR datasets that have high 

resolution, accuracy, density, and spatial coverage. Such datasets will become important 

tools in paleoseismic efforts that aim to extract information about earthquakes from 

tectonically produced landscapes, thereby making ALS and TLS integral components of 

the paleoseismic toolbox. Finally, when coupled with powerful visualization tools (e.g., 

LiDAR Viewer (http://keckcaves.org/software/lidar/index.html), the educational value of 

these data becomes apparent. For example, bringing a surface rupture or an outcrop of the 

SAF into an educational setting in 3D significantly enhances student learning. 
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FIGURES 

Figure 2.1. Schematic illustration of LiDAR platforms and their applications in 

paleoseismic research. Airborne and terrestrial laser scanning (ALS and TLS) 

characterize earthquake-related deformation at scales that range from m to cm. ALS-

derived digital topographic data illuminate m-scale fault-related structures (e.g., offset 

stream channels) and geomorphic elements of faulted topography (e.g., fault scarps). 

TLS-derived digital topographic data compliment ALS datasets by illuminating fault- and 

landscape-related components at cm to mm scales (e.g., paleoseismic trench walls, subtle 

geomorphic features, and fragile geologic features). Data from each platform are acquired 

in their local coordinate system (xi, yi, zi). When combined in a global coordinate system 

(X, Y, Z), ALS and TLS form valuable additions to the paleoseismic toolbox because they 

allow for the accurate extraction of geometric and topographic information at multiple 

spatial scales. This nested approach also permits the analysis of geologic and geomorphic 

processes that operate during and after repeating earthquakes at appropriate measurement 

scales. 

 

Figure 2.2. Seismotectonic settings of the studied paleoseismic sites. The Landers fault 

scarp (LFS) produced by the 1992 Mw 7.3 Landers (California) earthquake and the 

trenches and channels crossing the San Andreas fault (SAF) in the Carrizo Plain (CP) 

were scanned with TLS. Both ALS and TLS were used to scan precariously balanced 

rocks in the Granite Dells precarious rock zone (GDPRZ). Digital topographic data 

provide physiographic context and were accessed from the U.S. Geological Survey 

(USGS) Seamless Data Warehouse (http://seamless.usgs.gov/). Fault data were acquired 
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and modified from the USGS Quaternary Fault and Fold Database 

(http://earthquake.usgs.gov/hazards/qfaults/). 

 

Figure 2.3. An example of a precariously balanced rock (PBR) in the Granite Dells 

precarious rock zone (Fig. 2.2). Scale is 0.2 m. 

 

Figure 2.4. Hillshade of a 0.25 m ALS-derived DEM showing the location of our 

paleoseismic trenching activities in the Carrizo Plain (Fig. 2.2). The inset white corners 

correspond to the TLS-generated DEM in Fig. 2.5. Yellow boxes indicate excavations. 

BDT18 and BDT19 were the target of the TLS scans (Fig. 2.4 and Fig. 2.5). Solid white 

arrows delineate the SAF trace. White half arrows indicate dextral motion along the SAF. 

The DEM was prepared in the OpenTopography portal 

(http://www.opentopography.org). ALS data were collected by the NCALM for the B4 

project (Bevis et al., 2005). 

 

Figure 2.5. TLS scan (2008) of the Emerson fault zone surface rupture from the 1992 Mw 

7.3 Landers, California, earthquake (Fig. 2.2). (A) Overview of a 0.1 m DEM and 

hillshade showing ~20 m local relief along the drainage basins whose lower ends were 

elevated about 1 m by the vertical component of offset in the earthquake. (B) Gully 2 

shot density map overlain on hillshade from 0.1 m DEM showing high density of points 

on incising channel. (C) Gully 6 shot density map over hillshade from the 0.1 m DEM 

(see Fig. 2.11 for detailed analysis of erosion at this site). (D) 1998 balloon platform 

digital camera image georeferenced to the TLS DEM. Both C and D show the incising 
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and headward cutting knickpoints. The DEM was prepared in the OpenTopography portal 

(http://www.opentopography.org).

Figure 2.6. Color hillshade produced from an ALS-derived 0.25 m DEM of the Granite 

Dells precarious rock zone (GDPRZ). The GDPRZ is located in a prominent pediment 

that is formed in the Proterozoic Dells Granite pluton (outlined by a dashed white line). 

Yellow star indicates location of a PBR that was scanned using TLS (see Fig. 2.7 for 

location). Red dots indicate locations of the studied PBRs. The ALS data were collected 

by the NCALM (Haddad, 2010). The DEM was prepared in the OpenTopography portal 

(http://www.opentopography.org). 

 

Figure 2.7. (A) Location map of the TLS-scanned PBR. It was scanned from six 

positions to fully capture its 3D form. The underlying hillshade was prepared from a 0.25 

m ALS-generated DEM. (B) photographs of the TLS setup used for this PBR. Six 1.5 m-

long polyvinyl chloride pipes with reflective tape attached to their tops were used as 

targets. 

 

Figure 2.8. TLS scans of BDT18 (see Fig. 2.4 for location). Comparison between the 

base images generated by conventional photomosaicking (A) and TLS scans of a portion 

of BDT18’s southeastern wall (B). Yellow stars indicate features common to both images 

and the trench log. The nearly seamless TLS-generated base image is geometrically 

superior to the photomosaic. Photograph edge mismatch is significantly reduced while 

continuous sedimentary units are easily demarcated in the TLS-generated image. (C) The 
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TLS setup used to scan the walls of BDT18. A Z+F laser scanner was operated from 

twelve positions in this trench (shown here on the trench floor). Fourteen targets (black 

and white checker-board patterns) were placed within the trench to aid in scan alignment. 

Plywood sheets were placed over the trench to provide even lighting conditions for the 

scanner’s digital camera. (D) The paleoseismic log of the BDT18 offset channel. 

Figure 2.9. Comparison between ALS- and TLS-generated digital elevation models 

(DEMs) of BDT19 (see Fig. 2.4 for location). (A) A hillshade prepared from a 0.25 m 

ALS-generated DEM of BDT19. Dashed white arrows show the trace of the SAF. White 

half arrows indicate dextral motion along the SAF. (B) A color hillshade of a 0.1 m TLS-

generated DEM of the same area shown in A. Linear local highs around BDT19’s box 

trenches are spoil piles that were excavated from the trench. Other features are vehicles 

and people. The white dashed lines outline a bend in a channel that crosses the SAF. 

Solid white arrows indicate the directions of the oblique viewpoints in Figure 2.10. 

Figure 2.10. (A) Oblique views of a low-altitude aerial photograph of BDT19. The 

photograph was taken from a balloon-mounted digital camera and draped over the 0.1 m 

TLS-generated DEM to provide topographic context. The SAF is shown as a narrow zone 

of deformation (red polygon). (B) Comparison between an oblique view of the aerial 

photograph and a photograph that was taken at ground level from the same viewing 

direction. Such 3D representations of paleoseismic sites can be beneficial for peer 

reviews of paleoseismic interpretations, digital archival of trenches, and virtual field trips 

for educational activities. 
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Figure 2.11. Point cloud map and repeat topographic survey at Gully 6 (see Fig. 2.5 for 

location). (A) Points extracted from the 2008 TLS scan (black dots) were combined with 

kinematic GPS measurements from the tortuous and narrow knick channels (blue dots) to 

represent the 2008 topographic surface and compared to the 1993 survey points (red 

dots). (B) A narrow swath of the point cloud data were extracted and projected to a 

common reference plane. The kinematic GPS points (blue dots) indicate the minimum 

elevations along the channel profile within the swath and show the erosion in 15 years 

relative to the red points (1993 survey) and the black points showing relatively uneroded 

channel margins. (C) The 2008 DEM computed from the extracted TLS and GPS points 

(white dots) was subtracted from the 1993 survey points to produce an erosion map (5 

cm/pixel). Maximum erosion in the 10-20 cm-wide knick channels is about 1 m and they 

have cut >10 m upstream between 1993 and 2008. 

Figure 2.12. Hillslope angle versus upslope contributing area per unit contour length of 

landscape elements containing PBRs. Black dots are slope-area values for the landscapes 

plotted every 25th point. Green dots are slope-area values for each PBR computed from a 

5 m ALS-derived DEM. Most of the surveyed PBRs are located in contributing areas 

between 5 m/m2-30 m/m2 and local hillslope angles between 10° and 40° (indicted by 

dashed blue lines). 
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Figure 2.13. Oblique views of the point cloud representing the PBR scanned using TLS. 

Total point count shown is ~3.4 million. TLS illuminates the 3D complexities of the 

PBR’s form and its basal contact (outlined in white at right). 
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Chapter 3 

HIGH-RESOLUTION DIGITAL TOPOGRAPHY IN ACTIVE TECTONICS 

RESEARCH 

INTRODUCTION

 Earth’s topographic surface forms an interface through which the geodynamic and 

geomorphic engines interact. This interaction is best observed along crustal margins 

where topography is created by tectonic processes and sculpted by geomorphic processes 

(e.g., Vedder and Wallace, 1970). The rates at which these processes operate dictate the 

preservation potential of tectonically deformed topography. At centennial to millennial 

rates, earthquakes are the primary driver for topographic deformation. Therefore, the 

topography of active fault zones holds a wealth of information about the record of past 

earthquakes and active faulting (Fig. 3.1). From a societal standpoint, fault zone 

topography provides crucial information about the recurrence of past earthquakes that 

may help forecast the likelihood of future earthquakes and prepare seismically sensitive 

infrastructures such as schools, hospitals, and nuclear power plants for strong ground 

motions (e.g., WGCEP, 2008). Quantitative documentation and characterization of fault 

zone topography is thus important.  

Until the late 1990s, measurement of tectonically displaced features, such as 

offset stream channels, terraces, and topographic ridges, was made using total station 

surveys (e.g., Arrowsmith and Rhodes, 1994; Arrowsmith et al., 1998). In these surveys, 

thousands of measurements were made over multiple days such that a sufficient number 

of points were measured to depict the topography of displacement markers. Over the past 

decade, a significant expanse in the development of light detection and ranging (lidar) 
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instruments provided an opportunity to survey topography with unprecedented speed, 

accuracy, and resolution. Airborne lidar campaigns along active plate boundaries were 

quickly recognized as necessary to document the record of earthquake-generated 

deformation at appropriate spatiotemporal scales (Fig. 3.1). Such campaigns have yielded 

digital representations of topography at resolutions sufficient to make measurements of 

earthquake-related vertical and lateral topographic displacements (e.g., Hudnut et al., 

2002; Bevis et al., 2005; Oskin et al., 2007; Prentice et al., 2009; DeLong et al., 2010; 

Hilley et al., 2010; Oskin et al., 2010a; Oskin et al., 2010b; Oskin et al., 2012). For 

example, fault trace geometries and stream channels that were offset by past earthquakes 

are clearly illuminated by lidar datasets (e.g., Arrowsmith and Zielke, 2009; DeLong et 

al., 2010; Haddad et al., 2012). Systematic analyses of these data reveals geomorphic 

observations that are barely perceivable in the field but may change the fundamentals of 

inferring earthquake recurrence and fault segmentation (e.g., Zielke et al., 2010).  

In this chapter, we first describe the basics of airborne and terrestrial lidar 

platforms that are generally used in present-day active tectonic studies. We then present 

two applications of airborne lidar research along the tectonically active North American-

Pacific plate boundary. Finally, we describe the future of lidar in active tectonics research 

and provide lidar data access and processing resources. The geologic and geomorphic 

processes that operate in both case studies span spatiotemporal scales that range from 

centimeters to hundreds of meters and years to millennia. Our case studies demonstrate 

that lidar is a promising technology that provides a framework upon which the efficient 

and accurate characterization of earthquake processes may be constructed over a range of 

spatiotemporal scales. 
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Lidar Data Acquisition and Processing 

Two platforms are typically employed in research that uses lidar data. Airborne 

lidar systems use an aircraft-mounted laser scanner that scans topography in side-to-side 

swaths at rates that range between tens and several hundred kHz (Fig. 3.2A). The 

orientation (yaw, pitch, and roll) of the aircraft is monitored by an on-board inertial 

navigation measurement unit, and its location is determined by a high-precision 

kinematic global positioning system (GPS; El-Sheimy et al., 2005; Carter et al., 2007; 

Shan et al., 2007). Post processing places the lidar data in a global reference frame as a 

point cloud of the laser returns with typical shot densities >1 m-2. Terrestrial lidar 

platforms employ a tripod-mounted laser scanner that can be operated from various near-

field positions to ensure complete scan coverage of the feature of interest (Fig. 3.3B). 

Reflective targets with known geographic coordinates are needed to align point clouds 

from the different scan positions into a final point cloud within a global reference frame. 

Point cloud densities for terrestrial lidar can reach up to >104 m-2 depending on the 

scanning distance. Furthermore, acquisition geometry of terrestrial lidar systems provides 

a true three-dimensional (3D) representation of the scanned feature or outcrop. As a 

result, complete 3D representations of features scanned by terrestrial lidar can be 

accomplished, as opposed to airborne lidar platforms that scan topographic features in 

“2.5D”.  

The utility of airborne and terrestrial lidar datasets for the visualization and 

analysis of topographic data is often demonstrated by gridded digital elevation models 

(DEMs). These DEMS are generated from the spatially heterogeneous point clouds that 

were detected by the lidar scanner. Where the point spacing is less than the desired 
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resolution of the DEM, a local binning algorithm is applied to compute values within a 

specified search radius at each node and a predefined mathematical function (e.g., mean, 

minimum, maximum). For the case studies presented here, we used the following 

algorithm to generate submeter-resolution DEMs (El-Sheimy et al., 2005): 

n

l l
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l l
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r
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 ,           (3.1) 

where ZIDW is the interpolated distance-weighted elevation computed for each grid node, 

n is the total number of grid nodes, l is the grid node index, and r is the radius of the 

node-centered computational bin.  

CASE STUDIES 

Case Study I: Structure and Geomechanics of Active Fault Zones 

Earthquake ruptures produced along crustal faults originate in the middle to lower 

depths of the seismogenic layer and transmit deformation to Earth’s surface by driving 

slip along faults and block motions (Fig. 3.1; Scholz, 2002; Titus et al., 2011). This 

process is manifested in Earth’s topography via fault scarps and fractures or off-fault 

folding and warping (e.g., Oskin et al., 2012; Quigley et al., 2012). The extent to which 

this surface manifestation represents earthquake processes at depth is generally thought to 

be controlled by the geometrical complexity of faults, faulting mechanisms, and the 

spatiotemporal strength variations of the upper lithosphere (Sibson, 1986; Scholz, 2002). 

With the exception of very limited direct observations of active faults at depth (e.g., the 

San Andreas Fault Observatory at Depth), we do not have direct access to faults 

embedded in the seismogenic layer. However, lidar allows for high-resolution analyses of 
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coseismic deformation of fault zone topography within 10s to a few 1000s of meters from 

fault ruptures. These datasets help us interpret fracture patterns observed in the 

paleoseismic record and enable surface rupture patterns to be interrogated for their 

fidelity in representing coseismic ruptures and seismic moment released at depth (e.g., 

Oskin et al., 2012). Furthermore, these datasets provide important controls for measuring 

coseismic slip in the most recent event and slip accumulated over multiple earthquakes 

(e.g., Arrowsmith et al., 2011; Haddad et al., 2011; Madden et al., 2011), thereby 

improving our understanding of fault system behavior and interactions through space and 

time. For this case study, we showcase the application of airborne lidar data for past 

surface ruptures along the Garlock fault, California (Fig. 3.4). 

Fault Zone Mapping 

We mapped the surface traces of past earthquake ruptures and faults along the 

Garlock fault, California, using high-resolution aerial photographs and submeter-

resolution DEMs. Our maps revealed that along-strike fault trace patterns differ 

significantly between the western and eastern sections of the Garlock fault. The 

topographic expression of the western section is not well defined when compared to the 

ubiquitous fault scarps of the central and eastern sections. Similarly, few lateral 

displacements in stream channels and ridges are preserved along the western section in 

comparison to the central and eastern sections. This may be due to the high density of 

mass wasting that has obliterated fault scarps and surface manifestations of topographic 

displacements in the last few earthquakes along the western section of the Garlock fault. 

We attribute this to the along-strike climatic gradient where the wetter conditions of the 
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western section are not conducive to preserving fault scarps when compared to the central 

and eastern sections that reside in the Mojave Desert. 

Fault Zone Complexity 

Our lidar-derived fault trace maps for the Garlock fault were also used to 

calculate fault complexity parameters such as segmentation and length, where we 

correlated these metrics with fault zone geology to explore for lithologic controls on 

surface rupture breaks. Figure 3.5 presents the results from an analysis of a spatial 

correlation between fault segmentation, length, and rock type for a section of the central 

Garlock fault. Fault complexity was calculated using 300 m-wide bins that moved along 

strike of the fault zone and show that, in general, fault segmentation is greater in bedrock 

breaks than alluvial breaks. This is counter to the general intuition that unconsolidated 

media (e.g., Qal in Fig. 3.5) tend to distribute brittle deformation across broad fracture 

belts. However, we attribute the relatively simple Qal rupture patterns observed in our 

fault complexity analysis to be caused by the thin alluvial cover that overlies the shallow 

bedrock and thus have low confining stresses. As a result, the transmission of strain 

through the Qal cover and to the topography of the Garlock fault zone is via fewer 

fractures than if the bedrock depth were greater. Our analyses also showed that fault 

segment length appears to be controlled by rock type; segments are generally longer in 

granodiorite (Tg) than those breaking through alluvium or quartz-monzonite (Qal, Tgm in 

Fig. 3.5), indicating that rock type controls the local continuity and mechanics of 

earthquake ruptures.  
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Lateral Displacement of Geomorphic Markers 

The lidar datasets for the Garlock fault provide important insights into the along-

strike distribution of slip created by past earthquakes. For this component of the case 

study, we measured laterally displaced geomorphic markers such as offset ridges, stream 

channels, and terraces along the entire length of the Garlock Fault using a lateral offset 

calculator and submeter-resolution DEMs (e.g., Zielke and Arrowsmith, 2012). Figure 

3.6 presents results from our displacement analysis of 431 offset features along the 

Garlock fault. To validate our lidar-derived measurements with those made in the field, 

we reoccupied 129 offsets that were measured in the field by McGill and Sieh (1991) 

using the lidar offset calculator. Our lidar-derived measurements compare well with those 

made in the field for the same offset features, attaining correlation coefficients R2 of 0.9. 

This validation demonstrates that our lidar-derived offset measurements are reliable 

indicators of coseismic slip in the last few earthquakes and thus provide accurate 

representations of slip distributions for fault zones, especially where no field 

measurements of earthquake-related offsets are available, such as in the western section 

of the Garlock fault. For the western, central, and eastern sections of the Garlock fault, we 

calculated average surface slip in the last earthquake to be 3.6 m ±1.1 m, 3.8 m ±0.8 m, and 

3.3 m ±0.9 m, respectively. McGill and Sieh (1991) report the average slip from field-derived 

displacement measurements for the central Garlock as nearly double our measured lidar-

derived average slip, indicating that such inconsistencies between lidar- and field-derived slip 

measurements have important implications for how slip distributions are interpreted (e.g., 

Zielke et al., 2010). 
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Geomechanical Modeling 

 Our lidar-derived fault trace maps also allow us to constrain parameters for 

geomechanical models of the faulting processes that operate in the upper few kilometers 

of the Garlock fault. To build a deeper understanding of the subsurface structures 

responsible for the fault segments that we mapped using lidar, we used 3D 

geomechanical models with the goal of illuminating the factors that control the fidelity of 

our interpretations of faulting patterns in the topographic record of the Garlock fault 

zone.  

In classical mechanics, the stability along an interface between two solids is controlled by 

the magnitude of shear ( ) and normal ( n) tractions and the coefficients of static (μs) and 

dynamic (μd) friction acting on the interface. Slip along this interface occurs when 

ns      (3.2) 

When this condition is met and sliding initiates, the value of μs decreases to μd such that 

the shear stress drop associated with the sliding motion is 

nds      (3.3) 

This approach can be applied to natural fault systems where coseismic stresses and 

strains due to displacements along source faults drive slip along receiver faults. The 

potential for receiver faults to fail is expressed in terms of Coulomb failure stress (CFS), 

nCFS ,    (3.4) 

where  and n are the changes in shear and normal stresses along the receiver faults, 

respectively, and μ  is the effective friction coefficient after accounting for change in pore 

fluid pressure. Failure along the receiver fault occurs when the ratio of  to n exceeds the 

coefficient of static friction μs; an increase in normal stresses relative to shear stresses 
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acting on receiver faults will reduce this ratio and inhibit conditions for slip. In terms of 

CFS, failure along receiver faults is therefore encouraged if CFS is positive, and vice 

versa. 

We employed the above approach in a fault interaction modeling environment 

that was built on analytical descriptions of internal deformation due to slip along 

rectangular dislocations in an elastic half-space (Okada, 1992; Zielke and Arrowsmith, 

2008). We used our lidar-derived fault trace maps and offset measurements to guide our 

fault models by providing kinematic parameters such as slip vectors, magnitudes, and the 

attitudes of receiver faults. Figure 3.7 presents the result of two model runs from the 

central and eastern parts of the Garlock fault. Figure 3.7A shows a fault configuration 

where a driving sinistral master fault is flanked by an obliquely oriented horst and graben 

system and a major SE-dipping driving normal fault. The orientations and rakes of 

receiver faults are identical to those of the horst and graben faults. Local positive CFS 

lobes are present along the master strike-slip fault and are likely created by local segment 

irregularities along strike (e.g., small stepovers and fault bends). The region between the 

driving strike-slip and normal faults exhibits reduced CFS along receiver faults, which 

is consistent with the presence of the horst and graben system as accommodating the 

deformation induced by the master strike-slip fault. This is corroborated by the vertical 

displacement calculations where sinistral slip on the master fault and down-to-the-

southeast slip on the normal fault are consistent with our lidar-derived fault mapping and 

the topography. Figure 3.7B presents a system of three left-stepping and overlapping 

sinistral faults that form at least two releasing steps in an accommodation zone. The 

CFS calculations show that the stepovers and releasing steps experience enhanced 
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CFS on NE-striking receiver faults. This is consistent with the presence of NE-striking 

normal faults that bind the rhomboidal-shaped pull-apart basins, as evident in our lidar-

derived fault maps and the vertical displacement calculations. 

Case Study II: Measuring Earthquake Deformation Using Differential Lidar 

In conjunction with advancing our understanding of the geomorphology and 

paleoseismology of active faults, lidar datasets offer a topographic baseline against which 

to compare repeat lidar surveys, such as could be undertaken in the aftermath of a future 

earthquake. The typically submeter lidar point spacing is finer than the scale of 

displacements caused by large earthquakes, making differential lidar analyses well suited 

for capturing 3D near-fault ground displacements. The development of these methods, 

some of which are described in this case study, provides further impetus to efforts at 

expanding the range of active faults mapped with lidar. In the future, differential lidar 

analyses will complement common satellite-based techniques such as interferometric 

synthetic aperture radar (InSAR) and subpixel optical matching, which map only certain 

components of the deformation field and which are often hindered by variable coherence 

close to surface faulting and in areas of dense vegetation. 

The Mw 7.2 El Mayor-Cucapah, Mexico, earthquake of April 4th 2010 is currently 

the only complete rupture with both pre- and post-event lidar coverage, although the pre-

event point density of ~0.013 m-2 is orders of magnitude sparser than most modern 

datasets. By differencing pre- and post-event lidar DEMs, Oskin et al. (2012) revealed a 

complex pattern of surface elevation changes that included slip on numerous fault strands 

and tilting and warping of the ground between these segments during the El Mayor-

Cucupah earthquake. However, the measured elevation changes do not correspond 
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directly to the actual surface displacements, and a large horizontal displacement 

component results in apparent vertical motions that are governed by the local slope facing 

direction. Leprince et al. (2011) overcame this limitation by using image co-registration 

and subpixel correlation techniques to measure the horizontal offsets, which were then 

back-slipped and differenced to reveal the vertical deformation caused by the El Mayor-

Cucupah earthquake. However, this two-step procedure still relies on gridding the 

original pre- and post-event point clouds into DEMs, which introduces biases and 

artifacts in the resulting displacement calculations. 

A pair of recent studies by Borsa and Minster (in press) and Nissen et al. (in 

press) outline methods for capturing 3D earthquake displacements more directly by 

computing the translations that best align square windows of the pre- and post-earthquake 

topography. Both studies use simulated lidar datasets to test their methods. These datasets 

were generated by adding synthetic earthquakes with known displacements to real B4 

lidar point clouds (Bevis et al., 2005). This approach enables a full exploration of 

displacement resolutions and accuracies at a range of input point cloud densities, but does 

not take into account the effects of ground shaking, erosion and deposition, vegetation 

growth or infrastructure development. However, as long as these processes occur on 

shorter length-scales than the window size they are unlikely to impact the results. 

