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ABSTRACT  

   

The purpose of this paper is to introduce a new method of dividing wireless 

communication (such as the 802.11a/b/g/n and cellular UMTS MAC protocols) across 

multiple unreliable communication links (such as Ethernet). The purpose is to introduce 

the appropriate hardware, software, and system architecture required to provide the basis 

for a wireless system (using a 802.11a/b/g/n and cellular protocols as a model) that can 

scale to support thousands of users simultaneously (say in a large office building, super 

chain store, etc.) or in a small, but very dense communication RF region. Elements of 

communication between a base station and a Mobile Station will be analyzed statistically 

to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with 

the given bandwidth defined by the 802.11n wireless specification (use of MIMO 

channels will be evaluated). A new network nodal paradigm will be presented.  

 

Alternative link layer communication techniques will be recommended and analyzed for 

the affect on mobile devices. The analysis will describe how the algorithms used by state 

machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by 

new base station transmission behavior. New hardware design techniques that can be 

used to optimize this architecture as well as hardware design principles in regard to the 

minimal hardware functional blocks required to support such a system design will be 

described. Hardware design and verification simulation techniques to prove the hardware 

design will accommodate an acceptable level of performance to meet the strict timing as 

it relates to this new system architecture. 
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CHAPTER 1 

INTRODUCTION 

Wireless Technologies such as Wi-Fi and Cellular are converging in the market place.  

This convergence promotes a need for link layer network technologies that better 

facilitates the convergence of these technologies both from the radio frequency (RF) 

modulation adaptation perspective as well as from the link layer protocol support 

perspective.  The following describes the two main wireless technologies and will lead a 

discussion in regard to how the link layer protocols will support a new communication 

process in reference to wireless communication. 

Wi-Fi Technology  

Background: Wi-Fi base stations (often referred to as Wi-Fi access points) are devices 

that are deployed in disparate locations where RF coverage is needed; they are found in 

houses, supermarkets, shops, and college campuses.  Often these devices have memory, a 

general purpose processor (GPP), a modem which is often comprised of a digital signal 

processor, and HW such as a FPGA as well as RF hardware (e.g. filter, amplifier, 

impedance circuit, antenna, etc…).  Newer designs now have system on chip (SoC) 

designs which combine the GPP with the DSP Intellectual Property (IP) technologies so 

they provide a more integrated and smaller form factor solution.  These designs, however, 

require memory and an RF front end to support the receiver(s) and transmitter(s) and 

additionally require a network interface for network access to the private network of the 

service provide that interconnects with the Wide Area Network (WAN) wired for the 

purpose of providing access to the Internet as well as management support interfaces so 

that remote operation and maintenance (O&M) can be supported.   
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The 802.11 base stations such as found on cell towers can provide a modem or wired 

network interface that can be multiplexed across a remote microwave channel or 

connected directly to fiber, ATM, or Ethernet network.  

 

The RF characteristics of Wi-Fi devices commonly utilize omni-directional antennas.  

Multiple antennas on these devices are controlled separately to transmit separate spatially 

diverse streams.  WiFi device modulation techniques such as the use of Complementary 

Code Key (CCK) in concert with Quadrature Phase Shift Keying (QPSK) for 802.11b, 

CCK and Orthogonal Frequency Division Multiplexing (OFDM) in concert with 

Quadrature Amplitude Modulation (QAM) (e.g. 16 or 64 QAM) or Phase Shift Keying 

(PSK) (.e.g. BPSK or QPSK) are both used for 802.11g, OFDM with QAM or PSK used 

on each subcarrier is only used for 802.11a, 802.11n (max. 64 QAM, rate 5/6) utilizes 

OFDM in concert with QAM and PSK modulation techniques, and lastly 802.11ac which 

can utilize 256 QAM (rates 3/4 and 5/6) with use of MIMO to perform spatial diversity 

between multiple OFDM user streams using much smaller cell sizes.  

 

Management support interfaces for Wi-Fi devices are defined by the Telecommunications 

Management Network (TMN) model which encourage protocol support for different 

layers of a network infrastructure.  Simple Network Management Protocol (SNMP) is the 

predominant protocol in national provider networks today.   
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Figure 1. Overview of 802.11 Subsystems 

 

Cellular Technology 

Background: Cellular base stations, as is the case with Wi-Fi base stations, are located 

across the country in proximity to cellular towers.  Often these towers are visible in close 

proximity to interstates, highways, and neighborhoods; these towers are found 

(sometimes camouflaged) in areas where RF coverage is needed.  These towers are 

commonly referred as “cell towers” and often are equipped with dipole antennas so as to 

reduce impedance mismatch between the receiver and the antenna (impedance mismatch 

causes Voltage Standing Wave Ratio (VSWR) which is a measure of reflected voltage) 
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that causes transmitter signal distortion.  As is the case with Wi-Fi devices, these devices 

have memory, a general purpose processor (GPP), a modem which is often comprised of 

a digital signal processor and other hardware such as a FPGA. Newer designs now have 

system on chip (SoC) designs which combine the GPP with the DSP technologies so they 

require a smaller form factor.  These designs, however, require memory and an RF front 

end (e.g. filter, amplifier, impedance circuit(s) and antenna(s)) to support the receiver(s) 

and transmitter(s) and additionally require management support interfaces so that remote 

operation and maintenance (O&M) can be supported.  Unlike Wi-Fi, these devices have 

additional subsystems that manage roaming between many different cells across the 

country. In addition, many transceivers are located at the same location.  The common 

modulation techniques used by cellular base stations are Gaussian Minimum Shift 

Keying (GMSK) for Global System for Mobile Communications (GSM), that is data is 

sent through a Gaussian filter before it is MSK modulated/demodulated, Code Division 

Multiple Access (CDMA2000) in concert with PSK (e.g. BPSK, QPSK), WCDMA in 

concert with PSK which is used for Universal Mobile Telecommunications System 

(UMTS) systems.  T-Mobile and AT&T utilize UMTS/GSM, while Verizon utilizes 

CDMA2000 for voice transmissions while using LTE which uses Orthogonal Frequency 

Multiple Access (OFDMA) in concert with PSK or QAM on each subcarrier for data 

transmission.  Cellular base stations often utilize dipole antennas that reduce the amount 

of impedance mismatch found in 50 ohm coax connections between the antenna and the 

RF front end.  The RF front end is comprised of a high bandwidth filter(s), antenna(s), 

impedance circuit(s), and amplifier(s). 
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Figure 2. Overview of Cellular Subsystems 

 

Wireless Technology Not Considered 

Other wireless protocols include Bluetooth, 802.11z, 802.11p (MS-Aloha) and Wi-Fi-

Direct; however, these protocols are not used to support a large number of users 

simultaneously.  This paper is only focused on systems that can support a large user 

population. 

Cellular and Wi-Fi System Comparison 

Wi-Fi RF cell coverage sizes are limited by their higher frequency (2.4GHz and 5GHz 

versus 900MHz), limited allowed power transmission interference from other devices in 
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this unlicensed band (though somewhat mitigated by its modulation technique), and more 

importantly by their link layer communication specification.  Unlike cellular 

communication, Wi-Fi communication devices specify a link layer communication model 

based upon a CSMA/CA format.  The CSMA/CA format is not as effective multiple 

access protocol as is the case with TDMA or CDMA technologies. Though Wi-Fi can 

close links at longer distances, greater amplification and antenna directivity is required as 

well as cooperative changes to the Wi-Fi link layer timing specifications.  Example: DIFS 

is the amount of time a station must sense a clear radio before beginning a new 

transmission sequence.  Note that a node can format and buffer a data frame to be 

transmitted during this time interval. SIFS is the amount of time a station must wait 

before sending or beginning to receive a RTS, CTS or ACK frame, note that the SIFS 

time includes the amount of time to format the ACK frame to be transmitted; this is 

possible since only the first portion of the data frame (e.g. BSSID) is used in the ACK 

message.  PIFS is the DIFS for the access point in a special access method known as 

Point Coordination Function. The times are defined such that the RTS, CTS, and ACK 

frames are given a higher priority (ie once a packet transmission sequence has begun, the 

station holds onto the channel until it is finished).  Without 802.11 RTS/CTS 

handshaking the following time periods are observed. 
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Figure 3. 802.11 MAC Layer Communication Note: No 

RTC/CTS handshake depicted in diagram above. (Airstream, 

2014) 

 

IEEE mandates the following timing for 802.11a: 

 Time Slot = 9 µs 

 SIFS = 16 µs 

                                            (1) 

 

IEEE mandates the following timing for 802.11b: 

 Time Slot = 20 µs 

 SIFS = 10 µs 

 PIFS = SIFS + Time Slot = 30 µs 

                                                   (2) 

 

IEEE mandates the following timing for 802.11g: 

 Time Slot = 9 µs 

 SIFS = 10 µs 

                                                                 (3) 
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Sender procedure: Wait DIFS, Send Data, Wait SIFS, Listen for and receive ACK (until 

maximum ACK timeout), Repeat 

 

Receiver Procedure: Listen for and receive Data,Wait SIFS, Send ACK, Wait DIFS 

Given this link layer communication protocol, the destination must start constructing the 

ACK message once the first part of the data message has been received.  Once it has been 

determined that the data message was received without error, an ACK message may be 

transmitted.  The following is the timing calculation for sending the ACK message: 

                                       (4) 

                  

                                 

                               

With the speed of light           , a 802.11 ACK transmission can travel a distance 

of 300       .  Assuming a normal transmission of an ACK message, the receiver 

could be no greater than 3 km (given the speed of light, a nice number) away or 10 usec.  

If ACK timeout was increased (to say 19 usec), the maximum slot time for a point to 

multi-point communication environment is equal to the slot time.  For 802.11b the slot 

time of 20 usec equates to a maximum distance of 6 km.  Other wireless standards have 

similar limitations but the distances are shorter.   

 

Cellular requirements to address cellular reselection within greater cell sizes (> 1Km), 

though is possible with some cellular protocols, requires special configuration of the 

cellular chipsets to accomplish.  802.11, due to the CSMA/CA protocol requirements is 
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much harder to accomplish unless it is a point to point connection.  Figure 3 describes the 

general cellular reselection process as defined by the 2G specification (3G specification 

includes neighbor list evaluation -not depicted here). 

 

By observing the parameters in our cellular transmission cellular devices will choose a 

base station over other base stations in the area (even though there is a mismatch Power 

Spectral Density (PSD) may be less than others).  See Chapter 3 for additional 

information.  This is important because it implies that the number of cellular devices 

connected to a specific cellular base station can be control with the use of parameters 

transmitted in the Broadcast Channel (BCCH). 

 

Unlike 802.11 devices, assuming sufficient transmit power and sufficient receive 

sensitivity; a base station can attract distant devices in the same manner. Though many 

3G/4G chipsets (i.e. Mindspeed) have a time limitation (~1Km distance) in regard to how 

long they will wait for a response from a peer device, however chipsets can be 

programmed to deal with devices at greater distances > ~1Km by configuring the chipset 

to only respond to devices within a circular area with a diameter of ~1Km ‘distance of 

interest’ for distances > 1Km, ignoring devices that are not within that area of interest. 

 

Wi-Fi and cellular devices used in hot spots (locations that represent extensions to the 

Internet) use link layer protocols to control access to the Wireless Local Area Network 

(WLAN) and ultimately to the Wide Area Network (WAN).  Both wireless technologies 

form a LAN environment where IP addresses with a subnet designation are delivered to 
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individual devices for data access.  Cellular devices utilize IP addresses primarily for data 

access, but with Long Term Evolution will use these services for using voice services as 

well.  These addresses are then allowed access to the WAN through a network process 

referred to as Network Address Translation (NAT).  During normal operation each device 

initiates a data connection and delivers network frames that are transmitted to the 

backbone network of a service provider through a network gateway.  The network 

gateway provides the NAT service that is used to proxy IP network requests to the WAN. 

Wi-Fi and cellular devices used in an enterprise environment may not utilize NAT, but 

rather be assigned IP addresses distributed by a router or server that supplies Dynamic 

Host Configuration Protocol (DHCP) for the enterprise network.   

 

Link layer network technology can be used to facilitate adaptation to legacy network 

infrastructure, adaptation to new network backhauls, QoS of wired integration points 

within a legacy or new Wide Area Network (WAN) entry point.  QoS of wireless 

technology that utilizes techniques such as MIMO and virtual roaming (discussed later).  

As the performance at the edge of the network continues to increase, more demands will 

be made on the network infrastructure to perform QoS functions nearer to the edge of the 

network. 

