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ABSTRACT  
   

This simulation study compared the utility of various discrepancy measures within a 

posterior predictive model checking (PPMC) framework for detecting different types of 

data-model misfit in multidimensional Bayesian network (BN) models. The investigated 

conditions were motivated by an applied research program utilizing an operational 

complex performance assessment within a digital-simulation educational context 

grounded in theories of cognition and learning. BN models were manipulated along two 

factors: latent variable dependency structure and number of latent classes. Distributions 

of posterior predicted p-values (PPP-values) served as the primary outcome measure and 

were summarized in graphical presentations, by median values across replications, and by 

proportions of replications in which the PPP-values were extreme. An effect size measure 

for PPMC was introduced as a supplemental numerical summary to the PPP-value. 

Consistent with previous PPMC research, all investigated fit functions tended to perform 

conservatively, but Standardized Generalized Dimensionality Discrepancy Measure 

(SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate 

power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, 

Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct 

(PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's 

Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate 

SGDDM and Q3 were found to provide powerful and detailed feedback for all 

investigated types of misfit.  
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Introduction 

Psychometric models automate the process of inferring students’ cognitive 

development in a domain of interest. Throughout history, teachers have most commonly 

assumed the expert role of evaluating the performance of a student and making 

appropriate interpretations about that student’s knowledge, skills, and abilities in relevant 

content areas. It is this work of evaluation by experts that is mimicked by psychometric 

models. In turn, the work of the models facilitates the development of theory by helping 

to coalesce, accumulate, and institutionalize expert knowledge. Expert knowledge is 

dissipated throughout a field of study, even across time. Psychometric models make it 

possible to bring together knowledge from various experts and incorporate it into 

computational components which can be recycled and reused in many different 

applications. 

The end-products of psychometric models are inferences, but to have confidence 

in those inferences, one must trust that the model appropriately captures the relationships 

between data and theory. Model checking performs an essential role in the iterative 

process of validating psychometric models. Model checking serves to characterize the 

strengths and limitations of a model under various conditions. Model checking provides 

descriptive evidence about how the model functions with respect to different people in 

different situations, and with respect to the different levels of all the variables under 

investigation. How consistent is a model in its predictions? How accurate are the model’s 

predictions compared to observed data?  In the world of psychometric inference 

machines, model checking provides the quality control. Model criticism is a necessary 

check in the process of producing inferences which hope to carry the “valid” label.  
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Purpose of the Study 

 The goal of this study was to improve the toolkit for assessing the data-model fit 

of Bayesian networks (BN). The primary focus within this overarching goal was 

comparing the utility of various discrepancy measures within a posterior predictive model 

checking (PPMC; Gelman, Meng, & Stern, 1996) framework. Conditions in the present 

study were motivated by an applied research program on particular assessments utilized 

within a particular educational context, but were designed to be applicable to a much 

broader audience. As will be discussed in greater detail in the method section, some 

design decisions were intended to maintain close similarities to features of the motivating 

models, while other decisions were made to eliminate confounds, reduce noise 

variability, remove unnecessary complexity, or improve generalizability to other 

psychometric applications.  

Model checking for BNs in psychometric applications is still in the early stages of 

development. There is a need in the literature for simulation studies to guide BN users 

with recommendations. The performance of fit indices borrowed from more established 

psychometric modeling paradigms such as item response theory (IRT; e.g. van der 

Linden & Hambleton, 1997), structural equation modeling (SEM; e.g. Kline, 2005), and 

latent class analysis (LCA; e.g. Collins & Lanza, 2010) is not well known in the context 

of BNs. Techniques that have demonstrated usefulness in these and other research 

contexts were gathered together for comparison within the current simulation study. 

Specifically, full information fit indices, limited information fit indices, item-fit indices, 

and person-fit indices were investigated. 
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On the upside, PPMC is an extremely flexible, and in many ways intuitive, model 

criticism framework which fits seamlessly with BNs under a common Bayesian modeling 

umbrella. The downside of PPMC includes its computational requirements and relative 

newness in the psychometric literature. Consider the limited model checking capacity of 

Netica (Norsys, 1995-2014), the most widely used commercial BN software package. 

Similar examples could be constructed using other popular BN software packages such as 

GeNie (Decision Systems Laboratory, 2012). Building alternative BN models in Netica is 

relatively time efficient. A base model can be modified quickly to reflect competing 

theoretical considerations, with each alternative model being estimated separately. Note 

that Netica does not implement a fully Bayesian approach when estimating BN 

parameters. Rather, marginal maximum likelihood (MML) is used to obtain an optimized 

solution which is interpreted from a frequentist perspective. A drawback of Netica is the 

relative lack of model checking resources to aid users in evaluating the empirical merits 

of a given model or set of models. The only indicator of global data-model fit provided 

by Netica is the loglikelihood value. Users can compare the global fit of competing 

models using this value in isolation, or the loglikelihood value can be used as an 

ingredient in the computation of a number of fit indices, such as AIC or BIC.  

In addition, sensitivity analyses can be conducted. The analyst selects a single 

variable of interest and Netica will provide information regarding the influence of other 

variables in the system upon the chosen variable. The purpose is to quantify the 

sensitivity of the target variable to changes in the other variables. This feature may be 

sufficiently diagnostic for regression-like models where a single outcome is of primary 
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concern, but sensitivity analyses are not comprehensive enough to provide all the 

diagnostics typically desired in psychometric applications.  

Another way to evaluate node characteristics in Netica is to individually compare 

the values within conditional probability tables (see West et al., 2012 for an example of 

this approach). In such an approach, differences in the conditional probabilities of 

successfully completing an observable are compared for members of different classes of 

examinees. Similar comparisons can be made using ratios between successive conditional 

probabilities. This technique allows researchers to quantify the discriminating power of 

observed variables, akin to an item discrimination parameter in IRT. In psychometric 

applications, observables with greater discrimination are generally considered to be of 

better quality. However, discrimination is not the same thing as fit; observables of 

varying discrimination can fit a model equally well (due to differing content coverage, for 

example), and items with the same discrimination can differ in how well they fit (due to 

construct relevance, for example). Nevertheless, due to the overlap that can exist between 

discrimination and fit, one way to identify some kinds of poorly fitting models may be to 

quantify their discriminating power using the above technique.  

A more flexible and powerful way to critique BN models estimated in Netica is to 

conduct resampling analyses by simulating data from the solution network and 

comparing features of the observed data and simulated data (see section on parametric 

bootstrapping in the appendix), but these analyses must be conducted in a separate 

program (e.g. R, R Core Team, 2013; SAS, SAS Institute Inc., 2013) after exporting the 

simulated data from Netica.  
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Literature Review 

Bayesian Networks 

  Description of Bayesian Networks. A BN (Pearl, 1988) is an inference machine 

for probabilistic reasoning, and its mathematical motor is Bayes' Theorem, also referred 

to historically as inverse probability (De Morgan, 1837; Fienberg, 2006): 

���|�� 	 ���� 
 ���|������                                                                                               �1�, 
where ���|�� is the probability distribution of one variable ��� conditional on a second 

variable ���. This distribution, known as the posterior distribution, is equal to the 

unconditional probability distribution of the first variable���, also known as the prior 

distribution, multiplied by the probability distribution of the second variable conditional 

on the first ���|��—this inversion of the posterior distribution is also known as the 

likelihood term—and divided by the unconditional probability distribution of the second 

variable ����. 

Bayes' Theorem provides a method for computing unknown conditional 

probabilities, a task which the human mind struggles to execute, even under conditions of 

deliberate concentration by content experts (Kahneman, 2011). A BN extends the 

bivariate mathematical logic embodied in Bayes' Theorem to a multivariate system of 

probabilistic reasoning. A BN formalizes a body of evidence represented as distributions 

of variables and makes the proper (mathematical) inferences human judgment aspires to, 

based on the principles and assumptions of probability theory. 

A BN is formally defined as the joint probability distribution of a system of 

interdependent variables; an acyclic directed graph (ADG or DAG) is a useful way to 
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visually represent the dependencies in a joint probability distribution, which are 

alternatively represented by equations. The DAG is composed of nodes and edges, which 

represent the dependencies among the variables of interest. There is a 1:1 correspondence 

between what is represented in the graph and dependence and conditional independence 

relationships in the joint distribution; one form is sufficient to generate the other. The 

DAG makes some features of the BN easier to comprehend, manipulate, and 

communicate. It is a convenient tool for working with models that can be unwieldy when 

represented only by equations.  

Within a given system of variables, a DAG in which all pairs of variables are 

connected to each other is a saturated system, and the joint probability distribution is 

estimable using the general multiplication rule from probability theory. This saturated 

system can be constrained using expert knowledge about the interdependence among the 

modeled variables. Human knowledge is thus formalized into the structure of the BN 

model. BNs are a way to quantify the uncertainty that exists in the realm of human 

decision making. By expressing knowledge in probabilistic terms, BNs provide a 

numerically explicit way to test our understanding of the system of variables being 

investigated.  

All variables in a Bayesian network, whether latent or observed, are treated as 

random variables that take on a discrete number of states. The joint probability 

distribution is the product of the probability distributions of the variables (nodes) in the 

network, conditional on the values of each node’s parent variables. Parent variables are 

the immediate antecedents of the target variable in the dependency structure. A variable 

with no antecedents is modeled as exogenous (a.k.a. orphan). By comparison, other 
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variables might have a single parent, two parents, or many parents. Specification of 

variable parentage is how the structure of the joint distribution is established: 

���� 	 ��, … , �� 	 ��� 	 � ���� 	 ��|��������
���                                              �2�,    

where �� is a node in the network, ������ are the parents of ��, ���� 	 ��) is the 

probability distribution of ��, and ���� 	 ��  | ������� is the local probability distribution 

of variable �� conditional only on the values of that node’s parents. 

Bayesian networks have a number of attractive features. They are extremely 

flexible in the sense that very complicated dependencies can be represented relatively 

easily using graphical structure. In addition, nodes can vary in their properties (e.g. they 

do not need to have the same number of parents or states), so models can be customized 

to a particular situation as opposed to choosing an existing model “off the shelf” and 

applying it like a cookie cutter to the situation at hand.  

After all of the conditional probabilities of a BN have been specified (either via 

expert knowledge or calibration with data), the model can be applied very quickly to the 

task for which the BN was designed: making inferences about specific situations based 

on a given state of knowledge, whether hypothetical or observed. A model in this fully 

specified, or calibrated, state is also called ignorant because it does not reflect specific 

findings for any particular case. Rather, the network contains marginalized knowledge, 

akin to what would be believed in aggregate across all cases in the population. If no 

response data is available for a particular case, predictions can be made using the 

ignorant (marginal) network. The network will make the same inferences for all cases 

with completely missing data. When any data for a particular case is available, the 
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network can be updated to reflect the current state of knowledge. The appropriate 

propagation of inputted information is applied recursively via Bayes' Theorem. 

Conditional probabilities are combined accordingly to yield the model-implied joint 

distribution given the current knowledge state, and the state-specific inferences are 

outputted.  

To date, BNs have been used in a broad array of contexts, including academic, 

commercial, and governmental sectors, with notable examples from the fields of 

medicine, engineering, biology, environmental science, psychology, and education. In the 

following section, the application of BNs to the field of psychometrics is discussed in 

more detail.  

Bayesian networks in psychometrics. The application of BNs to the field of 

educational assessment (Mislevy, 1995; Almond & Mislevy, 1999; Mislevy, Almond, 

Yan, & Steinberg, 2001; Sinharay, 2006b; Almond, DiBello, Moulder, & Zapata-Rivera, 

2007) represents part of a broader, historical shift away from a trait paradigm toward a 

more cognitive paradigm. There are many different approaches to cognitively based 

psychometrics. A few examples of modeling paradigms include: Rule space method 

(Tatsuoka, 2009), attribute hierarchy method (AHM; Leighton, Gierl, & Hunka, 2004), 

and ordered multiple choice (OMC; Briggs, Alonzo, Schwab, & Wilson, 2006). 

Examples of design frameworks include evidence centered design (ECD; Mislevy, 

Steinberg, & Almond, 2003), and cognitive design system approach (Embretson, 1998). 

They share the common goal of seeking to provide a more detailed account of student 

learning and performance than has been obtained traditionally within the trait paradigm. 

The cognitive perspective emphasizes the constituent parts of a learning process which 
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might formerly have been summarized as a single entity. The cognitive perspective relies 

on accumulation of finer-grained evidence with which to make inferences about what 

students have learned. The big payoff is predictive power (greater specificity and 

accuracy) based on more extensive theoretical understandings of the latent construct(s). 

Other benefits include increased understanding of examinee behavior, more accurate 

inferences about students, improved opportunity for remediation, feedback for curriculum 

and instruction revisions, and improved understanding of the domain such as information 

about which skills are or are not necessary for successful performance. The term used 

hereafter to refer to this broad family of psychometric models is cognitive diagnostic 

models (CDMs). 

CDMs are united essentially by their purpose or their applied uses. A 

methodological subset of this larger group has been referred to by many different names, 

including diagnostic classification models (DCMs; Rupp & Templin, 2008), the term 

used hereafter to refer to the subset of CDMs that use discrete latent variables to model 

cognition and task performance. In other words, DCMs are subsetted from CDMs based 

on the discrete (categorical) status of the latent variables. Even when it is true that a 

psychological construct is not distributed categorically in the population, it may still be 

useful to make evaluations categorically because the human mind is well suited to 

thinking categorically. Classification is a natural way to simplify complexity, and 

classification models often fit intuitively with the natural human proclivity to classify. All 

CDMs make subjective classification decisions in the sense that experts define key 

structural components of the models, whether setting cut scores or mapping out Q-

matrices (Gorin, 2009).  
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A purely exploratory approach to model building in BNs can use intelligent 

algorithms (e.g. DEAL package in R, see Bottcher and Dethlefsen, 2012) to search for 

model configurations that optimize model fit for a given data set. By contrast, a more 

confirmatory approach relies on content expert judgment to construct a theoretically 

defensible model. For example in BNs, experts might be called upon to draw DAGs, 

specify parent-child relationships, impose meaningful constraints, specify conditional 

probabilities, specify the number of latent classes, etc.  

  Any model, regardless of its relative parsimony or complexity, will require 

agreement with data to stand the test of time. An advantage of BNs relative to some other 

types of models, however, is that content expertise (or even theoretical speculations) can 

take the place of data-estimated parameters in the initial  stage of model building. In other 

words, the flexibility of BNs permits users to specify conditional probability distributions 

based on any source of a priori information. The quality of those specifications will 

necessarily affect the quality of the model in terms of fitting actual data, but data are not 

needed to begin the iterative cycle of model building, model criticism, and model 

refinement.  

Another advantage of BNs relative to some other models is the convenient 

applicability after estimation. Programs like Netica and GeNie provide an intuitive 

interface that allows users to easily access the inferential power of the completed model. 

Calibrated models can easily be used by classroom teachers (Shute & Almond, 2008) or 

researchers to make respondent classifications as new cases become available. Given the 

assumption that new respondents belong to the population from which the model was 

constructed and calibrated, additional cases can be evaluated quickly and efficiently, 
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regardless of whether or not there is data for all observable variables. In fact, the BN can 

provide an a priori (marginal) classification, which is marginalized across all known 

model parameters, or any combination of partial observations. Any pattern of missing 

data is permitted because the uncertainties associated with inferences made by the BN are 

built into the model explicitly (see West et al, 2012 for examples of BN inferences using 

incomplete response patterns).  

Assessing Data-Model Fit   

One reason why psychometric models are imperfect is because they oversimplify 

complexity that exists in the data. Models seek to represent the most important 

relationships among the variables of interest; they seek to account for the most important 

sources of variability in the data. The usefulness of a model often rests on its ability to 

distill key features of the real world into a more manageable form. Fitting models to data 

often involves tradeoffs between parsimony and fidelity. The attractiveness of a model is 

inextricably linked to its applied purpose. One way to view validity is whether the model 

reproduces the inferences a prototypical domain expert would make using the same 

evidence.  

A psychometric inference machine (e.g. BN) must be customized to each 

particular applied purpose. The goal of model checking is to troubleshoot the 

performance of the machine in the context of its current application, to find out which 

parts can be tweaked to improve parsimony or fidelity when representing the real world. 

Different types of modeling errors suggest different types of adjustments. The goal is to 

tinker with the functionality of the machine so that the next iteration of production 

contains fewer and/or less serious inferential errors. 
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According to Rupp, Templin, and Henson, authors of Diagnostic Measurement 

(2010), “many DCM applications are plagued by model-data misfit” (p. 166). This 

statement admits much about the state of cognitively based modeling in general. There 

are few prototypes in the literature that have developed sufficiently in the theoretical 

sense to withstand rigorous model criticism. The most frequently cited data source is 

Tatsuoka’s mixed-number subtraction data (Tatsuoka, 1984). Ironically, it may be the 

improvement of model criticism tools that helps most to spur theoretical development 

because content experts often benefit from the feedback that model criticism brings. By 

providing a framework where specific features of theory and data coexist (e.g. in BNs 

dependency relationships and estimates of uncertainty must be made explicit), experts are 

pushed to formalize and explicate their theoretical understanding in new ways, and 

sometimes to consider new ideas or reconsider formerly discounted ideas. The feedback 

to content experts that comes from analyses of data is an exciting part of the iterative 

validation process. CDMs are currently being used to help build the cognitive theories 

that will be needed to justify their usefulness (compared to more conventional models) in 

applied settings. The process of building, troubleshooting, and validating models is 

necessarily iterative; it is a process of accumulated productivity (see Box, 1976). One of 

the greatest benefits of CDMs to the psychometric field is that they provide a way to test 

the theoretical knowledge provided by content experts. Models are built to help evaluate 

what students know. The models are themselves evaluated to see what the model-builders 

(domain experts) know. In this sense, model criticism serves to teach the experts about 

the weaknesses in their models. Model criticism is thus an integral part of theoretical 
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validation (see Gelman & Shalizi, 2013), and model criticism is essential for building 

evidentiary arguments about human learning.  

Posterior predictive model checking. Posterior predictive model checking 

(PPMC; Gelman, Meng, & Stern, 1996; Guttman, 1967; Levy, Mislevy, & Sinharay, 

2009; Meng, 1994; Rubin, 1984; Sinharay & Johnson, 2003) has been used for evaluating 

the fit of many types of psychometric models, including BNs.  

Description of PPMC. PPMC circumvents the problem of calculating test statistic 

reference distributions by empirically building the reference distributions of interest using 

replicated data ����generated from numerous draws of the model parameters 

Θ�, Θ�, … , Θ� from the posterior distribution 

���|�� 	 ���|������ ���|������!��                                                                                        �3�. 
A number N of replicated datasets are generated from the posterior distribution, with each 

generated dataset ����,�corresponding to a different draw of model parameters Θ�. 

Features of the replicated data are then compared to features of the observed (realized) 

data y, using a range of techniques including graphical displays and summary statistics. 

Any desirable feature of the data can be compared in this way (see Gelman, Carlin, Stern, 

& Rubin, 2003 for examples and discussion of this topic). 

When a statistic is calculated from model parameters for use as a comparison of 

replicated and realized data in PPMC, it is referred to as a discrepancy measure $��, ��. 

Discrepancy measures should be selected according to the type of model and aspect of fit 

that are of interest. Particular discrepancy measures will be of use in some situations but 

not others. For example, Sinharay & Johnson (2003) found odds ratios to be a powerful 
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discrepancy measure for detecting inadequacy of a Rasch model for data from 2PL/3PL 

models, a 3PL model for 2-dimensional data, a 3PL model for data from a testlet model, 

and a 3PL model for speededness data, but ineffective for detecting inadequacy of a 2PL 

model for data from a 3PL model.  

For each of the (N) draws from the posterior distribution, two values of a 

discrepancy measure are calculated: one using the observed data and one using the 

replicated data. The discrepancy measures that result from using the replicated data 

$��%&', ��are compared to the values of the discrepancy measures using the observed 

data $��, ��. In this way, the replicated data serves as an empirical reference distribution 

for evaluating the observed values of the model-fit statistics. PPMC does not require re-

estimation of the model, but does require generating replicated data sets and computing 

discrepancy measures from the generated data.  

One way to summarize discrepancy measures is with empirical p-values (also 

called posterior predictive p-values, or PPP-values). In a simulation environment such as 

Markov chain Monte Carlo (MCMC; e.g. Gelman et al., 2003), PPP-values are the 

proportion of draws in which the replicated values are greater than the values using 

observed data. The expectation is that PPP-values will be at or near .5 when the model 

fits the data. More extreme values in either direction are indicative of data-model misfit, 

because they suggest that the model is systematically under- or over-producing the 

discrepancies. Direction of misfit is not necessarily important out of context, but patterns 

of directionality may be informative within the context of a particular discrepancy 

measure and/or model of interest. Importantly, the PPP-values are not statistical tests, so 

they should not be interpreted in the same way as traditional frequentist p-values. PPP-
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values are simply one way of summarizing the relative values of the discrepancy 

measures, and should be used as part of a larger evidence argument when assessing data-

model fit using PPMC (Levy, Mislevy, & Sinharay, 2009; Sinharay 2006b). 

A graphical way to compare discrepancy measures is with a scatterplot of 

predicted discrepancy values (based on replicated data) vs. the realized discrepancy 

values (based on observed data). Figure 1 shows an example of such a plot taken from 

Sinharay (2006b).  

 
 
Figure 1. Scatterplot of predicted versus realized discrepancies. The associated PPP-
value was .04, which was suggestive of misfit. Taken from Sinharay (2006b). 

 

Each point in this plot represents a draw of model parameters from the posterior 

distribution. A 45°-reference line shows where the points would fall if the values of the 

discrepancy measure from the replicated and original data sets were equal to each other. 

Points that fall away from the reference line indicate draws where there is a difference 

between replicated and original data on the statistic of interest. The reference line 

therefore serves to separate the points into two categories: one where the replicated 
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values are larger than the realized and one where the realized values are larger than the 

replicated. The graph serves as a holistic device for detecting systematic differences 

between the realized and replicated discrepancies. To the extent that points fall evenly on 

both sides of the line, the model is said to adequately fit the data with respect to the 

discrepancy of interest. Conversely, to the extent that most points fall on one side of the 

line, evidence of model misfit is indicated. Note that distance from the line is not 

necessarily of principal interest in a graph like Figure 1; however, distance from the line 

does represent the magnitude of the difference between observed and predicted data for 

any given draw. An open area of research is how to characterize and summarize 

systematic differences in the observed patterns of these types of PPMC results.  

 A potential disadvantage associated with PPMC is that it may require the 

researcher to use multiple software packages. This is not a disadvantage of PPMC per se, 

in that the process of implementing the technique will likely improve with software 

developments, but the current software options do impact practical considerations. Mplus 

6.0 is capable of doing PPMC, but is not suited for BNs (Muthén & Muthén, 2010). 

WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) is more flexible than Mplus in 

terms of the types of models it can estimate, but it tends to be relatively slow, and output 

from WinBUGS most often needs to be passed to another package, such as R (R 

Development Core Team, 2013), to compute the discrepancy measures of interest, which 

increases computational time as well. 

In summary, PPMC is often more computationally intensive than alternative 

frameworks. In addition, current software options may necessitate an investment of time 

to customize programming code. PPMC is also remarkably flexible, and is potentially 



17 

more informative in the sense that a greater variety of statistics can be used as model-

checking tools because the reference distributions are generated empirically.  

Example using Q3. To aid in describing the PPMC framework, I will draw upon 

an example using Yen’s () (Yen, 1993), described next. () has been used in a variety of 

modeling contexts as a check of the local independence (LI) assumption. The LI 

assumption asserts that responses are conditionally independent, meaning that after 

accounting for the parameters within the model, responses are independent of each other 

(Levy & Svetina, 2011). Yen (1993) provided a description of the following sources of LI 

violations: external assistance or interference, speededness, fatigue, practice, item or 

response format, passage dependence, item chaining, explanation of previous answer, 

scoring rubrics or raters, and content knowledge. All LI violations can be framed in terms 

of multidimensionality (Ip, 2001), but a violation of LI is not necessarily evidence of 

dimensionality misspecification. Under-specifying dimensionality will result in local 

dependence, but if dimensionality is over-specified local independence will hold. Yen 

explained that constant effects do not produce dependence. To produce dependence, these 

sources must have differential effects on items or respondents. ()  is a statistic for 

evaluating the degree of dependency between pairs of observed variables, conditional on 

an assumed model. () is defined as the correlation between a pair of residuals from 

observables * and *+ : 
(),- 	 ./,- /,-0         (4),  

where 1�2 is the difference between the observed response  ��2 and expected (model-

implied) response 3���2� for person i on observable j. Values of () indicate the extent to 

which there are dependencies between pairs of observed variables that are not accounted 
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for by the model. As values approach 1 (or -1), the function indicates that the association 

between a particular pair of variables in the data is still strongly positive (negative) even 

after accounting for the influence of the modeled relationships. Positive associations 

indicate that as the value of one variable changes, the second variable changes in the 

same direction. Negative associations indicate that as the value of one variable changes, 

the second variable changes in the opposite direction. The local independence assumption 

is undermined when () values are sufficiently large (e.g. > .2, see Yen, 1993; Chen & 

Thissen, 1997) because the pairs of variables in question exhibit positive (negative) 

dependence above and beyond what is accounted for by the model. Stated differently, 

large () values indicate that there are positive (negative) residual dependencies between 

data values that cannot be explained by the model structure alone. Conversely, as values 

approach 0, the () function indicates that the association between a particular pair of 

variables in the data is weak after accounting for the influence of the modeled 

relationships. In other words, the local independence assumption appears warranted 

because the pairs of variables in question exhibit limited residual dependence above and 

beyond what is accounted for by the model. 

In the context of PPMC, observed () values are measured against empirically 

generated reference values. For each draw of model parameters from the posterior 

distribution, a () value for each pair of observed variables is calculated using the realized 

data and another () value is calculated using predicted data. If 500 draws are taken from 

the posterior distribution, then there are 500 sets of () values, and each set would contain 

two () values for each pair of variables: one () value using realized data and one 

() value using predicted data (these are the two values that would constitute the 
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coordinates for each point in a scatterplot such as Figure 1). The proportion of draws in 

which the posterior predicted value exceeded the observed value provides the researcher 

with a summary of the pattern of values that can be used to judge the degree of misfit.  

Applications of PPMC. Sandip Sinharay and his coauthors have demonstrated 

several techniques for assessing model fit within a PPMC framework. This line of 

research has included unidimensional IRT models (Sinharay, 2003; Sinharay & Johnson, 

2003; Sinharay 2005; Sinharay, 2006a; Sinharay, Johnson, & Stern, 2006) as well as BNs 

(Sinharay, 2004; Sinharay, 2006b; Sinharay & Almond, 2007). A variety of statistics and 

graphical displays have been proposed by these authors for use with PPMC, including: 

direct data displays for overall fit (first demonstrated in Gelman, Carlin, Stern, and 

Rubin, 2003), 4� and 5�-type measures (based on equivalence class membership and 

then on raw score) to assess item fit, point-biserial correlations and odds ratios as 

measures of inter-item associations; a variant of the Mantel-Haenszel statistic (Holland, 

1985) for assessing differential item functioning (DIF), and checks of parameter 

identifiability.  

Fit functions. In this section, specific fit functions are presented in greater detail 

to inform the method section which follows. Many of the fit functions could theoretically 

be implemented using any of the four model criticism frameworks discussed in the 

appendix, but in practice some fit functions do not lend themselves conveniently to all of 

the frameworks. For example, within a hypothesis testing (HT) framework the analytical 

derivation of reference distributions is often prohibitive, so researchers often avoid using 

a fit function for which the reference distribution has not been established.  
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Global fit. Global fit refers to the fit of the model as a whole, summarized as a 

single number. Several techniques have been developed to compare fit across different 

models based on the estimated value of the likelihood function. This maximum likelihood 

value is often reported as a deviance (d): 

! 	 2ln �8 9 8:;<�        (5), 

where L is the value of the likelihood function of the model under investigation and Lsat is 

the likelihood estimator of the saturated model. Deviance was first proposed as a model-

checking tool by Nelder and Wedderburn (1972). 

Among the most common global fit statistics are the Pearson �� test and the 

5� test of overall model fit:  

�� 	 = >? 9 3?3?
�-

?��                                                                                                              �6�, 
and   

5� 	 2 = >?AB >?3?
�-

?��                                                                                                           �7�, 
where r is a particular response pattern, and J is the number of items. When implemented 

within an HT framework, the final summation for both equations is evaluated as a D� 

statistic with df = (2J – number of estimated parameters – 1).  

These statistics will only follow a D�distribution when all of the response patterns 

are adequately represented in the sample; in other words, when the contingency table is 

sufficiently populated. Because the number of response patterns is 2J, these hypothesis 

tests become problematic for long tests and/or small samples. Stated differently, full 

information fit indices (e.g. global �� and 5�statistics) are generally not usable within an 
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HT framework to critique BNs because of the sparsely-filled contingency tables that 

result from prohibitively large numbers of response patterns in most psychometric 

applications. The sparsely populated response patterns make these tests impractical for 

most BNs. The problematic behavior of the sampling distributions in such situations can 

be circumvented using a framework where the reference distribution is generated 

empirically, i.e. parametric bootstrapping (PB) or PPMC. In addition, these indices have 

variants at the item level (see below). Separate from the issue of an appropriate reference 

distribution for the statistic is the issue of whether these fit statistics would provide useful 

feedback for different types of data-model misfit. For example, Levy, Mislevy, and 

Sinharay (2009) and Levy (2011) found these statistics to be useless for the detection of 

multidimensionality in IRT models. In a rare example of an applied study that used 

multiple model-checking frameworks simultaneously, Loken (2004) demonstrated that 

hypothesis tests with inexact reference distributions can still provide heuristic value in 

applied settings because they do give researchers a sense of the magnitude of misfit even 

when the p-values cannot be trusted at face value.  

When models are nested, meaning that one model is a constrained version of the 

other, a likelihood ratio (LR) test can be performed to compare model fit. The LR statistic 

is the difference between the deviances of the two models:  

8E 	 !0 9 !                                                     (8), 

where !+ is the deviance of the more restrictive model. The more restrictive model will 

never fit better than the less restrictive model, so the result of Equation 8 will never be a 

negative number. Within an HT framework, the resulting difference is then evaluated as a 

χ�statistic with degrees of freedom equal to the difference in the number of parameters 
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between the less restrictive and more restrictive models. However, the LR statistic does 

not follow a χ�distribution when model parameters take on boundary values. The design 

of the current study did not emphasize model comparison of nested models, so the LR 

test was not discussed further.  

