
New Multi-nodal Wireless Communication System Method

ECG G 237

by

Frank James

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2014 by the

Graduate Supervisory Committee:

Dr. Martin Reisslein, Chair

Dr. Lei Ying

Dr. Yanchao Zhang

ARIZONA STATE UNIVERSITY

May 2014

 i

ABSTRACT

The purpose of this paper is to introduce a new method of dividing wireless

communication (such as the 802.11a/b/g/n and cellular UMTS MAC protocols) across

multiple unreliable communication links (such as Ethernet). The purpose is to introduce

the appropriate hardware, software, and system architecture required to provide the basis

for a wireless system (using a 802.11a/b/g/n and cellular protocols as a model) that can

scale to support thousands of users simultaneously (say in a large office building, super

chain store, etc.) or in a small, but very dense communication RF region. Elements of

communication between a base station and a Mobile Station will be analyzed statistically

to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with

the given bandwidth defined by the 802.11n wireless specification (use of MIMO

channels will be evaluated). A new network nodal paradigm will be presented.

Alternative link layer communication techniques will be recommended and analyzed for

the affect on mobile devices. The analysis will describe how the algorithms used by state

machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by

new base station transmission behavior. New hardware design techniques that can be

used to optimize this architecture as well as hardware design principles in regard to the

minimal hardware functional blocks required to support such a system design will be

described. Hardware design and verification simulation techniques to prove the hardware

design will accommodate an acceptable level of performance to meet the strict timing as

it relates to this new system architecture.

 ii

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Martin Reisslein for the opportunity to present this

thesis.

To those who have helped me over the many years that I have spend pursing higher

education. I cannot give back the lost time spent studying over long sleepless nights and

the lack of studious attention to the most important elements of life. Thank you.

 iii

TABLE OF CONTENTS

Page

LIST OF TABLES ... v

LIST OF FIGURES vi

CHAPTER

1 INTRODUCTION 1

WiFi Technology ... 1

Cellular Technology ... 3

Cellular and WiFi System Comparison ... 5

2 PROPOSED WIRELESS SYSTEM DESIGN.............. ... 12

Link Layer Communication Model ... 16

Cellular Link Layer MAC.. 21

Link Layer Hardware ... 27

Link Layer Software .. 34

3 MOBILE & BASE STATION 37

Wireless State Machines .. 37

Finite State Machine Behavior .. 38

Roaming ... 41

Cellular Roaming ... 43

PSD Estimation .. 46

Factor and Factor Ranges .. 49

Factors, Factor Levels, and Response Variables 53

Welsh, Yule-Walker, Burg, Covariance, Mod. Covariance, Music 56

 iv

CHAPTER Page

JMP Results, Output Data .. 74

JMP ANOVA, ONE-WAY, TWO-WAY, Results and Conclusions 76

4 SYSTEM DESIGN 82

Hardware Design And Verification ... 86

Hardware Simulation And Verification .. 89

Hardware Performance Simulation ... 94

5 SUMMARY CONCLUSION 96

REFERENCES....... .. 98

APPENDIX

A MATLAB PROGRAM AMPLITUDE/PHASE/FREQUENCY ESTIMATOR…. 100

B MATLAB PROGRAM BURG PSD ESTIMATOR…. ………………………….. 104

C MATLAB PROGRAM BLACKMAN-TUKEY PSD ESTIMATOR…. …………108

D MATLAB PROGRAM COVARIANCE PSD ESTIMATOR…. …………………112

E MATLAB PROGRAM MODIFIED COVARIANCE PSD ESTIMATOR…. ……116

F MATLAB PROGRAM MUSIC PSD ESTIMATOR………………………... ……120

G MATLAB PROGRAM WELCH PSD ESTIMATOR…………...…………... ……124

H MATLAB PROGRAM YULE-WALKER PSD ESTIMATOR……………... ……128

 v

LIST OF TABLES

Table Page

1. 802.11 Real-Time Messages .. 19

2. 802.11 Non-Real Time Messages .. 20

3. Example Cellular UMTS Messages (Wikipedia, 2014) ... 21

4. Sample Link Layer Feature List ... 27

5. Input Signals for PSD Measurement Tests ... 53

6. Response Variables (Measured Results) ... 53

7. Output Response Results (ANOVA) .. 75

 vi

LIST OF FIGURES

Figure Page

1. Overview of 802.11 Subsystems... 3

2. Overview of Cellular Subsystems ... 5

3. 802.11 MAC Layer Communication Note: No RTC/CTS handshake depicted in

diagram above. (Airstream, 2014) .. 7

4. Proposed System Architecture .. 14

5. Simplified System Topology .. 16

6. 802.11 Link Layer Subsystem Partition.. 18

7. Probe Response Exemplar .. 19

8. Example Inter-RAT Handover Setup (4G Source to 3G Target Network) (Barton,

2012) ... 22

9. Example of Inter-RAT Handoff Execution (4G Source to 3G Target Network)

(Barton, 2012) ... 24

10. New Cellular Link Layer Topology With Combined 802.11 Subsystems 25

11. HW State Machines in SoC Architecture ... 28

12. Use of Random Numbers in HW Data Path ... 33

13. Network Frame Headers that most be pre-populated on a per Flow basis 35

14. Frame Format Examples ... 36

15. Cellular Cell Reselection Rule Evaluation Process .. 38

16. LTE Handset (Basic State Machine Terminology)(ShareTechnote, 2013) 40

17. Example of 802.11 Roaming Utilizing Cell Controller Concept 42

18. Example of Cellular Roaming Utilizing Cell Controller Concept 44

 vii

Figure Page

19. 802.11 Mobile Device State Machine ... 45

20. Example Spread Spectrum Tx (5 MHz).. 47

21. Example Spread Spectrum Rx (5 MHz) Mixed with AWGN 48

22. Blackman-Tukey (Signal +no noise, left plot: Signal+noise, right plot),Hamming

Window, Lag=70 .. 54

23. Blackman-Tukey (Signal+no noise, left plot: Signal+noise, right plot), Hamming

Window, Lag = 20 .. 55

24. Blackman-Tukey (Signal+no noise, left plot: Signal+noise, right plot),Hamming

Window, Lag=10 .. 56

25. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right plot), Hamming

Window, Shift = 20 ... 57

26. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right plot), Hamming

Window, Shift = 10 ... 58

27. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased ACF,

Model Order = 30 ... 59

28. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased ACF,

Model Order = 15 ... 60

29. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased ACF,

Model Order = 5 ... 61

30. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), Model Order = 30

... 62

 viii

Figure Page

31. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), Model Order = 15

... 63

32. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), Model Order = 5

... ..63

33. Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot) Model Order = 30

... 65

34. Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot) Model Order = 15

... 66

35. Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot) Model Order = 5.

... 67

36. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot), Model

Order = 30 ... 68

37. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot), Model

Order = 15 ... 69

38. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, right plot), Model

Order = 5 ... 70

39. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot) Model Order =

30... 71

40. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), Model Order =

15... 72

41. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), Model Order = 5

... 73

 ix

Figure Page

42. Output Results (Response) Table.. 75

43. ANOVA analysis of output results (Plot 1: (L) Algorithm vs Mean & Plot 2: (R)

Resolution vs Mean) ... 76

44. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs

Mean) .. 77

45. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs

Mean) - Continued .. 78

46. (2-Way ANOVA) Full Factorial ... 79

47. Tukey HSD Means Test (Test for Interaction) ... 80

48. Packet Walkthrough on Example SoC, (Freescale, 2014) With Newly

Proposed/Designed Wireless Link Layer Capability .. 84

49. Example of a HW Design/IP Verification and Unit Test Environment 92

50. Unit Co-Simulation Test Environment Ported to Real Silicon 93

51. HW Co-Simulation Environment that can be used to test HW Performance 94

 1

CHAPTER 1

INTRODUCTION

Wireless Technologies such as Wi-Fi and Cellular are converging in the market place.

This convergence promotes a need for link layer network technologies that better

facilitates the convergence of these technologies both from the radio frequency (RF)

modulation adaptation perspective as well as from the link layer protocol support

perspective. The following describes the two main wireless technologies and will lead a

discussion in regard to how the link layer protocols will support a new communication

process in reference to wireless communication.

Wi-Fi Technology

Background: Wi-Fi base stations (often referred to as Wi-Fi access points) are devices

that are deployed in disparate locations where RF coverage is needed; they are found in

houses, supermarkets, shops, and college campuses. Often these devices have memory, a

general purpose processor (GPP), a modem which is often comprised of a digital signal

processor, and HW such as a FPGA as well as RF hardware (e.g. filter, amplifier,

impedance circuit, antenna, etc…). Newer designs now have system on chip (SoC)

designs which combine the GPP with the DSP Intellectual Property (IP) technologies so

they provide a more integrated and smaller form factor solution. These designs, however,

require memory and an RF front end to support the receiver(s) and transmitter(s) and

additionally require a network interface for network access to the private network of the

service provide that interconnects with the Wide Area Network (WAN) wired for the

purpose of providing access to the Internet as well as management support interfaces so

that remote operation and maintenance (O&M) can be supported.

 2

The 802.11 base stations such as found on cell towers can provide a modem or wired

network interface that can be multiplexed across a remote microwave channel or

connected directly to fiber, ATM, or Ethernet network.

The RF characteristics of Wi-Fi devices commonly utilize omni-directional antennas.

Multiple antennas on these devices are controlled separately to transmit separate spatially

diverse streams. WiFi device modulation techniques such as the use of Complementary

Code Key (CCK) in concert with Quadrature Phase Shift Keying (QPSK) for 802.11b,

CCK and Orthogonal Frequency Division Multiplexing (OFDM) in concert with

Quadrature Amplitude Modulation (QAM) (e.g. 16 or 64 QAM) or Phase Shift Keying

(PSK) (.e.g. BPSK or QPSK) are both used for 802.11g, OFDM with QAM or PSK used

on each subcarrier is only used for 802.11a, 802.11n (max. 64 QAM, rate 5/6) utilizes

OFDM in concert with QAM and PSK modulation techniques, and lastly 802.11ac which

can utilize 256 QAM (rates 3/4 and 5/6) with use of MIMO to perform spatial diversity

between multiple OFDM user streams using much smaller cell sizes.

Management support interfaces for Wi-Fi devices are defined by the Telecommunications

Management Network (TMN) model which encourage protocol support for different

layers of a network infrastructure. Simple Network Management Protocol (SNMP) is the

predominant protocol in national provider networks today.

 3

Figure 1. Overview of 802.11 Subsystems

Cellular Technology

Background: Cellular base stations, as is the case with Wi-Fi base stations, are located

across the country in proximity to cellular towers. Often these towers are visible in close

proximity to interstates, highways, and neighborhoods; these towers are found

(sometimes camouflaged) in areas where RF coverage is needed. These towers are

commonly referred as “cell towers” and often are equipped with dipole antennas so as to

reduce impedance mismatch between the receiver and the antenna (impedance mismatch

causes Voltage Standing Wave Ratio (VSWR) which is a measure of reflected voltage)

 4

that causes transmitter signal distortion. As is the case with Wi-Fi devices, these devices

have memory, a general purpose processor (GPP), a modem which is often comprised of

a digital signal processor and other hardware such as a FPGA. Newer designs now have

system on chip (SoC) designs which combine the GPP with the DSP technologies so they

require a smaller form factor. These designs, however, require memory and an RF front

end (e.g. filter, amplifier, impedance circuit(s) and antenna(s)) to support the receiver(s)

and transmitter(s) and additionally require management support interfaces so that remote

operation and maintenance (O&M) can be supported. Unlike Wi-Fi, these devices have

additional subsystems that manage roaming between many different cells across the

country. In addition, many transceivers are located at the same location. The common

modulation techniques used by cellular base stations are Gaussian Minimum Shift

Keying (GMSK) for Global System for Mobile Communications (GSM), that is data is

sent through a Gaussian filter before it is MSK modulated/demodulated, Code Division

Multiple Access (CDMA2000) in concert with PSK (e.g. BPSK, QPSK), WCDMA in

concert with PSK which is used for Universal Mobile Telecommunications System

(UMTS) systems. T-Mobile and AT&T utilize UMTS/GSM, while Verizon utilizes

CDMA2000 for voice transmissions while using LTE which uses Orthogonal Frequency

Multiple Access (OFDMA) in concert with PSK or QAM on each subcarrier for data

transmission. Cellular base stations often utilize dipole antennas that reduce the amount

of impedance mismatch found in 50 ohm coax connections between the antenna and the

RF front end. The RF front end is comprised of a high bandwidth filter(s), antenna(s),

impedance circuit(s), and amplifier(s).

 5

Figure 2. Overview of Cellular Subsystems

Wireless Technology Not Considered

Other wireless protocols include Bluetooth, 802.11z, 802.11p (MS-Aloha) and Wi-Fi-

Direct; however, these protocols are not used to support a large number of users

simultaneously. This paper is only focused on systems that can support a large user

population.

