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ABSTRACT 

The slider-crank mechanism is popularly used in internal combustion engines to 

convert the reciprocating motion of the piston into a rotary motion. This research 

discusses an alternate mechanism proposed by the Wiseman Technology Inc. which 

involves replacing the crankshaft with a hypocycloid gear assembly. The unique 

hypocycloid gear arrangement allows the piston and the connecting rod to move in a 

straight line, creating a perfect sinusoidal motion. 

To analyze the performance advantages of the Wiseman mechanism, engine 

simulation software was used. The Wiseman engine with the hypocycloid piston motion 

was modeled in the software and the engine’s simulated output results were compared to 

those with a conventional engine of the same size. The software was also used to analyze 

the multi-fuel capabilities of the Wiseman engine using a contra piston. The engine’s 

performance was studied while operating on diesel, ethanol and gasoline fuel. Further, a 

scaling analysis on the future Wiseman engine prototypes was carried out to understand 

how the performance of the engine is affected by increasing the output power and 

cylinder displacement. 

It was found that the existing Wiseman engine produced about 7% less power at 

peak speeds compared to the slider-crank engine of the same size. It also produced lower 

torque and was about 6% less fuel efficient than the slider-crank engine. These results 

were concurrent with the dynamometer tests performed in the past. The 4 stroke diesel 

variant of the same Wiseman engine performed better than the 2 stroke gasoline version 
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as well as the slider-crank engine in all aspects. The Wiseman engine using contra piston 

showed poor fuel efficiency while operating on E85 fuel. But it produced higher torque 

and about 1.4% more power than while running on gasoline. While analyzing the effects 

of the engine size on the Wiseman prototypes, it was found that the engines performed 

better in terms of power, torque, fuel efficiency and cylinder BMEP as their 

displacements increased. The 30 horsepower (HP) prototype, while operating on E85, 

produced the most optimum results in all aspects and the diesel variant of the same 

engine proved to be the most fuel efficient. 
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Chapter 1 

INTRODUCTION 

A unique characteristic of the present day civilization is industrialization, and that has 

been possible due to the extensive progress in mechanical technology or machines. Most 

of these machines consume some or the other form of energy and convert them into 

another. In the simplest form, a machine that does this energy conversion can said to be 

an engine. This also means that there is a constant need to improve the efficiency of these 

engines in terms of how they convert the energy from one form to another. 

 One such engine is the heat engine. A heat engine converts chemical energy 

stored in a fuel into a thermal energy. This thermal energy is then used to perform work 

in terms of moving parts. There are primarily two types of heat engines, the external type 

and internal type. In this study only focuses on the Internal Combustion Engines (ICE). 

There are various types of ICE invented over the years and their application has varied 

from generators to locomotives. 

Slider-crank Mechanism 

Over the course of time, the ICE has undergone incredible change in terms of 

technical advancements but the fundamental concept behind its mechanism has still 

remained unchanged. It still relies on the popular slider-crank or crankshaft based 

mechanism. This mechanism consists of three primary parts. The Crank, which is the 

rotating flywheel, the piston or the slider that slides inside the tubular cylinder, also 

known as the bore, and the connecting rod that connects the sliding piston to the crank. 
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When a mixture of fuel and air enters the cylinder, it pushes the piston down till the entire 

cylinder is full. This is called the intake stroke. The piston then moves back up to 

compress the air-fuel mixture, which is known as the compression stroke. Once the piston 

compresses the mixture the spark plug located at the top of the cylinder ignites the fuel 

causing it to explode. The energy released from this explosion pushes the piston down 

again and the whole cycle is repeated. This stroke is also called the exhaust stroke since 

the exhaust ports are opened during this process to let out the gases formed during the 

combustion. Mechanically speaking, the linear motion of the piston is converted and 

transferred to the rotational motion of the flywheel. An IC engine that follows this 

process can be called a four stroke IC Engine since it undergoes four different strokes, in 

two revolutions. A visual representation of these four strokes can be seen in Figure 1 

below. 

 

Figure 1 - Working Principle of a Four Stroke SI Engine (Ganesan, 2012, p. 7) 

There also exists a two stroke engine in which the entire cycle is completed in one 

revolution as oppose to the four stroke engines. The main difference between both the 
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engines is the way the charge is filled and removed from the engine cylinder. In a two 

stroke engine, the charge entering the combustion chamber is compressed before it is 

induced into the cylinder which causes the exhaust gases to be pushed out through the 

exhaust ports. This eliminates the piston strokes required for both these operations. 

A diesel engine is slightly different than the spark ignited engine in the sense that, 

the combustion in the diesel engine is caused due to compression. Hence diesel engines 

have a much higher compression ratio. The reason behind having a high compression 

ratio is that the ignition temperature of diesel is lower than gasoline and combustion in 

the piston chamber can be caused just by supplying energy to the fuel by compressing it. 

There is no need for an external spark to ignite the fuel in the combustion chamber 

(Mathur & Sharma, 1997, p. 25). 

Despite being the most popular mechanism in the industry, the slider-crank 

mechanism still has few design limitations. One such shortcoming is the loss of energy 

due to friction between the piston and cylinder walls. The connecting rod and the piston 

are joined using a wrist-pin about which the piston is free to rotate. The connecting rod in 

the slider-crank mechanism follows a sinusoidal motion which is converted into a linear 

motion at the piston end. As seen in Figure 2, due to the inclination of the connecting rod 

at various angles, it causes the piston to rub against the inner walls of the cylinder. This 

produces a load, known as the side load, which is perpendicular to the axis of the 

cylinder. This load results into reduced engine efficiency due to friction and heat.  
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Figure 2 - Piston Side Load 

There have been years of research and development to increase engine efficiency and 

reduce internal cylinder friction. A lot of these solutions to improve the engine efficiency 

in terms of cylinder friction are often complex and uneconomical. One alternative to this 

mechanism, especially emphasizing on the reduced cylinder friction, is the Geared 

Hypocycloid Engine (GHE). The basic theory behind the working of the GHE 

mechanism is that the crankshaft found in the standard ICE is replaced by a gear 

assembly. There have been prototypes of the GHE tested in the past and they have proven 

to be advantageous than the conventional slider-crank setup in terms of efficiency. In 

order to experimentally further investigate the design benefits of a hypocycloid engine 

over its slider-crank counterpart, the Wiseman Technologies Inc. (WTI), provided us with 
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a 30 cc two-cycle GHE. This engine from hereafter will be referred to as the Wiseman 

engine.  

The major tasks required to accomplish this research focus were: 

1. Modeling the Wiseman hypocycloid engine. 

2. Comparing the Wiseman hypocycloid mechanism to a conventional slider-crank 

mechanism and understanding the difference between their mechanical assemblies. 

3. Analyzing the Wiseman hypocycloid prototype using engine simulation software. 

a. Validating the results generated by simulation software by first comparing it 

with a stock engine with known performance output. 

b. Simulating the Wiseman engine using the Lotus Engine Simulation (LES) 

software to determine various performance parameters. 

c. Setting baseline results to which the conventional engine and the Wiseman 

engine can be compared with. 

4. Performing multi-fuel and scalability analysis on the Wiseman engine to predict its 

performance for future designs. 

a. Determining how the Wiseman engine performs while operating on different 

fuels. 

b. Determining how various output parameters of an engine change with respect 

to its size. 

c. Using the scaling methods to predict the theoretical performance of future 

Wiseman hypocycloid engine designs. 
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Chapter 2 

BACKGROUND 

GHE has been a research-interest for many decades now and various universities and 

groups have contributed to the development of the mechanism. One of the first 

documented mechanism was produced by an English engineer, James White (Dickinson, 

1949-51, p. 175-179). White’s engine with its unique gear assembly can be seen in Figure 

3. Even though White received a medal from Napoleon Bonaparte in 1801 for his 

invention, he was not entirely convinced by the design benefits (White, 1822, p. 30-31). 

But a German mechanical engineer, Franz Reuleaux, is considered to be the originator of 

the slider-crank as well as the hypocycloid mechanism design. A collection of his various 

mechanisms which combine different gear systems with a slider-crank is now displayed 

at the Cornell University. Two of those designs can be seen in Figure 4. Various other 

steam engines were later produced based on White’s and Reuleaux’s design. One such 

engine was developed by Matthew Murray in 1802, which was patented and 

manufactured to be used as a water pump in 1805 (Karhula, 2008, p. 19). There have 

been many other famous mathematicians and scientists who have proposed their theories 

and designs for a modified hypocycloid mechanism or also known as the cardan gear 

mechanism. 
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Figure 3 - White’s Geared Hypocycloid Engine 

 

Figure 4 - Franz Reuleaux’s Slider-crank (L) and Cardan Gear (R) Mechanisms (Karhula, 2008, 

p. 20) 

Hypocycloid Concept and Geared Hypocycloid Mechanism 

To better understand the mechanical movement in a hypocycloid mechanism, it is 

important to understand the mathematical concept of a hypocycloid curve. A hypocycloid 
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can be described as a special curve produced by tracing a fixed point ‘P’ on the 

circumference of a circle (radius ra) that is rolled inside a larger circle (radius rb) 

(Wolfram MathWorld, 2010). 

 

 

Figure 5 - Hypocycloid Concept 

 Depending on the ratio of the radii of the two circles, unique hypocycloid curves 

can be generated. The path of the P can be traced by the following equations; 

� � ��� � ��� cos � 
 �� cos ��� � ���� �� Equation 1 

� � ��� � ��� sin � � �� sin ��� � ���� �� Equation 2 

Where: 

�� is the radius of the smaller circle. 

�� is the radius of the larger circle. 
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� is the angle from the � axis to the line that intersects the center of circle 

a and circle b. 

To benefit from the movement produced by the hypocycloid curve in an ICE, a 

special case of hypocycloid is utilized. In this case, the diameter of the small circle is 

exactly half of that of the bigger circle, i.e. 2:1 radii ratio. As seen in Figure 5, when such 

a ratio of circles are used to trace a hypocycloid curve, as the circle ‘a’ rolls inside the 

larger circle ‘b’ it produces a vertically straight line at any given point on the perimeter of 

circle ‘b’. Further, if the circles are replaced by gears, the assembly can be used in a 

mechanism to produce a perfect straight-line motion of a piston in an ICE. The device 

conceived by James White was also based the 2:1 gear ratio in a hypocycloid setting.  

Figure 6, gives a better visualization of the straight-line motion produced by 

hypocycloid gear assembly which has a pitch diameter ratio of 2:1. The smaller pinion 

gear in red can be compared to the small circle ‘a’ and the larger internal ring gear 

represents the larger circle ‘b’. As the pinion gear rolls, a specific point located on the 

pitch diameter always remains coincident with the vertical black line and this is the point 

which can benefit the piston motion in an ICE. 
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Figure 6 - Geared Hypocycloid Concept Rotating at 45º Increments (Conner, 2011) 

Implementing the Geared Hypocycloid Mechanism in an ICE 

 As discussed above, the 2:1 gear ratio allows any point on the pitch circle of the 

pinion gear to travel in a perfectly straight line with a perfect sinusoidal motion. But the 

angle of the straight line depends on the point chosen on the pitch circle. The ICE could 

benefit from this mechanism after modifying this assembly with addition of few more 

components. Mr. Randal Wiseman, founder of WTI, filed for a patent in 2001 for an 

engine incorporating a hypocycloid mechanism. The hypocycloid engine was modified 
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from a stock 30 cc Homelite engine by adding a link to support the pinion gear where the 

rotary motion is transferred to an output shaft, known as the rotating output shaft (L2). 

Further, the bottom end of the connecting rod was connected to the point D1 (Figure 7), 

and this point represents the previously mentioned point ‘P’ that traces the vertical 

straight-line hypocycloidal curve. 

 

Figure 7 - Schematic of a Single Cylinder G. H. E. (WTI, 2010) 

Mr. Wiseman’s model proposed in the patent illustrates the link supporting pinion 

gear (Item 200), known as the carrier shaft (Item 100) in Figure 8 below.  The Wiseman 



12 

 

engine also has a provision for the pinion gear teeth (Item 204) to mesh with the fixed 

internal ring gear (Item 6) in the form of a cavity (Item 322). 

