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ABSTRACT  

   

During the past five decades neurosurgery has made great progress, with marked 

improvements in patient outcomes. These noticeable improvements of morbidity and 

mortality can be attributed to the advances in innovative technologies used in 

neurosurgery. Cutting-edge technologies are essential in most neurosurgical procedures, 

and there is no doubt that neurosurgery has become heavily technology dependent. With 

the introduction of any new modalities, surgeons must adapt, train, and become 

thoroughly familiar with the capabilities and the extent of application of these new 

innovations. Within the past decade, endoscopy has become more widely used in 

neurosurgery, and this newly adopted technology is being recognized as the new 

minimally invasive future of neurosurgery. The use of endoscopy has allowed 

neurosurgeons to overcome common challenges, such as limited illumination and 

visualization in a very narrow surgical corridor; however, it introduces other challenges, 

such as instrument "sword fighting" and limited maneuverability (surgical freedom). The 

newly introduced concept of surgical freedom is very essential in surgical planning and 

approach selection and can play a role in determining outcome of the procedure, since 

limited surgical freedom can cause fatigue or limit the extent of lesion resection. In my 

thesis, we develop a consistent objective methodology to quantify and evaluate surgical 

freedom, which has been previously evaluated subjectively, and apply this model to the 

analysis of various endoscopic techniques. This model is crucial for evaluating different 

endoscopic surgical approaches before they are applied in a clinical setting, for 

identifying surgical maneuvers that can improve surgical freedom, and for developing 
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endoscopic training simulators that accurately model the surgical freedom of various 

approaches. Quantifying the extent of endoscopic surgical freedom will also provide 

developers with valuable data that will help them design improved endoscopes and 

endoscopic instrumentation. 
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INTRODUCTION 

Neurosurgical practices may have been performed as early as two millennia B.C. 

(Elhadi, 2012). As a discipline neurosurgery is based on a long, slow, and deliberate 

history of important developments (Preul MC et al, 1997). It was not until about   150 

years ago, however, that neurosurgery began to be considered as an independent field of 

medicine.  During this period, technology and science allowed and promoted greater 

“neurosurgical” intervention although outcomes were disastrous with significant 

mortalities. Some authors consider neurosurgery to be one of the youngest fields in 

medicine (Barker, 1993), and thus open to significant discoveries and scientific progress. 

Significant advancements in neurosurgery have been prominent in the 20
th

 century and 

especially within the last 50 years which have been characterized by the introduction and 

development of diagnostic modalities, operative techniques, or surgical tools and 

instruments. Neurosurgery is truly a technologically dependent specialty.  

Microscopic procedures have been a hallmark of most modern neurosurgery. The 

continuous improvements of the surgical microscope and microscopic instruments, as 

well as development of microsurgical techniques and proper training, have all played an 

important role in shaping neurosurgery as we know it today. Microscopic procedures 

made possible operating on lesions or pathologies that were previously deemed 

challenging (Yasargil, 1999) or inoperable.  Such procedures are routinely performed on 

a daily basis resulting in less morbidity and mortality as a result of the increased scope 

and application of technology of the procedures performed.  

The sensitive and fragile natures of the tissue of the nervous system and the complex 

network of the associated arteries and veins, mandates precise approaches that can 
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address anatomical targets or lesions within the central nervous system with the least 

amount of retraction, manipulations and neural or vascular injuries (Rhoton, 2003). The 

trend in neurosurgery, as with any surgical discipline, is to “minimize” invasion and the 

extent of the approach.  Minimizing the operative extent such as in large craniotomies 

usually means fewer complications for the patient. There is thus a strong tendency 

towards development of minimally invasive procedures.  

The term minimally invasive is relative. Microscopic neurosurgery was considered 

minimally invasive when first applied in the early 1960s and 1970s (Yasargil 1970). Dr. 

Theodore Kurze from the university of Southern California was considered to be the first 

neurosurgeon to use the microscope in the OR in 1957 (Dounaghy et al, 1979). Today use 

of the microscope is considered nearly a required technology for the neurosurgical 

procedure, but is no longer considered necessarily associated with minimal invasion.  

The surgical endoscope was introduced to neurosurgery in early 1923 with little 

success because of technological limitations. Use of the endoscope was significantly 

expanded in the 1990s when it was first used for diagnostic purposes, and used as an 

adjunct to the microscope to improve visualization of structures. During the late 1990s 

and early 2000s neurosurgeons found increased use for the endoscope in removing 

pituitary adenomas (Prevedello, 2007). Endoscopic use increased to include lesions in the 

middle and posterior cranial fossae (Little, 2013) and more lateral skull base lesions 

(Little, 2012). This innovation is due to technological endoscopic improvements, new 

instrumentations and the development of different endoscopic approaches for different 

anatomical areas.  

 



  xi 

Endoscopic neurosurgeons tend to determine their preference towards a certain 

approach over another for accessing the same anatomical area based on the type of the 

lesion, extent, surgeon’s training and confidence performing this approach, previous 

experiences and pre-operative planning. Sometimes a single approach can access several 

anatomical targets in different surgical planes (Cavallo, 2005), and sometimes several 

approaches can be used to access a single target or a determined anatomical area (Van 

Rompaey, 2013).  Several endoscopic approaches and techniques have been described 

that illustrate maneuvers and anatomical landmarks within different endoscopic 

approaches. An important factor in determining the right approach for a lesion or an 

anatomical area is the degree of ease or ability of the surgeon to maneuver different 

surgical instruments within an endoscopic approach, which is critical in decreasing the 

surgeons fatigue, frustration and stress. This concept is one of “surgical freedom.” It will 

also help determine if the surgeon will be capable of removing a lesion completely or no, 

due to technical difficulties.  

In this thesis I expand and assess this new concept of surgical freedom to endoscopic 

neurosurgery and developed a method to quantify it. Surgical freedom is an important 

factor and aspect for each endoscopic approach and contributes to surgical planning, 

decision making, and approach selection. 
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BACKGROUND 

The nervous system is still mysterious in many ways, and many neuroscience studies 

still have a lot to discover about this system which mandates continuous and thorough 

investigations. Neurosurgery is no different from other neuroscience fields and there is 

yet a lot to be studied in neurosurgery. 

As previously mentioned that advancements in neurosurgery are usually marked by 

improvements in certain aspects like; diagnostics, visualization and illumination, surgical 

instruments, new surgical techniques, new treatment modalities, and improved 

neurosurgical training (Powell, 1999). I would like to briefly discuss few examples. 

The role of innovative technologies in neurosurgery 

The use of imaging techniques was essential in advancing neurosurgery, the first 

systematic use of an X-ray was in 1908 by Fedor Krause (Elhadi, 2012), then in 1947 

imaging technology advanced to involve the use of radioisotopes in localizing abnormal 

brain tissue, and in 1950 Angiography became an accepted diagnostic modality to 

visualize vascular lesions such as aneurysms. During the early 1970, computed 

tomography (CT) scan was used to localize pathologies in the brain, five years later 

positron emission tomography (PET) scan was developed which shows different signals 

for brain cells based on their activity (Xiong, 1997), later in 1980s magnetic resonance 

imaging (MRI) was regularly used to diagnose pathologies in the CNS. These important 

evolutions in imaging; technologies, techniques and interpretations played an important 

role in neurosurgery and its evolution.  
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Another example is the use of Electro-encephalogram (EEG) which became an 

acceptable diagnostic tool in epileptic lesions by 1935, and the development of Somato-

sensory evoked potential (SSEP) in 1980s which is a way to monitor the integrity of 

nerves or neural tracts, this monitoring modality have become an important intra-

operative tool that may help in preventing nerve injuries, especially during spine 

procedures.  

Basic principles in neurosurgery can change slightly, but a radical change in 

neurosurgery has been obvious with the introduction of “power tools” that aid in 

magnification and illumination which make a possible “shrinking” of the surgical 

working space with sufficient access to the area of interest and minimizing any assault on 

brain tissue or other delicate structures along the surgical approach or within the working 

area (Setti, 1994). 

Microscopy and neurosurgery 

The surgical microscope was ideal in providing such advantages, the magnification 

power dramatically increased when compared to previously used magnifying methods. It 

also provided excellent illumination when compared to older conventional methods. And 

the illumination is along the line of entry and enables a direct view of the surgeons’ 

working space (Rand, 1968). These two fundamental aspects that the microscope offered 

revolutionized and expanded the scope of neurosurgery. It is also notable that continuous 

innovations in the surgical microscope like; better and lighter microscopes (counter 

balance microscope), integrated mouth piece to enable hands free maneuver capabilities 

during most of the operative time, integrated neuro-navigation system, higher 
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magnification and better focus, less heat emitting illumination… etc. all have contributed 

to better and more efficient procedures (Yasargil, 2006).  

 A new era of micro-neurosurgery started with new micro-neurosurgical techniques 

described and used regularly, neuroanatomy has been re-described using the microscope 

and different microscopic approaches; micro-neuroanatomy, newer micro-surgical 

instruments have been modified (Yasargil, 2006), it has also become essential to train 

surgeons and residents on the microscope through micro-neurosurgery laboratories and 

courses. Even different classifications for tumors and vascular lesions were described 

based on the microscope usage.  

Endoscopy introduced to the field 

Many were mistaken that the degree of visualization offered by the microscope might 

be the best to be offered to neurosurgery, this idea was then well thought out with the 

introduction of the endoscope which provides superior visualization, better illumination 

and even more angular views (Perneczky, 1999).  

The endoscope was first used by otolaryngologists in the nasal cavity then 

neurosurgeons started using the endoscope in the early 1990s as an adjunct to 

microscopic approaches to provide better view to difficult areas (Perneczky 1998). The 

endoscope was then used in the removal of pituitary tumors using a trans-shenoidal 

approach and kept on being limited to sellar lesions during the late 1990s and early 

2000s. 

The idea of the endoscope goes back to the early19
th

 century when it was first used 

for hollow organs inspection like the rectum, bladder, nasal cavity, cervix and pharynx. 

Phillip Bozzini (1773-1809) a German Physician devoted his life to develop this new 
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instrument which was called the Lichtleiter “Light Conductor” which is considered as the 

very primitive endoscope. He developed the Bozzini Lichtleiter which consists of 

candlelight as the light source, and a long tube with several lenses for magnification and a 

number of convex and concave mirrors to reflect light from the source to the distal end of 

the tube and then back again to the eye piece. Bozzini devoted himself to developing this 

instrument which was revolutionary at that time. But the endoscope was only a diagnostic 

tool for the purpose of visualization and curetting or for taking biopsies (Doglietto, 

2005).  

The early use of the endoscope in neurosurgery was when Walter Dandy used it for 

ventriculostomy for the treatment of hydrocephalus with little success and this 

technology was abandoned due to its limited visualization and low magnification, no 

improvement in outcome, lack of proper instruments (Paine, 1955), relatively large size 

of the endoscope, and most importantly the availability of an alternative instrument with 

better outcome which is the microscope.  

So although the theoretical idea of the endoscope seemed better, there were technical 

and logistic limitations and the application of this idea remained difficult and 

challenging.  By the late 1980s, immense advancement in endoscopic technology like the 

introduction of rod lens, fiber optics, coupled cameras, high definition monitors, 

malleable scopes (FU, 2007), three dimensional endoscopes and numerous fine 

endoscopic tools (straight and curved) has made the endoscope a powerful tool in 

neurosurgery and its used expanded significantly in the last decade.  

The common old saying “the eye of the obstetrician should be located in his 

fingertips” has now changed. In fact, the endoscope today has made possible to have the 
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eye of the surgeon beyond the reach of the tip of his fingers or even beyond the tip of his 

instruments. Endoscopy has markedly improved visualization to a point that amount of 

magnification and illumination is not the main catch for an approach but the technique 

and maneuverability became the main concern in these minimally invasive procedures 

and how to prevent unwarranted maneuvers (Snyderman, 2009, Kassam, 2008). 

Challenges for endoscopy 

With the endoscope being a more reliable tool, neurosurgeons explored its use in 

various areas of the skull base and numerous new approaches were developed to access 

unusual areas of the skull base. Endoscopy provides neurosurgeons with a huge 

advantage by being able to access almost every anatomical target within the realm of 

neurosurgery.  With this ability, endoscopy is now realized to be the new evolving era in 

minimally invasive neurosurgery (Oi, 2000).  