Cellular and Wi-Fi System Comparison

Wi-Fi RF cell coverage sizes are limited by their higher frequency (2.4GHz and 5GHz

versus 900MHz), limited allowed power transmission interference from other devices in

 6

this unlicensed band (though somewhat mitigated by its modulation technique), and more

importantly by their link layer communication specification. Unlike cellular

communication, Wi-Fi communication devices specify a link layer communication model

based upon a CSMA/CA format. The CSMA/CA format is not as effective multiple

access protocol as is the case with TDMA or CDMA technologies. Though Wi-Fi can

close links at longer distances, greater amplification and antenna directivity is required as

well as cooperative changes to the Wi-Fi link layer timing specifications. Example: DIFS

is the amount of time a station must sense a clear radio before beginning a new

transmission sequence. Note that a node can format and buffer a data frame to be

transmitted during this time interval. SIFS is the amount of time a station must wait

before sending or beginning to receive a RTS, CTS or ACK frame, note that the SIFS

time includes the amount of time to format the ACK frame to be transmitted; this is

possible since only the first portion of the data frame (e.g. BSSID) is used in the ACK

message. PIFS is the DIFS for the access point in a special access method known as

Point Coordination Function. The times are defined such that the RTS, CTS, and ACK

frames are given a higher priority (ie once a packet transmission sequence has begun, the

station holds onto the channel until it is finished). Without 802.11 RTS/CTS

handshaking the following time periods are observed.

 7

Figure 3. 802.11 MAC Layer Communication Note: No

RTC/CTS handshake depicted in diagram above. (Airstream,

2014)

IEEE mandates the following timing for 802.11a:

 Time Slot = 9 µs

 SIFS = 16 µs

 (1)

IEEE mandates the following timing for 802.11b:

 Time Slot = 20 µs

 SIFS = 10 µs

 PIFS = SIFS + Time Slot = 30 µs

 (2)

IEEE mandates the following timing for 802.11g:

 Time Slot = 9 µs

 SIFS = 10 µs

 (3)

 8

Sender procedure: Wait DIFS, Send Data, Wait SIFS, Listen for and receive ACK (until

maximum ACK timeout), Repeat

Receiver Procedure: Listen for and receive Data,Wait SIFS, Send ACK, Wait DIFS

Given this link layer communication protocol, the destination must start constructing the

ACK message once the first part of the data message has been received. Once it has been

determined that the data message was received without error, an ACK message may be

transmitted. The following is the timing calculation for sending the ACK message:

 (4)

With the speed of light , a 802.11 ACK transmission can travel a distance

of 300 . Assuming a normal transmission of an ACK message, the receiver

could be no greater than 3 km (given the speed of light, a nice number) away or 10 usec.

If ACK timeout was increased (to say 19 usec), the maximum slot time for a point to

multi-point communication environment is equal to the slot time. For 802.11b the slot

time of 20 usec equates to a maximum distance of 6 km. Other wireless standards have

similar limitations but the distances are shorter.

Cellular requirements to address cellular reselection within greater cell sizes (> 1Km),

though is possible with some cellular protocols, requires special configuration of the

cellular chipsets to accomplish. 802.11, due to the CSMA/CA protocol requirements is

 9

much harder to accomplish unless it is a point to point connection. Figure 3 describes the

general cellular reselection process as defined by the 2G specification (3G specification

includes neighbor list evaluation -not depicted here).

By observing the parameters in our cellular transmission cellular devices will choose a

base station over other base stations in the area (even though there is a mismatch Power

Spectral Density (PSD) may be less than others). See Chapter 3 for additional

information. This is important because it implies that the number of cellular devices

connected to a specific cellular base station can be control with the use of parameters

transmitted in the Broadcast Channel (BCCH).

Unlike 802.11 devices, assuming sufficient transmit power and sufficient receive

sensitivity; a base station can attract distant devices in the same manner. Though many

3G/4G chipsets (i.e. Mindspeed) have a time limitation (~1Km distance) in regard to how

long they will wait for a response from a peer device, however chipsets can be

programmed to deal with devices at greater distances > ~1Km by configuring the chipset

to only respond to devices within a circular area with a diameter of ~1Km ‘distance of

interest’ for distances > 1Km, ignoring devices that are not within that area of interest.

Wi-Fi and cellular devices used in hot spots (locations that represent extensions to the

Internet) use link layer protocols to control access to the Wireless Local Area Network

(WLAN) and ultimately to the Wide Area Network (WAN). Both wireless technologies

form a LAN environment where IP addresses with a subnet designation are delivered to

 10

individual devices for data access. Cellular devices utilize IP addresses primarily for data

access, but with Long Term Evolution will use these services for using voice services as

well. These addresses are then allowed access to the WAN through a network process

referred to as Network Address Translation (NAT). During normal operation each device

initiates a data connection and delivers network frames that are transmitted to the

backbone network of a service provider through a network gateway. The network

gateway provides the NAT service that is used to proxy IP network requests to the WAN.

Wi-Fi and cellular devices used in an enterprise environment may not utilize NAT, but

rather be assigned IP addresses distributed by a router or server that supplies Dynamic

Host Configuration Protocol (DHCP) for the enterprise network.

Link layer network technology can be used to facilitate adaptation to legacy network

infrastructure, adaptation to new network backhauls, QoS of wired integration points

within a legacy or new Wide Area Network (WAN) entry point. QoS of wireless

technology that utilizes techniques such as MIMO and virtual roaming (discussed later).

As the performance at the edge of the network continues to increase, more demands will

be made on the network infrastructure to perform QoS functions nearer to the edge of the

network.

This paper will focus on the use of a centralized communication controller that will

control link layer communication between radios and the communication controller for

the purpose of load balancing between radio nodes, automated discovery of new radio

nodes, QoS in regard to RF communication channels, authentication, cryptography, and

 11

virtual roaming. This paper is structured into the following sections: Wired integration

with existing networks, 802.11a/b/g/n, Cellular 3G/4G technology and Ethernet / Fiber

optic communication with a focus on link layer communication. These areas will be

evaluated as it relates to the Open Systems Interconnection (OSI) model starting at the

physical layer and moving to the Link Layer.

 12

CHAPTER 2

PROPOSED WIRELESS SYSTEM DESIGN

The new aspects of the following design depicted in Figure 4 entail the following

attributes:

1. High performance roaming and autonomous distribution of wireless devices.

2. The measurement of Power Spectral Density across multiple RF cells to determine

the best integration of 802.11 and cellular backhaul systems while performing

intelligent frequency distribution across adjacent cells.

3. Integration of WiFi and cellular backhaul networks to utilize the same network

topology.

4. Cognitive adaptation of Digital Signal Processing (DSP) parameters based upon

empirical measurement of RF environmental parameters.

5. The ability to prioritize frames based upon link layer behavior.

6. The use of security encryption utilizing random numbers that are generated from a

system with a sufficient amount of entropy (to be quantified later).

The wireless system design follows the paradigm that the radios are simply radio

interfaces that simply communicate as commanded by a regional communication

controller. The radio interfaces are comprised of a radio (with a transmitter and receiver),

a very small processor, memory resources and an Ethernet interface. These radios can

communicate Cellular Frequencies utilizing W-CDMA using a 5MHz channel bandwidth

or the radios can communicate Wi-Fi with 22 and 25 MHz channel bandwidth. 802.11n

can utilize 20Mhz or 40Mhz channel bandwidths. LTE (using OFDMA/SC-FDMA)

 13

comprised of channel bandwidths of 1.4, 3, 5, 10, 15 and 20 Mhz. LTE clients are

communicated a mask that indicates the OFDMA subcarrier(s) to be used in the uplink

transmission.

The radios are preconfigured with real time link layer messages that are required to

support real-time communication messages while all non real-time messages are sent to

the regional communication controller where the message can be characterized and where

an appropriate response can be constructed. The link layer messages will be

characterized per technology so that subsystem functions can be clearly identified and

aspects of the design can be described adequately.

Elements of this new innovation relating to both structure and operation can best be

understood by referring to the following diagrams and their descriptions.

This is a system of radios and their use in a large network. This new link layer

communication design is implemented using the Ethernet technology (MAC header, the

VLAN header, and a proprietary layer 2 protocol header) to implement communication

features that implement features 1 thru 6 above as well as specialized hardware that

processes wireless link layer functions and communication, classification of network

frames (wired and wireless), queuing and routing of frames, encryption/decryption of

frames, and network buffer management. Though most wireless systems provide adaptive

features, these features are not implemented with cognitive feedback from a RF and

network environment that is not visible to the device. The design depicted in Figure 4

 14

describes the overall hardware functions implemented on the cell controller that support

these new features.

Figure 4. Proposed System Architecture

By communicating the TMSI, IMSI, and TLLI between different cellular base stations

within the same cell controller, the system is able to improve the speed at which a device

changes from one Location Area Code (LAC) to another. This is because the normal

sequence of messages required to move from one cell to another is no longer required.

This dramatically improves the performance of the Location Area Update process in

cellular networks. As all of the existing cellular technologies implement this portion of

 15

the specification as it is required when moving from one cellular coverage area to

another. Additionally, if the TMSI & TLLI are ensured to be unique across all cell

controllers, then this information can be moved in between interconnected cell controllers

thus improving performance further.

This new wireless system design is based upon the concept of splitting the wireless

Media Access Control (MAC) across interconnected cell controllers using specialized

hardware that process non-real time portions of the wireless MAC protocol as well as

handle high speed frame processing for wireless devices under its control. These cell

controllers make “intelligent” decisions based upon feedback from multiple radios within

a physical area. The wireless system design is comprised of hardware systems that are

connected utilizing unreliable communication media (Ethernet) but could utilize other

forms of unreliable communication such as satellite and wireless bridges as long as the

required communication delay does not violate time constraints imposed by the MAC

layer communication required between a central communication controller and radio that

communicates the wireless MAC protocol. Such a system needs to be capable of

providing ubiquitous RF coverage across many desperate physical locations as well as be

capable of integrating into existing, legacy network topologies that may be strictly based

upon wired communication technologies. The wireless system design utilizes RF

transmitters and receivers that perform real time data communication to devices. These

devices are typically mobile; however, they can also include stationary devices such as

desktop computers. The major components of the hardware system are comprised of the

following components:

 16

Figure 5. Simplified System Topology

Figure 5 above depicts the overall system topology that looks deceptively simple. The

system topology describes the overall top level architecture. The hardware link layer

communication methods used in the overall system will now be described. The system

topology must be adaptable to ensure that the link layer design can be implemented

without violating existing cellular and WiFi standards. This introduces a challenge that is

addressed in the following manner.

Link Layer Communication Model

The link layer communication model splits both the cellular and the 802.11 MAC

protocols across unreliable communication links in a unique way. As depicted in Figure

5, Virtual Local Area Network (VLAN) technology as specified by the IEEE 802.1pq is

utilized between the cell controller and the base stations. In doing so, I can prioritize the

communication links dynamically. This design approach employs a fourfold advantage.

1. The new link layer communication model can be implemented across an existing

wired infrastructure with very low impact to the existing network infrastructure. As

 17

an example, a network architect can overlay a completely different IP subnet over an

existing wired network infrastructure without changing the existing wired network.

2. Based upon link layer communication behavior, prioritization of wireless frames can

be changed dynamically. As an example, if Quality of Service (QoS) parameters

dictate a particular percentage of the system bandwidth, this system design can

quickly change the VLAN priority tag to prioritize frames to one RF base station over

another RF base station.

3. Unlike autonomous wireless routers and access points, the cell controller has

visibility to the RF spectrum where radios exist. This design enables the cell

controller to perform cognitive adaptation to the RF environment. Based upon the RF

noise temperature, the cell controller can equally distribute mobile devices across the

available RF spectrum in a fashion that provides for the greatest network

performance. As an example, BER as well as neighboring cell information

transmitted by the RF base station can be communicated back to the cell controller.

Neighbor cell information can be communicated in the form of Power Spectral

Density (PSD) calculations (this is covered in a later section). The cell controller can

make a dynamic decision to send data frames across a different RF base station, in

essence the device is now communicating with a different RF base station without

awareness by the mobile device. This is a form of a cognitive adaptation based upon

BER.

4. The integration of cellular and WiFi stacks provides the ability for cellular and WiFi

devices to utilize the same backhaul network infrastructure. This provides relief of

 18

the cellular systems in regard to bandwidth utilization and improves the use of

unoccupied bandwidth on the backhaul network infrastructure.

The link layer design includes adapters for both WiFi and cellular technologies. 802.11

technology will be discussed first followed by cellular technology. As depicted in Figure

5, the wireless 802.11 MAC is split across unreliable communication links. RT messages

are addressed at the RF base station, while higher level management messages are

handled at the cell controller.

Figure 6. 802.11 Link Layer Subsystem Partition

The following 802.1l link layer subsystem functions are addressed in the RF base station.