In Borsa and Minster’s (in press) approach, a set of harmonic basis functions was 

used to produce a smoothed surface model of the pre-earthquake topography onto which 

square subsets of the post-earthquake points were translated using a least-squares 

minimization scheme. Their method also incorporated lidar intensity data as an 

additional, independent constraint on horizontal displacements. Nissen et al. (in press) 
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instead used an adaptation of the iterative closest point (ICP) algorithm to align pre-event 

(source) and post-event (target) point clouds. The ICP method was originally developed 

as a computer graphics and medical imaging tool, and works by iterating three steps: (1) 

identify the closest point in the target point cloud for each point in the source point cloud, 

(2) calculate the rigid body translation and rotation between all paired points from step 1 

to minimize the mean square error in the points’ 3D locations, and (3) apply the 

transformations in step 2 and update the mean square error between the source and target 

point clouds. These steps are iterated until a local minimum in closest point distances is 

reached, which is determined when the reduction in the mean square error falls below 

some threshold. In past geological applications, the ICP method was used to detect 

landslide displacements using repeat terrestrial lidar datasets (Terza et al., 2007). Its main 

advantage over other lidar differencing techniques is that it alleviates the need for any 

gridding or smoothing of either dataset. The method also works well when there are large 

mismatches in the density of the two point clouds, eliminating the need to downsample 

the denser dataset. A final, unique aspect of ICP is that it can measure rotations directly, 

thus providing important new kinematic data in areas of distributed faulting where block 

rotations may be important. 

Figure 3.8 shows an example of an ICP analysis of simulated pre- and post-

earthquake point clouds derived from B4 (Bevis et al., 2005) data on part of the southern 

San Andreas fault. To simulate a large earthquake with right-lateral slip, a synthetic fault 

was added to the post-event dataset. Points southwest of the fault were moved 2 m to the 

northwest, and points northeast of the fault were moved 2 m to the southeast and also 

raised by 1 m. The datasets were split into 50 m x 50 m windows, and the ICP algorithm 
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was applied separately to each window. The input displacements were reproduced with 

horizontal and vertical accuracies of ~20 cm and ~4 cm, respectively, to mimic errors in 

the original point height measurements. As expected, accuracies are highest in windows 

containing rugged topography but the method is mostly successful even in low-relief 

areas. Improved accuracies and finer resolutions should be achievable using higher point 

cloud densities and with further advances in survey georeferencing during the airborne 

lidar campaign. 

SUMMARY 

Research in active tectonics and earthquake geology is significantly enhanced by 

the use of airborne lidar datasets. Applications of such datasets will help refine our 

understanding of the geologic and geomorphic processes that act along fault zones by 

allowing us to study these processes at multiple spatiotemporal scales that are relevant to 

surface and deformational processes. For furture earthquakes, differential analyses that 

span repeat lidar datasets will provide a wealth of near-fault displacement data to 

complement existing geodetic or field-based observations. Such displacements will help 

constrain the slip distribution and rheology of the shallow depths of fault zones, which 

are crucial for interpreting paleoseismic and geomorphic offsets, and informing studies of 

long-term earthquake behavior. When coupled with satellite-based measurements such as 

InSAR, differential lidar analyses will also offer the means to explore relations between 

surface rupturing and deeper fault zone processes. 

An added benefit from lidar datasets in active tectonics research is their 

educational value. With the increase in web-based 3D topographic visualization such as 

the ubiquitous Google Earth platform, lidar datasets can provide important teaching aids 
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in undergraduate- and graduate-level geoscience courses. Therefore, it will become 

important to the future of geoscience education to integrate lidar datasets as components 

in undergraduate- and graduate-level curricula by bringing virtual outcrops of faults to 

the classroom. 

LIDAR RESOURCES 

The following is a list of suggested web resources where publicly available lidar 

data and processing capabilities are available for airborne and terrestrial lidar datasets 

(see also Appendix E):  

http://lidar.asu.edu 

http://www.opentopography.org (airborne lidar datasets presented in this chapter can 

be downloaded from this website).  

http://www.ncalm.org/ 

http://facility.unavco.org/project_support/tls/tls.html#interface/ 

http://lidar.cr.usgs.gov/ 

http://lvis.gsfc.nasa.gov/ 
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FIGURES 

Figure 3.1. Synoptic overview of fault zone processes as manifested in Earth’s surface 

and interior. In Earth’s interior, geologic and seismic properties of fault zones control 

how strain is transmitted through the seismogenic layer (outlined in red) to Earth’s 

surface. On Earth’s surface, the tectonic geomorphology of fault zones provides clues 

into the coseismic moment released at depth by preserving faulted geomorphic elements. 

Derived from concepts that were developed by Vedder and Wallace (1970), Sylvester 

(1999), and Scholz (2002). Figure elements are not to scale. 

 

Figure 3.2. (A) A typical setup of an airborne light detection and ranging (lidar) 

campaign. The aircraft-mounted laser scanner scans topography in side-to-side swaths. 

The orientation of the aircraft is monitored by an on-board inertial navigation 

measurement unit (IMU), and its location is determined by a high-precision kinematic 

global positioning system (GPS). (B) A lidar-equipped twin-engine Cessna Skymaster 

aircraft operated and managed by the National Center for Airborne Laser Mapping 

(NCALM; www.ncalm.org). 

 

Figure 3.3. A tripod-mounted Riegl LPM 321 terrestrial laser scanner operating under 

the Interdisciplinary Alliance for Digital Field data Aquisition and Exploration 

collaboration (http://facility.unavco.org/project_support/tls/tls.html#interface). 

 

Figure 3.4. Seismotectonic settings of the case studies presented in this chapter. The first 

case study uses airborne light detection and ranging (lidar) datasets to document 
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earthquake-related slip distributions along the Garlock fault (GF). The second case study 

uses airborne lidar data to compute three-dimensional topography displacements created 

by the April 4th 2010 El Mayor-Cucupah (EMC) earthquake rupture. Digital topographic 

data in this map were accessed from the U.S. Geological Survey (USGS) Seamless Data 

Warehouse (http://seamless.usgs.gov). Fault data were acquired and modified from the 

USGS Quaternary Fault and Fold Database (http://earthquake.usgs.gov/hazards/qfaults/). 

 

Figure 3.5. Results from the fault complexity analyses using lidar-derived fault trace 

maps. The analyses were performed in the central Garlock fault, California, where past 

coseismic breaks ruptured through alluvium (Qal), quartz monzonite (Tqm), and 

granodiorite (Tg) rock units (for the area shown). Fault segment length and number of 

segments were computed in 300 m bins along strike. SAF – San Andreas fault, GF – 

Garlock fault. Geology from Ludington et al. (2007). 

 

Figure 3.6. Results from our lidar-derived offset measurements. (A) Overview map of 

offset measurements compiled for major faults in California. (B) Lidar- vs. field-derived 

offset measurements for the Garlock fault. Garlock field measurements were made by 

McGill and Sieh (1991). (C) Slip distribution plots for the Garlock fault made from lidar- 

and field-derived offset measurements. 

 

Figure 3.7. Examples of fault trace mapped using lidar-derived digital elevation models, 

their 3D model representation in an elastic halfspace, Coulomb failure stress (CFS) 

calculations, and vertical displacement calculations. (A) A sinistral master fault is flanked 
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by a horst and graben system, exhibiting distributed surface deformation >1.5 km across 

the main fault trace. (B) Three left-stepping and overlapping sinistral faults forming at 

least two releasing steps where extension is accommodated by a system of normal faults. 

CFS and vertical displacement calculations were performed using the elastic dislocation 

model by Zielke and Arrowsmith (2008). Both modeling scenarios are from the Garlock 

fault, California. 

 

Figure 3.8. Results for a simulated earthquake experiment at Painted Canyon on the 

southern San Andreas fault. Shaded topography is a 1 m-resolution digital elevation 

model constructed from the B4 lidar dataset (Bevis et al., 2005) and illuminated from the 

NE. White patches show areas in which pre- and post-earthquake point cloud coverage is 

unavailable. The iterative closest point (ICP; see text) window size is 50 m. White and 

black arrows show input and output horizontal displacements, respectively, and colored 

circles show output vertical displacements. The synthetic fault is plotted in yellow. 

Adapted from Nissen et al. (in press). 
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Chapter 4 

EFFECTS OF FAULT STRUCTURAL COMPLEXITY, FRICTIONAL PROPERTIES, 

AND ROUGHNESS ON SURFACE SLIP AND RUPTURE JUMPING 

PROBABILITIES 

ABSTRACT 

 The topographic manifestation of earthquakes takes on many forms which are 

exploited by geologists to infer rupture processes, interpret paleoseismic data, and 

construct earthquake recurrence models. These interpretations may be difficult to make 

because natural fault systems are arranged in complicated geometries that contain 

complex frictional properties. Here I use a quasi-static earthquake simulator to investigate 

the effect of fault structural complexity and frictional properties on how large 

earthquakes are recorded in topography. I also use long records of simulated earthquakes 

to investigate how these factors control rupture jumping probabilities. I model the 

following fault structural scenarios: a single fault with simple frictional behavior, two 

faults with a velocity-strengthening (stable sliding/creeping) sedimentary basin, a single 

fault with a creeping section, two faults in releasing/restraining stepovers, and three faults 

in releasing/restraining double bends. All modeled configurations changed the shapes of 

along-strike surface slip distributions and rupture jumping probabilities. In the scenario of 

a velocity-strengthening basin, I found that deep basins allow only the largest 

earthquakes to transit coseismic deformation to the ground surface. For the single fault 

with a creeping section scenario, only the long-term record of coseismic faulting was 

preserved in the ground surface when the degree of velocity-strengthening for the 

creeping section was increased. Whether the releasing or restraining steps/bends 
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controlled rupture jumping probabilities depended on fault roughness. Rough faults 

limited the lateral extent of ruptures because coseismic stresses due to slip were 

consumed by overcoming fault asperities. Therefore, rupture jumping probabilities for 

rough faults increased only when stepover distances were sufficiently small (2 km). I 

propose that the widely accepted 3 – 5 km radius of the rupture process zone 

(Wesnousky, 2008) varies as a function of fault roughness. These results have direct 

implications for guiding the interpretation of paleoseismic data and generating rupture 

propagation rules in earthquake forecasts. 
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INTRODUCTION

 Faults in nature rarely exist as individual planar surfaces. Instead, they are 

organized into zones of discontinuities and behave as interacting systems. At crustal 

scales, these interactions are controlled by the mechanical properties of the lithosphere, 

tectonic loading rates along plate boundaries, and the structural and frictional 

complexities of fault segments (Scholz, 2002). All of these factors ultimately govern the 

behavior of fault systems and hence their seismic hazard potential. 

Large-magnitude earthquakes originate in the middle to lower depths of the 

seismogenic zone and transmit deformation to Earth’s surface (Fig. 4.1). The topographic 

record of such ruptures may be localized along fault scarps and offset geomorphic 

markers or distributed via off-fault folding and warping (e.g., Salyards et al., 1992; Oskin 

et al., 2012). This record forms the basis for along-strike surface slip distributions of 

ground-rupturing earthquakes, which is a fundamental dataset that forms the basis for 

reconstructing the seismic behavior of active faults. Surface slip distributions are 

documented using a combination of field measurements/mapping and instrumentation 

(e.g., lidar, InSAR). However, even for well-studied faults such as the southern San 

Andreas fault system, measurements of coseismic slip that extend beyond the timing of 

penultimate earthquakes are few and widely scattered. Given the importance of these 

datasets in earthquake forecasts (e.g., the Uniform California Earthquake Forecast – 

UCERF3: http://pubs.usgs.gov/of/2013/1165/), various attempts have been made to 

construct surface slip distributions for prehistoric earthquakes using few slip 

measurements (e.g., Chang and Smith, 2002). These estimates are probabilistic in nature 

in that they model slip distributions as elliptical probability distributions that are then 
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inverted for earthquake magnitude and surface rupture length to give slip measurements 

at a point (e.g., Biasi and Weldon, 2006). 

UCERF3 employs a compilation of slip measurements and slip rates (e.g., Haddad 

et al., 2011; Madden et al., 2011) as geologic constraints to its deformation model (Field 

et al., 2013). Given the paucity of geologic slip rates and slip measurements for most of 

California’s faults, the UCERF3 deformation model idealizes slip distributions for 

California faults using the above-mentioned probabilistic approach (Field et al., 2013). 

However, several factors control the surface slip distributions of earthquakes. Structural 

and frictional complexities along faults can be responsible for highly variable slip 

distributions for large earthquakes. These complexities also control the long-term 

clustering of earthquakes in space and time. Therefore, the spatiotemporal variations of 

slip rates determined at individual points along faults will vary. As a result, the 

mechanical characteristics of fault surfaces, structural geometry, and frictional properties 

will influence the surface slip distributions of large earthquakes (Scholz, 2002) and thus 

how paleoseismically determined slip rates are interpreted in UCERF3. 

Extensive documentation of surface slip distributions and rupture maps from 

historic earthquakes by Wesnousky (2008), for example, showed the wide variability in 

surface slip distributions (Fig. 4.2). Consider the 1987 Superstition Hills earthquake (Mw 

6.2) as an example (Fig. 4.2A). The surface rupture length for this earthquake was 27 km 

and propagated through several stepovers prior to stopping. What controlled the shape of 

the Superstition Hills earthquake’s slip distribution? Why did the rupture break through 

the stepover regions and stop? This example, along with the many examples presented in 

Wesnousky’s (2008) compilation, hints at the need to make mechanical sense of 
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coseismic slip distributions instead of simply using empirical methods to predict their 

shapes. 

A major finding from empirical compilations of earthquake ruptures (e.g., 

Wesnousky, 1988, 2006; Wesnousky, 2008) is that there exists a critical stepover 

distance beyond which ruptures do not jump. These observations showed that rupture 

jumping is primarily controlled by the geometrical complexity of structural barriers such 

as stepovers and double bends. For strike-slip earthquakes, there exists a 3-4 km limit on 

the stepover distance through which recent and historic ruptures did not jump. The 

plausibility of multi-fault rupture and fault-to-fault rupture jumping that is implemented 

in UCERF3 is based on this critical distance (Field et al., 2013) despite the fact that 

rupture jumping probabilities are controlled by a multitude of factors that are not 

explained by empirical observations alone (Wesnousky, 2008). 

In this chapter, I pursue two goals: (1) show how the mechanical, frictional, and 

structural complexities of faults affect the distribution of slip over single and thousands 

of earthquakes, and (2) present a physically based method for determining the likelihood 

of fault-to-fault rupture jumping. To meet these goals, I use an earthquake simulator to 

derive a basic understanding of the effects of rate- and state-friction on the slip 

distributions of ground-rupturing earthquakes. I then investigate the controls of the 

geometry of structural barriers, sedimentary basins, and fault creep on surface slip 

distributions and slip rates at a point. This is followed by a presentation of a new method 

to compute rupture jumping probabilities. My goals are formulated in response to the 

plan put forth by UCERF of implementing future improvements to its next iteration of 
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California’s earthquake forecast model. As shown in this chapter, earthquake simulators 

will play a definitive role in improving future earthquake forecast. 

METHODS

 In this section, I provide a brief overview of earthquake simulators and the details 

of the earthquake simulator that I used. I then describe each modeling scenario and how I 

calculated rupture jumping probabilities. Figure 4.3 provides graphical definitions of fault 

stepovers and double bends that I used in this chapter. 

Earthquake Simulators 

Despite the availability of dense seismic records of recent earthquakes and 

seismic networks that record the complete earthquake cycle (interseismic – coseismic – 

post-seismic – interseismic) for small repeating earthquakes (e.g., along the creeping 

section of the San Andreas fault), a complete earthquake cycle for large (>Mw 7) 

earthquakes has yet to be documented. This forms the crux of the challenges faced by 

efforts to document the detailed processes of plate boundary evolution, the seismicity of 

faults, and the formulation of accurate earthquake forecasts. This has led to the 

development of earthquake simulators, which are numerical models that are designed to 

simulate long earthquake records using what we know about the mechanics of faults and 

the physics of earthquakes. Earthquake simulators provide us with opportunities to 

investigate earthquake phenomena that are otherwise not possible (e.g., Zielke and 

Arrowsmith, 2008). 

Several flavors of earthquake simulators have been developed over the years 

(Tullis et al., 2012). The most recent of these include ALLCAL (Ward, 2012), Virtual 

California (Sachs et al., 2012), ViscoSim (Pollitz, 2012), and RSQSim (Richards-Dinger 
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and Dieterich, 2012). These simulators incorporate one form or another of the following 

components: tectonic loading mechanism, fault interaction, implementation of various 

friction laws, and elastodynamic effects. I refer the reader to the Seismological Research 

Letters focused issue (Tullis et al., 2012) on earthquake simulators for a complete 

description of these simulators, their strengths, and limitations. 

FIMozFric Earthquake Simulator 

In this chapter I use FIMozFric (Zielke and Arrowsmith, 2008; Zielke, 2009). 

FIMozFric is a quasi-static, physics-based earthquake simulator that incorporates fault 

interaction and enables the construction of fault frameworks that are governed by 

complex friction laws. FIMozFric employs the 3D boundary element method and 

numerically models the stresses and strains that result from slip along rectangular 

displacement discontinuities (faults). Faults are embedded in a mechanically 

homogeneous, isotropic, and linear-elastic halfspace (e.g., Okada, 1992; Densmore et al. 

1998; Toda et al. 2011). FIMozFric was initially used by (Zielke and Arrowsmith, 2008) 

to generate long earthquake records and statistically interrogate the physical causes of the 

bimodality of earthquake magnitude-frequency distributions. Zielke and Arrowsmith 

(2008) found that bimodal magnitude-frequency distributions can be explained by the 

depth, and hence temperature, dependence of constitutive friction laws that govern depth-

variable coseismic stress drops. 

Friction Implementation 

In FIMozFric, faults are discretized into1 km x 1 km discontinuities, henceforth 

referred to as patches, which are assigned varying strikes and dips to simulate non planar 

surfaces. Each patch is also assigned dynamic and static coefficients of friction. The 
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difference between these coefficients varies with depth in order to simulate laboratory-

derived fault friction behavior. This is done by expanding upon the Coulomb friction law 

and implementing the depth/temperature dependency effects on fault friction. Laboratory 

friction experiments show that friction varies with slip velocity (rate dependence) and 

holding time (time since the last slip occurred on the slip interface) (e.g., Marone et al., 

1990; Blanpied et al., 1991; Beeler et al., 1994; Dieterich and Kilgore, 1994). This 

resulted in the formulation of the rate- and state-friction law (Ruina, 1983), 

,    (4.1) 

where  is the shear stress, n is the normal stress, 0 is the initial coefficient of friction, V 

is the sliding velocity, V0 is the initial sliding velocity,  is the state variable, Dc is the 

critical slip distance, and a, b are experimentally determined constants. Velocity-

weakening frictional behavior occurs when [a – b] < 0 and promotes unstable sliding 

(earthquakes) whereas velocity-strengthening behavior promotes stable sliding (creep) 

and occurs when [a – b] > 0. 

In FIMozFric, each fault patch is assigned a [a – b] value to determine its 

frictional behavior during simulations (Zielke and Arrowsmith, 2008; Zielke, 2009). 

FIMozFric also allows the distribution of velocity-strengthening and velocity-weakening 

patches to be customized so that the effects of realistic fault properties can be 

investigated (e.g., a creeping section in an otherwise locked fault, sedimentary basins, 

etc.). 

Seismic Cycle Implementation 

 FIMozFric divides the seismic cycle into interseismic and coseismic stages by 

iteratively evaluating the current state of stress along all patches given their friction 
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coefficients and the tectonic loading rate (Zielke and Arrowsmith, 2008; Zielke, 2009). 

During the interseismic stage, the tectonic loading mechanism incrementally increases 

shear tractions until they exceed the static friction strength of a patch (see Chapter 3 for a 

formulation of this criterion). The shear traction and friction strength of each patch is 

calculated at every interseismic time increment. FIMozFric enteres the coseismic stage if 

shear tractions exceed the frictional strength of at least one patch. When this happens, the 

tectonic loading mechanism is halted and the static friction coefficients of all patches that 

failed are converted to dynamic friction coefficients. Shear tractions are then relieved via 

in-plane slip. Displacements due to slip along patches are calculated using Okada’s 

(1992)formulations, which alter the local stresses in the volume surrounding the failed 

patches. These altered stresses may induce further coseismic stresses on neighboring 

patches and may cause them to fail too. Thus an earthquake is born and propagates along 

the fault until all shear tractions are released and fall below the dynamic strength of 

activated patches. Once this happens, FIMozFric enters the interseismic stage where 

static friction coefficients are reapplied to all patches and the tectonic loading mechanism 

is resumed. The above process is done quasi-statically such that no time component is 

included (i.e. the simulations are not dynamic) except to move the stress and resulting 

strain calculations forward. 

Coulomb Failure Stress Analysis: the FIMoz Model 

To help provide mechanical explanations for the results presented in this chapter, 

I employed the Coulomb failure stress (CFS) analysis in FIMoz. As with FIMozFric, 

FIMoz is a separate program that divides fault segments into 1 km x 1 km patches. 

Coulomb failure stress calculations are made using a stress boundary condition with 1 
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and 3 oriented to encourage right-lateral slip on fixed receiver faults. All receiver faults 

have the same orientation as the main faults in each model scenario. For some scenarios, 

I selected representative earthquakes from the FIMozFric earthquake catalogs to calculate 

CFS and illustrate the intricate details of how the mechanics of the rupturing process 

explain my results. All CFS calculations presented in this chapter are displayed at a depth 

of 8.5 km (half the seismogenic width). 

Fault Roughness 

FIMozFric allows for the simulation of earthquakes along faults that are either 

smooth or rough. I define fault roughness as the deviation from a planar surface. This 

deviation is described in FIMozFric by the random mid-point displacement algorithm 

(e.g., Zielke, 2009). Faults are discretized into 1 km by 1 km patches where the midpoint 

of each patch is displaced from a central fault plane. The strike and dip of each patch are 

varied along strike and with depth so that a continuous self-similar fault surface is 

constructed (e.g., Power and Tullis, 1991). Figure 4.4 illustrates the difference between a 

smooth and a rough fault. In some of the experiments presented in this chapter, I 

investigate the controls that fault roughness have on the mechanics of simulated 

earthquakes and the surface manifestation of coseismic faulting. 

Calculating Surface Slip Distributions and Slip at a Point for a Single Fault 

 To help build a basic understanding of the surface manifestations of earthquakes 

at the paleoseismic and microgeomorphic spatiotemporal scales, I start simple by 

simulating earthquakes along a single, vertically dipping strike-slip fault with a simple 

down-dip and along-strike rate- and state-dependent friction distribution. The fault is 100 

km long and 17 km wide with a 30 mm/yr tectonic loading rate applied using the self-
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induced strain formulation (Zielke, personal communication). The elastic halfspace is 

assigned a Young’s modulus of 40 GPa, Poisson’s ratio of 0.25, shear modulus of 16 

GPa, and a density of 2700 kg/m3. These parameters were used in this experiment and all 

experiments presented in the remainder of this chapter. 

Control of Stepover and Underlap/Overlap Distance on Surface Slip Distributions 

and Slip at a Point 

 It has long been known that the particular framework of structural barriers such as 

underlap/overlap regions, stepovers, and double bends controls displacement distributions 

along faults at spatiotemporal scales of single earthquakes (e.g., Wesnousky, 1988, 2006; 

Wesnousky, 2008) and over geologic time (e.g., Ferrill and Morris, 2001). Analytical 

(e.g., Segall and Pollard, 1980) and numerical (Segall, 2010) expressions provide us with 

insights into the mechanics of this relationship. However, analyses of individual 

earthquakes allow for very focused but short-term views of the surface manifestation and 

the mechanics of single earthquakes, thereby making them too fault-specific and not 

useful at helping us make generalizations about the overall coseismic behavior of faults. 

On the other hand, analyses into the cumulative displacements accommodated by faults 

over long (>10,000 years) timescales allow us to make fairly good generalizations about 

relationships (e.g., displacement-length scaling) but are too coarse to give us sufficient 

insight into the timescales in which paleoseismic and microgeomorphic analyses (several 

1000s of years ) are used to guide earthquake forecasts. This is where FIMozFric 

earthquake simulator comes in handy by providing us with the sufficient spatiotemporal 

scales of investigation. 
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 In this set of experiments, I use FIMozFric to simulate earthquakes rupturing 

through releasing steps with variable stepover distances (7 km, 5 km, and 2 km). These 

simulations were done on two fault systems; one with a 20 km underlap and the other 

with a 50 km overlap. I used the same model parameters as those described in Figure 4.5

(i.e. tectonic loading rate of 30 mm/yr, Coulomb failure with a simple [a – b] friction 

profile, etc.). 

