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ABSTRACT

Contemporary online social platforms present individuals with social signals in the

form of news feed on their peers’ activities. On networks such as Facebook, Quora,

network operator decides how that information is shown to an individual. Then the

user, with her own interests and resource constraints selectively acts on a subset of items

presented to her. The network operator again, shows that activity to a selection of peers,

and thus creating a behavioral loop. That mechanism of interaction and information

flow raises some very interesting questions such as: can network operator design social

signals to promote a particular activity like sustainability, public health care awareness,

or to promote a specific product? The focus of my thesis is to answer that question.

In this thesis, I develop a framework to personalize social signals for users to guide

their activities on an online platform. As the result, we gradually nudge the activity

distribution on the platform from the initial distribution p to the target distribution q .

My work is particularly applicable to guiding collaborations, guiding collective actions,

and online advertising.

In particular, I first propose a probabilistic model on how users behave and how in-

formation flows on the platform. The main part of this thesis after that discusses the

Influence Individuals through Social Signals (IISS) framework. IISS consists of four main

components: (1) Learner: it learns users’ interests and characteristics from their histor-

ical activities using Bayesian model, (2) Calculator: it uses gradient descent method to

compute the intermediate activity distributions, (3) Selector: it selects users who can be

influenced to adopt or drop specific activities, (4) Designer: it personalizes social signals

for each user.

I evaluate the performance of IISS framework by simulation on several network topolo-

gies such as preferential attachment, small world, and random. I show that the framework

gradually nudges users’ activities to approach the target distribution. I use both simula-
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tion and mathematical method to analyse convergence properties such as how fast and

how close we can approach the target distribution. When the number of activities is 3, I

show that for about 45% of target distributions, we can achieve KL-divergence as low as

0.05. But for some other distributions KL-divergence can be as large as 0.5.
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Chapter 1

INTRODUCTION

The study of behavioral loops in social networks is of great significance in collective

action challenges. On social online platforms such as Facebook, Quora, Twitter, users

are being shown with activities of their connections. Sequentially, they only interacts

with a subset of that activities list due to their own interests and resources constrains (e.g

constraint in time). And then their activities are being shown to their connections, thus

creating a stochastic behavioral loop.

Many organizations interested in collective action use social networks to engage peo-

ple in public goods problems. Imagine that the City of New York has released a mobile

application that will increase sustainable behavior, in the city. This can include things like

carpooling for those coming in to work, doing the laundry at night, nearest composting

bin, letting you know of the nearest subway or bus stop and route to use, and expected

time of arrival, when hailing a cab. The application allows you to observe and comment

on the social signal activities of your friends as well strangers. Since City officials know

that not everyone in the city can adopt all behaviors, since people have different inclina-

tions to participate and different constraints on resources (e.g. time and money), they will

have a target distribution of behaviors that they wish to see adopted in the population.

There is noise that disrupts the reception of the social signal. Noise can arise due the

individual infrequently checking the social network, or because she pays more attention

to a subset of her neighbors depending on the activity. She may pay more attention

to John for carpooling, for example, than Mary who lives far away from her. Since

most networks organize information in a list, where the most recent message appears at

the top of the list, probability of reading a piece of information falls with the rank (or
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more precisely the age) of the information. Network operator can alter visibility and

therefore the probability of inaction of a piece of information through manipulation of

information rank.

Can we create the right set of social signals overcoming the noise for each individual in

the City’s social network application, so that they are nudged to participate in the City’s

sustainability campaign? Notice that socio-information networks are feedback-control

systems, with activity distribution as the key state vector. To address this question we

need to formulate a fundamental problem of network control: design social signals for

each individual such that we achieve the target activity distribution vector.

The following sections of this chapter are organized as follows: in section 1.1 we for-

mally state the problem, in section 1.2 we divide the problem into sub-problems and

discuss key ideas to tackle those sub-problems. Section 1.3 summarizes the main contri-

butions of this thesis, and section 1.4 briefs on the organization of the next chapters in

this thesis.

1.1 Problem Statement

Let us assume that we have a social information network with N individuals. Each

individual can engage in a variety of activities—upload a post, read, and comment on

posts. Each activity results in notifications as social signals to other network participants

who have subscribed to her activities. On the other hand, we assume that each individual

only receives notifications of activities from a specific group of other individuals whom

she subscribes to, we define that group as her source of information. Without loss of

generality, we assume that each article uploaded in the network belongs to one of K

topics.
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At the time slice t , we define uk(t ) is the number of users who have activities on the

topic k, and then we define activity distribution p(t ) as a K dimensional vector with the

k t h element is defined as:

pk(t ) =
uk(t )

∑K
k=1 uk(t )

; k = 1..K (1.1)

The question that we wish address is how to re-wire the network of subscriptions

(or source of information) so that we can adjust the social signals to transform an initial

activity distribution p over a population to another target distribution q . Furthermore,

we wish to identify the range of the population activity distribution that can be reached

from any initial population activity distribution p. That is, determine Q such that we can

achieve the target distribution q ,∀q ∈Q. In this thesis, we shall use the phrase “activity

distribution” to imply the population activity distribution.

1.2 Sub-problems and Discussion

In order to transform the activity distribution p to the target distribution q over

a period of time we need to address three prominent sub-problems. First, we need to

determine the rate at which we should attempt to change the distribution. Second, we

need to select the suitable individuals who can be influenced to adopt or drop a certain

activity. Finally, for each selected individual to influence, we need re-wire her source

of information, that is a group of other persons in the network, who will influence the

individual to act.

• How should we change the distribution?

We use KL divergence to measure the distance between the two distributions p and

q . In order to guide the distribution p toward the distribution q we should keep

decreasing the KL divergence between the two distributions. Since KL divergence
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is a convex function, gradient descend method can be used to calculate interme-

diate values of q and that guarantees convergence. Details of the solution will be

discussed in the section 4.3.

• How should we select individuals to influence?

In order to change the activity distribution, we may need more users to adopt some

activities while for other activities we may need some users to drop those activities.

How we select potential users to influence them to adopt an activity, should we se-

lect users who are intrinsically interested in that activity or should we select users

who already have many close connections adopting that activity? On the other

hand, how we select potential users to drop an activity, should we select users who

are less interested in that activity or should we select users who have a weak net-

work of connections with that activity? Details of the solution will be discussed in

the section 4.4

• How should we re-wire the source of information?

After selecting potential users to influence them to either adopt or drop a particular

activity, how should we re-wire their source of information so that we can achieve

optimal result? People are more influenced by close friends [33, 35], and people

are also more inclined to follow behavior of similar others [11, 39]. Therefore,

we should consider those factors in our solution. Details of the solution will be

discussed in the section 4.5.

1.3 Contributions of the Thesis

The following are the main contributions of this thesis.

• We propose a probabilistic model of how users behave and how information flows

on an online platform.
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• We develop a Influence Individuals through Social Signals (IISS) framework to

nudge activity distribution toward the target distribution on an online platform.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 discusses related work, we discuss five main topics which relate to our

work: Social influence and Selection, Effects of Information Display, Online Ad-

vertising, Recommendation Systems, and Resource Constraint Studies.

• Chapter 3 proposes a probabilistic user model on how users behave and how infor-

mation flows on an online platform.

• Chapter 4 discusses in detail the IISS framework which consists of four main parts:

Learner: it learns users interests and characteristics using Bayesian model (4.1,4.1),

Calculator: it calculates the intermediate activity distributions (4.3), Selector: it

identifies users to influence (4.4), and Designer: it personalizes the social signals for

each user(4.5)

• Chapter 5 discusses experimental results and analysis. We run the experiments for

comprehensive combinations of input settings and analyse the convergent speed

and property which indicate how fast and how possible that the framework can

nudge the activity distribution from the initial value p to the target value q , the

analysis includes both simulation results and mathematical analysis.

• Chapter 6 concludes our thesis and discusses some ideas for future extension.
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Chapter 2

RELATED WORK

Our related work consists of bodies of work on social influence and selection, effects

of information display, online advertising, recommendation systems, and resource con-

straint studies.

2.1 Social Influence and Selection

“Birds of a feather flow together”

In this section we review the study of social influence and selection from different disci-

plines, in both offline and online contexts. We also review the study on how people are

influenced by their friends, their similar people, and strangers; and role of weak ties and

strong ties.

