
Resource Allocation in Communication and Social Networks

by

Shahrzad Shirazipourazad

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2014 by the
Graduate Supervisory Committee:

Arunabha Sen, Chair
Guoliang Xue
Andrea Richa

Srikanth Saripalli

ARIZONA STATE UNIVERSITY

May 2014

ABSTRACT

As networks are playing an increasingly prominent role in different aspects

of our lives, there is a growing awareness that improving their performance is of

significant importance. In order to enhance performance of networks, it is essen-

tial that scarce networking resources be allocated smartly to match the continuously

changing network environment. This dissertation focuses on two different kinds of

networks - communication and social, and studies resource allocation problems in

these networks. The study on communication networks is further divided into dif-

ferent networking technologies - wired and wireless, optical and mobile, airborne and

terrestrial.

Since nodes in an airborne network (AN) are heterogeneous and mobile, the

design of a reliable and robust AN is highly complex. The dissertation studies con-

nectivity and fault-tolerance issues in ANs and proposes algorithms to compute the

critical transmission range in fault free, faulty and delay tolerant scenarios.

Just as in the case of ANs, power optimization and fault tolerance are impor-

tant issues in wireless sensor networks (WSN). In a WSN, a tree structure is often

used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect

the tree. The dissertation investigates the problem of enhancing the fault tolerance

capability of data gathering trees in WSN.

The advent of OFDM technology provides an opportunity for efficient resource

utilization in optical networks and also introduces a set of novel problems, such as

routing and spectrum allocation (RSA) problem. This dissertation proves that RSA

problem is NP-complete even when the network topology is a chain, and proposes

approximation algorithms.

i

In the domain of social networks, the focus of this dissertation is study of

influence propagation in presence of active adversaries. In a social network multiple

vendors may attempt to influence the nodes in a competitive fashion. This disserta-

tion investigates the scenario where the first vendor has already chosen a set of nodes

and the second vendor, with the knowledge of the choice of the first, attempts to

identify a smallest set of nodes so that after the influence propagation, the second

vendor’s market share is larger than the first.

ii

To my dear family.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to my advisor,

Professor Arunabha Sen for giving me the chance to be a member of his research team

and for providing me with invaluable guidelines, great ideas and feedback, constructive

supervision and infinite support throughout my doctoral studies. I would also like

to thank Professor Andrea Richa, Professor Guoliang Xue and Professor Srikanth

Saripalli for their helpful comments on my work and serving on my committee.

I am immensely grateful to my seniors Dr. Pavel Ghosh and Dr. Sujogya

Banerjee, whose precious advices and guidance made my initial years of doctoral stud-

ies smooth. I would also like to thank my lab-mates Zahra, Brian, Harsh, Arun, and

Anisha with whom I had a great experience. I would also like to thank all my friends

at Arizona State University especially Zahra Abbasi, Ali Abbasi, Yasaman Kho-

dadegan, Moeed Haghnevis, Mahdi Hamzeh, Mitra Eftekhar, Zahra Derakhshandeh,

Babak Esmaeili, Mojtaba Rahmati, Afsaneh Nasseri, Mikal Askarian, Pegah Shekh

Olia, Ramtin Karmani, Soroosh Gholami, and many others who made this experience

enjoyable.

I would like to thank my dear relative Nasrin Rouintan and her nice family in

Arizona for their support and being with whom I always felt like being at home with

a new great family.

Words cannot express how grateful I am to my parents for their inseparable

supports and prayers. It is from them I learned the knowledge of life and grew up to

be the person I am today. I would also like to thank my brother and his family, my

sister, my parents in law, my sister in law and her family for all their encouragements

and motivating me to strive towards my goal.

iv

Finally, I would like to specially thank my husband Sina for being a continuous

source of strength and support in every aspect of my life. It was because of him I

ventured into this unexplored part of the world thousands of miles away from home

and became successful in achieving our dreams. His philosophy, guidance, time and

moral support was always by my side whenever I needed them most.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation and Challenges . 1

1.2 Contributions . 4

1.3 Dissertation Outline . 8

2 ROBUST AIRBORNE NETWORK DESIGN 10

2.1 Related Works . 13

2.2 System Model and Architecture . 15

2.3 Dynamic Topology Computation . 18

2.4 Computation of Critical Transmission Range in Fault Free Scenario . 24

2.5 Computation of Critical Transmission Range in Faulty Scenario . . . 25

2.5.1 Fault Model . 25

2.5.2 Problem Formulation and Design Challenges 26

2.5.3 Regions to Examine . 27

2.5.4 Computation of the Damaged ANPs in a Fault Region 30

2.5.5 Computation of Critical Transmission Range in Faulty Scenario

(CTRf) . 31

2.6 Computation of Critical Transmission Range in Delay Tolerant Air-

borne Networks CTRD . 34

2.7 Simulations . 39

2.8 Conclusion . 41

3 FAULT TOLERANT DESIGN OF WIRELESS SENSOR NETWORKS . 43

vi

CHAPTER Page

3.1 Introduction . 43

3.2 Problem Formulation . 48

3.3 Computational Complexity . 49

3.4 Tree Connectivity Augmentation - Single Fault Scenario 56

3.5 Tree Connectivity Augmentation - Adjacent Double Fault Scenario . 63

3.5.1 TCA2 Phase I . 64

3.5.2 TCA2 Phase II . 70

3.6 Experimental Results . 79

3.7 Conclusion . 83

4 ROUTING AND SPECTRUM ALLOCATION IN SPECTRUM SLICED

OPTICAL NETWORKS . 84

4.1 Related Work . 88

4.2 Definitions and Notations . 90

4.3 Problem Statement . 92

4.4 Preliminary Observations . 93

4.5 Routing and Spectrum Allocation Problem 97

4.5.1 RSA Problem in Chains (RSA-P) 97

4.5.2 RSA Problem in Trees . 98

4.5.3 RSA Problem in Rings . 99

4.5.4 RSA Problem in General Graphs 101

4.6 Spectrum Constrained RSA Problem 104

4.6.1 SCRSA in Chains . 105

4.6.2 SCRSA in Binary Tree . 105

4.6.3 SCRSA in Rings . 108

4.7 Experimental Results and Discussion 109

vii

CHAPTER Page

4.7.1 Off-line . 109

4.7.2 On-line . 115

4.8 Conclusion . 116

5 INFLUENCE PROPAGATION IN SOCIAL NETWORKS IN ADVERSAR-

IAL SETTING . 118

5.1 Related Work . 123

5.2 Influence Propagation Models . 127

5.2.1 Independent Cascade Model 128

5.2.2 Generalized ICM for Adversarial Scenario 128

5.2.3 Distance-based Model . 129

5.2.4 Wave-propagation Model . 130

5.3 Problem Statement . 130

5.4 Computational Complexity . 131

5.4.1 Distance-based Model . 131

5.4.2 Wave Propagation Model . 133

5.5 Approximation Algorithm . 134

5.5.1 Upper Bound Computation 135

5.5.2 Lower Bound Computation 136

5.6 Experimental Results . 139

5.7 Conclusion . 145

6 CONCLUSION ANS FUTURE WORK 146

REFERENCES . 152

viii

LIST OF TABLES

Table Page

4.1 Results for USA Network, dmax ≤5 . 114

ix

LIST OF FIGURES

Figure Page

2.1 A Schematic View of an Airborne Network 16

2.2 (a) Initial phase angle βi of point i; at time 0 point is shown as i(0), (b)

Vector representations (Ri(t) and Rj(t)) of two points i and j at time t

moving along two circular orbits: rci = 15, rcj = 27, ∠ciOx = αci =

π
3
, ∠cjOx = αcj = π

6
. 18

2.3 Effect of the distance between nodes on the existence of the communication

link between them; (a)Distance between two points i and j as a function

of time, (b)Active (Blue/Light gray)/Inactive (Red/ Dark gray) times of

the link between i and j with transmission range Tr = 18 21

2.4 Active/Inactive time interval of each link and interval intersection projec-

tions on the time line . 21

2.5 ANPs on a circular flight path on a 2D-plane with a fault region 26

2.6 I1ij and I2ij are intersection points of V Zi and V Zj at time t. 29

2.7 Region coverage timeline of the region centered at f1 = I(1,2); The first

timeline shows the availability intervals of f1; i.e, T (f1) = {t1, t2}. . . . 31

2.8 A dynamic graph with two topologies G1 and G2 35

2.9 A dynamic graph with three topologies G1, G2 and G3 37

2.10 Transmission Range vs. Number of Nodes 41

2.11 (a) Transmission Range (CTRf) vs. Region Radius, n = 35; (b) Trans-

mission Range (CTRD) vs. Delay . 41

3.1 A data collection tree constructed by directional antennas 45

3.2 (a) Comparison of TCA1 with BICA, (b) Comparison of TCA1 with

BRCA, (c) An instance of TCA1 correponding to a 3DM instance 47

x

Figure Page

3.3 (a) An example of T1; E1 includes the edges shown with solid lines. (b)

The tree with solid lines is T2 corresponding to T1 in (a) and dashed lines

are some of the edges in E ′2 − E2. 60

3.4 (a) An example of T1; solid lines show the edges in E1 and dashed ones

show a subset of edges in E − E1. (b)T d2 corresponding to T1 in part

(a); solid arrows show the arcs in T d2 and dashed ones show a subset of

arcs in A′2 − A2. (c) T arb2 , minimum cost arborescence computed on Gd
2

corresponding to part (b). 66

3.5 (a) Solution of TCA2 Phase I, i.e., (V,E1 ∪ Eaug
1). (b) Solid arrows form

the tree T d3 corresponding to the example shown in Fig. 3.4. (c) T arb3 . . 73

3.6 (a) Comparison of augmentation cost of TCA1 algorithm and ILP1; (b)

Comparison of augmentation cost of TCA2 algorithm and ILP2. 81

3.7 Comparison between (a) power consumption of directional antennas and

omni-directional antennas, (b) number of directional antennas and omni-

directional antennas . 83

4.1 (a) An example of SA instance where the network graph G is a ring (b)

Path intersection graph G′ of paths in SA instance in (a) 94

4.2 (a) The 14-node NSF Network, (b) The average spectrum span in 14-node

NSF Network for k ≤ 6 and dmax ≤ 5 (c) k ≥ 5 and dmax ≤ 5 109

4.3 (a) Level-3 fiber network over US, (b) The average spectrum span in Level-

3 network for dmax ≤ 5 (c) k = 20 . 110

4.4 (a) The average spectrum span in NSF Network for different values of k

where dmax ≤ 5 in On-line RSA, (b) different values of dmax where k = 10

in On-line RSA . 111

xi

Figure Page

4.5 (a) Level-3 network over Europe, (b) The average spectrum span in Level-3

network for dmax ≤ 10, (c) k = 20 . 112

5.1 Graph G = (V,E) of WMI instance in set cover reduction 132

5.2 Construction of G. 136

5.3 Number of initial adopters of B for different values of |IA| 141

5.4 Expected number of nodes adopting A after 10 propagation steps 142

5.5 Expected number of nodes adopting B after 10 propagation steps 142

5.6 Expected number of nodes adopting B per initial adopter of B after 10

propagation steps . 142

5.7 Average market share increase that innovation B can capture per addi-

tional initial adopter with respect to GWMI 143

5.8 Extended benefit that B can capture per additional initial adopter with

respect to GWMI . 144

5.9 Size of initial adopters of B for different values of |IA| 145

xii

Chapter 1

INTRODUCTION

We live in a networked world. Our computers, power grids, transportation systems,

water distribution systems, biological systems are networked and even we are net-

worked through our social networks. Because of the widespread use of networks

and their increasingly prominent role in various aspects of our lives, improving their

performance will positively influence our lives. In order to enhance performance of

networks, it is essential that scarce networking resources be allocated efficiently to

match the continuously changing network environment. The dissertation focuses on

two different kinds of networks - communication and social, and studies resource

allocation problems in these networks. The studies on communication networks is

further divided into different networking technologies - wired and wireless, optical

and mobile, airborne and terrestrial.

1.1 Motivation and Challenges

Airborne networks (AN) have drawn attention of researchers in the past few years

due to their importance in civil and military purposes and due to the several complex

issues in these domains. Airborne networks are heterogeneous mobile ad hoc networks

consisting of air vehicles as well as space and ground vehicles. Mobility pattern of

nodes in a mobile network has significant impact on the coverage and connectivity

properties of the network. It has been shown that infrastructure-less mobile ad hoc

networks have limitations with respect to data transmission, distance, interference

and scalability [1]. Accordingly, the authors in [2, 1] suggested the addition of a

mobile wireless backbone of base stations (analogous to cellular telephony or the In-

ternet backbones), in which topologies and mobility can be controlled for purposes of

assured communications. End to end connectivity of the backbone nodes are crucial

in providing the communication among the hosts. Network connectivity can be eas-

1

ily achieved if the transmission range of the airborne networking platforms (ANPs)

is very large. However, large transmission range results in high power consumption

and interference. Since in mobile wireless networks power is scarce, utilizing power

efficiently is very critical. These requirements and limitations give rise to the fol-

lowing resource optimization problem in airborne networks: minimizing the ANPs

transmission range such that the backbone network remains connected at all times,

even though the topology of the network changes with the movement of the ANPs.

Since ANPs are prone to failure because of attacks like EMP attack or jamming, one

important issue is to improve the robustness of the backbone network against these

attacks. Such attacks will impact specific geographic regions at specific times and if

an ANP is within the fault region during the time of attack, it will fail. This research

also considers the AN scenario where a region may fail and studies the following

problem: minimizing the ANPs transmission range such that the network remains

connected irrespective of location of the fault region and the time of failure. Even

though connectivity of the backbone network at all times is an important and desired

requirement, it may not be possible to equip the ANPs with radios with transmission

range large enough to keep the network connected at all times. In such a scenario the

network may operate in a disconnected mode for some part of time. On the other

hand, based on the type of data that should be transmitted between ANPs, data

transmissions may be tolerant to some amount of delay. Hence, ANPs may not need

to have end-to-end paths all the time but they should be able to transmit data to

each other within bounded time. Another challenge that is considered in this thesis is

the problem of computation of critical transmission range in delay tolerant airborne

networks.

Just as in the case of airborne networks, power optimization and fault tolerance

are equally important in wireless sensor networks. In sensor networks often a tree

2

structure is used to deliver collected sensors data to a sink node. A tree is adequate

for data gathering from all sensor nodes as long as no node in the tree fails. Since

the connectivity of the tree is one, failure of any one node disconnects the tree and

may disable the sink node from collecting data from some of the sensor nodes. Hence,

reinforcing the data gathering tree against node failures in sensor networks is a critical

issue that should be addressed. This dissertation studies the problem of enhancing

the fault tolerance capability of a data gathering tree by adding a few additional links

so that the failure of any one sensor or a pair of adjacent sensors would not disconnect

the tree. Assuming that the addition of each link to the tree involves some cost, this

research studies the problem of least-cost augmentation of the tree, so that even after

failure of a single node or two adjacent nodes, all the surviving nodes will remain

connected to the sink node.

The continuous growth of data traffic in Internet necessitates introduction of

innovative and efficient technology solutions in optical networks of the future. The

orthogonal frequency division multiplexing (OFDM) technology provides an oppor-

tunity for efficient resource utilization in optical networks. It allows allocation of

multiple sub-carriers to meet traffic demands of varying size. Utilizing OFDM tech-

nology, a spectrum efficient and scalable optical transport network called SLICE was

proposed recently. The SLICE architecture enables sub-wavelength, super-wavelength

resource allocation and multiple rate data traffic that results in efficient use of spec-

trum. However, the benefit is accompanied by additional complexities in resource

allocation. In SLICE architecture, in order to minimize utilized spectrum, one has to

solve the routing and spectrum allocation (RSA) problem, a generalization of the rout-

ing and wavelength allocation (RWA) problem. The RSA problem in optical networks

with SLICE architecture is another focus of this dissertation.

3

In the domain of social networks, the focus of this dissertation is study of

influence propagation in presence of active adversaries. It has been observed that

individuals’ decisions to adopt a product or innovation are often influenced by the

recommendations of their friends and acquaintances. Motivated by this observation,

the last few years have seen a number of studies on influence maximization problem

in social networks. One major goal of several of these studies is identification of

k most influential nodes in a network. It may be noted that most of the studies

on influence propagation are geared toward a non-adversarial environment, where

only one vendor (player) is attempting to influence the nodes of a social network to

buy her product. However, in a realistic market scenario, most often there exists

multiple players, each attempting to sell their competing products or innovations.

This dissertation investigates the scenario where in a social network, the first player

has already chosen a set of k nodes and the second player, with the knowledge of

the choice of the first, attempts to identify a smallest set of nodes so that when the

influence propagation process ends, the number of nodes influenced by the second

player is larger than the number of nodes influenced by the first.

1.2 Contributions

The contributions of this dissertation can be categorized into four main fields of (i)

robust design of Airborne Networks, (ii) fault tolerant design of wireless sensor net-

works, (iii) routing and spectrum allocation in spectrum sliced optical networks, and

(iv) influence propagation in social networks in adversarial setting. The dissertation

contributions in each field is described in the following parts.

1.2.1 Robust Design of Airborne Networks

The connectivity of the backbone network is an important metric in reliable and

robust design of airborne networks. In this dissertation the problem of connectivity

of airborne networks is studied in three different scenarios:

4

• Non-faulty: In non-faulty scenario it is assumed that all the network nodes

(airborne platforms) are operational all the times during the network operation

time. The critical transmission range, CTR, is defined to be the minimum

transmission range of the ANPs to ensure that the dynamic network formed by

the movement of the ANPs remains connected at all times. In this dissertation,

the problem of computation of critical transmission range is studied. An algo-

rithm to compute CTR when the flight paths are known is proposed. As a part

of the design of this algorithm, a technique to compute the dynamic topology of

the AN at any instance of time is developed.

• Faulty: In faulty scenario, it is considered that some of the network nodes

are faulty, and faulty nodes are spatially correlated (or region-based). In other

words, faulty nodes due to an attack are confined to a region. In this scenario,

the design requirement is that the network should remain connected even if a

region fails. The critical transmission range in faulty scenario (CTRf) is defined

to be the smallest transmission range necessary to ensure network connectivity,

irrespective of (a) the location of the fault region and (b) the time of the failure.

In this dissertation, an algorithm is proposed to compute CTRf . As a part of

design of this algorithm, techniques are developed to (i) compute all the fault

regions that need to be considered to ensure overall connectivity at all times,

and (ii) compute the set of dynamic nodes that might be affected by the failure

of a specific region at a specific time.

• Delay tolerant: In the two previous scenarios the connectivity requirement is

very strict and the backbone network is needed to be connected all the times.

However, it may not be possible to equip the ANPs with radios with trans-

mission range at least as large as the CTR. In such a scenario the network

may operate in a disconnected mode for some part of time. On the other hand,

5

based on the type of data that should be transmitted between ANPs, data

transmissions may be tolerant to some amount of delay. Hence, ANPs may not

need to have end-to-end paths all the time but they should be able to transmit

data to each other within bounded time. In this dissertation the problem of

computation of critical transmission range in delay tolerant airborne networks

is studied. More specifically, the critical transmission range in delay tolerant

network (CTRD) is defined to be the minimum transmission range necessary to

ensure that every pair of nodes in the backbone network can communicate with

each other within a bounded time. A solution is proposed to compute CTRD.

1.2.2 Fault Tolerant Design of Wireless Sensor Networks

In this dissertation the problem of enhancing the fault tolerance capability of data

gathering tree in sensor networks is investigated. Assuming that addition of each link

to the tree involves a cost, the following problem is studied: least cost augmentation

of the tree (TCA) so that even after failure of a single node or a pair of adjacent

nodes, all the surviving nodes will remain connected to the sink node. It is proven

that the least cost tree augmentation problem is NP-complete under both types of

fault scenarios. Moreover, two approximation algorithms, one for single node failure

and the other for a pair of adjacent node failure, with performance bounds of two

and four are, respectively, proposed.

1.2.3 Routing and Spectrum Allocation in Spectrum Sliced Optical Networks

A thorough study of routing and spectrum allocation RSA problem in spectrum sliced

optical networks is performed. In this dissertation, it is proved that RSA problem

is NP-complete even when the optical network topology is as simple as a chain or

a ring. The Spectrum Constrained RSA (SCRSA) problem is introduced where the

goal is to satisfy as many requests as possible, subject to the constraint that only

a finite size spectrum is available for satisfying connection requests. Then, approx-

6

imation algorithms are proposed for both the RSA and SCRSA problems when the

network topology is a binary tree or a ring. Moreover, the on-line version of RSA

problem is studied where the requests are not known in advance and an algorithm for

the on-line version of RSA problem in the ring network with a bounded competitive

ratio is developed. Finally, heuristics are provided for off-line and on-line RSA prob-

lem in the network with arbitrary topology and the effectiveness of the heuristics is

measured with extensive simulation. Simulation results demonstrate that the heuris-

tics significantly outperforms several other heuristics proposed recently for the RSA

problem.

1.2.4 Influence Propagation in Social Networks in Adversarial Setting

A comprehensive study of infulence propagation problem in social networks has been

conducted in this dissertation. A new influence propagation problem in an adversarial

setting is introduced where the goal of the second player is to defeat the first within D

time steps and least amount of cost (i.e., number of seed nodes). Also, NP-Hardness

proof for the problem under two different influence propagation models is provided.

Moreover, an approximation algorithm for the problem with a tight performance

bound of O(log(n)) is proposed. Finally, the approximation algorithm is evaluated

through experiments using collaboration network data.

Several parts of the research work presented in this dissertation, which have

been already published, accepted or are under review in international conferences and

journals are listed as follow:

• S. Shirazipourazad, A. Sen, and S. Bandyopadhyay, Fault-tolerant Design of

Wireless Sensor Networks with Directional Antennas, accepted in Pervasive and

Mobile Computing.

7

• S. Shirazipourazad, Z. Derakhshandeh, and A. Sen, Analysis of On-line Routing

and Spectrum Allocation in Spectrum-sliced Optical Networks, IEEE Interna-

tional Conference on Communications (ICC), Budapest, Hungary, 2013.

• S. Shirazipourazad, C. Zhou, Z. Derakhshandeh, and A. Sen, On Routing and

Spectrum Allocation in Spectrum-sliced Optical Networks, IEEE International

Conference on Computer Communications (INFOCOM)(Mini-Conference), Turin,

Italy, 2013.

• S. Shirazipourazad, A. Sen, and S. Bandyopadhyay, Fault-tolerant Design of

Wireless Sensor Networks with Directional Antennas, International Conference

on Distributed Computing and Networking (ICDCN), Mumbai, India, 2013

(Best Paper Award).

• S. Shirazipourazad, B. Bogard, H. Vachhani, A. Sen, and P. Horn, Influence

Propagation in Adversarial Setting: How to Defeat Competition with Least

Amount of Investment”, in Proceedings of the 21st ACM International Con-

ference on Information and Knowledge Management (CIKM), Maui, HI, USA,

2012

• S. Shirazipourazad, P. Ghosh, and A. Sen, On Connectivity of Airborne Net-

works in Presence of Region-based Faults, IEEE Military Communications Con-

ference (MILCOM), Baltimore, MD, 2011.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows: In Chapter 2, the reliable and

robust design of airborne networks has been studied and several problems on air-

borne network connectivity have been discussed. In Chapter 3, the tree connectivity

augmentation problem in sensor networks has been presented. Chapter 4 studies

8

the routing and spectrum allocation problem in optical networks. In chapter 5, the

identification of influential nodes in social networks in adversarial setting has been

discussed. Finally, Chapter 6 concludes the dissertation along discussions of future

research directions.

9

Chapter 2

ROBUST AIRBORNE NETWORK DESIGN

An Airborne Network (AN) is a mobile ad hoc network that utilizes a heterogeneous

set of physical links (RF, Optical/Laser and SATCOM) to interconnect a set of terres-

trial, space and highly mobile airborne platforms (satellites, aircrafts and Unmanned

Aerial Vehicles (UAVs)). Airborne networks can benefit many civilian applications

such as air-traffic control, border patrol, and search and rescue missions. The design,

development, deployment and management of a network where the nodes are mobile

are considerably more complex and challenging than a network of static nodes. This

is evident by the elusive promise of the Mobile Ad-Hoc Network (MANET) technol-

ogy where despite intense research activity over the previous years, mature solutions

are yet to emerge [3, 4]. One major challenge in the MANET environment is the

unpredictable movement pattern of the mobile nodes and its impact on the network

structure. In case of an AN, there exists considerable control over the movement

pattern of the mobile platforms. A senior Air Force official can specify the controlling

parameters, such as the location, flight path and speed of the ANPs, to realize an AN

with desired functionalities. Such control provides the designer with an opportunity

to develop a topologically stable network, even when the nodes of the network are

highly mobile. It is increasingly being recognized in the networking research com-

munity that the level of reliability needed for continuous operation of an AN may be

difficult to achieve through a completely mobile, infrastructure-less network [1]. In

order to enhance reliability and scalability of an AN, Milner et al. in [1] suggested

the formation of a backbone network with Airborne Networking Platforms (ANPs).

In order to deal with the reliability and scalability issues in an AN, we consider an

architecture for an AN where a set of ANPs form the backbone of the AN. This set

of ANPs may be viewed as mobile base stations with predictable and well-structured

10

flight paths and the combat aircrafts on a mission as mobile clients. We want that

the backbone network remains connected all the times even though the topology of

the network changes with the movement of the ANPs. Network connectivity can be

easily achieved if the transmission range of the ANPs is very large. However large

transmission range also implies high power consumption. In order to minimize power

consumption and hence extend network lifetime, we would like to find the smallest

transmission range to ensure network connectivity. We define the critical transmis-

sion range (CTR) to be the minimum transmission range of the ANPs to ensure that

the dynamic network formed by the movement of the ANPs remains connected at all

times. We present an algorithm to compute CTR when the flight paths are known.

As a part of design of this algorithm, we develop techniques to compute the dynamic

topology of the AN at any instance of time.

Using CTR as the transmission range of all nodes, the network is connected

as long as all the network nodes (i.e., the ANPs) are operational. However, the ANPs

are vulnerable to Electromagnetic Pulse (EMP) attacks or jamming. Such an attack

will impact specific geographic regions at specific times and if an ANP is within

the fault region during the time of attack, it will not be able to carry out its normal

communication functions. We will refer to these ANPs as faulty nodes of the network.

In this research, we also consider the AN scenario where some of the network nodes

are faulty. We consider faulty nodes are spatially correlated (or region-based), that is

faulty nodes due to an attack are confined to a region. We want that the network

remains connected irrespective of location of the fault region and the time of failure.

We define critical transmission range in faulty scenario (CTRf) to be the

smallest transmission range necessary to ensure network connectivity, irrespective of

(a) the location of the fault region and (b) the time of the failure. We would like to find

CTRf . As a part of design of this algorithm, we develop techniques to (i) compute

11

all the fault regions that need to be considered to ensure overall connectivity at all

times, (ii) compute the set of dynamic nodes that might be affected by the failure of

a specific region at a specific time, and finally, (iii) compute CTRf .

In previous problems the connectivity requirement is very strict and the back-

bone network is needed to be connected all the times. However, it may not be possible

to equip the ANPs with radios with transmission range at least as large as the CTR.

In such a scenario the network may operate in a disconnected mode for some part

of time. On the other hand, based on the type of data that should be transmitted

between ANPs, data transmissions may be tolerant to some amount of delay. Hence,

ANPs may not need to have end-to-end paths all the time but they should be able

to transmit data to each other within bounded time. These requirements lead us

to study the problem of computation of critical transmission range in delay tolerant

airborne networks. More specifically, the critical transmission range in delay tolerant

network (CTRD) is defined to be the minimum transmission range necessary to en-

sure that every pair of nodes in the backbone network can communicate with each

other within a bounded time. In this chapter we formulate CTRD and propose a

solution to compute CTRD.

The rest of the chapter is organized as follows. We discuss related work in

section 2.1. In section 2.2 we present the AN architecture. We present dynamic

topology computation of the AN in section 2.3. In section 2.4 we present an algorithm

to compute CTR in fault free scenario. We discuss the faulty scenario and propose an

algorithm to compute CTRf in section 2.5. Connectivity problem in delay tolerant

airborne network is formulated and studied in section 2.6. Experimental results are

presented in section 2.7. The section 2.8 concludes the chapter.

12

2.1 Related Works

Due to the Joint Aerial Layer Networking (JALN) activities of the U.S. Air Force,

design of a robust and resilient Airborne Network (AN) has received considerable

attention in the networking research community in recent years. It has been investi-

gated that the flat ad hoc networks have limitations with respect to data transmission,

distance, interference and scalability [1, 5, 6]. Accordingly, [2, 1, 5] suggested the ad-

dition of a mobile wireless backbone of base stations (analogous to cellular telephony

or the Internet backbones), in which topologies and mobility can be controlled for

purposes of assured communications.

There exists considerable amount of studies on topology control using power

control in MANETs [7, 8, 9, 10, 5]. The goal of the proposed algorithms is to as-

sign power values to the nodes to keep the network connected while reducing the

power consumption. The authors of [7, 8] proposed distributed heuristics for power

minimization in mobile ad hoc networks and offer no guarantees on the worst case

performance. Santi in [10] studied the minimum transmission range required to ensure

network connectivity in mobile ad hoc networks. He proved that the critical transmis-

sion range for connectivity (CTR) is c
√

lnn
πn

for some constant c where mobility model

is obstacle free and nodes are allowed to move only within a certain bounded area. In

these studies the mobility patterns are not known unlike the problems studied in this

chapter where it is assumed that the flight paths of ANPs are predictable. Moreover,

this research studies the computation of minimum transmission range in presence of

region-based faults and in delay tolerant scenario where it is not the case in previous

studies.

In recent times, there has been considerable interest in studying localized, i.e.,

spatially correlated or region-based faults in networks [11, 12, 13, 14]. In order to

13

capture the notion of locality in measuring the fault-tolerance capability of a network,

a new variant of connectivity metric called region-based connectivity was first intro-

duced by Sen et. al. [11]. Region-based connectivity, for multiple spatially correlated

faults, has been studied in [12]. The region-based connectivity of a network can be

informally defined to be the minimum number of nodes that has to fail within any

region of the network before it is disconnected. Neumayer et. al [13] gave an analysis

on identifying the most vulnerable parts of the network when the faults are geograph-

ically correlated. That is, the analysis gives locations of disasters that would have the

maximum disruptive effect on the network in terms of capacity and connectivity. In

[14] Neumayer et. al. evaluates average two-terminal reliability of a fiber-optic net-

work in polynomial time under the presence of such geographically correlated faults.

The networks studied in [11, 12, 14, 13] are all static. However, ANs under study in

this research are dynamic.

There may be times that the backbone network may have to operate in a dis-

connected mode. The last few years have seen considerable interest in the networking

research community in delay tolerant networks (DTN) design [15]. The authors of

[16] survey challenges in enhancing the survivability of mobile wireless networks. This

paper mentions that one of the aspects that can significantly enhance network surviv-

ability is the design for end-to-end communication in environments where the path

from source to destination is not wholly available at any given instant of time. In this

design adjusting the transmit power of the nodes plays an important role. Existing

DTN research mainly focuses on routing problem in DTN [17, 18]. The paper [19]

provides a survey on routing algorithms for DTN. For the routing algorithms to be

effective, every pair of nodes should be able to communicate with each other over

time. Therefore, the time evolving DTN should be connected over time. Few papers

[20, 21] have studied the problem of topology control in DTNs. In these papers, the

14

time evolving network is modeled by space-time graph and it is assumed that the

space-time graph is initially connected and the problem is to find the minimum cost

connected subgraph of the original graph.

These papers have not studied the computation of minimum transmission

range of nodes in DTN networks such that the time evolving network is connected

over time and to the best of our knowledge, this is the first research work that studies

this problem.

2.2 System Model and Architecture

In the previous section, we argued that the level of reliability needed for continu-

ous operation of an AN may be difficult to achieve through a completely mobile,

infrastructure-less network and wherever possible a backbone network with Airborne

Networking Platforms (ANPs) should be formed to enhance reliability. In order to

achieve this goal, we propose an architecture of an AN where a set of ANPs form a

backbone network and provide reliable communication services to combat aircraft on

a mission. In this architecture, the nodes of the backbone networks (ANPs) may be

viewed as mobile base stations with predictable and well-structured flight paths and

the combat aircrafts on a mission as mobile clients. A schematic diagram of this

architecture is shown in Fig. 2.1. In the diagram, the black aircrafts are the ANPs

forming the infrastructure of the AN (although in Fig. 2.1, only aircrafts are shown as

ANPs, the UAVs and satellites can also be considered as ANPs). We assume that the

ANPs follow a circular flight path. The circular flight paths of the ANPs and their

coverage area (shaded spheres with ANPs at the center) are also shown in Fig. 2.1.

Thick dashed lines indicate the communication links between the ANPs. The figure

also shows three fighter aircrafts on a mission passing through space known as air

corridor, where network coverage is provided by ANPs 1 through 5. As the fighter

aircrafts move along their flight trajectories, they pass through the coverage area of

15

Figure 2.1: A Schematic View of an Airborne Network

multiple ANPs and there is a smooth hand-off from one ANP to another when the

fighter aircrafts move from the coverage area of one ANP to that of another. At

points P1, P2, P3, P4, P5 and P6 on their flight path in Fig. 2.1, the fighter aircrafts

are connected to the ANPs (4), (2, 4), (2, 3, 4), (3), (1, 3) and (1), respectively.

In this research, we make a simplifying assumption that two ANPs can com-

municate with each other whenever the distance between them does not exceed the

specified threshold (transmission range of the on board transmitter). We are well

aware of the fact that successful communication between two airborne platforms de-

pends not only on the distance between them, but also on various other factors such as

(i) the line of sight between the platforms [22], (ii) changes in the atmospheric chan-

nel conditions due to turbulence, clouds and scattering, (iii) the banking angle, the

wing obstruction and the dead zone produced by the wake vortex of the aircraft [23]

and (iv) Doppler effect. Moreover, the transmission range of a link is not a constant

and is impacted by various factors, such as transmission power, receiver sensitivity,

scattering loss over altitude and range, path loss over propagation range, loss due to

turbulence and the transmission aperture size [23]. However, the distance between the

ANPs remains a very important parameter in determining whether communication

16

between the ANPs can take place, and as the goal of this research is to understand

the basic and fundamental issues of designing an AN with twin invariant properties

of coverage and connectivity, we feel such simplifying assumptions are necessary and

justified. Once the fundamental issues of the problem are well understood, factors (i)

- (iv) can be incorporated into the model to obtain a more accurate solution.

For simplicity of analysis, we make two more assumptions. We assume that

(i) all ANPs are flying at the same altitude and (ii) they follow a circular flight path.

The first assumption allows us to reduce the problem from three dimension to two.

