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ABSTRACT
This simulation study compared the utility of varsodiscrepancy measures within a
posterior predictive model checking (PPMC) framewfor detecting different types of
data-model misfit in multidimensional Bayesian netkv(BN) models. The investigated
conditions were motivated by an applied researognam utilizing an operational
complex performance assessment within a digitalskitron educational context
grounded in theories of cognition and learning. lAbldels were manipulated along two
factors: latent variable dependency structure amdber of latent classes. Distributions
of posterior predicteg-values (PPP-values) served as the primary outecoessure and
were summarized in graphical presentations, by amedalues across replications, and by
proportions of replications in which the PPP-valuese extreme. An effect size measure
for PPMC was introduced as a supplemental numesigaimary to the PPP-value.
Consistent with previous PPMC research, all ingas#id fit functions tended to perform
conservatively, but Standardized Generalized Dinogadity Discrepancy Measure
(SGDDM), Yen'sQs, and Hierarchy Consistency Index (HCI) only mildly. Adequate
power to detect at least some types of misfit weamahstrated by SGDDM3, HCI,
Item Consistency Index (ICl), and to a lesser exi@viance, while proportion correct
(PC), a chi-square-type item-fit measure, Ranketh&ility Score (RPS), and Good's
Logarithmic Scale (GLS) were powerless acrossakstigated factors. Bivariate
SGDDM andQs; were found to provide powerful and detailed feeattfar all

investigated types of misfit.
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Introduction

Psychometric models automate the process of infgstudents’ cognitive
development in a domain of interest. Throughoutilnys teachers have most commonly
assumed the expert role of evaluating the perfoomanh a student and making
appropriate interpretations about that studentsatedge, skills, and abilities in relevant
content areas. It is this work of evaluation byerxpthat is mimicked by psychometric
models. In turn, the work of the models facilitaties development of theory by helping
to coalesce, accumulate, and institutionalize exXpewledge. Expert knowledge is
dissipated throughout a field of study, even actmss. Psychometric models make it
possible to bring together knowledge from varioxisegts and incorporate it into
computational components which can be recycledransed in many different
applications.

The end-products of psychometric models are infeggnbut to have confidence
in those inferences, one must trust that the maypletopriately captures the relationships
between data and theory. Model checking performssarntial role in the iterative
process of validating psychometric models. Modeloking serves to characterize the
strengths and limitations of a model under variousditions. Model checking provides
descriptive evidence about how the model functieitis respect to different people in
different situations, and with respect to the défg levels of all the variables under
investigation. How consistent is a model in itsdicg@ons? How accurate are the model’'s
predictions compared to observed data? In thednadrpsychometric inference
machines, model checking provides the quality @dniodel criticism is a necessary
check in the process of producing inferences whimbe to carry the “valid” label.
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Purpose of the Study

The goal of this study was to improve the toolkit &ssessing the data-model fit
of Bayesian networks (BN). The primary focus withirs overarching goal was
comparing the utility of various discrepancy measwvithin a posterior predictive model
checking (PPMC; Gelman, Meng, & Stern, 1996) framwConditions in the present
study were motivated by an applied research prognaparticular assessments utilized
within a particular educational context, but weesidned to be applicable to a much
broader audience. As will be discussed in greattildn the method section, some
design decisions were intended to maintain clasdagiities to features of the motivating
models, while other decisions were made to elingicanfounds, reduce noise
variability, remove unnecessary complexity, or ioy@ generalizability to other

psychometric applications.

Model checking for BNs in psychometric applicatiamstill in the early stages of
development. There is a need in the literaturesifmulation studies to guide BN users
with recommendations. The performance of fit indiberrowed from more established
psychometric modeling paradigms such as item resptiveory (IRT; e.g. van der
Linden & Hambleton, 1997), structural equation mode(SEM; e.g. Kline, 2005), and
latent class analysis (LCA; e.g. Collins & Lanz@1@) is not well known in the context
of BNs. Techniques that have demonstrated usefsiingbese and other research
contexts were gathered together for comparisoninvitie current simulation study.
Specifically, full information fit indices, limitechformation fit indices, item-fit indices,

and person-fit indices were investigated.



