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ABSTRACT  
   

Major advancements in biology and medicine have been realized during 

recent decades, including massively parallel sequencing, which allows researchers to 

collect millions or billions of short reads from a DNA or RNA sample. This capability 

opens the door to a renaissance in personalized medicine if effectively deployed. 

Three projects that address major and necessary advancements in massively parallel 

sequencing are included in this dissertation. The first study involves a pair of 

algorithms to verify patient identity based on single nucleotide polymorphisms 

(SNPs). In brief, we developed a method that allows de novo construction of sample 

relationships, e.g., which ones are from the same individuals and which are from 

different individuals. We also developed a method to confirm the hypothesis that a 

tumor came from a known individual. The second study derives an algorithm to 

multiplex multiple Polymerase Chain Reaction (PCR) reactions, while minimizing 

interference between reactions that compromise results. PCR is a powerful technique 

that amplifies pre-determined regions of DNA and is often used to selectively amplify 

DNA and RNA targets that are destined for sequencing. It is highly desirable to 

multiplex reactions to save on reagent and assay setup costs as well as equalize the 

effect of minor handling issues across gene targets. Our solution involves a binary 

integer program that minimizes events that are likely to cause interference between 

PCR reactions. The third study involves design and analysis methods required to 

analyze gene expression and copy number results against a reference range in a 

clinical setting for guiding patient treatments. Our goal is to determine which events 

are present in a given tumor specimen. These events may be mutation, DNA copy 

number or RNA expression. All three techniques are being used in major research 

and diagnostic projects for their intended purpose at the time of writing this 

manuscript. The SNP matching solution has been selected by The Cancer Genome 
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Atlas to determine sample identity. Paradigm Diagnostics, Viomics and International 

Genomics Consortium utilize the PCR multiplexing technique to multiplex various 

types of PCR reactions on multi-million dollar projects. The reference range-based 

normalization method is used by Paradigm Diagnostics to analyze results from every 

patient. 
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CHAPTER 1 

INTRODUCTION 

Nucleic acid polymers, including deoxyribonucleic acid (DNA) and ribonucleic 

acid (RNA), play a critical role in life. DNA contains the genetic information and 

instructions required to run cells. RNA plays a key role in coding, regulation and 

expression of genes. In the most basic model of molecular biology, RNA is 

transcribed from DNA and is initially identical to gene regions in the DNA. RNA 

processing then occurs, which removes certain regions called introns to create the 

final messenger RNA (mRNA). The mRNA is then translated into proteins, which in 

turn conduct cellular processes (Krebs 2009). For example, proteins may be 

structural units of cells, enzymes that conduct chemical reactions, transporters that 

move other molecules throughout the cell, or may participate in signal transduction 

pathways that regulate other cellular processes. While many exceptions to this model 

have been identified, it is sufficient to explain the bulk of processes within the cell 

(Krebs 2009). 

Both DNA and RNA are linear polymers that consist of nucleosides and a 

backbone. There are four different nucleosides that may make up the polymer, and 

the order of these nucleosides when read from one end to the other determines 

which protein is created. The sequence of the RNA, which is in turn determined to a 

large extent by the sequence of the DNA region that encodes it, determines the 

initial sequence of a nascent peptide. Many changes occur while processing a nascent 

peptide into a protein, but alterations in the DNA are usually found in the final 

protein in a manner that is highly predictable (Krebs 2009). This, combined with the 

high level of stability and ease of sequencing DNA, leads to DNA sequencing being 

the primary method used in clinical practice to determine alterations in the code of 

protein (Slebos 1990). mRNA serves as the messenger between the DNA and 
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protein, making the level of mRNA present (often referred to as expression) an 

indicator of how much protein is present (Gry 2009), although this not always true 

(Gygi 1999). One could ask why the surrogates of DNA and RNA are used rather 

than analyzing protein directly. While this would be ideal, protein is very 

heterogeneous, and thus, it is hard to measure accumulation (Chandra 2011) or 

sequence (Wang 2011) of many proteins simultaneously, while the homogenous 

nature of DNA (Davey 2011) and RNA (Martin 2011) makes it easy to analyze 

millions or billions of molecules simultaneously. 

Many human medical conditions, including cancer, are caused by altered 

expression or coding of proteins. Current theory states that cancer is driven by a 

breakdown of signal transduction pathways that are responsible for important 

cellular “decisions” (Krebs 2009). For example, the decision of when to proliferate 

into more cells may be changed to allow growth of healthy cells into a tumor 

(DeBerardinis 2008), and the decision to initiate apoptosis (Ouyang 2012), or 

programmed death of the cell, may be prevented. For example, the KRAS gene is an 

“on/off” switch that controls the cellular decision to proliferate (Bryant 2014). While 

other signals usually control KRAS, certain mutations in this gene create a version of 

the protein that is always switched “on”, leading to cellular proliferation (Lievre 

2006), which is a hallmark of cancer. Another gene, ERBB2, is a sensor for signals 

that lead to proliferation (Liu 2011). If this gene is overexpressed, i.e., there is 

excessive ERBB2 present, the cell becomes highly sensitive to growth signals, 

leading the cell to respond to normal levels of growth factors as if there were a signal 

to begin proliferation (Menard 2004). As before, this leads to proliferation of the cell. 

Within recent years, methods with the ability to detect DNA and RNA with a 

high level of accuracy have been developed. One technology called nCounter 

(Nanostring Technologies, Seattle, WA) can detect molecules directly from purified 
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isolates (Malkov 2009). PCR allows the quantity of a pre-specified sequence of DNA 

or RNA to be doubled in a sequential process (Mullis 1987). Once the number of 

molecules present reaches a detectable level, the original amount can be estimated 

by considering the number of times the quantity was doubled (Taylor 2010). For 

example, if 10,240 molecules are present after being doubled 10 times, it is clear 

that the original number present was !"#$"
!!"

= 10. Next-gen sequencing includes a wide 

variety of technologies that can sequence individual strands of DNA (Hou 2010). 

While these were originally used to ascertain the sequence of DNA strands and 

determine whether mutations existed (Schuster 2007), it quickly became evident 

that the relative amounts of various molecules, such as DNA or RNA, could also be 

determined (Ekblom 2011). In brief, many molecules are sequenced, the identity of 

each one is determined by comparing its sequence to a list of known sequences, 

then relative differences between abundances of different molecules are examined. 

From these results, one can determine which genes have altered expression (Martin 

2011).  

For example, if one gene shows much higher relative expression than the 

others and is known to drive cancer when overexpressed, one can speculate that the 

gene is driving the cancer and targeting it with a drug may reduce tumor size or 

growth (Von Hoff 2010). This is a form of the affirming the consequent logical 

fallacy, and thus the use of these results is not perfect. Despite this fallacy, when a 

potent oncogene is active, it frequently is driving the cancer. 

Molecular biology and next-gen sequencing provide powerful tools to 

understand cancer. Well-designed mathematical tools can process data, determine 

the underlying drivers of cancer, and determine which drug a patient should receive 

to treat their cancer. 
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CHAPTER 2 

TWO ALGORITHMS FOR BIOSPECIMEN COMPARISON AND DIFFERENTIATION USING 

SNP GENOTYPES 

 

Abstract 

Aims: Biobanks are frequently required to verify specimen relationships.  We 

present two algorithms to compare single nucleotide polymorphism genotype 

patterns that provide an objective, high-throughput tool for verification.  Methods: 

The first algorithm allows for comparison of all holdings within a biobank, and is well 

suited to construct sample relationships de novo for comparison to assumed 

relationships.  The second algorithm is tailored to oncology, and allows one to 

confirm that paired DNAs from malignant and normal tissues are from the same 

individual in the presence of copy number variations.  To evaluate both algorithms, 

we used an internal training data set (n=1504) and an external validation data set 

(n=1457).  Results: In comparison to the results from manual review and a priori 

knowledge of patient relationships, we identified no errors in interpreting sample 

relationships within our validation data set.  Conclusion:  We provide an efficient and 

objective method of automated data analysis that is lacking for establishing and 

verifying specimen relationships in biobanks. 

 

Introduction 

Biobanks play a critical role in large-scale genomics projects such as The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC).  A primary responsibility of biobanks is to ensure proper chain of custody for 

specimens, and maintain detailed information about specimen relationships (Hirtzlin 

2003).  For example, a biobank must know which specimens came from a particular 
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patient, and must ensure that specimens derived from a single patient are not 

tracked as originating from different patients.  

As the era of “big science” in genomics matures and collaborative efforts 

involving hundreds of institutions with varying protocols become common (The 

International Cancer Genome Consortium 2010), many biobanks are no longer able 

to maintain full chain of custody for their samples and thus are often unaware of 

errors in specimen relationships. During our experience in the TCGA project 

(McLendon 2008) (Cancer Genome Atlas Research Network 2011), we found 

approximately two percent of samples are not derived from the individual identified.  

For example, a tumor specimen may be incorrectly diagnosed upon pathological 

review or a diseased/non-diseased pair may not originate from the same individual 

upon genotyping.  Common genomic analysis techniques such as DNA/RNA 

sequencing are part of many projects and can be used to detect errors in specimen 

relationships with a high level of accuracy.  However, DNA/RNA sequencing is 

expensive and analyzing results can be time consuming.  It is highly desirable to 

detect inconsistencies in specimen relationships prior to conducting expensive 

analysis such as sequencing (Glenn 2011).  

Two genotyping methods are commonly available to establish and verify 

specimen relationships: short tandem repeats (STR) and single nucleotide 

polymorphisms (SNPs).  STR has high discriminatory power for each locus 

(Rosenberg 2002) (Moretti 2001) (Lin 1995), and is available commercially for 

forensic analysis (AmpFISTR; Applied Biosystems, Carlsbad, CA). However, STRs are 

susceptible to microsatellite instability in many cancers, making them less suitable 

for doing comparisons that involve malignant specimens (Vauhkonen 2004).  SNPs 

tend to have a lower discriminatory power per locus (Sanchez 2006), but are less 

likely to experience changes in cancer. Both SNPs and STRs can be impacted by copy 
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number events in DNA, especially loss of heterozygosity (LOH) in which one allele is 

lost (Bignell 2010).  Because LOH occurs frequently in cancers, standard comparison 

methods may flag properly-paired specimens (i.e., specimens from the same 

individual) as not matching.  

At the time of writing, there is no simple, inexpensive, and rapid method 

available to conduct biobank-wide comparisons to construct specimen relationships 

de novo or to compare diseased/non-diseased specimen pairs from the same 

individual in the presence of significant LOH.  Laboratories specializing in 

malignancies often find that genotypes with LOH can only be effectively compared 

via manual review. This is not scalable as a bank containing just 1,000 specimens 

requires almost 500,000 pair wise comparisons to identify errors in specimen 

relationships such as those due to unexpected duplication of samples from a patient.  

We have developed and evaluated the performance of two algorithms to 

determine specimen relationships.  The first method provides a global comparison of 

specimen SNP results in order to establish de novo relationships between samples.  

The second method provides a tool that is less sensitive to copy number 

abnormalities but is well-suited to confirm that a given pair of malignant and 

disease-free tissues is indeed from the same patient.  The aim of this study is to 

offer an efficient method to perform specimen relationship verification based on SNP 

results in fairly large datasets (with up to 100,000 specimens) on a common laptop 

or desktop computer. 

 

Methods 

  Specimens were procured by the National Cancer Institute for use in the 

TCGA project from multiple biobanks worldwide, and were shipped to either the 

International Genomics Consortium (IGC; Phoenix, AZ) or Nationwide Children's 
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Hospital (NCH; Columbus, OH).  DNA was extracted from whole blood and frozen 

tissue.  Unamplified DNA (10 ng) was used in the genotyping process.  SNP profiles 

were collected using the iPLEX Sample Identification panel (Seq ID) (Sequenom; San 

Diego, CA), a subset of the SNPforID panel (Jin 1995), per manufacturer's 

instructions. 45 multiplexed polymorphic loci were interrogated using Sequenom’s 

Spectrotyper software, which flags results as conservative, moderate, or aggressive, 

based on the level of confidence in the genotype determination per locus.  Data 

collected at IGC was immediately available for algorithm development (referred to as 

the training set; n=1504); whereas, data collected at NCH (referred to as the 

validation set; n=1457) was quarantined until the algorithms had been finalized. 

For both algorithms, we made the assumptions that all SNPs are biallelic; 

each allele occurs with a probability of 0.5, alleles are in Hardy-Weinberg 

equilibrium, and all SNPs are independent of each other. 