However, none of these two assumptions are critical and our analysis technique can

easily be extended to scenarios where the ANPs are not flying at the same altitude

and they are not following a circular flight path. As a consequence of assumption

(i), we can view the n backbone nodes (ANPs) as moving points on a 2 dimensional

plane. Let (xi(t), yi(t)) be the coordinates of the node i at time t. The network of

flying ANPs gives rise to a dynamic graph G(t) = (V,E(t)) where V = {1, 2, . . . , n}

is the set of nodes indexed by the ANPs and E(t) is the set of edges at time t.

There is an edge between two nodes if their Euclidean distance, sij is less than the

transmission range Tr at time t, i.e., E(t) = {(i, j)|sij(t) < Tr}. It may be noted

that the dynamic graph G(t) = (V,E(t)) is completely defined by the following five

controlling parameters.

1. a set of points {c1, c2, . . . , cn} on a two dimensional plane (representing the

centers of circular flight paths),

2. a set of radii {r1, r2, . . . , rn} representing the radii of circular flight paths,

3. a set of points {p1, p2, . . . , pn} representing the initial locations of the platforms

4. a set of velocities {v1, v2, . . . , vn} representing the speeds of the platforms, and

5. transmission range Tr of the transceivers on the airborne platforms.

17

O x

y

!rci

!rcj

!Ri(t)

!Rj(t)

!sij(t)

!ri(t)

!rj(t)

θi(t)

θj(t)

αci

αcj

ci
•

cj

•i
•

j
•

1

(a)

O x

y

!rci

!Ri(0)

αci

θi(0)

βici•

i(0)
•

1

(b)

Figure 2.2: (a) Initial phase angle βi of point i; at time 0 point is shown as i(0), (b)
Vector representations (Ri(t) and Rj(t)) of two points i and j at time t moving along
two circular orbits: rci = 15, rcj = 27, ∠ciOx = αci = π

3
, ∠cjOx = αcj = π

6

In next section we explain the computation of dynamic topology of graph

G(t) = (V,E(t)) when all five controlling parameters are given.

2.3 Dynamic Topology Computation

In this section we answer the following question. Given all five problem parameters

including the transmission range of the ANPs, how do you determine if the resulting

dynamic graph is connected at all times?

Suppose that two ANPs, represented by two points i and j (either in two

or in three dimensional space, the two dimensional case corresponds to the scenario

where the ANPs are flying at same altitude) are moving along two circular orbits with

centers at ci and cj with orbit radius ri and rj as shown in Fig. 2.2(a) with velocities

vi and vj (with corresponding angular velocities ωi and ωj), respectively.

A moving node i is specified by the radius vector Ri(t) directed from some

origin point O, and similarly Rj(t) for point j. Therefore the distance sij(t) between

the nodes i− j at time t is given by:

s2ij(t) = (Ri(t)−Rj(t))
2 = R2

i (t) +R2
j (t)− 2Ri(t) ·Rj(t) (i)

18

As mentioned earlier, we have assumed that the communication between the ANPs

is possible if and only if the Euclidean distance between them does not exceed the

communication threshold distance Tr. This implies that the link between the nodes

i and j is alive (or active) when

sij(t) ≤ Tr (ii)

In the analysis that follows, we have assumed that ANPs are flying at the same

altitude, i.e., we focus our attention to the two dimensional scenario. However, this

analysis can easily be extended to the three dimensional case to model the scenario

where the ANPs are flying at different altitude. In this case we can view the ANPs

as points on a two-dimensional plane moving along two circular orbits, as shown in

Fig. 2.2(a). In Fig. 2.2(a), the vectors from the origin O to the centers of the orbits

ci and cj are given as rci and rcj . The cartesian co-ordinates of the centers can be

readily obtained as rci = (rcicos αci , rcisin αci) and rcj = (rcjcos αcj , rcjsin αcj).

Accordingly, Ri(t) can be expressed in polar coordinates: (Ri(t), θi(t)) with respect

to origin point O, as shown in Fig. 2.2(a), and similarly for Rj(t). The initial location

of the points Ri(0) and Rj(0) are given. From Fig. 2.2(b), the phase angle βi for node

i with respect to the center of orbit ci, can be calculated as (by taking projection on

the axes):

tan βi =
Ri(0)cos θi(0)− rcicos αci
Ri(0)sin θi(0)− rcisin αci

(iii)

From Fig. 2.2(a),

Ri(t) = rci + ri(t) (iv)

where ri(t) = (ri cos (βi+ωit), ri sin (βi+ωit)) (since angle made by i at time t w.r.t.

ci is given by (βi +ωit)). Therefore, the angle between ri(t) and rci is (βi−αci +ωit).

Hence,

R2
i (t) = r2ci + r2i + 2rciri cos (βi − αci + ωit) (v)

19

Now taking the projection of Ri(t) = rci + ri(t) on the x and y axes, we get

Ri(t) cos θi(t) = rci cos αci + ri cos (βi + ωit), (vi)

Ri(t) sin θi(t) = rci sin αci + ri sin(βi + ωit) (vii)

Recalling cos(A−B) = cosA cosB + sinA sinB, and simplifying we get

Ri(t)Rj(t) cos(θi(t)− θj(t)) = rcircj cos αcicj + rirj cos(βij + (ωi − ωj)t)

+ rcirj cos(αci − βj − ωjt)

+ rcjri cos(αcj − βi − ωit) (viii)

where αcij = αci − αcj and βij = βi− βj. Combining equation i with equations v and

viii, we have:

s2ij(t) = r2ci + r2i + 2rciri cos(βi − αci + ωit) + r2cj + r2j + 2rcjrj cos(βj − αcj + ωjt)

−2[rcircj cosαcicj + rirj cos(βij + (ωi − ωj)t)

+rcirj cos(αci − βj − ωjt) + rcjri cos(αcj − βi − ωit)] (ix)

In equation ix, all parameters on the right hand side are known from the initial

state of the system, and thus the distance sij(t) between the nodes i− j at any time

t can be obtained. If the ANPs move at the same velocity, i.e., ωi = ωj = ω for all

i, j and the radius of the circular orbits are identical, i.e., ri = rj = r for all i, j, and

the above expression simplifies to:

s2ij(t) = r2ci + r2 + 2rcir cos(βi − αci + ωt) + r2cj + r2 + 2rcjr cos(βj − αcj + ωt)

−2[rcircj cos αcicj + r2 cos βij

+rcir cos(αci − βj − ωt) + rcjr cos(αcj − βi − ωt)] (x)

An example of a plot of equation (ix) (generated using MATLAB) is shown

in Fig. 2.3(a) with communication threshold distance Tr = 18. This implies that

20

0 50 100 150 200 250 300 350 400 450 5000

5

10

15

20

25

Time

Di
st

an
ce

 B
et

w
ee

n
No

de
s

i a
nd

 j

(a)

0 50 100 150 200 250 300 350 400 450 5000

5

10

15

20

25

Time

Di
st

an
ce

 b
et

w
ee

n
no

de
s

i a
nd

 j

Edge exists between i and j No edge between i and j

D = 4

D = 24

D = 18

(b)

Figure 2.3: Effect of the distance between nodes on the existence of the communica-
tion link between them; (a)Distance between two points i and j as a function of time,
(b)Active (Blue/Light gray)/Inactive (Red/ Dark gray) times of the link between i
and j with transmission range Tr = 18

the link between the nodes i and j exists, when the distance between them is at

most 18 and the link does not exist otherwise. This is shown in Fig. 2.3(b). The

red(dark gray) part indicates the time interval when the link is inactive(or dead) and

the blue(light gray) part indicates when it is active (or live).

Link 1:

Link 2:

Link 3:

Timeline 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Links Active Links Dead

Figure 2.4: Active/Inactive time interval of each link and interval intersection pro-
jections on the time line

Thus using equation (ix) and comparing the distance between any two nodes

with the communication threshold Tr, we can determine active/inactive times of all

links. This can be represented as intervals on a time line as shown in Fig. 2.4. By

drawing projections from the end-points of the active/inactive times of each link on

the time line, we can find out all the links that are active during an interval on time

line. As shown in Fig. 2.4, links 1, 2 and 3 are active in interval 1; links 1 and 3 are

active in interval 2, links 1, 2 and 3 are active in interval 3 and so on. Once we know

21

all the links that are active during a time interval, we can determine if the graph is

connected during that interval using any algorithm for computing graph connectivity

[24]. By checking if the graph is connected at all intervals, we can determine if the

graph is connected at all times, when the ANPs are moving at specified velocities.

We note that based on equation (ix), sij is periodic if every pair of velocities

ωi and ωj are commensurate, i.e. ωi/ωj is a rational number [25]. Therefore, the

network topologies will be repeated periodically and it is enough to check network

connectivity in one period.

If the problem parameters (1) through (5) are specified, we can check if the

dynamic graph is connected at all times following these two steps. In the first step, we

determine the lifetime (active/inactive intervals) of every link between every pair of

nodes i and j by comparing sij(t) with Tr and finding the time points that the state

of a link changes. Let L(Tr) = {e1, e2, . . . , el} denote the set of events eis that state

of a link changes when transmission range is Tr; L(Tr) is sorted in increasing order

of the time of the events. Hence, between two consecutive events ei and ei+1 that

happen at times ti and ti+1 the set of active links is unchanged. Algorithm 1 shows

the details of computing L(Tr). In the second step we check the graph connectivity

in each interval [ti, ti+1) for all 0 ≤ i ≤ l− 1 using connectivity checking algorithm in

[26]. t0 shows current time (starting point). Step 2 is described in detail in Algorithm

2.

22

Algorithm 1 Link Lifetime Computation
Input: (i) a set of points {c1, c2, . . . , cn} representing the centers of circular flight paths,

(ii) a set of radii {r1, r2, . . . , rn} representing the radii of circular flight paths, (iii) a set

of points {p1, p2, . . . , pn} representing the initial locations of the platforms, (iv) a set of

velocities {v1, v2, . . . , vn} representing the speeds of the platforms.

Output: L(Tr): an ordered set of events that the state of a link changes from active to

inactive or inactive to active.

1: L(Tr)← ∅

2: for all pairs i, j do

3: Compute l to be the set of time points t such that sij(t) = Tr (equation ix) over

a period of time, to find the instances of times t where the state of the link (i, j)

changes. If sij(t) = Tr and is sij(t) increasing at t, it implies that the link dies at t,

and if sij(t) decreasing at t, it implies that the link becomes active at t.

4: for all lk ∈ l do

5: Find the position of lk in L(Tr) using binary search and Add the event into L(Tr).

(L(Tr) is sorted in increasing order)

6: end for

7: end for

Algorithm 2 Checking Connectivity of Airborne Network
Input: L(Tr)

Output: true if graph is connected all the time; otherwise false.

1: for all li ∈ L(Tr) do

2: Check if the AN graph is connected with the set of live links during interval [li, li+1).

This can be done with the connectivity testing algorithm in [26]

3: if AN graph is not connected, return false

4: end for

5: return true

23

Let n be the number of ANPs. The first loop of Algorithm 1 is executed for

O(n2) times. The number of iterations of the inner loop depends on the number of the

solutions of sij(t) = Tr. For the case that ANPs move at the same velocity, i.e., ωi =

ωj = ω it is obvious that equation (x) is periodic and length of one periodic interval

is 2π/ω. So, it is enough to execute Algorithm 1 for one period [t0, t0 +2π/ω). In this

case, equation (x) can be written as A cos(ωt) + B sin(ωt) =
√
A2 +B2 sin(ϕ + ωt)

where A,B and ϕ are constants and can easily be obtained from equation (ix). In

this case, the equation sij(t) = Tr can have at most two solutions and the solutions

can be found in constant time. Therefore, for every link, the timeline is divided into

at most three segments in one period and the size of the set of intervals, |L(Tr)| is

O(n2); also, the time complexity of the binary search is O(log n2). So, the total time

complexity of Algorithm 1 is O(n2 log n). Even when the velocities of the ANPs are

different, sij remains periodic if every pair of velocities ωi and ωj are commensurate,

i.e. ωi/ωj is a rational number [25]. In this case also we need to solve sij(t) = Tr for

one period only. Otherwise, equation (ix) is not periodic and we need to consider a

period of time between t0 and finish time tf and find the solutions in that period. For

the sake of simplicity, we assume that the ANPs move at the same speed. The running

time of connectivity testing algorithm in [26] is O(n2). Also, as |L(Tr)| = O(n2) time

complexity of Algorithm 2 is O(n4).

2.4 Computation of Critical Transmission Range in Fault Free Scenario

It is conceivable that even if the network topology changes due to movement of

the nodes, some underlying structural properties of the network may still remain

invariant. A structural property of prime interest in this context is the connectivity

of the dynamic graph formed by the ANPs. We want the ANPs to fly in such a way,

that even though the links between them are established and disestablished over time,

the underlying graph remains connected at all times. We define critical transmission

24

range (CTR) to be the smallest transmission range necessary to ensure network graph

G(t) is always connected. We would like to determine CTR. In this case, the problem

will be specified in the following way. Given controlling parameters 1, 2, 3 and 4,

what is the minimum transmission range of the ANPs so that the resulting graph is

connected at all times?

In the previous section we explained how we check network connectivity when

all five parameters are given. The maximum transmission range of an ANP Trmax

is known in advance. In order to compute CTR we can conduct a binary search

within the range 0 − Trmax and we can determine the smallest transmission range

that will ensure a connected AN during the entire operational time when all other

problem parameters have already been determined. The binary search adds a factor

of log Trmax to the complexity of Algorithms 1 and 2.

2.5 Computation of Critical Transmission Range in Faulty Scenario

The CTR computed in previous section may not guarantee the connectivity of back-

bone network when some of ANPs fail. In this section, we consider the AN scenario

where some of the network nodes are faulty and we compute critical transmission

range in faulty scenario(CTRf) which is defined to be the smallest transmission range

necessary to ensure network connectivity, irrespective of (a) the location of the fault

region and (b) the time of the failure. First we describe the fault model used in this

research. Also, we identify the challenges that one has to confront, in order to find

the CTRf .

2.5.1 Fault Model

As we mentioned before, our focus is on spatially correlated (or region-based) faults

such as Electromagnetic Pulse (EMP) attacks or jamming. Spatially correlated or

region-based faults imply that the faulty nodes due to an attack are confined to a

geographic area. In a two dimensional deployment area, a region can be viewed as a

25

circular area with radius R (in three dimensional space it can be viewed as a sphere

with radius R). In our model, when a region is under attack and consequently fails

at time t, some or all the ANPs within that region at time t also fail. In this version

of the model, we also make an assumption that only one region can fail at any one

time. Fig. 2.5 shows five ANPs moving on a two dimensional plane and a faulty

region (red circle, centered at point P) at time t. Since ANPs 4 and 5 are within the

fault region at time t, we assume that these nodes are damaged and no longer can be

viewed as part of the backbone network. It may be noted that both the location of

the center of the fault circle, P , as well as the time of attack, t, play a critical role in

determining the impact of the attack on the backbone network.

c1

c3

c5

c4

c2

ANP1

ANP2

ANP3

ANP4

ANP5
P

Figure 2.5: ANPs on a circular flight path on a 2D-plane with a fault region

2.5.2 Problem Formulation and Design Challenges

In faulty scenario the connectivity problem is defined in the following way: Given

the controlling parameters 1, 2, 3 and 4 (defined in Section 2.2) as well as the radius

of a region R, what is the smallest transmission range necessary to ensure network

connectivity, irrespective of (a) the location of the fault region and (b) the time of the

failure. In other words, the problem is how to compute CTRf .

One can easily recognize the complexity of the problem by noting that poten-

tially there could be an infinite number of locations for point P and infinite choices

for attack time t. In our analysis we show that although there could be an infinite

26

number of choices of P and t, we need to consider only a small subset of them to

correctly determine CTRf . The tasks that need to be performed before a solution to

the problem is found can be listed as follows:

• Computation and comprehension of the dynamic topology of the backbone net-

work (in a fault-free scenario) as it changes with movements of the ANPs.

• How many regions (locations of point P) and instances of attack time t should

be considered?

• How to determine the ANPs that are damaged when an attack takes place in

location P at time t?

In section 2.3 we described the computation of the dynamic topology of the back-

bone network (in a fault-free scenario). In the following subsections we describe our

techniques to deal with the second and third challenges and to compute CTRf .

2.5.3 Regions to Examine

The authors in [11] introduced the notion of region-based faults and introduced a

new metric, region-based connectivity, to measure the fault-tolerance capability of a

network under the region-based fault model. Region-based connectivity of a network

is defined to be the minimum number of nodes that has to fail in any region of the

network before it is disconnected. In this study, a region is defined to be a circle

of radius R. With this definition of a region, the number of potential regions could

be infinite. The authors in [11] proved that in a static wireless network, only a

limited number of distinct regions need to be examined to compute the region-based

connectivity. They showed that it is enough to consider the regions centered at the

intersection points of the circles centered at the nodes with radius R. Although the

AN is dynamic, if we take a snapshot of the network at some instance of time t,

27

the AN can be viewed as a static network with a specific topology and nodes in

specific locations on the plane. The vulnerability zone of a node i, V Zi(t), is defined

to be a circular region centered at the location of node i at time t with radius R.

The motivation for this definition of the vulnerability zone of node i is the following.

If the center of the fault region is within the vulnerability zone of ANPi (node i),

then the ANPi is likely to be damaged. The vulnerability zones of ANPs are shown

in Fig. 2.6. Since there is no discernible difference between a static sensor network

considered in [11] and a snapshot of an AN at a specific instance of time t, using

the analysis presented in [11], we can conclude that it is enough to examine only the

regions centered at the intersection points (I-points) of the vulnerability zones of the

ANPs. The vulnerability zones of two ANPs and their intersection points are shown

in Fig. 2.6. If a V Zi does not have intersection with any other node’s vulnerability

zone, an I-point is considered at the location of the node i.

Since the ANPs are mobile, the location of the intersection points of their

vulnerability zones also changes with time. Each pair of ANPs will have at most two

intersection points. Since there are only n(n−1)/2 pairs of nodes, at most n(n−1) in-

tersections points can exist at any given time (it may be noted that depending on flight

path of a pair of ANPs, their vulnerability zones may never intersect). We define a set

of n(n−1)+n I-points, I = {I1(1,2), I2(1,2), I1(1,3), I2(1,3), . . . , I1(n−1,n), I2(n−1,n), I1, I2, . . . , In},

where the I1(i,j) and I2(i,j) are the intersection points of the vulnerability zones V Zi and

V Zj. We will use the notation I1(i,j)(t) and I2(i,j)(t) to denote the locations of I1(i,j) and

I2(i,j) at time t. Similarly, Ii(t) will denote the location of node i at time t. Based on

the results presented in [11], it is known that at any point of time t it is sufficient to

examine only the regions centered at the I-points in I. In the rest, we use I(i,j) to

denote both I1(i,j) or I2(i,j).

28

VZi

VZj

i

j

Iij
1

Iij
2

R

ci

cj

orbit

center of orbit

Figure 2.6: I1ij and I2ij are intersection points of V Zi and V Zj at time t.

For every two nodes i and j, V Zi(t) and V Zj(t) intersect iff sij(t) ≤ 2R. In

this case we say that the region centered at intersection point I(i,j) exists at time t;

otherwise, it does not, i.e., there exists no region that can cover both nodes i and j

at time t. It may be noted that due to the mobility of the ANPs, I(i,j) may exist at

some point of time t and may not exist at some other point of time t′. By checking

the condition sij(t) ≤ 2R, we can determine the intervals on the timeline when I(i,j)

exists for each pair of nodes i and j; i.e., we can compute existence intervals of each

I-point on the timeline. Let T (f) = {(t1f , t2f), . . . , (tk−1f , tkf)} be the set of existence

intervals of I-point f ∈ I where the first element in every pair (tjf , t
j+1
f) is the start

time and the second one is the finish time of the j- th existence interval. If in a time

interval (tjIi , t
j+1
Ii

), V Zi does not have intersection with any other ANP’s vulnerability

zone then a region centered at Ii should be considered, i.e, (tjIi , t
j+1
Ii

) ∈ T (Ii). Without

loss of generality we can assume that the region centered at the point Ii exists all

the time and it only covers node i. The computation of the intervals on the timeline

when I(i,j) exists (or does not exist), for each pair of nodes i and j, can be carried

out by an algorithm similar to Alg. 1 presented earlier. The only differences are (i)

the value of t that satisfies the equation sij(t) = 2R should be computed instead of

the value of t that satisfies the equation sij(t) = Tr, (ii) since there is no need to

combine existence interval information of one pair of nodes (I(i,j)) with another pair,

the binary search in step 5 of Alg. 1 is not needed.

29

2.5.4 Computation of the Damaged ANPs in a Fault Region

After finding the existence intervals of I-points we want to find the set of nodes that

might be damaged by the failure of a region centered at an I-point when it exists. A

node might be damaged by failure of a region if the Euclidean distance between the

center of the region and the node is less than R. As explained in part 2.5.3 the regions

centered at I-point Ii ∈ Is only can destroy node i. Since, we know the locations of

each pair of nodes i and j at time t, we can compute V Zi(t) and V Zj(t), and hence

I1(i,j)(t) and I2(i,j)(t), the intersection points of V Zi(t) and V Zj(t) at time t.

Once the location of each intersection I(i,j) in its existence intervals ∈ T (I(i,j))

are known, we can find the nodes that might be damaged if the region centered at I(i,j)

fails. For ease of notation we denote the set of I-points ∈ I as F = {f1, f2, . . . , fl}.

Dik(t) denotes the distance between I-point fi ∈ F and node k at time t. For every

I-point fi ∈ F in its existence interval ∈ T (fi), we find Dik(t) for all k ∈ V . Since

we know the position of the nodes and I-points at any point of time, Dik(t) can be

computed easily. If Dik(t) ≤ R, then the node k may be damaged due to the region

failure fi. From this calculation, we can find out the time interval when node k is

vulnerable to a failure fi. In other words, we can find out the time intervals when a

node k is covered by the region centered at fi (i.e., Dik(t) ≤ R). It may be noted that

this time interval will be subinterval of the intersection points existence time interval.

Accordingly, every existence interval (tjfi , t
j+1
fi

) ∈ T (fi) is divided into a set of smaller

subintervals such that each of these intervals identify a specific set of nodes that may

be damaged if the region centered at fi fails. Suppose that tm be the mth interval

of T (fi). We define a set NT (fi, tm) = {(tm1, Nm1), (tm2, Nm2), . . . , (tmj, Nmj)}as the

set of subintervals into which tm is divided, where tmj denotes the start time of the

jth subinterval of tm where at least a node enters the region or leaves the region and

30

Nmj denotes the set of nodes within the region centered at fi in its jth subinterval.

We need to compute NT (fi, tm) for every region fi ∈ F and for all of its existence

intervals. Based on NT (fi, tm) we can draw a timeline, region-coverage timeline for

each region centered at an I-point fi ∈ F . Fig. 2.7 shows an example in which

NT (f1, t1) = {(t11, {1, 2}), (t12, {1, 2, 3}), (t13, {1, 2})}.

N12 =N21={1,2,3} N23={1,2,4}

f1=I(1,2)

ANP1

ANP2

ANP3

Timeline

ANP4

t1 t2

t14t11 t12 t13 t24t21 t22 t23

Figure 2.7: Region coverage timeline of the region centered at f1 = I(1,2); The first
timeline shows the availability intervals of f1; i.e, T (f1) = {t1, t2}.

2.5.5 Computation of Critical Transmission Range in Faulty Scenario (CTRf)

In this section we propose an algorithm to find CTRf .

The transmission range Tr is one of the parameters that determines the num-

ber of active links at any given time. Similarly, the location of the center of the

fault region is one of the parameters that determines the number of ANPs that can

potentially be damaged by the fault. For a specific region centered at an I-point fi,

and a transmission range Tr, we define an interval on the timeline as static interval,

if the set of potentially damaged nodes due to a region fault at location fi and the

set of alive links with transmission range Tr remain unchanged. We can find static

intervals using the timeline region-coverage(fi) and the timeline link-lifetime L(Tr).

In order to find the static intervals for I-point fi and transmission range Tr, we define

four events during the time interval when fi exists: (i) a dead link comes alive, (ii) a

live link dies, (iii) an ANP node comes within coverage area of fi and (iv) an ANP

node moves out of the coverage area of fi. The instance of time at which any of the

31

four events takes place is the instance of the start time of a new static interval. Let

SI(fi, T r) be a sorted list of events resulting from combining the sorted list L(Tr)

and NT (fi, tm) for all tm ∈ T (fi). Therefore, between any two consecutive elements

in SI(fi, T r) neither the topology nor the region coverage changes.

Once the nodes within a region (or nodes covered by a region) and the set

of active links during a static interval are known, we can use Algorithm-2 in [11] in

order to find the region based connectivity of the network with respect to I-point fi.

Region based connectivity with respect to an I-point fi (RBC(fi)) is defined to be

the minimum number of nodes in the region centered at fi whose failure disconnects

the network. If the number of nodes that can be damaged due to a region based

fault at fi is ni (i.e., the fault at fi covers ni nodes), we would like the ANPs to

have enough transmission range, so that the region based connectivity of the graph

is at least ni + 1. This will ensure that the network will remain connected if any

subset of the covered nodes fails. Using Algorithm-2 of [11], and applying binary

search within the range 0 − Trmax we can find the minimum transmission range

necessary in each static interval, to ensure that the network remains connected when

a region fi fails (during the interval when it fi is exists). We define err to be the

maximum acceptable difference between the smallest transmission range necessary to

maintain connectivity and the smallest transmission range computed by the algorithm

to maintain connectivity. In our algorithm, we set the maximum possible transmission

range to be equal to diameter of the deployment area. The algorithm computes

the minimum transmission range necessary to maintain connectivity for each static

interval. The maximum of these minimum values computed is the critical transmission

range in faulty scenario (CTRf) . Alg. 3 provides all the details.

In Alg. 3, line 1 takes O(n2). In order to compute T (fi) we need to solve

sij = 2R. As described in Alg. 1, for the case that ANPs move at the same velocity,

32

ω, this equation can be solved easily in constant time and it has two solutions in one

period. So, |T (fi)| ≤ 2. In line 5, we have to solve Div(t) = R for all v ∈ V . For

one node v, this equation also in one period can have a constant number of solutions

since it can easily be converted to a single variable polynomial equation with degree

6. So, computation of NT (fi, tm) takes O(n) and
∑

tm
|NT (fi, tm)| = O(n). Conse-

quently, lines 2-7 have complexity of O(n3). The while loop is repeated for log Trmax

(binary search complexity). As it is discussed in Alg. 1, computation of L(Tr) takes

O(n2 log n). Computation of SI(fi, T r) need sorting the sorted lists NT (fi, tm) and

L(Tr) which takes O(n2). Clearly, |SI(fi, T r)| = O(n2). Computing RBC(fi) takes

O(n4) [11]. Therefore, the time complexity of Alg. 3 is O(n8 log Trmax).

Algorithm 3 Computing CTRf

1: Compute sij(t) for all pair of ANPs i and j
2: for all I-points fi ∈ I
3: Compute T (fi) = {(t1f , t2f), . . . , (tk−1f , tkf)}
4: for all tm ∈ T (fi)
5: Compute NT (fi, tm) = {(tm1

, Nm1
), . . . , (tmp

, Nmp
)}

6: error = Trmax, tra = 0, trb = Trmin = Trmax

7: while error > err
8: error = error/2, Tr = (tra + trb)/2
9: Find L(Tr) = {e1, e2, . . . , et} using Alg. 1

10: for all I-points fi ∈ I
11: SI(fi, T r) ← Sort the lists NT (fi, tm) and L(Tr) based on time

of the events (considering all tm ∈ T (fi))
12: for all event ∈ SI(fi, T r)
13: Update the graph G(t) (by adding or removing the links) or the

region coverage of fi
14: RBC(fi)← Using Alg. 2 in [11] Compute the region-based

connectivity considering only one region centered at I-point fi
15: if (RBC(fi) ≥ ni + 1) NextSI ← TRUE
16: else NextSI ← FALSE; break;
17: if (NextSI = FALSE) tra = Tr; break;
18: if (NextSI = TRUE) trb = Tr; Trmin = Tr
19: return Trmin

33

2.6 Computation of Critical Transmission Range in Delay Tolerant Airborne

Networks CTRD

In previous sections we explained the computation of critical transmission range in

fault free (CTR) and faulty scenarios (CTRf). However, it may not be possible

to equip the ANPs with radios that have coverage of radius CTR. Therefore, the

backbone network cannot be connected all the times. On the other hand, based on

the type of data that should be transmitted between ANPs, data transmissions may

be tolerant to some amount of delay. Hence, ANPs may not be needed to have end-

to-end paths all the times but they should be able to transmit data to each other in

some limited time through intermediate nodes in different network topologies. In this

section we investigate the problem of computation of minimum transmission range in

delay tolerant airborne networks.

We consider that the trajectories and the distance function sij(t) of the nodes

are periodic over time. As a consequence, the network topologies are repeated peri-

odically. However, periodicity is not an underlying assumption and our results can

be utilized in non-periodic scenario as long as the node trajectories for the whole

operational duration of a network are given. In Section 2.3 we explained how we

can compute link lifetime timeline and accordingly the network topologies caused by

ANPs mobility in a time period when all five controlling parameters are given. We

represent the set of topologies in a periodic cycle starting from time t0 (starting time

of network operation) by the set G = {G1, G2, . . . , Gl}. Each network topology Gi

exists for a time duration of Ti. As the focus of this section is study of the delay

caused by network disconnection (which may be viewed as delay due to queuing at an

intermediate node), we assume that other delays due to transmission and propagation

are negligible.

34

In Fig. 2.8, an example of a dynamic graph with two topologies G1 and G2

in one periodic cycle is shown. G1 and G2 last for T1 and T2 time units respectively.

It can be observed that there is no end-to-end path from A to C in either G1 or G2.

However, A can transmit data toB inG1, and B can forward it to C inG2. In this case

we say that A can reach C through a temporal path with delay equal to the lifetime

of G1, i.e. T1; and the temporal path is completed in G2. We define a temporal path

from node s to d to be a set of tuples {(t1, (v1, v2)), (t2, (v2, v3)), . . . , (tk, (vk, vk+1))}

such that v1 = s, vk+1 = d, vi ∈ V and for every tuple (ti, (vi, vi+1)) , edge (vi, vi+1) is

active at time ti, and ti ≥ ti−1 for all 1 ≤ i ≤ k. Moreover, without loss of generality,

we assume that ti corresponds to the starting time of a topology in G. Then the path

delay is defined to be tk − t0 where t0 is the starting time of G1 in the first periodic

cycle. We note that all path delays are computed with respect to starting point t0

but we later show that we can modify the starting point to any time.

A A B B

C C

G1

A A B B

C C

G2

Figure 2.8: A dynamic graph with two topologies G1 and G2

We note that existence of a path from node i to j with some delay does not

guarantee the existence of a path from j to i with the same delay. For example, in

Fig. 2.8 the path from C to A has a delay of T1 + T2 while the path delay from A to

C is equal to T1. We say that a dynamic graph G(t) is connected with delay D if there

exists a temporal path from every node i ∈ V to every node j ∈ V − {i} with delay

smaller than D. In a network, if the transmission range Tr is too small, ANPs may

not be able to reach each other at all; i.e. there is no temporal path of finite delay

between the ANPs. We define critical transmission range in delay tolerant network

(CTRD) to be the minimum transmission range necessary to ensure that the dynamic

35

graph is connected with delay D. We define the connectivity problem in delay tolerant

networks as the problem of computation of CTRD given the first four controlling

parameters defined in Section 2.2, and the delay threshold D.

In order to find the value of CTRD, first we explain an algorithm to check

whether a transmission range Tr is adequate for having a connected dynamic network

with delay D. Using Algorithm 1 in Section 2.3 we can compute the different network

topologies and their lifetime in one periodic cycle. Before describing the rest of the

algorithm, first we propose an observation.

Observation 1. For a given transmission range Tr, there is a temporal path from

every node u to every node v with finite delay iff the superimposed graph Gc =

{V,⋃l
i=1Ei}, where Ei is the set of edges in Gi, is connected.

Although a transmission range Tr may be enough to result in a connected

superimposed graph Gc, it may not be sufficient for the existence of a temporal path

between every pair of nodes with delay smaller than a threshold D even if D is as

large as
∑l−1

i=1 Ti. Fig. 2.9 depicts an AN with three topologies in one period. It can

be observed that A cannot have a temporal path from A to D in the first period.

Actually the fastest path includes edges (A,B) in G3 in first period, (B,C) in G2 in

the second period and (C,D) in G1 in the third period. Therefore, the path delay is

2(T1 + T2 + T3). Generally, in the worst case in every period just a subpath (a set

of consecutive edges) in one topology is used and therefore the maximum delay of a

temporal path will be Dmax = (l − 1)
∑l

i=1 Ti. Hence, if D ≥ Dmax, examining the

connectivity of Gc is enough to decide whether for a transmission range there exists

a temporal path of delay smaller than D between every pair of nodes in the dynamic

network.

36

A A B B

C C

G1

D D

A A B B

C C
G2

D D

A A B B

C C
G3

D D

Figure 2.9: A dynamic graph with three topologies G1, G2 and G3

Next, we explain the algorithm that checks for a given value of transmission

range Tr whether a network is connected with delay D where D < Dmax. Let N(u)

denotes the set of nodes that are reachable from u ∈ V with delay smaller than D.

Initially N(u) = {u}. The algorithm starts by computing the connected components

in every topology Gi. Let Ci = {Ci,1, Ci,2, . . . Ci,qi} represents the set of connected

components in Gi where Ci,j is the set of nodes in jth component of Gi and qi = |Ci|.

Let g and h be the quotient and remainder of D∑l
i=1 Ti

respectively, and t0 + h is the

time where the network topology is Gp for a p, 1 ≤ p ≤ l. Therefore, the topologies

in time duration t0 to t0 +D includes G1 to Gl for g number of cycles and G1 to Gp

in last periodic cycle. Starting from first topology G1 in first period, in each topology

Gi, if a node v is in the same connected component with a node w ∈ N(u), then v can

be reachable from u through a temporal path which is completed in Gi; hence, N(u)

is updated to N(u) ∪ (
⋃
k:N(u)∩Cik 6=∅Cik). In this step the algorithm goes through all

the topologies from t0 to t0 + D. In the end, if N(u) = V for all u ∈ V then the

transmission range Tr is sufficient for having a connected network with delay D. In

Algorithm 4 the steps of checking the connectivity of a dynamic graph with delay D

is proposed.

37

Algorithm 4 Checking Connectivity of Airborne Network with delay D

Input: G(t) = {G1, G2, . . . , Gl} and delay threshold D

Output: true if dynamic graph G(t) is connected with delay D; otherwise false.