One common classification system utilized in means and covariance structure 

modeling puts global fit indices into three broad groups:  absolute, parsimonious, and 

incremental. Absolute indices compare the observed variance-covariance matrix to the 

model-implied variance-covariance matrix. Examples of absolute indices include the 

Model T statistic, which is the foundation for some of the other fit indices (Yuan, 2005), 

Standardized Root Mean Squared Residual (SRMR), and Goodness-of-fit Index (GFI).  

Parsimonious indices (also called penalized indices) make adjustments based on 

the number of parameters in the model. Model complexity is considered in conjunction 

with the deviance statistic. Each variant modifies the deviance statistic in a different way, 

but they all offer a way to evaluate whether models of increasing complexity (i.e. more 

parameters) are worth it. Examples of parsimonious indices include Adjusted Goodness-

of-Fit Index (AGFI), Root Mean Squared Error of Approximation (RMSEA), AIC, and 

BIC.  

Incremental indices compare the model of interest to a baseline model where all 

the model parameters are independent of each other. The baseline model is a worst-case 

scenario which provides no explanatory power whatsoever, which is akin to having no 

model at all (i.e. associations are products of chance alone). Examples of incremental 

indices include Comparative Fit Index (CFI), Normed Fit Index (NFI), and Nonnormed 

Fit Index (NNFI). Residuals between the observed and model-implied variance-
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covariance matrices can be inspected manually or graphically to investigate localized 

data-model fit. In addition, these residuals are incorporated into many fit indices. 

Two of the most commonly used relative indices are Akaike’s information 

criterion (AIC; Akaike, 1974), and Bayesian information criterion (BIC; Schwarz, 1978). 

When used in a framework with no reference distribution (NRD), the model with the 

lowest index value is taken as the best-fitting model. Relative fit indices should not be 

used as the sole justification for a model because a model that fits better than its 

competitors may still fit poorly by absolute criteria. These indices are useful for ranking a 

set of models that all fit adequately in an absolute sense (Rupp, Templin, & Henson, 

2010, p. 279). AIC is given by 

�FG 	 92 ln�8� H 2�        (9), 

where p is the number of estimated parameters. BIC is given by 

�FG 	 92 ln�8� H ln�B� �        (10), 

where n is the sample size.  

Tests of incremental fit, including the LR test and information criteria like the 

AIC and BIC, may be used with BNs, but not much research has been done to guide 

interpretations of these statistics in this context (Rupp, Templin, & Henson, 2010). 

Within a PPMC framework, the deviance term (-2lnL) varies across replications within a 

given model, and therefore can be utilized as a discrepancy measure (Gelman et al., 2003; 

see Steedle, 2008, for an application). By contrast, when computing AIC and BIC within 

a PPMC framework, n in Equation 9 and p in Equations 9 and 10 are constants across 

replications for any given model, so AIC and BIC do not provide additional utility above 

and beyond the deviance term. For this reason, deviance was used in the present study 
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while AIC and BIC were not. GDDM (Levy & Svetina, 2011) evaluates whether the 

dimensionality for a given set of items is adequately represented by the specified model: 

5$$I 	 ∑ K∑ L��2 9 3MX�2OP�, Q2RS ���20 9 3MX�20OP�, Q20R����� T K2U20
V�V 9 1�             �11�, 

where Xij is the scored value (1 or 0) from examinee i on observable j, θi are the student 

model variables for examinee i, ωj are the conditional probabilities that govern the 

distribution of observable j, N and J are the number of examinees and observables, 

respectively, and E(Xij | θi, ωj) is the model-implied expected value from examinee i on 

observable j, which in the context of dichotomous observables is the model-implied 

probability that the examinee correctly completes the aspect of the task captured by that 

observable. Note that a set of observables comparable by the GDDM can consist of the 

full set of observables, in which case it functions as an assessment of global fit, or a 

subset of observables (as few as two), in which case it functions as a local fit tool. A 

standardized version of the GDDM (SGDDM; Levy, Xu, Yel, & Svetina, 2012) has been 

developed to overcome limitations associated with properties of the covariance metric: 
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     (12). 

Local fit. Limited information fit statistics, including univariate and bivariate 

statistics, have been used in BNs (and other CDMs) to help investigate local dependence 
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(Levy et al., 2009; Levy, 2011), item fit, and via summation, to help address the need for 

indices of global fit (Rupp, Templin, & Henson, 2010). A drawback of these statistics 

within an HT framework is that their reference distributions remain unknown. These 

statistics retain some heuristic utility, even when the reference distributions are only 

approximations, but the p-values cannot be taken at face value. Future research is needed 

to clarify the advantages and disadvantages of using statistics heuristically versus 

committing to a framework which estimates the reference distributions empirically. The 

framework emphasized in the present study was PPMC, but conceptually related 

techniques within a frequentist framework (i.e. PB) might yield similar findings. 

Chen and Thissen (1997) used a simulation study to compare the effectiveness of 

four statistics (Yen’s (), Pearson’s D�, The Likelihood Ratio 5�, and The Standardized φ 

Coefficient Difference) for detecting local dependence among item pairs in IRT models. 

(), D�, and 5� were each found to be preferable to the other three indices under some 

conditions.  

 Sinharay and Almond (2007) used a D�-type item-fit statistic to help detect 

misfitting items in a BN with two latent classes fit to Tatsuoka’s (1984) mixed-number 

subtraction data: 

D2� 	 = TW�>W2 9 3W2��3W2�TW 9 3W2�W                                                                                             �13�, 
where TW is the number of examinees with skill pattern k, >W2 is the number of 

examinees with skill pattern k that responded correctly to item j, and 3W2 is the product of 

the expected proportion of correct responses for pattern k multiplied by TW . Note that 

because equivalence-class membership is not actually observed, >W2 is substituted by 
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�̂W2TW, where �̂W2is the median proportion of class membership from the posterior 

distribution.  

The Item Consistency Index (ICI; Lai, Gierl, & Cui, 2012) is an item-fit index for 

use in CDMs. It was developed from the person-fit analogue Hierarchy Consistency 

Index (HCI; Cui & Leighton, 2009). The ICI is given by 

FGF2 	 1 9 2 ∑ Y∑  ��-�1 9Z[\- ��]� H ∑  ��^�1 9  ��-_[\-
 �`� Ta-                              �14�, 
 where ��- is student i’s score for item j, c2 is an index set that includes items requiring 

the subset of attributes measured by item j, ��] is student i’s score to item g where item g 

belongs to c2 ,  c2
is an index set that includes items requiring all, but not limited to, the 

attributes measured by item j, ��^ is student i’s score to item h where item h belongs to 

c2
, and Ta- is the total number of comparisons for item j across all students. The kernel 

of the ICI counts the number of mismatches between the observed and expected 

responses to items as dictated by the hypothesized model. This count is then divided by 

the number of possible comparisons being made, yielding a proportion of mismatched 

comparisons. The numeric constant “2” in the numerator serves to change the index from 

a proportion metric ranging from 0 to 1, to a metric ranging from -1 to 1. The resulting 

quantity is then subtracted from 1 to translate the index into matched comparisons, as 

opposed to mismatched comparisons.  

The next three indices (WPI, RPS, and GLS) belong to a large family of statistical 

functions known traditionally as scoring rules. These scoring rules were developed 

historically outside of psychometrics, and have not appeared much in the psychometric 
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literature. However, given their general structure and broad applicability in other 

statistical applications, they were considered herein as potentially valuable fit functions. 

Weaver’s Surprise Index (WSI; Weaver, 1948) makes a distinction between “rare” events 

and “surprising” events, the latter being distinct from the former by virtue of being 

unusual in relation to alternative outcomes, as opposed to simply being unusual in an 

absolute sense. Weaver reminds us that in a scenario where all possible outcomes are 

equally rare, a rare outcome would be inevitable and should therefore be construed as 

unsurprising. Researchers are cautioned against mistaking rare events for surprising 

events. The WSI provides a formal computation of surprise, thereby relieving the 

researcher of embarrassing emotional attributions to rare events. The WSI ranges from 

unity to infinity, with values indicating surprise as they grow increasingly large. In 

addition to showing how to compute his surprise index, Weaver also demonstrated how 

he interpreted its outputted values:  “A Surprise Index of 3 or 5 is surely not large; one of 

10 begins to be surprising; one of 1,000 is definitely surprising; one of 1,000,000 or 

larger is very surprising indeed; one of 1,000,000,000,000 would presumably qualify as a 

miracle” (Weaver, 1948, p. 392).  

dcF� 	  3����� 	 ��� H  ���  H  �� �����                                                                      �15� 
 The Ranked Probability Score (RPS; Epstein, 1969) was developed by Edward 

Epstein in the context of weather forecasting, where categories of potential temperatures 

were assigned probabilities and forecasts were assessed based on whether observed 

temperatures fell within specified temperature ranges (categories). Epstein noted that pre-

existing indices did not take into account how much “distance” existed between the 
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observed category and the predicted category, a feature which he incorporated into the 

RPS. RPS scores range from zero to one, with a score of zero indicating the worst 

possible prediction (i.e. an outcome which is the polar opposite of the expectation), and a 

score of one indicating perfect prediction.   

E�c2 	 32 9 12�f 9 1� = gh= ��
�

��� i� H j = ��
k

���l� m�nko�
��� 9 1f 9 1                      �16� 

 Williamson et al. (2000) found Good’s Logarithmic Score (GLS; Good, 1952) to 

be unique in its ability to detect errors of node state inclusion or exclusion, although it did 

not perform as well as the WSI or RPS in terms of detecting other types of errors, namely 

node inclusion or exclusion, edge inclusion or exclusion, and prior probabilities. The 

GLS was developed as a tool for quantifying the merit of probabilistic judgments by 

experts. As a side note, Good also provided a formula by which experts’ payments would 

vary as a function of accuracy. Good described it as “a method of introducing piece-work 

into the Meteorological Office. The weather forecaster would lose money whenever he 

made an incorrect forecast.” (Good, 1952, p. 112). The GLS is given by 

58c 	 log �r���           (17) 

when the predicted event occurs, and 

 58c 	 log r�1 9 ���        (18) 

when the predicted event does not occur. The prior probability of event i is pi, and b is a 

penalty term which was designed to keep the expert from guessing the marginal 

expectation instead of considering as much evidence as possible in a particular case. The 

penalty term is given by 
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 r 	 9 ∑ �2Ast�2?2��         (19), 

where r is the number of possible outcomes and xj is the marginal probability associated 

with category j. The GLS ranges from zero to infinity, with values of zero representing 

perfect prediction and increasingly large values representing inaccuracy. 

 Note that while RPS, WSI, and GLS can be implemented as item-fit functions, 

they exemplify the principle that fit functions can often be used in a variety of ways. 

Williamson et al (2000) describe how these three functions can be aggregated to assess 

item fit, person fit, or global fit, depending on the needs of the researcher. This principle 

of variable use applies to many of the fit functions used in model criticism research.  

Person fit. Person fit is a way to evaluate whether a particular model applies 

adequately to certain response patterns, and by extension, to the respondents represented 

by those response patterns. Person-fit statistics do not directly test the cause of an 

aberrant response pattern. Causal interpretations must be investigated and validated 

separately. In many person-fit applications, it is the misfitting individuals who are of 

interest. For example, these fit statistics have been used to identify cheating, test anxiety, 

faking (of personality or clinical diagnoses), or lack of motivation (Karabatsos, 2003; 

Meijer and Sijtsma, 2001). In other applications, it is the improvement of data/model fit 

that is of interest. Misfitting people degrade the quality of the estimated model 

parameters. Removing misfitting people from the sample effectively redefines the 

population to which the remaining sample will generalize. The loss of generalizability in 

this process is compensated by improved prediction or understanding of the remaining 

persons who do adequately fit the employed model.  
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Person-fit statistics measure the extent to which observed response patterns are 

deviant from typical response patterns that are expected under the utilized model. The 

statistics are often model-specific; in such cases, a researcher must painstakingly choose 

from the large family of person-fit statistics that has been developed. Armstrong and Shi 

(2009) introduced a model-free approach to person-fit for linear tests, based on likelihood 

ratios. Emons, Sijtsma, and Meijer (2005) proposed a three-step methodology to initiate 

an investigation of person fit. The first step is to use a global person-fit statistic to 

identify questionable response patterns. The second step involves graphical construction 

of a person response function (PRF), which required nonparametric kernel smoothing of 

the observed response pattern. The third step involves using a local person-fit statistic to 

test specific items which appeared to cause irregularities in the PRF. Glas and Meijer 

(2003) used PPMC in a simulation study to compare the detection rates and false alarm 

rates of 8 person-fit indices to detect aberrant response patterns in a 3-parameter normal 

ogive (3PNO) model. “Bayesian p-values” were reported as an outcome.  

Meijer and Sijtsma (2001) reviewed 40 person-fit indices. The authors grouped 

the indices into two main categories: group-dependent (a.k.a. non-parametric, model-

free) and IRT-based (a.k.a. model-dependent). Karabatsos (2003) compared 36 person-fit 

indices using simulation study implementing a Rasch model. He characterized u�v, which 

is a correlation between one observed response pattern and the remaining observed 

response patterns, as the top-performing index, although there were a few others that 

performed nearly as well. 

According to Cui and Leighton (2009), the group-dependent category of person-

fit statistics assumes unidimensionality. Due to the multi-dimensional nature of CDMs, 
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existing person-fit statistics are not appropriate for CDMs. The authors consequently 

introduced the Hierarchy Consistency Index (HCI) for evaluating person-fit in cognitive 

diagnostic models. HCI values range from -1 to 1, with lower scores indicating response 

patterns that are expected with lower frequency given the cognitive model. The HCI for 

student i is given by 

uGF� 	 1 9 2 ∑ ∑ ��- L1 9 ��]SZw\-2w\xyzz{x|, Ta,                                                           �20�, 
 where ca~??/a<� is an index set that includes items correctly answered by student i, ��-  is 

student i’s score for item j, where item j belongs to ca~??/a<� , c2 is and index set that 

includes items requiring the subset of attributes measured by item j, ��]  is student i’s 

score to item g where item g belongs to c2 , and Ta,  is the total number of comparisons 

for all the items that are correctly answered by student i. The kernel of the HCI counts the 

number of mismatches between the observed response vector and the expected response 

vector as dictated by the Q matrix. This count is then divided by the number of possible 

comparisons being made, yielding a proportion of mismatched comparisons. The numeric 

constant “2” in the numerator serves to change the index from a proportion metric 

ranging from 0 to 1, to a metric ranging from -1 to 1, which its creators preferred on the 

basis of interpretability. The resulting quantity is then subtracted from 1 to transfer the 

focus of the index from mismatches to matches.  

Research on discrepancy measures. Many different discrepancy measures have 

been employed in the literature using applied data, but relatively few simulation studies 

exist where discrepancy measures have been systematically compared and evaluated. 

Among studies of the latter variety, attention has been divided across different modeling 
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paradigms. Levy, Mislevy, and Sinharay (2009) and a closely related follow-up study 

(Levy, 2011) operated within an IRT/PPMC framework. Williamson (2000) and 

Williamson, Mislevy, & Almond (2000) used a BN/PB framework. Levy (2006) 

contained two simulation studies within a PPMC framework, one using IRT models and 

the other using BNs. Both types of sources above—simulation studies using PPMC with 

alternative psychometric models, and applications of PPMC using BNs—were used to 

inform the choices of discrepancy measures for the present study.  

In a simulation study, Levy (2006) compared the performance of eight 

discrepancy measures for criticizing the fit (bivariate associations) in BN models which 

ignored inhibitory relationships in the generated data. Model-based covariance (MBC; 

Reckase, 1997) and () (Yen, 1993) were found to perform the best. Four discrepancy 

measures that performed similarly to each other were categorized together as the next 

best: covariance, residual item covariance (McDonald & Mok, 1995), log odds ratio 

(Agresti, 2002), and standardized log odds ratio residual (Chen & Thissen, 1997). 

Finally, 4� and 5� (Chen & Thissen, 1997) were found to be less useful than the other 

discrepancy measures because they did not indicate the directionality of detected misfit. 

In closely related work, Levy, Mislevy, & Sinharay (2009) investigated the utility 

of several different discrepancy measures to check for multidimensionality when data 

were generated to have various forms of multidimensionality but were estimated with a 

(2PL) unidimensional IRT model. They found a Mantel-Haenszel statistic (MH; Agresti, 

2002), model-based covariance (MBC; Reckase, 1997), and Yen’s () (Yen, 1993) to be 

most effective at detecting multidimensionality in their conditions. Less effective 

bivariate measures included the covariance, residual item covariance (Fu et al., 2005), 
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natural log of the odds-ratio (Agresti, 2002), a standardized odds-ratio residual (Chen & 

Thissen, 1997), and the item-pair versions of 4� and 5� (e.g. Chen & Thissen, 1997). 

The latter two are nondirectional measures of association, which may partly explain their 

poor performance relative to the other bivariate measures. The univariate measures 4�, 

5�, and proportion correct were found to be useless as detectors of multidimensionality. 

In an extension of the previous studies, Levy (2011) found that the same pattern of results 

was generally supported for models with conjunctive multidimensionality. 

In studies where many hours of computing time are required, choosing among 

similarly performing discrepancy measures can be influenced by practical considerations 

such as how much processing time is required. For example, Levy (2006) reported that 

model-based covariance (MBC; Reckase, 1997) and () (Yen, 1993) performed similarly 

to each other as discrepancy measures of bivariate association (in MIRT and BN models), 

while generally performing better than the other investigated discrepancy measures. () 

possessed the additional benefit of having simpler computational requirements (i.e. less 

computing time), and was therefore the preferred discrepancy measure of bivariate 

association in subsequent studies in the same line of research (e.g. Levy, Crawford, Fay, 

& Poole, 2011). 

Li, Cohen, Kim, and Cho (2009) compared five indices of model selection for 

mixture IRT models. The competing models of interest were non-nested, and therefore a 

likelihood ratio (LR) test could not be employed for model selection. The authors used a 

simulation study to investigate the most effective method for selecting the best-fitting 

model from among a group of candidate models. The competing methods of model 

selection included:  PPMC using a single discrepancy measure (OR), AIC, BIC, DIC, and 
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Bayes factor (PsBF). The authors generally recommended BIC as the preferred index, but 

results were complex. Perhaps their results would have been different if a different 

discrepancy measure had been used instead of OR. Studies cited in the previous 

paragraphs found OR to be inferior to other discrepancy measures for detecting 

multidimensionality in IRT models, but it remains an open question whether the preferred 

discrepancy measures in those studies would have performed better than OR in IRT 

mixture models in the Li et al. (2009) study. Although the focus of the present study was 

not model selection, the results of the present study could potentially help to inform 

researchers about which discrepancy measures to select when conducting studies of 

model selection. The choice of discrepancy measures is a crucial decision when 

implementing a PPMC framework, yet the number of studies devoted to recommending 

different discrepancy measures for different modeling purposes is underdeveloped. 

In a simulation study that used a parametric bootstrapping framework to 

investigate the utility of various indices for detecting model misspecifications in BNs, 

Williamson, Almond, and Mislevy (2000) found Weaver’s Surprise Index (WSI; Weaver, 

1948), Ranked Probability Score (RPS; Epstein, 1969), and Good’s Logarithmic Score 

(GLS; Good, 1952) to be the most effective fit functions. Overall, RPS was judged to be 

the most effective index, and was recommended for detecting the following model 

misspecifications (see Figure 2 for illustrations of applicable misspecifications):  node 

inclusion (adding a variable that should not be in the model), node exclusion (omitting a 

variable that should be in the model, strong edge inclusion (including a strong 

dependency in the model between two variables that are not strongly associated in the 

data), strong edge exclusion (omitting a dependency from the model between two 



35 

variables that are strongly associated in the data, node state exclusion (omitting from the 

model a level of the variable that exists in the data), and prior probability errors 

(specifying prior probabilities in the model which are do not accurately represent the true 

population probabilities).  

 
Figure 2. BN misspecifications. Panel A shows the generating model. Subsequent panels 
include dashed lines to illustrate how misspecified models differ with respect to the 
generating model. Adapted from Williamson, Almond, and Mislevy (2000). 
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Judged to be next most effective was WSI, which was recommended for detecting a 

similar slew of model misspecifications: node inclusion and exclusion, strong edge 

inclusion and exclusion, and weak edge exclusion. GLS was deemed third most useful 

despite being relatively less effective overall, because it detected types of 

misspecifications that were not detected by the other indices, namely node state inclusion 

and exclusion. The effectiveness of all indices was improved to some degree as sample 

size increased from 100 to 1000. Williamson and his coauthors called for future research 

on the generalizability of their findings to different BN structures---which is a 

contribution of the current study. 

Label Switching 

The ordering, naming, or numbering of categories of respondents within discrete 

models such as BNs or LCAs is arbitrary and unimportant within a given context, but it 

must remain consistent lest complications arise. Label switching refers to the problematic 

situation where alternative forms of the otherwise nominal assignment process are mixed 

together within the same analytical context. Label switching in BNs can obscure the 

underlying story that is told by parameter estimates, fit functions, and graphs (an example 

is provided in the results section). Results from any method that aggregates information 

across alternatively labeled solutions can be impacted. Previous research devoted to label 

switching (e.g. Chung, Loken, & Schafer, 2004; Stephens, 2000) has discussed a number 

of alternative procedures for fixing (avoiding) the problem, the most common of which 

are identifiability constraints and relabeling algorithms. This is an active area of research 

with much yet to be learned about the tradeoffs associated with various approaches. 
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Summary 

The current study aimed to help meet the growing demand for psychometric 

model checking tools for BNs by exploring the utility of several different types of fit 

functions for critiquing the fit of complex multidimensional BNs. This study differed 

from previous studies in important ways. First, the generating and scoring models in the 

present study were multidimensional, so it was unknown whether fit functions that had 

successfully detected evidence of multidimensionality in unidimensional models would 

be successful in this new role. Second, the BNs in this study were more complex than 

BNs reported in previous PPMC research. This complexity was not included simply to 

extend previous research, but was based on existing models being used in an innovative 

operational performance assessment (Rupp et al., 2012).  

The potential toolkit for PPMC users is limitless due to the flexibility of PPMC to 

incorporate any fit function that may be of theoretical use, but the current toolkit for BN 

users is limited by the sparsity of examples in the literature for models like the ones 

included in this study. Simulation studies are particularly useful for investigating 

methodological tools because they allow researchers to know (and control) the properties 

of the data. The current study represented an exploratory step into a vast methodological 

space. Many of the design features could have been implemented in so many different 

ways and still have forged new ground. This study would have looked much different if it 

had been designed only from a methodological perspective. However, the study was 

motivated within the context of specific modeling experiences, based on repeated efforts 

to critique related BNs with a limited number of tools and wanting to know if additional 

tools could improve our ability to critique those models.  
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Method 

Simulation Study 

 A simulation study was conducted to investigate the utility of conducting PPMC 

with a variety of fit functions to detect different types of misfit in complex BN models. 

The following subsections describe the features of the models used to simulate and fit the 

data. Later sections describe the fit functions and outcome variables.  

Manipulated Factors. The various models described here are variations on a 

common theme, motivated by an existing complex performance assessment (Rupp et al., 

2012), and briefly described here. The general latent structure consisted of three 

discretized latent variables, each measured by a subset of 33 dichotomously scored 

observed variables. The three latent variables represented sequentially-offered 

educational content, with mastery of subsequent content somewhat dependent upon 

mastery of previous content. The first latent variable (θ1) was the foundational latent 

construct. It was relatively easy for students to master, but was important for mastery of 

subsequent constructs (θ2 and θ3). The dependence among the latent variables will be 

discussed in further detail later, after other features of the models have been presented. 

Across all models, the theoretical importance of θ1 was evidenced by the relatively large 

number of observed variables devoted to its measurement compared to the numbers of 

observed variables measuring θ2 and θ3. Each observed variable represented specific 

aspects of a broad series of behaviors on an open-ended performance assessment.  

BN models were manipulated along two factors: latent variable dependency 

structure and number of latent classes. The “latent variable dependency structure” factor 

had 3 levels (“simple”, “contextual”,  “complex”,) and the “number of latent classes” 
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factor had 2 levels (“2 latent classes”, “3 latent classes”), resulting in a total of 6 different 

BNs. Figures 3-8 show diagrams of the six models, with accompanying conditional 

probability table (CPT) templates, which express the modeled dependencies among 

variables. The CPT templates are also presented independently in Tables 2-5, 7-9, 11-16, 

and 19-21. 

Simple structure: Models 1 and 2. As can be seen in Figures 3 and 4 respectively, 

Models 1 and 2 exhibited simple structure, which means that each observed variable 

measured only a single latent variable. The three latent variables (θ1, θ2, θ3) were 

measured respectively by fifteen, twelve, and six observables. The decision to have 

different numbers of measured variables per latent variable reflected a desire to retain 

fidelity to real-world models that motivated this study. It would be unlikely for task 

designers in this applied setting to restrict themselves to a uniform number of observed 

variables per latent construct. It was therefore of interest to investigate how discrepancies 

in the number of observed variables per latent variable might impact model criticism 

tools. Models 1 and 2 differed from each other along the second manipulated factor, with 

Model 1 having two classes per latent variable, and Model 2 having three classes per 

latent variable.  

The Q-matrix for Models 1 and 2 is provided in Table 1. A Q-matrix features the 

complete list of observed variables as rows and the complete list of latent variables as 

columns. 
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Table 1 
 
Q-matrix for Models 1 and 2  
Observable 

(xj) 
Number of 

Parents θ1 θ2 θ3 
1 1 1 0 0 
2 1 1 0 0 
3 1 1 0 0 
4 1 1 0 0 
5 1 1 0 0 
6 1 1 0 0 
7 1 1 0 0 
8 1 1 0 0 
9 1 1 0 0 
10 1 1 0 0 
11 1 1 0 0 
12 1 1 0 0 
13 1 1 0 0 
14 1 1 0 0 
15 1 1 0 0 
16 1 0 1 0 
17 1 0 1 0 
18 1 0 1 0 
19 1 0 1 0 
20 1 0 1 0 
21 1 0 1 0 
22 1 0 1 0 
23 1 0 1 0 
24 1 0 1 0 
25 1 0 1 0 
26 1 0 1 0 
27 1 0 1 0 
28 1 0 0 1 
29 1 0 0 1 
30 1 0 0 1 
31 1 0 0 1 
32 1 0 0 1 
33 1 0 0 1 

Note. A value of 0 indicates that the latent skill is not required to correctly complete the 
observed task, while a value of 1 indicates that it is. 



The entries in the Q-matrix specify whether a latent skill is required by each observable 

variable. A value of “0” in the 

successful completion of the observed variable, while a value of “1” indicates that it is 

required. Rows in the Q-matrix thus summarize the patterns of latent skills required for 

each item, and columns summarize the groups of observables requiring each latent skill. 

All observed variables in Model 1 followed the same dependency structure with 

respect to their latent parent (see Figure 3).

Figure 3. BN Generating Model 1:  Simple structure, 3 lat

 
Specifically, examinees with a value of 1 on the latent parent had a 20% probability of 

correctly completing the observable and an 80% probability of not completing the 

observable correctly, while examinees with a value of

probability of correctly completing the observable and a 20% probability of not 

completing the observable correctly (see Table 2). 
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matrix specify whether a latent skill is required by each observable 

variable. A value of “0” in the Q-matrix indicates that the latent skill is not required for 

successful completion of the observed variable, while a value of “1” indicates that it is 

matrix thus summarize the patterns of latent skills required for 

lumns summarize the groups of observables requiring each latent skill. 

All observed variables in Model 1 followed the same dependency structure with 

respect to their latent parent (see Figure 3). 

. BN Generating Model 1:  Simple structure, 3 latent variables, 2 latent classes.

Specifically, examinees with a value of 1 on the latent parent had a 20% probability of 

correctly completing the observable and an 80% probability of not completing the 

observable correctly, while examinees with a value of 2 on the latent parent had an 80% 

probability of correctly completing the observable and a 20% probability of not 

completing the observable correctly (see Table 2).  

matrix specify whether a latent skill is required by each observable 

matrix indicates that the latent skill is not required for 

successful completion of the observed variable, while a value of “1” indicates that it is 

matrix thus summarize the patterns of latent skills required for 

lumns summarize the groups of observables requiring each latent skill.  

All observed variables in Model 1 followed the same dependency structure with 

 
ent variables, 2 latent classes. 

Specifically, examinees with a value of 1 on the latent parent had a 20% probability of 

correctly completing the observable and an 80% probability of not completing the 

2 on the latent parent had an 80% 

probability of correctly completing the observable and a 20% probability of not 
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Table 2 
 
CPT Template 4 

Child value 
Parent value 0 1 

1 .8 .2 
2 .2 .8 

Note. This template applies to Observables 1-33 in Model 1 (see Figure 3), Observables 
4-5, 9-10, 14-15, 19-21, and 25-27 in Model 3 (see Figure 5), and Observables 4-15, 19-
27, and 31-33 in Model 5 (see Figure 7). 
 

This represented a two-class solution in which the class with greater probability of 

success was conceived as relative masters of the construct, while the class with lower 

probability of success was conceived as relative non-masters. These observables 

discriminated strongly between the two classes of examinees, because there was a large 

difference between the conditional probabilities of a correct (or incorrect) response for 

the classes (0.8 - 0.2 = .6). The decision to hold constant the “quality” of the observables 

represented a choice of convenience. Observables in practice would be expected to vary 

with respect to this property. However, task designers always strive to create observables 

of high quality (discriminating power), so it was reasonable to investigate the properties 

of an assessment that held this desirable, albeit ambitious, property. In the context of this 

simulation study, varying the discrimination between observables would have created 

undesirable noise that could have obscured effects of greater interest. It was therefore 

believed that sacrificing this type of fidelity was worth the increased clarity with respect 

to prioritized purposes.  

As can be seen from Figure 4, the observed variables in Model 2 followed one of 

two dependency structures in relation to their associated latent variables. 



Figure 4. BN Generating Model 2:  Simple structure, 3 latent variables, 3 latent classes. 
 

The increased complexity compared to Model 1 was due to the addition of a third 

class of examinees per latent variable (

represented a convenient and theoretically relevant way to alter model complexity. A 

model with fewer classes is more parsimonious and more restrictive because it classifies 

students into a smaller number of distinct categories even though their pat

responses retain the same variability as in the comparison model. For example, a model 

with two classes (e.g., content master and non

categorized into these two groups, according to their propensity to corr

observed tasks. Additional classes allow for greater flexibility regarding the classification 

of response patterns (e.g., Mastery, Partial
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. BN Generating Model 2:  Simple structure, 3 latent variables, 3 latent classes. 