 

Algorithm 1: Global Comparison of Specimens 

The global comparison algorithm allows biobank-wide comparisons (i.e., pair 

wise comparisons of all specimens in the bank).  We conducted all possible pair wise 

comparisons of non-diseased specimens, yielding a total of 𝑛2 = 𝑛(𝑛 − 1)/2 

comparisons, where 𝑛 is the number of non-diseased specimens in the bank. 

For each comparison, the algorithm generates a total score that measures the 

amount of similarity between two specimens.  In particular, we obtain this score by 

assigning predetermined values to different types of matches between the SNPs of 

the two specimens on a per-SNP basis.  In the following, the symbol 𝜏 denotes the 

number of SNPs assayed in the panel (i.e., 45 for the Seq ID panel). For each SNP, 

we assign a “SNP Match Score” based on the similarity of the specimens with respect 
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to this SNP, and calculate an aggregate score of similarity by summing the match 

scores for each of the 𝜏 SNPs.  

In our experimental case using the Seq ID panel that assays 45 SNPs, we 

used the scoring rules defined below.  We note that the overall accuracy of the 

algorithm can be tuned for other purposes by adjusting the values of each 

parameter, and we select values for comparison of non-diseased specimens that are 

not expected to experience copy number variants. 

 

Heterozygous SNP Match Score is assigned for comparisons where two specimens 

have matching heterozygous genotypes (e.g., AT and AT) for a particular SNP.  This 

is given a value of +1 in the present study. 

 

Homozygous SNP Match Score is assigned for comparisons where two 

specimens have matching homozygous genotypes (e.g., AA and AA) for a particular 

SNP.  This is given a value of +2 in the present study.  This value is based on the 

fact that a homozygous SNP match will occur by random chance with one half of the 

probability of a heterozygous SNP match, and thus, provides twice as much 

confidence as a heterozygous SNP match. 

 

Missing SNP Score is assigned for comparisons where the genotype is missing 

from at least one of the specimens (i.e., no genotype call was made for the SNP).  

This score is given a value of 0 in this study, because it essentially provides no 

information for comparison. 

 

Heterozygous SNP Mismatch Score is assigned for comparisons where one 

specimen is homozygous, and the other specimen is heterozygous (e.g., AA and AT) 
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for a particular SNP.  This score is given a value of -2 in this study.  This value was 

determined experimentally, using the training set as described in the results section.  

We note that it is possible, albeit rare, that two alleles are present, yet only one is 

detected. 

 

Homozygous SNP Mismatch Score is assigned for comparisons where both 

specimens have homozygous genotypes, but they are different (e.g., AA and TT).  

This is assigned a value of -20.  It is unlikely that a new allele would appear while 

the original allele is lost completely.  The score of -20 allows a specimen match to 

occur with such an event only when the other SNPs show high likelihood of a 

specimen match. 

 

Box 1 provides a pseudocode for the algorithm that calculates the score for 

each pair wise comparison.  The algorithm, after calculating the score, terminates 

with the “match” decision, if the obtained score is higher than the threshold set by 

the user.  Otherwise, the specimens are deemed to “not match”.   
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Box 1: The program code for the scoring strategy of the global comparison 

algorithm. 

 

 To better understand the distribution of the total scores we conduct a few 

theoretical calculations.  If we consider a perfectly matching pair wise comparison of 

specimens (i.e., genotypes for all SNPs are identical between the two specimens) 

and assume that all alleles amplify so that no data is missing, we can obtain the 

distribution of the total score, S, using the binomial distribution since we can model 

the total score as the number of “successes” (i.e., matches) in 𝜏 trials (i.e., each SNP 

is one trial). Hence, the random variable that represents the total score, S, is a 

random variable that changes between 𝜏 and 2𝜏 (i.e., 45 and 90 for the Seq ID 

panel). 



 11 

Recall that a heterozygous SNP match is a “failure” with value +1 

(heterozygous SNP match score) and a homozygous SNP match is a “success” with 

value +2 (homozygous SNP match score). Hence, the random variable 𝑆! = 𝑆 −   𝜏 is 

binominally distributed with parameters 𝜏 and 0.5.  

 The maximum total score attainable is 2𝜏= 90 for our panel, and the expected 

value is  !
!
𝜏 = 67.5.  Assuming there are no missing alleles (i.e. did not amplify), it is 

impossible to obtain a total score lower than 45 when two specimens are identical.  

However, if we allow up to five SNPs to be missing due to poor amplification, the 

critical threshold can be set at 40 when determining if two samples are derived from 

the same patient (i.e., matching specimens).  The expected value of the total score 

from a pair of specimens derived from different patients (i.e., non-matching 

specimens) can be calculated to be -135 by conditioning arguments. 

Threshold values were set to define multiple confidence levels for a specimen 

match.  The scores for SNP comparison were summed to a single total score that 

represents the similarity between the two specimens.  A total score of 40-49 was 

considered to be “marginal”, 50-59 was considered to be “low”, 60-69 was 

considered to be “medium”, and greater than 70 was considered to be “high” 

likelihood of similarity.  Alternatively, one could simply have a single threshold of 

matching set at 50. A total score value below 39 was considered to be a non-match 

situation, and hence, was not reported in the output. 

Next, we use some basic graph theory principles to look for unexpected 

matching structures in results.  This analysis was conducted both qualitatively by 

making data easily visualized and quantitatively.  In order to visualize the results of 

all comparisons with matching scores (i.e., total score of at least 40) were exported 

to a text file that was loaded onto a network visualization tool (Shannon 2003).  

Figure 1 shows a scaled-down example of such an output, for a dataset with six 
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specimens, A through F.  We use edge colors to show the confidence of each match 

on a green-yellow-red scale corresponding to the thresholds defined above; with red 

depicting comparisons that meet the highest threshold.  In Figure 1, on right, the 

pair wise comparisons of specimens A, B and C were all matches, resulting in a 

clique in the network visualization.  Cliques are important to observe, since they 

provide an easy method to check for consistency of results, i.e., if A matches B and 

B matches C, we would expect that A also matches C.  In this case, one can reliably 

state that these three specimens are indeed from the same person.  The second 

group on the left of the figure is not a clique; D matches E and E matches F, but D 

does not match F. This would indicate a situation that should be checked manually.  

Multiple methods are available in graph theory to verify that these sub networks are 

cliques quantitatively.  Any network that is not a clique is flagged for more detailed 

manual review.  

 

Figure 1: The results for tissue matching comparisons can be visualized in network 

diagrams. Related samples appear in clique networks with edge colors showing the 

confidence of each identification match on a green-yellow-red scale; red being the 

highest. 
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In order to provide an estimate of false positive rate, we simulated SNP 

results randomly. Because these results were generated randomly, there should be 

no matches found and any match found indicates a false positive. These simulations 

were conducted with different assumptions for minor allele frequency (MAF), starting 

at 50% and decreasing in increments of 5%. In these simulations, we assumed that 

all SNPs had the same MAF. Additionally, we calculated the observed MAF for each 

SNP individually, and randomly generated results using the non-constant observed 

MAF for each SNP. For each simulation, 50,000 patients were simulated, which 

resulted in approximately 1.25 billion pairwise comparisons.  

 

Algorithm 2: Comparison of diseased and non-diseased sample pairs  

When SNP results are obtained from oncology specimens, there is a higher 

chance that there will be LOH and such genetic abnormalities can complicate tissue 

matching.  We have developed a method that is insensitive to LOH and provides a 

systematic, repeatable approach to confirm that a diseased/non-diseased pair is 

indeed from the same patient.  Unlike the previous method, this algorithm is not 

designed to conduct a global (i.e., everything to everything) comparison, but rather 

to confirm the hypothesis that a given pair of specimens is derived from the same 

patient.   

This algorithm eliminates sensitivity to LOH in specimen matching by using 

the non-diseased specimen as the basis of comparison.  Consider a homozygous SNP 

in the non-diseased sample; it should also appear as homozygous in the diseased 

sample, even if LOH has occurred.  However, a heterozygous SNP in the non-

diseased tissue can appear as homozygous in the diseased tissue due to LOH (i.e., if 

one allele is lost), and such an event can mislead inferences on specimen 
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relationships.  Therefore, the algorithm evaluates information only from homozygous 

SNPs in non-diseased specimens and ignores the heterozygous SNPs that may have 

been altered by LOH in the diseased specimen.  A key benefit to this approach is that 

no assumptions are made as to the rate of LOH. 

Since analysis of diseased specimens can be tricky due to genetic abnormality, 

the systematic approach provided by this algorithm is important.  Because this 

method is fairly sensitive to incorrect reads, we exclude SNPs with calls flagged as 

“aggressive” by the Sequenom software.   The algorithm, for a given pair of diseased 

and non-diseased specimens, can be summarized as follows. 

 

1. Ignore SNPs that did not amplify (or had aggressive calls) in either the 

diseased or non-diseased specimen, and retain only those SNPs that are 

present for both.  

2. Obtain SNP results for the non-diseased specimen.  Ignore all SNPs that are 

heterozygous and retain only those that are homozygous. 

3. Obtain SNP results for the diseased specimen and retain results from only 

those SNPs that were homozygous in the non-diseased sample. 

4. Assign 𝑁! to be the number of SNPs retained after steps 1, 2, and 3. 

5. Compare the results from the retained SNPs for the diseased and non-

diseased samples, and assign the number of matching SNPs to 𝑍 

6. If 𝑁! = 𝑍 and 𝑁! ≥ 𝜅, where 𝜅 is a threshold, then the specimens match (i.e. 

derived from the same patient); otherwise, they do not match.  In cases 

where 𝑁! − 𝑍 is low, the results can be flagged for manual review. 

 

Table 1 shows each of the steps on a simple example with seven SNPs.  The first 

three rows depict the number of SNPs retained after the first three steps, which 
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result in 𝑁! = 3  SNPs.  We then observe that S=2 of these remaining SNPs match.  

Because one of the remaining three SNPs doesn't match between the diseased and 

non-diseased specimen (i.e. 𝑁! ≠ 𝑆), we conclude that this sample pair does not 

match. 

 

Table 1: A simplistic representation of the scoring strategy for the tissue matching 

comparison. 

 

The basic process outlined is extremely simple and easy to make calls either 

manually or programmatically.  Thousands of diseased/non-diseased specimen 

pairings can be easily done in a spreadsheet application, or the algorithm can be 

coded using common programming languages. However, before this comparison can 

be done, the correct value of 𝜅, the threshold, must be identified. There are many 

ways to determine the appropriate value of 𝜅. For example, 𝜅 may be chosen such 

that the false positive rate or false negative rate matches a predefined threshold.  

We decided to determine  𝜅 to minimize the overall project costs related to 

false results.  In this context, we will define a failing result as a determination that a 

diseased and non-diseased specimen pair do not match, and a passing result as a 

determination that the specimens match (i.e., the specimen pair is from the same 

patient).  The derivation below shows a method for determining the optimal value for 

𝜅 to minimize cost.  We note that the same equations can be used to determine a 
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value of 𝜅 that meets some criteria on the false failing or false passing rate.  This 

derivation is conducted once and the same value of 𝜅 can be maintained as long as 

assumptions are unchanged.  

For the cost formulation, we use the following notation to represent the two 

types of costs. CFP is the cost of a false passing result (in dollars).  This should 

include the cost of conducting downstream analysis before discovering the error or 

the cost of including incorrect data in the downstream analysis.  CFF is the cost of a 

false failing result.  In the case of a false failing result, the specimen will be excluded 

from further analysis and all costs incurred up to this point will be lost.  This should 

include the cost of tissue collection and all lab work conducted prior to and including 

the SNP analysis but no downstream analyses.  

If a total of 𝜏 SNPs are being tested, then the number of SNPs that amplify in 

both diseased and non-diseased specimens (denoted by 𝑁!) will be a random variable 

that is binomially distributed with parameters 𝜏 and 𝑝!, where 𝑝! denotes the 

probability that each SNP will amplify in both diseased and non-diseased specimens.  