On the upside, PPMC is an extremely flexible, anchany ways intuitive, model
criticism framework which fits seamlessly with BNisder a common Bayesian modeling
umbrella. The downside of PPMC includes its comfpartal requirements and relative
newness in the psychometric literature. Considetithited model checking capacity of
Netica (Norsys, 1995-2014), the most widely usedroercial BN software package.
Similar examples could be constructed using otbeufar BN software packages such as
GeNie (Decision Systems Laboratory, 2012). Buildattgrnative BN models in Netica is
relatively time efficient. A base model can be nfiedi quickly to reflect competing
theoretical considerations, with each alternatiweleh being estimated separately. Note
that Netica does not implement a fully Bayesianraaph when estimating BN
parameters. Rather, marginal maximum likelihood (MM used to obtain an optimized
solution which is interpreted from a frequentistgpective. A drawback of Netica is the
relative lack of model checking resources to airsign evaluating the empirical merits
of a given model or set of models. The only indicatf global data-model fit provided
by Netica is the loglikelihood value. Users can pane the global fit of competing
models using this value in isolation, or the loglikood value can be used as an

ingredient in the computation of a number of fdices, such as AIC or BIC.

In addition, sensitivity analyses can be conduciée analyst selects a single
variable of interest and Netica will provide infaation regarding the influence of other
variables in the system upon the chosen varialble.plirpose is to quantify the
sensitivity of the target variable to changes mdther variables. This feature may be

sufficiently diagnostic for regression-like modelkere a single outcome is of primary



concern, but sensitivity analyses are not compr&akerenough to provide all the

diagnostics typically desired in psychometric aqgtiions.

Another way to evaluate node characteristics inddes to individually compare
the values within conditional probability tablee€sWest et al., 2012 for an example of
this approach). In such an approach, differencéisarconditional probabilities of
successfully completing an observable are comparatdembers of different classes of
examinees. Similar comparisons can be made usiing tzetween successive conditional
probabilities. This technique allows researchermguantify the discriminating power of
observed variables, akin to an item discriminaparameter in IRT. In psychometric
applications, observables with greater discrimoratire generally considered to be of
better quality. However, discrimination is not g@me thing as fit; observables of
varying discrimination can fit a model equally wgllue to differing content coverage, for
example), and items with the same discriminationdiéer in how well they fit (due to
construct relevance, for example). Nevertheless,tdihe overlap that can exist between
discrimination and fit, one way to identify somads of poorly fitting models may be to

quantify their discriminating power using the abaésehnique.

A more flexible and powerful way to critique BN nedd estimated in Netica is to
conduct resampling analyses by simulating data tteersolution network and
comparing features of the observed data and sigdit#dta (see section on parametric
bootstrapping in the appendix), but these analysest be conducted in a separate
program (e.g. R, R Core Team, 2013; SAS, SAS Uutstinc., 2013) after exporting the

simulated data from Netica.



Literature Review
Bayesian Networks
Description of Bayesian NetworksA BN (Pearl, 1988) is an inference machine
for probabilistic reasoning, and its mathematicatonis Bayes' Theorem, also referred
to historically as inverse probability (De Morgd®37; Fienberg, 2006):

P(4) = P(B|A)

PUIB) = =5

(D),

whereP (A|B) is the probability distribution of one varialflé¢) conditional on a second
variable(B). This distribution, known as the posterior digitibn, is equal to the
unconditional probability distribution of the firsaviablg/4), also known as the prior
distribution, multiplied by the probability distution of the second variable conditional
on the firstP (B|A)—this inversion of the posterior distribution isalknown as the
likelihood term—and divided by thenconditional probability distribution of the second
variableP(B).

