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ABSTRACT  
   

 Humans are capable of transferring learning for anticipatory control of dexterous 

object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from 

lifting an object with two fingers to lifting the same object with three fingers (Fu et al. 

2011).  However, the role that tactile information plays in this transfer of learning is 

unknown.  In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and 

then lifted the object with three fingers (3-DoF).  The subjects were divided into two 

groups—one group performed the task wearing a glove (to reduce tactile sensibility) 

upon the switch to 3-DoF (glove group), while the other group did not wear the glove 

(control group).  Compensatory moment (torque) was used as a measure to determine 

how well the subject could minimize the tilt of the object following the switch from 2-

DoF to 3-DoF.  Upon the switch to 3-DoF, subjects wearing the glove generated a 

compensatory moment (Mcom) that had a significantly higher error than the average of the 

last five trials at the end of the 3-DoF block (p = 0.012), while the control subjects did 

not demonstrate a significant difference in Mcom.  Additional effects of the reduction in 

tactile sensibility were: (1) the grip force for the group of subjects wearing the glove was 

significantly higher in the 3-DoF trials compared to the 2-DoF trials (p = 0.014), while 

the grip force of the control subjects was not significantly different; (2) the difference in 

centers of pressure between the thumb and fingers (ΔCoP) significantly increased in the 

3-DoF block for the group of subjects wearing the glove, while the ΔCoP of the control 

subjects was not significantly different; (3) lastly, the control subjects demonstrated a 

greater increase in lift force than the group of subjects wearing the glove (though results 

were not significant).  Combined together, these results suggest different force 
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modulation strategies are used depending on the amount of tactile feedback that is 

available to the subject.  Therefore, reduction of tactile sensibility has important effects 

on subjects’ ability to transfer learned manipulation across different DoF contexts. 
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CHAPTER 1 

INTRODUCTION 

Investigations involving the neural mechanisms underlying dexterous 

manipulation have become an area of significant focus in recent years.  These studies 

have been conducted to understand how the brain controls the neuromuscular system with 

the goal of creating a comprehensive model for use with robotics and neuroprosthetics. 

One method that has been used to ascertain knowledge of the human 

neuromuscular system is having subjects learn to lift an object with an asymmetric mass 

distribution while preventing the object from tilting.  This task requires subjects to apply 

a compensatory moment (torque) to the object because of its asymmetric mass 

distribution.  This compensatory moment is necessary in order to lift the object in a 

straight and controlled manner (Salimi et al., 2000, 2003; Lukos et al., 2007, 2008).  Thus 

subjects learn to modulate their digit forces and positions as they attempt to apply the 

correct compensatory moment (Fu et al., 2010). 

More recently, Fu and colleagues performed a study in which they had subjects 

switch the amount of fingers that they used to lift an object with an asymmetrical mass 

distribution (see Figure 1; Fu et al., 2011).  Subjects lifted the object by a handle using 

two (or three) fingers, then immediately repeated the task using three (or two) fingers.  

The compensatory moment was measured to determine if subjects were capable of 

transferring the learned compensatory moment between different combinations of fingers 

(degrees of freedom, DoF) to manipulate the object.  It was found that the subjects were 

able to transfer the learned manipulation following a change in DoF (Fu et al., 2011).  

However, the underlying mechanisms remain to be determined.  In particular, it is not 
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known the extent to which subjects might use sensory feedback to modulate digit forces 

to a different contact distribution. 
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Figure 1: Experimental Apparatus (Fu et al. 2011) 
 

 
 
