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ABSTRACT

As the size and scope of valuable datasets has exploded across many industries and

fields of research in recent years, an increasingly diverse audience has sought out

effective tools for their large-scale data analytics needs. Over this period, machine

learning researchers have also been very prolific in designing improved algorithms

which are capable of finding the hidden structure within these datasets. As con-

sumers of popular Big Data frameworks have sought to apply and benefit from these

improved learning algorithms, the problems encountered with the frameworks have

motivated a new generation of Big Data tools to address the shortcomings of the

previous generation. One important example of this is the improved performance in

the newer tools with the large class of machine learning algorithms which are highly

iterative in nature.

In this thesis project, I set about to implement a low-rank matrix completion

algorithm (as an example of a highly iterative algorithm) within a popular Big Data

framework, and to evaluate its performance processing the Netflix Prize dataset. I

begin by describing several approaches which I attempted, but which did not perform

adequately. These include an implementation of the Singular Value Thresholding

(SVT) algorithm within the Apache Mahout framework, which runs on top of the

Apache Hadoop MapReduce engine.

I then describe an approach which uses the Divide-Factor-Combine (DFC) algo-

rithmic framework to parallelize the state-of-the-art low-rank completion algorithm

Orthogoal Rank-One Matrix Pursuit (OR1MP) within the Apache Spark engine. I

describe the results of a series of tests running this implementation with the Netflix

dataset on clusters of various sizes, with various degrees of parallelism. For these

experiments, I utilized the Amazon Elastic Compute Cloud (EC2) web service.
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In the final analysis, I conclude that the Spark DFC + OR1MP implementa-

tion does indeed produce competitive results, in both accuracy and performance. In

particular, the Spark implementation performs nearly as well as the MATLAB imple-

mentation of OR1MP without any parallelism, and improves performance to a sig-

nificant degree as the parallelism increases. In addition, the experience demonstrates

how Spark’s flexibile programming model makes it straightforward to implement this

parallel and iterative machine learning algorithm.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

In recent years, machine learning algorithms have found increasing application

in a wide range of business and research contexts. Business applications range from

eCommerce-enabled companies seeking to engage more effectively with their cus-

tomers, to product companies seeking to build products which utilize learning mech-

anisms or intelligent processing of information. Research applications include any

field seeking to discover order or structure in large volumes of data, ranging from

medical research, to studies of internet activity, to the physical, bioinformatical, en-

vironmental, or sociological sciences.

As increasingly diverse audiences become interested in leveraging machine learning

algorithms, it becomes important to consider the frameworks and tools to make these

algorithms more easily applied. Many technology companies are currently engaged

in building solutions to meet the demands of Big Data. These tools aim to make

it easier to process very large datasets which are especially challenging to deal with

using more traditional data analysis tools.

Modern machine learning researchers will spend most of their time using tools

which are not well-suited for Big Data applications in non-academic environments. An

indispensible tool for conducting machine learning research is one of several popular

numerical computational packages (e.g. MATLAB [1], R [2], or Octave [3]) running

on a desktop PC. Unfortunately, this toolset does not easily scale to handle large

datasets, nor does it try to address any of the operational concerns around managing
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and processing Big Data which are critical for a business context. Researchers who

are dealing with larger datasets will usually incorporate high performance computing

(HPC) systems and tools. However, these systems are usually quite expensive and are

tailored to academic researchers, making them unlikely to appear in more mainstream

technology business contexts.

Several open source frameworks have emerged over the last decade from large

internet companies to meet the demand for Big Data tools. By far the most well-

known of these frameworks is Apache Hadoop [4], which was originated in 2005 by

Doug Cutting, a software engineer working at Yahoo! at the time. This framework

was inspired by a seminal paper from Google titled “MapReduce: Simplified Data

Processing on Large Clusters” [5], which describes an approach to processing Big

Data used by Google. Part of Hadoop’s appeal is that it is an open source project,

and can be deployed on commodity hardware – even in conjunction with the read-

ily available and low cost cloud computing services, such as Amazon Web Services

(AWS) [6] – making it economically and technically accessible to a wide audience. A

large ecosystem of related tools has grown up around Hadoop’s popularity, and many

companies today are forming and evolving their Big Data business strategies around

this ecosystem. One such related tool which I will discuss in this paper is Apache

Mahout [7], whose stated goal is to build a library of machine learning algorithms on

top of Hadoop.

As companies have developed experience with the MapReduce paradigm and

Hadoop, a new generation of Big Data tools has emerged to address some of the

weak points many users of these tools have encountered. One particular weak point

which I will discuss in this paper is the challenges Mahout/Hadoop has with han-

dling the highly iterative aspects of many machine learning algorithms, as well as
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some of the more computationally intensive linear algebra operations which are quite

common, such as singular value decomposition (SVD).

Apache Spark [8], coming out of UC Berkeley, is one of the newer frameworks

to emerge. Spark boasts a 10- to 100-fold performance increase over Hadoop for

certain algorithms (primarily by caching active datasets in memory for repeated access

throughout the duration of the program), along with a more flexible computational

framework that can support MapReduce style programs as well as other approaches,

side-by-side.

An example of a class of machine learning algorithms which is challenging to imple-

ment in a Big Data context is that of low rank matrix completion. Matrix completion

involves reconstructing missing elements of a matrix, based on a set of observed and

possibly noisy matrix entries. Matrix completion finds application in a wide variety of

contexts, including recommendation engines (e.g. Amazon.com or Netflix recommen-

dation lists) and image reconstuction. Matrix completion algorithms are challenging

for Big Data because they are highly iterative, and can involve repeated factorization

of large matrices.

1.2 Overview of Research Project

In this paper, I will discuss my various attempts to implement a matrix completion

algorithm in a popular Big Data framework. My initial attempt was to implement

the Singular Value Thresholding (SVT) algorithm [9] within Apache Mahout. This

approach ultimately proved to be much too slow for practical use, primarily as a

result of overhead imposed by the underlying Hadoop framework.