Bayes' Theorem provides a method for computing anknconditional
probabilities, a task which the human mind strugdteexecute, even under conditions of
deliberate concentration by content experts (Katarer2011). A BN extends the
bivariate mathematical logic embodied in Bayes'oram to a multivariate system of
probabilistic reasoning. A BN formalizes a bodyewfdence represented as distributions
of variables and makes the proper (mathematictdjences human judgment aspires to,
based on the principles and assumptions of prabathieory.

A BN is formally defined as the joint probabilitystribution of a system of

interdependent variables; an acyclic directed g(&iG or DAG) is a useful way to



visually represent the dependencies in a joint @bdity distribution, which are
alternatively represented by equations. The DAGmposed of nodes and edges, which
represent the dependencies among the variableseoést. There is a 1:1 correspondence
between what is represented in the graph and depeadind conditional independence
relationships in the joint distribution; one formsufficient to generate the other. The
DAG makes some features of the BN easier to congmeblmanipulate, and
communicate. It is a convenient tool for workinglwmodels that can be unwieldy when
represented only by equations.

Within a given system of variables, a DAG in whadhpairs of variables are
connected to each other is a saturated systenthandint probability distribution is
estimable using the general multiplication rulerrprobability theory. This saturated
system can be constrained using expert knowledget abe interdependence among the
modeled variables. Human knowledge is thus forradlinto the structure of the BN
model. BNs are a way to quantify the uncertaingt #xists in the realm of human
decision making. By expressing knowledge in prolsttd terms, BNs provide a
numerically explicit way to test our understandaighe system of variables being
investigated.

All variables in a Bayesian network, whether latenbbserved, are treated as
random variables that take on a discrete numbstadés. The joint probability
distribution is the product of the probability dibutions of the variables (nodes) in the
network, conditional on the values of each nodaiept variables. Parent variables are
the immediate antecedents of the target variablleardependency structure. A variable
with no antecedents is modeled as exogenous (arplaan). By comparison, other

6



variables might have a single parent, two paramntsjany parents. Specification of

variable parentage is how the structure of the jistribution is established:

PO = %1, Xn = ) = | | PO = ilpaCit) @,

whereX; is a node in the networka(X;) are the parents &f;, P(X; = x;) is the
probability distribution off;, andP (X; = x; | pa(X;)) is the local probability distribution
of variableX; conditional only on the values of that node’s psse

Bayesian networks have a number of attractive feat'hey are extremely
flexible in the sense that very complicated depanis can be represented relatively
easily using graphical structure. In addition, reodan vary in their properties (e.g. they
do not need to have the same number of parentatesy so models can be customized
to a particular situation as opposed to choosingxdsting model “off the shelf” and
applying it like a cookie cutter to the situatidrhand.

After all of the conditional probabilities of a BiNave been specified (either via
expert knowledge or calibration with data), the elathn be applied very quickly to the
task for which the BN was designed: making infeesnabout specific situations based
on a given state of knowledge, whether hypotheticalbserved. A model in this fully
specified, or calibrated, state is also caltgtbrantbecause it does not reflect specific
findings for any particular case. Rather, the nekwsmntains marginalized knowledge,
akin to what would be believed in aggregate acatissases in the population. If no
response data is available for a particular caseligtions can be made using the
ignorant (marginal) network. The network will make same inferences for all cases
with completely missing data. When any data foadipular case is available, the

7



network can be updated to reflect the current stekmowledge. The appropriate
propagation of inputted information is applied nestvely via Bayes' Theorem.
Conditional probabilities are combined accordinglyield the model-implied joint
distribution given the current knowledge state, Hredstate-specific inferences are
outputted.

To date, BNs have been used in a broad array ¢déxts) including academic,
commercial, and governmental sectors, with notekémples from the fields of
medicine, engineering, biology, environmental scegrpsychology, and education. In the
following section, the application of BNs to thelll of psychometrics is discussed in
more detail.