Figure 1 (Fu et al., 2011): A, “Front and side views of the grip device used to measure 
forces and centers of pressure on the grasp surfaces for the thumb and finger sides (units 
in millimeters). Object position and orientation were tracked through a motion capture 
system and active markers (denoted as small spheres, a) were placed on the top and on 
the extremities in the bottom box of the grip device.  Active markers were also placed on 
the nails of the thumb, index, and middle fingers. A mass (400 g) was inserted in either 
the left (L) or right (R) compartment in the bottom box of the device to change the center 
of mass of the object (LCM and RCM conditions, respectively). The convention for 
defining the direction of object roll (negative and positive toward the thumb or finger 
side, respectively) is also shown. The configuration of the grip device consisted of a 
central block (c) and two bars (grip surfaces, b), each mounted on a force/torque sensor 
(d). B, top view of the experimental procedures.  Subjects reached to the grip device 
located at 30 cm from the start position.  Infrared cameras (e) were placed around the 
workspace to track hand and object kinematics. C,D, Trial sequences associated with 
switching from two to three digits (2d3d) and vice versa (3d2d), respectively. 
Subjects were tested on experimental session 2, 2 weeks after experimental session 1.  All 
subjects started each experimental session with the LCM using each grip type, followed by 
an equal number of trials with a different grip type and the RCM.” 
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Dexterous object manipulation tasks consist of different action phases that are 

separated by contact events (Johansson and Flanagan 2009).  Before the subject reaches 

to lift the object, he can only make visually-based estimations about its mass or mass 

distribution.  However, as the subject reaches for the object, planning mechanisms can be 

used to predict sensory consequences (i.e., fingertip trajectory) and make corrections if 

expected and actual movements do not coincide.  Once the subject contacts the object for 

the first time, visual and sensory feedback also play an influence in how the subject 

modulates his finger forces and positions in the subsequent trials (Fu et al. 2010).  Each 

action-phase controller generates appropriate motor commands and predicts sensory 

events.  As a result, the brain is able to monitor task progression and produces corrective 

action if a mismatch is detected (Johansson and Flanagan 2009).  Figure 2 illustrates this 

mechanism. 
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Figure 2: Dexterous Object Manipulation Action Phase Diagram 
 

 
Figure 2: Flow diagram describes the action phases that occur during dexterous object 
manipulation.  Initially, the subject uses only visual estimation and planning to modulate 
finger forces and positions.  Once the subject contacts the object for the first time, visual 
and sensory feedback also play an influence in how the subject modulates his finger 
forces and positions in the subsequent trials (Johansson and Flanagan 2009). 
 

Motor equivalence is defined as the ability to perform the same behavioral task 

using different effectors, i.e., fingers (Lashley 1930; Fu et al. 2011).  This occurrence was 

documented in early neuromotor control studies (Lashley 1930; Bernstein 1967), but has 

not been a frequent topic of study until recent years (Fu et al. 2011; Ingram et al. 2010).  

The main question concerning motor equivalence concerned whether neural 

representations of motor actions rely on the effectors (fingers, limbs, etc.) used to 

perform a given task, or if the expression of these neural representations are independent 

of the effectors.  The results from Fu and colleague’s study in 2011 provide evidence to 

suggest that neural representations of motor actions are independent of their 

corresponding effectors.  So neural representations are likely effector independent, 

meaning that they rely on high-level neural representations. 

The main question that was examined in this study is the extent that tactile 

information (one type of sensory feedback) plays a role in transfer of learning.  Evidence 
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is needed to determine if the availability of tactile information from the fingers has an 

effect on transfer of learned manipulation across different grasp types (i.e., with different 

DoFs).  If a reduction in tactile sensitivity does have a significant effect on transfer of 

learning, this would provide evidence to suggest that feedback plays an important role in 

motor equivalence.  It has been argued that motor control models that are solely based on 

planning (or feedback) mechanisms do not fully capture the process underlying 

sensorimotor control, but hybrid models combining both planning and feedback 

mechanisms are more representative of the actual process (Desmurget and Grafton 2000).  

It has also been shown that tactile signals are necessary for dexterous and skilled 

manipulation (Flanagan et al. 2006).  Therefore, I hypothesized that sensory feedback 

would play an important role in motor equivalence and reducing it will have a negative 

effect on the transfer of learned manipulation. 
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CHAPTER 2 

MATERIALS AND METHODS 

Fourteen right-handed subjects volunteered for this study (control group— 

median age: 21, 3 females, 4 males; glove group—median age: 21, 4 females, 3 males).  