The RF base station handles all RT messages. Since Probe Response messages are very

similar to Beacon Messages, Beacon Messages are also handled in the RF base station.

 19

Table 1
802.11 Real-Time Messages

1 Beacon/DTIM

2 Probe Response

3 Acknowledgements

4 RTS/CTS (If Enabled)

Templates for these messages are sent by the cell controller to the RF base station for

purposes of transmission to their RF coverage area. When cells overlap, these messages

can also be forwarded by other RF base stations in the coverage area. A measure of the

received power (Eb/No) can be made and a decision in regard to which RF base station

should ultimately respond to later Association requests can be calculated. The following

diagram depicts an 802.11 example:

Figure 7. Probe Response Exemplar

 20

On Ethernet there are two distinct delays: propagation delay and transmission delay. The

following equation describes the nodal delay, the delay per node in an Ethernet network.

 (5)

The velocity of an electromagnetic wave through a copper media is approximately

 . Though base transmission rate has no bearing on propagation

delay, base rate directly affects transmission rate . Assuming full duplex Ethernet

operation for a 64 byte frame. A probe request, including a

proprietary header, can be no less than this size; therefore, round trip (RT) delay of

2* . Assuming a maximum length of 100 meters,

 with a round trip delay of 2* . Ignoring

 for a moment, one RT segment is . Adding the segments

depicted in Figure 7 we have a . Figure 7 is representative of the

minimum network delay between a cell controller and a RF base station; therefore, the

802.11 messages depicted in Table 1 represent messages that must be handled in RT by

the RF base station.

Table 2
802.11 Non-Real Time Messages

1 Association/Reassociation/Disassociation

2 Authentication/Deauthentication

3 802.1x, EAPOL, etc…

4 802.11 Data Messages

WiFi messages listed in Table 2 are handled by the cell controller which manages

messages from all devices in a large regional area. These messages provide for a

 21

centralized management of all 802.11 devices in the area as well as provide for the

accurate application of Quality of Service (QoS) between individual wireless networks

since all data frame are sent through the cell controller. For example, if a network

identifier (e.g. SSID) is suppose to have available 60% of the available bandwidth while

another network identifier is suppose to have available 40% of the available band, the

bandwidth between the two networks can be arbitrated in RT instantaneously since the

cell controller has full access to all traffic being delivered to the whole network prior to

be distributed to individual RF base stations in the regional areas.

Cellular Link Layer MAC

There are many system design differences between the different cellular technologies

(e.g. 2G/GSM, 3G/UMTS, 3G/CDMA2000, 4G/LTE). Cellular vendors have changed

their subsystem designs to improve access speeds, coverage, and reduce cost to

deployment. I will focus on cellular subsystems that intersect GSM, 3G/UMTS, and

4G/LTE cellular link layer subsystem functions. Unlike WiFi devices, cellular provider

networks have routinely (out of necessity) split their link layer communication across

unreliable communication links (e.g. Ethernet/Fiber).

Table 3
Example Cellular UMTS Messages (Wikipedia, 2014)

MOBILITY MANAGEMENT (MM)

MESSAGES

RADIO RESOURCE (RR)

MESSAGES

imsi detach/attach indication additional assignment

location updating reject immediate assignment

location updating request

immediate assignment extended

location updating response immediate assignment reject

authentication reject ciphering mode command

authentication request ciphering mode complete

authentication response assignment command

identity request
assignment complete

 22

identity response assignment failure

tmsi reallocation command handover command

tmsi reallocation complete handover complete

cm service accept handover failure

cm service reject physical information

cm service abort paging request type 1-3

cm service request system information type 1-8,2(bis/ter),

5(bis/ter)

cm establishment request channel mode modify {ack}

Abort classmark change/enquiry

mm status measurement report/

frequency redefinition

 The cellular link layer communication model is much more distributed; however, there

are improvements that can be made. I will outline the link layer communication model

changes that integrate WiFi and cellular technologies together as well as improve

roaming between the technologies. In addition, I will describe why this approach is

superior to other approaches.

Figure 8. Example Inter-RAT Handover Setup (4G Source to 3G Target Network)

(Barton, 2012)

 23

The example above describes the handover setup procedure example between a 4G

source to a 3G target network. The end goal is to ensure that when the handover is

complete data frames will be sent to the new serving gateway service in this the GGSN

3G service. The Source MME subsystem initiates the Handover resource allocation

procedure by sending a Forward Relocation Request (IMSI, Target Identification, CSG

ID, CSG Membership Indication, MM Context, PDN Connections, MME Tunnel

Endpoint Identifier for Control Plane, MME Address for Control plane, Source to Target

Transparent Container, RAN Cause, MS Info Change Reporting Action (if available),

CSG Information Reporting Action (if available), UE Time Zone, ISR Supported)

message to the target SGSN subsystem of the 3G cellular network. Note that this entire

setup process occurs before the User Equipment (UE) has actually “roamed” to the 3G

network. Once the setup has completed, the source MME subsystem initiates the

handover process by coordinating with the UE by sending a handover command

(depicted in Figure 9). The UE responds to the network with a handover complete

message to the target RNC subsystem who initiates a message to its SGSN subsystem

which then conveys a completion message to the source MME subsystem. The source

MME acknowledges the completion message and the SGSN notifies its GGSN service

(using a “Modify Bearer” request). Once the GGSN service then notifies the source

PGW of the change, data frames are now presented through the new serving 3G gateway

(e.g. SGSN and GGSN).

 24

Figure 9. Example of Inter-RAT Handoff Execution (4G Source to 3G Target Network)

(Barton, 2012)

 25

Using a cell controller, these subsystems are combined into a single platform that can

more quickly execute the roaming examples such as this. Latency is reduced greatly

because fewer messages across unreliable communication links are required. A cell

controller would be used to handle large geographic areas. With the use of Fiber channel

communication links (assuming the use of repeaters and proper configuration), very low

latency and high bandwidth can be achieved.

Figure 10. New Cellular Link Layer Topology With Combined 802.11 Subsystems

With the architecture above, the cellular MAC is split between the cell controller and

BTS, NodeB, and eNodeB transceivers. Today these cellular subsystems are found in

 26

desperate locations across the country. Since these subsystems interact with each other

across vast physical locations, very little information is communicated in regard to the RF

environment as it relates to BER and RF performance. With this new link layer

architecture, cellular coverage can be provided for large geographic areas by the same

system controller. In this case a full hardware data path can be applied to handle frame

classification and distribution to the wireless subsystems required to handle this

processing as well as gather BER information in regard to RF performance in local areas.

This integrated with Wi-Fi capability provides the ability to off load traffic from the

cellular network, freeing up cellular bandwidth for other users. By the use of a 802.11

split MAC, we can now provide Authentication and Association credentials directly into

the cellular network using Extensible Authentication Protocol of Local Area Network

EAPOL. Using the same authentication triplets used between the service provider and

the UE, WiFi can be enabled and provide service to cellular UE. Just as is the case with

the Packet Gateway (PGW) or the Gateway GPRS Support Node (GGSN), Network

Address Translation (NAT) services are provided for IP addresses that are provided for

the local area. This service is used to go to the Internet from a UE that is using WiFi

instead of the straight cellular services. Because the WiFi base stations can be elevated,

and have amplification added for both transmit and receive, it is possible to use WiFi to

offload some cellular data traffic.

The link layer communication model has been described for both the 802.11 where the

RF MAC is split between a RF base station and the addition of the 802.11 subsystem to

cellular subsystems. The point areas where the 802.11 subsystems are integrated will

 27

function correctly for all versions (e.g. GSM, UMTS, LTE) of cellular subsystems. In

addition, a method of authentication has been described as well as how access to the

Wide Area Network (WAN) is provided as is the case with all data services on UE.

Link Layer Hardware

In order to provide the best class of service for the link layer model described in the

previous section, the hardware must be designed to support the following features:

Table 4
 Sample Link Layer Feature List

1 Link Layer Encryption/Decryption (Cellular & WiFi). Also encryption over the wired

network as well.

2 Frame Manager (Classification Engine), Queue Manager, and Data Path Acceleration

Architecture (DPAA)

3 Fixed format headers sent to wireless base stations

4 Table of all UE required

5 NAT and Proxy ARP provided for all bridged UE (different modes of operation), MAC

learning feature to support MAC address transition across Layer 2 switch interfaces.

6 High performance frame processing with little or no intervention with GPP HW

7 Large number of Fiber and Ethernet interfaces available in one unit

8 Security Fuses, secure boot, security monitor (can be connected to tamper detection).

9 Numerous other hardware attributes not relevant for a research paper such as dual power

supplies, solid state disks, etc...

The hardware design to support the link layer hardware would start with the design of the

SoC. This design would facilitate the use of dedicated hardware state machines that act

independently from each other. These hardware state machines are provided instructions

in memory that are then loaded into their internal register cache for execution. These

instructions facilitate the functions required to support the predefined headers found for

both the link layer Ethernet communication as well as the cellular and 802.11 MAC

 28

fields. Since most of these fields are based upon configuration parameters that are

configured by software, it would the responsibility of the link layer software to

implement the structures that are accessed by the hardware to support this link layer

communication.

Figure 11. HW State Machines in SoC Architecture

The hardware state machines (as configured by software and depicted in Figure 11) used

for frame processing would contain internal register memory that is used to communicate

frames to a wireless base station. This internal register memory would be used to

construct the proper frame header for a particular device that has been configured. In

addition some hardware state machines would also include a hardware internal Direct

Memory Address (DMA) engine. When a base station device has properly authenticated

 29

itself to the network, the base station MAC address, BSSID, radio MAC address(es),

VLAN header information, security key information, and capabilities will be

communicated and stored into system memory (not in hardware registers). When a

network frame buffer is received from a wireless base station, the hardware frame

classification engine would evaluate the source MAC address, VLAN tag information.

Based upon this information it will do further classification to identify the source MAC

address of the actual wireless client. The source MAC address would then translate to

unique hardware queue ID. A message with the address of the frame and that queue ID

would be sent to the hardware queue. This hardware queue is configured to send frames

with this queue ID to the security engine for link layer decryption. The security engine

returns a specific queue ID after decrypting this frame (based upon its hardware memory

cache structure). The hardware queue is configured to send frames with this queue ID to

the wireless link layer engine for further processing. As an example, based upon the

fields in the 802.11 MAC header, the wireless hardware engine will perform standard

operations on the frame starting at the address of the frame. The wireless link layer

hardware state machine is specifically designed to understand the 802.11 and UMTS

MAC protocols. Using 802.11 as an example, the hardware state machine behavior can

be based on the source (radio MAC) address of the sender in the forward direction. If the

destination MAC address is that of another wireless device that is managed by this cell

controller the frame will be forwarded onto the same queue that other frames from the

network in the reverse direction are placed for eventual transmission to the wireless

device.

 30

Link layer encryption is based upon cryptographic algorithms verified and validated by

the The National Institute of Standards and Technology (NIST). NIST issued the Federal

Information Processing Standard (FIPS) Publication 140-2 (FIPS PUB 140-2) is a United

States government computer security standard that is used to accredit cryptographic

modules. This publication is titled “Security Requirements for Cryptographic Modules”

and was published on May 25, 2001 and was updated on December 3, 2002.

The National Institute of Standards and Technology (NIST) issued the FIPS 140

Publication Series to define requirements and standards for cryptography modules for

both hardware and software components developed by technology companies. Federal

agencies and departments can validate whether a module, termed a Hardware Security

Module, is covered by an existing FIPS 140-1 or FIPS 140-2 certificate which specifies

module name, hardware, software, firmware, and/or applet version numbers. Many

cryptographic modules are produced by the private sector (and even by the open source)

communities for use by the U.S. government and other regulated industries, including

financial and health-care institutions, that collect, store, transfer, share, and disseminate

sensitive but unclassified (SBU) information.

NIST regulated security programs enforce government and industry cooperation to

establish secure systems and networks by developing, managing and promoting security

assessment tools, techniques, and services, and supporting programs for testing,

evaluation and validation. NIST security programs extend to development and

maintenance of security metrics; security evaluation criteria and evaluation

 31

methodologies; tests and test methods; security-specific criteria for laboratory

accreditation; guidance on the use of evaluated and tested products; research to address

assurance methods and system-wide security and assessment methodologies; security

protocol validation activities; and appropriate coordination with assessment-related

activities of voluntary industry standards bodies and other assessment regimes.

Annex C of FIPS 140-2 specifies Approved Random Number Generators. Random

Number Generators (RNG) are used to generate random content for cryptographic

algorithms that require the need of random content such as content required for the

generation of IV information for IPSEC or DTLS protocols as two examples.