 

This paper will focus on the use of a centralized communication controller that will 

control link layer communication between radios and the communication controller for 

the purpose of load balancing between radio nodes, automated discovery of new radio 

nodes, QoS in regard to RF communication channels, authentication, cryptography, and 
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virtual roaming. This paper is structured into the following sections: Wired integration 

with existing networks, 802.11a/b/g/n, Cellular 3G/4G technology and Ethernet / Fiber 

optic communication with a focus on link layer communication.  These areas will be 

evaluated as it relates to the Open Systems Interconnection (OSI) model starting at the 

physical layer and moving to the Link Layer.   
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CHAPTER 2 

PROPOSED WIRELESS SYSTEM DESIGN 

The new aspects of the following design depicted in Figure 4 entail the following 

attributes:  

1. High performance roaming and autonomous distribution of wireless devices. 

2. The measurement of Power Spectral Density across multiple RF cells to determine 

the best integration of 802.11 and cellular backhaul systems while performing 

intelligent frequency distribution across adjacent cells. 

3. Integration of WiFi and cellular backhaul networks to utilize the same network 

topology. 

4. Cognitive adaptation of Digital Signal Processing (DSP) parameters based upon 

empirical measurement of RF environmental parameters. 

5. The ability to prioritize frames based upon link layer behavior. 

6. The use of security encryption utilizing random numbers that are generated from a 

system with a sufficient amount of entropy (to be quantified later). 

 

The wireless system design follows the paradigm that the radios are simply radio 

interfaces that simply communicate as commanded by a regional communication 

controller.  The radio interfaces are comprised of a radio (with a transmitter and receiver), 

a very small processor, memory resources and an Ethernet interface.  These radios can 

communicate Cellular Frequencies utilizing W-CDMA using a 5MHz channel bandwidth 

or the radios can communicate Wi-Fi with 22 and 25 MHz channel bandwidth.  802.11n 

can utilize 20Mhz or 40Mhz channel bandwidths.  LTE (using OFDMA/SC-FDMA) 
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comprised of channel bandwidths of 1.4, 3, 5, 10, 15 and 20 Mhz.  LTE clients are 

communicated a mask that indicates the OFDMA subcarrier(s) to be used in the uplink 

transmission. 

 

The radios are preconfigured with real time link layer messages that are required to 

support real-time communication messages while all non real-time messages are sent to 

the regional communication controller where the message can be characterized and where 

an appropriate response can be constructed.  The link layer messages will be 

characterized per technology so that subsystem functions can be clearly identified and 

aspects of the design can be described adequately. 

 

Elements of this new innovation relating to both structure and operation can best be 

understood by referring to the following diagrams and their descriptions. 

This is a system of radios and their use in a large network.  This new link layer 

communication design is implemented using the Ethernet technology (MAC header, the 

VLAN header, and a proprietary layer 2 protocol header) to implement communication 

features that implement features 1 thru 6 above as well as specialized hardware that 

processes wireless link layer functions and communication, classification of network 

frames (wired and wireless), queuing and routing of frames, encryption/decryption of 

frames, and network buffer management. Though most wireless systems provide adaptive 

features, these features are not implemented with cognitive feedback from a RF and 

network environment that is not visible to the device.  The design depicted in Figure 4 
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describes the overall hardware functions implemented on the cell controller that support 

these new features. 

 

Figure 4. Proposed System Architecture 

 

By communicating the TMSI, IMSI, and TLLI between different cellular base stations 

within the same cell controller, the system is able to improve the speed at which a device 

changes from one Location Area Code (LAC) to another.  This is because the normal 

sequence of messages required to move from one cell to another is no longer required. 

This dramatically improves the performance of the Location Area Update process in 

cellular networks.  As all of the existing cellular technologies implement this portion of 
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the specification as it is required when moving from one cellular coverage area to 

another.  Additionally, if the TMSI & TLLI are ensured to be unique across all cell 

controllers, then this information can be moved in between interconnected cell controllers 

thus improving performance further. 

 

This new wireless system design is based upon the concept of splitting the wireless 

Media Access Control (MAC) across interconnected cell controllers using specialized 

hardware that process non-real time portions of the wireless MAC protocol as well as 

handle high speed frame processing for wireless devices under its control.  These cell 

controllers make “intelligent” decisions based upon feedback from multiple radios within 

a physical area. The wireless system design is comprised of hardware systems that are 

connected utilizing unreliable communication media (Ethernet) but could utilize other 

forms of unreliable communication such as satellite and wireless bridges as long as the 

required communication delay does not violate time constraints imposed by the MAC 

layer communication required between a central communication controller and radio that 

communicates the wireless MAC protocol.  Such a system needs to be capable of 

providing ubiquitous RF coverage across many desperate physical locations as well as be 

capable of integrating into existing, legacy network topologies that may be strictly based 

upon wired communication technologies.  The wireless system design utilizes RF 

transmitters and receivers that perform real time data communication to devices.  These 

devices are typically mobile; however, they can also include stationary devices such as 

desktop computers.  The major components of the hardware system are comprised of the 

following components: 
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Figure 5. Simplified System Topology 

 

Figure 5 above depicts the overall system topology that looks deceptively simple.   The 

system topology describes the overall top level architecture.  The hardware link layer 

communication methods used in the overall system will now be described. The system 

topology must be adaptable to ensure that the link layer design can be implemented 

without violating existing cellular and WiFi standards.  This introduces a challenge that is 

addressed in the following manner.   

Link Layer Communication Model 

The link layer communication model splits both the cellular and the 802.11 MAC 

protocols across unreliable communication links in a unique way.  As depicted in Figure 

5, Virtual Local Area Network (VLAN) technology as specified by the IEEE 802.1pq is 

utilized between the cell controller and the base stations.  In doing so, I can prioritize the 

communication links dynamically.  This design approach employs a fourfold advantage.   

1. The new link layer communication model can be implemented across an existing 

wired infrastructure with very low impact to the existing network infrastructure.  As 
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an example, a network architect can overlay a completely different IP subnet over an 

existing wired network infrastructure without changing the existing wired network. 

2. Based upon link layer communication behavior, prioritization of wireless frames can 

be changed dynamically.  As an example, if Quality of Service (QoS) parameters 

dictate a particular percentage of the system bandwidth, this system design can 

quickly change the VLAN priority tag to prioritize frames to one RF base station over 

another RF base station.  

3. Unlike autonomous wireless routers and access points, the cell controller has 

visibility to the RF spectrum where radios exist.  This design enables the cell 

controller to perform cognitive adaptation to the RF environment.  Based upon the RF 

noise temperature, the cell controller can equally distribute mobile devices across the 

available RF spectrum in a fashion that provides for the greatest network 

performance.  As an example, BER as well as neighboring cell information 

transmitted by the RF base station can be communicated back to the cell controller.  

Neighbor cell information can be communicated in the form of Power Spectral 

Density (PSD) calculations (this is covered in a later section).  The cell controller can 

make a dynamic decision to send data frames across a different RF base station, in 

essence the device is now communicating with a different RF base station without 

awareness by the mobile device.  This is a form of a cognitive adaptation based upon 

BER. 

4. The integration of cellular and WiFi stacks provides the ability for cellular and WiFi 

devices to utilize the same backhaul network infrastructure.  This provides relief of 
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the cellular systems in regard to bandwidth utilization and improves the use of 

unoccupied bandwidth on the backhaul network infrastructure. 

 

The link layer design includes adapters for both WiFi and cellular technologies. 802.11 

technology will be discussed first followed by cellular technology.  As depicted in Figure 

5, the wireless 802.11 MAC is split across unreliable communication links.  RT messages 

are addressed at the RF base station, while higher level management messages are 

handled at the cell controller. 

 

Figure 6. 802.11 Link Layer Subsystem Partition 

 

The following 802.1l link layer subsystem functions are addressed in the RF base station.  

The RF base station handles all RT messages.  Since Probe Response messages are very 

similar to Beacon Messages, Beacon Messages are also handled in the RF base station. 
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Table 1  
802.11 Real-Time Messages 

1 Beacon/DTIM 

2 Probe Response 

3 Acknowledgements 

4 RTS/CTS (If Enabled) 

 

Templates for these messages are sent by the cell controller to the RF base station for 

purposes of transmission to their RF coverage area.  When cells overlap, these messages 

can also be forwarded by other RF base stations in the coverage area.  A measure of the 

received power (Eb/No) can be made and a decision in regard to which RF base station 

should ultimately respond to later Association requests can be calculated.  The following 

diagram depicts an 802.11 example: 

 

Figure 7. Probe Response Exemplar 
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On Ethernet there are two distinct delays: propagation delay and transmission delay.  The 

following equation describes the nodal delay, the delay per node in an Ethernet network. 

                                                  (5) 

 

The velocity of an electromagnetic wave through a copper media is approximately 

                .  Though base transmission rate has no bearing on propagation 

delay, base rate directly affects transmission rate       .  Assuming full duplex Ethernet 

operation                   for a 64 byte frame.  A probe request, including a 

proprietary header, can be no less than this size; therefore, round trip (RT) delay of 

2*                 .  Assuming a maximum length of 100 meters,       

           with a round trip delay of 2*                .  Ignoring 

                for a moment, one RT segment is          .  Adding the segments 

depicted in Figure 7 we have a                   . Figure 7 is representative of the 

minimum network delay between a cell controller and a RF base station; therefore, the 

802.11 messages depicted in Table 1 represent messages that must be handled in RT by 

the RF base station. 

Table 2  
802.11 Non-Real Time Messages 

1 Association/Reassociation/Disassociation 

2 Authentication/Deauthentication 

3 802.1x, EAPOL, etc… 

4 802.11 Data Messages 

 

WiFi messages listed in Table 2 are handled by the cell controller which manages 

messages from all devices in a large regional area.  These messages provide for a 
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centralized management of all 802.11 devices in the area as well as provide for the 

accurate application of Quality of Service (QoS) between individual wireless networks 

since all data frame are sent through the cell controller. For example, if a network 

identifier (e.g. SSID) is suppose to have available 60% of the available bandwidth while 

another network identifier is suppose to have available 40% of the available band, the 

bandwidth between the two networks can be arbitrated in RT instantaneously since the 

cell controller has full access to all traffic being delivered to the whole network prior to 

be distributed to individual RF base stations in the regional areas. 

Cellular Link Layer MAC 

There are many system design differences between the different cellular technologies 

(e.g. 2G/GSM, 3G/UMTS, 3G/CDMA2000, 4G/LTE).  Cellular vendors have changed 

their subsystem designs to improve access speeds, coverage, and reduce cost to 

deployment.  I will focus on cellular subsystems that intersect GSM, 3G/UMTS, and 

4G/LTE cellular link layer subsystem functions.  Unlike WiFi devices, cellular provider 

networks have routinely (out of necessity) split their link layer communication across 

unreliable communication links (e.g. Ethernet/Fiber). 

Table 3  
Example Cellular UMTS Messages (Wikipedia, 2014) 

MOBILITY MANAGEMENT (MM) 

MESSAGES 

RADIO RESOURCE (RR) 

MESSAGES 

imsi detach/attach indication additional assignment 

location updating reject immediate assignment 

location updating request 

immediate assignment extended 

location updating response immediate assignment reject 

authentication reject ciphering mode command 

authentication request ciphering mode complete 

authentication response assignment command 

identity request 
assignment complete 
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identity response assignment failure 

tmsi reallocation command handover command 

tmsi reallocation complete handover complete 

cm service accept handover failure 

cm service reject physical information 

cm service abort paging request type 1-3 

cm service request system information type 1-8,2(bis/ter), 

5(bis/ter) 

cm establishment request channel mode modify {ack} 

Abort classmark change/enquiry 

mm status measurement report/ 

frequency redefinition 

 

  The cellular link layer communication model is much more distributed; however, there 

are improvements that can be made. I will outline the link layer communication model 

changes that integrate WiFi and cellular technologies together as well as improve 

roaming between the technologies.  In addition, I will describe why this approach is 

superior to other approaches.     