In contrast to the microscopic techniques (most commonly used magnifying tool in 

neurosurgery), the endoscopic approaches are characterized by having narrower corridors 

than that of the microscope and the endoscope makes use of longer instruments 

(O’Malley, 2008), the endoscope also provides the surgeon with a monocular vision (this 

has been overcome with the new 3D endoscope). Robust endoscopic anatomical 

knowledge is very essential in all endoscopic approaches (Cavallo, 2005). Endoscopic 

surgical training is also significantly different than that of the microscope, and this 

necessitates proper training facilities and programs to train surgeons on these new 

innovative techniques (Snyderman, 2007) since there is no correlation between being 

skilled and experienced in using the microscope and being skilled and experienced in 

endoscopy.  
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With these significant differences new endoscopic surgical concepts evolved which 

need to be further investigated and studied, similar to most diagnostic and operative tools 

in surgery. The progression of neurosurgical endoscopy is dependent on, technological 

advancements, development of surgical techniques, sufficient training and robust 

anatomical knowledge (Hadad, 2006). Technological advancements have been discussed 

earlier, and sufficient endoscopic training can be acquired through clinical practice and 

cadaveric dissections, there is also a new trend towards developing endoscopic simulator 

for training purposes and several projects in our laboratory have been directed to develop 

and validate such a training modality. 

Anatomy has always been the same throughout history; once a certain anatomy was 

described it stayed the same until today (excluding different anatomical variations and 

other anomalies). Neuro-anatomy is not any different, but knowing the map is always 

different than knowing how to navigate through different routes of the city. Thus in 

neurosurgery with the evolving new visualization tools and unusual positioning of the 

patient, new anatomical descriptions for different corridors and approaches are essential. 

This has been performed for microscopic neuro-anatomy and several endoscopic neuro-

anatomy studies are out there in the literature which are crucial roadmaps for different 

approaches. 

Endoscopic surgical techniques development can be achieved by either describing 

new techniques or through mastering existing ones through appreciating anatomy and 

applying surgical concepts of dissection, suction, cutting and several other maneuvering 

methods. As I mentioned earlier, endoscopy has brought up new surgical concepts such 

as “Surgical Freedom” (Wilson, 2013) which is the main focus of my thesis.  
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Being able to have the surgeon’s “eye” at the anatomical target -where dissection is 

taking place and where the tip of the instrument is- has several advantages. The operator 

can precisely observe the minute movements at the distal end of the instrument. Unlike 

conventional methods, endoscopic surgical corridor does not need to be wider or has a 

similar area to that of exposed area of interest, so there can be several “pinch points” 

along the surgical corridor that can be overcome by the leverage movements of the 

endoscope and endoscopic instruments while enabling the operator to keep track of the 

distal end of these instruments, these pinch points can significantly limit the view –thus 

the exposed area- when using a microscope. However, the ability of the operator to keep 

track of the position of the shaft and the proximal part of the instrument and the 

endoscope is limited and can produce surgical struggle which can be a source of 

distraction, frustration and fatigue and may affect the outcome of the procedure 

(Ramakrishnan, 2013). Therefore proper understanding of the available space for hand 

movements and endoscopic instruments’ ergonomics are warranted (Paluzzi, 2012), thus 

surgical freedom studies.  
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SURGICAL FREEDOM 

Surgical Freedom can be defined as the area in which the surgeon’s hand can freely 

move while holding the proximal end of a surgical instrument and maneuvering the distal 

end of this instrument in a given surgical approach.  Surgical freedom depends on the 

type of approach, anatomical target, exposed area (Wilson, 2013) and it also depends on 

the type and shape of surgical instruments.  

 Knowing the surgical freedom prior to operating can be very helpful in surgical 

planning, and although ancillary neuroradiology play an important role in surgical 

planning and decision making they can only provide the surgeon with the degree of 

extension of a lesion and the suitable trajectory for this lesion and might be plane limited 

(Ukimura, 2008). While surgical freedom will provide the surgeon with an estimate of 

freedom and ease that the surgeon should expect during the procedure which is a vital 

piece of information in any surgical procedure and can be essential during surgical 

planning. Several studies have reported certain preference for a particular approach or 

technique based on the ease and comfort that the surgeon may have while performing this 

particular approach while other studies may oppose this opinion (Kassam, 2009), this 

might be due to difference in training among institutions or different endoscopy training 

schools and experiences, that is why quantifying the surgical freedom can help settle this 

debate.  

Using surgical freedom to compare between different endoscopic approaches that 

have been developed requires a reliable quantifying method that can measure this virtual 

area in space, and in my thesis I develop a method to quantify different types of surgical 
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freedom that can be simply applied for almost all endoscopic approaches based on 

methods previously used in measuring potential space and area in our laboratory.  

Surgical freedom, angle of attack and the area of exposure are complimentary 

surgical concepts that can that can influence approach selection. The angle of attack for a 

certain anatomical target represents the degree of maneuverability around this target in a 

certain plane (saggittal, axial, coronal)(Wilson 2013), while the exposed area is the 

anatomical region that needs to be exposed during the approach.  

Another factor that plays a role in determining the surgical freedom is the presence of 

a pinch point along the surgical corridor, which is important because at this point a 

reversal of movement of the endoscope or the endoscopic surgical instrument occurs due 

to pivoting. There can be more than a pinch point along the surgical corridor which can 

limit the surgical freedom and change the pivot point along the endoscope with different 

maneuvers. Other factors such as the type of instrument and endoscope, degree of 

dissection, bone drilling and the presence of vital anatomical structures all can have an 

effect on the surgical freedom (Fraser, 2010, Kassam, 2011)).  

In my thesis, all these factors are taken into consideration in developing this novel 

method of quantifying the surgical freedom, which by its turn can be a powerful tool for 

surgical planning and decision making as well as evaluating and comparing different 

endoscopic surgical approaches. 

The following chapters show the application of the surgical freedom quantifying 

method in different endoscopic approaches and the results were then compared with the 

literature to validate our methods and to determine the application of knowledge of the 

surgical freedom. 
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These chapters have been designed and formatted under the direct supervision of Drs 

Little, Preul and Nakaji so that these chapters can be presented independently as peer 

review articles to professional journals and national / international conferences.  
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CHAPTER 1 

 COMPARISON OF SURGICAL FREEDOM AND AREA OF EXPOSURE IN 

THREE ENDOSCOPIC TRANSMAXILLARY APPROACHES TO THE 

ANTEROLATERAL CRANIAL BASE 

Elhadi AM, Mendes GA, Almefty K, Kalani YS, Nakaji P, Dru A, Preul MC, 

Little AS 

Abstract  

Objective: Endoscopic ipsilateral transmaxillary endonasal, contralateral transseptal 

transmaxillary and endoscopic Caldwell-Luc approaches can access lesions within the 

retromaxillary space and pterygopalatine fossa. We sought to compare the exposure and 

surgical freedom of these transmaxillary approaches to assist with surgical decision 

making.  

Design:  Four cadaveric heads were dissected bilaterally using the above three 

approaches. Prior to dissection, stereotactic CT scans were obtained on each head to 

obtain anatomic measurements. Surgical freedom and area of exposure were determined 

by stereotaxis.  

Main Outcome Measures: Area of exposure was calculated as the extent of the 

orbital floor, maxillary sinus floor, nasal floor, and mandibular ramus exposed through 

each approach. Surgical freedom was the area through which the proximal end of the 

endoscope could be freely moved while moving the tip of the endoscope to the edges of 

the exposed area. 

Results: The mean exposed area was similar, 9.9±2.5cm
2 

(Caldwell-Luc), 

10.4±2.6cm
2
 (ipsilateral endonasal), and 10.1±2.1cm

2
 (contralateral transseptal) (p>0.05). 

The surgical freedom of the Caldwell-Luc approach (113±7cm
2
) was greater than for 
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either approaches; 76cm
2
±15, (p=0.001) (ipsilateral endonasal) and 83 cm

2
±15, 

(p=0.003) contralateral transseptal. 

Conclusions: Our work demonstrates that the Caldwell-Luc approach offers greater 

surgical freedom than either approach for anterolateral skull base targets. Although these 

approaches offer similar exposure.   

Introduction 

The infratemporal fossa and pterygopalatine fossa are among the most inaccessible 

areas of the anterolateral skull base. Although open approaches have been used to access 

these domains,{1, 2, 3} these approaches often require extensive craniofacial resection 

associated with a high degree of morbidity. Less invasive endoscopic approaches that 

exploit the maxillary sinus have gradually replaced traditional open approaches for 

certain anterior and anterolateral skull base lesions.{4, 5, 6, 7, 8, 9, 10} The 

armamentarium of endoscopic approaches to this region includes the ipsilateral endonasal 

transmaxillary approach, sublabial transmaxillary approach (Caldwell-Luc), and the 

contralateral transseptal transmaxillary approach.{8} 

The anterolateral skull base is anatomically complex and has been well described.{9, 

32, 33} The infratemporal fossa and the pterygopalatine fossa communicate through the 

pterygomaxillary fissure. They are connected with the orbit through the inferior orbital 

fissure and with the middle cranial fossa through the foramen spinosum, foramen ovale, 

and foramen rotundum. The infratemporal fossa and pterygopalatine fossa are bordered 

superiorly by the squamous temporal bone, the posterior part of the orbital floor, and the 

inferior surface of the greater wing of the sphenoid. Medially they are bordered by the 

lateral part of the clivus, first cervical vertebrae, and inferior surface of the petrous bone. 
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Laterally, these areas are bordered by the zygomatic arch, ascending mandibular ramus, 

mandibular angle, parotid gland, and masseter and temporalis muscles. Inferiorly, they 

are connected with the peripharyngeal space and posteriorly they continue as the 

temporal space and, anteriorly, by the posterior wall of the maxillary sinus.  Proper 

understanding of the different approaches through this corridor is important for surgical 

planning, Because of the anatomical relationships of the pterygopalatine fossa and the 

presence of neurovascular structures such as the maxillary artery, maxillary (V2) and 

mandibular (V3) nerves, pterygopalatine ganglion, and infraorbital nerve and artery. 

Anterior endoscopic approaches to the lateral skull base typically cross the 

pterygopalatine fossa. A transmaxillary corridor has been used to access the 

infratemporal fossa, parapharyngeal space, middle cranial fossa, and anterolateral skull 

base.{6, 7, 9} However, detailed anatomical comparisons of endoscopic approaches with 

anatomical correlations in these areas are lacking but are necessary for selecting the 

optimal approach.  

Surgical freedom and area of exposure are important surgical concepts in skull base 

surgery that may influence surgical decision making and approach selection. Surgical 

freedom describes the working area for a surgeon’s hands and the instruments necessary 

to complete the operative goals. Greater working area improves the ease of surgery. Area 

of exposure defines the surgical field and what anatomical targets can be reached with a 

given exposure. 

Previously, we developed a model system based on neuronavigation to study the 

surgical freedom and angle of attack of the ipsilateral endonasal transmaxillary approach 

and the Caldwell-Luc transmaxillary approach{34} for surgical targets in the 
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anterolateral skull base. In the current study, we extend our previous work by studying 

the surgical freedom provided by the contralateral endonasal transseptal transmaxillary 

approach and also by studying the area of exposure.  

 

Materials and methods 

Three endoscopic transmaxillary approaches were performed bilaterally in four fresh 

silicon-injected heads (Fig. 1.1). Dissections were performed using a 0° endoscope and 

standard endoscopic techniques, with heads placed in rigid fixation in a supine position.  

Burrs, dissector blades, and standard endoscopic instruments (Karl Storz, Tuttlingen, 

Germany) were used. Visualization was supplemented with 30° and 45° endoscopes for 

lateral visualization. High-resolution computed tomography (CT) scans were performed 

on each specimen to document the bony facial and cranial anatomy, and the images were 

uploaded to an image guidance platform (StealthStation Treon Plus with FrameLink 

Software, Medtronic, Louisville, CO). Image guidance was used to obtain anatomical 

measurements and to confirm anatomical structures.  

 

Image guidance still images showing the trajectory, as well as the position of the 

registered blunt tip when measuring the area of exposure in a Caldwell Luc approach 

(Right Side). 
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Image guidance still images showing the trajectory, as well as the position of the 

registered blunt tip when measuring the area of exposure in an Ipsilateral Endonasal 

approach (Right Side). 

 

Image guidance still images showing the trajectory, as well as the position of the 

registered blunt tip when measuring the area of exposure in a Contralateral Transseptal 

approach (Right Side). 
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Figure 1.1 

An illustration showing anatomy of the lateral skull base (inferior image). The arrows 

show the trajectories used for the three endoscopic approaches. Used with permission 

from Barrow Neurological Institute. 
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Ipsilateral sublabial transmaxillary approach: Similar to techniques described 

previously,{9, 17, 20, 34} the upper lip is retracted and a transverse incision is made at 

the buccogingival sulcus just lateral from the canine and extending laterally to the second 

molar. The incision is made through the mucosa and periosteum. A subperiosteal plane is 

developed, exposing the anterior wall of the maxilla. Care is taken to protect the 

infraorbital nerve, which is the superior limitation of the anterior maxillary wall 

exposure. An osteotome is used to perform an anterior maxillotomy, and the opening is 

enlarged using Kerrison rongeurs (Integra, Plainsboro, NJ), to create an osteotomy 

approximately 15 mm wide and 10 mm high. After entering the maxillary sinus, (Fig. 