United States Federal Government standard Federal Information Processing Standard

(FIPS) Publication 140-2 (FIPS PUB 140-2) requires verification that each sample

produced by a Random Number Generator (RNG) be compared against the immediately

preceding sample to verify that the random number generator does not generate the same

numeric value twice sequentially; statistically, this would indicate a hardware or software

fault rather than a coincidence. FIPS 140-2 specifies that any time a Random Number

Generator (RNG) generates a new random number, the generated number is to be

compared against a previously generated random number. If the two are the same, the

event indicates a hardware (or software) failure rather than by some extraordinary,

statistical chance. If the two are the same, an error indication is generated.

 32

In order for any system to be compliant with requirements such as FIPS 140-2, but not

perform the check in software, the hardware must enable the security engine utilizing a

“bump in the wire” architecture in a mostly-hardware autonomous data path to perform

this function. Thus, security can be implemented in separate devices interposed between

devices intended to communicate securely, for example cellular link layer encryption

datagram, 802.11 link layer datagram and insecure Internet Protocol (IP) datagrams can

be repackaged securely for transport over the public Internet or other unprotected

network infrastructure.

The design of a RNG requires the use of hardware design techniques known as

“Asynchronous Design”. When using asynchronous design techniques to design a RNG

subsystem, one must use the instability inherent in relying upon propagation delays in a

logic design that vary with temperature, voltage level fluctuation, substrate differences,

and register settling time that occur through combinatorial logic designs. These

techniques are used to ensure that the RNG subsystem does provide random numbers

with sufficient entropy. The following illustrative technique can facilitate random

number generator verification, which may be performed without using any

microprocessor execution time or specialized hardware.

 33

Figure 12. Use of Random Numbers in HW Data Path

An input frame that requires encryption is received by the hardware data path and is

parsed, stored in system memory (1 in Figure 12) by the hardware receive DMA engine.

A message is sent by the frame parser to the HW queue across a hardware bus. This

message contains the address of the HW cache associated to the queue ID in system

memory (2b in Figure 12). The Queue Interface reads the message in the HW Queue (2a

in Figure 12) and alerts the DMA to read the HW memory using the address found in the

HW Queue message) and distribute a processing request to a CryptoEngine (3 in Figure

12). The Queue Interface also instructs the DMA to read the Frame Buffer memory using

 34

the address found in the HW Queue message (4 in Figure 12). The CryptoEngine

requests a random number because it must generate an IV. This IV contains a mask (e.g.

seed) that is XOR’d with the random number (5 in Figure 12). Finally, the CryptoEngine

executes its loaded instructions (in its internal memory cache) and checks the newly

generated IV to the previous IV. If these IV’s are identical, it is indicative of a problem

and an error is returned, otherwise the new IV is stored at the address of the previous IV

by use of its DMA engine and processing continues normally (6 in Figure 12).

This process illustrates a FIPS compliant hardware design to meet the cryptographic

needs of the cell controller.

Link Layer Software

The link layer software is comprised of the following subsystems that interact with the

hardware state machines described in the hardware section above. The software must

pre-populate the hardware memory of the state machines to accommodate the

transmission of frames to wireless device from other wireless devices as well as devices

from the WAN side of the network device. Network headers that are used to

communicate to the wireless base stations must be pre-populated on a per-flow basis.

The following depicts the headers that must be pre-populated. Note that the wireless link

layer engine will modify some portions of the header as data moves through the

autonomous hardware data path.

 35

Figure 13. Network Frame Headers that most be pre-populated on a per

Flow basis

As described in Figure 11, the wireless link layer engine requires HW memory cache that

contains the proper Ethernet, VLAN, Cellular or 802.11 MAC header pre-populated on a

per flow basis. This means two per wireless device (1 for the forward direction and 1 for

the reverse direction) flow to and from a wireless device. Figure 13 describes the

network header formats that must be pre-populated in the wireless link layer hardware

state machine. This finite state machine (FSM) must also maintain flow control

structures between the cell controller and the RF base stations. There are mechanisms in

place in regard to the cellular protocol specification; however, on the 802.11 side there

are not integrated specifications. The following frame formats are specified to support

link layer communication between the RF base stations and the cell controller:

 36

Figure 14. Frame Format Examples

 37

CHAPTER 3

MOBILE AND BASE STATIONS

Wireless State Machines

Cellular and 802.11 devices are constantly measuring the RF environment. As such they

are constantly performing neighbor cell power measurements, if sufficient BER rate is

sensed by the receiver (where rate adaptation did not improve), a 802.11 client device

will initiate its form of cell reselection (issues a 802.11 Reassociation request). On

cellular devices this is performed by monitoring all BCCH carriers contained and making

one measurement per BCCH carrier. The size of the neighbor cell list (e.g. number of

neighboring transmitters), either increases or decreases the amount of time UE spend

performing these measurements. Cellular devices initiate the process of cell reselection

by a process referred to as Location Area Update (LAU). This process is analogous to

the example when in a moving vehicle. The cellular device in your hand will receive a

signal from a new tower which will have a different Location Area Code (LAC). This

process is repeated as the car continues to move from one tower to the next. This process

is sufficient for voice services, while processes referred to as Routing Area Update and

MM Attach is required for data services. A cellular device can also request

supplementary services such as [no] call waiting, [no] call forwarding, and activate Short

Message Service (SMS).

 38

Finite State Machine Behavior

Figure 15 depicts the cell reselection state machine. The and the

 field values are transmitted on the Broadcast Channel (BCCH) of a

cellular base station. In order to distribute the load of cellular devices across cellular base

stations, the cell controller can dynamically modify the parameters being transmitted on

this channel thereby influencing the state machine of the UE to connect to a different RF

base station. For UMTS and LTE UE, the network can also request a cell reselection.

Use CS Cell

Reselection parameters

C1 & C2 (-Or if MS

class ‘A’ in dedicated

mode, report

measurements and

handovers N/W

controlled)

Utilize GPRS Cell

Reselection Parameters

C1, C31, C32

Yes

Yes

No

No

Does the cell offer GPRS
services? (Indicated by SI3,
SI4, & SI13)

Does the cell offering GPRS
services have a PBCCH?

Is the MS GPRS MM
attached?

Yes No

Is this a class A MS in CS
dedicated mode?

No Yes

Figure 15. Cellular Cell Reselection Rule Evaluation Process

(6)

 = Average receive signal level

 39

 = Minimum the MS must receive to access this cell

 Maximum power the MS is allowed to transmit on the

RACH

 = MS power class

 (7)

 = dB weighting applied to a cell which may be positive or

negative

 = Positive dB weighting applied to a cell for the time

 = Timer set in the MS by the neighbor cell; on it expiry, the

 is removed. is only applied to neighbor cells.

In addition, cellular and 802.11 wireless devices also perform rate adaptation based upon

sensed BER information. An 802.11 wireless client device normally initiates a

Reassociation request, while a cellular device utilizes the LAU procedure as well as

manage the cell reselection.

 40

Figure 16 LTE Handset (Basic State Machine Terminology)(ShareTechnote, 2013)

An example LTE cell reselection, initiated by the network side: A UE is in connection

with a cell ‘A’. The network sends a command to the UE to perform a signal quality

measurement on cell ‘B’ (e.g. UMTS command = “Measurement Control”, while LTE

command = “RRC Connection Reconfiguration”). The UE performs the measurement

and sends the result to Cell ‘A’. (e.g. UMTS and LTE = “Measurement Report”). If the

controller deems the measurement favorably, the UE is sent a change cell command. (e.g.

UMTS command = “Physical Channel Reconfiguration or ActiveSetUpdate”, while LTE

= “RRC Connection Reconfiguration”). Once the UE changes to cell ‘B’ successfully,

the UE will send a cell change completion message to cell ‘B’ (e.g. UMTS = “Physical

 41

Channel Reconfiguration Complete or ActiveSetUpdateComplete”, while LTE = “RRC

Connection Reconfiguration Complete”). (ShareTechnote, 2013)

LTE phones presently have two antennas that can be used in a 2x2 MIMO mode. The

LTE phone can use one antenna to talk to one tower while using the second antenna to

communicate to the second cell tower.

Roaming

In 802.11 roaming to another access point involves sending a ‘Reassociation” request to

the new access point. This “new” access point was discovered by an outcome of signal

strength measurements by the client device. In the 802.11 state machine below, the

Reassociation message speeds up the Authentication and Association state change so it

more quickly moves to the successfully Authenticated and Associated state. When a

wireless device roams, it is important that data transfer is not lost during the process. The

MS state machine has an impact on this behavior. When a 802.11 device sends it

“ReAssociation” message, it must still properly receive frames from the base station it is

presently Associated to. In addition, if the base station it is roaming to does not have

direct communication and coordination with the base station it is roaming from the

device will be forced to perform a complete Association to the device it is roaming to.

With the cell controller link layer approach, the roaming between access points can be

seamless. The following state machine diagram depicts the change in the typical state

machine behavior of the mobile device.

 42

Figure 17. Example of 802.11 Roaming Utilizing Cell Controller Concept

The remote sensing software that manages the hardware link layer (e.g. 802.11/Cellular

Measure) RF measurement subsystem either measures that the RF energy from a

particular device is actually stronger on a different RF base station that it is presently

receiving data or that a Reassociation message is received from that device. In either

case, a seamless roaming event is initiated by the software (refer to 1 in Figure 17). This

software modifies the per device table managed in memory using the Queue Interface

specified above. The Queue Interface is the only hardware entity that can assure the

change to this shared memory location is updated atomically without interrupt to other

 43

processing flows and to the hardware that is processing the hardware data path. The

fields updated are the pre-populated Eth/VLAN header template, the 802.11 MAC to

reflect a change to any 802.11 parameters required such as BSSID & RF MAC address

change, and device state (refer to 2 in Figure 17). Note that the Frame Queue Address

List (records addresses of all frames to be transmitted to a device), Key and IV

information is not modified; therefore, frames queued toward the wireless device will be

sent to the new RF base station immediately when the change occurs through 802.1pq

link layer communication toward the correct RF base station.

Cellular Roaming

The cell controller commands mobile devices thru their mobile station (MS) to perform a

measurement of a neighboring cell. The cellular measurement subsystem is used to

continually command a measurement of neighboring RF base stations. Software

executing on one or more cores makes a decision based upon signal strength as well as

traffic load across the base stations. The cell controller makes it possible to better

understand the RF environment in regional areas and to be more responsive to changes in

these areas.

 44

Figure 18. Example of Cellular Roaming Utilizing Cell Controller Concept

Based upon RF measurements roaming is initiated by the software (refer to 1 in Figure

18). This software modifies the per device table managed in memory using the Queue

Interface specified above. The Queue Interface is the only hardware entity that can

assure the change to this shared memory location is updated atomically without interrupt

to other processing flows and to the hardware that is processing the hardware data path.

The fields updated are the pre-populated Eth/VLAN header template, the Cellular MAC

to reflect the new cellular parameters (Note: TMSI, TLLI, should all remain the same.

These identifiers can be globally unique by utilizing the MAC address of the unit for their

derivation) and device state (refer to 2 in Figure 18). Note that the Frame Queue

 45

Address List (records addresses of all frames to be transmitted to a device), Key

(authentication triplet) and IV information is not modified; therefore, frames queued

toward the wireless device will be sent to the new cellular RF base station immediately

when the change occurs through 802.1pq link layer communication toward the correct

cellular RF base station.

Figure 19. 802.11 Mobile Device State Machine

With the use of MIMO and 802.11ac technology, a ‘Reassociation’ message is not

required when a cell controller can be used to authenticate the user over an existing

encrypted channel. The cell controller can make it possible, using link layer command

and control, for the neighboring 802.11 RF base station to start communicating with the

 46

wireless client (using its second antenna) in a 2x2 MIMO configuration while the

wireless client device is still communicating with the other RF base station through the

use of the other antenna. The RF base stations would need to be told to not answer on its

second antenna for this client device. This is acceptable since the RF base station must

transmit ACKs with the BSSID of the network it is associated to. The client device

would not know that the second spatially diverse antenna it was using is on another RF

base station. The cell controller would make the decision as to when to complete the full

process of 802.11 roaming. This process is identical to the method used by LTE mobile

devices. LTE devices can utilize their second antenna in a 2x2 MIMO configuration to

interact with multiple base stations simultaneously. This requires only software support

for the proper analysis of eigenvectors to be performed on the 802.11 client based upon

the concept of having two (very separated) spatially diverse streams possibly on two

separate channel frequencies.

Power Spectral Density Estimation

In order for mobile devices to make roaming decisions, these devices must calculate

power spectral density. In addition, channel information from a RF base station can be

provided to the cell controller to determine and estimate the active signals in the area. An

evaluation of PSD and estimation techniques will now be described. To calculate the

power of a W-CDMA signal, we must integrate over the entire bandwidth of the signal.

For instance, a WCDMA signal based upon the 3GPP WCDMA Frequency Division

Duplex (FDD) release 99 Downlink Dedicated Physical Channel (DPCH) with a

bandwidth of 5MHz will generate the following Power Spectral Density plot.