1: Initialize N(u) = {u} for every u ∈ V

2: for all topologies Gi, 1 ≤ i ≤ l

3: Compute Ci = {Ci,1, Ci,2, . . . Ci,qi}, the set of connected components of Gi

4: for all periods 1 to g

5: for all topologies Gi, 1 ≤ i ≤ l

6: for all node u ∈ V

7: N(u)← N(u) ∪ (
⋃
k:N(u)∩Ci,k 6=∅Ci,k)

8: for all topologies Gi, 1 ≤ i ≤ p (the topologies in the last period)

9: for all node u ∈ V

10: N(u)← N(u) ∪ (
⋃

k:N(u)∩Ci,k 6=∅

Ci,k)

11: for all node u ∈ V

12: if N(u) 6= V , return false

13: return true

As we explained in section 2.3, number of topologies, l in one period is O(n2).

The computation of the connected components of a graph Gi = (V,Ei) needs using

either breadth-first search or depth-first search with time complexity of O(|V | +

|Ei|) = O(n2). Hence, step 2-4 takes O(n4). This algorithm is used for the case

that D < (l − 1)
∑l

i=1 Ti. Therefore, number of periods g < l − 1 and g = O(n2).

Computation of Step 7 also needs O(n2) since |N(u)| and total size of all components

in Gi is O(n). Finally, we can conclude that total time complexity of the algorithm

is O(n7).

As we mentioned before, in Algorithm 4 the delays are computed with respect

to t0. We can easily extend it to any time in the network operation duration, by

38

repeating Algorithm 4 for every ti, 1 ≤ i ≤ l where ti is the starting time of topology

Gi. The complexity increases by a factor of l = O(n2). We note that in this case

even if a node starts communication at some time instances t where ti ≤ t ≤ ti+1, the

delay will be smaller than the case it starts at ti. Hence it is enough to just consider

the time points in which a topology change happens.

Similar to the computation of CTR and CTRf , in order to compute CTRD

we can conduct a binary search within the range 0 − Trmax and we can determine

the smallest transmission range that will ensure the AN is connected with delay D

during the entire operational time. The binary search adds a factor of log Trmax to

the complexity of Algorithm 4.

2.7 Simulations

The goal of our simulation is to compare critical transmission range in different sce-

narios of non faulty, faulty and delay tolerant and investigate the impact of various

parameters, such as the number of ANPs, the region radius and delay on critical

transmission range. In our simulation environment, the deployment area is a 1000 ×

1000 square mile area. The centers of the orbits of the ANPs are chosen randomly

in such a way that the orbits do not intersect with each other. In our simulation, we

assume that all the ANPs move at the same angular speed of ω = 20 radian/hour.

Hence a period length is 0.1π hour. One interesting point to note is that, in this envi-

ronment where all the ANPs are moving at the same angular speed on circular paths,

the value of CTR is independent of the speed of movement of the ANPs. This is

true because changing the angular speed ω effects just the time at which the events,

such as a link becomes active or a link dies, take place. If we view the dynamic

topology of the backbone network over one time period as a collection of topologies

G = {G1, G2, . . . , Gl}, where Gi morphs into Gi+1, 1 ≤ i ≤ l at some time, by increas-

ing or decreasing the angular speed of all the ANPs, we just make the transitions

39

from Gi to Gi+1 faster or slower, without changing the topology set G. Similarly,

the set of ANPs that are damaged to failure of a region at a certain time, remains

unchanged.

In our first set of experiments we compute CTR, CTRf when R = 20, 60, and

CTRD when D = 0.5period, 2period for different values of number of nodes, n. Fig.

2.10 depicts the result of these experiments. In these experiments, for each value of

n we conducted 30 experiments and the results are averaged over the 30 different

random initial setups. We set orbit radius = 10. We observe that expectedly an

increase in the number of nodes results in a decrease in CTR, CTRf and CTRD.

Moreover, CTRD ≤ CTR ≤ CTRf for all instances. In all of the experiments,

we compute CTRD with respect to all times (corresponding to beginning of a new

topology) not only t0.

In the second set of experiments, we examined the impact of change of the

region radius R on the transmission range. We conducted these experiments for two

values of orbit radii, 10 and 30, and n = 35 in both the cases. For each value

of R, we conducted 100 experiments and the results are averaged over them. Fig.

2.11(a) shows the results. It may be observed that increase in the value of R leads to

increase in CTR. This observation is quite expected as larger regions can destroy more

nodes at a time. Moreover, it may be noted that for larger values of orbit radii the

transmission range also increases. The reason is that for a specific number of nodes

in a bounded deployment area, larger orbit radii result in larger distance between the

nodes. Accordingly, larger transmission range is necessary, particularly in the case of

larger Rs.

Finally, we conducted experiments to investigate the impact of delay D on the

value of CTRD. Our experiment setup is the same as our first set of experiments.

Fig. 2.11(b) depicts the results. We observe that when value of delay D is zero the

40

100

150

200

250

300

350

400

450

500

550

600

0 20 40 60 80 100 120
Tr

an
sm

is
si

o
n

 R
an

ge

Number of Nodes (n)

CTR_f (R=60)

CTR_f (R=20)

CTR

CTR_D (D=0.15)

CTR_D (D=0.6)

Figure 2.10: Transmission Range vs. Number of Nodes

200

250

300

350

400

450

500

550

600

650

700

0 20 40 60 80 100 120

C
TR

f

Region Radius (R)

OrbitRadius=30

OrbitRadius=10

(a)

160

180

200

220

240

260

280

300

0 0.2 0.4 0.6 0.8

C
TR

D

Delay (D)

n=30
n=50
n=70

(b)

Figure 2.11: (a) Transmission Range (CTRf) vs. Region Radius, n = 35; (b) Trans-
mission Range (CTRD) vs. Delay

value of CTRD is equal to CTR and by increasing delay, CTRD decreases and the

interesting observation is that when delay becomes greater than 2period the decrease

in the value of CTRD is unnoticeable or even zero.

2.8 Conclusion

Existence of sufficient control over the movement pattern of the mobile platforms in

Airborne Networks opens the avenue for designing topologically stable airborne net-

works. In this chapter, we discussed the system model and architecture for Airborne

Networks (AN). We studied the problem of maintaining the connectivity in the un-

41

derlying dynamic graphs of airborne networks when trajectories of nodes are given.

We developed techniques to compute the dynamic topology of the AN at any instance

of time and proposed an algorithm to compute critical transmission range when all

nodes are operational. Motivated by the importance of robustness and fault toler-

ance capability of ANs, we have also investigated the region-based connectivity of the

ANs and proposed an algorithm to find the minimum transmission range necessary

to ensure that the surviving nodes of the network remain connected, even when all

or some nodes of region fail due to an enemy attack. In the process of computing

the minimum transmission range in faulty scenario, we developed techniques to (i)

compute all the fault regions that need to be considered to ensure overall connectivity

at all times and (ii) compute the set of nodes that might be damaged by the failure of

a specific region at a specific time. Moreover, we defined and formulated the critical

transmission range in delay tolerant airborne networks CTRD and proposed an al-

gorithm to compute CTRD. Through simulations, we have illustrated the impact of

the number of nodes, the region radius in faulty scenario and delay in delay tolerant

networks on the minimum transmission range.

42

Chapter 3

FAULT TOLERANT DESIGN OF WIRELESS SENSOR NETWORKS

3.1 Introduction

The primary goal of a wireless sensor network is to deliver the collected sensor data to

the sink node, either in the raw form or after in-network aggregation. Generally, each

sensor comprises of two components: the sensing component and the communication

component. The sensing component gathers information from the surrounding area

and the communication component is responsible for communicating the gathered

information to the appropriate node for processing. Most often, the data collection

operation from all the sensor nodes is carried out by creating a tree topology that

spans all the sensor nodes, with the sink node as the root [27, 28].

Directional antennas offer substantial advantages over their omni-directional

counterparts, as they can focus their transmission energy in a specific direction, using

a narrow beam of width α. A directional antenna can be mounted on a swivel and

can be oriented towards a target or alternately each sensor can be equipped with mul-

tiple antennas, each occupying a sector with beam width α. The transmitted signal

disperses in any unguided wireless media and as a consequence, the signal strength

diminishes with distance. Although attenuation is in general a complex function of

the distance and the makeup of the environment through which the signal propa-

gates, a significant cause of signal degradation is free space loss. Free space loss for

an ideal isotropic antenna is measured as the ratio of the transmitted power to the

received power and is given by (4πd2)
λ2

. where λ is the carrier wavelength, and d is the

propagation distance between transmission and reception antennas. In particular,

the energy required by an antenna to reach all nodes within its transmission radius

is proportional to the area covered. Thus, an omni-directional antenna with a trans-

mission radius r will consume power proportional to πr2 (the area of a circle with

43

radius r) while a directional antenna with beam width α radians will consume power

proportional to α
2
r2. The expression is valid under the assumption that the signal is

transmitted over the primary lobe and the power consumed by the remaining lobes

is negligible [29]. The expressions show that with a directional antenna with beam

width α, power consumption can be reduced by a factor of α
2π

. Moreover, in compar-

ison with omnidirectional antennas, the directional antennas have significantly less

interference and fading [30, 31]. For additional information on antenna theory, we

refer the reader to [32].

Due to such attractive features, sensors with directional antennas are being in-

creasingly used for wireless sensor networks. Some examples include camera networks

for vision-based sensing, radar networks for weather monitoring and sonar network

for underwater object detection [31]. With rapid advances in the miniaturization of

directional antenna technology, it is likely that the use of directional antennas in sen-

sor platforms will proliferate. This trend is demonstrated by the increasing interest

in the use of directional antennas for performance improvement in wireless networks

in general and wireless sensor networks in particular [30].

Just as the directional antennas offer a number of advantages, it also introduces

a few problems. When sensor nodes use omni-directional antennas, the network

topology typically is a mesh and not a tree. A tree that spans over this mesh topology

is utilized for the purpose of data gathering. Although it may appear that the use

of omni-directional antenna for the purpose of data gathering is wasteful, as many of

the network links created by such antennas are never utilized, this is not completely

true. The unused links essentially introduce a certain level of redundancy that can be

utilized when one or more of the sensor nodes fail and the data gathering spanning

tree becomes disconnected. However, the negative aspect of this lack of redundancy

is that it can no longer deal with a fault scenario, where one or more sensor nodes

44

fail. Without any built-in redundancy, when some nodes fail, the data gathering tree

is disconnected and the sink node fails to receive any data from some of the sensors.

The primary motivation of our work is to retain the advantage of both types

of antennas by combining the efficiency of directional antennas with the redundancy

of omni-directional ones. In this chapter we study the problem of enhancing the fault

tolerance capability of a data gathering tree by adding a few additional links so that

the failure of any one sensor or a pair of adjacent sensors would not disconnect the

tree. We consider that the sensor nodes are equipped with directional antennas and

nodes p and q can communicate with each other if antennas of p and q direct their

beams to each other. In this case a bidirectional link is used between the nodes p and

q. Fig. 3.1 shows a data collection tree with two sensor nodes u and v and a sink

r. The sectors show the communication ranges and the lines show the wireless links.

The addition of an edge between two nodes p and q in the sensor network topology

corresponds to the deployment of two new directional antennas at the nodes p and q

directed towards each other.

r r

u v

Figure 3.1: A data collection tree constructed by directional antennas

Most of the previous studies on the fault tolerant design of wireless sensor

networks [33, 34] consider that the sensor nodes are equipped with omni-directional

antennas and the objective is to assign transmission power to the nodes such that the

network is k-connected while power consumption is minimized. In a k-connected (k-

fault-tolerant) network there are k disjoint paths between every two nodes. However,

for data collection in sensor networks it is necessary and sufficient that every sensor

node has k disjoint paths to the sink node and k disjoint paths between every two

45

nodes may not be needed. In [35] the authors studied the problems of all-to-one

and one-to-all k-fault-tolerant topology control problems. In these problems also the

sensor nodes are considered to have omni-directional antennas and the network graph

is directed. In [11], authors introduced a new fault tolerance metric called region-

based connectivity. In [11], it is assumed that the nodes that may fail are confined

to a region. A region may be defined in several ways based either on the geometric

layout of the sensor nodes in the deployment area or on the network topology. In

this research, we are confining our attention to the fault models based on the network

topology of the sensor network and will study two failure models i) single node failure

and ii) the simultaneous failure of two adjacent nodes. Even for these two specific

models the problems turn out to be computationally hard. Assuming that addition of

each link to the tree involves a cost, we study the problem of least cost augmentation

of the tree so that even after failure of a single node or a pair of adjacent nodes, all

the surviving nodes will remain connected to the sink node. We prove that the least

cost tree augmentation problem is NP-complete under both types of fault scenarios.

Moreover, we provide two approximation algorithms, one for single node failure and

the other for a pair of adjacent node failure, with performance bounds of two and four

respectively. The experimental evaluations of the algorithms demonstrate that they

perform even better in practice and almost always produce near optimal solution.

In the theoretical computer science community, problems of this vein are

known as the graph augmentation problems. Two important problems in this class are

the bi-connectivity augmentation (BICA) and the bridge-connectivity augmentation

(BRCA) (a bridge is defined to be an edge whose removal disconnects the graph)

[36]. Although at a first glance, it may appear that tree connectivity augmentation

under single node fault model, TCA1, is the same as BICA or BRCA, we demon-

strate through the examples shown in Fig. 3.2(a) and 3.2(b) that TCA1 is distinctly

46

different from both BICA and BRCA. The solid lines in Fig. 3.2(a) and 3.2(b) are

the existing edges in the input graph. A few of the edges that may be added to the

graph are shown in dashed lines and cost of each of these edges is 1. The cost of the

edges that can be added to the graph, but not shown in dashed lines, is 10. In Fig.

3.2(a), the solution of the TCA1 is the addition of edges {(a, b), (c, d)} with a total

cost of 2. However, for BICA, one more edge such as (b, c) is also needed and as

such the total cost will be at least 12. The Fig. 3.2(b) shows an example in which

TCA1 has a solution with cost 3, (addition of edges {(g, h), (h, i), (i, j)}) but BRCA

requires the addition of edges {(a, e), (g, h), (i, j), (d, f)} with a total cost of 4.

a b c d

r

(a)

a b c d

r

e f

g h i j

(b)

r

w1
w2

w’’1

w’1

𝒂111

𝒂 111

𝒂222

𝒂 222

𝒂122

𝒂 122

w’’2

w’2

x1

x’1

x’2

x2

y2

y’2

y’1

y1

(c)

Figure 3.2: (a) Comparison of TCA1 with BICA, (b) Comparison of TCA1 with
BRCA, (c) An instance of TCA1 correponding to a 3DM instance

In [37], the authors have studied the problem of least cost augmentation of a

graph such that there exist at least k + 1 disjoint paths from a root node r to each

node v 6= r. They propose an approximation algorithm with approximation ratio

2 where its time complexity is O(n4). Even though the TCA1 problem is a special

case of the problem studied in [37], we prove that TCA1 is still NP-complete. We

propose an approximation algorithm for TCA1 with the same approximation ratio of

2 but O(n2) time complexity. To the best of our knowledge the graph augmentation

problems under (topological) region based failures has not been studied before. Hence,

toward this direction we study the problem of tree augmentation problem under two

adjacent node failure.

47

The rest of the chapter is organized as follows. In Section 3.2 we formally

define the problems we have studied. In Section 3.3, we show that both problems

are NP-complete. In Section 3.4 and 3.5 we outline approximation algorithms for the

single-node and adjacent node failure problems, respectively. In Section 3.6 we report

the experimental results and conclude in Section 3.7.

3.2 Problem Formulation

Definition: u � 1 fault tolerant graph - A graph G = (V,E) with a specified vertex

u ∈ V is said to be u�1 fault tolerant if after the failure of any one node v ∈ V −{u},

any residual node w ∈ V − {v} remains connected to the node u.

Definition: u � 2 fault tolerant graph - A graph G = (V,E) with a specified vertex

u ∈ V is said to be u� 2 fault tolerant if it has both the following properties:

(1) G is u� 1 fault tolerant.

(2) After the failure of any pair of adjacent nodes v, w ∈ V −{u}, any residual

node x ∈ V − {v, w} remains connected to the node u.

Tree Connectivity Augmentation Problem - Single Fault (TCA1)

Instance: Complete undirected graph G = (V,E), weight function c(e) ∈ Z+, ∀e ∈ E,

a spanning tree T1 = (V,E1) of G rooted at some node r ∈ V , and a cost budget B.

Question: Is there a set Eaug ⊆ E − E1, such that the graph (V,E1 ∪ Eaug) is r � 1

fault tolerant and
∑

e∈Eaug c(e) ≤ B?

Tree Connectivity Augmentation Problem - Adjacent Double Fault (TCA2)

Instance: The same as the instance in TCA1 problem.

Question: Is there a set Eaug ⊆ E − E1, such that the graph (V,E1 ∪ Eaug) is r � 2

fault tolerant and
∑

e∈Eaug c(e) ≤ B?

48

3.3 Computational Complexity

In this section we show that both the tree connectivity augmentation problems, TCA1

and TCA2 are NP-complete, by a transformation from the 3-dimensional matching,

which is known to be NP-complete [38]. Obviously, a candidate solution of TCA1 and

TCA2 can be verified in polynomial time, and they are in NP. We also show hardness

of approximation result for TCA1 problem using similar transformation.

3-Dimensional Matching (3DM)

Instance: A set M ⊆ W × X × Y , where W , X and Y are disjoint sets having the

same number q of elements.

Question: Does M contain a matching, that is, a subset M ′ ⊆M such that |M ′| = q

and no two elements of M ′ agree in any coordinate?

Theorem 3.3.1. TCA1 is NP-complete.

Proof. Let M ⊆ W × X × Y be an instance of 3DM, with |M | = p and

W = {wi|i = 1, 2, . . . , q}, X = {xi|i = 1, 2, . . . , q} and Y = {yi|i = 1, 2, . . . , q}. We

start by creating a set of nodes having labels as follows:

- r, where r will be the root of the spanning tree T1,

- wi (and similarly xi, yi) for all wi ∈ W (respectively xi ∈ X, and yi ∈ Y),

- for each wi ∈ W (and xi ∈ X, yi ∈ X), one additional node with label w′i (respec-

tively x′i and y′i),

- for each wi ∈ W , one additional node with label w′′i

- for each triple (wi, xj, yk) ∈M , two nodes with labels aijk, āijk.

49

We now create an instance of TCA1 as follows:

V = {r} ∪ {wi, w′i, w′′i , xi, x′i, yi, y′i|i = 1, 2, . . . , q}∪

{aijk, āijk|(wi, xj, yk) ∈M}

E = {(u, v)|u, v ∈ V and u 6= v}

E1 = {(r, wi), (wi, w′′i), (w′′i , w′i)|i = 1, 2, . . . , q} ∪

{(r, xi), (xi, x′i), |i = 1, 2, . . . , q} ∪

{(r, yi), (yi, y′i)|i = 1, 2, . . . , q} ∪

{(wi, aijk)|(wi, xj, yk) ∈M} ∪

{(w′i, āijk)|(wi, xj, yk) ∈M}

B = p+ q

c(x′j, āijk) = c(y′k, aijk) = c(āijk, aijk) = 1, for all (wi, xj, yk) ∈M .

All other edges in E have weight 2.

Fig. 3.2(c) depicts an instance of TCA1 corresponding to the 3DM instance

where q = 2 and M = {(w1, x1, y1), (w1, x2, y2), (w2, x2, y2)}. The solid lines show

edges in E1 and the dashed lines show the edges in E − E1 with cost 1.

We claim that M contains a matching M ′ iff there is a set Eaug of cost no

more than B, such that the graph (V,E1 ∪ Eaug) is r � 1 fault tolerant.

To prove the only if part, let M contain a matching M ′. We form Eaug by

following the procedure given below:

Step i) For each triple (wi, xj, yk) ∈M ′, we add edges (x′j, āijk) and (y′k, aijk),

Step ii) For each triple (wi, xj, yk) ∈M −M ′, we add edge (aijk, āijk).

Since |M ′| = q and |M −M ′| = p − q, and the cost of edges added in Step

i and Step ii is 2 and 1 respectively, the total cost of the added edges in Step i and

50

Step ii is 2q + p − q. Thus, the total cost of the edges in Eaug is p + q. E1 ∪ Eaug

includes the following cycles that pass through r:

• r, wi, w′′i , w′i, āijk, x′j, xj,∀i, j, k : (wi, xj, yk) ∈M ′,

• r, wi, aijk, y′k, yk, ∀i, j, k : (wi, xj, yk) ∈M ′,

• Considering that each wi is in a triple (wi, xj′ , yk′) ∈M ′ and is in previous cycles,

there is a cycle r, wi, aijk, āijk, w
′
i, āij′k′ , x

′
j′ , xj′ ,∀i, j, k : (wi, xj, yk) ∈M −M ′.

It can be readily verified that all the nodes in V − {r} appear in at least one of the

above cycles. Therefore, there are two disjoint paths from r to each vertex.

To prove the if part, let there be a set of edges Eaug ⊆ (E −E1), with cost at

most p + q, so that in the graph (V,E1 ∪ Eaug) every non-adjacent vertex of root r

has two node disjoint paths to r. There are exactly 2p+ 2q leaf nodes in T1 = (V,E1)

and they are not adjacent to r. Among these leaf nodes, there exists p nodes having

labels of the form aijk and āijk and q nodes having labels of the form y′k and x′j. To

ensure that 2p+ 2q leaf nodes have two node disjoint paths to r, at least p+ q edges

must be added to T1 = (V,E1). Since the cost of the edges in Eaug is at most p + q

and |Eaug| ≥ p+ q, it implies that |Eaug| = p+ q and the cost of each edge in Eaug is

1. It may be noted that there are only three types of edges i) (x′j, āijk), ii) (y′k, aijk)

and iii) (āijk, aijk) that have cost 1. In order to have two node disjoint paths from

2p + 2q leaf nodes to r, each node of the from y′k and x′j must be connected to a

node of the form aijk and āijk respectively. The total cost of these set of edges will

be 2q. Since the total cost of Eaug is p + q, the cost of the edges to connect the

remaining leaves of the type aijk or āijk, (i.e., the ones that were not connected to

either y′k and x′j), must be p − q and the number of such leaves must be 2(p − q).

This will only be possible, if 2(p− q) leaves can be grouped into p− q pairs of nodes

51

(aijk, āi′j′k′), such that i = i′, j = j′, k = k′. This implies that exactly q nodes, each

of the form aijk and āijk, must be connected to q nodes, each of the form y′k and x′j,

respectively, and these 2q nodes (aijk and āijk together) can be grouped into q pairs

of nodes (aijk, āi′j′k′), such that i = i′, j = j′, k = k′. Moreover, since there are two

disjoint paths from every node to r, nodes wi, w
′
i and w′′i are in a cycle with just one

x′j, xj and r. Otherwise, there would be a wi′ which is not in any cycle with r and

its failure disconnects the graph. Since these q pairs of ijk indices connects to all the

y′k and x′j nodes and wi can be in exactly one cycle with x′j, the corresponding subset

M ′ ⊆M must be a matching for the instance of the 3DM problem.

Theorem 3.3.2. TCA2 is NP-complete.

Proof. The proof is identical to that of Theorem 3.3.1 and hence omitted.

Theorem 3.3.3. For some fixed ε > 0, it is NP-hard to approximate TCA1 within a

factor of 1 + ε.

Proof. We use similar reduction as in the NP-completeness proof of Theorem

3.3.1 from problem 3DM-5 to TCA1. 3DM-5 is a bounded version of the 3DM problem

in which every element of W ∪X ∪ Y can appear at most five times in a triple of M .

It is shown in [39] that 3DM-5 is Max SNP-hard. In particular, it is proved that for

some fixed ε0 > 0, it is NP-hard to distinguish whether an instance of 3DM-5 with

|W | = |X| = |Y | = q has a perfect matching (of size q) or every matching has size at

most (1− ε0)q.

We use exactly the same reduction as in the proof of Theorem 3.3.1. More

explicitly, we create an instance of TCA1 from an instance of 3DM-5, exactly in the

same way we create an instance of TCA1 from 3DM in Theorem 3.3.1. In the rest

52

of the proof, we show that the reduction from 3DM-5 to TCA1 is gap-preserving.

Specifically, we have to show that

1. If an instance, I, of 3DM-5 has a solution of size q then the corresponding

instance of TCA1, J has a solution of size p+ q.

2. If the solution of 3DM-5 for the instance I is smaller than q(1 − ε0), then the

solution (cost) of TCA1 for the instance J is greater than (p+ q)(1 + ε).

The proof of part (1) is the same as proof of only if part in Theorem 3.3.1.

In order to prove the second part, we will prove the following lemma first:

Lemma 1: If the solution cost of TCA1 for the instance J , TCA1(J), is at

most (p + q)(1 + ε), the solution of 3DM-5 for the instance I, 3DM(I), is at least

q − (2 + 10∆)(p + q)ε where ∆ is the maximum number of times that an element in

W ∪X ∪ Y can appear in the triples of M .

Proof: Let Eaug ⊆ E − E1 be a set of augmenting edges of cost at most

(p+q)(1+ε) such that G′ = (V,E1∪Eaug) is r�1 fault tolerant. The tree T1 = (V,E1)

has 2(p+ q) leaves and they are not adjacent to r. Each leaf of T1 must be adjacent

to at least one edge of Eaug to make G′ r � 1 fault tolerant. We call a leaf proper if

it is adjacent to exactly one edge of Eaug and that edge has cost 1. We call a leaf

improper otherwise (i.e., it is incident upon at least one edge of Eaug of cost 2 or upon

more than one edge of Eaug).

We first prove that at most 2(p+ q)ε leaves are improper in the following way:

For every improper leaf, the total cost of the edges of Eaug that are incident at this

leaf is at least 2. Similarly, for every proper leaf this cost is exactly 1. The sum of

these costs over all leaves is at most 2 ·cost(Eaug), since the cost of every edge of Eaug

is counted at most twice (once from every end). Thus,

53

number of proper leaves + 2· (number of improper leaves) ≤ 2 · cost(Eaug) ≤ 2(p +

q)(1 + ε).

Since total number of leaves is 2(p + q), we will have 2(p + q)+(number of

improper leaves) ≤ 2 · cost(Eaug) ≤ 2(p + q)(1 + ε). Hence, the number of improper

leaves is at most 2(p+ q)ε.

We now construct a set M ′ which is almost a matching. Initially, let M ′ = ∅.

Then iteratively for j = 1, 2, ..., q we try to find a triple (in M) that contains xj and

add it to M ′, as follows. If x′j is proper, then it is adjacent to a cost 1 edge of Eaug;

hence it is adjacent to some leaf āijk. If both āijk and aijk are proper, then the latter

is adjacent (via a cost 1 edge) to some leaf y′k. If this leaf y′k is proper, then add the

triple (wi, xj, yk) to M ′. Notice that M ′ ⊆M .

We next claim that |M ′| ≥ q−2∆(p+q)ε. Indeed, an improper x′j , aijk, or āijk

can cause only one iteration (namely, the one with the corresponding value of j) to

fail. An improper y′k can cause at most ∆ iterations to fail, since it can be connected

by edges of cost 1 to at most ∆ leaves aijk. Denoting the number of improper y′k by

ny, we have that the number of iterations that fail is at most 2(p + q)ε − ny + ny∆.

Since we showed before that ny ≤ 2(p+ q)ε, this is at most 2∆(p+ q)ε.

By our construction, the triples in M ′ definitely have distinct elements from

X and from Y , but its elements from W might be repeated. For every element wi

that belongs to more than one triple in M ′, we remove from M ′ all but one of the

triples that contain wi. The resulting set of triples, denoted M ′′, is thus a matching.

Let µ = q − |M ′′| be the number of vertices wi that do not appear in any triple of

M ′ (or equivalently, of M ′′). Notice that |M ′| − |M ′′| ≤ q − |M ′′| = µ, so an upper

bound on µ yields a lower bound on the size of the matching M ′′. We will show that

µ ≤ (2 + 8∆)(p + q)ε. Let Eaug′ be the edges of Eaug that correspond to triples in

54

M ′, namely, those edges (x′j, āijk) and (y′k, aijk) for (wi, xj, yk) ∈ M ′. We have that

cost(Eaug′) ≥ 2|M ′| ≥ 2q − 4∆(p+ q)ε; hence

cost(Eaug−Eaug′) ≤ (p+q)(1+ε)−2q+4∆(p+q)ε = p−q+(1+4∆)(p+q)(1+ε) (1)

We showed that each leaf (of T1) aijk or āijk must be incident to an edge of Eaug.

The edges of Eaug′ are incident, by their definition, to at most 2|M ′| ≤ 2q distinct

such leaves; thus, the edges of Eaug −Eaug′ must be incident to the (at least) 2p− 2q

remaining leaves aijk and āijk. If we split the cost of every edge in Eaug − Eaug′

(evenly) between its two endpoints, then we get that at least 2p− 2q leaves are each

charged a cost of at least 1/2. It follows that

cost(Eaug − Eaug′) ≥ (2p− 2q) · (1/2) (2)

We shall now improve the lower bound (2) by considering the µ vertices wi which

do not make an appearance in M ′. Each such wi is a cut-vertex of (V,E1 ∪ Eaug′)

(by definition of Eaug′), since its removal disconnects Wi = {w′i, w′′i } ∪ {aijk, āijk :

(wi, xj, yk) ∈ M} from the rest of the graph. But wi cannot be a cut-vertex of G′,

and thus Eaug−Eaug′ must contain an edge that connects Wi to the rest of the graph.

We have three cases for this edge: (i) if it is incident (in Wi) to w′i or w′′i , then the

edges cost is at least 2 and w′i or w′′i is charged at least 1; (ii) if the edge is incident

(in Wi) to some āijk or aijk and (in the rest of the graph) to some ai′j′k′ or āi′j′k′

(with i 6= i′), then the edges cost is 2, and the endpoint in Wi is actually charged 1/2

more than in the lower bound (2); or (iii) if this edge is incident (in Wi) to some āijk

or ai′j′k′ and (in the rest of the graph) to a vertex that is not ai′j′k′ or āi′j′k′ , then

the edges cost is at least 1, so the endpoint not in Wi is charged at least 1/2. In all

three cases, the fact that wi is a cut-vertex in (V,E1 ∪ Eaug′) implies that the lower

bound (2) can be increased by 1/2. It is easy to see that the increases corresponding

55

to different wis are distinct, and thus,

cost(Eaug − Eaug′) ≥ (2p− 2q) · (1/2) + µ · (1/2) (3)

Combining equations (1) and (3) we indeed get that µ ≤ (2 + 8∆)(p+ q)ε. Therefore,

instance I will contain a matching M ′′ where

|M ′′| ≥ |M ′| − µ ≥ q − 2∆(p+ q)ε− (2 + 8∆)(p+ q)ε = q − (2 + 10∆)(p+ q)ε,

which completes the proof of Lemma 1.

Now using lemma 1 we can prove the second part of our theorem. In any

instance of 3DM-5, ∆ = 5 and |M | = p ≤ 5q. Hence, from Lemma 1 we have

3DM(I) ≥ q(1− 312ε), if TCA1(J) ≤ (p+ q)(1 + ε). Considering the contrapositive

of Lemma 1 we will have if 3DM(I) < q(1− ε0) then TCA1(J) > (p+ q)(1 + ε0/312).

Hence our reduction is also gap-preserving.

3.4 Tree Connectivity Augmentation - Single Fault Scenario

In this section we propose an approximation algorithm with a guaranteed performance

bound for TCA1. The input to the algorithm is a complete undirected graph G1 =

(V,E) with cost function c : E → Z+ defined on the edges, and T1 = (V,E1), a

spanning tree of G1 with a specified vertex r ∈ V as the root. The output is a set

of edges Eaug ⊆ E − E1 with minimum cost, such that, in the graph (V,E1 ∪ Eaug),

there are two node disjoint paths from every node v (v ∈ V − r) to the node r. Since

it is considered that the edges of T1 = (V,E1) have already been deployed, we assume

that the cost of the edges in E1 is zero, i.e., c(e) = 0,∀e ∈ E1. We compute the edge

set Eaug using a sequence of steps where, in each step, we construct a new graph/tree

(undirected/directed). The sequence of construction of graphs is as follows: [T1 =

(V,E1)] ⇒ [T2 = (V2, E2)] ⇒ [G2 = (V2, E
′
2)] ⇒ [T d2 = (V2, A2)] ⇒ [Gd

2 = (V2, A
′
2)],

where T2 is a tree constructed from T1, G2 is a complete graph defined with the vertex

set of T2; T
d
2 is a directed tree defined on T2, and Gd

2 is a completely connected directed

56

graph defined with the vertex set of T d2 . From Gd
2 we identify a set of arcs (directed

edges) Aaug2 , so that the directed graph (V2, A2 ∪ Aaug2) is strongly connected [40].

Finally, we construct Eaug from Aaug2 . We now describe, in detail, the construction

rules for these graphs/trees.

[A] Construction of T2: Let Vp ⊂ V be the set of leaves in T1 and let Vq = V−(Vp∪{r})

be the set of all internal (non-leaf) nodes except the root. We define a new tree

T2 = (V2, E2) using the following rules:

• V2 = V ∪ {vij|i, j ∈ V − {r} and (i, j) ∈ E1}.

• For each edge (i, j) ∈ E1, we include in E2,

– edge (i, j), if i = r or j = r,

– edges (i, vij) and (vij, j), otherwise.

[B] Construction of G2: Let G2 = (V2, E
′
2) be the complete graph defined on V2. We

define the cost function c′ : E ′2 → Z+ ∪ {∞} as follows. For every edge (x, y) ∈ E ′2, if

x, y ∈ V , c′(x, y) = c(x, y); otherwise, c′(x, y) =∞ (i.e., we set the initial cost of the

edges between a node u ∈ V2 − V and every other node in V2 to infinity).

Next we define two functions d(u, v) (distance function) and p(u, v) (pointer function)

for every pair of nodes u and v in G2. We define both the functions in terms of c′

and T2.

Definition: d(u, v) = min{c′(x, y)|u and v are on the path from x to y in T2}.

Definition: p(u, v) is a pointer to an edge (s, t), such that d(u, v) = c′(s, t), where u

and v are on the path from s to t in T2. If there are more than one such edge, any

one of them can be selected as the value of p(u, v).

57

Example: The Fig. 3.3(a) shows a spanning tree T1 = (V,E1) of a complete graph

G1 = (V,E) (for the sake of clarity, only three edges from the set E−E1, (a, b), (c, d)

and (d, e) are shown in Fig. 3.3(a)). The solid lines indicate the edges in E1 and the

dashed lines show a subset of the edges in E − E1. The cost of each edge in E1 = 0.

The weights associated with the dashed lines indicate the cost of these edges. All other

edges in E − E1, (not shown in Fig. 3.3(a)), have a cost of 10. Fig. 3.3(b) shows

the tree T2 = (V2, E2) constructed from T1 in Fig. 3.3(a). From T2, we can construct

the complete graph G2 = (V2, E
′
2) following the construction rules described earlier.