My second attempt was to implement a very recent matrix completion algorithm,

Orthogonal Rank-One Matrix Pursuit (OR1MP) [10], developed by Zheng Wang and

other machine learning researchers at Arizona State University (ASU). This algorithm
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extends the orthogonal matching pursuit method used in signal recovery problems

from the vector case to the matrix case. OR1MP improves on other matrix completion

algorithms by decreasing both time and storage complexity, in large part by relying on

a method for producing a matrix factorization incrementally, rather than computing

a full SVD outright.

My first attempt at implementing OR1MP was to use the Spark framework, and

to distribute my linear algebra operations over the cluster by using the Spark frame-

work’s Resilient Distributed Dataset (RDD) operations. While this proved to be

much more performant than the Mahout implementation of SVT, it was still much

slower than desirable.

My second attempt at implementing OR1MP on Spark leveraged the additional

Divide-Factor-Combine (DFC) [11] algorithmic framework, developed by machine

learning researchers at UC Berkely. This framework implements large matrix fac-

torization by first partitioning the matrix (e.g. by columns), factoring each of the

submatrices, and then combining the results into the final factorization. Thanks to the

flexibility of the Spark framework, I was able to implement this non-MapReduce algo-

rithm on Spark, while still leveraging its benefits of cluster management, distributed

task management, data caching, operational manageability, etc. In addition, as Spark

is designed to work well within a cloud computing environment, I was able to conduct

testing at different scales by running Spark on top of AWS.

As the Spark DFC + OR1MP imlementation ultimately proved to be the most

successful, I describe the particulars of this implementation in some detail below. Em-

pirical results are provided from test runs over the Netflix Prize dataset [12] on various

cluster sizes using AWS. The performance of the Spark OR1MP algorithm proved to

perform nearly as well as the native MATLAB implementation on small datasets

without any use of parallelization. By leveraging the DFC approach to parallize
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the computations, the Spark implementation matched or surpassed MATLAB per-

formance with no parallelization and achieved significant performance improvements

through increased parallelization - all while achieving similar prediction accuracy.
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Chapter 2

RELATED WORK

2.1 Overview of Related Work

The challenges of Big Data analysis are currently generating tremendous attention,

with many new systems and solutions emerging every year, originating from both

university research and industry.

For the purposes of comparing this research project to the related work in the

field, it may be helpful to consider several categories of related work:

1. Large-scale matrix factorization using Stochastic Gradient Descent

2. Graph-oriented approaches

3. Other work to improve performance with in-memory caching

4. Related work within the Hadoop ecosystem and Berkeley Data Analytics Stack

The following sections describe related work in these categories, and contrast the

purposes and approach of this research project to clarify the unique contributions of

my work.

2.2 Large-scale Matrix Factorization Using Stochastic Gradient Descent

One approach to large-scale matrix factorization that has received considerable

attention over recent years is that of distributed variations of Stochastic Gradient

Descent (SGD).
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For example, HogWild! [13] was proposed in 2011 as an approach to parallelizing

SGD in a shared memory system by removing memory locking to increase perfor-

mance, while establishing that if the problem is sparse that their approach achieves

a good rate of convergence.

DSGD [14] is a method proposed in 2011 for large-scale matrix factorization using

a “stratified” SGD variant. The researchers study the performance of their approach

on both an R-based cluster, and a Hadoop cluster.

FPSGD [15] is another method proposed in late 2013 for shared memory systems

which claims to improve upon HogWild and DSGD.

Sparkler [16] is another effort that attempts to improve upon the performance

of distributed SGD by leveraging Spark’s benefits. Sparkler’s unique contribution

involves augmenting Spark to include a new framework construct called “Cluster

Maps” in order to achieve it’s performance goals. The motivation of the Cluster Map

abstraction is to more effeciently store large matrices in the aggregate memory of a

cluster, and support the operations supported on them during SGD.

My research project is distinct from these other efforts in the following ways:

1. These other efforts all focus on a parallel version of the SGD algorithm. Here,

we focus on implementing a different approach to low-rank matrix completion,

namely DFC with OR1MP.

2. Not all of this research aims to try to apply the algorithms in the context of

a main stream Big Data framework. Those that do primarily consider only

MapReduce and Hadoop, and encounter some of the limitations. This project

aims to leverage the more recent Spark project to improve upon the performance

of Hadoop for iterative algorithms.
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3. While Sparkler is one example that does try to leverage Spark, it does so by

augmenting Spark in order to optimize the operations during SGD. This project

attempts to implement a different algorithm (DFC + OR1MP) without modi-

fying the core of Spark.

2.3 Graph-Oriented Approaches

Another very popular subtopic within large-scale machine learning is that of graph

processing. Many large-scale learning problems in industry today can be expressed

most naturally using a graph representation.

Google has written about Pregel [17], which is their proprietary graph processing

engine that scales to billions of vertices and edges.

Apache Giraph [18] is an open source graph engine inspired by Pregel which is in

use at Facebook. Facebook is purported to have scaled Giraph to more than a trillion

edges.

GraphLab [19] is another well-known and mature open source graph processing

engine, which originated out of Carnegie Mellon University in 2009.

While graph processing (sometimes called “graph-parallel” computation) is clearly

an important and successful subfield of large-scale Big Data processing, most frame-

works use a different processing model (i.e. Bulk Synchronous Parallel, or BSP [20]),

requiring algorithms to be programmed within that model.

For the purposes of this research project, I will not investigate the area of “graph-

parallel” handling of large-scale data, but instead will focus on scaling “data-parallel”

models, which is a way to describe the parallelization of the familiar matrix-based

operations used by most numerical processing frameworks, such as MATLAB and R.

It should be noted that the Berkeley Data Analytics Stack (BDAS) [21], which

includes Spark, also includes GraphX as a higher level of abstraction on top of Spark.
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GraphX aims to distinguish itself in the area of graph engines by uniting the “graph-

parallel” and the “data-parallel” representations, as well as by integrating with and

leveraging the fault-tolerance capabilities of the larger BDAS stack. GraphX is still

in development.

2.4 Other Work to Improve Performance via In-Memory Caching

One of the key ways in which Spark is able to signficantly improve upon Hadoop

MapReduce when it comes to iterative machine learning algorithms is by its approach

to in-memory caching. The resilient distributed dataset (RDD) abstraction allows

Spark programs to be written which repeatedly access the working data in memory

across multiple iterations, without requiring the data to be re-loaded from disk.