Effect of Sedimentary Basin Depth on Surface Slip Distributions and Slip at a Point 

Earthquake ruptures that propagate through unconsolidated to poorly consolidated 

sediments are manifest by complex and sometimes obscured topographic expressions 

(e.g., Oskin et al., 2012; Moss et al., 2013). As a result, preservation of displaced features 

and their measurement by geologists in the field and remotely via lidar may not be 

representative of subsurface faulting behavior. In this set of experiments, I add another 

level of complexity to the above structural settings by including a sedimentary basin in 

the stepover regions. Consider the geometry of two right-stepping, right-lateral vertical 

strike-slip faults. This geometry creates a releasing step that is manifest as a topographic 

depression. The creation of accommodation space in the stepover region lends hand to the 

formation of thick sedimentary basins if given sufficient space and time (Burbank and 

Anderson, 2001). 

The portions of faults that are embedded in thick, poorly consolidated sediments 

exhibit velocity-strengthening frictional behavior (e.g., Chang et al., 2013). In this set of 

experiments, I simulate the presence of a sedimentary basin by assigning a region of 

velocity-strengthening friction to the faults in the overlapping section. InSAR datasets of 

recent earthquakes have determined [a – b] values that are in the range of 0.004 to 0.007 
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(unitless) at depths ranging from 0 to 7 km in fault regions where coseismic ruptures 

occurred in unconsolidated to poorly consolidated sediments (Chang et al., 2013; Kaneko 

et al., 2013; Gualandi et al., 2014). These values were corroborated by recent laboratory 

experiments for velocity-strengthening fault rocks (e.g., Chang et al., 2013). Given this 

wide range of published [a – b] friction values for sediments, I selected a [a – b] of 0.005 

for rate- and state-dependent friction in the sedimentary basins. Whether this is the 

correct number is not the point; the patterns of surface slip and slip at a point observed in 

this set of experiments is what matters and provides important insights into the control of 

sedimentary basins in accommodation zones on the surface expression of coseismic 

faulting. For each simulation, I varied the overall down-dip extent of the velocity-

strengthening basin from 1 km, 2 km, and 3 km to explore the effect of varying the depth 

of the sedimentary basin on the slip distributions and magnitudes of slip-at-a-point. I used 

the same model parameters as those described in Figure 4.5 (i.e. tectonic loading rate of 

30 mm/yr, Coulomb failure with a simple [a – b] friction profile, etc.). 

Effect of Fault Creep on Surface Slip Distributions and Slip at a Point 

In this set of experiments, I vary the [a – b] frictional strength of a shallow 

creeping section from 0.002 to 0.008 to span the range of observed [a – b] values from 

laboratory friction experiments and geodetic data (Chang et al., 2013; Kaneko et al., 

2013; Gualandi et al., 2014). The simulated earthquakes ruptured through a 100 km-long 

and 17 km-wide vertically dipping fault. The shallow creeping section spanned 40 km in 

length and had a down-dip extent of 6 km. The remainder of the fault followed a regular 

[a – b] frictional profile and the same model parameters described in Figure 4.5 (i.e. 
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tectonic loading rate of 30 mm/yr, Coulomb failure with a simple [a – b] friction profile, 

etc.). 

To Jump or Not to Jump? Rupture Jumping Probabilities 

 Determining the probabilities of multi-fault ruptures or rupture jumping has been 

a subject of research for many years. The first computational studies that investigated 

what controls rupture jumping were by Harris et al. (1991) and Harris and Day (1993). 

These studies simulated earthquakes along parallel faults and found that ruptures can 

jump through structural barriers that are up to 5 km wide for releasing steps and up to ~2 

km wide for restraining steps (e.g., Oglesby et al., 2003; Oglesby, 2008; Lozos et al., 

2012). Work by Aochi et al. (2002), Kame et al. (2003), Kase and Day (2006), and Duan 

and Oglesby (2006) used dynamic rupture models to show that rupture jumping depends 

on the geometries of faults and the structural barriers. 

 Here I expand on this work by incorporating probability calculations for rupture 

jumping given various structural arrangements in FIMozFric. I carry out experiments on 

various long earthquake records of different structural and frictional configurations. 

Given a particular structural configuration, what is the probability that a fault segment 

will rupture as a result of rupture occurring on a neighboring fault? The following section 

describes how I calculate the conditional probability of a rupture jumping from one fault 

to another for various structural configurations. I remind the reader that my numerical 

experiments do not include processes and effects that are inherent to rupture dynamics 

because FIMozFric simulates earthquakes in a quasi-static manner. 
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Calculating Rupture Jumping Probabilities 

Earthquake catalogs generated by FIMozFric provide an efficient and statistically 

robust dataset from which the probability of ruptures jumping from fault to fault across 

structural complexities can be calculated. This section describes how I compute rupture 

jumping probabilities. I then provide a worked example that demonstrates how this 

calculation is done. 

Calculating the probability of a rupture jumping from one fault to another is best 

expressed as a conditional probability. For example, consider a two-fault system 

consisting of Segments 1 and 2. If a rupture initiates on Segment 1, what is its probability 

of jumping to Segment 2? In other words, what is the probability of Segment 2 rupturing 

as a resulting of rupture occurring on Segment 1? In this question, the probability of a 

rupture jumping to Segment 2 is conditioned on Segment 1 rupturing. Using this 

formulation, I report rupture-jumping probabilities as conditional probabilities. 

Similarly, in a three-fault system that contains hypothetical fault Segments 1, 2, and 3, 

one can compute the probability of a rupture jumping by conditioning it on any segment 

of choice. For example, what is the probability of Segments 2 and 3 failing as a result of 

rupture occurring on Segment 1 (i.e. conditioned on Segment 1)? 

Two pieces of information are needed to calculate the conditional rupture jumping 

probabilities: (1) the percentage of patches in each fault segment that were activated 

during every earthquake in the catalog, and (2) the minimum number of failed patches 

needed to trigger a rupture jump from one fault to another, henceforth termed the 

“minimum patch participation level.” Given that the number of fault patches that failed 

during each event is known in an earthquake catalog, the number of patches that failed in 
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each segment during each event can easily be computed as a percentage of the total 

number of patches for both segments (e.g., 20% of Segment 1’s patches failed during an 

arbitrary earthquake). However, determining the appropriate minimum number of 

activated patches that is necessary to trigger rupture jumping is not as straightforward and 

requires a sweep through the minimum patch participation level. For example, suppose 

Event ID 2134 was a M7.6 earthquake in a hypothetical earthquake catalog for a two-

fault system, and that 23% of the patches in Segment 1 and 5% of the patches in Segment 

2 were activated. FIMozFric first searches the catalog for events that occurred on 

Segments 1 and 2 where at least x% of the patches in Segment 1 failed. For both 

segments, the participation probabilities are normalized to Segment 1’s participation 

probability and reported as rupture jumping probabilities conditioned on Segment 1. But 

what value for x should be used as the minimum patch participation level? 

Table 4.1 shows a worked example of how I calculate conditional rupture 

jumping probabilities. Note that the worked example is hypothetical. In this example, 

every time a rupture occurs along Segment 1 which activates at least 70% of its patches, 

Segment 2 has a 46% chance of participating in that rupture. Conversely, if the rupture 

jumping probability were conditioned on Segment 2, then every time a rupture occurs on 

Segment 2 that activates at least 70% of its patches, Segment 1 has a 48% chance of 

participating in that rupture. In this example, the 70% parameter is the minimum patch 

participation level. 

Determining the Minimum Patch Participation Level 

With the above in mind, which value should be used to set the minimum patch 

participation level (e.g., 70% in the example presented in Table 4.1) that is best suited to 
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determine the probability of fault-to-fault rupture jumping? Does any threshold exist for 

the least number of patches needed to fail so that a rupture can jump from one fault to 

another? The following section describes a parameter sweep that I did for the minimum 

patch participation level to determine this. 

I systematically swept through the minimum patch participation level from 0-

100% using the following structural barrier configurations (Fig. 4.6): 

Releasing step (two fault segments) 

o 20 km underlap: 7 km, 5 km, and 2 km stepover distances. 

o 50 km overlap: 7 km, 5 km, and 2 km stepover distances. 

Restraining step (two fault segments) 

o 20 km underlap: 7 km, 5 km, and 2 km stepover distances. 

o 50 km overlap: 7 km, 5 km, and 2 km stepover distances. 

Releasing double bend (three fault segments) 

o 20 km underlap between Segments 1 and 2: 7 km, 5 km, and 2 km 

stepover distances. 

Restraining double bend (three fault segments) 

o 20 km underlap between Segments 1 and 2: 7 km, 5 km, and 2 km 

stepover distances. 

In the releasing and restraining step scenarios, fault segments were 17 km-wide, 

vertically dipping right-lateral faults. Segments 1 and 2 were 100 km long and 17 km 

wide. In the releasing and restraining double-bend scenarios, the length of Segment 3 

varied as a function of the stepover distance, but in most cases was approximately 20 km 

long and 17 km wide. Segments 1 and 2 served as primary faults while Segment 3 was an 
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intermediary fault that connected Segments 1 and 2. The goals of the restraining and 

releasing double-bend experiments were to determine (1) if the intermediary fault 

(Segment 3) promoted/inhibited rupture propagation from Segment 1 to Segment 2, and 

(2) if the vergence direction (releasing/restraining) of Segments 1 and 2 controlled 

rupture jumping probabilities. 

For each experiment, I swept through the minimum patch participation level 

parameter from 0% (no patches ruptured) to 100% (all patches ruptured) for all segments 

such that the conditional probabilities of rupture jumping were computed for each fault 

(i.e. conditioned on Segments 1, 2, and 3 individually). Furthermore, all experiments 

were performed on smooth and rough fault topologies to determine if fault roughness 

controlled rupture jumping probabilities. I used the same model parameters as those 

described in Figure 4.5 (i.e. tectonic loading rate of 30 mm/yr, Coulomb failure with a 

simple [a – b] friction profile, etc.). 

Relative Rupture Time 

 Although the above simulations were quasi-static in nature (as opposed to fully 

dynamic simulations of rupture propagation), the iterative mechanical interaction 

between individual patches allows for the tracking of when patches fail relative to each 

other. Therefore, although FIMozFric cannot dynamically simulate individual ruptures, 

the relative timing of when patches fail in each earthquake can be interrogated to 

statically illustrate the order in which patches failed and hence serve as a proxy for 

rupture time. Figure 4.7 is an example of the relative rupture time for a single earthquake. 

Red patches are patches that ruptured first, followed by yellow, green, blue, and finally 

purple patches that failed last. In this example (Fig. 4.7), the rupture initiated in the center 
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of the fault and propagated outward from this nucleation site. The utility of this feature in 

FIMozFric is that one can quasi-statically investigate the path along which earthquake 

ruptures pass around local asperities (in rough faults, for example) and whether ruptures 

initiate at these asperities or within structural barrier zones. 

Fault Topologic Effects on Rupture Jumping Probabilities 

 The nature of smooth faults generated in FIMozFric is such that the variability in 

their surface morphology is low. As a result, rupture jumping probabilities for smooth 

faults are not expected to be controlled by the minor differences in the strikes and dips of 

patches that make up smooth faults. On the other hand, asperities along rough faults may 

influence rupture jumping probabilities. To investigate this, I ran two sets of simulations 

on rough faults. The first set of simulations was run on two vertical strike-slip faults with 

a 50 km overlap and 7 km stepover distance. The second set of simulations was done on 

two vertical strike-slip faults with a 50 km overlap and 2 km stepover distance. Both sets 

of simulations were repeated 10 times with different topologies, where each run swept 

through the minimum patch participation level from 0-100% for both fault segments. I 

used the same model parameters as those described in Figure 4.5 (i.e. tectonic loading 

rate of 30 mm/yr, Coulomb failure with a simple [a – b] friction profile, etc.). 

Effect of Structural Barrier Geometry and Fault Roughness on Rupture Jumping 

 The final set of experiments includes varying the underlap and overlap distances 

between two faults in order to determine their effects on the probabilities of rupture 

jumping. This set of experiments was done on smooth and rough right-stepping faults. 

Stepover distances ranged from 2 km to 4 km at 1 km increments. Underlap and overlap 

distances ranged from -5 km (underlap) to 5 km (overlap) using. Each structural 
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configuration was simulated 5 times. All rupture jumping probabilities were computed 

using the 80% minimum patch participation level. 

RESULTS 

Surface Slip Distributions and Slip at a Point 

Single Fault with Simple Friction 

 Simulations of earthquakes along a single fault with a simple [a – b] friction 

profile (Fig. 4.5) resulted in surface slip distributions that were relatively simple. Along-

strike slip distributions for the first 10 earthquakes were elliptical and tapered to zero at 

both fault ends (Fig. 4.5A). The location of slip maxima for individual earthquakes varied 

around the center of the fault along strike. However, the longer records of slip 

distributions for 50 and 100 earthquakes showed that there was no predictable variation 

in the location of slip maxima along strike. In fact, the cumulative surface slip reached a 

steady-state shape that flattened along the majority of the fault length and tapered to zero 

at the fault ends. Similarly, the slip histories of individual patches showed behavior that 

was expected from a simple fault with relatively simple frictional and roughness 

properties (Fig. 4.5B). Deep patches (patch # 263, 858, and 1453) had slipped by the 

same magnitude during every earthquake at a relatively uniform slip rate. Surface patches 

exhibited the same slip histories but with smaller slip magnitudes per event. 

Two Faults with Simple Friction 

Simulations of earthquakes in two-fault systems with varying overlap/underlap 

and stepover distances showed interesting results. Faults that were far apart (Fig. 4.8) 

exhibited single patch slip histories and surface slip distributions that were similar to 

those simulated along a single fault. However, when the two fault segments were in close 
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proximity to each other (Fig. 4.11, Fig. 4.12, and Fig. 4.13), the slip histories of 

individual patches near the stepover region were irregular in magnitude and timing (e.g., 

patches 1445 and 1972 in Fig. 4.13). Patches in the overlap region followed an 

unpredictable behavior such that slip and slip magnitude at a point clustered along strike 

and temporally. Furthermore, when considering the surface slip distributions for two 

faults in close proximity to each other, significant steepening of the along-strike slip 

gradient occurs such that the locations of displacement maxima were skewed toward the 

stepover region (Fig. 4.13A), as has been seen before (e.g., Burgmann et al., 1994; 

Willemse et al., 1996) 

Sedimentary Basin 

Slip histories for shallow patches in the overlapping region that contained the 

simulated velocity-strengthening basin (patch # 1445 and 1972) showed different 

behaviors as the depth of the sedimentary basin increased from 1 km to 3 km (Fig. 4.14A, 

Fig. 4.15A, and Fig. 4.16A, respectively). As the depth of the sedimentary basin 

increased, surface-rupturing earthquakes became more sporadic in time. The absolute 

magnitude of slip per earthquake in the overlap region varied sporadically; periods of 

relatively consistent slip-at-a-point were punctuated by episodic large surface slip. 

Surface slip distributions in all three scenarios (Figs 4.14B, 4.14B, and 4.14B) showed 

slip deficits in the overlap region. This deficit is especially pronounced in the long-term 

record of surface slip distributions (the 100-event record in Figs. 4.14B, 4.14B, and 

4.14B). 
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Creeping Section 

Using a [a – b] value of 0.002 (Fig. 4.17A), the slip history of a single point 

located in the middle of the creeping section (patch # 850 in Fig. 4.17A) exhibited 

sporadic slip behavior with a hint of clustering of low-magnitude slip events that were 

punctuated by large slip events. Increasing the [a – b] value to 0.004 through 0.006 (Figs. 

4.18A, 4.18A, and 4.18A) resulted in more regular surface slip histories and surface 

records of coseismic events that had relatively larger slip magnitudes. In terms of surface 

slip distributions, the creeping section showed low cumulative slip relative to the 

remainder of the fault that did not creep. On the scale of a few earthquakes (e.g., plots of 

10 events in Figs. 4.17B, 4.18B, 4.19B, and 4.20B), the presence of small slip 

magnitudes was not as obvious as that displayed in the long-term record of slip 

distributions (e.g., plots of 100 events in Figs. 4.17B, 4.18B, 4.19B, and 4.20B). 

Rupture Jumping Probabilities 

Minimum Patch Participation Level 

 I designed this set of experiments to constrain the most appropriate minimum 

patch participation level to use in my rupture jumping probability calculations. I 

compared the conditional rupture jumping probabilities using 0-100% minimum patch 

participation levels of  for different configurations of structural barriers that contained 

smooth and rough faults. Figures 4.21 through 4.24 show these results. To help keep 

things organized, I report the results of each structural configuration separately. 

Releasing step, 20 km underlap and 50 km overlap 

Figure 4.21 presents the results from this set of experiments for smooth and rough 

faults. In general, smooth faults had slightly higher rupture jumping probabilities than 
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their rough counterparts given a large stepover distance of 7 km (Fig. 4.21A). However, 

decreasing the stepover distance increased the conditional rupture jumping probabilities 

to a little over 10% for smooth and rough faults in all minimum patch participation levels 

(Figs. 4.21E and 4.21I). For simulated stepover distances of 7 km and 5 km where the 

overlap was 50 km, rupture jumping probabilities had a slight increase to 15% in most 

minimum patch participation levels (Fig. 4.21C and 4.21G). However, when the two fault 

segments were in close proximity to each other (50 km overlap with a 2 km stepover 

distance; Fig. 4.21K), rupture jumping probabilities increased to 45% for smooth and 

rough fault segments, especially in the 50-80% minimum patch participation levels. 

Restraining step, 20 km underlap and 50 km overlap 

 Figure 4.22 presents the results from this set of experiments for smooth and rough 

faults. In the underlapping cases, rupture jumping probabilities were uniform in all 

minimum patch participation levels and hovered around 10% (Fig. 4.22A, 4.22E, and 

4.22I). Conversely, the rupture jumping probabilities increased systematically from ~15% 

in the 7 km stepover case to 35% in the 2 km stepover case for smooth faults. Rough 

faults, however, had higher rupture jumping probabilities of up to 45% in the 2 km 

stepover case and significantly increased to 90% for minimum patch participation levels 

>60% (Fig. 4.22C, 4.22G, and 4.22K). 

Releasing and restraining double bends, with 20 km underlap 

 Figures 4.23 and 4.24 present results from the set of experiments I carried out on 

releasing and restraining double bends, respectively. In both cases, there was a marked 

difference between the rupture jumping probabilities along smooth faults versus rough 

faults. In almost all structural geometries for smooth faults, jumping probabilities 
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exceeded 70% in all minimum patch participation levels on all three segments. 

Furthermore, in all minimum patch participation levels for smooth faults, the conditional 

rupture jumping probabilities of Segment 3 were significantly higher than for Segments 1 

and 2. Rough faults, on the other hand, had lower rupture jumping probabilities (between 

30% and 50%). 

Fault Topologic Effects 

Cases where the rupture jumping probabilities were anomalously high, (e.g., 

rough faults in Fig. 4.22A) suggested that rupture jumping probabilities may be 

influenced by the topology of the fault segments. However, there is no topologic control 

on rupture jumping probabilities based on simulations for 10 different fault roughness 

cases (Fig. 4.25). In both stepover distances (Fig. 4.25B and 4.25D), the calculated 

rupture jumping probabilities for all minimum patch participation levels ranged within a 

few percent. However, using 10 simulations may not be enough to determine the full 

effects of fault topology on rupture jumping, which calls for a more rigorous statistical 

approach (see Discussion). 

Effect of Structural Barrier Geometry and Fault Roughness on Rupture Jumping 

 I ran this set of experiments on two right-stepping faults where several 

relationships emerged between rupture jumping probabilities, the geometry of structural 

barriers, and fault roughness. In the case of the 4 km stepover distance for smooth faults 

(Fig. 4.26A top plots), rupture jumping probabilities ranged between 10% and 25% for all 

underlap/overlap distances. For the case of rough faults at the 4 km stepover distance 

(Fig. 4.26A bottom plots), rupture jumping probabilities were less than 10% for underlap 

distances <-3km, then increased to 10-25% from an underlap distance of -3 km to an 
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overlap distance of 2 km. The rupture jumping probabilities then decreased to ~10% for 

overlap distances >2 km. In the case of the 3 km stepover distance (Fig. 4.26B), both 

rough and smooth fault sets had rupture jumping probabilities that ranged between 10-

30% and increased to >30% at overlap distances >3 km. For the smooth faults with a 2 

km stepover distance (Fig. 4.26C), the range of rupture jumping probabilities increased to 

20-50%. This range remained constant for underlap/overlap distances between -5 km and 

3 km but decreased to <30 % for stepover distances >3 km (Fig. 4.26C top panels). 

Conversely, the rupture jumping probabilities for rough faults increased from 10-20% up 

to ~40% for underlap/overlap distances between -5 km to ~1 km (Fig. 4.26C bottom 

panels). These probabilities then showed a marked increase to 70% for overlap distances 

>2 km. 

DISCUSSION 

Surface Slip Distributions and Slip at a Point 

Single Fault with Simple Friction 

 The intended purpose of this simulation was to check the modeled behavior of 

earthquakes with what is known about earthquake behavior along faults with simple 

geometries and frictional properties. Results from this simulation are as expected and in 

fact widely observed in models of slip distributions for crack-like dislocations 

(Burgmann et al., 1994). The slip histories of deep and shallow patches are expected for a 

simple fault geometry and the given [a – b] friction profile, which led to an earthquake 

record that lacked spatiotemporal clustering of slip events. The overall characteristic 

behavior of slip histories of deep patches is consistent with episodic events that occur 

with some regularity at the base of the seismogenic zone. This observation agrees with 
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many strike-slip and dip-slip earthquakes and is common to all deep slip histories 

simulated in this chapter. 

Two Faults with Simple Friction 

The spatiotemporal clustering of earthquakes in the stepover region of two closely 

spaced faults can be explained in terms of mechanical interaction. It has long been shown 

that the stress field due to slip along a single fault mechanically interacts with the stress 

field of a nearby fault (Segall and Pollard, 1980). When considering this principle in 

terms of coseismic stress transfer between two faults, the propagation of a rupture along a 

fault may trigger failure along nearby faults if they are critically stressed; that is, if the 

receiving fault is optimally oriented and stressed to the point of failure. This has been 

shown to occur in terms of static Coulomb stress transfer (e.g., Toda et al., 2011) and 

stress transfers due to dynamic rupture processes (e.g., Harris et al., 1991; Oglesby, 2008; 

Lozos et al., 2012). From the observed time-intermittent coseismic slip near fault ends, I 

infer that the stress transfer between one fault to another does not occur at a constant rate 

between earthquakes. This explains the observed spatiotemporal clustering of 

earthquakes within my modeled stepover regions (e.g., Fig. 4.13) and points toward 

earthquake synchrony. Scholz (2010)suggested the synchronization of earthquakes along 

mechanically interaction faults by analyzing paleoseismic data from some of the major 

fault systems in southern California. Although the spatial scale of Scholz’ (2010) analysis 

is at least an order of magnitude greater than that of my simulations, the synchronous 

transfer of stress, and hence earthquakes, from one fault to another is clear along 

structural barriers. Similarly, the steepening of along-strike slip gradients near the overlap 

regions of two faults (Fig. 4.11, 4.12, and 4.13) can be explained by mechanical 
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interaction. This interaction is expected and has been shown to be controlled by the 

increased CFS in the stepover region (Willemse et al., 1996; Willemse, 1997). 

Sedimentary Basin 

 Overall, significant spatiotemporal clustering of surface-rupturing events was 

present in the overlapping faults scenario with a thick sedimentary basin. This was due to 

the velocity-strengthening sedimentary basin that acted to impede the propagation of 

ruptures from the base of the seismogenic zone to the ground surface. I interpret this as 

the cause for the episodic nature of slip histories of the surface patches (patch # 1445 and 

1972). A clear relationship exists between the thickness of the sedimentary basin and the 

episodic nature of surface slip histories; as the thickness of the sediment basin increased, 

slip histories at a point in the overlapping region were increasingly regular with 

infrequent large-slip magnitude events punctuating frequent small-slip magnitude events. 

Similarly, the coseismic slip deficit in the overlap region increased with the depth of the 

sedimentary basin. 

Results from this set of simulations may play a critical role in implications related 

to the accuracy of paleoseismic data interpretations of the timing and magnitude of 

earthquakes that rupture through faults embedded in thick sedimentary basins. Thick 

velocity-strenghtening basins may act as rupture barriers by absorbing the rupture’s 

energy. Therefore, during the interseismic period, stress build-up is concentrated along 

the lower edges of sedimentary basins that are then released as very large-magnitude (>M 

7) coseismic events that are able to penetrate the velocity-strengthening basin. The 

surface record of coseismic faulting would therefore be clustered in space and time. I 

posit that there exists a relationship between the overall thickness of the sedimentary 
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basin and the degree of spatiotemporal clustering of earthquakes. In cases where the basin 

was shallow (e.g., the 1 km basin in Fig. 4.14), strain accumulation along the lower edges 

was low and thus large ruptures were able to punch through the basin. In cases where the 

basin was deep (e.g., the 3 km basin in Fig. 4.16), large strain accumulation likely existed 

at the lower edges of the basin and resulted in a large updip strain gradient from the base 

of the seismogenic zone through the basin. Only the largest of earthquakes were able to 

propagate through the basin and make it to the ground surface. Given enough time as 

shown in the earthquake catalog, this resulted in a large temporal clustering of 

earthquakes through the thick sedimentary basin. 