 

Figure 8. Example Inter-RAT Handover Setup (4G Source to 3G Target Network) 

(Barton, 2012) 
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The example above describes the handover setup procedure example between a 4G 

source to a 3G target network.  The end goal is to ensure that when the handover is 

complete data frames will be sent to the new serving gateway service in this the GGSN 

3G service.  The Source MME subsystem initiates the Handover resource allocation 

procedure by sending a Forward Relocation Request (IMSI, Target Identification, CSG 

ID, CSG Membership Indication, MM Context, PDN Connections, MME Tunnel 

Endpoint Identifier for Control Plane, MME Address for Control plane, Source to Target 

Transparent Container, RAN Cause, MS Info Change Reporting Action (if available), 

CSG Information Reporting Action (if available), UE Time Zone, ISR Supported) 

message to the target SGSN subsystem of the 3G cellular network.  Note that this entire 

setup process occurs before the User Equipment (UE) has actually “roamed” to the 3G 

network.  Once the setup has completed, the source MME subsystem initiates the 

handover process by coordinating with the UE by sending a handover command 

(depicted in Figure 9).  The UE responds to the network with a handover complete 

message to the target RNC subsystem who initiates a message to its SGSN subsystem 

which then conveys a completion message to the source MME subsystem.  The source 

MME acknowledges the completion message and the SGSN notifies its GGSN service 

(using a “Modify Bearer” request).   Once the GGSN service then notifies the source 

PGW of the change, data frames are now presented through the new serving 3G gateway 

(e.g. SGSN and GGSN). 
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Figure 9. Example of  Inter-RAT Handoff Execution (4G Source to 3G Target Network) 

(Barton, 2012) 

 



  25 

Using a cell controller, these subsystems are combined into a single platform that can 

more quickly execute the roaming examples such as this.  Latency is reduced greatly 

because fewer messages across unreliable communication links are required.  A cell 

controller would be used to handle large geographic areas.  With the use of Fiber channel 

communication links (assuming the use of repeaters and proper configuration), very low 

latency and high bandwidth can be achieved. 

 

Figure 10. New Cellular Link Layer Topology With Combined 802.11 Subsystems 

 

With the architecture above, the cellular MAC is split between the cell controller and 

BTS, NodeB, and eNodeB transceivers.  Today these cellular subsystems are found in 
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desperate locations across the country.  Since these subsystems interact with each other 

across vast physical locations, very little information is communicated in regard to the RF 

environment as it relates to BER and RF performance.  With this new link layer 

architecture, cellular coverage can be provided for large geographic areas by the same 

system controller.  In this case a full hardware data path can be applied to handle frame 

classification and distribution to the wireless subsystems required to handle this 

processing as well as gather BER information in regard to RF performance in local areas.  

This integrated with Wi-Fi capability provides the ability to off load traffic from the 

cellular network, freeing up cellular bandwidth for other users.  By the use of a 802.11 

split MAC, we can now provide Authentication and Association credentials directly into 

the cellular network using Extensible Authentication Protocol of Local Area Network 

EAPOL.  Using the same authentication triplets used between the service provider and 

the UE, WiFi can be enabled and provide service to cellular UE.  Just as is the case with 

the Packet Gateway (PGW) or the Gateway GPRS Support Node (GGSN), Network 

Address Translation (NAT) services are provided for IP addresses that are provided for 

the local area.  This service is used to go to the Internet from a UE that is using WiFi 

instead of the straight cellular services.  Because the WiFi base stations can be elevated, 

and have amplification added for both transmit and receive, it is possible to use WiFi to 

offload some cellular data traffic. 

 

The link layer communication model has been described for both the 802.11 where the 

RF MAC is split between a RF base station and the addition of the 802.11 subsystem to 

cellular subsystems.  The point areas where the 802.11 subsystems are integrated will 



  27 

function correctly for all versions (e.g. GSM, UMTS, LTE) of cellular subsystems.  In 

addition, a method of authentication has been described as well as how access to the 

Wide Area Network (WAN) is provided as is the case with all data services on UE. 

 

Link Layer Hardware 

In order to provide the best class of service for the link layer model described in the 

previous section, the hardware must be designed to support the following features: 

Table 4 
 Sample Link Layer Feature List 

1 Link Layer Encryption/Decryption (Cellular & WiFi).  Also encryption over the wired 

network as well. 

2 Frame Manager (Classification Engine), Queue Manager, and Data Path Acceleration 

Architecture (DPAA) 

3 Fixed format headers sent to wireless base stations 

4 Table of all UE required 

5 NAT and Proxy ARP provided for all bridged UE  (different modes of operation), MAC 

learning feature to support MAC address transition across Layer 2 switch interfaces.  

6 High performance frame processing with little or no intervention with GPP HW 

7 Large number of Fiber and Ethernet interfaces available in one unit 

8 Security Fuses, secure boot, security monitor (can be connected to tamper detection). 

9 Numerous other hardware attributes not relevant for a research paper such as dual power 

supplies, solid state disks, etc... 

 

The hardware design to support the link layer hardware would start with the design of the 

SoC.  This design would facilitate the use of dedicated hardware state machines that act 

independently from each other.  These hardware state machines are provided instructions 

in memory that are then loaded into their internal register cache for execution.  These 

instructions facilitate the functions required to support the predefined headers found for 

both the link layer Ethernet communication as well as the cellular and 802.11 MAC 
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fields.  Since most of these fields are based upon configuration parameters that are 

configured by software, it would the responsibility of the link layer software to 

implement the structures that are accessed by the hardware to support this link layer 

communication. 

 

Figure 11. HW State Machines in SoC Architecture 

 

The hardware state machines (as configured by software and depicted in Figure 11) used 

for frame processing would contain internal register memory that is used to communicate 

frames to a wireless base station.  This internal register memory would be used to 

construct the proper frame header for a particular device that has been configured.  In 

addition some hardware state machines would also include a hardware internal Direct 

Memory Address (DMA) engine.  When a base station device has properly authenticated 



  29 

itself to the network, the base station MAC address, BSSID, radio MAC address(es), 

VLAN header information, security key information, and capabilities will be 

communicated and stored into system memory (not in hardware registers).  When a 

network frame buffer is received from a wireless base station, the hardware frame 

classification engine would evaluate the source MAC address, VLAN tag information.  

Based upon this information it will do further classification to identify the source MAC 

address of the actual wireless client.  The source MAC address would then translate to 

unique hardware queue ID.  A message with the address of the frame and that queue ID 

would be sent to the hardware queue.  This hardware queue is configured to send frames 

with this queue ID to the security engine for link layer decryption.  The security engine 

returns a specific queue ID after decrypting this frame (based upon its hardware memory 

cache structure).  The hardware queue is configured to send frames with this queue ID to 

the wireless link layer engine for further processing.  As an example, based upon the 

fields in the 802.11 MAC header, the wireless hardware engine will perform standard 

operations on the frame starting at the address of the frame.  The wireless link layer 

hardware state machine is specifically designed to understand the 802.11 and UMTS 

MAC protocols.  Using 802.11 as an example, the hardware state machine behavior can 

be based on the source (radio MAC) address of the sender in the forward direction.  If the 

destination MAC address is that of another wireless device that is managed by this cell 

controller the frame will be forwarded onto the same queue that other frames from the 

network in the reverse direction are placed for eventual transmission to the wireless 

device. 
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Link layer encryption is based upon cryptographic algorithms verified and validated by 

the The National Institute of Standards and Technology (NIST).  NIST issued the Federal 

Information Processing Standard (FIPS) Publication 140-2 (FIPS PUB 140-2) is a United 

States government computer security standard that is used to accredit cryptographic 

modules.  This publication is titled “Security Requirements for Cryptographic Modules” 

and was published on May 25, 2001 and was updated on December 3, 2002. 

 

The National Institute of Standards and Technology (NIST) issued the FIPS 140 

Publication Series to define requirements and standards for cryptography modules for 

both hardware and software components developed by technology companies.  Federal 

agencies and departments can validate whether a module, termed a Hardware Security 

Module, is covered by an existing FIPS 140-1 or FIPS 140-2 certificate which specifies 

module name, hardware, software, firmware, and/or applet version numbers.  Many 

cryptographic modules are produced by the private sector (and even by the open source) 

communities for use by the U.S. government and other regulated industries, including 

financial and health-care institutions, that collect, store, transfer, share, and disseminate 

sensitive but unclassified (SBU) information. 

 

NIST regulated security programs enforce government and industry cooperation to 

establish secure systems and networks by developing, managing and promoting security 

assessment tools, techniques, and services, and supporting programs for testing, 

evaluation and validation.  NIST security programs extend to development and 

maintenance of security metrics; security evaluation criteria and evaluation 
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methodologies; tests and test methods; security-specific criteria for laboratory 

accreditation; guidance on the use of evaluated and tested products; research to address 

assurance methods and system-wide security and assessment methodologies; security 

protocol validation activities; and appropriate coordination with assessment-related 

activities of voluntary industry standards bodies and other assessment regimes. 

 

Annex C of FIPS 140-2 specifies Approved Random Number Generators.  Random 

Number Generators (RNG) are used to generate random content for cryptographic 

algorithms that require the need of random content such as content required for the 

generation of IV information for IPSEC or DTLS protocols as two examples.   

 

United States Federal Government standard Federal Information Processing Standard 

(FIPS) Publication 140-2 (FIPS PUB 140-2) requires verification that each sample 

produced by a Random Number Generator (RNG) be compared against the immediately 

preceding sample to verify that the random number generator does not generate the same 

numeric value twice sequentially; statistically, this would indicate a hardware or software 

fault rather than a coincidence.  FIPS 140-2 specifies that any time a Random Number 

Generator (RNG) generates a new random number, the generated number is to be 

compared against a previously generated random number.  If the two are the same, the 

event indicates a hardware (or software) failure rather than by some extraordinary, 

statistical chance.  If the two are the same, an error indication is generated. 
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In order for any system to be compliant with requirements such as FIPS 140-2, but not 

perform the check in software, the hardware must enable the security engine utilizing a 

“bump in the wire” architecture in a mostly-hardware autonomous data path to perform 

this function.  Thus, security can be implemented in separate devices interposed between 

devices intended to communicate securely, for example cellular link layer encryption 

datagram, 802.11 link layer datagram and insecure Internet Protocol (IP) datagrams can 

be repackaged securely for transport over the public Internet or other unprotected 

network infrastructure. 

 

The design of a RNG requires the use of hardware design techniques known as 

“Asynchronous Design”.  When using asynchronous design techniques to design a RNG 

subsystem, one must use the instability inherent in relying upon propagation delays in a 

logic design that vary with temperature, voltage level fluctuation, substrate differences, 

and register settling time that occur through combinatorial logic designs. These 

techniques are used to ensure that the RNG subsystem does provide random numbers 

with sufficient entropy.  The following illustrative technique can facilitate random 

number generator verification, which may be performed without using any 

microprocessor execution time or specialized hardware.   
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Figure 12. Use of Random Numbers in HW Data Path 

 

An input frame that requires encryption is received by the hardware data path and is 

parsed, stored in system memory (1 in Figure 12) by the hardware receive DMA engine.  

A message is sent by the frame parser to the HW queue across a hardware bus.  This 

message contains the address of the HW cache associated to the queue ID in system 

memory (2b in Figure 12).  The Queue Interface reads the message in the HW Queue (2a 

in Figure 12) and alerts the DMA to read the HW memory using the address found in the 

HW Queue message) and distribute a processing request to a CryptoEngine (3 in Figure 

12).  The Queue Interface also instructs the DMA to read the Frame Buffer memory using 
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the address found in the HW Queue message (4 in Figure 12).  The CryptoEngine 

requests a random number because it must generate an IV.  This IV contains a mask (e.g. 

seed) that is XOR’d with the random number (5 in Figure 12).  Finally, the CryptoEngine 

executes its loaded instructions (in its internal memory cache) and checks the newly 

generated IV to the previous IV.  If these IV’s are identical, it is indicative of a problem 

and an error is returned, otherwise the new IV is stored at the address of the previous IV 

by use of its DMA engine and processing continues normally (6 in Figure 12). 

This process illustrates a FIPS compliant hardware design to meet the cryptographic 

needs of the cell controller.  

Link Layer Software 

The link layer software is comprised of the following subsystems that interact with the 

hardware state machines described in the hardware section above.  The software must 

pre-populate the hardware memory of the state machines to accommodate the 

transmission of frames to wireless device from other wireless devices as well as devices 

from the WAN side of the network device.  Network headers that are used to 

communicate to the wireless base stations must be pre-populated on a per-flow basis.  