 

 

Figure 8 - Sketch from Wiseman US Patent # 6,510,831 (Wiseman, 2001) 

Performance Advantages of Hypocycloid Mechanism 

Theoretically, the GHE promises various performance and design benefits, with lower 

friction, heat, and engine vibration being the most important ones. But since there have 

only been prototypes of such engines and most have not been popularly commercialized, 

it is important that these theoretical predictions are further explored to gain detailed 

knowledge of its performance and make more analytical judgments. The cardan gear 

system is rarely seen in any type of machines (Karhula, 2008, p. 22). 
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Kenjiro Ishida and Takashi Matsuda studied the basic principles of a geared 

hypocycloid mechanism which they called a rotation-reciprocation mechanism. In his 

research attempts, Ishida studied a 63 cc hypocycloid chainsaw engine which he 

compared it with a conventional slider-crank engine of equivalent size. He declared that 

the internal gear mechanism was highly practical and tends to produce more power at 

lesser or equal RPMs as compared to the slider-crank mechanism. After performing 

various dynamometer tests, he noted that the hypocycloid engine tends to consume more 

fuel, 751.5 (g/hp)*hr as compared to 295 (g/hp)*hr by the slider-crank mechanism. He 

reasoned the reduce performance of hypocycloid engine, in terms of brake specific fuel 

consumption (BSFC), as a result of larger crankcase volume which resulted in lower 

primary compression ratio (PCR). 

While comparing different sinusoidal hypocycloid engines, Ishida also observed 

that, in terms of design the internal gear assembly in the hypocycloid engines is lucrative 

when the size is required to be small. Many similar engines even incorporated external 

gearing to achieve a harmonic motion in a linear path. The flexibility to manipulate the 

gear size, which determines the overall size of the engine, proves to be beneficial in a 

case where the dimensions are a design limitation.  

 Another excellent study of geared hypocycloid engine was conducted by Mr. 

David M. Ruch as a part of his PhD research. Mr. Ruch, in his PhD dissertation titled 

“An Experimental and Analytical Investigation of a Single-Cylinder Modified 

Hypocycloid Engine Design”, mentions that, one of the major benefits of the hypocycloid 

engine when compared to the sinusoidal engine is that the connecting rod (piston-rod) 

bending is eliminated. This meant that the force due to gas and inertia exerted on the 
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piston-rod was only along the rod’s axis (Ruch D., 1992). Theoretically, this contributes 

in increasing the overall of mechanical efficiency of the engine as compared to the 

conventional engines based on slider-crank mechanism, where the bending forces are 

produced from the crankpin on the yoke. 

One more advantage of the GHE is the reduction in the loads on the crankshaft 

caused by the gas force (Fg). This is because the torque transmitted in the GHE is split 

into two paths; one through the crankpin and the other through the sun gear. The total 

torque then can be expressed as; 

T’ = T’ crankpin + T’sun   Equation 3 

Where, 

T’ is total torque exerted on the GHE crankshaft, 

T’ crankpin is torque exerted on the GHE crankshaft through the crankpin’ 

T’ sun is torque exerted on the GHE through the sun gear. 

Further the torque in the crankshaft through crankpin can be expressed as; 

T’ crankpin = Ft’ (L/4) Equation 4 

 Where, 

Ft’ is tangential load on the modified hypocycloid crankpin from the 

piston. 

 Mr. Ruch also mentions that even though all conventional ICEs eliminate most of 

the piston-skirt/cylinder friction by replacing it with linear bearing friction, there is still 

approximately 17% energy loss due to the bearing friction. On the other hand, GHE has 

almost no energy losses due to the linear bearing friction, since the restraining forces 

caused by the linear bearings in the convention engines are replaced by gear tooth loads 
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in a GHE (Ruch D., 1993). On the other hand, the gear mesh friction can be reduced 

significantly since the manufacturing of gears can be highly optimized. Contrastingly the 

GHE mechanism does result in high gear tooth loads due to the inertia load as a result of 

pinion rotation about the crankshaft axis (Menz, 1987). For a constant pinion rotational 

speed, the gear tooth load Wt can be calculated by the following equation; 

Wt = Fg Sin(θc) Equation 5 

Where, 

  Wt is tangential gear tooth load on the pinion, 

Fg is gas force on the piston, 

θc is crank angle. 

Gas force can be calculated by finding the product of the area of the piston head 

and the pressure exerted on it. In the case of the Wiseman engine, the gas force on the 

engine piston was known to be 104.4 N. It is also known that this gas force is a function 

of angle of the crankshaft; therefore it tends to change according to the crank angle. 

Further, the torque on the output shaft is directly related to the tangential gear load. This 

relation can be written as; 

T = (Wt ) L/2 Equation 6 

Where, 

  L is Stroke of the engine 

  T is Torque of the output shaft 

 Using the above equation, a further comparison between the gas force and relative 

torque conversion at the output shaft for one full rotation (180º), was also known from 

the experiments conducted my Mr. Tom Conner and Wiseman Inc. For this purpose it 
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was assumed that the gas force (Fg) was constant at 1 bar but this is not true in case of a 

firing engine. It should also be noted that the Wiseman engine stroke is slightly longer at 

28.575 mm than the stock engine at stroke at 28.296 mm. 

The bore in both the stock and the Wiseman engine measured Ø36.450 mm in 

diameter and the resulting cross-sectional area is 1043 mm2.  Now by plugging in the 

described values in the equation 3 and 4, the output torque was calculated an increments 

of every five degrees of crank rotation. Using this procedure, the stock engine was known 

to have a higher peak output torque by 1.9% even though it has a shorter stroke. This 

meant that in a case where the stroke of both the engines were same, that is, 28.575 mm, 

theoretically the peak output of the stock engine would be about 3% higher than that of 

the Wiseman engine. Further, from the same experiment, it was known that the peak 

output torque for the stock engine and the Wiseman engine occurred at 75º TDC and 90º 

TDC respectively. The stock engine converted gas pressure to torque in a trend that is 

more typical of a conventional slider-crank engine. The Wiseman engine produced more 

torque than the stock engine after 85º even though the pressure from the combustion is 

considerably reduced at this point.  

Further the mechanical efficiency of the Wiseman engine was found out to be 0.606 

or 60.6%. This was done by examining the results from past dynamometer tests 

conducted at MTD Southwest, Inc. During those tests, it was found that at 7000 RPM the 

Wiseman engine had a loss of 0.39 HP due to friction. Whereas the engine was designed 

to generate 0.99 HP as peak power at 7000 RPM. All this information is crucial in 

modeling the Wiseman engine using the LES software as it provides more realistic results 

hence making it more accurate.
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Chapter 3 

SCOPE OF WORK 

Prior to this research, extensive designing, development, testing and modifications 

of the Wiseman engine were completed by the Wiseman Technologies Inc. and Mr. 

Thomas Conner. The purpose of this research effort is to further evaluate and tune the 

Wiseman engine according to the current industry standards to determine any necessary 

modifications required to enhance the performance. The Wiseman engine was designed 

on a platform of a 30 cc Homelite brand string trimmer engine. The data for the 

unmodified (stock) 30 cc Homelite engine was also made available by WTI to be used as 

an established benchmark. This data will be used to evaluate the performance against the 

Wiseman engine. The particular Wiseman engine that is discussed in this paper was 

previously studied for vibration testing and balancing, so these aspects of the engine 

performance will not be focused on. Hence, it was assumed that the engine is perfectly 

balanced prior to starting this research. 

Modeling the 30 cc Wiseman Hypocycloid Engine 

All the required engine parts to assemble a balanced Wiseman prototype were 

made available by WTI to perform further testing. Since the Homelite engine acted as the 

platform to build the Wiseman prototype, the prototype retains many of the original 

Homelite engine’s components and dimensions. This similarity is further evident in the 

side-by-side photo of both the engines seen in Figure 9. 
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Figure 9 - Wiseman (Left) and Stock Engine (Right) 

Both the engines share the same carburetor, ignition system, flywheel/magneto, 

exhaust/muffler, and the cylinder. The following table provides a summary of their 

design specifications. 

Engine Stroke Bore Ø Displacement 

Wiseman Prototype 
1.125 in 

( 28.6 mm) 
1.435 in 

(36.5 mm) 
1.819 in3 
(29.81 cc) 

Stock Homelite 
1.114 in 

(28.3 mm) 
1.435 in 

(36.5 mm) 
1.802 in3 
(29.53 cc) 

Table 1 - Engine Specifications 

The section view of the dynamic CAD model of the Wiseman engine, as seen in 

Figure 10, shows the mechanical assembly of Wiseman engine for better visualization. 
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 Figure 10 - Wiseman 30 cc Prototype Section View (Conner, 2011) 

Note that the front shaft seal, engine back plate, spark plug, rings, and cylinder 

cooling fins are not shown in the Figure 10. The crankcase (Item 1) is machined from 

6061-T6 billet Aluminum and provides the main support for the engine. The primary 

supporting bearings of the carrier shaft are the nose bearing (Item 5) and the big main 

bearing (Item 6). These bearings are held in place by cir-clips in the crankshaft (not 

shown). The connecting rod bearing (Item 10) is held in place by mild press and is also 

glued to the base of the connecting rod. The piston (Item 11) and the connecting rod 

(Item 12) are also machined from 6061-T6 billet Aluminum. Both these items are 

screwed together using undercut threads for frictional fit. The primary output shaft of the 

engine, carrier shaft, is machined from 1045 Steel and so is the pinion shaft (Item 8). The 
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pinion shaft plays multiple roles; it comprises of the external gear teeth, provides bearing 

surface for the connecting rod and carrier shaft, and also acts as a counterweight. These 

gear teeth mesh with the internal teeth of the ring gear (Item 3). This geared driveline can 

be seen in Figure 11. The pitch diameter of the pinion shaft gear is 14.2875 mm (0.5625 

in) and that of the ring gear is 28.575 mm (1.125 in). This gives a perfect 2:1 ratio 

required for the hypocycloid motion.  

The Following Figures provide different views of the Wiseman engine for one full 

rotation at 90º increments, to depict the working of this mechanical assembly.   

 

 Figure 11 - Wiseman Driveline (Conner, 2011) 
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Figure 12 - (Left) Back View, Engine at 90º ATDC (Conner, 2011) 

Figure 13 - (Right) Back View, Engine at BDC (Conner, 2011) 

 

Once again, it can be noticed from Figures 12 and 13 that the connecting rod remains 

vertical and the pinion shaft is both rotating and at the same time oscillating vertically. 

Another observation that can be made is that the pinion shaft and the carrier shaft rotate 

in the opposite direction but at the same speed.  This means that the pinion shaft bearings 

manage the loads at twice the speeds of the output shaft, and so is a very crucial 

component of the engine. 

Prior Tests by Wiseman Technologies Inc. 

 WTI mainly focused on the fuel efficiency as a measure of engine performance on 

both, the stock engine and the Wiseman prototype. These tests were conducted on low 
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speeds of about 4000 RPM and at less than wide open throttle. The peak power speeds of 

such engines are about 7000 RPM. WTI’s tests showed that the Wiseman engine could 

achieve twice the fuel efficiency of the stock engine. Both the engines tested by WTI 

were brand new so they had to be broken in. In order to do so, they ran both the engines 

at 4000 RPM with 30:1 gas to oil ratio (2-cycle oil) for about 2 hours. They then changed 

the fuel and oil to Shell High Test, and AMS synthetic oil with a new ratio of 100:1. For 

a more systematic test procedure, they took the climate into consideration, and so both 

the engines were tested on the same day under similar temperature and barometric 

weather conditions. The test speed for the engines was set to 4050 RPM, and 20” X 6 

wooden propeller was used as a load for both the engines. Once they attained stable 

speeds the cylinder temperature (using thermocouples) and fuel consumption was 

measured. A series of 6 minute long tests were conducted and the following results were 

produced (Wiseman Technology, Inc.): 

Engine Temperature 
(cylinder head) 

Fuel Consumption Run-time 

Stock Engine 310˚F 27.67 grams 6 minutes 
Wiseman Engine 320˚F 14.00 grams 6 minutes 

Table 2 - Summary of Engine Tests Conducted by WTI 

 They noted that the Wiseman engine, while producing the same output power, ran 

for virtually twice as long as the stock engine for the same amount of fuel. Based on this 

time test, along with the fuel consumption measurements, WTI claimed that the Wiseman 

engine was 50.5% more fuel efficient than the unmodified stock engine. They also noted 

that the Wiseman engine ran much cooler than the stock engine. 
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Chapter 4 

LOTUS ENGINE SIMULATION 

Validating LES Results 

LES software has the capability to investigate the performance of an internal 

combustion engine and give predictions of engine output under various conditions. These 

results can be fuel efficiency, power output, torque, and running temperature of the 

engine over a period of time. LES allows the entire system to be built and simulated, 

complete from engine intake to exhaust. This proves to be an economical and convenient 

method to research and develop internal combustion engines. Since the LES software has 

been extensively used for this research to predict the performance of the Wiseman 

engine, it was important that the authenticity of the results generated by the software was 

confirmed before drawing any conclusions. For the same purpose, a test engine with 

known parameters and output was tested. The results from that test were then compared 

to the results generated by modeling that engine in LES software. A small stand alone test 

engine, manufactured by GUNT Hamburg was provided by the Arizona State University 

(ASU) for that test procedure. The engine came connected to a test stand for single 

cylinder engines which was also manufactured by GUNT Hamburg. The test stand was 

equipped with an eddy current dynamometer which was connected to a computer that 

recorded various output parameters of the engine during a running test. The results from 

dynamometer test along with the engine specifications provided by the company were 

then compared with the LES results. This test engine setup will be referred to as “GUNT 

engine” from here on. Figure 14 shows the schematic of the methodology for the coming 
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tests. A speed vs. output torque tests were conducted on the GUNT engine and the results 

were recorded. The test results were then compared to the engine output specification 

provided by the manufacturer, which in turn were compared with the simulated results of 

the engine system modeled in LES. This is to check how close the engine performance 

results, generated by LES, are to the actual engine performance and those claimed by the 

manufacturer. Once the relationship between the LES results and test results was 

confirmed, the LES software was then used to analyze the performance of the Wiseman 

engine and also to predict the performance of future Wiseman engine designs. 