Bayesian networks in psychometricsThe application of BNs to the field of
educational assessment (Mislevy, 1995; Almond &l&#g, 1999; Mislevy, Almond,
Yan, & Steinberg, 2001; Sinharay, 2006b; Almond&lo, Moulder, & Zapata-Rivera,
2007) represents part of a broader, historicat gy from a trait paradigm toward a
more cognitive paradigm. There are many differ@praaches to cognitively based
psychometrics. A few examples of modeling paradigmkide: Rule space method
(Tatsuoka, 2009), attribute hierarchy method (AHMighton, Gierl, & Hunka, 2004),
and ordered multiple choice (OMC; Briggs, Alonzeh®@ab, & Wilson, 2006).
Examples of design frameworks include evidenceearedtdesign (ECD; Mislevy,
Steinberg, & Almond, 2003), and cognitive desigategn approach (Embretson, 1998).
They share the common goal of seeking to provio®ee detailed account of student
learning and performance than has been obtainddidrzally within the trait paradigm.
The cognitive perspective emphasizes the constipeats of a learning process which

8



might formerly have been summarized as a singliéyeiihe cognitive perspective relies
on accumulation of finer-grained evidence with whic make inferences about what
students have learned. The big payoff is predigtimeer (greater specificity and
accuracy) based on more extensive theoretical atadetings of the latent construct(s).
Other benefits include increased understandingaimenee behavior, more accurate
inferences about students, improved opportunitydarediation, feedback for curriculum
and instruction revisions, and improved understagdif the domain such as information
about which skills are or are not necessary focessful performance. The term used
hereafter to refer to this broad family of psychémeemodels is cognitive diagnostic
models (CDMs).

CDMs are united essentially by their purpose oir thygplied uses. A
methodological subset of this larger group has lwetred to by many different names,
including diagnostic classification models (DCMsyf® & Templin, 2008), the term
used hereafter to refer to the subset of CDMsubkatdiscrete latent variables to model
cognition and task performance. In other words, BGve subsetted from CDMs based
on the discrete (categorical) status of the latantibles. Even when it is true that a
psychological construct is not distributed catecally in the population, it may still be
useful to make evaluations categorically becausdntiman mind is well suited to
thinking categorically. Classification is a natunady to simplify complexity, and
classification models often fit intuitively with étnatural human proclivity to classify. All
CDMs make subjective classification decisions msknse that experts define key
structural components of the models, whether gpttirt scores or mapping oQt

matrices (Gorin, 2009).



A purely exploratory approach to model buildindgBNs can use intelligent
algorithms (e.g. DEAL package in R, see Bottche&l @ethlefsen, 2012) to search for
model configurations that optimize model fit fogi@en data set. By contrast, a more
confirmatory approach relies on content expert jo€elgt to construct a theoretically
defensible model. For example in BNs, experts minghtalled upon to draw DAGS,
specify parent-child relationships, impose meanihgbnstraints, specify conditional
probabilities, specify the number of latent class¢s.

Any model, regardless of its relative parsimongamplexity, will require
agreement with data to stand the test of time. draatage of BNs relative to some other
types of models, however, is that content expefiseven theoretical speculations) can
take the place of data-estimated parameters imife@ stage of model building. In other
words, the flexibility of BNs permits users to sippconditional probability distributions
based on any source of a priori information. Thalityof those specifications will
necessarily affect the quality of the model in temn fitting actual data, but data are not
needed to begin the iterative cycle of model badgdimodel criticism, and model
refinement.

Another advantage of BNs relative to some otheretsis the convenient
applicability after estimation. Programs like Nat&and GeNie provide an intuitive
interface that allows users to easily access tleeantial power of the completed model.
Calibrated models can easily be used by classreanhéers (Shute & Almond, 2008) or
researchers to make respondent classificationsvasases become available. Given the
assumption that new respondents belong to the pappalfrom which the model was
constructed and calibrated, additional cases cavakeated quickly and efficiently,

10



regardless of whether or not there is data fooladlervable variables. In fact, the BN can
provide an a priori (marginal) classification, whis marginalized across all known
model parameters, or any combination of partiakoletions. Any pattern of missing
data is permitted because the uncertainties assdaiath inferences made by the BN are
built into the model explicitly (see West et al120or examples of BN inferences using
incomplete response patterns).