Other systems launched recently in the Big Data area also aim to improve query

performance by better leveraging in-memory caching strategies.

For example, Impala [22] is described as a massively parallel processing (MPP)

SQL query engine which allows users to interactively query data stored in HDFS or

HBase, at 10-100x improved performance over Apache Hive.

Presto [23] is another open source SQL query engine built by Facebook with a

similar purpose.

While these systems could provide the foundation for improved performance of

iterative machine learning algorithms accessing data within HDFS, I do not focus on

these systems in this paper, as they do not currently have any explicit focus on or

library support for machine learning algorithms.

2.5 Related Work Within the Hadoop Ecosystem and BDAS

Mahout [7] is one of the more well-known machine learning projects built on top of

Hadoop. Mahout has implemented a variety of different algorithms, primarily around
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recommendation mining, clustering, and classification. Mahout includes a single-

threaded implementation of SGD, but not yet a parallelized version. As mentioned

above, I did initially spend considerable effort attempting to use Mahout to implement

a low-rank matrix completion algorithm, namely Singular Value Thresholding (SVT)

[9]. Mahout has already implemented a couple of SVD implementations which I

attempted to modify for use with the SVT algorithm. However, after experiencing

challenges with the performance constraints of the underlying Hadoop MapReduce

framework, I turned my attention towards Spark.

MLbase [24] is a project within the BDAS that is currently in development which

aims to provide a simple-to-use interface for machine learning users, on top of Spark.

MLbase consists of several layers of increasing programming abstraction, up to the

“ML Optimizer” layer, which aims to automate the task of model selection for users.

Currently, the lower-level “MLLib” library is a growing collection of machine learning

algorithms written against the Spark runtime. Currently, MLLib does not have an

implementation of a low-rank matrix completion algorithm other than SGD, and may

be interested in including some of the results of this research project.
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Chapter 3

MAPREDUCE, HADOOP AND MAHOUT

3.1 Overview of MapReduce and Apache Hadoop

Over the last decade, MapReduce has been one of the most prominent approaches

to processing large-scale data in Internet companies. This processing paradigm was

formally described in a paper published by Google Research in 2004 [5].

As described in the Google paper, two distinct phases comprise a MapReduce

program: map, and reduce. Input data is sent to the user-provided map routine as a

list of key/value pairs. The map phase transforms the key/value input into a list of

intermediate key/value pairs. This intermediate data is sorted and aggregated, such

that for every unique key there is a sorted list of unique values, and is then fed into

the user-provided reduce routine, which in turn outputs another list of values. The

conceptual type signatures of the map and reduce phase are as follows:

map (k1, v1) −→ list (k2, v2)

reduce (k2, list (v2)) −→ list (v3)

MapReduce programs can consist of a single map and reduce pass over the data,

or a chain of programs taking multiple passes over the data.

A MapReduce execution engine will do the job of feeding different chunks (aka

“splits”) of the input data to multiple instances of the user-provided map routine in

parallel, usually distributed across multiple networked servers. The engine will then

sort and aggregate the mappers’ output, and feed this intermediate data into one

or more instances of the user-provided reduce routine. In addition, the execution
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engine will handle operational concerns, such as ensuring that slow or failed map or

reduce instances are dealt with or restarted. Figure 3.1 shows the high-level flow of

the system.

map

map

map

split 1

split 2

reduce

reduce

Input Data

split 3

split 4

(k1
,v1

)

(k2,v2)

(s
or

t a
nd

 a
gg

re
ga

te
)

(k2, list(v2))

file 1

file 2

Output Data(k3,v3)

Figure 3.1: MapReduce Flow

While the semantics of MapReduce are quite simple, many data processing al-

gorithms can be expressed as a series of MapReduce programs. Since there is no

interaction between the different map instances, a MapReduce program can be easily

scaled out to process very large datasets with a high degree of parallelism. In addition,

the “shared nothing” approach to parallelism makes it possible to run MapReduce

on a collection of networked commodity servers, which can be a very cost-effective

alternative to traditional HPC clusters with high-speed interconnects and a shared

clustered file system, or expensive “scaled-up” RDBMS servers.

Inspired by the Google MapReduce paper, the Hadoop project [4] was created by

Doug Cutting in 2005 while at Yahoo!. Originally, Hadoop consisted of two main

elements: Hadoop Distributed File System (HDFS), a distributed filesystem inspired

by another paper by Google on their Google File System (GFS) [25], and a MapRe-

duce engine. In recent years, Hadoop has grown into an ecosystem with many related

projects, including Apache Hive [26] (a SQL-like interface for data warehouse capa-

bilities), and Apache HBase [27] (a NoSQL database that runs on top of HDFS).
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With MapReduce at it’s core, Hadoop is best suited for a batch-oriented processing

model. A typical workflow for a Hadoop job is to identify splits in input data stored

in HDFS (or another data source), instantiate mappers on servers close to the data,

feed the data into the mappers, write the output of the map tasks to local storage

(potentially multiple times, if the map output is large and needs to be buffered to

disk), sort the map output across the network to the server where the reduce tasks are

running, and finally write the reduce task output back into HDFS. In the case that

a data analysis routine consists of multiple MapReduce jobs chained together, this

same pattern – including the repeated disk access – is repeated for every MapReduce

job, since there is by default no mechanism to manage in-memory caching of data

across multiple jobs. Note that this design is integral to the framework’s approach to

its “embarassingly parallel” method of scaling-out, and is also key to it’s operational

resiliency, in that this allows for restarting individual map or reduce tasks without

having to restart the entire job. However, as is discussed more thoroughly below, these

aspects of its design are also some of the reasons as to why Hadoop has struggled to

perform iterative machine learning algorithms with adequate performance.