Subjects had no neurological or psychological issues or permanent damage to their hands 

due to a motor injury.  All participants were naïve to the purpose of the experiment and 

consented to their participation in accordance with the Declaration of Helsinki.  The 

Office of Research Integrity and Assurance at Arizona State University approved the 

protocols that were used.  The subjects were divided into two groups: glove and control.   

Subjects in the glove group lifted an L-shaped object for two blocks of fifteen 

trials each, separated by one hour.  In the first block, subjects lifted with their thumb and 

index fingers (2 DoF).  In the second block, subjects lifted with their thumb, middle, and 

index fingers (3 DoF).  The reason for starting with two fingers in the first block and then 

switching to three fingers in the second block was to avoid the possibility of mechanical 

disadvantage that would result from a reduction in the degrees of freedom (going from 

three fingers to two fingers).  A reduction in degrees of freedom would possibly cause 

another source of error that would skew the results.  Between the blocks, the glove 

subjects put a glove on their hand in order to reduce their tactile feedback.  The time-

delay between the blocks was 1 hour.  The purpose for the one-hour time delay was to 

mimic the amount of time it would take to administer anesthesia, another component of 

the experiment that will be explored in a future study. 

Subjects in the control group performed the same task, but did not wear the 

glove for the second block (when the subject lifted with three fingers). 
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Apparatus 

 The object used in the experiment will be called the L object.  It had a base made 

of white plastic (18.5 × 5 × 5 cm3) and one vertical handle (6.5 × 8 × 3 cm3) made of gray 

plastic at the left end of the long side of the base.  The total mass of the object was 710 g.  

The handle was placed at the left end instead of the right end in order to maximize finger 

modulation (the ability of the subject to modulate his fingers across the contact plates).  

The handle was equipped with two hidden force-torque sensors (one for each of the 

contact plates).  The torque required to successfully lift the object straight was 

approximately 320 N·mm in the counterclockwise direction.  The six-axis torque sensors 

were ATI Nano-25 sensors obtained from ATI Industrial Automation.  The force-torque 

sensors measured the forces and torques applied by the digits grasping the object, from 

which various force data can be derived (i.e., compensatory moment).  The object is 

shown in Figure 3 below. 

Figure 3: The L Object 

 
Figure 3: The L object used in this experiment.  See the Apparatus section for details 
regarding the properties of this object. 
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Protocol 

 Subjects were instructed to lift the object as straight as possible and prevent the 

object from tilting as if trying to “stop water from spilling out of a cup.”  They could only 

use the index and middle fingers of the right hand on the right plate of the grasping 

handle, and the thumb of the right hand on the left plate of the grasping handle.  They 

were instructed to lift the object approximately 5 cm from the table it was sitting on and 

hold it in the air for 2-3 seconds after hearing a verbal “Go!” signal.  Subjects were seated 

so that their right shoulder was properly aligned with the object handle.  The subjects 

were told that the handle was securely attached to the base and were allowed to briefly 

touch the handle to infer the texture.  The task required the subject to generate an 

anticipatory moment to compensate for the torque caused by the object’s asymmetric 

mass distribution.  Subjects’ ideal compensatory moment to lift the L object without tilt 

was 320 N·mm (in the counterclockwise direction).  In the first block of 15 trials, the 

subject lifted the object using two fingers—the thumb for the left plate and the index for 

the right plate.  In the second block, the subject lifted the object using three fingers—the 

thumb for the left plate, and the index and middle finger for the right plate.  There was an 

hour break between each block.  During the hour break, subjects did not perform any 

dexterous manipulation tasks with their hands to avoid possible interference with 

sensorimotor memory.  Subjects in the glove group put a glove on their hand for the 

second block, while subjects in the control group did not put on the glove.  The 

experimental protocol is summarized in Figure 4. 

 

 

  9 



Figure 4: Experimental Protocol 

 

Figure 4: Summary of experimental protocol used for the control and glove (test) groups. 
 