Social influence and selection are two mechanisms under the concept of homophily,

which implies that we tent to be similar to our friends. Social influence or socialization

is a process in which a person’s cognition, attitude, or behavior are influenced by our

friends, while selection is a process in which similar people tend to make friends and bond

with each other. They have been long studied in the domain of psychology, Cialdini and

Trost [12] studied three core components of social influence: social norms, conformity,

and compliant. Kandel [33] in a empirical, longitudinal study to find the characteristics

of pairs of adolescent friends via their scholastic achievement and delinquent behavior

found that both selection and socialization play roles in their friendship. Teenage friends

are similar to each other, the first reason is because they make friends with people who

are similar to them, and then conformity and compliant cause them to follow the group
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behaviors to conform with other peers in their group. Social influence not only happens

within friends, Rogers [39] mentioned that social influence occurs more often between

individuals who are more similar. Similarly, when talking about social proof, Cialdini

[11] showed evidences and statistics that people are more inclined to follow the behavior

of similar others. Tie strength also play an important role in social influence. Granovet-

ter [23] found that weak ties likely form “local bridges” and for that reason weak ties

play much more important role then strong ties in diffusion processes. On other hand,

Krackhardt [35] found that when people are facing with uncertainties and changes, they

are more dependent on strong ties than weak ties.

Study of social influence and selection is very important, Easley and Kleinberg [19]

pointed out that if we understand the nature of selection and socialization of a commu-

nity then we can have appropriate method to change the behavior of the community, for

example, in a drug use community, if the reason of using drug is due to socialization then

by changing the behavior of the influential nodes it will lead to the change of the behavior

in the whole community. The idea of targeting influential nodes to optimize the effect of

intervention is also used in viral marketing.

The proliferation of online websites with huge data of activities and interactions like

Facebook, Twitter, Wikipedia offers unprecedented opportunities for research of social

influence and selection. Wang and Chin [43] studied the effect of social influence on

Flickr and showed that a user has higher number of contacts who are paid users would

have higher probability be a paid user also. Similarly, Bakshy et al. [4] in a study on

Facebook found that the probability of sharing a link on Facebook is proportional with

number of friends who already shared the link, they also confirmed the important role of

weak ties over strong ties in information diffusion process as in the study of Granovetter

[23].
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Crandall et al. [14]studied the role of social influence and selection in future behav-

ior prediction. The group created two networks: interaction network and similarity net-

work. In each network, they analyzed the probability of a user who has k friends having

done some action will also do that action. Compare the probabilities from two networks

will give the information about whether socialization or selection is more important in

behavior of a user. Applying that method to two datasets (Wikipedia and LiveJournal)

they found that in Wikipedia, social interaction is a better predictor of future behav-

ior (future behavior is more affected by socialization) while in LiveJournal, similarity

(selection) is a better predictor of future behavior (future behavior is more affected by

selection).

Again, the study of social influence and selection in social network is very impor-

tant. Selection and socialization also can lead to other global effects such as epidemic,

and information diffusion. The formation or cessation of links basing on selection and

socialization is a main cause for network dynamics and network evolution. Easley and

Kleinberg [19], Holme and Newman [29]showed that from the local process of selection

and socialization it can lead to global effect: the formation of communities (uniformity,

segregation). Therefore, in the community discovery problem, study of social influence

and homophily plays a crucial role in bottom-up approach. The study of social influence

and selection is also fundamental in study of information diffusion processes.

In the next section we will review research on effects of information display which

is also very relevant to the research that we have reviewed in this section about social

influence and selection.
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2.2 Effects of Information Display

Information display can make impactful effects on our behavior. It creates social in-

fluences, happens in offline contexts as well as online contexts, and has effects on friends,

similar people, and even strangers.

In offline context, several well-known studies that indicate that revealing hidden so-

cial norms is a powerful cue for cooperation. In a study of energy use Schultz et al. [41]

found that individuals were presented with affective symbols—a smiley face ‘©’ when an

individual household’s energy consumption was below the mean household consump-

tion and a frownie face ‘§’ when it was above the mean—in addition to mean neigh-

borhood consumption, there was a net decrease in energy consumption over the entire

population 1 . In another study Goldstein et al. [22] demonstrated that presenting guests

with the descriptive norm “most guests reuse their towels” significantly improved towel

reuse in comparison to the standard environmental message.

In online world, in a study Bond et al. [7] about social influence and political mobi-

lization, 61 million Facebook users were assigned into one of three groups: social mes-

sage, information message, and control group. Users in social message group were shown

with general messages as well as messages from friends’ voting activities, users in informa-

tion message group were only shown with general messages, and users in control group

were shown with no messages. The study found that, due to social influence from friends

via information display, the social message group has highest percentage participating in

voting activities.

Effects of information display are not only limited within friends or similar people.

Salganik et al. [40] conducted an online experiment in an artificial music market. Users

participated in the experiment were divided into two groups: independent group, and

1OPower now provides this information to over a hundred power utility companies in the United
States. http://www.opower.com.
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group with social influence. In social influence group users were shown with the in-

formation about number of downloads from previous listeners. The experiment also

smartly used multiple worlds design and different presentation schemes to vary the so-

cial influence strength. Result from the study shows that increase in social influence via

information display leads to increase in both inequality and unpredictability of success.

In another study, Hodas and Lerman [27] analysed re-tweeting activities on Twitter

and found out that, on Twitter where tweets are shown in chronological order with the

most recent tweet is at the top of the screen, retweet probability is inversely proportional

to the time elapsed since tweet arrival. That implies that the visibility has a significant

effect on re-tweeting behavior which is a form of social contagion, social influence.

2.3 Online Advertising

In this section we focus on reviewing the study on online advertising, different types

of advertising and targeting.

Online advertising is the main source of revenue for many technology companies

like Google, Facebook, Twitter, Microsoft, Yahoo!. Comparing to traditional offline

advertising, Goldfarb [20] argued that while they have the same purpose of presenting

information and persuading customers to buy the advertised products, online advertising

has a substantially lower cost of targeting, and that is the fundamental economic advan-

tage of online advertising over offline advertising. However that argument is relatively

general, Goldfarb and Tucker [21] in another study dug in more deeply and argued that

online advertising has two main advantages over offline advertising: higher measurabil-

ity, and higher targetability. Higher measurability because for online advertising we can

easily track responses, and higher targetibility because for online advertising we can easily

track at an individual level and therefore personalize ads.
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There are two main types of online advertising: search advertising, and display ad-

vertising [20]. In search advertising, search engines like Google, Bing show sponsored

links regarding to user’s queries, search advertising is priced using auctions. In display

advertising, customers are shown with text ads (for example Google’s Adsense), banner

ads, and video ads.

Targeting is very important for advertising, advertisers have to answer two main ques-

tions: who are target, and how to target? Because with poor performance of targeting,

advertising can causes reverse effects, irrelevant advertising causes negative experience

and results in avoidance of advertising [18, 30, 34]. Targeting models in search advertis-

ing and display advertising are slightly different, however they can be classified into three

categories: contextual targeting, behavioral targeting, and social network based targeting.

Contextual targeting matches content of the website with customers’ interest, it is

commonly used in both search advertising and display advertising. In search advertising,

advertisers understand customers’ interest via search content and show relevant websites.

In display search, advertisers display ads in relevant places: electric gadgets are advertised

on cnet.com, techcrunch.com, cars are advertised on cars.com, makeup and cosmetics

products are advertised on beauty care websites.

Behavioral targeting on other hand learns customers’ interest from their historical

activities including sites visited, interest in particular content, or purchasing activities,

and then display relevant ads [5, 9]. Technically in behavioral advertising, advertisers

have to collect customers’ s data by storing activities of logged-in customers or by using

cookies to track customers’ activities.

Social network based targeting (or social advertising) uses different strategy than con-

textual targeting and behavioral targeting do. Social network based targeting uses infor-

mation of customers’ social network to allocate potential targets and then provide them

with personalized social signals as the stimulus for the ads. Its principle psychologically
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bases on social influence and homophily that I have reviewed above. With the nature of

social influence, advertisers may display a customer’s network activities as social signals

to lead her to a particular purchase activity. In addition to that, homophily implies that

friends have tendency to do similar things, in that sense social network contains latent

customer characteristics which helps advertisers to target likely adopters [42]. Hill et al.

[25] in a study showed that people linked to prior customers 3-5 times more likely adopt

the service than people are selected as in the baseline. Provost et al. [37] on other hand

introduced concept of brand proximity which is calculated based on user-user similarity

to select most relevant users with the implication that similar people tend to do similar

things. The strength of social signal also play a very important role on social influence.

Bakshy et al. [3] conducted two experiments on Facebook and showed that increases in

number of social cues leads to increases in advertising performance, and people are more

influenced by others with strong ties.

2.4 Recommendation Systems

In this section we review the study on recommendation systems, focusing on two

main types of recommendation systems: collaborative filtering and content based filter-

ing.

Recommendation Systems are used in a variety of domains: Amazon recommends an

user a list of books after she bought a particular book, Netflix recommends an user a list

of movies to watch basing the customer watching and rating activities, basing on what an

user has viewed recently The New York Times recommends she with related articles, on

a question and answer site Quora, for each new question the system recommends list of

relevant users to ask for answers, on Google News an user can her customize preference

to see more relevant articles. In general, there are two types of recommendation systems:

collaborative filtering, and content based filtering.