Partially in response to some of these concerns, Hadoop has recently attempted

to re-position itself as a more generic framework for managing distributed comput-

ing. For example, in addition to the traditional MapReduce model, Hadoop now

includes a more generic scheduling component (YARN) [28] which can coordinate

both MapReduce and non-MapReduce applications on the same cluster (e.g. sharing

the same data stored in HDFS or HBase). In particular, this allows both MapReduce

and Spark applications to run side-by-side on the same cluster; Spark is discussed

more in the next chapter.
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3.2 Implementing Singular Value Thresholding with Apache Mahout

Apache Mahout [7] is a project built on top of Hadoop which aims to provide

a library of machine learning algorithms suitable for large-scale applications. For

example, Mahout includes algorithms for clustering, classification and collaborative

filtering. While Mahout does include some algorithms which are not distrubuted,

it’s raison d’etre is to perform distributed machine learning algorithms using large-

scale data stored in HDFS (or another HDFS-compatible data source) via a series of

map-reduce jobs.

For the purpose of this research project, namely to implement a large-scale version

of a matrix completion algorithm on top of a popular Big Data framework, Apache

Mahout initially appeared to fit the bill perfectly. I selected Singular Value Thresh-

olding (SVT) [9] as the algorithm to implement within the Mahout framework, as

SVT is one of the most well-known methods for performing matrix completion. The

SVT algorithm is shown in pseudo-code in Algorithm 3.1.

While there has been considerable research on the method of Stochastic Gradient

Descent in a large-scale data context [13–16] , I have not seen much, if any discussion

about implementing an algorithm like SVT at scale. This is likely because there is

a common recognition that the Singular Value Decomposition (SVD) that occurs in

step 6 is very slow and computationally expensive for large matrices. However, while

implementing a distrubuted SVD from scratch would be a major endeavor in itself,

Mahout fortunately already has two implementations for a distributed SVD as a part

of its library of algorithms: a Distributed Lanczos version, and a stochastic approach

called SSVD. In addition, only a truncated SVD is required by SVT, rather than a

full SVD. Therefore, I determined to evaluate whether use of these distributed SVD

implementations could support a workable version of large-scale SVT.
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Algorithm 3.1 Singular Value Thresholding (SVT)

Input: sampled set Ω and sampled entries PΩ(M), step size δ, tolerance ε,
parameter τ , increment l, and maximum iteration count kmax

Output: Xopt

Description: Recover a low-rank matrix M from a subset of sampled entries

1: Set Y 0 = k0 δ PΩ(M )
2: Set r0 = 0
3: for k = 1 to kmax do
4: Set sk = rk−1 + 1
5: repeat
6: Compute [U k−1,Σk−1,V k−1]sk
7: Set sk = sk + l
8: until σk−1

sk−l ≤ τ

9: Set rk = max{j : σk−1
j > τ}

10: Set Xk =
∑rk

j=1(σk−1
j − τ)uk−1

j vk−1
j

11: if
∥∥PΩ(Xk −M )

∥∥
F
/ ‖PΩ(M)‖F ≤ ε then

12: break
13: end if
14: end for
15: Set Xopt = Xk

After implementing the full SVT algorithm within Mahout, I tested it on the

large scale Netflix dataset [12]. I used the Cloudera distribution of Hadoop [29],

which makes it straightforward to deploy Hadoop and Mahout on top of a cluster

of AWS servers. Unforunately, the performance of this implementation was at least

an order of magnitude too slow. While the SVT algorithm might expect to converge

within tens to hundreds of iterations on the Netflix dataset, each iteration of my

Mahout-based SVT would execute in about 45 minutes. At this rate, it would require

days or longer to run the entire SVT algorithm to completion. Even after many

attempts at trying to improve the performance by tweaking the code, trying both

SVD implementations, tuning the Hadoop cluster, and throwing hardware at the

problem (i.e. adding servers to the cluster, using larger servers, etc.). I was not able

to significantly improve the performance.
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Through performance tracing and debugging, it because clear that the perfor-

mance of the Mahout-based SVT implementation was bound by the performance of

the underlying MapReduce engine. With each iteration of SVT, multiple Hadoop

jobs were required, each of which had to take a separate pass over the entire dataset.

Even though an increased degree of parallelism could speed this up, each pass over the

data required multiple rounds of reading and writing the data (e.g. when buffering

the map output to disk, prior to sorting it for input to the reducers) to disk. These

performance constraints were seemingly insurmountable within the current Hadoop

MapReduce paradigm.

As a result of these challenges, I ultimately decided to back up and consider

another approach. Fortunately, others trying to use Hadoop and MapReduce for iter-

ative machine learning algorithms had encountered the same problem, and had begun

work on alternative frameworks. SVT was perhaps not a good fit for MapReduce and

Mahout, but might still work well within a different Big Data framework.
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Chapter 4

SPARK AND OR1MP

4.1 Apache Spark

Apache Spark [8] is a newer open-source Big Data framework originally developed

at UC Berkely. Over the last few years, Spark has developed from a fledgling research

project in the AMPLab at UC Berkeley [30] to being used in production environments

by large and well-known technology companies, including Yahoo! and Intel. In early

2014, Spark graduated to a top-level Apache project. Spark is a core component of the

Berkeley Data Analytics Stack (BDAS) [21], which includes a variety of other related

projects in various stages of development: Shark (a SQL-like API) [31], GraphX

(Graph computation) [32], MLbase (a library of machine learning algorithms) [24],

Tachyon (an in-memory file system) [33], and Mesos (a scheduler) [34] to name a few.

A diagram of the BDAS ecosystem from their website is shown in Figure 4.1.

Spark is nicely compatible with the Hadoop ecosystem, in that it integrates closely

with HDFS. While it can run stand-alone, it also works well side-by-side with Hadoop

MapReduce programs via the newer Hadoop scheduler YARN (although BDAS also

includes a competing cluster scheduler, Mesos). Like Hadoop, Spark is built to work

well with clusters of commodity servers with inexpensive locally attached storage.

This makes it possible for companies with existing Hadoop installations to try out

Spark quite easily, which may significantly increase the rate of Spark adoption.

Spark presents a programmatic interface that is able to support the same MapRe-

duce, “embarassingly parallel” approach that Hadoop supports, but also supports

other non-MapReduce semantics, while preserving the same benefits of scalability
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Figure 4.1: Berkeley Data Analytics Stack

and fault-tolerance. It’s central abstraction is called a Resilient Distributed Dataset

(RDD) [35]. To the programmer writing a Spark application, an RDD looks like a

simple collection of objects, to which operations can be applied to create a resultant

RDD. A subset of the RDD operations currently available in Spark is decribed in

Table 4.1.