Quantification of Tactile Sensitivity 

In order to determine the effect that the glove had on reducing subjects’ tactile 

sensitivity, it was necessary to perform a test that quantifies the amount of tactile 

information available to the subjects with and without the glove. 

Monofilament testing for peripheral nerve sensory function is a commonly used 

method in hand therapy (Bell-Krotoski and Tomancik 1987).  Originally used to detect 

only light thresholds of touch recognition with horse hairs (Hunter et al. 1983), the 

method has evolved to include a greater range of filament forces by Semmes (Semmes et 

al. 1960) and Weinstein (Weinstein 1962) with the use of nylon filaments.  The filaments 

do not provide specific measurable thresholds of force or stress; rather, they simply 
  10 



provide a mode of quantifying tactile sensitivity in the nerve endings of humans (Bell-

Krotoski and Tomancik 1987). 

 Using a Semmes-Weinstein monofilament kit, each subject’s tactile sensitivity 

with and without the glove was recorded (for both control and glove groups).  A mini-kit 

of five filament sizes was used (diameters: 2.83, 3.61, 4.31, 4.56, 6.65).  Using kits with a 

greater number of different diameters has been shown to have misleading results since 

the force of some filaments overlap with those of others (Bell-Krotoski and Tomancik 

1987).  Thus, not all the filaments are necessary (Levin et al. 1978). 

A test was performed in which each subject was touched three times with a filament in 

the thumb, index, or middle finger.  The trials were randomly dispersed within other trials 

in which no touch was made (to check for false-positives). The testing continued by 

increasing the diameter of the filament until subjects were capable of feeling at least two 

out of three of the touches made to each finger and did not feel more than two phantom 

touches (touches in which subjects claimed to feel pressure when none was applied, or 

touches in which subjects claimed to feel pressure in a finger that was not poked). 

In the control group, five out of seven subjects felt the 2.83 monofilament, while 

two out of seven subjects felt the 3.61 monofilament. 

In the glove group (without wearing the glove), five out of seven subjects felt the 

2.83 monofilament, while two out of seven subjects felt the 3.61 monofilament.  When 

the subjects wore the glove, three out of seven subjects felt the 4.56 monofilament while 

four out of seven subjects felt the 6.65 monofilament. 

This test proves that the glove successfully reduced the subjects’ tactile sensibility 

and provides a quantitative measure for the amount of tactile feedback that was removed. 
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Data Analysis 

 The compensatory moment (Mcom) was used to quantify the subjects’ ability to 

correctly manipulate the object.  Mcom is defined as the torque that the subject placed on 

the handle to lift the object straight in the air. 

Specifically, Mcom = ΔFtan × d/2 + Fn × ΔCoP, in which ΔFtan is the difference in 

tangential force exerted by the thumb and index finger on each side of the handle being 

grasped, d is the distance between the graspable surfaces (i.e., the moment arm of the 

tangential forces), Fn is the normal (grip) force applied perpendicularly to the grasp 

surfaces, and ΔCoP is the vertical distance between thumb and fingers center of pressure 

on each side of the handle (for block 1, the CoP on the fingers side is the CoP of the 

index; for block 2, the CoP on the fingers side is the aggregate CoP of the index and 

middle fingers).  Previous studies have shown that recording the compensatory moment 

(Mcom) required to lift an object straight in the air is correlated with learning object tilt 

minimization, hence learning of anticipatory dexterous manipulation (Fu et al. 2010, 

2011).  Therefore, compensatory moment (torque) is directly related to sensorimotor 

learning.  The absolute value of the difference between the actual compensatory moment 

and the ideal compensatory moment (320 N·mm, counterclockwise) was calculated and 

analyzed.  Transfer of Mcom between blocks 1 and 2, along with grip force (Fn), ΔCoP, 

and difference in lift force (ΔFtan) were analyzed using ANOVA (repeated measures, with 

trials as a within-subject factor) and the t-test. 