This value can be determined by examining historical data and calculating the 

fraction of SNPs for which a result was obtained.  We assume that 𝑝! is the same for 

all SNPs and that the SNPs amplify independently of each other.  That is,  

𝑃 𝑁! = 𝑛 =
𝜏
𝑛
𝑝!! 1 − 𝑝!! !!!,          0 ≤ 𝑛 ≤ 𝜏 

Equation 1 

Then, we can calculate the distribution for 𝑀!, the number of homozygotes 

among the 𝑁! SNPs that amplify in both diseased and non-diseased specimens. Given 

the assumption that there are two alleles for each SNP, each with 50% probability of 

occurring, the probability of homozygous genotypes for each SNP of the diseased 

and non-diseased specimen pair is equal to 0.5.  Then, the conditional distribution of 

the random variable 𝑀! given that 𝑁! = 𝑛, is binomial. That is, 
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𝑃 𝑀! = 𝑚 𝑁! = 𝑛 =   
𝑛
𝑚

0.5 ! 1 − 0.5 !!! =
𝑛
𝑚

0.5 !,        for   0 ≤ 𝑚 ≤ 𝑛 

Equation 2 

This allows us to calculate the distribution of 𝑀! for m=0,1,…,  𝜏 as: 

𝑃 𝑀! = 𝑚 = 𝑃 𝑀! = 𝑚 𝑁! = 𝑛 𝑃 𝑁! = 𝑛
!

!!!

 

=
𝑛
𝑚

0.5 ! 𝜏
𝑛
𝑝!!(1 − 𝑝!!)!!!

!

!!!

 

Equation 3 

In this context, we define a false failing result (denoted by FF below) to be the event 

where less than 𝜅 SNPs amplify and are homozygous. This is the only scenario where 

two correctly paired diseased and non-diseased specimens would obtain a false 

failing result.  Note that our false failing definition contains both those pairings that 

are correct and those that are not.  Thus, it is an upper bound as to the rate of 

pairings that are correctly paired but were unverifiable.  Note that we assume that 

the risk of a passenger mutation causing a new allele in the tumor is trivial.  The 

false failure probability can be expressed as the probability of obtaining an 𝑀!  strictly 

less than 𝜅.  That is, 

𝑃! 𝐹𝐹 = 𝑃 𝑀! < 𝜅 = 𝑃(𝑀! = 𝑚)
!!!

!!!

 

Equation 4 

A false passing result (FP) occurs when 𝑀! ≥ 𝜅 homozygous alleles are present 

and they all match by random chance.  We define 𝑅 to represent the event that any 

diseased specimen SNP will match the non-diseased specimen SNP by random 

chance, given that the non-diseased SNP is a homozygote.  The value of 𝑃(𝑅) is 

calculated as shown below.  The generic notation of a SNP with alleles A and a is 

used.  H is the condition that alleles are homozygous for a given SNP in the non-
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diseased specimen.   𝐿! is defined as the normal allele, and 𝐿! is defined as the tumor 

allele. Then, the probability of the event R can be calculated as  

 

𝑃 𝑅 = 𝑃 𝐿! = 𝐴 𝐻 𝑃 𝐿! = 𝐴 + 𝑃 𝐿! = 𝑎 𝐻 𝑃 𝐿! = 𝑎  

Equation 5 

Hence,  

𝑃 𝑅 = 0.5 0.25 + 0.5 0.25 = 0.25 

Equation 6	  

The false passing probability can be found by calculating the probability that 

there will be zero mismatches among the 𝑀! =   𝑚 SNPs given that the samples are 

from different individuals.  Conditioning on the distribution of 𝑀! and taking a sum 

over all values of 𝑀!  greater than or equal to 𝜅 we obtain 

𝑃! 𝐹𝑃 = 𝑃 𝑅
!
𝑃(𝑀! = 𝑚)

!

!!!

 

Equation 7 

where: 

𝑃 zero  mismatches 𝑀! = 𝑚  and  different  individuals = (𝑃 𝑅 )! 

Equation 8 

Now the expected cost, C can be calculated for each value of 𝜅 using: 

𝐶! = 𝐶!"𝑃! 𝐹𝑃 + 𝐶!!𝑃! 𝐹𝐹 ,        0 ≤ 𝜅 ≤ 𝜏 

Equation 9 

Because 𝜏 is small and integer (e.g., 𝜏 = 45 for the Seq ID panel), we can 

enumerate the cost for each value of 𝜅 and select the lowest cost.  In our case, we 

found the minimum value of 𝐶! by enumerating all 46 possible values 𝜅 = 0, 1,… , 45. If 

the values for 𝐶!! and 𝐶!" are not readily available, researchers can choose a given 
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𝑃!" or 𝑃!! or can construct ROC curves to determine the appropriate value of  𝜅.  For 

our assumptions, we found that 𝜅 = 10 was optimal. 

 

Results 

The training set included results from 1504 specimens with results for at least 

40 SNPs obtained at IGC during routine processing of specimens for TCGA.  These 

1504 specimens included 285 patients for which at least one pair of diseased and 

non-diseased specimens were available (and thus expected to match).  Prior to 

evaluation of the algorithm, specimen IDs were manually examined to determine the 

specimen relationships so that these can be compared to the ones indicated by the 

two algorithms developed.  Our goal was to determine the effectiveness of the two 

algorithms we have developed for match testing. 

We first tested whether the assumptions of the model are met in our training 

set. To verify that Hardy-Weinberg equilibrium is present, we determined the fraction 

of SNPs that were homozygous.  If the allele frequency is 50% and Hardy-Weinberg 

equilibrium is present, we would expect 50% of SNP reads to be homozygous.  We 

selected the first allele listed for each SNP in the panel, and determined its 

frequency, which one expected to be 50%.  Note that the other allele will have a 

frequency of one minus this value.  Figure 2 shows the percent of homozygous 

genotypes and the frequency of the first allele, along with the 95% confidence 

interval for the points assuming all assumptions were met.  We observed that neither 

assumption was fully met, since a majority of the points do not fall within the 95% 

confidence interval.  Even though the two assumptions are not met, we tested our 

algorithms to observe the performance. 
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Figure 2: An examination of algorithm assumptions. The percentage of homozygous 

genetypes and allele frequencies for each SNP. Assumptions are not met perfectly, 

but are followed approximately. 

 

Performance of Algorithm 1 for Global Comparison 

First, the training set was used in the development of the scoring scheme for 

the global algorithm.  We used the following criteria to determine the heterozygous 

mismatch score: 

 

1.  The results should match the results obtained by manual review.  

2.  When more than two samples match, the resulting network should be a 

clique (i.e., every specimen matches every other specimen in the group). 

3.  The scores should be bimodal with clear separation between the matching 

and mismatched specimen total scores. 

4.  The heterozygous mismatch score should be as low as possible while 

satisfying the other conditions. 
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Based on these criteria, we incrementally increased heterozygous mismatch 

scores starting with a value of -1 and decreasing it by 1 per iteration.  A value of -1 

was not sufficient, and allowed samples that had been manually determined to be 

from two different patients to have a small number of matches between them.  

These matches violated condition 1, as they did not match in manual review. These 

matches also violated condition 2, because every sample from one patient did not 

match every sample from the other patient, and the group consisting of both 

patients was not a clique in many instances.  We next attempted a value of -2 for 

the heterozygous mismatch score and found all conditions were met. 

When all samples are compared, an extremely small proportion is expected to 

match because there are only a few samples from the same patients.  The mean 

score of all comparisons conducted in our training set (i.e., -114) is only slightly 

higher than the theoretical mismatch score of -135.  Figure 3 is a histogram of all 

pair wise comparison scores in the training set.  We observe that only a single mode 

is visible and all comparisons appear to be non-matches.  This is expected since the 

majority of the non-diseased specimens at the bank are expected to be from 

different donors.  In Figure 4, we show a similar histogram, but only include scores 

greater than 0 so the non-matching mode doesn't dominate.  From this view, we also 

observe a clear separation between the two modes, with the tail of the non-matching 

group on the left and the small number of matches on the right (i.e., matching 

versus non-matching scores).  The mean score for matches (i.e., score ≥ 40) was 

found to be 68.8, which is consistent with the predicted value of 67.5.  Also, the 

predicted threshold of 40 accurately defines a good threshold between the two 

modes in the observed bimodal distribution (Figure 6).  The algorithm identified a 

single pairing that was not previously identified.  Further review by our panel of 
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geneticists determined that the sample pair was indeed a match and the algorithm 

was correct. 

 

Figure 3: Distribution of scores generated by the global algorithm using the training 

data set (n=1504) 

 

 

Figure 4: Distribution of scores greater than zero generated by the global algorithm 

using the training set (n=1504) 

 

The validation set consisted of 1457 samples obtained at NCH during routine 

processing for TCGA.  This number does not include samples with IDs having less 

than 40 SNP calls.  These specimens were quarantined at NCH until all scoring and 
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decision criteria were finalized on the training set.  Using the scores and decision 

criteria obtained from the validation set, we implemented our global comparison 

algorithm on this data set.  We observed a perfect concordance between the 

relationships identified by our algorithm and the relationships that were previously 

identified by geneticists at NCH. Figure 5 and Figure 6 report the same information 

for the validation set as Figure 3 and Figure 4 described for the training set.  

Comparing the validation and training sets, we observed that the distribution of 

scores were nearly identical in both cases.  This indicates that our algorithm for 

global comparison is highly likely to be useful for different data sets.  

 

Figure 5: Distribution of scores generated by the global algorithm using the 

validation set (n=1457). 
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Figure 6: Distribution of scores greater than zero generated by the global algorithm 

using the validation set (n=1457). 

 

Table 2 shows the average results of the three replicates during simulation. It 

should be noted that each of these numbers is from a total of 1.25 billion 

comparisons. It is noted that there is not a major increase the number of marginal 

results until the MAF drops below 30-35%, and false positive results don’t start to 

occur until MAF below 25-30%. Using the individually calculated MAF values (mean = 

0.365, minimum=0.226) for each SNP in our dataset (“Observed”), we find a very 

manageable number of marginal results and no false positive results. 
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Table 2: Marginal and positive results in randomly simulated trials of 50,000 samples 

for various minor allele frequencies. 

   

Performance of Algorithm 2 for Comparison of Diseased and Non-diseased Specimen 

Pairs 

The method for comparing diseased and non-diseased specimen pairs was 

derived without the use of data, thus there is no need for the use of a training set.  

The results from 1504 specimen pairs obtained at IGC during routine processing of 

specimens for TCGA was used for validation.  Since the algorithm is designed for 

hypothesis testing rather than a global comparison to determine specimen 

relationships, we only conducted comparisons on paired diseased and non-diseased 

samples that were believed to come from the same patient.  We validated the model 

by verifying that the results follow the distributions that we identified and have 

provided above.  There is no “absolute truth” available regarding this comparison, as 

all cases in the data set were originally “believed” to match.   

A summary of the results of our tissue matching comparison shows that 

specimen pairs fall into two separate groups:  matching and nonmatching pairs. 

Figure 7 shows the number of matching and nonmatching SNPs present for each of 

the 1504 paired specimens.  A SNP was only counted if the disease-free specimen 

was homozygous for that SNP.  We observe from the figure that there are two clear 
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groups, as expected.  The first group contains 0 or 1 non-match, and an average of 

about 25 matches.  The second group contains many mismatches with a much 

smaller number of matches.  This result is what was expected.  There are three 

comparisons that have 5 to 10 matches and 0 or 1 nonmatches that do not fall into 

the expected groups.  These comparisons were in fact ambiguous to geneticists as 

well.  

 

Figure 7: Mismatching vs. matching SNPs for tissue comparisons. 

 

Discussion 

We have developed two intuitive and efficient algorithms to analyze SNP 

genotypes.  Although the derivation of these algorithms was mathematically 

complex, the actual execution is simple.  The global algorithm assigns a distance 

metric to comparisons in a straightforward manner with simple thresholds to decide 

matching versus nonmatching relationships for the entire database of specimens. 

The algorithm for paired diseased and non-diseased specimen comparisons, on the 

other hand, is designed to overcome genetic abnormalities due to LOH and 
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mathematically assesses the similarity between two specimens using the information 

from a predetermined number of SNPs.  Either of these algorithms can be 

implemented manually or using a worksheet application or script.   

The global comparison algorithm was found to be highly robust in its ability to 

accurately determine specimen relationships de novo even when the assumptions 

were not perfectly met.  In particular, we found that results obtained from the 

validation set matched the distributions obtained from the training set.  The 

threshold value of 40 that we determined and verified in the training set was also 

found to provide effective separation between matching and nonmatching specimens 

in the validation set, as was seen in Figure 8.  All known matching specimens were 

confirmed to match by our algorithm.  Furthermore, the algorithm found a previously 

undiscovered additional set of matching specimen IDs in our training set that was 

confirmed to be a true match after further manual review.  

We observed a small number of cases that were in the region between the 

two modes (match and non-match) in our validation set (Figure 8) that justified 

additional review as no scores fell within this range in our training set (Figure 6).  