Creeping Section 

Increasing the velocity-strengthening friction behavior of the creeping section led 

to increasing the impedance of coseismic ruptures such that only very large earthquakes 

penetrated through the creeping section. This in essence mirrors the effects of the 

velocity-strengthening base of the seismogenic zone, where only large earthquakes are 

able to penetrate it (Sibson, 1984). 

 With respect to the record of surface slip distributions, the fact that coseismic slip 

distributions in the creeping section exhibited smaller magnitudes of cumulative slip 

implies that a significant slip deficit existed in the creeping section. This is especially 

apparent in the highly velocity-strengthening creeping section scenario (Fig. 4.20B). 

However, this behavior is only clearly visible in the long-term record of coseismic 

faulting. The short-term record does not include a clear signal of coseismic ruptures, 

suggesting that large coseismic events may not have a clear geomorphic expression in 
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creeping sections. Instead, only the long-term geomorphic record of coseismic ruptures is 

preserved in creeping sections.  

Rupture Jumping Probabilities 

Minimum Patch Participation Level 

Stepovers 

A common observation from all of my experiments to determine the most 

appropriate minimum patch participation level was that when fault segments were far 

apart, the rupture jumping probabilities were low, and vice versa for when the two fault 

segments were close and overlapping. This relationship is expected and can be explained 

using CFS analyses for individual earthquakes given stress boundary conditions that 

promote right-lateral strike-slip faulting. For faults that were far apart (e.g., Fig. 4.21B 

and 4.21F), the computed CFS lobes around the ends of the segments that ruptured placed 

the ends of the faults that did not rupture in stress shadows (negative CFS regions in Fig. 

4.21B, 4.21F, and 4.21J). This mechanical setting was not conducive for ruptures to jump 

from the activated segments to the others. This explains the low rupture jumping 

probabilities for faults that were far apart in a releasing step geometry. Considering cases 

where faults were close to each other (e.g., Figs. 4.21L and 4.21M), faults that did not 

participate in the main ruptures were optimally oriented and within regions of positive 

CFS. As a result, they were more likely to participate in ruptures that originated in the 

segments on which the rupture jumping probabilities were conditioned. As with the 

underlapping geometries, when considering the entire earthquake record for overlapping 

faults with short stepover distances, the rupture jumping probabilities were markedly high 

regardless of onto which fault the probabilities were conditioned. 
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Double bends 

 Similar to the above discussion about fault steps, the interesting observation that 

smooth faults in a double-bend system have much higher rupture jumping probabilities 

than their rough counterparts can be explained by the mechanics of the fault system. The 

relative rupture time for an example earthquake (Event ID 2508; M7.71) is plotted in 

Figure 4.23B and shows this phenomenon well. The rupture originated on Segment 2, 

propagated through Segment 3, and continued along Segment 1 even though the underlap 

and stepover distances were relatively large (20 km and 7 km, respectively). Segment 3 

was optimally located in the positive CFS region of Segment 2, thereby allowing the 

rupture to propagate through the double bend. In another earthquake (Event ID 3677; 

M7.69; Fig. 4.23F), the rupture originated in the bend region along Segment 3 and 

propagated bilaterally to Segments 1 and 2 (see relative rupture time plot in Fig. 4.23F). 

In this case, Segments 1 and 2 were optimally located in the positive CFS lobes of 

Segment 3, which enhanced the rupture’s propagation along these segments. There were 

significant differences in the computed single-earthquake CFS for these smooth faults 

compared to their rough counterparts. Figures 4.23C and 4.23L (Event IDs 1174 and 

1400, respectively) are good examples of such differences and show ruptures that 

originated along Segment 1, propagated through and terminated at Segment 3. Regions of 

positive CFS were much smaller and irregular than those computed for the smooth faults, 

indicating that the majority of the rupture energy was consumed by overcoming local 

asperities along the rough fault surfaces. This limited the extent of the ruptures along 

strike and hence lowered its jumping probability. This also explains the high rupture 

jumping probabilities along Segment 3 when conditioned on either Segments 1 or 2; 
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ruptures that originated in either Segments 1 or 2 had high probabilities of involving 

Segment 3 whether the rupture jumped from Segment 1 to Segment 2 or vice versa. 

Effect of Structural Barrier Geometry and Fault Roughness on Rupture Jumping 

Interestingly, the jumping probabilities were consistently higher for ruptures that 

occurred along smooth faults than rough faults in geometries where faults were farther 

apart. This relationship reversed when the faults were closer to each other; rough faults 

had higher rupture jumping probabilities than smooth faults within the same structural 

barrier geometry. I postulate that the cause of the reversal in rupture jumping 

probabilities is the mechanics of rough faults. Ruptures that occur on smooth faults are 

not faced with the local asperities that are found in rough faults. I will explain this in 

terms of elastic strain energy as follows (Jaeger et al., 2007). Consider a three 

dimensional linear-elastic solid that is made of cubic elements and is subjected to 

external compressional forces. Using the convention of tension is positive, each face of 

this element is subjected to normal ( ij) and shear ( ij) tractions as follows (Pollard and 

Fletcher, 2005): 

 

Deformational forces that are applied to an elastic volume dV result in normal strains ( ij) 

and shear strains ( ij) along each face of this cubic element. Thus, the incremental strain 

energy dU stored in this volume is 
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. (4.2) 

The total elastic strain energy U can be determined by integrating dU over the entire 

volume V, 

. (4.3) 

This expression can then be simplified by vectorizing the stresses and strains as follows: 

,     (4.4) 

,     (4.5) 

.     (4.6) 

Following the principle of conservation of energy, work that is stored in the 

deformed body takes the general form of elastic strain energy U, which is potentially 

available to cause slip along dislocations in the surrounding volume. The elastic strain 

energies that are produced and stored in the elastic halfspace during ruptures along 

smooth faults are expended on propagating the rupture along the faults. On the other 

hand, ruptures along rough faults consume a significant proportion of the elastic strain 

energy so that they can overcome asperities in the fault surface. The extent of the rupture, 

and hence the volumetric extent of positive CFS regions, is limited along rough faults. As 

a result, for ruptures to jump from one rough fault to another requires both faults to be 

close to each other. This explanation can also be applied to cases where earthquakes 

ruptured through rough faults in double-bend geometries (Figs. 4.23C, 4.23G, 4.23L, 

4.23C, 4.23F, and 4.23I). 
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Implications for the Rupture Process Zone 

 Taking into consideration the effects of variable fault roughness as illustrated in 

my topology analysis and my choice of using the 80% minimum patch participation level 

in computing rupture jumping probabilities, the relationships that emerged above provide 

physical insights into the rupture process zone. The rupture jumping probabilities for a 

long stepover distance (Fig. 4.26A) compared to a short stepover distance (Fig. 4.26C) 

for smooth faults showed a noticeable decline in the rupture jumping probabilities for 

overlaps that exceeded 3 km. This implies that a threshold exists for rupture jumping 

probabilities beyond which they decrease with increasing overlap distances for smooth 

faults. Empirical analyses of rupture jumping occurrences from recent and historic 

earthquakes by Wesnousky (2008) led him to postulate that there exists a 3-4 km distance 

beyond which strike-slip earthquakes do not propagate. He attributed this to a vertical 

cylindrical process zone with a 3-4 km radius that operates at the rupture front and 

remains largely invariable during the rupture (Fig. 4.27). This process zone places an 

upper limit on the crustal volume that is affected by stress changes at the rupture front, 

which in turn affects the triggering potential of faults that are encountered by the process 

zone (Wesnousky, 2008). This conceptual model explains the results derived from my 

earthquake simulations along smooth faults. However, my results for rough faults (Fig. 

4.26C) imply that there is a degree of control that rough faults have on rupture jumping 

probabilities (e.g., Saucier et al., 1992; Dieterich and Smith, 2009; Dunham et al., 2011). 

Consider the following from the perspective of coseismic shear stress concentrations. 

Figure 4.28 shows conceptual plots of coseismic shear stress plotted as a function of fault 

strike for smooth and rough faults. Shear stress along a smooth fault that is subjected to a 
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uniform slip distribution is concentrated at the fault tips (Fig. 4.28A). In the case of a 

rough fault with a non-uniform along-strike slip distribution, shear stress concentrations 

are invariable due to local fault topologic complexities (Fig. 4.28B). This results in large 

stress fluctuations along strike that are comparable in magnitude to the high stress 

concentrations at the fault tips (Burgmann et al., 1994). Therefore, I posit that the 

geometric complexity of faults, and in particular fault roughness, affects rupture 

propagation such that elastic strain energies are consumed by overcoming fault asperities 

and thus are unavailable to be expended for coseismic slip. The variability in stress 

concentrations along rough faults and the increase in rupture jumping probabilities 

between rough faults leads me to conclude that the radius of the process zone changes in 

lateral and vertical extent as the rupture propagates through rough faults or through rough 

regions of otherwise smooth faults (Fig. 4.29). I postulate that the radius of the rupture 

process zone increases with increased fault roughness such that the volume that is 

affected by stress change at the rupture front is variable. Therefore, the forcing of 

ruptures through structural complexities will depend on the size of the process zone and 

hence the roughness of the faults near the structural complexity (Fig. 4.29). 

Implications for Future UCERF Iterations 

A central implication of my modeled spatiotemporal clustering of surface-

rupturing earthquakes concerns paleoseismic interpretations of earthquakes near fault 

ends. Even though my modeled spatiotemporal clustering of earthquakes near stepover 

regions is non-unique, it indicates that correlation of individual ruptures from one fault 

segment to another is not as straightforward as one would like it to be, especially given 

the long-term (>1,000 year scale) irregularity of slip at a point near fault ends in stepover 
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regions. Paleoseismic datasets provide detailed records of only those coseismic strains 

that are localized along faults. However, interpretations derived from these studies cannot 

constrain the overall coseismic behavior of a fault if deformation is distributed across 

multiple fault strands, especially where ruptures are able to jump across structural 

barriers. So the need to create rules for whether a rupture will jump a structural barrier is 

high. 

Faults in the UCERF3 fault model have varying attitudes but are composed of 

planar elements (Field et al., 2013). As seen from the above analyses, rupture jumping 

probabilities have strong ties with fault roughness and thus need to be implemented into 

future UCERF iterations. This may be difficult to do given how little is known about 

actual fault roughness for California’s faults. However, using simple rules such as total 

fault displacement as a proxy for age, and hence fault roughness (i.e. the younger the 

fault, the rougher it is), may provide a first-order approximation for fault roughness in 

future UCERF implementations. Lidar-derived roughness measurements of exposed 

faults (e.g., Bistacchi et al., 2011) can provide further insights into the nature of fault 

roughness. 

The computed rupture jumping probabilities highlight the importance of structural 

barrier geometry in determining the likelihood for a rupture to jump. At present, 

UCERF3 invokes a 3-5 km fault-to-fault distance rule to determine the plausibility of 

rupture jumps (Field et al., 2013). Future iterations of UCERF can and should improve 

upon this by including the use of earthquake simulators in simulating on-fault seismicity. 

I envision this being implement as a more sophisticated and mechanically based 

plausibility scheme for rupture jumping than what UCERF currently employs. For 
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example, FIMozFric can be used to simulate thousands of earthquakes given the variety 

of fault junctions and structural barriers that are present in the current UCERF fault 

model. Simulations need not be performed statewide in one go. They can be carried out 

piecewise for every fault junction given the available geologically derived slip rates. The 

plausibilities for rupture jumping across UCERF’s statewide fault model can then be 

ranked by the computed rupture jumping probabilities and included in the UCERF Grand 

Inversion. Such an approach is certainly possible using present-day computing 

capabilities (e.g., the average time to complete one simulation using 1 km x 1 km fault 

patches was 20 minutes using a 16 Gb RAM, 8 core computing node on the ASU 

Advanced Computing Center – a time that can be cut by more than half if FIMozFric 

were parallelized!). This would be an improvement to UCERF’s current ranking system 

for rupture jumping, which at present analyzes rupture jumping probabilities for all fault 

junctions/stepovers statically and then ranks them once for single earthquakes (Parsons et 

al., 2012). The statistically significant number of simulated earthquakes (e.g., >1000 

earthquakes per simulation per fault junction) would provide a more robust analysis of 

rupture jumping probabilities on a junction by junction basis. Therefore, it is clear that 

earthquake simulators can play an important role in the next iteration of UCERF. 

Assumptions and Other Ponderings 

It is interesting to note that the locations of rupture nucleation in all simulated 

structural geometries are independent of fault roughness. This indicates that asperities 

along rough faults do not control where ruptures are likely to initiate in my models. 

However, a systematic analysis is needed to investigate whether such a relationship 

exists. Future work should involve using the Monte Carlo method to generate thousands 
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of earthquake simulations using faults with randomly assigned roughness. Locations of 

rupture nucleation can then be compared with asperities along those faults. A related 

element that I did not explore in this chapter is rupture directivity. Figures 4.23B and 

4.23F show how ruptures can propagate either unilaterally or bilaterally away from their 

nucleation sites. What controls this and is it predictable? Is it related to fault roughness, 

fault friction, or fault structural complexity? Future work may employ FIMozFric to 

answer these questions and perhaps add another set of rules to the UCERF decision tree 

of where ruptures will likely initiate given different fault scenarios. 

My chosen 80% minimum patch participation level to compute rupture jumping 

probabilities renders them non-unique. It is likely that different rupture jumping 

probabilities can be calculated for the same fault geometries but with different degrees of 

roughness and minimum patch participation levels. A more robust approach would be to 

perform the same parameter sweep that I did for the minimum patch participation level 

thousands of times using different fault roughness values so that a deeper understanding 

of the topologic effect on rupture jumping probabilities can be achieved. 

It is important to note that all deformation considered in this chapter is coseismic. 

Given the quasi-static nature of FIMozFric and its assumption of a linear-elastic 

halfspace, it is not possible to account for the effects of time-dependent afterslip caused 

by viscoelastic relaxation following large earthquakes. We know from geodetic 

observations that postseismic deformation is a phenomenon that occurs hours to months 

after large earthquakes (Segall, 2010). This secondary deformation may significantly add 

to the total magnitude of slip preserved in the earthquake record of fault zones. Therefore, 

all of my simulated along-strike slip distributions and on-fault slip should be considered 
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minima and non-unique because they neglect postseismic secondary deformation. With 

the exception of ViscoSim (Pollitz, 2012), the assumption of linear elasticity in current 

earthquake simulators limits the extent of interpretations of rupture processes to 

phenomena that occur in the seismogenic zone alone. Therefore, I cannot use my results 

to explain complex interactions between the deep lithosphere and the seismogenic zone. 

 One thing to keep in mind here is that, given the elastic nature of the simulator’s 

formulation, no plastic deformation (e.g., folding, warping) is allowed. As a result, the 

model does not allow for new faults to form in areas where the elastic strength of the 

halfspace is exceeded. The model likely does not represent that deformation accurately in 

the sedimentary basin because I expect plastic deformation to occur in the form of off-

fault warping (e.g., Oskin et al., 2012). Ideally, the simulator would incorporate the 

principles of damage mechanics to allow for the formation of new faults and/or plastic 

deformation in the simulated sedimentary basin. 

One major assumption in this model, which is related to its limitation of being 

quasi-static in formulation, is that the transition of [a – b] from creep to stick-slip 

behavior is fixed along strike and downdip. It has been shown by dynamic earthquake 

models that the depth and along-strike extent of creeping sections can vary during 

interseismic periods of the earthquake cycle (e.g., Kaneko et al., 2013). Therefore, a 

significant complication arises in interpreting my results in that the distribution of [a – b] 

can vary in space and time, making it nearly impossible to come up with a generalized set 

of rules for interpreting surface slip measurements or histories (from paleoseismology) of 

creeping sections. My simulation results for a creeping section in a fault are non-unique 

and should be used with caution. 
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As with other earthquake simulators, FIMozFric does not allow for the 

topographic degradation of displaced geomorphic markers in the computed along-strike 

slip distributions. When considering the length of earthquake records generated in my 

simulations (between 5,000 and 10,000 years long), the modeled along-strike slip 

distributions and surface patch slip histories should be considered maximum values 

because they are not allowed to geomorphically degrade over the simulation time. We 

know that this is unrealistic (see Chapter 2 for a quantification of fault scarp degradation, 

for example). Future iterations of earthquake simulators could consider incorporating 

some geomorphic degradation law to allow the modeled topographic expressions of 

coseismic faulting to degrade (e.g., Densmore et al., 1998). Of course, this means that 

additional geomorphic parameters such as climatic conditions and forcing rates must be 

known. 

In all of my simulations, the loading mechanism and rate were held constant at 30 

mm/yr. Therefore, all model scenarios that exhibit spatiotemporal clustering of 

earthquakes (whether in simulations of creeping fault sections or in structural barriers) 

should be attributed to mechanical processes in the seismogenic zone. Although this 

serves my needs here, my results could significantly vary if I assume a different loading 

mechanism or rate. Future work should investigate the effects (if any) that loading 

mechanisms and rates have on the surface slip distributions and rupture jumping 

probabilities for the scenarios that I explored here. 

CONCLUSIONS 

In this chapter, I investigated the effects of fault structural and frictional 

complexities on earthquake-generated deformation. I used the FIMozFric earthquake 
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simulator to model these effects by setting up various scenarios of fault 

structural/geometrical configurations and frictional complexities. Although my results are 

non-unique and may be limited by the assumptions of linear elasticity and lack of rupture 

dynamics, I found that key relationships exist between the configuration of structural 

barriers, fault frictional properties, fault roughness, and the surface expression of 

coseismic deformation. Based on these relationships, I expanded upon the concept of a 

fixed-radius rupture process zone that controls multi-fault ruptures and fault-to-fault 

rupture jumping probabilities. I proposed that the size of this process zone is not fixed but 

in fact varies as a function of fault roughness. This variation occurs in three dimensions. 

The central implication of my results lies in guiding the interpretation of the surface 

manifestation of coseismic faulting, paleoseismic data, and the formulation of rupture 

jumping rules in future iterations of earthquake forecasts. Earthquake simulators such as 

FIMozFric offer several opportunities for advancements in future implementations of 

earthquake forecasts such as the Uniform California Earthquake Rupture Forecast. 
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FIGURES 

Figure 4.1. Synoptic overview of fault zone processes that take place in the upper 

lithosphere and as manifested in the topography of fault zones. Geologic and seismic 

properties of the seismogenic zone (outlined in red) determine the lateral and vertical 

extents of interseismic, coseismic, and post-seismic strains, and how they are transmitted 

to Earth’s surface. The prehistoric and historic record of coseismic faulting is recorded in 

the topography of fault zones as fault scarps and displaced geomorphic markers. Derived 

from concepts that were developed by Vedder and Wallace (1970), Sylvester (1999) and 

Scholz (2002). Figure elements are not to scale. 

 

Figure 4.2. Examples of the complexities surface rupture traces and slip distributions of 

recent earthquakes for (A) the 1987 Superstition Hills earthquake in California, (B) the 

1968 Borrego Mountain earthquake in California, and (C) the 1887 Pitaycachi earthquake 

in Sonora, Mexico. Modified from Wesnousky (2008). 

 

Figure 4.3. Definitions of structural barrier geometries used in simulations. (A) Map 

views of a releasing step, a restraining step, a releasing double bend, and a restraining 

double bend. (B) Map views of an underlap and an overlap. 

 

Figure 4.4. Examples of a smooth and a rough fault. Faults are discretized into 1 km by 1 

km patches. Strikes and dips of patches in smooth faults have little deviation from each 

other. Conversely, patches in rough faults have variable strikes and dips, which results in 

an overall rougher fault geometry. 
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Figure 4.5. Model configuration for a single vertical fault with a simple [a – b] friction 

profile. (A) Top panel illustrates the fault geometry and modeled friction. The fault is 17 

km wide and 100 km long with an applied right-lateral slip rate of 30 mm/yr. Lower 

panels show computed surface slip distributions (right-lateral) for the first 10, 50, and 

100 earthquakes in the earthquake record generated by this simulation. (B) Patch slip 

histories for six selected patches. Selected patches are numbered and indicated in the 3D 

block model. 

 

Figure 4.6. Matrix showing the various model setups and fault configurations on which 

earthquakes were simulated. The structural setting in the first column is for two vertical 

strike-slip, right-lateral faults with 20 km of underlap and variable stepover distances. 

The second column illustrates the same two faults with 50 km overlap and varying 

stepover distances. 

 

Figure 4.7. Relative rupture time for patches that failed during an example earthquake on 

a smooth fault. The rupture nucleated at a depth of ~10 km toward the center of the fault 

along strike. Black arrows point in the direction of rupture propagation, indicating a 

bidirectional rupture propagation from the nucleation zone. 

 

Figure 4.8. Patch slip histories for six selected patches in two right-stepping faults with a 

20 km underlap and 7 km stepover. (A) Selected patches are numbered and indicated in 

the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-
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lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.9. Patch slip histories for six selected patches in two right-stepping faults with a 

20 km underlap and 5 km stepover. (A) Selected patches are numbered and indicated in 

the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-

lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.10. Patch slip histories for six selected patches in two right-stepping faults with 

a 20 km underlap and 2 km stepover. (A) Selected patches are numbered and indicated in 

the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-

lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.11. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 7 km stepover. (A) Selected patches are numbered and indicated in 

the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-

lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.12. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 5 km stepover. (A) Selected patches are numbered and indicated in 
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the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-

lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.13. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 2 km stepover. (A) Selected patches are numbered and indicated in 

the 3D block model for Segments 1 and 2. (B) Computed surface slip distributions (right-

lateral) for the first 10, 50, and 100 earthquakes in the earthquake record generated by 

this simulation. 

 

Figure 4.14. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 5 km stepover. This structural configuration forms a 1 km deep pull-

apart basin that contains sedimentary infill. This is modeled by velocity-strengthening 

friction in the overlap region. (A) Selected patches are numbered and indicated in the 3D 

block model for Segments 1 and 2. (B) Computed surface slip distributions (right-lateral) 

for the first 10, 50, and 100 earthquakes in the earthquake record generated by this 

simulation. 

 

Figure 4.15. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 5 km stepover. This structural configuration forms a 2 km deep pull-

apart basin that contains sedimentary infill. This is modeled by velocity-strengthening 

friction in the overlap region. (A) Selected patches are numbered and indicated in the 3D 

block model for Segments 1 and 2. (B) Computed surface slip distributions (right-lateral) 
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for the first 10, 50, and 100 earthquakes in the earthquake record generated by this 

simulation. 

 

Figure 4.16. Patch slip histories for six selected patches in two right-stepping faults with 

a 50 km overlap and 5 km stepover. This structural configuration forms a 3 km deep pull-

apart basin that contains sedimentary infill. This is modeled by velocity-strengthening 

friction in the overlap region. (A) Selected patches are numbered and indicated in the 3D 

block model for Segments 1 and 2. (B) Computed surface slip distributions (right-lateral) 

for the first 10, 50, and 100 earthquakes in the earthquake record generated by this 

simulation. 

 

Figure 4.17. Configuration for a single vertical fault with a region of velocity-

strengthening friction [a – b] of 0.002 in the central part of the fault. (A) Patch slip 

histories for six selected patches. Selected patches are numbered and indicated in the 3D 

block model. (B) Computed surface slip distributions (right-lateral) for the first 10, 50, 

and 100 earthquakes in the earthquake record generated by this simulation. 

 

Figure 4.18. Configuration for a single vertical fault with a region of velocity-

strengthening friction [a – b] of 0.004 in the central part of the fault. (A) Patch slip 

histories for six selected patches. Selected patches are numbered and indicated in the 3D 

block model. (B) Computed surface slip distributions (right-lateral) for the first 10, 50, 

and 100 earthquakes in the earthquake record generated by this simulation. 
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Figure 4.19. Configuration for a single vertical fault with a region of velocity-

strengthening friction [a – b] of 0.006 in the central part of the fault. (A) Patch slip 

histories for six selected patches. Selected patches are numbered and indicated in the 3D 

block model. (B) Computed surface slip distributions (right-lateral) for the first 10, 50, 

and 100 earthquakes in the earthquake record generated by this simulation. 

 

Figure 4.20. Configuration for a single vertical fault with a region of velocity-

strengthening friction [a – b] of 0.008 in the central part of the fault. (A) Patch slip 

histories for six selected patches. Selected patches are numbered and indicated in the 3D 

block model. (B) Computed surface slip distributions (right-lateral) for the first 10, 50, 

and 100 earthquakes in the earthquake record generated by this simulation. 