 

 Figure 14 - Methodology to Validate LES Results 
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GUNT Engine Dynamometer Testing 

 

 Figure 15 - GUNT 1B30 Engine 

The GUNT engine model 1B30 as seen in Figure 15 was used in conjunction with 

the CT 110 test stand (not shown). It is a four stroke, single cylinder, air-cooled engine, 

with direct injection that works on both, diesel and biodiesel fuel. The compression ratio 

for this engine is 21.5 with a mean piston speed of 6.9 m/s. This is slightly higher than 

the ideal compression ratio for small four-stroke compression-ignition engines. The 

compression ratio of such engines generally ranges from 16-20. On the contrary, the bore 

size of the GUNT engine is smaller than that of a similar sized engine, which is generally 

75 to 100 mm (Ganesan, 2012). However, the GUNT engine has a bore diameter of 80 

mm. 

Some other technical specifications of the GUNT engine are; 

Power Stroke Bore Ø Displacement 

5.5 Kw @3500 RPM 69 mm 80 mm 347 cc 

Table 3 - GUNT Engine Specifications 
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According the manufacturer the idling speed of this engine is around 800-1000 

RPM and the peak power is generated between 3000-3500 RPM. Figure 16 shows the 

performance curves of the GUNT engine, in terms of power output, torque, and brake 

specific fuel consumption (BSFC), as claimed by the manufacturer. 

 

 Figure 16 - Manufacturer Provided Performance Curves of GUNT Engine 

The GUNT engine is mounted on a base plate on the test stand and is coupled 

with an electric motor via an elastic claw coupling. The electric motor provides force 

transmission to brake via the elastic claw coupling and is also used to load the engine 

during the dynamometer testing. The air cooling is provided by the means of blades that 

are attached to the flywheel of the engine. In addition to all this, the engine comes fitted 

with various sensors to measure, ignition cut-off, fuel supply, exhaust gas temperature 

and speed.  
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 Once various components and features of the GUNT engine were understood, 

setting up the test equipment was fairly simple. Contrary to the claims by the 

manufactures, the engine needed to be cranked at 2500 RPM and at wide open throttle. A 

dynamometer test was conducted to get a torque vs. RPM curve. In order to do this, the 

engine was kept at a constant throttle (WOT) and along with constant torque. The engine 

was then loaded with different RPMs to see how the change was reflected in the torque 

output. These points were then recorded to get a curve on a plot. The data collected from 

these tests was then compared with that provided by the manufacturer. It was found to be 

very similar to the specification sheet. The range of RPM that the engine was tested at 

was 1500 to 3500. The engine was then modeled in the LES software to compare the 

results from the software with that from the dynamometer test and manufacturer data.  

GUNT LES Modeling 

Once the GUNT engine was tested on the dynamometer, it was then modeled in the 

LES software with all manufacturer specified parameters. Some crucial engine details 

were not provided by the manufacturer like, the length of the connecting rod and the 

intake and exhaust port diameters and their respective valve timings. These parameters 

significantly affect the performance of the engine in terms of output torque and power. 

In order to model the GUNT engine with the most accurate length of the connecting 

rod, port diameters and valve timings, the lotus ‘concept tool’ was used. As seen in 

Figure 17, the ‘concept tool’ requires the user to enter at least the following three 

specifications:  

• Engine RPM at maximum power 
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• Engine Swept volume (liters)  

• And the number (no.) of cylinders. 

 

 Figure 17 - LES Concept Tool 

 Since the bore and stroke of the GUNT engine was known, those dimensions were 

also included in the concept tool. The no. of inlet and exhaust valves was selected to be 1, 

in accordance with the engine design. Also, since the mean piston speed plays a vital role 

in connecting rod design, the RPM at max power was selected to be 3000 instead of 3500 

in order to achieve the known mean piston speed of 6.9 m/s, and further aid the concept 

tool to make better predictions. Once these parameters are entered, the LES allows the 

user to select the intake and exhaust systems for this engine. A common plenum junction 
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intake and exhaust systems were selected to compliment the single cylinder direct 

injected design of the engine.  It was found that the appropriate connecting rod length for 

this engine would be 103mm. The concept tool uses the following equations to measure 

inlet and exhaust throat diameters. 

D_in � ��.��
���  X (bore diameter) 

Equation 7 

Where, 

D_in is Inlet throat diameter 

  nin is number of inlet valves  

D_exh � ���.!�"#���
�$%&    

Equation 8 

 Where, 

  D_exh is exhaust throat diameter 

  nexh is number of exhaust ports 

The LES’s concept tool creates a schematic of the engine model based on the 

above mentioned information and transfers it to builder interface of the software. On the 

builder interface, some more changes were made to tune the engine according to the 

specifications of the manufacturer. The known compression ratio of 21.5 was selected for 

the engine and the fuel intake system parameters were changed to direct injected diesel 

fuel. The intake and exhaust throat diameters calculated by the concept tool were 

38.97mm and 66.93mm respectively. But after the initial runs it was found that the 
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engine provided higher torque than specified by the manufacturer but the volumetric 

efficiency of the engine was lower. In order to correct this, the intake and exhaust valve 

throat diameters were changed to 19mm and along with the port valve timings. LES 

software provides five different valve types as default valve options. The valves in the 

GUNT engine are controlled by tappets and pushrods, which is very similar to the poppet 

valve option in the software. Further the dwell time and the valve opening and closing 

time were tuned to achieve the desired power and torque output. The LES software has 

two default polynomial lift curves for a popper valve which is fast or slow lift. According 

to Lotus Engineering, each polynomial is designed to have four coefficients (such that 

their sum is -1) and their corresponding exponents.  A slow lift poppet valve was found to 

be the most suiting for the GUNT engine in terms of the output. 

The LES software allows the users to choose port flow coefficient curves for inlet 

or exhaust port as well. It gives an option of either poor or good port flow coefficients. 

These coefficients are a function of valve throat to bore area ratio obtained from the lotus 

port flow database. They are a ratio of each valve lift and throat diameter (L/D) and are 

summarized in the form of contour maps as shown in Figure 18 and Figure 19. Every 

calculated ratio of valve throat to bore area in each simulation is interpolated or 

extrapolated to either a good or poor port flow characteristic (Copyright Lotus 

Engineering, 2001).  The simulation for GUNT was tried with each option along with an 

intermediate option of 0.3 L/D and it was noticed that the performance was not affected 

significantly. 
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Figure 18 - Inlet Port Flow Coefficient Curves used by LES 

 

Figure 19 - Exhaust Port Flow Coefficient Curves used by LES 

NOTE: No separate port flow analysis was carried out but instead default coefficient 

calculations from the port flow tool were used. 

  Intake Exhaust 
Angle (deg) 10 10 

Valve open (deg) 49 76 
Valve close (deg) 74 39 

MOP (deg) 102.48 -108.52 
Table 4 - Intake and Exhaust Port Timings for GUNT Engine (Diesel) 
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Since this was a single cylinder direct injected engine with one intake and exhaust 

port, the intake and exhaust plenum volumes were chosen to be the same as the cylinder 

displacement volume. 

• Combustion model 

The program is designed such that, the heat released during the combustion is 

assumed to be heating the whole combustion space. This is because the LES software 

implements a single zone heat release model. “The main implication of this assumption is 

that the bulk gas temperature is generally lower than the core combusted gas temperature 

behind the flame front” (Copyright Lotus Engineering, 2001). Further, Lotus claims that 

this might have an influence on the detailed in-cylinder heat transfer but, since the 

theoretical heat models make gross assumptions for heat transfer coefficients and wall 

temperatures, the discrepancies are minimal. The GUNT combustion model was chosen 

to be a two part Wiebe function which is more suitable for a direct injected diesel engine. 

Another benefit of using this function is that it is based on combustion duration and so by 

manipulating the combustion duration of a specific engine, a more realistic heat release 

rate can be achieved. The function defines the mass fraction burned in the premixed 

combustion period as, 

1 � (1 � �� )
)��*+,

*#
 

Equation 9 

And the mass fraction burned during the diffusion combustion period as, 
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1 � exp  /0� 1/213/2�45+
 

Equation 10 

Therefore, mfrac = 6[pre-mixed] + (1-6)[Diffusion]. 

Where, 

A = A coefficient in Wiebe equation = 6.9 

M = M coefficient in the Wiebe equation = 0.4 

C1 = “cp1” coefficient in Watson & Pilley equation = 2.0 

C2 = “cp2” coefficient in Watson & Pilley equation = 5500 

  6 = fraction of premixed combustion to total combustion = 0.05 

  7 = delay angle between premised and diffusion combustion = 0.0 

  ) = actual burn angle (after start of combustion), and 

)� = total burn angle (0-100% burn duration) (approx. calculated to be 

102.621 degrees). 

NOTE: currently there are no defaults available for a two part heat release equations but 

the values stated above are typical values for the constants in a turbocharged direct 

injection diesel engine. 

• Cylinder Heat Transfer 
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The heat exchange in the cylinder gases is calculated at each crank angle bases on the 

wall area, its temperature and the surface heat transfer coefficient. The total cylinder wall 

area can be calculated using the head and bore dimensions of the engine and the 

instantaneous liner area is based on the sum of piston clearance and piston location from 

the TDC at every crank angle. For the wall temperatures, the software assumes certain 

head flame face thickness (0.13 x Bore) and liner thickness (0.07 x Bore). For the GUNT 

engine, the head flame face thickness was calculated to be 10.4mm and the liner 

thickness was 5.6 mm. Some other assumptions made by the LES software are: 

• Thermal conductivity of Aluminum as 150 (W/m/K) 

• Coolant temperature to be 100o C and its connective heat transfer coefficient as 

10000 W/m2/K for the cylinder head and 8000 W/m2/K for the liner 

• The heat transfer rate of the liner wall temperature is assumed to be 44% of that of 

cylinder head for convenience 

• The cylinder head temperature is calculated as an average of wall temperature and 

valve temperature. 

• piston head temperature as an area averaged cylinder head temperature 

• For diesel engines, it assumes the valve temperatures based on the air fuel ratio 

(AFR) 

o  -4.1 AFR + 504.2 o C (inlet valve) 

o -4.2 AFR + 663.0 o C (exhaust valve) 

LES software provides the three options for in-cylinder heat transfer models in both 

open and closed period; Annad, Woschni and Eichelberg. All the models generate values 



35 

 

for convective heat transfer coefficient in all the cylinders. For the GUNT engine, 

Eichelberg heat transfer model was used due to its ease of tuning. 

8 � 9 : ;�<=>?@�
 �.�� �A. B� C        

Equation 11 

Where,  

h=heat transfer coefficient 

A = Eichelberg open or close cycle A coefficient (2.43) 

B = Eichelberg open or close cycle B coefficient (0.50) 

;DPiston = mean piston speed 

p = cylinder pressure 

T = cylinder temperature. 

Once all the proper adjustments and selections were made, the modeled engine was 

simulated and the results were tabulated and charted. The finished LES model for the 

GUNT engine can be seen in Figure 20. 