Upon review, we found that the one case with a score of 44 (which was deemed to 

be a marginal match according to the identified decision rules) has a simple 

substitution of CC to TT in a single SNP, while all other SNPs matched.  In this case, 

we decided that the marginal match result was actually appropriate, because it 

flagged the result for manual review.  Three comparisons had a score of 36, which 

was just below the threshold for a marginal match.  Manual review of these 

specimens indicated that they did not match; suggesting that the score derived by 

the algorithm correctly categorized these three suspicious points.  The other 

comparisons had scores that fell between 20-30 (clearly within the non-match range) 

were confirmed as being non-matches by subsequent manual review. When results 
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were simulated, we found that our results are fairly robust to assumptions being 

approximately met. It was noted that with the 1000 Genomes data was deposited 

into DBSNP after completion of this study, and one could fairly easily find SNPs that 

match the assumptions in a near perfect manner with minimal effort. 

The algorithm for verifying tissue matching between diseased and non-

diseased specimens was also very robust (Figures 6 to 8).  Of all the comparisons 

conducted, only three results were ambiguous. In this case, there were only 10 SNP 

matches and either zero or one SNP mismatch.  Although this result is possible, it is 

highly unlikely that a result this extreme would be attained by our sampling of about 

1500 cases.  Otherwise, we tended to get more matching SNPs than expected when 

the data is viewed as a whole, which is likely due to the assumptions of the model 

not being met.  Specifically, allele frequencies that are not 50% and alleles that are 

not in Hardy-Weinberg equilibrium would be expected to make more matching alleles 

whether specimens match or do not match. 

One weakness of our approach is that we compared our experimental 

algorithm to the calls made by manual review.  It is conceivable that two specimens 

could have highly similar results and would erroneously be called as a match by our 

algorithm and manual review when they were in fact not matching.  Although our 

model suggests the risk of such an event is trivial, such a possibility cannot be 

eliminated.  Indeed, all specimens used in this study were expected to have known 

relationships, and this study would have been irrelevant had they been correct. 

In general, we observed more matching SNPs than were expected for both 

matching and non-matching specimen comparisons for both algorithms.  Again, this 

is most likely caused by some assumptions not being completely satisfied.  While it is 

possible to modify our methods to match the data distribution exactly, it would 

defeat our main goal of developing a simple, intuitive and efficient algorithm. 
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Verifying specimen relationships is an important quality control process for 

biobanking. However, no simple, automated and high-throughput data analysis tools 

are commonly available.  In this study, we provided two algorithms that establish 

specimen relationships, which can be customized to evaluate results from a variety 

of SNP assays.  The first algorithm provides a global comparison of all specimens in 

the database and is highly suitable for identification of unexpected sample 

duplication.  The second algorithm is tailored for tissue matching between diseased 

and corresponding non-diseased tissue that is complicated by LOH.  Both algorithms 

provide rapid and easily interpretable results and can be performed on a common 

laptop computer.  These algorithms are important for automating error detection in 

sample IDs that could otherwise compromise the quality and effectiveness of 

downstream processes.   Moving forward we hope the integrity and reliability of the 

biobanking industry is improved by use of quality control tools such as described 

here.   
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CHAPTER 3 

OPTIMAL HIGH DENSITY MULTIPLEXING OF QUANTITATIVE PCR 

 

Abstract 

Aims: It is highly desirable to multiplex PCR reactions, especially ones that 

are already validated individually.   It is rarely possible to multiplex large numbers of 

PCR reactions by trial-and-error methods due to the large number of combinations 

possible. Methods: We identify and quantify the consequences of phenomena that 

cause conflicts between multiplexed PCR reactions, and use an integer programming 

model to partition existing qPCR reactions into multiplexes while minimizing conflicts. 

Results: We simulated a variety of scenarios, and determined that it was feasible to 

multiplex many assays into a small number of multiplexes even when extremely high 

dimer conflicts existed. For a case study, we used two sets of reactions, one 

contained 56 quantitative PCR (qPCR) reactions for RNA and one contained 86 DNA 

assays. The RNAs were successfully multiplexed into four multiplexes with an 

average of 14 reactions per multiplex, and the DNAs were successfully multiplexed 

into four multiplexes with and average of 21.5 reactions per multiplex. Conclusion: 

We provide a reliable method for multiplexing existing quantitative PCR assays into a 

small number of multiplexes. We determined a method to successfully multiplex PCR 

reactions while reducing the relative abundance of dimers to desired PCR product. 

 

Introduction 

Multiplexed PCR is highly desirable because it allows multiple PCR assays to 

be run in a single tube (Henegariu 1997) (Edwards 1994). When multiple PCR assays 

are multiplexed, the primers for all assays are put into the same tube, and each 

target is amplified independently of the others simultaneously. This reduces assay 



 31 

setup complexity by reducing the number of reactions run, which leads to reduced 

costs and consumption of the sample being analyzed. The main limit of multiplexing 

has been the ability to analyze the results for each reaction separately until recently. 

For example, when samples are analyzed by gel electrophoresis, the main limit is the 

number of fragments that can be resolved from each other on a gel (Edwards 1994). 

Taqman probes allow the amplification level of each reaction to be monitored in real-

time via fluorescence (Life Technologies 2013), but this process is typically limited to 

four reactions per multiplex due to limitations on the number of fluoresce markers 

that can be distinguished (Applied Biosystems 2013). With the widespread 

deployment of next-gen sequencing methods (Schuster 2007) (Bybee 2011), it is 

now possible to individually sequence DNA strands, making it possible to identify 

each DNA molecule individually with near perfect accuracy. This allows a near 

unlimited number of molecules to be distinguished.  

A method to multiplex very high numbers of molecules is highly desirable.  

However, this cannot be accomplished by simply putting many PCR assays into a 

single tube. When one attempts this, there is a high probability that dimers will form 

(Brownie 1997). Because these dimers occur in a template-independent manner and 

primers are present at concentrations many orders of magnitude greater than 

template, they rapidly outcompete the intended reaction. It is fairly straightforward 

to predict whether a given pair of reactions will generate dimers (Figure 8). We 

noted two types of dimers: amplifiable ones that are amplified during the PCR 

reaction, rendering the entire assay useless by consuming the reaction components, 

and non-amplifiable ones that cause a lesser loss in quality by rendering fewer 

primers available to prime template. It should be noted that DNA polymerases used 

in PCR can only extend DNA in a 5’-3’ direction, and this is the primary distinction 

between an amplifiable and non-amplifiable dimer. 



 32 

 

 

Figure 8: Illustration of amplifiable dimers (top) and non-amplifiable dimers 

(bottom). Note that the amplifiable dimer can be extended in the 5’-3’ direction, but 

the non-amplifiable dimer cannot. 

 
Previous work focuses on making multiple assays distinguishable from each 

other (Rachlin, 2005; Konwar, 2005). Previously, gel electrophoresis was used to 

discriminate between amplicons, which can only discriminate between different sizes 

of PCR products. Neither of these studies attempted, however, to prevent the 

formation of dimers. Thus, the goal of these projects was to create PCR reactions of 

various sizes that could be easily discriminated by electrophoresis. It is likely that 

dimers did not present a major issue as the number of assays multiplexed was fairly 

small. Additionally, dimers were probably not a major issue as they do not resolve 

well on the types of gels used in this study, thus they could be readily ignored. 

Fortunately, designing assays to allow separation on gel electrophoresis is no longer 

necessary with modern next-gen sequencing technologies, as the identity of PCR 

products can be obtained directly from the sequence result regardless of the PCR 
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reaction size. Additionally, the types of assays being optimized in these studies 

involved a qualitative outcome: either a PCR fragment was present, or it wasn’t. It 

was not necessary to measure fragments in a quantitative fashion, or in other terms, 

preserving relative differences between different amplicons. In order to accomplish 

this, these studies generated many sets of primers in silico, and then determined 

which ones work best together. 

Another method described by Shen et al. (Shen 2010) focuses on minimizing 

the formation of dimers. Much like our team, the authors observed the negative 

impact of dimers and the need to prevent their formation during PCR. They 

generated many primers for each target region, and then selected a subset that 

would not conflict with each other in a single reaction. A greedy graph-expanding 

algorithm was used.  In many regards, this is the work most similar to ours. It is 

different in the respect that it focuses on creating many assays and selecting only 

those that are compatible rather that our strategy of multiplexing existing assays 

without excluding any. 

Our proposed method provides three clear advantages over the state-of-the-

art. First, it allows us to handle the two types of dimers (amplifiable and non-

amplifiable) separately. This is desirable because amplifiable dimers cause 

substantially more issues than non-amplifiable ones and thus it may be desirable to 

allow several non-amplifiable dimers rather than accepting a single amplifiable one.  

Second, it allows the use of existing assays that have already been validated. This 

allows conversion of legacy PCR assays to next-gen sequencing multiplexes, and also 

overcomes the recurring issue that only 80-90% of RNA assays will work on difficult 

specimens by allowing all assays to be individually designed and validated prior to 

multiplexing. Third, it allows a group of existing PCR assays to be partitioned into 

multiple multiplexes. This may be desirable when there is a conflict between two 
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required assays that prevents them from being run in the same multiplex or when 

there is a limit on the maximum number of assays per multiplex. 

 

Methods 

Our goal is to organize a set of PCR reactions into a pre-defined number of 

multiplexes. This organization must prevent any two assays that would form an 

amplifiable dimer from being put in the same multiplex. The grouping of PCR 

reactions must also minimize the sum of the non-amplifiable pairwise dimers present 

in each multiplex. We assume that dimers only form in a pairwise manner between 

assays. We do not anticipate or assume that higher order dimers will occur. For 

example, we assume that putting three assays into a multiplex will not cause a dimer 

to form if none of the three possible pairings of results in a dimer. Additionally, we 

want to limit the total number of assays present in each multiplex to a pre-defined 

number to control the depth of multiplexing. Unlike other methods, we only focus on 

existing primer sets, and do not make attempts during oligo design to minimize the 

risk of dimers forming between different reactions. 

 

We define an integer program as follows: 

Parameters: 

𝑁 ∈ 𝑍! ∶=   the  number  of  assays  to  be  multiplexed 

𝑛 ∈ 𝑍! ∶=   the  maximum  number  of  assays  to  be  put  in  one  multiplex 

𝑀 ∈ 𝑍! ∶=   the  number  of  groups  (multiplexes) 

 

We define the decision variable, 𝑥!" ≔ 1 if assay 𝑖 is in group 𝑗 and 𝑥!" ≔ 0 

otherwise, for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. Note that we use the term “group” here to represent 

a subset of assays multiplexed together into a single reaction. 
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We define the first constraint to ensure each assay is assigned to one and 

only one group: 

 

𝑥!" = 1  !∈!    for all 𝑖 ∈ 𝐼 
Equation 1 

 

We next define a constraint to ensure that no more than n assays are 

assigned to any group: 

 

𝑥!" ≤ 𝑛        for  all  𝑗 ∈ 𝐽
!∈!

 

Equation 2 

 

Note that it was previously stated that amplifiable dimers were not allowed 

within a multiplex. Rather than writing a constraint to prevent this, we instead 

penalize this occurrence in the objective function. In order to assign penalties to 

pairings of assays, we need to define a new binary variable. We let 𝑦!"# = 1  if 𝑖 and 𝑘 

are both in group 𝑗, and 𝑦!"# = 0 otherwise, for all 𝑖, 𝑘 ∈ 𝐼 and  𝑗 ∈ 𝐽. We write the 

constraint as: 

 

𝑦!"# ≥ 𝑥!" + 𝑥!" − 1,                for  all  𝑗 ∈ 𝐽,        𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑘 
Equation 3 

 

We assume that a penalty matrix 𝑅!×! provides the penalty of putting 

reactions 𝑖 and 𝑘 together, with each element being 𝑟!". If putting reactions 𝑖 and 𝑘 

together does not result in any amplifiable or non-amplifiable dimers, then 𝑟!" is set 

to 0. If there is a non-amplifiable dimer, then 𝑟!" is set to an arbitrary value of 1 to 

slightly penalize this undesirable situation. If there is an amplifiable dimer, on the 
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other hand, 𝑟!" is set to a large number, for example 𝑁!, to ensure that it is always 

preferable to eliminate one amplifiable dimer over any number of non-amplifiable 

dimers. Finally, we write the mathematical programming formulation as: 

 

minimize 𝑟!"𝑦!"#!!!!∈!!∈!  