The Spark framework is responsible for partitioning the elements of the RDD

across the compute cluster, where they typically reside in active memory, and for

managing the execution of the operations applied to the RDDs. Spark manages

fault-tolerance by tracking the lineage of each RDD created in the course of a Spark

program. In the case that one of the machines fail, the lineage information is sufficient

to recreate elsewhere the RDD partitions which were resident on that machine.
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Operation Description

map(f : T ⇒ U) Transforms RDD of type T (i.e. RDD[T ]) to RDD[U ]

filter(f : T ⇒ Bool) Filters RDD[T ] to RDD[T ] based on function f

groupByKey() Acts on RDD[(K,V )] to produce RDD[(K,Seq[V ])]

join() RDD[(K,V )] joins RDD[(K,W )] ⇒ RDD[(K, (V,W ))]

count() Returns count of records in RDD to the driver client

collect() Collects values in RDD of type T to driver into Seq[T ]

Table 4.1: Spark RDD Operations

A typical Spark program will begin by creating a first RDD based on some data

source, e.g. data within HDFS. In terms of the execution environment, the main Spark

“driver” process will at this point maintain a reference to the various RDD partitions

now distributed in memory across the machines in the cluster. As the Spark program

continues, it will execute a series of operations, each of which acts on the existing

RDDs, and produces resultant RDDs. Some of these operations (e.g. map, reduce)

will operate within the context of each machine, manipulating the RDD partition

on that machine to produce a newer partition of the resultant RDD, still resident in

memory of the same machine. Others of these operations (e.g. join, group-by) result

in cross-network interactions, to combine portions of RDDs across machines. Still

other operations (e.g. collect, broadcast) involve the “driver” process collecting data

from the RDDs back to itself, or sending some data out to the RDDs for use in an

operation.

Note that because the RDDs remain resident in the collective memory across the

cluster (as much as possible), it is possible to write a Spark program to implement

an iterative algorithm which repeatedly accesses and manipulates the working data
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Algorithm 4.1 Orthogonal Rank-One Matrix Pursuit (OR1MP)

Input: Y Ω and stopping criterion.
Initialize: Set X0 = 0,θ0 = 0 and k = 1.

repeat
Step 1: Find a pair of top left and right singular vectors (uk,vk) of the
observed residual matrix Rk = Y Ω −Xk−1 and set M k = uk(vk)T .
Step 2: Compute the weight θk using the closed form least squares solu-

tion θk = (M̄
T
k M̄ k)−1M̄

T
k ẏ.

Step 3: Set Xk =
∑k

i=1 θ
k
i (M i)Ω and k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i M i.

set strictly within memory, and avoids the Hadoop penalty of needing to re-load data

from disk with every pass over the data. Primarily as a result of this design, it has

been reported that iterative algorithms can perform 10-100x faster when implemented

on Spark vs Hadoop.

4.2 Orthogonal Rank-One Pursuit

As I was experiencing first-hand the performance issues Hadoop has with iterative

machine learning algorithms, I came across the Spark framework as a more promising

approach and decided to pursue using it rather than Mahout. At about the same time,

I learned of another state-of-the-art matrix completion algorithm called Orthogonal

Rank-One Pursuit being developed at Arizona State University [10]. The OR1MP

algorithm is depicted in pseudo-code in Algorithm 4.1.

Unlike SVT, OR1MP does not need to iteratively compute a truncated SVD.

Instead, it takes two main steps in each iteration: it computes the top singular vector

pair (e.g. via power method), and then it refines a series of weights for combining these

singular vector pairs by using a closed form least squares solution. The OR1MP paper
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shows results of tests against the Netflix and MovieLens datasets which demonstrate

that the method is one of, if not the, best performing method in the literature.

Spark and OR1MP appear to be an excellent combination: whereas Spark is

establishing itself as the best-of-breed framework for implementing machine learn-

ing algorithms at large-scale, OR1MP is state-of-the-art amongst matrix completion

algorithms in terms of efficiency and performance. Therefore, I determined that I

would also switch gears away from implementing SVT on Hadoop and instead pursue

implementing OR1MP on Spark.

4.3 Implementing OR1MP with Spark RDDs

My first approach to implementing OR1MP on Spark was to represent my input

matrix as an RDD, loaded into distributed memory across the cluster, and to then

leverage the RDD abstraction to implement the linear algebra operations in OR1MP.

One of the implementation approaches I tried was to store both a column and a

row representation of my input matrix as RDDs. To see why, Listing 4.1 shows a

snippet of the MATLAB implementation of OR1MP:

1 function [u, s, v] = topsvd(A, round)
2 stopeps = 1e-3;
3 [m, n] = size(A);
4 u = ones(m,1);
5 vo = 0;
6 for i=1:round
7 v = u’*A/(norm(u))^2;
8 u = A*v’/(norm(v))^2;
9 if norm(v-vo) < stopeps break end

10 vo = v;
11 end
12 u = u/norm(u);
13 v = v’/norm(v);
14 s = norm(u)*norm(v);

Listing 4.1: MATLAB topsvd() Function

21



To efficiently implement this as a distributed routine within Spark, where the

input matrix is distributed across the cluster as an RDD, I needed to consider how to

implement the iterative vector-to-matrix multiplication. On one hand, if I represented

the input matrix A in row format – such that each RDD partition contained a set of

rows – then the calculation in row 7 would require significant cross-network traffic to

multiply u by each column of A. On the other hand, if I represented the input matrix

in column format – such that each RDD partition contained a set of columns – then

the same would be true for the calculation in row 8.

My solution was to store both representations. Listing 4.2’s Scala code snippet

corresponds to line 7 of the MATLAB version:

1 ...
2 //setup u and u_norm_sqrd for broadcast
3 val u_Br = sc.broadcast(u)
4

5 //multiply u’ and matrix to get v, and collect to driver
6 val v_pairs : Array[(Int,Double)] = Acols.map(c =>
7 {
8 var sum = 0.0
9 for (e <- c._2.iterateNonZero()) {

10 sum += u_Br.value(e.index())*e.get()
11 }
12 (c._1, sum / pow(norm(u_Br.value),2))
13 }).collect()
14 ...