The solid lines in Fig. 3.3(b) indicate the edges in E2 and the dashed lines show a

subset of the edges in E ′2 − E2 (only five edges with associated weights are shown).

In this example, d(vac, vad) = c′(c, d) = c(c, d) = 1, d(a, b) = c′(d, e) = c(d, e) = 1 and

p(vac, vad) = (c, d), p(a, b) = (d, e).

We now discuss the rationale for definitions of the d(u, v) and p(u, v) given above.

In order to have another path from a to b in Fig. 3.3(a), (different from the one in

the tree T2, a− r− b), the edge (d, e) with cost 1 or the edge (a, b) (in G2) with cost

4 can be added to the tree. The addition of the link (d, e) will result in a cheaper

path from a to b with cost 1. The goal of the distance function d(u, v) is to identify

this edge. The function p(u, v) is defined to be a pointer to the edge selected by the

function d(u, v). We note that since the cost of the edges

Computation of d(u, v): It has been shown in [36] that d(u, v) for all pairs of nodes

can be computed in O(|V |2). For ease of reference, we summarize the algorithm for

computing the function d(u, v) presented in [36]. Initially, for every pair of nodes

u, v ∈ V2, d(u, v) = c′(u, v) and p(u, v) = (u, v). Let l(u, v) be the number of edges on

the path from u to v in T2 and s(u, v) be the node adjacent to v on this path. The

edges (u, v) ∈ E ′2 − E2 are sorted in non-decreasing order, based on l(u, v). For each

edge (u, v) in the sorted order, we compute the distance function d(u, v) as follows.

58

If d(u, v) < d(u, s(u, v)) then d(u, s(u, v)) = d(u, v) and p(u, s(u, v)) = (u, v). If

d(u, v) < d(s(v, u), v), then d(s(v, u), v) = d(u, v) and p(s(v, u), v) = (u, v).

[C] Construction of T d2 = (V2, A2): We construct T d2 from T2 = (V2, E2) by directing

all edges of T2 towards the root node r. We will use A2 to represent the set of arcs

(directed edges) corresponding to the undirected edges in E2.

[D] Construction of Gd
2 = (V2, A

′
2): Gd

2 is a completely connected directed graph,

with associated cost c′′(u, v) with each arc u→ v ∈ A′2 as follows:

c′′(u, v) =


∞, if v = r,

∞, if u ∈ Vq and v ∈ subtree(u)

d(u,v), otherwise.

Here we define subtree(u) to be the set of nodes in the subtree rooted at node u in

tree T2.

We note that each arc u → v ∈ A2 where v 6= r has a zero cost. The rationale for

assigning the arc costs in this specific way is as follows:

(a) By assigning a cost of ∞ to the edges where v = r, we ensure that the minimum

cost arborescence on Gd
2 is rooted at r,

(b) By assigning a cost of ∞ to the edges (u, v) where u ∈ Vq and v ∈ subtree(u) in

T2, we ensure that, in Gd
2, no node u ∈ Vq will have a directed path from u to the

nodes in subtree(u), unless it first goes through some nodes not in subtree(u).

When constructing Gd
2 = (V2, A

′
2), our goal is to identify a set of arcs Aaug2 ,

(Aaug2 ⊆ A′2), so that the graph (V2, A2 ∪Aaug2) is strongly connected, i.e., there exists

a directed path between every pair of nodes in V2. We obtain the arc set Aaug2 by

computing the least-cost arborescence [41] in Gd
2 = (V2, A

′
2), which we denote by

T arb2 = (V2, A
arb
2). We obtain the set of arcs Aaug2 from Aarb2 by excluding those arcs

59

1 1

4
a b

c d

r

e

(a)

1 1

4
a b

c d

r

e

vac vad vbe∞
∞

(b)

Figure 3.3: (a) An example of T1; E1 includes the edges shown with solid lines. (b)
The tree with solid lines is T2 corresponding to T1 in (a) and dashed lines are some
of the edges in E ′2 − E2.

with cost zero, i.e., Aaug2 = Aarb2 − {a ∈ Aarb2 |c′′(a) = 0}. Finally, we construct the set

of edges Eaug that we have to add to the input tree T1 = (V,E1), to obtain the r� 1

fault tolerant graph (V,E1 ∪ Eaug) as follows: Eaug = {p(u, v)|u → v ∈ Aaug2 }. We

note that if Aaug2 has any arc whose endpoint is in V2 − V , using the function p(u, v)

it will be replaced by an edge in E. The reason is that c′(u, v) = ∞ if u or v is in

V2 − V .

Algorithm 5 TCA1 Algorithm

Input: G1 = (V,E), a complete graph with cost c(e) for every edge e ∈ E; T1 =
(V,E1), a spanning tree of G1 with root r.
Output: A set of edges Eaug ⊆ E−E1, such that (V,E1∪Eaug) is r�1 fault tolerant.

1: Construct T2 = (V2, E2), a complete graph G2 = (V2, E
′
2) and the cost function

c′(.) from T1 and G1 using the technique described in [A].
2: Compute d(u, v) and p(u, v) for each pair of nodes u, v ∈ V2 using the technique

described in [B].
3: Compute a directed tree T d2 = (V2, A2) by directing all edges in E2 toward root r

using technique described in [C].
4: Compute a completely connected directed graph Gd

2 = (V2, A
′
2) with cost c′′ de-

fined on the arcs set A′2 using technique described in [D].
5: Compute a minimum cost arborescence T arb2 = (V2, A

arb
2) of the graph Gd

2 =
(V2, A

′
2).

6: Set Aaug2 = Aarb2 − {a ∈ Aarb2 |c′′(a) = 0}.
7: Set Eaug = {p(u, v)|u→ v ∈ Aaug2 }.
8: Return Eaug.

60

We note that the time complexity of the TCA1 algorithm (Algorithm 1) is

O(|V |2). Line 4 has O(|V |2) time complexity. Finding minimum cost arborescence

also needs O(|V |2) time [41].

Theorem 3.4.1. Algorithm TCA1 finds a set of edges Eaug such that (V,E1 ∪Eaug)

is r � 1 fault tolerant.

Proof. In order to prove that (V,E1 ∪ Eaug) is r � 1 fault tolerant, we need

to show that there is no node in Vq whose removal disconnects the graph (Vq is

the set of all internal nodes in the tree T1 = (V,E1) except the root r). Since the

graph (V2, A2 ∪ Aaug2) is constructed by augmenting T d2 = (V2, A2) with the arcs of

the T arb2 (excluding the arcs that are already in A2), it must be strongly connected.

Accordingly, there must be a directed path from any node v ∈ Vq to the nodes in

subtree(v). Let w 6= v be a node in subtree(v). Since there is no directed edge ∈ A′2
going out of v to the nodes in subtree(v) (because the cost of these edges is infinity),

the first arc in a path from v to any other node in subtree(v) should go through a node

s where s is not in subtree(v). Since the graph (V2, A2 ∪Aaug2) is strongly connected,

there must be a path from s to w in (V2, A2 ∪ Aaug2) not including v. Suppose that

c→ d ∈ Aaug2 is on the path from s to w which does not include v. If (c, d) is replaced

by p(c, d) = (e, f), (there is a path going through e, c, d, f in order in T2), the new

path also will not include v, because v cannot be on the path from c to e or f to d in

T2. Hence, even if a node v ∈ Vq is removed from the graph (V,E1 ∪Eaug), the graph

remains connected. Therefore, (V,E1 ∪ Eaug) is r � 1 fault tolerant.

Theorem 3.4.2. Algorithm TCA1 finds a set of edges Eaug with a total cost Caug,

such that Caug ≤ 2Copt, where Copt is the cost of the optimal solution.

Proof: Our proof strategy is as follows. Let Copt be the optimal cost of edges

Eopt necessary to add to the input tree T1 = (V,E1), so that the resulting graph

61

becomes r� 1 fault tolerant and Caug is the cost of edges Eaug selected by the TCA1

Algorithm. We show that there exists a subset of arcs A′′ in the graph Gd
2 = (V2, A

′
2)

with three useful properties. If C ′′ is the cost of the arcs in A′′, A′′ ⊆ A′2 − A2, (i.e.,

C ′′ =
∑

u→v∈A′′ c
′′(u, v)), then (i) Copt ≥ C ′′/2, (ii) Caug ≤ C ′′, and (iii) the graph

(V2, A2 ∪ A′′) is strongly connected. From (i) and (ii) it follows that Caug ≤ 2Copt.

We can compute the set of arcs A′′ ⊆ A′2 − A2 from the optimal solution

Eopt ⊆ E − E1 following the procedure described below.

Let Q be the set of nodes that are strongly connected in (V2, A2∪A′′). Initially,

we set A′′ = ∅, Q = {r} and mark all the edges in Eopt as unused. We update Q, A′′

and the marking of the edges in Eopt using the following procedure:

While Q 6= V2 repeat the following steps:

• Select an unused edge (u, v) from Eopt, such that there is a node t ∈ Q− Vq on

the weakly directed path from u to v in T d2 = (V2, A2). (The weakly directed

path from u to v in T d2 is the path from u to v in T d2 in which the direction of

the arcs is ignored.)

• If t 6= u, add t→ u to A′′ and if t 6= v add t→ v to A′′.

• Add all the nodes on the weakly directed path from u to v in T d2 to Q. Since t

has been selected from set Q, it is already accessible from root r in (V2, A2∪A′′).

Therefore, by adding the new arcs to A′′ in step (ii) all the nodes on the weakly

directed path from u to v in T d2 are now accessible from root r in current

augmented directed graph (V2, A2 ∪ A′′).

• Change the marking of the edge (u, v) from unused to used.

We need to show that, during the execution of the iterative process, an unused edge

(u, v) ∈ Eopt and a suitable vertex t ∈ Q − Vq exist. While there are some edges

62

in Eopt which have not been used previously, there is still some node w in Vq whose

deletion disconnects some node a ∈ subtree(w) from the root in (V2, A2 ∪ A′′). So,

there is no directed path from r to a in (V2, A2∪A′′) during that iteration. Therefore,

there should be an edge (u, v) in Eopt which creates a path from r to a ∈ subtree(w)

such that the path does not include w in (V,E1 ∪ Eopt). Also, the path from u to v

in T1 will contain more nodes from Q than just one vertex from Vq; otherwise, the

removal of that vertex would disconnect the graph (V,E1 ∪ Eopt) which contradicts

the fact that (V,E1 ∪ Eopt) is r � 1 fault tolerant. Since there is no directed edge,

in T d2 , between the nodes in Vq, the weakly directed path from u to v in T d2 should

include a node t ∈ Q− Vq.

Let C ′′ be the cost of the arcs in A′′; C ′′ =
∑

u→v∈A′′t
c′′(u, v). For every edge

(u, v) ∈ Eopt, we have to add at most two arcs t → u and t → v to A′′. Because

c′′(t, u) ≤ d(u, v) and c′′(t, v) ≤ d(u, v), C ′′ ≤ 2Copt. Also we know that the graph

(V2, A2 ∪A′′) is strongly connected. We can, therefore, construct an arborescence on

(V2, A2∪A′′) rooted at r using c′′ as the cost of the edges. Since the TCA1 algorithm

gives us the minimum cost arborescence on Gd
2 and A2∪A′′ ⊆ A′2 , Caug ≤ C ′′ ≤ 2Copt.

3.5 Tree Connectivity Augmentation - Adjacent Double Fault Scenario

In this section, we propose an approximation algorithm for the TCA2 problem. The

input to the algorithm is a complete undirected graph, G1 = (V,E), with cost function

c : E → Z+ and a spanning tree T1 = (V,E1) rooted at a specific node r ∈ V . The

output is a set of edges Eaug ⊆ E − E1 with minimum cost, such that the graph

(V,E1 ∪Eaug) is r � 2 fault tolerant. The cost of the edges in E1 is considered to be

zero. Since in our model we assume that r does not fail, we exclude the possibility

of two adjacent node failures when one of them is r. We define st(u, T) to denote

the set of nodes in the subtree rooted at a node u in a tree T . If T is directed we

just ignore the direction of edges. With respect to the tree T1, we define par(u) and

63

s(u) to denote u’s parent and the set of u’s siblings, respectively. Also, we use [u, v]

to denote two adjacent nodes u and v in T1, where u = par(v) and u 6= r. When

[u, v] fails, the surviving nodes in st(u, T1) get disconnected from r. Hence, we need

to augment the tree T1 such that in the augmented graph there is a path from every

node w ∈ st(u, T1), w 6= u, v to r and the path includes neither u nor v. In the tree

augmentation algorithm TCA2, the tree T1 is augmented in two phases. In phase I, we

find a set of edges Eaug
1 ⊆ E−E1 such that the graph (V,E1∪Eaug

1) has the following

properties; (1) after the failure of any two adjacent nodes [u, v] the remaining nodes

in st(v, T1) will have a path to r or at least to one of the nodes in s(v), (2) all the

nodes not directly connected to the root have two node disjoint paths to r. We note

that completing phase I may not ensure the connectivity of nodes in s(v) to r after

the failure of [u, v] and hence (V,E1 ∪ Eaug
1) may not be r � 2 fault tolerant. In

phase II, we add another set of augmenting edges Eaug
2 ⊆ E − (E1 ∪ Eaug

1) to the

graph (V,E1 ∪ Eaug
1), such that the failure of any two adjacent nodes [u, v] does not

disconnect the nodes in s(v) from r. Thus, in graph (V,E1 ∪ Eaug
1 ∪ Eaug

2), after the

failure of a [u, v] the remaining nodes will be connected to the root r.

In phases I and II, we only consider the failures of nodes that are adjacent in

T1. However, the edges that we added during phase I and phase II of TCA2 introduce

the possibility of additional failures, as two nodes i and j, that were previously not

adjacent, will become adjacent after the augmentation process. We will explain later

how we deal with this possibility and ensure that the augmented graph is r� 2 fault

tolerant.

3.5.1 TCA2 Phase I

In this phase we propose an algorithm to find a set of edges Eaug
1 ⊆ E−E1 such that

in graph (V,E1 ∪ Eaug
1) for every [u, v] and node w ∈ st(v, T1), w has a path to the

root or to a node in s(v) that does not include either u or v. We use an approach

64

similar to that in Section 3.4 for the TCA1 algorithm where we created a sequence

of graphs to find the augmenting edges. In this case, since we need to deal with the

failures of two adjacent nodes, the algorithm and the proofs are more complicated.

First, we compute d(u, v) and p(u, v) functions defined in Section 3.4 [B] for ev-

ery pair of nodes u and v ∈ V using T1 and c as inputs, so that d(u, v) = min{c(x, y)|u

and v are in the path from x to y in T1} and p(u, v) is the pointer to the edge selected

by the function d(u, v). Next, we construct a new directed tree T d2 and directed graph

Gd
2 as follows.

[A] Construction of T d2 = (V2, A2): We construct T d2 from T1 by directing all edges

of T1 toward the root node r. Then for every three consecutive nodes k → j → i

where i 6= r we add a new node vijk between j and k and replace the directed

edge k → j with k → vijk and vijk → j; i.e, V2 = V ∪ {(vijk)|i, j, k ∈ V and

j = par(k) and i = par(j) and i 6= r} and A2 = {j → i|i = par(j) and (i = r or

par(i) = r)} ∪ {k → vijk, vijk → j|j = par(k) and i = par(j) and i 6= r}. In the

Fig. 3.4(a) the tree formed by solid lines is an example of T1 and the tree with solid

arrows in Fig. 3.4(b) is the corresponding T d2 .

[B] Construction of Gd
2 = (V2, A

′
2): G

d
2 is a directed graph on V2. We use another

pointer function p′ : (A′2 − A2) → E, where p′(i, j) is an undirected edge in E

corresponding to the arc i→ j ∈ (A′2 − A2). We compute A′2, p
′ and the cost of the

arcs in A′2, c
′ in the following way:

(i) For every edge i→ j ∈ A2:

• If j 6= r, add i→ j to A′2, c
′(i, j) = 0.

• Else add j → i to A′2, c
′(j, i) = 0, p′(j, i) = (i, j).

65

(ii) For every edge (i, j) ∈ E − E1:

• If j ∈ st(i, T1) and i 6= r, add vikl → j to A′2 where there is a directed path from

j to vikl in T d2 . In this case, p′(vikl, j) = (i, j), c′(vikl, j) = d(i, j).

• Else if j 6= r, add i→ j to A′2, p
′(i, j) = (i, j), c′(i, j) = d(i, j).

(iii) Step (ii) is repeated by interchanging i and j.

In Fig. 3.4(a) dashed lines show a subset of edges in E −E1 and the value on

every edge (i, j) shows its cost c(i, j). Other edges in E − E1 that are not shown in

the figure are supposed to have cost 10. In Fig. 3.4(b) a subset of arcs in A′2 − A2

are shown in dashed arrows. We note that the dashed arrow with cross on it means

that the arc a→ g is not in A′2 and instead vacg → g is in A′2 and p′(vacg, g) = (a, g).

1 1

a b

c

r

d e f

1h
k

g

i j

1

21

2
2

1

2

1

(a)

a b

c

r

d e f

h
kg i j

vacg

vach

vaci vbej vbek

(b)

a b

c

r

d e f

h
kg i j

vacg

vach

vaci vbej vbek

(c)

Figure 3.4: (a) An example of T1; solid lines show the edges in E1 and dashed ones
show a subset of edges in E−E1. (b)T d2 corresponding to T1 in part (a); solid arrows
show the arcs in T d2 and dashed ones show a subset of arcs in A′2 − A2. (c) T arb2 ,
minimum cost arborescence computed on Gd

2 corresponding to part (b).

Similar to the algorithm TCA1 we augment the directed tree T d2 with some

additional arcs Aaug2 ⊆ A′2 such that the augmented graph (V2, A2 ∪ Aaug2) is strongly

connected. In order to compute Aaug2 , we compute the minimum cost arborescence

rooted at r on graph Gd
2 = (V2, A

′
2) using c′ and denote it by T arb2 = (V2, A

arb
2).

Fig. 3.4(c) depicts T arb2 corresponding to the example depicted in 3.4(a). The

66

set of arcs Aaug2 is obtained by excluding from Aarb2 those arcs with cost zero, i.e.,

Aaug2 = Aarb2 − {a ∈ Aarb2 |c′(a) = 0}. Finally, the set of edges Eaug
1 is obtained

by including in the set Eaug
1 the edge p(p′(u, v)) for each u → v ∈ Aaug2 , i.e.,

Eaug
1 = {p(p′(u, v))|u → v ∈ Aaug2 }. In the example shown in Fig. 3.4, we get

Eaug
1 = {(r, c), (c, d) , (d, i), (g, i), (h, i), (r, j), (e, f), (j, k)}. The augmented graph

(V,E1 ∪ Eaug
1) is shown in Fig. 3.5(a). The steps of TCA2 Phase I are summarized

in Algorithm 6 Phase I.

Theorem 3.5.1. Algorithm TCA2 Phase I finds a set of edges Eaug
1 such that in the

graph (V,E1 ∪Eaug
1) if any two adjacent nodes [i, j] ∈ T1 fail, the remaining nodes in

st(j, T1) have a path to r or to a node in s(j). The graph is also r � 1 fault tolerant.

Proof. Let Gtmp = (V,E1 ∪Etmp) be an undirected graph on V where Etmp =

{p′(u, v)|u→ v ∈ Aaug2 }. Consider the two adjacent nodes [i, j] in T1 such that their

removal disconnects st(k, T1) from r where k is one of the j’s children. We know that

(V2, A2 ∪Aaug2) is strongly connected. So, there should be a directed path from j to k

in (V2, A2 ∪ Aaug2). Since there is no arc in A′2 from j to the nodes in st(j, T d2), there

should be a directed path, P , from j to k such that the node following j on P , called

f is not in st(j, T d2) and the subpath from f to k does not include j. There are three

possibilities for f : (i) f can be vhij. The node after vhij on P can be either i or a

node a ∈ st(j, T d2). If it is i, as there is no directed edge from i to its subtree in A′2

the next node on P is some node /∈ st(i, T d2). So, in this case there is a directed path

from some node /∈ st(i, T d2) to k that includes neither i nor j. In second case there

will be a directed path from vhij to k which does not include i and j. Because of the

way p′ is computed the edge from vhij to a is replaced by h (i’s parent) to a in Gtmp

. Hence, in both cases, in Gtmp there will be a path from r to k that includes neither

i nor j. (ii) f can be a node /∈ st(i, T d2). Then there is a path from f to k that does

not include either i or j. (iii) f can be a node in a subtree of a j’s sibling ∈ s(j). We

67

denote this j’s sibling by b. Then there will be a subpath from f to k that the path

includes neither i nor j. In this case in Gtmp after removal of [i, j], nodes ∈ st(k, T1)

have a path to b. So, in all cases, when [i, j] fails, st(j, T1) is connected to r or to a

node ∈ s(j) in Gtmp.

Now it remains to show that after replacing (w, x) in Etmp with p(w, x), k still

remains connected to r or a node ∈ s(j). Let p(w, x) = (y, z); If (w, x) is on a path

from k to r or k to j’s sibling that eliminates i and j as two adjacent node failure in

Gtmp, then definitely i and j cannot be on the path from w to y and z to x in T1.

Therefore, after replacing (w, x) in Etmp with p(w, x), k has a path to root or a j’s

sibling not including i and j.

Theorem 3.5.2. Let Caug
1 be total cost of the edges in Eaug

1 . We claim that Caug
1 ≤

2Copt where Copt is the cost of the optimal solution for TCA2 problem.

Proof. In order to prove the theorem, we find a set of arcs A′′1 ⊆ A′2 using the

edges in the optimal solution Eopt such that graph (V2, A2∪A′′1) is strongly connected

and total cost of the arcs in A′′1, C ′′1 ≤ 2Copt (C ′′1 =
∑

u→v∈A′′1
c′(u, v)).

Let Eopt
1 = Eopt−{(i, l)|i = par(par(l)) and i 6= r} and Q1 be the set of nodes

which are strongly connected in (V2, A2∪A′′1). Initially, Q1 = {r}, A′′1 = ∅ and all the

edges in Eopt
1 are marked unused. We use the following procedure to compute A′′1 and

Q1.

While Q1 6= V2 repeat the following steps:

• Select an unused edge (i, j) from Eopt
1 such that one of the following conditions

holds and update A′′1 and Q1 accordingly:

– The lowest common ancestor of nodes i and j, LCA(i, j), in T1 is r

(LCA(i, j) in a tree is the shared ancestor of i and j that is located far-

68

thest from the root. A node is allowed to be an ancestor of itself). If r 6= i

add the directed edge r → i and if r 6= j add r → j to A′′1. Also, add all

the nodes on the weakly directed path from i to j in T d2 to Q1 since these

nodes are strongly connected with root r in current (V2, A2∪A′′1). At least

one of the edges in Eopt
1 has this condition. Otherwise, in (V,E1 ∪ Eopt)

none of the nodes could have two disjoint paths to r which is a contradic-

tion. We note that because of the way we compute cost of the arcs in A′,

c′(r, i) ≤ c(i, j) and c′(r, j) ≤ c(i, j).

– i ∈ Q1, j /∈ st(i, T1) and j 6= r. Add i→ j to A′′1 and add all the nodes on

the weakly directed path from j to i in T d2 to Q1. (This condition should

be checked for the case that i and j are interchanged.)

– LCA(i, j) = k, k ∈ Q1 and k /∈ {r, i, j}. There is a node v ∈ Q1 ∩ V such

that par(v) = k and i or j is in st(v, T1). Let i ∈ st(v, T1). Add arc v → j

and if v 6= i, add j → i to A′′1. Since v is on the path from i to j in T1,

c′(v, j) ≤ c(i, j). Then, add the nodes on the weakly directed path from i

to j in T d2 to Q1.

– LCA(i, j) = k, k ∈ Q1, k 6= r and k ∈ {i, j}. There is a node vklm ∈ V2−V

such that i or j is in st(vklm, T
d
2) and vklm ∈ Q1. Let i ∈ st(vklm, T d2). Add

arc vklm → i to A′′1. Obviously c′(vklm, i) = d(k, i) ≤ c(i, j). Then, add the

nodes on the weakly directed path from i to j in T d2 to Q1.

• Change the marking of the edge (i, j) to used.

Now we need to show that while Q1 6= V2 there is some unused edge (i, j) such

that one of the conditions in the procedure holds for it. Let Eused ⊆ Eopt
1 be the set

of edges marked used during the procedure. Assume that Q1 6= V2; so, there exists

some node x ∈ V2 ∩ V that is not reachable from r. Definitely, the nodes ∈ st(x, T d2)

69

are not reachable from r either. If x has some sibling y in T1, that y ∈ Q1 then there

is no directed path from y to x in (V2, A2 ∪ A′′1) ; otherwise, x would be reachable

from r and it would be ∈ Q1. Also, the directed path from x to y in (V2, A2 ∪ A′′1)

can only go through par(x), w, since during the procedure only directed edges from

nodes ∈ Q1 to other nodes can be added. In this case if [par(w), w] fails, in the graph

(V,E1 ∪ Eused), x gets disconnected both from r and y. So, there should be some

unused edge (i, j) ∈ Eopt
1 that x is on the path from i to j in T1 and one of the above

conditions holds for it. Otherwise, it contradicts with Eopt to be the optimal solution.

If y /∈ Q1 then similarly it can be concluded that in the graph (V,E1 ∪ Eused) failure

of [par(w), w] disconnects both x and y from r and from each other. So, there should

be some unused edges ∈ Eopt
1 that one of the above conditions holds and make x and

y connected to the root or one of their siblings.

Based on this procedure, for every edge (i, j) in Eopt
1 at most two arcs from

A′2 are added to A′′1 such that each one has cost ≤ c(i, j). Therefore, total cost of the

arcs in A′′1, C ′′1 ≤ 2Copt. We know that (V2, A2 ∪ A′′1) is strongly connected. So, on

(V2, A2 ∪A′′1) we can construct an arborescence tree using c′ as the cost of the edges.

Since (A2 ∪ A′′1 − {i → r|i ∈ V }) ⊆ A′2 and in TCA2 Phase I we compute minimum

arborescence tree on (V2, A
′
2), C

aug
1 ≤ C ′′1 ≤ 2Copt.

3.5.2 TCA2 Phase II

After adding the edges Eaug
1 obtained in TCA2 Phase I to E1 it may still happen

that the failure of two adjacent nodes [i, j] disconnects some nodes in s(j) from root

r. It may also disconnect the nodes in st(j, T1) from r, but based on Theorem 3.5.1

these nodes are connected to at least a node in s(j) in graph (V,E1 ∪ Eaug
1). Hence,

we need to find a new set of edges Eaug
2 ⊆ E − (E1 ∪ Eaug

1) such that in graph

(V,E1 ∪ Eaug
1 ∪ Eaug

2) after the failure of any two adjacent nodes [i, j], nodes in s(j)

remain connected to r.

70

We define a cost function c′′ for (i, j) ∈ E in the following way. If (i, j) ∈ Eaug
1

then c′′(i, j) = 0, else c′′(i, j) = c(i, j). Again we need to compute functions d(i, j)

and p(i, j) defined in section 3.4 [B] for every pair of nodes u and v ∈ V but using T1

and c′′ as input; i.e., d(u, v) = min{c′′(x, y)|u and v are in the path from x to y in T1}

and p(u, v) is the pointer to the edge selected by the function d(u, v).

Let S = {[i, j]|i 6= r, i = par(j) in T1 and failure of [i, j] disconnects the graph

(V,E1∪Eaug
1)}. If S is empty it means that there is no [i, j] whose removal disconnects

(V,E1 ∪ Eaug
1) and Eaug

2 will be ∅. Otherwise, for every [i, j] ∈ S we define a set Dj

to be the set of connected components that do not include r in graph (V,E1 ∪ Eaug
1)

caused by failure of [i, j]. Let Cjk be the kth component in Dj. We note that each

component Cjk ∈ Dj includes at least a node from s(j). Now, we construct a new

directed tree T d3 and directed graph Gd
3 as follows.

[A] Construction of T d3 = (V3, A3): We construct T d3 from T1 by directing all edges of

T1 toward the root node r. Then for every two consecutive nodes j → i where i 6= r

we add a new node uij and replace the directed edge j → i with j → uij and uij → i;

For every [i, j] ∈ S and every component Cjk ∈ Dj we add two new nodes xjk and yjk

to V3 and add the arcs xjk → yjk and yjk → j to A3.

The solid arrows in Fig. 3.5(b) shows the directed tree T d3 corresponding to

the example in Fig. 3.4. It can be seen that there are two nodes xi1 and xi2 associated

with node i. The reason is that after failure of [c, i] in (V,E1 ∪ Eaug
1) nodes g and h

get disconnected from r and they are in two separate components.

[B] Construction of Gd
3 = (V3, A

′
3): Let p′′ : (A′3 − A3) → E be a pointer function

where p′′(i, j) is an undirected edge in E pointing to an arc i → j ∈ (A′3 − A3) and

c′′′(i, j) be the cost of the arcs in A′3. We compute A′3 and c′′′ through the following

procedure:

71

(i) For every edge i→ j ∈ A3:

• If j 6= r, add i→ j to A′3, c
′′′(i, j) = 0.

• Else add j → i to A′3, c
′′′(j, i) = 0, p′′(j, i) = (i, j).

(ii) For every edge (i, j) ∈ E − E1:

• If j ∈ st(i, T1) and i 6= r add one of the following arcs to A′3: Let k be the i’s

child where j ∈ st(k, T1) in T1.

– If failure of [i, k] disconnects j from r in (V,E1 ∪ Eaug
1), i.e., j is in a

component Ckl in Dk, add ykl → j to A′3; p
′′(ykl, j) = (i, j); c′′′(ykl, j) =

d(i, j);

– else, add uik → j to A′3; p
′′(uik, j) = (i, j) and c′′′(uik, j) = d(i, j).

• Else if par(j) 6= r, j 6= r and failure of [par(j), j] disconnects i from r in (V,E1∪

Eaug
1), add i → xjz to A′3 where i ∈ Cjz for a component number z. Also,

p′′(i, xjz) = (i, j) and c′′′(i, xjz) = d(i, j).

• Else if par(i), i 6= r and removal of [par(i), i] from (V,E1 ∪ Eaug
1) disconnects

j from r, add xiw → j to A′3 where j ∈ Ciw for a component number w; Also,

p′′(xiw, j) = (i, j) and c′′′(xiw, j) = d(i, j);

• Else if j 6= r add i→ j to A′3 and p′′(i, j) = (i, j) and c′′′(i, j) = d(i, j).

(iii) Repeat step (ii) by interchanging i and j.

In Fig. 3.5(b) the dashed lines without a cross show a subset of the arcs in

A′3 − A3. In graph (V,E1 ∪ Eaug
1) the failure of [a, c] disconnects c’s children from r

but they remain connected to d. Therefore, corresponding to the edge (a, g) ∈ E−E1

the arc yc1 → g is added to A′3 and there is no arc in A′3 from the node uac to its

72

subtree. However, after the failure of [b, e], j and k remain connected to r. So, the

edge ube → j and ube → k are in A′3 corresponding to the edges (b, j) and (b, k) in

E − E1 respectively.

a b

c

r

d e f

h
k

g

i j

(a)

a b

c

r

d e
f

h k
g i j

ubeuac uad
ubf

ucg uch uci

uej uek xe1

xj1

xc1

xi1 xi2

yi2yi1

yc1

yj1

ye1

(b)

a b

c

r

d e
f

h k
g i j

ubeuac uad
ubf

ucg uch uci

uej
uek

xe1

xj1

xc1

xi1 xi2

yi2yi1

yc1

yj1

ye1

(c)

Figure 3.5: (a) Solution of TCA2 Phase I, i.e., (V,E1 ∪ Eaug
1). (b) Solid arrows form

the tree T d3 corresponding to the example shown in Fig. 3.4. (c) T arb3

We augment T d3 with a set of additional edges Aaug3 such that (V3, A3∪Aaug3) is

strongly connected. Aaug3 is obtained by computing minimum cost arborescence tree

T arb3 = (V3, A
arb
3) on Gd

3 (Fig. 3.5(c)). T arb3 is rooted at r as in A′3 there is no edge

from the nodes in V3 to r. The set of arcs Aaug3 is obtained by excluding from Aarb3

the arcs with cost zero; i.e., Aaug3 = Aarb3 − {a ∈ Aarb3 |c′′′(a) = 0}. Finally, the set of

edges Eaug
2 is obtained by including in the set Eaug

2 the value of p(p′′(u, v)) for each

u → v ∈ Aaug3 , i.e., Eaug
2 = {p(p′′(u, v))|u → v ∈ Aaug3 }. In the example depicted in

Fig. 3.5, Aaug3 = {j → i, ube → k, k → f} and using functions p′′ and p, we have

Eaug
2 = {(i, j), (k, f)}.

Theorem 3.5.3. Algorithm TCA2 Phase II finds a set of edges Eaug
2 such that in the

graph (V,E1∪Eaug
1 ∪Eaug

2) after removal of any two adjacent nodes [i, j] the remaining

nodes still have path to r.

Proof. Based on Theorem 3.5.1, in graph (V,E1 ∪ Eaug
1) if [i, j] fails, the

nodes in st(j, T1) remain connected to r or at least to one of the nodes in s(j).

Now, we prove that in (V,E1 ∪ Eaug
1 ∪ Eaug

2) after failure of [i, j], nodes in s(j) still

73

have a path to r. Let Gtmp = (V,E1 ∪ Eaug
1 ∪ Etmp) be an undirected graph where

Etmp = {p′′(u, v)|u → v ∈ Aaug3 }. Now, consider [i, j] whose failure disconnects j’s

sibling, k, from r. We know that (V3, A3 ∪ Aaug3) is strongly connected. Hence, there

should be a directed path from j to k in (V3, A3∪Aaug3). Because of the way we defined

the arcs in A′3 we know that there is no arc in A′3 from j to any node in st(k, T d3)

and no edge from j to any other node that in (V,E1 ∪ Eaug
1) gets disconnected by

failure of [i, j]. Also, we know there is no edge in A′3 from j to the nodes in st(j, T d3).

So the node following j, f on the directed path from j to k is either some node out

of st(i, T d3) or f is uij. In first case, in Gtmp there will be a path from some node w

out of st(i, T1) to k that the path includes neither i nor j. Since w /∈ st(i, T1) after

removal of [i, j], it remains connected to r in Gtmp. Therefore, k remains connected to

r in Gtmp. In second case, the node after uij is some node t ∈ st(j, T1) such that the

subpath from t to k includes neither i nor j. Because of the way we defined A′3, there

is an edge in A′3 from uij to t if t remains connected to the root in (V,E1∪Eaug
1) when

[i, j] fails. So, there should be a path from t to r in Gtmp where it includes neither i

nor j. So, in Gtmp there is a path from k to r which eliminates i and j. Similar to

the proof of Theorem 3.5.1, it can be shown if edge (a, b) ∈ Etmp is on a path from k

to r in Gtmp such that the path eliminates [i, j] (k ∈ st(i, T1)), after replacing it by

p(a, b) = (w, z), there will be a new path that includes neither i nor j. The reason is

that i and j cannot be on the path from a to w and z to b in T1.