Assessing Data-Model Fit

One reason why psychometric models are imperfdmdause they oversimplify
complexity that exists in the data. Models seelefwesent the most important
relationships among the variables of interest; gk to account for the most important
sources of variability in the data. The usefulr@fss model often rests on its ability to
distill key features of the real world into a mananageable form. Fitting models to data
often involves tradeoffs between parsimony andifyleThe attractiveness of a model is
inextricably linked to its applied purpose. One wayiew validity is whether the model
reproduces the inferences a prototypical domairerxpould make using the same
evidence.

A psychometric inference machine (e.g. BN) mustistomized to each
particular applied purpose. The goal of model chegls to troubleshoot the
performance of the machine in the context of itseut application, to find out which
parts can be tweaked to improve parsimony or fig@hen representing the real world.
Different types of modeling errors suggest différgpes of adjustments. The goal is to
tinker with the functionality of the machine sotttiae next iteration of production
contains fewer and/or less serious inferentialrerro

11



According to Rupp, Templin, and Henson, authorBiafynostic Measurement
(2010), “many DCM applications are plagued by meshgh misfit” (p. 166). This
statement admits much about the state of cognytivesed modeling in general. There
are few prototypes in the literature that have tgpad sufficiently in the theoretical
sense to withstand rigorous model criticism. Thestnfiequently cited data source is
Tatsuoka’s mixed-number subtraction data (Tatsub884). Ironically, it may be the
improvement of model criticism tools that helps trtosspur theoretical development
because content experts often benefit from thebl@gdthat model criticism brings. By
providing a framework where specific features @dty and data coexist (e.g. in BNs
dependency relationships and estimates of uncegrtainst be made explicit), experts are
pushed to formalize and explicate their theoreticalerstanding in new ways, and
sometimes to consider new ideas or reconsider fityrdescounted ideas. The feedback
to content experts that comes from analyses ofidata exciting part of the iterative
validation process. CDMs are currently being useldedp build the cognitive theories
that will be needed to justify their usefulnessnipared to more conventional models) in
applied settings. The process of building, troutdesing, and validating models is
necessarily iterative; it is a process of accunealggroductivity (see Box, 1976). One of
the greatest benefits of CDMs to the psychomeieid is that they provide a way to test
the theoretical knowledge provided by content etspédodels are built to help evaluate
what students know. The models are themselves &ealuo see what the model-builders
(domain experts) know. In this sense, model csiticserves to teach the experts about

the weaknesses in their models. Model criticistiis an integral part of theoretical
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validation (see Gelman & Shalizi, 2013), and mamiggicism is essential for building
evidentiary arguments about human learning.

Posterior predictive model checkingPosterior predictive model checking
(PPMC; Gelman, Meng, & Stern, 1996; Guttman, 19&%ry, Mislevy, & Sinharay,
2009; Meng, 1994; Rubin, 1984; Sinharay & John2893) has been used for evaluating
the fit of many types of psychometric models, inlohg BNs.

Description of PPMC. PPMC circumvents the problem of calculating testistic
reference distributions by empirically building tfeference distributions of interest using
replicated datg"Pgenerated from numerous draws of the model paramete

01,02, ...,0N from the posterior distribution

p(¥|©)p(0)
Jo(¥1©)p(©)de

p(@ly) = 3.

A numberN of replicated datasets are generated from the pastistribution, with each
generated datasgt®P"*corresponding to a different draw of model paramseéé.

Features of the replicated data are then comparttures of the observed (realized)
datay, using a range of techniques including graphicgdldys and summary statistics.
Any desirable feature of the data can be comparéhis way (see Gelman, Carlin, Stern,
& Rubin, 2003 for examples and discussion of thsd).