 

Figure 4.21. Parameter sweep to investigate the effect of varying activated patch 

participation level on rupture jumping probabilities in a releasing step. (A) Top panel 

shows the structural configuration for which this parameter sweep was performed 

(underlap 20 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (B) Top panel is a map 

view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 3869. 

(C) Top panel shows the structural configuration for which this parameter sweep was 

performed (overlap 50 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (D) Top panel is a map 
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view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 4797. 

(E) Top panel shows the structural configuration for which this parameter sweep was 

performed (underlap 20 km, stepover 5 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (F) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

3737. (G) Top panel shows the structural configuration for which this parameter sweep 

was performed (overlap 50 km, stepover 5 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (H) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

2973. (I) Top panel shows the structural configuration for which this parameter sweep 

was performed (underlap 20 km, stepover 2 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (J) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

1331. (K) Top panel shows the structural configuration for which this parameter sweep 

was performed (overlap 50 km, stepover 2 km). Lower panels are plots of conditional 
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rupture probabilities for Segments 1 and 2 on smooth and rough faults. (L) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

1869 and (M) Event ID 4719. 

 

Figure 4.22. Parameter sweep to investigate the effect of varying activated patch 

participation level on rupture jumping probabilities in a restraining step. (A) Top panel 

shows the structural configuration for which this parameter sweep was performed 

(underlap 20 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (B) Top panel is a map 

view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 941. 

(C) Top panel shows the structural configuration for which this parameter sweep was 

performed (overlap 50 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (D) Top panel is a map 

view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 3157. 

(E) Top panel shows the structural configuration for which this parameter sweep was 

performed (underlap 20 km, stepover 5 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (F) Top panel is a 
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map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

2348. (G) Top panel shows the structural configuration for which this parameter sweep 

was performed (overlap 50 km, stepover 5 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (H) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

4745. (I) Top panel shows the structural configuration for which this parameter sweep 

was performed (underlap 20 km, stepover 2 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (J) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

3942. (K) Top panel shows the structural configuration for which this parameter sweep 

was performed (overlap 50 km, stepover 2 km). Lower panels are plots of conditional 

rupture probabilities for Segments 1 and 2 on smooth and rough faults. (L) Top panel is a 

map view of the Coulomb failure stress computed at a depth of 8.5 km using the 

indicated stress boundary condition. Lower panels are 3D views of (from top to bottom) 

fault roughness, total right-lateral displacement, and relative rupture time for Event ID 

2158. 
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Figure 4.23. Parameter sweep to investigate the effect of varying activated patch 

participation level on rupture jumping probabilities in a releasing double bend. (A) Top 

panel shows the structural configuration for which this parameter sweep was performed 

(underlap 20 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (B) Top panel is a map 

view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 2508, 

(C) Event ID 1174, and (D) Event ID 4476. (E) Top panel shows the structural 

configuration for which this parameter sweep was performed (underlap 20 km, stepover 5 

km). Lower panels are plots of conditional rupture probabilities for Segments 1 and 2 on 

smooth and rough faults. (F) Top panel is a map view of the Coulomb failure stress 

computed at a depth of 8.5 km using the indicated stress boundary condition. Lower 

panels are 3D views of (from top to bottom) fault roughness, total right-lateral 

displacement, and relative rupture time for Event ID 3677, (G) Event ID 1447, (H) Event 

ID 4800, and (I) 2493. (J) Top panel shows the structural configuration for which this 

parameter sweep was performed (underlap 20 km, stepover 2 km). Lower panels are plots 

of conditional rupture probabilities for Segments 1 and 2 on smooth and rough faults. (K) 

Top panel is a map view of the Coulomb failure stress computed at a depth of 8.5 km 

using the indicated stress boundary condition. Lower panels are 3D views of (from top to 

bottom) fault roughness, total right-lateral displacement, and relative rupture time for 

Event ID 2563, (L) Event ID 1400, and (M) Event ID 3139. 
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Figure 4.24. Parameter sweep to investigate the effect of varying activated patch 

participation level on rupture jumping probabilities in a restraining double bend. (A) Top 

panel shows the structural configuration for which this parameter sweep was performed 

(underlap 20 km, stepover 7 km). Lower panels are plots of conditional rupture 

probabilities for Segments 1 and 2 on smooth and rough faults. (B) Top panel is a map 

view of the Coulomb failure stress computed at a depth of 8.5 km using the indicated 

stress boundary condition. Lower panels are 3D views of (from top to bottom) fault 

roughness, total right-lateral displacement, and relative rupture time for Event ID 4872, 

and (C) Event ID 2591. (D) Top panel shows the structural configuration for which this 

parameter sweep was performed (underlap 20 km, stepover 5 km). Lower panels are plots 

of conditional rupture probabilities for Segments 1 and 2 on smooth and rough faults. (E) 

Top panel is a map view of the Coulomb failure stress computed at a depth of 8.5 km 

using the indicated stress boundary condition. Lower panels are 3D views of (from top to 

bottom) fault roughness, total right-lateral displacement, and relative rupture time for 

Event ID 3837, and (F) Event ID 418. (G) Top panel shows the structural configuration 

for which this parameter sweep was performed (underlap 20 km, stepover 2 km). Lower 

panels are plots of conditional rupture probabilities for Segments 1 and 2 on smooth and 

rough faults. (H) Top panel is a map view of the Coulomb failure stress computed at a 

depth of 8.5 km using the indicated stress boundary condition. Lower panels are 3D 

views of (from top to bottom) fault roughness, total right-lateral displacement, and 

relative rupture time for Event ID 3103, and (I) Event ID 1856. 
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Figure 4.25. Exploring the effect of variable fault topology on rupture jumping 

probabilities. Three-dimensional views of ten different fault roughness configurations for 

a restraining step that is made up of two vertical, right-lateral strike-slip faults with a (A) 

50 km overlap and 7 km stepover and (C). The structural configurations for both sets of 

model runs is shown in the upper panels of (B) and (D), while the lower panels are plots 

of conditional rupture probabilities as a function of segment participation level for each 

of the 10 runs. 

 

Figure 4.26. Computed rupture jumping probabilities for different underlap (negative x-

axis) and overlap (positive x-axis) distances between two smooth faults and two rough 

faults. Stepover distances ranged from 2 km to 4 km at 1 km increments. Underlap and 

overlap distances ranged from -5 km (underlap) to 5 km (overlap) at 1 km increments 

using. Each structural configuration was simulated 5 times. All rupture jumping 

probabilities were computed using the 80% minimum patch participation level. 

 

Figure 4.27. Wesnousky’s (2008) rupture process zone as it propagates with the leading 

edge of a large rupture. It is based on Wesnousky’s (2008) compilation of empirical 

observations that correlate fault trace complexity with rupture jumping. The radius of the 

process zone cylinder ranges from 3-4 km and contains a volume where stress change 

magnitudes are invariable at the front of the rupture. From Wesnousky (2008). 

 

Figure 4.28. Plots of total slip distribution and static stress drop for a hypothetical 

vertically striking fault. (A) Displacement along a smooth fault follows an elliptical shape 
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and results in a uniform stress drop along strike. High stress concentrations are localized 

at the fault ends. (B) Displacement along a rough fault results in an irregular slip 

distribution and non-uniform stress drop. Local asperities along the fault surface create 

localized high and low stress regions such that the surrounding volume experiences non-

uniform stress drops. In some locations, stresses are enhanced to levels comparable to the 

high stresses near fault ends. 

 

Figure 4.29. Conceptual model of the process zone for a rupture propagating along a 

rough fault. Local asperities inherent to rough faults cause the shape and size of the 

rupture process zone to change along strike and down dip. The size of the rupture process 

zone may increase with increasing fault roughness, but rapidly decreases as the rupture 

propagates along the fault. 
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Figure 4.1
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Figure 4.2
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Figure 4.3A
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Figure 4.3B
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Figure 4.4
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Figure 4.5A
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Figure 4.5B
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Figure 4.6
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Figure 4.7
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Figure 4.8A - Segment 1 
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Figure 4.8A - Segment 2
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Figure 4.8B
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Figure 4.9A - Segment 1
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Figure 4.9A - Segment 2
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Figure 4.9B
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Figure 4.10A - Segment 1
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Figure 4.10A - Segment 2
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Figure 4.10B
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Figure 4.11A - Segment 1

Se
gm

en
t 1

Se
gm

en
t 2

30
 m

m
/y

r

30
 m

m
/y

r

25
5

85
0

14
45

19
72 19

80

25
67

25
75

31
62

31
70

26
3

85
8

14
53

0.
01

-0
.0

1

ve
lo

ci
ty

 
st

re
ng

th
en

in
g 

fr
ic

tio
n

ve
lo

ci
ty

 
w

ea
ke

ni
ng

 
fr

ic
tio

n
[a

-b
]



0
20

00
40

00
60

00
80

00
10

00
0

0102030405060708090
Si

ng
le

 P
at

ch
 S

lip
 H

is
to

ry
 fo

r P
at

ch
 #

 1
97

2 
in

 S
eg

m
en

t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

0
20

00
40

00
60

00
80

00
10

00
0

02040608010
0

12
0

14
0

16
0

18
0

Si
ng

le
 P

at
ch

 S
lip

 H
is

to
ry

 fo
r P

at
ch

 #
 1

98
0 

in
 S

eg
m

en
t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

0
20

00
40

00
60

00
80

00
10

00
0

01020304050607080
Si

ng
le

 P
at

ch
 S

lip
 H

is
to

ry
 fo

r P
at

ch
 #

 2
56

7 
in

 S
eg

m
en

t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

0
20

00
40

00
60

00
80

00
10

00
0

02040608010
0

12
0

14
0

Si
ng

le
 P

at
ch

 S
lip

 H
is

to
ry

 fo
r P

at
ch

 #
 2

57
5 

in
 S

eg
m

en
t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

0
20

00
40

00
60

00
80

00
10

00
0

010203040506070
Si

ng
le

 P
at

ch
 S

lip
 H

is
to

ry
 fo

r P
at

ch
 #

 3
16

2 
in

 S
eg

m
en

t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

0
20

00
40

00
60

00
80

00
10

00
0

02040608010
0

12
0

14
0

Si
ng

le
 P

at
ch

 S
lip

 H
is

to
ry

 fo
r P

at
ch

 #
 3

17
0 

in
 S

eg
m

en
t 2

Ti
m

e 
(y

ea
rs

)

Cumulative slip (m)

166

Figure 4.11A - Segment 2
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Figure 4.11B
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Figure 4.12A - Segment 1
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Figure 4.12A - Segment 2
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Figure 4.12B
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Figure 4.13A - Segment 1
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Figure 4.13A - Segment 2
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Figure 4.13B

Segment 1 Segment 2

0 20 40 60 80 1000

1

2

3

4

5

6

7

8

9

10
Surface slip distributions for 10 events

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

0 20 40 60 80 1000

5

10

15

20

25

30

35
Surface slip distributions for 50 events

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

0 20 40 60 80 1000

10

20

30

40

50

60

70
Surface slip distributions for 100 events

Distance along strike (km)

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

0 20 40 60 80 1000

1

2

3

4

5

6

7

8

9

10
Surface slip distributions for 10 events

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

0 20 40 60 80 1000

5

10

15

20

25

30

35
Surface slip distributions for 50 events

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

0 20 40 60 80 1000

10

20

30

40

50

60

70
Surface slip distributions for 100 events

Distance along strike (km)

C
um

ul
at

iv
e 

su
rf

ac
e 

sl
ip

 (m
)

255

850

1445

263
858

1453
1972

1980

2567

2575

3162

3170Segment 1

Segment 2

30 mm/yr

30 mm/yr

0.01 -0.01

velocity 
strengthening 

friction

velocity 
weakening 

friction[a-b]



174

Figure 4.14A - Segment 1
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Figure 4.14A - Segment 2
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Figure 4.14B
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Figure 4.15A - Segment 1
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Figure 4.15A - Segment 2
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Figure 4.15B
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Figure 4.16A - Segment 1
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Figure 4.16A - Segment 2
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Figure 4.16B
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Figure 4.17A
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Figure 4.17B
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Figure 4.18A
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Figure 4.18B
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Figure 4.19A
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Figure 4.19B
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Figure 4.20A
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Figure 4.20B
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Figure 4.21A
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Figure 4.21B
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Figure 4.21C

Smooth faults Rough faults

50 km overlap, 7 km stepover
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Figure 4.21D
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Figure 4.21E

Smooth faults Rough faults
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Figure 4.21F
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Figure 4.21G

Smooth faults Rough faults

50 km overlap, 5 km stepover
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Figure 4.21H
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Figure 4.21I

Smooth faults Rough faults
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Figure 4.21J
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Figure 4.21K

Smooth faults Rough faults

50 km underlap, 2 km stepover
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Figure 4.21L
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Figure 4.21M
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Figure 4.22A

Smooth faults Rough faults

20 km underlap, 7 km stepover
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Figure 4.22B
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Figure 4.22C

Smooth faults Rough faults

50 km overlap, 7 km stepover

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 2 rupturing 
(Conditioned on Segment 1)

Segment 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 1 rupturing 
(Conditioned on Segment 2)

Segment 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 2 rupturing 
(Conditioned on Segment 1)

Segment 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 1 rupturing 
(Conditioned on Segment 2)

Segment 1

Segment 1

Segment 2



207

Figure 4.22D
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Figure 4.22E

Smooth faults Rough faults

20 km underlap, 5 km stepover
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Figure 4.22F
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Figure 4.22G

Smooth faults Rough faults

50 km overlap, 5 km stepover
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Figure 4.22H
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Figure 4.22I

Smooth faults Rough faults

20 km underlap, 2 km stepover
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Figure 4.22J
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Figure 4.22K

Smooth faults Rough faults

50 km underlap, 2 km stepover
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Figure 4.22L
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Figure 4.23A

Smooth faults Rough faults

20 km underlap, 7 km stepover

Segment 1

Segment 2

Segment 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

ts
 2

 &
 3

 
ru

pt
ur

in
g

Participation of Segment 1 patches (%)

Conditional probabilities of Segments 2 and 3 rupturing 
(Conditioned on Segment 1)

Segment 2

Segment 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

ts
 1

 &
 3

 
ru

pt
ur

in
g

Participation of Segment 2 patches (%)

Conditional probabilities of Segments 1 and 3 rupturing 
(conditioned on Segment 2)

Segment 1

Segment 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

ts
 2

 &
 3

 
ru

pt
ur

in
g

Participation of Segment 1 patches (%)

Conditional probabilities of Segments 2 and 3 rupturing 
(Conditioned on Segment 1)

Segment 2

Segment 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

ts
 1

 &
 3

 
ru

pt
ur

in
g

Participation of Segment 2 patches (%)

Conditional probabilities of Segments 1 and 3 rupturing 
(conditioned on Segment 2)

Segment 1

Segment 3



217

Figure 4.23B
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Figure 4.23C
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Figure 4.23D
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Figure 4.23E

Smooth faults Rough faults

20 km underlap, 5 km stepover
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Figure 4.23F
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Figure 4.23G
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Figure 4.23H
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Figure 4.23I

Fa
ul

t r
ou

gh
ne

ss

0
1

R
el

at
iv

e 
ru

pt
ur

e 
tim

e

st
ar

t
st

op

0
9

D
is

pl
ac

em
en

t (
m

)

Ev
en

t I
D

 2
49

3 
(M

 7
.3

1)
C

ou
lo

m
b 

fa
ilu

re
 st

re
ss

 (M
Pa

)

-5
5

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3



225

Figure 4.23J

Smooth faults Rough faults

20 km underlap, 2 km stepover
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Figure 4.23K
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Figure 4.23L
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Figure 4.23M

Fa
ul

t r
ou

gh
ne

ss

0
1

R
el

at
iv

e 
ru

pt
ur

e 
tim

e

st
ar

t
st

op

0
14

D
is

pl
ac

em
en

t (
m

)

Ev
en

t I
D

 3
13

9 
(M

 7
.7

2)
C

ou
lo

m
b 

fa
ilu

re
 st

re
ss

 (M
Pa

)

-5
5

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3



229

Figure 4.24A

Smooth faults Rough faults

20 km underlap, 7 km stepover
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Figure 4.24B
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Figure 4.24C
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Figure 4.24D

Smooth faults Rough faults

20 km underlap, 5 km stepover
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Figure 4.24E
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Figure 4.24F

0
9

D
is

pl
ac

em
en

t (
m

)

Fa
ul

t r
ou

gh
ne

ss

0
1

R
el

at
iv

e 
ru

pt
ur

e 
tim

e

st
ar

t
st

op

Ev
en

t I
D

 4
18

 (M
 7

.3
2)

C
ou

lo
m

b 
fa

ilu
re

 st
re

ss
 (M

Pa
)

-5
5

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3



235

Figure 4.24G
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Figure 4.24H
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Figure 4.25A
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Figure 4.25B

Segment 1

Segment 2

50 km overlap, 7 km stepover

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 2 rupturing 
(Conditioned on Segment 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
on

di
tio

na
l p

ro
ba

bi
lit

y 
of

 S
eg

m
en

t 2
 r

up
tu

ri
ng

Participation of Segment 1 patches (%)

Conditional probability of Segment 1 rupturing 
(Conditioned on Segment 2)



240

Figure 4.25C
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Figure 4.25D
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Figure 4.26A
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Figure 4.26B
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Figure 4.26C

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

-5
-3

-1
1

3
5

R
un

 1

R
un

 2

R
un

 3

R
un

 4

R
un

 5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

-5
-3

-1
1

3
5

R
un

 1

R
un

 2

R
un

 3

R
un

 4

R
un

 5

Cumulative rupture jumping probabilities

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

-5
-3

-1
1

3
5

R
un

 1

R
un

 2

R
un

 3

R
un

 4

R
un

 5

Se
gm

en
t 1

 c
on

di
tio

ne
d 

on
 S

eg
m

en
t 2

Se
gm

en
t 2

 c
on

di
tio

ne
d 

on
 S

eg
m

en
t 1

R
O

U
G

H
 F

A
U

LT
S

SM
O

O
TH

 F
A

U
LT

S

Se
gm

en
t 2

 c
on

di
tio

ne
d 

on
 S

eg
m

en
t 1

Se
gm

en
t 1

 c
on

di
tio

ne
d 

on
 S

eg
m

en
t 2

U
nd

er
la

p 
(n

eg
at

iv
e)

 a
nd

 o
ve

rla
p 

(p
os

iti
ve

) d
is

ta
nc

e 
(k

m
)

4 
km

 st
ep

ov
er

 
di

st
an

ce



245

Figure 4.27
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Figure 4.28



247

Figure 4.29
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TABLES 

 

Table 4.1. A worked example of how rupture jumping probabilities are calculated. 

Rupture jumping probabilities in the left table are conditioned on Segment 1 and mean 

that every time a rupture occurs on Segment 1 that activates at least 70% of its patches, 

Segment 2 has a 46% chance of participating in the same rupture. The right table shows 

rupture jumping probabilities that are conditioned on Segment two and mean that every 

time a rupture occurs on Segment 2 that activates at least 70% of its patches, the rupture 

has a 48% chance of jumping to Segment 1. 
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Chapter 5 

FAULT ROUGHNESS AND FRICTIONAL CONTROLS ON SURFACE SLIP: 

IMPLICATIONS FOR FAULT STRENGTH AND PALEOSEISMIC 

INTERPRETATIONS 

ABSTRACT 

 Variations in geologic slip rates determined by paleoseismic means can have 

profound impacts on the seismic hazards estimated for seismogenic faults. The analysis 

of slip rates and slip per event in an aggregate manner is commonly used to infer fault 

interaction and its control on earthquake recurrence and spatiotemporal clustering. 

Furthermore, this approach is used to explain discrepancies between geodetic and 

geologic observations of crustal deformation rates. What is commonly ignored by this 

aggregate approach are the effects of the physical properties of faults such as deviation 

from planarity and complex frictional behavior, both of which are related to the fault’s 

structural maturity. In this chapter, I use the earthquake simulator FIMozFric (Zielke and 

Arrowsmith, 2008) to explore the effects of fault roughness and friction on surface slip 

distributions, slip at a point, and earthquake clustering. I take two examples from 

California: the Hayward-Calaveras fault system and the Garlock fault zone. Simulations 

of the Hayward-Calaveras faults incorporated complex distributions of velocity-

strengthening/weakening friction to model the effects of heterogeneous fault creep on 

surface deformation and rupture jumping probabilities. For the Garlock fault, lidar-

derived offset measurements were made and analyzed to investigate variations in slip 

magnitude along strike. Additionally, two simulations were carried out on the Garlock 

fault to investigate the effects of fault roughness and variable tectonic loading rates on 
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slip per event and earthquake clustering. Earthquake simulations for the Hayward-

Calaveras faults showed that irregular surface slip distributions are directly related to the 

distribution of creep along both faults. Furthermore, the Hayward and Calaveras faults 

behaved as an interacting system where the coseismic participation of one fault was 

controlled by events that occurred along the other. Simulated surface slip distributions for 

the Garlock fault were complex due to local asperities along the fault surface. 

Spatiotemporal clustering of slip magnitudes at select points along the Garlock fault 

indicate that fault roughness plays a role in controlling the local slip rate. This may 

explain discrepancies between geodetically and geologically derived slip rates along with 

other explanations such as phase locking of earthquake cycles. My results caution against 

the aggregate interpretation of paleoseismically derived slip rates or surface slip 

distributions without first understanding the structural complexity that is inherent to any 

fault under investigation. 
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INTRODUCTION

 Earthquakes that are large enough (Mw  7) to break the topographic surface 

provide important insights into coseismic processes that occur at seismogenic depths and 

thus seismic hazards associated with active faults. As part of our efforts to understand 

these seismic hazards, it is now standard practice to quantify on-fault coseismic 

deformation and link individual earthquake events to their temporal expression via 

paleoseismic trenching (McCalpin, 2009). These datasets provide the fundamental 

building blocks for earthquake recurrence models (e.g., variable slip vs. uniform slip vs. 

characteristic earthquakes), which are commonly looked upon as models of fault behavior 

(e.g., Schwartz and Coppersmith, 1984). With enough of such datasets available for fault 

systems, a general understanding of the spatiotemporal patterns of strain accumulation 

and release rates can be achieved (e.g., Dolan et al., 2007; Scholz, 2010). However, when 

considering the available paleoseismically derived slip rates for some of the best-studied 

active faults, there exist discrepancies between slip rates determined at instrumental time 

scales (e.g., GPS, InSAR) and geologic timescales (e.g., the Holocene). Setting aside the 

possibility of misidentification of event horizons or dating errors at paleoseismic sites, 

several reasons have been used to explain this discrepancy. These include changes in 

flow rates of the upper mantle over millennial timescales (e.g., Pollitz et al., 2001; 

Savage et al., 2003), whether the stress states of faults are either in or out of phase with 

each other (Scholz, 2010). Kinematically based explanations suggest earthquake 

occurrence as a function of mechanical fault interaction at regional scales (e.g., Dolan et 

al., 2007). Other explanations imply a feedback mechanism between seismic and 

aseismic portions of faults whereby large earthquakes that punch through the velocity-
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strengthening base of the seismogenic zone increase basal creep rates, which increases 

interseismic stress loading rates updip (e.g., Oskin et al., 2008). 

In Chapter 4 I showed how the spatiotemporal clustering of earthquakes and thus 

slip rates are controlled by complex fault frictional properties. In this chapter, I expand 

upon this by showing that the discrepancy between geologic and geodetic crustal 

deformation rates can be simply explained by natural variations in fault roughness and 

the frictional complexities along faults. I apply the insights gained from Chapter 4 to two 

fault scenarios in California (Fig. 5.1). The first scenario explores the effects of fault 

strength and frictional complexities on the surface manifestation of earthquakes along the 

Hayward-Calaveras fault systems in northern California. The second scenario 

investigates the discrepancy between geologically and geodetically derived slip rates for 

the Garlock fault. I conclude this chapter by discussing the various implications that fault 

roughness and complex friction have on interpreting the paleoseismic records of 

seismogenic faults, and what this means in terms of estimating their associated seismic 

hazards. 