Listing 4.2: Scala/Spark topsvd() Function Snippet

Note here that Spark’s “broadcast” mechanism is being used, in order to send the

vector u within the map() call in line 7 to every partition of the RDD Acols in the

cluster. The resultant vector is collected to the driver, and then the result can be

used to multiply by the RDD Arows (not shown here).

A diagram of what is happening during this routine within Spark in terms of the

network traffic and execution environment is shown below in Figure 4.2.
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Figure 4.2: Spark OR1MP Using RDDs - Flow Over Network

After I confirmed that my implementation produced numerically accurate results,

I ran it for multiple iterations using the Netflix dataset on a cluster of 3 AWS servers,

each with 8GB of RAM. In this test, the program completed 2 iterations in approxi-

mately 11.4 minutes. With added parallelism, this improved such that across 10 AWS

servers, the program completed four iterations in about the same time.

At this point, this implementation of OR1MP using Spark RDDs was 7-8 times

better than the Mahout implementation of SVT. While this was encouraging, before I

invested more time into trying to optimize and improve this approach, I first decided

to investigate one other approach, which I describe in the next chapter.
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Chapter 5

DFC + OR1MP ON SPARK

5.1 Divide-Factor-Combine

Mackey, Talwalkar and Jordan published a paper in NIPS in 2011 which describes

an algorithmic approach to large-scale matrix factorization they name Divide-Factor-

Combine (DFC) [11]. They apply the technique to both the problem of matrix com-

pletion, as well as robust matrix factorization. As the name suggests, the first step of

the DFC algorithm is to “divide” the input matrix into smaller subproblems. Their

paper examines two approaches to the divide step, based on either column projection

(DFC-Proj) or the generalized Nyström method (DFC-Nys). With the input matrix

subdivided into a set of smaller matrices using column sampling, the “factor” step

uses any “base” matrix factorization technique to factor the smaller matrices in par-

allel. Finally, the factored matrices are “combined” using one of several approaches

to produce the solution. Note that the DFC method is an algorithmic framework

rather than a complete algorithm, since it must be used in conjunction with a base

algorithm to perform the actual factorizations. This variant of the DFC algorithm I

used, DFC-Proj, is presented in pseudocode in Algorithm 5.1.

In their research, the authors implemented the DFC framework using MATLAB

for the DFC algorithm steps and used a variety of existing MATLAB programs which

implemented the base algorithms. In addition, they implemented the parallel exe-

cutions of the base algorithm using the MATLAB qsub command – which submits

jobs to a MATLAB cluster. This method assumes the availability of a typical HPC

environment – i.e. a pre-configured HPC cluster, complete with MATLAB licenses.
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Algorithm 5.1 DFC-Proj

Input: PΩ(M ), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M ), t)

do in parallel
Ĉ1 = Base-MF-Alg(PΩ(C1))

...
Ĉt = Base-MF-Alg(PΩ(Ct))

end do
L̂

proj
= ColProjection(Ĉ1, . . . , Ĉt)

5.2 Implementing DFC on Spark

Contrasted with the implementation I describe in the previous chapter, the DFC

algorithmic framewok presents an alternate approach worth investigating. In partic-

ular, it may be the case that since the base algorithm itself is not distributed, that

the DFC approach might offer improved performance.

Since the DFC researchers used a MATLAB + HPC based implementation and

execution environment, I first re-implemented the DFC algorithm within Spark. This

proved to be relatively straightforward, due to Spark’s flexible programming model.

For example, the code snippet in Listing 5.1 displays how to execute the base algo-

rithm in parallel across the Spark cluster. Note here that the parallelize() call

in line 3, which is made available as part of the SparkContext object in Spark, is

performing the task of creating an RDD with numPars number of splits. Then, the

mapPartitionsWithIndex() call in line 4 is used to execute the containing code

for each partition. This, in effect, launches the parallel jobs on which to run the

base algorithm (OR1MP in this case). The collectPartitions() method in line 12

then serializes the results back to the driver, for the subsequent “combine” step (not

shown).
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1 ...
2 //Step 2: Calculating CHat for each matrix in parallel
3 val cHatPars = sc.parallelize(parSplits, numPars).
4 mapPartitionsWithIndex[(Int, SVD)]
5 ((partitionIdx, iter) =>
6 {
7 val splitName = iter.next()
8 val C = MatrixUtils.readMatrix(...)
9 val cHat : SVD = SparkOR1MP.run(C, splitName, rank)

10 List((partitionIdx, cHat)).iterator
11 }
12 ).collectPartitions()
13

14 ...

Listing 5.1: Scala/Spark DFC-Proj Function Snippet

As mentioned above, the DFC researchers examined a few variations of the “di-

vide” and the “combine” steps within their paper. For the purposes of this exper-

iment, I implemented the variations which proved to be simplest, without losing

significant performance or accuracy. In particular, I chose to implement the column

projection method of dividing the matrix. Also, I chose to use the simple column pro-

jection method which uses the first matrix partition’s factorization as an orthonormal

basis, and projects each of the subsequent submatrix factorizations against that ba-

sis. In the DFC paper, their results show that the more sophisticated “ensemble”

or “random SVD” methods of combining the base factorizations do not lead to any

significant performance or accuracy gains with the Netflix dataset.

5.3 Re-Implementing OR1MP with Breeze

With the DFC algorithmic framework in place, it was also necessary to re-implement

the OR1MP algorithm without leveraging the distributed constructs of the Spark

RDD, such that it would execute as efficiently as possible within the memory of each

partition of the RDD. To this end, I implemented OR1MP using the Breeze [36] nu-
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merical computing library for Scala. Rather than manipulate vectors and matrices

using Scala types (e.g. Array[Double], or a sparse equivalent), I chose Breeze for

it’s underlying use of the netlib-java project [37], which in turn makes use of highly

optimized implementations of the LAPACK/BLAS interfaces [38, 39].

LAPACK (Linear Algebra PACKage) is a library for numerical linear algebra op-

erations (including solving systems of linear operations, and matrix factorizations).

LAPACK uses BLAS (Basic Linear Algebra Subprograms), which provides a set of

low-level linear algebra operations (including dense vector and matrix operations).