36 

 

 

Figure 20 - LES GUNT Model (Diesel) 

But before the simulated results can be compared with the dynamometer results 

and that performance claims of the manufacturer, it was important that the software 

results are adjusted for the mechanical friction in the engine. The actual GUNT engine is 

motored by an asynchronous electric motor, manufactured by Alda Antriebstechnik 

whose mechanical efficiency was found to be 87%. Therefore, the torque results from the 

software simulation were multiplied by 0.87 so a more realistic data is generated which is 

adjusted for the motoring losses of the engine. Figure 21 shows the final output results 

and their comparison. 
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Figure 21 - Comparison of LES Result of the GUNT Engine (Diesel) with Dyno Tests 

It can be noticed in Figure 21, that the LES results for output torque are higher 

without compensating for the mechanical efficiency of the electric motor, whereas the 

dynamometer torque test results coincide very well with the manufacturer specifications. 

It can also be noticed that the LES results are slightly optimistic. This is because a perfect 

displacement scavenging model was selected for the simulation, which assumes that the 

charge gas entering the cylinder is not mixed with the gas already in the chamber. This 

means that during exhaust, all the residual gas is removed and only fresh charge of air is 

present in the chamber during combustion. This is not the case in an actual engine 

combustion cycle. But the simulation results are very comparable to the test and 

Specification data, as well as show the same trend in the curve. The results generated by 

the software are substantially accurate, making the LES a reliable tool to further test and 

develop the Wiseman engine. 
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Wiseman LES (Two Stroke) 

Once again a similar process was followed in modeling the two stroke Wiseman 

hypocycloid engine in the LES software. The Wiseman prototype is much simpler in 

design than the GUNT engine, so modeling it in the LES software was easier. It is a 

single cylinder spark ignited configuration and the cylinder dimensions like bore, stroke, 

connecting rod length, compression ratio and displacement volume was provided by 

WTI. An intake disc valve was used in addition to variable volume inlet plenum. 

Wiseman engine has piston ported intake and exhaust valves as the engine intake and 

exhaust. The Wiseman engine runs on gasoline and has a spark ignited carbureted fuel 

system. The intake and exhaust port on the piston chamber were measured from the 

actual piston ports of the engine and were found to be as following; 

 Intake Exhaust 
Port width (mm) 40 20.82 

Max. Port Height (mm) 2 7.41 
Valve Open (deg) 124 108 
Table 5 - Wiseman LES Port Data 

The intake and exhaust pipe geometry was assumed to be simple tubes with 

approximate dimensions of the carburetor nozzle, at wide open position. A single Wiebe 

combustion model is used in the modeling of the Wiseman engine since that is more 

suitable for such engines. According to Lotus engineering, the single Wiebe function 

defines the mass fraction burned as; 

1 � exp  /0� 113�45+
 

Equation 12 

Where, 
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 The Wiebe coefficients A and M for gasoline are 10.0 and 2.0 respectively. 

A more simpler, Annad heat transfer model was used for the Wiseman engine which 

was given by; 

8E
F � 9GHC 

Equation 13 

Where, 

  h = heat transfer coefficient 

  A and B = Annand open or close cycle coefficients 

  K = thermal conductivity of gas in the cylinder 

  D = cylinder bore diameter 

Re = Reynolds number based on the means piston speed and engine bore. 

The A and B coefficients for a carbureted or a port injected combustion system is 0.2 

and 0.8 respectively. 

Modeling the Hypocycloid Piston Motion 

A major assumption the LES software makes is that the engine uses the slider-crank 

mechanism and so the results calculated are according to the piston motion of a 

conventional slider-crank mechanism. For the Wiseman engine, the most important 

aspect of the design was the hypocycloidal piston motion as a result of its unique 

mechanical assembly. For such special cases, the LES software has a provision to run 

user specific subroutines while simulating the piston motions during the tests. To find the 
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equation of the piston motion of the Wiseman engine and the volume above the piston at 

every crank angle, the following calculations were carried out. 

The volume above the  piston  for a convention slider-crank engine (zero volume at 

TDC, does not include clearance volume) for a given crank angle can be found using 

 

x = a cosθ + (l2 – a2 – Sin2θ)1/2    Equation 14 

                      

V � πB�
4 �l 
 a 
 s� 

Equation 15 

Where, 

x  is the piston position, maximum at TDC 

a  is the  crankshaft radius (or stroke divided by 2) 

θ  is the crank angle with 0º being TDC 

l is the length of the connecting rod 

V is the volume above the piston, and is equal to 0 at TDC 

B is the diameter of the cylinder diameter (bore) 

The equations for finding the volume above the Wiseman piston were derived 

using Figure 22. 
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Figure 22 - Wiseman (Hypocycloid) Piston Position Diagram 

The distance P or the piston position relative to TDC and the volume above the 

piston is given by, 

P � L
2 � �L

2 cos θ� 
Equation 16 

 

VR � P SπB�
4 T 

Equation 17 

Where, 

  L is the stroke of the engine. 

  θ is the crank angle with 0o being TDC. 
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  VR is the volume above piston, TDC being 0. 

  B is the diameter of the cylinder (bore) 

  P is the position of the piston with the origin being TDC. 

 

From previous research it was known the volume of the Wiseman engine at each 

crank angle is lower than that of the stock engine because its piston sits higher than the 

stock engine. This provides less combustion volume at each crank angle. 

In order to simulate the engine results using the hypocycloid motion, the .DLL file 

that the software uses to simulate and compile the results was modified. There were 

subroutines coded within the original .DLL using FORTRAN so switching between the 

convention slider-crank and the hypocycloid piston motion could be done with ease. The 

new equations of the piston motions of both the type of engines were changed according 

to the equations mentioned above. 

To verify that the modified code accurately simulated the hypocycloid piston motion, 

the crank angle, piston speed and position were recorded using virtual sensors attached to 

the engine cylinder block in LES software. This data was then plotted with respect to 

time and the difference in curves was studied as seen in Figures 23 and Figure 24. The 

plots clearly indicate that the modified LES software subroutine simulated engine 

performance using the hypocycloid piston motion and not a conventional slider-crank 

piston motion. 
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Figure 23 - Comparison of Time Vs Piston Speed of Slider-crank and Wiseman Engine 

 

Figure 24 - Comparison of Time Vs Displacement Vol. of Slider-crank and Wiseman Engine 

It can be noticed in Figure 24 that the piston motion for a slider-crank engine does not 

trace a perfect cosine-time curve where as the hypocycloid piston motion syncs perfectly 
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with the cosine curve. There is nonlinearity in the slider-crank mechanism and so the 

piston motion is not a harmonic function. 

 

Figure 25 - 2 Stroke Wiseman LES Model 

Once the all the required data was entered for each component of the a two stroke 

model (Figure 25), a speed test was simulated to generate the output data in terms of 

torque, BSFC and power with respect to the engine RPM.  The typical RPM range for a 

single cylinder spark ignited engine with the size that of Wiseman’s is 4500 to 7500 RPM 

(Ganesan, 2012). Therefore, the model was tested for RPMs ranging from 1000 to 8000. 

As established earlier, the Wiseman engine has a mechanical efficiency of 0.606 which 

was also entered for each test point to make sure the simulation at every RPM takes the 

mechanical efficiency into consideration. 

Brake Power and Torque Comparison 

During previous research, a dynamometer test was conducted on the Wiseman engine 

at MTD Southwest Inc. along with a small engine of the same size. The results of that 

study are summarized in Table 6 (Conner, 2011). 
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Engine Peak Power BSFC 

MTD Engine (31 cc) 0.96 HP @ 7000 RPM 410.08 g/hp*hr 

Wiseman Engine 0.60 HP @ 6000 RPM 520.06 g/hp*hr 

Table 6 - Wiseman Dynamometer Test Summary 

From extrapolating the results of the Wiseman engine, they predicted that the engine 

looses 0.39 HP due to friction. This meant that the Wiseman engine has about 5% higher 

loss in power than a stock engine of the same size at 7000 RPM. 

The software model of the Wiseman engine was simulated using both the piston 

motion subroutines mentioned earlier. This data was then compared to the dynamometer 

test results to determine how accurate the LES software predictions are, compared to an 

actual dynamometer test. The results can be seen on the following plot. 

 

Figure 26 - LES Results of Wiseman and Slider-crank Engine for Brake Power 

As seen in Figure 26, the results from the LES software show a very similar trend as 
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at 6000 RPM produces slightly less power than the slider-crank engine, which was also 

the case during the dynamometer test. According to the LES software results, the 

Wiseman power output at 6000 RPM is 0.62 KW (0.83 HP) and the slider-crank produces 

0.66 KW (0.89 HP). The software generated power output at peak RPM of the Wiseman 

engine is much closer to the theoretically claimed performance of 0.99 HP. 

 

Figure 27 - LES Results of Wiseman and Slider-crank Engine for Torque 

 Further, comparing the LES results of output torque of the Wiseman engine to that of 

the conventional slider-crank engine in Figure 27, it can be seen that the torque at peak 

RPM of Wiseman engine is slightly less than that of the slider-crank engine running at 

the same speed. Both the engines follow the same trend as the RPM increases. This could 

be because the Wiseman engine has a longer stroke than that of the slider-crank engine 

but less combustion volume. The Wiseman engine at 6000 RPM produces 0.98 Nm of 

torque and the slider-crank produces 1.05 Nm. 
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Brake Specific Fuel Consumption (BSFC) Comparison 

 According to the dynamometer tests conducted in the past, the Wiseman engine 

proved to be 21 % less efficient compared to a slider-crank engine in terms of BSFC at 

6000 RPM. As mentioned earlier the Wiseman Inc. claimed that the Wiseman engine 

showed results of 140 grams/hp*hr in their fuel consumption tests. From the LES results 

shown in Figure 28, it can be noted that the Wiseman engine at 6000 RPM resulted in a 

BSFC of 840.42 g/hp*hr and the slider-crank 795.5 g/hp*hr. This shows that the 

Wiseman engine is about 6% less fuel efficient than the slider-crank engine. The trend in 

the Wiseman engine having a higher BSFC is still agreeing with the results from the 

dynamometer tests. BSFC comparison with varying RPM speeds from software results 

can be seen in the chart below and the Wiseman engine at almost every RPM has higher 

fuel consumption than the slider-crank engine. 

 

Figure 28 - LES Results of Wiseman and Slider-crank Engine for BSFC 
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Chapter 5 

MULTI-FUEL ANALYSIS OF WISEMAN ENGINE 

Considering the choice of combustible fuels available now, it was thought 

worthwhile to explore multi-fuel variants of the Wiseman engine. A multi-fuel engine is a 

type of engine that can work on a variety of fuels with insignificant impact on 

performance and efficiency. There have been slider-crank engines known to run on diesel 

oil, crude oil, gasoline, JP-4, kerosene, ethanol and even lubricating oil. Such engines 

have been popular during military operations due to the unpredictable nature of 

emergencies where no specific fuel type is guaranteed to be available. Diesel engines, 

due to their high compression ratio, are more compatible to run on a variety of heavy 

fuels without any major modifications. A properly designed multi-fuel engine has to have 

good combustion efficiency at different loads and speeds while operating in sub-zero 

temperatures. It is also required to have low noise, low exhaust smoke and low 

vibrations, and must not misfire depending on the type of the fuel being used. In order to 

meet these requirements, some of the design features that a multi-fuel engine needs to 

incorporate are (Mathur & Sharma, 1997, p. 25): 

• High compression ratio to ensure complete combustion of any fuel that it runs 

on 

•  Large stroke/bore ratio in order to maintain high temperatures in the 

combustion chamber 

• A reliable fuel delivery system 
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There are some existing engine types which are suitable as multi-fuel engines but one 

such engine concept that is of interest to design a multi-fuel variant of the existing 

Wiseman engine is a variable compression ratio (VCR) engine. Since different fuels have 

different calorific values, they ignite at different pressures and temperatures. Hence, by 

providing a feature to change the compression ratio of the engine at which the fuel 

combusts, the range of fuels that can be used in the engine can be increased.  

A VCR engine has primarily seen success in the form of a compression ignited diesel 

engine rather than a spark ignited engine since the later tends to knock during the 

lowering of the compression ratio. The change in compression ratio in such engines can 

be achieved by changing the clearance volume and the swept volume or just the clearance 

volume alone. A test engine produced by Coordinating Fuel Research Committee, the 

CFR engine, provides the facility to change the compression ratio by changing the height 

between the crankshaft axis and the cylinder head (changing the clearance volume). This 

is done by the means of fine screw-threaded mechanism which allows the cylinder head 

to be raised or lowered (Mathur & Sharma, 1997, p. 25). A similar design is proposed by 

the Wiseman Inc., using a contra piston, which will be investigated later in this chapter. 