METHODS

FIMozFric Earthquake Simulator 

I use FIMozFric (Zielke and Arrowsmith, 2008; Zielke, 2009), which is a quasi-

static earthquake simulator that incorporates the interaction of faults that are governed by 

complex friction laws. FIMozFric employs the 3D boundary element method and 

numerically resolves stresses and calculates strains due to slip along rectangular 

displacement discontinuities (faults). Faults are embedded in a mechanically 

homogeneous, isotropic, and linear-elastic halfspace (e.g., Okada, 1992; Toda et al., 
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2011). Faults are discretized into 2 km x 2 km patches and assigned varying strikes and 

dips to simulate non planar surfaces. Each patch is also assigned dynamic and static 

coefficients of friction. The difference between these coefficients varies with depth in 

order to simulate laboratory-derived fault friction behavior. This is done by expanding 

upon the Coulomb friction law and implementing the depth/temperature dependency 

effects on fault friction. Laboratory friction experiments show that friction varies with 

slip velocity (rate dependence) and holding time (time since the last slip occurred on the 

slip interface) (e.g., Marone et al., 1990; Blanpied et al., 1991; Beeler et al., 1994; 

Dieterich and Kilgore, 1994). This resulted in the formulation of the rate- and state-

friction law (Ruina, 1983), 

,    (4.1) 

where  is the shear stress, n is the normal stress, 0 is the initial coefficient of friction, V 

is the sliding velocity, V0 is the initial sliding velocity,  is the state variable, Dc is the 

critical slip distance, and a, b are experimentally determined constants. Velocity-

weakening frictional behavior occurs when [a – b] < 0 and promotes unstable sliding 

(earthquakes) whereas velocity-strengthening behavior promotes stable sliding (creep) 

and occurs when [a – b] > 0. In FIMozFric, each fault patch is assigned a [a – b] value to 

determine its frictional behavior during simulations (Zielke and Arrowsmith, 2008; 

Zielke, 2009). FIMozFric also allows the distribution of velocity-strengthening and 

velocity-weakening patches to be customized so that the effects of realistic fault 

properties can be investigated (e.g., shallow fault creep). 

 The seismic cycle in FIMozFric is divded into interseismic and coseismic stages 

by iteratively evaluating the current state of stress on all patches given their friction 
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coefficients and the tectonic loading rate (Zielke and Arrowsmith, 2008; Zielke, 2009). 

During the interseismic stage, the tectonic loading mechanism incrementally increases 

shear tractions until they exceed the static friction strength of a patch. The shear traction 

and friction strength of each patch is calculated at every interseismic time increment. 

FIMozFric enters the coseismic stage if shear tractions exceed the frictional strength of at 

least one patch. When this happens, the tectonic loading mechanism is halted and the 

static friction coefficients of all patches that failed are converted to dynamic friction 

coefficients. Shear tractions are then released via in-plane slip. Displacements due to slip 

along patches are calculated using Okada’s (1992) formulations, which alter the local 

stresses in the volume surrounding the failed patches. These altered stresses may induce 

further coseismic stresses on neighboring patches and may cause them to fail too. Thus 

an earthquake is born and propagates along the fault until all shear tractions are released 

and fall below the dynamic strength of activated patches. Once this happens, FIMozFric 

enters the interseismic stage where static friction coefficients are reapplied to all patches 

and the tectonic loading mechanism is resumed. 

Rough faults are constructed by deviating the midpoint of each fault patch from a 

central fault plane (Fig. 5.2). The strike and dip of each patch are varied along strike and 

with depth so that a continuous self-similar fault surface is constructed (e.g., Power and 

Tullis, 1991). 

Hayward and Calaveras Faults 

Geologic Setting 

 Accommodation of deformation along the Pacific and North American plates in 

the San Francisco Bay Area takes the form of an intricate system of faults and folds (Fig. 
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5.3). The dextral Hayward (HF), Calaveras (CF) and San Andreas (SAF) faults are the 

primary faults along which this deformation takes place. The HF and CF are separated by 

a ~5 – 15 km-wide stepover and a ~60 km-long overlap distance, forming a restraining 

step that is accommodated by contractional structures and manifest as the East Bay Hills 

(Lawson, 1908). Both faults accommodate plate motions by a combination of large 

coseismic ruptures, frequent microseismic events, and creep (e.g., Lienkaemper et al., 

1991; Toppozada and Borchardt, 1998; Waldhauser and Ellsworth, 2002). Several studies 

were carried out to understand this complex behavior and explain variations in along 

strike creep rates, in particular for the HF (e.g., Lienkaemper et al., 1991; Shirzaei and 

Burgmann, 2013). These variations were attributed to several reasons, including a 

variable depth of creep (Simpson et al., 2001), a heterogeneous distribution of locked 

versus creeping sections (Malservisi et al., 2003), and the effects of past earthquakes on 

the regional stress field (e.g., Lienkaemper et al., 1997; Lienkaemper et al., 2012). Here I 

explore these relationships and their effects on the surface manifestation of 

locked/creeping sections of the HF, CF, and SAF. 

Model Setup 

This simulation uses a 30 mm/yr regional tectonic loading rate over a 5,000-year 

period, a Young’s modulus of 40 GPa, Poisson’s ratio of 0.25, shear modulus of 16 GPa, 

and a density of 2700 kg/m3. The HF is modeled as a 76-km long fault and has an 

average strike of 340. I divide the CF into northern and southern sections. The northern 

section is 90 km long and strikes ~170. The southern section of the CF is 100 km long 

and strikes ~160. All faults dip vertically, are 16 km wide, and are assigned a roughness 

value of 0.1 (Fig. 5.2). The distribution of creeping (velocity-strengthening) and locked 
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(velocity-weakening) regions within the HF and CF are implemented as fault areas with 

positive and negative [a – b] regions, respectively. The degree to which velocity-

weakening regions are locked varies with depth as a function of temperature (25 °C/km 

geothermal gradient). For the HF, creeping sections have variable magnitudes of positive 

[a – b] values so as to simulate spatially non-uniform creep rates. Although no estimates 

of [a – b] exist for the HF, the spatial extent of creep and creep rates were determined by 

Shirzaei and Burgmann (2013) using joint inversion of an 18-year record of InSAR and 

surface creep data. I use Shirzaei and Burgmann’s (2013) geodetically derived fault creep 

model as a template onto which the [a – b] friction distribution is assumed for the HF in 

FIMozFric (Fig. 5.4). Unfortunately, insufficient information exists that delineates the 

extent to which the CF creeps at depth (e.g., Kondo et al., 2008). Therefore, I assume a 

creeping depth of 8 km above which a moderately velocity-strengthening region ([a – b] 

= 0.005) spans the southern half of the northern section and the entire southern section of 

the CF. For the SAF, I assume a regular depth-dependent distribution of [a – b] that 

defines a velocity-weakening section that is bound by upper and lower velocity-

strengthening zones (Scholz, 1988). 

Calculating Rupture Jumping Probabilities 

 In Chapter 4, I showed how FIMozFric calculates rupture jumping probabilities 

that are conditioned on the failure of a particular fault in an earthquake record. I refer the 

reader to Chapter 4 for the details of this method. For the HF-CF-SAF system that I 

model here, I condition the rupture jumping probabilities on all fault segments 

individually. I use a minimum patch participation level of 70%. For example, suppose I 
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condition the rupture jumping probabilities on the SAF, I calculate the probability of a 

rupture occurring on the HF and CF if 70% of the patches in the SAF fail. 

Garlock fault 

Geologic Setting 

 The Garlock fault (GF) is a ~250 km-long sinistral fault that forms a major 

tectonic boundary between the Mojave block to the south and the Basin and Range 

province to the north in California (Davis and Burchfiel, 1973). It extends westward from 

the SAF to the southern edge of Death Valley (Fig. 5.5) and accommodated ~48-64 km 

of sinistral displacement in the last 17 – 7 million years (Smith, 1962; Davis and 

Burchfiel, 1973; Carr et al., 1993). No large earthquakes ruptured the GF during historic 

times (McGill and Rockwell, 1998). Three models are used to explain the discordant 

strike of the GF relative to the strike of other faults in the eastern California shear zone 

(ECSZ; Fig. 5.5): (1) a transform fault that accommodates differential deformation 

between the ECSZ to the south and extension along the Basin and Range province to the 

north (Davis and Burchfiel, 1973); (2) a fault that accommodates clockwise rotation of 

the Mojave block with the dextral SAF (Humphreys and Weldon, 1994); or (3) a 

conjugate fault to the SAF that accommodates transpression in the Big Bend (Hill and 

Dibblee, 1953; McGill et al., 2009). 

Several paleoseismic studies have been carried out along the GF (Fig. 5.5). Table 

5.1 summarizes all slip rates determined from paleoseismic events and offset geomorphic 

features that were dated using a variety of methods. In contrast, geodetically derived slip 

rates determined using elastic block models by (Meade and Hager, 2005) resolved 3.2 +/- 

1.5 mm/yr, 1.8 +/- 1.5 mm/yr, and 1.1 +/- 1.9 mm/yr on the western, central, and eastern 
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sections of the GF, respectively. The range in slip rates both in space (along strike) and 

time (from the late Pleistocene to the present) is quite large and motivated various work 

to try to explain the discrepancy between geodetic and geologic slip rates. Most of these 

studies (e.g., Wallace, 1975; Wallace and Schulz, 1983; Wallace, 1991; Salyards et al., 

1992) attribute the variation in GF slip rates to its interaction with the southern and 

northern portions of the ECSZ. The only existing study that uses a mechanical basis to 

explain the interaction of ruptures between the central GF and Panamint Valley fault 

(Haugerud et al., 2003) applies simple Coulomb modeling of single earthquakes with 

rudimentary friction assumptions. These investigations may be missing a fundamental 

physical process that is responsible for the slip rate variability along the GF. 

Model Setup 

I model the Garlock fault as a vertically dipping sinistral fault that is divided into 

three 16 km-wide sections (e.g., McGill and Sieh, 1991). The western section is 86 km 

long with an average strike of 060. The central section is divided into two segments. The 

first segment is 36 km long (average strike 060) and is separated from the western section 

by a 2 km releasing step with no overlap. The second segment is 72-km long with an 

average strike of 075. The eastern section of the GF is 52 km long and has an average 

strike of 090. All faults are assigned a roughness value of 0.1 (Fig. 5.2). The elastic 

halfspace is assigned a Young’s modulus of 40 GPa, Poisson’s ratio of 0.25, shear 

modulus of 16 GPa, and a density of 2700 kg/m3. The rupture velocity is assumed to be 

2.20 km/s. Simulation runs are limited to 10,000 years.

I ran simulations using geologically and geodetically derived sinistral slip rates 

for the GF. The first simulation uses geologically derived slip rates of 7 mm/yr, 5 mm/yr, 
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and 6.5 mm/yr for the western, central and eastern sections of the GF, respectively. I 

selected these slip rates as representative values of GF slip rates that have been 

determined by paleoseismic work for the Holocene (e.g., Clark and Lajoie, 1974; 

Wallace, 1975; LaViolette et al., 1980; Wallace and Schulz, 1983; Wallace, 1991; 

Salyards et al., 1992; McGill et al., 2009). The second simulation uses an average slip 

rate of 11 mm/yr that was derived from present-day GPS velocity fields (e.g., Chuang 

and Johnson, 2011) and resolved on all three sections of the GF. In both simulations, slip 

histories of surface patches (i.e. patches that intersect the surface of the halfspace) are 

reconstructed for various locations along the GF. In essence, these patch slip histories 

serve as a proxy for slip-per-event and slip-at-a-point that are normally recorded in the 

field (from paleoseismic studies, offset geomorphic features, etc). 

Lidar-Derived Offset Measurements 

I measured laterally displaced geomorphic markers such as offset ridges, stream 

channels, and terraces along the GF using lidar-derived digital elevation models (DEMs) 

and the lateral displacement calculator LaDiCaoz (Zielke and Arrowsmith, 2012). Lidar 

data for the GF were collected by the National Center for Airborne Laser Mapping in 

2007 and are available from the OpenTopography lidar facility 

(www.OpenTopography.org). Appendix A details the workflow for accessing/processing 

lidar data in OpenTopography and using LaDiCaoz to measure lateral offsets. Offsets are 

rated using the UCERF3 offset rating scheme (Appendix D). To validate my lidar-

derived measurements with those made in the field, I reoccupy 129 offset features that 

were measured in the field by McGill and Sieh (1991) using LaDiCaoz. 
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RESULTS 

Hayward and Calaveras Faults 

Surface Slip Distributions 

The modeled surface slip distributions shown in Figure 5.6 illustrate the effects of 

fault strength and interactions on the propensity for large earthquakes to break the ground 

surface. The velocity-strengthening nature of the upper part of the CF subdued the 

magnitude of surface slip, particularly in the southern half of the northern CF. The 

variable fault strength of the HF resulted in complex surface slip distributions. Ruptures 

preferentially had greater surface slip magnitudes in the predominantly velocity-

weakening regions of the HF than the creeping sections (compare the HF slip 

distributions in Fig. 5.6 to the distribution and degree of creep in Fig. 5.4). For the SAF, 

slip distributions for large earthquakes were generally uniform in this modeled section.

Rupture Jumping Probabilities 

 Table 5.2 summarizes the calculated rupture jumping probabilities for the SAF-

CF-HF system. Given the model set up and assigned tectonic loading rate, for every 

rupture that activates at least 70% of the northern section of the Calaveras fault, the 

southern section of the Calaveras fault and the Hayward fault have a 66.9% and 4.18% 

chance of rupturing, respectively. Similarly, for every rupture where at least 70% of the 

southern section of the Calaveras fault ruptures, the northern section of the Calaveras 

fault and the Hayward fault have a 76.4% and 4.48% chance of rupturing. When 

conditioned on the Hayward fault, the southern section of the Calaveras fault has a 0.6% 

chance of rupturing. 
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Garlock Fault 

Surface Offsets 

Figure 5.7 (see also Appendix C) shows the locations of the 129 sinistral offsets 

that were measured by McGill and Sieh (1991) in the field and reoccupied in this study 

using lidar-derived DEMs. Measurements made using the lidar approach compared well 

with those determined in the field (R2 of 0.9; Fig. 5.8). Although this analysis was limited 

to the resolution of the DEM (0.5 m) and centimeter-scale artifacts in the lidar data of the 

central section of the GF, this validation demonstrated that the lidar-derived offset 

measurements serve as reliable indicators of coseismic slip. This is especially useful in 

the western section of the GF where few field offset measurements exist. 

I measured 528 sinistral offsets along the entire length of the GF. These are 

presented in Figure 5.9, which shows histograms and probability density functions (PDF) 

for each section. The western section of the GF contains at least five groups of offsets 

that cluster around 2.93 m, 6.69 m, 9.73 m, 13.19 m, and 16.91 m (Fig. 5.9A). The central 

section of the GF has six groups of offsets at 2.89 m, 5.56 m, 9.23 m, 11.88 m, 15.02 m, and 

18.01 m (Fig. 5.9B). The eastern section contains three offset families at 2.88 m, 5.13 m, and 

10.81 m (Fig. 5.9C). All of these measurements are also reported in Appendix R of the 

UCERF3 report (Madden et al., 2013). 

Figure 5.10 shows surface slip distributions of the first ten surface-rupturing 

earthquakes along the GF using geologically and geodetically derived slip rates. Both 

simulations resulted in similar slip distribution shapes. Local irregularities in the slip 

distributions corresponded to asperities along each fault section. The main difference 

between the two sets of slip distributions was a region of slip deficit that persisted near 
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the center of the western section in the simulation that used the constant geodetically 

derived loading rate (middle panel in Fig. 5.10). Irregularities in the slip distribution 

shapes and slip magnitudes are concentrated in regions where the GF bends (e.g., the 

boundary between the central and eastern sections in Fig. 5.10). 

Surface Slip at a Point 

Figure 5.11 presents the modeled slip histories for the selected surface patches 

along the GF using the geodetically and geologically derived loading rates. In both 

simulations, slip magnitudes showed significant clustering along strike. Clusters of partial 

ruptures (blue dots in Fig. 5.11) were generally separated by long interseismic periods, 

which in turn were punctuated by full ruptures (red dots in Fig. 5.11). Furthermore, 

individual surface-rupturing earthquakes can be correlated with ease between a few of the 

selected patches. For example, the first four earthquakes in patch 56 can be tracked to the 

first four ruptures recorded in patch 168 in Fig. 5.11A). Most ruptures, however, cannot 

be correlated as easily. Compare the slip histories of patches 432 and 600 in the central 

section of the GF in Figure 5.11B. No synchronization in the timing or magnitude of any 

of the events recorded at these locations is apparent. 

DISCUSSION 

Hayward and Calaveras Faults 

 The effects of fault roughness along the HF, CF, and SAF are reflected in their 

modeled surface slip distributions in that they are not smooth in shape. Instead, local 

asperities along each fault either enhance or reduce local slip magnitudes (Fig. 5.6). For 

the CF and especially the HF, this effect is further overprinted by the effect of fault 

strength. The reduced surface slip magnitudes along the creeping sections of the CF and 
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HF are due to the consumption of elastic strain energy of large ruptures by the creeping 

zones (e.g., highly positive [a – b] regions along the HF in Fig. 5.4), resulting in a slip 

deficit that is manifested by small slip events at the surface. This was shown by Shirzaei 

et al. (2013) where they investigated the relationship between repeating seismic events 

along locked regions amidst the variably creeping HF. They posited that these seismic 

events, which occurred on local asperities on the HF, altered the short-term aseismic 

deformation rates along creeping regions of the HF, thereby changing the short-term 

probabilities of large ruptures.  

 The computed rupture probabilities for the modeled HF-CF-SAF system indicates 

that that SAF does not contribute to rupture probabilities along the HF and CF. Instead, 

the HF and CF behave as an interacting system where the coseismic participation of one 

fault was controlled by events that occurred along the other. This is expected given their 

close proximity to each other (e.g., Chapter 4). However, the assumption of spatially 

constant creep fronts along the modeled HF and CF is limiting and indicates that the 

computed rupture probabilities are not absolute. It has been shown by dynamic 

earthquake models that the depth and along-strike extent of creeping sections can vary 

during interseismic periods of the earthquake cycle (e.g., Kaneko et al., 2013). Shirzaei et 

al. (2013) documented this change over the timespan of 18 years. Therefore, a significant 

complication arises in interpreting the computed participation probabilities in that the 

distribution of [a – b] along the HF can vary in space and time over the duration of the 

earthquake catalog. As a result, my computed rupture jumping probabilities for the HF 

and CF are not absolute and do not account for the fundamental process of aseismic creep 

that undoubtedly occurs along these faults. 
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Another assumption used in simulating earthquakes along the HF-CF-SAF system 

is that they are stand-alone faults. These faults are indeed the dominating structures in 

this part of the Bay Area. However, there exists several tens of smaller faults that branch 

off along strike and with depth from the HF and CF. While the exact roles that these 

faults play in accommodating coseismic and interseismic deformation is unknown, these 

faults could participate in accommodating deformation during coseismic events on any of 

the three faults modeled here. This is not considered in my models, but constructing a 

more structurally detailed model for the HF-CF-SAF system can readily be done in 

FIMozFric.  

In this chapter, I have considered only on-fault coseismic deformation. Given the 

quasi-static nature of FIMozFric and its assumption of a linear-elastic halfspace, it is not 

possible to account for the effects of time-dependent afterslip caused by viscoelastic 

relaxation following large earthquakes. Secondary deformation caused by postseismic 

deformation could significantly add to the total magnitude of slip preserved in the 

simulated earthquake record. 

Garlock Fault 

Implications for Interpreting Paleoseismic Slip Rates 

The lidar-derived offset measurements showed that earthquakes that rupture along 

the GF generally transmit coseismic slip at regular magnitudes. The range of slip per 

event along the western section is between 3.04 – 3.76 m, while the respective ranges of 

slip per event for the central and eastern sections are 2.65 – 3.14 m and 2.25 – 2.88 m. 

Assuming that each section ruptures individually, upper and lower moment magnitude 

ranges of possible earthquakes along the GF can be computed using seismic moment M0 
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= AS and moment magnitude Mw = 0.667 log M0 – 10.7 relationships (Hanks and 

Kanamori, 1979). This corresponds to possible earthquake magnitude ranges between Mw 

7.37 – 7.44, Mw 7.40 – 7.45, and Mw 7.14 – 7.21 for the western, central and eastern 

section of the GF, respectively, assuming a 16 km rupture width. These ranges are 

consistent with values determined by other workers (e.g., Wallace, 1975; McGill and 

Sieh, 1991). I must note that, although each measured offset was given a quality rating, 

the ratings were not used to compute cumulative offset probability densities in Figure 5.9. 

This can and should be done in the future to refine families of offset magnitudes (e.g., 

Zielke and Arrowsmith, 2012). 

The above analysis has a major limitation in that it assumes that each section of 

the GF ruptures individually and in essence behaves as an individual segment. We can 

see from both the surface slip distributions and patch slip histories (Fig. 5.10 and Fig. 

5.11) that segmentation in the GF is not present, even when section-specific loading rates 

were used. Whatever signal of fault segmentation that may have been present in the slip 

distributions could have been overprinted by the roughness effects of individual sections. 

As a result, interpreting surface offsets at individual points along the GF or in an 

aggregate manner (e.g., Fig. 5.9) will produce significant uncertainties. 

I note that the following discussion does not attempt to compare absolute slip 

magnitudes of the simulated slip per event with those determined 

geologically/geodetically. Obviously, the absolute values of slip magnitude, earthquake 

clustering, and recurrence are a function of the geometry of the particular fault under 

investigation and the chosen slip rates for that simulation. However, regardless of which 

tectonic loading rate was used (i.e. geodetically derived constant rate or geologically 
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derived section-specific rates), it is clear that spatiotemporal clustering of earthquakes 

exists along the GF. The implication of this observation is that whatever tectonic loading 

mechanism is accommodated by the GF may not control earthquake clustering. Instead, 

discrepancies in short- and long-term slip rates may be controlled by the self-similar 

nature of the fault surface (i.e. roughness). As demonstrated in Chapter 4, spatiotemporal 

variations in earthquake recurrence and magnitude are controlled by structural 

complexities and fault roughness. This can be seen in the surface record of the simulated 

earthquakes near Koehn Lake (patches 296 and 360 in Fig. 5.11A) and I explained this in 

Chapter 4 in terms of elastic strain energy expended by ruptures to overcome asperities. 

As a result, rough faults may exhibit rupture synchronization  

Let us imagine that the simulated patch slip histories in Figure 5.11 are 

paleoseismic sites along the GF (or any other fault for that matter). Any computed slip 

rates at individual points along the GF will inherently vary along strike and through time 

simply due to the natural variation in the fault’s roughness. From a paleoseismic 

perspective, slip rates determined at individual sites must factor in this major uncertainty, 

especially if correlating large earthquakes across multiple faults or even along the same 

fault. This raises significant issues with paleoseismically derived slip rates used to 

constrain fault synchronization (Scholz, 2010), explain slip-rate constancy (e.g., Dolan et 

al., 2007) or plate reorganization (e.g., Shelef and Oskin, 2010). As a result, the analysis 

of aggregate paleoseismic slip rates should not be made without first accounting for the 

structural geometry and roughness of every fault under investigation. For example, 

geologically determined slip rates of structurally mature/smooth faults may be 

representative of actual slip rates because all of the strain is resolved on them. 
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Conversely, for structurally immature/young faults, apparently low slip rates will not be 

representative of the “true” slip rate. 

The above has important implications for seismic hazard estimations. Consider 

the Uniform California Earthquake Rupture Forecast (UCERF3) deformation model as an 

example (e.g., Field et al., 2013). The UCERF3 deformation model employs geologically 

determined slip rates and surface slip distributions to drive the tectonic loading 

mechanism, which in turn determines the rates at which earthquakes occur along the 

UCERF3 fault model. If we consider geologic slip rates of structurally rough faults as 

minima, then the UCERF3 deformation model will underestimate the earthquake rates 

along young/rough faults. The same can be said for estimates of paleoearthquake 

magnitudes based on point measurements of surface slip distributions (e.g., Biasi and 

Weldon, 2006) for rough/young faults. Using the underestimated on-fault record of 

deformation (surface slip distributions and slip rates) from these faults would result in the 

underestimation of the magnitudes of paleoearthquakes. Therefore, seismic hazards 

computed for rough/young faults will include large errors and thus severely 

underestimate the hazards associated by these faults in the UCERF3 model. 

 The degree to which faults are discretized in deformation models could play an 

important role in deformation resulting from slip along dislocations. In Chapter 4 I 

discretized faults into 1 km by 1 km patches. In this chapter I discretized faults into 2 km 

by 2 km patches. While these dimensions might be appropriate to investigate surface slip 

at the kilometer scale, larger dislocations might prove otherwise. Take the current fault 

model used in the UCERF3 as an example. In this fault model, fault patches are 7 km 

long along strike, which corresponds to approximately half of the seismogenic width. Yet 
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the paleoseismic studies used to derive the geologic deformation rates are spaced on the 

order of a few kilometers along strike at best. The mismatch between the spatial scales of 

the geologic slip rates that are resolved on such large dislocations might yield unrealistic 

deformation and rupture jumping plausibilities (e.g., Parsons et al., 2012). While not 

explored in this chapter, the effect of patch size on the surface manifestation of simulated 

deformation could easily be investigated in FIMozFric. 