From these analyses, the main goals were to: (1) determine if there are significant 

differences in transfer pre-switch and post-switch; (2) determine if there is significant 

learning in each block of trials by examining the compensatory moment; and (3) analyze 
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differences in force modulation strategies between control and glove subjects.  All tests 

were conducted at the p ≤ 0.05 significance level. 

Figure 5 shows data from a subject lifting the object without a glove (top graph), 

and a subject lifting the object with the glove (bottom graph).  Note the more variable 

Mcom in the graph of the subject lifting with the glove. 
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Figure 5: Graphical Output from MATLAB 

(a) 

 

(b) 

 
Figure 5: Two examples of graphical output from MATLAB used to help analyze the 
data.  (a) represents a subject lifting the object without a glove, (b) represents a subject 
lifting the object with the glove. 
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CHAPTER 3 

RESULTS 

 The results are described in four sections: (1) compensatory moment; (2) grip 

force; (3) adaptation of digit centers of pressure; and (4) adaptation of lift force.  The 

main theme uniting these sections is the progression of the transfer of learning to the first 

trial in block 2 and the subsequent force adaptations through the end of block 2.  The 

equation Mcom = ΔFtan × d/2 + Fn × ΔCoP will be used to analyze how these results 

relate to each other in the discussion section. 
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Compensatory Moment 

Control group: 

Figure 6 shows the compensatory moment that subjects (n = 7) placed on the 

object during both blocks.  There was significant learning in the first block because the 

first three trials were different from each other (p = 0.050; F = 3.896).  By the end of 

block 1, subjects were able to retain a steady compensatory moment for the last five trials 

(p = 0.924; F = 0.221).  After the hour break, when the subjects transferred from 2-DoF 

to 3-DoF, there was no significant learning in the first three trials (p = 0.844; F = 0.172).  

In fact, the first trial in the second block was not significantly different from the average 

of the last five trials in the first block (p = 0.777; t = 0.296).  However, there was a 

significant difference between the first trial in the first block and the average of the last 

five trials in the second block (p = 0.050; t = 2.450).  In addition, the first trial in the 

second block was not significantly different from the average of the last five trials in the 

second block (p = 0.343; t = 1.030).  These results indicate that a one-hour time delay 

between the switch did not interfere with retention of learned manipulation. 
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Figure 6: Compensatory Moment (Control Group)—Block 1 (without glove), Block 
2 (without glove) 
 

 

Figure 6: Learning curves for the control group.  Block 1 (the first continuous line; when 
the subjects use 2-DoF) shows significant learning (p = 0.050), while block 2 (the second 
continuous line; when the subjects use 3-DoF) does not demonstrate significant learning 
(p = 0.844).  The data are averages of all subjects (error bars represent ± 1SE). [* = p ≤ 
0.05] 
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Glove group: 

 In the glove group, subjects wore a thick glove and lifted the object in the second 

block after an hour break.  Figure 7 shows the compensatory moment that subjects (n=7) 

placed on the object during both blocks.  There was significant learning in the first block 

because the first two trials were different from each other (p = 0.044; F = 6.485).  By the 

end of block 1, subjects were able to retain a steady compensatory moment for the last 

five trials (p = 0.257; F = 1.423).  After the hour break, when the subjects transferred 

from 2-DoF to 3-DoF, there was not significant learning in the first three trials (p = 

0.233; F = 1.651).  In fact, the first trial in the second block was not significantly 

different from the average of the last five trials in the first block (p = 0.138; t = 1.712).  