The increased complexity compared to Model 1 was due to the addition of a third 

class of examinees per latent variable (θ1, θ2, θ3). The number of latent classes 

represented a convenient and theoretically relevant way to alter model complexity. A 

model with fewer classes is more parsimonious and more restrictive because it classifies 

students into a smaller number of distinct categories even though their patterns of 

responses retain the same variability as in the comparison model. For example, a model 

with two classes (e.g., content master and non-master) posits that students can only be 

categorized into these two groups, according to their propensity to correctly complete the 

observed tasks. Additional classes allow for greater flexibility regarding the classification 

of response patterns (e.g., Mastery, Partial-mastery, and Non-mastery levels). Holding 

 

. BN Generating Model 2:  Simple structure, 3 latent variables, 3 latent classes.  
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responses retain the same variability as in the comparison model. For example, a model 

master) posits that students can only be 

ectly complete the 
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mastery levels). Holding 



44 

constant the other factor (dependency structure), models with three latent classes per 

latent variable were expected to fit better than their more restrictive, two-class 

counterparts. The number of latent classes was convenient to manipulate in the sense that 

it did not require modifications to the DAG. Speaking generally, additional classes cause 

the number of estimated conditional probabilities to increase precipitously, which can 

impede or even prevent estimation.  

Note in Tables 3 and 4 that Class 1 had the same 20% probability of success 

across all observables as was the case in Model 1, and Class 1 retained its interpretability 

as a low-performing or non-mastery class. Similarly, Class 3 represented the high-

performing or mastery class having 80% probability of successfully completing each 

observable task (as did Class 2 in Model 1).  

Table 3 
 
CPT Template 8 

Child value 
Parent value 0 1 

1 .8 .2 
2 .2 .8 
3 .2 .8 

Note. This template applies to Observables 1-8, 16-21, and 28-30 in Model 2 (see Figure 
4), Observables 4, 5 and 19-21 in Model 4 (see Figure 6), and Observables 4-8 and 19-21 
in Model 6 (see Figure 8). 
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Table 4 
 
CPT Template 9 

Child value 
Parent value 0 1 

1 .8 .2 
2 .8 .2 
3 .2 .8 

Note. This template applies to Observables 9-15, 22-27, and 31-33 in Model 2 (see Figure 
4), Observables 9, 10, 14-15, and 25-27 in Model 4 (see Figure 6), and Observables 9-15, 
22-27, and 31-33 in Model 6 (see Figure 8). 
 
The additional class was the middle-performing or partial mastery class. This middling 

class performed as the mastery class on some observables but performed as the non-

mastery class on the remaining observables. Specifically, examinees within Class 2 

(middle class) in Model 2 had an 80% probability of correctly completing Observables 1-

8, 16-21, and 28-30 (represented in Figure 4 by white squares), and a 20% probability of 

correctly responding on Observables 9-15, 22-27, and 31-33 (represented in Figure 4 by 

shaded squares). Any single observable discriminated strongly between two classes of 

examinees but was unable to distinguish the third class. It was the performance across 

observables that distinguished the additional class in Model 2 (see also Models 4 and 6), 

not relative performance on any single observable. This pattern of performance across 

observables represented a particular hypothesis of partial mastery, namely that partial 

mastery consisted of the ability to do well on some constituent tasks but not others. By 

contrast, an alternative conception of partial mastery (not represented in the present 

study) might consist of in-between probabilities of success across all (or some) 

constituent observables. For example, on a given observable the mastery class might have 



an 80% probability of success, the non

the partial-mastery class a 50% probability of success.

Context effects: Models 3 and 4. 

Models 3 and 4 had seven additional latent variables compared to 

additional latent variables (θ4 

subsets of the same observed variables that measured the three latent variables common 

to all the models (θ1, θ2, θ3). 

Figure 5. BN Generating Model 3:  Context effects, 10 latent variables, 2 latent classes. 
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an 80% probability of success, the non-mastery class a 20% probability of success, and 

mastery class a 50% probability of success. 

s: Models 3 and 4. As can be seen in Figures 5 and 6 respectively, 

Models 3 and 4 had seven additional latent variables compared to Models 1 and 2. The 

4 – θ10) in Models 3 and 4 were measured by non

same observed variables that measured the three latent variables common 
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. BN Generating Model 3:  Context effects, 10 latent variables, 2 latent classes.  



Figure 6. BN Generating Model 4:  Context effects, 10 latent variables, 3 latent classes.
 
 

These additional latent variables were conceived as contextual variables that 

shared some residual dependence not measured by the “primary” latent constructs. For 

example, in the domain of computer networking 

variables were open-ended tasks that simulated real

networking technicians are faced with when configuring computing devices as part of a 

network. Clusters of observed variables might be associated by device (e.g. router, 

switch, personal computer, printer, server, etc.) or by instructional prompts that are a 

function of a specific testing environment. Rimjen (2010) showed that bi

can be constrained into testlet models and second

formally equivalent. The bi-factor model was implemented as part of the present study 
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BN Generating Model 4:  Context effects, 10 latent variables, 3 latent classes.

These additional latent variables were conceived as contextual variables that 

shared some residual dependence not measured by the “primary” latent constructs. For 

example, in the domain of computer networking that motivated this study, the observed 

ended tasks that simulated real-world situations that computer 

networking technicians are faced with when configuring computing devices as part of a 

network. Clusters of observed variables might be associated by device (e.g. router, 

rsonal computer, printer, server, etc.) or by instructional prompts that are a 

function of a specific testing environment. Rimjen (2010) showed that bi-factor models 

can be constrained into testlet models and second-order models, which are shown to be 

factor model was implemented as part of the present study 
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network. Clusters of observed variables might be associated by device (e.g. router, 

rsonal computer, printer, server, etc.) or by instructional prompts that are a 

factor models 

order models, which are shown to be 

factor model was implemented as part of the present study 
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because it represented the most general (flexible) of these variants. Having a high value 

on the contextual variables might be thought of as the answers to questions like:  “Did the 

examinee understand how to apply their knowledge and skills in the context of this 

specific device typology?” or “Did the examinee understand how the assessment 

instructions applied to this cluster of tasks?”. It can be seen in Figures 5 and 6 that the 

contextual latent variables θ4 - θ10 had no parents, so the proportions provided in CPT 

template 10 (see Table 5) were the marginal class memberships for these variables.  

Table 5 
 
CPT Template 10 

Latent value 
1   2 

Probability .2 .8 
Note. This template applies to ��- ��� in Model 3 (see Figure 5) and Model 4 (see Figure 
6). 
 
These proportions indicate that 80% of the examinees (in the population) possess the 

knowledge and skills implied by a contextual latent variable, and that 20% of the 

examinees do not. The choice to have a relatively large proportion of students possess 

each context variable reflects the theoretical position that context variables in practice are 

not usually designed to impede students. Contextual variables are conceived as 

representing challenges to some students, but generally aligning with proficiency on the 

primary latent variable. The choice to hold this proportion constant across all contextual 

variables reflected a desire to simplify this component of the design, as opposed to the 

more realistic option of letting contextual effects vary across latent variables. Future 

research could explore alternatives of these decisions. For a more detailed account of 

some different types of contextual effects that have been modeled in CDMs, including 
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inhibitory effects like those modeled in the present study, see Almond, Mulder, Hemat, 

and Yan (2009). The Q-matrix for Models 3 and 4 is provided in Table 6. 

Table 6 
 
Q-matrix for Models 3 and 4 
Observable 

(xj) 
Number of 

Parents θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 
1 2 1 0 0 1 0 0 0 0 0 0 
2 2 1 0 0 1 0 0 0 0 0 0 
3 2 1 0 0 1 0 0 0 0 0 0 
4 1 1 0 0 0 0 0 0 0 0 0 
5 1 1 0 0 0 0 0 0 0 0 0 
6 2 1 0 0 0 1 0 0 0 0 0 
7 2 1 0 0 0 1 0 0 0 0 0 
8 2 1 0 0 0 1 0 0 0 0 0 
9 1 1 0 0 0 0 0 0 0 0 0 
10 1 1 0 0 0 0 0 0 0 0 0 
11 2 1 0 0 0 0 1 0 0 0 0 
12 2 1 0 0 0 0 1 0 0 0 0 
13 2 1 0 0 0 0 1 0 0 0 0 
14 1 1 0 0 0 0 0 0 0 0 0 
15 1 1 0 0 0 0 0 0 0 0 0 
16 2 0 1 0 0 0 0 1 0 0 0 
17 2 0 1 0 0 0 0 1 0 0 0 
18 2 0 1 0 0 0 0 1 0 0 0 
19 1 0 1 0 0 0 0 0 0 0 0 
20 1 0 1 0 0 0 0 0 0 0 0 
21 1 0 1 0 0 0 0 0 0 0 0 
22 2 0 1 0 0 0 0 0 1 0 0 
23 2 0 1 0 0 0 0 0 1 0 0 
24 2 0 1 0 0 0 0 0 1 0 0 
25 1 0 1 0 0 0 0 0 0 0 0 
26 1 0 1 0 0 0 0 0 0 0 0 
27 1 0 1 0 0 0 0 0 0 0 0 
28 2 0 0 1 0 0 0 0 0 1 0 
29 2 0 0 1 0 0 0 0 0 1 0 
30 2 0 0 1 0 0 0 0 0 1 0 
31 2 0 0 1 0 0 0 0 0 0 1 
32 2 0 0 1 0 0 0 0 0 0 1 
33 2 0 0 1 0 0 0 0 0 0 1 

Note. A value of 0 indicates that the latent skill is not required to correctly complete the 
observed task, while a value of 1 indicates that it is. 
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Models 3 and 4 differed from each other along the second manipulated factor, 

with Model 3 having two classes per latent variable and Model 4 having three classes per 

latent variable. Note that two classes were always estimated for each contextual latent 

variable (θ4-θ10) regardless of whether there were two or three classes per θ1-θ3. The 

decision to hold constant the number of classes per contextual variable was due to a 

theoretical conception which viewed them as being present or absent, but not varying 

categorically within each context. By contrast, varying the strength of the context effects 

across θ4-θ10 could be sensible theoretically, but it was not manipulated in the present 

study. Future research could explore this issue. 

As can be seen from Table 7, all observed variables with two latent parents in 

Model 3 (Observables 1-3, 6-8, 11-13, 16-18, 22-24, and 28-33, represented in Figure 5 

by shaded squares) followed a more complex dependency structure in relation to their 

associated latent variables than did the observables with one latent parent (Observables 4-

5, 9-10, 14-15, 19-21, and 25-27, represented in Figure 5 by white squares).  

Table 7 
 
CPT Template 11 

Child value 
Parent 1 Parent 2 0 1 

1 1 .8 .2 
1 2 .8 .2 
2 1 .8 .2 
2 2 .2 .8 

Note. This template applies to Observables 1-3, 6-8, 11-13, 16-18, 22-24, and 28-33 in 
Model 3 (see Figure 5), and Observables 1, 3, 16, 18, 28, and 30 in Model 5 (see Figure 
7). 
 
The modeled relationships here were conjunctive, meaning that both latent constructs 

were required for having a strong (80%) probability of correctly completing the observed 
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task. Examinees with only one of the requisite abilities, or neither, had a lower (20%) 

probability of correctly completing the task.  

As was the case in Model 2, observables with one latent parent in Model 4 (see 

Figure 6) followed one of two dependency patterns (specified by Tables 3 and 4) 

depending on whether the partial mastery class responded as the mastery or non-mastery 

class on a particular observable. Similarly, observables with two latent parents in Model 

4 followed one of two dependency structures according to the differential behavior of the 

partial mastery class, but with the necessary level of added complexity due to the role of 

the additional latent variables (specified by Tables 8 and 9).  

Table 8 
 
CPT Template 12 

Child value 
Parent 1 Parent 2 0 1 

1 1 .8 .2 
1 2 .8 .2 
2 1 .8 .2 
2 2 .2 .8 
3 1 .8 .2 
3 2 .2 .8 

Note. This template applies to Observables 1-3, 6-8, 16-18, and 28-30 in Model 4 (see 
Figure 6). 
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Table 9 
 
CPT Template 13 

Child value 
Parent 1 Parent 2 0 1 

1 1 .8 .2 
1 2 .8 .2 
2 1 .8 .2 
2 2 .8 .2 
3 1 .8 .2 
3 2 .2 .8 

Note. This template applies to Observables 11-13, 22-24, and 31-33 in Model 4 (see 
Figure 6). 
 
Note that because there was no partial mastery class with respect to the contextual 

variables (those variables had two classes across all models), examinees lacking the 

contextual skill always performed as the non-mastery class regardless of their value for 

the primary latent variable. In other words, examinees with skill profiles [1,1], [2,1], and 

[3,1] each had the same 20% probability of success across all observables with two latent 

parents. By contrast, examinees who did possess the contextual skill differed in their 

probabilities of success according to their skill level on the primary latent variable, such 

that the middle class performed as the mastery class on Observables 1-3, 6-8, 16-18, and 

28-30 and as the non-mastery class on Observables 11-13, 22-24, and 31-33.  

Complex Structure: Models 5 and 6. As can be seen in Figures 7 and 8 

respectively, Models 5 and 6 exhibited complex structure, meaning some observed 

variables measured more than one primary latent variable. Observables 1, 3, 16, 18, 28, 

and 30 had two latent parents (represented in Figures 7 and 8 by lighter shading), while 

Observables 2, 17, and 29 had three latent parents (represented in Figures 7 and 8 by 

darker shading). The three latent variables (θ1, θ2, θ3) were measured respectively by 
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nineteen, sixteen, and ten observables; the increased number of measured variables per 

latent variable relative to Models 1 and 2 was due to added cross-loadings between the 

aforementioned observables and their latent parents. Models 5 and 6 differed from each 

other along the second manipulated factor, with Model 5 having two classes per latent 

variable, and Model 6 having three classes per latent variable. The Q-matrix for Models 5 

and 6 is provided in Table 10. 

Table 10 
 
Q-matrix for Models 5 and 6 
Observable 

(xj) 
Number of 

Parents θ1 θ2 θ3 
1 2 1 1 0 
2 3 1 1 1 
3 2 1 0 1 
4 1 1 0 0 
5 1 1 0 0 
6 1 1 0 0 
7 1 1 0 0 
8 1 1 0 0 
9 1 1 0 0 
10 1 1 0 0 
11 1 1 0 0 
12 1 1 0 0 
13 1 1 0 0 
14 1 1 0 0 
15 1 1 0 0 
16 2 1 1 0 
17 3 1 1 1 
18 2 0 1 1 
19 1 0 1 0 
20 1 0 1 0 
21 1 0 1 0 
22 1 0 1 0 
23 1 0 1 0 
24 1 0 1 0 
25 1 0 1 0 
26 1 0 1 0 
27 1 0 1 0 
28 2 1 0 1 



29 3 1
30 2 0
31 1 0
32 1 0
33 1 0

Note. A value of 0 indicates that the latent skill is not required to correctly complete the 
observed task, while a value of 1 indicates that it is.
 

As can be seen from Figure 7, all observed variables with one latent parent in 

Model 5 followed the same dependency structure in relation to their associated latent 

variables as did the observables with one latent parent in Mod

Figure 7. BN Generating Model 5:  Complex structure, 3 latent variables, 2 latent classes.

 
Similarly, all observed variables with two latent parents in Model 5 followed Table 7 as 

did the observables with two latent parents in Model 3 (Model 1 did not have any 

observables with multiple parents). The observables with three latent parents followed
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1 1 1 
0 1 1 
0 0 1 
0 0 1 
0 0 1 

. A value of 0 indicates that the latent skill is not required to correctly complete the 
of 1 indicates that it is. 

As can be seen from Figure 7, all observed variables with one latent parent in 

Model 5 followed the same dependency structure in relation to their associated latent 

variables as did the observables with one latent parent in Models 1 and 3 (see Table 2). 

. BN Generating Model 5:  Complex structure, 3 latent variables, 2 latent classes.

Similarly, all observed variables with two latent parents in Model 5 followed Table 7 as 

did the observables with two latent parents in Model 3 (Model 1 did not have any 

observables with multiple parents). The observables with three latent parents followed

. A value of 0 indicates that the latent skill is not required to correctly complete the 

As can be seen from Figure 7, all observed variables with one latent parent in 

Model 5 followed the same dependency structure in relation to their associated latent 

els 1 and 3 (see Table 2).  

 

. BN Generating Model 5:  Complex structure, 3 latent variables, 2 latent classes. 

Similarly, all observed variables with two latent parents in Model 5 followed Table 7 as 

did the observables with two latent parents in Model 3 (Model 1 did not have any 

observables with multiple parents). The observables with three latent parents followed the 
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specifications shown in Table 11, where it can be seen that these observables 

discriminated strongly between the examinees that did or did not possess all three latent 

parent variables.  

Table 11 
 

CPT Template 14 
Child value 

Parent 1 Parent 2 Parent 3 0 1 
1 1 1 .8 .2 
1 1 2 .8 .2 
1 2 1 .8 .2 
1 2 2 .8 .2 
2 1 1 .8 .2 
2 1 2 .8 .2 
2 2 1 .8 .2 
2 2 2 .2 .8 

Note. This template applies to Observables 2, 17, and 29 in Model 5 (see Figure 7). 
 

Examinees possessing all three latent skills had a strong (80%) probability of completing 

the observables correctly, while examinees with two, one, or none of the requisite skills 

had a low (20%) probability of success.  

For Model 6 (see Figure 8) observables with one latent parent in followed one of 

two dependency patterns (specified by Tables 3 and 4) depending on whether the partial 

mastery class responded as the mastery or non-mastery class on a particular observable(as 

was the case in Models 2 and 4). Examinees were required to have at least partial mastery 

(a value of 2 or 3) on all requisite skills in order to have an 80% probability of correctly 

completing an observable with multiple parents. 



Figure 8. BN Generating Model 6:  Complex structure, 3 latent variables, 3 latent classes

 
Note in Model 6 that the cross

partial mastery class responded as the mastery class. Consequently, observables with two 

latent parents in Model 6 followed a single dependency structure specified by Table 12, 

while observables with three latent parents followed a single dependency structure 

specified by Table 13.  
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ng Model 6:  Complex structure, 3 latent variables, 3 latent classes

Note in Model 6 that the cross-loadings were associated with observables where the 

partial mastery class responded as the mastery class. Consequently, observables with two 

s in Model 6 followed a single dependency structure specified by Table 12, 

while observables with three latent parents followed a single dependency structure 

 

 

ng Model 6:  Complex structure, 3 latent variables, 3 latent classes. 

loadings were associated with observables where the 

partial mastery class responded as the mastery class. Consequently, observables with two 

s in Model 6 followed a single dependency structure specified by Table 12, 

while observables with three latent parents followed a single dependency structure 
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Table 12 
 
CPT Template 15 

Child value 
Parent 1 Parent 2 0 1 

1 1 .8 .2 
1 2 .8 .2 
1 3 .8 .2 
2 1 .8 .2 
2 2 .2 .8 
2 3 .2 .8 
3 1 .8 .2 
3 2 .2 .8 
3 3 .2 .8 

Note. This template applies to Observables 1, 3, 16, 18, 28, and 30 in Model 6 (see Figure 
8). 
 
Table 13 
 
CPT Template 16 

Child value 
Parent 1 Parent 2 Parent 3 0 1 

1 1 1 .8 .2 
1 1 2 .8 .2 
1 1 3 .8 .2 
1 2 1 .8 .2 
1 2 2 .8 .2 
1 2 3 .8 .2 
1 3 1 .8 .2 
1 3 2 .8 .2 
1 3 3 .8 .2 
2 1 1 .8 .2 
2 1 2 .8 .2 
2 1 3 .8 .2 
2 2 1 .8 .2 
2 2 2 .2 .8 
2 2 3 .2 .8 
2 3 1 .8 .2 
2 3 2 .2 .8 
2 3 3 .2 .8 
3 1 1 .8 .2 
3 1 2 .8 .2 
3 1 3 .8 .2 
3 2 1 .8 .2 
3 2 2 .2 .8 
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3 2 3 .2 .8 
3 3 1 .8 .2 
3 3 2 .2 .8 
3 3 3 .2 .8 

Note. This template applies to Observables 2, 17, and 29 in Model 6 (see Figure 8). 

Latent dependency structures: Models 1, 3, and 5. Looking across Models 1, 3, 

and 5, note that the same latent dependency structure was maintained among θ1, θ2, and 

θ3. Generally speaking, the choices and specifications detailed hereafter regarding the 

latent dependency structures were motivated by previous findings within a research 

program at the Cisco Networking Academy. A hierarchy was implied by this structure, 

with θ1 functioning as a parent of θ2 and θ3, and θ2 as a parent of θ3. It can be seen that θ1 

had no parents, so the proportions provided in Table 14 were the marginal class 

memberships for this variable.  

Table 14  
 
CPT Template 1 

Latent value 
1 2 

Probability .1 .9 
Note. This template applies to �� in Model 1 (see Figure 3), Model 3 (see Figure 5), and 
Model 5 (see Figure 7). 
 
These proportions indicate that 90% of the examinees possessed the knowledge and skills 

implied by this latent variable, and that 10% of the examinees did not. Shifting attention 

to Table 15, it can be seen that the knowledge and skills represented by θ1 were important 

for acquiring the knowledge and skills represented by θ2: 

  



59 

Table 15 

CPT Template 2 
Child value 

Parent value 1 2 
1 .9 .1 
2 .1 .9 

Note. This template applies to �� in Model 1 (see Figure 3), Model 3 (see Figure 5), and 
Model 5 (see Figure 7). 
 

Among students who possessed θ1, 90% also possessed θ2, while 10% lacked θ2. 

Similarly, of the students who lacked θ1, 90% also lacked θ2, while 10% possessed θ2. As 

can be seen in Table 16, the knowledge and skills represented by θ1 were also important 

for acquiring the knowledge and skills represented by θ3, but the relationship was 

complicated by the influence of θ2, which was also useful for acquiring θ3, but not as 

strongly as θ1. 

Table 16 
 
CPT Template 3 

Child value 
Parent 1 Parent 2 1 2 

1 1 .9 .1 
1 2 .7 .3 
2 1 .3 .7 
2 2 .1 .9 

Note. This template applies to �) in Model 1 (see Figure 3), Model 3 (see Figure 5), and 
Model 5 (see Figure 7). 

 

One consequence of retaining the same latent dependencies across these models 

was that  the marginal model-implied latent class memberships remained constant as well 

(see Table 17), with the caveat that for Model 3 the addition of the contextual latent 
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variables created many additional subclasses (Table 18 may be useful for this 

conception). 

Table 17 
 
Marginal latent variable proficiencies for Generating Models 1, 3, and 5 

Latent Profile θ1 θ2 θ3 
marginal 

membership 
1 1 1 1 .081 
2 1 1 2 .009 
3 1 2 1 .007 
4 1 2 2 .003 
5 2 1 1 .027 
6 2 1 2 .063 
7 2 2 1 .081 
8 2 2 2 .729 

Note. For Model 3 the 8 latent profiles shown here represent aggregations across the 
contextual latent variables (see Table 18). 
 
Table 18 
 
Marginal latent variable proficiencies for Generating Model 3 
Latent 
Profile θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 

1 1 1 1 1 1 1 1 1 1 1 
… … … … … … … … … … … 
129 1 1 2 1 1 1 1 1 1 1 
… … … … … … … … … … … 
257 1 2 1 1 1 1 1 1 1 1 
… … … … … … … … … … … 
385 1 2 2 1 1 1 1 1 1 1 
… … … … … … … … … … … 
513 2 1 1 1 1 1 1 1 1 1 
… … … … … … … … … … … 
641 2 1 2 1 1 1 1 1 1 1 
… … … … … … … … … … … 
769 2 2 1 1 1 1 1 1 1 1 
… … … … … … … … … … … 
897 2 2 2 1 1 1 1 1 1 1 
… … … … … … … … … … … 

1,024 2 2 2 2 2 2 2 2 2 2 
Note. Rows have been collapsed (…) due to space considerations. 
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These model-implied memberships were calculated by multiplying the three conditional 

probability values that were relevant to each latent profile. For example, the first row in 

Table 17 corresponds to Latent Profile 1, where students lacked each of the latent 

variables θ1, θ2, and θ3. The probability associated with Level 1 in Table 14 (0.1) was 

multiplied by the analogous probabilities from Tables 15 and 16 (0.9 and 0.9 

respectively), yielding 0.1 * 0.9 * 0.9 = .081, or 8.1%. These same model-implied 

memberships can be imposed upon Model 3 if one thinks of the various configurations of 

contextual latent proficiencies as subsets within the eight latent profiles characterized by 

proficiency patterns on the three primary latent variables. Table 18 illustrates that for 

each primary proficiency profile there were 128 contextual proficiency profiles, resulting 

in a total of 1,024 proficiency profiles for Model 3. Within each primary profile, the 

memberships were uniformly distributed due to the fact that each contextual latent 

variable was exogenous and was governed by CPT Template 10 (see Table 5). 

Latent dependency structures: Models 2, 4, and 6. Looking across Models 2, 4, 

and 6, note that the same latent dependency structures were maintained among θ1, θ2, and 

θ3. The patterns described in the previous section for Models 1, 3, and 5 generally hold 

for these models as well, with the added complexity of a third latent class (see Tables 19-

21).  

Table 19 
 
 CPT Template 5     

Latent value 
1 2 3 

Probability .1 .1 .8 
Note. This template applies to �� in Model 2 (see Figure 4), Model 4 (see Figure 6), and 
Model 6 (see Figure 8). 
 



62 

Table 20 
 
CPT Template 6 

Child value 
Parent value 1 2 3 

1 .7 .3 0 
2 .1 .6 .3 
3 0 .3 .7 

Note. This template applies to �� in Model 2 (see Figure 4), Model 4 (see Figure 6), and 
Model 6 (see Figure 8). 
 
Table 21 
 
CPT Template 7 

Child value 
Parent 1 Parent 2 1 2 3 

1 1 .9 .1 0 
1 2 .8 .2 0 
1 3 .7 .3 0 
2 1 .3 .7 0 
2 2 .1 .8 .1 
2 3 0 .9 .1 
3 1 0 .3 .7 
3 2 0 .2 .8 
3 3 0 .1 .9 

Note. This template applies to �) in Model 2 (see Figure 4), Model 4 (see Figure 6), and 
Model 6 (see Figure 8). 
 

The marginal model-implied latent class memberships for these three models are 

provided in Table 22. 

Table 22 
 
Marginal latent variable proficiencies for Generating Models 2, 4, and 6 

Latent Profile θ1 θ2 θ3 
marginal 

membership 
1 1 1 1 .063 
2 1 1 2 .007 
3 1 1 3 0 
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4 1 2 1 .024 

5 1 2 2 .006 
6 1 2 3 0 

7 1 3 1 0 
8 1 3 2 0 
9 1 3 3 0 
10 2 1 1 .003 
11 1 1 2 .007 
12 2 1 3 0 
13 2 2 1 .006 

14 2 2 2 .048 
15 2 2 3 .006 

16 2 3 1 0 
17 2 3 2 .027 
18 2 3 3 .003 
19 3 1 1 0 
20 3 1 2 0 
21 3 1 3 0 
22 3 2 1 0 
23 3 2 2 .048 
24 3 2 3 .192 
25 3 3 1 0 
26 3 3 2 .056 
27 3 3 3 .504 

Note. For Model 4 the 27 latent profiles shown here represent aggregations across the 
contextual latent variables (see Table 23). 
 
Finally, Table 23 illustrates that for each of the 27 primary proficiency profiles for Model 

4 there were 128 contextual proficiency profiles, resulting in a total of 3,456 proficiency 

profiles. The model-implied memberships shown in Table 22 represent the collective 

memberships of the 128 contextual profiles within each primary profile. Within each 

primary profile, the memberships were uniformly distributed due to the fact that each 

contextual latent variable was exogenous and was governed by CPT Template 10 (see 

Table 5).  
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Table 23 
 
Marginal latent variable proficiencies for Generating Model 4 

Latent Profile θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 
1 1 1 1 1 1 1 1 1 1 1 

129 1 1 2 1 1 1 1 1 1 1 
257 1 1 3 1 1 1 1 1 1 1 
385 1 2 1 1 1 1 1 1 1 1 
513 1 2 2 1 1 1 1 1 1 1 
641 1 2 3 1 1 1 1 1 1 1 
769 1 3 1 1 1 1 1 1 1 1 
897 1 3 2 1 1 1 1 1 1 1 
1025 1 3 3 1 1 1 1 1 1 1 
1153 2 1 1 1 1 1 1 1 1 1 
1281 2 1 2 1 1 1 1 1 1 1 
1409 2 1 3 1 1 1 1 1 1 1 
1537 2 2 1 1 1 1 1 1 1 1 
1665 2 2 2 1 1 1 1 1 1 1 
1793 2 2 3 1 1 1 1 1 1 1 
1921 2 3 1 1 1 1 1 1 1 1 
2049 2 3 2 1 1 1 1 1 1 1 
2177 2 3 3 1 1 1 1 1 1 1 
2305 3 1 1 1 1 1 1 1 1 1 
2433 3 1 2 1 1 1 1 1 1 1 
2561 3 1 3 1 1 1 1 1 1 1 
2689 3 2 1 1 1 1 1 1 1 1 
2817 3 2 2 1 1 1 1 1 1 1 
2945 3 2 3 1 1 1 1 1 1 1 
3073 3 3 1 1 1 1 1 1 1 1 
3201 3 3 2 1 1 1 1 1 1 1 
3329 3 3 3 1 1 1 1 1 1 1 
3456 3 3 3 2 2 2 2 2 2 2 

Note. Most rows have been omitted due to space considerations. 
 

In summary, all investigated models shared the same number of observed 

variables (33), but varied with respect to the structure of latent variables. Models with 

simple or complex structure had three latent variables, while context-effect models had 

ten latent variables. Latent structure was manipulated because it represented an important 
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type of model modification that researchers employ in practice. Due in part to 

computational demands, it was beyond the scope of the current study to manipulate latent 

structure more extensively. Ideally it would be beneficial to vary the latent structures to a 

greater degree, and to investigate the implications of various model modification 

strategies, but those developments were left to future research. In the present study, the 

choices were intended to represent the most common and important strategies that would 

have relevance to the applied researchers who motivated the study.  

Conditions. Each of the six BN models was used as a generating model, and for 

each generating model a subset of the same BN models was used as scoring models, 

resulting in a total of 11 conditions (see Table 24). 

Table 24 
 
Table of Conditions 

Scoring Model 

Model Description  
Generating 

Model 
1 2 3 4 5 6 

Simple structure 2 latent classes  1             

Simple structure 3 latent classes  2             

Context effects 2 latent classes  3             

Context effects 3 latent classes  4             

Complex structure 2 latent classes  5             

Complex structure 3 latent classes  6             
Note. White square indicates condition is included in the study, shaded square indicates 
condition is not included in the study. 
 
 
Conditions were denoted by abbreviations for the generating and scoring models 

separated by a period. For example, “1.1” indicates that Model 1 was used as the 
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generating model and the scoring model, while “5.1” indicates that Model 5 was used as 

the generating model and Model 1 was used as the scoring model. 