 47

Figure 20. Example Spread Spectrum Tx (5 MHz)

 48

Figure 21. Example Spread Spectrum Rx (5 MHz) Mixed with AWGN

Other signals of interest can be derived from base stations in the area. These base

stations can perform signal analysis of the RF environment and report the results of this

analysis to the cell controller. Such information can be used to determine why high

incidents of BER are reported in specific cell coverage areas. I studied signal estimation

and detection methods with the goal to determine the best Power Spectral Density (PSD)

estimation method for the derivation of the PSD of sinusoid signals in the presence of

white noise utilizing different estimation methods. In order to achieve this goal, I will

utilize two general classification methods: non-parametric and parametric methods. Non-

parametric methods derive their PSD estimate directly from the input data. Parametric

 49

methods model the data as an output of a linear system driven by White Gaussian Noise

(e.g. W.G.N) with a specified variance so system parameters can be estimated. I will

utilize two different input levels: Level 1: Three input sinusoids, Level 2: Three input

sinusoids and regenerated random noise (for each factor).

I will utilize the following estimation methods as my factors in this experiment:

Blackman-Tukey correlogram, Welch Periodogram, Yule-Walker, Burg, Covariance,

Modified Covariance, and Multiple Signal Classification (MUSIC). I then utilize the

analysis of variance (ANOVA) method to analyze the variance within each estimation

method as well as the variances between different estimation methods.

Factors and Factor Ranges

For each estimation method, I will vary the ranges of the factor to best illustrate

frequency resolution and derivation of power spectral density. Though I will utilize a

Hamming Window for both the correlogram and periodogram estimation methods, the

ranges of the factors will be different for both the correlogram and periodogram

estimation methods. I will use the following lag ranges for the correlogram estimation

method as 10, 20, and 70. In the equation below L indicates the lag index and is

computed using the Discrete Time Fourier Transform (DTFT) of the autocorrelation

sequence.

 (8)

 50

For the periodogram estimation method, I will use different shift adjustments for the

analysis window. By utilizing an analysis window, I can cause different overlapping

sequences and therefore improve the PSD estimate. In the equation below, n represents

the index of the input sample sequence.

 (9)

Again, the input sequence can be overlapped (accomplished by utilizing different shift

adjustments) to improve the power spectral density estimate. I will use the following

shift adjustments for the periodogram estimation method as 10, 20, and 30.

For the Yule-Walker, Burg, Covariance (& modified covariance), and MUSIC PSD

estimation methods, I will utilize model order 5, 15, and 30. The following is the

equation used to calculate the Yule-Walker PSD:

 (10)

Since the Burg method is an AR process, the following is the equation used to calculate

the Burg PSD:

 (11)

The value is derived by utilizing a harmonic mean between the forward and

backward partial correlation coefficients to calculate the reflection coefficient, . Once

 51

these AR parameters are calculated, the PSD estimate is calculated as described in the

equation above.

 (12)

At each order, P, the variance of the forward and backward linear error prediction is

minimized. This calculated utilizing an arithmetic mean:

 (13)

Since the Covariance method is also an AR process, the following is the equation used to

calculate the Covariance PSD:

 (14)

The following is how to compute the covariance matrix of a signal x of time series length

N, with maximum lag M:

 (15)

and individual elements of Rp:

 (16)

This PSD algorithm minimizes the forward error prediction utilizing least squares to

determine AR parameters, .

 52

Since the Modified Covariance method is also an AR process, the following is the

equation used to calculate the Modified Covariance PSD:

 (17)

The following is how to compute the covariance matrix of a signal x of time series length

N, with maximum lag M:

 (18)

and individual elements of Rp:

 (19)

This PSD algorithm minimizes the both the forward error prediction and the backward

error prediction utilizing least squares to determine AR parameters, .

The ‘pseudo’ (not true PSD) MUSIC spectrum estimate is derived from the following

equation:

 (20)

The power spectral density information is lost when utilizing the MUSIC algorithm;

however, it is quite useful in the derivation of the frequency components of signals

embedded in white noise.

Levels

I will input the following signal combinations (Levels):

 53

Table 5
Input Signals for PSD Measurement Tests

1 Signal (3 sinusoids)

2 Signal (3 sinusoids) + AWGN

I will create the noise signal using a randomly generated noise signal in MATLAB, using

the” rand()” function.

Measurement

I will measure the magnitude (y-axis) of the three output sinusoids as function of

frequency (x-axis) for each factor, range, and input level for a large (10) replicated set of

test executions. Random noise is regenerated per replicated test.

Response Variables

The following will be used to as response variables for the tests to be performed.

Table 6
Response Variables (Measured Results)

1 Number of output signal frequencies.

2 Magnitude of each output signal frequency. This is a maximum of three magnitudes per

replicated test.

Factors, Factor Levels, and Response Variables

The following sections will describe the Factors, Factor Levels, and Response Variables

for each of the following algorithms: Blackman-Tukey correlogram, Welch Periodogram,

Yule-Walker, Burg, Covariance, Modified Covariance, and Multiple Signal Classification

(MUSIC). I have also included test runs for these algorithms. I will execute and record

the results for 5 runs [replicates] for each algorithm.

 54

Blackman-Tukey Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: 10, 20, and 70. Factor: Lag equals variable ‘L’ as used in the following

equation:

 (21)

Figure 22. Blackman-Tukey (Signal +no noise, left plot: Signal+noise, right plot),

Hamming Window, Lag = 70

 55

Figure 23. Blackman-Tukey (Signal+no noise, left plot: Signal+noise,

right plot), Hamming Window, Lag = 20

 56

Figure 24. Blackman-Tukey (Signal+no noise, left plot: Signal+noise, right plot),

Hamming Window, Lag = 10

Welch Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 2 levels: Shift Index 10 and 20. Factor: Shift index used in the following

equation. The shift index is used to overlap the input sequence in the equation

below.

 (22)

 57

Figure 25. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right

plot), Hamming Window, Shift = 20

 58

Figure 26. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right

plot), Hamming Window, Shift = 10

Yule-Walker Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: Model Order 5, 15, and 30. Factor: Model order is used in the following

equation. The model order represents the ‘p’ summation range in the equation below.

The following is the equation used to calculate the Yule-Walker PSD:

 (23)

 59

Figure 27. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased

ACF, Model Order = 30

 60

Figure 28. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased

ACF, Model Order = 15

 61

Figure 29. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased

ACF, Model Order = 5

Burg Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: Model Order 5, 15, and 30. Factor: Model order is used in the following

equation. The model order represents the ‘p’ summation range in the equation below.

 (24)

Unlike the Yule-Walker AR process, the value for the Burg PSD estimator, is

derived by utilizing a harmonic mean between the forward and backward partial

correlation coefficients to calculate the reflection coefficient, . Once these AR

 62

parameters are calculated, the PSD estimate is calculated as described in the equation

above.

 (25)

At each order, P, the variance of the forward and backward linear error prediction is

minimized. This calculated utilizing an arithmetic mean:

 (26)

Figure 30. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right

plot), Model Order = 30

 63

Figure 31. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right

plot), Model Order = 15

Figure 32. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right

plot), Model Order = 5

 64

Covariance Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: Model Order 5, 15, and 30. Factor: Model order is used in the following

equation. The model order represents the ‘p’ summation range in the equation below.

 (27)

Unique to the covariance PSD estimator, the following is used to compute the covariance

matrix of a signal x of time series length N, with maximum lag M:

 (28)

and individual elements of Rp:

 (29)

This PSD algorithm minimizes the forward error prediction utilizing least squares to

determine AR parameters, in the equation above.

 65

Figure 33. Covariance, (Signal+No Noise, left plot,

Signal+Noise, right plot) Model Order = 30

 66

Figure 34. Covariance, (Signal+No Noise, left plot, Signal+Noise,

right plot) Model Order = 15

 67

Figure 35. Covariance, (Signal+No Noise, left plot, Signal+Noise, right

plot) Model Order = 5

Modified Covariance Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: Model Order 5, 15, and 30. Factor: Model order is used in the following

equation. The model order represents the ‘p’ summation range in the equation below.

 (30)

The following is how to compute the covariance matrix of a signal x of time series length

N, with maximum lag M:

 (31)

 68

and individual elements of Rp:

 (32)

This PSD algorithm minimizes the both the forward error prediction and the backward

error prediction utilizing least squares to determine AR parameters, in the above

equation.

Figure 36. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise,

right plot), Model Order = 30

 69

Figure 37. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise,

right plot), Model Order = 15

 70

Figure 38. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise,

right plot), Model Order = 5

Music Test Factors, Factor Levels, and Response Variables

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor

having 3 levels: Model Order 5, 15, and 30. Factor: Model order is used in the following

equation. The model order represents the ‘p’ summation range in the equation below.

The ‘pseudo’ (not true PSD) MUSIC spectrum estimate is derived from the following

equation:

 (33)

 71

Figure 39. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot)

Model Order = 30

 72

Figure 40. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot),

Model Order = 15

 73

Figure 41. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot),

Model Order = 5

 74

JMP Results

I model three input signals described above using MATLAB. Each signal was mixed

with White Gaussian Noise (WGN) with zero mean. I utilized the following estimation

methods as my algorithms in this experiment: Blackman-Tukey correlogram, Welch

Periodogram, Yule-Walker, Burg, Covariance, Modified Covariance, and Multiple Signal

Classification (MUSIC). I then measured the accuracy of the estimation method using a

low, medium, and high resolution factor (pertinent to each algorithm). The goal of this

test is determine which estimation algorithm is most accurate given similar resolution

factors. The way this is measured is to determine if, when I input three signals mixed

with random noise (two signals very close in frequency), that I can accurately estimate

the frequency of all three signals on the output. I ran 10 runs with each algorithm using a

random estimation model with a low, medium, and resolution factor for each algorithm.

JMP Output Data

The following output data was produced by JMP. I performed several tests to determine

if there was any interaction between the main effects: Algorithm and Resolution, as well

as, test the variances of each algorithm. I executed a one-way ANOVA, a two-way

ANOVA, several means tests, and finally the conclusion drawn from the two-way

ANOVA test output.

 75

Figure 42. Output Results (Response) Table

The output response data table above is coded in the following way:

Table 7
Output Response Results (ANOVA)

1 All three signals correctly estimated 100

2 Only two signals correctly estimated 66.67

3 Only one signal correctly estimated 33.33

Runs

Algorithm
Resolution 1 2 3 4 5 6 7 8 9 10

 Mean

(u)

Blackman

Tukey High 100 66.67 100 100 66.67 100 100 100 66.7 66.7 86.668

Welch High 66.67 66.67 33.33 66.67 33.33 66.7 66.7 66.67 66.7 100 63.335

Yule Walker High 66.67 100 100 100 33.33 100 100 66.67 66.7 66.7 80.001

Burg High 66.67 66.67 66.67 66.67 66.67 66.7 66.7 33.33 66.7 66.7 63.336

Covariance High 66.67 100 66.67 33.33 66.67 33.3 100 33.33 66.7 66.7 63.334

Modified

Covariance High 66.67 33.33 33.33 100 100 66.7 33.3 100 100 100 73.333

MUSIC High 100 33.33 100 100 66.67 66.7 66.7 100 100 66.7 80.001

Blackman

Tukey Medium 66.67 66.67 66.67 66.67 66.67 33.3 66.7 66.67 66.7 66.7 63.336

Welch Medium 66.67 66.67 33.33 33.33 33.33 66.7 66.7 66.67 66.7 66.7 56.668

Yule Walker Medium 66.67 66.67 66.67 66.67 66.67 66.7 66.7 33.33 66.7 66.7 63.336

Burg Medium 66.67 66.67 66.67 66.67 33.33 66.7 66.7 66.67 66.7 66.7 63.336

Covariance Medium 66.67 66.67 66.67 33.33 66.67 33.3 66.7 66.67 66.7 66.7 60.002

Modified

Covariance Medium 33.33 33.33 66.67 66.67 66.67 66.7 66.7 66.67 66.7 66.7 60.002

MUSIC Medium 100 33.33 66.67 66.67 33.33 100 66.7 66.67 66.7 100 70.001

Blackman

Tukey Low 66.67 66.67 66.67 66.67 66.67 66.7 33.3 66.67 66.7 66.7 63.336

Welch Low 66.67 66.67 33.33 33.33 33.33 66.7 66.7 66.67 66.7 66.7 56.668

Yule Walker Low 66.67 66.67 66.67 66.67 66.67 66.7 66.7 66.67 66.7 66.7 66.67

Burg Low 66.67 66.67 66.67 66.67 33.33 66.7 66.7 66.67 66.7 66.7 63.336

Covariance Low 66.67 66.67 66.67 33.33 66.67 66.7 33.3 66.67 66.7 66.7 60.002

Modified

Covariance Low 33.33 0 66.67 66.67 66.67 66.7 66.7 66.67 66.7 33.3 53.335

MUSIC Low 33.33 66.67 33.33 66.67 33.33 66.7 66.7 66.67 33.3 33.3 50

 76

Each algorithm is listed with its resolution factor level of Low, Medium, or High. We

expect to see the best results for each algorithm using the high resolution factor level.