12



For e-commerce websites, recommendation systems play a very crucial role in in-

creasing activities and revenue. About 60 percent of Netflix subscribers select movies

from the system recommendations 2 . Similarly, recommendations account for about

60 percent of video clicks from the YouTube homepage [15]. Recommendation sys-

tems are also important in the sense that they can change users’ preference and therefore

change the revenue of sellers significantly 3 . If a recommendation system chooses to

recommend popular items, it will lead to long tail distribution, but if it recommends

lesser-known items the distribution becomes more equal and it eventually increase the

revenue [8]. Those important roles of recommendation systems is one of the reasons

NetFlix launched a contest in 2006 with the prize of $1 million to improve its recom-

mendation system- CineMatch- to 10 percent 4 [6].

Basically, the purpose of recommendation systems is to provide personalized infor-

mation. In order to do that, many recommendation systems use customers purchase

activities and explicit rates as their interests, but they also can use other customers’ per-

sonal data like demographic data, personal interests [36]. In general, there are two main

types of recommendation systems: collaborative filtering, content based filtering [1].

Collaborative filtering algorithm bases on user’s information like behavior, activity

and preferences to construct user-to-user similarity matrix. After that the algorithm

predicts what users will do based on their other similar users. In more details of con-

structing user-to-user similarity matrix, normally the algorithm represents a user as an

N-dimensional vector where N is number of features in the considering problem, e.g.,

for an e-commerce website recommendation system, N is number of items. Compo-

nents of that vector represent the user information, for example the i t h component is

2https://netflix.hs.llnwd.net/e1/us/pdf/Consumer_Press_Kit.pdf
3http://www.nytimes.com/2006/06/07/technology/07leonhardt.html?ex
4http://www.netflixprize.com/
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proportional to the number of times that user bought the i t h item, it is also proportional

to the rating of that user about the item. Normally the vector is very sparse. After hav-

ing the vector space of all users, there are a number of methods to calculate the similarity

matrix; one of the popular methods is cosin similarity measurement. A key advantage

of the collaborative filtering approach is that it does not require the understanding of the

content of items and therefore it is very suitable in recommendation systems in which

content of items are very difficult to search or retrieve such as recommendation systems

of movies.

Content based filtering algorithm is based on the information about the items that

are going to be recommended. In other words, the algorithm tries to recommend the

items which are similar to those that a user liked in the past. The idea of the algorithm

comes from information retrieval and information filtering search. The algorithm works

in the case the system has rich information or “good understanding” of items and has

efficient methods to search and retrieve related items for each set of items. There are

recently a number of question and answer (Q&A) sites such as Yahoo! Answers, Stack

Overflow, and Quora that lead to numerous studies on recommendation systems to route

questions to potential answers who are interested in and capable of answering them. The

main stream of those studies just study users, analyse questions and then establish user-

question relationship to decide who most potential answers are for each question, and

hence skipping user-user relationship Guo et al. [24], Kabutoya et al. [32], Qu et al.

[38]. Other than those studies, Horowitz and Kamvar [31] present a social searsch en-

gine called Aardvark, Aardvark takes into account both Topic expertise (user-question

relationship) and Connectedness (user-user relationship) in ranking system to route ques-

tions to the most suitable answers.
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2.5 Resource Constraint Studies

We all have resource constraint which results from our limited human brain’s capac-

ity, because of that it is very important to take resource constraint factor into considera-

tion when studying social networks. As a subsequence of resource constraint, we divide

our attention to different source of stimulus and interaction: we tend to pay more atten-

tion to important and more visible source of information. Backstrom et al. [2] analysed

Facebook data from 2009 to 2010 and found that users paid attention unequally to their

friends, for all kinds of activity: profile view, photo view, comment, message, wall post

the level of attention toward the k t h friend are proportional to k−
3
4 . Hodas and Lerman

[28] analysed Twitter data and showed that limited attention and decaying visibility play

crucial roles for retweeting behavior, the probability of retweet an URL after having a

friend tweeted it at ∆t ago is proportional to ∆t−1.15, and probability of tweeting an

URL for the first time (without having any friend tweeted it) after the URL arrived at

∆t ago is proportional to∆t−0.5.

We have reviewed five relevant research bodies to our research: social influence and selec-

tions, effects of information display, online advertising, recommendation systems, and

resource constraint studies. Our research is unique, we are not trying to improve the

performance of any existing algorithm or framework, we are building a new framework

to guide activities on a social network. The research on social influence and effects of

information display evidence that we can personalize social signals to nudge users’ activ-

ities. While research on online advertising and recommendation systems gave us initial

ideas about how to select suitable users to induce, but state of the art in those researches

have not explored social connectivity enough, our research explores more the social con-

nectivity by “re-wiring” the information network to personalize social signals for each

user. Because resource constraints play crucial roles on how users behave and how infor-
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mation flows on online platforms, our research also takes into account the importance of

resource constraint studies in modelling users’ behavior and in designing the framework

to guide the activities.
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Chapter 3

USER PROBABILISTIC MODEL

In this chapter we shall discuss our model for user characteristics, interests, and mech-

anism of users interactions which defines how information is exchanged within the net-

work. The user model and the specification of how information flows in the network

will be used to simulate network activity.

3.1 Basic User Characteristics

Each individual i in the network possesses a set of immutable attributes as well as

set of preferences. The immutable attributes of an individual i , including gender, eth-

nicity, age, are represented by a normalized D−dimensional vector ai ; 0 ≤ ai , j ≤ 1; j ∈

{1,2, . . . , D}. Let us assume that an individual is interested in L ⊆ K themes. For each

theme k ∈ K an individual i has a preference value βi ,k ; 0 ≤ βi ,k ≤ 1, indicating her

interest in the theme. We assume that if k ∈ L then the preference value βi ,k has a high

value, and if k /∈ L then the preference value βi ,k will be low. The preference vector βi

for any individual affects the her activities on the different themes.

We assume that individuals are resource constrained. This assumption is motivated

by earlier work by Dunbar [16, 17]. His research indicated that maintaining social ties

requires resources and that group size in humans is bounded by the number 150. More

recent work by Hodas and Lerman [26] indicates that limited attention amongst partic-

ipants is a compelling explanation for arresting information contagion on Twitter. To

operationalize the idea of resource constraints, we assume that each individual i will

browse at most zi pieces of information from her contacts. We shall assume that zi is

drawn from an exponential distribution with parameter λ1 : exp(−λ1X ); M1 ≤ X ≤ ∞.
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The lower bound M1 is the fewest pieces of information seen by any individual. Each

individual i is also constrained in terms of the number of information items ci that she

can create. Similar to the variable zi , we shall assume that ci is drawn from an exponen-

tial distribution λ2 exp(−λ2X ); M2 ≤ X ≤ ∞. The lower bound M2 is the fewest pieces

of information created by any individual. The items that any individual creates thus con-

tributes to the information circulating in the network. There are two implications that

arise of resource constrained individuals. First, trying to signal an individual with a large

number of contacts will be hard, since the likelihood of the message being lost in the del-

uge will be high. Second, individuals who create lots of information (that is, very active

in posting new articles or commenting on peers’ articles), will likely “swamp” their less

connected neighbors.

Now that we have presented the basic characteristics for each individual in the net-

work, we turn to what individuals can do in social information networks.

3.2 The User Activity Model

A user can either create new information (link an article, or post a new idea) or act

on existing information (view, comment), “like”, favorite, etc.). We assume that the in-

formation about activity in a network is organized in a list, with the newer pieces of

information ranked higher than older pieces of information. List based ordering is stan-

dard in many social networks, including Twitter and Facebook.

Let us first examine information access rights of an individual. When an individual

i joins the network, she can access posts, that is new articles, from all of her network

neighbors. When i ’s neighbor j comments on k’s article, i can also access the original

article posted by k. She can also comment on on k’s article. If she does, we say that

k “is aware” of i . Subsequently, if k either responds to i ’s comment, or comments on

i ’s article made visible through comments by a mutual friend, we say that individual’s i
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and k are “mutually aware.” In our network, when two individuals are mutually aware,

they have access to each other’s posts and comments. In this manner, the information

neighborhood of each individual expands with time. Notice the distinction between infor-

mation neighborhood and network neighborhood. The latter designates the set of friends,

while the former is the the set of individuals from whom a person can access information.

The proposed access model is different from networks such as Facebook, where one can

only access information from friends 1 , and from Twitter, where one can access any

other individual’s public timeline. Accessing information based on “mutual awareness”

is thus a middle ground between the two popular information access models 2 , where an

individual’s information neighborhood expands slowly with “mutual awareness.”

An individual creates articles with the following probability:

Pi (c r eat e = T |k) = γc ×βi ,k . (3.1)

Where γc is a constant 0 < γc < 1; βi ,k is the value of individual i ’s preference on

topic k. The equation says that the probability of creation of a new article on topic k is

proportional to her topic preference.