Fully crossing the manipulated factors was not deemed necessary because some 

conditions resulting from a fully crossed design offered mostly redundant information. 

For example, consider the first row of Table 24, where data were generated using the 

most restrictive model (Model 1). Using the same model (Model 1) as the scoring model 

was a necessary step because this condition served as a control group. However, using 

Model 2 as a scoring model for data generated from Model 1would not provide valuable 

fit information. The more restricted version (Model 1) was a special case which can be 

obtained from Model 2 by restricting membership in the third latent class to zero. There 

was perhaps something to be learned in such conditions about the efficiency of estimation 

routines, the impact of maintaining a constant sample size when estimating increasing 

numbers of parameters, etc., but there would have been diminishing returns with respect 

to the performance of data-model fit techniques. Given the relatively steep cost in 

computing time per condition in this study, using a scoring model that was known to be a 

more general case of a generating model did not represent an efficient use of resources. 

The discussion section provides approximations of the computing time required to 

complete the simulation component of this study.  

Replications. Each condition was replicated 100 times. Replications within the 

same condition differed from each other due only to sampling variability, which refers to 

the effects of using random processes to obtain a sample from a population of potential 

values. The purpose of replication in this context was to mitigate the effects of sampling 

variability by obtaining a larger sample of exchangeable studies drawn randomly from 
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the population of studies to which they belong. The choice of how many replications to 

conduct was a tradeoff between resources and generalizability. Each replication was 

somewhat costly in terms of computing time, yet it was important to have enough 

replications to ameliorate the influence of sampling variability on interpretations made 

from the study. It was believed that 100 replications struck an appropriate balance 

between these opposing considerations, influenced by previous research and available 

computing resources.  

Sample size. Sample size in the context of the present study refers to the number 

of simulees used to estimate the parameters of the models, which was 1000. Varying the 

sample size would have increased the study’s ability to generalize its findings to studies 

using other (most likely smaller) sample sizes. However, adding even one additional 

sample size would have greatly increased the total computational time required for this 

study, so it did not seem justified relative to the inclusion of other elements (e.g. more 

model variants or fit functions) that were more central to the purposes of the study. 

Previous studies have well established the finding that model criticism tools perform 

better as sample size increases (e.g. Williamson et al., 2000), so it was believed that 

computational resources were better utilized for other design considerations. A sample 

size of 1000 might be considered large in the context of some research settings, but was 

relatively small in the context of the Cisco networking academy, and therefore 

represented a very realistic baseline from which to assess these model-checking 

procedures. 

Estimation. WinBUGS version 1.4.3 (Spiegelhalter, Thomas, Best, & Lunn, 

2007) was used to conduct the MCMC estimation via the R2Winbugs package in R 



68 

version 3.0.0 (R Core Development Team, 2013). Three independent chains were used, 

with start values drawn randomly from probability distributions spanning the range of 

potential parameter values (when possible; see label switching subsections of method and 

results sections for more details).  Convergence was assessed using a criterion of 

approximately 1.0 on the Brooks-Gelman-Rubin diagnostic (BGR; Brooks and Gelman, 

1998) in conjunction with visual inspection of trace plots from pilot replications. 

Autocorrelations from pilot replications were inspected to determine the necessity of 

thinning.    

Label Switching. Label switching was handled using a strategy of assigning the 

most unambiguous response patterns from each data set to theoretically appropriate latent 

classes, as opposed to estimating the latent class memberships for those simulees. For 

example, a response pattern of all 1’s (i.e. a perfect score on the exam) was assigned to 

the mastery class for each primary latent variable. Due to the fact that samples (of 

N=1000) did not always contain enough perfect scores to anchor each latent class in the 

“correct” labeling orientation, a variety of the most unambiguous response patterns were 

included. Across all replications and latent variables, the average number of memberships 

assigned in this way per latent variable was approximately 78 (out of 1000). 

For Models 3 and 4, which included seven contextual latent variables in addition 

to the three primary latent variables, a more complicated strategy was necessary. 

Assigning values on the contextual latent variables based on response patterns alone was 

not sufficient because there were only three observables per contextual latent variable. In 

these models, constraints were imposed upon the conditional probabilities of observables 

with a contextual latent variable parent, such that the estimated probability of 
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successfully completing an observable for the non-mastery class could not exceed that of 

a partial-mastery class, and the estimated probability of success for a partial-mastery 

class could not exceed that of a mastery class. These constraints, in conjunction with the 

strategy of assignments on the primary latent variables for unambiguous response 

patterns, were sufficient to prevent label switching in most replications. In the results 

section, a modification is described that eliminated the observed label switching in all 

subsequent replications. 

Fit Functions 

 A total of thirteen fit functions were included in this study (SGDDM was used in 

five ways). Functions were selected to address different levels of misfit. Table 25 lists the 

fit functions and their levels of analysis within the PPMC framework implemented in the 

present study. 

Table 25 

Fit functions and their levels of analysis 
 
Fit function Level of analysis 

Deviance global 

Proportion Correct observable 

Q3 pairs of observables 

SGDDM global; subscales; pairs of observables 

χ
2-type index observable 

Ranked Probability Score (RPS) observable 

Good's Logarithmic Scale (GLS) observable 

Hierarchical Consistency Index (HCI) person 

Item Consistency Index (ICI) observable 
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Deviance. Deviance is a global measure of data-model fit. Evaluating deviance 

within an NRD framework is possible for model comparison purposes, but not for 

evaluating the fit of a single model in isolation. The deviance scale does not lend itself to 

absolute interpretations because the properties of the likelihood function vary with 

respect to model features. Within an HT framework, deviance is computed as a single 

number per replication and evaluated as a chi-square test with approximate degrees of 

freedom n-(p+1), where n is the number of independent observations and p is the number 

of estimated parameters. Within PPMC, there is a distribution of realized deviance 

values, based on the observed data and the posterior distribution of the parameters, and 

there is a distribution of posterior predicted values, based on the posterior predictive data 

and the posterior distribution of parameters. Both distributions (realized and posterior 

predictive) are represented by the same sample of posterior draws. 

Proportion correct. Proportion correct is computed at the observable level 

directly from data, as opposed to requiring model parameters. The inclusion of this fit 

function was primarily for verifying that PPMC programming code was functioning 

properly. Speaking generally, proportion correct is a feature of model fit that is easy to 

reproduce, even for models that fit poorly according to other DMs. 

��.  () was the only fit function in this study that could have been evaluated 

within all of the model-checking frameworks. There was some known redundancy with 

SGDDM in the sense that both indices evaluate associations between observables as a 

test of local dependence. () has been a popular choice in past PPMC research, so 

comparing the performance of ()to SGDDM within this study helped to establish the 

utility of SGDDM and helped to expand the generalizability of previous ()findings. 



71 

Standardized generalized dimensionality discrepancy measure (SGDDM). 

SGDDM was applied at three different levels along the global-local spectrum. At the 

most local level, it was applied to each pair of observables while aggregating across 

examines. Secondly, it was applied to the sets of observables associated with each of 

three primary latent variables. This second level of aggregation was akin to a subscale 

level. Thirdly, SGDDM was aggregated at the global level, meaning that the full set of 33 

observables was included.  

��-type item fit index. This fit function was included primarily because it was 

one of the few fit functions that had been demonstrated in the BN literature. Additionally, 

χ� tests have been used commonly in IRT for item fit, so the performance of this function 

may be of interest to a broader audience.  

Ranked probability score (RPS). RPS was an appealing fit function because it 

performed well in a previous BN simulation study (Williamson, Almond, and Mislevy, 

2000), and because it can be aggregated across observables or examinees. In the present 

study, RPS was aggregated at the observable level. Evaluating RPS within an NRD 

framework is only possible when adopting a model-comparison approach due to the fact 

that cutoff values have not been established in relevant modeling contexts. Furthermore, 

an analytical reference distribution has not been proposed for RPS, so evaluation within 

an HT framework is not yet possible.  

Good’s logarithmic scale (GLS). In previous BN research (Williamson, Almond, 

and Mislevy, 2000) GLS was more successful at detecting state misspecification errors 

than RPS, despite better overall performance by RPS. Given that one of the manipulated 

factors in this study was the number of states per latent variable (latent classes), it was of 
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interest to assess whether GLS would be effective in the current study. Evaluating GLS 

within an NRD framework is only possible when adopting a model-comparison approach 

due to the fact that cutoff values have not been established in relevant modeling contexts. 

Furthermore, an analytical reference distribution has not been proposed for GLS, so 

evaluation within an HT framework is not yet possible.  

Hierarchy consistency index (HCI). HCI and ICI (below) are analogues of each 

other, aggregated across different units. HCI assesses person fit by aggregating across 

observables, while the ICI assesses observable fit by aggregating across examinees. HCI 

and ICI were included in this study because they were recently developed for use in 

CDMs. Their utility for BNs has not yet been established, but conceptually they seemed 

well-suited for the present application. These indices were designed for use in 

conjunctive models only. The dependency relationships in the present study are not 

strictly conjunctive, but they can be viewed as approximately conjunctive.  

Item consistency index (ICI). ICI assesses fit at the level of observables. The 

creators of ICI proposed a criterion of .5 (Lai, Gierl, and Cui, 2012) for evaluating 

whether an observable fits, with values above .5 (i.e., from .5 to 1) indicating adequate fit 

and values below .5 (i.e., -1 to .5) indicating misfit. This criterion corresponds to an 

observable with at least 75% of its observed responses matching the responses expected 

by Q-matrix specifications.  

Outcome Variables 

 The fit functions in this study were conceptualized along two dimensions: 

effectiveness and efficiency. Effectiveness was defined as the propensity to correctly 

identify data-model misfit, while efficiency referred to the amount of computing time 
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required. If two fit functions took the same amount of time to compute, then the function 

with increased effectiveness was preferred. Similarly, if two fit functions were equivalent 

in terms of their effectiveness, then the function requiring less time would be preferred. If 

two fit functions differed with respect to their effectiveness and efficiency, then deciding 

between them became more situation-specific and user-dependent. The following 

outcomes, with the exception of computing time, were intended to help researchers 

evaluate the effectiveness of the fit functions with regard to detecting data-model misfit. 

The inclusion of computing time was intended to help researchers evaluate efficiency, 

and therefore to inform a researcher about the tradeoffs of using various fit functions.  

 PPP-values. The primary outcome measure of this study was the distribution of 

PPP-values. In addition to graphical presentations, these distributions were summarized 

using median values across replications, and proportions of replications in which the 

PPP-value was “extreme”. From a Bayesian perspective, PPP-values should not be 

interpreted with respect to a cutoff value. However, to facilitate comparisons to other 

frameworks, extreme PPP-values were defined as  < .025 or  > .975, or in other words the 

5% most extreme PPP-values (akin to α = .05). Note that in null conditions (i.e. when the 

scoring model was the same as the generating model) this outcome measure represented 

an empirical Type-I error rate, and in misspecified conditions it reflected observed power. 

For localized fit functions, heat maps were used to summarize findings across 

observables or observable pairs. Squares in the heat maps were shaded to represent 

categorical ranges of values.  

 Effect Size. An effect size measure was created to help summarize information 

not revealed by the PPP-values, namely the magnitude of the differences between 
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realized and posterior predicted values. The mean difference between realized and 

posterior predicted values was divided by the standard deviation of those same 

differences: 

3c 	  ∑ $���, �� 9 $���%&', ������ T �∑ �$���, �� 9 $���%&', �������� T�                �21�, 
where n was one of N draws from the posterior distribution, $��, �� were values of the 

discrepancy measure using the observed data and $��%&', �� were values of the 

discrepancy measure using replicated data. The metric was therefore standard deviation 

units of the differences, which varied across fit functions. Conceptually, the PPP-value is 

a measure of how often posterior predicted values exceed realized values, with no 

distinction made for the degree of excess. The effect size is meant to quantify the 

magnitude of the differences between realized and posterior predicted values on a scale 

that is standardized with respect to the variability of those differences. 

 Larger effect sizes are driven either by larger numerator terms (holding constant 

the denominator), or by smaller denominator terms (holding constant the numerator), or 

by both factors in conjunction. The main reason for a large numerator is systematically 

large differences between realized and posterior predicted values. The main reason for a 

small denominator is small variability in the differences between realized and posterior 

predicted values, irrespective of the size of those differences.  

Computing time. Computing time was evaluated descriptively, with 

representative examples drawn for illustrative purposes. Including computing time as a 

formal factor would have created many logistical problems, including standardization of 

computing resources across conditions. The inclusion of computing time as an outcome 
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was meant to help characterize the results with respect to the investment of practical 

resources. General statements including approximate computing time were included, but 

precise computational comparisons were not attempted.  

Results 

MCMC 

 A burn-in of 100 iterations was used for most conditions; the exceptions were 

Conditions 3.3 and 4.4 which had a burn-in of 700, and Condition 6.6 which had a burn-

in of 3000. A thinning factor of 10 was adequate to minimize autocorrelations for most 

conditions, while a factor of 20 was used for Conditions 3.3, 4.4, and 6.6.  In all 

conditions, sufficient iterations were run to yield 100 draws from each of three chains.  A 

total of 300 draws was used to represent the posterior distribution in the PPMC analysis 

conducted in R.  

Label Switching 

 As described in the method section, the practice of assigning top-performing and 

bottom-performing response patterns (simulees) to mastery and non-mastery latent 

classes respectively was theoretically sufficient to prevent label switching (e.g. Chung, 

Loken, & Schafer, 2004), but label switching nevertheless occurred intermittently in a 

minority of replications (the number of affected replications ranged from 0 to 63 across 

conditions with a mean of 29). The problem first presented itself as two distinct clusters 

of points in deviance PPP-scatterplots where a single cluster was expected (examples for 

comparison are shown in Figures 9 and 10), though other indications were subsequently 

discovered elsewhere.  
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Figure 9. Scatterplot of deviance values from a typical replication of Condition 1.1. 
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Figure 10. Scatterplot of deviance values from a replication of Condition 1.1 with 
“partial label switching”. 
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more (but not all) of the latent variables. The affected variable(s) was not consistent. We 
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the type of label switching we had warded against in previous research where all latent 
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iterations. A sudden switch from one labeling system to another would be caused by an 

extreme draw of candidate values. However, in practice no such within-chain switching 

was observed. Any given chain remained internally consistent with regard to its labeling 

in the finite number of observed draws, but across chains it was evident that alternative 

labeling existed. In affected replications, typically two chains stabilized on the 

“correctly” labeled solution and the third chain stabilized on a partially label-switched 

solution, although rarely it was observed that two chains exhibited partial label switching 

and the third was “correctly” labeled.  

Alternative methodologies were explored for eliminating the occurrence of 

partially mislabeled solutions (e.g. stronger a priori class assignments, different MCMC 

updater methods, restricting latent variable CPT parameter values, restricting observable 

CPT parameter values, and post-hoc relabeling). It was beyond the scope of this study to 

investigate label switching methodologies systematically, but the issues mentioned 

briefly here could be investigated in future research. Suffice it to say that the approach 

adopted here was to place restrictions on the start values for some parameters (in addition 

to retaining the initial methodology of assigning extremely unambiguous response 

patterns to specific classes). This approach compared favorably to other attempted 

methods in terms of its effectiveness and timeliness, and seemed to come at a reasonable 

price in terms of assumptions.  

In the initial methodology, all start values had been drawn from uniform 

distributions that spanned the entire range of possible parameter values. In hindsight this 

choice was less desirable because it permitted the label-switched solutions in some 

replications, whereas a less conservative approach would have avoided them altogether. 
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However, even after imposing range restrictions on some start values, start values were 

still more widely dispersed than in previous research with similar models (e.g. Levy et. 

al, 2011), so it could be argued that even the modified methodology was relatively 

conservative. The parameters were still allowed to vary over a comparatively wide range 

of the possible values; they were just restricted relative to the initial settings. Note that 

restricting the start values in this way did not (further) restrict the parameter values; it 

simply restricted the locations where the searches for the posterior distribution were 

allowed to begin. The replications that exhibited partial label switching were stored for 

reference purposes and for potential future research, and additional replications were run 

using the restricted start value methodology. 

Distributions of PPP-values 

 Figure 11 shows smoothed density plots of the distributions of PPP-values for 

each of the 13 fit functions, pooled into two groups, defined as the six null conditions and 

the five misspecified conditions.  
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Figure 11. Distributions of PPP-values pooled across conditions. Misspecified conditions 
are represented by thicker lines and null conditions are represented by thinner lines. The 
x-axis of each panel spans the full range of possible PPP- values (0 to 1). The y-axis of 
each panel is proportional to frequency. 
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Within each panel, the x-axis represents the full range of possible PPP-values from 0 to 1 

and the y-axis is proportional to frequency. For the first five panels representing deviance 

and the global and subscale aggregations of SGDDM respectively, each condition is 

represented by 100 PPP-values (one per replication), for a total of 600 values when 

pooled across the six null conditions, or 500 values when pooled across the five 

misspecified conditions. Additional pooling exists for the other fit functions, which 

consist of finer grain sizes and have multiple PPP-values per replication. The observable-

level fit functions (PC, χ2, RPS, GLS, and ICI) contribute one PPP-value per observable 

in each replication, or 3300 values per condition. The densities pooled across null and 

misspecified conditions represent 19,800 and 16,500 PPP-values respectively. By 

comparison, the bivariate fit functions SGDDM and Q3 contribute one PPP-value for 

each of 528 unique pairings of observables per replication, or 52,800 values per 

condition. The densities pooled across null and misspecified conditions represent 316,800 

and 264,000 PPP-values respectively. Lastly, the person-level fit function HCI 

contributes one PPP-value for each of 1000 simulees per replication, or 100,000 values 

per condition. The densities pooled across null and misspecified conditions represent 

600,000 and 500,000 PPP-values respectively. This level of aggregation is not ideal for 

most of the fit functions, but it is useful for highlighting the low relative utility of some of 

the fit functions before moving on to more appropriate views for the more promising 

functions.  

In a hypothesis-testing framework, uniformity in the null distribution offers a 

number of attractive features, including producing Type-I error rates at the nominal level.  

The benefits of uniformity have also been advocated from a Bayesian, non-hypothesis-
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testing viewpoint (e.g. Berkhof, van Mechelen, & Gelman, 2004). Therefore one criterion 

of good performance for each of the null distributions in Figure 11 is to be uniform 

throughout the range of possible values (0 to 1). However, the most important feature 

when comparing the two densities within a panel of Figure 11 is the extent to which they 

can be distinguished from one another, because even if the shapes are far from ideal, 

separation between the two indicates the potential for cutoff values to be developed, 

albeit perhaps heuristically. In practice, researchers obtain a single PPP-value that 

summarizes the relationship between realized DM values and posterior predicted DM 

values, but the observed PPP-value is itself a member of a different (meta) sampling 

distribution that can only be viewed in a simulation study where it is known how the 

realized data were generated. Hypothetically speaking, if a given pair of PPP-value 

sampling distributions were completely separate, then any observed PPP-value would 

with certainty indicate whether or not a model misspecification existed, irrespective of 

the degree of  fit indicated by the PPP-value itself. Conversely, if a pair of PPP-value 

sampling distributions overlapped completely, then any observed PPP-value would be 

useless as an indicator of model misspecification because sampling variability alone 

would be equally likely to have produced the observed PPP-value (i.e. there exists no 

difference to detect between the sampling distributions of PPP-values).  

For example, consider the densities of PPP-values for deviance in the first panel. 

It can be seen that all observed PPP-values were located near the center of the possible 

range, but that misspecified conditions tended to produce smaller PPP-values than null 

conditions.
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Using conventional hypothesis-testing criteria in practice would result in no power to detect the misfit that existed in misspecified 

conditions (see first column of Table 26). 

Table 26 

Proportion of PPP-values flagged as extreme across replications by condition and fit function 

Condition Deviance

SGDDM 
global

SGDDM 

θ1

SGDDM 

θ2

SGDDM 

θ3

SGDDM 
bivariate Q3 PC χ

2
RPS GLS ICI HCI

1.1 0 .02 .10 .05 .01 .04 .04 0 0 0 0 0 .05
2.1 0 1 1 1 1 .09 .09 0 0 0 0 .09 .06
2.2 0 .10 .04 0 0 .03 .03 0 0 0 0 0 .03
3.1 0 1 1 1 1 .06 .06 0 0 0 0 .03 .07
3.3 0 0 0 .01 0 .02 .02 0 0 0 0 0 .04
4.1 0 1 1 1 1 .08 .08 0 0 0 0 .28 .07
4.4 0 0 .02 0 0 .01 .01 0 0 0 0 0 .03
5.1 0 .93 .18 .19 .58 .05 .05 0 0 0 0 0 .05
5.5 0 .07 .12 .07 .02 .03 .04 0 0 0 0 0 .05
6.1 0 1 1 1 1 .10 .10 0 0 0 0 .06 .07
6.6 0 .02 .04 .01 0 .03 .03 0 0 0 0 0 .03

Fit Function

 
 

By contrast, alternative criteria could theoretically be constructed by considering the location where the null and misspecified 

densities cross (see Hjort, Dahl, & Steinbakk, 2006). Observed PPP-values below that threshold would suggest that the source of 

the realized data was a misspecified model because sampling variability alone was less likely to produce PPP-values that low. 

 

83 



84 

The distributions for the poorest-performing group of fit functions (PC, χ2, RPS, and 

GLS) were far from uniform across all null conditions. The PPP-values for these 

functions were centered properly near .5 but barely dispersed, and there was virtually no 

separation between null and alternative distributions. Consequently, these functions were 

excessively conservative in null conditions and powerless in misspecified conditions. 

Though not apparent from the viewpoint offered by Figure 11, the distributions of PPP-

values per observable (a more meaningful aggregation for observable-level functions) 

were all similarly shaped. These functions did not show differential performance across 

observables. Further presentation of the results for these fit functions was therefore 

omitted. 

The distributions of deviance PPP-values were shaped similarly to the previous 

group of poor-performing functions, with the important distinction that there was some 

separation between null and alternative distributions in terms of location. In other words, 

despite a dramatic departure from the ideal of uniformity in the null case, the separation 

between distributions would make it possible to specify a cutoff value for use in practice. 

It was beyond the goals of this study to investigate recommended cutoff values for fit 

functions, but these results suggest that it would be possible to do so if deviance was 

needed as a global fit function for some theoretical reason. However, across all 

misspecified conditions in this study, the deviance PPP-value in every replication was 

less extreme (closer to .5) than the SGDDM global PPP-value. This indicates that for the 

conditions studied here, there were no situations in which deviance was sensitive to misfit 

but SGDDM was not. Given the superior performance of the global SGDDM fit function, 

there seems little reason for including deviance as an assessor of global fit for the types of
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violations simulated here when SGDDM is available. For this reason, further details of the deviance results have been omitted. ICI 

was the only investigated observable-level fit function to display any power for detecting the types of misfit modeled in this study. 

Figure 11 was suggestive of ICI’s utility, but aggregation across observables obscures the underlying results. When viewed at the 

observable level (see Figure 12), the performance of ICI can be understood more clearly.

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33

1.1

2.1

2.2

3.1

3.3

4.1

4.4

5.1

5.5

6.1

6.6

Observable

 

Figure 12. PPP-value distributions for the ICI fit function by condition and observable. Each density in the matrix represents 100 
PPP-values (1 per replication).  
 

While it is true that all the ICI PPP-value distributions in null conditions were far from uniform, there was sufficient power in 

some misspecified conditions to indicate that ICI could be useful as part of a PPMC toolkit. Specifically, ICI had its greatest 
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power in conditions where the model misspecifications included an additional latent 

class. However, even within these conditions with a misspecified number of latent classes 

(2.1, 4.1, and 6.1), the observed power of ICI was dramatically greater for some 

observables than others, even holding constant the CPT template. For example, the 

second row of Figure 12 shows the distributions of ICI PPP-values for each observable 

within Condition 2.1. In this row, the most extreme distributions correspond to 

Observables 16-21, which are the observables parented by θ2 and governed by CPT 

Template 8 where the partial mastery class behaved as the mastery class. This finding is 

complicated by the fact that the remainder of the observables governed by the same CPT 

template and parented by a different latent variable exhibited minimal power. The 

location of the PPP-value distributions for Observables 1-8 (governed by the same CPT 

template but parented by θ1) and Observables 28-30 (governed by the same CPT template 

but parented by θ3) were in the same direction as those from Observables 1-8 but were 

less extreme. These results are examined in greater detail later. 

Global SGDDM  

As depicted in the second panel of Figure 11, the distributions of global SGDDM 

PPP-values were dramatically different for null and misspecified conditions. The 

distributions from null conditions approached uniformity, while the distributions from 

misspecified conditions were located almost exclusively within the extreme lower tail. 

Condition 5.1 was the only misspecified condition with any non-zero PPP-values.  

Three different ways to summarize the distributions of PPP-values were 

implemented in this study. For the global SGDDM PPP-values, each summary told much 

the same story. Looking down the second column of Table 26, it can be seen that there 
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was a large disparity between the proportions of extreme PPP-values from null and misspecified conditions. The proportions of 

PPP-values flagged as extreme in the null conditions (1.1, 2.2, 3.3, 4.4, 5.5, and 6.6) ranged from .00 to .10, and were all much 

smaller than the proportions from the misspecified conditions (2.1, 3.1, 4.1, 5.1, and 6.1), which ranged from .93 to 1.00. The 

median PPP-values displayed a similar pattern of disparity (see the second column of Table 27):  medians in the null conditions 

ranged from .41 to .50, while the medians from the misspecified conditions were all zero. 

Table 27 

Median PPP-value across replications by condition and fit function

Condition Deviance

SGDDM 
global

SGDDM 

θ1

SGDDM 

θ2

SGDDM 

θ3

SGDDM 
bivariate Q3 PC χ

2
RPS GLS ICI HCI

1.1 .48 .41 .52 .47 .53 .50 .50 .49 .51 .51 .50 .45 .49
2.1 .43 0 0 0 0 .47 .47 .49 .50 .50 .49 .27 .49
2.2 .47 .54 .52 .56 .52 .50 .50 .49 .51 .51 .50 .46 .50
3.1 .42 0 0 0 0 .50 .50 .49 .50 .50 .50 .20 .48
3.3 .50 .49 .47 .52 .53 .50 .50 .51 .51 .51 .52 .41 .50
4.1 .39 0 0 0 0 .47 .47 .49 .49 .49 .49 .12 .49
4.4 .48 .48 .44 .48 .52 .50 .50 .50 .51 .51 .51 .42 .50
5.1 .46 0 .19 .22 .02 .49 .49 .49 .50 .50 .50 .42 .50
5.5 .47 .54 .60 .49 .55 .50 .50 .50 .51 .51 .51 .42 .50
6.1 .43 0 0 0 0 .49 .49 .49 .50 .50 .49 .27 .50
6.6 .47 .52 .49 .47 .50 .50 .50 .49 .51 .51 .50 .44 .50

Fit Function
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This pattern continued for the median effect size outcome (see the second column of Table 28). The median effect sizes in the null 

conditions ranged from -.11 to .22, and were dramatically smaller than the median effect sizes from the misspecified conditions, 

which ranged from 3.60 to 15.06. 

Table 28 
 
Median effect size across replications by condition and fit function 

Condition Deviance

SGDDM 
global

SGDDM 

θ1

SGDDM 

θ2

SGDDM 

θ3

SGDDM 
bivariate Q3 PC χ

2
RPS GLS ICI HCI

1.1 .06 .22 -.05 .05 -.08 0 0 0 .01 -.01 -.03 .01 .02
2.1 .17 13.02 9.20 9.18 5.32 .06 .06 0 .03 .02 0 .03 .05
2.2 .09 -.10 -.07 -.16 -.09 .01 .01 0 0 -.01 -.01 .01 .05
3.1 .19 9.41 9.97 7.35 13.02 -.01 -.01 0 .03 .02 -.02 .06 .11
3.3 .03 .02 .07 -.08 -.07 .01 .01 0 -.01 -.02 -.06 .01 .06
4.1 .27 15.06 14.02 12.52 8.49 .07 .07 0 .05 .04 .01 .09 .17
4.4 .04 .06 .18 .09 -.06 .01 .01 0 -.01 -.02 -.02 .01 .10
5.1 .11 3.60 .89 .78 2.21 .01 .01 0 .01 0 -.02 .01 .05
5.5 .08 -.11 -.28 .01 -.16 -.01 -.01 0 0 -.01 -.04 .01 .04
6.1 .19 13.20 8.27 8.64 6.09 .02 .02 0 .03 .02 .01 .04 .07
6.6 .09 -.04 -.01 .05 .01 0 0 0 0 -.02 -.01 .01 .06

Fit Function

 
Taken collectively, these three columns of results suggest that the global SGDDM fit function performed well in terms of 

distinguishing between null and misspecified conditions. One notable difference among the three outcomes is that the proportion-

 

88 



89 

flagged and median-PPP-values outcomes displayed a kind of ceiling effect. All 

misspecified conditions had a median PPP-value of zero, so comparative judgments of 

misfit across conditions were not possible. Similarly, the proportion flagged was 1 for all 

misspecified conditions except Condition 5.1 (proportion = .93), indicating that the 

degree of misfit in Condition 5.1 was less than the other four conditions, but no further 

distinctions were possible. By comparison, a useful feature of the effect size outcome was 

that it did not have a ceiling. The scale of the effect size outcome permitted distinctions 

among conditions in terms of overall degree of misfit that were not apparent using the 

proportion flagged and median PPP-value outcomes. Specifically, the degree of misfit 

across replications as characterized by largest median effect size to smallest median 

effect size was Condition 4.1 (ES = 15.06), Conditions 6.1 (ES = 13.20), Condition 2.1 

(ES = 13.02), Condition 3.1 (ES = 9.41), and Condition 5.1 (ES = 3.60). This pattern is 

telling because the three conditions with the greatest misfit all had the partial mastery 

class misspecification. Additionally, the contextual variables misspecification produced 

greater misfit than the cross-loadings misspecification, as evidenced by the worse fit for 

Condition 3.1 relative to Condition 5.1 as well as Condition 4.1 relative to Condition 6.1.  

Figures 13-14 depict scatterplots of realized and posterior predicted SGDDM 

values across all 100 replications of each condition. The figures are paneled by condition, 

with null conditions and misspecified conditions grouped together to facilitate 

comparisons of the manipulated factors across conditions. 
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Figure 13. Scatterplots of SGDDM global values in null conditions. Posterior predicted 
values are on the y-axis and realized values are on the x-axis. 
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The x-axis of each scatterplot contains the realized values, while posterior predicted 

values are plotted along the y-axis. Each gray dot in the scatterplots represents one draw 

from a posterior distribution (300 draws were used from each of 100 replications for a 

total of 30,000 draws per condition). The open black circles represent the centroids (i.e. 

the mean realized and posterior predicted values across the 300 draws within a given 

replication). Each centroid can be thought of as a summary of the 300 draws from the 

replication it represents. The centroids are included for graphical purposes only, to help 

the reader perceive patterns when viewing the graphs. PPMC analyses do not make use of 

the centroids. The centroids are simply auxiliary information to facilitate digestion of the 

results in the current context of a simulation study. Figure 13 suggests that global 

SGDDM performed similarly across the six null conditions, although some slight 

differences are perceptible. The shape of the scatter in each panel is best described as 

roughly spherical. Generally speaking, the SGDDM values ranged from .022 to .028 for 

realized and posterior predicted data (Condition 1.1 can be seen to have a slightly 

narrower range of values). By comparison, the misspecified conditions featured in Figure 

14 displayed patterns that were different from their null counterparts and from each other. 