1.2A) the mucosa is peeled away and the infraorbital nerve is identified at the junction 

between the maxillary roof and posterior wall. A second osteotomy is made in the 

posterior wall, and the posterior wall is removed using a Kerrison rongeur to expose the 

periosteum, which is opened to enter the pterygopalatine fossa and expose its contents. 

 

Ipsilateral endonasal transmaxillary approach: The endonasal transmaxillary 

approach has previously been described in detail.{5, 7, 10, 13, 17, 18, 19, 34} In brief, 

the middle turbinate bone is removed through the ipsilateral nostril, and the inferior 

turbinate bone is reflected inferiorly or removed, allowing the ethmoid bulla to be 

identified. An antrostomy is performed using a Kerrison rongeur to allow access to the 

maxillary sinus (Fig. 1.2B), and the greater palatine nerve and artery are preserved along 

the junction between the maxillary base and posterior maxillary wall. To increase the 

intranasal exposure, the ethmoid bulla is removed, exposing the anterior ethmoid artery, 

and then the sphenopalatine artery is identified and preserved. Next, the infraorbital nerve 
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is identified in the roof of the maxillary sinus, and the posterior maxillary sinus is 

fractured and carefully removed with Kerrison rongeurs. After removing the posterior 

maxillary wall, the periosteal membrane is immediately visible and is dissected to expose 

the contents of the pterygopalatine fossa, which includes the internal maxillary artery and 

a complex network of its branches. The pterygopalatine ganglion is identified posterior to 

the sphenopalatine artery and fat tissue; tracing the pterygopalatine ganglion posteriorly 

and medially can lead to the vidian canal and the vidian nerve. The approach is extended 

along the course of the vidian canal to the medial portion of the internal carotid artery 

(ICA) genu by drilling the medial pterygoid plate using a 2-mm diamond bit. The 

infraorbital nerve is followed posteriorly to the maxillary branch of the trigeminal nerve 

(V2). The lateral plate of the pterygoid is removed to expose the foramen ovale and the 

mandibular division of the trigeminal nerve (V3). 

Contralateral endonasal transseptal approach: The contralateral endonasal 

transeptal approach provides access to the maxillary sinus through the contralateral nasal 

cavity {8, 22} with a nasoseptal mucosal flap pedicled posteriorly on the septal branch of 

the sphenopalatine artery (Fig. 1.2C). An additional ipsilateral flap may also be 

performed, but was not done in this study. Once access is gained to the ipsilateral nasal 

cavity, the transmaxillary dissection is performed in a similar manner to the ipsilateral 

endonasal transmaxillary approach described previously. The endoscope is advanced 

until it reaches the posterior third of the nasal septum of the contralateral nasal cavity and 

is then directed through the transseptal window. The endoscope and an instrument are 

advanced to the maxillary sinus and retromaxillary space.  
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Figure 1.2 

Images for a 0° endoscope from the right side of cadaveric dissections showing the 

corridors used to access the maxillary sinus: A) Ipsilateral Caldwell Luc approach, B) 

ipsilateral endonasal approach, C) contralateral (from left nostril) transseptal approach. 

MS= maxillary Sinus, ST= superior turbinate, MT= middle turbinate, IT= inferior 

turbinate, NS= nasal septum. Used with permission from Barrow Neurological Institute. 

 

Area of exposure 

To calculate the area of exposure, four points were identified. The first point (ION) 

was a fixed anatomical landmark that is the point at which the infraorbital nerve enters 

the infraorbital canal and is crossed by the infraorbital artery. The other three points were 

determined relative to the infraorbital nerve: 1) a medial point (MP), which was defined 

as the point at the junction between the vomer and the sphenoid crest; 2) a lateral point 

(LP) which was defined as the point directly lateral to the infraorbital nerve after removal 

of the posterior wall of the maxillary sinus and represented the most lateral point of 

exposure; and 3) an inferior point (IP) directly inferior to the ION and slightly lateral to 

the inferior part of the junction between the base of the maxillary sinus and the posterior 

maxillary wall, just lateral to the greater palatine nerve and vessel.  The MP, LP, and IP 

were used to determine the medial, lateral and inferior extent of the exposure, 

respectively. Although the extent of each approach can be increased by using curved 

instruments and angled endoscopes or using other maneuvers to increase the angle of 
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attack, in our dissections we used only standardized approaches with a standard 

antrostomy, septectomy or medial maxillotomy.  

Three other anatomical landmarks were identified and further dissected for 

anatomical reference. The first landmark was the Eustachian tube (ET) at the level of the 

nasopharynx just anterior to the posterior choana.  The second landmark was the second 

genu of the internal carotid artery (gICA) which was exposed after drilling the sphenoidal 

wall. The third landmark was the second division of the trigeminal nerve (V2) as it exits 

the foramen rotundum. 

Screen captures from the neuronavigation system were used to measure the area of 

exposure The area of exposure was identified as the sum of two areas (Fig. 1.3). The first 

is a rectangular area bounded by a line between the ION and IP laterally, by a line 

between the ION and MP superiorly, by a line between the the IP and the medial border 

of the posterior choana inferiorly, and by the junction between the septum and the vomer 

medially. The second area is a triangular area between the ION, IP, and LP.  
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Figure 1.3  

An endoscopic image form an ipsilateral endonasal (right side) approach showing the 

area of exposure as the sum of two areas; a rectangular area (highlighted in blue) and a 

triangular area (highlighted in red). LP: lateral point which represents the lateral extent of 

a registered blunt tip. IP: inferior point which represents the inferior extent of a registered 

blunt tip. MP: medial point which represents the medial extent of a registered blunt tip. 

ION: Infraorbital nerve, as it enters the infraorbital canal. Used with permission from 

Barrow Neurological Institute. 

 

Surgical freedom 

Surgical freedom was defined as the maximal oval area along which the surgical 

(proximal) end of the endoscope can be freely and easily moved. This area was calculated 

by measuring the vertical and transverse limits that can be reached by the proximal end of 

the endoscope (Fig. 1.4A).  

The neuro-navigation system was used to measure the transverse limit (Fig. 1.4B-D) 

which was determined by identifying two points in space.  The first point corresponded to 
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the position of the proximal end of the endoscope while placing the distal end of the 

endoscope as closely as possible to the midpoint of the line between the IP and LP and 

moving the proximal end of the endoscope as medially as possible, sometimes even 

crossing the midline. The second point was determined at the proximal end of the 

endoscope while placing the distal end of the endoscope at the midpoint between the MP 

and medial border of the posterior choana and moving the endoscope as far laterally as 

possible.  
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Figure 1.4  

An illustration demonstrating the method used to calculate the area of surgical 

freedom. (A) A cone that represents the volume where the endoscope can be freely 

moved. The oval area at the base of the cone is the area of surgical freedom. for an 

ipsilateral sublabial approach (B), ipsilateral endonasal approach (C), contralateral 

transseptal approach (D). Used with permission from Barrow Neurological Institute. 

 

In a similar fashion, the vertical limit of the surgical freedom was determined by 

identifying two points in space. The first point was determined by the position of the 

proximal end of the endoscope while placing the distal end of the endoscope at a point 

along the ION and IP as superiorly as possible and moving the proximal end of the 

endoscope gently as inferiorly as possible.  The second point was identified as the 

position of the proximal end of the endoscope while placing the distal end of the 

endoscope on a point along the line between the ION and IP as inferiorly as possible 

while moving the proximal end of the endoscope gently and superiorly. These two points 

were considered to determine the vertical limit of the surgical freedom. A series of t-tests 

were used to compare the average means of the surgical freedom and area of exposure for 

each approach with the other two approaches. Analysis of variance (ANOVA) was also 

used to compare the surgical freedom between all three approaches.  

 

Results 

The mean area of exposure for the three endoscopic approaches was similar (Fig. 1.5, 

Table 1.1). The sublabial approach had an area of 9.92 ± 2.5 cm
2
, the endoscopic 

endonasal approach had an area of 10.47 ± 2.65 cm
2
, and the transseptal approach had an 

area of 10.01 ± 2.16 cm
2
. 
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Figure 1.5  

Endoscopic images using a 0° endoscope for the three different approaches (right 

side). (A) Sublabial, (B) ipsilateral endonasal and (C) contralateral transseptal. Used with 

permission from Barrow Neurological Institute. 

 

Table 1.1 Comparison of the area of exposure for the three endoscopic transmaxillary 

approaches 

 Area mean (mm2) + 

STDEV 

p-value (compared to 

ipsilateral Caldwell-Luc 

approach) 

Ipsilateral endonasal 

 

1047 ± 265 0.2 

Ipsilateral Caldwell-Luc 

 

992 ±249 N/A 

Contralateral endonasal 

  transseptal 

1001 ± 216 0.3 

 

When the triangular lateral area of exposure was compared between approaches, the 

transseptal approach provided approximately 2.7 cm
2
 of exposure, the endonasal 

approach provided 2.45 cm
2
 of exposure, and the sublabial approach provided 2.02 cm

2
 

of exposure.  The increase in the lateral area of exposure in the transseptal approach was 

accompanied by a decrease in medial exposure and vice versa, with the sublabial 

approach resulting in similar quantities for total area exposed. Anatomical structures 

limiting exposure were the orbital floor and superior border of the sphenoid sinus 
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superiorly, the nasal floor and maxillary sinus floor inferiorly, the nasal septum medially, 

and the lateral wall of the maxillary sinus laterally. 

The mean areas of surgical freedom were 112.82 ± 7 cm
2
 for the sublabial approach, 

76.3 ± 14.5 cm
2
 for the ipsilateral endonasal approach, and 83.51 ± 15.13 cm

2 
for the 

contralateral transseptal approach. The sublabial approach provided significantly more 

surgical freedom when compared to the ipsilateral endonasal approach (p <.01) and the 

transeptal approach (p <.01, Table 1.2).  No significant difference was found in the 

surgical freedom afforded between the endonasal ipsilateral and transeptal approaches 

(p=0.20).  The mean transverse (T) and vertical (V) axis of the three approaches were 

12.8 cm ± 1.2(T) and 11 cm ± 0.6 (V) for the sublabial, 8.9 cm ± 1 (T) and 10.5 ± 1.1 (V) 

for the endoscopic endonasal, and 10.6 cm ± 1.2(T) and 9.7cm ± 1(V) for the transseptal.  

Table 1.2 Comparison of surgical freedom for three endoscopic transmaxillary 

approaches. 

 Area mean (mm2) + 

STDEV 

p-value 

(compared to 

ipsilateral Caldwell-

Luc approach) 

Ipsilateral endonasal 

 

7630 ± 1454 0.0005 

Ipsilateral Caldwell-Luc 

 

11282 ± 696 N/A 

Contralateral endonasal 

  transseptal 

8351 ± 1513 0.001 

N/A, not applicable 
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Discussion 

Endonasal endoscopic approaches have been used with good results to access midline 

lesions of the pituitary, and suprasellar and clival lesions.{16, 23, 24, 25, 26}  They have 

been used widely for benign tumors{17, 28, 29} and have recently been applied to 

malignant lesions.{17, 30} The morbidity of open surgical approaches to this region have 

allowed for a natural expansion of the endoscopic technique to the lateral anterior skull 

base regions.{3, 27} Although they were initially used only for diagnostic and palliative 

treatment, endoscopic techniques are now routinely being used in the primary treatment 

of anterolateral skull base lesions such as inverted papillomas and juvenile 

angiofibromas.{4, 7} The maxillary sinus has been used as a corridor to access the lateral 

skull base. The sinus is a natural route and its large volume permits a great deal of 

surgical freedom and access to critical neurovascular structures. Several transmaxillary 

approaches has been used in the treatment of retromaxillary lesions.{9, 17}  

Our data show that the sublabial approach provides the best horizontal working space, 

while the endonasal approach has the least horizontal working space; therefore, a 

sublabial approach may be superior in the case of tumors that extend in the same axial 

plane. In addition, we found that the transseptal approach has the least vertical working 

space; as a result, it may not be the best option in the case of tumors or lesions that extend 

in the same sagittal plane. The approaches that we describe in this study have been 

previously described with a detailed anatomical overview,{9, 22} but an analysis of the 

exposed working space, including the surgical freedom and the area of exposure, has not 

been previously described. These concepts are important in planning the appropriate 

surgical approach for a specific lesion and for understanding the limitations of each of the 
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approaches. Theodospolous et al.{9} concluded in an anatomical study that a combined 

ipsilateral sublabial and ipsilateral endonasal approach can provide a full exposure to the 

infratemporal fossa and pterygopalatine fossa, but the lateral aspect of the infratemporal 

fossa was challenging to access and required traumatic traction to the nose. Eloy et 

al.{22} demonstrated that the transseptal approach provided more posterolateral exposure 

for the infratemporal fossa. Our study confirms this: combining any of these approaches 

with a contralateral endonasal transseptal approach will provide a lateral shift of the area 

of exposure. This shift in exposure will assist in the removal of lesions that extend as far 

laterally as the mandibular ramus and temporalis muscle. In our study, the quantitative 

exposed area for each approach was similar; however, the areas exposed were not the 

same. Therefore, combining any two approaches will allow for a larger exposure. 