A user’s desire to view and to act on articles in the social network will be influenced

by her relationship to the individual who posts or comments as well as the topic of the

article. In this work, we assume that an individual is incentivized to view the article only

by the author of the post or the comment. To act, that is to comment or to favorite the

article, she is motivated only by the content of the article. The decisions to view and

subsequently act are thus assumed to be motivated by different, independent criteria.

1An individual on Facebook can explicitly allow any specific information to be accessible by friends of
friends as well as anybody on the network.

2While not implemented in our model, an individual can exchange private messages only with friends.
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Individuals are persuaded to adopt the behaviors of friends or of strangers with whom

they can identify, a phenomena known as “ the social proof” [Chapter 4, 10]. With this

in mind, in our simulation, individuals are persuaded to view articles when they see

strangers with whom they can identify, or with friends. The similarity score between

two individuals i and j , including strangers is computed as follows:

si , j = 1−
‖ai −a j‖
p

D
. (3.2)

Where ai is the immutable attribute vector for individual i and ‖ · ‖ is the familiar

euclidean norm, and D is the number of dimensions in the attribute vector. The strength

of the tie between two friends j and k is computed as follows:

f j ,k =
|I j ∩Ik |
|I j ∪Ik |

. (3.3)

Where, Ik is the information neighborhood of individual i. The equation says that the

tie strength between two individuals is highest, when their information neighborhoods

completely overlap. Now, the probability that individual i views an article is determined

as follows:

Pi (vi e w = T |o r i g i n = j ) =











γ f × (1−α
1+ fi , j+si , j ) friends,

γs × (1−α
1+ fi , j+si , j ) strangers.

(3.4)

Where, γ f and γs are two constants with 0 ≤ γs � γ f ≤ 1. The constant α, where

0≤ α < 1 ensures that the probability of viewing an arbitrary article lies above a thresh-

old; that is Pi ≥ γs × (1− α). The equation says that probability of viewing a piece of

information for an individual i only depends on the origin or the article, and increases

with increasing tie strength fi , j and increase in attribute similarity si , j . Since γ f � γs the
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probability for viewing an article from a stranger is guaranteed to be lower than for an

information neighbor, for the same tie strength and same degree of similarity.

The probability of acting on an article after viewing it, only depends on the content

of the article. In this paper, we assume that the topic of the article is a good proxy for the

content. Thus,

Pi (ac t i on = T |vi e w = T , t o pi c = k) = γa ×βi ,k , (3.5)

where, γa is a constant, and βi ,k is the preference value for individual i on topic k. The

equation says that the probability of acting on an article after viewing it is proportional

to the individuals interest in the topic.

Notice that the user model has several “universal” constants: γ f ,γs , γa and α. These

constants are universal in the sense that each agent’s model in the simulation will have the

same constants. One can relax this assumption with the consequence that the number of

activity distributions over the population will increase.

In this chapter we presented the user model which simulates how information is ex-

change in a social network. In the next chapter we will present a framework which learns

latent users’ preferences, characteristics from the system perspective and then ultimately

personalizes social signals for each user to nudge the activity distribution from the initial

value p(0) toward the target distribution q .
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Chapter 4

IISS: INFLUENCE INDIVIDUALS THROUGH SOCIAL SIGNALS

FRAMEWORK

In this chapter we discuss the IISS framework which is used to influence users via social

signals to achieve a target activity distribution. In particular, we shall discuss how to alter

the activity distribution within a network from a starting distribution p to a target dis-

tribution q . First, we shall estimate users preferences, identify active individuals. Then,

we shall determine the extent to which we shall change the distribution of individuals

active on a particular topic. Then, we shall identify the size of the subset of individuals to

influence. Finally, we will show how to ‘re-wire’ the information network, so that each

individual receives an optimal social signal.

4.1 Estimating User Interests

Let us assume that we can keep track of individual actions on each topic k, including

the number of views vi ,k and the number of comments ci ,k . Then, the probability that

an individual i comments on the article is

bPi (ac t i on = T |vi e w = T , t o pi c = k) =
bPi (ac t i on = T , vi e w = T , t o pi c = k)

bPi (vi e w = T , t o pi c = k)
,(4.1)

=
ci ,k

vi ,k

. (4.2)

Where, bPi represents the system estimate of the probability. The equations say that

the probability of acting on an article for an individual is simply the ratio of the number

of her comments ci ,k on topic k to the number of her views vi ,k on the same topic.
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It is possible to develop a algorithm for estimating the viewing probability and the

action probability for each individual, through data likelihood maximization techniques

for estimating model parameters including γ f ,γs and γa. In this paper, we have chosen not

do so, since in real-world scenarios, these constants will vary with individual. Estimating

these parameters for each individual will require significant number of observations per

individual for stable statistical estimates.

Having discussed the basic user characteristics, the model for each agent, and how the

system estimates probabilities of viewing and of actions on each topic, we now discuss

how to identify active users.

4.2 Identifying Active Individuals

The first step towards changing the distribution of activities in a network is to identify

individuals uk(t ) active on a topic k. As before, we define uk(t ) as the number of individ-

uals active on topic k at time t . That is, these individuals comment on, or create, posts

related to topic k. Measuring the number of active individuals on a topic at any time slice

t is inefficient, since the number of individuals active on a topic is a random variable.

Instead of a single snapshot, at time t , we measure the number of active users over a time

period (t , t −∆), to have a better estimate of the average number of individuals ûk(t )

active on topic k. That is,

ûk(t ) =
1

∆

t ′=t
∑

t ′=t−∆+1

uk(t
′). (4.3)

The equation says that the value of the number of active individuals at any time t is

averaged value over the prior∆ observations. In the remainder of the paper, we shall use

the variable uk(t ) to imply the averaged value ûk(t ). Let us assume that for any individual

i , nk(i , t ;∆) represents the total number of creations and comments on topic k over a

time period ∆. To identify “active” individuals, we sort individuals in descending order
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of nk(i , t ;∆). The top buk(t ) users are labeled active on topic k at time t ; all others are

labeled “inactive” on topic k.

Now that we have identified sets of individuals active on topic k at each time t , we

discuss how to optimally change the activity distribution p(t ).

4.3 Changing the Activity Distribution

The activity distribution p(t ) is the distribution of activities—different from the dis-

tribution of active individuals—over each topic k. We propose a gradient descent algo-

rithm to determine incremental changes to the activity distribution p(t ). Hence at any

time t , we have:

p̂(t + 1) = p(t )− γ∇D(p(t )‖q), (4.4)

where, p̂(t+1) is the desired activity distribution, q is the target activity distribution,

D(p(t )‖q) is the familiar Kullback-Liebler divergence between two distributions, and

where∇ is the gradient operator. At each time t , we ensure two properties for p̂k(t ), the

proportion of activity devoted to topic k. First, 0≤ p̂k(t )≤ 1. Second, we normalize the

target activity distribution over the set of topics k:
∑

k p̂k(t ) = 1.

At the time slice t , total number of active users u(t ) (over all K topics) is given as

u(t ) =
K
∑

k=1

uk(t ), (4.5)

where, uk(t ) is the number of individuals active on topic k. Assuming that the total

number of active individuals is stable over time, the desired number of individuals active

on topic k is computed as follows:

ûk(t + 1) = u(t )× p̂k(t + 1). (4.6)
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(0.5,0.5)

(0.2,0.8)

Figure 4.1: Assume that that the goal is to alter an initial distribution p = (0.5,0.5)
to a target distribution q = (0.2,0.8). While there are several methods to incrementally
change the current distribution p(t ), we adopt a gradient descent approach, where we
take the gradient of the KL divergence of the current activity distribution p(t ) with the
target distribution q . That is, the change to the activity distribution is proportional to
∇D(p(t )‖q).

So for topic k, the desired change in number of active users on topic k is simply

proportional to the changes in the desired activity distribution. That is,

∆ûk(t ) = ûk(t + 1)− uk(t ), (4.7)

∝∆pk(t ). (4.8)

We would like to remind the reader of the difference between the two variables

p(t ) and u(t ). The former refers to the distribution of activities—comments, views,

creations—across topics. The latter refers to the number of active individuals across top-

ics. Notice that at any time, the number of activities on a topic will be greater than or

equal to the number of individuals active on the same topic.
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Since the KL divergence D(p‖q) is convex in the pair (p, q) [Theorem 2.7.2, 13], in

principle, using gradient descent should guarantee convergence to target distribution q .

However, there are a few things of note here. We are proposing an incremental change to

the activity distribution. To achieve the increment, we need to provide the appropriate

social signals to each individual in the network. Therefore, there is no guarantee that

we can achieve this incremental change, since individuals have to view the signals and

subsequently act.

Having identified the change in the number of individuals active on each topic, we

now address the problem of identifying individuals to influence for each topic k.