JMP ANOVA (One-Way)

Figure 43. ANOVA analysis of output results (Plot 1: (L) Algorithm vs Mean & Plot 2: (R)

Resolution vs Mean)

 77

Response variable = mean output. I compared the mean output to both the algorithm and

the resolution of the algorithm model. I should see parallel quantile plots data versus

normal distribution. The tilt of each plot line indicates different standard deviations.

Also, the distance between the plot lines indicates differences in variances. I do note the

variances are different for each algorithm. Additionally, it is clear that the Burg

algorithm has the smallest variance. The different quantile box sizes strongly indicate

different variances.

Figure 44. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs

Mean)

 78

Differences in variances are confirmed by the difference of variance test whose output is

displayed above.

Figure 45. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs

Mean) - Continued

The various differences in means are displayed above in the table. Note that the variance

for High resolution is quite different from both the low and medium resolution models.

 79

JMP ANOVA (Two-Way)

Figure 46. (2-Way ANOVA) Full Factorial

The purpose of this test is to determine any interactions of the main effects. The Main

effects: Algorithm and Resolution with their interaction (Algorithm and Resolution). The

Least Squares Means plots [in the lower portion of the figure above] indicate that

resolution factor (P-Value) is a significant factor. At first glance it would seem there is a

significant interaction effect present -plot in lower portion of the 2-Way ANOVA

display; however, after review of the Effect Tests, it is clear that the P-Value is only

significant for the Resolution factor. There doesn’t appear to be a strong interaction

effect between factors Algorithm and Resolution.

 80

JMP Result/Conclusion

Figure 47. Tukey HSD Means Test (Test for Interaction)

This indicates no strong interaction between Resolution and Algorithm. However, it does

suggest the major differences between the Algorithm and Resolution combinations. It

indicates that the Blackman Tukey algorithm model and the MUSIC algorithm model

when operated utilizing high resolution parameters provide the highest overall mean and

therefore the most accurate result of the algorithms tested.

In fact, the estimation accuracy of the algorithms is accurately described above. We can

therefore conclude that the best methods to estimate and calculate the PSD for wireless

signals are the top two algorithms: the Blackman Tukey using its high resolution factor

 81

and the Yule Walker algorithm using its high resolution factor. Music using its high

resolution factor cannot be considered for wireless PSD estimation since the algorithm

loses the spectral power components of the signal; it is strictly to be used for estimating

frequency components, but not spectral power components. Note that some of the

algorithms perform better using their lower resolution factors than other algorithms that

are using their highest resolution factors.

 82

CHAPTER 4

SYSTEM DESIGN

The hardware component types of the system design are the 802.11X and cellular base

stations and the cell controller. The base stations are comprised of a General Purpose

Processor (GPP), a number of Digital Signal Processors (DSP), and a number of RF

receive and transmit chains. Both the transmitter and receiver will have an antenna. The

receiver may have a (e.g. Low Noise Amplifier) a matched filter on the front end as well

as an Analog to Digital Converter (ADC), the transmitter will have a Digital to Analog

Converter (DAC) and may have a LNA along with an impedance matching circuit to

ensure VSWR is not produced. The focus on the design of the base station is to ensure

the design allows for a continual evolution in regard to the physical modulation

techniques. The design needs to be capable of adapting to changes in the modulation

techniques. The design also must ensure that the receive sensitivity is sufficient to

receive the minimum desired signal. The receive sensitivity can be defined as the

minimum desired signal power above the noise floor of the receiver as defined by the

following equation:

 (34)

System-On-Chip (SoC) designs now include GPP and a number of DSPs are typical.

Often these designs do include an FPGA, however, some implementations are now

focusing on DSP arrays such as those provided by Picochip (now Mindspeed) and

Coherent Logix (HyperX). In these cases, small FPGAs are used for I/O multiplexing

only while all DSP functions are performed in software on DSP arrays (27nm

technology) fully integrated with DSP tools such as MATLAB and SIMULINK.

 83

The cell controller is comprised of specialized hardware that is designed to perform high

performance network frame processing and will be designed to handle > 40Gbs encrypted

link layer network traffic. In order for the cell controller to handle encrypted network

traffic at this rate, it must have a hardware based data path. The hardware data path

requires the following functions:

Classification of network frames. This is required so that frames with encrypted traffic

can be characterized based upon the source MAC address of the mobile device that

transmitted the frame as well as any relevant network headers such as VLAN tags. Once

classification is performed, the address of the received frame must be distributed to a

cryptography engine for decryption as well as pre and post processing engines. The

following packet walkthrough is an example of an architecture where majority of frame

processing is off-loaded from GPP cores.

 84

Figure 48. Packet Walkthrough on Example SoC,(Freescale, 2014) With Newly

Proposed/Designed Wireless Link Layer Capability

The HW state machine described above require their own Direct Memory Address

(DMA) engines to read and write data to and from memory as required during frame

processing through a memory gasket and memory controller. Such a configuration would

require a GPP to provide configuration and management of the HW during its

configuration and boot cycles [this is sometimes referred to as the control plane]. In

addition, it would require a slow speed peripheral memory bus so that configuration

registers on the HW could be modified during configuration. A GPP would also be

required to handle exceptional conditions that occur during frame processing such as

 85

error frames and could be helpful in handling conditions that were not perceived during

HW design.

Since both configurations require frame processing, additional aspects of the design need

to be considered. What is the queue latency of frame processing? For instance, must

frame be processed strictly in the order they are received or can some frames be

processed in parallel. For performance reasons, if multiple channels are required, frames

should be allowed to be multiplexed to different dedicated HW blocks at the same time.

However, this implies that the adaptive properties of each channel must be maintained by

all dedicated HW IP blocks. These properties would have to be stored in memory and

then retrieved from memory as different blocks receive frames that require different

adaptive properties. Therefore, a cache is required to ensure unnecessary memory fetches

were not required by the DMA engine prior to processing a frame. In order to determine

which adaptive properties are required to be loaded by the HW block requires

classification of network and wireless frames as they are received. Additional dedicated

HW is required to handle frame classification and queuing logic. These HW state

machines would communicate to each other via private, HW dedicated buses between the

frame processor, the queue processor, and the link layer encryption HW IP blocks. The

GPP core(s) would provide the ability to configure the HW registers in each of these

blocks via a peripheral memory bus. The peripheral memory bus would also be used for

monitoring, dynamic reconfiguration, error conditions, and management (thru a network

interface). In this approach, memory transactions are limited to the frame processor and

link layer encryption blocks. HW blocks utilize a private bus for communication and the

 86

GPP only accesses memory a very small percentage of time mostly for monitoring and

management functions. Additional provisions can be provided that force received frames

to be stored on memory aligned pages thereby reducing non-aligned memory transactions

to a very small percentage of overall memory transactions. HW would generate memory

transactions to access adaptive properties stored on a per channel basis.

A key component of the HW data path is the wireless MAC engine. This programmable

engine bridges wireless frames to the wired interface, decrypts/encrypts wireless link

layer data & management frames, performs RF measurements of mobile devices,

implements wireless roaming between base stations, provides network proxy ARP (if

required) for mobile devices, provides per device instruction execution, and monitors the

state of the mobile device at all times. As depicted in Figure 11, the wireless MAC

engine uses information such as instructions,VLAN tag info, 802.11 or cellular MAC

template (used to modify frames to and from the mobile device), and reserved memory

that is used by the engine in real-time to modify and/or bridge wireless frames.

Hardware Design And Verification.

 The most important step in hardware design is to ensure the requirements are well

defined and understood. In particular functions that implement features such as the

wireless link layer MAC subsystem I described earlier in this paper must be implemented

with a thorough knowledge of the protocols so the proper functional decomposition can

be accomplished between software and hardware. In particular, standards in the wireless

area are changing all the time; the portions of the system that have a high degree of

volatility should be implemented in software. However, after many years the data path

 87

for these technologies continues to converge toward IP based protocol services. The LTE

EPC now is moving all traffic (even voice) to IP based data frames. This commonality

aids in the development of hardware to support the data path. This ensures that even the

latest technology can benefit from the development of this type of hardware technology.

However, even functions that are implemented in software still require hardware support.

Often this aspect is overlooked during the system design phase. For instance, how does

software interact with the hardware to redirect its data path to a new base station? As

discussed earlier, this requires a hardware synchronized ability to perform an atomic

operation while the data path is still active. Interruption of the data path would cause

delay in frame transmissions to a device and reduce its perceived performance. In this

case hardware must enable the ability to be updated on a per user basis without mobile

devices losing their connectivity and network access. In order to implement this new

hardware feature, a systematic review of all 802.11 and cellular specifications would be

required to determine what features requirements would be required to achieve the end

goal of having all data and voice packets from wireless technology to be handled fully in

hardware (e.g. data path acceleration architecture).

Once the requirements have been completed and fully understood, the hardware interface

requirements with other subsystems within the SoC must be evaluated to determine if

they will impede the wireless subsystem from achieving its functional or performance

requirements. All electrical interfaces have to be evaluated to ensure that they meet the

 88

performance bench marks and that there is sufficient electrical interface support for

system level interfaces required from other subsystems.

During Verilog development there should be well defined interfaces between the

functional hardware blocks. This is important at the very beginning because too often

functions are duplicated or require too many additional wires of communication between

the blocks which increases the die size, increases complexity, and increase the likelihood

of failure particularly when implementing large designs. Implementation of

combinatorial logic blocks should be consistent throughout the design to reduce

complexity as an example when many personnel work on the same project. Once

sufficient subsystems have been implemented, software should be written to interact with

the test hardware simulation interfaces as early and often as possible so that problems can

be spotted as early as possible. Figure 49 depicts such an environment where Linux

executes on a simulation of the processor instruction set and the software drivers are

written within this environment to interact directly with the Verilog co-simulation

environment through the use of SystemC adapters. The SystemC co-simulation adapters

are provided by companies such as Virtutech (processor/system simulator and SystemC

adapter) and Cadence tools (Verilog/SystemC adapters and simulator). Software

engineers can implement software and test against the actual hardware during the

hardware development cycle prior to hardware synthesis. In addition, randomized

hardware simulations should run continuously (with hardware simulation probes) to catch

timing problems and error signals that are caught during execution. When a random

simulation fails, it is important to reproduce the failure; the hardware test co-simulation

 89

software should record parametric configuration information captured before each test.

In only this way will test be reproduced and problems resolved efficiently.

Once all electrical interfaces have been defined, then these interfaces and their

descriptions and definitions go into a requirements verification test matrix (RVTM), unit

level test benches are created that imitate the electrical interfaces from other subsystems

as well as connect all electrical interfaces to hardware signal sources. This enables the

unit level tests to randomize patterns and clock edges across these electrical interfaces so

that problems can be identified early and often. These tests then would feed into a larger

collection of tests that are executed by system level test execution.

Hardware Simulation And Verification

In order to design the hardware and verify the function of a hardware subsystem, a

hardware co-simulation environment is required. This foundation for this environment is

comprised of Verilog simulation using tools such as those developed by Cadence.

Layered above this foundation are the Verilog hardware finite state machines that must

be tested. In addition, software libraries built with the SystemC library are also used to

drive bus functional models to test the hardware. The Cadence co-simulation library

provides SystemC adapters for their simulation environment that allow a SystemC model

to connect digital logic to hardware connector names. Typically this is done through

what is referred to as a “bus functional model”. Such a model supports the ability to test

individual hardware subsystems. Hardware subsystems interact with each other through

the use of logic signals and buses. Assuming no transitional change of clock domains, all

hardware subsystems are clocked with the same clock source; however, there are clock

 90

delays through different components used in a Verilog model such as combinatorial and

sequential logic. Testing of individual subsystems entail the use of randomization of

clock signals and data bits across all data buses and should include the variance of the

clock signals within the specified operational range. As with all logic signals, these

signals will vary temporarily (within a range) as a function of temperature and variances

in the silicon and randomization of the skew of the clock signal is crucial to identify

problems before synthesis. Building upon these subsystem tests, the subsystems are then

connected together. New Bus Functional Models (BFM) are built that represent the new

or combination of the new digital interfaces. As the tests include more and more logic

blocks that must be simulated, the hardware test (SystemC) library needs to ensure that it

is built as optimally as possible. The model must reduce unnecessary events (such as per

pin events on a clock edge as an example), but be based upon a concept referred to as

Transaction Level Modeling (TLM). This approach focuses on functional block events

instead of events produced on each individual clock edge. When developing BFMs to

connect to subsystems under test, it is important to base the event structure on TLM

concepts. This approach still provides a very accurate digital signal timing display while

the model runs at a very high rate of speed. As shown Figure 49, hardware models of IP

within a SoC can be in a near cycle accurate way, with very acceptable performance,

using the TLM based transaction model approach. In this example (Figure 49), a Linux

operating system is executing on a simulation of the Power Architecture instruction set

while executing a Linux kernel module that actually runs against the real hardware

simulation using a shared (shared between the processor simulation) and the SystemC

adapter that drives the logic pins on the Verilog model. The Verilog model actually

 91

executed and reacted as if it were already synthesized as part of the SoC. This testing

would ensure that the Wireless Link Layer Subsystem hardware IP will execute as

expected in real platform environments and ensure early testing of software can occur

prior to tape-out of hardware.