The following depicts the headers that must be pre-populated.  Note that the wireless link 

layer engine will modify some portions of the header as data moves through the 

autonomous hardware data path. 
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Figure 13. Network Frame Headers that most be pre-populated on a per 

Flow basis 

 

As described in Figure 11, the wireless link layer engine requires HW memory cache that 

contains the proper Ethernet, VLAN, Cellular or 802.11 MAC header pre-populated on a 

per flow basis.  This means two per wireless device (1 for the forward direction and 1 for 

the reverse direction) flow to and from a wireless device.  Figure 13 describes the 

network header formats that must be pre-populated in the wireless link layer hardware 

state machine.  This finite state machine (FSM) must also maintain flow control 

structures between the cell controller and the RF base stations.  There are mechanisms in 

place in regard to the cellular protocol specification; however, on the 802.11 side there 

are not integrated specifications.  The following frame formats are specified to support 

link layer communication between the RF base stations and the cell controller: 
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Figure 14. Frame Format Examples 
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CHAPTER 3 

MOBILE AND BASE STATIONS 

Wireless State Machines 

Cellular and 802.11 devices are constantly measuring the RF environment.  As such they 

are constantly performing neighbor cell power measurements, if sufficient BER rate is 

sensed by the receiver (where rate adaptation did not improve), a 802.11 client device 

will initiate its form of cell reselection (issues a 802.11 Reassociation request).   On 

cellular devices this is performed by monitoring all BCCH carriers contained and making 

one measurement per BCCH carrier.  The size of the neighbor cell list (e.g. number of 

neighboring transmitters), either increases or decreases the amount of time UE spend 

performing these measurements.  Cellular devices initiate the process of cell reselection 

by a process referred to as Location Area Update (LAU).  This process is analogous to 

the example when in a moving vehicle. The cellular device in your hand will receive a 

signal from a new tower which will have a different Location Area Code (LAC).  This 

process is repeated as the car continues to move from one tower to the next.  This process 

is sufficient for voice services, while processes referred to as   Routing Area Update and 

MM Attach is required for data services.  A cellular device can also request 

supplementary services such as [no] call waiting, [no] call forwarding, and activate Short 

Message Service (SMS).  
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Finite State Machine Behavior 

Figure 15 depicts the cell reselection state machine.  The                  and the 

                  field values are transmitted on the Broadcast Channel (BCCH) of a 

cellular base station.  In order to distribute the load of cellular devices across cellular base 

stations, the cell controller can dynamically modify the parameters being transmitted on 

this channel thereby influencing the state machine of the UE to connect to a different RF 

base station.  For UMTS and LTE UE, the network can also request a cell reselection. 

Use CS Cell 

Reselection parameters 

C1 & C2 (-Or if MS 

class ‘A’ in dedicated 

mode, report 

measurements and 

handovers N/W 

controlled)

Utilize GPRS Cell 

Reselection Parameters 

C1, C31, C32

Yes

Yes

No

No

Does the cell offer GPRS 
services? (Indicated by SI3, 
SI4, & SI13)

Does the cell offering GPRS 
services have a PBCCH?

Is the MS GPRS MM 
attached?

Yes No

Is this a class A MS in CS 
dedicated mode?

No Yes

 

Figure 15. Cellular Cell Reselection Rule Evaluation Process 

 
                                              

                 

   

(6) 

 
  

       = Average receive signal level 
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             = Minimum        the MS must receive to access this cell 

                  Maximum power the MS is allowed to transmit on the 

RACH 

              = MS power class 

                                                           (7)              

                  = dB weighting applied to a cell which may be positive or 

negative 

        = Positive dB weighting applied to a cell for the time              

             = Timer set in the MS by the neighbor cell; on it expiry, the 

        is removed.          is only applied to neighbor cells. 

 

In addition, cellular and 802.11 wireless devices also perform rate adaptation based upon 

sensed BER information.  An 802.11 wireless client device normally initiates a 

Reassociation request, while a cellular device utilizes the LAU procedure as well as 

manage the cell reselection. 
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Figure 16 LTE Handset (Basic State Machine Terminology)(ShareTechnote, 2013) 

 

An example LTE cell reselection, initiated by the network side: A UE is in connection 

with a cell ‘A’.  The network sends a command to the UE to perform a signal quality 

measurement on cell ‘B’ (e.g. UMTS command = “Measurement Control”, while LTE 

command = “RRC Connection Reconfiguration”).  The UE performs the measurement 

and sends the result to Cell ‘A’.  (e.g. UMTS and LTE = “Measurement Report”).  If the 

controller deems the measurement favorably, the UE is sent a change cell command. (e.g. 

UMTS command = “Physical Channel Reconfiguration or ActiveSetUpdate”, while LTE 

= “RRC Connection Reconfiguration”).  Once the UE changes to cell ‘B’ successfully, 

the UE will send a cell change completion message to cell ‘B’ (e.g. UMTS = “Physical 
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Channel Reconfiguration Complete or ActiveSetUpdateComplete”, while LTE = “RRC 

Connection Reconfiguration Complete”). (ShareTechnote, 2013) 

 

LTE phones presently have two antennas that can be used in a 2x2 MIMO mode.  The 

LTE phone can use one antenna to talk to one tower while using the second antenna to 

communicate to the second cell tower. 

Roaming 

In 802.11 roaming to another access point involves sending a ‘Reassociation” request to 

the new access point.  This “new” access point was discovered by an outcome of signal 

strength measurements by the client device.   In the 802.11 state machine below, the 

Reassociation message speeds up the Authentication and Association state change so it 

more quickly moves to the successfully Authenticated and Associated state.  When a 

wireless device roams, it is important that data transfer is not lost during the process.  The 

MS state machine has an impact on this behavior.  When a 802.11 device sends it 

“ReAssociation” message, it must still properly receive frames from the base station it is 

presently Associated to.  In addition, if the base station it is roaming to does not have 

direct communication and coordination with the base station it is roaming from the 

device will be forced to perform a complete Association to the device it is roaming to.  

With the cell controller link layer approach, the roaming between access points can be 

seamless.  The following state machine diagram depicts the change in the typical state 

machine behavior of the mobile device. 
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Figure 17. Example of 802.11 Roaming Utilizing Cell Controller Concept 

 

The remote sensing software that manages the hardware link layer (e.g. 802.11/Cellular 

Measure) RF measurement subsystem either measures that the RF energy from a 

particular device is actually stronger on a different RF base station that it is presently 

receiving data or that a Reassociation message is received from that device.  In either 

case, a seamless roaming event is initiated by the software (refer to 1 in Figure 17).  This 

software modifies the per device table managed in memory using the Queue Interface 

specified above.  The Queue Interface is the only hardware entity that can assure the 

change to this shared memory location is updated atomically without interrupt to other 
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processing flows and to the hardware that is processing the hardware data path.  The 

fields updated are the pre-populated Eth/VLAN header template, the 802.11 MAC to 

reflect a change to any 802.11 parameters required such as BSSID & RF MAC address 

change, and device state (refer to 2 in Figure 17).  Note that the Frame Queue Address 

List (records addresses of all frames to be transmitted to a device), Key and IV 

information is not modified; therefore, frames queued toward the wireless device will be 

sent to the new RF base station immediately when the change occurs through 802.1pq 

link layer communication toward the correct RF base station. 

Cellular Roaming 

The cell controller commands mobile devices thru their mobile station (MS) to perform a 

measurement of a neighboring cell.  The cellular measurement subsystem is used to 

continually command a measurement of neighboring RF base stations.  Software 

executing on one or more cores makes a decision based upon signal strength as well as 

traffic load across the base stations.  The cell controller makes it possible to better 

understand the RF environment in regional areas and to be more responsive to changes in 

these areas.  
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Figure 18. Example of Cellular Roaming Utilizing Cell Controller Concept 

 

Based upon RF measurements roaming is initiated by the software (refer to 1 in Figure 

18).  This software modifies the per device table managed in memory using the Queue 

Interface specified above.  The Queue Interface is the only hardware entity that can 

assure the change to this shared memory location is updated atomically without interrupt 

to other processing flows and to the hardware that is processing the hardware data path.  

The fields updated are the pre-populated Eth/VLAN header template, the Cellular MAC 

to reflect the new cellular parameters (Note: TMSI, TLLI, should all remain the same. 

These identifiers can be globally unique by utilizing the MAC address of the unit for their 

derivation)  and device state (refer to 2 in Figure 18).  Note that the Frame Queue 
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Address List (records addresses of all frames to be transmitted to a device), Key 

(authentication triplet) and IV information is not modified; therefore, frames queued 

toward the wireless device will be sent to the new cellular RF base station immediately 

when the change occurs through 802.1pq link layer communication toward the correct 

cellular RF base station. 

 

Figure 19. 802.11 Mobile Device State Machine 

 

With the use of MIMO and 802.11ac technology, a ‘Reassociation’ message is not 

required when a cell controller can be used to authenticate the user over an existing 

encrypted channel.  The cell controller can make it possible, using link layer command 

and control, for the neighboring 802.11 RF base station to start communicating with the 
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wireless client (using its second antenna) in a 2x2 MIMO configuration while the 

wireless client device is still communicating with the other RF base station through the 

use of the other antenna.  The RF base stations would need to be told to not answer on its 

second antenna for this client device.  This is acceptable since the RF base station must 

transmit ACKs with the BSSID of the network it is associated to.  The client device 

would not know that the second spatially diverse antenna it was using is on another RF 

base station.  The cell controller would make the decision as to when to complete the full 

process of 802.11 roaming.  This process is identical to the method used by LTE mobile 

devices.  LTE devices can utilize their second antenna in a 2x2 MIMO configuration to 

interact with multiple base stations simultaneously.  This requires only software support 

for the proper analysis of eigenvectors to be performed on the 802.11 client based upon 

the concept of having two (very separated) spatially diverse streams possibly on two 

separate channel frequencies. 

 

Power Spectral Density Estimation 

In order for mobile devices to make roaming decisions, these devices must calculate 

power spectral density.  In addition, channel information from a RF base station can be 

provided to the cell controller to determine and estimate the active signals in the area.  An 

evaluation of PSD and estimation techniques will now be described.  To calculate the 

power of a W-CDMA signal, we must integrate over the entire bandwidth of the signal.  

For instance, a WCDMA signal based upon the 3GPP WCDMA Frequency Division 

Duplex (FDD) release 99 Downlink Dedicated Physical Channel (DPCH) with a 

bandwidth of 5MHz will generate the following Power Spectral Density plot. 
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Figure 20. Example Spread Spectrum Tx (5 MHz) 
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Figure 21. Example Spread Spectrum Rx (5 MHz) Mixed with AWGN 

 

Other signals of interest can be derived from base stations in the area.  These base 

stations can perform signal analysis of the RF environment and report the results of this 

analysis to the cell controller.  Such information can be used to determine why high 

incidents of BER are reported in specific cell coverage areas.  I studied signal estimation 

and detection methods with the goal to determine the best Power Spectral Density (PSD) 

estimation method for the derivation of the PSD of sinusoid signals in the presence of 

white noise utilizing different estimation methods.  In order to achieve this goal, I will 

utilize two general classification methods: non-parametric and parametric methods.  Non-

parametric methods derive their PSD estimate directly from the input data.   Parametric 
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methods model the data as an output of a linear system driven by White Gaussian Noise 

(e.g. W.G.N) with a specified variance so system parameters can be estimated.  I will 

utilize two different input levels: Level 1: Three input sinusoids, Level 2: Three input 

sinusoids and regenerated random noise (for each factor). 

 

I will utilize the following estimation methods as my factors in this experiment: 

Blackman-Tukey correlogram, Welch Periodogram, Yule-Walker, Burg, Covariance, 

Modified Covariance, and Multiple Signal Classification (MUSIC).  I then utilize the 

analysis of variance (ANOVA) method to analyze the variance within each estimation 

method as well as the variances between different estimation methods. 

 

Factors and Factor Ranges 

For each estimation method, I will vary the ranges of the factor to best illustrate 

frequency resolution and derivation of power spectral density.  Though I will utilize a 

Hamming Window for both the correlogram and periodogram estimation methods, the 

ranges of the factors will be different for both the correlogram and periodogram 

estimation methods.  I will use the following lag ranges for the correlogram estimation 

method as 10, 20, and 70.  In the equation below L indicates the lag index and is 

computed using the Discrete Time Fourier Transform (DTFT) of the autocorrelation 

sequence. 

                

 

    

            

        (8) 
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For the periodogram estimation method, I will use different shift adjustments for the 

analysis window.  By utilizing an analysis window, I can cause different overlapping 

sequences and therefore improve the PSD estimate.  In the equation below, n represents 

the index of the input sample sequence. 

      
 

 
   

   

   

              

                   (9) 

Again, the input sequence can be overlapped (accomplished by utilizing different shift 

adjustments) to improve the power spectral density estimate.  I will use the following 

shift adjustments for the periodogram estimation method as 10, 20, and 30. 

 

For the Yule-Walker, Burg, Covariance (& modified covariance), and MUSIC PSD 

estimation methods, I will utilize model order 5, 15, and 30.  The following is the 

equation used to calculate the Yule-Walker PSD: 

         
        

           
        

    
 
 

                                            (10)                                     

 

 

Since the Burg method is an AR process, the following is the equation used to calculate 

the Burg PSD: 

 

         
        

           
        

    
 
 

 

                                                                     (11) 

 

The value        is derived by utilizing a harmonic mean between the forward and 

backward partial correlation coefficients to calculate the reflection coefficient,    .  Once 
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these AR parameters are calculated, the PSD estimate is calculated as described in the 

equation above. 