4.4 Identifying Individuals to Influence

The identification of suitable individuals to influence rests on two variables: the re-

quired change in the number of individuals for each topic∆ûk(t ) (ref. Equation 4.7) and

the estimate of an individual i ’s interest in a particular topic β̂(i , k). To estimate the

latter, we make use of our estimate of bPi (ac t i on = T |vi e w = T , t o pi c = k), Equation

4.1. We shall set β̂(i , k) = bPi (ac t i on = T |vi e w = T , t o pi c = k).

The second variable∆uk(t ), requires us to consider two cases. In the first case∆uk(t )>

0. This implies that we need to increase the number of individuals performing activity k.

We sort individuals inactive on topic k (see Section 4.2), in descending order of β̂(i , k).

Then, we select the top ∆uk(t ) individuals from this list. These individuals are most

likely to act on information on topic k. In the second case ∆uk(t ) < 0. In this case,

we need to decrease activity on topic k. In this case, we sort all users active on topic k

in ascending order of β̂(i , k). Then, we select the top ∆uk(t ) individuals from this list.

These individuals are least likely to act on information on topic k. Figure 4.2 illustrates

the process of adding to, and deleting from, sets of individuals active on a topic.
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add

delete

set of active individuals

Figure 4.2: The figure shows two cases. In the first example, we wish to increase the set
of individuals active on a topic. We do so by identifying those individuals not currently
active, but who have the next highest activity on that topic. In the second example, we
want to decrease the number of individuals active on a topic. In this case, we identify
those individuals who are least active on that topic.

Having presented a framework to add and subtract from a set of individuals active

on a topic, we now discuss how design each individual’s social signal so that they are are

persuaded to act.

4.5 Designing the Social Signals

Personalized social signals that reveal the social norm [22, 41] are key to persuade

individuals to adopt. We have developed a framework based on the idea of the “so-

cial proof” [Chapter 4 10], for generating personalized social signals for each resource

constrained individual so that they are incentivized to adopt a set of behaviors. More

formally, since the system controls the information that each individual in the network

views, the system can change the information neighborhood for each individual. Let
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Si (t ) refer to the information neighborhood of individual i . In other words, i is notified

of activities by all individuals in set Si (t ). The information generated by the individuals

in the set Si (t ) constitutes the “social signal” of i . Figure 4.3 shows an example of an

information neighborhood.

source

destination

Figure 4.3: The figure shows the information neighborhood for an individual (black
circle), indicated by the dotted region, in the the network. The information neighbor-
hood of an individual is the set of people from whom she receives information; this set
can include individuals with whom she is friends, or with whom she is similar along her
immutable attributes. The figure shows her receiving information from another person;
they share two individuals in their information neighborhood.

In Section 4.4, for each topic k, we showed how to identify the individuals to be

influenced. In the case∆uk(t )> 0, the individuals identified to be influenced for topic k,

need to be persuaded to become active in that topic. In the second case, when∆uk(t )< 0,

the individuals identified to be influenced for topic k, need to be persuaded to become

inactive in that topic.
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To persuade an individual i to become active on topic k, we first identify a set of

relevant friends and other individuals, highly active on topic k, with whom they share

significant personal attributes. We shall term this group Lp
i ,k

as “positive influentials” for

individual i . In this paper, we assume that the size of the set of positive influentials |Lp
i ,k
|

is a constant across all individuals i . To identify individuals belonging to the set Lp
i ,k

, we

proceed as follows.

1. Identify all active users Jk ,i on topic k, excluding those in Si (t ). That is, Jk ,i = { j | j ∈

uk(t )∧ j /∈ Si (t )}.

2. For each j ∈ Jk ,i , rank in descending order of the value of their appropriateness r ( j )

to be part of Lp
i ,k

. Where, r ( j ) is defined as follows:

r ( j ) =











β̂ j ,k +δ f × fi , j + si , j if i , j are friends,

β̂ j ,k +δs × fi , j + si , j if i , j are strangers.
(4.9)

Where, 0≤ δs <δ f ≤ 1 and represent the system biases towards strangers (δs ) and

friends (δ f ). The parameter fi , j represents the overlap in the information neigh-

borhoods between individuals i and j (ref. Equation 3.3), and where si , j represents

the similarity value between the two individuals (ref. Equation 3.2. The equation

says that j is an appropriate positive influence for individual i , if j is either highly

active (high value of β̂ j ,k ) on topic k, has a high overlap in their information neigh-

borhood fi , j or is highly similar in terms of their immutable attributes si , j .

3. Select the top |Lp
i ,k
| individuals to be part of the set of positive influentials for indi-

vidual i .
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To persuade an individual to become less active on a topic, we shall introduce “neg-

ative influentials” in her social signal. Intuitively, the set of negative influentials Ln
i ,k

are

less active on topic k. We proceed as follows:

1. Identify all inactive users J̄k ,i on topic k, excluding those in Si (t ). That is, J̄k ,i =

{ j | j /∈ uk(t )∧ j /∈ Si (t )}.

2. For each j ∈ J̄k ,i , rank in ascending order of their appropriateness r ( j ) to be part of

Ln
i ,k

. In this case, the appropriateness r ( j ) is defined as follows: r ( j ) = β̂( j , k).

3. Select the top |Ln
i ,k
| individuals to be part of the set of positive influentials for indi-

vidual i .

Notice that for any individual i , we may need to strengthen the social signal along

topic k but weaken the signal along another topic l . Thus the updated set of sources of

social signals for any individual i is determined as follows:

Ŝi (t + 1) = Si (t )
K
⋃

k=1

¦

Lp
i ,k
∪ Ln

i ,k

©

. (4.10)

Where, Ŝi (t + 1) is the updated set comprising the set of sources for social signals.

Lp
i ,k
= ;when we are unconcerned with positively influencing individual i to act on topic

k. Similarly, Ln
i ,k
= ; when we are unconcerned with negatively influencing individual i

to act on topic k. Notice that it is possible that

Lp
i ,k
= Ln

i ,k = ;,

when we are uninterested in influencing individual i on topic k. Since we fix the size λ of

the size of set of sources of social signals to be the same across individuals, we randomly

sample λ times from the set Ŝi (t + 1) without replacement to generate the social signal
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Si (t + 1). Thus the updated social signal is equally distributed across signals from the

previous social signal as well as positive and negative influentials.

In this section we discussed several key ideas. First, we introduced the idea of the set of

individuals active on a topic. Then, proposed the use of gradient descent to incrementally

change the activity distribution and determine the size of the change. Then, we showed

how to identify individuals to influence for each topic k. Finally, for each such individual,

we design a personalized social signal comprising of positive and negative influentials

as well as prior social signals, that would persuade them to act. Having discussed the

construction of the social signals, in the next chapter we will present our experimental

results and analysis.
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Chapter 5

EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter we will present experimental results and analysis. Our framework was

implemented in Repast Simphony 2.0 1 , a popular agent based modeling software. In

the next section, we shall discuss the values set for the parameters used in our framework.

Then, we shall discuss the initial phase of the experiments, without social signals to set up

interaction within the network. We shall introduce the social signals after 100 iterations.

5.1 Experimental Parameters

The total number of individuals N is fixed to 400. At the beginning of the simulation,

individuals are connected with an initial network topology (e.g. small world). The total

number of topics in the network K is fixed.

We now discuss the parameters of each individual’s activity model. Each individual is

resource constrained affecting the number of article she browses (zi ; M1 = 4;λ1 = 0.5) and

the number of articles that she creates (ci ; M2 = 4;λ2 = 0.5). Each individual is interested

in L ≤ K topics. We determine L using a normal distribution N (µ,σ), where µ = K
2

and where σ = µ−1
2 . The preference vector βi for each individual i over the K topics is

defined as βi ,k follows the following bimodal distribution:

βi ,k ∼
L

K
N (µ1,σ

2
1 )+

K − L

K
N (µ2,σ

2
2 ) (5.1)

Note that the RHS is independent from k, that means for all topic k, the interestβi ,k

is drawn from the same distribution. We choose large µ1 and small µ2 to implement that

1http://repast.sourceforge.net
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βi ,k is high in case i is interested in topic k and βi ,k is low otherwise. RHS distribution

with large µ1 and small µ2 also convey that overall i is interested in L out of K topics. In

the simulation we choose µ1 = 0.8,µ2 = 0.2,σ1 = σ2 = 0.4

The constant γc that modulates the article creation probability is set to 0.2. The

number of dimensions D of the immutable attributes ai is set to 5.We set the universal

constants γ f ,γs ,α as follows. We set γ f = 1.0, γs = 0.5, α = 0.5. These three constants

control the probability that an individual i reads an article posted by a person in her

network neighborhood. We set γa = 1.0; the parameter controls the probability than an

individual will act on an article after reading it.

Let us now discuss the parameters relevant to the system signaling model. We set the

update parameter∆= 20; that is, the system ‘re-wires’ or updates each individual’s infor-

mation neighborhood every 20 time steps. The system biases towards friends δ f = 1.0

and towards strangers δs = 0.5 (ref. Equation 4.9) are set so as to bias the appropriateness

values towards friends. The information neighborhood for each individual is fixed to be

10. The number of negative influencers is the same as the size of the positive influencers

and fixed to be 5 each. Table5.1 summarizes list of parameters and their values used in

our experiments .