Subject to:  

𝑥!" = 1          for  all  𝑖 ∈ 𝐼  !∈!     

𝑥!" ≤ 𝑛        for  all  𝑗 ∈ 𝐽
!∈!

 

𝑦!"# ≥ 𝑥!" + 𝑥!" − 1,                for  all  𝑗 ∈ 𝐽,        𝑖, 𝑘 ∈ 𝐼, 𝑖 ≠ 𝑘 

𝑥!" ∈ {0,1}            for  all  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

𝑦!"# ∈ {0,1}          for  all  𝑖, 𝑘 ∈ 𝐼, 𝑗 ∈ 𝐽 

 

Equation 6 

 

This problem was coded into OPL and was solved with CPLEX (IBM, Armonk, 

New York). We optimized multiple problem instances involving the partitioning og 

60-80 reactions into four groups, and the runtime was typically 1 second to 15 

minutes on a single 2.4gHz core system with 4GB memory available on Windows 7. 

These problems were all real problems being solved, and thus, are a good sample of 

problems likely to be experienced in the future.  

 

Determining the optimal number of multiplexes 

Rather than specifying a value of 𝑁, the number of multiplexes, in advance, 

one may wish to optimize this value. Lower values of 𝑁 result in less work in the lab 

each time the assay is run, but higher values of 𝑁 may have the advantage of 
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resulting in less dimers. There is no direct method to quantify the trade-off between 

number of multiplexes and the amount of resultant dimers. It was assumed that 

even one amplifiable dimer was unacceptable, but non-amplifiable dimers may be 

tolerable.  

In order to facilitate decision-making, we create a chart showing the trade-off 

between the number of multiplexes and the number of dimers. It describes the best 

possible solution for each value of 𝑁. If we set the penalty for an amplifiable dimer to 

𝑁!, we can ensure that a higher priority is put on removing amplifiable dimers than 

non-amplifiable ones. From a given value of the objective function, 𝑍∗, we can 

determine exactly how many amplifiable 𝑍∗/𝑁!  and non-amplifiable dimers 

(𝑍∗  mod  𝑁!) are present based on each objective value, where mod is the modulo 

operator. 

In order to determine the trade-off, we need to explore three criteria. Each of 

these values may be determined readily.  

• The number of multiplexes, 𝑁 

• Amplifiable dimers, 𝑍∗/𝑁!  

• Non-amplifiable dimers, 𝑍∗  mod  𝑁! 

 

For example, if 𝑁 = 5 and we obtain 𝑍∗ = 58, we can determine that there are two 

amplifiable dimers and 8 non-amplifiable dimers in this problem. 

To simplify somewhat, we can state that there must never be any amplifiable 

dimers, so the first feasible value of 𝑁 is the lowest value for which there are no 

amplifiable dimers. At this point, we need to decide on the tradeoff between non-

amplifiable dimers and number of multiplexes. For larger problems, these results 

could be plotted as shown in Figure 9. This chart allows the scientist to observe the 

trade-off between dimers and the number of multiplexes. This also provides an 
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important secondary function of allowing the scientist to make the final decision 

based on observation of the results, which is critical for acceptance. This provides 

additional utility as scientists are trained to scrutinize results to make a decision and 

are unlikely to trust a method that gave a solution they could not review. 

 

 
Figure 9: Mock-up of dimers vs. Multiplexes chart. This chart shows how adjusting 

the number of mulitplexes affects the number of dimers. The dotted line shows the 

value where no amplifiable dimers are present. 

Simulation 

In order to understand the effects of various parameters on the performance 

of this multiplexing strategy, we simulated various penalty matrices, 𝑹. Many 

scenarios were studied, but the most valuable studies were the ones where 𝑹 

matrices were randomly generated, with a given probability that any given pair of 

reactions would cause a dimer. The number of assays to be multiplexed was varied. 

In each case, the number of multiplexes to be created was varied as shown in Figure 

9. 

For the first simulation, a total of 100 assays were multiplexed. Rather than 

simulating primer sequences, we simulated the values of the penalty matrix, 𝑹. In 
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real-world scenerios, this is a deterministic process as the primer sequences are 

defined, and generating the penalty matrix is a deterministic process. For simulation 

purposes, we selected 10% probability that any given pair would result in an 

amplifiable dimer, and a 10% chance it would result in an non-amplifiable dimer. The 

variance parameter, 𝒒, was set to 10%. The results are shown in Figure 10. In this 

example, amplifiable dimers were eliminated with 8 multiplexes, and all dimers were 

eliminated by 10 multiplexes. It was noted that the number of amplifiable dimers 

was non-increasing with respect to the number of multiplexes, but the number of 

non-amplifiable dimers was not. This is because an amplifiable dimer is penalized 

substantially higher than a non-amplifiable one, and there are scenarios where 

allowing several dozen non-amplifiable dimers would allow elimination of an 

amplifiable one. In this case, the objective function is still non-increasing. 
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Figure 10: Plot of multiplexes vs. dimers for a simulated scenario involving 100 

reactions where the rate of amplifiable and non-amplifiable dimers is 10%. 

 
The same situation was simulated again, with the rate of both non-amplifiable 

and amplifiable dimers decreased to 5%. The result is shown in Figure 11.  As 

expected, the number of multiplexes required is lower, with only 5 being needed to 

remove amplifiable dimers and 6 being needed to remove all dimers. 
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Figure 11: Plot of multiplexes vs. dimers for a simulated scenario involving 100 

reactions where the rate of amplifiable and non-amplifiable dimers is 5%. 

 
The same situation was simulated again, with the rate of both non-amplifiable 

and amplifiable dimers increased to 15%. At this point, the situation is so extreme it 

is beyond what would be experienced in any realistic scenario with a total of 30% of 

pairings generating a dimer of some type. The result is shown in Figure 12.  As 

expected, the number of multiplexes required is higher, with 10 being needed to 

remove amplifiable dimers and 14 being needed to remove all dimers. This is still 

fairly low considering that many consider it difficult to multiplex even 4 assays into a 

single reaction. If we only attempt to remove only amplifiable dimers, we can still 

average 10 assays per multiplex even with a 15% amplifiable dimer rate. 
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Figure 12: Plot of multiplexes vs. dimers for a simulated scenario involving 100 

reactions where the rate of amplifiable and non-amplifiable dimers is 15%. 

 

Case Study 

In order to verify the effectiveness of this method with respect to its stated 

purpose of creating multiplexed PCR assays without interfering dimers, we created 

PCR assays, verified them, designed a multiplex strategy with the method outlined, 

then ran the obtained PCR assay to verify dimers were not present. Primers were 

designed using RealTimeDesign software (Biosearch Technologies 2014). Each 

primer pair was synthetized and run through a variety of tests to verify it met the 

quality metrics individually. Reactions were re-designed as needed. Dimers were 

detected via AutoDimer software (Butler 2004), and a program was written to insert 

the AutoDimer results into the penalty matrix used by the optimization program. In 
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brief, this program parses the output from AutoDimer, determines which assays are 

involved in each dimer, determines whether the dimer is amplifiable or not, then 

outputs the penalty matrix, 𝑹, in a format that can be readily read by OPL. 

In order to demonstrate the improvement obtained with our method, we 

started by arbitrarily multiplexing primers into two groups as a non-optimized 

method. This process was conducted in the laboratory and not in silico. This attempt 

was conducted before we understood how severely dimers affected our process, and 

only one attempt was conducted as it was immediately clear how poorly multiplexing 

performed when the grouping of the reactions was done arbitrarily. Figure 13 shows 

the results of this experiment. It is clear to a molecular biologist that the majority of 

product present is dimer, especially in the second multiplex where almost no true 

amplicon is present. One can observe the dimers in as the shorter fragments in the 

region indicated by “dimer” and the true PCR product as the longer fragments in the 

region above the top blue line. These were next-gen sequenced, but little meaningful 

data were obtained, as nearly all reads were the unwanted dimer products. 
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Figure 13: Non-optimally multiplexed PCR. Two multiplexes (1,2) run. +/- indicates 

whether positive control (with template) or negative control (no template). RT+/RT- 

indicates whether reverse transcriptase was added. Different multiplexes are run on 

the horizontal axis, and the direction of the electrophoresis is from the top to the 

bottom, such that smaller fragments appear lower on the gel. The smallest band on 

the ladder is 50bp, and the second is 100 bp. Dimers appear as small fragments 

between the two blue lines. Based on this figure, it is clear that nearly all product of 

the reaction is dimer. 

 
We then used our optimization method to multiplex the reactions, and 

sequenced them using a custom Ampliseq panel on Ion Torrent PGM. Two reactions 

had to be removed after viewing results. Two reactions caused an apparent single-

primer dimer, which likely occurred during the emulsification PCR step and thus 

would not be captured by our method.  
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Figure 14: Comparison of read length with random multiplexing (left) and 

multiplexing via the discussed method (right). Dimers are less than 50bp long, and 

amplicon is larger than 50bp. With random multiplexing, nearly all reads are dimer, 

while less than 5% of the reads are dimer after using the discussed method.  

 
After using our multiplexing method, no dimers were visible by gel (Figure 

14). When the same set of primers were randomly assigned to groups and 

sequenced on the Ion Torrent PGM, nearly all reads were dimer. Dimers can be 

readily identified by size alone as it is impossible for a dimer to be larger than 50 bp, 

and it is impossible for amplicon to be smaller than 50bp. 

 

Discussion 

We have successfully modeled risk of primer dimer formation and developed a 

model to prevent their formation during multiplexing. This model was tested in a 

case study and performed well. Our method is unique in two regards. First, it 

multiplexes existing assays rather than creating new ones. This allows easier 

multiplexing of assays that are difficult to create, because it is known in advance that 

the assays are able to detect their target prior to multiplexing. Second, we focus on 

preventing dimer formation. Unlike other methods, next-gen sequencing is 

particularly sensitive to dimers. Preventing dimer formation substantially increases 
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the number of usable reads by reducing the number of unusable dimer reads. Our 

method provides an effective solution to an emerging problem. 

The use of an integer program substantially decreases the required effort 

when compared to enumeration of all possible solutions. In the example of 100 

assays being multiplexed into 4 multiplexes of 25 reactions each, a total of 

𝟏𝟎𝟎
𝟐𝟓

𝟕𝟓
𝟓𝟎

𝟓𝟎
𝟐𝟓 = 𝟏.𝟔×𝟏𝟎𝟓𝟕 possible combinations exist. The world’s most powerful 

computer, Tianhe-2, is capable of 38.86 petaflops/s. Using this computer, it would 

take 𝟏.𝟑×𝟏𝟎𝟑𝟓 years. 

The ability to multiplex existing assays is very valuable for those planning to 

convert existing assays from legacy analysis methods to next-gen sequencing. For 

example, Genomic Health may benefit by converting their Oncotype Dx panel to a 

next-gen sequencing assay by this method. This method is also useful for those 

designing particularly difficult assays that are unlikely to work on the first attempt. 

For example, Paradigm Diagnostics and Viomics use this method to multiplex 

complex RNA assays that only have an 80% success rate. This allows assays to be 

optimized individually, then multiplexed. A third use of this method is to multiplex 

assays where only a small number of possible designs work for a given target. For 

example, certain mutations may only be targeted by a single assay design, so 

methods that design many assays until they find one that can readily be added to a 

multiplex are not useful. Paradigm Diagnostics uses this multiplexing strategy for 

this purpose. 

This strategy relies upon an integer program, which typically produces a 

single, unique solution; however, in this case, a series of solutions are produced, 

allowing the researcher to select the one that best fits their situation. It is hard to 

anticipate all factors that will influence the day-to-day use of an assay, and scientists 

generally like to be involved in this decision-making process. For example, a machine 
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may run 96 reactions at a time in a PCR plate with 8 rows and 12 columns. In this 

case, a researcher given the option between seven or eight multiplexes may select 

eight because it allows each patient to have a full row in the PCR plate. Paradigm 

Diagnostics uses the Rotor-Gene Q instrument (Qiagen), which runs tubes that come 

in sets of four, so four multiplexes are preferred. All such circumstances cannot be 

anticipated in advance, and the plot of multiplexes vs. dimers provides a valuable 

tool for decision making by experts. 