In each misspecified condition, posterior predicted values had less variability than 

did realized values, and were generally smaller in magnitude. These tendencies were less 

severe for Condition 5.1 than for the other misspecified conditions. Generally speaking, 

these patterns held for the subscale aggregations of SGDDM as well (see Figures 15-20), 

though contrasts between conditions (e.g. between Condition 5.1 and the other 

misspecified conditions) were more striking for some of the subscales than for others. 
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Figure 14. Scatterplots of SGDDM global values in misspecified conditions. Posterior 
predicted values are on the y-axis and realized values are on the x-axis. 
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Figure 15. Scatterplots of SGDDM subscale θ1 values in null conditions. Posterior 
predicted values are on the y-axis and realized values are on the x-axis.  
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Figure 16. Scatterplots of SGDDM subscale θ1 values in misspecified conditions. 
Posterior predicted values are on the y-axis and realized values are on the x-axis. 
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Figure 17. Scatterplots of SGDDM subscale θ2 values in null conditions. Posterior 
predicted values are on the y-axis and realized values are on the x-axis. 
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Figure 18. Scatterplots of SGDDM subscale θ2 values in misspecified conditions. 
Posterior predicted values are on the y-axis and realized values are on the x-axis. 
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Figure 19. Scatterplots of SGDDM subscale θ3 values in null conditions. Posterior 
predicted values are on the y-axis and realized values are on the x-axis. 
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Figure 20. Scatterplots of SGDDM subscale θ3 values in misspecified conditions. 
Posterior predicted values are on the y-axis and realized values are on the x-axis. 
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SGDDM Subscale θ1 

As depicted in the third panel of Figure 11, the distributions of PPP-values for 

SGDDM subscale θ1 tended to be different for null and misspecified conditions. The 

distributions from null conditions approached uniformity, while the distributions from 

misspecified conditions were located almost exclusively within the extreme lower tail 

except for Condition 5.1. Condition 5.1 was the only misspecified condition with any 

non-zero PPP-values. Figure 16 makes it easy to see that the misfit in Condition 5.1 was 

to a smaller degree than the other misspecified conditions, although it tended to be in the 

same direction in the aggregate. Condition 5.1 was the only misspecified condition in 

which any of the sampled MCMC iterations had posterior predicted values exceeding 

realized values (i.e. grey dots above the identity line); indeed Condition 5.1 even had 

some replications with PPP-values above .5, indicating that the majority of iterations 

within those replications exhibited over-prediction. 

The proportions of PPP-values flagged as extreme (third column of Table 26) in 

the null conditions ranged from .02 to .12. The proportions from the misspecified 

conditions were 1.00 except for Condition 5.1, which was .18. The median PPP-values 

(third column of Table 27) displayed a similar pattern:  medians in the null conditions 

ranged from .44 to .60, while the medians from the misspecified conditions were .00 

except for Condition 5.1 which was .19. This pattern continued for the median effect size 

outcome (see the third column of Table 28). The median effect sizes in the null 

conditions ranged from -.28 to .18, and were smaller than the median effect sizes from 

the misspecified conditions, which ranged from .89 to 14.02.  
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SGDDM Subscale θ2 

As depicted in the fourth panel of Figure 11, the distributions of PPP-values for 

SGDDM subscale θ2 were quite different for null and misspecified conditions. The 

distributions from null conditions approached uniformity, while the distributions from 

misspecified conditions tended toward the extreme lower tail. Condition 5.1 was the only 

misspecified condition with any non-zero PPP-values. Figure 18 shows that the misfit in 

Condition 5.1 was not as severe. Condition 5.1 was the only misspecified condition in 

which any of the sampled MCMC iterations had posterior predicted values exceeding 

realized values (i.e. grey dots above the identity line). Condition 5.1 had some 

replications with PPP-values above .5, indicating that the majority of iterations within 

those replications exhibited this characteristic. 

The proportions of PPP-values flagged as extreme (fourth column of Table 26) in 

the null conditions ranged from .00 to .07, while proportions from the misspecified 

conditions were 1.00 except for Condition 5.1 which was .19. The median PPP-values 

(fourth column of Table 27) displayed a similar pattern:  medians in the null conditions 

ranged from .47 to .56, while the medians from the misspecified conditions were .00 

except for Condition 5.1 which was .22. This pattern of results continued for the median 

effect size outcome (fourth column of Table 28). The median effect sizes in the null 

conditions ranged from -.16 to .09, and were smaller than the median effect sizes from 

the misspecified conditions, which ranged from .78 to 12.52.  

SGDDM Subscale θ3 

As depicted in the fifth panel of Figure 11, the distributions of PPP-values for 

SGDDM subscale θ3 were different for null and misspecified conditions. The 
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distributions from null conditions approached uniformity, while the distributions from 

misspecified conditions were located almost exclusively within the extreme lower tail. 

Condition 5.1 was the only misspecified condition with any non-zero PPP-values. Figure 

20 shows that Condition 5.1 was the only misspecified condition in which any of the 

sampled MCMC iterations had posterior predicted values exceeding realized values (i.e. 

grey dots above the identity line).  

The proportions of PPP-values flagged as extreme (see Table 26) in the null 

conditions ranged from .00 to .02, while the proportions from misspecified conditions 

were 1.00 except for Condition 5.1, which was .58. The median PPP-values (see the fifth 

column of Table 27) displayed a similar pattern:  medians in the null conditions ranged 

from .50 to .55, while the medians from the misspecified conditions were .00 except for 

Condition 5.1 which was .02. The pattern of results continued for the median effect size 

outcome (see the fifth column of Table 28). The median effect sizes in the null conditions 

ranged from -.16 to .01, and were smaller than the median effect sizes from the 

misspecified conditions, which ranged from 2.21 to 13.02.  

To better understand why subscale SGDDM detected misfit more often for θ3 than 

for θ2 or θ1, consider Figure 21, which shows the conditional probability of a correct 

response by observable for each latent proficiency profile. The upper panel refers to the 

realized data and the lower panel refers to the posterior predicted data. The middle panel 

shows Model 1 generating parameters for reference purposes, i.e. to help illustrate which 

conditional probabilities were affected by the model misspecification in Condition 5.1. 
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Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .08 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80
[1,2,1] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,2,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .80 .80 .80
[2,1,1] .03 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .06 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .80 .80 .80
[2,2,1] .08 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,2,2] .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .08 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[1,2,1] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,2,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[2,1,1] .03 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .06 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[2,2,1] .08 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,2,2] .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .09 .20 .19 .21 .22 .22 .21 .21 .21 .21 .21 .22 .21 .22 .21 .22 .20 .20 .20 .22 .21 .22 .21 .21 .21 .21 .21 .21 .26 .19 .19 .29 .30 .30
[1,1,2] .00 .20 .19 .21 .22 .22 .21 .21 .21 .21 .21 .22 .21 .22 .21 .22 .20 .20 .20 .22 .21 .22 .21 .21 .21 .21 .21 .21 .80 .78 .78 .80 .80 .80
[1,2,1] .01 .20 .19 .21 .22 .22 .21 .21 .21 .21 .21 .22 .21 .22 .21 .22 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80 .80 .26 .19 .19 .29 .30 .30
[1,2,2] .00 .20 .19 .21 .22 .22 .21 .21 .21 .21 .21 .22 .21 .22 .21 .22 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .80 .80 .80
[2,1,1] .06 .74 .69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .22 .21 .22 .21 .21 .21 .21 .21 .21 .26 .19 .19 .29 .30 .30
[2,1,2] .03 .74 .69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .22 .21 .22 .21 .21 .21 .21 .21 .21 .80 .78 .78 .80 .80 .80
[2,2,1] .08 .74 .69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80 .80 .26 .19 .19 .29 .30 .30
[2,2,2] .72 .74 .69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .80 .80 .80

Observable (xj)Prop. of 
simulees

Conditional probability of a correct response (Condition 5.1 estimated parameters)

Conditional probability of a correct response (Model 5 generating parameters)

Observable (xj)

Conditional probability of a correct response Model 1 generating parameters)

Observable (xj)Prop. of 
simulees

Prop. of 
simulees

 
Figure 21. Conditional probability of a correct response by latent proficiency. Upper panel shows values as generated from Model 
5. Middle panel shows values as generated from Model 1. Lower panel shows the mean of 30,000 estimated values (300 posterior 
draws from each of 100 replications) from Condition 5.1.
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The key point in the upper panel is that the three latent variables parented a different 

number of observables, yet each latent variable was impacted by the same number of 

crossloadings in the misspecification. These crossloadings translated to seven conditional 

probabilities being affected within each latent variable. For θ3, the seven impacted 

conditional probabilities represent a larger proportion of the corresponding response 

patterns, meaning that the correlations (SGDDM values) among the relevant response 

patterns would be affected more by the misspecification for θ3 than for θ2 or θ1. This 

interpretation is further evidenced in the lower panel by noting the consequences on the 

estimated conditional probabilities. The discrepancies between the upper and lower panel 

are proportionally more prevalent in the third block of observables relative to the first two 

blocks. In other words, one can see from the patterns in the figure why the correlations 

within the third block of variables changed more in the posterior predicted data relative to 

the realized data.  

Global and subscale SGDDM discrepancy measures were less suited to detect the 

crossloadings misspecification in Condition 5.1 relative to the other misspecified 

conditions because this misspecification produced more localized effects. The global and 

subscale aggregations associated with this misspecification included larger portions of the 

data that were unaffected by the misspecification than did the other misspecifications. In 

other words, the summary statistics were diluted to a greater extent by well-fitting data 

due to the aggregation process. Looking again at Figures 3 and 7, only nine observables 

had conditional probability tables that differed between the generating and scoring 

models in Condition 5.1, meaning that for 24 of the 33 observables sampling variability 

was the only factor responsible for differences between observed and model-implied 
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responses. For the nine observables that did have different CPTs between Model 1 and 

Model 5, only the latent profiles with mastery on the first latent parent and non-mastery 

on the second latent parent were impacted by the differences in these conditional 

probabilities (see Figure 21), leaving a large proportion of simulees with expected 

probabilities of success that were equal across all observables in both models. Compared 

to the other misspecifications, Condition 5.1 appeared to be the most localized model 

misspecification in the sense that the matrix of expected response probabilities across all 

simulees and observables appeared least disturbed relative to the same matrix from the 

generating model (a comparison of Figure 21 to Figures 22-25 is suggestive of this 

principle). This interpretation is further supported by bivariate evidence presented in the 

next section. At the bivariate level greater detail was afforded by the aggregation across 

528 pairs of observables as opposed to a single model, three subscales, or 33 observables, 

which better isolated areas of fit and misfit. 
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Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .06 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[1,1,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[1,2,1] .02 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,2,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[1,2,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[1,3,1] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,3,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20
[1,3,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[2,1,1] .00 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .01 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[2,1,3] .00 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[2,2,1] .01 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,2,2] .05 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[2,2,3] .01 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[2,3,1] .00 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,3,2] .03 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20
[2,3,3] .00 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,1,1] .00 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,1,2] .00 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[3,1,3] .00 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[3,2,1] .00 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,2,2] .05 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[3,2,3] .19 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[3,3,1] .00 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[3,3,2] .06 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20
[3,3,3] .51 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .15 .45 .45 .44 .44 .45 .44 .45 .45 .19 .19 .19 .19 .19 .19 .19 .67 .67 .67 .67 .67 .67 .19 .19 .19 .19 .20 .20 .51 .52 .51 .19 .19 .18
[1,1,2] .01 .45 .45 .44 .44 .45 .44 .45 .45 .19 .19 .19 .19 .19 .19 .19 .67 .67 .67 .67 .67 .67 .19 .19 .19 .19 .20 .20 .81 .81 .81 .76 .75 .75
[1,2,1] .01 .45 .45 .44 .44 .45 .44 .45 .45 .19 .19 .19 .19 .19 .19 .19 .80 .80 .81 .80 .81 .81 .79 .79 .79 .79 .79 .79 .51 .52 .51 .19 .19 .18
[1,2,2] .00 .45 .45 .44 .44 .45 .44 .45 .45 .19 .19 .19 .19 .19 .19 .19 .80 .80 .81 .80 .81 .81 .79 .79 .79 .79 .79 .79 .81 .81 .81 .76 .75 .75
[2,1,1] .03 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .79 .67 .67 .67 .67 .67 .67 .19 .19 .19 .19 .20 .20 .51 .52 .51 .19 .19 .18
[2,1,2] .20 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .79 .67 .67 .67 .67 .67 .67 .19 .19 .19 .19 .20 .20 .81 .81 .81 .76 .75 .75
[2,2,1] .04 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .79 .80 .80 .81 .80 .81 .81 .79 .79 .79 .79 .79 .79 .51 .52 .51 .19 .19 .18
[2,2,2] .55 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .79 .80 .80 .81 .80 .81 .81 .79 .79 .79 .79 .79 .79 .81 .81 .81 .76 .75 .75

Conditional probability of a correct response (Model 2 generating parameters)

Observable (xj)

Conditional probability of a correct response (Condition 2.1 estimated parameters)

Observable (xj)Prop. of 
simulees

Prop. of 
simulees

 
Figure 22. Conditional probability of a correct response by latent proficiency. Upper panel shows the values as generated from 
Model 2. Lower panel shows the mean of 30,000 estimated values from Condition 2.1. 
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Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .08 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[1,2,1] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,2,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .68 .68 .68
[2,1,1] .03 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .06 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[2,2,1] .08 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,2,2] .73 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .68 .68 .68

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .08 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[1,2,1] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,2,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[2,1,1] .03 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .06 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[2,2,1] .08 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,2,2] .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .08 .21 .20 .20 .23 .22 .21 .20 .21 .22 .22 .21 .21 .21 .22 .22 .21 .20 .19 .23 .23 .22 .20 .20 .21 .23 .22 .22 .27 .26 .26 .25 .25 .25
[1,1,2] .01 .21 .20 .20 .23 .22 .21 .20 .21 .22 .22 .21 .21 .21 .22 .22 .21 .20 .19 .23 .23 .22 .20 .20 .21 .23 .22 .22 .73 .73 .73 .74 .73 .73
[1,2,1] .01 .21 .20 .20 .23 .22 .21 .20 .21 .22 .22 .21 .21 .21 .22 .22 .69 .68 .68 .80 .80 .80 .69 .68 .69 .80 .80 .80 .27 .26 .26 .25 .25 .25
[1,2,2] .00 .21 .20 .20 .23 .22 .21 .20 .21 .22 .22 .21 .21 .21 .22 .22 .69 .68 .68 .80 .80 .80 .69 .68 .69 .80 .80 .80 .73 .73 .73 .74 .73 .73
[2,1,1] .04 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .21 .20 .19 .23 .23 .22 .20 .20 .21 .23 .22 .22 .27 .26 .26 .25 .25 .25
[2,1,2] .06 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .21 .20 .19 .23 .23 .22 .20 .20 .21 .23 .22 .22 .73 .73 .73 .74 .73 .73
[2,2,1] .18 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .69 .68 .68 .80 .80 .80 .69 .68 .69 .80 .80 .80 .27 .26 .26 .25 .25 .25
[2,2,2] .61 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .69 .68 .68 .80 .80 .80 .69 .68 .69 .80 .80 .80 .73 .73 .73 .74 .73 .73
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Figure 23. Conditional probability of a correct response by latent proficiency. Upper panel shows the values as generated from 
Model 3 (marginalized over contextual latent proficiencies). Middle panel shows the values as generated from Model 1. Lower 
panel shows the mean of 30,000 estimated values (300 posterior draws from each of 100 replications) from Condition 3.1. 
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Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .06 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[1,1,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[1,2,1] .02 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,2,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[1,2,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[1,3,1] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,3,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .20 .20 .20
[1,3,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .68 .68 .68
[2,1,1] .00 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .01 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[2,1,3] .00 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[2,2,1] .01 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,2,2] .05 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[2,2,3] .01 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[2,3,1] .00 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,3,2] .03 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .20 .20 .20
[2,3,3] .00 .68 .68 .68 .80 .80 .68 .68 .68 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .68 .68 .68
[3,1,1] .00 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,1,2] .00 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[3,1,3] .00 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[3,2,1] .00 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,2,2] .05 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .20 .20 .20
[3,2,3] .19 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20 .68 .68 .68 .68 .68 .68
[3,3,1] .00 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .20 .20 .20 .20 .20 .20
[3,3,2] .06 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .20 .20 .20
[3,3,3] .51 .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .68 .68 .68 .68

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .16 .38 .39 .39 .45 .45 .38 .38 .38 .21 .21 .19 .19 .19 .21 .21 .57 .57 .57 .68 .68 .68 .19 .19 .20 .25 .24 .24 .51 .51 .51 .19 .19 .19
[1,1,2] .01 .38 .39 .39 .45 .45 .38 .38 .38 .21 .21 .19 .19 .19 .21 .21 .57 .57 .57 .68 .68 .68 .19 .19 .20 .25 .24 .24 .71 .71 .71 .76 .76 .76
[1,2,1] .02 .38 .39 .39 .45 .45 .38 .38 .38 .21 .21 .19 .19 .19 .21 .21 .69 .69 .69 .81 .81 .81 .70 .70 .70 .79 .79 .79 .51 .51 .51 .19 .19 .19
[1,2,2] .01 .38 .39 .39 .45 .45 .38 .38 .38 .21 .21 .19 .19 .19 .21 .21 .69 .69 .69 .81 .81 .81 .70 .70 .70 .79 .79 .79 .71 .71 .71 .76 .76 .76
[2,1,1] .08 .69 .69 .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .67 .79 .79 .57 .57 .57 .68 .68 .68 .19 .19 .20 .25 .24 .24 .51 .51 .51 .19 .19 .19
[2,1,2] .19 .69 .69 .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .67 .79 .79 .57 .57 .57 .68 .68 .68 .19 .19 .20 .25 .24 .24 .71 .71 .71 .76 .76 .76
[2,2,1] .13 .69 .69 .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .67 .79 .79 .69 .69 .69 .81 .81 .81 .70 .70 .70 .79 .79 .79 .51 .51 .51 .19 .19 .19
[2,2,2] .41 .69 .69 .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .67 .79 .79 .69 .69 .69 .81 .81 .81 .70 .70 .70 .79 .79 .79 .71 .71 .71 .76 .76 .76
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Prop. of 
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Figure 24. Conditional probability of a correct response by latent proficiency. Upper panel shows the values as generated from 
Model 4 (marginalized over contextual latent proficiencies). Lower panel shows the mean of 30,000 estimated values (300 
posterior draws from each of 100 replications) from Condition 4.1. 
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Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .06 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,1,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80
[1,2,1] .02 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[1,2,2] .01 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .20
[1,2,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80
[1,3,1] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[1,3,2] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .20 .20 .20
[1,3,3] .00 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .80 .80 .80
[2,1,1] .00 .20 .20 .20 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,1,2] .01 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .20 .20 .20
[2,1,3] .00 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .80 .80 .80
[2,2,1] .01 .80 .20 .20 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[2,2,2] .05 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[2,2,3] .01 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[2,3,1] .00 .80 .20 .20 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[2,3,2] .03 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20
[2,3,3] .00 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,1,1] .00 .20 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,1,2] .00 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .20 .20 .20
[3,1,3] .00 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .80 .20 .20 .80 .80 .80
[3,2,1] .00 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .80 .80 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
[3,2,2] .05 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .20 .20 .20
[3,2,3] .19 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20 .80 .80 .80 .80 .80 .80
[3,3,1] .00 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20 .20 .20 .20
[3,3,2] .06 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .20 .20 .20
[3,3,3] .51 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

Proficiencies

[θ1,θ2,θ3] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[1,1,1] .15 .41 .39 .41 .44 .45 .44 .44 .45 .19 .19 .19 .19 .19 .20 .19 .62 .61 .62 .67 .66 .67 .20 .20 .20 .20 .20 .20 .44 .42 .43 .18 .18 .18
[1,1,2] .01 .41 .39 .41 .44 .45 .44 .44 .45 .19 .19 .19 .19 .19 .20 .19 .62 .61 .62 .67 .66 .67 .20 .20 .20 .20 .20 .20 .81 .81 .81 .74 .74 .74
[1,2,1] .01 .41 .39 .41 .44 .45 .44 .44 .45 .19 .19 .19 .19 .19 .20 .19 .80 .81 .80 .80 .80 .80 .78 .78 .77 .78 .78 .78 .44 .42 .43 .18 .18 .18
[1,2,2] .01 .41 .39 .41 .44 .45 .44 .44 .45 .19 .19 .19 .19 .19 .20 .19 .80 .81 .80 .80 .80 .80 .78 .78 .77 .78 .78 .78 .81 .81 .81 .74 .74 .74
[2,1,1] .02 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .78 .78 .62 .61 .62 .67 .66 .67 .20 .20 .20 .20 .20 .20 .44 .42 .43 .18 .18 .18
[2,1,2] .21 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .78 .78 .62 .61 .62 .67 .66 .67 .20 .20 .20 .20 .20 .20 .81 .81 .81 .74 .74 .74
[2,2,1] .02 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .78 .78 .80 .81 .80 .80 .80 .80 .78 .78 .77 .78 .78 .78 .44 .42 .43 .18 .18 .18
[2,2,2] .56 .80 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .78 .78 .80 .81 .80 .80 .80 .80 .78 .78 .77 .78 .78 .78 .81 .81 .81 .74 .74 .74

Conditional probability of a correct response (Model 6 generating parameters)

Observable (xj)

Conditional probability of a correct response (Condition 6.1 estimated parameters)

Observable (xj)

Prop. of 
simulees

Prop. of 
simulees

 
Figure 25.  Conditional probability of a correct response by latent proficiency. Upper panel shows the values as generated from 
Model 6. Lower panel shows the mean of 30,000 estimated values from Condition 6.1.
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Bivariate SGDDM 

The detail of the feedback provided by the bivariate fit functions (SGDDM 

bivariate and Q3) gets obscured when aggregated across variable pairs as was done in 

Figure 11 and Tables 26-28. Those high-level aggregations were included to facilitate 

comparisons across fit functions, but to really appreciate the effectiveness of the bivariate 

fit functions, they must be viewed at the more specific and appropriate grain-size of the 

variable pair. This is important because not all variable pairs were expected to show poor 

fit in misspecified conditions.  

For all null conditions the results for the bivariate SGDDM fit function were 

highly similar, so they are represented collectively by Figure 26, which depicts a heat 

map of median PPP-values from Condition 1.1. 
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Figure 26. Heat map of median PPP-values for bivariate SGDDM for Condition 1.1. 
Each square in the matrix represents the median of 100 PPP-values (1 per replication) for 
one pair of observables. White (black) squares indicate that the posterior predicted values 
were systematically lower (higher) than the realized values. This figure also represents 
the similar figures produced for bivariate SGDDM and Q3 fit functions for Conditions 
1.1, 2.2, 3.3, 4.4, 5.5, and 6.6. 
 

Each of the 528 squares in the figure represents the median of 100 PPP-values for one 

pair of observables. White squares indicate that the posterior predicted values were 

systematically lower than the realized values, which means that the association between 
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the pair of observables was stronger in the observed data than was accounted for by the 

model (i.e. positive local dependence). Black squares indicate that the posterior predicted 

values were systematically higher than the realized values, which means that the 

association between the pair of observables was stronger according to the model than was 

observed in the realized data (i.e. negative local dependence). Grey squares of varying 

shades indicate that the median PPP-values were not extreme enough to warrant a flag 

(i.e. more moderate levels of positive or negative local dependence). As can be seen from 

this figure, none of the observable pairs had median PPP-values below .025 or above .975 

in any of the null conditions. Note that within any given replication, it was typical to 

observe about 21variable pairs with values this extreme, approximately 4% (see Figure 

27). However, the identity of those flagged pairs changed across replications, suggesting 

that the cause was random variation and not systematic misfit. 
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Figure 27. Heat map of PPP-values within a single replication. The PPP-values are 
represented categorically by shaded squares. Each square in this heat map represents the 
PPP-value from a pair of observables within Replication 1 of Condition 1.1. 
 
From a hypothesis-testing perspective the observed Type-I error rate was around 4%, 

which is slightly conservative compared to the traditional alpha level of 5%. The pattern 

of grey squares in this heat map is consistent with a sampling variability explanation, and 

supports a cautious approach to the interpretation of flagged variable pairs when working 

with a single observed data set. Clusters of flagged squares, especially among variables 
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with theoretical connections, are more likely to represent true misfit than isolated flagged 

squares. 

Figure 28 depicts results from Condition 2.1, an example of a heat map with 

evidence of systematic error (misfit) as opposed to sampling variability.  

 

Figure 28. Heat map of median PPP-values for bivariate SGDDM or Q3 for Condition 
2.1. Each square in the matrix represents the median of 100 PPP-values (1 per 
replication) for one pair of observables. White (black) squares indicate that the posterior 
predicted values are systematically lower (higher) than the realized values. 
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Recall that Model 2 differed from Model 1 only in terms of the addition of a partial 

mastery class, where the definition of partial mastery consisted of mastery-like 

performance on a subset of observables that spanned all three latent variables and non-

mastery performance on the remaining observables. There were three latent dimensions 

in the generating model and scoring model, and these latent dimensions were measured 

by the same observables in both models.  

The most important feature in this heat map is the three triangle-shaped clusters of 

white squares, each representing a local area in the scoring model (Model 1) where the 

median PPP-values across 100 replications were less than .025. The largest such cluster 

corresponds to the bivariate associations among Observables 1-8 (i.e. Observable Pairs 

1/2, 1/3, 1/4 . . . 7/8), the second cluster corresponds to the bivariate associations among 

Observables 16-21 (i.e. Observable Pairs 16/17, 16/18, 16/19. . . 20/21), and the third 

cluster corresponds to the bivariate associations among Observables 28-30 (i.e. 

Observable Pairs 28/29, 28/30, and 29/30). The characteristic common to these 17 

observables is that they were governed by CPT Template 8 in the generating model 

(Model 2), in which the partial mastery class was as likely as the mastery class to 

successfully complete the observable. The key difference between the clusters is that 

each had a different parent:  the first cluster depended on θ1, the second on θ2, and the 

third on θ3. There were residual associations (i.e. positive local dependence) among these 

observable pairs in the data (generated from Model 2) that were not accounted for by the 

scoring model (Model 1). In summary, a consequence of fitting a two-class model to data 

with three classes was that simulees in the partial mastery classes were grouped together 

with the non-mastery simulees, perhaps because both types diverged from the larger 
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majority of simulees who performed well across all observables. Poor performance on 

any cluster of observables therefore would have suggested membership in the only 

available alternative class. However, for simulees who were partial masters, their 

tendency to do well on subsets of observables manifested as stronger associations among 

those observables than the scoring model could account for. This interpretation is 

supported by evidence at a finer-grained level of detail that will be presented later in the 

HCI and ICI sections, specifically the proportions of simulees within the latent 

proficiency profiles and the degree of inter-observable agreement and disagreement 

within those groups of simulees.    

The other two extreme medians in the heat map (corresponding to white squares 

for Observable Pairs 3/29 and 7/29) are embedded within a rectangular section of 

observable pairs that had relatively low median PPP-values but did not warrant a flag 

according to the .025 decision rule. This rectangular group represents the observable pairs 

that relate Observables 1-8 (the θ1 group whose intra-cluster observable pairs were all 

flagged) to Observables 28-30 (the θ3 group whose intra-cluster observable pairs were all 

flagged). The analogous observable pairs relating the other flagged triangular clusters 

exhibited similar levels of positive local dependence (i.e. the rectangular cluster relating 

Observables 1-8 to Observables 16-21, and the rectangular cluster relating Observables 

16-21 to Observables 28-30). The fact that these rectangular clusters relating the white 

clusters to each other were not white (flagged) themselves tells us that the scoring model 

did a better job of accounting for the relationships between dimensions than it did within 

the “partial mastery” clusters of observables within each dimension. This is a clue that 

the positive local dependence within each white cluster was not due to misspecifications 
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in the relationships between dimensions. Indeed, the bivariate associations between 

observables modeled from different dimensions generally contained less local 

dependence than associations within the same dimension. This accurately reflects the 

nature of the misspecification, which spanned all the latent variables but was restricted to 

a subset of observables governed by a particular CPT template. Contemplating the entire 

pattern of PPP-values, as opposed to focusing only on the flagged values, gives the 

researcher the best opportunity to distinguish this type of misspecification from other 

types. 

To further detail the observed patterns of median PPP-values in this heat map, it 

may be useful to categorize the observables according to their latent parentage and their 

CPT templates. For example, in the generating model for Condition 2.1 (see Figure 4) 

this categorization yields six categories (or clusters) of observables, each with a different 

combination of parentage (θ1, θ2, or θ3) and CPT template (8 or 9). Observables 1-8 had 

θ1 as their parent and were governed by CPT Template 8. Observables 9-15 shared the 

same latent parent with the previous observables, but were structured according to CPT 

Template 9. Observables 9-16 shared CPT Template 8 with Observables 1-8 but the 

latent parent was θ2, etc. This categorization is useful because the patterns of median 

PPP-values in Figure 28 followed the interactions among these clusters.  

Consider the first cluster of observables (i.e. Observables 1-8), the cluster 

parented by θ1 and governed by CPT Template 8. Observable pairs with both members 

from this cluster were all flagged due to their extreme positive local dependence, as noted 

above. By comparison, pairings of an observable from Cluster 1 with an observable from 

Cluster 2 (shared parentage, different CPT Templates) always yielded modest negative 
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local dependence, represented in the heat map as grey squares having median PPP-values 

between .5 and .75. Continuing to move from left to right within the bottom eight rows of 

the heat map in Figure 28, pairings of an observable from Cluster 1 with an observable 

from Cluster 3 (different parentage, shared CPT template) consistently yielded positive 

local dependence, represented in the heat map as the lightest grey squares and having 

median PPP-values between .025 and .25. Pairings between Cluster 1 and Cluster 4 

(different parentage, different CPT templates) did not consistently yield positive or 

negative local dependence, but were always in the modest range, .25 to .75. Pairings 

between Cluster 1 and Cluster 5 (different parentage, shared CPT template) yielded 

positive local dependence, including the only flagged median PPP-values that did not 

come from intra-cluster pairings of observables (corresponding to white squares for 

Observable Pairs 3/29 and 7/29). Pairings between Cluster 1 and Cluster 6 (different 

parentage, different CPT templates) did not consistently yield positive or negative local 

dependence, but were always in the modest range, .25 to .75. 