Hardware tests are executed at the intended simulated clock speed of the hardware and

are executed using a simulated clock signal at the programmed clock speed. An example

of tests that are executed include the ability to skew the input and output digital signals in

a random way to ensure the finite state machines are robust enough to handle differences

found in silicon after SoC synthesis has occurred. Other tests include functionality tests

to ensure that functions within the hardware Intellectual Property (IP) works as intended.

Other tests include the random ordering of memory transactions to and from the hardware

IP as well as negative testing. This simulation test software executes quickly because a

very lightweight threading model is used to drive the hardware state machines. All

hardware state machines are executed in simulation as they would in hardware. Each

independently clocked state machine is another thread that executes in a round robin

fashion to ensure that all clock dependencies are enforced.

 92

Figure 49. Example of a HW Design/IP Verification and Unit Test Environment

This same model can then be applied to a real synthesized SoC. Instead of the peripheral

and memory buses being simulated virtual memory of a test processor running our

memory simulation model, we use real system memory and write to real peripheral bus

memory interfaces. Thus no changes to the actual tests need occur, just simply modify

the memory adapters in the model so they map directly to SoC memory, not simulation

memory. An example of this is depicted in Figure 50.

 93

Figure 50. Unit Co-Simulation Test Environment Ported to Real Silicon

Note how the Linux kernel modules (e.g. drivers) are used to provide the mapping

between application simulation memory and real system memory. The hardware only

understand hardware addresses, so all memory translations must occur between the co-

simulation application and the real hardware memory map. Thus, the memory writes all

occur (not across a simulated bus to simulated memory) to real system memory.

Randomization of clock gitter has been especially helpful in finding bugs that may have

escaped our testing prior to developeing this functional verification, validation, and

performance testing software tools and libraries.

 94

Hardware Performance Simulation

Figure 51. HW Co-Simulation Environment that can be used to test HW Performance

Using the Cadence co-simulation environment with a simulated memory gasket and a

robust SystemC test class library, unit level tests can be executed at the simulated clock

rate that the target hardware will execute. By measuring simulation time, number of

hardware clocks, and unit of time (e.g. seconds), hardware IP designers can ascertain if

the design meets the required performance specifications. In addition to running the

design as a cycle-accurate simulation, this environment can support executing the design

at higher than planned clock rates to determine how performance can be improved in the

future. This environment also includes randomization of the address ranges utilized so

that an accurate model can be measured as it relates to real-world memory latency due to

system memory collisions (e.g. heavy utilization). HW performance is not based upon

raw bus rates, it based upon the ability of the hardware to reach a rate of speed that meets

 95

the minimum performance specifications. For example, a memory gasket can perform at

6.4GB/sec; however, it can never reach that because it can only support 3 memory

transactions at one time. This is because the memory bus interface being used will only

be used for a large number of relatively short memory transactions, not one large

transaction. Therefore, though the raw performance of the bus is impressive, it does not

meet the requirements because with only 3 transactions allowed in parallel, we are

limited to only a very small fraction of the maximum bandwidth.

This does not replace the testing of subsystems that interact with the hardware IP under

test. Connected subsystems must meet their performance specification and must be

tested to ensure their committed performance target is met when used as intended by the

end product user. Hardware can be designed to meet a performance specification, but the

preconditions and post conditions are important. If the only way the hardware is going to

meet its performance target is to use it in a way that would never occur in its actual use, it

should be considered compliant with the requirements.

 96

CHAPTER 5

SUMMARY CONCLUSION

This thesis focused on furthering a new concept in regard to link layer communication as

it relates to wireless devices. I focused on how this proposed system would provide

support for the use of 802.11 and cellular protocol stacks. I also focused on the hardware

implementation (e.g. start of SoC design, functional decomposition) to support this new

link layer idea that wireless data frames are processed by hardware state machines (not by

software). In order for this occur, hardware functions and features must be in place to

ensure that wireless behavior such as roaming, RF communication methods, wired

network infrastructure support (VLAN/Proxy ARP/Routing) are provided. In Chapter 1

I focused on an introduction to the technology, some of the limitations, and similarities

between the two wireless standards. In Chapter 2 I focused on the link layer

communication mechanisms and an overview of the link layer communication model

between the cell controller and the base stations as well as some of the functional system

decomposition. Chapter 3 focused on the mobile device issues in regard to a review of

their state machine behavior, capabilities, and typical interactions with existing wireless

communication protocols. I further described how a cell controller would support these

devices as well as a small research effort in regard to RF signal estimation and PSD

derivation that might be implemented on mobile devices on behalf of the cell controller

(e.g. network side RF measurement request). Finally in Chapter 4 I reviewed some of the

hardware design, development, and verification methodologies that would be employed

to develop such a SoC design. This paper focused on the high level concepts. In order to

 97

bring these concepts to practice, much more material is needed to fully define all

requirements, timing constraints, and further uncover additional design considerations.

 98

REFERENCES

Barton, B. (2012, March 30). eUTRAN to UTRAN (4G to 3G). Retrieved March 20,

2014, from LTE and BEYOND: http://www.lteandbeyond.com/2012/03/few-last-articles-

were-about-handover.html

Wikipedia. (2014, February 24). Cellular data communication protocol. Retrieved March

15, 2014, From Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/Cellular_data_communication_protocol

Freescale. (2014, March 15). P4080: QorIQ P4080/P4040/P4081 Communications

Processors with Data Path. Retrieved March 15, 2014, From Freescale Semiconductor:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080

Airstream. (2014, April 3). ACK Timeouts and the effects on distance. Retrieved March

1, 2014, From Airstream: http://www.air-stream.org/technical/ack-timeouts-and-effects-

distance-links

ShareTechnote. (2013, September 4). Handover LTE. Retrieved February 28, 2014,

From ShareTechnote: http://www.sharetechnote.com/html/Handover_LTE.html

Peter McGuiggan. (2004). GPRS in Practice. West Sussex, England: John Wiley & Sons.

James F. Kurose, Keith W. Ross. (2010). Computer Networking, Fifth Edition. Boston:

Pearson.

Steven M. Kay. (2010). Fundamentals of Statistical Signal Processing (Estimation

Theory). Hamilton in Castleton: Prentice-Hall.

Steven M. Kay. (2008). Fundamentals of Statistical Signal Processing (Detection

Theory). Troy: Prentice-Hall.

Douglas C. Montgomery. (2013). Design and Analysis of Experiments, Eighth Edition.

Hoboken: John Wiley & Sons.

Frank James, J.K., R.B. (2004), US Patent Application 20050157690. United

States/California

Cover, T. (1972). Admissibility properties of Gilbert’s encoding for unknown source

probabilities. IEEE Transactions on Information Theory, 18:216–217.

 99

Krichevsky, R. (1998). Laplace’s law of succession and universal encoding. IEEE

Transactions on Information Theory, 44:296–303.

McDiarmid, C. (1989). On the method of bounded differences. In Surveys in

Combinatorics, pages 148–188. Cambridge University Press.

Miller, G. (1955). Note on the bias of information estimates. In Information theory in

psychology II-B, pages 95–100.

Nemenman, I., Shafee, F., and Bialek, W. (2002). Entropy and inference, revisited. NIPS,

14.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation,

15:1191–1253.

Paninski, L. (2004). Estimating entropy on m bins given fewer than m samples. IEEE

Transactions on Information Theory, 50:2200–2203.

Paninski, L. (2005). Variational minimax estimation of discrete distributions under KL

loss. Advances in Neural Information Processing Systems, 17.

Paninski, L. (2008). A coincidence-based test for uniformity given very sparsely-sampled

discrete data. IEEE Transactions on Information Theory, 54:4750–4755.

Paninski, L. and Yajima, M. (2008). Undersmoothed kernel entropy estimators. IEEE

Transactions on Information Theory, 54:4384–4388.

NIST. (2001, May 1) FIPS PUB 140-2. Security Requirements for Cryptographic

Modules. Federal Information Processing Standards Publication. Category: Security.

Subcategory: Cryptography.

NIST. (2012, February 16) Annex C: Approved Random Number Generators for FIPS

PUB 140-2, Security Requirements for Cryptographic Modules.

 100

APPENDIX A

MATLAB PROGRAM AMPLITUDE/PHASE/FREQUENCY ESTIMATOR

 101

%
% Amplitude & Phase & Frequency unknown.
% -Must estimate frequency using periodogram.
% -Must estimate amplitude.
% -Must estimate phase.

samples = 1000;
N = 5;
u0 = 0;
phi = .25 *(2*pi);
f0 = 0.25;
A = 2;
var0 =1;

%all_known_pd=zeros(samples,1);
%all_known_pfa=zeros(samples,1);
%energy_noise=zeros(samples,1);

%A_unknown_pd=zeros(samples,1);
%A_unknown_pfa=zeros(samples,1);

%A_phi_unknown_pd=zeros(samples,1);
%A_phi_unknown_pfa=zeros(samples,1);

all_unknown_pd=zeros(samples,1);
all_unknown_pfa=zeros(samples,1);

wgn = zeros(samples,1);
x0=zeros(samples,1);
x1=zeros(samples,1);
x=zeros(samples,1);
freq_est=zeros(samples,1);
phase_est=zeros(samples,1);
a_est=zeros(samples,1);

for iter=1:samples;

 wgn = u0 + (sqrt(var0)*randn(samples,1));
 x0 = wgn;

 for sig_iter=1:samples;
 x1(sig_iter) = wgn(sig_iter) + cos((2*pi*f0*sig_iter)+phi);
 end;

 index = 1;
 sfreq=.005;
 efreq=.495;
 incfreq=.005;

 i_freq = zeros(((efreq-sfreq)/incfreq)+2,1);

 for freq=sfreq:incfreq:efreq;

 102

 x_cos = 0;
 x_sin = 0;
 for icnt=1:N;
 x_cos = x_cos + x1(icnt)*cos(2*pi*freq*icnt);
 x_sin = x_sin + x1(icnt)*sin(2*pi*freq*icnt);
 end;
 i_freq(index) = (2/N * (x_cos^2 + x_sin^2));
 index = index + 1;
 end;

 [value,indice] = max(i_freq);
 freq_est(iter) = (sfreq + ((indice-1)*incfreq));

 x_cos = 0;
 x_sin = 0;
 for icnt=1:N;
 x_cos = x_cos + x1(icnt)*cos(2*pi*freq_est(iter)*icnt);
 x_sin = x_sin + x1(icnt)*sin(2*pi*freq_est(iter)*icnt);
 end;

 a_est(iter) = (2/N)*sqrt(x_cos^2 + x_sin^2);

 dphase = 0;
 nphase = 0;
 for icnt=1:N;
 nphase = nphase + x1(icnt)*sin(2*pi*freq_est(iter)*icnt);
 dphase = dphase + x1(icnt)*cos(2*pi*freq_est(iter)*icnt);
 end;

 phase_est(iter) = abs(atan(-nphase/dphase));

 tx1_var0 = 0;
 tx1_var1 = 0;
 for tx1=1:N
 tx1_var0 = tx1_var0 + abs(

x1(tx1)*a_est(iter)*(cos(2*pi*freq_est(iter)*tx1)+phase_est(iter)));
 tx1_var1 = tx1_var1 + abs(

x1(tx1)*a_est(iter)*(sin(2*pi*freq_est(iter)*tx1)+phase_est(iter)));
 end;
 all_unknown_pd(iter) = 1/(4*var0)*(((2/N)*tx1_var0)^2 +

((2/N)*tx1_var1)^2);

end;

tx_pd = sort(all_unknown_pd);

% Derived from sort()
total_cnt=samples;

range = 20;

incr = range/100;
size = range/incr;

 103

%Monte Carlo Solution
pd_y=zeros(range/incr,7);
engy_x=zeros(range/incr,7);

var_pd = var(all_unknown_pd);

pfa = 10^-1;
for nplots=1:7;

index = 1;
for iter=0: incr : range-.2;

 pd_cnt=0;

 nA = sqrt(((2*var0)/N)*(10^(iter/10)));
 gamma = nA*(1/2)*chi2cdf((1-pfa),2);

 for n=1:samples;
 if (all_unknown_pd(n) > gamma)
 pd_cnt = pd_cnt + 1;
 end;
 end;

 pd_y(index,nplots) = pd_cnt/total_cnt;
 engy_x(index,nplots) = (range-.2) - iter;

 index = index + 1;
end;

pfa = pfa*10^-1;
end;

plot(engy_x,pd_y);