Combining the ipsilateral sublabial approach with the transseptal approach provides an 

additional 1.2 cm
2
 of exposure and adds increased maneuverability, permitting a four-

handed technique to be used. Adding an ipsilateral endonasal approach increases the 

exposed area by 0.6 cm
2
, which may be of great value in approaching large, challenging 

lesions. 

In their cadaveric study, Harvey et al.{8} determined that surgical access was 

increased 14.7 ± 2.5 % when a transseptal approach is used compared to ipsilateral 

approaches. According to our data, the contralateral transseptal exposure will lead to an 

increase of approximately 12% and 11% in the area of exposure when compared to an 

ipsilateral endonasal and ipsilateral sublabial approaches, respectively.  

In cadaveric studies, Hartnick et al.{31} and Eloy et al.{22} approached the 

infratemporal fossa via a temporal hairline incision and concluded that it is a limited 
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approach that can be used only for targeted CSF leak treatment or lesion biopsy. Eloy et 

al. concluded that adding this approach to any of the previously described approaches 

may lead to an increased surgical freedom to the superior portion of the infratemporal 

fossa.{22} With the increased experience of the surgical team, the use of angled 

endoscopes and angled instruments can be helpful in increasing the size of the accessible 

operative field and leading to improved tumor resections.{35, 36} While these angled 

instruments and endoscopes would greatly increase the extent and application for each 

approach, in our comparison we used only straight instruments and a 0° endoscope, so 

that we could study the approaches in a standard manner.  

Other maneuvers can be used to increase surgical freedom.  For example, in the 

sublabial approach, the anterior maxillary antrostomy can be widened, but care should be 

taken with the superior extension of the antrostomy so as not to injure the infraorbital 

nerve and artery.{9} For the endonasal approach, the medial maxillotomy can be 

enlarged and the piriform aperture drilled (Denker's approach), but the lacrimal duct 

should be identified and spared to prevent post-operative complications. For the 

contralateral endonasal approach, a larger septectomy will allow easier introduction of 

other endoscopic instruments.{8} 

The difference in surgical freedom among the three approaches, with similar exposed 

areas, is attributed to the pivot point (Pinch point, Fig. 1.6). The pivot point is the fixed 

point between the tip of the endoscope and the base of the endoscope where the direction 

of movement is changed. The movement of the proximal end of the endoscope to one 

direction results in a movement of the distal end to the opposite direction. The pivot point 

was closer to the tip in the sublabial approach (1-3 cm), thus a larger movement of the 
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proximal end results in a smaller and finer movement at the distal end of the endoscope. 

The pivot point ranged from 4.5-7 cm in the ipsilateral endonasal approach; thus, a 

movement of the proximal end would lead to a larger movement of the distal end when 

compared to the sublabial approach.  

 

Figure 1.6 

A diagram showing the importance of the pivot point in the three different 

approaches, which when changed (depending on the approach) with a fixed area of 

exposure, affect the degree of surgical freedom. Used with permission from Barrow 

Neurological Institute. 

Conclusion 

The sublabial, ipsilateral endonasal, and contralateral transseptal endoscopic 

transmaxillary approaches provide excellent exposure to the retromaxillary area. The 

quantity of area exposed is similar for the three approaches, but the transseptal approach 

offers greater lateral exposure.  Surgical freedom is greatest with the sublabial approach 
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and is least in the ipsilateral endonasal approach. This information may benefit 

practitioners in surgical planning and decision making for lesions of the infratemporal 

fossa and pterygopalatine fossa. 
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CHAPTER 2  

Evaluation of Surgical Freedom for Microscopic and Endoscopic 

Transsphenoidal Approaches to the Sella 

Elhadi AM, Hardesty H, Zaidi H, Kalani YS, Nakaji P, White WL, Preul MC, 

Little AS. 

ABSTRACT 

Background. Microscopic and endoscopic transsphenoidal approaches to the sellar 

are well-established. Surgical freedom is an important skull base principle that can be 

measured objectively and compare approaches.  

Objective. In this study, we compared the surgical freedom of four transsphenoidal 

approaches to the sella turcica. 

Methods. Four transsphenoidal approaches to the sella (microscopic sublabial, 

microscopic endonasal, endoscopic binostril, and endoscopic uninostril) were performed 

on eight silicon-injected cadaveric heads. Surgical freedom was determined with 

stereotactic image guidance using previously established techniques. The results are 

presented as the area of surgical freedom and angular surgical freedom (angle of attack) 

in the axial and sagittal planes.  

Results. Mean total exposed area surgical freedom for the microscopic sublabial, 

endoscopic binostril, endoscopic uninostril, and microscopic endonasal approaches were 

102±13cm2, 89±6cm2, 81±4cm2, and 69±10cm2, respectively. The endoscopic binostril 

approach had the greatest surgical freedom at the pituitary gland, ipsilateral and 

contralateral ICAs (25.7±5.4,  28.0±4.0, and 23.0±3.0 cm
2
) compared to microscopic 
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sublabial (21.8±3.5, 21.3±2.4, and 19.5±6.3 cm
2
), microscopic endonasal (14.2±2.7, 

14.1±3.2, and 16.3±4.0 cm
2
), and endoscopic uninostril (19.7±4.8, 22.4±2.3, and 

19.5±2.9 cm
2
). Axial angle of attack was greatest for the microscopic sublabial approach 

to the same targets (14.7±1.3, 11.0±1.5, and 11.8±1.1 degrees). For the sagittal angle of 

attack, the endoscopic binostril approach was superior for all three targets (16.6±1.7, 

17.2±0.70, and 15.5±1.2 degrees). 

Conclusions. The microscopic sublabial and endoscopic binostril approaches 

provided superior surgical freedom compared to the endonasal microscopic and uninostril 

endoscopic approaches.  This work provides objective, baseline values for the 

quantification and evaluating future refinements in surgical technique or instrumentation.   

INTRODUCTION 

Surgical approaches to sellar region pathology have challenged neurosurgeons since 

the inception of the field. Microscope-based transsphenoidal approaches using either a 

sublabial or transnasal passageway are the mainstay of the neurosurgical armamentarium 

for sellar lesions with excellent results.{6,14,18} In the last two decades, progressive 

technological advances in the field of neurosurgical endoscopy have ushered in the 

endoscopic, endonasal, transsphenoidal approach as a viable alternative to microscope-

based approaches. Excellent clinical results for a wide variety of sellar pathology have 

been published using purely endoscopic surgical techniques.{2,4,6,8,12,19} A significant 

volume of literature has been published regarding the clinical outcomes and 

complications of microscope- and endoscope-based approaches to the sella. However, 

there remains a paucity of head-to-head comparisons of the strategies from a technical 

standpoint. Spencer and colleagues performed a variety of microsurgical and endoscopic 
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transsphenoidal approaches on cadavers and found a significantly improved volume of 

exposure with endoscopy-based approaches, especially in visualization superiorly (above 

the dorsum sella) but also in lateral and anterior bony exposure.{20} Catapano and 

colleagues also demonstrated greater bony exposure using an endoscopic approach 

compared to a microsurgical approach to the sella.{3} Yet, no anatomical study has 

examined the surgeon’s ability to manipulate instruments at the sella with these 

approaches, nor determined if one approach provides a superior working corridor. Our 

laboratory and others have previously established a method of assessing the surgical 

freedom and angles of attack provided by various microsurgical and endoscopic 

exposures using stereotaxy.{7,9,17,21} This provides a quantitative analysis of the 

surgeon’s ability to move instruments in space during surgery through the operative 

corridor, and permits a more rigorous and objective comparison of skull base approaches. 

Herein we apply the same anatomic analyses to the microscopic and endoscopic 

transsphenoidal approaches to the sella.  

METHODS 

 We dissected eight silicon-injected, formalin-fixed cadaveric heads using four 

transsphenoidal approaches. Two endoscopic approaches were used: a uninostril 

endonasal transsphenoidal and a binostril endonasal transsphenoidal approach. Two 

microscopic transsphenoidal approaches were also used: a microscopic endonasal 

transsphenoidal and a microscopic sublabial transsphenoidal approach. Details of each 

approach are described below. 

Endoscopic approaches were performed using a 0° endoscope and standard 

endoscopic techniques, burrs, dissector blades, and standard endoscopic instruments 
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(Karl Storz, Tuttlingen, Germany) with heads placed in rigid fixation in a supine position. 

Microscopic approaches were performed using a standard surgical microscope (Pentero, 

Zeiss, Germany) and standard micro-surgical instruments, with the heads placed in rigid 

fixation in a supine position. High-resolution computed tomography (CT) scans were 

performed on each specimen to document the bony facial and cranial anatomy, and the 

images were uploaded to an image guidance platform (StealthStation Treon Plus with 

FrameLink Software, Medtronic, Louisville, CO). Image guidance was used to obtain 

anatomical measurements and to confirm anatomical structures. For endoscopic 

measurements, the endoscope was parked in the superior aspect of the right nares. 

Statistical analysis was performed by comparing the data collected from the each 

approach with the other approaches using two-tailed t-tests, and significance was 

determined when p-value was less than 0.05, and analysis of variance (ANOVA) was 

used to further compare between the means of surgical freedom and angle of attack for 

the four different approaches. 

 

Uninostril endoscopic endonasal transsphenoidal approach 

 This approach has been described previously.{1} In brief, we used the right 

nostril to approach the nasal cavity and the middle turbinate was out-fractured. The 

sphenoid ostia were identified bilaterally and opened widely using a mushroom punch or 

Kerrison rongeurs. The posterior third of the bony septum was resected along with a 

piece of the vomer. The sphenoid rostrum was then opened wide using a drill or punch, 

and bilateral posterior ethmoidectomies were performed. The posterior wall of the 

sphenoid sinus was then removed to expose the anterior pituitary, the cavernous internal 
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carotid artery (cICA) and a part of the petrous internal carotid artery (pICA). In a 

unilateral approach, the contralateral nasal mucosa is preserved. For all measurements, 

the endoscope and the endoscopic dissector instrument were both inserted through the 

right naris. 

Binostril endoscopic endonasal transsphenoidal approach 

In this approach dissections were performed similar to the previous approach but the 

contralateral posterior septal mucosa was removed and the left middle turbinate 

outfractured,{13,22} such that the endoscope can be inserted through the right naris and 

the dissector inserted through the left naris. To remain consistent with the other 

approaches, the terms ipsilateral and contralateral in reference to the carotid arteries, etc, 

for this approach are named by the side of endoscope insertion. An advantage to the 

binostril approach that we did not attempt to quantify in this study is that the dissector 

can be placed through whichever nares provides the best working angle for the surgeon. 

Microscopic endonasal transsphenoidal approach 

The classic approach has been well-described by Griffith in 1987, and several 

modifications have been reported.{10}  The technique was performed as follows. A 

vertical incision was made at the mucodermal junction of the nasal septum, and the 

incision was then extended to the nasal floor. The mucosa was then dissected from the 

septal cartilage and elevated from the nasal floor, whereafter dissection was extended to 

the anterior wall of the sphenoid sinus. The posterior part of the septal cartilage was 

disarticulated from the plate of the ethmoid and vomer, and the 80 mm nasal speculum 

was inserted to retract the mucosa and expose the anterior wall of the sphenoid sinus. The 

anterior wall of the sphenoid was removed and bilateral ethmoidectomies were performed 
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to expose the clivus and sellar floor. The pituitary gland, cICA, and pICA were exposed 

by bony removal of the posterior sphenoid wall and the carotid prominence. The right 

naris was used for all measurements. 

Sublabial microscopic transsphenoidal approach 

Similar to the classic technique by Jules Hardy, a horizontal incision was made under 

the upper lip at the junction of the gum.{11} This incision was made deep enough to 

incise the periosteum then elevated using a Cushing periosteal elevator to expose the 

nasal cavum which was enlarged using rongeurs. The mucosal elevator was introduced 

along the nasal septum to detach the mucosa from the cartilage to the deepest part of the 

septum to the vomer. A Fukoshima nasal speculum was used to hold the mucosa out of 

the field, and the nasal cartilage was removed creating a new submucosal cavity. The 

vomer was detached and further resection of the sphenoid wall performed to expose the 

whole sphenoid sinus cavity. The sphenoid mucosa was removed, exposing the sellar 

floor along with the carotid prominence on both sides.   