Implications for Fault Zone Evolution 

As seen in Chapter 4 and here, the consistency of the correlation between fault 

roughness and irregular slip rates/slip distributions suggests that the age of faults plays a 

role in the constancy of strain rate accommodation. Rough faults with low total fault 

displacement may be considered structurally immature and young. Therefore, I expect the 

slip rates for such faults to be low and inconsistent along strike. Field (e.g., Ferrill et al., 

2011) and seismologic (e.g., Cochran et al., 2009) observations show that faults are 

comprised of mechanically compliant damage zones. Depending on the ages of these 

faults, deformation within the damage zones causes an increase in the density of smaller-

scale faults. With repeated slip events, deformation progressively localizes (Segall and 

Pollard, 1983) such that enough stress is resolved on fewer and fewer fault surfaces 

without exceeding the differential stresses needed to form new faults. This form of strain 

softening (Jaeger et al., 2007) likely occurs in the upper few kilometers of faults that 

contain mechanically compliant damage zones ranging from a few meters (Ferrill et al., 

2011) to several kilometers (Cochran et al., 2009) in width. With this in mind, I posit that 

the temporal persistence of local asperities along young/rough faults gives way to a 

smoother fault surface with repeating earthquakes. At timescales on which earthquakes 
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occur, fault activity varies such that individual faults may have low slip rates until 

deformation is localized onto a single fault with a higher slip rate. This would eventually 

lead to constant along-strike slip rates that reach a steady state reflected by “regular” 

stick-slip behavior. Conversely,the mechanically compliant damage zones may behave 

differently in fault sections that creep aseismically. For example, the southern edge of the 

creeping section of the SAF (near Parkfield) contains several fault-bounded oblate blocks 

that define the SAF (Thayer, 2006). Detailed analyses of these blocks revealed their 

subsurface as resembling a ship’s keel where the bounding faults merge at depth into a 

single fault zone. In this case, these faults accommodate deformation by sliding the 

blocks past each other, essentially behaving as a shear zone where slip does not 

progressively localize onto a single fault surface. As a result, large ruptures that are able 

to punch through the velocity-strengthening creeping region of the SAF may activate 

different fault strands at a time. 

Unfortunately, the above process cannot be simulated using FIMozFric for several 

reasons. First, FIMozFric does not allow fault surfaces to change shape or roughness 

through time. Therefore, local asperities persist throughout the entire earthquake 

simulation. Second, the rudimentary assumption of linear elasticity does not allow new 

faults to form where the elastic strength of the halfspace is exceeded. While the elastic 

dislocation modeling approach replicates many of the first-order features associated with 

tectonic deformation (e.g., Stein et al., 1988; Massonnet et al., 1993; Gomberg and Ellis, 

1994; Landgraf et al., 2013), rock deformation in the form of large strains accumulated 

over geologic time is not elastic. Permanent rock deformation takes the form of faulting, 

fracturing, pore space collapse, dissolution/precipitation, or granular flow (Pollard and 
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Fletcher, 2005; Scholz, 2010). Thus, strain softening by definition cannot be modeled 

using the assumption of linear elasticity. This by no means takes away from the value of 

FIMozFric (or any other earthquake simulator) because inherently it was not designed to 

model fault evolution. However, using a combination of FIMozFric and Coulomb failure 

stress analysis in FIMoz (see Chapter 4) could serve as a quasi-static predictor of where 

new faults are expected to form when the elastic strength of the halfspace is exceeded. 

Alternatively, one could apply the elasto-plastic von Mises failure stress analysis to 

evaluate areas where the maximum distortional strain energy of the halfspace is exceeded 

due to slip along faults. The combination of elastic (prior to failure) and plastic 

(following failure) deformation could explain ground deformation where faulting and 

folding occur coseismically (e.g., Oskin et al., 2012; Quigley et al., 2012). A more 

advanced approach would be to employ principals of continuum damage mechanics that 

mimic real rock behavior and allow for the simultaneous brittle and plastic deformation 

during fault zone evolution (e.g., Busetti et al., 2012). 

CONCLUSIONS 

 In this chapter, I explored the effects of fault roughness and strength on the 

surface slip distributions of large earthquakes and slip magnitudes at various points along 

crustal-scale faults. I used the FIMozFric earthquake simulator to simulate long 

earthquake records along the Garlock fault and the Hayward-Calaveras-San Andreas fault 

systems. While many studies attribute the spatiotemporal clustering of earthquakes to 

regional-scale fault interactions, my results presented a clear connection between fault 

roughness and the spatiotemporal clustering of slip rates and slip magnitudes. My results 

suggest that rough faults (i.e. structurally immature faults) tend to have lower apparent 
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slip rates along strike. These faults progressively smoothen with time such that their 

apparent slip rates converge to the “true” slip rate that matches the tectonic loading rate. 

Therefore, the degree to which faults are rough/smooth/young/old has important controls 

on paleoseismically derived slip rates and surface slip distributions of large earthquakes. 

This adds to the challenges that are faced when correlating earthquakes along single or 

multiple faults that contain complex structural geometries or strength/frictional 

properties, which in turn has profound implications for constructing earthquake 

recurrence models to be used in earthquake rupture forecasts. 
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FIGURES 

Figure 5.1. Regional map showing the location of faults studied in this chapter. Faults 

are colored by the Quaternary slip rates from the USGS Active Faults and Folds database. 

SAF – San Andreas fault, GF – Garlock fault, CF – Calaveras fault, HF – Hayward fault, 

SD – San Diego, LA – Los Angeles, SF – San Francisco. 

 

Figure 5.2. Examples of a smooth and a rough fault. Faults are discretized into 2 km by 2 

km patches. Strikes and dips of patches in smooth faults have little deviation from each 

other. Conversely, patches in rough faults have variable strikes and dips, which results in 

an overall rougher fault geometry. 

 

Figure 5.3. Map of the northern San Andreas fault system in the Bay Area, California. 

SF – San Francisco. Faults are colored by the Quaternary slip rates from the USGS 

Active Faults and Folds database. 

 

Figure 5.4. Implementation of creep for the Hayward fault. Top panel shows average 

right-lateral creep rate along the Hayward fault from joint inversion of InSAR and 

surface creep measurements. Black dots represent microseismicity and magenta dots 

represent locations of repeating earthquakes. Modified from Shirzaei and Burgmann 

(2013). Lower panel shows the implementation of creep along the Hayward fault in 

FIMozFric as velocity-strengthening (positive [a – b]) regions. 
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Figure 5.5. Map of the Garlock fault and nearby fault systems. Faults are colored by the 

Quaternary slip rates from the USGS Active Faults and Folds database. Black stars 

indicate locations where sinistral slip rates (in mm/yr) were determined by paleoseismic 

studies. 

 

Figure 5.6. Simulation results for surface slip distributions of the first ten surface-

rupturing earthquakes along the Calaveras, Hayward, and San Andreas faults. Top panel 

is an oblique view of this fault system. Fault patches are 2 km x 2 km and colored by 

their roughness. 

 

Figure 5.7. Locations of displaced features along the Garlock fault that were measured in 

this study. 

 

Figure 5.8. Comparison between lidar- and field-derived sinistral offsets along the 

Garlock fault. Field-derived measurements were made by McGill and Sieh (1991). Lidar-

derived offsets were made by reoccupying McGill and Sieh’s (1991) displaced features. 

Error bars represent ranges in each offset magnitude using the field (vertical bars) and 

lidar (horizontal bars) methods. 

 

Figure 5.9. Slip magnitudes measured from offset geomorphic markers along the (A) 

western, (B) central, and (C) eastern sections of the Garlock fault. Top panels in A, B, 

and C are sections of my lidar-derived fault trace map plotted on top of a 0.5 m DEM. 
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Lower panels show the along-strike slip measurements of offset features. The histograms 

in the left panels group offset magnitudes into 50 bins. 

 

Figure 5.10. Simulation results for surface slip distributions of the first ten surface-

rupturing earthquakes along the Garlock fault. Top panel is an oblique view of this fault 

system. Fault patches are 2 km x 2 km and colored by their roughness. Middle panel 

shows slip distributions along the Garlock fault using the geodetically determined slip 

rate of 11 mm/yr. Lower panel shows the modeled surface slip distributions that were 

determined paleoseismically. 

 

Figure 5.11. Surface patch slip histories for select locations along the Garlock fault using 

(A) a geodetically derived slip rate of 11 mm/yr, and (B) geologically derived slip rates 

of 7 mm/yr, 5 mm/yr, and 6.5 mm/yr for the western, central and eastern sections of the 

Garlock fault, respectively. Fault traces (red lines) were mapped using lidar-derived 

DEMs and DEM products (see Chapter 3 for the details of this method). Red dots 

represent surface slip for full ruptures that propagated through the entire seismogenic 

zone. Blue dots represent surface slip for earthquakes that partially ruptured the 

seismogenic zone. 
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TABLES 

 

Table 5.1. Compilation of slip rates determined by paleoseismic studies along the 

Garlock fault to date. OSL – optically stimulated luminescence. 

 

 

Table 5.2. Summary of rupture jumping probabilities for the Hayward-Calaveras-San 

Andreas fault system conditioned on each fault segment. All probabilities are reported as 

percentages. 
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Chapter 6 

EARTH SCIENCE MEETS THE SPECIAL EDUCATION CLASSROOM 

ABSTRACT 

 Mainstream classrooms have difficulty accommodating students with special 

learning needs while achieving state-mandated standards in reading, writing, math, and 

science. These students with learning disabilities (LD) are subsequently grouped into 

special education (SE) classrooms where they receive specialized instruction. Few 

science lesson plans and teaching activities exist to help SE teachers guide their students 

toward meeting the state-mandated academic standards, especially for Earth science 

curricula. I introduce a set of Earth science-themed lesson plans designed and 

implemented for elementary-level students with LD. I document the lessons’ 

effectiveness in helping students retain Earth science concepts. All lessons used tactile 

and interactive learning activities to teach Earth science (e.g., tectonic boundaries, Earth 

structure, and natural hazards) and science inquiry concepts outlined in the Arizona 

Department of Education curriculum standards. All lessons were administered by a SE 

teacher to a class of 8-10 students over the course of two weeks. Student responses were 

coded semi-quantitatively to assess the effectiveness of the lessons and the various 

instruction methods. Pre- and post-assessments of each student’s state of knowledge 

showed increased retention of Earth science concepts after implementing the new lesson 

plans. The two primary findings of this chapter include: (1) Earth science provides a 

highly engaging learning environment for students with LD, and (2) hands-on, student-

led learning activities are paramount to enhancing the retention of Earth science concept 

by students with LD.  
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INTRODUCTION

Students with learning disabilities (LD) that require special classroom 

accommodations are gaining recognition as a severely underrepresented group within the 

Broader Impacts of the National Science Foundation’s educational directives (Clewell 

and Fortenberry, 2009). Students with LD are commonly put into self-contained 

classrooms and given sets of educational goals and objectives that are customized to their 

individual academic abilities and disabilities, thereby requiring all special education 

teachers to accommodate the special needs of every student (Cawley et al., 2002). This 

challenge is amplified by the paucity of educational resources available to special 

education teachers to help students with LD meet the state-mandated curriculum 

standards that were set in motion by the No Child Left Behind Act of 2001 (Browder et 

al., 2010). This is especially true for science education in the special education 

classroom. Educational curricula and lesson plans that engage mainstream K-12 students 

in science are multiplying on a daily basis, but they unfortunately lack the adaptability to 

meet the special learning needs of students with LD (Haddad et al., 2012). In fact, science 

in general has been neglected in the special education curricula for decades (Holahan et 

al., 1994), even though “many science educators feel that science as a process approach 

offers a vast resource to the special education curriculum” (Anderson et al., 1970). As a 

result, students with LD consistently score an average of one standard deviation lower in 

science and other disciplines (Anderman, 1998) and are subsequently excluded from the 

enhanced learning environment that cutting-edge research brings to K-12 classrooms 

(Haddad et al., 2012). 
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Students with LD students struggle with the deductive and inductive reasoning of 

the science curriculum (e.g., Mastropieri et al., 2001) but they excel when science 

concepts are adapted to their learning level (Mastropieri et al., 2006 and references 

therein). For instance, textbook reading is not effective in teaching science to  students 

with LD (e.g., Parmar et al., 2004) however several existing models for teaching science 

to students with LD include peer-mediation (e.g., Mastropieri et al., 2006; Simpkins et 

al., 2009), modifications to textbook content (e.g., Lovitt et al., 1986; e.g., Lovitt and 

Horton, 1994), allowing more time for vocabulary recognition (e.g., Browder et al., 

2010), and adapting the mode of response to the student abilities (e.g., Mastropieri et al., 

2001). Furthermore, there exists only one study to our knowledge that utilizes tactile 

activities to explore Earth science (Haddad et al., 2012). It is important to provide 

students with LD with lessons and tactile activities that strengthen their inductive and 

deductive reasoning skills, as well as expose them to Earth science processes that operate 

in the world within which they reside. The motivation for this study and for future work 

planned was and is to provide special education teachers much-needed Earth science 

material that is adaptable for each of their student’s learning needs. 

I present a series of Earth science lesson plans that engage students with LD in the 

scientific method and expose them to Earth science concepts while helping them meet 

state-mandated Earth science curriculum standards. All lessons were developed with the 

sole purpose of adapting key Earth science concepts to the learning abilities of 

elementary school students with LD. Our study spans two weeks of observing and 

recording the behavior of eight students and chronicles the effect of tactile lesson plans 

on the retention of Earth science concepts. I present results from student pre- and post-
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tests, and then present quantitative analyses of student behavior and reactions to the 

adapted lessons. 

METHODS

Classroom Setting and Observational Procedures 

Eight 8th grade students with 2nd to 3rd grade cognitive levels in reading, writing, 

mathematics, and science were seated at his/her desk to which they were assigned since 

the beginning of the school year, with 2-3 students seated per table. In order to preserve 

their regular learning environment and minimize any possible effects of external 

distractions on their performance or behavior during the study period, no alterations were 

made to the usual classroom layout or appearance, or the students’ seating arrangements. 

Two weeks prior to the study, two researchers visited the classroom and interacted with 

the students via informal introductions, general information about the study, career 

discussions (e.g., what does a geologist do?), and school/career advice with the intention 

of familiarizing them students with the researchers and their research goals. Also during 

this visit, each of the two researchers sat in a predetermined observation location and 

silently observed their science lesson of the day to acclimate the students to our presence 

in their classroom.  

Lesson Plan Description 

 Three lesson plans were developed to evaluate the effectiveness of several 

concept delivery methods: (1) conventional PowerPoint-style lecture, (2) cooperative 

learning (i.e. “jigsaw” exercise), (3) hands-on learning using manipulatives, and (4) use 

of concept sketches (e.g., Johnson and Reynolds, 2005). All lessons were designed to be 

adaptable, offering the teacher a bank of questions ranging in cognitive level thus making 
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the lessons highly customizable by the teacher for each student. The lessons were 

designed to cover ~80 minutes, which is the students’ allotted time for science per day. 

Pre- and Post-Tests 

Pre- and post-lesson tests were administered to each student to quantify the 

effectiveness of the adaptive lesson plans. Each test consisted of five multiple-choice or 

fill-in-the-blank questions that were related to the lessons’ topics (Fig. 6.1). Questions 

were read aloud by the teacher to accommodate those students with reading difficulties. 

No answers were revealed to the students at the end of the pre-test. At the conclusion of 

each lesson, the same test questions were distributed as post-tests and again read aloud by 

the teacher. Only after each student handed in his/her post-test were the questions 

discussed among the teacher and students, and the correct answers verbally given to the 

students. 

Student Behavioral Observations 

Direct observations of student behavior and reactions to each lesson followed 

methods similar to those developed by Williams and Semken (2011). During each lesson, 

three observers were seated along the outer edges of the classroom and were assigned two 

to three students each. The behavior of each student was instantaneously spot sampled 

and recorded in an ethogram at one-minute intervals. Observations were pre-divided into 

five behavioral and physical characteristics (Fig. 6.2). Body position was divided into the 

three subcategories of leaning forward, relaxed, or slumped. These divisions were based 

on the interpretation that a leaning forward body position represented positive 

engagement with the material, a relaxed position represented neutral engagement with the 

material, and a slumped position represented disengagement from or disinterest in the 
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material Williams and Semken (2011). Similarly, student gaze was divided into two 

subcategories that included gazing toward the teacher/activity (positive engagement) or 

gazing away from the teacher/activity (negative engagement). Verbalization instances 

included verbalizing with the teacher or fellow students, and either on or off topic, while 

writing activities were categorized by the level of independence each student exhibited 

and the relevance of the written material to the assigned written tasks. Finally, the use of 

manipulatives was coded as either appropriate for their intended purpose or inappropriate 

and thus a distraction from the lesson. These categories were primarily used as a means to 

assess the level of engagement exhibited by each student throughout the duration of the 

lesson, and thus the degree to which each concept delivery method was effective. 

Following each lesson, these behavioral observations were calibrated byinput from the 

teacheron the students’ “normal” behavior before a final assessment was made. This final 

step was necessary to constrain the interpretation that a student leaning forward was 

indeed engaged in the material during the lesson, for example, and not due to an inherent 

behavioral or cognitive condition. 

RESULTS 

Pre- and Post-Tests 

Results from pre- and post-lesson tests showed that, on average, student test 

scores increased by approximately 21% for all lessons (Table 6.1). Some students 

increased their post-test scores by as much as 100%. However, 25% of the students 

scored lower on the post-tests relative to their pre-tests by as much as 60% of the perfect 

test score (Fig. 6.3). I must note, however, that these results are preliminary and it is 

uncertain how representative they are of pre-/post-test scores if administered to a more 
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statistically significant number of student participants (i.e. >30 students). Furthermore, 

our pre-test/post-test approach may contain the possible limitation that not all  students 

with LD are comfortable in written exercises, especially those that require aid from the 

teacher or the teaching assistant in reading test questions and writing down the answers. 

One possible solution would be to adapt pre- and post-test evaluations by incorporating 

verbal student-teacher responses (e.g., one-on-one questionnaires) or by using 

manipulatives to assess the how well each student retained the Earth science concepts 

covered during the lesson. 

Student Body Behavior and Verbalization  

Observations recorded of student body and verbalization behaviors demonstrate 

obvious differences in student behavior throughout the duration of the lesson (Fig. 6.4). 

This was exemplified in the “Tectonic Boundaries” lesson, the data for which I discuss 

here. Almost every student was engaged in the pre- and post-tests, as expected. As the 

lesson progressed into the PowerPoint presentation, the majority of students alternated 

between leaning forward and remaining in a relaxed body position. Similarly, student 

gaze alternated between the teacher and off-topic distracters such as classmates, 

classroom walls, and books/toys. Within 15 minutes of the beginning of the PowerPoint 

presentation, nearly every student transitioned to a slumped position and gazed away 

from the teacher and slide show (Fig. 6.4).  

In the first part of the jigsaw exercise (group discussion and student-led teaching), 

on-topic student-student and student-teacher verbalizations increased as each plate 

boundary type was distributed to the three student groups. Similarly, student on-topic 

writing activity increased as each group participated in drafting the concept sketch for its 
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assigned plate boundary with the aid of the teacher. During the second part of the jigsaw 

exercise (group presentations), the majority of students leaned forwarded and gazed at 

each student-led presentation. 

DISCUSSION  

Given the inherent variability in the learning needs of our student participants, our 

results show that there is no single effective delivery method of Earth science concepts 

that will reach all students with LD in the same classroom. However, similar to previous 

studies involving marine science education (Haddad et al., 2012) our data strongly 

suggest that the most effective approach to material delivery is multifaceted and should 

incorporate a combination of delivery techniques to help students with LD grasp and 

retain Earth science concepts. Broadly, these techniques include interactive slide 

presentations (not longer than 15 minutes), the use of manipulatives as teaching aids, the 

use of teacher-assisted concept sketches, student-led teaching, limiting the number of 

concepts covered per lesson, and reducing the readability of the level of lesson texts. This 

study demonstrates that lecture-style delivery of Earth science concepts is effective to a 

certain degree within the first 10-15 minutes at which time students with LD disengage 

from the lesson. This may be due to either time-dependent loss of interest in the material 

or cognitive conditions specific to each student. Conversely, hands-on, interactive, and 

student-led learning activities such as the jigsaw exercise appear to enhance the 

engagement of all students with LD in the classroom. This is consistent with the many 

findings of other studies on hands-on learning as a more effective delivery method than 

traditional instruction methods (see Haury and Rillero, 1994 for a complete review). 

However, these instructional approaches and learning activities are usually modified from 
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pre-existing mainstream lesson plans by the teacher in order to meet the individual 

cognitive and learning need of every student in the classroom. Adaptable lessons like 

these provided to the special education teacher saves the teacher preparation time and 

ultimately results in the increased use of effective lesson plans for their students. 

FUTURE DIRECTIONS 

The analyses and results presented in this paper can be considered as a pilot study 

in teaching Earth science concepts to students with LD. However, there remains a 

significant amount of work to further test the methods described here and develop the 

best customizable lesson plans that will most effectively deliver Earth science concepts to 

students with LD. One approach to improving the direct observational method is to 

validate it against continuous video-enabled student observations and coding. In an ideal 

classroom setting and given unlimited amount of data processing time, each lesson would 

be filmed in its entirety and each student would be coded continuously. However, this 

approach is not always practical, especially for the analysis of large numbers of students, 

given its time-intensive nature. Therefore, future work will involve direct comparisons of 

an instantaneously sampled ethogram with a continuously (from video) sampled 

ethogram as a way of calibrating the method described here. Additionally, one possible 

source of epistemic uncertainty in our direct observation method includes differences 

between the coding made by the different observers. To explore for the nature of this 

uncertainty, and to account for it in future analyses, observer-observer and observer-

video comparisons need to be performed. 

Another possible source of epistemic uncertainty in our results stems from the fact 

that our study included only eight student participants. This is not a statistically 
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significant sample size, and therefore may not judiciously represent the effectiveness or 

ineffectiveness of our lesson plans. Therefore, our results may be amplifying high-

frequency signals or bias in our student behavior observations that would otherwise be 

reduced if our sample size were increased to more than 30 students. Finally, a significant 

source of uncertainty in our analyses is the lack of a control group. Future work will 

include direct observations of a group of students with LD that participate in an unaltered 

special education classroom lesson. This group should provide the control observations 

necessary to calibrate our observations and lesson plan effectiveness. 

Future work will also include extended and standardized interviews with the 

special education teachers and their students. Interviews with specific and consistent 

questions will be conducted with the teachers after each lesson (and in the absence of the 

students) with regards to each student’s performance during the lesson will provide 

systematic feedback about the effectiveness of the lesson and will refine our 

interpretations of each student’s behavior. For example, a student might have difficulty 

remaining seated throughout the lesson even though he/she is engaged in the lesson and 

had a significant improvement in his/her post-test score. Therefore, his/her ethogram of 

body position may not provide a fair assessment of his/her level of engagement in the 

lesson and retention of concepts. Similarly, standardized interviews with each student at 

the end of the lesson will provide us with a more detailed assessment of their level of 

engagement. 
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FIGURES 

Figure 6.1. Sample pre-/post-test handout given to students before and after each lesson. 

The questions were primarily closed form and were read aloud by the teacher to 

accommodate students with reading difficulties. The example shown here is from the 

“Tectonic Boundaries” lesson plan. 

Figure 6.2. Sample ethogram used in this analysis. The ethogram is divided horizontally 

into one-minute observation intervals where observations of several behavioral 

characteristics were made for the 2-3 students assigned to each observer. Each ethogram 

was then converted to a density plot of student behaviors (e.g., Fig. 6.4). 

Figure 6.3. Examples of pre- and post-tests completed by two students. (A) In the case of 

the “Structure of the Earth” lesson plan, some student scores improved by up to 100% 

after participating in the lessons, while (B) other student scores decreased. 

Figure 6.4. Density timeline illustrating observed student behavior during a ~80-minute 

lesson. The example shown here is from the “Tectonic Boundaries” lesson plan. x- and y-

axes represent lesson time and various student behavioral indicators as coded into the 

ethogram (Fig. 6.2), respectively. 
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Figure 6.2
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Figure 6.3
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TABLES 

 

 
 
Table 6.1. Pre- and post-test results obtained from the new lesson plans. 
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Chapter 7 

CONCLUSIONS 

DIRECTIONS FOR FUTURE RESEARCH 

 The work presented in this dissertation documents earthquake-generated 

deformation as seen from the lenses of paleoseismology, geomorphology, and numerical 

modeling. While it provides an initial framework onto which future efforts may be 

constructed, my work highlights several areas that need improvement. Given a large 

amount of time, funding, and graduate students, I recommend the following directions for 

future research be taken. 