5.2 Simulating the initial phase without social signals

We run the experiments for three types of initial network topologies (Preferential

Attachment Network, Small World Network, and Random Network). The network

topologies were generated using Jung library 2 as follows, using BarabasiAlbertGenerator

to generate Preferential Attachment Network, using KleinbergSmallWorldGenerator

( p = 0.2) to generate Small World Network, and using ErdosRenyiGenerator ( p = 0.03)

to generate a Random Network.

2http://jung.sourceforge.net
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Parameter Value

λ1 0.5

λ2 0.5

M1 4

M2 1, 4

ak
i U(0,1)

γ f 1

γs 0.5

δ f 1

δs 0.5

α 0.5

γa 1

γc 0.2

Table 5.1: Parameters and their values in the experiments

In the initial phase, we construct a network of information neighborhoods, without

any social signals with the purpose of creating networks with individual activities prior to

introduction of social signals. In this phase, each user only receives activity notifications

from her closest neighbors who are identified based on mutual awareness. The mutual

awareness between two individuals ai , j is initialized to 1 if they are network neighbors,

and to 0 otherwise. Afterward, if i comments on j ’s article, then ai , j is incremented by

1 and a j ,i is incremented by 0.5. For any individual i , we pick the top 5 neighbors with

the highest mutual awareness. Sn is updated each iteration.

5.3 Experimental Results

We now present our experimental results. We conducted experiments for three types

of networks (Preferential Attachment, Small World and Random) and comprehensive

settings of other parameters.
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To obtain each graph, we evaluated the network activity for 600 time steps, and we

report the average of 500 simulations. In each case the initial set-up phase lasted for

100 time steps, and the social signals begin at the the 101s t time step. We measure the

performance of the social signaling scheme through the KL divergence between the target

distribution q and the current activity distribution p(t ), we also measure the change in

source of information.

We varied the number of topics K to take on a small value (K = 3) and a large one

(K = 25). In both cases, we assumed that the number of topics L in which an individual

was interested varied as a normal distribution N (µ,σ), where µ= k
2 and where σ = µ−1

2 .

We constrain L to lie between 0 ≤ L ≤ K . Each individual is thus assigned L topics by

uniformly sampling the set of K topics L times without replacement.

5.3.1 Small K, K=3

In the results that follow, we vary the target distribution q. In particular, we vary the

value of q1 to assume one of values in the set {0.1,0.2,0.3}; the value for q2 is fixed to be

0.3 and thus q3 is easily determined since q3 = 1− q1− q2. The starting distribution was

established as p(0) = (1/3, 1/3, 1/3). Notice that since each individual was assigned L topics

by uniformly sampling the space of topics it is straightforward to achieve a uniform initial

activity distribution

5.3.1.1 Different Initial Network Topologies

We run the experiments with different initial network topologies: Preferential At-

tachment, Small World, and Random.

Figure 5.1 shows the variation in the divergence between the activity distribution p(t )

and the target distribution q as a function of time for three different network topolo-

gies: small world (solid line), power-law (dotted line, generated through preferential at-
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tachment) and random (dashed line). In all three cases, the initial information neigh-

borhood is constructed by picking five network neighbors with highest mutual aware-

ness. We introduce social signals at t = 100. The starting activity distribution is set

p(0) = (1/3, 1/3, 1/3); the target activity distribution is q = (0.1,0.3,0.6). The value of

the M2 parameter, which controls the minimum rate of creation for each individual, is

set to 1 and the step size γ is set to 0.1. The figure shows that there is slightly higher

rate of convergence for power law networks in comparison to small world and random

graph networks. The differences amongst the curves are minor, and we can show that all

three will tend towards the same asymptote, since final distribution is affected only by

the innate characteristics of article creation.

5.3.1.2 Different Values of Target Distribution

We run the experiments with different values of the target distribution q .

Figure 5.2 shows the results of the simulation with a small world network. It shows

the variation of KL divergence between the activity distribution p(t ) and the target dis-

tribution q as a function of time starting from an initial activity distribution of p(0) =

(1/3, 1/3, 1/3). We construct the initial information neighborhood by picking five network

neighbors with highest mutual awareness. We introduce social signals at t = 100. The

initial distribution p(0) = (1/3, 1/3, 1/3), and there are three curves corresponding to three

different target distributions q . The value of the M2 parameter, which controls the mini-

mum rate of creation for each individual, is set to 1 and the step size γ is set to 0.1

Notice that amongst the curves, the initial KL divergence is highest when the target

distribution q = (0.1,0.3,0.6) is most skewed and all three curve tends to asymptotes.

The asymptotes are in general different from D = 0 since not all target distributions can

be reached. The reason is straightforward—the signaling schemes alter the responses to

information posted on the network, but we conservatively assume that the social signals
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q=(0.1,0.3,0.6) K=3,  with starting distribution p=(⅓,⅓,⅓). 
Preferential Attachment, Small World,  
and Random topologies.  

Figure 5.1: The figure shows the variation of KL divergence between the activity distri-
bution p(t ) and the target distribution q as a function of time. The results show the vari-
ation in the divergence for three different network topologies: small world (solid line),
power-law (dotted line, generated through preferential attachment) and random (dashed
line). In all three cases, the initial information neighborhood is constructed by picking
five network neighbors with highest mutual awareness. We introduce social signals at
t = 100. The starting activity distribution is set p(0) = (1/3, 1/3, 1/3); the target activity
distribution is q = (0.1,0.3,0.6). The value of the M2 parameter, which controls the min-
imum rate of creation for each individual, is set to 1 and the step size γ is set to 0.1. The
figure shows that there is slightly higher rate of convergence for power law networks in
comparison to small world and random graph networks.
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do not alter the innate interests held by each individual. Thus, if the network is very

active in topics different from what we target, it may become impossible to achieve those

distributions. We shall examine reachability in more detail in Section 5.4.3.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200 250 300 350 400 450 500 550 600
Time 

Social signals  begin at t=100 

q=(0.1,0.3,0.6) 

KL Divergence 

q=(0.2,0.3,0.5) 

q=(0.3,0.3,0.4) 

K=3,  with starting distribution p=(⅓,⅓,⅓), Small World topology.  
Different values of the target distribution q. 

Figure 5.2: The figure shows the variation of KL divergence between the activity dis-
tribution p(t ) and the target distribution q as a function of time. The results are for
a Small World initial topology and the initial information neighborhood is constructed
by picking five network neighbors with highest mutual awareness. We introduce social
signals at t = 100. The initial distribution p(0) = (1/3, 1/3, 1/3), and there are three curves
corresponding to three different target distributions q . The value of the M2 parameter,
which controls the minimum rate of creation for each individual, is set to 1 and the step
size γ is set to 0.1. Three curves correspond to three values of the target distribution q ,
the initial KL divergence is highest when the target distribution q = (0.1,0.3,0.6).
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5.3.1.3 Convergence Speed

In the previous sections (5.3.1.1,5.3.1.2), we showed KL divergence over the time for

different network topologies, different target distributions, and we fix the user creation

constraint parameter M2 to 1, and step size γ in the gradient descent method to 0.01.

In this section we show results for different values of M2 and γ and show how those

parameters affect convergence speed. In addition to measuring KL divergence, we also

measure another output called pC han g e which indicates how much change in the source

of information in the network, more details about pC han g e will be discussed in the

section 3

1. Different Values of M2

Figure 5.3 shows the results of the simulation with a small world network. It

shows the variation of KL divergence between the activity distribution p(t ) and

the target distribution q as a function of time starting from an initial activity

distribution of p(0) = (1/3, 1/3, 1/3). We construct the initial information neigh-

borhood by picking five network neighbors with highest mutual awareness. We

introduce social signals at t = 100. We run the experiments with two target dis-

tributions q = (0.1,0.3,0.6), q = (0.2,0.3,0.5) and two different settings for M2,

M2 = 1, M2 = 4, the step size γ is fixed to 0.1. We can see that in each group of the

target distribution q , when parameter M2 increases, the convergence to the target

distribution is more difficult.