     
       

        
      

     

      
     

 
 
            

     
  

      
 

                                                         (12) 

At each order, P, the variance of the forward and backward linear error prediction is 

minimized.  This calculated utilizing an arithmetic mean: 

 

                     
     

 
 

     

         
     

 
 

     

  

 

                                 (13) 

 

Since the Covariance method is also an AR process, the following is the equation used to 

calculate the Covariance PSD: 

         
        

           
        

    
 
 

                                                (14) 

 

 

The following is how to compute the covariance matrix of a signal x of time series length 

N, with maximum lag M: 

      
 

   
                      

                                                                    (15) 

 

and individual elements of Rp: 

                                              
                                     (16) 

This PSD algorithm minimizes the forward error prediction utilizing least squares to 

determine AR parameters,       . 
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Since the Modified Covariance method is also an AR process, the following is the 

equation used to calculate the Modified Covariance PSD: 

         
        

           
        

    
 
 

 

                                                               (17) 

 

The following is how to compute the covariance matrix of a signal x of time series length 

N, with maximum lag M:  

      
 

   
                      

                                                                         (18) 

and individual elements of Rp: 

                                              
        

 

              (19) 

 

This PSD algorithm minimizes the both the forward error prediction and the backward 

error prediction utilizing least squares to determine AR parameters,       . 

The ‘pseudo’ (not true PSD) MUSIC spectrum estimate is derived from the following 

equation: 

           
 

              
    

                
 

                                  (20) 

 

 

The power spectral density information is lost when utilizing the MUSIC algorithm; 

however, it is quite useful in the derivation of the frequency components of signals 

embedded in white noise. 

Levels 

I will input the following signal combinations (Levels): 
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Table 5  
Input Signals for PSD Measurement Tests 

1 Signal (3 sinusoids) 

2 Signal (3 sinusoids) + AWGN 

 

I will create the noise signal using a randomly generated noise signal in MATLAB, using 

the” rand()” function. 

Measurement 

I will measure the magnitude (y-axis) of the three output sinusoids as function of 

frequency (x-axis) for each factor, range, and input level for a large (10) replicated set of 

test executions.  Random noise is regenerated per replicated test. 

Response Variables 

The following will be used to as response variables for the tests to be performed. 

Table 6 
Response Variables (Measured Results) 

1 Number of output signal frequencies. 

2 Magnitude of each output signal frequency.  This is a maximum of three magnitudes per 

replicated test. 

 

Factors, Factor Levels, and Response Variables 

The following sections will describe the Factors, Factor Levels, and Response Variables 

for each of the following algorithms: Blackman-Tukey correlogram, Welch Periodogram, 

Yule-Walker, Burg, Covariance, Modified Covariance, and Multiple Signal Classification 

(MUSIC).  I have also included test runs for these algorithms.  I will execute and record 

the results for 5 runs [replicates] for each algorithm. 
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Blackman-Tukey Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: 10, 20, and 70.  Factor: Lag equals variable ‘L’ as used in the following 

equation:   

                

 

    

            

                                                                    (21) 

 

 

Figure 22. Blackman-Tukey (Signal +no noise, left plot: Signal+noise, right plot), 

Hamming Window, Lag = 70 
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Figure 23. Blackman-Tukey (Signal+no noise, left plot: Signal+noise, 

right plot), Hamming Window, Lag = 20 
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Figure 24. Blackman-Tukey (Signal+no noise, left plot: Signal+noise, right plot), 

Hamming Window, Lag = 10 

 

Welch Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 2 levels: Shift Index 10 and 20.  Factor: Shift index used in the following 

equation.  The shift index is used to overlap the input sequence      in the equation 

below. 

      
 

 
   

   

   

              

                                                                     (22) 
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Figure 25. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right 

plot), Hamming Window, Shift = 20 
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Figure 26. Welch Periodogram (Signal +No Noise, left plot, Signal+Noise, right 

plot), Hamming Window, Shift = 10 

 

Yule-Walker Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: Model Order 5, 15, and 30.  Factor: Model order is used in the following 

equation.  The model order represents the ‘p’ summation range in the equation below. 

The following is the equation used to calculate the Yule-Walker PSD: 

 

         
        

                   
     

 

 

                                                                    (23) 

 

 

 



  59 

 
Figure 27. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased 

ACF, Model Order = 30 
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Figure 28. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased 

ACF,  Model Order = 15 
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Figure 29. Yule-Walker, (Signal+No Noise, left plot, Signal+Noise, right plot) Biased 

ACF, Model Order = 5 

 

Burg Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: Model Order 5, 15, and 30.  Factor: Model order is used in the following 

equation.  The model order represents the ‘p’ summation range in the equation below. 

         
        

                   
     

 
                                                               (24) 

Unlike the Yule-Walker AR process, the value        for the Burg PSD estimator, is 

derived by utilizing a harmonic mean between the forward and backward partial 

correlation coefficients to calculate the reflection coefficient,    .  Once these AR 
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parameters are calculated, the PSD estimate is calculated as described in the equation 

above. 

     
       

        
      

     

      
       

            
       

      
 

 

                                                     (25) 

At each order, P, the variance of the forward and backward linear error prediction is 

minimized.  This calculated utilizing an arithmetic mean: 

                     
       

              
       

       

 

                         (26) 

 

 
Figure 30. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right 

plot), Model Order = 30 
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Figure 31. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right 

plot), Model Order = 15 

 

 
Figure 32. Burg PSD, (Signal+No Noise, left plot, Signal+Noise, right 

plot), Model Order = 5 
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Covariance Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: Model Order 5, 15, and 30.  Factor: Model order is used in the following 

equation.  The model order represents the ‘p’ summation range in the equation below. 

         
        

           
        

    
 
 

                                                          (27) 

 

Unique to the covariance PSD estimator, the following is used to compute the covariance 

matrix of a signal x of time series length N, with maximum lag M: 

      
 

   
                      

                                                                   (28) 

and individual elements of Rp: 

                                            

 

     

 

                      (29) 

This PSD algorithm minimizes the forward error prediction utilizing least squares to 

determine AR parameters,        in the equation above. 
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Figure 33. Covariance, (Signal+No Noise, left plot, 

Signal+Noise, right plot) Model Order = 30 
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Figure 34. Covariance, (Signal+No Noise, left plot, Signal+Noise, 

right plot) Model Order = 15 
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Figure 35. Covariance, (Signal+No Noise, left plot, Signal+Noise, right 

plot) Model Order = 5 

 

Modified Covariance Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: Model Order 5, 15, and 30.  Factor: Model order is used in the following 

equation.  The model order represents the ‘p’ summation range in the equation below. 

         
        

           
        

    
 
 

                                                              (30) 

 

The following is how to compute the covariance matrix of a signal x of time series length 

N, with maximum lag M: 

      
 

   
                      

     

 

                                                               (31) 
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and individual elements of Rp: 

                                              
       

 

                  (32) 

This PSD algorithm minimizes the both the forward error prediction and the backward 

error prediction utilizing least squares to determine AR parameters,        in the above 

equation. 

 

Figure 36. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, 

right plot), Model Order = 30 
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Figure 37. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, 

right plot), Model Order = 15 
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Figure 38. Modified Covariance, (Signal+No Noise, left plot, Signal+Noise, 

right plot), Model Order = 5 

 

Music Test Factors, Factor Levels, and Response Variables 

Three input sinusoids at the following frequencies: 10Hz, 11Hz, and 25Hz, with Factor 

having 3 levels: Model Order 5, 15, and 30.  Factor: Model order is used in the following 

equation.  The model order represents the ‘p’ summation range in the equation below. 

The ‘pseudo’ (not true PSD) MUSIC spectrum estimate is derived from the following 

equation: 

           
 

              
    

                
 

 

                                                   (33) 
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Figure 39. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot) 

Model Order = 30 
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Figure 40. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), 

Model Order = 15 
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Figure 41. MUSIC PSD, (Signal+No Noise, left plot, Signal+Noise, right plot), 

Model Order = 5 
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JMP Results 

I model three input signals described above using MATLAB.  Each signal was mixed 

with White Gaussian Noise (WGN) with zero mean.  I utilized the following estimation 

methods as my algorithms in this experiment: Blackman-Tukey correlogram, Welch 

Periodogram, Yule-Walker, Burg, Covariance, Modified Covariance, and Multiple Signal 

Classification (MUSIC).  I then measured the accuracy of the estimation method using a 

low, medium, and high resolution factor (pertinent to each algorithm).  The goal of this 

test is determine which estimation algorithm is most accurate given similar resolution 

factors.  The way this is measured is to determine if, when I input three signals mixed 

with random noise (two signals very close in frequency), that I can accurately estimate 

the frequency of all three signals on the output.  I ran 10 runs with each algorithm using a 

random estimation model with a low, medium, and resolution factor for each algorithm.   

 

JMP Output Data 

The following output data was produced by JMP.  I performed several tests to determine 

if there was any interaction between the main effects: Algorithm and Resolution, as well 

as, test the variances of each algorithm.  I executed a one-way ANOVA, a two-way 

ANOVA, several means tests, and finally the conclusion drawn from the two-way 

ANOVA test output. 
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Figure 42. Output Results (Response) Table 

 

The output response data table above is coded in the following way: 

 

Table 7  
Output Response Results (ANOVA) 

1 All three signals correctly estimated 100 

2 Only two signals correctly estimated 66.67 

3 Only one signal correctly estimated 33.33 

 

Runs

Algorithm
Resolution 1 2 3 4 5 6 7 8 9 10

 Mean

(u)

Blackman

Tukey High 100 66.67 100 100 66.67 100 100 100 66.7 66.7 86.668

Welch High 66.67 66.67 33.33 66.67 33.33 66.7 66.7 66.67 66.7 100 63.335

Yule Walker High 66.67 100 100 100 33.33 100 100 66.67 66.7 66.7 80.001

Burg High 66.67 66.67 66.67 66.67 66.67 66.7 66.7 33.33 66.7 66.7 63.336

Covariance High 66.67 100 66.67 33.33 66.67 33.3 100 33.33 66.7 66.7 63.334

Modified 

Covariance High 66.67 33.33 33.33 100 100 66.7 33.3 100 100 100 73.333

MUSIC High 100 33.33 100 100 66.67 66.7 66.7 100 100 66.7 80.001

Blackman

Tukey Medium 66.67 66.67 66.67 66.67 66.67 33.3 66.7 66.67 66.7 66.7 63.336

Welch Medium 66.67 66.67 33.33 33.33 33.33 66.7 66.7 66.67 66.7 66.7 56.668

Yule Walker Medium 66.67 66.67 66.67 66.67 66.67 66.7 66.7 33.33 66.7 66.7 63.336

Burg Medium 66.67 66.67 66.67 66.67 33.33 66.7 66.7 66.67 66.7 66.7 63.336

Covariance Medium 66.67 66.67 66.67 33.33 66.67 33.3 66.7 66.67 66.7 66.7 60.002

Modified 

Covariance Medium 33.33 33.33 66.67 66.67 66.67 66.7 66.7 66.67 66.7 66.7 60.002

MUSIC Medium 100 33.33 66.67 66.67 33.33 100 66.7 66.67 66.7 100 70.001

Blackman

Tukey Low 66.67 66.67 66.67 66.67 66.67 66.7 33.3 66.67 66.7 66.7 63.336

Welch Low 66.67 66.67 33.33 33.33 33.33 66.7 66.7 66.67 66.7 66.7 56.668

Yule Walker Low 66.67 66.67 66.67 66.67 66.67 66.7 66.7 66.67 66.7 66.7 66.67

Burg Low 66.67 66.67 66.67 66.67 33.33 66.7 66.7 66.67 66.7 66.7 63.336

Covariance Low 66.67 66.67 66.67 33.33 66.67 66.7 33.3 66.67 66.7 66.7 60.002

Modified 

Covariance Low 33.33 0 66.67 66.67 66.67 66.7 66.7 66.67 66.7 33.3 53.335

MUSIC Low 33.33 66.67 33.33 66.67 33.33 66.7 66.7 66.67 33.3 33.3 50
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Each algorithm is listed with its resolution factor level of Low, Medium, or High.  We 

expect to see the best results for each algorithm using the high resolution factor level. 

JMP ANOVA (One-Way) 

 

Figure 43. ANOVA analysis of output results (Plot 1: (L) Algorithm vs Mean & Plot 2: (R) 

Resolution vs Mean) 
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Response variable = mean output.   I compared the mean output to both the algorithm and 

the resolution of the algorithm model.  I should see parallel quantile plots data versus 

normal distribution.   The tilt of each plot line indicates different standard deviations.  