Highly optimized implementations of BLAS include ATLAS [40], Intel MKL [41],

cuBLAS (for CPU cards) [42], and OpenBLAS [43], as well as F2J [44], a Java byte-

code native version of the Fortran library. Since there are benchmarks showing a wide

range of performance between these different BLAS implementations (see links within

the netlib-java “Performance” section [37]), I included some simple performance com-

parisons before selecting a library for use in my experiments.

When I compared the initial performance of DFC + OR1MP to OR1MP with

RDDs, it became clear that the former was much faster, completing 5 iterations of

OR1MP alone on a single desktop PC within about 3.5 minutes. When parallelizing

the execution of DFC + OR1MP across multiple servers, the program was able to

complete 10 iterations in as quick as 25 seconds. Thus, with the promising perfor-

mance results from this approach, I pursued the full round of experiments using DFC

+ OR1MP, and left the topic of optimizing OR1MP with RDDs for future work.
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Overview of Experiments

In this chapter, I describe the experimental results obtained with the Scala/Spark

implementations of OR1MP and DFC. The following sections each describe one of

the tests performed:

1. MATLAB version vs Scala version of OR1MP in desktop environment

2. Optimal BLAS/LAPACK library configuration

3. Spark implementation of DFC + OR1MP with Netflix on EC2

The dataset used in these experiments is the Netflix dataset. The Netflix dataset

has 108 ratings of 17,700 movies by 480,189 Netflix customers. Each movie rating is

an integer from 1 to 5.

In these experiments, a specified “sampling percentage” (e.g. 5%, 10%, 50%) of

the full dataset is separated out, such that the remaining data is the training data and

the sampled data is testing data. The resulting matrix factorization of the training

data is used to predict the testing data.

The running time in the experiments is calculated based on the actual running

time of the algorithm itself, leaving apart any time spent on pre-processing the data

to prepare it for input into the programs. The accuracy is measured in terms of root-

mean-square error (RMSE). The RMSE is calculated based on the difference between

the predicted and actual values of the testing data.
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6.2 MATLAB vs Scala OR1MP in Desktop Environment

This section describes a comparison between the performance and accuracy of the

Scala implementation of OR1MP and the MATLAB implementation (which code was

provided by the primary author, Zheng) when running on a typical desktop system.

For the tests, I used a MacBook Pro with a 2.7 GHz Intel Core i7 and 16GB of 1600

MHz DDR3 memory with a SSD hard drive. I ran these tests using the full Netflix

dataset, for as many iterations as possible with the available memory. Even though

Netflix is usually referred to in the literature as a large scale dataset, it is still possible

to run a small number of iterations of our algorithms on the full dataset on a single

PC if using a sparse format.

Figure 6.1 shows the results of these tests. In terms of accuracy, both the Scala

and the MATLAB implementations are identical. This is a useful result, in that it

helps to confirm the numerical correctness of the Scala implementation. Note that

for the larger sizes of the input matrix (e.g. 5% sampling), the rank could only be

calculated up to 15 before running out of memory, whereas for the smaller sizes of the

input matrix (e.g. 75% sampling), we could calculate rank up to 25. This is expected,

based on the storage requirements of the OR1MP algorithm.

In terms of performance, the Scala OR1MP implementation is slower than the

MATLAB implementation by about 1.5x to 3x, depending on the size of the problem.

Table 6.1 shows the values at rank=10. This is not surprising, since MATLAB is tuned

specifically for numerical computing such as this. In fact, this performance difference

is relatively small, given the overheads expected with the Scala type system and JVM.

It may be possible to optimize the Scala OR1MP implementation further, but this

was not pursued since the purpose of this research project is to investigate the relative

performance when parallelizing the algorithm.
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In both the MATLAB and the Scala implementations, the results show that the

performance increases non-linearly with the rank. Each of the charts display “elbows”,

where performance starts to decrease rapidly. This was the point at which memory

started to become scarce on the system, and a certain amount of slowdown was caused

due to memory management overhead (e.g. paging to disk).

(a) MATLAB: Rank vs Time (b) MATLAB: Rank vs RMSE

(c) Scala: Rank vs Time (d) Scala: Rank vs RMSE

Figure 6.1: MATLAB OR1MP vs Scala OR1MP on Desktop
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Test Time (s) RMSE

MATLAB-5% 319.8 0.943

MATLAB-10% 239.7 0.944

MATLAB-25% 180.3 0.946

MATLAB-50% 105 0.954

MATLAB-75% 43.1 0.977

Scala-5% 485.1 0.941

Scala-10% 487.3 0.942

Scala-25% 408.6 0.945

Scala-50% 248.8 0.953

Scala-75% 132.6 0.975

Table 6.1: MATLAB OR1MP vs Scala OR1MP on Desktop (at rank=10)

6.3 Optimal LAPACK/BLAS Library

This section discusses a simple performance test comparing a few different choices

of LAPACK/BLAS libraries. As mentioned above, my Scala implementation of

OR1MP uses a Scala library called Breeze for linear algebra operations, which, via

the netlib-java project, can be configured to use a variety of different BLAS imple-

mentations at runtime.

The library which comes with Apple OS X (veclib framework) turns out to be

one of the better performing LAPACK/BLAS libraries. Therefore, I did not try out

different configurations for the tests I ran on my desktop PC.

However, prior to running my experiments on AWS, I ran a test to determine

which LAPACK/BLAS library performed best. Since Spark’s EC2 support is built

31



upon a Linux AMI from AWS, I selected a few well-known varieties to test which

are readily available for this distribution of Linux. (Note that Intel MKL requires a

license. For these tests, I used an evaluation license.)

The test consisted of running the Scala OR1MP program against the Netflix

dataset with 10% sampling and rank = 10. The test was run on a single AWS

(m2.4xlarge) server instance. Table 6.2 shows the results of these tests.

Library Time (s)

F2J (JVM bytecode) 602

atlas (generic) 594

atlas-sse3 (SSE3 optimized) 593

Intel MKL 587

Table 6.2: BLAS/LAPACK Library Performance with Scala OR1MP on EC2

As can be seen from the results, for this program, only relatively minor perfor-

mance differences were observed for the different BLAS/LAPACK libraries. Based

on these results, even though Intel MKL performed slightly better, I used the AT-

LAS package (atlas-sse3) provided by AWS for use with the Linux AMI for ease of

configuration.