Exposed area surgical freedom 

 This variable is calculated using four points in space and represents the available 

area of maneuverability that can be offered for the proximal (surgeon’s) end of an 

endoscopic instrument (2 mm dissector, 23 cm in length) while moving the distal end of 

this instrument along the borders of the exposed area (holding the endoscope within the 

nasal vestibule, in the endoscopic approaches). The four points were determined using the 

neuro-navigation system. Each point corresponded to the position (outside the patient) of 

the proximal end of the dissector while placing the distal end of the dissector at an 

anatomic target. The four anatomic targets for the distal dissector were as follows: first 
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point, contralateral cICA with the proximal dissector as inferior and lateral as possible; 

second point, ipsilateral pICA with the proximal dissector as superior and medial as 

possible; third point, ipsilateral cICA with the proximal dissector as inferior and medial 

as possible; fourth point, contralateral pICA with the proximal dissector superior and 

lateral as possible (Fig. 2.1). In case of microscopic approaches, the surgical freedom was 

measured after placing the nasal speculum and measuring the freedom of the dissector in 

a similar fashion (Fig. 2.2). With these four points measured, three vectors were 

calculated which represent two juxtaposed triangles and the surgical freedom is the sum 

of the area of these two triangles. {7,9,17,21}
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Figure 2.1  

An illustration showing the exposed area surgical freedom for the two endoscopic 

approaches; Endoscopic Endonasal Binostril approach (A) sagittal, (C) axial, and the 

Endoscopic Endonasal Uninostril approach (B) sagittal, (D) axial.  

 

 Figure 2.2  

An illustration showing the exposed area surgical freedom for the two microscopic 

approaches; microscopic sublabial approach (using a fukushima retractor) (A) sagittal, 

(C) axial, and the microscopic endonasal approach (B) sagittal, (D) axial. 

Anatomic target surgical freedom 

This variable represents the maneuverability of the proximal end of the dissector 

while fixing the distal end of the dissector on a specific anatomic target and the 
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endoscope placed within the vestibule (in case of endoscopic approaches), or after 

placing the nasal speculum in case of the microscopic approaches. 

Four points were again determined using the neuro-navigation system, which 

represent the four positions of the proximal end of the dissector outside the patient while 

fixing the distal end on an anatomical target and placing the proximal end as inferiorly, 

superiorly, medially and laterally as possible. As above, after these four points are 

calculated three vectors can be measured which represent two juxtaposed triangles and 

the surgical freedom is the sum of the area of these two triangles(Fig. 2.3, 2.4). We 

measured anatomic target surgical freedom for the center of the pituitary gland and the 

two cavernous ICAs. 

Angle of attack 

The angular surgical freedom (“angles of attack”) in two planes was determined for 

three targets: the pituitary gland and both cICAs. This was measured, as we have 

described previously, by fixing the distal end of the dissector on the anatomic target and 

moving the proximal end of the dissector as far left and right as possible to determine the 

maximum angle of attack within the axial plane.{21}(Fig. 2.3) The angle of attack in the 

sagittal plane was calculated by measuring the maximum angle of movement when fixing 

the distal end of the dissector on the anatomic target and moving the proximal end as 

superior and inferior as possible (Fig. 2.4). These measurements were taken while 

positioning the endoscope against the nasal vestibule and providing a full view of the 

exposed area for the endoscopic techniques, and after placing the microscopic nasal 

speculum in case of the microscopic approaches. 
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Figure 2.3  

Illustration showing the point anatomical target surgical freedom and angle of attack 

for the pituitary gland in the axial plane for the endoscopic endonasal binostril approach 

(A), endoscopic endonasal uninostril approach (B), microscopic sublabial approach (C), 

microscopic endonasal approach (D). 



 

  35 

 

Figure 2.4  

Illustration showing the point anatomical target surgical freedom and angle of attack 

for the pituitary gland in the sagittal plan for the endoscopic endonasal binostril approach 
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(A), endoscopic endonasal uninostril approach (B), microscopic sublabial approach (C), 

microscopic endonasal approach (D). 

 

 

RESULTS 

Exposed area surgical freedom 

The microscopic sublabial approach provided the greatest exposed area surgical 

freedom (102.3  ± 12.6 cm
2
, Fig. 2.5), followed by the endoscopic binostril approach 

(88.9 ± 5.5 cm
2
; two-tailed t-test compared to microscopic sublabial, p=0.02), the 

endoscopic uninostril approach (80.9 ± 4.5 cm
2
; two-tailed t-test compared to 

microscopic sublabial, p=0.004), and the least exposed area surgical freedom was 

provided by the microscopic endonasal approach (68.7 ±9.6 cm
2
; two-tailed t-test 

compared to microscopic sublabial, p=0.0008). Statistical significance of each approach 

compared to every other approach is summarized in Table 2.1.  
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Figure 2.5  

Total exposed area surgical freedom by approach. MSL, microscopic sublabial. ME, 

microscopic endonasal. EBN, endoscopic binostril. EUN, endoscopic uninostril. Every 

measurement reported is statistically significant when compared to all other values by 

two-tailed t-test. 

 

Table 2.1  

Two-tailed t-test p values for each approach compared to A) Microscopic Sublabial 

Approach, B) Endoscopc Binostril Approach, C) Microscopic Endonasal Approach, D) 

Endoscopic Uninostril approach. 

 

Table 2.1-a 

Microscopic Sublabial Approach 

Surgi

cal 

appro

ach 

Angle of Attack Surgical freedom 

 Axial Sagittal Anatomic target Expos

ed 

area 
Pit I-

cICA 

C-

cICA 

Pit I-

cICA 

C-

cIC

A 

Pit I-

cICA 

C-

cIC

A 

ME 0.000

2** 

 

0.2 

 

0.001

** 

 

0.008

** 

0.005

** 

 

0.06 

 

0.005

** 

 

0.001

** 

 

0.08

** 

 

0.0008

** 

 

EBN 0.02*

* 

 

0.02*

* 

 

0.04*

* 

 

0.03* 

 

0.005

* 

 

0.2 

 

0.01* 

 

0.003

* 

 

0.3 

 

0.02** 

 

EUN 0.001

** 

 

0.007

** 

 

0.02*

* 

 

0.8 

 

0.5 

 

0.9 

 

0.1 

 

0.4 

 

1 

 

0.004*

* 

 

 

Table 2.1-b 

Endoscopic Binostril Approach 

Surgic

al 

appro

ach 

Angle of Attack Surgical freedom 
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 Axial Sagittal Anatomic target Expose

d area Pit I-

cIC

A 

C-

cIC

A 

Pit I-

cICA 

C-

cIC

A 

Pit I-

cIC

A 

C-

cIC

A 

MSL 0.02* 

 

0.02

* 

 

0.04

* 

 

0.03** 0.005

** 

 

0.2 

 

0.0

1** 

 

0.00

3** 

 

0.3 

 

0.02* 

 

ME 0.002

** 

 

0.6 

 

0.6 

 

0.002*

* 

 

0.000

07** 

 

0.01

** 

 

0.0

01*

* 

 

0.00

004

** 

 

0.01

** 

 

0.0009*

* 

 

EUN 0.003

** 

 

0.09 

 

0.3 

 

0.0003

** 

 

0.000

0003*

* 

 

0.00

2** 

 

0.0

003

** 

 

0.00

2** 

 

0.02

** 

 

0.0002*

* 

 

 

Table 2.1-c 

Microscopic Endonasal Approach 

Surgi

cal 

appr

oach 

Angle of Attack Surgical freedom 

 Axial Sagittal Anatomic target Expose

d area Pit I-

cIC

A 

C-

cICA 

Pit I-

cIC

A 

C-

cIC

A 

Pit I-

cICA 

C-

cIC

A 

MSL 0.000

2* 

 

0.2 

 

0.001

* 

 

0.008

* 

 

0.005

* 

 

0.06 

 

0.005

* 

 

0.001

* 

 

0.0

8* 

 

0.0008* 

 

EBN 0.002

* 

 

0.6 

 

0.6 

 

0.002

* 

 

0.000

07** 

 

0.01

** 

 

0.001

* 

 

0.000

04* 

 

0.0

1* 

 

0.0009* 

 

EUN 0.7 

 

0.08 

 

0.2 

 

0.02* 

 

0.004

* 

 

0.08

* 

 

0.03* 

 

0.001

* 

 

0.0

3* 

 

0.009* 

 

 

Table 2.1-d 

Endoscopic Uninostril Approach 
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Surgi

cal 

appr

oach 

Angle of Attack Surgical freedom 

 Axial Sagittal Anatomic target Expos

ed 

area 

Pit I-

cICA 

C-

cIC

A 

Pit I-

cICA 

C-

cIC

A 

Pit I-

cICA 

C-

cICA 

 

MSL 0.00

1* 

 

0.007

* 

0.02

* 

 

0.8 0.5 

 

0.9 0.1 0.4 

 

1 0.004* 

ME 0.7 0.08 0.2 0.0

2** 

0.004*

* 

0.08 0.03

* 

0.001*

* 

0.03*

* 

0.009*

* 

EBN 0.00

3* 

0.09 0.3 0.0

003

** 

0.0000

003* 

0.00

2* 

0.00

03* 

0.002* 0.02* 0.0002

* 

 

(**) represent a statisically significant superiority. (*) represent a statistically 

significant inferiority. 

MSL, microscopic sublabial 

ME, microscopic endonasal 

EBN, endoscopic binostril 

EUN, endoscopic uninostril 

Pit, pituitary gland 

I-cICA Ipsilateral cavernous internal carotid artery 

C-cICA Contralateral cavernous internal carotid artery 

 

Anatomic target surgical freedom  

The largest anatomic target surgical freedom for the pituitary gland was provided by 

the endoscopic binostril approach (27.7 ± 5.4 cm
2
) followed by the microscopic sublabial 

approach (21.8 ± 3.5 cm
2
; two-tailed t-test compared to endoscopic binostril, p=0.01), the 

endoscopic uninostril approach (19.7 ± 4.8 cm
2
; two-tailed t-test compared to endoscopic 

binostril, p=0.0002), and the least surgical freedom was provided by the microscopic 

endonasal approach (14.1 ± 2.7 cm
2
; two-tailed t-test compared to endoscopic binostril, 
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p=0.001, Fig. 2.6). The surgical freedom for the ipsilateral cICA (right cICA) was 

greatest using the endoscopic binostril approach (27.0 ± 4.0 cm
2
), followed by the 

endoscopic uninostril approach (22.4 ± 2.32 cm
2
; two-tailed t-test compared to 

endoscopic binostril, p=0.002), the microscopic sublabial approach (21.3 ± 2.4 cm
2
; two-

tailed t-test compared to endoscopic binostril, p=0.01) and the microscopic endonasal 

approach (14.1 ±3.17 cm
2
; two-tailed t-test compared to endoscopic binostril, p = 

0.0004). For the contralateral cICA (left cICA) the endoscopic binostril approach had the 

greatest anatomic target surgical freedom (23.0 ± 3 cm
2
), followed by the endoscopic 

uninostril approach (19.5 ± 2.9 cm
2
; two-tailed t-test compared to endoscopic binostril, 

p=0.014), the microscopic sublabial approach (19.5 ± 6.2 cm
2
; two-tailed t-test compared 

to endoscopic binostril, p>0.05, non-significant), and lastly the microscopic endonasal 

approach (16.3 ± 4.0 cm
2
; two-tailed t-test compared to endoscopic binostril, p=0.02). 

Statistical significance of each approach compared to every other approach is 

summarized in Table 2.1.  
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Figure 2.6  

Anatomic target surgical freedom by approach. MSL, microscopic sublabial. ME, 

microscopic endonasal. EBN, endoscopic binostril. EUN, endoscopic uninostril. 

Statistical comparisons are reported separately in Table 2.1. 

Angle of attack  

The axial plane angle of attack for the pituitary gland was greatest for the microscopic 

sublabial approach (14.7° ± 1.3, Fig. 2.7), followed by the endoscopic binostril approach 

(12.8° ± 1.7; two-tailed t-test compared to microscopic sublabial, p=0.02), the 

microscopic endonasal approach (9.5° ± 1; two-tailed t-test compared to microscopic 

sublabial, p=0.0002), and the endonasal uninostril approach (9.2° ± 2; two-tailed t-test 

compared to microscopic sublabial, p=0.001). The angle of attack for the pituitary gland 

in the sagittal plane was greatest for the endoscopic binostril approach (16.5° ± 1.7, Fig. 