Also, the distance between the plot lines indicates differences in variances.  I do note the 

variances are different for each algorithm.  Additionally, it is clear that the Burg 

algorithm has the smallest variance.  The different quantile box sizes strongly indicate 

different variances. 

 
Figure 44. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs 

Mean) 
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Differences in variances are confirmed by the difference of variance test whose output is 

displayed above. 

 

Figure 45. ANOVA analysis of output results ((L) Algorithm vs Mean & (R) Resolution vs 

Mean) - Continued  

 

The various differences in means are displayed above in the table.  Note that the variance 

for High resolution is quite different from both the low and medium resolution models. 
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JMP ANOVA (Two-Way) 

 

 
Figure 46. (2-Way ANOVA) Full Factorial 

 

The purpose of this test is to determine any interactions of the main effects.  The Main 

effects: Algorithm and Resolution with their interaction (Algorithm and Resolution).  The 

Least Squares Means plots [in the lower portion of the figure above] indicate that 

resolution factor (P-Value) is a significant factor.  At first glance it would seem there is a 

significant interaction effect present -plot in lower portion of the 2-Way ANOVA 

display; however, after review of the Effect Tests, it is clear that the P-Value is only 

significant for the Resolution factor.  There doesn’t appear to be a strong interaction 

effect between factors Algorithm and Resolution. 
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JMP Result/Conclusion 

 
Figure 47. Tukey HSD Means Test (Test for Interaction) 

 

This indicates no strong interaction between Resolution and Algorithm.  However, it does 

suggest the major differences between the Algorithm and Resolution combinations.  It 

indicates that the Blackman Tukey algorithm model and the MUSIC algorithm model 

when operated utilizing high resolution parameters provide the highest overall mean and 

therefore the most accurate result of the algorithms tested. 

 

In fact, the estimation accuracy of the algorithms is accurately described above.  We can 

therefore conclude that the best methods to estimate and calculate the PSD for wireless 

signals are the top two algorithms: the Blackman Tukey using its high resolution factor 
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and the Yule Walker algorithm using its high resolution factor.  Music using its high 

resolution factor cannot be considered for wireless PSD estimation since the algorithm 

loses the spectral power components of the signal; it is strictly to be used for estimating 

frequency components, but not spectral power components.  Note that some of the 

algorithms perform better using their lower resolution factors than other algorithms that 

are using their highest resolution factors. 
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CHAPTER 4 

SYSTEM DESIGN 

The hardware component types of the system design are the 802.11X and cellular base 

stations and the cell controller. The base stations are comprised of a General Purpose 

Processor (GPP), a number of Digital Signal Processors (DSP), and a number of RF 

receive and transmit chains.  Both the transmitter and receiver will have an antenna.  The 

receiver may have a (e.g. Low Noise Amplifier) a matched filter on the front end as well 

as an Analog to Digital Converter (ADC), the transmitter will have a Digital to Analog 

Converter (DAC) and may have a LNA along with an impedance matching circuit to 

ensure VSWR is not produced.  The focus on the design of the base station is to ensure 

the design allows for a continual evolution in regard to the physical modulation 

techniques.  The design needs to be capable of adapting to changes in the modulation 

techniques.  The design also must ensure that the receive sensitivity is sufficient to 

receive the minimum desired signal.  The receive sensitivity can be defined as the 

minimum desired signal power above the noise floor of the receiver as defined by the 

following equation: 

                                    
 

                      (34) 

System-On-Chip (SoC) designs now include GPP and a number of DSPs are typical.  

Often these designs do include an FPGA, however, some implementations are now 

focusing on DSP arrays such as those provided by Picochip (now Mindspeed) and 

Coherent Logix (HyperX).  In these cases, small FPGAs are used for I/O multiplexing 

only while all DSP functions are performed in software on DSP arrays (27nm 

technology) fully integrated with DSP tools such as MATLAB and SIMULINK. 
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The cell controller is comprised of specialized hardware that is designed to perform high 

performance network frame processing and will be designed to handle > 40Gbs encrypted 

link layer network traffic.  In order for the cell controller to handle encrypted network 

traffic at this rate, it must have a hardware based data path.  The hardware data path 

requires the following functions: 

 

Classification of network frames.  This is required so that frames with encrypted traffic 

can be characterized based upon the source MAC address of the mobile device that 

transmitted the frame as well as any relevant network headers such as VLAN tags.  Once 

classification is performed, the address of the received frame must be distributed to a 

cryptography engine for decryption as well as pre and post processing engines.  The 

following packet walkthrough is an example of an architecture where majority of frame 

processing is off-loaded from GPP cores. 
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Figure 48. Packet Walkthrough on Example SoC,(Freescale, 2014) With Newly 

Proposed/Designed Wireless Link Layer Capability 

 

The HW state machine described above require their own Direct Memory Address 

(DMA) engines to read and write data to and from memory as required during frame 

processing through a memory gasket and memory controller. Such a configuration would 

require a GPP to provide configuration and management of the HW during its 

configuration and boot cycles [this is sometimes referred to as the control plane]. In 

addition, it would require a slow speed peripheral memory bus so that configuration 

registers on the HW could be modified during configuration. A GPP would also be 

required to handle exceptional conditions that occur during frame processing such as 
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error frames and could be helpful in handling conditions that were not perceived during 

HW design. 

 

Since both configurations require frame processing, additional aspects of the design need 

to be considered. What is the queue latency of frame processing? For instance, must 

frame be processed strictly in the order they are received or can some frames be 

processed in parallel. For performance reasons, if multiple channels are required, frames 

should be allowed to be multiplexed to different dedicated HW blocks at the same time. 

However, this implies that the adaptive properties of each channel must be maintained by 

all dedicated HW IP blocks. These properties would have to be stored in memory and 

then retrieved from memory as different blocks receive frames that require different 

adaptive properties. Therefore, a cache is required to ensure unnecessary memory fetches 

were not required by the DMA engine prior to processing a frame. In order to determine 

which adaptive properties are required to be loaded by the HW block requires 

classification of network and wireless frames as they are received. Additional dedicated 

HW is required to handle frame classification and queuing logic. These HW state 

machines would communicate to each other via private, HW dedicated buses between the 

frame processor, the queue processor, and the link layer encryption HW IP blocks. The 

GPP core(s) would provide the ability to configure the HW registers in each of these 

blocks via a peripheral memory bus. The peripheral memory bus would also be used for 

monitoring, dynamic reconfiguration, error conditions, and management (thru a network 

interface). In this approach, memory transactions are limited to the frame processor and 

link layer encryption blocks. HW blocks utilize a private bus for communication and the 
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GPP only accesses memory a very small percentage of time mostly for monitoring and 

management functions. Additional provisions can be provided that force received frames 

to be stored on memory aligned pages thereby reducing non-aligned memory transactions 

to a very small percentage of overall memory transactions. HW would generate memory 

transactions to access adaptive properties stored on a per channel basis. 

 

A key component of the HW data path is the wireless MAC engine.  This programmable 

engine bridges wireless frames to the wired interface, decrypts/encrypts wireless link 

layer data & management frames, performs RF measurements of mobile devices, 

implements wireless roaming between base stations, provides network proxy ARP (if 

required) for mobile devices, provides per device instruction execution, and monitors the 

state of the mobile device at all times. As depicted in Figure 11, the wireless MAC 

engine uses information such as instructions,VLAN tag info, 802.11 or cellular MAC 

template (used to modify frames to and from the mobile device), and reserved memory 

that is used by the engine in real-time to modify and/or bridge wireless frames. 

Hardware Design And Verification. 

 The most important step in hardware design is to ensure the requirements are well 

defined and understood.  In particular functions that implement features such as the 

wireless link layer MAC subsystem I described earlier in this paper must be implemented 

with a thorough knowledge of the protocols so the proper functional decomposition can 

be accomplished between software and hardware.  In particular, standards in the wireless 

area are changing all the time; the portions of the system that have a high degree of 

volatility should be implemented in software.  However, after many years the data path 
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for these technologies continues to converge toward IP based protocol services.  The LTE 

EPC now is moving all traffic (even voice) to IP based data frames.  This commonality 

aids in the development of hardware to support the data path.  This ensures that even the 

latest technology can benefit from the development of this type of hardware technology.   

 

However, even functions that are implemented in software still require hardware support.  

Often this aspect is overlooked during the system design phase.  For instance, how does 

software interact with the hardware to redirect its data path to a new base station?  As 

discussed earlier, this requires a hardware synchronized ability to perform an atomic 

operation while the data path is still active.  Interruption of the data path would cause 

delay in frame transmissions to a device and reduce its perceived performance.  In this 

case hardware must enable the ability to be updated on a per user basis without mobile 

devices losing their connectivity and network access.  In order to implement this new 

hardware feature, a systematic review of all 802.11 and cellular specifications would be 

required to determine what features requirements would be required to achieve the end 

goal of having all data and voice packets from wireless technology to be handled fully in 

hardware (e.g. data path acceleration architecture).  

 

Once the requirements have been completed and fully understood, the hardware interface 

requirements with other subsystems within the SoC must be evaluated to determine if 

they will impede the wireless subsystem from achieving its functional or performance 

requirements.  All electrical interfaces have to be evaluated to ensure that they meet the 
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performance bench marks and that there is sufficient electrical interface support for 

system level interfaces required from other subsystems. 

 

During Verilog development there should be well defined interfaces between the 

functional hardware blocks.  This is important at the very beginning because too often 

functions are duplicated or require too many additional wires of communication between 

the blocks which increases the die size, increases complexity, and increase the likelihood 

of failure particularly when implementing large designs.  Implementation of 

combinatorial logic blocks should be consistent throughout the design to reduce 

complexity as an example when many personnel work on the same project.  Once 

sufficient subsystems have been implemented, software should be written to interact with 

the test hardware simulation interfaces as early and often as possible so that problems can 

be spotted as early as possible. Figure 49 depicts such an environment where Linux 

executes on a simulation of the processor instruction set and the software drivers are 

written within this environment to interact directly with the Verilog co-simulation 

environment through the use of SystemC adapters.  The SystemC co-simulation adapters 

are provided by companies such as Virtutech (processor/system simulator and SystemC 

adapter) and Cadence tools (Verilog/SystemC adapters and simulator).  Software 

engineers can implement software and test against the actual hardware during the 

hardware development cycle prior to hardware synthesis.  In addition, randomized 

hardware simulations should run continuously (with hardware simulation probes) to catch 

timing problems and error signals that are caught during execution.  When a random 

simulation fails, it is important to reproduce the failure; the hardware test co-simulation 
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software should record parametric configuration information captured before each test.  

In only this way will test be reproduced and problems resolved efficiently. 

 

Once all electrical interfaces have been defined, then these interfaces and their 

descriptions and definitions go into a requirements verification test matrix (RVTM), unit 

level test benches are created that imitate the electrical interfaces from other subsystems 

as well as connect all electrical interfaces to hardware signal sources.  This enables the 

unit level tests to randomize patterns and clock edges across these electrical interfaces so 

that problems can be identified early and often.  These tests then would feed into a larger 

collection of tests that are executed by system level test execution.  

Hardware Simulation And Verification 

In order to design the hardware and verify the function of a hardware subsystem, a 

hardware co-simulation environment is required.  This foundation for this environment is 

comprised of Verilog simulation using tools such as those developed by Cadence.  

Layered above this foundation are the Verilog hardware finite state machines that must 

be tested.  In addition, software libraries built with the SystemC library are also used to 

drive bus functional models to test the hardware.  The Cadence co-simulation library 

provides SystemC adapters for their simulation environment that allow a SystemC model 

to connect digital logic to hardware connector names.  Typically this is done through 

what is referred to as a “bus functional model”.  Such a model supports the ability to test 

individual hardware subsystems.  Hardware subsystems interact with each other through 

the use of logic signals and buses.  Assuming no transitional change of clock domains, all 

hardware subsystems are clocked with the same clock source; however, there are clock 
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delays through different components used in a Verilog model such as combinatorial and 

sequential logic.  Testing of individual subsystems entail the use of randomization of 

clock signals and data bits across all data buses and should include the variance of the 

clock signals within the specified operational range.  As with all logic signals, these 

signals will vary temporarily (within a range) as a function of temperature and variances 

in the silicon and randomization of the skew of the clock signal is crucial to identify 

problems before synthesis.  Building upon these subsystem tests, the subsystems are then 

connected together.  New Bus Functional Models (BFM) are built that represent the new 

or combination of the new digital interfaces.  As the tests include more and more logic 

blocks that must be simulated, the hardware test (SystemC) library needs to ensure that it 

is built as optimally as possible.  The model must reduce unnecessary events (such as per 

pin events on a clock edge as an example), but be based upon a concept referred to as 

Transaction Level Modeling (TLM).  This approach focuses on functional block events 

instead of events produced on each individual clock edge.  When developing BFMs to 

connect to subsystems under test, it is important to base the event structure on TLM 

concepts.  This approach still provides a very accurate digital signal timing display while 

the model runs at a very high rate of speed.  As shown Figure 49, hardware models of IP 

within a SoC can be in a near cycle accurate way, with very acceptable performance, 

using the TLM based transaction model approach.  In this example (Figure 49), a Linux 

operating system is executing on a simulation of the Power Architecture instruction set 

while executing a Linux kernel module that actually runs against the real hardware 

simulation using a shared (shared between the processor simulation) and the SystemC 

adapter that drives the logic pins on the Verilog model.  The Verilog model actually 
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executed and reacted as if it were already synthesized as part of the SoC.  This testing 

would ensure that the Wireless Link Layer Subsystem hardware IP will execute as 

expected in real platform environments and ensure early testing of software can occur 

prior to tape-out of hardware. 