In conclusion, we have developed a method to multiplex existing PCR assays 

without creating dimers. This method is proven experimentally to substantially 

decrease the number of dimers present while increasing the relative proportion of 

usable reads. 
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CHAPTER 4 

ROBUST NORMALIZATION OF MULTIPLEXED QUANTITATIVE MOLECULE COUNTING 

ASSAYS AGAINST A KNOWN REFERENCE RANGE  

 

Abstract 

We created a method to normalize gene expression and copy number results 

obtained from next-generation sequencing (NGS) that is suitable for medical 

diagnostics. The method allows direct comparison of a patient specimen to a small 

collection of similar but disease-free tissues. A robust normalization method scales a 

new sample in such a way that it can be directly compared to the reference range by 

eliminating certain competitive effects that are unique within NGS. Unlike other 

methods, ours does not require subjective tuning of parameters. This method allows 

robust normalization of samples with high levels of expression alteration, and from 

samples that are highly degraded. This method was tested via simulation and is used 

by Paradigm Diagnostics, inc. for analyzing patients in their PCDx test. 

 

Introduction 

One of the most difficult computational tasks in modern molecular biology is 

converting RNA expression data into meaningful and useful data (Schlitt 2004). 

When microarrays, the first major such technology, were introduced, a full 

understanding and subsequent cure of cancer appeared eminent (Perez-Diez 2000). 

However, it rapidly became evident that these results required a different type of 

analysis compared to other biological results (Allison 2006; Ioannidis 2009). The field 

of bioinformatics rapidly developed around these new assays, but tended to focus 

primarily on datamining-type techniques such as clustering (e.g., K-means) rather 

than statistical methods (Allison 2006).  
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By the time of this writing, a wide variety of biomarkers that can predict 

response to a particular treatment are known (Von Hoff 2010). Most of these 

markers were not discovered by meticulous mining of well-curated datasets, but 

rather by deliberately designing completely new types of pharmaceuticals that target 

known biomarkers (Moulder 2001; Baselga 2001; Abe 1998). For example, it has 

long been known that estrogen receptor is present at elevated levels in some 

cancers, leading them to be excessively sensitive to estrogen (Jensen 1971). 

Because estrogen is a growth factor, this stimulated cells to proliferate. The drug 

tamoxifen was developed to block the estrogen receptors, and thus halt the growth 

of tumors fueled by estrogen receptors, but was completely ineffective against 

tumors driven by other factors (Abe 1998). 

The field of targeted medicine (a.k.a. precision medicine) involves screening 

patients for factors known to predict drug response prior to treatment (Von Hoff 

2010). This field focuses primarily on oncology due to the severe side effects of the 

drugs and the limited remaining expected. In other forms of medicine, a trial-and-

error approach to trying different drugs may still be the norm. Tests to predict 

treatment response may involve administering a single test for a single drug (e.g., 

testing for KRAS mutations prior to administering cetuximab) (Baselga 2001), a 

cancer-specific panel of a few tests (e.g., ER/PR/HER2 for breast cancer) (Bauer 

2007), or a large panel that involves hundreds of markers broadly suited for many 

cancer types (Von Hoff 2010). Many scientists have conducted small-scale tests for a 

small subset of these markers, and these tests are often effective for a given cancer 

(Baselga 2001). Few have attempted studies that utilize broad-scale panels (Mook 

2007), and even fewer have designed panels that can be used in a number of 

different cancers (Von Hoff 2010). Such a panel is highly desirable for a person who 

has exhausted all options for their cancer, especially if it is an uncommon cancer. 
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Such a panel may discover a treatment that is known to be effective against a 

marker found in the patient’s tumor but is typically used on a different cancer type. 

For example, ERBB2 gene amplifications are occasionally found in testicular cancer 

(unpublished results), and the drug Herceptin is known to be effective against breast 

cancers with ERBB2 amplification (Bauer 2007). 

In this study, we aim to analyze a broad-scale panel containing a diverse set 

of nucleic acid biomarkers that is relevant to multiple types of cancer. This panel will 

measure four main types of nucleic acid events: mutations, mRNA expression, DNA 

copy number, and chromosomal abnormalities (i.e., gene fusions). This current study 

will only focus on the mRNA expression and DNA copy number components. This 

collection of assays will have higher depth (with respect to the total number of 

markers) and breadth (with respect to the types of markers) than most tests 

currently available. The primary goal of using a broad panel is to maximize the 

probability that an actionable marker will be found. For our purposes, we define 

“actionable” to be a marker that allows clinical intervention with the intent of 

extending life or improving quality of life. 

This type of test has unique design features that are different than those 

found in typical tests. Specificity, or 1 minus the type I error, is very important in a 

test of this type. Patients usually have little time left to live and the drugs have 

major side effects. The drugs recommended are also extremely expensive. The risk 

of finding at least one false positive is increased when compared to a test that 

examines a single marker due to the multiple comparison problem. It is essential 

that the Positive Predictive Value (PPV), or the proportion of positive calls that are 

true positives, of the test is also high. It is acceptable to have a fairly poor sensitivity 

(i.e., 1 minus the type II error).  Poor sensitivity is acceptable as the current option 

of doing nothing effectively has 0% sensitivity; and hence, any level of sensitivity is 
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considered to be an improvement over the current state of medicine. This is 

especially true in RNA expression, where no other alternative is available. In the case 

of DNA mutation (not the focus of this paper), other sensitive methods exist so a 

higher level of sensitivity is required. The goal of this analysis is not to be perfect, 

but rather to present patients and their physicians with a better option than what is 

currently available. 

In expression analysis, and to a lesser extent, DNA copy number analysis, 

changes in relative quantities can be substantial- for example, it is not uncommon 

for a gene to be expressed in amounts hundreds of fold higher in a tumor specimen 

than in a cancer-free one (Gordon 2002, Notterman 2001). These outliers consume 

sequencing wells and suppress reads from other genes. Because there are a finite 

number of wells for detection within the sequencing chip, we are effectively 

measuring contrasts. This concern was first reported and addressed by Robinson and 

Oshlack (2010). For example, suppose we have two genes, Gene 1 and Gene 2 

(Figure 15). If Gene 2 is over expressed and Gene 1 remains constant, it will appear 

that Gene 2 is more prolific and Gene 1 is less prolific because the higher numbers of 

Gene 2 compete with Gene 1 for sequencing wells, leading to a downward ”shift” in 

Gene 1.  
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Figure 15: Overexpression on gene 2 causes apparent decrease in the detected 

levels (left) gene 1 in a cancer patient. Actual values are shown in circles, observed 

values are shown in star shapes.  

 

To explain this further, we again examine Figure 15. This figure shows a 

reference sample that has equal amounts of gene 1 and gene 2 in each cell (circle on 

left), leading to equal amounts observed in sequencing (star shape on right). 

However, when the same process is run on a cancer cell (bottom of figure), which 

has increased expression of gene 2, it leads to an apparent reduction in gene 1 by 

overcrowding the sequencing wells (in this example, there are only a total of 10,000 

sequencing wells present). In this situation, we can multiply the 909 counts of gene 

1 by 5.5 to get the corrected value of 5000. Likewise, for gene 2, we can multiply 

the observed 9091 counts by 5.5 to get a corrected value of 50,000 counts. When 

compared to the reference sample, we can see that gene 1 expression is not altered 

(5000 vs. 5000 counts), but gene 2 has experienced a 10-fold increase in expression 

(50,000 counts in cancer vs. 5000 counts in the reference). Ascertaining the 

multiplier needed to normalize the result is the primary topic of this study. 
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As more genes are available, the effect and a solution become more obvious. 

Figure 16 contains both a “normal” specimen, which does not experience alterations, 

and a “cancer” specimen, which contains one overexpressed gene. This picture 

assumes that 1000 reads are sampled from each specimen, and that there is no 

variance. The “true” value is some representation of the actual number of molecules 

in the specimen, and the “reads” value is what is observed from sequencing. These 

assumptions are not realistic but simplify interpretation. It is clear that all of the 

genes that are not overexpressed are decreased to about 1/4 their original 

expression. If one knew the “true” number of genes, correcting for this would be 

trivial. However, this information is not available in real-world situations. Rather, the 

sampled data must be examined. One could look at each read in the cancer sample 

to determine which number it must be multiplied by to equal the normal read. In this 

case, one would obtain: 3.7, 4.0, 4.0, 4.0, 0.2. It is clear that 4 is the correct 

number, and 0.2 is the outlier. Using a robust loss function achieves the same 

purpose: it looks for groups of genes for which a similar multiplier is ideal. We 

explore various types of loss functions throughout this paper to determine how 

different loss functions affect the ability to normalize. 
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Figure 16: Example of the effects of an overexpressed gene in a five-gene panel. The 

top “normal” sample contains no overexpression, and the bottom “cancer” sample 

has overexpression of gene 5. In this simple example, there is no variance and the 

“reads” results are the ones obtained by sequencing. Multiplying the sampled result 

in the cancer sample by 4 corrects for competition by the overexpressed gene. 

 
 This can also be viewed as a robust regression problem (Figure 17). For this 

type of problem, we are trying to determine the slope with a known zero intercept. 

In this instance, the standard least squares method is influenced heavily by the 

outlier as expected, leading to a substantial difference between the slope estimated 

and the known correct value. It is clear that, if robust regression were conducted 
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with a suitable loss function, the resulting slope estimate would be more accurate 

than the least squares answer. 

 

Figure 17: Sample results of a tumor and normal specimen drawn as a regression 

problem. The solid line represents the known correct solution, and the dotted line 

represents the solution obtained by standard least squared regression with an 

intercept of 0. This is the same data shown in Figure 16. 

 
When NGS first arrived on the market, new algorithms to analyze the 

expression data they generated were not immediately available. As a result, many 

turned to methods designed for microarray. These include Lowess normalization 

(Yang 2002) and quantile normalization (Irizarry 2003). However, microarray is 

substantially different from next-gen sequencing when it comes to measuring 

expression. In microarray, each gene can be read individually. Thus, the competitive 

effects observed in next-gen sequencing are not a concern. 

The reads per kilobase per million mapped (RPKM) method (Wagner 2012) 

was one of the first methods designed specifically for next-gen sequencing. It is 

often still used on NGS data for its simplicity- basically, the number of reads 

obtained for a given gene are divided by the total number of reads obtained. RPKM 

makes no effort to compensate for competitive effects. This method works 
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reasonably well for large panels (for example, 20,000 genes) where only a few 

hundred experience altered expression levels, because the number of altered genes 

is very small in comparison to the number of unaltered genes, and thus, they don’t 

occupy enough sequencing wells to alter apparent gene expression of others 

substantially. 

Robinson & Oshlack (2010) proposed the Trimmed Mean of M values (TMM) 

normalization method to overcome this. They assumed that the majority of genes 

are not differentially expressed. They log transformed data to decrease variance, 

especially from very high values. They then compared gene ratios between a new 

specimen and a reference, removing the upper and lower x% of the ratios. Using the 

remaining data, they estimated a scaling factor that can be used to adjust a sample 

to align it to the reference. 

The state of the art in this field is tailored to large-scale research projects. 

Our aim in this project is to design a method that is useful in real-world clinical 

situations. Medical diagnostics typically focus on small subsets of genes (20 to 200) 

that are expected to have altered expression. In these cases, the assumption that 

the vast majority of genes will be unaltered is not valid. Unlike the TMM, we don’t 

need to identify genes with altered expression, nor do we need to assume that the 

majority of genes are not altered. Our only assumptions are: 1) when genes 

experience altered expression, the magnitude of expression alteration is independent 

for each altered gene and 2) there is a subset of genes that are not altered. While 

our method does assume that there are unaltered genes that can be used for 

normalization, it does not have hard limits on what proportion of genes are unaltered 

nor does it require identification and exclusion of altered ones. Our proposed method 

also accounts for variance in gene expression in addition to the mean, providing a 

model of greater fidelity to describe this complex process. 
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Methods 

We want to develop a method to analyze next-gen sequencing data that will 

allow normalization and identification of significant events in both RNA and copy 

number. We assume that DNA library construction (copy number and mutation) is 

independent of RNA library construction (expression). We additionally assume that 

each library made from RNA is independent of the other RNA libraries, and thus, 

must be normalized separately. 

Our primary goal in this normalization process is to center the data correctly 

without the need to identify outliers (i.e., genes that experience significant 

alterations upward or downward in expression). As shown in Figure 15, once the 

scaling factor is known, one can simply multiply the expression results by this 

number to get the data adjusted so that it can be directly compared to the values 

obtained in cancer-free tissues. Thus, we want to use a loss function that focuses on 

groups of values that are similar to cancer-free tissues and tends to ignore extreme 

values. This is effectively the opposite of the standard least squares loss function, 

which puts high weight on extreme points.  