30 cc Wiseman Engine Running on Diesel (Four Stroke) 

 To begin exploring the performance of the Wiseman engine operating on different 

fuels, an approach similar to the VCR engine mechanism was undertaken. The existing 

30 cc two stroke Wiseman engine was theoretically modified into a 30 cc four stroke 

diesel engine. This engine was modeled in the LES software and had identical parameters 

of original Wiseman engine like bore and stroke dimensions, swept volume, and 
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connecting rod length. The two major changes were the compression ratio, which was 

changed from 8:1 to 17:1, and the fuel delivery system was changed to direct injection 

instead of carbureted. This engine was simulated under the same test conditions as the as 

original gasoline Wiseman engine so the results can be compared with it as well as the 

slider-crank engine. A comparison of power output, torque and BSFC was carried out for 

the same RPM range on each engine. 

 

Figure 29 – Power Comparison of Wiseman Diesel, Gas and a Conventional Gas Engines 
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Figure 30 – Torque Comparison of Wiseman Diesel, Gas and Conventional Gas Engines 

 

Figure 31 - BSFC Comparison of Wiseman Diesel, Gas and Conventional Gas Engines 
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convention two stroke slider-crank engine (using gasoline) in terms of power (Figure 29), 

torque (Figure 30) and fuel consumption (BSFC) at peak RPMs (Figure 31). The reason 

for the four stroke diesel engine to perform better than its two stroke counterparts is 

because a two stroke engine tends to have lower volumetric efficiencies and a part of the 

fresh air fuel mixture is lost from the exhaust ports. This results in higher fuel 

consumption in two stroke engines. The proper utilization of the air in the four stroke 

engine also results in the increased power output. The two stroke engines also have a 

lower effective compression since some of the piston stroke is lost due to the provision of 

ports in the combustion chamber (Ganesan, 2012, p. 638).  

Engine Power (KW) Torque (Nm) BSFC (g/KW/hr) 

Wiseman 2 stroke (gas) 0.71 0.97 845.08 

Wiseman 4 stroke (diesel) 0.76 1.03 319.62 

Slider-crank 2 stroke (gas) 0.77 1.05 796.2 

Table 7 - Performance Summary at the Peak Speed of 7000 RPM 

30 cc Wiseman Engine with Contra Piston 

 The Wiseman engine is known to have more combustion time at the TDC since it 

follows a linear sinusoidal piston motion which results in increased energy transfer. Due 

to this, the Wiseman Inc. decided to further enhance the engine platform by announcing a 

variable compression Wiseman UAV engine (referred to as the Wiseman UAV engine 

from here on). They propose using an adjustable contra piston which is incorporated in 

the existing combustion chamber, hence making the bottom face of the contra piston as 

the top of the combustion chamber. The proposed design has a modified cylinder head 

with a bolt on top (Figure 32 (c)) to control the distance travelled by the contra piston in 
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the cylinder, thus changing the clearance volume and the compression ratio. This allows 

the compression ratio to be changed while the engine is operating. Other then this 

specific modification the rest of the engine utilizes the existing Wiseman mechanism. 

This allows to conveniently replace the contra piston (combustion chamber) according to 

the type of fuel without having to change the entire engine. 

 

Figure 32 - Variable Compression Wiseman UAV Engine (Wiseman Inc.) 

 Theoretically it is predicted that, by starting the engine at a low compression ratio 

(say 9:1) along with a glow plug and then increasing the compression (say 18:1) would 

result in about 30% increase in power and efficiency (Wiseman Technology, Inc.). 

30 cc Wiseman Engine with Contra Piston Running on Ethanol (Two Stroke) 

 The government of the United States has mandated the use of ethanol-gasoline 

fuel blend (E10) in ten states. E10 is about 10% ethanol and 90% unleaded gasoline and 

almost all new automobile engines are designed to run on it. The automakers now cover 

the use of E10 under their warranty since about 75% of the gasoline in America is now 
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blended with ethanol. Another popular fuel blend is E85, which consists of 85% ethanol 

and 15% gasoline. This blend is also known as flex-fuel and many new engines are now 

being designed to operate on E85. It has a higher octane rating than gasoline and is 

believed to produce more power. Ethanol when used as a fuel is known to have an anti-

knock performance by allowing the engine to run at a higher compression ratios as 

compared to pure gasoline engines. Though, the ethanol engines tend to have a higher 

BSFC since it has a lower calorific value than gasoline. This means the engine running on 

ethanol consumes more fuel as compared to gasoline, to generate the same amount of 

power and torque output (Costa & Sodre, 2010). 

To further analyze the performance of the Wiseman UAV engine using a contra 

piston, the software model of the current two stroke Wiseman engine was modified 

accordingly and simulated. To test the performance of the engine while operating on 

ethanol, the properties of E85 were considered. The only changes made to the engine 

model were the fuel properties and the compression ratio. Studies show that SI engines 

running on ethanol blend tend to perform better at a compression ratio of about 12:1 

(Costa & Sodre, 2010). All other engine parameters in the LES software model were kept 

the same as the original, to determine how the Wiseman UAV engine with contra piston 

would perform in case only the compression ratio was changed with respect to the fuel 

type. 
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Figure 33 - Power Comparison of Wiseman Engine with Contra Piston (E85 and Gas) 

A study conducted on the effects of ethanol in a port-injected gasoline engine 

showed that the engine produced more power at the speeds above 3000 RPM (Cahyono 

& Bakar, 2010). An increase of about 5% in output power can be achieved by adding 
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2012). By increasing the concentration of the ethanol in the fuel blend also tends to 

increase the overall efficiency, resulting in increased output power (Celik, 2007). A 

similar trend can be seen in the Wiseman UAV engine results operating on E85. As seen 

in Figure 33, the engine produces less or identical power when running on E85 in 

comparison to pure gasoline at lower RPMs, but at the peak RPM of 7000 the output 

power of the engine running on E85 is 1.4% more than gasoline. 

Another reason for higher power output while operating on E85 is because 

ethanol is resistant to knock, allowing the engine to run on a higher compression ratio, 

which results in increased cylinder BMEP (Celik, 2007). Also, at higher temperatures, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000 2000 3000 4000 5000 6000 7000

P
o

w
e

r 
(K

W
)

Speed (RPM)

Speed Vs Power

WE 30 CC (E85)

WE 30 CC (gas)



56 

 

ethanol has a better thermal efficiency than gasoline since it has a higher heat of 

vaporization. This means that when the compression ratio is increased, it burns a richer 

mixture of air-fuel compared to gasoline, resulting in a higher output power (Costa & 

Sodre, 2010). 

 

Figure 34 - Torque Comparison of Wiseman Engine with Contra Piston (E85 and Gas) 

As seen in Figure 34, the comparison of torque generated by the Wiseman UAV 
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higher torque but when the speeds increase ethanol blends tends to produce more torque 

due to its faster flame velocity. Again, the higher compression ratio and cylinder BMEP 

for E85 engines means more work is done on the piston causing an increase in the output 

torque (Costa & Sodre, 2010). 

 

Figure 35 - BSFC Comparison of Wiseman Engine with Contra Piston (E85 and Gas)  
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E85 tends to consume more fuel at every speed with an increase of almost 41.5% at the 

peak RPM. 

Engine Power (KW) Torque (Nm) BSFC (g/KW/hr) 

Wiseman UAV (gas) 0.71 0.97 845.08 

Wiseman UAV (E85) 0.72 0.98 1196.21 

Table 8 - Performance Summary of Wiseman with Contra Piston (E85 and Gas) at 7000 RPM 

Scalability Analysis on Bigger Wiseman Engine Prototypes 

 To further expand the range of applications utilizing the Wiseman engine, a series 

of theoretical Wiseman prototypes were designed and their performance was simulated in 

the LES software (using the conventional slider-crank piston motion and the Wiseman 

hypocycloid piston motion). The current 30 cc Wiseman engine is designed to produce 

0.99 Hp. The theoretical prototypes were designed with the engine output power in mind, 

and so models for a 10 Hp, 20 Hp and 30 Hp (7.46 KW, 14.91 KW and 22.37 KW 

respectively) were considered. Another reason for designing Wiseman engine prototypes 

with higher power outputs was so that, a scalability analysis can be conducted to 

determine how the engine’s performance varies with respect to its size. These prototypes 

were also tested to predict their performance while operating on different fuels (gasoline, 

diesel and E85). 

The engines were designed to have the following characteristics: 

• Single cylinder with a four stroke combustion cycle and a peak performance 

speed of 2000 RPM 

• Compression ratio of 8:1 was chosen for the gasoline engines, 16:1 for diesel 

engines and 13:1 for Ethanol engines 
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•  Indicated Mean Effective Pressure (IMEP) of 0.7 MPa (Kale, table 3.2) 

•  Mechanical efficiency (ηmech) of 80% (Kale, table 3.5) 

• BMEP of 0.56 MPa (IMEP x ηmech) 

•  Bore/stroke ratio (L/D) of 1.2 for gasoline and Ethanol engines, and 1.25 for 

diesel engines (Kale, table 4.16) 

• The gasoline and Ethanol engines used a carburetor, and the diesel engines 

were direct injected. 

The following steps further explain the calculations carried out during the 

designing process of each prototype: 

i. Taking the above mentioned characteristics into consideration the engine bore 

diameter was calculated by, 

Bp = BMEP x L x A x N Equation 18 

Where, 

  Bp = Brake horsepower in Watts 

  BMEP = Brake mean effective pressure 

  L = Stroke length (1.2 x D) 

  A = Area of the bore (
U
V E�) 

  N = Engine Speed (
WXY

� )  

This step was carried out to calculate the bore diameter for each engine from 

which their respective stroke lengths were also found. 

ii.  Once the bore diameter and the stroke length was found, the engine swept 

volume was calculated using, 



60 

 

Vs = A x L Equation 19 

Where, 

  Vs = cylinder swept volume 

  A = Area of the bore (
U
V E�) 

  L = Stroke length 

iii.  Finally, torque at peak performance RPM for each engine was calculated; 

T � HP \ 5252
Speed  

Equation 20 

 

Engine 

power 

(KW) 

Bore 

Diameter 

(mm) 

Stroke 

Length 

(mm) 

Swept 

Volume 

(liters) 

Calculated 

Torque 

(Nm) 

Bore to 

Stroke 

ratio 

Swept 

Volume 

(cc) 

7.46 94.7 113.64 0.800 35.6 0.83333 800 

14.914 119 142.8 1.587 71.21 0.83333 1587 

22.371 135 168 2.404 106 0.80357 2404 

Table 9 - Calculated Specifications of 10, 20, and 30 HP Gasoline Engines 

Engine 

power 

(KW) 

Bore 

Diameter 

(mm) 

Stroke 

Length 

(mm) 

Swept 

Volume 

(liters) 

Calculated 

Torque 

(Nm) 

Bore to 

Stroke 

ratio 

Swept 

Volume 

(cc) 

7.46 93.4 116.75 0.7995 35.6 0.800 799.5 

14.914 117.65 147.063 1.598 71.21 0.7999 1598 

22.371 134.68 168.35 2.397 106 0.8 2397 

Table 10 - Calculated Specifications of 10, 20, and 30 HP Diesel Engines 
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NOTE: A similar approach as the Wiseman UAV contra piston engine was used to 

determine the performance of the gasoline engine running on E85. This meant that the 

engine parameters for the ethanol engine remained the same as the gasoline engine but 

the compression ratio was changed to 13:1, and the fuel properties were changed to that 

of E85. 

Scaling Laws for Internal Combustion Engines 

 Further, to analyze and predict the performance of the Wiseman prototypes with 

increasing horsepower, there was a need to establish some performance scaling laws to 

determine how the engine performance changes according to the size of the engine. Every 

engine’s output vary over its operating range, and so comparing their performance at 

randomly selected points would not draw any meaningful conclusions. In order to 

compare the output performance metrics across different engines, the engines need to be 

compared at constant speed (2000 RPM) and air-fuel ratio. This way the changes in the 

performance can be isolated and treated as a result of change in engine size. Mr. Shyam 

Kumar Menon has done some extensive work during his master’s and doctorate studies 

on scaling the engine’s performance based on the engine size. He studied over 40 engines 

ranging from single cylinder to 36 cylinders in size. These engines had applications 

ranging from model airplanes, to lawnmowers, to automobiles and aircrafts (Menon, 

2006). Based on the plethora of data that he collected from testing and manufacturers, he 

established some scaling laws for the engine’s performance parameters based on their 

displacement. These established laws are used to analyze the Wiseman prototypes and 

determine the effects of scaling them bigger. 
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I. Scaling the Bore and Stroke of the Engine 

There was a relationship established between the engine displacement and 

the corresponding bore to stroke ratio. It was noticed that the engines with 

displacement less than 1000 cc were likely to have a “square” design with a few 

exceptions between the ranges of 1000-8000 cc. This meant that the bore to stroke 

ratio in those engines was close to 1. Another observation was that, as the engines 

got larger, the design changed to slightly “under square” (Menon, 2010). 