 104

APPENDIX B

MATLAB PROGRAM BURG PSD ESTIMATOR

 105

%

%

% Burg PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

DBM = 0;

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

for nextPlot = 1: 6

 if (nextPlot < 4)

 106

 x=S; %Data Set 1

 if (nextPlot == 1)

 modelOrder = 5;

 elseif (nextPlot == 2)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 else

 x=X; %Data Set 2

 if (nextPlot == 4)

 modelOrder = 5;

 elseif (nextPlot == 5)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 end;

freqPlot = (0:.0078125:31.9921875)';

f = freqPlot;

P = modelOrder;

Pxx = pburg(x,P,f,Fs);

figure;

if (DBM == 0)

 plot(freqPlot,Pxx);

 %plot(freqPlot,psdEst);

else

 plot(freqPlot,10*log10(Pxx)); %dB/Hz

 %plot(freqPlot,psdEst);

end;

if (nextPlot < 4)

 title(['Signal, No Noise, Burg, Model Order = ' int2str(modelOrder)]);

else

 title(['Signal + Noise, Burg, Model Order = ' int2str(modelOrder)]);

end;

xlim([0 32]);

xlabel('Frequency (Hz)');

 107

if (DBM == 0)

 ylabel('PSD Magnitude');

else

 ylabel('PSD Magnitude (dB)');

end;

testPoint = 0; %For debug purposes

end;

%

%

%

%

 108

APPENDIX C

MATLAB PROGRAM BLACKMAN-TUKEY PSD ESTIMATOR

 109

%

% Blackman-Tukey PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

for nextPlot = 1: 6

if (nextPlot < 4)

 110

 x = S; %Without Noise

 if (nextPlot == 1)

 Lag = 10; %Without Noise -All Freq. Components visible

 elseif (nextPlot == 2)

 Lag = 20;

 else

 Lag = 70;

 end;

 M = Lag;

else

 x = X; %With Noise

 if (nextPlot == 4)

 Lag = 10; %Without Noise -All Freq. Components visible

 elseif (nextPlot == 5)

 Lag = 20;

 else

 Lag = 70;

 end;

 M = Lag;

end;

Rxx2 = xcorr(x,x,M,'unbiased');

hammingW = hamming(2*M,'periodic');

%hammingW = hamming(2*M);

freq=0;

psdEst=zeros(1,300);

for k=1: 300 % 30Hz band in a .1 Hz interval

 realM = -M;

 for m=1: 2*M

 psdEst(k) = psdEst(k) + (hammingW(m)*Rxx2(m)*exp(-1i*2*pi*T*realM*freq));

 realM = realM + 1;

 end;

 psdEst(k) = T * psdEst(k);

 freq = freq + .1;

end;

freqPlot = (0:.1:29.9)';

figure;

plot(freqPlot,real(psdEst));

%plot(freqPlot,10*log10(real(psdEst))); %dB/Hz

if (nextPlot < 4)

title(['Signal, no noise, Blackman-Tukey Plot Lag = ' int2str(Lag)]);

 111

else

title(['Signal + noise, Blackman-Tukey Plot Lag = ' int2str(Lag)]);

end;

xlabel('Frequency (Hz)');

ylabel('PSD Magnitude');

end;

testPoint = 0; %For debug purposes

 112

APPENDIX D

MATLAB PROGRAM COVARIANCE PSD ESTIMATOR

 113

%

%

%

% Covariance PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

DBM = 0;

for nextPlot = 1: 6

 114

 if (nextPlot < 4)

 x=S; %Data Set 1

 if (nextPlot == 1)

 modelOrder = 5;

 elseif (nextPlot == 2)

 modelOrder = 16;

 else

 modelOrder = 30;

 end;

 else

 x=X; %Data Set 2

 if (nextPlot == 4)

 modelOrder = 5;

 elseif (nextPlot == 5)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 end;

freqPlot = (0:.0078125:31.9921875)';

f = freqPlot;

P = modelOrder;

%Covariance PSD

Pxx = pcov(x,P,f,Fs);

figure;

if (DBM == 0)

 plot(freqPlot,Pxx);

 %plot(freqPlot,psdEst);

else

 plot(freqPlot,10*log10(Pxx)); %dB/Hz

 %plot(freqPlot,psdEst);

end;

xlim([0 32]);

if (nextPlot < 4)

 title(['Signal, No Noise, Covariance, Model Order = ' int2str(modelOrder)]);

 115

else

 title(['Signal + Noise, Covariance, Model Order = ' int2str(modelOrder)]);

end;

xlabel('Frequency (Hz)');

if (DBM == 0)

 ylabel('PSD Magnitude');

else

 ylabel('PSD Magnitude (dB)');

end;

testPoint = 0; %For debug purposes

end;

 116

APPENDIX E

MATLAB PROGRAM MODIFIED COVARIANCE PSD ESTIMATOR

 117

%

%

% Modified Covariance PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

DBM = 0;

for nextPlot = 1: 6

 118

 if (nextPlot < 4)

 x=S; %Data Set 1

 if (nextPlot == 1)

 modelOrder = 5;

 elseif (nextPlot == 2)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 else

 x=X; %Data Set 2

 if (nextPlot == 4)

 modelOrder = 5;

 elseif (nextPlot == 5)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 end;

freqPlot = (0:.0078125:31.9921875)';

f = freqPlot;

P = modelOrder;

%Modified Covariance PSD

Pxx = pmcov(x,P,f,Fs);

figure;

if (DBM == 0)

 plot(freqPlot,Pxx);

 %plot(freqPlot,psdEst);

else

 plot(freqPlot,10*log10(Pxx)); %dB/Hz

 %plot(freqPlot,psdEst);

end;

if (nextPlot < 4)

 title(['Signal, No Noise, Modified Covariance, Model Order = ' int2str(modelOrder)]);

else

 title(['Signal + Noise, Modified Covariance, Model Order = ' int2str(modelOrder)]);

end;

xlabel('Frequency (Hz)');

 119

xlim([0 32]);

if (DBM == 0)

 ylabel('PSD Magnitude');

else

 ylabel('PSD Magnitude (dB)');

end;

testPoint = 0; %For debug purposes

end;

 120

APPENDIX F

MATLAB PROGRAM MUSIC PSD ESTIMATOR

 121

%

%

%

%

% MUSIC PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

DBM = 0;

 122

for nextPlot = 1: 6

 if (nextPlot < 4)

 x=S; %Data Set 1

 if (nextPlot == 1)

 modelOrder = 5;

 elseif (nextPlot == 2)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 else

 x=X; %Data Set 2

 if (nextPlot == 4)

 modelOrder = 5;

 elseif (nextPlot == 5)

 modelOrder = 15;

 else

 modelOrder = 30;

 end;

 end;

freqPlot = (0:.0078125:31.9921875)';

f = freqPlot;

P = modelOrder;

% Multiple Signal Classification (MUSIC)

Pxx = pmusic(x,P,f,Fs);

figure;

if (DBM == 0)

 plot(freqPlot,Pxx);

 %plot(freqPlot,psdEst);

else

 plot(freqPlot,10*log10(Pxx)); %dB/Hz

 %plot(freqPlot,psdEst);

end;

if (nextPlot < 4)

 title(['Signal, No Noise, Multiple Signal Classification (MUSIC), Model Order = '

int2str(modelOrder)]);

 123

else

 title(['Signal + Noise, Multiple Signal Classification (MUSIC), Model Order = '

int2str(modelOrder)]);

end;

xlabel('Frequency (Hz)');

if (DBM == 0)

 ylabel('PSD Magnitude');

else

 ylabel('PSD Magnitude (dB)');

end;

testPoint = 0; %For debug purposes

end;

 124

APPENDIX G

MATLAB PROGRAM WELCH PSD ESTIMATOR

 125

%

%

%

% Welch PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

d = 32;

for nextPlot = 1: 6

 126

if (nextPlot < 4)

 x=S; %Data Set 1

 if (nextPlot == 1)

 s = 10;

 elseif (nextPlot == 2)

 s=20;

 else

 s=30;

 end;

else

 x=X; %Data Set 2

 if (nextPlot == 4)

 s = 10;

 elseif(nextPlot == 5)

 s=20;

 else

 s=30;

 end;

end;

p = nearest((length(t)-d)/(s+1));

hammingW = hamming(d);

xp=zeros(p,d);

shift=0;

for j=1: p

 for jj=1: d;

 xp(j,jj)=xp(j,jj)+ hammingW(jj)*x(jj+(shift*s));

 end;

 shift = shift + 1;

end;

freq=0;

U=0;

for j=1: d;

 U = U + (hammingW(j))^2;

end;

U = T*U;

psdEst=zeros(1,p);

 127

WelchpsdEst=zeros(1,300);

for kk=1 : 300; % 30Hz band in a .1 Hz interval

 accumPSD=0;

 for k=1: p

 for m=1: d

 psdEst(k) = psdEst(k) + (xp(k,m)*exp(-1i*2*pi*T*m*freq));

 end;

 psdEst(k) = (1/(U*d*T))*(abs((T * psdEst(k))))^2;

 accumPSD = accumPSD + psdEst(k);

 end;

 WelchpsdEst(kk) = accumPSD/p;

 freq = freq + .1;

end;

%pwelch(x,d,d-s,length(x),Fs,'onesided'); %Hamming window

freqPlot = (0:.1:29.9)';

figure;

plot(freqPlot,WelchpsdEst);

%plot(freqPlot,10*log10(WelchpsdEst)); %dB/Hz

if (nextPlot < 4)

 title(['Signal, no noise, Welch Periodogram, sample shift = ' int2str(s)]);

else

 title(['Signal + noise, Welch Periodogram, sample shift = ' int2str(s)]);

end;

xlabel('Frequency (Hz)');

ylabel('PSD Magnitude');

testPoint = 0; %For debug purposes

end;

 128

APPENDIX H

MATLAB PROGRAM YULE-WALKER PSD ESTIMATOR

 129

%

%

%

% Yule-Walker PSD Estimator

%

%

% With & Without Noise

%

%

Fs=64;% Samples/sec

F01 = 10; %Hz

F02 = 11; %Hz

F03 = 25; %Hz

T1 = 1/F01;

T2 = 1/F02;

T3 = 1/F03;

UnitAmplitude = 1;

duration = 2; %length of simulation (sec)

samples = duration*Fs;

t=(1/Fs:1/Fs:duration)';

N = duration * Fs;

T = 1/Fs; %Sampling Interval

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal

noise = rand(1,samples)';%noise added to signal

S = s1 + s2 + s3; %Combined Signals Without Noise

x1 = awgn(s1,0);%add WGN 0db SNR

x2 = awgn(s2,0);%add WGN 0db SNR

x3 = awgn(s3,0);%add WGN 0db SNR

X = x1 + x2 + x3; %Combined Signals With Noise

%plot (t,s3,t,x3); %Test Only

%plot(t,s3); %Test Only

%s=3;

%s=10;

 130

s=20;

d=32;

%x=S; %Data Set 1

x=X; %Data Set 2

freqPlot = (0:.1:29.9)';

f = freqPlot;

%modelOrder = 5;

%modelOrder = 15;

%modelOrder = 60;

modelOrder = 30;

T = 1 / Fs;

P = modelOrder;

Rxx = xcorr(x,x,P,'biased');

%Rxx = xcorr(x,x,P,'unbiased');

[ar_coeffs, var] = aryule(x,modelOrder);

rxx = zeros(1,2*P);

for m=2*P: -1 : 1

 for k=1: P

% rxx(m) = rxx(m) + (ar_coeffs(k)*Rxx(m)) + var;

 rxx(m) = rxx(m) + (ar_coeffs(k)*Rxx(m));

 end;

 rxx(m) = -rxx(m);

end;

freq=0;

psdEst=zeros(1,300);

for k=1: 300 % 30Hz band in a .1 Hz interval

 realM = -P;

 for m=1:2*P

 % psdEst(k) = psdEst(k) + (rxx (m)*exp(-1i*2*pi*T*realM*freq));

 psdEst(k) = psdEst(k) + (Rxx (m)*exp(-1i*2*pi*T*realM*freq));

 realM = realM + 1;

 end;

 freq = freq + .1;

 psdEst(k) = T * psdEst(k);

end;

Pxx = pyulear(x,modelOrder,f,Fs); %-This uses the biased correlation

 131

 % estimate only.

 %-The unbiased correlation estimate can

 % cause unstable solutions (e.g.outside

 % the unit circle

%plot(freqPlot,real(psdEst));

plot(freqPlot,Pxx);

%plot(freqPlot,10*log10(Pxx)); %dB/Hz

title(['Yule-Walker, Biased, Model Order = ' int2str(modelOrder)]);

xlabel('Frequency (Hz)');

ylabel('PSD Magnitude');

testPoint = 0; %For debug purposes

end;

%