However, there was a significant difference between the first trial in the first block and 

the average of the last five trials in the second block (p = 0.021; t = 3.108).  Importantly, 

the first trial in the second block was significantly different from the average of the last 

five trials in the second block (p = 0.012; t = 3.560).  This significance suggests that 

reducing tactile sensitivity interfered with the subjects’ manipulation strategies of the 

object, as indicated by the learning trend in the second block.  To determine what is 

causing this interference, it is necessary to investigate the individual components that 

make up the Mcom. 
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Figure 7: Compensatory Moment (Glove Group)—Block 1 (without glove), Block 2 
(with glove) 
 

 

Figure 7: Learning curves for the glove pilot group.  Block 1 (the first continuous line; 
when the subjects use 2-DoF) shows significant learning (p = 0.044), while block 2 (the 
second continuous line; when the subjects use 3-DoF + glove) does not demonstrate 
significant learning (p = 0.233)—note: the significance of the p-value comparing the first 
switch trial with the last five trials of the second block; this may indicate that there is 
some effect on manipulation strategies from loss of tactile information.  The data are 
averages of all subjects (error bars represent ± 1 SE). [* = p ≤ 0.05] 
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Grip Force 

 One component of the Mcom that was analyzed was the grip force for each trial.  

Grip force was found to be stable across all trials in each block (control—Block 1: p = 

0.928, F = 0.498, Block 2: p = 0.346, F = 1.129; glove—Block 1: p = 0.796, F = 0.671, 

Block 2: p = 0.330, F = 1.148).  For the control group, grip force was not significantly 

different between the blocks (p = 0.689, t = 0.421).  For the glove group, grip force was 

significantly different between the the blocks (p = 0.009, t = 3.845).  Figure 8 displays 

the grip force for each block.  One can visually see a clear difference between block 1 

and block 2 in the glove group.  It seems that wearing the glove reduces tactile 

sensitivity, thus causing subjects to grip with more force. 
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Figure 8: Grip Force Comparison (Pre-Switch vs. Post-Switch) 

(a) 

 

(b) 

 

Figure 8: The grip force for each of the groups.  The difference between grip force is not 
significant for the control group (p = 0.689), but significant for the glove group (p = 
0.0009). [** = p ≤ 0.01] 
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Adaptation of Digit Centers of Pressure 

 The next component that will be examined is the difference in center of pressures 

between the fingers and the thumb (ΔCoP).  In both the control and glove groups, 

subjects exhibited significantly (or nearly significant) different ΔCoP upon switching 

DoF-contexts (control: p = 0.055, t = 2.383; glove: p = 0.022, t = 3.083).  Subjects 

decreased ΔCoP upon adding their middle finger to manipulate the object, as shown in 

Figure 9. 

 When examining how the ΔCoP changed in the second block, however, both 

groups demonstrated different trends.  The control subjects slightly increased their ΔCoP 

values, but it was not significant (p = 0.190; t = 1.477).  Conversely, the glove subjects 

significantly increased their ΔCoP values (p = 0.028; t = 2.878).  This difference 

indicates that there was a different force modulation strategy that was used between the 

control and glove groups. 
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Figure 9: Difference in Finger Center of Pressures, Pre-Switch vs. 1st Trial After 
Switch 
 

(a) 

  

(b)  

  

 

Figure 9: Difference in ΔCoP between the average of the last five trials in block 1 (2-
DoF; pre-switch), the first trial in block 2 (3-DoF), and the average of the last five trials 
in block 2.  The ΔCoP was significantly less (or nearly significantly less) in both groups 
(Control: p = 0.055, t = 2.383; Glove: p = 0.022, t = 3.083), indicating that there is an 
effect on digit force adaptation.  The data are averages of all subjects (error bars represent 
± 1 SE). [# = near significance; * = p ≤ 0.05] 
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Lift Force Adaptation 
 
 Neither group showed a significant difference in ΔFtan between the first trial after 

the switch and the last five trials of block 1 (control group: p = 0.241; glove group: p = 

0.368).  In addition, neither group showed a significant difference in ΔFtan between the 

first trial after the switch and the last five trials of block 2 (control group: p = 0.690; 

glove group: p = 0.836).  It is important to note, however, that the control group did 

exhibit greater increases in ΔFtan than the glove group.  This is important in explaining 

the differences in force modulation and positioning between the control and glove 

groups. 
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Table 1: Control and Glove Comparisons between the First Trial after Switch and 
the Last Five Trials of the Second Block 
 