Theorem 3.5.4. Let Caug
2 be the total cost of the edges in Eaug

2 . We claim that

Caug
2 ≤ 2Copt where Copt is the cost of the optimal solution.

Proof. We know that in (V,E1 ∪ Eaug
1) the nodes i ∈ Cjk, kth component in

Dj, get disconnected from r after failure of [par(j), j]. Moreover, in (V,E1 ∪ Eaug
1)

there are two disjoint paths from i to r. Hence, one of the paths from i to r goes

through j that does not include par(j). This subpath from i to j includes only nodes

74

Algorithm 6 TCA2 Algorithm

Input: The same as input in Algorithm 5.
Output: A set of edges Eaug ⊆ E−E1 such that (V,E1 ∪Eaug) is r� 2 fault tolerant.
Phase I

1: Compute d(u, v) and p(u, v) for each pair of nodes u, v ∈ V using T1 and c as the
inputs.

2: Compute a directed tree T d2 = (V2, A2) using the technique described in [A] in
section 3.5.1

3: Compute a directed graph Gd
2 = (V2, A

′
2), functions c′(.) and p′(.) using the tech-

nique described in [B] in section 3.5.1.
4: Compute a minimum cost arborescence T arb2 = (V2, A

arb
2) of the graph Gd

2 =
(V2, A

′
2).

5: Set Aaug2 = Aarb2 − {a ∈ Aarb2 |c′(a) = 0}.
6: Set Eaug

1 = {p(p′(u, v)|u→ v ∈ Aaug2 }.
Phase II

1: Compute the cost function c′′: if ((u, v) ∈ Eaug
1) c′′(u, v) = 0 ; else, c′′(u, v) =

c(u, v)
2: Compute d(u, v) and p(u, v) for each pair of nodes u, v ∈ V using T1 and cost

function c′′.
3: Compute the set S = {[i, j]|(i, j) ∈ E1, i 6= r and failure of

[i, j] disconnects the graph (V,E1 ∪ Eaug
1)} and Dj ∀[i, j] ∈ Eaug

1

4: Compute the directed tree T d3 = (V3, A3) using the technique described in [A] in
section 3.5.2

5: Compute the directed graph Gd
3 = (V3, A

′
3), functions c′′′(.) and p′′(.) using the

technique described in [B] in section 3.5.2.
6: Compute the minimum cost arborescence T arb3 = (V3, A

arb
3) of the graph Gd

3 =
(V3, A

′
3).

7: Set Aaug3 = Aarb3 − {Aarb3 |c′′′(a) = 0}}.
8: Set Eaug

2 = {p(p′(u, v)|u→ v ∈ Aaug3 }.
9: Remove edges (u, v) from Eaug

1 ∪ Eaug
2 if failure of u and v disconnects (V,E1 ∪

Eaug
1 ∪ Eaug

2)
10: Return Eaug

1 ∪ Eaug
2

75

in Cjk ∪ {j}. Also, we know that in TCA2 Phase II cost of the edges in E1 ∪ Eaug
1 is

zero. Corresponding to this undirected subpath from i to j there is a directed path

in Gd
3 from i to xjk with cost zero. We denote this zero cost directed path from i to

j in Gd
3 by P0ij.

In order to prove the theorem we find a set of directed edges A′′3 ⊆ A′3 using

the edges in the optimal solution Eopt such that (V3, A3 ∪ A′′3) is strongly connected

and
∑

u→v∈A′′3
c′′′(u, v) ≤ 2Copt.

Let Q2 show the set of nodes which are strongly connected in (V3, A3 ∪ A′′3).

Initially, Q2 = {r}, A′′3 = ∅ and all the edges in Eopt are marked unused. We use the

following procedure to compute A′′3 and Q2.

While Q2 6= V3 repeat the following steps:

1. Select an unused edge (i, j) from Eopt such that one of the following conditions

holds:

(i) LCA(i, j) = r. In this case if r 6= i add the arc r → i and if r 6= j add

r → j to A′′3. It should be noted that c′′′(r, i) ≤ c(i, j) and c′′′(r, j) ≤ c(i, j). Then go

to step 2.

(ii) LCA(i, j) = k, k ∈ Q2, k 6= r and k ∈ {i, j}. Let q ∈ {i, j} where q 6= k.

Also, one of the following conditions holds.

• There is a node ukl ∈ V3 ∩ Q2 such that q ∈ st(ukl, T d3). Also, ukl → q ∈ A′3.

Add ukl → q to A′′3. Obviously c′′′(ukl, q) = d(k, q) ≤ c(i, j).

• There is a node ylm ∈ Q2 where l ∈ V, par(l) = k, q ∈ st(l, T1) and q ∈ Clm.

Add ylm → q to A′′3.

(iii) LCA(i, j) = k, k ∈ Q2, k /∈ {r, i, j}. There is a node v ∈ Q2∩V such that

par(v) = k and i or j is in st(v, T1). Let i ∈ st(v, T1). If j is in a component Cvm ∈ Dv

76

and xvm ∈ Q2, add xvm → j. Else if v is in a component Cjm′ ∈ Dj add v → xjm′ .

Else, if v is not in any component in Dj add v → j to A′′3. Similarly, if v 6= i add

j → i or xjp → i or j → xip′ . More precisely, if j is not in any components of Di and

i is not in any component of Dj, add j → i. Else if i is in a component Cjp ∈ Dj and

xjp ∈ Q2 add xjp → i. Else if j is in a component Cip′ ∈ Di add j → xip′ .

In all cases at most two arcs with cost ≤ c(i, j) are added to A′′3. Then go to

step 2.

2. For every new arc a → b added to A′′3 in previous step add every node k on the

weakly directed path from a to b in T d3 to Q2. Also, if k ∈ V and k is in some

component Clm ∈ Dl for every node l ∈ s(k), add the arcs on the path P0kl to A′′3;

and add every node t on P0kl and every node on the path from t to r in T d3 to Q2.

We note that all the arcs on path P0kl are have cost zero.

3. Change the marking of the edge (i, j) to used.

We need to show that while Q2 6= V3 there is some unused edge (i, j) ∈ Eopt

such that one of the conditions in the procedure holds for it. In each iteration Q2

shows the nodes from V3 that are strongly connected with r in (V3, A3∪A′′3). Assume

that Q2 6= V3; so, there should be some node k ∈ V3 ∩ V where it is not accessible

from r (Note that if all the nodes in V3∩V are in Q2 then all the other nodes ∈ V3−V

can definitely get reached through zero cost arcs and can be added to Q2). Hence,

the nodes in st(k, T d3) are not accessible from r and there is no directed path from

the nodes in Q2 to the nodes in st(k, T d3) in (V3, A3 ∪ A′′3). Also, the directed path

from k to the nodes in Q2 can only go through k’s parent, t. In this case if t fails

then k gets disconnected from r. Hence (V,E1 ∩ Eused) will get disconnected after

failure of t. So, Eused 6= Eopt and there should be some unused edge from a node in

st(k, T1) to some node in st(j, T1) where j is a node in Q2. Therefore, there should

77

be some unused edge ∈ Eopt that one of the above conditions holds for it. Otherwise,

it contradicts with Eopt to be the optimal solution.

Based on this procedure, for every edge (i, j) in Eopt at most two nonzero arcs

from A′3 are added to A′′3 such that each one has cost ≤ c(i, j). Therefore, total cost

of the arcs in A′′3, C ′′2 ≤ 2Copt. We know that (V3, A3 ∪A′′3) is strongly connected. So,

on (V3, A3 ∪ A′′3) we can construct an arborescence tree rooted at r using c′′′ as the

cost of the edges. Since A3 ∪ A′′3 − {i → r|i ∈ V } ⊆ A′3 and in TCA2 Phase II we

compute minimum arborescence tree on (V3, A
′
3), C

aug
2 ≤ C ′′2 ≤ 2Copt.

As we mentioned before, the edges that are added during TCA2 Phase I and

Phase II to T1 introduces possibility of additional two adjacent node failures since two

nodes i and j that were not adjacent before augmentation will be adjacent in graph

(V,E1 ∪Eaug
1 ∪Eaug

2) if (i, j) ∈ Eaug
1 ∪Eaug

2 . In the following theorem we show that if

any new two adjacent node failure {i, j} results in disconnection in (V,E1∪Eaug
1 ∪Eaug

2)

the edge (i, j) can be removed from Eaug
1 ∪Eaug

2 and the remaining graph will be r�2

fault tolerant. Therefore, the final set of augmenting edges, Eaug is constructed in

the following way: For every edge (i, j) ∈ Eaug
1 ∪ Eaug

2 where i 6= r and j 6= r, if

removal of both nodes i and j does not disconnect the graph (V,E1 ∪ Eaug
1 ∪ Eaug

2),

edge (i, j) is added to Eaug. Algorithm 6 shows the steps in algorithm TCA2. Similar

to Algorithm TCA1, the time complexity of TCA2 Phase I is O(|V 2|). In the third

step in Phase II, S = O(|V |) and since the edges in Eaug
1 is computed based on T arb2 ,

its cardinality is O(|V |). If we use depth first search to find the components for a two

adjacent node failure [i, j] it takes O(|V |+ |E1∪Eaug
1 |) = O(|V |). So, time complexity

of this step is O(|V |2). Similarly, step 9 takes O(|V |2). Therefore, time complexity

of Algorithm 6 is O(|V |2).

78

Theorem 3.5.5. The augmented graph (V,E1 ∪ Eaug) is r � 2 fault tolerant.

Proof. Consider that (i, j) ∈ Eaug
1 ∪ Eaug

2 and failure of i 6= r and j 6= r

disconnects the graph (V,E1 ∪ Eaug
1 ∪ Eaug

2). Let u 6= i, j be one of the nodes that

gets disconnected from root when i and j fail. u should be in st(i, T1) or st(j, T1).

We know that in (V,E1 ∪Eaug
1 ∪Eaug

2) there are two node disjoint paths from node u

to r. So one path should go through i and not include j and the other path should go

through j and not include i. So there will be a cycle containing u, j, r, i, u in order.

Edge (i, j) is a chord in this cycle which divides the cycle into two sub-paths, one from

i to j which includes r and the other is from i to j and it includes u. There cannot

exist an edge from the nodes on first sub-path to the nodes on the second sub-path

of the cycle; otherwise, u would not get disconnected in graph (V,E1 ∪ Eaug
1 ∪ Eaug

2)

after removal of i and j. So, theses two subpaths can replace the edge (i, j) and after

removal of edge (i, j), in graph (V,E1 ∪ Eaug
1 ∪ Eaug

2 − {(i, j)}) if two adjacent node

[u, v] fails where (u, v) ∈ E1 the graph still remains connected. Consequently, the

graph (V,E1 ∪ Eaug) is r � 2 fault tolerant.

Theorem 3.5.6. Algorithm TCA2 finds a set of edges Eaug with total cost Caug ≤

4Copt where Copt is the cost of the optimal solution.

Proof. Since Eaug ⊆ Eaug
1 ∪ Eaug

2 based on Theorems 3.5.2 and 3.5.4, Caug ≤

4Copt.

3.6 Experimental Results

In this section we present the experimental results of the approximation algorithms

proposed for TCA1 and TCA2 problems. In the experiments we compare the results

of the approximation algorithms against the optimal solution. Moreover, we examine

energy consumption by directional and omni-directional antennas deployed in a sensor

network.

79

For every instance of our experiment, we generate the locations of the sensor

nodes randomly, using a uniform distribution on a square deployment area of size

100 × 100 units. We take the cost of edge between the nodes u and v in the sensor

network, as an indicator of the transmit power needed by the nodes to reach each

other. Accordingly, we construct a complete graph G = (V,E) by setting the cost

of each edge c(i, j) proportional to d2(i, j) where d(i, j) is the Euclidean distance

between nodes i and j. We assume that an omni-directional antenna will consume

power proportional to r2 where r is the radius of the coverage circle. A directional

antenna with same transmit range r but with transmit beam width α degrees will

consume power proportional to α
2π
r2 [29]. In our model, an edge represents two

directional antennas transmitting signals to each other. Therefore, if the beam width

is α we assume that the cost of the edge (i, j) is α
π
d2(i, j). For each problem instance

we compute the minimum spanning tree to be the initial tree T1 and select a node

randomly as the root of the tree.

In our first set of experiments our objective is to compare the results of the

approximation algorithms with the optimal solution, obtained by solving an integer

linear programming (ILP). We denote the ILP used to find the optimal solution of

TCA1 and TCA2 by ILP1 and ILP2, respectively. We used the CPLEX package to

solve the ILP formulations. Since ILPs takes considerable amount of time in these

experiments, we vary the number of nodes, n, from 5 to 25 in steps of 5. For each

value of n, we generate 10 random instances of network layouts in a 2-dimensional

plane. We set the beam width to 30 degrees. We present in Figures 3.6(a) and 3.6(b)

the comparisons between the optimal augmentation costs and the augmentation costs

computed by the TCA1 and TCA2 algorithms, respectively. For each n, we compute

the average cost over 10 instances. We note that in these simulations, the ratio of the

average cost of augmentation computed by the TCA1 algorithm to the average cost

80

of optimal solution is smaller than 1.46. Also, the ratio of the average augmentation

cost obtained by TCA2 algorithm to the average optimal cost for each value of n

is smaller than 1.62. These ratios are significantly better than the approximation

factors for TCA1 and TCA2 algorithms that are 2 and 4, respectively. In all of these

experiments TCA1 and TCA2 algorithms execute in a small fraction of the time

required to achieve the optimal solution. For larger values of n, ILPs take so much

time that we were unable to get the optimal solution in a reasonable amount of time

while TCA1 and TCA2 can find an augmentation solutions with costs close to those

of optimal solutions within a reasonable time.

0

100

200

300

400

500

600

700

800

5 10 15 20 25

Cost

Number of Nodes

TCA1

ILP1

(a)

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25

Cost

Number of Nodes

TCA2

ILP2

(b)

Figure 3.6: (a) Comparison of augmentation cost of TCA1 algorithm and ILP1; (b)
Comparison of augmentation cost of TCA2 algorithm and ILP2.

In our second set of experiments, we compare the power consumption of di-

rectional antennas versus omni-directional antennas. We vary the number of nodes,

n, from 10 to 50 in steps of 10. For each value of n, we generate 50 random in-

stances of network layouts in a 2-dimensional plane. We compute the average cost

of augmentation by taking the average of costs incurred in these 50 instances. We

perform the experiments for two values of beam width, 20 and 40 degrees. For each

instance we execute the TCA1 algorithm. We assume that the transmit range of the

omni-directional antenna is large enough to cover furthest neighbor in the augmented

graph. Therefore, the total power consumption in network with omni-directional an-

tennas is proportional to
∑

1≤i≤n max{j|(i,j)∈E1∪Eaug} d
2(i, j). In the case of directional

81

antennas, every edge in the augmented graph corresponds to two antennas, where

each antenna needs α
2π
d2(i, j) amount of power to reach the other. Hence, the total

power consumption is proportional to
∑

(i,j)∈E1∪Eaug
α
π
d2(i, j). The Fig. 3.7(a) illus-

trates the comparison of power consumption in these two cases. We observe that

the total power consumption in the network is significantly smaller when directional

antennas are used instead of omni-directional ones. More specifically, when the beam

width is 20 degrees, the power consumption with directional antennas is less than 9

percent of omni-directional antennas and when the beam width is 40 degrees it is less

than 18 percent. We note that in order to make the network r � 1 fault tolerant,

we need to install additional directional antennas, which has a fixed cost associated

with it. When nodes have omni-directional antenna, each node requires only one

antenna. When we use directional antennas, the total number of antennas deployed

in every sensor node is equal to the node degree (including both the initial set of

antennas in the tree and the antennas installed to augment the tree). In Fig. 3.7(b)

we illustrate the average number of antennas that is needed in the network for each

value of n. The first diagram shows the total number of directional antennas needed

in the network. We observe that the ratio of the total number of directional anten-

nas to the number of omni-directional antennas in these experiments is less than 2.7.

However, in the TCA1 problem we consider that the initial set of edges in the tree

has cost zero (it is not part of augmentation cost). Therefore, only the cost of the

new (augmenting) edges (i.e., the cost of the corresponding additional antennas) that

are added during augmentation phase needs to be considered. The third diagram in

Fig. 3.7(b) depicts the average number of directional antennas that are added to the

network during the augmentation process. This number is smaller than 75 percent

of the number of omni-directional antennas. More accurately, augmenting directional

antennas that are needed to make the network r � 1 fault tolerant are fewer than

75 percent of number of omni-directional antennas. Therefore, the savings in power

82

consumption with directional antennas outweighs the cost of additional directional

antennas needed, particularly when the width of the antenna beam is narrow.

(a)

0

20

40

60

80

100

120

140

10 20 30 40 50

N
u

m
b

er
 o

f
an

te
n

n
as

Number of nodes

#Directional
antennas

#Omnidirectional
antennas

#Augmenting
directioanl antennas

(b)

Figure 3.7: Comparison between (a) power consumption of directional antennas and
omni-directional antennas, (b) number of directional antennas and omni-directional
antennas

3.7 Conclusion

Motivated by the importance of both data collection and fault tolerance in wireless

sensor networks, we studied the problem of enhancing the fault tolerance capability

of a data gathering tree by adding a few additional links. We considered two fault

models: 1) single node failure and 2) two adjacent node failure. We proved that

the least cost tree augmentation problem is NP-complete under both types of fault

scenarios. Moreover, we proposed two approximation algorithms, one for single node

failure and the other for a pair of adjacent node failure, with performance bounds of

two and four respectively. Experimental evaluation of the approximation algorithms

shows that they perform even better in practice. In future we plan to study the tree

augmentation problem under more general topological fault models like when a fault

is defined as a subgraph with diameter d.

83

Chapter 4

ROUTING AND SPECTRUM ALLOCATION IN SPECTRUM SLICED

OPTICAL NETWORKS

The phenomenal growth of the Internet traffic in the last few years and its anticipated

growth in the next few years, necessitates introduction of innovative and efficient

technology solutions in optical networks of the future. A recent Cisco study on

growth of global IP traffic makes the following observations and forecasts [42].

• Global IP traffic has increased eightfold over the last five years, and will increase

threefold over the next five years.

• In 2016, global IP traffic will reach 1.3 zettabytes per year or 109.5 exabytes

per month.

• IP traffic will grow at a compound annual growth rate of 29 percent from 2011

to 2016.

In order to meet the challenges posed by the explosive size of the network traffic, op-

tical networks must be operated in the most efficient manner. The traditional WDM

network operates at the granularity of a wavelength, which may lead to inefficient

use of resources as some connection requests may not have enough traffic to utilize

the full capacity of a wavelength. However, such wastage of networking resources

can be avoided if the optical network can be made to operate at a finer grain (i.e.,

sub-wavelength level) instead of the current practice of course grain operation (i.e.,

wavelength level). Recent introduction of Orthogonal Frequency Division Multiplex-

ing (OFDM) technology in optical networks [43] offers an opportunity for operating

optical networks at a much finer grain than what is currently possible. The advan-

84

tages offered by the OFDM in terms of flexibility and scalability originate from the

unique multicarrier nature of this technology [43].

Utilizing the OFDM technology, a spectrum efficient and scalable optical trans-

port network called spectrum-sliced elastic optical path network (SLICE) was proposed

recently [44]. Just as the ability to operate at a granularity finer than a wavelength

(i.e., a sub-wavelength) will enable the network operator to manage resources more

efficiently, the same is true if the operator is provided with capability to operate at

super-wavelength granularity. Such a capability will be useful for the network op-

erator to meet large traffic demand. The goal of SLICE architecture is to allocate

variable sized optical bandwidths that matches with the user traffic demands. It

achieves that goal by slicing off spectral resources of a route and allocating only the

requested amount to establish an end-to-end optical path.

Although the sub-wavelength (sub-carrier) level allocation capability of SLICE

leads to more effective resource utilization, it also leads to additional complexities in

network control and management. First if a call requests for d sub-carriers, the net-

work controller must allocate d consecutive sub-carriers to this request. Second, if the

paths corresponding to two requests R1 and R2 share a fiber link, not only the set of

carriers allocated to R1 and R2 must be disjoint, in order to avoid interference, they

must be separated from each other in the spectrum domain by a few carriers, known as

guard carriers or guard bands. The first and the second constraints are known as the

sub-carrier consecutiveness constraint and the guard-carrier constraint respectively

[45]. The introduction of the sub-carrier consecutiveness constraint significantly in-

creases the complexity of the Routing and Spectrum Assignment (RSA) problem that

needs to be solved in SLICE. The RSA problem may be informally defined as follows:

Given a network topology and a set of call requests with varying demands (in terms

of the number of sub-carriers) find a route for each request and allocate a number of

85

sub-carriers to each request (equal to their requested demand), so that the utilized

part of the spectrum is minimized. It may be noted that if the demand of each request

is one sub-carrier, then the RSA problem reduces to the Routing and Wavelength As-

signment (RWA) problem, which has been studied extensively. The RSA problem is

significantly more complex than the RWA problem, as it is NP-complete even for a

simple network topology, such as a chain. It may be noted that the RWA problem

for the same topology can be solved with a low order polynomial time algorithm.

One can conceive of two different versions of the RSA problem - off-line and

on-line. In the off-line version all the requests are known ahead of time before path

and spectrum allocation for any request is carried out. In the on-line version, the

requests come in a sequence and path and spectrum allocation for a request has to

be carried out at the time of arrival of that request. Because the off-line version

has the luxury of knowing all the requests, it can carry out better optimization of

utilized spectrum span than its on-line counterpart. The performance of an on-line

algorithm is measured in terms of the metric competitive ratio. In this metric, the

performance of an on-line algorithm is compared with the performance of an optimal

off-line algorithm that knows the sequence of requests in advance. The maximum

ratio between their respective performances, taken over all sequences, is known as the

competitive ratio of the algorithm [46].

In this chapter we study both off-line and on-line versions of RSA problem

for networks with arbitrary structure as well as the networks with specific structure,

such as a tree and a ring. Moreover, we introduce the Spectrum Constrained Routing

and Spectrum Assignment (SCRSA) problem. The goal of the RSA problem is to

satisfy all the requests in a way that maximizes the unutilized part of the spectrum

[47]. In other words, the goal of the RSA problem is to minimize the spectrum span.

However, the smallest spectrum span for a certain set of requests may be greater

86

than the available spectrum span. In this case, not all the requests can be satisfied.

The goal of the SCRSA problem is to satisfy the largest number of requests without

exceeding the available spectrum span. To the best of our knowledge, the SCRSA

problem has not been studied earlier. The contributions in this research are as follow,

• We prove that the RSA problem is NP-complete when the network topology is

a chain or a ring.

• We provide approximation algorithms for the off-line RSA problem with a per-

formance bound of O(log k) in a binary tree where k is the number of requests,

and 4+2ε in a ring.

• We provide an algorithm for the on-line version of the RSA problem for the

ring network with a competitive ratio of min{O(log(dmax)), O(log(k))} where k

is the total number of requests, dmax = max1≤i≤k di, and di is the demand in

terms of the number of sub-carriers associated with request Ri.

• We provide heuristics for off-line and on-line RSA in networks with arbitrary

topology and measure the effectiveness of the heuristics with extensive simula-

tion.

• We introduce the SCRSA problem and provide approximation algorithms for

the problem with a performance bound of O(log S) for a binary tree, where S

is the available spectrum and (4 + 2/(e− 1))−1 − ε for a ring.

The rest of this chapter is organized as follows. We discuss related works in

Section 4.1. In Sections 4.2 and 4.4 we introduce definitions and notations and present

a few preliminary observations respectively. We present formal problem statements

for both the RSA and the SCRSA problem in Section 4.3. Analytical results for

chains, trees and rings for the RSA and the SCRSA are presented in Sections 4.5 and

87

4.6 respectively. Experimental results for the RSA problem with arbitrary network

topology is presented in Section 4.7. The section 4.8 concludes the chapter.

4.1 Related Work

Utilizing the optical OFDM technology, the SLICE architecture proposes a novel

scheme for slicing off the spectral resources of a route, resulting in more efficient

utilization [44]. The fact that the sub-carriers in the SLICE architecture has to be

assigned in a contiguous manner, led to the formulation of the RSA problem. To the

best of our knowledge, the RSA problem was originally introduced in [48, 49, 47].

Since then a few other papers, [45, 50] have also studied the RSA problem and

proposed solution techniques. In most of these studies [45, 47, 50, 51], the authors

propose an integer linear program based solution and a heuristic solution. Based on

the experimental results, the authors claim effectiveness of their heuristics.

The on-line version of RSA problem has been studied in [49, 52, 53, 54, 55, 56].

In all of these papers, the objective of the on-line RSA problem is to maximize the

number of requests that can be satisfied and minimize the blocking probability. In

this version of on-line RSA problem, the number of available spectrum sub-carriers is

limited. The authors of these papers proposed heuristic solutions mainly by modifying

the Dijkstra shortest path algorithm or using K-shortest path algorithm accompany-

ing with the First-Fit algorithm. To the best of our knowledge none of these papers

consider the objective of minimizing the utilized spectrum while satisfying all the

requests. It may be the case that all the requests should be satisfied while the uti-

lized spectrum is minimized. In this research we propose a new heuristic for arbitrary

network graphs. We also modify the K-shortest path approach for this version of the

on-line RSA and through simulations we evaluate their performance.

Most of the studies both on on-line and off-line RSA do not present any ana-

lytical results for the RSA problem, even for the simplest optical network topologies

88

such as trees and rings. The ring topology is of particular importance in the optical

domain because of its application in metro networks and in some long haul networks.

A major thrust of our effort is to present analytical results for the RSA and SCRSA

for optical networks with special structures, such as binary trees and rings.

It is well known that the RWA problem is equivalent to the computation of the

chromatic number of the path intersection graph (all definitions are provided in section

III) of the best routes for the requests. The RSA problem is a generalized version of

the RWA problem, where each request is associated with a weight representing the

demand of that request in terms of the number of sub-carriers. An implication of this

generalization is that the RSA problem is no longer equivalent to computation of the

maximum chromatic number of the path intersection graph of the best routes for the

requests. In section IV, we show that the RSA problem is equivalent to computation of

the interval chromatic number (ICN) of the path intersection graph of the best routes

for the requests. The computation of ICN of an interval graph (a subclass of the

chordal graphs) is proven to be NP-complete [57]. In [58], the authors have proposed

an approximation algorithm with 2 + ε performance bound for computation of ICN

of interval graphs. In [59], the authors have proposed approximation algorithms with

O(log n) performance bound for computation of ICN of chordal graphs.

In this dissertation we introduce the SCRSA problem. A special case of this

problem, Wavelength Constrained RWA (WCRWA) problem for ring networks was

studied in [60, 61]. The objective of the WCRWA problem is to satisfy as many

call requests as possible, subject to the constraint that the number of wavelengths

necessary to satisfy the requests do not exceed the number of available wavelengths.

To the best of our knowledge, SCRSA problem has not been studied before even for

the networks with ring or tree structures.

89

4.2 Definitions and Notations

Spectrum Slice/Interval: A number of consecutive sub-carriers from ai to bi denoted

by [ai, bi], that is allocated to a specific request Ri to establish a connection between

(si, ti) with di sub-carriers. The length of this spectrum slice/interval is bi−ai+1 = di.

Spectrum Span/Spread: The total amount of spectrum used for allocating a slice to

all the requests; If Ri, 1 ≤ i ≤ k is allocated the spectrum interval [ai, bi] then the

spectrum span is [min
1≤i≤k

ai, max
1≤i≤k

bi].

Stable Set: A stable set (also known as independent set) of a graph G = (V,E)

is a subset V ′ ⊆ V , such that no two nodes in V ′ have an edge between them in

G = (V,E).

Clique Number/Weighted Clique Number: The Clique Number ω(G) of a graph G =

(V,E) is the size of the largest complete subgraph of G = (V,E) [62]. A weighted

graph G∗ is a triple G∗ = (V,E,w), where w is a positive integer valued function on

the vertex set V . The weight w(V ′) of a subset of vertices V ′ ⊆ V is the sum of the

weights of the vertices in V ′. The weighted clique number of G∗, denoted by ω∗(G∗)

is the maximum weight of a clique in G∗.

Maximum Chromatic Number: Consider a weighted graph G∗ = (V,E,w) with a

strictly positive integer weight w(v) associated with each node v ∈ V . The weight

of a stable set S of G∗ is defined as w(S) = maxv∈S w(v). The maximum chromatic

number, χmax(G
∗), of G∗ is the smallest value of

∑t
i=1w(Si), where each Si is a

stable set of G∗ such that ∪ti=1Si = V and for every pair of stable sets Sp and Sq,

Sp ∩ Sq = ∅ [59]. When w(v) = 1 for all vertices v ∈ V , then maximum chromatic

number is called chromatic number.

90

Interval Chromatic Number (ICN): An interval t-coloring of a weighted graph G∗ =

(V,E,w) is a function c from V to {1,2, . . . , t} such that c(x) + w(x) − 1 ≤ t and

if both c(x) ≤ c(y) and (x, y) ∈ E then c(x) + w(x) − 1 < c(y). We can view an

interval coloring c of G∗ as assigning an interval [c(v), . . . , c(v) + w(v) − 1] of w(v)

colors to each vertex v so that the intervals of colors assigned to two adjacent vertices

(i.e., the pair of nodes that has an edge between them) do not overlap. If interval

t-coloring is feasible for a graph G∗ then G∗ is said to be interval t-colorable. The

interval chromatic number of G∗, denoted by χint(G
∗) is the least t such that G∗ has

a interval t-coloring [63].

Interval Graph: Let F be a family of non-empty sets. The intersection graph of F is

obtained by representing each set in F by a node and connecting the two nods with

an edge, if and only if the corresponding sets intersect. The intersection graph of a

family of intervals on a linearly ordered set (such as the real line) is called Interval

Graph [62].

Chordal Graph: An undirected graph G = (V,E) is called a Chordal Graph if

every cycle of length strictly greater than 3 has a chord, that is, an edge joining two

nonconsecutive nodes in the cycle [62]

Path Intersection Graph: Consider a graph G = (V,E) and a set of paths P =

{P1, . . . , Pk}, where each Pi is a path between a node pair (si, ti), ∀i, 1 ≤ i ≤ k. A

graph G′ = (V ′, E ′) is a Path Intersection Graph corresponding to P , if each vertex

pi ∈ V ′ corresponds to a path Pi ∈ P and two nodes pi and pj in V ′ have an edge

between them, if the corresponding paths Pi and Pj in P have at least one common

edge in E.

91

4.3 Problem Statement

In this section we provide a formal statement of the RSA and SCRSA problems. We

formulate the RSA problem as it is defined in [47, 50].

Routing and Spectrum Assignment (RSA) Problem: Given a graph G = (V,E) repre-

senting the network topology, and a set of request triples Ri = (si, ti, di), 1 ≤ i ≤ k,

where si represents a source node, ti represents a destination node, and di repre-

sents the demand between si and ti in terms of sub-carriers, find (i) a set of paths

P = {P1, . . . , Pk}, such that each Pi, 1 ≤ i ≤ k is a path from si to ti and (ii) assign an

interval Ii = [ai, bi] (spectrum slice) of length di to each Pi, such that all the intervals

Ii, 1 ≤ i ≤ k can be fitted within a smallest interval I = [min
1≤i≤k

ai, max
1≤i≤k

bi] (spectrum

span) such that the intervals Ii and Ij do not overlap if the corresponding paths Pi

and Pj share an edge between them in G = (V,E). Moreover, if the paths Pi and

Pj overlap, not only the corresponding intervals Ii and Ij must be non-overlapping,

these two intervals must be separated by a fixed number of sub-carriers, known as

the guard band. Without loss of generality, we number the first available sub-carrier

one and the rest are numbered sequentially.

In On-line RSA Problem the connection requests arrive in a sequence one by

one where k is the total number of requests. Once a request Ri arrives without

knowledge of the future requests, a path Pi from si to ti should be assigned to Ri

and a spectrum interval Ii = [ai, bi] of length di should be assigned to Pi such that at

all times the constraints in RSA problem is satisfied and the objective is to minimize

the spectrum span.

Hereafter by RSA we mean off-line RSA unless we mention otherwise.

Spectrum Constrained RSA (SCRSA) Problem: The RSA problem computes the

smallest spectrum span needed to satisfy all k call requests. The input to the SCRSA

92

problem is comprised of all the parameters of the RSA problem and one additional

one. The additional parameter S indicates the spectrum span available to satisfy the

call requests. Because of the constraint on the available spectrum span S, not all k

call requests may be satisfied. The goal of the SCRSA problem is to find the largest

subset of call requests that can be satisfied with available spectrum span S.

4.4 Preliminary Observations

The RSA problem has two distinct components - the routing component and the

spectrum allocation component. The solution to the RSA problem will be sub-optimal

if (i) sub-optimal routes are chosen, and/or (ii) sub-optimal spectrum allocation is

carried out. It is tempting to think that the complexity of the RSA problem arises

due to the fact that it has to deal with two interdependent subproblems at the same

time. However, this is not necessarily true. In certain types of network topology

(e.g., a tree), there exists only one path that connects the source node si to the

destination node ti for all i, 1 ≤ i ≤ k. This implies that routing is a trivial problem

in these networks. However, even in these networks, spectrum allocation (SA) is not

only non-trivial, it is computationally hard (i.e., NP-complete). In the following, we

make a few observations. In the first three observations, we assume there is no guard

carrier constraint, i.e. size of the guard band is zero. Then, in the last observation

we explain how we deal with guard carrier constraint.

Observation 1: Weighted Clique Number establishes a lower bound for the SA

problem.

In the SA problem a set of paths P on graph G is associated to the set of requests

{Ri, 1 ≤ i ≤ k}. Let G′ = (V ′, E ′, w) be the weighted path intersection graph of

paths in P where V ′ = {p1, p2, . . . , pk} where each node pi corresponds to a path

Pi ∈ P and the weight of pi is di; i.e., w(pi) = di. For any clique Q in G′ every vertex

pi in Q needs to have w(pi) distinct colors and therefore
∑

pi∈Qw(pi) is a lower bound

93

1

2

3

4

5

6

7

8

(a)

p1

p4 p3

p5
p2

(b)

Figure 4.1: (a) An example of SA instance where the network graph G is a ring (b)
Path intersection graph G′ of paths in SA instance in (a)

on the optimal spectrum span. Fig. 4.1 shows an example of SA instance where

the network graph is a ring with 8 nodes and requests are {R1 = (1, 3, 15), R2 =

(1, 6, 6), R3 = (2, 5, 6), R4 = (2, 8, 6), R5 = (4, 7, 12)}. Dashed lines show the paths

for the requests. Fig. 4.1(b) depicts G′, the path intersection graph of these paths

where w(p1) = 15, w(p2) = 6, w(p3) = 6, w(p4) = 6 and w(p5) = 12. It can be

observed that the largest clique in G′ is {p1, p3} and weighted clique number of G′ is

21.