 

Figure 36 - Scaled Relationship between Engine Sizes and Bore to Stroke Ratio 

From studying the calculated displacements of the 10, 20 and 30 HP 

Wiseman prototypes (gasoline, E85 and diesel) and their corresponding bore to 

stroke ratios, it seemed that the engines tend to have a bore to stroke ratio closer 

to 1 regardless of their displacement. This is especially true for the diesel 

prototypes, as seen in Figure 36. Though, the data set used to test the scaling laws 

on engine’s physical properties is too small to draw any meaningful conclusion.  
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Figure 37 - Scaling of Bore to Stroke Ratio with Engine Displacement (Menon, 2010) 

But from studying the data presented by Mr. Menon in Figure 37, it can be 

noticed that the Kohler diesel engines as well as the Ford automobile engines that 

he tested showed a similar trend as the Wiseman diesel prototypes between the 

sizes of 700 to 3000 cc (approximately). 

II. Scaling the Engine Peak Torque at Peak Power Output 

Further, two different power laws were established by Mr. Menon, one for 

the small engines he tested and another based on the manufacturer provided data. 

But since both the laws had a close correlation (R2 > 0.98), it was concluded that 

the output torque as a function of displacement can be described using a power 

curve, regardless of the size and type. It was noted that the engine torque tends to 

increase with the increase in the engine displacement. A chart projecting the data 

collected by Mr. Menon can be seen in Figure 38. 



64 

 

 

Figure 38 - Scaling of Peak Engine Torque with Engine Displacement (Menon, 2010) 

 The data generated from software simulations of each engine type was 

then plotted to see how close the fit was when compared to the above mentioned 

relationship. 

 

Figure 39 - Scaling Wiseman Engine’s Torque with Engine Size at 2000 RPM 
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 As seen in Figure 39, the Wiseman engines follow a similar trend when 

the displacement and the corresponding output torque of the engines are 

compared. The correlation of the power curves is R2 >0.99 and the torque seems 

to be directly proportional to the displacement. This means that as the Wiseman 

engine’s size in terms of cylinder displacement increases, the output toque also 

increases. This is true for E85, gasoline and diesel engines. 

 

Figure 40 - Scaling Slider-crank Engine’s Torque with Engine Size at 2000 RPM 

 Once again, from Figure 40, it can be noticed that the output torque for the 

slider-crank engines of the same size as the Wiseman prototypes, while operating 

on E85, gasoline and diesel, also show a very similar trend to the scaling law 

established by Mr. Menon. 
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Figure 41 - Comparing the Scaled Torque of Wiseman and Slider-crank Engine 

Figure 41 shows a comparison of the output torque of the Wiseman 

engines and slider-crank engines of the same size while operating on different 

fuels. It can be seen that as the engine displacement increases, the Wiseman 

variants tends to produce slightly more torque than the slider-crank engines of the 

same size. But the difference does not seem to be of a significant margin. The 

Wiseman engine is known to produce lower torque compared to a slider-crank 

engine of the same size at lower engine displacements because of its shorter 
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friction. 
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displacement increased. But during his research, Mr. Menon noticed that the 

change in the output power for a two stroke engine was more than that for a four 

stroke engine of the same displacement (shown in Figure 42). This makes sense 

since it is a well known fact that two stroke engines tend to produce more power 

per unit displacement (Menon, 2010). 

 

` Figure 42 - Scaling Peak Engine Power Output with Engine Size (Menon, 2010) 
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Figure 43 - Scaling Wiseman Engine’s Peak Power with Size at 2000 RPM 

 Once again, from Figure 43, it can be seen that the output power of the 

engine as a function of the engine displacement tends to follow a similar trend as 

the output torque. The Wiseman prototypes tend to have an increased output 

power as the displacement of the engine increases, irrespective of the fuel type. 

Figure 44 suggests that this is also true for the slider-crank engines of the same 

sizes. Though it seems that the curves do not follow the same shape and trend as 

the Wiseman engine, their respective Pearson coefficients suggest that the data 

fits very close to the power curve, since they all have an R2 >0.97. 

y = 0.011x0.9807

R² = 1

y = 0.0121x0.9883

R² = 0.9981

y = 0.0102x0.9913

R² = 0.9991

5

10

15

20

25

30

700 1200 1700 2200

O
u

tp
u

t 
p

o
w

e
r 

(K
W

)

Displacement (CC)

Scaling of output power (Wiseman)

WE gas 

prototypes

WE E85 

protoypes

WE diesel 

prototypes

Power (WE gas 

prototypes)

Power (WE E85 

protoypes)

Power (WE 

diesel 

prototypes)



69 

 

 

Figure 44 - Scaling Slider-crank Engine’s Peak Power with Size at 2000 RPM 

 The trend can further compared between the slider-crank and Wiseman 

variants like torque comparison to see how they perform against each other in 

terms of output power when operating on different fuels.  

 

Figure 45 - Comparing the Scaled Power of Wiseman and Slider-crank Engine 
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 The comparison in Figure 45 shows that the Wiseman variants tend to 

produce more power than its slider-crank counterparts irrespective of the fuel 

used. This is true especially true for the 30 HP (2397 cc) variant using E85 fuel. 

On the contrary, the 30 HP slider-crank diesel engine produces more power 

compared to Wiseman engine of same size. And the difference between the power 

produced by the Wiseman and slider-crank versions operating on gas is 

insignificant. 

IV. Scaling the Engine Fuel Consumption at Peak Power Output 

It was noted from Mr. Menon’s findings that when it comes to the fuel 

consumption of an engine, miniature engines tend to have a greater drop in fuel 

efficiency as the size of the engine decreases compared to the engines of 

conventional sizes. The reason stated for this trend is because smaller engines 

tend to have higher losses. This means that as the engine size increases, the fuel 

efficiency slightly increases as seen in Figure 46. 

 

Figure 46 - Scaling of SFC at Peak Power with Engine Size (Menon, 2010) 
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It can be observed that the engines had a steeper slope for fuel 

consumption for sizes until 15 cc but in the region of 15-20 cc this trend in the 

slope changes (Menon, 2010). Engines that share the same range of displacement 

as the Wiseman prototypes, 800-2500 cc, tend to have a gradual increase in the 

fuel efficiency with increase in engine size.  

 

Figure 47 - Scaling Wiseman Engine’s BSFC with Respect to Engine Displacement 

As seen in Figure 47, the Wiseman prototypes show a similar trend as the 

fuel efficiency law established earlier, but the approach does not seem to be very 

effective considering the lower values of R2. This shows that the data does not fit 

very well with the implemented power curve. The fuel efficiency of the engines 

mostly varies with the change in the displacement but overall there is a slight 

improvement with the increase in engine displacement. Similar to the results from 

previous multi-fuel tests, the engines operating on E85 tend to consume more fuel 

in general than while operating on gas and diesel. This could again be due to the 
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lower calorific value of the E85 fuel.  Again, the diesel Wiseman engines seem to 

be the most promising in terms of fuel efficiency, with the 30 HP variant showing 

the best results. It was also noted that the gas variants did not show any significant 

change in the fuel efficiency with change in displacement. 

 

Figure 48 - Scaling Slider-crank Engine’s BSFC with Respect to Engine Size 

The Slider-crank versions of the Wiseman engines also show exactly same 

trend, as seen in Figure 48. They too tend to have slightly lower fuel consumption 

as the engine’s displacement increases. Again, the change is very stable in the gas 

engines while the diesel engines prove to be most fuel efficient. The E85 variants 

again show high fuel consumption. This data was further compared to see how the 

engines with Wiseman mechanism perform in terms of fuel efficiency when 
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Figure 49 - Comparing the Scaled BSFC of Wiseman and Slider-crank Engine 

From the comparison of the BSFC results in Figure 49, it can be seen that 

the Wiseman engines of the same size as the slider-crank engines tends to be 

slightly less fuel efficient but the difference is almost negligible. Though both the 

engines follow a common trend, i.e. increase in fuel efficiency with increase in 

engine displacement. The gas and E85 variants of both the engines have almost 

identical fuel consumption. The Wiseman diesel engines prove to be a little more 

fuel efficient than the slider-crank engines of the same displacement. 
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engine BMEP gradually increase with increase in engine displacement (Figure 

50). Though it is important to note that his results did not have a very good fit 

with R2 ~ 0.5 (Menon, 2010). It should also be noted that the engine BMEP was 

not measured at a constant speed but instead the peak BMEP was recorded 

(generally at very low speeds). 

 

Figure 50 - Scaling of Peak Engine BMEP with Engine Size (Menon, 2010) 

Figure 51 also shows a similar trend in the peak BMEP of the Wiseman 

engines with respect to their engine displacements. Though the trend is not clearly 

recognizable from the plots, due to the small size of the data set, overall the 

BMEP seems to increase with increase in cylinder displacement. The scaling law 

seems most evident in the gas variants of the engines, whereas the diesel engines 

tend to show the opposite trend. It can also be seen that the engines operating on 

E85 fuel produces more BMEP than the gas versions in general. This is especially 
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true in the case of 30 HP design operating on E85 since it shows the highest 

BMEP output. This trend was also noticed while comparing the performance of 

the Wiseman 30 cc engine while operating on gas and E85. Another observation 

that can be made is that the 20 HP engines operating on E85 has a lower BMEP 

output than the 20 HP diesel engines. 

 

Figure 51 - Scaling Wiseman Engine’s BMEP with Respect to Engine Displacement 
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BMEP while the diesel variants tends to follow a trend more similar to the E85 

version of the Wiseman engine. This can be seen in Figure 52. The ethanol 

engines still produce higher BMEP than its gas counterparts, while the 30 HP 

version of the diesel engine produces best result of them all.  
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Figure 52 - Scaling Slider-crank Engine’s BMEP with Respect to Engine Size 

 

Figure 53 - Comparing the Scaled BMEP of Wiseman and Slider-crank Engine 
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of these engines. The 30 HP slider-crank diesel and 30 HP Wiseman ethanol 

variants produce almost identical BMEP. The BMEP of these two engines is also 

the highest out of all the engines. 
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Chapter 6 

CONCLUSION AND RECOMMENDATIONS 

 The heat engine comprising of the slider-crank mechanism has been the popular 

choice in the market till date. Though there have been other engines but none of them 

have seen the level of commercial success as the slider-crank mechanism. Despite being 

popularly implemented, the slider-crank mechanism has few design limitations. It tends 

to have loss of energy in the form of heat generated by friction. The main source of this 

friction is due to the piston rubbing against the cylinder wall during its motion. Most 

engine designers focus on how to minimize the loss of energy due to internal friction in 

the engine which in turn will increase the overall efficiency of the engine. 

 An alternative mechanism was proposed by Wiseman Inc., which utilized the 

geared hypocycloid concept by replacing the conventional crankshaft in the engine. The 

idea of using hypocycloidal gear assembly in a combustion engine is centuries old but it 

has never been commercially implemented. The assembly consists of a pinion gear which 

rotates inside a ring gear. By making the gear ratios to 2:1, every point on the parameter 

of the pinion gear provides a straight line curve, and this benefits the piston motion in 

ICE. The connecting rod and the piston when connected to such a point on the pinion 

gear, has a straight line motion. This means that the piston has a perfect sinusoidal 

motion and there is no friction between it and the cylinder walls. The Wiseman design 

takes advantage of this phenomenon in their patented design for a 30 cc engine. Other 

than the advantage of reduced friction, a hypocycloid engine also has tends to be 

dimensionally smaller and is believed to have higher performance outputs than a 
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conventional slider crank engine of the same size. Theoretically, the reason behind better 

performance is that the straight line motion eliminates bending of the connecting rod due 

to the gas force which contributes to better utilization of the gas force. This means more 

work is done per every stroke, resulting in higher torque and power. Though, it has not 

been proved to be more fuel efficient. 