 Control Glove 
Mcom p = 0.343 

t = 1.030 
p = 0.012* 
t = 3.560 

ΔCoP p = 0.190 
t = 1.477 

p = 0.028* 
t = 2.878 

Grip Force p = 0.630 
t = 0.508 

p = 0.022* 
t = 3.073 

ΔFtan p = 0.690 
t = 0.418 

p = 0.836 
t = -0.217 

 
Table 1: This table summarizes the results for the control and glove group comparisons 
between the average of the last five trials in block 2 and the first trial after the switch.  
*Significant p-values are bolded. 
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CHAPTER 4 

DISCUSSION 

 From this data, it is clear that reducing tactile sensibility has an effect on reducing 

subjects’ ability to transfer learning from one degrees-of-freedom (DoF) context to 

another.  (1) In terms of compensatory moment, reduction of tactile sensitivity (via 

wearing a glove) appears to play a significant role in transfer of learning between DoF 

contexts and subsequent force modulations.  However, the reduction in tactile sensitivity 

did not produce significant differences between the ‘glove’ and ‘no glove’ conditions in 

all of the statistical tests.  Statistical significance might have been found across all tests if 

tactile feedback had been inhibited by more extreme means (i.e., via administration of 

local anesthetic to the digits).  Analysis of the individual components of Mcom supports 

this conclusion.  (2) Upon transfer of manipulation, subjects in both groups produced 

significantly lower (or nearly significantly lower) ΔCoP values but the subjects in the 

glove group had a significantly higher ΔCoP by the end of the second block.  This result 

is most likely due to different force strategies employed by the control and glove 

subjects.  (3) Lastly, the grip force for the glove group was significantly higher when 

subjects manipulated the object while wearing the glove. 

 These results suggest that tactile feedback plays an important role in transferring 

manipulation between DoF contexts.  Thus, the high-level neural representations learned 

in one DoF context must incorporate tactile feedback to some degree. 
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Availability of Tactile Information Affects Digit Force Modulation Strategies 

 Upon the switch to three degrees of freedom, the middle finger decreases the ΔCoP 

in both groups.  This decrease in ΔCoP caused the normal component of Mcom (Mn = Fn × 

ΔCoP) to decrease.  Control subjects slightly increased Ftan forces in their index and 

middle digits to compensate for this discrepancy.  In addition, the control subjects 

gradually increased their ΔCoP to further improve Mcom and provide a stable transfer of 

learning. 

 People with reduced tactile sensitivity have been shown to have increased grip force 

(Monzée et al. 2003, Nowak et al. 2001).  Thus, the glove subjects had increased grip 

force, which compensated for the decrease in ΔCoP.  However, glove subjects did not 

properly adjust ΔFtan to allow for stable transfer.  Instead, they adjusted the ΔCoP to 

achieve a better Mcom.  These results indicate that the glove subjects had reduced 

capabilities of proper force and position modulation as a result of decreased tactile 

sensibility. 
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Grip Force 

 Previous studies have shown that lack of tactile feedback induced by anesthesia 

causes subjects to exert a greater grip force on the object during object manipulation 

(Macefield et al. 1996; Nowak et al. 2001; Augurelle et al. 2003; Monzée et al. 2003).  

The results from this study demonstrate similar findings because subjects exerted a 

greater grip force on the L object when wearing a glove. 

 Subjects may have placed a higher grip force on the object when tactile information 

was inhibited as a result of their need to sense more tactile information.  Squeezing 

harder enables subjects to receive more adequate tactile feedback to perform better on 

later trials.  In addition, subjects may have increased force to maintain an adequate safety 

margin (Nowak et al. 2001). 

 Subjects may have also increased grip force as a result of an increase in the slip 

force, which is the minimum grip force necessary to prevent slips between the fingers and 

the surface of the object (Nowak et al. 2001).  Digital anesthesia reduces the hydration of 

a subject’s skin because of the blockage of autonomic control of sweat glands; this results 

in a decrease in the friction between the skin and the object grasping surface (Nowak et 

al. 2001).  Similarly, in this study, wearing the glove put a barrier between the fingers and 

the object that reduced moisture between the surface of the fingers and grasping surface.  