When a statistic is calculated from model paransdtaruse as a comparison of
replicated and realized data in PPMC, it is refittoeas aliscrepancy measui(y, ©).
Discrepancy measures should be selected accoalihg type of model and aspect of fit
that are of interest. Particular discrepancy messwill be of use in some situations but

not others. For example, Sinharay & Johnson (2@f28)d odds ratios to be a powerful
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discrepancy measure for detecting inadequacy @szlikRmodel for data from 2PL/3PL
models, a 3PL model for 2-dimensional data, a 3@dehfor data from a testlet model,
and a 3PL model for speededness data, but ineféefdr detecting inadequacy of a 2PL
model for data from a 3PL model.

For each of thel) draws from the posterior distribution, two valuwgsa
discrepancy measure are calculated: one usinga$erved data and one using the
replicated data. The discrepancy measures thdt fesm using the replicated data
D(y"®P, ®)are compared to the values of the discrepancy mesassging the observed
dataD(y, ©). In this way, the replicated data serves as anraralreference distribution
for evaluating the observed values of the modedtétistics. PPMC does not require re-
estimation of the model, but does require genegagplicated data sets and computing
discrepancy measures from the generated data.

One way to summarize discrepancy measures is wighreal p-values (also
calledposterior predictive p-valuesr PPP-values). In a simulation environment sagch
Markov chain Monte Carlo (MCMC; e.g. Gelman et 2003), PPP-values are the
proportion of draws in which the replicated valaes greater than the values using
observed data. The expectation is that PPP-valilelsenat or near .5 when the model
fits the data. More extreme values in either diogcare indicative of data-model misfit,
because they suggest that the model is systemwticaler- or over-producing the
discrepancies. Direction of misfit is not neceggamportant out of context, but patterns
of directionality may be informative within the dert of a particular discrepancy
measure and/or model of interest. Importantly,RR&-values are not statistical tests, so

they should not be interpreted in the same wayaattional frequentisp-values. PPP-
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values are simply one way of summarizing the redatialues of the discrepancy
measures, and should be used as part of a larglemee argument when assessing data-
model fit using PPMC (Levy, Mislevy, & Sinharay, @) Sinharay 2006b).

A graphical way to compare discrepancy measurestlisa scatterplot of
predicted discrepancy values (based on replicaata) ds. the realized discrepancy
values (based on observed data). Figure 1 showgample of such a plot taken from

Sinharay (2006b).

Itam 3

Predicted discrepancy

o 10 20 30 40
Realized discrepancy

Figure 1 Scatterplot of predicted versus realized disanej@s. The associated PPP-
value was .04, which was suggestive of misfit. Tekem Sinharay (2006b).

Each point in this plot represents a draw of maaeameters from the posterior
distribution. A 45°-reference line shows where ploents would fall if the values of the
discrepancy measure from the replicated and oligiaa sets were equal to each other.
Points that fall away from the reference line imdécdraws where there is a difference
between replicated and original data on the skatdtinterest. The reference line

therefore serves to separate the points into twegoaies: one where the replicated
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values are larger than the realized and one wherestllized values are larger than the
replicated. The graph serves as a holistic dewicddtecting systematic differences
between the realized and replicated discrepanteethe extent that points fall evenly on
both sides of the line, the model is said to adedyét the data with respect to the
discrepancy of interest. Conversely, to the extiesit most points fall on one side of the
line, evidence of model misfit is indicated. Natatt distance from the line is not
necessarily of principal interest in a graph likgufe 1; however, distance from the line
does represent the magnitude of the differencedmtwbserved and predicted data for
any given draw. An open area of research is hosh&wacterize and summarize
systematic differences in the observed pattertisese types of PPMC results.