2. Different Values of γ

Figure 5.4 shows the results of the simulation with a small world network. It shows

the variation of KL divergence between the activity distribution p(t ) and the target

distribution q as a function of time starting from an initial activity distribution of
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q=(0.1,0.3,0.6), M2=4 

q=(0.1,0.3,0.6), M2=1 

q=(0.2,0.3,0.5), M2=4 

q=(0.2,0.3,0.5), M2=1 

Figure 5.3: The figure shows the variation of KL divergence between the activity dis-
tribution p(t ) and the target distribution q as a function of time. The results are for
a Small World initial topology and the initial information neighborhood is constructed
by picking five network neighbors with highest mutual awareness. We introduce social
signals at t = 100. There are four curves organized into two groups. Each group refers
to a different target distribution; in each case we use the same initial activity distribution
of p(0) = (1/3, 1/3, 1/3) and the step size is fixed to 0.1. Within each group, the solid curve
is for the case M2 = 1 and the dashed curve is for the case M2 = 4. A higher value of M2
increases the activity of each individual. The two cases refer to two different parameters
that affect the number of articles created by each individual. See Section 3.1 for more
details. Within each group, we see that when parameter M2 increases, thereby increasing
the activity of each individual, the convergence to the target distribution is more difficult.
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p(0) = (1/3, 1/3, 1/3). We construct the initial information neighborhood by picking

five network neighbors with highest mutual awareness. We introduce social signals

at t = 100. We run the experiments with two target distributions q = (0.1,0.3,0.6),

q = (0.2,0.3,0.5) and two different settings for γ , γ = 0.05,γ = 0.1, the user cre-

ation constraint M2 is fixed to 1. We see can see that in each group of the target

distribution q , when γ increases, the convergence to target distribution is faster.

However, to ensure the convergence the step size γ must satisfy the Wolfe condi-

tions, that bounds the condition on how large γ can be.

3. Changing in the Source of Information

In the section 1, 2, we showed that different values of user creation constraint M2

and step size γ can affect the convergence speed. In this section we will show the

how much change in the source of information for each user which leads to the

change in KL divergence. To qualify that, we measure pC han g e as follow.

Remember that at each time stamp t , user i only receive social signals from her

source of information Si (t ), we measure pi (t ) as:

pi (t ) =







1 if Si (t ) 6= Si (t − 1)

0 if Si (t ) = Si (t − 1)
(5.2)

Basically p(i)t indicates whether source of information S(i) has changed from time

stamp t − 1 to t . Overall, we average that change over all users.

pC han g e(t ) =

∑N
i=1 pi (t )

N
(5.3)

Figure 5.5 shows the variation of pC han g e over time. We construct the initial

information neighborhood by picking five network neighbors with highest mutual
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Figure 5.4: The figure shows the variation of KL divergence between the activity dis-
tribution p(t ) and the target distribution q as a function of time. The results are for
a Small World initial topology and the initial information neighborhood is constructed
by picking five network neighbors with highest mutual awareness. We introduce social
signals at t = 100. There are four curves organized into two groups. Each group refers to
a different target distribution; in each case we use the same initial activity distribution of
p(0) = (1/3, 1/3, 1/3) and the user creation constraint M2 is fixed to 1. Within each group,
the solid curve is for the case γ = 0.1 and the dashed curve is for the case γ = 0.05. We see
can see that in each group of the target distribution q , when γ increases, the convergence
to target distribution is faster.
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awareness. We introduce social signals at t = 100. We run the simulations with

Small World initial network topology, initial distribution p(0) = (1/3, 1/3, 1/3), and

target distribution q = (0.1,0.3,0.6). The default setting is M2 = 1,γ = 0.1 and

then we vary M2 = 4 and γ = 0.05. Notice that before the social signals begin, in

all cases pC han g e keeps decreasing because users start interactions and forming

groups, the connections within groups become stronger over time and users have

tendency to interact within their group. Therefore, their source of information

(social circle) becomes more stable over time and as the result pC han g e keeps

decreasing. Notice that we introduce social signals at t = 100 and the system re-

wires each individual’s source of information every ∆ = 20 time steps, therefore

pC han g e > 0 in every step that the system re-wires the source of information for

each user, other than that there is no change in the network and pC han g e = 0.

Compare two cases, M1 = 1,γ = 0.1(square line) and M1 = 4,γ = 0.1 (triangle line)

we can see that in case users have higher creation rate (M2 = 4) the system has to

do more work in re-wiring the source of information for users (higher pC han g e),

however the convergence speed still lower than in the case M1, refer to the figure

5.3.

Compare two cases, M1 = 1,γ = 0.1(square line) and M1 = 1,γ = 0.05 (diamond

line) we can see that if user creation constraint M2 is fixed then if system does more

work in re-wiring the source of information for users (γ = 0.1) the convergence

will happen faster, refer to the figure 5.4.

5.3.2 Large K, K=25

We also run experiments in case number of topics K is large, K = 25. In this case,

we start with the equal initial distribution p(0) = (1/25, ..., 1/25) and the target distribution

q = (q0, q1, .., q24) where qi = 0.02 with i = 0, .., 9, qi = 0.04 with i = 10, .., 14, and
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Figure 5.5: The figure shows the variation of pC han g e over time. We construct the
initial information neighborhood by picking five network neighbors with highest mu-
tual awareness. We introduce social signals at t = 100. We run the simulations with
Small World initial network topology, initial distribution p(0) = (1/3, 1/3, 1/3), and target
distribution q = (0.1,0.3,0.6). Notice that before the social signals start pC han g e keeps
decreasing in all cases, after social signals start pC han g e > 0 once the system re-wires
social signals, and pC han g e = 0 otherwise. Compare three cases we can see that the
system has to do more work in re-wiring social signals in cases of higher M2 and higher γ
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qi = 0.06 with i = 15, .., 24. As in the case of K = 3 we also run the simulation with

three different network topologies Preferential Attachment (PA), Small World (SW), and

Random (RD).

Figure 5.6 shows the variation in the divergence between the activity distribution p(t )

and the target distribution q as a function of time for three different network topologies:

small world (solid line), power-law (dotted line, generated through preferential attach-

ment) and random (dashed line). In all three cases, the initial information neighborhood

is constructed by picking five network neighbors with highest mutual awareness. We

introduce social signals at t = 100. We can see that after the social signals start, KL

divergence keeps decreasing, that means the distribution p(t ) goes toward the target dis-

tribution q .

5.4 Analysis

In this section we will analyse the convergent property of KL divergence between the

two distributions p(t ) and q . We discuss both experimental results and mathematical

analysis.

5.4.1 KL Divergence and Reachable Area

Figures 5.1,5.2,5.6 show that D(p(t )||q) decreases over time, that is as expected as in

gradient descent method. But the question is if there is a lower bound for D(p(t )||q)?

Ideally gradient descent method grants a convergence, that is.

lim
t→+∞

p(t ) = q

or

lim
t→+∞

D(p(t )||q) = 0
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Figure 5.6: The figure shows the variation of KL divergence between the activity distri-
bution p(t ) and the target distribution q as a function of time in case K = 25. The results
show the variation in the divergence for three different network topologies: small world
(solid line), power-law (dotted line, generated through preferential attachment) and ran-
dom (dashed line). In all three cases, the initial information neighborhood is constructed
by picking five network neighbors with highest mutual awareness. We introduce social
signals at t = 100. After social signals starts,KL divergence keeps decreasing, that means
the distribution p(t ) goes toward the target distribution q .
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However in the model that is not always achievable. For a better intuition we consider

a simpler case when K = 2, each user is interested in equally random L out of K topics,

(L = 0, 1, or 2), therefore p(0) = (0.5,0.5). In this case we definitely can go to q =

(0.49,0.51) but because there are always users who are interested in topic 1, they will

always have article creations on topic 1 therefore we are definitely unable to go to the

extreme distribution q ′ = (0,1). That intuition gives us an idea that there is a reachable

area Q of q such that:

lim
t→+∞

D(p(t )||q) = 0 if q ∈Q

and

lim
t→+∞

D(p(t )||q) = εq if q /∈Q

In the next two sections we will estimate activity bound using experimental method

and mathematical method in case K = 3.

5.4.2 Experimental Estimation

In this section we try to estimate Q and estimate εq in case q /∈Q.

• Estimation of Q

Assume that q = (q1, q2, q3) ∈ Q. First we estimate the range of q1, M i n ≤ q1 ≤

M ax. To estimate M i n we run the simulation in the extreme case q = (0,0.5,0.5)

and to estimate M ax we run the simulation in the extreme case q = (1,0,0). For

those two extreme distributions, D(p(t )||q) gets stable at some value >0. Basing

on those system stable states, we obtain an approximation M i n = 0.1 and M ax =

0.7. That means, the necessary condition for q ∈ Q is 0.1 < q1, q2, q3 < 0.7. We
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Figure 5.7: Reachable Area Q (Convergence Region) which is about 45% of the entire
domain of q . IISS framework can guide the distribution p(t ) as close as possible toward
q in case q ∈ Q. However if q /∈ Q, even though IISS framework is able to nudge p(t )
toward q , there is always a lower bound εq that limits how close that p(t ) can approach
q

conjecture that is also the sufficient condition for q ∈ Q. Since q1 + q2 + q3 = 1,

figure 5.7 visualizes the conjectured Q when being projected in (q1, q2) plane.

• Estimation of εq in case q /∈Q

To do so we run the simulation with extensive rages of q and run longer time.