In summary of Cluster 1, the strongest local dependence was positive local 

dependence among pairings of observables with the same parent and same CPT template. 

Next in magnitude was the positive local dependence among pairings of observables with 

different parents but the same CPT template. Smaller yet in magnitude was the negative 

local dependence among pairings with the same parent but different CPT templates. 

Lastly, pairings of observables with different parents and different CPT templates yielded 

local dependence in the modest range and of varying direction, akin to what was seen due 

to sampling variability alone in null conditions (see Figure 26). 
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The second cluster of observables (Observables 9-15) was parented by θ1 and 

governed by CPT Template 9. Observable pairs with both members from this cluster 

tended to exhibit positive local dependence, though two pairings only modestly. Pairings 

of an observable from Cluster 2 with an observable from Cluster 3 (different parents, 

different templates) yielded modest local dependence in both directions, as did pairings 

from Cluster 2 with Cluster 4 (different parents, same template). Pairings between Cluster 

2 and Cluster 5 (different parents, different templates) consistently yielded modest 

negative local dependence (.5 to .75). Pairings between Cluster 2 and Cluster 6 (different 

parents, same template) yielded modest positive local dependence (.25 to .5), with one 

pairing below .25. In summary of Cluster 2, the strongest local dependence was positive 

local dependence among pairings of observables with the same parent and same CPT 

template, though none of these pairs were flagged and two pairs were modest in 

magnitude. The remaining pairings were all modest in size, though some were systematic 

in direction.  

The third cluster of observables (Observables 16-21) was parented by θ2 and 

governed by CPT Template 8, and was generally consistent in behavior with the patterns 

observed for Cluster 1. Observable pairs with both members from Cluster 3 were all 

flagged due to their extreme positive local dependence. Pairings of an observable from 

Cluster 3 with an observable from Cluster 4 (same parent, different templates) yielded 

modest negative dependence (.5 to .75). Pairings between Cluster 3 and Cluster 5 

(different parents, same template) consistently yielded positive local dependence, 

represented in the heat map as the lightest grey squares and having median PPP-values 

between .025 and .25. Pairings between Cluster 3 and Cluster 6 (different parents, 
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different templates) yielded modest local dependence in both directions (.25 to .75). In 

summary of Cluster 3, the strongest local dependence was positive local dependence 

among pairings of observables with the same parent and same CPT template. Next in 

magnitude was the positive local dependence among pairings of observables with 

different parents but the same CPT template. Pairings with the same parent but different 

CPT templates yielded modest negative local dependence. Pairings of observables with 

different parents and different CPT templates yielded local dependence in the modest 

range and of varying direction, akin to what was seen due to sampling variability alone in 

null conditions (see Figure 26). 

The fourth cluster of observables (Observables 22-27) was parented by θ2 and 

governed by CPT Template 9, and was generally consistent in behavior with the patterns 

observed for Cluster 2. Observable pairs with both members from Cluster 4 exhibited 

positive local dependence, though only modestly. Pairings of an observable from Cluster 

4 with an observable from Cluster 5 (different parents, different templates) yielded 

modest local dependence in both directions, as did pairings of Cluster 4 with Cluster 6 

(different parents, same template). In summary of Cluster 4, local dependence was 

always modest in magnitude, and predominantly multidirectional (akin to sampling 

variability). Systematic positive local dependence did exist among pairings of 

observables with the same parent and same CPT template, and systematic negative local 

dependence did exist between pairings of Cluster 4 to Cluster 3 (same parent, different 

templates).  

The fifth cluster of observables (Observables 28-30) was parented by θ3 and 

governed by CPT Template 8, and was generally consistent in behavior with the patterns 
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observed for Clusters 1 and 3. Observable pairs with both members from Cluster 5 were 

all flagged due to their extreme positive local dependence. Pairings of an observable from 

Cluster 5 with an observable from Cluster 6 (same parent, different templates) yielded 

negative local dependence (.75 to .975). This 3x3 cluster of dark grey squares 

(Observable Pairs (28/31, 28/32, 28/33, 29/31, 29/32, 29/33, 30/31, 30/32, and 30/33) had 

relatively high median PPP-values, though not extreme enough to be flagged. Recall that 

the analogous clusters of observable pairs for θ1 and θ2 were in the same direction but not 

as strong in magnitude, which suggests that estimating the parameters for observables 

dependent upon θ3 was more difficult in this model than for observables dependent on θ1 

or θ2. For dimensions with more observables per dimension (θ1 and θ2), the scoring model 

did a better job of identifying the heterogeneity among observables (i.e. those governed 

by different CPTs), whereas the observables dependent on θ3 were seen by the scoring 

model as a more homogenous group than they were generated to be due in part to the 

lower number of observables dependent on θ3.  

In summary of Cluster 5, the strongest local dependence was positive local 

dependence among pairings of observables with the same parent and same CPT template. 

Next in magnitude was the negative local dependence among pairings of observables 

with different parents but the same CPT template, and the negative local dependence 

among pairings with the same parent but different CPT templates. Pairings of observables 

with different parents and different CPT templates yielded modest local dependence 

which was systematically negative with respect to Cluster 2 and in both directions with 

respect to Cluster 4.  
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The sixth cluster of observables (Observables 31-33) was parented by θ3 and 

governed by CPT Template 9, and was generally consistent in behavior with the patterns 

observed for Cluster 2 and Cluster 4. Observable pairs with both members from Cluster 6 

exhibited positive local dependence (.025 to .25), though none were flagged. In summary 

of Cluster 6, the strongest local dependence was positive local dependence among 

pairings of observables with the same parent and same CPT template, which were similar 

in magnitude to the negative local dependence observed for pairings with the same parent 

and different templates. Pairings with different parents and the same template exhibited 

modest negative local dependence with respect to Cluster 2, but were modest in both 

directions with respect to Cluster 4. The pairings with different parents and different 

templates were modest and bidirectional, akin to sampling variability (see Figure 26). 

In summary of Figure 28, the overall pattern of the parentage/template effects 

described above (same/same ≥ different/same ≥ same/different ≥ different/different) 

provided diagnostic clues as to the characteristic differences between the scoring and 

generating models. The intra-cluster pairings for any given cluster, which are represented 

by the triangle-shaped regions bordering the diagonal in Figure 28, had the strongest local 

dependence within the rows and columns which corresponded to that cluster, but the local 

dependence was only flagged for clusters governed by the CPT template 8. Collectively 

these patterns across clusters painted an orderly picture that reflected the impact of the 

partial mastery misspecification.  

Figure 29 depicts a heat map of median PPP-values for the bivariate SGDDM fit 

function for Condition 3.1. Recall that Model 3 differed from Model 1 only in terms of 

the addition of seven contextual latent variables.  
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Figure 29. Heat map of median PPP-values for bivariate SGDDM or Q3 for Condition 
3.1. Each square in the matrix represents the median of 100 PPP-values (1 per 
replication) for one pair of observables. White (black) squares indicate that the posterior 
predicted values are systematically lower (higher) than the realized values. 
 
 
The most extreme medians are represented by seven small triangle-shaped clusters of 

white squares and one square-shaped cluster of black squares. The white squares indicate 

residual dependencies in the data not accounted for by the scoring model (positive local 

dependence), while the black squares indicate that the model overestimated the 
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dependencies relative to the observed data (negative local dependence). The seven 

triangle-shaped clusters of white squares each represent a local area in the scoring model 

(Model 1) where the median PPP-values across 100 replications were less than .025. 

Each such cluster corresponds to the bivariate associations among three observables:  

Observables 1-3 (i.e. Observable Pairs 1/2, 1/3, and 2/3), Observables 6-8 (i.e. 

Observable Pairs 6/7, 6/8, and 7/8), Observables 11-13 (i.e. Observable Pairs 11/12, 

11/13, and 12/13), Observables 16-18 (i.e. Observable Pairs 16/17, 16/18, and 17/18), 

Observables 22-24 (i.e. Observable Pairs 22/23, 22/24, and 23/24), Observables 28-30 

(i.e. Observable Pairs 28/29, 28/30, and 29/30), Observables 31-33 (i.e. Observable Pairs 

31/32, 31/33, and 32/33). The characteristic common to these 21 observables is that they 

were influenced by a contextual latent variable in the generating model (Model 3). There 

were residual associations among these observable pairs in the data that were not 

accounted for by the scoring model (Model 1).  

Regarding the 3x3 cluster of black squares, the nine implicated observable pairs 

(28/31, 28/32, 28/33, 29/31, 29/32, 29/33, 30/31, 30/32, and 30/33) represent the inter-

cluster observable pairs that relate Observables 28-30 (whose intra-cluster observable 

pairs were all flagged) to Observables 31-33 (whose intra-cluster observable pairs were 

all flagged). These black squares indicate that the scoring model overestimated the 

residual dependencies between observable pairs that had θ3 as their primary latent parent 

but had different contextual latent variables as their second latent parent. The analogous 

clusters of observable pairs for θ1 and θ2 did not exhibit this pattern, which suggests that 

accounting for the variability in responses to observables dependent upon θ3 was more 

difficult in this model than for observables dependent on θ1 or θ2. Consistent with 
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conditional covariance theory (Zhang and Stout, 1999), local dependence was more 

pronounced between observable-pairs reflecting different multiple dimensions in the case 

of θ3 due to its higher proportion of multidimensional items relative to θ1 and θ2. 

In contrast to the pattern discussed previously for the partial mastery 

misspecification, the pattern of median PPP-values for non-flagged variable pairs in the 

case of this contextual variable misspecification were all modest in magnitude (.25 to .75) 

and did not show systematic patterns of directionality. This may be due in part to the fact 

that none of the contextual latent variables spanned multiple primary latent variables, 

which was the case for the partial mastery misspecification. If a single “large” contextual 

latent variable had been defined to coincide with the same 17 observables that defined 

CPT Template 8), then greater similarities would likely have resulted. Stated differently, 

if definitions of partial mastery had been operationalized as seven clusters of three 

observables within the context of individual primary latent variables, then the cross-

cluster patterns reported previously may have disappeared. This confound in the study 

design prohibits a definitive answer. Future research could explore whether alternatively 

framed misspecifications can produce matching patterns of bivariate data model misfit, 

potentially even to the extent of model equivalence.  

Figure 30 depicts a heat map of median PPP-values for the bivariate SGDDM fit 

function for Condition 4.1. Recall that Model 4 differed from Model 1 along both 

manipulated dimensions: contextual latent variables and a third latent class. 
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Figure 30. Heat map of median PPP-values for bivariate SGDDM or Q3 for Condition 
4.1. Each square in the matrix represents the median of 100 PPP-values (1 per 
replication) for one pair of observables. White (black) squares indicate that the posterior 
predicted values are systematically lower (higher) than the realized values. 
 
 
The results depicted in Figure 30 can be generally described as a blending of Figures 28 

and 29, as a function of the interaction of the two experimental factors. In Condition 3.1 

(Figure 29) all white squares were part of a cluster of three observable pairs 

corresponding to the intra-member associations of observables with two latent parents. 
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The differences between Condition 3.1 (Figure 29) and Condition 4.1 (Figure 30) can be 

described as exceptions to that pattern. Observable pairs 31/32, 31/33, and 32/33 meet 

that definition but were not flagged. These observables were governed by a CPT table 

where the partial mastery class acted as the non-mastery class. In Condition 2.1, no such 

observables were flagged. There were 13 observable pairs that did not meet that 

definition and were flagged (Observable Pairs 4/5, 16/19, 16/20, 16/21, 17/19, 17/20, 

17/21, 18/19, 18/20, 18/21, 19/20, 19/21, 20/21). These observables were generated 

according to a CPT table where the partial mastery class acted as the mastery class. In 

Condition 2.1, all such observables were flagged. 

Figure 31 depicts a heat map of median PPP-values for the bivariate SGDDM fit 

function for Condition 5.1. Recall that Model 5 differed from Model 1 only in terms of 

twelve crossloadings that gave nine observables additional parents. 
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Figure 31. Heat map of median PPP-values for bivariate SGDDM or Q3 for Condition 
5.1. Each square in the matrix represents the median of 100 PPP-values (1 per 
replication) for one pair of observables. White (black) squares indicate that the posterior 
predicted values are systematically lower (higher) than the realized values. 
 
 
In the heat map there are eleven white squares among 528 total (proportion flagged = 

.02). Each white square represents a pair of observables with median PPP-values less 

than .025 (Observable Pairs (1/2, 1/30, 2/3, 2/17, 2/18, 2/29, 2/30, 3/17, 3/18, 3/32, 

17/18). There were residual associations among these observable pairs in the data 
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(generated from Model 5) that were not accounted for by the scoring model (Model 1). 

These eleven observable pairs were not spatially clustered in the figure, but a meaningful 

pattern does exist based on the membership of this group:  all but one were associations 

between observables generated with multiple parents (Observables 1-3, 16-18, and 28-

30). Of the 36 observables pairs meeting this criterion, 10 were flagged (28%). The 

remaining flagged pair (Observable Pair 3/32) was anomalous in the sense that it was the 

only bivariate association flagged in which one member had a single parent and the other 

member had multiple parents, among 216 such associations. However, this pair can also 

be thought of as a member of the group of 45 observable pairs in which both member 

observables were dependent upon θ3. This group accounted for all but three of the 

medians outside the central category (.25 to .75) that were not from pairs of multi-parent 

observables (the remaining three were Observables Pairs 1/31, 1/32, and 1/33, which 

were relatively high but not flagged). Among these 45 pairs where both observables were 

a child of θ3, nine observable pairs were flagged as having extremely low median PPP-

values (20%), 24 pairs had relatively low medians but were not flagged (53%), and three 

pairs had relatively high medians but were not flagged (7%). This finding was part of a 

larger trend that θ3 exhibited greater local dependence than θ2 or θ1 due to the larger 

proportion of multidimensionality in θ3.  

Figure 32 depicts a heat map of median PPP-values for the bivariate SGDDM fit 

function for Condition 6.1. Recall that Model 6 differed from Model 1 along both 

manipulated factors: the addition of twelve crossloadings, and the addition of a third 

latent class (partial mastery). 
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Figure 32. Heat map of median PPP-values for bivariate SGDDM or Q3 for Condition 
6.1. Each square in the matrix represents the median of 100 PPP-values (1 per 
replication) for one pair of observables. White (black) squares indicate that the posterior 
predicted values are systematically lower (higher) than the realized values. 
 
 
In the heat map there are 62 white squares among 528 total (proportion flagged = .12). 

Each white square represents a pair of observables with a median PPP-value less than 

.025. The results depicted for Condition 6.1 (Figure 32) can be generally described as a 

blending of Condition 2.1 (Figure 28) and Condition 5.1 (Figure 31), as an interaction 

between the two experimental factors. The pattern in Condition 6.1 (Figure 32) is most 

0
0.025

0.25

0.5

0.75

0.975
1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33Proportion flagged = 0.117

over = 0
under = 0.117



130 

reminiscent of the pattern observed in Figure 28 for Condition 2.1, but with additional 

white squares in places consistent with the finding from Condition 5.1 (Figure 31) that 

observable pairs in which both members had multiple parents were sometimes flagged. In 

Condition 6.1, 25 of the 36 pairings meeting that criterion were flagged (69%), as 

opposed to 10 out of 36 in Condition 5.1 (28%). The flag rate among observable pairs 

where both members had multiple parents thus increased in the presence of the additional 

latent class. The interaction between factors can be viewed from the perspective of the 

finding from Condition 2.1, namely that the flag rate decreased among observable pairs 

where both members were governed by a CPT template in which the partial mastery class 

behaved as the mastery class. In Condition 6.1, 36 of the 46 pairings meeting that 

criterion were flagged (78%) as opposed to 46 out of 46 in Condition 2.1 (100%). The 

flag rate among observable pairs with one member having multiple parents was also 

larger in Condition 6.1 (6 of 216, or 2.8%) relative to Condition 5.1 (1 of 216, or 0.5%). 

The flagged observable pairs in that category were 4/17, 4/28, 4/29, 7/16, 7/29, and 8/28.  

Finally, Observable Pairs 31/32, 31/33, and 32/33 were flagged despite that fact 

that they did not meet any of the criteria previously associated with flags. These 

observables shared θ3 as their only parent and were governed by a CPT where the partial 

mastery class acted as the non-mastery class. However, this finding can be explained 

within the context of conditional covariance theory, which states that at higher 

proportions of multidimensional items multidimensionality can be revealed in terms of 

item pairs that reflect the primary dimension only. Findings of this description were 

reported by Levy et al. (2009) in a related study. It appears that the high proportion of 

multidimensional observables dependent upon θ3 (three out of six observables, or 50%) 
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relative to the analogous proportions for θ2 (three out of twelve observables, or 25%) or 

θ1 (three out of fifteen observables, or 20%) was a contributing factor. Note that this 

factor was present in Condition 5.1, where the same observables had relatively low PPP-

values but were not flagged, so the presence of the additional latent class appears to have 

interacted as well. The additional latent class by itself (i.e. Condition 2.1) resulted in low 

PPP-values for these same observables, but not extreme enough to be flagged.  

Q3   

The results for the Q3 fit function were nearly identical to the bivariate SGDDM 

results across all conditions. No differences in any of the graphs were perceived, and the 

only entries in Tables 26-28 that differed between the two functions were the proportion 

flagged values for Condition 5.5, and the difference there was a single unit in the second 

decimal place. Consequently the results for the Q3 function were not provided due to their 

redundancy with the SGDDM bivariate results.  

HCI 
 As an indicator of person fit, the HCI fit function yielded a PPP-value in each 

replication of each condition for each person (simulee). However, simulees did not retain 

their “identities” across replications because new simulees were generated for each 

replication, so consistency across replications was not a meaningful outcome at the 

person level (as was consistency across replications at the observable level for the 

observable-level fit functions). Even though misfitting persons were not explicitly 

generated into the data, it was of interest to know whether the misfit from model 

misspecifications would be evident when inspected from a person-fit perspective. Figure 

33 shows the HCI PPP-value distributions by condition. 
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Figure 33. Distributions of PPP-values for HCI by condition. The x-axis spans the 0 to 1 
range of possible values, with 100 bins at increments of .01. The horizontal line at 
y=1000 represents uniformity because there are 100,000 values per condition. 
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Generally speaking, the distributions approached uniformity. Misspecified conditions 

manifested higher frequencies of extreme values than did null conditions, suggesting that 

HCI had power to detect misfitting response patterns (simulees). Looking down the last 

column of Table 26, it can be seen that the proportions of PPP-values flagged as extreme 

in the null conditions ranged from .03 to .05, while the proportions from the misspecified 

conditions ranged from .05 to .07, indicating that misspecified conditions on average had 

approximately 20 additional extreme response patterns relative to null conditions. The 

medians of the 11 sets of 100,000 PPP-values (1000 persons x 100 replications) were 

consistently centrally located across conditions, ranging from .48 to .50 (see Table 27). 

The median effect sizes in the null conditions ranged from .01 to .06 (see Table 28), 

while the median effect sizes from the misspecified conditions ranged from .02 to .04.  

Across all conditions, the empirical sampling distributions of HCI exhibited a 

negative skew that looked like a mixed modal distribution (see Figure 34), with the 

smaller mode representing the negative HCI values, i.e. the misfitting response patterns. 
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Figure 34. Densities of posterior predicted HCI values by condition. The vertical lines 
represent the means of realized values. 
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To tease out the characteristics of simulees that were flagged, Tables 29 and 30 report the 

proportion of simulees from each proficiency profile that were flagged in each condition. 

Table 29 applies to conditions where the data were generated by a model with two latent 

classes per primary latent variable (Conditions 1.1, 3.1, 3.3, 5.1, and 5.5), and Table 30 

applies to conditions where the data were generated by a model with three latent classes 

per primary latent variable (Conditions 2.1, 2.2, 4.1, 4.4, 6.1, and 6.6). 

Table 29 
 
Generated primary latent variable proficiencies by condition for conditions with two 
latent classes per primary latent variable 

LV proficiencies 

[θ1,θ2,θ3]

Proportion 
within all 
simulees Null* 3.1 5.1

[1,1,1] .08 .03 .04 .04
[1,1,2] .01 .02 .03 .01
[1,2,1] .01 .02 .04 .00
[1,2,2] .00 .04 .05 .04
[2,1,1] .03 .03 .05 .01
[2,1,2] .06 .04 .05 .02
[2,2,1] .08 .05 .07 .08
[2,2,2] .73 .05 .07 .05

Proportion flagged within 
LV proficiency profile

condition

 
Note. Flagging refers to simulees with HCI PPP-values less than .025 or greater than 
.975. *Null conditions with 2 latent classes were 1.1, 3.3, and 5.5. 
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Table 30 
 
Generated primary latent variable proficiencies by condition for conditions with three 
latent classes per primary latent variable 

LV proficiencies 

[θ1,θ2,θ3]

Proportion 
within all 
simulees Null* 2.1 4.1 6.1

[1,1,1] .06 .03 .54 .47 .46
[1,1,2] .01 .02 .23 .26 .46
[1,1,3] .00 -- -- -- --
[1,2,1] .02 .01 .03 .06 .18
[1,2,2] .01 .01 .02 .03 .06
[1,2,3] .00 -- -- -- --
[1,3,1] .00 -- -- -- --
[1,3,2] .00 -- -- -- --
[1,3,3] .00 -- -- -- --
[2,1,1] .00 .01 .01 .02 .05
[2,1,2] .01 .00 .00 .02 .02
[2,1,3] .00 -- -- -- --
[2,2,1] .01 .00 .00 .00 .00
[2,2,2] .05 .01 .00 .00 .00
[2,2,3] .01 .00 .00 .00 .01
[2,3,1] .00 -- -- -- --
[2,3,2] .03 .00 .01 .01 .01
[2,3,3] .00 .00 .01 .02 .02
[3,1,1] .00 -- -- -- --
[3,1,2] .00 -- -- -- --
[3,1,3] .00 -- -- -- --
[3,2,1] .00 -- -- -- --
[3,2,2] .05 .01 .01 .03 .01
[3,2,3] .19 .02 .02 .03 .02
[3,3,1] .00 -- -- -- --
[3,3,2] .06 .03 .03 .05 .03
[3,3,3] .51 .04 .04 .06 .04

Proportion flagged within 
LV proficiency profile

condition

 
Note. Flagging refers to simulees with HCI PPP-values less than .025 or greater than 
.975. *Null conditions with 2 latent classes were 1.1, 3.3, and 5.5.
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Generally speaking, the patterns evident in Table 29 for conditions with two latent 

classes per primary latent variable were relatively weak compared to the patterns evident 

in Table 30 for the conditions with three latent classes per primary latent variable, 

suggesting that HCI was less sensitive to the contextual and crossloadings 

misspecifications than to the partial mastery misspecification. The “null” column within 

Table 29 shows that simulees in conditions 1.1, 3.3, and 5.5 tended to get flagged at 

approximately the nominal rate of 5% if they belonged to the profile with the highest 

proficiencies (i.e. profile [2,2,2]). This profile was by far the largest, comprising about 

73% of all simulees in these conditions. Simulees with other proficiency profiles were 

flagged at slightly conservative rates, with proportions ranging from .02 to .04.  

For Condition 3.1, the proportion of flagged simulees from each proficiency 

profile was elevated by one or two points relative to the null conditions. This indicates 

that more simulees were flagged marginally in Condition 3.1 than in the null conditions, 

but that no profile in particular was more susceptible to misfit than the others. For 

Condition 5.1, differences between the flag rates for each proficiency profile relative to 

the null conditions were directionally inconsistent and small in magnitude, ranging from -

.01 to .03.  

Shifting attention to the conditions with three latent classes per primary latent 

variable in Table 30, the findings were more striking. In Condition 2.1, 54% of the 

simulees with non-mastery status on all three latent variables (i.e. profile [1,1,1]) were 

flagged. This translates to about 30 additional flagged simulees per replication relative to 

the null conditions. Further inspection of these simulees indicated that their realized HCI 

values tended to be around two standard deviations lower than their posterior predicted 
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HCI values, which means that the degree of misfit attributed by HCI to these simulees 

was much stronger in their realized response patterns than in their replicated response 

patterns. Simulees from proficiency profile [1,1,2] were also flagged at a 

disproportionately high rate of 23%, while other profiles were flagged at rates similar to 

the null conditions (differences ≤ .02). Results for Condition 4.1 were generally similar to 

Condition 2.1, with profiles [1,1,1] and [1,1,2] exhibiting proportions of .47 and .26 

respectively. The proportion flagged from profile [1,2,1] was .06 (a difference of .05 

relative to the null conditions), while the differences relative to the null conditions for all 

other profiles were ≤ .02. In Condition 6.1 profiles [1,1,1] and [1,1,2] each had 

proportions of .46, and the proportion flagged from profile [1,2,1] was .18. Profiles 

[1,2,2] and [2,1,1]  had proportions of .06 and .05 respectively (corresponding to 

differences of .05  and .04 relative to the null conditions), and the differences relative to 

the null conditions for all other profiles were ≤ .02. Figure 22 can be used to explain 

these findings by focusing on Condition 2.1 as an illustrative example. Each row in the 

figure provides the conditional probability of a correct response to each observable for a 

given latent proficiency profile. In the first panel, values correspond to the parameters as 

generated by Model 2, which had three latent classes for each of three latent variables for 

a total of 27 latent profiles. When data generated from Model 2 were fit to Model 1, 

which had two latent classes per latent variable for a total of eight latent profiles, the 

resultant estimates of conditional probability parameters shown in Panel 2 reflect the 

coerced consolidation of 27 categories into 8 categories. Such a process necessitates 

changes to the definitions of at least some categories, or changes to the aggregated 

characteristics of members within a given category, or both. For example, consider the 
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first row in Figure 22:  the “non-mastery” class as generated from Model 2 (i.e. profile 

[1,1,1] ) had a 20% probability of correctly responding to each observable, but the [1,1,1] 

profile as estimated by Model 1 when fit to the same data had a substantially larger 

chance of correctly responding to Observables 1-8, 16-21, and 28-30. Inspection of 

individual response patterns confirmed that simulees from Condition 2.1 who were 

flagged for having extreme HCI PPP-values were as a rule assigned to appropriate classes 

(e.g. response patterns generated from profile [1,1,1] were assigned to profile [1,1,1] by 

the scoring model). The reason for their extremely low realized HCI values relative to 

their posterior predicted HCI values was directly tied to the categorical definitions in the 

scoring model relative to the generating model. Recall that posterior predicted response 

patterns were generated from estimated model parameters consistent with the values in 

Panel 2, but realized response patterns were generated from the parameters in Panel 1. It 

is clear from row by row comparisons that certain profiles in Panel 1 were less likely to 

generate response patterns that would be consonant with the consolidated categorization 

of simulees as expressed in Panel 2.  

It is important to note that response patterns of individual simulees from 

throughout the response space could be provided as examples of the underlying principle 

that simulees were flagged by HCI not because response patterns were necessarily 

extreme (i.e. the realized HCI value could have been anywhere in the spectrum), but 

because the disparity between the realized HCI value and posterior predicted HCI values 

was systematically large. Profile [1,1,1] was the profile most affected by this principle in 

the investigated conditions, which is why it is being used as an illustrative example, but 

this principle applies to the other profiles and other conditions as well. The definition of 
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profile [1,1,1] in the scoring model allowed for a larger degree of success on the 

assessment than did the definition of profile [1,1,1] in the generating model. HCI detected 

the fact that simulees who performed low in the realized dataset were often much more 

successful in the posterior predicted data because they benefitted from the relaxed 

definition of the lowest category. This is ironic because the lowest performing examinees 

would serve as prototypes of “non-mastery” according to an intuitive taxonomy, but the 

scoring model’s [1,1,1] profile class was more  inclusive of response patterns generated 

from what were conceived of as the “partial mastery” categories. The simulees with the 

lowest levels of mastery were thus disproportionately flagged by HCI because their 

extreme levels of non-mastery were less consistent with the homogenized definition of 

non-mastery constructed by the categorically restricted scoring model. 

HCI provided its strongest evidence of misfit for the latent class misspecification, 

while the contextual variable misspecification and the crossloadings misspecification 

displayed weaker evidence. The overall pattern of results suggests that HCI can provide 

useful fine-grained feedback within a PPMC framework. By inspecting differences in the 

realized response patterns of flagged persons relative to their posterior predicted response 

patterns, researchers can identify weaknesses associated with the estimated (scoring) 

model. While it may be too soon to speculate on the generalizability of these findings, 

HCI appears promising as a PPMC fit function even when person misfit is not the focal 

interest.  

ICI 

As noted previously when presenting the distributions of PPP-values aggregated 

across null and misspecified conditions, the performance of ICI differed somewhat across
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misspecified conditions and across observables within some conditions. To help detail these differences, Figures 35-37 depict heat 

maps for the ICI fit function by condition and observable, with each figure mapping one of the three outcomes used in this study: 

proportions of extreme PPP-values (Figure 35), median PPP-values (Figure 36), and median effect size (Figure 37).

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33

1.1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

2.1 .01 .01 .00 .00 .01 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 .48 .47.47 .45 .45 .52 .00 .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01

2.2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

3.1 .09 .09 .09 .00 .00 .03 .04 .07 .00 .00 .12 .05 .05 .00 .00 .00 .02.02 .00 .00 .00 .04 .02 .01 .00 .00 .00 .04 .05 .05 .03 .01 .04

3.3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

4.1 .39 .36 .35 .02 .00 .41 .36 .40 .00 .00 .03 .01 .00 .00 .001.00 1.00 1.00 .27 .31 .36 .00 .00 .00 .00 .00 .00 .96 .96 .98 .00 .00 .00

4.4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

5.1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

5.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

6.1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37 .32.37 .20 .28 .27 .01 .01 .01 .01 .01 .01 .00 .00 .00 .02 .02 .01

6.6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Observable

 

Figure 35. Heat map of proportions of extreme PPP-values across all replications for ICI by condition and observable. Each square 
in the matrix represents a proportion of 100 PPP-values flagged as extreme (less than .025 or greater than .975). Increasingly dark 
shading is used for larger proportions. 
 

Focusing first on Figure 35, each square in the heat map represents a proportion of 100 PPP-values flagged as extreme (less than 

.025 or greater than .975). For the null conditions, these proportions represent the observed Type-I error rates, while in the
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misspecified conditions they represent observed power. Note that these power rates would be 

different for alternative alpha levels. In the figure, increasingly dark shading is used for larger 

proportions. For all null conditions, and additionally for Condition 5.1, the proportion of extreme 

PPP-values was .00 across all observables (as it was for all conditions for the other observable-

level fit functions: PC, χ2, RPS, and GLS).  This is consistent with what was depicted in Figure 

11, where it was seen that the distributions of PPP-values in these conditions never included the 

values defined as extreme. Of greater complexity is the differential performance across 

observables for the remaining four misspecified conditions (2.1, 3.1, 4.1, and 6.1).  