Observation 2: Maximum Chromatic Number establishes an upper bound for

the SA problem.

In the computation of χmax(G
′), the vertices in V ′ are partitioned into stable sets.

Since the paths corresponding to the vertices in a stable set S are edge disjoint, they

can share the spectrum. Therefore, w(S) = maxv∈S w(v) consecutive sub-carriers is

enough for allocation to the paths in S. Accordingly, the span with size of χmax(G
′)

is sufficient for the spectrum allocation of the requests in G. In Fig. 4.1, it can

be observed that χmax(G
′) is 27 and the stable sets are {p1, p5}, {p2, p3}, {p4}. The

requests corresponding to the paths in first, second and third stable sets are allo-

cated the spectrum interval of [1, 15], [16, 21] and [22, 27] respectively. In the next

observation we show that the span of size χmax(G
′) may not be necessary.

94

Observation 3: Interval Chromatic Number (ICN) finds the solution to the SA

problem (i.e., it establishes both the upper and the lower bound for the SA problem).

Let χint(G
′) be the ICN of graph G′. In computation of χint(G

′), each node pi ∈ V ′

is assigned an interval [ai, bi] of colors with length w(pi) = di where the intervals

of two adjacent vertices do not intersect and total number of distinct colors used

is minimum. Therefore, interval [ai, bi] can be allocated to the path Pi in G and

no two paths with common edge intersect in their spectrum intervals. Hence, the

spectrum span of χint(G
′) is sufficient for the spectrum allocation of requests in G

with predefined set of paths P . Moreover, χint(G
′) is the minimum spectrum span

needed in the SA problem; otherwise, it contradicts with χint(G
′) being the minimum

interval chromatic number of G′.

In the example depicted in Fig. 4.1, χint(G
′) is 24 where the requests R1 to

R5 are assigned intervals [1, 15], [13, 18], [16, 21], [19, 24] and [1, 12] respectively.

Observation 4: An algorithm that finds the optimal solution for the RSA

problem when the guard band g = 0, can be utilized to find the optimal solution for

the RSA problem when g > 0.

Proof: Let RSA1 denote an instance of RSA problem where the size of guard

band, g is g > 0 and OPT1 denote the minimum spectrum span needed in RSA1.

We define another RSA instance, RSA2, with the same graph G as in RSA1. For

every request Ri = (si, ti, di) in RSA1 we add a request R′i = (si, ti, di + g) to RSA2

and size of guard band in RSA2 is zero. Let OPT2 be the minimum spectrum span

of RSA2. Clearly, any feasible solution of RSA2 is a feasible solution of RSA1 and

OPT2 ≥ OPT1. We show that OPT2 ≤ OPT1 + g. Of this concern, we construct a

feasible solution for RSA2 from the optimal solution of RSA1.

95

Let, P1 = {P1, P2, . . . , Pk} and I = {I1 = [a1, b1], I2 = [a2, b2], . . . , Ik =

[ak, bk]} be the set of paths and the allocated intervals in the optimal solution of

RSA1 respectively, after sorting them based on the start points of intervals; i.e.

a1 ≤ a2 ≤ . . . ≤ ak. We construct a solution of RSA2 as follows. We consider

the same set of paths as P1. In the spectrum allocation part, we assign interval

I ′i = [ai, bi+g] to every request R′i, 1 ≤ i ≤ k. We need to show that {I ′1, I ′2, . . . , I ′k} is

a feasible solution of SA part. Using induction on the set of requests we can prove the

feasibility of this solution as follows. Clearly, I ′1 = [a1, b1+g] is a feasible solution when

the set of requests includes just R′1 (induction base). We assume that for an integer

q, 1 ≤ q ≤ k, {I ′1, I ′2, . . . , I ′q} is a feasible solution of SA problem on the set of requests

{R′1, R′2, . . . , R′q}. We prove that {I ′1, I ′2, . . . , I ′q+1} where I ′q+1 = [aq+1, bq+1 + g] is a

feasible solution of SA problem on the set of requests {R′1, R′2, . . . , R′q+1}. In order

to prove this, it is enough to verify that there is no request R′i, 1 ≤ i ≤ q where

Pi intersects with Pq+1 and I ′i intersects with I ′q+1. Let R′j be a request where Pj

intersects with Pq+1. Based on the optimal solution of RSA1 we know that aj ≤ aq+1,

Ij ∩ Iq+1 = ∅, and Ij and Iq+1 are separated with guard band g. Hence, aq+1 > bj + g.

Consequently, I ′q+1 = [aq+1, bq+1 + g] does not have intersection with I ′j = [aj, bj + g].

Therefore, I ′ = {I ′1, I ′2, . . . , I ′k} is a feasible solution of SA part in RSA2 instance.

Clearly, spectrum span of intervals in I ′ uses at most g sub-carriers more than in-

tervals in I. Therefore, the optimal solution of RSA2, can be used to construct the

solution of RSA1 by replacing each interval I ′i = [ai, bi + g] by Ii = [ai, bi].

Similarly, it can be shown that if an algorithm finds the optimal solution for

the SCRSA problem when the guard band g = 0, it can be utilized to find the optimal

solution for the SCRSA problem when g > 0.

Accordingly, for the rest of our analysis we assume g = 0.

96

4.5 Routing and Spectrum Allocation Problem
4.5.1 RSA Problem in Chains (RSA-P)

Theorem 4.5.1. RSA problem is NP-Complete when the optical network topology is

a chain.

Proof: Stockmeyer showed that the computation of the ICN of an Interval

graph (ICNIG) is an NP-complete problem (problem SR2 in [57]). We prove that the

RSA problem is NP-Complete when the optical network topology is a chain by giving

a transformation form the ICNIG problem.

ICNIG Problem:

Instance: Given the interval representation of an interval graph G = (V,E) (i.e., a

set of intervals {I1, . . . , In}), and a set of positive integer weights wi associated with

Ii, 1 ≤ i ≤ n, and an integer B.

Question: Is the ICN of G = (V,E) at most B?

From an instance of the ICNIG, we will create an instance of the RSA-P, we

will prove that the ICN of the instance of RSA-P will be at most B iff the ICN of

the instance of ICNIG is at most B. Suppose that the left and the right end point of

the interval Ii, 1 ≤ i ≤ n is denoted by ai and bi. Then project the end points ai and

bi, 1 ≤ i ≤ n on a real line R. We will refer to the points where projection of ai meets

R as a′i. Similarly, the projection points corresponding to bi will be referred to as b′i.

If some endpoints are the same, we consider just one point on R that represents all

of them. It may be noted that on R each point a′i and b′i has two neighboring points,

one to the left and one to the right (except the leftmost and the rightmost points).

We will now construct a graph with nodes corresponding to the distinct points a′i and

b′i, 1 ≤ i ≤ n denoted by v(a′i), v(b′i) respectively. Each node v(a′i) (or v(b′i)) will have

97

an edge to the node corresponding to the left neighbor of the point a′i (b′i) and an

edge to the node corresponding to the right neighbor of the point a′i (b′i). It can be

easily verified that the constructed graph is a chain. Next we will create the requests

Ri = (v(a′i), v(b′i), wi), 1 ≤ i ≤ n. Construction of the instance of the RSA-P from an

instance of the ICN is now complete. It can easily be verified that the ICN of the

instance of RSA-P will be at most B iff the ICN of the instance of ICNIG is at most

B.

Theorem 4.5.2. There exists an approximation algorithm with a performance bound

of 2 + ε for RSA problem when G = (V,E) is a chain.

Proof: When the graph G = (V,E) is a chain, then there exists only one path

for each request and routing is trivial. Let P = {P1, . . . , Pk} be the set of paths of

requests in G. Clearly, intersection graph of paths in P , G′ = (V ′, E ′) is an interval

graph (each path Pi can be represented as an interval from si to ti). Therefore, RSA

problem in a chain will be equivalent to the computation of ICN of interval graph G′.

In [58], an approximation algorithm with performance bound of 2+ε for computation

of ICN of interval graphs is proposed. Therefore, the same algorithm will have an

approximation ratio of 2 + ε for RSA problem when graph G is a chain.

4.5.2 RSA Problem in Trees

Theorem 4.5.3. RSA problem is NP-Complete when the optical network topology is

a Binary Tree.

Proof: Since chain is a special case of binary tree, the proof follows proof of

Theorem 4.5.1

Theorem 4.5.4. There exists an approximation algorithm with a performance bound

of O(log k) for RSA problem when G = (V,E) is a Binary Tree.

98

Proof: When network topology is a tree, then there exists only one path for

each request and routing is trivial. Let P be the set of paths of requests. It has been

shown in [64] that the intersection graph of paths in a binary tree is a chordal graph.

Hence, RSA problem when network is a binary tree is equivalent to the computation

of ICN of path intersection graph which is a chordal graph. In [59] an approximation

algorithm with performance bound of O(log k) is proposed for computation of ICN in

chordal graphs when k is number of nodes. Therefore, the same algorithm will find a

solution for RSA with approximation ratio of log k where k is the number of requests

(number of nodes in path intersection graph).

4.5.3 RSA Problem in Rings

4.5.3.1 Off-line

Theorem 4.5.5. RSA problem is NP-Complete when the optical network topology

G = (V,E) is a Ring.

Proof: If the demands of the requests in the RSA instance are all equal to one,

then RSA problem becomes RWA problem. In [65], it is proven that the RWA problem

for optical networks with a ring topology is NP-complete. Since RWA problem is a

special case of the RSA problem, it follows that the RSA problem for optical networks

with a ring topology is also NP-complete.

Next, we propose an approximation algorithm called RSA-R, for RSA problem

when network topology is a ring. In RSA-R, we use cut-one-link approach and take

advantage of the approximation algorithm for computation of ICN in interval graphs

proposed in [58]. The steps of RSA-R are explained in Algorithm 7.

Theorem 4.5.6. Algorithm 7 has performance bound of 4 + 2ε.

Proof: After removing one edge randomly from G = (V,E), the induced graph

99

Algorithm 7 RSA-R

1: Remove an edge e ∈ E randomly; Let Gp be the induced chain;
2: Compute the set of paths P ′ for the requests in graph Gp;
3: Compute and return the approximated ICN of intersection graph of paths in P ′

using algorithm in [58];

Gp is a chain. Let OPT and OPTp be the optimal spectrum span in RSA problem

when network graph is G and Gp, respectively, and I be the size of the spectrum

computed by Algorithm 7. Based on Theorem 4.5.2 we have (1) I ≤ (2 + ε)OPTp.

We denote the set of paths in the optimal solution of RSA when network graph is G

by POPT . The paths in POPT can be partitioned into two subsets, P1
e and P2

e such

that P1
e is the set of paths that include edge e and the paths in P2

e do not include

edge e. Let OPT 1
e and OPT 2

e be the ICN of the intersection graph of paths in P1
e

and P2
e respectively. Then we have (2) OPT ≥ max(OPT 1

e , OPT
2
e). Since all the

paths in P1
e have intersection in edge e, their intervals do not intersect. Clearly, (3)

OPTp ≤ OPT 1
e +OPT 2

e . The reason is that in the worst case, all requests that were

routed through edge e in POPT are routed the other way in Gp and now they at most

need OPT 1
e spectrum span not intersecting the spectrum allocated to the paths in

P2
e . Therefore, using relations in (2) and (3) we have OPTp ≤ 2OPT . Also, based

on relation (1) we can conclude I ≤ (4 + 2ε)OPT .

4.5.3.2 On-line

In this part, we propose an on-line algorithm for RSA problem when network topology

is a ring. In this algorithm, Similar to off-line scenario first we use cut-one-link

approach and after removing one link the induced graph is a chain. In the chain for

every request there exists just one path. Therefore routing is trivial. For the spectrum

assignment, we use First-Fit technique that finds the first free spectrum interval fit

the demand of the current request. The steps of the algorithms are explained in

Algorithm 8.

100

Algorithm 8 On-line RSA in Ring

1: Remove an edge e ∈ E randomly; Let Gp be the induced chain;
2: while A new request arrives do
3: Find the path for the request in graph Gp;
4: Compute the first free spectrum interval fit the demand of the current request
5: end while

Theorem 4.5.7. Algorithm 8 has competitive ratio of min{O(log(dmax)), O(log(k))}

where k is total number of requests and dmax = max1≤i≤k di.

Proof: In order to compute the competitive ratio we need to compare the

spectrum span of Algorithm 8 with the optimal spectrum span of the off-line RSA.

Let OPT and OPTp be the optimal spectrum span in RSA problem when network

graph is G and Gp, respectively, and IO be the size of the spectrum computed by

Algorithm 8. Let G′p be the path intersection graph. Clearly, minimum spectrum

needed to satisfy requests in Gp is equivalent to the χint(G
′
p). Based on the paper [46],

First-Fit algorithm will have competitive ratio of min{O(log(dmax)), O(log(χG′p))} for

on-line interval coloring in G′p. Also it is obvious χG′p ≤ k (i.e., chromatic number

of G′p is at most as large as the number of nodes in G′p that is number of requests).

Hence, we have (1) IO ≤ min{O(log(dmax)), O(log(k))}·OPTp. Based on the proof of

Theorem 4.5.6, we have OPTp ≤ 2OPT . Also, based on relation (1) we can conclude

IO ≤ min{O(log(dmax)), O(log(k))} ·OPT .

4.5.4 RSA Problem in General Graphs

Since RSA problem is NP-Complete, computation of the optimal solution in a rea-

sonable amount of time may not be possible unless P=NP. As such we need to find

heuristic solutions for both versions off-line and on-line RSA problem. In this section

we propose two heuristics called DPH and MSCP For off-line and on-line RSA prob-

lem in general networks, respectively. We evaluate the performance of the heuristics

in section 4.7 using simulations on some real optical networks. The main idea in our

101

heuristics is that they try to find disjoint paths for routing the requests to increase the

reuse of sub-carriers in spectrum allocation. In next parts we explain the heuristics

in detail.

4.5.4.1 Off-line

In DPH first the requests are sorted in decreasing order of their demands. In each

iteration, a set of disjoint paths is found. Then, spectrum allocation of these requests

is computed. Since the paths found in one iteration are disjoint their spectrum interval

can intersect. Also, DPH checks if any of the paths can reuse sub-carriers used in

previous iterations trying to minimize the spectrum span. The details of DPH is

explained in Algorithm 9. It can easily been verified that time complexity of DPH

is O(k2|V |2).

4.5.4.2 On-line

We develop a heuristic for on-line RSA called Minimum Sub-Carrier Path Heuristic

(MSCP). We define a new weight function on the edges (fibers) of the network where

weight of an edge e ∈ E, w(e) will be largest sub-carrier number that is used in

that edge. We also define the weight of a path, P from node s to node t to be

maxe∈P{w(e)}. For each new request, MSCP selects the path with minimum weight.

The minimum weight path can be computed by modifying the distance function in

Dijkstra algorithm so that it considers the new weight function as the distance. After

finding the path, MSCP uses First-Fit algorithm to find the first available spectrum

slice with the length of the request demand in all the edges of the path. Then, MSCP

updates the weight of every edge in the path to the largest sub-carrier so far used in

that edge.

102

Algorithm 9 DPH− Heuristic for RSA in general graphs

1: Sort the requests in decreasing order of the demands; Let R = {R1, R2, . . . Rk}
be the sorted set.

2: Define I to be a set of intervals, Ii = [ai, bi], 1 ≤ i ≤ k allocated to Ris where the
intervals in I are sorted in decreasing order of bis. Initially, I includes an interval
I0 = [1, 1] corresponding to an empty path P0.

3: while there is a request that is not allocated a path and spectrum interval do
4: D = ∅; D is a set of disjoint paths sorted in decreasing order of demands.
5: Pf = shortest path between sf and tf in G where Rf is the first request in R

not allocated spectrum interval;
6: Add Pf to D;
7: GT = (V,ET) where ET = E − {e|e ∈ Pf};
8: for all Ri, f ≤ i ≤ k that is not allocated a path do
9: if There exists a path between si and ti in GT then

10: Pi = the shortest path between si to ti in GT ;
11: Add Pi to D; and GT = (V,ET − {e|e ∈ Pi});
12: end if
13: end for
14: for all Paths Pi ∈ D do
15: for all Intervals Ij ∈ I do
16: if paths Pi and Pj do not intersect in any edge and Ij is the last interval

in I then
17: ai = aj;
18: else if paths Pi and Pj do not intersect in any edge and Il is the interval

right after Ij in I then
19: ai = bl + 1;
20: else
21: ai = bj + 1; break;
22: end if
23: end for
24: Ii = [ai, ai + di − 1]; Add Ii to I such that I remains sorted in decreasing

order of bi.
25: end for
26: end while

103

Algorithm 10 MSCP− Heuristic for On-line RSA in general graphs

1: Initially, w(e) = 0,∀e ∈ E
2: while A new request Ri comes do
3: Compute Pi = minimum-weight path between si and ti in G;
4: Find the first available spectrum slice [ai, bi] with the length of di using First-Fit

algorithm
5: for all Edges e ∈ Pi do
6: w(e) = max(w(e), bi)
7: end for
8: end while

For each request, time complexity of minimum-weight path computation is

O(|V |2) and First-Fit algorithm takes O(k|V |2) where k is the number of requests.

Hence, time complexity of MSCP is O(k2|V |2).

4.6 Spectrum Constrained RSA Problem

In this section we study SCRSA problem when optical network is a binary tree or a

ring.

Theorem 4.6.1. SCRSA problem is NP-Complete when the optical network topology

is a chain, binary tree or a ring.

Proof: We prove that SCRSA problem is NP-Complete by giving a transfor-

mation form the RSA problem. For a given graph G = (V,E), a set of requests and

a value of S, the decision version of RSA problem is that whether all requests can

be routed in G with at most S spectrum span. In the instance of SCRSA problem

we consider the same graph G and same set of requests and spectrum span of S and

a number q and the decision version of SCRSA problem is that whether at least q

number of requests can be routed in G using at most spectrum span of size S. In the

instance of SCRSA, if we set q to be the number of all requests, obviously, the RSA

problem is reduced to the SCRSA problem. Therefore, SCRSA is also NP-complete

in chains, binary trees and rings.

104

4.6.1 SCRSA in Chains

Theorem 4.6.2. There exists an approximation algorithm with a performance bound

of (2 + 1/(e− 1))−1 − ε ≈ 1/2.58 for SCRSA problem when G = (V,E) is a chain.

Proof: When the graph G = (V,E) is a chain, then there exists only one

path for each request and routing is trivial. Let P = {P1, . . . , Pk} be the set of

paths of requests in G. Clearly, intersection graph of paths in P , G′ = (V ′, E ′)

is an interval graph (each path Pi can be represented as an interval from si to ti).

Therefore, SCRSA problem in a chain will be equivalent to the computation of largest

subgraph (in terms of number of vertices) of interval graph G′ where the subgraph is

interval S-colorable. The authors of [66] have studied the problem of SAP (Storage

Allocation Problem). In this problem a set of requests for memory is given where

each request includes start time, finish time, demand (contiguous memory blocks)

and profit. Total memory is given as S. The objective is to select a subset of requests

where total demands do not exceed S, and no two requests can use the same block at

the same time, and total profit is maximized. The authors propose an approximation

algorithm with a performance bound of (2 + 1/(e − 1))−1 − ε ≈ 1/2.58. It can be

seen that when the profits are the same, SAP problem is actually equivalent to the

problem of SCRSA in chains, i.e. finding the largest subgraph of an interval graph

(intervals are given) such that the subgraph is interval S-colorable. Hence the same

approximation algorithm for SAP problem can be used for SCRSA problem in chains

with a performance bound of (2 + 1/(e− 1))−1 − ε ≈ 1/2.58.

4.6.2 SCRSA in Binary Tree

Now, we propose an algorithm denoted by SCRSA-B for SCRSA problem when net-

work is a binary tree and the available spectrum S is fixed. Since the network topol-

ogy is a binary tree the routing is trivial and P is determined. Therefore, we need to

105

compute the largest subgraph of the intersection graph of paths in P that is interval

S-colorable. It has been shown in [64] that the intersection graph of paths in a binary

tree is a chordal graph. When the demand of all requests are equal to one, SCRSA

problem in a binary tree is equivalent to the problem of finding maximum S-colorable

subgraph in the path intersection graph which is chordal. In [67], a polynomial al-

gorithm has been proposed that solves the maximum S-colorable subgraph problem

in chordal graphs for fixed S optimally. We denote this algorithm by UDA. We use

UDA in SCRSA-B to solve SCRSA problem. Before explaining SCRSA-B, first we

prove a lemma.

Lemma 1. An SCRSA instance with the set of paths P and an integer x are given,

where every request Ri, 1 ≤ i ≤ k has a demand size 2x−1 < di ≤ 2x. If the demand di

of every request Ri is increased to 2x, the maximum number of requests in the SCRSA

solution will be decreased by at most a factor of 2 + 1
α

where α = b S
2x
c.

Proof: Let R∗ be the set of requests in the optimal solution. We define Rx−1

and Rx to be the optimal solution of SCRSA when the demand values are changed to

2x−1 and 2x, respectively. Obviously, (1) |Rx| ≤ |R∗| ≤ |Rx−1|. We note that when

the demands of the requests are all uniform and equal to d, SCRSA problem with

a given routing is equivalent to the problem of computing maximum bS
d
c-colorable

subgraph in the intersection graph of paths with unit demands. Let α = b S
2x
c and

β = b S
2x−1 c. We have |Rx| =

∑α
i=1 |wi| where wi is the set of nodes in the path

intersection graph colored with ith color when α is the number of colors and demands

are one. Similarly, |Rx−1| =
∑β

i=1 |w′i| where w′i is the set of nodes colored with ith

color. Without loss of generality, consider |w′i| ≥ |w′i+1|, 1 ≤ i < β. We know

2α ≤ β ≤ 2α + 1. We argue that for any set W ⊂ {w′i|1 ≤ i ≤ 2α} where |W | = α,

|Rx| ≥
∑

j∈W |w′j|. Otherwise, W is a better solution than Rx and it contradicts

with the optimality of Rx. Hence,
∑2α

i=1 |w′i| ≤ 2|Rx|. Consider β = 2α+ 1. We have

106

|w′β| ≤ |Rx−1|
β

. Hence, |Rx−1| ≤ 2|Rx|+ |Rx−1|
β

. Finally, |Rx−1| ≤ (2 + 1
α

)|Rx|.

In SCRSA-B, we consider just the requests Ri where di ≤ S; otherwise Ri

cannot be routed. First we increase the demand of each request to the power of

two. Then we partition all the requests to the sets U ′j, j = 2x, 0 ≤ x ≤ blog2 Sc

such that all requests in U ′j have the same demand size equal to j. If S is not a

power of 2 we need to add one more set, U ′S, to the partition where it includes all the

requests Ri where 2blog2 Sc < di ≤ S. Since all requests in every set have the same

demand size, we can use UDA on path intersection graph of every set to compute

the largest S-colorable subgraph optimally. Hence, we compute algorithm UDA on

each set U ′j independently. Since UDA considers all requests have unit demand, it

needs to compute maximum bS
j
c-colorable subgraph on intersection graph of paths of

requests in each U ′j. The algorithm returns the UDA solution of the set U ′j with the

largest value of maximum bS
j
c-colorable subgraph that is denoted by U ′MAX . Each

color c, 1 ≤ c ≤ bS
j
c represents the spectrum interval [(c − 1)j + 1, cj] of length j.

The steps of SCRSA-B is shown in Algorithm 11.

Algorithm 11 SCRSA-B

1: Increase the demand of each request to the power of two.
2: U ′ = {U ′j|j = 2x, 0 ≤ x ≤ blog2 Sc} such that U ′j is the set of requests with the

same demand size j.
3: If S is not a power of 2, then add set U ′S = {Ri|2blog2 Sc < di ≤ S} to U ′.
4: for all U ′j ∈ U ′ do
5: Compute the maximum bS

j
c-colorable subgraph on the intersection graph of

paths of requests in U ′j computed by UDA.
6: end for
7: Return U ′MAX = the set in U ′ with the largest UDA solution

Theorem 4.6.3. SCRSA-B has a performance bound of O(logS).

Proof: Let R∗ and R′ be the set of requests in the optimal solution and

SCRSA-B solution respectively. Without loss of generality, we assume that S is a

107

power of two. Let U∗ = {U∗j |j = 2x, 0 ≤ x ≤ blog2 Sc} where U∗j ⊆ R∗ is the set of

requests in optimal solution with the demand size 2x−1 < j ≤ 2x. Obviously, there

exists a set U∗t ∈ U∗ such that |U∗t | ≥ |R∗|
blog2 Sc

. Let Ut be the set of all requests Ri

with demand size t/2 < di ≤ t. We know that U∗t ⊆ Ut. We denote the requests

in the optimal solution of SCRSA problem when set of input requests is just Ut by

Rp
t . Definitely, |Rp

t | ≥ |U∗t |. Based on Lemma 1, we know |Rp
t | is at most a factor

of 2 + ε (where ε = 1
bS
j
c) larger than the solution of UDA with input set U ′t. So,

|R′| > 1
2+ε
|Rp

t |. Hence, |R′| ≥ |R∗|
(2+ε)blog2 Sc

.

4.6.3 SCRSA in Rings

We propose an approximation algorithm called SCRSA-R for SCRSA problem when

network is a ring. Similar to RSA-R, we use cut-one-link technique in SCRSA-R.

After removing one edge e randomly, the induced network is a chain. Next we use

the approximation algorithm proposed in [66] and used in section 4.6.1.

Theorem 4.6.4. SCRSA-R has a performance bound of (4+2/(e−1))−1−ε ≈ 1/5.16.

Proof: Let R∗, R∗c be the optimal solution of SCRSA problem when network

graph is the ring, and the chain after removing an edge e, respectively. R′ also

denotes the solution of SCRSA-R. Based on the proof of Theorem 4.6.2, we know

that (1) |R′| ≥ ((2 + 1/(e− 1))−1 − ε)|R∗c |. We will show that (2) |R∗c | ≥ 1
2
|R∗|. Let

R1
e ⊆ R∗ be the set of requests in optimal solution whose paths include edge e and

R2
e ⊆ R∗ includes the rest of the requests. Apparently, (3) |R∗| = |R1

e| + |R2
e| and

(4) |R∗c | ≥ |R2
e|. Since, the requests in |R1

e| routed through e, they are allocated non-

overlapping intervals. Therefore, just the requests in |R1
e| can be rerouted avoiding e

while using the same non-overlapping intervals. Hence, (5) |R∗c | ≥ |R1
e|. From (3)-(5)

we can conclude (2) and then using (1) and (2) the theorem is proven.

108

MI NY

NJ

PA

MD

GA

TX

IL

NE

CO

UT CA1

CA2

WA

(a)

3

4

5

6

7

8

9

0 2 4 6 8

A
ve

ra
ge

 s
p

e
ct

ru
m

 s
p

an

Number of requests (k)

SPSR

BLSA

DPH

ILP

dmax ≤ 5

(b)

0

5

10

15

20

0 5 10 15 20 25

A
ve

ra
ge

 s
p

e
ct

ru
m

 s
p

an

Number of requests (k)

SPSR

BLSA

DPH

dmax ≤ 5

(c)

Figure 4.2: (a) The 14-node NSF Network, (b) The average spectrum span in 14-node
NSF Network for k ≤ 6 and dmax ≤ 5 (c) k ≥ 5 and dmax ≤ 5

4.7 Experimental Results and Discussion
4.7.1 Off-line

In this section we present results of our extensive simulation that demonstrate the

efficacy of our heuristic, DPH, for the off-line RSA problem by comparing it against

(i) the optimal solution and (ii) the solutions obtained by executing the two heuristics

proposed in [45].

We find the optimal solution of the RSA problem by solving an ILP using the

software package CPLEX. In order to minimize used spectrum, our heuristic exploits

disjoint paths to establish routes between source and destination node pairs. One

of the heuristic proposed in [45] uses shortest path with maximum spectrum reuse

and the other uses balanced load spectrum allocation. We will refer to the optimal

solution as ILP , our heuristic as DPH and the two heuristics in [45] as SPSR and

109

(a)

5

10

15

20

25

30

35

0 5 10 15 20 25 30

A
ve

ra
ge

 s
p

e
ct

ru
m

 s
p

an

Number of requests (k)

SPSR

SPSR'

BLSA

BLSA'

DPH

dmax ≤ 5

(b)

0

20

40

60

80

100

120

0 5 10 15 20 25 30

A
ve

ra
ge

 s
p

e
ct

ru
m

 s
p

an

Maximum demand of a request (dmax)

SPSR

BLSA

BLSA'

DPH

k=20

(c)

Figure 4.3: (a) Level-3 fiber network over US, (b) The average spectrum span in
Level-3 network for dmax ≤ 5 (c) k = 20

BLSA respectively. All three heuristics SPSR, BLSA and DPH operate in two

phases. In the first phase it computes the routes (paths) and in the second phase it

allocates spectrum to these paths. In the spectrum allocation phase of the SPSR

and BLSA the computed paths are partitioned into sets of disjoint paths (starting

from the path with the largest demand). Obviously, the paths belonging to a set can

reuse the spectrum. However, paths belonging two different sets may not be able to

share spectrum. DPH is not only different from SPSR and BLSA in the routing

part, it is also different in the spectrum allocation part. In the routing part, DPH

greedily selects the largest set of disjoint paths, staring with the request with the

110

2

3

4

5

6

7

8

1 2 3 4 5 6 7

A
ve

ra
ge

 S
p

e
ct

ru
m

 S
p

an

Number of requests (k)

KSP (K=1)

KSP (K=2)

KSP (K=3)

MSCP

ILP

dmax ≤ 5

(a)

0

10

20

30

40

50

0 5 10 15 20 25 30

A
ve

ra
ge

 S
p

e
ct

ru
m

 S
p

an

Maximum demand (dmax)

KSP (K=1)

KSP (K=2)

KSP (K=3)

MSCP

k = 10

(b)

Figure 4.4: (a) The average spectrum span in NSF Network for different values of k
where dmax ≤ 5 in On-line RSA, (b) different values of dmax where k = 10 in On-line
RSA

largest demand. Once such a set is found, it goes back to find another large set of

disjoint paths. This process continues till all the paths belong to exactly one set of

disjoint paths. This process creates a set of disjoint path sets DPS1, DPS2, . . . , DPSr.

Clearly, the paths belonging to DPSi,∀i, 1 ≤ i ≤ r can share spectrum. However,

two paths Pi and Pj, belonging to two different disjoint path sets, may still be able

to share spectrum if they do not intersect. During the spectrum allocation phase,

DPH sequentially examines DPS1, DPS2, . . . , DPSr and within each disjoint path

set DPSx, assigns a spectrum slice to each path sequentially. The spectrum [ai, bi]

allocated to path Pi is made in such a way that it has the smallest value for its first

sub-carrier, ai.

We perform our experiments on the NSFnet (Fig. 4.2(a)) and the fiber network

of Level-3 that spans the continental United States (Fig. 4.3(a)) [68]. We view the

NSFnet and Level-3 networks as examples of a small and a large network in terms

of the number of nodes, respectively. In Fig. 4.2(b), we present the results obtained

from ILP , SPSR, BLSA and DPH when executed on the NSFnet. In this set of

experiments, the number of requests, k, is varied from 2 to 6 with step of one. For

each value of k, we generate 10 instances where each instance has k random requests.

111

(a)

0

20

40

60

80

100

120

140

160

0 20 40 60 80

A
ve

ra
ge

 S
p

e
ct

ru
m

 S
p

an

Number of requests (k)

KSP (K=1)

KSP (K=2)

MSCP

dmax ≤ 10

(b)

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

A
ve

ra
ge

 S
p

e
ct

ru
m

 S
p

an

Maximum demand (dmax)

KSP (K=1)

KSP (K=2)

MSCP

k = 20

(c)

Figure 4.5: (a) Level-3 network over Europe, (b) The average spectrum span in Level-
3 network for dmax ≤ 10, (c) k = 20

For this set of experiments all the demand values are at most 5, (i.e., dmax ≤ 5). The

average spectrum span computed by each of the four methods is shown in Fig. 4.2(b).

It may be observed that the average spectrum span of DPH is closest to the ILP .

The ratio of the average spectrum span of DPH to ILP is at most 1.2 demonstrating

the closeness of the DPH to the optimal. When the number of requests is increased

to larger values, such as 10, 15, 20 and beyond, the CPLEX could no longer find

the optimal solution within a reasonable amount of time. For large request sets, we

compare the performance of SPSR, BLSA and DPH and present the results in

112

Fig. 4.2(c). It may be observed that as the size of the request set increases, DPH

consistently outperforms SPSR and BLSA and the average reduction of spectrum

span is more than 18% when the request set size exceeds 10.

We perform our next set of experiments on the Level-3 network shown in Fig.

4.3(a). In these experiments, first, we vary k from 5 to 25 with step of 5. For a specific

value of k we generate 100 instances. In all these instances, the maximum demand

is limited to 5 (i.e., dmax ≤ 5). We present the comparative results of spectrum span

computed by DPH, SPSR and BLSA in Table 4.1. The comparative results between

DPH and SPSR is shown in DPH−SPSR and comparative results between DPH

and BLSA is shown in DPH − BLSA part of the Table 4.1. In columns W , L

and T , the results under % shows the percentage of times (out of 100 instances)

that DPH Wins, Loses and Ties against the SPSR and BLSA heuristics. We say

that DPH “Wins” against the SPSR (BLSA), if the spectrum span computed by

DPH is smaller than the span computed by SPSR (BLSA). For example, when the

number of requests, k, is 20, DPH wins 94% of times against SPSR and 89% of times

against BLSA. Moreover, average savings in the number of sub-carriers (spectrum

span) using DPH against SPSR is 4.44 and against BLSA is 3.81, when k = 20.

It may be noted that in the very few cases, where the DPH loses against SPSR or

BLSA, the amount (measured in terms of the number of sub-carriers) by which it

loses is much smaller than the large number of cases when it wins. The average loss

by DPH against SPSR is 1.5 and against BLSA is 2, when k = 20.