 

Hardware tests are executed at the intended simulated clock speed of the hardware and 

are executed using a simulated clock signal at the programmed clock speed.   An example 

of tests that are executed include the ability to skew the input and output digital signals in 

a random way to ensure the finite state machines are robust enough to handle differences 

found in silicon after SoC synthesis has occurred.  Other tests include functionality tests 

to ensure that functions within the hardware Intellectual Property (IP) works as intended.  

Other tests include the random ordering of memory transactions to and from the hardware 

IP as well as negative testing.  This simulation test software executes quickly because a 

very lightweight threading model is used to drive the hardware state machines.  All 

hardware state machines are executed in simulation as they would in hardware.  Each 

independently clocked state machine is another thread that executes in a round robin 

fashion to ensure that all clock dependencies are enforced.    
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Figure 49. Example of a HW Design/IP Verification and Unit Test Environment 

 

This same model can then be applied to a real synthesized SoC.  Instead of the peripheral 

and memory buses being simulated virtual memory of a test processor running our 

memory simulation model, we use real system memory and write to real peripheral bus 

memory interfaces.  Thus no changes to the actual tests need occur, just simply modify 

the memory adapters in the model so they map directly to SoC memory, not simulation 

memory.  An example of this is depicted in Figure 50.  
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Figure 50. Unit Co-Simulation Test Environment Ported to Real Silicon 

 

Note how the Linux kernel modules (e.g. drivers) are used to provide the mapping 

between application simulation memory and real system memory.  The hardware only 

understand hardware addresses, so all memory translations must occur between the co-

simulation application and the real hardware memory map.  Thus, the memory writes all 

occur (not across a simulated bus to simulated memory) to real system memory.  

Randomization of clock gitter has been especially helpful in finding bugs that may have 

escaped our testing prior to developeing this functional verification, validation, and 

performance testing software tools and libraries. 
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Hardware Performance Simulation  

 

Figure 51. HW Co-Simulation Environment that can be used to test HW Performance 

 

Using the Cadence co-simulation environment with a simulated memory gasket and a 

robust SystemC test class library, unit level tests can be executed at the simulated clock 

rate that the target hardware will execute.  By measuring simulation time, number of 

hardware clocks, and unit of time (e.g. seconds), hardware IP designers can ascertain if 

the design meets the required performance specifications.  In addition to running the 

design as a cycle-accurate simulation, this environment can support executing the design 

at higher than planned clock rates to determine how performance can be improved in the 

future. This environment also includes randomization of the address ranges utilized so 

that an accurate model can be measured as it relates to real-world memory latency due to 

system memory collisions (e.g. heavy utilization).  HW performance is not based upon 

raw bus rates, it based upon the ability of the hardware to reach a rate of speed that meets 
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the minimum performance specifications.  For example, a memory gasket can perform at 

6.4GB/sec; however, it can never reach that because it can only support 3 memory 

transactions at one time.  This is because the memory bus interface being used will only 

be used for a large number of relatively short memory transactions, not one large 

transaction.  Therefore, though the raw performance of the bus is impressive, it does not 

meet the requirements because with only 3 transactions allowed in parallel, we are 

limited to only a very small fraction of the maximum bandwidth. 

 

This does not replace the testing of subsystems that interact with the hardware IP under 

test.  Connected subsystems must meet their performance specification and must be 

tested to ensure their committed performance target is met when used as intended by the 

end product user. Hardware can be designed to meet a performance specification, but the 

preconditions and post conditions are important.  If the only way the hardware is going to 

meet its performance target is to use it in a way that would never occur in its actual use, it 

should be considered compliant with the requirements.  
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CHAPTER 5 

SUMMARY CONCLUSION 

This thesis focused on furthering a new concept in regard to link layer communication as 

it relates to wireless devices.  I focused on how this proposed system would provide 

support for the use of 802.11 and cellular protocol stacks.  I also focused on the hardware 

implementation (e.g. start of SoC design, functional decomposition) to support this new 

link layer idea that wireless data frames are processed by hardware state machines (not by 

software).  In order for this occur, hardware functions and features must be in place to 

ensure that wireless behavior such as roaming, RF communication methods, wired 

network infrastructure support (VLAN/Proxy ARP/Routing) are provided.   In Chapter 1 

I focused on an introduction to the technology, some of the limitations, and similarities 

between the two wireless standards.  In Chapter 2 I focused on the link layer 

communication mechanisms and an overview of the link layer communication model 

between the cell controller and the base stations as well as some of the functional system 

decomposition.  Chapter 3 focused on the mobile device issues in regard to a review of 

their state machine behavior, capabilities, and typical interactions with existing wireless 

communication protocols.  I further described how a cell controller would support these 

devices as well as a small research effort in regard to RF signal estimation and PSD 

derivation that might be implemented on mobile devices on behalf of the cell controller 

(e.g. network side RF measurement request).  Finally in Chapter 4 I reviewed some of the 

hardware design, development, and verification methodologies that would be employed 

to develop such a SoC design.  This paper focused on the high level concepts.  In order to 
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bring these concepts to practice, much more material is needed to fully define all 

requirements, timing constraints, and further uncover additional design considerations. 
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APPENDIX A  

MATLAB PROGRAM AMPLITUDE/PHASE/FREQUENCY ESTIMATOR 

 



  101 

% 
%   Amplitude & Phase & Frequency unknown. 
%  -Must estimate frequency using periodogram. 
%  -Must estimate amplitude. 
%  -Must estimate phase. 

  
samples = 1000; 
N = 5; 
u0 = 0; 
phi = .25 *(2*pi); 
f0 = 0.25; 
A = 2; 
var0 =1; 

  
%all_known_pd=zeros(samples,1); 
%all_known_pfa=zeros(samples,1); 
%energy_noise=zeros(samples,1); 

  
%A_unknown_pd=zeros(samples,1); 
%A_unknown_pfa=zeros(samples,1); 

  
%A_phi_unknown_pd=zeros(samples,1); 
%A_phi_unknown_pfa=zeros(samples,1); 

  
all_unknown_pd=zeros(samples,1); 
all_unknown_pfa=zeros(samples,1); 

  
wgn = zeros(samples,1); 
x0=zeros(samples,1); 
x1=zeros(samples,1); 
x=zeros(samples,1); 
freq_est=zeros(samples,1); 
phase_est=zeros(samples,1); 
a_est=zeros(samples,1); 

  
for iter=1:samples; 

  
    wgn = u0 + (sqrt(var0)*randn(samples,1)); 
    x0 = wgn; 

  
    for sig_iter=1:samples; 
        x1(sig_iter) = wgn(sig_iter) + cos((2*pi*f0*sig_iter)+phi); 
    end; 

  
    index = 1; 
    sfreq=.005; 
    efreq=.495;   
    incfreq=.005; 

  
    i_freq = zeros(((efreq-sfreq)/incfreq)+2,1); 

     
    for freq=sfreq:incfreq:efreq; 
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        x_cos = 0; 
        x_sin = 0; 
        for icnt=1:N; 
            x_cos = x_cos + x1(icnt)*cos(2*pi*freq*icnt); 
            x_sin = x_sin + x1(icnt)*sin(2*pi*freq*icnt); 
        end; 
        i_freq(index) = (2/N * (x_cos^2 + x_sin^2)); 
        index = index + 1; 
    end; 

  
    [value,indice] = max(i_freq); 
    freq_est(iter) = (sfreq + ((indice-1)*incfreq)); 

  
    x_cos = 0; 
    x_sin = 0; 
    for icnt=1:N; 
        x_cos = x_cos + x1(icnt)*cos(2*pi*freq_est(iter)*icnt); 
        x_sin = x_sin + x1(icnt)*sin(2*pi*freq_est(iter)*icnt); 
    end; 

  
    a_est(iter) = (2/N)*sqrt(x_cos^2 + x_sin^2);         

     
    dphase = 0; 
    nphase = 0; 
    for icnt=1:N; 
        nphase = nphase + x1(icnt)*sin(2*pi*freq_est(iter)*icnt); 
        dphase = dphase + x1(icnt)*cos(2*pi*freq_est(iter)*icnt);     
    end; 

  
    phase_est(iter) = abs(atan(-nphase/dphase)); 

  
    tx1_var0 = 0; 
    tx1_var1 = 0; 
    for tx1=1:N 
        tx1_var0 =  tx1_var0 + abs( 

x1(tx1)*a_est(iter)*(cos(2*pi*freq_est(iter)*tx1)+phase_est(iter)) ); 
        tx1_var1 =  tx1_var1 + abs( 

x1(tx1)*a_est(iter)*(sin(2*pi*freq_est(iter)*tx1)+phase_est(iter)) ); 
    end; 
    all_unknown_pd(iter) = 1/(4*var0)*( ((2/N)*tx1_var0)^2 + 

((2/N)*tx1_var1)^2 ); 

     
end;          

  
tx_pd = sort(all_unknown_pd); 

  
% Derived from sort() 
total_cnt=samples; 

  
range = 20; 

  
incr = range/100; 
size = range/incr; 
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%Monte Carlo Solution 
pd_y=zeros(range/incr,7); 
engy_x=zeros(range/incr,7); 

  
var_pd = var(all_unknown_pd); 

  
pfa = 10^-1; 
for nplots=1:7; 

     
index = 1; 
for iter=0: incr : range-.2; 

  
   pd_cnt=0; 

    
   nA = sqrt( ((2*var0)/N)*(10^(iter/10)) ); 
   gamma = nA*(1/2)*chi2cdf((1-pfa),2); 

    
   for n=1:samples; 
      if (all_unknown_pd(n) > gamma) 
          pd_cnt = pd_cnt + 1; 
      end; 
   end; 

   
   pd_y(index,nplots) = pd_cnt/total_cnt; 
   engy_x(index,nplots) = (range-.2) - iter; 

    
   index = index + 1; 
end; 

  
pfa = pfa*10^-1; 
end; 

  
plot(engy_x,pd_y);     
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APPENDIX B  

MATLAB PROGRAM BURG PSD ESTIMATOR 
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% 

% 

%  Burg PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

DBM = 0; 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

for nextPlot = 1: 6 

     

    if (nextPlot < 4) 
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        x=S; %Data Set 1 

  

        if (nextPlot == 1) 

            modelOrder = 5; 

        elseif (nextPlot == 2) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

  

    else     

        x=X; %Data Set 2 

        if (nextPlot == 4) 

            modelOrder = 5; 

        elseif (nextPlot == 5) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

    end; 

  

freqPlot = (0:.0078125:31.9921875)'; 

f = freqPlot; 

  

P = modelOrder; 

  

Pxx = pburg(x,P,f,Fs);   

  

figure; 

if (DBM == 0) 

    plot(freqPlot,Pxx); 

    %plot(freqPlot,psdEst); 

else 

    plot(freqPlot,10*log10(Pxx));  %dB/Hz 

    %plot(freqPlot,psdEst); 

end; 

  

if (nextPlot < 4) 

    title(['Signal, No Noise, Burg, Model Order = ' int2str(modelOrder)]); 

else 

    title(['Signal + Noise, Burg, Model Order = ' int2str(modelOrder)]); 

end; 

xlim([0 32]); 

  

xlabel('Frequency (Hz)'); 
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if (DBM == 0) 

    ylabel('PSD Magnitude'); 

else 

    ylabel('PSD Magnitude (dB)'); 

end; 

  

testPoint = 0; %For debug purposes 

  

end; 

 

% 

% 

% 

% 
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APPENDIX C  

MATLAB PROGRAM BLACKMAN-TUKEY PSD ESTIMATOR 
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% 

%  Blackman-Tukey PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

  

  

for nextPlot = 1: 6 

  

if (nextPlot < 4) 
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   x = S; %Without Noise 

   if (nextPlot == 1) 