Also, the texture of the finger pads of the glove was smooth and silky, which has also 

been shown to increase slip force (Johansson and Westling 1984). 

 Overall, the increase in grip force is likely due to an added safety margin, and (to a 

smaller degree) decreased friction resulting in increased slip force (Nowak et al. 2001). 
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 Wearing a glove or anesthetizing fingers does not completely eliminate feedback.  

Even when anesthetized, sensation from areas proximal to the hand can still be felt—such 

sensations include proprioceptive cues from skin stretch of the dorsal hand or Pacinian-

like units in the palm (Cole and Abbs 1988; Johansson et al. 1992; Häger-Ross and 

Johansson 1996).  Even though these areas can be felt, they cannot serve as a perfect 

substitute for the lack of tactile information in the digits.  When afferent information can 

be accessed from all sources, the central nervous system (CNS) opts to tactile signals in 

the digits for object manipulation (Augurelle et al. 2003).  When tactile feedback of the 

digits is taken away, the CNS may switch to alternative (though subordinate) sources for 

afferent information (Collins et al. 1999). 
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Neural Correlates 

 According to Fu et al. (2011), transferring manipulation from one DoF context to 

another (with the same hand) involves three neural processes: (1) generation of high-level 

representation (i.e., compensatory moment) from feedback sensed through arbitrary 

sensory elements (i.e., digits); (2) storage, update, and retrieval of the high-level 

representation; and (3) effective implementation of the high-level representation into 

arbitrary degrees of freedom. 

 The posterior parietal cortex (PPC) is thought to be involved in transformation of 

relative positions and forces in each of the digits of the hand to high-level neural 

representation of the net compensatory moment placed on the object (Jenmalm et al. 

2006; Avillac et al. 2005). 

 Storage, update and retrieval of the compensatory moment are thought to be stored 

in the same cortical network involving secondary sensorimotor cortices (Rijntjes et al. 

1999).  Some areas of this network include the cerebellar hemispheres, anterior part of 

the ventral premotor and dorsal cortices, thalamus, middle & ventral intraparietal areas in 

the intraparietal sulcus, and the supplementary motor area (Rijntjes et al. 1999).  

Therefore, this network could be involved in storing and retrieving the compensatory 

moment independent of the limbs and digits used to implement the moment. 

 Lastly, the implementation of the compensatory moment occurs at the planning 

stage (and is further improved via somatosensory feedback; Fu et al. 2011).  Before 

object contact, the anterior intraparietal sulcus and ventral premotor cortex are used to 

plan digit forces and positions (Davare et al. 2007; Olivier et al. 2007).  After object 

contact, it is speculated that the same networks are used for force modulation and digit 
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position sensing (Fu et al. 2010).  More information about the neural representations 

involved in a task similar to the one in this study can be found in Fu et al. (2011). 
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CHAPTER 5 

CONCLUSION 

 It is clear that reduction of tactile sensitivity has an influence on one’s ability to 

transfer learned manipulation from one degree-of-freedom (DoF) context to another.  

Although inhibiting this tactile feedback did not significantly affect all areas of the 

compensatory moment production, it is clear that there was some effect on compensatory 

moment along with some of its components (e.g., grip force and ΔCoP).  To further 

elucidate these findings, it would be necessary to perform a test in which anesthesia is 

used to block cutaneous feedback of the thumb, index, and middle digits of the finger.  

Although subjects may find other modes of tactile feedback, even with the anesthetized 

digits (Cole and Abbs 1988; Johansson et al. 1992; Häger-Ross and Johansson 1996), this 

would take away a more significant amount of feedback than the glove.  Additionally, it 

would be interesting to determine the threshold of tactile feedback reduction that would 

produce a significant effect on the transfer of learning via a haptic display device (i.e., 

Phantom) in which object feedback can be monitored and adjusted. 
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