 Previous studies have proved these claims to be true to an extent but a more 

detailed study was necessary. In order to thoroughly analyze the Wiseman engine’s 

performance when compared to a conventional slider-crank engine of the same size, it 

was thought wise to use the Lotus Engine Simulation software. The authenticity of the 

results produced by the LES software was validated by first simulating the performance 

of a stock engine with known parameters and comparing the results with the 

manufacturer provided specifications. From the output comparison of the results 

generated by LES software and that provided by the manufacturer, it was concluded that 

the software results were reliable provided all minor details of the engine are taken into 

consideration. This approach seems logical since by providing more details, a more 

realistic operating situation is created during the simulation. Further, a detailed Wiseman 

30 cc engine was modeled in the LES software along with its unique piston motion and 

the simulated results were compared with the same engine having a conventional slider-

crank piston motion.  It was noticed that the Wiseman engine produced slightly lower 

power (0.83 HP) than the slider-crank engine (0.89 HP) at the peak engine speeds (6000 

RPM). Though the peak output power of the Wiseman engine was much closer to the 

designed peak power of 0.99 HP. This meant that the Wiseman engine produced about 

7% less power than the slider crank engine. A similar trend was also observed during 
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previous dynamometer tests conducted on the Wiseman engine. Contradictory to the 

theoretical expectations, the Wiseman 30 cc engine had a lower torque output than the 

slider-crank engine while being about 6% less fuel efficient. Prior tests by Wiseman Inc. 

claimed that the engine was about twice as fuel efficient than its slider-crank variant. 

 Another study on the Wiseman engine was conducted to observe how the 

Wiseman engine would perform if a 4 stroke diesel version was designed. The simulated 

results for this variant of the engine proved to be very promising in almost all aspects. It 

was seen that a 30 cc four stroke Wiseman diesel engine, produced higher power and 

torque than the 2 stroke Wiseman and slider-crank engines running on gas. The reason 

behind it is that the 4 stroke fuel injected engine had a higher volumetric efficiency, 

which meant it utilized the air and fuel mixture in an optimum manner. This further 

reflected in fuel consumption comparisons, where the 4 stroke Wiseman diesel engine 

proved to be a lot more fuel efficient than the 2 stroke gas engines. 

 Further, the Wiseman engine was analyzed to see its multi-fuel capabilities if a 

contra piston were incorporated in the design. For the sake of this study, the performance 

of the 2 stroke Wiseman engine was tested using different fuels while its compression 

ratio was changed. It was noticed that the Wiseman engine while operating on E85 flex-

fuel performed better in terms of power and torque than while running on pure gasoline. 

It was noted that the engine produced about 1.4% more power while operating on E85. 

The properties of E85 as an engine fuel along with the implementation of higher 

compression ratio contributed to this improved performance. However, the fuel efficiency 

of the engine plummeted significantly while it operated on E85. The reason behind this is 

that, E85 has significantly lower calorific value than gasoline, which means the engine 
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while operating on E85 requires more energy (fuel) to perform the same amount of work 

as gasoline engine. 

 The current 30 cc Wiseman engine produces less than 1 HP and so to expand its 

range of applications in future, more powerful engine designs were required. For this 

purpose, 4 stroke Wiseman engines with power outputs of 10 HP, 20HP and 30 HP were 

designed. Since these engines were only theoretical prototypes, it was necessary to study 

how their performance would change with respect to their size. Increase in engine power 

also meant an increase in engine displacement, and so a performance scaling analysis was 

conducted to predict how the output power, torque and fuel efficiency would change 

according to the displacement while operating on different fuels. The analysis involved 

using previously established scaling laws for each parameter to study the trend. It was 

noticed that as the engine displacement increased, the torque and the power produced by 

it also increased. This was true for a slider-crank as well as an engine using Wiseman 

mechanism. The engines operating on E85 fuel produced higher torque especially for the 

30 HP design. This was true for both, the Wiseman engine and a slider-crank engine of 

the same size. In case of power, the 30 HP Wiseman engine produce more power than a 

30 HP slider-crank diesel engine. Overall, it was noticed that the Wiseman engines fared 

better in terms of power and torque than the slider-crank engines as the size increased. A 

similar trend was also noticed when it came to engine fuel consumption with respect to 

its size. It was observed that as the engine’s displacement increased, it became more fuel 

efficient. A reason for this is that smaller engines tend to have higher motoring losses. 

While comparing this trend with slider-crank engines, it was found that the 30 HP 

Wiseman engine while operating on diesel had the best fuel efficiency. Further, the 
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change in engine’s BMEP was studied and it was found that as the cylinder displacement 

increased, the BMEP also increased. Once again, the 30 HP Wiseman design produced 

the highest BMEP as compared all the other engines. Though the difference between that 

engine and a conventional 30 HP diesel engine was negligible. 

 From all the analysis conducted, it can be concluded that the simulated results by 

LES software for 30 cc Wiseman engine are comparable to those obtained by previous 

dynamometer tests. Though, these results are not favorable when compared to an engine 

using the slider-crank mechanism. There needs to be additional tuning done in order to 

optimize the performance of the 30 cc Wiseman engine. The scaling and multi-fuel 

analysis suggests that the 4 stroke diesel and ethanol variants of the Wiseman engine 

seem more promising than the 2 stroke gasoline engine. It would also benefit to explore 

and develop the 30 HP diesel and ethanol designs since the simulated results for those 

engines are most optimum. These engines also showed a closer relationship to the trend 

where the increase in HP increases the displacement which in turn increases the output 

torque. It was also found that increasing the HP reduces the fuel consumption for the 

amount of power generated. 

Recommendations and Future Work 

 To further develop a multi-fuel Wiseman engine there are some key factors that 

need to be taken into consideration. Since, the proposed contra piston design operates on 

variety of fuels including ethanol, it should be noted that ethanol like other alcohols is 

corrosive in nature and over time it might damage the engine’s components like spark 

plugs. It should also be noted that as the concentration of the ethanol in the fuel increases, 
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engine components like fuel filter, fuel pump, ignition system and the exhaust system 

need to be modified for trouble free performance. The orifice diameters also need to be 

increased for the engines operating on ethanol to allow proper mixing of air and fuel 

depending on varying engine speeds. Having high compression ratio for ethanol and 

diesel engines also means higher loads on the bearings and the connecting rod, which 

might result in component failure. It would also benefit to study Wiseman engines 

designs for HP between the intervals of 10, 20 and 30 so a stronger relationship with the 

scaling laws can be established. 



84 

 

REFERENCES 

Ganesan, V. (2012). Internal combustion engines. (4th ed.). New Delhi: Tata McGraw 
Hill Education Pvt. Ltd. 

 
Bai, D., Solving piston secondary motion of internal combustion engines. Sloan 

Automotive Laboratory, Retrieved from 
http://math.mit.edu/classes/18.086/2008/final_report_dongfang_bai.pdf 

 
Mathur, M. L., & Sharma, R. P. (1997). A course in internal combustion engines. (7th 

ed.). New Delhi: Dhanpat Rai Publications Pvt. Ltd. 
 
H. W. Dickinson, "James White and His 'New Century of Inventions”, Transactions of 

the Newcomen Society, 1949-1951, vol. 27, pp. 175-179. 
 
James White, A New Century of Inventions, Manchester, 1822, pp. 30-31, 338. A 

hypocycloidal engine used in Stourbridge, England, is in the Henry Ford Museum 
 
Karhula, J. (2008). Cardan Gear Mechanism versus Slider Crank Mechanism in Pumps 

and Engines. Lappeenranta: Lappeenranta University of Technology. 
 

Wolfram MathWorld. (2010, October). Retrieved from Hypocycloid: 
http://mathworld.wolfram.com/Hypocycloid.html 

 
Polly Model Engineering Limited. (2010, October). Retrieved from Stationary Engine 

Kits: http://www.pollymodelengineering.co.uk/sections/stationary-
engines/anthony-mount-models/murrays-Hypocycloidal-Engine.asp 

 
Special plane curves. (2005-2014). Retrieved from 

http://www.math10.com/en/geometry/analytic-geometry/geometry5/special-
plane-curves.html 

 
Conner, T. (2011). “Critical Evaluation and Optimization of a Hypocycloid Wiseman 

Engine”, M.S. Thesis, Arizona State University, 2011. 
 
Wiseman Engine Group. (2010). The engine of the future - today! Business Plan. 

 
Wiseman Technologies, Inc. (n.d.). Retrieved from UAV Design: 

http://www.wisemanengine.com/AUVSIWisemanPaPer.doc 
 

Wiseman, R. (2001). Patent No. 6,510,831. United States of America. 
 



85 

 

Taylor, C.F., The Internal Combustion Engine in Theory and Practice. Volume 2: 
Combustion, Fuels, Materials, Design, Revised Edition. The M.I.T. Press, 
Massachusetts Institute of Technology, Cambridge, Massachussets, 1985 

 
Beachley, N. H., & Lenz, M. A. (1988). A Critical Evaluation of the Geared Hypocycloid 

Mechanism for Internal Combustion Engine Application". Scociety of Auotmotive 
Engineers, Inc 

 
Ishida, K., & Matsuda, T. (1975). Fundamental Researches on a Perfectly Balanced 

Rotation-Reciprocation Mechanism. Bulletin of the JSME , 185-192. 
 

Ruch, David M., “An Experimental and Analytical Investigation of a Single-Cylinder 
Modified Hypocycloid Engine Design,” PhD dissertation, University of 
Wisconsin at Madison, 1992 

 
Menz, K.C., “Design and Experimentation of a ‘Big Bearing’ Internal Geared 

Hypocycloid Air Compressor,” M.S. Thesis, University of Wisconsin-Madison, 
1987. 

 
A Combustion Correlation for Diesel Engine Simulation. N.Watson, A.D.Pilley & 

M.Marzouk. SAE 800029. 
 
Investigation of Internal Combustion Engine Problems. G.Eichelberg “Engineering Oct 

1939 Vol 148, 463 & 547” 
 
Heat Transfer in the Cylinder of Reciprocating Internal Combustion Engines. 

W.J.D.Annand (Proc.I.Mech.E 177.973 (1963)) 
 
American coalition for ethanol. (n.d.). Retrieved from 

http://ethanol.org/index.php?id=50&parentid=8 
 
U.S. Department of Energy, Energy Efficiency & Renewable Energy. (2013). Handbook 

for handling, storing, and dispensing e85 and other ethanol-gasoline blends. 
Retrieved from U.S. Department of Energy website: 
http://www.afdc.energy.gov/uploads/publication/ethanol_handbook.pdf 

 
Costa, R. C., & Sodre, J. R. (2010). Hydrous ethanol vs. gasoline-ethanol blend: Engine 

performance and emissions. Fuel, 89(2), 287-293. Retrieved from 
http://www.sciencedirect.com/science/article/pii/S0016236109002981 

 
Costa, R. C., & Sodre, J. R. (2010). Compression ratio effects on an ethanol/gasoline 

fuelled engine performance. Applied Thermal Engineering,21(2-3), 278-283. 
Retrieved from http://ac.els-cdn.com/S1359431110003947/1-s2.0-
S1359431110003947-main.pdf?_tid=7912e454-af24-11e3-9135-
00000aacb361&acdnat=1395205873_1452066f302a7ab8e1c47b99a6859ba3 



86 

 

 
Cahyono, B., & Bakar, R. A. (2010). Effect of ethanol addition in the combustion process 

during warm-ups and half open throttle on port-injection gasoline 
engine. American Journal of Engineering and Applied Sciences, 4(1), 66-69. doi: 
10.3844/ajeassp.2011.66.69 

 
Datta, A., Chowdhuri, A. K., & Mandal, B. K. (2012). Experimental study on the 

performances of spark ignition engine with alcohol-gasoline blends as 
fuel.International Journal of Energy Engineering,2(1), 22-27. 

 
Celik, M. B., & , (2007). Experimental determination of suitable ethanol–gasoline blend 

rate at high compression ratio for gasoline engine. Applied Thermal 
Engineering, 28(5-6), 396-404. doi: 10.1016/j.applthermaleng.2007.10.028 

 
Topgul, T., Yucesu, H. S., Cinar, C., & Koca, A. (2006). The effects of ethanol–unleaded 

gasoline blends and ignition timing on engine performance and exhaust 
emissions. Renewable Energy, 31(15), 2534-2542. Retrieved from 
http://www.sciencedirect.com/science/article/pii/S0960148106000401 

 
Kale. Theory of engine design. 
 
Lotus Cars Ltd. (2001). Getting Started Using Lotus Engine Simulation Ver 5.05. 

 
Zhai, H., Frey, H. C., Rouphail, N. M., Gonsalves, G. A., & Farias, T. L. (2007, 

June). Fuel consumption and emissions comparisons between ethanol 85 and 
gasoline fuels for flexible fuel vehicles. 100th annual meeting of the air & waste 
management association, Pittsburgh, PA. 