A potential disadvantage associated with PPM@asit may require the
researcher to use multiple software packages.i$tmet a disadvantage of PPMC per se,
in that the process of implementing the techniquklikely improve with software
developments, but the current software optiongwmact practical considerations. Mplus
6.0 is capable of doing PPMC, but is not suitedBidis (Muthén & Muthén, 2010).
WiIinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 208 7ore flexible than Mplus in
terms of the types of models it can estimate, tonids to be relatively slow, and output
from WIinBUGS most often needs to be passed to angidckage, such as R (R
Development Core Team, 2013), to compute the dpserey measures of interest, which
increases computational time as well.

In summary, PPMC is often more computationallynstee than alternative
frameworks. In addition, current software optiorsymecessitate an investment of time
to customize programming code. PPMC is also renmdyKéexible, and is potentially
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more informative in the sense that a greater waagstatistics can be used as model-
checking tools because the reference distribuoagenerated empirically.

Example using Qs. To aid in describing the PPMC framework, | will drapon
an example using Yen®; (Yen, 1993), described next; has been used in a variety of
modeling contexts as a check of the local indepecel€Ll) assumption. The LI
assumption asserts that responses are conditiondépendent, meaning that after
accounting for the parameters within the modehoeses are independent of each other
(Levy & Svetina, 2011). Yen (1993) provided a dgson of the following sources of LI
violations: external assistance or interferenceedpdness, fatigue, practice, item or
response format, passage dependence, item chaixiplgnation of previous answer,
scoring rubrics or raters, and content knowleddeLviolations can be framed in terms
of multidimensionality (Ip, 2001), but a violatiaf LI is not necessarily evidence of
dimensionality misspecification. Under-specifyinghénsionality will result in local
dependence, but if dimensionality is over-specifaxhl independence will hold. Yen
explained that constant effects do not produce ridgrece. To produce dependence, these
sources must have differential effects on itemespondents?; is a statistic for
evaluating the degree of dependency between paiisserved variables, conditional on
an assumed modd); is defined as the correlation between a pair atlueds from

observableg andj’ :

Q3i]- = Teyjeyjr (4),
wheree;; is the difference between the observed respdisand expected (model-
implied) responsé& (X;;) for person on observablg Values ofQ; indicate the extent to

which there are dependencies between pairs of wéseariables that are not accounted
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for by the model. As values approach 1 (or -1),ftmetion indicates that the association
between a particular pair of variables in the dattill strongly positive (negative) even
after accounting for the influence of the modeleldtronships. Positive associations
indicate that as the value of one variable changessecond variable changes in the
same direction. Negative associations indicateabdhe value of one variable changes,
the second variable changes in the opposite direclihe local independence assumption
is undermined whe@; values are sufficiently large (e.g. > .2, see Y&93; Chen &
Thissen, 1997) because the pairs of variableséstgqun exhibit positive (negative)
dependence above and beyond what is accounteg foebmodel. Stated differently,
large Q5 values indicate that there are positive (negatiesidual dependencies between
data values that cannot be explained by the madgaltsre alone. Conversely, as values
approach 0, th@; function indicates that the association betweeartiqular pair of
variables in the data is weak after accountingHerinfluence of the modeled
relationships. In other words, the local indepemrgegssumption appears warranted
because the pairs of variables in question exhibited residual dependence above and
beyond what is accounted for by the model.

In the context of PPMC, observéd values are measured against empirically
generated reference values. For each draw of npadameters from the posterior
distribution, aQ5 value for each pair of observed variables is catedl using the realized
data and anothdl; value is calculated using predicted data. If 5Gdrare taken from
the posterior distribution, then there are 500 s&@; values, and each set would contain
two Q5 values for each pair of variables: opgvalue using realized data and one

Q5 value using predicted data (these are the two sdhst would constitute the
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coordinates for each point in a scatterplot suchigsre 1). The proportion of draws in
which the posterior predicted value exceeded tisemed value provides the researcher
with a summary of the pattern of values that candsl to judge the degree of misfit.