We calculate 𝒂 as the input that yields the minimum value over a loss function 

(see example in Figure 16 above). The loss function yields a value that estimates 

how well a given value of 𝒂 serves to align a cancer specimen to a previously 

determined reference range. A well-selected loss function will have a high probability 

of yielding a minimum at the correct value of 𝒂. While the correct value of 𝒂 is 

usually not known in advance, simulated data based on known values can be used to 

determine the accuracy of different loss functions. Additionally, paired samples 
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handled in different ways can be sequenced and normalized by a given loss function, 

with correlation of the final result being a measure of loss function accuracy. 

Although these loss functions are typically not convex, our method only 

requires finding a minimum over a single parameter with a narrow range of values. 

Indeed, a value of 𝒂 less than one would imply that genes experienced decreased 

expression. After running over 100 actual cases, it became apparent that values of 𝒂 

greater than five are not observed. Thus, simply enumerating values over a given 

range, for example between 0.5 and 5 with increments of 0.01, can be done within a 

second on a modern computer. 

This is a novel method for comparing one sample to a reference range while 

being robust to outliers. In this application, outliers are the most interesting results, 

so a method that allows normalization in their presence is highly desirable. This 

method does not require the comparison of results to additional pre-defined 

reference genes under the (often false) assumption that the reference genes are not 

altered. Once normalization is complete, standard statistical tests can be done, such 

as a t-test, to determine if individual genes are altered.  

 

Derivation of loss function 

We want to find the value of 𝒂, a scalar multiple that corrects for well 

competition, i.e., the apparent decrease in reads in response to an overexpressed 

gene. To generate a custom loss function, we start with a logistic function (Equation 

1). This function was selected because it is robust to outliers, i.e., it gives higher 

weight to groups of data points that are similar and lower weight to individual outlier 

points. For now, we only assume that 𝒙 is related to 𝒂. The exact nature of this 

relationship will be explored later. 



 59 

𝒇 𝒙 =
𝟏

𝟏 + 𝒆!𝒙
 

 

Equation 1 

We then subtract ½ and square the function to make it two-tailed (Equation 

2). This is necessary to penalize both overestimation and underestimation of 𝒙. 

𝒇 𝒙 =
𝟏

𝟏 + 𝒆!𝒙
−
𝟏
𝟐

𝟐

 

 

Equation 2 

The plots of the two functions can be seen in Figure 18. It is clear that 

modifying the function in this way converts a one-tailed function to a two-tailed one. 

We also note that as the value of x moves away from zero, the slope of the line 

approaches zero. This tendency gives less weight to extreme points when we use 

this as a loss function. 
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Figure 18: Logistic function (top) and the modified function created by subtracting 

1/2 then squaring the logistic function (bottom). 
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We then make a few modifications to make this function work in this 

application. We define the following parameters: 

𝒎 ≔ The number of genes in the panel 

𝑰 = 𝟏,𝟐,…𝒎 ≔  The set of genes in the panel 

𝝁𝒊 ≔ Estimated mean expression from the reference range 

𝝈𝒊 ≔ Estimated standard deviation of expression from the reference range 

𝒙 = 𝒙𝟏,𝒙𝟐,… ,𝒙𝒎 ≔ An array of observations for each gene in the new sample 

to be normalized 

𝒂 ≔ The normalization parameter 

 

We replace the x term with the statistical distance and take the sum over all 

genes to find the overall penalty for a given value of 𝒂.   

 

𝑳 𝒙,𝒂 =
𝝁𝒊
𝝈𝒊

𝟏
𝟏 + 𝒆!(𝒙𝒊!𝒂𝝁𝒊)/𝝈𝒊

−
𝟏
𝟐

𝟐  

𝒊∈𝑰

 

Equation 3 

 

The minimum value of 𝑳(𝒙,𝒂) solves this problem by determining the best 

value of 𝒂. This is true because the equation was written to assign lower values of 

𝑳(𝒙,𝒂) to better solutions as defined by our model, i.e., where the reads of many 

genes in the new sample are similar to the reference range. That is, 

𝒂∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝒂∈𝑨𝑳 𝒙,𝒂 . 

 

Logarithmic scale  

This method may also be performed on the logarithmic scale. This may 

particularly useful for RNA sequencing, where one may consider a decrease to 1/10 
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of the original expression level being of the same magnitude as an increase to 10 

times the original expression. This case is handled in a similar manner as the 

previous description involving a linear scale. All values in both the reference range 

and the sample are first log-transformed, and then used to calculate the mean and 

standard deviation.  

 

𝑳 𝒙,𝒂 =
𝝁𝒊
𝝈𝒊

𝟏
𝟏 + 𝒆!(𝒙𝒊!𝝁𝒊!𝐥𝐨𝐠  𝒂)/𝝈𝒊

−
𝟏
𝟐

𝟐  

𝒊∈𝑰

 

Equation 4 

 

Note that the only difference in this equation is the substitution of (𝒙𝒊 − 𝝁𝒊 − 𝒂) 

for the distance term rather than the original (𝒙𝒊 − 𝒂𝝁𝒊). The value of 𝒂 is then added 

to all the log-transformed values from the original sample, and then they are 

transformed back to natural units. 

  

Other Loss Functions 

In addition to our proposed loss function, we explore three other loss 

functions: Huber’s T, Hampel’s 17A, and least squares. Each of these functions has a 

different set of properties, and represent different strategies to handle loss. Least 

squares is by far the most common loss function. It has a parabolic shape, and gives 

increasingly higher weight to outliers.  

 Huber’s T function acts like least squares when |𝒛| ≤ 𝒌, then increases linearly 

beyond this range (Figure 19). While this function does assign more loss to outliers, 

the loss increases linearly. We selected a value of 𝒌 = 𝟏 for our simulations and found 

that varying this parameter to values of 2 or 3 had little impact on results. Hampel’s 

17A function is similar to our function in respect to its tails, which become flat when 
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𝒛  becomes large (Figure 19). We used 𝒌 = 𝟏, 𝒃 = 𝟐 and 𝒄 = 𝟑 for Hampel’s 17A 

simulations. In all cases, we calculated 𝒛 as the statistical distance in the same 

manner as before, i.e., 𝒛 = (𝒙𝒊 − 𝒂𝝁𝒊)/𝝈𝒊 for a given value of 𝒂. 

 

   

Figure 19:	  Plot of Huber's T function with k=1 (left) and Hampel’s 17A function with 

parameters k=1, b=2, c=3 (right). 

 

Pre-normalization 

In practice, it was observed that the total number of reads obtained from a 

specimen varied widely. It was not uncommon to observe two similar samples that 

obtained a total number of reads that varied by more than ten fold. This may be due 

to many factors, but the major culprit is likely the quantity of amplifiable template 

present. Calculating the value of 𝒂 for a given sample will correct for this; however 

the possible values of 𝒂 would span a wide range of values in this case.  

We decide to pre-normalize samples so that the sum of all reads is the same for all 

samples. We calculate the normalized value, 𝒙𝒊!, as: 

 

𝒙𝒊! =
𝒙𝒊
𝒙𝒋𝒋∈𝑰
       for all 𝒊 ∈ 𝑰 

Equation 5 
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This results in the sum of all 𝒙𝒊! being 1 regardless of the total number of reads 

obtained. This also insures that the values of 𝒂 fall over a much smaller range. 

Pseudocode 

 

1. Create a vector a.vec of enumerated values of 𝒂 

2. Obtain raw.counts vector from the new specimen 

3. Obtain ref.raw.counts matrix (genes x samples) from the reference range 

4. Pre-normalize raw.counts and each column of ref.raw.counts as: 

5.      norm.counts[i] = raw.counts[i]/sum(raw.counts) for i=1..gene.count 

6.      save result as norm.counts and ref.norm.counts 

7. Calculate the mean and s for each row of ref.norm.counts 

8. for each value i in a.vec 

9.      Loss.net=0 

10.    for (each gene j)  

11.             Loss.net += mean[j]/s[j]*(1/(1+exp(-(norm.counts [j]- 

                  a*mean[j])/sqrt(norm.counts [j])))-1/2)^2 

12.             Loss[i]=Loss.net 

13.     end for 

14. end for 

15. Determine which i results in the lowest 𝑳(𝒙,𝒂) (Equation 4), and select a[i] 

16. For visual inspection, create a plot with a.vec on the x-axis and Loss on the y- 

    axis 

17. Repeat above for each library if multiple libraries where used 

Table 3: Pseudocode used calculate 𝒂. 

 

Simulation 

We assume that there are a fixed number of reads, 𝒏, obtained from each 

sequencing run. In reality, various numbers of reads are obtained, but by pre-

normalizing the raw results we can achieve the same effective result. We define 𝒓𝒊 to 

be the average number of counts obtained for gene 𝒊 in the reference sample, and 𝒄𝒊 
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to be the number of counts obtained for gene 𝒊 in a patient sample. 𝑰 is the set of all 

genes in the panel. If we ignore stochastic effects and rounding, the number of reads 

detected, 𝒅𝒊, for each gene is: 

 

𝒅𝒊 =
𝒏
𝒄𝒊𝒊∈𝑰
𝒄𝒊      for all 𝒊 ∈ 𝑰 

Equation 6 

Three major assumptions need to be made, regarding the mean, the standard 

deviation, and the number of genes in the panel. The mean and standard deviation 

describe the true distribution from which both the reference range and unaltered 

sample are drawn. For this purpose, we randomly generated reference range means 

from U(100,10000) and coefficient of variance was sampled from a uniform 

distribution with minimum and maximum values of 0.1 and 0.2 (i.e., U(0.1,0.2)). All 

variances/means were re-generated for each sample of this simulation. For each of 

the six samples in the reference range and the simulated patient sample, a value 

was generated by the distribution of that gene’s reference. If it is selected as an 

overexpressed gene, the simulated value was multiplied by the selected value to 

achieve the “overexpressed” read in the simulated patient sample.  

The calculation for the actual (correct) value of 𝒂, which we call 𝒂′, can be 

determined when data is simulated, allowing us to determine the accuracy of our 

algorithm when compared to the true value. By solving Equation 6 for 𝑐!, we realize 

that 𝑎′ is simply the inverse of the ratio: 

 

𝑐! =
!!!∈!

!
𝑑! Therefore 

𝑎! =
𝑐!!∈!

𝑛
 

Equation 6 
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We have developed an R code to vary the two variables requested (proportion 

overexpressed and number of genes), and run multiple replicates such that we can 

obtain multiple estimates of 𝑎 for similar sets of conditions. Using these values, we 

can determine the standard deviation of the value of 𝑎 obtained. The pseudocode for 

this program is shown in Table 4.  
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1. Create a vector of overexpression levels (single value or sampled for 

distribution) 

2. Create a vector of gene counts to simulate (e.g., 10,20,30,…) 

3. Create a vector of proportion of genes overexpressed (e.g., 0, .1,..., 1) 

4. Define the number of reference samples (i.e., 6) and replicates (i.e., 100) 

5. for each value of i in the counts vector 

6.    for each value of j in the proportion vector 

7.         for each value of k in the replicates vector 

8.              sample mean from U(100,10000) for each gene (counts total genes) 

9.              sample sd from U(.1,.2)*mean for each gene 

10.             sample values for each of 6 reference range samples from N(mean, sd) 

11.              calculate mean (ref.mean) and standard deviation (ref.sd) from the   

                 reference range 

12.              sample a new result for each gene (new.sample) from N(mean, sd).      

                (This is our new sample that will be normalized) 

13.              select proportion*counts genes randomly from new.sample,  

                  then multiply each one by a value in levels, sampling a new value 

                  from levels for each one. (This simulates overexpression) 

14.              Calculate a.e, the expected value of the normalization parameter a,  

                 as sum(ref.means)/sum(new.sample) 

15.              Pre-normalize: new.sample=new.sample*sum(ref.means)/sum(new.sample) 

16.              determine a as the minimum value of the loss function 

17.         end for 

18.         calculate the mean value of (a.e-a)/a.e 

19.         calculate a.sd as the standard deviation of a over the replicates 

20.     end for 

21. end for 

Table 4: Pseudocode used to simulate values of a. 

 

In the first run of this simulation, all genes designated as altered experienced 

an overexpression of 5-fold. In Figure 20, we explore the difference between the 

value of 𝑎 we estimated and the true value of 𝑎. Note that our method is nearly 
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perfect until the proportion of genes overexpressed reaches 40%, then the accuracy 

drops substantially around 50%. We note no relationship between the number of 

genes and the variance of our estimate of 𝑎, indicating that our assay is suitable for 

both large and small panels of genes. 