6.4 Spark Implementation of DFC + OR1MP with Netflix on EC2

This section shows performance and accuracy results of running the Spark-based

implementation of DFC + OR1MP across various splits of the Netflix dataset, where

Spark is configured to execute each split in parallel across a separate AWS server

instance.
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In this test, I used AWS m2.4xlarge server types, which come with 8 virtual cores

and 68GB of memory. While the large amount of memory was not required in many

of the test scenarios, I wanted to be sure that I could scale up to larger rank tests

without needing to rebuild the cluster. Even though I tested up to 50 splits of the

data, I used a cluster of only 20 server instances, due to AWS limitations on the

number of Spot Instances allowed of this server type. However, there were enough

cores and memory for Spark to run all the data splits in parallel, even though in

some cases (e.g. with 30 and 50 splits of the data) multiple splits were processed

concurrently on a single server.

I used 10% sampling to generate the dataset for each of the test scenarios. Keeping

the dataset constant, I varied the number of splits (e.g. “10%-5” refers to 5 splits,

“10%-50” refers to 50 splits, etc.). As a baseline comparison, I also ran the Scala

OR1MP algorithm without DFC for as many iterations as possible on this server

type.

Figure 6.2 shows the results of these tests. As can be seen in 6.2b, the accuracy of

DFC + OR1MP trails OR1MP alone very closely, even up to splits of 50. Also, note

that it was possible to test DFC + OR1MP to much higher rank than possible with

OR1MP alone, as the cumulative memory of the entire cluster could be utilized.

The performance benefits of DFC + OR1MP over OR1MP alone are clearly seen

in 6.2a. Even with the additional overhead of combining the factorizations from each

split of the data, the DFC + OR1MP algorithm surpasses the performance of OR1MP

alone with the smallest numer of splits tested (i.e. 5 splits), and continues to improve

up through the maximum number of splits tests (i.e. 50 splits). The exact values for

the various tests at rank=20 are displayed in Table 6.3.
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(a) DFC + OR1MP: Rank vs Time (b) DFC + OR1MP: Rank vs RMSE

Figure 6.2: Scala DFC + OR1MP on Netflix Dataset

Also, note that each of the splits shows near-linear performance with increased

rank, which is due to the abundace of memory available – i.e. no slow-down due to

memory paging was seen.

Test Time (s) RMSE

10% (no DFC) 1410 0.922

10%-5 307 0.925

10%-10 162 0.927

10%-30 62 0.932

10%-50 44 0.935

Table 6.3: DFC + OR1MP vs OR1MP (at rank=20)
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Chapter 7

CONCLUSION

7.1 Summary of Findings

The purpose of this research project was to study the effectiveness and ease-of-use

of a popular open source Big Data solution for iterative machine learning on large-

scale data. More specifically, I set out to implement a low-rank matrix completion

algorithm within a Big Data framework and then apply it to the Netflix Prize dataset.

My initial effort, implementing the SVT algorithm on Mahout/Hadoop, did not

produce an adequately performant solution. While Mahout is an excellent project

which provides users with a library of some useful large-scale machine learning al-

gorithms, it is at present unacceptably constrained by the underlying MapReduce

platform when it comes to iterative algorithms, such as SVT.

My second effort, implementing the OR1MP algorithm on Spark by utilizing RDDs

to distribute the linear algebra operations, was significantly faster than my first effort,

but it also did not produce a sufficiently performant solution. In the case of my

implementation, it appears that there was too much cross-machine communication

during the routine, and potentially unoptimized implementations of vector-matrix

multiplication contributing to the lackluster performance. However, I did not pursue

further profiling to identify any opportunities for optimization of this approach.

Instead, my third effort was to implement the DFC algorithm on Spark, and to

use the low-rank completion algorithm OR1MP as the DFC “base” algorithm. I

found that this implementation produced excellent performance and accuracy num-

bers, when compared to the MATLAB implementation of OR1MP on a single desktop
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PC. In addition, as I increased the degree of parallelism of DFC + OR1MP, the per-

formance of the algorithm increased significantly.

I also found that the implementation of DFC + OR1MP on Spark was relatively

straightforward, especially when compared to my experience implementing SVT on

Mahout/Hadoop. In the case of Mahout/Hadoop, every algorithm or operation not

already expressed in Mahout needed to be translated to a MapReduce-compatible

format before it could be implemented. In addition, I found that there was a con-

siderable amount of boilerplate code dedicated to framework-related needs with Ma-

hout/Hadoop. In the case of Spark, however, the programming model is flexible yet

powerful enough such that both of my Spark-based implementations were concise and

fairly straightforward to program.

7.2 Future Work

The results of this research project sugget a variety of different possible directions

for future work, some of which are described below:

The OR1MP algorithm used in this paper is constrained in the number of itera-

tions by the available memory, since the algorithm has to track all pursued bases in

each iteration. As the OR1MP paper explains, it demands O(r|Ω|) storage complex-

ity to obtain a rank-r estimated matrix [see 10, section 4]. The OR1MP paper goes

on to propose an economic form of the algorithm called EOR1MP. This would be an

interesting alternative to test as the base algorithm for DFC with our Spark-based

implementation.

The competitive performance of DFC + OR1MP on Spark suggests it could be

worth a more detailed comparison of this approach to methods based on Stochastic

Gradient Descent, which is the more popular approach in the literature to low-rank

matrix completion problems or collaborative filtering problems. As mentioned above,

36



there have been a variety of approaches proposed to scaling SGD in the context of

large-scale data. It would be interesting to compare the methods in this paper with

those algorithms, in the context of the Spark framework.

Finally, the author would be interested in connecting this research to the topic of

graph representations. Some of the existing graph processing enginges (e.g. GraphLab)

have translated SGD, SVD, and other machine learning algorithms into the seman-

tics of their framework. It would be interesting to study whether OR1MP or DFC +

OR1MP could be expressed well within graph semantics, and if so, how the perfor-

mance characteristics compare to a Spark implementation.
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