The dramatic improvement in performance byDPH against SPSR andBLSA

might lead one to believe that the the efficacy of DPH is derived primarily from its

spectrum assignment phase. To evaluate if this is indeed correct, we modified the

spectrum allocation part of both SPSR and BLSA and used the same spectrum

allocation technique as in DPH. We denote the modified heuristics by SPSR′ and

113

Table 4.1: Results for USA Network, dmax ≤5

No. DPH-SPSR DPH-BLSA
of W L T W L T

Req. % AVG % AVG % % AVG % AVG %
5 70 2.26 0 30 35 1.43 7 1.29 58
10 83 3.1 0 17 77 2.23 6 1.33 17
15 93 4.04 2 1.5 5 86 3.26 3 1.5 11
20 94 4.44 6 1.5 0 89 3.81 9 2 2
25 98 5.91 0 2 93 4.88 1 2 6

BLSA′. Fig. 4.3(b) depicts the average spectrum span used in all five heuristics on

the same sets of instances used in previous experiments. We observe that DPH is

more efficient than all the other heuristics even though SPSR′ and BLSA′ use the

same spectrum allocation technique as DPH.

Modification of the spectrum allocation technique in SPSR′ andBLSA′ slightly

improves their performance. However, for k ≥ 15, DPH still performs better than

BLSA′ and SPSR′ by at least 11% and 12.4% respectively. These results clearly

demonstrate that the routing scheme used in DPH plays a significant role in improv-

ing its performance over SPSR and BLSA.

We also evaluate the performance of DPH for larger values of dmax. In the

second set of experiments, we change values of dmax from 5 to 25 with step of 5, while

keeping the number of requests k constant at 20. We compute the average spectrum

span over 100 random instances for each value of dmax. The results are shown in Fig.

4.3(c). As there was hardly any discernible difference between the performance of

SPSR and SPSR′, for the sake of clarity we only show the results for SPSR. This

figure also shows that the spectrum span computed by DPH is smaller than the ones

computed by SPSR, BLSA and BLSA′.

It may be noted in all these experiments DPH performs better than SPSR

and BLSA for all values of k and dmax, but the amount of improvement increases

114

with increasing values of k and dmax. It may also be noted that DPH takes only a

few seconds in all of our experimentations, whereas the ILP takes several hours even

when dmax ≤ 5 and k = 6.

4.7.2 On-line

In this section we present the results of our extensive simulation that demonstrate

the efficacy of our heuristic for the on-line RSA problem by comparing it against (i)

the optimal solution and (ii) the solution obtained by executing the heuristic based

on K-shortest path and First-Fit technique.

K-Shortest Path Heuristic (KSP): In this heuristic, initially K shortest paths

are computed between every pair of nodes in the network using [69] algorithm with

O(k|V |3). When a request Ri arrives, for every path in the K shortest paths between

si and ti we compute First-Fit algorithm to find the first available spectrum slice

[ai, bi] with the length of di. Then we select the path whose first available spectrum

slice [ai, bi] has the smallest bi. This algorithm takes O(Kk2|V |2) for satisfying all the

k requests.

We perform our experiments on the NSFnet (Fig. 4.2(a)) and the fiber network

of Level-3 that spans Europe (Fig. 4.5(a)) [68].

In Fig. 4.4(a), we present the results obtained from ILP , MSCP and KSP

when executed on the NSFnet. In this set of experiments, the number of requests, k,

is varied from 2 to 6 with step of one. For each value of k, we generate 10 instances.

In each instance we generate k requests randomly and consider them one at a time.

For this set of experiments all the demand values are at most 5, (i.e., dmax ≤ 5).

The average spectrum span computed by each of the three methods is shown in Fig.

4.4(a). It may be observed that the average spectrum span of MSCP is closest to the

ILP almost in all cases. The ratio of the average spectrum span of MSCP to ILP is

115

at most 1.28 demonstrating the closeness of the MSCP to the optimal. The results

in these experiments also show that MSCP works better than KSP algorithm in

almost all the cases even when number of paths in KSP is K = 3. We repeat similar

experiments for larger value of k, where k = 10 and we change the value of dmax from

5 to 25. The result of these experiments is depicted in Fig. 4.4(b). It can be observed

that spectrum span in MSCP is at least 12% smaller than the span in KSP where

K = 1 and it is even smaller than the one in KSP where K = 2. When K = 3 in

KSP , KSP needs smaller spectrum span than MSCP but its time complexity is at

least 3 times MSCP .

We perform our next set of experiments on the Level-3 network shown in Fig.

4.5(a). In these experiments, first, we vary k from 10 to 60 with step of 10. For a

specific value of k we generate 10 instances. In all these instances, the maximum

demand is limited to 10 (i.e., dmax ≤ 10). The average utilized spectrum span is

shown in Fig. 4.5(b). These results show that MSCP efficacy with respect to utilized

spectrum span is almost the same as KSP when K = 2. We also conduct experiments

for the case that values of dmax is varied from 5 to 25 with step of 5, while keeping

the number of requests k constant at 20. We compute the average spectrum span

over 10 random instances for each value of dmax. The results are shown in Fig.

4.5(c). According to these results, MSCP ’s performance is better than KSP when

K = 2 especially for larger values of dmax. According to the last experiments we may

conclude that MSCP outperforms KSP when K = 2 for larger values of dmax.

4.8 Conclusion

In this chapter we study the Routing and Spectrum Allocation problem in OFDM-

based optical networks. We prove that the RSA problem is NP-complete when the

network topology is a chain or a ring and provide approximation algorithms for the

RSA problem in the network with these topologies. We also study the on-line ver-

116

sion of RSA problem and propose an algorithm for the ring network with a bounded

competitive ratio. In addition, we provide heuristics for both off-line and on-line RSA

problem in networks with arbitrary topology and measure the effectiveness of the

heuristics with extensive simulation. Simulation results demonstrate that our heuris-

tics significantly outperforms several other heuristics proposed recently for the RSA

problem. Moreover, we introduce the Spectrum Constrained Routing and Spectrum

Assignment (SCRSA) problem. The goal of the SCRSA problem is to satisfy the

largest number of requests without exceeding the available spectrum span. To the

best of our knowledge, the SCRSA problem has not been studied earlier. We propose

approximation algorithms for SCRSA when network topology is a binary tree or a

ring.

117

Chapter 5

INFLUENCE PROPAGATION IN SOCIAL NETWORKS IN ADVERSARIAL

SETTING

It has been widely observed in various studies in social sciences and economics that

an individuals’ decision to adopt a product, behavior or innovation is often influenced

by the recommendations of their friends and acquaintances. Motivated by this obser-

vation, the last few years have seen a number of studies on influence maximization

problem in social networks [70, 71, 72, 73, 74, 75, 76]. One major goal of several of

these studies is identification of k most influential nodes in a network. A product

manufacturer may want to identify the k most influential nodes in the network, as

she may want to incentivize these nodes to buy the new product by providing free

samples to them, on the expectation that once these nodes are convinced about the

quality of the product, they will recommend it to their friends on the social network

and encourage them to buy the product. This set of k nodes, being the most in-

fluential on the network, will have the largest impact on convincing the rest of the

nodes about the quality of the product. Since the manufacturer has a fixed budget

for advertising, she can provide free samples only to a limited number of nodes in the

network. The size of the advertising budget determines the value of the parameter k.

It may be noted that most of the studies on influence propagation are geared

toward a non-adversarial environment, where only one manufacturer (player) is at-

tempting to influence the nodes of a social network to buy her product. However, in

a realistic market scenario, most often there exists multiple players, each attempting

to sell their competing products or innovations. For example, just as Coke attempts

to convince customers in an emerging market about the quality of their beverage, its

main competitor, Pepsi, also does the same. Both the competitors have only a finite

118

advertisement budget and both of them want to derive the greatest benefit out of

their advertising campaign. The goal of both the players often is to capture a share

of this emerging market that is larger than its competition.

The non-adversarial influence propagation models consider scenarios where a

user (a node u in a social network graph G = (V,E)) adopts (or does not adopt) an

innovation based on how her acquaintances have adopted the innovation. In these

models each node u in the social network graph is in one of the following two states:

(i) u has adopted innovation A, and (ii) u has not adopted innovation A but u is

open to the idea of adoption. One can visualize such a scenario by coloring the nodes

of the social network graph with red if they have adopted the innovation A and with

white if they have not adopted A yet, but are open to the idea of adopting A in the

future. As the diffusion process progresses with time, by observing changing color of

the nodes of the graph one can infer if innovation A is being adopted by the members

of the social network. Although, we focus on influence propagation in social networks,

conceptually, the scenario is identical for spread of any contagion through a network -

be it spread of diseases through a human contact network or spread of worms through

the Internet.

The influence (contagion) propagation models can be divided into three dis-

tinct classes:

• Class I: Non-adversarial

• Class II: Adversarial with passive adversary

• Class III Adversarial with active adversary

119

The problems in classes I and II can be stated as follows:

• Class I: How to identify a set of k initial (seed) nodes, so that once they are

influenced/infected, they will infect the largest number of uninfected nodes in

the network?

• Class II: Given that a subset of the nodes is already influenced/infected, how to

identify a set of k uninfected nodes, so that when they are immunized, they will

have the largest impact in preventing the uninfected nodes from being infected.

In most of the influence propagation models, influence propagates in a step-by-

step fashion and as such there is a notion of time step (or propagation step) involved.

The expected number of nodes influenced at the end of time step D is at most the

expected number of nodes influenced at the end of time step D + 1. In other words,

expected number of nodes influenced at the end of time step D is a non-decreasing

function of D.

The Class I influence propagation problem considered in [75] may be viewed

to have three dimensions, (i) the number of seed nodes activated at the beginning

(budget or cost of influence), (ii) the expected number of activated nodes at the end

of propagation (impact or coverage of initial seed nodes), and (iii) time steps for

propagation. The objective of the influence maximization problem considered in [75],

is to maximize the coverage subject to a budget constraint but without any constraint

on the number of time steps.

The Class I problem considered in [75] can be stated in the following way:

“Which k white nodes should be colored red initially, so that the largest number of

white nodes turn to red at the end of propagation process?”. The Class II problems

can be stated in the following way: “Given that some nodes are already colored red,

120

which k white nodes should be colored blue, so that this set of nodes will have the

largest impact in preventing the white nodes from turning red.

In Class I, there is no notion of an adversary. The red nodes are trying to

convert all the white nodes into red nodes and there is no agent that is actively trying

to prevent this conversion. The Class II, although it has a notion of an adversary

(i.e., the blue nodes) which is trying to slow down (or stop) white-to-red conversion,

at best this agent can be viewed as a passive adversary, because its goal is to prevent

white-to-red conversion, and it is not engaged in white-to-blue conversion. This gives

rise to Class III, a truly adversarial scenario, where the red agent is trying to convert

all the white nodes into red, while the blue agent is trying to convert all the white

nodes into blue. In this case, the blue agent can be viewed as an active adversary of

the red agent.

The Class III models the scenario where a node u is being actively encouraged

by an adversary not only not to adopt the innovation but also to adopt a competing

innovation. In this case, each node u in the social network graph can be in one of

following three states: (i) u has adopted innovation A , (ii) u has adopted innovation

B, and (iii) u has not adopted any innovation A or B but is open to the idea of

adopting either one of them. This adversarial scenario can be viewed as a classic case

of a strategic conflict game between the proponent(s) and the opponent(s) of adoption

of an innovation and a game is won by the proponent(s) if u decides to adopt the

innovation A.

This research studies a Class III scenario where two vendors (players) are trying

to sell their competing products by influencing the nodes of a social network. The

goal of both the players is to have a market share that is larger than its competition.

It considers the scenario where the first player (P1) has already chosen the k nodes to

have a large influence (coverage) on the social network. The second player is aware

121

of the first player’s choice and the goal of the second player (P2) is to identify a

smallest set of nodes (excluding the ones already chosen by the first player) so that

the number of nodes influenced by the second player will be larger than the number of

nodes influenced by the first player within D time steps. In other words, the objective

of the problem is to minimize the cost subject to the constraint that the coverage of the

second player is larger than the coverage of the first player within D time steps. Since

the goal of the second player is to win the “game” (i.e., to have a larger coverage or

market share), with influencing (incentivizing) as few nodes as possible, the problem

under study in this research is referred to as the “Winning with Minimum Investment”

(WMI) problem. In [71], the authors study a similar problem belonging to class III.

However, the objective of the problem studied in [71] is different from the one being

studied in this research. The goal of the second player in the problem studied in [71]

is not to defeat the first player with least amount of investment, but to maximize its

own influence.

Using the same two influence propagation models introduced in [71], our con-

tributions may be listed as follows:

• Introduction of a new influence propagation problem in an adversarial setting

where the goal of the second player is to defeat the first within D time steps

and least amount of cost (i.e., number of seed nodes)

• NP-Hardness proof for the problem under both the influence propagation models

• Approximation algorithm for the problem with a tight performance bound

• Experimental evaluation of the Approximation algorithm with collaboration

network data

122

Experimental results show that utilizing the proposed algorithm, the second

player can easily defeat the first, if the first player utilizes the node degree or closeness

centrality based algorithms for the selection of the initial (seed) nodes. The proposed

algorithm also provides better performance for the second player if she utilizes it

instead of the algorithm to maximize influence proposed in [71], in the sense that it

requires selection of a fewer number of seed nodes to defeat the first player.

The rest of the chapter is organized as follows. The section 5.1 summarizes

related work on influence propagation. The section 5.2 describes the propagation

models used in this research in detail. The sections 5.3, 5.4 and 5.5 discuss the

problem statement, computational complexity and approximation algorithm results

respectively. The results of experimental evaluation is presented in section 5.6 and

section 5.7 concludes the chapter.

5.1 Related Work

The studies on identification of influential nodes in a social network were triggered

by a paper authored by Domingos and Richardson [73]. They introduced the notion

of “network value” of a node in a social network and using a Markov random field

model where a joint distribution over all node behavior is specified, computed the

network value of the nodes. Kempe, Kleinberg and Tardos followed up the work in

[73] by providing new models derived from mathematical sociology and interacting

particle systems [75]. They made a number of important contributions by providing

approximation algorithms for maximizing the spread of influence in these models by

utilizing the submodularity property of the objective functions. In addition to provid-

ing algorithms with provable performance guarantee, they also presented experimen-

tal results on large collaboration networks. Their experimental results showed that

their greedy approximation algorithm significantly out-performed the node selection

heuristics based on degree centrality and distance centrality [77].

123

The approximation algorithm proposed in [75] is compute-intensive. Accord-

ingly, several researchers approached the issue of scalability from different directions.

Chen et. al. in [72] provided improvement of the original greedy algorithm of [75]

and proposed a degree discount heuristic to improve influence spread. Mathioudakis

in [76] introduced the notion of sparsification of influence networks and presented an

algorithm, SPINE, to compute the “backbone” of the influence network. Utilizing

SPINE as a pre-processing step for the influence maximization problem, they showed

that computation on the sparsified model provided significant improvements in terms

of speedup without compromising accuracy. Wang et. al. in [78] considered the influ-

ential node identification problem in a mobile social network and presented a two step

process, where in the first step, communities in the social network are detected and in

the second step a subset of communities is selected to identify the influential nodes.

Experimental results with data from large real world mobile social network showed

that their algorithm performed an order of magnitude faster than the state-of-the-art

greedy algorithm for finding the top-k influential nodes. A simulated annealing (SA)

based algorithm for finding the top-k influential nodes was presented in [79]. It has

been reported in [79], that using data from four real networks, the SA based algorithm

performed 2-3 orders of magnitude faster than the state-of-the-art greedy algorithm.

In addition to attempts to address the scalability issue of the greedy algo-

rithm in [75], efforts on variations of the original problem formulation and also the

computation model is underway in the research community. In [74] two new problem

formulations are provided. In the first formulation, the goal is to minimize the cost,

subject to the constraint that coverage exceeds a minimum threshold ν without any

constraint on the number of time steps. The goal of the second formulation is to

minimize the number of time steps, subject to a budget constraint k and a cover-

age constraint ν. For the first version of the problem, the authors provide a simple

124

greedy algorithm and show that it provides a bicriteria approximation. For the sec-

ond version, they show that even bicriteria or tricriteria approximations are hard

under several conditions. In [80], the authors argue that a user (a node in the social

network) may be influenced by positive recommendations from a group of friends

(neighbors in the network) but that does not necessarily imply that she will adopt

the product herself. However, she may pass on her positive impression about the

product to another group of friends. Clearly, such a model departs from the model

considered in [75].

The authors in [80] consider an “adoption maximization” problem instead of

“influence maximization” problem and present both analytical and experimental re-

sults for the new problem. The authors in [81] argue that a limitation of the traditional

influence analysis technique is that they only consider positive relations (agreement,

trust) and ignore the negative relations (distrust, disagreement). Moreover, the tra-

ditional techniques also ignore conformity of people, i.e., an individual’s inclination

to be influenced. The paper studies the interplay between influence and conformity

of each individual and computes the influence and conformity indices of individuals.

The authors in [82] suggest an alternate way of measuring the influencing capability

of an individual on her peers, through the individuals reach within the social network

for certain actions.

All the references discussed in the last three paragraphs pertain to the class

I (non-adversarial) problems as defined in the previous section. Results on study of

class II problems (adversarial with passive adversary) is presented in [83]. It focuses

on identification of blockers, the nodes that are most effective in blocking the spread of

a dynamic process through a social network, and reports that simple local measures

such as the degree of a node are good indicators of its effectiveness as a blocker.

The blocker identification problem has been extensively studied in the public health

125

community, where the goal is to stop or slow down progress of an infectious disease

by immunizing a small set of key individuals in the community.

As we discussed before, the WMI problem studied in this chapter belongs

to Class III (adversarial with active adversary). Unfortunately, there exists only a

handful of studies on problems belonging to Class III. Bharathi et. al. were one of

the earliest to study a Class III problem [70]. They proposed a mathematical model

for diffusion of multiple innovations in a network, an approximation algorithm with

a (1− 1/e) performance guarantee for computing the best response to an opponent’s

strategy. In addition they prove that the “price of competition” of the game is at

most 2. While game theoretic framework was utilized for deriving the results in [70],

Carnes et al. used an algorithmic framework to study a Class III problem [71]. Their

research primarily extends the problem studied in [75] from the Class I domain to the

Class III domain. They study the follower’s perspective (i.e., the player who entered

the market after the first player) and investigate how a follower can maximize her

influence in the network with a limited budget, given that the first player has already

entered the market and influenced a certain number of key individuals (nodes in

the network). They prove that the influence maximization problem for the second

player is NP-complete and provide an approximation algorithm that is guaranteed to

produce a solution within 63% of the optimal. Adversarial models in evolutionary

game dynamics was studied by Istrate em et al. in [84].

In all the problems discussed in [70, 71] once a node adopts an innovation (i.e.,

changes its color from white to red or white to blue), it is not allowed to change its

color, i.e., the model precludes the possibility of an individual changing her mind.

However, the model considered by Nowak et al. in [85] there are only red and blue

nodes (no white nodes) and the model allows a node to change its color from red to

blue and vice-versa. Although this model was developed to capture a biological phe-

126

nomenon involving viruses and cells, this model can be equally effective in capturing

the phenomenon of the spread of ideas and behaviors in human population. Using

evolutionary game theoretic and evolutionary graph theoretic techniques, the authors

establish fundamental laws that govern choices of competing players regarding strate-

gies.

5.2 Influence Propagation Models

A number of influence propagation models for the

non-adversarial scenario have been proposed in the literature [75]. Among these,

the Linear Threshold Model (LTM) and the Independent Cascade Model (ICM) have

drawn most attention in the research community. As indicated earlier, the litera-

ture on influence propagation in adversarial scenario with active adversaries is very

sparse [70, 71]. Bharati et al. in [70] and Carnes et al. in [71] have studied influence

propagation in adversarial scenario with active adversaries, and have proposed two

different models for it. Both of these two models are generalizations of the Inde-

pendent Cascade Model. The model proposed in [70] is suitable for a multi-player

scenario, whereas the model proposed in [71] is for two competing players. Bharati et

al. in [70] study the problem from a game-theoretic perspective and focus on finding

best response strategies for the players. Carnes et al. on the other hand study the

problem from an algorithmic perspective. Since we study the problem with only two

competing players, the models proposed in [71] are more relevant for this study than

the one proposed in [70]. Accordingly, the influence propagation models of [71] are

used here. Since these models, Distance-based Model (DBM) and Wave-propagation

Model (WPM), are generalization of the ICM, we first discuss ICM and then DBM

and WPM.

127

5.2.1 Independent Cascade Model

The social network is modeled as a graph G = (V,E), where each node represents

an individual. Each individual may either be active (i.e., has adopted innovation)

or inactive. A node can switch from an inactive state to an active state but cannot

switch back in the other direction. The propagation process from the perspective of

an inactivate node v ∈ V can be described in the following way: With passage of

time, more and more of v’s neighbors become active and this may cause v to become

active at some time step. The activation of v in turn may trigger activation of some

of v’s inactive neighbors. In the ICM model there exists a set of nodes V ′ ⊂ V that

are active (seed nodes) initially and the rest of the nodes are inactive. Influence

propagation unfolds in discrete steps following a randomized process. When a node

v first becomes active in time step d, it has a single chance to activate each of its

inactive neighbors w with probability pv,w at time step d+1. If v succeeds, w become

active at d + 1. However, if v fails, it doesn’t get another chance to turn w active.

The process of conversion of nodes from the inactive to the active state continues, till

no further activation is possible. Since v influences w with probability pv,w, the v−w

edge is considered active with probability pv,w. The set of active edges is denoted by

Ea.

5.2.2 Generalized ICM for Adversarial Scenario

The ICM can be adapted to handle adversarial scenario by allowing the nodes to be

in one of the following three states - (i) active by adopting innovation A, (ii) active by

adopting innovation B, and (iii) inactive. We use the notation IA and IB to indicate

the initial adopters (seed nodes) of technologies A and B respectively. The nodes in

the set V − (IA ∪ IB) are the nodes that are inactive initially. The sets IA and IB are

disjoint, i.e., IA ∩ IB = ∅. Just as in ICM, an active node v may influence each one

128

of its inactive neighbors w with probability pv,w. However, in an adversarial scenario,

an inactive node w, may be in a situation where one of its active neighbor v attempts

to influence w with innovation A, whereas another active neighbor u attempts to

influence w with innovation B. In order to deal with this situation, the authors in

[71] proposed two new models - (i) Distance-based Model, and (ii) Wave-propagation

Model. The models specify the probability with which the node w will be influenced,

when its active neighbors attempt to influence w with two competing technologies.

The GICM operates on a random subgraph of the social network graph G = (V,E),

where each edge is included independently with probability pv,w. The details of these

two models are described in the following two subsections.

5.2.3 Distance-based Model

Suppose that du(I, Ea) denotes the shortest path distance from the node u to the

node set I where I = IA ∪ IB along the active edges in the edge set Ea. If u is

not connected to any node of I using only the active edges Ea, then du(I, Ea) =

∞. Let νu(IA, du(I, Ea)) and νu(IB, du(I, Ea)) be the number of nodes in IA and IB

respectively, at distance du(I, Ea) from u along edges in Ea. The probability that

node u adopts innovation i ∈ {A,B} when maximum number of propagation steps is

D is denoted by Pi(u|IA, IB, Ea, D) and is computed in the following way:

if du(I, Ea) ≤ D, Pi(u|IA, IB, Ea, D) = νu(Ii,du(I,Ea))
νu(IA,du(I,Ea))+νu(IB ,du(I,Ea))

;

otherwise, it is zero.

In this model the expected number of nodes which adopt i ∈ {A,B} will be

computed in the following way:

σj(IA, IB, D) = E

[∑
u∈V

Pi(u|IA, IB, Ea, D)

]

where j = 1 if i = A; else j = 2 and the expectation is over the set of active edges.

129

5.2.4 Wave-propagation Model

In this model, in step d < D all nodes that are at distance d− 1 from some node in I

have adopted technology A or B and all nodes that are farther than d−1 from I have

not adopted any technology yet(where the distance is measured with respect to active

edges). Every node at distance d from I chooses one of its neighbors at distance d−1

from I independently at random and adopt the same technology as its neighbor. For

every node u, S denotes the set of neighbors of u that are closer to I than u; i.e., their

distance from I is du(I, Ea) − 1. In this model Pi(u|IA, IB, Ea, D), the probability

that node u adopts innovation i ∈ {A,B} in at most D steps, is computed as follows:

If du(I, Ea) ≤ D, Pi(u|IA, IB, Ea, D) =
∑

v∈S Pi(v|IA,IB ,Ea,D)

|S| ;

otherwise, it is zero.

In this model the expected number of nodes which adopt i ∈ {A,B} will be

computed in the following way:

σj(IA, IB, D) = E

[∑
u∈V

Pi(u|IA, IB, Ea, D)

]

where j = 1 if i = A; else j = 2 and the expectation is over the set of active edges.

5.3 Problem Statement

The WMI problem can be stated informally as follows: Given a diffusion model and

the information that a subset of network nodes IA have already adopted innovation

A marketed by player P1, what is the fewest number of nodes should player P2 (mar-

keting innovation B) target so that by the end of D time steps, the number of nodes

that adopt innovation B will exceed the number of nodes that adopt innovation A?

If σ1(IA, IB, D) and σ2(IA, IB, D) denote the expected number of nodes that adopt

130

innovations A and B respectively within D time steps, the objective of the WMI

problem is to

minimize | IB |

subject to σ2(IA, IB, D) > σ1(IA, IB, D)

5.4 Computational Complexity

In this section, we prove that WMI problem is NP-hard for both propagation models.

5.4.1 Distance-based Model

Decision version of WMI: Is there a set IB where |IB| ≤ M and σ2(IA, IB, D) >

σ1(IA, IB, D)?

Theorem 5.4.1. WMI is NP-hard for the distance-based model.

Proof: In order to prove that WMI is NP-hard when diffusion is based on

distance based model, we reduce the NP-compete Set Cover problem to WMI. The

decision version of the Set Cover problem is defined in the following way: A ground

set of elements S = {e1, e2, . . . , en}, a collection of sets C = {s1, s2, . . . , sm} such that

si ⊆ S and a positive integer K ≤ |C| are given. The question is whether there exists

a collection Q ⊆ C that covers all the elements in S and |Q| ≤ K.

Given an instance of set cover problem we construct an instance of WMI. We

compute G = (V,E) in the following way. For every element ei ∈ S we add a node

ei and for every set sj ∈ C we add a node sj to V . We add an edge (ei, sj) to E for

every ei and sj if ei ∈ sj. Also, we add a node a and nodes x1, . . . , xn to V . Then, for

every ei we add edges (a, xi) and (xi, ei) to E. Moreover, for every ei we add a set of

r nodes, Li = {li,j|1 ≤ j ≤ r} to V and we connect them directly to ei. We identify

the value of r later in the proof. Finally, we add n× r additional nodes, y1, . . . , yn×r,

to V and edges (yt, a), 1 ≤ t ≤ n× r (Fig. 5.1). We consider that all edges are active;

131

e1 e2 e3 en

s1 s2 s3 sm

. . .

. . .

.

L1 L2 L3 Ln

. .
 .

y1

y2

ynr

a. .
 .

x1

x2

xn

Figure 5.1: Graph G = (V,E) of WMI instance in set cover reduction

i.e., pu,v = 1 for all edges in E. We assign D = 4 equal to the diameter of the graph

G, M = K and IA = {a}.

Now, we show that the set cover problem has a solution if and only if there

is a set IB ⊆ V − IA such that |IB| ≤ M and σ2(IA, IB, D) > σ1(IA, IB, D). First

we consider that there is a collection Q ⊆ C that covers S and |Q| ≤ K. Then IB

includes all nodes sj corresponding to the sets in Q. In this case, all ei will be at

distance one from IB and two from IA. So, all ei and the nodes in Li will adopt

IB with probability one. Moreover, the nodes sj /∈ IB are two hops away from IB

while 3 hops away from IA. Hence, all nodes sj will adopt IB. Therefore, we have

σ2(IA, IB, D) = m+ n(1 + r); so, σ2(IA, IB, D) > σ1(IA, IB, D).

Next, we show that if there is no collection Q of size K that covers all elements

then there is no set IB ⊆ V − IA of size M where σ2(IA, IB, D) > σ1(IA, IB, D).

Considering that set cover does not have a solution, there should be at least one ei

whose distance from IB cannot be one; so, there is an ei and consequently nodes in

Li that choose A with the probability at least 1
K+1

and the probability that they

choose B is at most K
K+1

. Also, at most K nodes from x1, . . . , xn can be at distance

less than or equal to 1 from IB. Hence n−K of them will adopt A with probability

one. Therefore, we have σ2(IA, IB, D) ≤ m + (n − 1)(1 + r) + K
K+1

(r + 1) + K and

σ1(IA, IB, D) ≥ 1+nr+n−K+ 1
K+1

(r+1). We choose r in our instance large enough

132

such that r > (m+2K−2)(K+1)+K−1
2

. Then we have 1 + nr + n − K + 1
K+1

(r + 1) >

m+ (n− 1)(1 + r) + K
K+1

(r + 1) +K; so σ2(IA, IB, D) < σ1(IA, IB, D).

5.4.2 Wave Propagation Model

Theorem 5.4.2. WMI is NP-hard for the wave propagation model.

Proof: Similar to Theorem 5.4.1, we reduce decision version of Set Cover prob-

lem to decision version of WMI when wave propagation model is used for diffusion.

We construct an instance of WMI in the same way as in Theorem 5.4.1. The only

change that should be made to this instance is the value of r which will be computed

later.

We need to show that the set cover problem has a solution if and only if there

is a set IB ⊆ V − IA such that |IB| ≤ M and σ2(IA, IB, D) > σ1(IA, IB, D). First

we consider that there is a collection Q ⊆ C that covers S and |Q| ≤ K. Then IB

includes all nodes sj corresponding to the sets in Q. Similar to the proof of Theorem

5.4.1 we have σ2(IA, IB, D) = m+ n(1 + r); so, σ2(IA, IB, D) > σ1(IA, IB, D).

Next, we show that if there is no collection Q of size K that covers all elements

then there is no set IB ⊆ V − IA of size M where σ2(IA, IB, D) > σ1(IA, IB, D).

Considering the construction of G and the fact that set cover does not have a solution

, there should be at least one ei whose distance from IB cannot be one or smaller.

Since the node xi connected to this ei will have probability 1 to accept A and the

maximum number of nodes in first hop neighborhood of ei that are at distance one

from IA∪ IB is m+ 1, there is an ei and consequently nodes in Li that choose A with

the probability at least 1
m+1

and the probability that they choose B is at most m
m+1

.

Also, at most K nodes from x1, . . . , xn or y1, . . . , yn×r can be at distance less than

or equal to 1 from IB. Hence n(r + 1) − K of them will adopt A with probability

133

one. Therefore, we have σ2(IA, IB, D) ≤ m + (n − 1)(1 + r) + m
m+1

(r + 1) + K and

σ1(IA, IB, D) ≥ 1 + n(r + 1) − K + 1
m+1

(r + 1). We choose r in our instance large

enough such that r > m2

2
+K(m+1)− 3

2
. Then we have 1+n(r+1)−K+ 1

m+1
(r+1) >

m+ (n− 1)(1 + r) + m
m+1

(r + 1) +K; so σ2(IA, IB, D) < σ1(IA, IB, D).

5.5 Approximation Algorithm

Since we proved that finding the optimal solution for WMI is hard, in this section

we propose a greedy algorithm called GWMI. In this algorithm either of the two

propagation models discussed before can be used as the diffusion process.

Let ω(IA, IB, D) be (σ2(IA, IB, D) − σ1(IA, IB, D)). We define Fi to denote

the amount of increase in the value of ω when node i is added to IB; i.e., Fi =

ω(IA, IB ∪{i}, D)−ω(IA, IB, D). Initially IB is empty. Hence, ω(IA, IB, D) ≤ 0. The

algorithm executes through iterations and in each iteration node i ∈ V − IA with

the maximum Fi is selected. The steps of the algorithm GWMI has been shown in

Algorithm 12.

Algorithm 12 GWMI
Input: G = (V,E), IA, D

Output: IB

1: while ω(IA, IB, D) ≤ 0 do

2: for every node i ∈ V − (IA ∪ IB) do

3: Compute Fi

4: end for

5: Select node j with maximum Fj

6: IB = IB ∪ {j}

7: end while

8: return IB

134

In [75], it is mentioned that computing the exact value of σ1(IA, ∅, D) efficiently

is an open question. Similarly, there is no known way to compute σ1(IA, IB, D),

σ2(IA, IB, D) in both propagation models efficiently. However, by sampling the active

sets we can get a close approximation with high probability. Given IA, IB and a set

of active edges Ea, computation of σ1 and σ2 in both propagation models has O(n3)

time complexity since it needs computation of single all-pairs shortest paths. Given

IA, IB and input graph G, using sampling, we can then approximate σ1 and σ2 to

within (1 + γ) for any γ > 0 where the running time depends on 1/γ [71].

5.5.1 Upper Bound Computation

Theorem 5.5.1. GWMI has a log n approximation ratio.

Proof. Let I tB be the set of B’s initial adopters selected by GWMI at step

t. Initially, IB is empty and ω(IA, I
0
B, D) = −σ1(IA, ∅, D). In every iteration t, the

nodes in the optimal set of B’s initial adopters, IoptB , will make ω(IA, I
t−1
B ∪ IoptB , D)

positive. We denote the size of IoptB by OPT and the size of the solution of GWMI

by H. Therefore, There will be at least one node in V − {IA ∪ I t−1B } that increases

ω(IA, I
t−1
B , D) at least by

|ω(IA,It−1
B ,d)|

OPT
. Let, vt be the node selected by GWMI at

iteration t. Then, Fvt ≥
|ω(IA,It−1

B ,D)|
OPT

. Therefore, for t < H we have

|ω(IA, I
t
B, D)| ≤ |ω(IA, I

t−1
B , D)| − |ω(IA, I

t−1
B , D)|

OPT

≤ |ω(IA, I
0
B, D)|(1− 1

OPT
)t

Also, we know that |ω(IA, I
0
B, D)| = σ1(IA, ∅, D) ≤ n. Hence we have

|ω(IA, I
t
B, D)| ≤ n(1− 1

OPT
)t ≤ ne

−t
OPT .

Since adding a node to IB will increase ω(IA, IB, D) at least by one, we need to find

the smallest t that |ω(IA, I
t
B, D)| < 1. Then adding at most one more node will make

ω(IA, IB, D) positive. Therefore, H ≤ 1 + OPT lnn. We note that this proof holds

for both propagation models.

135

n/2 n/2

G(n, 3/4)

u v

Red set

X Y

Figure 5.2: Construction of G.

5.5.2 Lower Bound Computation

We now give a construction giving the lower bound for GWMI when distance-based

propagation model is used. Let X and Y be disjoint sets of n
2

vertices and G(n, 3/4)

be the Erdős-Renyi random graph on X ∪ Y with p = 3/4.

We take two new vertices u and v, connect u to all vertices of X and v to all

vertices of Y . Now, we add a disjoint star S with n+ 2 leaves and connect the center

of the star to u and v. This yields our graph G (Fig. 5.2).