 

  

Figure 20: Contour plot of the difference between the estimated value of 𝑎 and the 

actual value, 𝑎′, where all overexpressed genes experience a 5 fold increase. 

 

Figure 21 is interesting at it shows a massive loss in precision at the edge of 

the plateau. After some consideration, this loss of precision at the edge of the 

plateau makes sense. At this boundary, either group of points (the unaltered or 

overexpressed) may define the minimum, and very small stochastic effects 

determine which set (reference or overexpressed) achieves the lowest value. 
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Figure 21: Contour plot of standard deviation of the 𝑎 estimator as the proportion of 

5-fold overexpressed genes and the number of genes is varied. 

This is a fairly artificial situation as all genes are altered to the same extent. 

In practice, genes will be altered to varying levels. The strong dividing line we see 

here as the algorithm switches from treating the unaltered genes correctly to 

treating the overexpressed genes as unaltered would not occur in a real-life scenario, 

as genes are typically altered at varying levels. Additionally, stated assumption of 

this model was that genes would be altered to varying extents when they are 

overexpressed. 

The simulation was repeated under a more complex yet realistic scenario. As 

before, a proportion of genes was selected to be altered. Rather than setting all 

genes to be overexpressed 5 fold, we tried two other scenarios. First, we sampled 

the fold change from the normal distribution with mean 5 and standard deviation 3 

(Figure 22). Second, we tested a more skewed distribution by sampling the fold 

change from 𝑒!, where 𝑥 is distributed normal(0,3). The result from the second, 

skewed distribution is shown in Figure 23. 
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Figure 22: Contour plot of the difference between the estimated value of 𝑎 and 

the actual value, 𝑎′, where overexpressed genes experience a fold increase from 

N(5,3). 

 

  

 

Figure 23: Contour plot of the difference between the estimated value of 𝑎 and 

the actual value, 𝑎′, where overexpressed genes experience a fold increase from 

𝑒! , 𝑥~𝑁(0,3). 
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Figure 24: Contour plot of the difference between the estimated value of 𝑎 and the 

actual value, 𝑎′, where genes are underexpressed to 0.01 fold the original level. 

 

In order to better understand the distribution of results obtained, we used the 

simulation to generate histograms of the values of 𝑎 obtained, expressed as (actual-

expected)/expected. Figure 25 shows these histograms, with various values of 

proportion overexpressed and gene counts explored.  Note that only three different 

values of gene counts were explored, as this factor doesn’t appear to affect the 

results. 100 replicates were used for each histogram, and genes were overexpressed 

exactly 5 fold. These results further demonstrate that the method is fairly stable 

even under a worst-case scenario such as this one.  
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Figure 25: Histograms of (actual-expected)/expected values of 𝑎 for various 

combinations of genes and proportion overexpressed, where genes are 

overexpressed 5 fold. The linear method was used for this figure. 

 
The effects of various loss functions were explored. The results of the 

scenario where overexpression is distributed as normal (5,3) was selected for this 

simulation because we decided this scenario was the most representative of the 

types of data we would experience in routine clinical testing. The results are shown 

in Figure 26. An interesting trend is immediately observable: the behavior at the 
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extremes of a loss function determines how well the function can normalize. As 

expected, functions that give increasing weight to outliers, such as least squares, 

perform poorly. Functions that become flat at the extremes, which effectively give 

less weight to outliers, perform the best. Our method and Hampel’s 17A function fall 

into this category, and they show similar and effective normalization. Huber’s T 

function has linear behavior at the extremes, and as expected performs at a level 

better than least squares but inferior to functions with flatter tails.  
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Figure 26: Contour plot of the difference between the estimated value of 𝑎 and the 

actual value, 𝑎′, where overexpressed genes experience a fold increase distributed 

N(5,3) using different loss functions: our proposed method (top left), Huber’s T (top 

right), Hampel’s 17A (bottom left), and least squares (bottom right). The color scale 

ranges from -7 to +7. 

 
 
Application 

Six colon and six lung cases were processed. Each case included both tumor and 

adjacent normal specimen, and both specimens were provided in both frozen and 

formalin-fixed, paraffin-embedded (FFPE) format. Thus, each case provided four 

specimens. We selected both FFPE and frozen specimens because they are 
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completely different formats of the same specimen. If we can analyze both and get 

similar results, we can demonstrate that our method is consistent. While the raw 

results initially look completely different between FFPE and frozen specimens, 

especially in respect to mean and variance of gene expression, we should detect 

similar results after normalizing as both specimens are experiencing the same 

underlying molecular events. Upon analysis of the results, it was clear that the set of 

four specimens provided for three of the lung cases did not match each other based 

on germline SNPs, and thus, these were eliminated from the analysis yielding a final 

set of six colon and three lung cases. 

Analytes were extracted, then quantified and normalized. The Highpure FFPE 

RNA micro kit (Roche 04823125001) was used. The protocol was modified slightly to 

use a heptane/methanol precipitation to deparaffinize. The DNA was purified with the 

QiaAmp DNA FFPE tissue kit (Qiagen 56404). The quantity of RNA and DNA was 

quantified with the Qubit fluorometer, then adjusted to a fixed concentration. The 

volumes were reduced to a minimum of 100uL for DNA and 20uL for RNA in attempts 

to reach the target concentration. 

Libraries were created via PCR. RNA was converted to cDNA via a proprietary 

process. Libraries were then built via PCR, with four replicates being created for each 

library. The ExoSAP-IT reagent was used to remove unincorporated primers, then 

libraries from a single patient were mixed. 

Sequencing occurred via the standard Ion Torrent sequencing protocol 

provided by Life Technologies using 318 chips. On some of the colon samples, the 

RNA needed to be repeated. In this case, the RNA only was run on 314 chips, which 

resulted in similar coverage to that obtained by combined RNA and DNA on a 318 

chip. 
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Sample Plots of a, the Normalization Parameter 

Figure 27 shows loss plots (plots of 𝑎 vs. 𝐿(𝑥, 𝑎)) obtained from a 

tumor/normal pair from a lung adenocarcinoma patient. Note the smooth, inverted 

bell curve shape of the normal specimen, as expected. The x-axis is the value of 1/𝑎, 

and the y-axis is the loss. We expect smooth bell shaped curves for the normal as is 

seen in Figure 27. When overexpressed genes are present in a tumor specimen 

(right), we observed skewedness towards higher levels of 1/𝑎 and multiple local 

minima. We choose to plot 1/𝑎 on the x-axis rather than 𝑎 to make the chart more 

intuitive to view. The tumor specimen shows overexpression of genes in the library 

depicted by red, causing a skewed distribution shape and decrease in optimal 1/𝑎 to 

compensate. As discussed in Chapter 3, the RNA expression assays were split into 

four multiplexes. Because each multiplex is normalized separately, this process was 

run four times, yielding four independent optimal values of 1/𝑎. 
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Figure 27: Expression normalization loss plots for various values of 𝑎 in a healthy 

tissue (left) and a cancer tissue (right). The x-axis the value of 1/𝑎, and the y value 

is loss. Each color indicates a different library (set of multiplexed assays), and the 

dot on each line shows the optimal value found for 1/𝑎. 

 
Discussion 

We created a method to normalize new results against a reference range that is 

robust to outliers. Unlike other methods, our method does not require identification 

of outliers. This is a key distinction, because it eliminates the need to make an 

assumption that may not hold true for all instances and removes any subjectivity 

from the interpretation of results. We use a robust loss function in a manner similar 

to robust regression.  

This strategy is novel and is robust to extreme outlines within the dataset. 

Data was simulated by adding random noise to known values, and the accuracy was 

measured by comparison of the normalized values to the known values that were 

used to simulate the data. This strategy is in many ways ideal because at the time of 
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writing, there is no accepted method to establish baseline truth in complex molecular 

expression results, making it impossible to have a comparator to determine the 

accuracy of our results. 

We explored a variety of loss functions for this robust normalization method. 

In general, those that gave less weight to outliers performed better. Examples of 

functions that perform well are our proposed function and Hampel’s 17A. Functions 

that give increasing weight to outliers, i.e., least squares, performed poorly. Huber’s 

T function gives increasing weight to outliers on a linear basis and showed 

intermediate performance as expected. 

 We are currently running a series of patient samples in duplicate to better 

understand precision of the normalized result obtained with this method. We have 

shown that the same specimen can be processed in FFPE and frozen formats with 

similar results obtained. We are also running other methods to assess gene 

expression and copy number (such as FISH and IHC) to compare our method to the 

current standard. While FISH and IHC are only available for a small subset of the 

genes in our panel, this strategy provides additional evidence that our method works 

for at least some subset of the assays within the panel. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

We have successfully applied a variety of mathematical techniques to various 

aspects of NGS. While there are many components required to analyzed NGS data, 

we selected ones that posed major hurtles in regard to computational complexity, 

assay design and steps critical to accuracy that currently do not have viable 

solutions. Certain steps that are well defined with clear solutions were not altered, as 

suitable solutions already exist. In the second chapter, we described simple 

algorithm to analyze SNP results to determine whether two samples are from the 

same patient. In the third chapter, we describe a method to multiplex the assays 

that are used in NGS. In the fourth chapter, we describe a method to normalize 

results obtained from NGS, allowing direct comparison between a patient specimen 

and a reference range of disease-free specimens. All of these methods have a similar 

theme: they directly address a specific issue demanded by clinical medicine, and 

they all have very low computational complexity. These aspects are interrelated, as a 

clinical test offered to large numbers of patients must use a reasonable amount of 

computing power. If too much computing power were required, the test would not be 

feasible. Computational analysis is currently not reimbursable by insurance or 

Medicare and thus it would be impossible to fund capital or operational expenses of a 

large computing infrastructure. 

At the time of writing, all of these projects are in use for their designed 

purpose. The specimen comparison algorithms discussed the second chapter are 

used routinely in TCGA project. They replaced algorithms that required nearly a full 

days’ worth of computational power on a major hospital’s network, and produced 

better sensitivity and specificity. The multiplexing method discussed in the third 

chapter is routinely used to design new multiplexes when assays are added to PCR-
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based tests offered by Paradigm Diagnostics and Viomics Inc. The normalization 

method is used by Paradigm Diagnostics for analyzing every patient case, and is also 

used by International Genomics Consortium for various research projects. 

 This work can be extended in many aspects. More in-depth research into the 

current work may be conducted, or similar solutions may be created for other 

problems. For example, the multiplexing algorithm can be expanded to estimate the 

cost of the number of multiplexes into the objective function. While there is not a 

one-size-fits-all solution for this, ad hoc solutions can be made for specific projects. 

For example, in the Paradigm Diagnostics’ test, the tubes used come in strips of four, 

so there is little cost to increase from three to four multiplexes, but substantial 

additional cost to move from 4 to 5. The normalization algorithm can be modified to 

account for Poisson variance, i.e., variance that is related to the number of counts 

obtained. This was attempted in the current study, but was not needed because 

most genes had coverage (i.e., number of counts) greater than 500, so Poisson 

variance contributed a trivial amount of variance when compared to the average 

coefficient of variance of 40% observed. However, if genes frequently had lower 

coverage (increasing Poisson variance) or an application with less variance due to 

intrinsic biological factors was used (decreasing variance from other sources), it may 

become valuable to incorporate a calculation for Poisson variance into the variance 

calculation. 

 This research may also be expanded into similar project types. For example, 

understanding the subclonal makeup of tumors of major interest at the time of 

writing. Tumors often consist of multiple subclones, or distinctly different populations 

of cells rather than a single, uniform collection of cells. These subclones are usually 

progressive, i.e., they occur in sequence, which each new subclone obtaining new 

events. Some events, such as copy number and mutation, occur in integral 
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quantities and thus may be well understood by a well-designed integer program. 

Other events, such as gene expression, are continuous and can be well understood 

by datamining-type techniques or mixed integer programs. There are likely 

applications for methods based on loss functions, similar to the strategy used in 

chapter 4. For example, such a loss function could be used as an objective function, 

although this would yield a non-convex problem that could only be practically solved 

with a small number of variables. 

 We have successfully created low-complexity models for complex biological 

phenomena directly related to clinical medicine by carefully tailoring models to 

specific purposes. While these methods are not as broadly applicable as the 

datamining methods used in medical research, they are highly suitable for clinical 

medicine. While the bioinformatics field as a whole is rapidly evolving to more 

complex and generalized methods, our strategy of efficient and specific methods is 

key to bringing discoveries from the intellectual to practical. 
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