2.8), followed by the microscopic sublabial approach (14.9° ±1.9; two-tailed t-test 

compared to endoscopic binostril, p=0.03), the endoscopic uninostril approach (14.7° 
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±1.3; two-tailed t-test compared to endoscopic binostril, p=0.0003), and the microscopic 

endonasal approach (12.4° ± 2; two-tailed t-test compared to endoscopic binostril, 

p=0.002).  The axial and sagittal plane angles of attack for the ipsilateral (right) and 

contralateral (left) cICAs by approach are summarized in Figures 2.7 and 2.8; in short, 

the microscopic sublabial approach had the greatest axial angle of attack for both cICAs, 

while the endoscopic binostril approach had the greatest sagittal angle of attack for both 

cICAs. Statistical significance of each approach compared to every other approach is 

summarized in Table 2.1.  
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Figure 2.7  

Axial angle of attack by approach. MSL, microscopic sublabial. ME, microscopic 

endonasal. EBN, endoscopic binostril. EUN, endoscopic uninostril. Statistical 

comparisons are reported separately in Table 2.1. 

 

Figure 2.8  

. Sagittal angle of attack by approach. MSL, microscopic sublabial. ME, microscopic 

endonasal. EBN, endoscopic binostril. EUN, endoscopic uninostril. Statistical 

comparisons are reported separately in Table 2.1. 

 

DISCUSSION 

Microscopic transsphenoidal surgery represents the gold-standard for addressing 

lesions of the sella turcica.{6,14,18} The two most commonly used microsurgical 

approaches applied in practice are the uninostril direct endonasal approach and the 

sublabial transsphenoidal approach, but recent endoscopic technological advances and the 

development of effective closure techniques have led to the adoption of purely 
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endoscopic, endonasal approaches to the sella.{2,4,5,8,12,19} The two most commonly 

applied endoscopic approaches are uninostril and binostril transsphenoidal techniques. 

While most recent literature has focused on the technical nuances of individual 

approaches and preliminary patient outcomes, few objective technical comparisons of the 

approaches exist. Surgical freedom is an important skull base principle that describes the 

extent to which a surgeon can moves his hands in the operative field. Increased surgical 

freedom and angle of attack limit sword fighting and instrument collisions, reduce 

surgeon frustration, improve delicate microdissection, and improve target visualization. 

Numerous impediments to surgical freedom in the crowded nasal corridor exist, such as 

the nasal septum, turbinates, nares, sphenoid sinus bone, endoscope, and retractors.  In 

this study, we present the first objective comparison of surgical freedom of the four most 

commonly performed transsphenoidal approaches as one might use to remove a pituitary 

tumor. We estimated surgical freedom using four measurements (exposed are surgical 

freedom, target surgical freedom, axial angular freedom, sagittal angular freedom). These 

complementary measurements allow us to determine not only the total area of freedom, 

but also in which plane one approach may be superior to another. 

We demonstrated that the sublabial microscopic and the binostril endoscopic 

approaches were superior to the uninostril microscopic and uninostril endoscopic 

approaches in the examined variables. The sublabial approach provided the greatest 

surgical freedom in the exposed area and axial angular freedom, whereas the endoscopic 

binostril approach provided the greatest target surgical freedom and sagittal angular 

freedom. The microscopic endonasal approach provided the least surgical freedom in 

three of the four measurements in our model. The surgical freedom results can be 
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explained by the anatomical structures that limit movement in each approach. For 

example, in the sublabial approach, the retractor is placed in a horizontal plane thus 

providing a wide but short orifice at the distal end of the exposure.  In contrast, in the 

endoscopic approaches, the axial angular freedom is limited by the nares, nasal septum, 

middle turbinate and maxillary sinus wall. However, sagittal angular freedom is excellent 

because one can elevate the soft tissue of the nares to generate more freedom. The 

uninostril microscopic approach provided the least surgical freedom because axial plane 

freedom was limited by the nasal speculum, and the sagittal freedom was reduced by the 

skin and cartilage of the nares made tight by the expanded retractor.  The other interesting 

observation was the noted superiority of the binostril endoscopic approach compared to 

uninostril approach. This confirms our clinical impression. The uninostril approach 

surgical freedom was more impacted by the presence of the endoscope and the conflicts 

between the endoscope and dissecting instruments.  In a standard binostril approach, the 

endoscope is parked in the right nostril, and the dissectors are placed in the left nostril 

thus limiting collisions.  

These results provide practical information for surgeons choosing a surgical approach 

and help quantify clinical impressions. For example, the senior author [author name 

blinded for review] will choose a sublabial microscopic approach over a microscopic 

uninostril approach for complex sellar tumors, such as craniopharyngioma, because of the 

greater ease of dissection and shorter operative distance. Regarding the endoscopic 

approaches, the authors now utilize an exclusively binostril approach instead of a 

uninostril approach for all sellar lesions. This improves the ease of tumor dissection, 

limits endoscope-instrument conflict, and significantly eases the hassle of sellar 
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reconstruction. However, surgical freedom is only one of several factors that a surgeon 

considers when choosing an approach. Other factors include approach-related 

morbidity{15} and surgeon experience/preference. 

Our study utilized cadaveric heads fixed in standard preservatives, and this process 

decreases the elasticity of tissue. This is a drawback inherent to any anatomical study 

performed in cadavers, but naturally should still be considered a limitation to the present 

study. We tried to address this variable by performing the measurements in the same 

specimens for all four approaches, thus having each specimen serve as its own internal 

control.  To standardize the methodology, we chose to use only straight instruments and 0 

degree endoscopes. Different surgical freedom areas could have been obtained with 

angled instruments or endoscopes. Lastly, our study examines a standardized dissection 

using each approach. Individual patient anatomy and surgical pathology is highly variable 

and each surgical approach in the living patient is tailored to that unique anatomy. 

Therefore, surgical freedom and angles of attack may differ somewhat when these 

approaches are used in the operating room.  

The choice to approach a lesion from either an endoscopic, microscopic, or combined 

approach has many deciding factors and can yield excellent clinical results. We view the 

present results not as an unqualified endorsement of the endoscopic binostril approach or 

sublabial approach, but more as the early steps towards a rigorous and objective 

anatomical comparison of surgical approaches in sellar surgery. With these baselines now 

established for routine approaches, we can utilize the same principles to evaluate 

expanded exposures, new instrumentation, and other technical modifications. Innovations 
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in surgical approach will in the future have standardized quantitative, rather than simply 

qualitative, data to support their adoption. 

 

CONCLUSIONS 

The microscopic, sublabial approach to the sella provides the greatest surgical 

freedom in the axial plane, and the greatest total surgical area freedom. The endoscopic, 

binostril approach provides the greatest degree of sagittal surgical freedom and freedom 

at common anatomic targets within the sella. Microscopic endonasal and endoscopic 

uninostril approaches yielded significantly less surgical freedom in most examined 

variables. This research provides a foundation for the quantitative measurement of 

endoscopic skull base approaches. 
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CHAPTER 3: 

 MALLEABLE ENDOSCOPE INCREASES SURGICAL FREEDOM WHEN 

COMPARED TO A RIGID ENDOSCOPE IN ENDOSCOPIC ENDONASAL 

APPROACHES TO THE PARASELLAR REGION 

Elhadi AM, Zaidi H, Hardesty H, Cavallo C, Preul MC, Nakaji P, Little AS. 

ABSTRACT  

Background: One challenge performing endoscopic endonasal approaches is the 

surgical conflict that occurs between the surgical instruments and endoscope in the 

crowded nasal corridor. This conflict decreases surgical freedom, increases surgeon 

frustration, and lengthens the learning curve for trainees.  

Objective: In this study, we evaluated the impact a malleable endoscope has on 

surgical freedom for endoscopic approaches to the parasellar region.  

Methods: Uninostril and binostril endoscopic transsphenoidal approaches to the 

pituitary gland and cavernous carotid arteries were performed on eight silicon-injected, 

formalin-fixed cadaveric heads using both rigid and flexible 3D endoscopes. Surgical 

freedom to targets in the parasellar region was assessed using an established technique 

based on image guidance. Results are presented as three measurements: area of surgical 

freedom for a point target, area for the surgical field (cavernous carotids and sella), and 

angular surgical freedom (angle of attack).   

Results: Point target surgical freedom, exposed area surgical freedom, and angle of 

attack were all significantly greater in approaches using the malleable endoscope 

compared to the rigid endoscope (p values 0.06 to <0.001) between 17 and 28%. The 
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improved surgical freedom noted with the malleable endoscope was due to the 

minimization of instrument-endoscope conflict at the back-end (camera) and front-end 

(tip) of the endoscope.  

Conclusions: This study demonstrates that application of a malleable endoscope to 

transsphenoidal approaches to the parasellar region decreases instrument-endoscope 

conflict and improves surgical freedom.   

 

INTRODUCTION 

 Endoscopic transsphenoidal surgery is an increasingly popular surgical technique 

to address pituitary and parasellar lesions.{15,16,17,18,19} The approach presents a 

technical challenge and causes surgeon frustration because the long, crowded, narrow 

working corridor promotes instrument collisions and “sword fighting”. Instrument 

conflict occurs at several locations within the operative corridor. At the back-end of the 

endoscope, the camera and cable interfere with the surgeon’s hands on the dissection 

instruments and suction. The movement of the endoscope shaft and instruments can be 

limited by the nasal vestibule, middle turbinate, and amount of boney removal of the 

sphenoid ostium, posterior ethmoids, and nasal septum.{20} Finally, the tip of the 

endoscope can interfere with dissection instruments and scissors because the endoscope 

takes up valuable space near the surgical target. To date, the standard endoscopic 

approach is performed with a rigid endoscope, which contributes to the difficulty by 

redirecting or impeding instruments with which it interacts.  

Surgical freedom is an important topic in skull base surgery and describes the ease 

and extent the surgeon can move his/her hands in the operative field.  Limited surgical 
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freedom causes increased surgeon frustration, lengthens the learning curve for trainees, 

increases operative time, and impairs the ease and perhaps the safety of conducting 

delicate dissections. Surgical freedom is one factor that a surgeon may consider when 

choosing a surgical approach.  We have modeled surgical freedom in various open and 

endoscopic skull base approaches and demonstrated that it can be a useful objective 

measure to compare approaches.{3,7,8,9} This concept is brought into sharp relief in 

endoscopic endonasal surgery because of the tight anatomical corridor puts a premium on 

space.{3,21} 

One possible solution to improving instrument conflict in endoscopic endonasal 

surgery is the development of a malleable endoscope that can be contoured to minimize 

endoscope-instrument collisions.  In this study, we compare the surgical freedom attained 

in endoscopic transsphenoidal approaches to the parasellar region using a rigid 3D 

endoscope and a malleable 3D endoscope  

 

METHODS 

Endoscopes 

Two 3D endoscopes manufactured by Visionsense (Petach Tikva, Israel) were 

utilized in this study. The rigid endoscope (VSII, 4.9 mm diameter and 180 mm length) is 

commercially available, while the malleable endoscope (Cobra, 4.7 mm diameter and 180 

mm length) is not yet available (Fig 3.1). The malleable endoscope retains its shape after 

it is bent. Both endoscopes provide high-quality standard definition images. According to 

the manufacturer, the malleable and rigid 3D endoscopes use the same optic technology 

and software. Therefore, the luminosity and image quality are identical (Fig 3.2). Both 
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endoscopes also provide a 70 degree field of view. The malleable endoscope has a rigid 

portion about 1 cm long at the tip. The malleable endoscope is not available in angled or 

fisheye lenses. 

 

Figure 3.1  

Image showing the malleable 3D endoscope and the rigid 3D endoscope developed 

by Visionsense. The malleable endoscope (Cobra) is not yet cleared for use in the United 

States 
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Figure 3.2  

Representative images taken from the malleable (A) and rigid 3D (B) endoscopes 

used in this study. According to the manufacturer, the image definition and luminosity 

are the same. 

 

Anatomical Dissections 

Uninostril endonasal transsphenoidal approaches and binostril endonasal 

transsphenoidal approaches were performed on eight silicone-injected, formalin-fixed 

cadaveric heads. Dissections were performed using a single-surgeon technique with a 

rigid 3D 0-degree endoscope. Once the surgical corridor was exposed, the endoscope’s 

position (either rigid or malleable) was fixed using an endoscope holder (Karl, Storzz, 
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Germany) against the nasal vestibule. Right-sided unilateral transsphenoidal approaches 

were performed using established techniques according to the method published by 

Berhouma et al.,{4} In brief, this included out-fracture of the right middle turbinate, wide 

bilateral sphenoidotomies, posterior septectomy, and removal of the sellar bone to expose 

the pituitary gland and cavernous internal carotid arteries (ICA). In the binostril 

approach, the left middle turbinate was out-fractured and the contralateral posterior septal 

mucosa was removed as described by Kassam.{5}  

Prior to dissection, stereotactic imaging using high resolution computed tomography 

(CT) scans were performed on each head to document bone and cranial anatomy. Images 

were uploaded to an image guidance platform (StealthStation Treon Plus with FrameLink 

Software, Medtronic, Minneapolis, MN). Image guidance was then used to obtain 

anatomical measurements and confirm anatomical structures, and assist with anatomical 

dissections. 