For Condition 2.1, the proportion of flagged PPP-values ranged from .00 to .01 for all 

observables except Observables 16-21, which ranged from .45 to .52. The six observables with 

higher flag rates had θ2 as their parent and were governed by CPT Template 8. Observables with 

a different CPT structure and a different parent (i.e. Observables 31-33), observables with the 

same parent but a different CPT structure (i.e. Observables 22-27), or observables with the same 

CPT structure but a different parent (i.e. Observables 1-8 and 28-30) were flagged at near-zero 

rates.  

The pattern of results for Condition 6.1 was similar to Condition 2.1. The proportion of 

flagged PPP-values ranged from .00 to .02 for all observables except Observables 16-21, which 

ranged from .20 to .37. The characteristic common to these six observables with higher flag rates 

was that they had θ2 as a parent, and they were governed by a CPT template in which the partial 

mastery class was as likely as the mastery class to be successful. Observables with different 

parentage and/or governed by CPT structures in which the partial mastery class was equal to the 

non-mastery class were flagged at near-zero rates. 



143 

For Condition 3.1, the observables with a single latent parent (those corresponding to 

CPT Template 4:  Observables 4-5, 9-10, 14-15, 19-21, and 25-27) had proportions of .00, while 

proportions for observables with two latent parents ranged from .00 to .12. In Condition 4.1 

observables were governed by one of four CPT templates, with somewhat differing results 

according to template. Observables governed by CPT Template 9 (Observables 9-10, 14-15, and 

25-27) had proportions of .00, while proportions for observables governed by CPT Template 13 

ranged from .00 to .03. Results within CPT Template 8 were strikingly divergent:  Observables 

4-5 had proportions of .02 and .00, while Observables 19-21 ranged from .27 to .36. Observables 

governed by CPT Template 12 all had non-trivial proportions, but rates varied widely:  

Observables 1-3 and 6-8 ranged from .35 to .41, while Observables 16-18 and 28-30 ranged from 

.96 to 1.00.  

When looking across the columns of Figure 35, the most striking feature is that 

Observables 16-21 were flagged in at least 20% of the replications for Conditions 2.1, 4.1, and 

6.1, but were flagged in 0% of the replications for the remaining conditions (except two 

observables were flagged in 2% of replications in Condition 3.1). The characteristic common to 

the three conditions with higher flag rates was the latent class misspecification (presence of the 

partial mastery class in the generating models but not the scoring models). However, within these 

three conditions the observables with the same CPT template but different parents (i.e. θ1 or θ3) 

exhibited minimal power. This inconsistency will be discussed in further detail later. 

Moving on to the second outcome, Figure 36 depicts a heat map of the median PPP-

values across all replications for the ICI fit function by condition and observable.
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Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33

1.1 .45 .45 .45 .47 .44 .45 .45 .45 .44 .44 .42 .43 .46 .45 .46 .44 .45.44 .45 .47 .45 .45 .45 .47 .44 .46 .47 .44 .43 .41 .44 .45 .44

2.1 .12 .12 .12 .12 .14 .12 .13 .13 .41 .44 .41 .40 .41 .44 .42 .03 .03.03 .03 .03 .02 .50 .50 .48 .51 .50 .53 .32 .31 .29 .37 .37 .38

2.2 .45 .44 .46 .45 .47 .46 .47 .45 .46 .47 .46 .46 .45 .46 .46 .43 .46.44 .45 .46 .44 .44 .44 .44 .45 .45 .45 .49 .52 .50 .46 .49 .46

3.1 .08 .07 .08 .43 .42 .08 .08 .09 .45 .45 .08 .07 .08 .46 .46 .09 .11.09 .47 .46 .43 .10 .11 .09 .44 .45 .47 .24 .22 .21 .28 .26 .26

3.3 .40 .39 .40 .43 .42 .39 .37 .39 .43 .42 .40 .41 .41 .45 .44 .41 .38.39 .45 .45 .42 .40 .42 .40 .43 .43 .44 .39 .40 .40 .40 .40 .40

4.1 .03 .04 .03 .15 .17 .03 .03 .03 .43 .43 .15 .15 .14 .45 .45 .00 .00.00 .04 .04 .04 .38 .41 .38 .52 .53 .50 .00 .00 .00 .70 .67 .70

4.4 .40 .41 .41 .44 .49 .38 .40 .39 .43 .44 .42 .40 .42 .45 .45 .38 .39.37 .46 .45 .45 .40 .44 .41 .45 .44 .46 .38 .38 .36 .42 .43 .42

5.1 .34 .28 .32 .45 .45 .47 .46 .45 .42 .46 .45 .46 .44 .47 .46 .47 .34.32 .43 .44 .44 .44 .45 .44 .44 .43 .43 .36 .58 .57 .29 .26 .27

5.5 .40 .35 .39 .44 .44 .46 .45 .43 .43 .47 .45 .46 .45 .47 .44 .40 .34.37 .44 .46 .46 .44 .44 .42 .44 .44 .43 .38 .36 .39 .42 .41 .40

6.1 .16 .19 .18 .16 .16 .15 .15 .16 .41 .40 .42 .37 .38 .37 .37 .04 .04.04 .04 .04 .04 .49 .50 .48 .50 .49 .50 .43 .43 .44 .21 .20 .22

6.6 .39 .33 .42 .48 .45 .46 .45 .46 .47 .45 .46 .45 .45 .44 .46 .42 .35.44 .43 .43 .44 .45 .44 .44 .46 .44 .45 .44 .34 .41 .47 .47 .48

Observable

 
 
Figure 36. Heat map of median PPP-values across all replications for ICI by condition and observable. Each square in the matrix 
represents the median of 100 PPP-values (1 per replication) for each observable across conditions. 
 
 
Each square in the matrix represents the median of 100 PPP-values (one per replication). The shading rules were chosen for 

comparability to a hypothesis-testing framework. Black (white) shading indicates a median in the upper (lower) 2.5% of possible 

values, yielding 5% of the distribution as “extreme” enough warrant a flag of misfit. Conditions 2.1 and 4.1 were the only 

conditions to exhibit median values in the flagged ranges. For Condition 2.1, Observable 21 was flagged (median = .02), and for 

Condition 4.1, Observables 16-18 and 28-30 were flagged (all medians = .00).
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Note that different decision criteria would yield different visual patterns and interpretations, but the underlying results (i.e. the 

distributions of PPP-values) would remain the same. For example, in Condition 3.1 the observables influenced by a contextual 

latent variable exhibited median PPP-values that were far from centralized but were not below the .025 threshold. This is an 

example of how PPP-value distributions can yield different interpretations depending on how they are summarized.  

Shifting attention to the third outcome, Figure 37 provides a heat map of the median effect sizes across all replications for 

the ICI fit function by condition and observable. Each square in the matrix represents a median of 100 effect sizes (one per 

replication). Increasingly darker shading indicates larger median effects.

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33

1.1 .1 .1 .1 .1 .1 .1 .2 .2 .1 .2 .2 .2 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1.2 .1 .1 .1 .2 .2 .2 .1 .2

2.1 1.2 1.1 1.2 1.1 1.1 1.1 1.1 1.1.2 .1 .3 .3 .2 .2 .21.9 1.9 1.9 1.9 1.9 2.0.0 .0 .1 .0 .0 -.1 .5 .5 .6 .4 .4 .3

2.2 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .2 .1 .1 .2 .2 .2 .1.1 .1 .1 .0 -.1 .0 .1 .0 .1

3.1 1.4 1.4 1.4 .2 .2 1.4 1.4 1.4 .1 .1 1.4 1.4 1.4 .1 .1 1.3 1.3 1.4 .1 .1 .2 1.3 1.2 1.3 .2 .1 .1 .7 .8 .8 .6 .6 .6

3.3 .3 .3 .3 .1 .2 .3 .3 .3 .2 .2 .3 .3 .2 .2 .1 .2 .3 .3 .1 .1 .2 .3 .2 .3.2 .2 .2 .3 .3 .3 .3 .3 .3

4.1 1.8 1.8 1.8 1.1 .9 1.8 1.8 1.9.2 .2 1.1 1.1 1.1 .2 .1 3.0 3.0 3.0 1.7 1.8 1.8.3 .2 .3 .0 -.1 .0 3.0 2.9 3.0-.5 -.5 -.5

4.4 .3 .2 .2 .1 .0 .3 .3 .3 .2 .2 .2 .3 .2 .1 .1 .3 .3 .3 .1 .1 .2 .2 .1 .2.1 .2 .1 .3 .3 .3 .2 .2 .2

5.1 .4 .6 .5 .2 .2 .1 .2 .1 .2 .1 .1 .1 .2 .1 .1 .1 .4 .5 .2 .2 .2 .2 .2 .2.1 .2 .2 .3 -.2 -.2 .5 .6 .6

5.5 .3 .4 .3 .2 .2 .1 .1 .2 .2 .1 .1 .1 .1 .1 .2 .3 .4 .4 .2 .1 .1 .2 .2 .2.1 .2 .2 .3 .4 .2 .2 .2 .3

6.1 1.0 .9 .9 1.0 1.0 1.1 1.0 1.0.3 .3 .3 .3 .3 .3 .31.7 1.8 1.8 1.7 1.7 1.7.1 .0 .1 .0 .0 .0 .2 .2 .2 .8 .8 .8

6.6 .3 .4 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .1 .2 .4 .2 .2 .2 .2 .1 .2 .1.1 .2 .2 .2 .4 .2 .1 .1 .1

Observable

 

Figure 37. Heat map of median effect size values across all replications for ICI by condition and observable. Each square in the 
matrix represents the median of 100 effect sizes (1 per replication) for each observable across conditions.
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The median effects in null conditions ranged from -0.05 to 0.43. Some differentiation of 

effect size was evident across observables according to CPT templates, though not as 

strongly as in misspecified conditions. For example, in Condition 6.6 the observables 

with three latent parents (governed by CPT Template 16) each had median effect sizes 

around 0 .4, while median effect sizes for all other observables in that condition were less 

than 0.3. In Conditions 3.3 and 4.4, observables influenced by a contextual latent variable 

(CPT Templates 11-13) tended to have slightly larger median effect sizes than 

observables with a single latent parent. These findings suggest that the effect size metric 

was somewhat sensitive to the fact that some conditional probabilities were more difficult 

to estimate than others, and that sampling variability alone caused noticeable differences 

in effect sizes across some CPT templates.  

In the misspecified conditions, the differentiation of values across observables 

according to CPT template tended to be much stronger. For example, in the second row 

of Figure 37, it can be seen that for Condition 2.1, median effects for observables 

governed by CPT Template 8 (Observables 1-8, 16-21, and 28-30) ranged from about 0.3 

to 2.0, while the observables governed by CPT Template 9 (Observables 9-15, 22-27, and 

31-33) ranged from about -0.1 to 0.3. A pattern was also evident within the observables 

associated with CPT 8, with larger effects for observables dependent upon θ2 (1.9 to 2.0) 

versus θ1 (1.1 to 1.2), both of which were much larger than those for θ3 (0.3 to 0.6).  

For Condition 3.1, median effects for observables with a single latent parent (CPT 

Template 4:  Observables 4-5, 9-10, 14-15, 19-21, and 25-27) ranged from about 0.1 to 

0.2, while observables with the additional influence of a contextual latent variable (CPT 

Template 11:  Observables 1-3, 6-8, 11-13, 16-18, 22-24, and 28-33) ranged from about 
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0.6 to 1.4. A pattern was also evident within the observables associated with CPT 11, 

with larger effects for observables associated with θ1 (0.1 to 0.4) or θ2 (1.2 to 1.4) than θ3 

(0.6 to 0.8).  

Condition 4.1 had median effects ranging from 1.8 to 3.0 for the twelve 

observables with two latent parents and which were mastered by the partial mastery class 

(those corresponding to CPT Template 12: Observables 1-3, 6-8, 16-18, and 28-30), 

while the observables corresponding to CPT Template 8 (Observables 4-5 and 19-21) 

ranged from 0.9 to 1.8, and all other observables ranged from -0.1 to 0.3. Patterns within 

the CPT templates exhibiting larger effects were again evident. Observables associated 

with CPT 12 showed larger effects for observables associated with θ2 (3.0) or θ3 (2.9 to 

3.0) than θ1 (1.8 to 1.9). Observables associated with CPT 8 showed larger effects for 

observables associated with θ2 (1.7 to 1.8) than θ1 (0.9 to 1.1). Observables associated 

with CPT 13 (Observables 11-13, 22-24, and 31-33) showed larger effects for 

observables associated with θ1 (about 1.1) than θ3 (-0.5) or θ2 (0.2 to 0.3). Note that some 

of the large median effect sizes in this condition were associated with observables that 

were not flagged according to the proportion of extreme PPP-values. This illustrates the 

importance of not relying on the effect sizes exclusively, but rather considering them in 

the context of the PPP-values. 

Condition 5.1 exhibited less clean patterns across observables than the other 

misspecified conditions. Most of the single-parent observables in this condition had effect 

sizes in the 0.1 to 0.2 range, but strong exceptions occurred for Observables 31-33, which 

had median values of approximately 0.5 to 0.6. The observables with three latent parents 

(CPT Template 14: Observables 2, 17, and 29) had median effects of similar magnitude 
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(0.4 to 0.6), while observables with two latent parents (CPT Template 11: Observables 1, 

3, 16, 18, 28, and 30) ranged from about -0.2 to 0.5.  

For Condition 6.1, the median effects for observables from CPT Template 9 

(Observables 9-15, 22-27, and 31-33) ranged from 0.0 to 0.8, while those from CPT 

Template 8 (Observables 4-8 and 19-21) ranged from 1.0 to 1.7. Patterns within the CPT 

templates exhibiting larger effects were again evident. Observables associated with CPT 

8 showed larger effects for observables associated with θ2 (1.7) than θ1 (1.0 to 1.1). 

Observables associated with CPT 13 (Observables 11-13, 22-24, and 31-33) showed 

larger effects for observables associated with θ3 (0.8) than θ1 (0.3) or θ2 (0.0 to 0.1). 

Among observables with two or three latent parents (Templates 15 and 16), the 

observables associated with θ2 (Observables 16-18) showed larger median effects (1.7 to 

1.8) than did those of θ1 (0.9 to 1.0) or θ3 (0.2).  

To clarify the mechanisms underlying the performance of ICI, Condition 2.1 is 

used as an illustrative example. Due to similarities between ICI and HCI, the principles 

discussed previously in the context of HCI results (see Figure 22) are relevant for 

understanding the performance of ICI. The results for any given observable using ICI can 

be thought of as a weighted average of the effects described for particular proficiency 

profiles in the HCI results. As with HCI, the essence of ICI boils down to comparisons 

between observed (or posterior predicted) response patterns and the response patterns 

implied by the Q-matrix for the scoring model. The proportion of mismatches when 

comparing the observed and implied responses (also referred to as “mismatches per 

comparison” or MPC) is rescaled to form the index value:  ICI = 1 – 2*MPC. To 

understand why ICI PPP-values tended to be more extreme for observables parented by 
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θ2 than by θ1 or θ3, consider Figure 38, which reports the mismatches per comparison 

(MPC) for simulees within each proficiency level of each latent variable. 

θ1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 .10 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32
2 .10 .50 .50 .50 .50 .50 .50 .50 .50 .53 .53 .52 .53 .53 .53 .53
3 .80 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32

θ2 16 17 18 19 20 21 22 23 24 25 26 27

1 .08 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32
2 .33 .52 .52 .52 .52 .52 .52 .52 .52 .52 .52 .52 .52
3 .59 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32

θ3 28 29 30 31 32 33

1 .10 .32 .32 .32 .32 .32 .32
2 .20 .54 .54 .54 .54 .54 .53
3 .70 .32 .32 .32 .32 .32 .32

θ1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 .17 .48 .48 .48 .48 .48 .48 .48 .48 .40 .40 .40 .40 .40 .40 .40
2 .83 .32 .32 .32 .32 .32 .32 .32 .32 .33 .33 .33 .33 .33 .33 .33

θ2 16 17 18 19 20 21 22 23 24 25 26 27

1 .38 .53 .53 .53 .53 .53 .53 .47 .47 .47 .47 .47 .47
2 .62 .32 .32 .32 .32 .32 .32 .33 .33 .33 .33 .33 .33

θ3 28 29 30 31 32 33

1 .25 .50 .50 .50 .42 .42 .42
2 .75 .33 .33 .33 .35 .35 .35

Mean mismatches per comparison (realized data)

Proportion 
of simulees

Observable (xj)

Mean mismatches per comparison (posterior predicted data)

Proportion 
of simulees

Observable (xj)

 
 
Figure 38. Mean MPC by latent proficiency and observable for Condition 2.1. Upper 
panel represents realized data generated from Model 2. Lower panel represents posterior 
predicted data generated by the estimated parameters when Model 1 was fit to data 
generated from Model 2. 
 

The upper panel represents the realized data and the lower panel represents the posterior 

predicted data. Simply put, there was a greater proportion of simulees with a partial 

mastery proficiency level for θ2 than for θ1 or θ3, and it was these partial-mastery 

simulees whose response patterns were more likely to produce mismatches relative to the 

response patterns implied by the Q-matrix for the scoring model. The partial mastery 
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class was by definition in conflict with an assumption underlying ICI: that the Q-matrix is 

sufficient to predict response patterns. In the Q-matrix, proficiency was a dichotomous 

prospect, with success or failure implied by the presence or absence of the latent trait. For 

simulees with partial mastery status on a latent trait, the aforementioned assumption did 

not hold. The inability of the Q-matrix to account for the response behavior of partial-

mastery simulees was borne out by the increased rate of mismatches for partial-mastery 

simulees in the realized data, but it was the differing proportions of partial-mastery 

simulees across latent variables that impacted the estimation of conditional probability 

parameters for the scoring model, the subsequent generation of posterior predicted data, 

and the relative value of the resultant posterior predicted ICI values to the observed ICI 

values (i.e. the PPP-values).  

From the viewpoint offered by Figure 38 it is clear that in the realized data the 

typical level of mismatch was relatively consistent across observables for simulees within 

a given proficiency level. Proficiency values of 1 or 3 (non-mastery or mastery) 

corresponded to approximately 1 mismatch in every 3 comparisons, while proficiency 

values of 2 (partial mastery) corresponded to approximately 1 mismatch for every 2 

comparisons. The key point of the upper panel is that the three latent variables differed 

with respect to the proportion of simulees having the higher mismatch rate (i.e. simulees 

in the partial mastery class). In the realized data, 33% of simulees were partially 

proficient on θ2, while 20% were partially proficient on θ3 and 10% were partially 

proficient on θ1.  

The lower panel of Figure 38 tells the analogous if slightly more complicated 

story about the absolute fit of each observable in the posterior predicted data. While 
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simulees with proficiency values of 2 (mastery) had relatively consistent levels of 

mismatch across all observables (approximately 1 mismatch per 3 comparisons as was 

the case in the realized data), the level of mismatch for simulees with proficiency values 

of 1 (non-mastery) aligned with the blocks of observables corresponding to combinations 

of CPT template and latent parent. MPC values for simulees with proficiency values of 1 

was approximately 1 mismatch per 2 comparisons for Observables 1-8, 16-21, and 28-30, 

which were the observables where the partial mastery class responded like the mastery 

class (CPT Template 8), while for the remaining observables (CPT Template 9) MPC 

values were somewhere between the two levels reported thus far: Observables 9-15(MPC 

= .40, Observables 22-27(MPC = .47), and Observables 31-33(MPC = .42). The 

divergence of MPC values within proficiency level 1 for each latent variable was 

reflective of the fact that this less-proficient class in the scoring model was a coerced 

homogenization of the heterogeneity that existed in the realized data (see Figure 22). 

However, the consequences for the posterior predicted data were more detectable with 

respect to θ2 due to the larger proportion of partial-mastery simulees. Specifically, the 

estimated conditional probability parameters for members of the non-mastery classes in 

the scoring model (which allowed for only two classes) represented a composite of the 

partial- mastery and non-mastery classes that existed in the realized data. For θ2, the 

estimated conditional probabilities of the relevant observables was pulled higher (toward 

the level of the mastery class) by the mastery-level performance of the partial mastery 

class on those observables, while the analogous parameters for the observables 

underlying θ1 and θ3 were impacted to a lesser degree commensurate with their smaller 

proportions of partial-mastery simulees. 
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Table 31 depicts a simplified example of how conditional probability patterns 

impact the ICI computations. The purpose of this table is to further illustrate the process 

by which patterns of conditional probabilities such as those provided in Figure 22 

translate into MPC values like those provided in Figure 38. 

Table 31 
 
Simplified example of the impact of conditional probability patterns on ICI outcomes 

Realized 
MPC

Postpred 
MPC

Realized 
ICI

Postpred 
ICI PPP-value

1 1 1 1 0 0 1 1 .5
0 0 0 0 0 0 1 1 .5
0 1 0 1 1 1 -1 -1 .5

.80 .80 .80 .80 .32 .32 0.36 0.36 .5

.20 .20 .20 .20 .32 .32 0.36 0.36 .5

.20 .80 .20 .80 .68 .68 -0.36 -0.36 .5

.20 .80 .20 .67 .68 .60 -0.36 -0.20 > .5

.20 .80 .20 .52 .68 .51 -0.36 -0.02 >> .5

.20 .80 .20 .45 .68 .47 -0.36 0.06 >>> .5

.20 .80 .80 .80 .68 .32 -0.36 0.36 >>>> .5
0 1 1 1 1 0 -1 1 >>>>> .5

.80 .80 .20 .45 .32 .47 0.36 0.06 < .5

.80 .80 .20 .52 .32 .51 0.36 -0.02 << .5

.80 .80 .20 .67 .32 .60 0.36 -0.20 <<< .5

.80 .80 .20 .80 .32 .68 0.36 -0.36 <<<< .5
1 1 0 1 0 1 1 -1 <<<<< .5

Realized CP Postpred CP

 

 

For the purposes of this example consider only two observables, where the scoring model 

implies that both observables reflect a single latent ability, and that success on both 

observables requires this latent ability according to the associated Q-matrix. The first two 

columns in Table 31 represent conditional probabilities for the two theoretical 

observables in realized data. The next two columns represent conditional probabilities for 

the same two observables in posterior predicted data. The remaining columns are 
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computations based upon the first four columns: realized and posterior predicted MPC 

and ICI values, and PPP-values. MPC is the ratio of mismatches to comparisons. ICI is a 

linear transformation of MPC: ICI = 1 – 2*MPC. PPP-values are the proportion of 

posterior predicted ICI values that meet or exceed the realized ICI value. Note that 

because there is only a single inter-observable comparison (per simulee) in this simplified 

example, the MPC, ICI, and PPP-values for both observables are equal. Therefore a 

single column was used to represent values that apply to both observables.  

In the first row of Table 31, the conditional probability of success in the realized 

data on both observables in the simplified example was 1, meaning that all simulees 

always completed both observables correctly. The corresponding realized MPC value of 

0 reflects the fact that there were no mismatches between the observed response patterns 

and the response patterns implied by the scoring model Q-matrix (i.e. there was zero 

disagreement between observed responses that were expected to agree according to the 

Q-matrix). The corresponding realized ICI value of 1 indicates perfect fit between the 

observed and model-implied responses to the observable(s). The posterior predicted 

values in this row mirror the realized values. The PPP-value of 0.5 reflects the 

expectation that upon many replications of a PPMC process, the realized ICI (or MPC) 

value for each observable should be centered with respect to the posterior predicted ICI 

(or MPC) values. 

The next five rows of Table 31 illustrate that whenever the pattern of conditional 

probabilities is the same for realized and posterior predicted data, the PPP-values should 

be centered (indicating good fit) regardless of the absolute fit as indicated by the MPC 

and ICI values. The absolute fit of the observables as measured by MPC or ICI varies 
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independently of the relative fit measured by the PPP-values. As in Row 1, Row 2 

exhibits perfect agreement between the two observables in the realized and posterior 

predicted data, so the indicators of fit are identical between Row 1 and Row 2 despite the 

values of the conditional probabilities taking on the opposite extreme of 0 instead of 1. In 

Row 3 the observables are in perfect disagreement, which is reflected by MPC and ICI 

values taking on the extreme opposite values with respect to Rows 1 and 2 yet 

maintaining perfect fit with respect to the PPP-values due to the match between realized 

and posterior predicted response patterns. Rows 4-6 follow the patterns of Rows 1-3 but 

use conditional probability values that governed data generation within the current study. 

Rows 7-11 of Table 31 illustrate that PPP-values will be greater than .5 to the 

extent that posterior predicted ICI values exceed realized ICI values, which is to say that 

there is greater inter-observable agreement in the posterior predicted data than in the 

realized data (i.e. smaller discrepancy between the conditional probabilities of success). 

Conversely, Rows 12-16 illustrate that PPP-values will be less than .5 to the extent that 

realized ICI values exceed posterior predicted ICI values, which occurs in this example 

when there is greater inter-observable agreement in the realized data than in the posterior 

predicted data. 

Figure 39 illustrates how inter-observable agreement (match) and disagreement 

(mismatch) vary as a function of the conditional probabilities of a correct response for 

two given observables. 



Figure 39. Examples of inter
(mismatch) as a function of the conditional probabilities of a correct response.
 

Within the context of this simplified example, the computations illustrated in this figure 

are equivalent to the MPC computations shown previously in 

only one inter-observable comparison (per simulee). For example, consider the upper left 

panel of Figure 39, which illustrates the inter

that would be expected between two observables with conditional

of .2. This corresponds also to the realized data in the fifth row of the simplified example 

shown in Table 31. Assuming the responses to each observable to be independent within 

the context of the model (i.e. after conditioning u
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of .2. This corresponds also to the realized data in the fifth row of the simplified example 

. Assuming the responses to each observable to be independent within 
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observables), a probabilistic representation of the four possible outcomes is presented. In 

approximately 4% of the outcomes, simulees would respond correctly to both 

observables. In approximately 16% of the outcomes, simulees would respond correctly to 

Observable 1 but incorrectly to Observable 2, and in another 16% percent of the 

outcomes simulees would respond incorrectly to Observable 1 but correctly to 

Observable 2. In approximately 64% of the outcomes, simulees would respond 

incorrectly to both observables. In total, 68% of the responses are matches (agreement 

between observables) and 32% are mismatches (disagreement between observables). By 

comparison, the proportions of agreement and disagreement in the upper right panel of 

Figure 39 switch with respect to the upper left panel because the conditional probabilities 

of success and failure for Observable 2 are inverted. In this case, there is a 16% chance 

that any given simulee will answer both observables correct, a 4% chance that 

Observable 1 will be answered correctly but Observable 2 incorrectly, a 64% chance that 

Observable 1 will be answered incorrectly but Observable 2 correctly, and a 16% chance 

that both observables will be answered incorrectly. The lower panels provide additional 

examples using alternative conditional probability values. The values in all four panels 

were selected for continuity with values in Figure 22, which becomes useful when 

applying the principles illustrated here back to the more complex case of the present 

study. MPC, ICI, and HCI computations in the present study can be thought of as 

aggregations of computations like those illustrated in Figure 39. 

In the more complex case of the present study, decisions about which inter-

observable comparisons are included in a given computation are based upon logical rules 

implied by the relationship between a given Q-matrix and scoring model. One reason for 
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using Condition 2.1 as the illustrative example for understanding the mechanisms 

underlying the performance of HCI and ICI is that the comparison-inclusion rules implied 

by the Q-matrix are more easily represented in a figure than they would be for conditions 

like 4.1 or 6.1 where the comparison rules are complicated by multiple parents for some 

observables.  

Figure 38, Table 31, and Figure 40 were provided to help reconcile the apparent 

inconsistency of ICI across conditions and observables (seen in Figures 12 and 35-37) 

using Condition 2.1 as an illustrative example. The main point of these was to emphasize 

that ICI values were aggregations across different types of simulees having different 

degrees of misfit and who were disproportionately represented. Each proficiency profile 

represented in Figure 22 was itself an aggregation across individual simulees with 

varying degrees of misfit, but each profile had a typical level of misfit that was implied 

by the pattern of conditional probabilities of its members. Decomposing such high-level 

aggregations into constituent parts made it possible to see that when underlying factors 

were accounted for, ICI performed consistently after all.  

Discussion 

Discrepancy Measures 

Consistent with previous PPMC research, all investigated fit functions tended to 

perform conservatively, but SGDDM, Q3, and HCI only mildly so. Adequate power to 

detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, ICI, and to a 

lesser extent Deviance, while PC, χ
2, RPS, and GLS were powerless across all 

investigated factors. Bivariate SGDDM and Q3 were extremely similar in their 

effectiveness and in terms of computation time. This study therefore offered no basis for 
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choosing one over the other. Each could be recommended as a useful member of the 

PPMC toolkit. However, their apparent redundancy suggests that using either is 

preferable to using both. 

The observed power of SGDDM as a global measure was 1.00 in all misspecified 

conditions except Condition 5.1, the crossloadings misspecification, where observed 

power was .93. This finding is consistent with findings in Levy and Svetina (2011), 

which found that GDDM performed a bit better at detecting what amount to extra 

variables than it did at crossloadings, holding other things roughly constant. In the 

present study, part of the reason for this relative underperformance may have been due to 

design elements within this specific crossloadings misspecification. It is possible that 

alternative crossloadings misspecifications would have yielded more or less observed 

power in terms of extreme global SGDDM PPP-values.  

Building upon findings from Levy, Mislevy, and Sinharay (2009) that bivariate fit 

functions were useful for detecting multidimensionality, the bivariate fit functions in this 

study (SGDDM and Q3) were found to provide powerful and detailed feedback for all 

investigated types of misfit. The differential effects by CPT table highlighted in the 

results section demonstrated the effectiveness of the bivariate fit functions for detecting 

systematic differences in the conditional probabilities of successfully completing 

observables between observed and model-implied data across different combinations of 

complex multidimensional BNs. 

The heat maps of median PPP-values for the bivariate SGDDM for the five 

misspecified conditions in this study each reflected different patterns of positive and 

negative local dependence, while holding constant the scoring model. This finding is 



159 

useful for understanding that both positive and negative local dependence can be caused 

by a single underlying misspecification, and that different patterns of such dependencies 

may suggest clues as to the identity of the misspecification. Observed patterns of positive 

and negative local dependence mimicked those in similar studies in IRT (Levy et al., 

2009) including those with conjunctive effects (Levy, 2011). 