We consider that the center of the star is the only initial adopter of A (red

node), and pu,v is uniform and it is 1 for all the edges of G and D = 3. An optimal

set of initial adopters of B (initial blue nodes) includes u, v and any of the leaves of

S. We claim that the greedy algorithm GWMI will select Ω(log n) vertices with high

probability, assuming n is large enough.

In order to prove this we first state a technical lemma giving a condition that

G satisfies with high probability. Let S ⊆ X ∪ Y . We say S is fair if

1. |X \ ∂(S)| = (1/4)|S| n
2

+O(n3/4) and |Y \ ∂(S)| = (1/4)|S| n
2

+O(n3/4).

where ∂(S) is the set of one hop neighbors of vertices in S.

136

We claim the following lemma, whose proof we defer:

Lemma 2. With probability 1 − o(1) every set S ⊂ X ∪ Y with |S| < 1
100

ln(n) is

fair. Furthermore, the induced graph on X ∪ Y has diameter 2, every vertex in Y is

at distance at most 2 from u and every vertex in X is at distance at most 2 from v.

Assuming Lemma 2 we prove the lower bound. In particular we prove the

following: The greedy algorithm selects at least 1
100

lnn vertices from X ∪ Y . We

proceed by induction. At the first step, the greedy algorithm has to choose between

a vertex in X ∪ Y , one of u or v, or one of the vertices in the star. Selecting a vertex

in the star will cause the number of blue vertices to increase by one and red vertices

to decrease, a net change of two. Selecting u (or resp. v) will increase blue (and

decrease red) by a total of 1 + n
2

+ n
4
; since every vertex in X will be at distance 1

from a blue vertex and every vertex in Y will be at distance 2 from both u and the

red vertex if u is selected. On the other hand, by fairness, if a vertex x in X ∪ Y is

selected; the increase in blue is at least 3n
4

+ n
8

+O(n3/4); since 3n
4

+O(n3/4) vertices

are at distance 1 from x and the other n
4

+O(n3/4) are at distance 2 from both x and

the red vertex. Therefore the greedy algorithm will select from X ∪ Y at the first

time.

Now suppose that the greedy algorithm has selected from X∪Y a total of k <

1
100

lnn times. Let B denote the selected set, and X ′ = X \ ∂(B) and Y ′ = Y \ ∂(B).

Every vertex in X ′ ∪ Y ′ is at distance two from all k blue vertices, and hence they

are currently blue with probability k
k+1

. Furthermore by fairness X ′ and Y ′ are both

of size (1/4)k n
2

+O(n3/4).

Again, the greedy algorithm must choose: If u (or similarly v) is chosen, then

increase is at most

137

1 +
1

k + 1
|X ′|+ 1

(k + 1)(k + 2)
|Y ′| (1)

=
1

k + 1
(1/4)k

n

2
+

1

(k + 1)(k + 2)
(1/4)k

n

2
+O(n3/4).

On the other hand, if a vertex x in X ′ ∪ Y ′ is chosen, the increase is at least

1

k + 1
|∂(x) ∩X ′|+ 1

k + 1
|∂(x) ∩ Y ′| (2)

+
1

(k + 1)(k + 2)
|X ′ ∪ Y ′ \ ∂(X)|

= 2 · 1

k + 1
· 3

4
(1/4)k

n

2
+

1

(k + 1)(k + 2)
(1/4)k+1n

2
+O(n3/4);

therefore, (2) - (1) is positive and hence the vertex in X ′∪Y ′ will be chosen as

desired. We note that this construction is for sufficiently large n and (1/4)kn >> n3/4.

Proof of Lemma 2. Let S ⊂ X ∪ Y , with |S| < 1
100

lnn. Then

E[|X \ ∂S|] = (1/4)|S|(|X| − |X ∩ S|) = (1/4)|S|
n

2
+O(lnn).

Let XS = |X \ ∂S|. Chernoff bounds imply that

P(|XS − E[XS]| > n3/4) ≤ exp(−Ω(
n3/2

E[XS]
)) ≤ exp(−Ω(n1/2)).

Bounds for |Y \ ∂S| follow similarly. On the other hand there are at most
1

100
lnn∑

i=1

(
n

i

)
≤ 1

100
ln(n) · nlnn,

sets S. Thus union bounds imply every set is fair with probability 1−exp(−Ω(n1/2)).

Note that the expected number of common neighbors between x and y in

X ′ ∪ Y ′ is 9n
16

, and Chernoff bounds plus union bounds imply every pair x and y is

of distance 2 (and in fact has (1 − o(1))9n
16

common neighbors). Likewise, u and a

vertex in Y have 3n
8

expected neighbors and Chernoff bounds imply that every pair

has (1+o(1))3n
8

common neighbors. Likewise, for v and vertices in X. A union bound

over all events completes the proof.

138

5.6 Experimental Results

In this section we evaluate the performance of our approximation algorithm, GWMI,

on a real network data set. It has been suggested in [86] that the co-authorship graphs

are representative of typical social networks. As such, we use the real collaboration

network data set of the scientists posting preprints on the high-energy theory archive

at www.arxiv.org, 1995-1999 [87]. This network has 8361 nodes (authors) and 15751

edges. The largest connected component has 5835 number of nodes (authors) and

maximum distance between the nodes in a connected component is 19.

Our experiments were conducted on a high performance computer which is

a 5K processor Dell Linux Cluster. The program is parallelized with OpenMP,

optimized with Intel compiler and was executed on an 8 core compute node. The

cores in the node have equal access to a common pool of shared memory. Each

node is comprised of 2.66/2.83 GHz processors, 8MB cache, 16GB memory and 8

cores. Since our experiments required execution of the algorithm on a large number

of instantiation of a social network (the graphs were different as their set of active

edges were different), we used OpenMP for parallelization of the graph instances for

the simulation with one data set.

In the first set of experiments we evaluate the performance of GWMI algorithm

against the results obtained from the heuristics based on node degree and closeness

centrality. These heuristics are most often used in social networks to identify most

influential nodes [75]. We also compare performance of GWMI with the greedy al-

gorithm proposed in [71] for selection of seed nodes for the second player P2. In our

model the first player P1 is trying to market product A and the second player P2 is

trying to market product B. Since WMI problem is NP-hard and the input data set

is large, computation of the optimal solution within a reasonable amount of time is

139

unlikely. It may be noted that there is no known way of computing the exact value

of σ1(IA, IB, D) and σ2(IA, IB, D) efficiently [75]. Accordingly, we use sampling of

the active edge sets to obtain close approximation of σ1(IA, IB, D), σ2(IA, IB, D) with

high probability. As in the experiments reported in papers [75, 71], we assign the edge

probabilities to be 0.1. In all the experiments we use WPM as the diffusion model.

The node degree based heuristic selects the nodes in the decreasing order of

their degrees and the closeness centrality based heuristic selects the nodes in the

increasing order of their average distance to other nodes. The distance between two

nodes that are not in the same connected component is taken to be n, where n is

number of nodes in the network. In the greedy algorithm proposed in [71], in every

iteration the node that increases σ2(IA, IB, D) the most is selected. We refer to

this algorithm as Second Player Influence Maximization (SPIM) algorithm. In these

experiments, maximum number of propagation steps is taken to be 10, i.e., D = 10.

In the experiments, the player P1 used node degree based heuristic to select its k

initial adopters. In our experiments, the size of initial adopters of A is varied from 20

to 100. The results of this set of experiments using the WPM is shown in Fig. 5.3.

The Fig. 5.3 shows that all five sizes of the initial adopters of A (20, 40, 60, 80, 100),

the GWMI algorithm required the fewest number of initial adopters of B necessary to

defeat A’s influence at the end of time step 10. The legend Degree-Degree in Fig. 5.3

denotes that both the players are using the node degree based heuristics to select the

initial adopters. Similarly,the legend Degree-GWMI denotes that while P1 is using

the node degree based heuristics to select the initial adopters, P2 is using the GWMI

algorithm to do the same.

The Figs. 5.4 and 5.5 show the coverage (i.e., the number of nodes influenced

at the end of 10 time steps) for players P1 and P2 respectively. Although the GWMI

algorithm does not make an effort to minimize the coverage of P1, it may be observed

140

0

40

80

120

160

200

0 20 40 60 80 100 120
N

u
m

b
e

r
o

f
In

it
ia

l A
d

o
p

te
rs

 o
f

B

Number of Initial Adopters of A

Degree-Closeness
Degree-Degree
Degree-SPIM
Degree-GWMI

Figure 5.3: Number of initial adopters of B for different values of |IA|

from the Fig. 5.4, the coverage of P1 is less if P2 uses GWMI instead of SPIM. Thus

P2 is better off using GWMI instead of SPIM, if in addition to be able to defeat

P1 with least investment (i.e., initial adopters), P2 wants to have a smaller market

share for P1. The Fig. 5.5 shows the coverage of P2 at the end of ten time steps. It

may be observed from the Fig. 5.5, that at all five data points the coverage for P2

is highest when she uses the SPIM algorithm. This is not surprising as the stated

goal of SPIM is to maximize P2’s coverage (influence). However, this figure may

be somewhat misleading because it does not provide the information pertaining to

the number of initial adopters required by the SPIM algorithm to achieve the higher

coverage. By its stated objective, the number of initial adopters required by GWMI

to defeat P1 cannot be higher than the the number of initial adopters required by

SPIM. Once this is factored in, and we compute the coverage per initial adopter, we

find that the coverage per initial adopter of the SPIM algorithm is very close to that

of the GWMI algorithm. This is shown in Fig. 5.6.

From Fig. 5.3 it is clear that the node degree and centrality based heuristics

and the SPIM algorithm require a larger number of initial adopters of B to beat A

than is needed by the GWMI algorithm. While this is a negative aspect of SPIM

(cost), it also has a positive aspect in the sense that at the end of ten time steps,

141

100

150

200

250

300

350

20 40 60 80
C

o
ve

ra
ge

 o
f

A

Number of Initial Adopters of A

Degree-Degree

Degree-Closeness

Degree-GWMI

Degree-SPIM

Figure 5.4: Expected number of nodes adopting A after 10 propagation steps

100

150

200

250

300

350

20 40 60 80

C
o

ve
ra

ge
 o

f
B

Number of Initial Adopters of A

Degree-Degree
Degree-Closeness
Degree-GWMI
Degree-SPIM

Figure 5.5: Expected number of nodes adopting B after 10 propagation steps

0

1

2

3

4

5

6

7

8

9

20 40 60 80

C
o

ve
ra

ge
 o

f
B

 p
e

r
In

it
ia

l A
d

o
p

te
r

o
f

B

Number of Initial Adopters of A

Degree-Degree

Degree-Closeness

Degree-GWMI

Degree-SPIM

Figure 5.6: Expected number of nodes adopting B per initial adopter of B after 10
propagation steps

142

0

2

4

6

8

10

12

20 40 60 80

A
ve

ra
ge

 In
cr

e
as

e
 in

 M
ar

ke
t

Sh
ar

e

o
f

B
 p

e
r

ad
d

it
io

n
al

 in
it

ia
l a

d
o

p
te

r

Number of Initial Adopters of A

Degree-Degree

Degree-Closeness

Degree-SPIM

Figure 5.7: Average market share increase that innovation B can capture per addi-
tional initial adopter with respect to GWMI

it also secures a larger coverage for B (benefit). We compute the additional benefit

provided by the additional initial adopters. Let IB(X) be the smallest set of initial

adopters of B that is required by algorithm X to defeat A and σ2(X) be the expected

number of nodes that adopt B after D propagation steps. Here X can be node-degree

or centrality based heuristic or the SPIM algorithm. In the case, (σ2(X) − σ2(GWMI))

indicates the additional benefit and (|IB(X)| − |IB(GWMI)|) indicates the additional

cost. In this case, (σ2(X) − σ2(GWMI))/(|IB(X)| − |IB(GWMI)|) indicates the average

market share gain of B with each additional initial adopter when using algorithm X.

The Fig. 5.7 depicts the results for the heuristics and SPIM. The negative gains are

not shown. It may be observed from Fig. 5.7 that the average market share gain of B

with each additional initial adopter diminishes with increase of the number of initial

adopters of A, when it uses the SPIM algorithm.

While the stated objective of P2 is to have a larger market share than P1 with

the fewest number of initial adopters, it may also have two other unstated objectives -

(i) to have a large σ2(X) and (ii) a small σ1(X) for all X (σ1(X) be the expected number

of nodes that adopt A after D time steps). Therefore while considering the benefit

of the additional initial adopters, we can consider not only (σ2(X) − σ2(GWMI)) but

also (σ1(GWMI)−σ1(X)). It introduces a notion of extended benefit by combining these

143

0

0.1

0.2

0.3

0.4

20 40 60 80

Ex
te

n
d

e
d

 B
e

n
ef

it
 o

f
B

 p
e

r
A

d
d

it
io

n
al

 In
it

ia
l A

d
o

p
te

r

Number of Initial Adopters of A

Degree-Degree

Degree-Closeness

Degree-SPIM

Figure 5.8: Extended benefit that B can capture per additional initial adopter with
respect to GWMI

two factors in the following way: (σ2(X)− σ2(GWMI))− (σ1(GWMI)− σ1(X)). With this

notion of extended benefit,

((σ2(X) − σ2(GWMI)) + (σ1(GWMI) − σ1(X)))

|IB(X)| − |IB(GWMI)|

indicates the average market share gain of B with each additional initial adopter

when using algorithm X. The Fig. 5.8 depicts the results for the heuristics and

SPIM. It may be observed from Fig. 5.7 that when extended benefit is considered,

the average market share gain of B with each additional initial adopter diminishes

even more drastically with increase of the number of initial adopters of A, when it

uses the SPIM algorithm. Moreover, the gain of each additional initial adopter is

smaller than 1 and implies that the additional adopter is not worth its cost.

In the second set of experiments we investigate different strategies for selection

of initial adopters of A when P2 uses GWMI. The strategies that we consider for

selection of initial adopters of A includes the greedy algorithm proposed in [75] and

heuristics based on node degree and closeness centrality. In these experiments WPM

is used as diffusion model and D = 10.

Fig. 5.9 depicts the results of these experiments. We observe that the closeness-

centrality based heuristic performs poorly in comparison to other two algorithms.

This is true because the number of initial adopters of B that it needs to defeat A’s

144

overall influence (coverage) is much smaller than the size of initial adopters of A.

More specifically, for closeness-centrality based heuristic, for |IA| values greater than

60, the number of initial adopters of B is less than 50% of |IA|. This set of results

show that if the influence maximization algorithm (IM) proposed in [75] is used for

the selection of IA, it forces P2 to select a large set for IB in order to be able to defeat

P1 within D time steps.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

In
it

ia
l A

d
o

p
te

rs
 o

f
B

Number of Initial adopters of A

Degree-GWMI

IM-GWMI

Closeness-GWMI

Figure 5.9: Size of initial adopters of B for different values of |IA|

5.7 Conclusion

In this chapter we have introduced a new influence propagation problem in an adver-

sarial setting where the goal of the second player is to defeat the first within D time

steps and least cost, measured in terms of the number of seed nodes. Considering

two different influence propagation models, we provided the NP-Hardness proof for

the problem and an approximation algorithm with a tight performance bound. In

addition, we evaluated the performance of the approximation algorithm with collab-

oration network data. We can envisage at least two new directions of research with

this problem. In the first direction, P2 is not aware of P1’s choice. In the second

direction, back and forth transition of the nodes between two competing products is

allowed.

145

Chapter 6

CONCLUSION ANS FUTURE WORK

Motivated by the prominence of efficient resource allocation in networks, in this dis-

sertation several important resource allocation problems in communication and social

networks are presented and studied. The study on communication networks are fo-

cused on three different communication networks: 1. airborne networks, 2. wireless

sensor networks and 3. optical networks.

In the domain of airborne networks, the system model and architecture for

Airborne Networks (AN) are discussed. The problem of maintaining the connectivity

in the underlying dynamic graphs of airborne networks when trajectories of nodes are

given is studied. Some techniques are developed to compute the dynamic topology

of the AN at any instance of time and an algorithm is proposed to compute critical

transmission range when all nodes are operational (non-faulty scenario). The faulty

scenario is also investigated where a region may fail. An algorithm is proposed to

find the minimum transmission range necessary to ensure that the surviving nodes

of the network remain connected, even when all or some nodes of region fail due to

an enemy attack. Moreover, the critical transmission range in delay tolerant airborne

networks, CTRD, is defined and an algorithm to compute CTRD is proposed. There

are several problems in this domain that are not explored and lead the way to the

future direction of this research problems.

• In this dissertation, it is considered that the trajectories of the backbone nodes

are predictable and the backbone network acts as a mobile infrastructure. How-

ever, the existence of infrastructure oriented airborne network makes it more

vulnerable to the enemies in military applications. There has been some re-

search on computation of critical transmission range in mobile ad hoc networks

146

where the trajectories are not predictable [10]. However, there is no such results

for the faulty or delay tolerant scenarios.

• The focus of the research in this dissertation is on network connectivity and it

is considered that trajectories of the backbone nodes are given in a way that the

client nodes are covered all the time. However, it will be interesting to consider

the following problem: For a given number of ANPs, design the flight paths

for the ANPs such that the clients are covered, and the backbone network is

connected all the times and the objective is to minimize transmission range of

ANPs. There is also another version of this problem where transmission range

of ANPs is given and the objective is to minimize the number of ANPs.

Motivated by the importance of both data collection and fault tolerance in

wireless sensor networks, in this dissertation the problem of enhancing the fault tol-

erance capability of a data gathering tree by adding a few additional links is studied.

Two fault models are considered: 1) single node failure and 2) two adjacent node

failure. It is proved that the least cost tree augmentation problem is NP-complete

under both types of fault scenarios. Moreover, two approximation algorithms are

proposed, one for single node failure and the other for a pair of adjacent node failure,

with performance bounds of two and four respectively. An important extension of

this research will be as follows:

• The tree augmentation problem under more general topological region based

fault models like when a fault is defined as a subgraph with diameter d.

In the domain of optical networks, the routing and spectrum allocation prob-

lem in SLICE architecture is investigated. It is proven that the RSA problem is

NP-complete when the network topology is a chain or a ring and efficient approxima-

147

tion algorithms are designed for optical networks with ring and tree topology where

the connection requests are known in advance. The on-line version of RSA problem is

also studied and an algorithm for the ring network with a bounded competitive ratio

is developed. In addition, heuristics for both off-line and on-line RSA problem in net-

works with arbitrary topology are proposed and the effectiveness of the heuristics is

measured with extensive simulation. Simulation results demonstrate that our heuris-

tics significantly outperforms several other heuristics proposed recently for the RSA

problem. Moreover, in this dissertation the Spectrum Constrained Routing and Spec-

trum Assignment (SCRSA) problem is introduced. The goal of the SCRSA problem

is to satisfy the largest number of requests without exceeding the available spectrum

span. Approximation algorithms are designed for SCRSA in the networks with ring

or binary tree topologies. The following unexplored problems can be considered as

the future directions of this research problem:

• Finding out efficient approximation algorithms for RSA and SCRSA problems

in networks with other specific topologies such as grid and planar topologies or

even in networks with arbitrary topologies.

• Studying and analyzing the on-line version of SCRSA

• Investigating RSA problem when different modulation model can be used.

In the domain of social networks, the influence propagation in presence of

active adversaries is studied. This dissertation investigates the scenario where the

first player has already chosen a set of k nodes and the second player, with the

knowledge of the choice of the first, attempts to identify a smallest set of nodes so

that when the influence propagation process ends, the number of nodes influenced

by the second player is larger than the number of nodes influenced by the first. The

148

identification of the smallest set of nodes to defeat the adversary is proven to be NP-

Hard with two different propagation models. An approximation algorithm is proposed

to solve this problem. At least two new directions of research with this problem can

be envisaged:

• In the first one, the second player is not aware of the first player’s choice.

• In the second one, back and forth transition of the nodes between two competing

products is allowed.

149

REFERENCES

[1] S. Milner, S. Thakkar, K. Chandrashekar, and W. Chen, “Performance and scal-
ability of mobile wireless base-station-oriented networks,” ACM SIGMOBILE
MC2R , vol. 7, 2003.

[2] N. R. C. Committee on Evolution of Untethered Communications, The Evolution
of Untethered Communications. The National Academies Press, 1997. [Online].
Available: http : //www.nap.edu/openbook.php?record id = 5968

[3] J. L. Burbank, P. H. Chimento, B. K. Haberman, and W. T. Kasch, “Key Chal-
lenges of Military Tactical Networking and the Elusive Promise of MANET Tech-
nology,” IEEE Communication Magazine, November 2006.

[4] M. Conti and S. Giardano, “Multihop ad-hoc Networking: the Reality,” IEEE
Communications Magazine, April 2007.

[5] S. Milner, J. Llorca, and C. Davis, “Autonomous reconfiguration and control
in directional mobile ad hoc networks,” Circuits and Systems Magazine, IEEE,
vol. 9, no. 2, pp. 10 –26, quarter 2009.

[6] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Transactions
on Information Theory, vol. 46, no. 2, pp. 388 –404, mar 2000.

[7] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop wireless
networks using transmit power adjustment,” in INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, 2000, pp. 404 –413 vol.2.

[8] J. Cabrera, R. Ramanathan, C. Gutierrez, and R. Mehra, “Stable topology con-
trol for mobile ad-hoc networks,” Communications Letters, IEEE, vol. 11, no. 7,
pp. 574 –576, july 2007.

[9] J. Wu and F. Dai, “Mobility-sensitive topology control in mobile ad hoc net-
works,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 6,
pp. 522 –535, june 2006.

[10] P. Santi, “The critical transmitting range for connectivity in mobile ad hoc net-
works,” IEEE Transactions on Mobile Computing, vol. 4, 2005.

150

[11] A. Sen, B. Shen, L. Zhou, and B. Hao, “Fault-tolerance in sensor networks: A
new evaluation metric,” in Infocom, 2006.

[12] A. Sen, S. Murthy, and S. Banerjee, “Region-based connectivity: a new paradigm
for design of fault-tolerant networks,” in HPSR, 2009.

[13] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the vulnera-
bility of the fiber infrastructure to disasters,” in Infocom, 2009.

[14] S. Neumayer and E. Modiano, “Network reliability with geographically correlated
failures,” in Infocom, 2010.

[15] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser. SIGCOMM
’03. New York, NY, USA: ACM, 2003, pp. 27–34. [Online]. Available:
http://doi.acm.org/10.1145/863955.863960

[16] J. P. G. Sterbenz, R. Krishnan, R. R. Hain, A. W. Jackson, D. Levin,
R. Ramanathan, and J. Zao, “Survivable mobile wireless networks: Issues,
challenges, and research directions,” in Proceedings of the 1st ACM Workshop
on Wireless Security, ser. WiSE ’02. New York, NY, USA: ACM, 2002, pp.
31–40. [Online]. Available: http://doi.acm.org/10.1145/570681.570685

[17] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,”
in Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser. SIGCOMM
’04. New York, NY, USA: ACM, 2004, pp. 145–158. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015484

[18] J. Alonso and K. Fall, “A linear programming formulation of flows over time with
piecewise constant capacity and transit times,” Intel Research Technical Report
IRB-TR-03-007, 2003.

[19] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A taxonomy,
survey and challenges,” Communications Surveys Tutorials, IEEE, vol. 15, no. 2,
pp. 654–677, 2013.

[20] M. Huang, S. Chen, Y. Zhu, B. Xu, and Y. Wang, “Topology control for time-
evolving and predictable delay-tolerant networks,” in 2011 IEEE 8th Interna-

151

tional Conference on Mobile Adhoc and Sensor Systems (MASS), 2011, pp. 82–
91.

[21] M. Huang, S. Chen, Y. Zhu, and Y. Wang, “Cost-efficient topology design prob-
lem in time-evolving delay-tolerant networks,” in Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, 2010, pp. 1–5.

[22] A. Tiwari, A. Ganguli, and A. Sampath, “Towards a Mission Planning Tool-
box for Airborne Networks: Optimizing Ground Coverage Under Connectivity
Constraints,” in IEEE Aerospace Conference, March 2008, pp. 1–9.

[23] B. Epstein and V. Mehta, “Free Space Optical Communications Routing Perfor-
mance in Highly Dynamic Airspace Environments,” in IEEE Aerospace Confer-
ence Proceedings, 2004.

[24] R. Diestel, Graph Theory. Springer, 2005.

[25] J. M. H. Olmsted and C. G. Townsend, “On the Sum of Two Periodic Functions,”
The Two-Year College Mathematics Journal, vol. 3, 1972.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. McGraw Hill, 2001.

[27] O. Incel and B. Krishnamachari, “Enhancing the data collection rate of tree-
based aggregation in wireless sensor networks,” in Secon, 2008.

[28] X.-Y. Li, Y. Wang, and Y. Wang, “Complexity of data collection, aggregation,
and selection for wireless sensor networks,” IEEE Transactions on Computers,
vol. 60, pp. 386 – 399, 2011.

[29] E. Kranakis, D. Krizanc, and E. Williams, “Directional versus omnidirectional
antennas for energy consumption and k-connectivity of networks of sensors,” in
Proc. of 8th International Conference on Principles of Distributed Systems, 2004,
pp. 357–368.

[30] Z. Yu, J. Teng, X. Bai, D. Xuan, and W. Jia, “Connected coverage in wireless
networks with directional antennas,” in Infocom, 2011.

[31] Y. Wang and G. Cao, “Minimizing service delay in directional sensor networks,”
in Infocom, 2011.

152

[32] C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. Wiley, 1997.

[33] J. L. Bredin, E. D. Demaine, M. Hajiaghay, and D. Rus, “Deploying sensor
networks with guaranteed capacity and fault tolerance,” in MobiHoc, 2005.

[34] M. Hajiaghayi, N. Immorlica, and V. Mirrokni, “Power optimization in
fault-tolerant topology control algorithms for wireless multi-hop networks,”
IEEE/ACM Transactions on Networking, vol. 15, pp. 1345 – 1358, 2007.

[35] F. Wang, M. Thai, Y. Li, X. Cheng, and D.-Z. Du, “Fault-tolerant topology
control for all-to-one and one-to-all communication in wireles networks,” IEEE
Transactions On Mobile Computing, vol. 7, pp. 322–331, 2008.

[36] G. N. Frederickson and J. Ja’Ja’, “Approximation algorithms for several graph
augmentation problems,” SIAM J. on Computing, vol. 10, pp. 270–283, 1981.

[37] S. Khuller and B. Raghavachari, “Improved approximation algorithms for uni-
form connectivity problems,” Algorithms, vol. 21, pp. 434–450, 1996.

[38] M. Garey and D. Johnson, Computers and intractability. A guide to the theory
of NP-completeness. Freeman, 1979.

[39] E. Petrank, “The hardness of approximation: Gap location,” computational com-
plexity, vol. 4, pp. 133–157, 1994.

[40] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001.

[41] R. E. Tarjan, “Finding optimum branchings,” Networks, vol. 7, pp. 25–35, 1977.

[42] Cisco visual networking index: Forecast and methodology, 2011-
2016. [Online]. Available: http://www.cisco.com/en/US/solutions/ collat-
eral/ns341/ns525/ns537 /ns705/ns827/white paper c11-481360.pdf

[43] W. Shieh, “Ofdm for flexible high-speed optical networks,” Journal of Lightwave
Technology, vol. 29, no. 10, pp. 1560 –1577, 2011.

[44] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka,
“Spectrum-efficient and scalable elastic optical path network: architecture, ben-
efits, and enabling technologies,” IEEE Communications Magazine, vol. 47,
no. 11, pp. 66 –73, 2009.

153

[45] Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation
in spectrum-sliced elastic optical path networks,” in INFOCOM, 2011, pp. 1503–
1511.

[46] M. G. Luby, “Tight bounds for dynamic storage allocation,” SIAM Journal on
Discrete Mathematics, vol. 9, no. 1, pp. 155–166, Feb. 1996.

[47] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Routing and spectrum
allocation in ofdm-based optical networks with elastic bandwidth allocation,” in
GLOBECOM, 2010, pp. 1–6.

[48] A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Routing, wavelength assignment,
and spectrum allocation in transparent flexible optical wdm (fwdm) networks,”
in Photonics in Switching, 2010.

[49] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hi-
rano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic
optical path network [topics in optical communications],” IEEE Communications
Magazine, vol. 48, no. 8, pp. 138 –145, 2010.

[50] M. Klinkowski and K. Walkowiak, “Routing and spectrum assignment inspec-
trum sliced elastic optical path network,” IEEE Communications Letters, vol. 15,
no. 8, pp. 884–886, 2011.

[51] K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Elastic bandwidth alloca-
tion in flexible ofdm-based optical networks,” Journal of Lightwave Technology,
vol. 29, no. 9, pp. 1354 –1366, 2011.

[52] ——, “Dynamic bandwidth allocation in flexible ofdm-based networks,” in
OFC/NFOEC, 2011.

[53] X. Wan, N. Hua, and X. Zheng, “Dynamic routing and spectrum assignment in
spectrum-flexible transparent optical networks,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 4, no. 8, pp. 603 –613, 2012.

[54] T. Takagi, H. Hasegawa, K. Sato, Y. Sone, B. Kozicki, A. Hirano, and M. Jinno,
“Dynamic routing and frequency slot assignment for elastic optical path networks
that adopt distance adaptive modulation,” in OFC/NFOEC, 2011.

154

[55] A. Castro, L. Velasco, M. Ruiz, M. Klinkowski, J. P. Fernández-Palacios, and
D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid
optical networks,” Compututer Networks, vol. 56, no. 12, pp. 2869–2883, 2012.

[56] G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: How much can
gridless help contentionless?” in OFC/NFOEC, 2011.

[57] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[58] A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup, “Opt
versus load in dynamic storage allocation,” SIAM Journal on Computing, vol. 33,
no. 3, pp. 632–646, 2004.

[59] S. V. Pemmaraju, S. Penumatcha, and R. Raman, “Approximating interval color-
ing and max-coloring in chordal graphs,” Journal of Experimental Algorithmics,
vol. 10, 2005.

[60] C. Nomikos, A. Pagourtzis, and S. Zachos, “Minimizing request blocking in all-
optical rings,” in INFOCOM, vol. 2, 2003, pp. 1355–1361.

[61] Z. Bian and Q.-P. Gu, “1.5-approximation algorithm for weighted maximum
routing and wavelength assignment on rings,” Information Processing Letters,
vol. 109, no. 8, pp. 400–404, 2009.

[62] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[63] H. A. Kierstead, “A polynomial time approximation algorithm for dynamic stor-
age allocation,” Discrete Mathematics, vol. 87, no. 2-3, pp. 231–237, 1991.

[64] M. C. Golumbic, M. Lipshteyn, and M. Stern, “Representing edge intersection
graphs of paths on degree 4 trees,” Discrete Mathematics, vol. 308, no. 8, pp.
1381 – 1387, 2008.

[65] T. Erlebach and K. Jansen, “The complexity of path coloring and call schedul-
ing,” Theoretical Computer Science, vol. 255, no. 1-2, pp. 33–50, 2001.

[66] R. Bar-yehuda, M. Beder, and Y. Cohen, “Approximation algorithms for band-
width and storage allocation,” 2005.

155

[67] M. Yannakakis and F. Gavril, “The maximum k-colorable subgraph problem for
chordal graphs,” Information Processing Letters, vol. 24, no. 2, pp. 133–137,
1987.

[68] Level 3 Communications, Network Map. [Online]. Available:
http://nsssc.superb.net/img/l3-usmap.gif

[69] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management
Science, vol. 17, no. 11, pp. 712–716, 1971.

[70] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximization in
social networks,” in Proceedings of the 3rd international conference on Internet
and network economics, ser. WINE’07, 2007, pp. 306–311.

[71] T. Carnes, C. Nagarajan, S. M. Wild, and A. van Zuylen, “Maximizing influence
in a competitive social network: a follower’s perspective,” in Proceedings of the
ninth international conference on Electronic commerce, ser. ICEC ’07, 2007, pp.
351–360.

[72] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social
networks,” in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’09, 2009, pp. 199–208.

[73] P. Domingos and M. Richardson, “Mining the network value of customers,” in
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, ser. KDD ’01, 2001, pp. 57–66.

[74] A. Goyal, F. Bonchi, L. V. S. Lakshmanan, and S. Venkatasubramanian, “Ap-
proximation analysis of influence spread in social networks,” arXiv:1008.2005v4,
2011. [Online]. Available: http://arxiv.org/abs/1008.2005v4

[75] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence
through a social network,” in Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ser. KDD ’03, 2003,
pp. 137–146.

[76] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen, “Sparsifi-
cation of influence networks,” in Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ser. KDD ’11, 2011,
pp. 529–537.

156

[77] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications,
1st ed., ser. Structural analysis in the social sciences. Cambridge University
Press, 1994, no. 8.

[78] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy algorithm
for mining top-k influential nodes in mobile social networks,” in Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, ser. KDD ’10, 2010, pp. 1039–1048.

[79] Q. Jiang, G. Song, C. Gao, Y. Wang, W. Si, and K. Xie, “Simulated annealing
based influence maximization in social networks,” 2011. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3670

[80] S. Bhagat, A. Goyal, and L. V. Lakshmanan, “Maximizing product adoption
in social networks,” in Proceedings of the fifth ACM international conference on
Web search and data mining, ser. WSDM ’12, 2012, pp. 603–612.

[81] H. Li, S. S. Bhowmick, and A. Sun, “Casino: towards conformity-aware social
influence analysis in online social networks,” in Proceedings of the 20th ACM
international conference on Information and knowledge management, ser. CIKM
’11, 2011, pp. 1007–1012.

[82] K. Dave, R. Bhatt, and V. Varma, “Modelling ac-
tion cascades in social networks,” 2011. [Online]. Available:
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2741

[83] H. Habiba, Y. Yu, T. Y. Berger-Wolf, and J. Saia, “Finding spread blockers
in dynamic networks,” in Proceedings of the Second international conference on
Advances in social network mining and analysis, ser. SNAKDD’08, 2010, pp.
55–76.

[84] G. Istrate, M. V. Marathe, and S. S. Ravi, “Adversarial models in evolutionary
game dynamics,” in Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, ser. SODA ’01, 2001, pp. 719–720.

[85] M. A. Nowak, C. E. Tarnita, and T. Antal, “Evolutionary dynamics in struc-
tured populations,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 365, no. 1537, pp. 19–30, 2010.

157

[86] M. E. J. Newman, “The structure of scientific collaboration networks,” Proceed-
ings of the National Academy of Sciences of the United States of America, vol. 98,
no. 2, pp. 404–409, 2001.

[87] M. Newman, http://networkdata.ics.uci.edu/data/hep-th/. [Online]. Available:
http://networkdata.ics.uci.edu/data/hep-th/

158