 

Surgical Freedom  

Surgical freedom was defined as the maximum allowable working area or angle at the 

proximal (surgeon’s) end of a 23 cm endonasal dissecting instrument.{3} This definition 

was chosen to reflect the working space available at the level of the surgeon’s hand while 

holding an instrument. In this study, surgical freedom was estimated using three 

measurements. First, we measured the maximum area through which a surgeon could 

move his hand holding a 2 mm tip dissector with the tip of the instrument held on a 

designated surgical target (“point target surgical freedom”). We chose the center of the 

anterior face of the pituitary gland and bilateral midsegment cavernous ICAs as the 



 

  57 

targets.  To estimate surgical freedom for point anatomical targets, the area between four 

points representing the extreme positions (i.e., as far medially, superiorly, inferiorly, and 

laterally as possible) of the proximal end of the dissector was calculated using the vector 

cross-product method.{3,9,6,8} The spatial coordinates of the four points were 

determined using neuronavigation (Stealth System, Medtronic, Minneapolis, MN).   

Next, we measured the maximal area through which a surgeon could move his hand 

holding a dissector while moving the distal end (tip) of the instrument along the borders 

of the surgical field (“exposed area surgical freedom”). This area was calculated by 

identifying four points in space that represents the position of the proximal end of the 

dissector. The first point represents the position of the proximal end of the dissector while 

placing the distal end at the contralateral cavernous ICA and moving the proximal end as 

inferiorly and laterally as possible. The second point was represents the proximal end of 

the dissector while placing the distal end at the ipsilateral cavernous ICA and moving the 

dissector as superiorly and medially as possible. The third point represents the proximal 

end of the dissector while placing the distal end at the ipsilateral cavernous ICA and 

placing the proximal end as inferiorly and medially as possible. The fourth point 

represents the proximal end of the dissector while placing the distal end at the 

contralateral cavernous ICA and placing the proximal end as superiorly and laterally as 

possible.  

Third, we measured the angle through which the surgeon could move his hands while 

holding a dissector (angular surgical freedom or “angle of attack”). The angle of attack 

was determined for the center of the anterior face of the pituitary gland. The axial angle 

of attack was measured by fixing the distal end of the dissector on the target and moving 
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the proximal end of the dissector as far left and right as possible. The angle of attack on 

the sagittal plane was calculated by measuring the maximum angle of movement when 

fixing the distal end of the dissector on the anatomical target and moving the proximal 

end as superiorly and inferiorly as possible.  

To standardize the procedure, the endoscopes were placed in the superior aspect of 

the right nares and positioned with an endoscope holder (Karl Storz, Germany) to see the 

entire surgical target (bilateral cavernous ICA and pituitary fossa. The malleable 

endoscope was contoured such that the proximal camera end moved away from the 

operative corridor (Fig. 3.3). Spatial coordinates were obtained on the proximal end of 

the dissector placed in the right nostril for the uninostril approach and in the left nostril 

for the binostril approach. Measurements for the uninostril and binostril technique were 

made on the same eight specimens to eliminate the extent of boney removal as a 

confounding variable and so the specimens could serve as their own internal controls. 

Surgical freedom data were calculated for both binostril and uninostril approaches using 

both a rigid and malleable endoscope. Statistical analysis was performed using paired, 

independent t-tests and analysis of variance (ANOVA) was used to compare the surgical 

freedom and angle of attack for the two approaches using the two different systems. A p 

value of less than 0.05 was considered significant.  
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Figure 3.3  

A series of photographs demonstrating the position of the dissector and endoscope 

during the acquisition of spatial coordinates. (A) and (B) illustrate how the camera of the 

malleable endoscope has been contoured out of the operative corridor and the dissector is 

moved (A) inferiorly and (B) superiorly. (C) and (D) demonstrate the position of the rigid 

endoscope as the dissector is moved (C) inferiorly and (D) superiorly, where it collides 

with the endoscope camera restricting surgical freedom.   

  

RESULTS 

In all three estimates of surgical freedom, use of the malleable endoscope was 

superior to the rigid endoscope for parasellar targets (Tables 3.1, 3.2, and 3.3). For 

example, in the uninostril approach, use of the malleable endoscope improved surgical 

field freedom by 17% (91.85 ± vs 107.84 ±, p <0.001) and by 17% in the binostril 

approach (115.46 ± vs 135.00 ± , p<0.001) (Table 3.1). When surgical freedom was 

calculated to point anatomical targets such as the center of the face of the pituitary gland 

and cavernous carotid arteries (Table 3.2), use of the malleable endoscope improved 

surgical freedom by 26% in the uninostril approach (21.7 ± vs 27.4 ±, p = 0.02) and by 

28% in the binostril approach (26.72 ± vs 34.56 ±, p = 0.001). Use of the malleable 
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endoscope also improved the angular surgical freedom to the pituitary gland (angle of 

attack) in the axial plane for the binostril approach (13.34 ± vs 18.1 ±, p < 0.001) and in 

the sagittal plane in both the uninostril (16.34 ± vs 18.9 ±, p = 0.001) and binostril 

approaches (17.51 ± vs. 20.25 ±, p = 0.002) (Table 3). There was a trend towards 

improved surgical freedom in axial angular freedom in the uninostril approach (p=0.06). 

 

Table 3.1 

Comparison of mean area of surgical freedom (cm2) for the operative field (including 

parasellar carotid ICA and sella turcica) for a rigid endoscope and malleable endoscope. 

 Surgical Freedom (cm
2
) 

 Rigid Endoscope (SD) Malleable endoscope (SD) p-value 

Uninostril 

  Transsphenoidal 

91.9 (6.2) 107.8 (7.3) 0.0003 

Binostril 

  Transsphenoidal 

115.5 (10.4) 135.0 (2.7) 0.0001 

SD, standard deviation 

 

Table 3.2  

Comparison of mean area of surgical freedom (cm
2
) for parasellar targets for a rigid 

endoscope and malleable endoscope.  

  Surgical Freedom (cm
2
) 

Endoscopic 

  approach 

Anatomical 

target 

Rigid 

Endoscope (SD) 

Malleable  

endoscope (SD) 

p-value 

Uninostril 

  Transsphenoidal  

Pituitary gland 21.7 (4.9) 27.4 (5.3) 0.02 

 Ipsilateral ICA 24.3 (2.5) 30.4 (2.5) 0.0001 

 Contralateral 20.7 (3.5) 26.1 (4.2) 0.007 
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ICA 

Binostril 

  Transsphenoidal 

Pituitary gland 29.3 (5.8) 37.5 (5.9) 0.007 

 Ipsilateral ICA 31.9 (4.6) 39.8 (4.8) 0.004 

 Contralateral 

ICA 

26.7 (4.0) 34.6 (4.8) 0.001 

ICA, internal carotid artery; SD, standard deviation 

 

Table 3.3  

Comparison of angle of attack to the pituitary gland in the axial and sagittal planes 

using a rigid and malleable endoscope.  

  Angle of attack for the pituitary gland 

(degrees) (SD) 

Surgical plane 
 

Endoscopic 

approach 

Rigid 

Endoscope (SD) 

Malleable 

endoscope (SD) 

p-value 

Axial  Uninostril 

Transsphenoidal 

9.2 (1.7) 10.6 (1.7) 0.06 

Binostril 

Transsphenoidal 

13.3 (2.2) 18.1 (1.7) 0.0001 

Sagittal Uninostril 

Transsphenoidal 

16.3 (1.5) 18.9 (1.2) 0.001 

Binostril 

Transsphenoidal 

17.5 (1.7) 20.3 (1.6) 0.002 

SD, standard deviation 

Experimental observations revealed that the malleable endoscope decreased 

endoscope-instrument collisions at two locations. First, there was less conflict at the 

back-end of the endoscope where a surgeon’s hands holding a dissector would collide 

with the endoscope camera and cords. The malleable endoscope camera could be 

positioned out of the operative corridor to avoid this conflict (Fig. 3.3). The second 

location was at the tip of the endoscope because the malleable nature of the scope 
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allowed for the dissectors to easily push the tip out of the way to reach the surgical target. 

Because of the memory properties of the malleable endoscope, the tip returned to its 

original position after the dissectors were moved. 

 

DISCUSSION 

 Improvements in endoscopic endonasal surgery are in part driven by 

technological advancements. Pioneers in the 1990’s adopted the rigid endoscope since it 

provided superior image quality, illumination, and magnification when compared to the 

malleable fiberoptic endoscope.{11} The rigid endoscope was originally developed for 

general surgery, and was ideally suited for abdominal pathology: a CO2 insufflated 

abdominal cavity allows for a large working space to navigate rigid instruments. 

However, when applied to endonasal neurosurgical procedures, frequent instrument 

conflict in a narrow nasal corridor during delicate microsurgical dissection steepens the 

learning curve and increases surgeon frustration. Recent technological advances in digital 

optics have created a new generation of endoscopes which permit for malleability without 

compromising image quality or illumination. In this cadaveric model of an endoscopic 

transsphenoidal approach to the sella turcica, we demonstrate that using a malleable 3D 

endoscope improves surgical ergonomics and reduces instrument conflict when compared 

to a rigid 3D endoscope.  Experimental observations suggest that this is because of 

decreased instrument conflict at the both the front-end (endoscope tip) and back-end 

(endoscope camera) of the malleable endoscope. The malleable nature of the endoscope 

allows the camera to be positioned away from the surgical corridor and allows the tip that 

is obstructing access to the surgical target to be temporarily displaced by dissecting 
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instruments as they approach the target. One limitation we noted with the malleable 

endoscope was in conducting the initial dissection of the nasal cavity. The malleable 

endoscope was more difficult to navigate through the nasal cavity because precise 

movements with the surgeon’s hand did not always translate directly into tip movement. 

However, once the sphenoid sinus was opened, the advantage of being able to contour the 

back-end out of the operative field became apparent. 

In addition to using a malleable endoscope, there are other techniques that can be 

used to improve surgical freedom in an endonasal exposure. These include increasing the 

amount of tissue removal in the nasal cavity, such as resecting the middle turbinate or 

widening the posterior septectomy, ethmoidectomy, or sphenoidotomy. The choice of 

surgical approach can also make a difference as demonstrated in other endoscopic 

approaches.{3,12} The data presented here along with clinical observations suggests that 

a binostril approach offers improved freedom compared to a uninostril approach because 

of the increase number of potential instrument corridors. Next, smaller endoscopes may 

be of benefit, as they occupy less space in the surgical field. In our study, the endoscope 

diameters differed by 0.2 mm, so we hypothesized that the impact of this difference was 

negligible. However, a rigorous analysis of endoscope diameter on surgical freedom is an 

intriguing future direction. For example, the influence of smaller diameter endoscopes, 

such as pediatric endonasal scopes, may be a useful next step. Finally, in order to 

standardize the study methodology we affixed the endoscopes with a holder in the upper 

aspect of the right nostril, which is the most common location to park an endoscope.{2} 

However, in two-handed team endoscopic surgery, an experienced endoscopist can 
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continuously move the endoscope to maximize visualization and limit instrument 

conflict.{1} 

Given the minimal access nature of endonasal surgery which puts a premium on 

optimizing surgical ergonomics in a narrow corridor, the development of standardized 

models to objectively compare technologies may be beneficial. In order to compare 

surgical freedom between various endoscopic procedures, other investigators have 

analyzed computer tomography (CT) scans to calculate angle of exposure,{12} 

millimeter scale rulers to measure area of exposure,{22} performed 3D virtual dissection 

studies,{14} or simply compared subjective data.{13} As an alternative objective 

approach to analyzing degree of freedom, our group previously described a method of 

using stereotaxy to measure surgical freedom and angle of attack for both traditional 

cranial approaches.{7} as well as extended endonasal approaches.{3} This model 

provides rigorous, quantitative, and practical data to compare surgical methodologies, 

and establishes a framework by which surgeons can study the merits of new tools and 

approaches.    

The study methodology also deserves further discussion. First, the study was 

conducted in cadaveric specimens, which have decreased tissue elasticity compared to 

living specimens. Therefore, the data presented herein likely represent an underestimate 

of the surgical freedom obtainable in a living specimen. Second, uninostril and binostril 

measurements were made in the same specimens, and, therefore, each specimen served as 

its own control for tissue elasticity and degree of boney removal, thus limiting the impact 

of these potential confounders on the results. Third, our study does not address how much 

surgical freedom a surgeon actually needs to successfully carry out a procedure, which 
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may depend on surgeon experience. We propose that, in general, more surgical freedom 

is better in order to minimize surgeon struggle and fatigue, but whether the additional 

surgical freedom provided by the malleable endoscope is beneficial will be up to the 

surgeon. Finally, the purpose of our study was not to evaluate the benefits and 

disadvantages of a 3D imaging platform, nor to compare image quality with currently 

available 2D platforms. 