In previous section we only run the simulation for 600 iterations, in this section

we run the simulation for 2000 iterations. Figure 5.8 visualizes the divergence

D(p(t )||q) for different values of q after 2000 iterations. If q ∈Q the correspond-

ing divergence is much smaller in compared with the divergence in case q /∈Q.
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Figure 5.8: Divergences after 2000 iterations for different values of q . In case q ∈Q, the
divergence can be small as 0.05 while in case q /∈Q, the divergence can be as large as 0.5.

5.4.3 Mathematical Estimation

We now discuss the issue of target activity distributions in a little more detail. In

particular, we discuss the upper and lower bounds on an activity and show that not all

target activity distributions q are achievable by altering the social signals.

Let us examine the case when there are exactly three topics (i.e. k = 3) in the network.

Let us assume that there are N = 100 people in the network, and where the parameters

for all the model constants are the same as those described in Section 5.1. We set the

parameter that controls the lower bound of the creation activity as follows: M2 = 4.

Let x c
i ,k

be the average number of articles created on topic k, by individual i . And let
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xa
i ,k

be the average number of notifications created on topic k, by individual i by though

comments. One way to minimize activity on topic 1, that is, minimize the value of q1, is

to re-wire the social signals to show notifications only from topics 2 and 3. Thus, everyone

on the network would see lots of activity on topics 2 and 3 and will comment on them if

they find the article of interest, thus further increasing the activity on these two topics.

The total number of notifications on topic q1, denoted as x1, including creations on the

activity and the notifications due to comments on an article is computed as follows:

x1 =
N
∑

i=1

�

x c
i ,1+ xa

i ,1

�

, (5.4)

where, x c
i ,1 refers to the number of articles created on topic 1 by individual i , and

where xa
i ,1 refers to the total number of comments on topic 1. Thus the value of q1 can

be computed as follows:

q1 =

mi ni mi ze
︷︸︸︷

x1

x1+ x2+ x3
︸ ︷︷ ︸

maxi mi ze

, (5.5)

where, to to estimate the lower bound for q1 we need to minimize x1 and maximize the

sum of x2+ x3. Now expanding q1 using Equation 5.4:

q1 =

∑N
i=1 x c

i ,1+ xa
i ,1

∑N
i=1 x c

i ,1+ xa
i ,1+

∑N
i=1

∑3
k=2 x c

i ,k + xa
i ,k

. (5.6)

Now to minimize x1, we need to ensure that activity on topic 1 is limited to creation.

That is, xa
i ,1 = 0,∀i . We can achieve this state by ensuring that there are no social signals

related to activity on topic 1. That is, xa
i ,1 = 0,∀i . Rewriting Equation 5.6, we have:

q1,min =min
xa

i ,k

∑N
i=1 x c

i ,1
∑N

i=1 x c
i ,1+

∑N
i=1

∑3
k=2 x c

i ,k + xa
i ,k

. (5.7)
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Now, replacing summations over the population with expectations over all the indi-

viduals:

q1,min =min
xa

i ,k

E[x c
i ,1]

E[x c
i ,1]+

∑3
k=2 E[x c

i ,k + xa
i ,k]

(5.8)

where, E is the expectation operator. While E[x c
i ,k
], the average number of creations

on topic k, is straightforward to calculate since the topics are equally distribution over

the population, computing the expectation of E[xa
i ,k
], the expected number of comments

on topic k requires more work.

Ei[x
c
i ,k] = E[ci] · γc · E[βi ,k], (5.9)

= (M2+
1

λ2

) · γc ·
1

K
. (5.10)

since ci , the creative capacity, is exponentially distributed with parameter λ2 and has a

lower bound of M2, and βi ,k is identically distributed with a uniform prior over all k.

The equation says that on average, all topics are equally likely to be created, with the

number of articles created proportional to the creative capacity.

To compute E[xa
i ,k
], we need to estimate the number of notifications that any indi-

vidual sees and the likelihood of commenting on them. Only the act of commenting

produces measurable activity.
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Ei[x
a
i ,k] = E[zi] · E[P (t o pi c = k)] · E[Pi (ac t i on = T |t o pi c = k)] (5.11)

= (M1+
1

λ1

) · γa · E[βi ,k] · E[P (t o pi c = k)]×

×E







N
∑

j=1

Pi (vi e w = T |o r i g i n = j ) · P (o r i g i n = j )






(5.12)

= (M1+
1

λ1

) · γa ·
1

K
· E[P (t o pi c = k)]×

×
N
∑

j=1

E
�

Pi (vi e w = T |o r i g i n = j ) · P (o r i g i n = j )
�

(5.13)

If we assume that the social signal can come from anywhere in the networks, then

P (o r i g i n = j ) = 1/N . Thus, equation 5.13 simplifies to:

Ei (x
a
i ,k) = (M1+

1

λ1

) · γa ·
1

K
· E[P (t o pi c = k)] · E[Pi (vi e w = T |o r i g i n = j )](5.14)

In case we minimize value of q1, we re-wire the social signals to only show notifica-

tions from topic 2 and 3. Therefore, P (t o pi c = k) = 0 in case k = 1 and P (t o pi c = k) =

0.5 in case k = 2,3. Note that Pi (vi e w = T |o r i g i n = j ) is defined in the equation 3.4.

From equations 5.10, and 5.14, we can simplify equation 5.8 as:

q1,min =
(M2+

1
λ2
) · γc ·

1
K

(M2+
1
λ2
) · γc +(M1+

1
λ1
) · γa ·

1
K · E[Pi (vi e w = T |o r i g i n = j )]

(5.15)

In order to maximize q1, we re-wire the social signals to only show notifications from

topic 1. With the similar logic as above discussed, we can estimate q1,max in an equation

which is similar to the equation 5.7

q1,max =max xa
i ,k

∑N
i=1 x c

i ,1+ xa
i ,1

∑N
i=1 x c

i ,1+ xa
i ,1+

∑N
i=1

∑3
k=2 x c

i ,k

. (5.16)
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Finally we have:

q1,max =
(M2+

1
λ2
) · γc ·

1
K +(M1+

1
λ1
) · γa ·

1
K · E[Pi (vi e w = T |o r i g i n = j )]

(M2+
1
λ2
) · γc +(M1+

1
λ1
) · γa ·

1
K · E[Pi (vi e w = T |o r i g i n = j )]

(5.17)

Equations 5.15, 5.17 show mathematical analysis for the range of q1, since users’ in-

terests are equally distributed over K topics, therefore those equations are also applicable

to the cases q2 and q3.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter we first summarize the work has been done and presented in this thesis,

and then we discuss some ideas for future extension to our work.

In this thesis we solve a very interesting problem of guiding the activities on a social

network platform so that the activity distribution can gradually go from the initial value

p(0) toward the target value q . Our research deeply roots from previous research on so-

cial influence and selection which evidence that humanity is influenced by social signals.

In order to guide users’s activities, using similar logic with existing online advertising and

recommendation systems, first and foremost our framework has to understand them by

learning their interests, characteristics and connections (4.1,4.2). After that we use gra-

dient descent method to update the distribution (4.3), in this case since KL divergence

is a convex function so gradient descent guarantees a convergence. With understanding

of users, we then select suitable users to influence (4.4) and personalize social signals for

each user (4.5). Both selecting users and designing social signals are very challenging be-

cause we are guiding a system in which users act probabilistically based on their interests

and interconnections that results in a complex stochastic process. Experimental results

in chapter 5 show that our framework is able to nudge the distribution toward the target

distribution q in all cases of initial network topologies (Preferential Attachment, Small

World, Random) and for all values of target q . The convergence speed and property (of

KL divergence between the distribution p and distribution q) depend on lots of factors.

If users have more tendency to post articles independently with social signals presented to

them (larger value of M2), then the system has to do more work in re-wiring the network

and the convergence speed is still lower. If system uses larger step size γ in the gradient
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descent method, it will do more work in re-wiring the network and is able to achieve

faster speed of convergence, however γ cannot be arbitrarily large since it is bounded by

Wolfe conditions to ensure convergence. There is a reachable range Q in which for all

values of q the framework is able to guide the activity distribution p(t ) toward q as close

as we want, however if q /∈ Q, then even though the framework is able to guide p(t )

toward q , there is always positive lower abound on how close that p(t ) can go to q .

In this thesis we made two assumptions, the first assumption is the interest βi ,k of

user i on topic k is fixed during the experimental process, and the second assumption is

all users participate on the platform at all time stamps. If we consider a short period of

some special campaign like an online advertising campaign, those assumptions are reason-

able, however during a longer span of time, those assumptions become very rigid. That

suggests some ideas for future extensions. First, we can consider that user interests are

changeable over time, that will make the problem more interesting and more challeng-

ing. Second, we can consider that users has different participation patterns, user i may

participate on the platform every ∆i iterations instead of participating on the platform

every iteration, again this change will make the problem more challenging.
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