For unidimensional IRT models, Habing and Roussos (2003) proved that positive 

and negative dependencies are always balanced because the data constitute a closed 

system. Recent work has suggested that the same principles would apply for 

multidimensional IRT models (Levy & Svetina, 2011) and BNs (Levy et. al, 2011), but in 

these contexts the speculation is yet unproven. The present study argues for the position 

that positive dependencies in one locality indicate the existence of negative dependencies 

somewhere else. In practice, one seeks to identify an interpretation that is consistent with 

the entire pattern of positive and negative local dependence. Given the complexity of 

such patterns, and the limitations associated with categorized representations, it may not 

be clear how a coherent cause could manifest both types of local dependence. Sometimes 

a theoretically grounded explanation may only be apparent for part of the observed 

pattern. In the author’s previous experience, resolving one type of misfit (over or under 

predictions) tends to resolve both. Positive local dependence among some observables 

and negative local dependence among other observables can be jointly caused by the 

same source of misfit, so implementing model modifications consistent with theoretical 

moorings for the most prominent pattern of misfit may resolve less clearly understood 

local dependencies as a byproduct. The reported results suggest that specific 
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interpretations could potentially be identified in practice by diagnosing observed patterns 

of positive and negative local dependence relative to simulated results. 

The breadth of effectiveness of the bivariate fit functions to detect a variety of 

misspecifications could also create ambiguity when generalized to the variety and 

complexity of misspecifications that exist with real data. It is likely to be much more 

difficult in practice to diagnose a misspecification based solely on the patterns of positive 

and negative local dependence provided by bivariate fit functions. The bivariate heat 

maps provided examples of differential patterns across the small number of 

misspecifications investigated here, but it is unknown whether such examples will 

become more or less ambiguous with future research. For example, in this study the 

contextual variable misspecification affected three observables per contextual variable, 

and produced flags for each intra-cluster pairing within the contextual grouping. 

Meanwhile, the partial mastery misspecification produced flags for each intra-cluster 

pairing of observables that were relevant to the definition of partial mastery, which 

spanned all three primary latent variables. If the contextual latent variables had 

represented the same observables as the definitions of partial mastery represented, then 

distinguishing between these two types of misspecifications may or may not have been 

possible. Therefore, observing a cluster of flags representing all the intra-cluster pairings 

of a set of observables in practice could represent either type of misspecification (or 

potentially other types of non-investigated types of misspecifications). The cross-loadings 

misspecification produced a similar but weaker pattern, in that only a subset of the intra-

cluster pairings of misspecified observables were flagged. In practice this type of 
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misspecification could also become entangled with the others when attempting to 

interpret complex patterns of results under varying conditions. 

A strategy to help reduce the ambiguity that may enshroud interpretation of 

bivariate heat maps is to include fit functions whose effectiveness is more limited with 

regard to misspecifications, creating roles for them as diagnostic specialists (see 

comments regarding ICI below). While the explication of such roles will require future 

research, the present study suggests that simulation studies devoted to this purpose could 

assemble a group of discrepancy measures to guide the process of attributing specific 

misspecifications to observed patterns of misfit.  

The finding by Williamson, Mislevy, and Almond (2000) that GLS was useful for 

detecting errors associated with the number of latent classes was not replicated under the 

investigated conditions. In the present study, ICI was better suited for detecting latent 

class misspecifications than was GLS, but ICI showed reduced power for detecting the 

other types of investigated misspecifications. The narrower utility of ICI relative to 

SGDDM may enhance diagnostic potential when both functions are used in conjunction 

for model modification purposes. For example, when SGDDM flags a cluster of variable 

pairs, many alternative causal misspecifications may be possible. If ICI does not flag a 

variable that is implicated by SGDDM, then an additional latent class may not be the best 

modification to make, whereas it might be if both functions do implicate the variable in 

question. 

Effect Size 

An effect size measure for PPMC was introduced for the primary purpose of 

making distinctions between the fit of equal (or nearly equal) PPP-values. This purpose 
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applies to PPP-values within a replication, which corresponds to the results that an 

applied researcher would yield with real data, as well as to PPP-values aggregated across 

replications as reported in a simulation study such as this one. For example, in Figure 12 

the panels representing Conditions 3.1 and 4.1 are both summarized by a PPP-value of 

.00. Comparison of the two scatterplots makes it evident that the differences between 

realized and posterior predicted SGDDM global values tended to be larger in Condition 

4.1 than in Condition 3.1, but this information is not contained in the PPP-values, and 

even in graphical form interpreting these differences could become subjective owing to 

perceptual differences among people. The median effect size for Condition 4.1 was 

15.06, while for Condition 3.1 it was 9.41. In this example, relying on the PPP-values 

alone would be to essentially equate the degree of misfit between the conditions by 

omitting information that distinguishes them. On the other hand, using an effect size 

alone would also omit information, as it is possible to obtain equal effect sizes even when 

PPP-values are opposites. The effect size is thus meant to supplement not to supplant the 

PPP-value.  

The effect size measure also showed some utility for comparing the aggregated 

misfit of conditions with similar (or censored) values on the other outcome measures. The 

“proportion flagged” and “median PPP-value” outcomes were more susceptible to floor 

and ceiling effects due to their metrics. The effect size measure made it possible to 

differentiate results that were artificially equated due to the boundaries of those 

outcomes. An example of this was described in the results for SGDDM global.  

The fit functions that were effective according to the PPP-values outcomes tended 

to exhibit larger effect sizes in misspecified conditions than in null conditions, while fit 
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functions that were ineffective in terms of PPP-values tended to exhibit minimal effect 

sizes across misspecified and null conditions. In summary, the effect sizes were largely 

consistent with the other outcomes, but helped to provide additional evidence for 

distinguishing the effectiveness across fit functions. Effect size is an alternative 

numerical summary to the PPP-value, both of which may be useful abbreviations of the 

complex patterns expressed more fully in graphical form. Neither numerical summary is 

an end in itself.  

The ranges of observed effect sizes varied widely across fit functions in this 

study, which suggests that some fit functions may be much more sensitive than others to 

minor misspecifications. For example, the most modest of the investigated 

misspecifications was represented in Condition 5.1, which consisted of 12 crossloadings 

in the generating model that were not present in the scoring model. The median effect 

size across replications for deviance in this condition was 0.11, while for SGDDM global 

it was 3.60. Both of these fit functions operated at the global level, and the disparity 

between their effect sizes was not due just to the crossloadings misspecification, as 

evidenced by the fact that the disparities between these functions for the other 

misspecified conditions were even larger. In addition, the disparities between the median 

effect sizes of these fit functions were much smaller across null conditions (the disparity 

was as small as 0.01 in Condition 3.3). The magnitudes of the observed SGGDM effect 

sizes suggest that SGDDM could potentially be sensitive enough to detect 

misspecifications that consisted of fewer crossloadings, while the effect sizes for 

deviance in Condition 5.1 were barely larger than the effect sizes from null conditions, 

suggesting that less severe misspecifications may not be detectable. Future research is 
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needed to determine whether these speculations are accurate. The largest median effect 

size for a null condition in this study was -0.28 (Condition 5.5 for SGDDM subscale θ1), 

which suggests that modest effect sizes can be achieved by sampling variability alone and 

should therefore not be interpreted as theoretically meaningful.  Much more research is 

needed to better understand the properties of the introduced effect measure, and to 

consider alternative effect measures. 

Computing Time 

Thus far the fit functions have been discussed mostly in terms of their 

effectiveness at detecting misfit, irrespective of their efficiency in terms of computation 

time. In applied studies, none of the investigated fit functions would likely be 

prohibitively time consuming to include because they operated on the order of minutes. 

In the present study, computation was conducted on a number of machines 

simultaneously, with machines varying according to their computational power. On the 

fastest machine, which was approximately four times as fast as the slower machines, the 

following fit functions took about one minute each to conduct PPMC per replication:  

Deviance, SGDDM, Q3, PC, and χ2. The other functions took longer to compute (GLS ≈ 

6 min, RPS ≈ 8 min, HCI ≈ 30 min, and ICI ≈ 35 min), due partly to the looping over 

simulees that was required for each of these, and for HCI and ICI due also to multiple 

conditioning statements within each loop over simulees. Presumably the computation 

times for these functions would decrease relative to the faster fit functions with smaller 

samples. It is also possible that more efficient programming could reduce these 

computation times. It should be emphasized that these times varied considerably even 

within this study, as they reflect a number of underlying influences, including differences 
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across conditions, the structure of the user-created R code,  number of subjects, sample 

sizes, numbers and sizes of files read and written, number of MCMC chains, iterations, 

replications, etc. The issue of computation time is raised simply to illustrate the point that 

at present it is a legitimate practical consideration for many users or would-be users of 

PPMC. In this study, hundreds of computer hours were devoted to the simulation 

component. As a helpful tip, it was found that running multiple R sessions 

simultaneously on a given machine greatly improved the rate of completion, particularly 

on machines with multi-core processors. If a single R session had been used for this 

study, it would have taken about 50 days for the fastest available machine to complete 

just the simulation component (or about 200 days for the slowest), assuming 

uninterrupted 24-hour days. PPMC in WinBUGS and R may be overly time consuming 

when a researcher’s goal is to select the best-fitting model among a number of competing 

alternatives, such as when a variety of modifications are possible based on PPMC 

feedback from an initial model. Programming, estimating, and analyzing phases can each 

take a number of hours or days depending on the circumstances. One possible approach 

in such situations is to use a graphical BN program such Netica or GeNie to more rapidly 

select among competing models based on loglikelihood values, then to critique the 

chosen model(s) in greater detail using PPMC procedures. Future research is needed to 

establish whether such a strategy would be effective.  

Recommendations 

For use in practice to critique the data model fit of multidimensional BNs using 

PPMC, the following recommendations are given regarding discrepancy measures. 

SGDDM (or Q3) should be utilized at global and bivariate levels, and additionally at 
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subscale levels when applicable. At the global level, the measure is primarily useful for 

summarizing or ranking the misfit of comparable models. At the bivariate level valuable 

diagnostic feedback can be harvested but is potentially ambiguous, particularly without 

content expertise to help identify theoretically relevant patterns. HCI is recommended as 

a measure of person fit even in applications where person fit is not of central interest due 

to the alternative perspective that aggregation at the person level provides. Comparisons 

of realized response patterns to posterior predicted response patterns for flagged 

examinees can point to specific model inadequacies, and are recommended when fine-

grained feedback is desired. HCI may be more useful for latent class misspecifications 

than for other types of misspecifications. ICI is recommended as a measure of observable 

(item) fit, and like HCI is also best suited for detecting latent class misspecifications, but 

it may also be useful for diagnosing other misspecifications when used in conjunction 

with SGDDM. If SGDDM indicates misfit but ICI does not, a latent class 

misspecification may be a less likely cause. HCI and ICI were designed for use in 

conjunctive models only, and are expected to perform poorly in fully compensatory 

structures. Models investigated in the present study had some conjunctive approximations 

and some compensatory elements. Alternative item-level and person-level discrepancy 

measures will likely need to be found for compensatory models. Deviance is not 

recommended per se, but is relatively easy to implement and may prove more capable of 

detecting types of misfit not investigated in this study. PC is recommended as a 

procedural check due to its computational ease and interpretational transparency. It is a 

convenient tool for verifying that PPMC computer code is functioning properly.  
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Regarding the examination and summarization of results, it is recommended that 

researchers use varying kinds of aggregation and presentation. Plots of realized versus 

posterior predicted values contain rich information that is not contained in PPP-values (or 

effect sizes) alone. In situations where graphical displays are impractical due to volume, 

PPP-values and effect sizes can be used together with graphical samples to summarize 

information. PPP-values are not recommended for strictly dichotomous decision rules 

akin to hypothesis testing. In situations where decision rules are implemented for 

convenience (e.g. heat maps), alternative decision criteria should be explored to see how 

interpretations might change.  

Limitations  

The present study helped to answer ongoing questions about the usefulness of 

PPMC for detecting data model misfit in BNs, but many questions were raised as well. 

While some useful discrepancy measures have been identified, there is no limit to the 

number that could be investigated due to the flexibility of PPMC. Similarly, the models 

investigated in this study mimicked models implemented in an applied research program, 

but limitless opportunities exist for alternative model structures and misspecifications. 

Features held constant in the present study, such as the strength of the contextual effects 

across latent variables, could be manipulated systematically within a separate 

investigation. Similarly, features that varied in the present study, such as the number of 

observed variables per primary latent variable, could be held constant in alternative 

studies to better isolate other factors of interest. A question raised in the results section 

for the bivariate fit functions is whether alternatively constructed misspecifications could 

produce matching patterns of bivariate data model misfit. It was beyond the scope of this 
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study to systematically investigate the partial label switching phenomenon encountered 

herein, but the options for handling this type of label switching could be explored in 

simulation studies devoted to the purpose of comparing alternative methodologies. The 

effect size introduced in this study was essentially a standardized difference score 

between realized and posterior predicted values, akin to a Cohen’s d, but many 

alternatives are possible. In addition to the future research needed to better understand the 

performance of the introduced effect measure, alternative effect measures could be 

compared. 

The present study began with the intention of comparing the effectiveness of the 

PPMC framework to the alternative frameworks discussed in the appendix. The scope of 

that initial design was reduced (thankfully) to a focus within the PPMC framework 

exclusively, but questions remain about when alternative frameworks might offer 

advantages over PPMC. These advantages are presumed primarily to consist of 

computational advantages (i.e. heuristic techniques may offer results that approximate 

PPMC results in less time), though other advantages are possible as well. Future research 

is needed to clarify the advantages and disadvantages of using statistics heuristically 

versus committing to a framework that estimates the reference distributions empirically. 

Within frameworks that estimate empirical reference distributions (i.e. PPMC vs. PB), 

future research is needed to compare the similarity of results between these conceptually 

similar but philosophically divergent methods.  
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APPENDIX  

DESIGN SIMPLIFICATION AND ALTERNATIVE FRAMEWORKS  
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 Pursuant to recommendations obtained from the dissertation committee during the 

proposal defense meeting, it was determined that the scope of the proposed project would 

be narrowed. Specifically, only the PPMC framework was to be investigated in the 

present study, leaving comparisons to NRD and HT frameworks for future investigation. 

This design simplification focused and prioritized the purpose of the study around 

understanding the utility of the fit functions within PPMC, as opposed to comparing the 

utility of different frameworks. The main purpose of the simplified design was therefore 

to describe the performance of the discrepancy measures under the proposed conditions. 

The principal outcome measure of the study remained unchanged:  the proportion of 

replications in which misfit was indicated by extreme PPP-values for each fit function. 

Removal of the NRD and HT frameworks did not decrease the computational burden 

appreciably because most of the computational burden of the original design was due to 

PPMC. The following discussion of alternative frameworks may still be of interest for a 

reader who is considering this study within a much broader model-checking context. 

Alternative Frameworks 

 Model criticism is accomplished by mathematical functions that highlight 

particular features of the data-model relationship. The output from a particular fit 

function can be interpreted in a number of different ways, even holding constant a given 

model and dataset. These different ways to provide contextual meaning to the output of 

fit functions are labeled here as alternative model-checking frameworks, and are 

organized into four categories based on what the outputted values from fit functions are 

referenced against: no reference distribution (NRD), hypothesis testing (HT), parametric 

bootstrapping (PB; a.k.a. resampling), and posterior predictive model checking (PPMC).  
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In the sections below, each model criticism framework is discussed in terms of 

how fit functions are contextualized. Briefly summarized, the NRD framework does not 

appeal to reference distributions, but rather directly evaluates the fit function values 

relative to values obtained from competing models or to values recommended from 

experts (based on some theoretical and/or empirical grounding). An HT framework 

appeals to an analytically derived sampling distribution of the fit function, which is the 

distribution of values the fit function would be expected to take if the same model were to 

be fit again and again under replicated conditions (i.e. repeated independent samples from 

the same population). PB appeals to a reference distribution of fit-function values 

empirically generated from a point estimate (frequentist solution) of the model 

parameters. PB and HT share frequentist philosophies but differ in the ways replications 

are defined. PPMC appeals to a reference distribution of fit-function values from a 

Bayesian posterior distribution, most often empirically generated, unless conjugacy 

allows the posterior predictive distribution to be obtained analytically. PPMC and PB are 

related conceptually but differ in their philosophical underpinnings and computational 

implementation. 

Given a particular model and dataset, a fit function (e.g. Q3) highlights some 

feature of the data-model relationship. In our running example, Q3 serves as a check of 

the local independence assumption. A Q3 value is computed for each pair of variables in 

the model, and those values can range from -1 to 1. The values of the Q3 fit function are 

interpreted within the context of the given model and dataset. Are the observed Q3 values 

consistent with what would be expected given this particular model?  As will be 

discussed in greater detail in sections to follow, the four alternative model checking 
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frameworks each appeal to different reference points for interpretation of fit functions. 

The functions themselves are to some degree interchangeable, though there are some 

functions which are suited better or worse to certain frameworks.  

No reference distribution. It is possible to interpret the value of a fit function 

solely within the context of the fit function scale itself, by comparing an observed value 

directly to another value of interest. In the NRD framework, reference values are often 

obtained from competing models (i.e. relative fit comparisons). Alternatively, reference 

values are obtained by an appeal to authoritative sources in the literature, whether they 

are methodological studies yielding recommended values, or applied studies similar to 

the study providing the observed values.  

Running Example using Q3. The fit function Q3 can be evaluated differently 

according to one’s model-checking framework. In each framework, the mathematical 

function contained in Equation 4 is used to assess the residual associations among pairs 

of modeled variables. The question becomes how to form an evaluation of the magnitude 

of the Q3 function with respect to some frame of reference. 

When no distribution of reference values is used, the observed Q3 value for each 

pair of variables is compared directly to an analogous value from a competing model, or 

to an a priori cutoff value, perhaps recommended by previous researchers in the domain 

or by methodologists. In IRT models, a cutoff value of .2 has been used for Q3 (Chen & 

Thissen, 1997), meaning that values between .2 and -.2 indicate an acceptably low level 

of residual dependence, while values between .2 and 1 (or between -.2 and -1) indicate 

levels of residual dependence that are large enough to warrant concern about LI violation. 

For example, consider a researcher who observes a Q3 value of .17 for a pair of variables. 
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Within the NRD framework, the observed value of Q3 is less than the cutoff value of .2, 

indicating that the model exhibited an adequate level of fit in terms of the residual 

dependencies between this pair of observed variables.  

Note that this is the only framework in which the observed Q3 values are not 

measured against a reference distribution. The purpose of a reference distribution, which 

will be exemplified in the other frameworks, is to gauge the frequency with which an 

observed value would be expected, typically expressed as an interval consisting of values 

equal to and greater than the observed value under an assumed (null) model. The 

judgment one typically makes in such a framework is thus a normative (norm-referenced) 

judgment. Values are labeled as significant on the basis of their lower frequencies of 

occurrence in the population. Alpha-level values for judging statistical significance are 

relativistic; they are not anchored on the scale of the fit function per se, but are ranges of 

values that occupy a predetermined portion of the distribution. The lack of a reference 

distribution in the NRD framework is simpler in the sense that an observed value is 

directly compared to an existing value from another model, or from some authoritative 

source. The comparison value is the criterion of good fit, and the subsequent criterion-

referenced judgment is an easy one: the lower Q3 is better in an absolute sense.  

Hypothesis testing. An HT framework compares the observed statistic (using a 

sample of data) to the distribution of the same statistic that would be observed upon 

repeated sampling of equally-sized data sets from the same population (i.e. the sampling 

distribution). The location of the observed statistic can then be expressed in terms of a p-

value, which represents the proportion of the sampling distribution with values of the test 
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statistic that are more extreme than the observed value. An α-value of .05 is the most 

conventional criterion of statistical significance used in psychological domains. 

Running Example using Q3. In the context of HT, the observed Q3 value for each 

pair of variables is measured against an analytically derived reference distribution. For a 

given pair of variables, the observed Q3 value is interpreted as a member of a population 

of values that would be observed if the study were to be replicated an infinite number of 

times. The relative magnitude of the observed value in relation to this analytic derivation 

of population values (sampling distribution) provides the researcher with the context to 

judge the significance of the observation. Yen (1984) proposed that the mean of the 

sampling distribution for the Q3 statistic in IRT models should be 1/(n-1), and the 

variance of a Fisher r- to z- transformation should be 1/(n-3). Chen and Thissen (1997) 

argued that those normal-theory assumptions only hold when the residuals being 

correlated by Q3 follow a bivariate Gaussian distribution (which may not be the case for 

IRT or BN models). A preferred sampling distribution for Q3 has yet to be established, 

which is problematic when working within this framework. The two frameworks 

discussed below circumvent this problem of needing analytic reference distributions for 

fit functions by generating appropriate reference distributions empirically. 

Parametric bootstrapping. A technique related philosophically to HT---both 

frameworks stem from a frequentist origin---is PB, also called resampling (Efron, 1979; 

Efron & Tibshirani, 1993; Langeheine, Pannekoek, & Van de Pol, 1996; von Davier, 

1997). Within the PB framework, reference distributions are built empirically using 

generated data. The generated data consist of multiple replications generated from the 

same set of model parameters (i.e. the “solution” from whatever estimation routine was 
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used). Depending on the fit functions being used, the generated data may be compared to 

the observed data at this stage, or the model may be re-estimated using each of the newly 

generated datasets to obtain resultant model parameters from each solution that can then 

be used to calculate fit functions (e.g. Templin & Henson, 2006). In either case, the 

statistics that comprise the reference distribution stem from the replicated datasets and 

serve as the empirical sampling distribution for the model fit statistics from the original 

dataset. 

 Stated more formally, let P represent the vector of proportions in the population 

which constitute the probabilities of all possible response patterns, and let p represent a 

sample from P. The sum of P (or of any p) for any BN is 1, but the number of possible 

response patterns for typical BNs is so large that the probability of individual response 

patterns is often infinitesimal. Let Θ represent the population model parameters, such 

that P is a function (F) of those parameters, P 	 F�Θ�. The parametric bootstrap 

procedure begins with an estimate of the population model parameters (Θ����) derived 

from an observed sample (p���). Let p� represent the bootstrapped datasets (samples) 

which are then generated from the model: 

 FMΘ����R ���������� p��, p��, … p��       (A1), 

where n is the number of bootstrapped datasets. Features of the observed data (p���) can 

be compared to the bootstrapped data (p�) using functions that do not require model 

parameters, i.e. ��p���� compared to ��p���, ��p���, … , ��p���, where T is a test statistic 

capturing a feature of the data. Or, for functions requiring model parameters, the model is 

re-estimated to yield Θ��, Θ��, … , Θ��, which can then be compared to Θ���� , i.e., 



185 

$Mp���, Θ����R compared to $Mp��, Θ���, ��p��, Θ���, … , ��p��, Θ��R, where D denotes a 

function capturing data-model fit in terms of the discrepancy between the data and the 

parameters.  

Running Example using Q3. In the context of PB, the observed Q3 value for each 

pair of variables is measured against an empirically generated reference distribution. 

Using the model parameters estimated from re-fitting the model to the bootstrapped data, 

a Q3 value for each pair of variables is calculated using each bootstrapped data set. If 500 

bootstrapped data sets are used, then each set contains a Q3 value for each pair of 

observed variables. For a given pair of observed variables, the 500 Q3 values coming 

from 500 different bootstrapped datasets form the reference distribution for the single 

observed Q3 value. The observed Q3 value and the 500 replicated values are posited as 

members of the same population of values. The question is whether it is appropriate to 

consider the observed value as having come from the same population as the others. The 

relative magnitude of the observed value in relation to the distribution of empirically 

generated values provides the researcher with the context to judge the significance of the 

observation. 

Summary of alternative frameworks. The purpose of a fit function is to 

highlight some feature of the data-model relationship. The output from a particular fit 

function can be interpreted in a number of different ways, even holding constant a given 

model and dataset. These different ways of providing contextual meaning to the outputted 

values from fit functions are labeled here as alternative model-checking frameworks, and 

are organized into four categories based on what the outputted values of the fit functions 

are referenced against: Posterior predictive model checking (PPMC), parametric 



bootstrapping (PB; a.k.a. resampling), hypothesis testing (HT), and no reference 

distribution (NRD). Figure A1 summarizes the different characteristics and general 

procedures of these four frameworks.

Figure A1. Comparison of four model
(DDD) and Q3 as example fit functions.
 
 

The alternative model checking frameworks each appeal to different references 

for interpretation of fit functions. Briefly summarized, PPMC appeals to a reference 

distribution of fit-function values empirically generated from a Bayesian posterior 

distribution. PB appeals to a reference distribution of fit

generated from a point estimate (frequentist solution) of the model parameters. HT 

appeals to an analytically derived sampling distribution of the fit function, which is the 

distribution of values the fit function would be expected to take if the same model were to 
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bootstrapping (PB; a.k.a. resampling), hypothesis testing (HT), and no reference 

distribution (NRD). Figure A1 summarizes the different characteristics and general 

procedures of these four frameworks. 

. Comparison of four model-checking frameworks using Direct Data Display 
as example fit functions. 

The alternative model checking frameworks each appeal to different references 

for interpretation of fit functions. Briefly summarized, PPMC appeals to a reference 

function values empirically generated from a Bayesian posterior 

ion. PB appeals to a reference distribution of fit-function values empirically 

generated from a point estimate (frequentist solution) of the model parameters. HT 

appeals to an analytically derived sampling distribution of the fit function, which is the 

tribution of values the fit function would be expected to take if the same model were to 

bootstrapping (PB; a.k.a. resampling), hypothesis testing (HT), and no reference 

distribution (NRD). Figure A1 summarizes the different characteristics and general 

 

checking frameworks using Direct Data Display 

The alternative model checking frameworks each appeal to different references 

for interpretation of fit functions. Briefly summarized, PPMC appeals to a reference 

function values empirically generated from a Bayesian posterior 

function values empirically 

generated from a point estimate (frequentist solution) of the model parameters. HT 

appeals to an analytically derived sampling distribution of the fit function, which is the 

tribution of values the fit function would be expected to take if the same model were to 
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be fit again and again under replicated conditions. NRD makes direct comparisons 

without appeal to a distribution of reference values.  

It was beyond the scope of the present study to extensively compare the various 

tradeoffs associated with these four frameworks. For example, one dimension the 

frameworks could be compared along is computational speed. Consider the running 

example using Q3, a fit function that can be computed within any of the four frameworks. 

What are the various computational requirements associated with the frameworks as they 

each employ the same fit function?  As described in the preceding paragraphs, each 

framework shares the computations in Equation 4 for each pair of observed variables in 

the data set of interest. The number of variable pairs is given by 

V�V 9 1� 2⁄          (A2), 

where J is the number of observed variables. In a dataset with 33 observed variables (the 

number of observed variables in the present study), there are 528 computations to 

perform in order to obtain the observed Q3 values. This set of 528 computations would be 

executed under any of the frameworks. The NRD framework requires only these 

calculations, while the other three frameworks require additional calculations.  

The HT framework requires the reference distribution to be analytically derived. 

In the case of Q3, sampling distributions have been proposed for IRT models (Yen, 1984; 

Yen, 1993) with some debate regarding their accuracy (e.g. Chen & Thissen, 1997), but 

have not been thoroughly investigated in the context of BNs (Rupp, Templin, & Henson, 

2010, Ch. 12). Setting aside the serious and often prohibitively difficult issue of obtaining 

a trusted sampling distribution, the computations required under this framework when a 

sampling distribution has been obtained are only slightly more than what is required 
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under the framework with no reference distribution. Each observed value is located 

within the sampling distribution, and typically is assigned a p-value corresponding to the 

area of the distribution occupied by values more extreme than the observed value. A set 

of 528 p-value calculations would thus represent the additional computations needed 

under the HT framework relative to the NRD framework.  

The PPMC framework is considerably more intensive computationally than the 

HT or NRD frameworks because a reference distribution is built using replicated 

(generated) datasets. In addition to the computations required to generate the replicated 

datasets, the calculations required for the observed data (see Equation 4) are repeated 

using each replicated dataset as a substitute for the observed dataset. If 500 replicated 

datasets are generated, there are 528 * 500 = 264,000 Q3 computations. The step of 

locating the observed values in relation to the reference values, which was carried out 

under the HT framework, can be applied to the PPMC framework as well, although these 

PPP-values should not be equated with a formal hypothesis test (Levy, 2011; Sinharay, 

2006b).  

The PB framework is the most computationally demanding in this Q3 example. 

Setting aside any differences in the computational demands for estimation of a Bayesian 

solution (posterior distribution) relative to a frequentist solution for the same model (if 

the model can be estimated using frequentist techniques), the two frameworks differ 

when model parameters are required as inputs for the fit function (which is the case in 

this Q3 example). Recall that for PPMC each generated dataset comes from a different set 

of model parameters, each representing a unique draw from the posterior distribution, 

while for PB the generated datasets all come from the same set of model parameters. 
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When bootstrapped model parameters are required for a fit function, each bootstrapped 

dataset must be re-estimated to obtain those bootstrapped model parameters. This 

additional estimation time is prohibitive for some applications. Then, for each 

bootstrapped dataset (typically numbering in the hundreds) and its associated model 

parameters, the calculations performed using the observed data are replicated (see 

Equation 4). If 500 bootstrapped datasets are generated, there will be 528 * 500 = 

264,000 Q3 computations. In the PB framework, each of the 528 observed Q3 values 

would belong to a population of Q3 values represented by the set of 500 bootstrapped 

values. A final step, as in the HT framework, is to calculate p-values to summarize the 

location of the observed values with respect to the reference values. Note that in 

situations where model parameters are not required as inputs for a fit function, the PB and 

PPMC frameworks converge in their methodology after the generated datasets are 

complete. The procedures for comparing observed and generated data when model 

parameters are irrelevant are quite similar for the two frameworks, and would be 

essentially equivalent in terms of post-estimation computational demands. 

In summary, to compare the four frameworks on the dimension of computational 

burden using the Q3 function, one must first consider the time needed for model fitting, in 

which it is often the case that PPMC takes longer due to the need to reach the full 

posterior distribution. Regarding the computational time after model fitting, the 

frameworks are loosely ranked, from fastest to slowest, in the following order: NRD, HT, 

PPMC, and PB. This ordering would be expected to hold for any fit function that relies 

on model parameters for its computation, as opposed to fit functions that require data 

only. For fit functions that do not require model parameters as input, the order of 
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computational difficulty could change with respect to PPMC and PB, depending on the 

amount of time required for model estimation. In PB, the bootstrapped parameters come 

from re-estimating the model using each of the bootstrapped datasets. In PB, the 

bootstrapped parameters come from re-estimating the model using each of the 

bootstrapped datasets. For relatively complex models, the time required to re-estimate a 

model solution for each bootstrapped dataset could exceed the time required to conduct 

PPMC, which relies on a single (albeit often slower) estimation routine to obtain the 

distributions of all model parameters included under the posterior distribution umbrella. 

Computational comparisons between PPMC and PB for different models and fit functions 

are of interest for future research. 