 

CONCLUSIONS 

In this study, we performed an analysis of endoscopic surgical freedom comparing 

the use of a rigid and malleable 3D endoscope for approaches to the parasellar region. We 

used three measurements of surgical freedom and found that the application of a 

malleable endoscope significantly improved surgical freedom in all three measures from 

17% to 29%. The improvement in surgical freedom was a result of limiting endoscope-

instrument conflicts that occur at the front-end (tip) and back-end (camera) of the 

endoscope. 
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CONCLUSIONS 

Clinical decision making 

Appropriate clinical decision making and proper approach selection are key in 

endoscopic neurosurgery, and have a great role in surgical outcome. Depending on the 

type of the lesion, site of the lesion, its extent and its relation to the surrounding 

anatomical structures, surgeons evaluate their patients clinically and select the approach 

that may seem appropriate, which can significantly vary for individual cases.  

The literature is replete with articles describing the angle of attack or surgical 

trajectories based on imaging, or other descriptive articles (qualitative) without 

quantitative data, while our methods provided both quantitative data as well as 

quantitated surgical trajectory description. Surgeons mainly depend on neuro-imaging in 

determining the trajectory for the approach to be used, without addressing the degree of 

maneuverability and ability to manipulate certain anatomical targets. The surgical 

freedom data from the studies in this thesis, which is based on comparative analyses 

between approaches, provided a more realistic evaluation for the degree of 

maneuverability that can be offered in a certain approach rather than just determining a 

simple or mere surgical trajectory. Knowing the surgical freedom that is offered by 

different endoscopes or using different instruments can be important even within the 

surgical procedure itself Aa surgeon can then easily change to an endoscope or an 

endoscopic instrument with a better surgical freedom which enables the operator to 

perform with less struggle.  
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Our data suggest technical maneuvers that may increase the surgical freedom. For 

example in the first chapter; a sublabial transmaxillary approach can have a rather larger 

surgical freedom when the anterior maxillary antrostomy is increased in size while trying 

not to injure other structures like the infra-orbital nerve and artery. The concept of the 

pivot point is also an interesting point, our data shows that the more the pivot point is 

closer to the distal end of the endoscope or endoscopic instrument the larger the surgical 

freedom can be provided. So if there is a struggle in the endoscopic field the surgeon can 

simply pull the endoscope slightly outwards and increase the magnification power, this 

will move the distal end of the endoscope closer to the pivot point while maintaining the 

view of the surgical field using the increased magnification. 

In the second chapter our data showed that the microscopic sublabial approach has 

the greatest surgical freedom for the exposed area when compared to the other 

approaches, while the bilateral endoscopic endonasal approach provided the greatest 

surgical freedom for the anatomical target. These fundamental differences may explain 

why this particular endoscopic approach is more widely used, in addition to other factors 

related to the latter being less invasive and affording better visualization.  

These studies are different from previous studies in that most of the articles in the 

literature provide subjective opinions for different endoscopic approaches based on either 

anatomical description, surgeons opinion (Domenico Catapano et al, 2006, Pillai, P. et al 

, 2009), or comparisons of clinical outcomes for different approaches ( Sheehan, MT et 

al, 1999., Cho, DY et al, 2002., Kawamata, T et al, 2002).  While many descriptions of 

new approaches or maneuvers claim to increase the surgical freedom, there have been no 

quantitive comparisons or evaluations of this crucial aspect of neurosurgical endoscopy. 
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The quantifying method used for the studies in this thesis can provide a numerical value 

for changes in the operative approach that in turn alter surgical freedom. Only in this way 

can reliable comparisons be made employing validated data resulting in objective 

assessments of surgical maneuvers.  

Approach selection 

A better understanding of the surgical freedom for a given approach can greatly 

influence approach selection, for example; if there is a large lesion that needs to be 

ressected, an approach with a larger surgical freedom for this anatomical area would be 

preferred than other approaches with less surgical freedom. On the other hand, if there is 

a rather smaller lesion that compresses on a vital neural or vascular structure, an approach 

with a larger surgical freedom for this anatomical target will be warranted since this 

means that this approach provides better maneuverability around this anatomical target 

which enables better dissection between the lesion and the anatomical structure.  

Although our data is based on comparing approaches, the absolute surgical freedom 

value will be more and more appreciated with the increased application of this 

quantifying method to different surgical approaches (both endoscopic and microscopic) 

enabling surgeons to determine their ability to operate within a given surgical freedom 

limits. So as the surgeon’s experience increase along with his surgical skills he will be 

able to better operate within approaches that have less surgical freedom.  

Our data is also important in the assessments of uncommon approaches amenable to 

endoscopy these approaches may be unfamiliar (chapter one). A newly described 

approach should be evaluated for its surgical freedom in addition to its anatomical and 

technical description, this evaluation should be done before applying this new approach 
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clinically. The surgical freedom evaluation is not only for the approach by itself it can be 

applied for different instruments that may aid in changing an approach from being with a 

limited surgical freedom to being an approach with adequate surgical freedom (discussed 

later).  

Since most newly introduced spine instrumentations are evaluated biomechanically, I 

believe that all newly introduced endoscopic kits, instruments, approaches and maneuvers 

should be evaluated for the surgical freedom provided by them.  

Training application 

Although not mentioned in my thesis, I believe that the series of studies that were 

performed can be a valuable tool in residents training, in our laboratory we have been 

working on developing and endoscopic simulator that may help improve surgical skills 

for novices, with the surgical freedom data in hand a more accurate and significant 

system can be designed. And when designing a simulator with surgical freedom in mind 

we can have a simulator the has a certain surgical freedom which can be manipulated, 

then novices can be scored and evaluated with different surgical freedom provided, we 

can even monitor the progress of surgical skills acquisition through providing the same 

endoscopic tasks and gradually restricting the surgical freedom.  

Cadaveric dissections that are performed during these studies are very crucial and can 

provide an excellent material for training for young residents, so the expanding of these 

studies and its application on a wider scale will enable not only anatomical appreciation 

during cadaveric dissections but a more in-depth analysis and understanding for the 

whole surgical corridor and awareness to the surrounding anatomical structures, not only 
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to prevent injury to these structures but to realize maneuvers that can be performed to 

avoid vital structures and increase surgical freedom as well. 

Pre-operative imaging which is the main measure used by surgeons in providing the 

appropriate trajectory and determining the surgical approach cannot give an idea about 

the surgical freedom that will be provided because the surgical freedom estimates the 

available space within the whole approach in all dimensions. While imaging would only 

provide a certain anatomical cut in a given plane (sagittal, coronal, axial), which is not 

adequate to provide information on the degree of freedom available. And with data like 

this available for more and more endoscopic approaches immediate and more accurate 

surgical planning and decision making can be obtained.  

Effect on endoscopic and endoscopic instruments design 

In the first chapter of my thesis I was able to determine that the difference in the 

approach itself can lead to a 25-30% change in the surgical freedom, the second and third 

chapters, in addition to comparing the type of approach, addressed the effect of difference 

in instruments and type of the endoscope.  

During my dissection work I noticed that most of the limitations and struggle that 

arise -and may affect the surgical freedom- usually comes from the shaft, proximal and 

distal ends of the endoscope and the instruments while they “sword” against each other. 

The type of instruments used as well as type of the endoscope also played an important 

role and our results showed that these factors if optimized will have an effect on surgical 

freedom to a point that will shape a new era of endoscopy in neurosurgery (which is 

actually taking place every day with new innovative technologies).  
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The results shown from these studies enables developers to focus on certain aspects 

that directly influence surgical freedom so if I was to submit a design for an endoscope I 

would think about the length, diameter, material, shape, malleability or flexibility and the 

tip of the endoscope. The length of the endoscope will depend on the purpose for which 

the endoscope is used, deeper structures will need longer endoscopes, but I think that 18-

22 cm is a reasonable length, most importantly that the longer the endoscope the better it 

is for the surgical freedom because it keeps the camera along with the other cables away 

from the surgical field, but the control of a longer endoscope is more challenging due to 

amplification of the movement at the distal end.  

The diameter of the endoscope would also matter, right now the common diameters 

of the endoscopes range between 4-5 mm with 2-3 mm more when an irrigation sheath is 

added to the endoscope increasing the endoscope’s diameter to around 7-8 mm, and this 

can be significant especially for narrow corridors that may have pinch points to almost 1-

3 cm2. (The thinner the better).  

The images in the endoscopic telescope is usually transmitted through a series of 

glass rod lenses, which mandated the endoscope to be rigid, less durable and limited to 

the power of these lenses, although this is the most commonly used system until today, 

but this system is being replaced by a new technology in which the image is transmitted 

digitally from an minute chip at the distal tip of the endoscopic telescope through fiber 

optics and this made a malleable endoscope possible. This can also make a thinner 

endoscope possible, I think that a flexible endoscope is a great advancements in 

endoscopic neurosurgery, it takes away the whole proximal end of the endoscope out of 

the surgeon’s working space and enables better surgical freedom, I doubt that a malleable 
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endoscope can be used in the initial phase of an endoscopic procedure, I think a rigid 

endoscope will be better used in this phase followed by a malleable endoscope during 

tissue manipulation or resection. That is why it will be interesting to have an endoscope 

that is flexible and can be locked in a certain position similar to the Mizuho self-retaining 

retractor (Hongo Buykyo-ku, Japan).  

Also one of the advantages of the endoscope is that its ability to look around the 

corners using 30, 40, 70 degrees endoscopes. With the new technology, I believe that it is 

possible to have the distal chip placed on a rotator head that can be controlled from a 

control unit placed next to the camera so that the distal end can be moved to get angled 

views without having to change the endoscopic telescope, or maybe have a rather half 

sphere lens at the tip of the endoscope that can give a “peephole” effect.  

The increase in the viewing ability of the endoscope without having to move the 

endoscope itself or by having the camera and cables all the way out of the surgical field 

will improve the surgical freedom for the other instruments used. I also think that a 

flexible device that goes through a rather rigid catheter and then becomes directable can 

be a practical solution because I would assume that it will be easier to sterilize.  

Manipulating the shapes of the endoscopic instruments will greatly influence the 

surgical freedom, and this may be tested using our methods. Curved instruments with 30 

or 45 degrees at the distal end enables the surgeon to operate without having to be in line 

with the endoscope, also bent instruments at the proximal end enables the operator’s 

hands to be away from each other, thus a larger surgical freedom (chapter three).  
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LIMITATIONS 

Dissections are performed on chemically fixed heads which change the properties of 

the tissue when compared to tissue in vivo.  

The studies are performed on specimens without intracranial pathologies, some 

lesions may displace normal anatomical structures and distort normal anatomical 

relationships.  

In a clinical setting, hemostasis is an important issue and can be time consuming; this 

cannot be replicated in a cadaveric study. 
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BROADER IMPACT AND FUTURE STUDIES 

Applying this methodology for measuring the surgical freedom can greatly impact the 

future of endoscopic neurosurgery. It provides a powerful tool in comparing different 

endoscopic approaches which is very essential for surgeons for surgical planning and 

understanding the working space limitations which can be expected during the procedure. 

Certain endoscopic maneuvers that have been described to increase the exposed area 

or the working space, these maneuvers can be tested to quantify exactly what is the rate 

of increase of surgical freedom.  

Surgical freedom can also be as important to endoscopic instruments developers, and 

by measuring the newly introduced instruments or endoscopes a better evaluation for 

these tools can be achieved.  

With surgical freedom better evaluated, endoscopic approaches can be optimized as 

well as endoscopic instruments leading to better steady fast improvement of endoscopy in 

neurosurgery.  

Minimally invasive procedures have shown better outcome clinically, and the main 

limiting factor was the visual limitation due to smaller incisions or smaller surgical 

corridors as well as limited working space. Surgical freedom studies can help provide 

minimally invasive procedures with better working space while preserving other 

minimally invasive characters.  

Future studies 

Being able to quantify the novel concept of surgical freedom will open a new realm 

of studies for evaluating neurosurgical endoscopy. 
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Evaluation of surgical freedom for other commonly used endoscopic approaches like: 

extended trans-sphenoidal approaches, interventricular approaches, transcribriform, 

transclival, transodontoid… etc 

Comparing different endoscopic approaches that can be used to access similar 

anatomical targets.  

Evaluating surgical freedom for newly evolving endoscopic techniques that may 

replace microscopic procedures.  

Determining the least surgical freedom that can be sufficient for removal of certain 

lesions with specific dimensions.  

Evaluating surgical freedom for endoscopic instruments that can be used for the same 

purpose but may have different surgical freedom.  

Evaluating newly advanced technologies that may affect the surgical freedom like, 

decreased number of cables, longer endoscopic telescope, slimmer cameras…etc.  
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