First, the monitoring of the geomorphic degradation of the Landers fault scarp 

that was presented in Chapter 2 should be continued. A critical tool that I recommend be 

used to ensure the success of such monitoring is structure from motion (SfM). Gone are 

the days of dragging a 100+ lb terrestrial laser scanner halfway to Montana and spending 

days scanning a few square kilometers of some interesting landform. The ease with which 

centimeter-scale digital elevation models can be generated from SfM photographs, which 

can be taken by balloon aerial photography, will ensure the persistent monitoring of the 

Landers fault scarp for years to come. We must not forget that the geomorphic 

monitoring of the Landers fault scarp was initiated by Arrowsmith and Rhodes (1994) 

only days following the Landers earthquake 22 years ago. While recent work using 

terrestrial lidar documents fault scarps generated by recent earthquakes (e.g., Gold et al., 

2012), Chapter 2 presents the longest quantitative record of fault scarp degradation 

(Haddad et al., 2012; Johnson et al., in review). SfM provides us with a unique 

opportunity to continue this monitoring efficiently and cost effectively. Such an effort 
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will be of immense use to us for several reasons. The quantification of continued scarp 

degradation will allow us to calibrate numerical scarp evolution models (e.g., Hanks et 

al., 1984; Hanks, 2000) and analog models of offset channel degradation (i.e. in a sand 

table/flume). The use of SfM in such experimental setups will be critical in documenting 

topographic deformation/modification following simulated earthquakes and rainfall 

events. Geomorphic degradation rates can then be computed in 3D using similar methods 

employed to quantify real earthquake deformation fields (e.g., Chapter 3 and Nissen et al. 

(2012)). These rates can subsequently be used to calibrate scarp diffusion models and 

reevaluate the timing of prehistoric earthquakes that are recorded by older fault scarps. 

Another application of SfM should take place in paleoseismic trenches to accurately 

document piercing points in 3D. This will prove invaluable to the quantification of 

paleoearthquake-related topographic deformation several meters away from the principal 

displacement zone. The opportunities for SfM are endless. 

Second, future work should further expand upon numerical simulations of 

earthquake ruptures and their associated crustal deformation. It is clear that the methods I 

used in Chapters 4 and 5 oversimplify the physical processes that govern the physics of 

the earthquake cycle. We know that the upper lithosphere behaves in a much more 

complex manner than how it is modeled in my dissertation. If the research problem is 

focused on a few earthquake cycles, then the assumptions used in Chapters 4 and 5 may 

suffice. However, earthquake physics is far from static, and the paleoseismic record 

preserves the cumulative effects of coseismic, postseismic, and interseismic phenomena. 

We know that dynamic rupture processes control coseismic and postseismic deformation 

during the earthquake cycle, as demonstrated by dynamic simulations of single ruptures 
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and by geodetic documentation of modern earthquakes (e.g., Oglesby et al., 2003; 

Dunham et al., 2011; Kaneko and Fialko, 2011; Lozos et al., 2011; Kaneko et al., 2013; 

Shirzaei and Burgmann, 2013; Shirzaei et al., 2013). Present-day computing capabilities 

inhibit the dynamic simulation of ruptures over thousands of earthquake cycles. But 

continued acceleration of computing power should soon allow us to explore how much 

dynamic earthquake processes contribute to topographic deformation at paleoseismic 

timescales. These dynamic models should eventually be incorporated into earthquake 

hazard assessments such as the Uniform California Earthquake Rupture Forecast 

(UCERF). Of course, this will depend on the spatial and temporal scales in which we are 

interested. If we are interested in geologic timescales (thousands to millions of years – to 

understand long-term fault interactions, for example), then obviously a different set of 

modeling tools is needed that will allow for the evolution/interaction of faults and 

geodynamic processes. Future work should bring lithospheric deformation models closer 

to reality by allowing spatiotemporal variations in fault geometry, roughness, depth-

dependent friction, and lithospheric strength. How can we formulate crustal deformation 

models that emphasize the earthquake cycle over single/multiple events? How can we use 

geodetic datasets (e.g., InSAR and GPS) to understand the nature of crust-mantle 

coupling and in turn say something about earthquake interactions in space and time? This 

is an age-old conundrum with which geologists have been dealing since accepting the 

theory of plate tectonics. So, it should be no surprise to us that it exists in the context of 

reconciling geodetically vs. geologically determined fault slip rates. 

I close this dissertation with the notion that the inevitability of earthquake 

occurrence in densely populated areas underlines the importance of integrating insights 
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from geomorphic, geologic, geodetic, and numerical observations to improve seismic 

hazard analyses. It is the responsibility of earthquake scientists to make sure this 

integration remains a topmost priority in guiding earthquake-mitigation policies. The 

efforts of the multidisciplinary groups involved in UCERF serve as a fine example of 

how these observations converge to a tangible product of which policy makers can make 

use to ensure the safety of the general public. 
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APPENDIX A 

MEASURING EARTHQUAKE-GENERATED SURFACE OFFSETS USING LIDAR 
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Step 6b: Prepare the DEM using LiDARimager 
To improve processing efficiency in LaDiCaoz, the user will need to crop the 

DEM file to the extent that displays the offset feature(s). LiDARimager is a MATLAB-
based GUI that loads the .asc file, creates a hillshade of the DEM using user-defined 
illumination parameters, and allows the user to create smaller .asc files at user-defined 
spatial extents (Zielke et al., 2010) 
 Start MATLAB and navigate to the directory that contains LiDARimager and the 
.asc files. In the Current Folder list to the left of the Command Window, right click on 
LiDARimager and select “Run File”. This will load the LiDARimager GUI. Follow the 
instructions in the LiDARimager video (see above link). 
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APPENDIX B 

DISPLACEMENT MEASUREMENTS FOR THE GARLOCK AND OWENS VALLEY 

FAULT ZONES 
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 The following tables are lidar-derived measurements of offset geomorphic 
features along the Garlock and Owens Valley fault zones (California). These data are 
available in the Madden et al. (2013) appendix J of the Uniform California Earthquake 
Rupture Forecast (UCERF3) report (Field et al., 2013). The maps below show the 
locations of offsets measured along both fault zones. 
 
Garlock fault zone 

 
 
Owens Valley fault zone (oblique view facing northeast) 
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APPENDIX C 

MATLAB CODE USED TO GENERATE KML FILES FOR THE UCERF3 OFFSET 

DATABASE 
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kml_writer.m 
 
% David E. Haddad and Ramon Arrowsmith 
% 05/18/2011 

% This script takes in a text file that contains offset measurement 
data
% stored in columns and makes KML file for Google Earth. Most of this
% script is borrowed from Ramon Arrowsmith's Computers in Geology class 
notes:
% (http://http://arrowsmith410-598.asu.edu/Lectures/Lecture21/) 

% Here we go... 

% Load the text file that contains all offset measurement data. 
% IMPORTANT NOTE: the first line of the text file must not have a text 
% header! Otherwise, MATLAB's "load" function will not work! 
%----------------------------------------------------------------------
----
offset_data = load('SJF_offset_data_Lat_Long.txt'); 

% Define what each column represents. 
%----------------------------------------------------------------------
----
offset_number = offset_data(:,1); 
longitude = offset_data(:,2); 
latitude = offset_data(:,3); 
distance_along_fault = offset_data(:,4); 
offset_field = offset_data(:,5); 
offset_field_plusminus = offset_data(:,6); 
confidence_field = offset_data(:,7); 
offset_QTM = offset_data(:,8); 
offset_QTM_plusminus = offset_data(:,9); 
confidence_QTM = offset_data(:,10); 
offset_aerial_photos = offset_data(:,11); 
aerial_photos_plusminus = offset_data(:,12); 
offset_LaDiCaoz = offset_data(:,13); 
LaDiCaoz_plusminus = offset_data(:,14); 
confidence_LaDiCaoz = offset_data(:,15); 

% Plot the locations of the offset measurements to make sure the 
% locations are correct. 
%----------------------------------------------------------------------
----
% figure(1) 
% clf 
% plot(longitude,latitude,'k.') 

% Write the kml file. 
% First, open the output file to write the KML. 
%----------------------------------------------------------------------
----
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fid =fopen('SJF_offset_data.kml','w+'); 

% Then, print the xml header and KML namespace declaration. 
%----------------------------------------------------------------------
----
fprintf(fid, '<?xml version="1.0" encoding="UTF-8"?>\n'); 
fprintf(fid, '<kml xmlns="http://www.opengis.net/kml/2.2">\n'); 
fprintf(fid, '<Document>\n'); 

% Now define the icon for the points. 
%----------------------------------------------------------------------
----
fprintf(fid, '<Style id="dot">\n'); 
fprintf(fid, '<IconStyle>\n'); 
fprintf(fid, '<scale>0.5</scale>\n'); 
fprintf(fid, '<Icon>\n'); 
fprintf(fid,
'<href>http://maps.google.com/mapfiles/kml/shapes/placemark_circle.png<
/href>\n');
fprintf(fid, '</Icon>\n'); 
fprintf(fid, '</IconStyle>\n'); 
fprintf(fid, '</Style>\n'); 

% Here begins the fun part. Write the KML for each point in the text 
file.
%----------------------------------------------------------------------
----
for i=1:length(longitude) 
    fprintf(fid, '<Placemark>\n'); 
    fprintf(fid, '<name> %4.0f </name>\n',offset_number(i)); % Use the 
offset number to name the placemark. 
    fprintf(fid,... 
        '<description><![CDATA[<h1>San Jacinto Fault Offsets</h1><table 
border="1" cellpadding="3"><tr><th>Offset number</th><th>Longitude 
(dd)</th><th>Latitude (dd)</th><th>Distance along fault 
(m)</th><th>Field offset measurement (m)</th><th>+/- (m)</th><th>Field 
offset confidence</th><th>QTM offset measurement (m)</th><th>+/- 
(m)</th><th>QTM offset confidence</th><th>Aerial photo offset 
measurement (m)</th><th>+/- (m)</th><th>LaDiCaoz offset measurement 
(m)</th><th>+/- (m)</th><th>LaDiCaoz 
confidence</th></tr><tr><td>%3.0f</td><td>
%10.8f</td><td>%10.8f</td><td>%3.2f</td><td>%3.2f</td><td>%3.2f</td><td
>%3.2f</td><td>%3.2f</td><td>%3.2f</td><td>%3.2f</td><td>%3.2f</td><td>
%3.2f</td><td>%3.2f</td><td>%3.2f</td><td>%3.2f</td></tr></table>]]></d
escription>\n',...
        offset_number(i),... 
        longitude(i),... 
        latitude(i),... 
        distance_along_fault(i),... 
        offset_field(i),... 
        offset_field_plusminus(i),... 
        confidence_field(i),... 
        offset_QTM(i),... 
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        offset_QTM_plusminus(i),... 
        confidence_QTM(i),... 
        offset_aerial_photos(i),... 
        aerial_photos_plusminus(i),... 
        offset_LaDiCaoz(i),... 
        LaDiCaoz_plusminus(i),... 
        confidence_LaDiCaoz(i)); 

    fprintf(fid, '<styleUrl>#dot</styleUrl>\n'); 
    fprintf(fid, '<Point>\n'); 
    fprintf(fid, 
'<coordinates>%20.10f,%20.10f,0</coordinates>\n',longitude(i),latitude(
i));
    fprintf(fid, '</Point>\n'); 
    fprintf(fid, '</Placemark>\n'); 
end

% Close the Document and KML tags. 
%----------------------------------------------------------------------
----
fprintf(fid, '</Document>\n'); 
fprintf(fid, '</kml>\n'); 

% Close the output file. 
%----------------------------------------------------------------------
----
fclose(fid);
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APPENDIX D 

A COMPOSITE QUALITY RATING SCHEME FOR THE UCERF3 OFFSET 

DATABASE 
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INTRODUCTION 
 Tectonically displaced markers such as offset stream channels, valleys, ridges, 
roads, and fences provide direct evidence of earthquake-produced surface slip (McCalpin, 
2009). These offsets are measured are typically made in the field (e.g., Sieh, 1978; 
McGill and Sieh, 1991; Arrowsmith and Rhodes, 1994; McGill and Rubin, 1999; 
Lienkaemper, 2001) or using remote techniques (e.g., Arrowsmith and Zielke, 2009; 
Zielke et al., 2010; Haddad et al., in review).  
 Offset markers are often assigned a quality rating based on factors that evaluate 
the operator’s confidence in the offset measurement as a reliable indicator of tectonic 
offset. These measurements feed into collaborative and multidisciplinary efforts (e.g., 
WGCEP/UCERF) to physically constrain earthquake-produced surface offsets, explain 
the recurrence behavior of earthquakes, and analyze the mechanical behavior of faults. 
Nearly all measurements of tectonically offset markers are reported with a quality rating 
that is assigned base on author 
 In this report, we compile and summarize existing quality rating schemes for 
tectonically offset geologic, geomorphic, and anthropogenic markers across active faults. 
We focus on published rating schemes. We then propose a new quality rating scheme for 
offsets that provides the framework for an objective assessment of offset markers. 
 
EXISTING SCHEMES 
 Several quality rating schemes exist for offset measurements made using field and 
remote techniques. This section summarizes each scheme in chronological order of 
publication. 
 
Sieh (1978)
 Sieh (1978) assigned offset quality designations as “excellent”, “excellent/good”, 
“good”, “good/fair”, “fair”, “fair/poor”, and “poor”. Figure 1 presents published 
graphical examples of each rating. The “excellent and good” quality markers had the 
“absence of complicating secondary faults, little or no indication of lateral warping, 
sharpness of offset expression, relatively simple or clearly interpretable geological and 
geomorphic features,” (Sieh, 1978). No explicit descriptions were given for the “fair” and 
“poor” ratings. To standardize his rating scheme, we translated the descriptions of his 
offsets into discrete qualities based on key descriptive words that repeatedly appeared in 
each offset description. 

Assigned
rating

Rating description 

Excellent Well defined offset; sharp offset; fresh scarp; straight channels; beheaded 
channels; deeply incised channels. 

Excellent/Good Fresh fault trace; sharp offset; slight colluviation on abandoned channels. 
Good Fault zone characterized by multiple strands; channels intersect fault at low angle; 

shallow and wide channels; possible warping of channel; possible deflection of 
channel; different orientations of upstream and downstream channel segments. 

Good/Fair Broad fault zone; possible secondary faults; possibly deflected channels; similar 
channel widths and slope angles across fault; beheaded channels have similar 
widths and depths as their source. 

Fair Possible secondary faults; mircogeomorphology and alluvial deposits may obscure 
fault trace; broad and low-relief channels. 

Fair/Poor Fault trace not clear; fault trace geometry and position uncertain; complex fault 



374 

traces; exact slip partitioning among multiple traces is not possible; possible 
warping of channels; upstream and downstream channel segments not parallel; 
very broad channels. 

Poor Poor fault location; secondary faults; channels may never have been aligned 
before MRE; channel possibly obscured by mass wasting processes; possible 
channel deflection; heavy alluviation in channels. 

 
McGill and Sieh (1991) 
 McGill and Sieh (1991) assigned offset quality ratings to their measurements 
based on four categories: “excellent”, “good”, “fair”, and “poor”. Figure 2 presents 
published graphical examples of each rating. Although no explicit definition for each 
quality rating is given, offset measurements were assigned a rating as follows (McGill 
and Sieh, 1991): 
 
 “Each feature was given a quality rating that indicates the reliability and accuracy of the feature 
as an indicator of tectonic offset. For example, excellent and good ratings were given to geomorphic 
features that clearly have correlative features or deposits across the fault trace and that have clearly been 
separated by tectonic offset. Fair ratings were given to features that could possibly be separated by 
nontectonic means, of whose correlations across the fault are poor. Features that could easily have formed 
by nontectonic means (such as deflection around an uphill-facing scarp or stream capture), that have 
uncertain correlations across the fault, or that cross the fault zone in an area where the location of the 
fault trace(s) is uncertain were not used.” 
 
Lienkaemper (2001) 
  Leinkaemper (2001) rated his offset measurements using three qualities: 
“low”, “medium”, and “high”. Figure 3 presents published graphical examples of each 
rating. There are no standardized descriptions for each rating. To standardize his rating 
scheme, we translated the descriptions of his offsets into discrete qualities based on key 
descriptive words that repeatedly appeared in each offset description. Note that the link to 
the supplementary online materials (SOM) for this paper is dead. We contacted James 
Lienkaemper to see if we may access the materials. He has provided the following links: 
ftp://ehzftp.wr.usgs.gov/jlienk/archive/With_BSSA2001_Cholame1857/anaglyphs.htm 
ftp://ehzftp.wr.usgs.gov/jlienk/archive/With_BSSA2001_Cholame1857/readme.htm 

Assigned
rating

Rating description 

High Distinct offset; offset channels straight and parallel to fault; deep incisions that are 
not significantly degraded; channel beheading is distinct; single fault trace narrow 
and well defined; channel head and tail easily matched across fault. 

Medium Presence of secondary fault traces with measurable offsets on both traces; offset 
present but obscured by mass wasting processes (e.g., slumping, landsliding); 
intense and irregular erosion; large width variation of offset channel; parallel 
upstream and downstream channel segments but heavy erosion at fault trace; 
minor curvature of channel at fault; possible anthropogenic-induced incision (e.g., 
cattle introduction, stock ponds, disking); low-angle intersection of piercing lines 
with fault; wide zone of faulting makes offset projection to fault inexact; channel 
capture/piracy on downstream side of fault. 

Low Fault location uncertain; concealed fault; offset feature too irregular; offset linear 
features at low angle to fault; possible existence of secondary fault trace; weakly 
incised channels; badly eroded; heavily eroded; offset obscured by surficial cover 
(e.g., colluvium); wide offset channel; high channel sinuosity; channel 
capture/piracy on downstream side of fault; offset obscured by anthropogenic 
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activities (e.g., levee); possible deflection of drainage (as opposed to discrete 
offset). 

 
Zielke (2009; 2010) 
 Zielke (2009; 2010) assigned a quality rating for each offset based on its 
reliability as an indicator for coseismic slip as follows: “high”, “high-moderate”, 
“moderate”, “moderate-low”, and “low”. Figure 4 presents published graphical examples 
of each rating. The following table is extracted directly from Zielke’s (2009) PhD 
dissertation (page 32) and the SOM (Zielke, 2010). 

Assigned
rating

Rating description 

High Channel is at high angle to fault; only little degradation; long and straight channel 
sections at both sides of fault. 

High-moderate Channel at high-moderate angle of more degraded (abandoned channel?); 
subparallel channels at both sides, but not very long (makes exact estimate of 
orientation difficult) or longer channel but with slight curvature. 

Moderate Channel at moderate angle and more degraded; channels may have slightly 
different angle (obliquity) on either side of the fault, or are not very long or may 
have distinct curvature when crossing the fault; still relatively long 
upstream/downstream segments. 

Moderate-low Channel at oblique angle to fault trace; degraded; may have clear break in 
orientation (flow direction) at fault; curvature when crossing the fault; still 
relatively long upstream/downstream segments. 

Low Channel at oblique angle to fault trace; degraded; break in flow direction, 
curvature when crossing the fault only small upstream/downstream extent; 
possible secondary fault trace may have been activate in 1857 earthquake – 
possibility of distributed deformation. 

 
Salisbury (2012) 
 Salisbury et al. (2012) used a scheme that assigns a numerical value for each 
rating as follows: 0-5 = “poor”, 5.25-6.75 = “fair”, 7-8.75 = “good”, 9-10 = “excellent”. 
No explicit description is given for each rating. Also, the reason for the skewed quality 
assignment is not provided. For example, it is unclear why the “poor” rating is weighted 
greater than the other ratings. Salisbury et al. (2012) assigned field- and LiDAR-derived 
measurement uncertainties as follows: 
 
 “Feature distinctiveness, the prominence of the fault trace, the average size of alluvial material, 
the degree to which features were projected into the fault trace, the degree of feature degradation, and the 
density of the surrounding vegetation (which limited visibility considerably in some areas).”  
 
Williams (in preparation) 
 Williams (in preparation) assigned two letter grades for each offset measurement 
based on “fault location” and “geomorphic fault offset” criteria. Each feature’s letter 
grade is further subdivided into a +/- assignment (e.g., A-, B+). Figure 5 shows graphical 
examples of the different ratings used in Williams (in preparation). The following text 
was extracted from his manuscript on the recent slip-per-event history of the Coachella 
segment of the San Andreas fault (in preparation): 
 
 “Fault location was graded ‘A’ if it is clear and simple with multiple consistent evidence. A- was 
given if evidence of location was good and consistent but required longer projections from areas of better 
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expression. B+ and lower grades were assigned with increase of fault width or complexity. Lower grades 
were also attributed if fault location was found to be ambiguous. Sites with fault location lower than B+ 
were rarely used in the study.” 
 
The following tables present Williams’ (in preparation) quality rating schemes.  
 
Fault location: 

Assigned
rating

Rating description 

AF Multiple, clear, local field evidence of fault motion; fault trace interpreted to be 
simple and narrow. 

BF Field evidence strongly indicates location of fault, but exact location of active 
trace is interpreted from multiple permissive evidences; fault may be branching, 
bending, or wide. 

CF Location permissive but not clear (“CF” sites are not used in compiling slip curve). 
 
Geomorphic fault offset: 

Assigned
rating

Rating description 

AG Consistent with well-known fault location; good, uniform preservation; multiple 
consistent measurements; smaller reported uncertainties. 

BG Clearly offset by fault; projection of piercing lines to fault are longer; interpreted 
across multiple traces; preservation moderate to non-uniform; preferred but non-
unique interpretations are reported; reported uncertainties are larger. 

CG Offset may be apparent or biased by stream deflection against uphill-facing scarp, 
side-slope, or stream processes (“CG” sites are not used in compiling slip curve).  

PROPOSED RATING SCHEME 
 Based on our compiled quality rating schemes, there appear to be three factors 
that control the assignment of ratings in each study: (1) the quality of the marker that is 
offset, (2) the degree to which the fault zone is defined, and (3) the quality of the offset 
itself. Even though the compiled schemes used some combination of these factors to 
assign a rating to each offset, no standardized definition of each quality rating is 
provided. Furthermore, the quality assignments were not consistently used. For example, 
what does an offset rating of “high” look like using the Zielke et al. (2010) scheme? How 
is the degree of geomorphic degradation of each offset systematically assessed and 
assigned a value? The current rating schemes do not address such questions explicitly and 
thus could include a large degree of subjectivity or bias. Furthermore, the current 
schemes do not allow for a systematic quantification of confidence levels for the offsets 
that are to be used in the UCERF 3 models.  
 To address these issues, we developed a new composite rating scheme that 
incorporates the three controlling factors and assigns a single rating to each offset 
measurement. Our scheme uses a combination of visual and quantitative assessments of 
offset markers that are built into a streamlined workflow. The quantitative nature of our 
scheme has the added value of being incorporated into displacement reconstruction 
calculators (e.g., Zielke et al., 2010), where lateral slip vectors and their orientations are 
computed (e.g., dot product) for the offset and automatically assigned a rating based on 
the angle made by the piercing lines and the fault. 
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FUTURE DIRECTIONS 
Using our newly compiled database, we will compute the frequency of each quality 
rating and see if there exists a relationship between rating frequency and reported 
measurement errors. This will test the performance of existing rating schemes and the 
consistency of the original raters.  
Based on results from the above task, we will refine the final number of quality 
categories for our proposed rating scheme. 
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INTRODUCTION
The drive for understanding geologic phenomena at submeter-resolution scales 

has led to a rapid increase in the demand for high-resolution digital topographic datasets 
collected by light detection and ranging (lidar) systems. The richness of lidar datasets 
makes them highly valuable beyond the original application that drove their acquisition. 
However, lidar datasets and analyses tend to be project-specific, computationally 
intensive, and large, thus creating technical challenges in their processing and distribution 
to the geoscience community. Furthermore, the useful analysis of lidar datasets requires 
special computing resources that are unavailable to many geoscientists. To help alleviate 
these challenges, the Arizona State University School of Earth and Space Exploration 
(http://sese.asu.edu) and the University of California (San Diego) San Diego 
Supercomputer Center (http://www.sdsc.edu), with support from the U.S. National 
Science Foundation, have collaborated to create the OpenTopography Facility 
(http://opentopography.org). OpenTopography facilitates community Web access to high-
resolution geoscience-oriented topographic data, related tools, and resources as a means 
to democratize Web-based access to lidar datasets. 

The purpose of this tutorial is to demonstrate how to access publicly available 
lidar datasets using the OpenTopography Web facility. This tutorial is not meant to be a 
comprehensive documentation of advanced OpenTopography functionalities. Instead, we 
encourage the reader to explore OpenTopography on the Web via its extensive online 
documentation, video tutorials, and educational resources. 
 
COMPUTING CONSIDERATIONS 

There are certain computing requirements to consider when visualizing and 
analyzing lidar datasets depending on their intended use. For this tutorial, the basic 
computing needs include access to high-speed Internet, a Web browser, and the free 
edition of Google Earth. More advanced lidar data analysis will require access to a 
geographic information system (e.g., ArcInfo or Global Mapper). 
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