 
Menon, S. K. (2006). Performance measurement and scaling in small internal 

combustion engines.. (Master's thesis, University of Maryland). 
 
Menon, S. (2010). The scaling of performance and losses in miniature internal 

combustion engines.. (Doctoral dissertation, University of Maryland). 



87 

 

APPENDIX A 

COMMON LES SOFTWARE TEST CONDITIONS 
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Steady State Test Conditions 

Ambient Air Pressure (bar abs.) 1.01 

Ambient Air Temperature (C) 20 

Inlet Pressure (bar abs.) 1.01 

Inlet Temperature (C) 20 

Exit Pressure (bar abs.) 1.01 

Equivlance Ratio 1.1 

Specific Humidity 0.00 

 

 

 

 

Fuel 

Fuel System Carburettor Indirect Injection Direct Injected 

Fuel Type Gasoline Diesel Ethanol 

Calorific Value (kJ/kg) 43000 42700.00 28765 

Density (kg/liter) 0.75 0.84 0.782 

H/C Ratio Fuel (molar) 1.800 1.90 2.7177 

O/C Ratio Fuel (molar) 0.00 0.00 0.3951 

Molecular Mass (kg/k.mol) 114.23 170.00 46 

Maldistribution Factor 1.000 1.000 1.000 

Piston Motion (User Sub. Id No.) 
Slider Crank 1000 

Wiseman Engine 3000 
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APPENDIX B 

30 cc LES MODEL INPUT PARAMETERS 
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Intake 

Total length (mm) 10.00 

No. of Diameters 2 

Start diameter (mm) 6 

End diameter (mm) 6 

Pipe Volume (l) .0003 

Surface area (mm2) 1.8850e+002 

No. of meshes 2 

Wall thickness (mm) 1.000 

Cooling Type Air Cooled 

Temperature (C)  20 

Ext. HTC (W/m2/K) 20 

Wall material Aluminum 
 

Intake disk valve 

Disk valve option Standard 

Valve Dia. (mm) 120 

Port Dia. (mm) 10 

Valve open (deg) 24 

Valve Close (deg) 290 

Max Area CD Coeff 0.99 
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Inlet Variable Volume Plenum 

Equiv. Bore (mm) 35.94 

Equiv. Stroke (mm) 28.45 

Equiv. Rod Length (mm) 56.00 

Equiv Compression Ratio (PCR) 1.60 

TDC Angle (deg) 180 

Wall Temperature (C) 100 

Plenum HTC (W/m2/K) 5.00 

Speed Ratio 1.000 
 

Piston Ported Intake Valve 

Valve Option Standard 

Port Width (mm) 40.00 

Max. Port Height (mm) 2.00 

Stroke (mm) 28.45 

Rod Length (mm) 56.00 

Valve Open (deg) 124.00 

Max Area CD Coeff 0.900 
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Cylinder 

Bore (mm) 35.94 

Stroke (mm) 28.45 

Cyl Swept Volume (l) .02886 

Total Swept Volume (l) .02866 

Con-rod Length (mm) 56.00 

Pin Off-Set (mm) 0 

Compression Ratio 8 

Clearance Volume (l) .004123 

Phase (ATDC) 0.00 
 

Piston Ported Exhaust 

Port Width (mm) 20.82 

Max. Port Height (mm) 7.41 

Stroke (mm) 28.45 

Rod Length (mm) 56.00 

Valve Open (deg) 108.00 

Max Area CD Coeff 0.900 
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Exhaust pipe 

Total Length (mm) 30.00 

No. of diameters 2 

Start diameter (mm) 11.00 

End Diameter (mm) 11.00 

Pipe Volume (l) .0029 

Surface Area (mm2) 1.0367e+003 

No. of Meshes 2 

Wall Thickness (mm) 1.000 

Cooling Type Air Cooled 

Temperature (C) 20.00 

Ext. HTC (W/m2/K) 20.00 

Wall Material Aluminum 
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APPENDIX C 

30 cc DIESEL LES MODEL INPUT PARAMETERS 
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Intake area to plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 28.33 

Equivalent Diameter (mm) 3.006 
 

Single intake plenum 

Volumt (litres) 0.0289 

Surface Area (mm2) 4.5503e+003 

Wall Temperature (oC) 20.00 

Plenum HTC (W/m2/K) 0.00 
 

Intake port 

No. of Valves 1 

Valve Throat Dia (mm) 17.236 

Port Type User Curve (common) 
 

Intake Valve 

Valve Open (deg) 12.00 

Valve Close (deg) 58.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 5.602 

MOP (deg) 113.00 

Lift Option User Specified Valve Lift 

Data Action Scale 
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Cylinder 

Bore (mm) 35.94 

Stroke (mm) 28.45 

Cyl. Swept Volume (l) 0.02886 

Total Swept Volume (l) 0.02886 

Con-rod Length (mm) 56 

Pin Off-set (mm) 0.00 

Compression Ratio 17 

Clearance Volume (l) 0.001804 
 

Exhaust Valve 

Valve Open (deg) 58.00 

Valve Close (deg) 12.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 5.602 

MOP (deg) -113.00 

Lift Option User Specified Valve Lift 

Data Action Scale 
 

Exhaust port 

No. of Valves 1 

Valve Throat Dia (mm) 14.421 

Port Type User Curve (common) 
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Single exhaust plenum 

Volumt (litres) 0.0115 

Surface Area (mm2) 2.4703e+003 

Wall Temperature (oC) 500.00 

Plenum HTC (W/m2/K) 0.00 
 

Exit area from plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 26.59 

Equivalent Diameter (mm) 5.819 
 



98 

 

APPENDIX D 

GUNT LES MODEL INPUT PARAMETERS 

  



99 

 

Intake area to plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 178.07 

Equivalent Diameter (mm) 15.057 
 

Single intake plenum 

Volumt (litres) 0.3486 

Surface Area (mm2) 2.3872e+004 

Wall Temperature (oC) 25 

Plenum HTC (W/m2/K) 0.00 
 

Intake port 

No. of Valves 1 

Valve Throat Dia (mm) 19 

Port Type User Curve (common) 
 

Intake Valve 

Valve Open (deg) 49.00 

Valve Close (deg) 74.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625 

MOP (deg) 102.48 

Lift Option Slow Lift Polynomial 
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Cylinder 

Bore (mm) 80.00 

Stroke (mm) 69.00 

Cyl. Swept Volume (l) 0.34683 

Total Swept Volume (l) 0.34683 

Con-rod Length (mm) 103.00 

Pin Off-set (mm) 0.00 

Compression Ratio 21.50 

Clearance Volume (l) 0.016919 
 

Exhaust Valve 

Valve Open (deg) 76.00 

Valve Close (deg) 39.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625 

MOP (deg) -108.52 

Lift Option Slow Lift Polynomial 
 

Exhaust port 

No. of Valves 1 

Valve Throat Dia (mm) 19.10 

Port Type User Curve (common) 
 

Single exhaust plenum 

Volumt (litres) 0.1387 

Surface Area (mm2) 1.2960e+004 

Wall Temperature (oC) 500.00 

Plenum HTC (W/m2/K) 0.00 
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Exit area from plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 164.34 

Equivalent Diameter (mm) 14.465 
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APPENDIX E 

10 HP/ 20 HP/ 30 HP GASOLINE AND ETHANOL MODEL INPUT 

PARAMETERS 
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Intake area to plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 224.36/ 448.71/ 673.07 

Equivalent Diameter (mm) 16.902/ 23.902/ 29.274 
 

Single intake plenum 

Volumt (litres) 0.80/ 1.60/ 2.40 

Surface Area (mm2) 4.1675e+004/ 6.6155e+004/ 8.6688e+004 

Wall Temperature (oC) 20/ 20/ 20 

Plenum HTC (W/m2/K) 0.00 
 

Intake port 

No. of Valves 1 

Valve Throat Dia (mm) 26/ 40.504/ 53.00 

Port Type Default Poor Port 
 

Intake Valve 

Valve Open (deg) 12.00/ 12.00/ 12.00 

Valve Close (deg) 58.00/ 58.00/ 58.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625/ 9.625/ 9.625 

MOP (deg) 113.00/ 113.00/ 113.00 

Lift Option Fast Lift Polynomial 
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Cylinder 

Bore (mm) 94.67/ 119.44/ 134.87 

Stroke (mm) 113.64/ 142.80/ 168.00 

Cyl. Swept Volume (l) 0.79992/ 1.59999/ 2.40010 

Total Swept Volume (l) 0.79992/ 1.59999/ 2.40010 

Con-rod Length (mm) 170.46/ 214.20/ 252.00 

Pin Off-set (mm) 0.00 

Compression Ratio 8 (Gas) & 13 (Ethanol) 

Clearance Volume (l) 0.114274/ 0.228570/ 0.342872 
 

Exhaust Valve 

Valve Open (deg) 58.00/ 58.00/ 58.00 

Valve Close (deg) 12.00/ 12.00/ 12.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625/ 9.625/ 9.625 

MOP (deg) -113.00/ -113.00/ -113.00 

Lift Option Fast Lift Polynomial 
 

Exhaust port 

No. of Valves 1 

Valve Throat Dia (mm) 22.00/ 33.888/ 42.00  

Port Type Default Poor Port 
 

Single exhaust plenum 

Volumt (litres) 0.32/ 0.64/ 0.96 

Surface Area (mm2) 2.2625e+004/ 3.5915e+004/ 4.7061e+004  

Wall Temperature (oC) 500.00/ 500.00/ 500.00 

Plenum HTC (W/m2/K) 0.00 



105 

 

Exit area from plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 210.59/ 421.19/ 631.78 

Equivalent Diameter (mm) 16.375/ 23.158/ 28.362 
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APPENDIX F 

10 HP/ 20 HP/ 30 HP DIESEL MODEL INPUT PARAMETERS 
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Intake area to plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 224.36/ 448.71/ 673.07 

Equivalent Diameter (mm) 16.902/ 23.902/ 29.274 
 

Single intake plenum 

Volumt (litres) 0.80/ 1.60/ 2.40 

Surface Area (mm2) 4.1675e+004/ 6.6155e+004/ 8.6688e+004 

Wall Temperature (oC) 20/ 20/ 20 

Plenum HTC (W/m2/K) 0.00 
 

Intake port 

No. of Valves 1 

Valve Throat Dia (mm) 24/ 34.00/ 41.00 

Port Type Default Poor Port 
 

Intake Valve 

Valve Open (deg) 12.00/ 12.00/ 12.00 

Valve Close (deg) 58.00/ 58.00/ 58.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625/ 9.625/ 9.625 

MOP (deg) 113.00/ 113.00/ 113.00 

Lift Option Fast Lift Polynomial 
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Cylinder 

Bore (mm) 93.41/ 117.70/ 134.73 

Stroke (mm) 116.75/ 147.06/ 168.35 

Cyl. Swept Volume (l) 0.80008/ 1.60006/ 2.40011 

Total Swept Volume (l) 0.80008/ 1.60006/ 2.40011 

Con-rod Length (mm) 175.13/ 220.59/ 252.53 

Pin Off-set (mm) 0.00 

Compression Ratio 16 

Clearance Volume (l) 0.053339/ 0.106671/ 0.160008 
 

Exhaust Valve 

Valve Open (deg) 58.00/ 58.00/ 58.00 

Valve Close (deg) 12.00/ 12.00/ 12.00 

Dwell at Max (deg) 0.0 

Max Lift (mm) 9.625/ 9.625/ 9.625 

MOP (deg) -113.00/ -113.00/ -113.00 

Lift Option Fast Lift Polynomial 
 

Exhaust port 

No. of Valves 1 

Valve Throat Dia (mm) 20.00/ 33.00/ 41.00  

Port Type Default Poor Port 
 

Single exhaust plenum 

Volumt (litres) 0.32/ 0.64/ 0.96 

Surface Area (mm2) 2.2625e+004/ 3.5915e+004/ 4.7061e+004  

Wall Temperature (oC) 500.00/ 500.00/ 500.00 

Plenum HTC (W/m2/K) 0.00 
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Exit area from plenum 

Throttle Type Simple Area 

Discharge Data Type CF Fixed Value 

Discharge Directionality Common 

Discharge CF 1.00 

Minimum C.S.A (mm2) 210.59/ 421.19/ 631.78 

Equivalent Diameter (mm) 16.375/ 23.158/ 28.362 
 