       Lag = 10; %Without Noise -All Freq. Components visible 

   elseif (nextPlot == 2) 

       Lag = 20; 

   else 

       Lag = 70; 

   end; 

   M = Lag; 

else 

   x = X;  %With Noise 

   if (nextPlot == 4) 

       Lag = 10; %Without Noise -All Freq. Components visible 

   elseif (nextPlot == 5) 

       Lag = 20; 

   else 

       Lag = 70; 

   end; 

   M = Lag; 

end; 

  

Rxx2 = xcorr(x,x,M,'unbiased'); 

hammingW = hamming(2*M,'periodic'); 

%hammingW = hamming(2*M); 

  

freq=0; 

psdEst=zeros(1,300); 

for k=1: 300  % 30Hz band in a .1 Hz interval 

    realM = -M; 

    for m=1: 2*M 

        psdEst(k) = psdEst(k) + (hammingW(m)*Rxx2(m)*exp(-1i*2*pi*T*realM*freq)); 

        realM = realM + 1; 

    end; 

    psdEst(k) = T * psdEst(k); 

    freq = freq + .1; 

end; 

  

freqPlot = (0:.1:29.9)'; 

  

figure; 

plot(freqPlot,real(psdEst)); 

%plot(freqPlot,10*log10(real(psdEst)));  %dB/Hz 

  

if (nextPlot < 4) 

title(['Signal, no noise, Blackman-Tukey Plot Lag = ' int2str(Lag)]); 
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else 

title(['Signal + noise, Blackman-Tukey Plot Lag = ' int2str(Lag)]); 

end; 

  

xlabel('Frequency (Hz)'); 

ylabel('PSD Magnitude'); 

  

end; 

testPoint = 0; %For debug purposes 
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APPENDIX D  

MATLAB PROGRAM COVARIANCE PSD ESTIMATOR 
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% 

% 

% 

%  Covariance PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

DBM = 0; 

  

for nextPlot = 1: 6 
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    if (nextPlot < 4) 

        x=S; %Data Set 1 

  

        if (nextPlot == 1) 

            modelOrder = 5; 

        elseif (nextPlot == 2) 

            modelOrder = 16; 

        else 

            modelOrder = 30; 

        end; 

  

    else     

        x=X; %Data Set 2 

        if (nextPlot == 4) 

            modelOrder = 5; 

        elseif (nextPlot == 5) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

    end; 

  

  

freqPlot = (0:.0078125:31.9921875)'; 

f = freqPlot; 

  

P = modelOrder; 

  

%Covariance PSD 

Pxx = pcov(x,P,f,Fs);   

  

  

figure; 

if (DBM == 0) 

    plot(freqPlot,Pxx); 

    %plot(freqPlot,psdEst); 

else 

    plot(freqPlot,10*log10(Pxx));  %dB/Hz 

    %plot(freqPlot,psdEst); 

end; 

xlim([0 32]); 

  

if (nextPlot < 4) 

    title(['Signal, No Noise, Covariance, Model Order = ' int2str(modelOrder)]); 
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else 

    title(['Signal + Noise, Covariance, Model Order = ' int2str(modelOrder)]); 

end; 

  

xlabel('Frequency (Hz)'); 

if (DBM == 0) 

    ylabel('PSD Magnitude'); 

else 

    ylabel('PSD Magnitude (dB)'); 

end; 

  

  

testPoint = 0; %For debug purposes 

  

end; 
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APPENDIX E  

MATLAB PROGRAM MODIFIED COVARIANCE PSD ESTIMATOR 
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% 

% 

%  Modified Covariance PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

DBM = 0; 

  

for nextPlot = 1: 6 
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    if (nextPlot < 4) 

        x=S; %Data Set 1 

  

        if (nextPlot == 1) 

            modelOrder = 5; 

        elseif (nextPlot == 2) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

  

    else     

        x=X; %Data Set 2 

        if (nextPlot == 4) 

            modelOrder = 5; 

        elseif (nextPlot == 5) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

    end; 

  

freqPlot = (0:.0078125:31.9921875)'; 

f = freqPlot; 

  

P = modelOrder; 

  

%Modified Covariance PSD 

Pxx = pmcov(x,P,f,Fs);  

  

figure; 

if (DBM == 0) 

    plot(freqPlot,Pxx); 

    %plot(freqPlot,psdEst); 

else 

    plot(freqPlot,10*log10(Pxx));  %dB/Hz 

    %plot(freqPlot,psdEst); 

end; 

  

if (nextPlot < 4) 

    title(['Signal, No Noise, Modified Covariance, Model Order = ' int2str(modelOrder)]); 

else 

    title(['Signal + Noise, Modified Covariance, Model Order = ' int2str(modelOrder)]); 

end; 

xlabel('Frequency (Hz)'); 
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xlim([0 32]); 

  

if (DBM == 0) 

    ylabel('PSD Magnitude'); 

else 

    ylabel('PSD Magnitude (dB)'); 

end; 

testPoint = 0; %For debug purposes 

  

end; 
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APPENDIX F  

MATLAB PROGRAM MUSIC PSD ESTIMATOR 
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% 

% 

% 

% 

%  MUSIC PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

DBM = 0; 
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for nextPlot = 1: 6 

     

    if (nextPlot < 4) 

        x=S; %Data Set 1 

  

        if (nextPlot == 1) 

            modelOrder = 5; 

        elseif (nextPlot == 2) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

  

    else     

        x=X; %Data Set 2 

        if (nextPlot == 4) 

            modelOrder = 5; 

        elseif (nextPlot == 5) 

            modelOrder = 15; 

        else 

            modelOrder = 30; 

        end; 

    end; 

  

  

freqPlot = (0:.0078125:31.9921875)'; 

f = freqPlot; 

  

P = modelOrder; 

  

% Multiple Signal Classification (MUSIC)  

Pxx = pmusic(x,P,f,Fs);  

  

figure; 

if (DBM == 0) 

    plot(freqPlot,Pxx); 

    %plot(freqPlot,psdEst); 

else 

    plot(freqPlot,10*log10(Pxx));  %dB/Hz 

    %plot(freqPlot,psdEst); 

end; 

  

if (nextPlot < 4) 

    title(['Signal, No Noise, Multiple Signal Classification (MUSIC), Model Order = ' 

int2str(modelOrder)]); 
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else 

    title(['Signal + Noise, Multiple Signal Classification (MUSIC), Model Order = ' 

int2str(modelOrder)]); 

end; 

xlabel('Frequency (Hz)'); 

if (DBM == 0) 

    ylabel('PSD Magnitude'); 

else 

    ylabel('PSD Magnitude (dB)'); 

end; 

  

testPoint = 0; %For debug purposes 

  

end; 
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APPENDIX G  

MATLAB PROGRAM WELCH PSD ESTIMATOR 
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% 

% 

% 

%  Welch PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

  

d = 32; 

for nextPlot = 1: 6 
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if (nextPlot < 4) 

  

   x=S; %Data Set 1 

   if (nextPlot == 1) 

       s = 10; 

   elseif (nextPlot  == 2) 

       s=20; 

   else 

       s=30;          

   end; 

  

else 

     

   x=X; %Data Set 2 

   if (nextPlot == 4) 

       s = 10; 

   elseif(nextPlot == 5)  

       s=20; 

   else 

       s=30; 

   end; 

  

end; 

  

p = nearest((length(t)-d)/(s+1)); 

hammingW = hamming(d); 

  

xp=zeros(p,d); 

shift=0; 

for j=1: p 

    for jj=1: d; 

        xp(j,jj)=xp(j,jj)+ hammingW(jj)*x(jj+(shift*s)); 

    end; 

    shift = shift + 1; 

end; 

  

freq=0; 

U=0; 

for j=1: d; 

    U = U + (hammingW(j))^2; 

end; 

U = T*U; 

  

psdEst=zeros(1,p); 
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WelchpsdEst=zeros(1,300); 

for kk=1 : 300; % 30Hz band in a .1 Hz interval 

    accumPSD=0; 

    for k=1: p   

        for m=1: d 

            psdEst(k) = psdEst(k) + (xp(k,m)*exp(-1i*2*pi*T*m*freq)); 

        end; 

        psdEst(k) = (1/(U*d*T))*(abs((T * psdEst(k))))^2; 

        accumPSD = accumPSD + psdEst(k); 

    end; 

    WelchpsdEst(kk) = accumPSD/p; 

    freq = freq + .1; 

end; 

  

%pwelch(x,d,d-s,length(x),Fs,'onesided');  %Hamming window 

  

freqPlot = (0:.1:29.9)'; 

  

figure; 

plot(freqPlot,WelchpsdEst); 

%plot(freqPlot,10*log10(WelchpsdEst));  %dB/Hz 

  

if (nextPlot < 4) 

    title(['Signal, no noise, Welch Periodogram, sample shift = ' int2str(s)]); 

else 

    title(['Signal + noise, Welch Periodogram, sample shift = ' int2str(s)]); 

end; 

xlabel('Frequency (Hz)'); 

ylabel('PSD Magnitude'); 

  

testPoint = 0; %For debug purposes 

end; 
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APPENDIX H  

MATLAB PROGRAM YULE-WALKER PSD ESTIMATOR 
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% 

% 

% 

%  Yule-Walker PSD Estimator 

% 

% 

%  With & Without Noise 

% 

% 

  

Fs=64;%  Samples/sec 

F01 = 10; %Hz 

F02 = 11; %Hz 

F03 = 25; %Hz 

T1 = 1/F01; 

T2 = 1/F02; 

T3 = 1/F03; 

UnitAmplitude = 1; 

duration = 2; %length of simulation (sec) 

  

samples = duration*Fs; 

t=(1/Fs:1/Fs:duration)'; 

N = duration * Fs; 

  

T = 1/Fs; %Sampling Interval 

  

s1 = UnitAmplitude*sin(2*pi*F01*t);%Pure Signal 

s2 = UnitAmplitude*sin(2*pi*F02*t);%Pure Signal 

s3 = UnitAmplitude*sin(2*pi*F03*t);%Pure Signal 

  

noise = rand(1,samples)';%noise added to signal 

  

S = s1 + s2 + s3;   %Combined Signals Without Noise 

  

x1 = awgn(s1,0);%add WGN 0db SNR 

x2 = awgn(s2,0);%add WGN 0db SNR 

x3 = awgn(s3,0);%add WGN 0db SNR 

  

X = x1 + x2 + x3;   %Combined Signals With Noise 

  

%plot (t,s3,t,x3);  %Test Only 

%plot(t,s3); %Test Only 

  

%s=3; 

%s=10; 
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s=20; 

d=32; 

  

%x=S; %Data Set 1 

x=X; %Data Set 2 

  

freqPlot = (0:.1:29.9)'; 

f = freqPlot; 

%modelOrder = 5; 

%modelOrder = 15; 

%modelOrder = 60; 

modelOrder = 30; 

  

T = 1 / Fs; 

P = modelOrder; 

  

Rxx = xcorr(x,x,P,'biased'); 

%Rxx = xcorr(x,x,P,'unbiased'); 

  

[ar_coeffs, var] = aryule(x,modelOrder); 

  

rxx = zeros(1,2*P); 

for m=2*P: -1 : 1 

    for k=1: P 

%        rxx(m) = rxx(m) + (ar_coeffs(k)*Rxx(m)) + var; 

        rxx(m) = rxx(m) + (ar_coeffs(k)*Rxx(m)); 

    end; 

    rxx(m) = -rxx(m); 

end; 

  

freq=0; 

psdEst=zeros(1,300); 

for k=1: 300  % 30Hz band in a .1 Hz interval 

     realM = -P; 

   for m=1:2*P 

      %  psdEst(k) = psdEst(k) + (rxx (m)*exp(-1i*2*pi*T*realM*freq)); 

        psdEst(k) = psdEst(k) + (Rxx (m)*exp(-1i*2*pi*T*realM*freq)); 

        realM = realM + 1; 

    end; 

      freq = freq + .1; 

   psdEst(k) = T * psdEst(k); 

end; 

  

  

Pxx = pyulear(x,modelOrder,f,Fs);  %-This uses the biased correlation  
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  % estimate only. 

  %-The unbiased correlation estimate can 

  % cause unstable solutions (e.g.outside  

  % the unit circle 

  

%plot(freqPlot,real(psdEst)); 

plot(freqPlot,Pxx); 

  

%plot(freqPlot,10*log10(Pxx));  %dB/Hz 

title(['Yule-Walker, Biased, Model Order = ' int2str(modelOrder)]); 

xlabel('Frequency (Hz)'); 

ylabel('PSD Magnitude'); 

  

testPoint = 0; %For debug purposes 

 

end; 

% 