Applications of PPMC. Sandip Sinharay and his coauthors have demonstrated
several techniques for assessing model fit withRPMC framework. This line of
research has included unidimensional IRT modelsh@ay, 2003; Sinharay & Johnson,
2003; Sinharay 2005; Sinharay, 2006a; Sinharayjshmh & Stern, 2006) as well as BNs
(Sinharay, 2004; Sinharay, 2006b; Sinharay & Alma@D7). A variety of statistics and
graphical displays have been proposed by thesemuibr use with PPMC, including:
direct data displays for overall fit (first demaraded in Gelman, Carlin, Stern, and
Rubin, 2003)X? andG?-type measures (based on equivalence class merijbargh
then on raw score) to assess item fit, point-taeorrelations and odds ratios as
measures of inter-item associations; a varianh@iMantel-Haenszel statistic (Holland,
1985) for assessing differential item functionilK), and checks of parameter
identifiability.

Fit functions. In this section, specific fit functions are presehin greater detalil
to inform the method section which follows. Manytieé fit functions could theoretically
be implemented using any of the four model criticisameworks discussed in the
appendix, but in practice some fit functions do leotd themselves conveniently to all of
the frameworks. For example, within a hypothesssing (HT) framework the analytical
derivation of reference distributions is often phafive, so researchers often avoid using

a fit function for which the reference distributibas not been established.
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Global fit. Global fit refers to the fit of the model as a wdyadummarized as a
single number. Several techniques have been deaakopcompare fit across different
models based on the estimated value of the liketiHanction. This maximum likelihood
value is often reported as a deviande (

d = 2In (L — Lyge) (5),
whereL is the value of the likelihood function of the nebdinder investigation arid is
the likelihood estimator of the saturated modeliBrece was first proposed as a model-
checking tool by Nelder and Wedderburn (1972).

Among the most common global fit statistics areRlearsork ? test and the

G2 test of overall model fit:

0. —E
XZ — Z TE T (6),
r=1 r
and
2J 0
G2 = 22 0in - ™),
r=1 r

wherer is a particular response pattern, dnsl the number of items. When implemented
within an HT framework, the final summation for baquations is evaluated ag4a
statistic withdf = (22 — number of estimated parameters — 1).

These statistics will only follow g?distribution when all of the response patterns
are adequately represented in the sample; in wtbets, when the contingency table is
sufficiently populated. Because the number of rasp@atterns is’2these hypothesis
tests become problematic for long tests and/orIssaaiples. Stated differently, full

information fit indices (e.g. glob&? andG?2statistics) are generally not usable within an
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HT framework to critique BNs because of the spgréidéd contingency tables that
result from prohibitively large numbers of respopsatterns in most psychometric
applications. The sparsely populated responserpatteake these tests impractical for
most BNs. The problematic behavior of the samptirsgributions in such situations can
be circumvented using a framework where the reterelistribution is generated
empirically, i.e. parametric bootstrapping (PBR®MC. In addition, these indices have
variants at the item level (see below). Separat® the issue of an appropriate reference
distribution for the statistic is the issue of wiatthese fit statistics would provide useful
feedback for different types of data-model migfior example, Levy, Mislevy, and
Sinharay (2009) and Levy (2011) found these stegisb be useless for the detection of
multidimensionality in IRT models. In a rare exampfF an applied study that used
multiple model-checking frameworks simultaneouglyken (2004) demonstrated that
hypothesis tests with inexact reference distrimgioan still provide heuristic value in
applied settings because they do give researclssse of the magnitude of misfit even
when thep-values cannot be trusted at face value.

When models are nested, meaning that one modeldesirained version of the
other, a likelihood ratio (LR) test can be perfodite compare model fit. The LR statistic
is the difference between the deviances of themodels:

LR=d —d (8),
whered' is the deviance of the more restrictive model. fituge restrictive model will
never fit better than the less restrictive modelthe result of Equation 8 will never be a
negative number. Within an HT framework, the rasgldifference is then evaluated as a

x2statistic with degrees of freedom equal to theeddfiice in the number of parameters
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between the less restrictive and more restrictioe@ls. However, the LR statistic does
not follow ay?distribution when model parameters take on boundalyes. The design
of the current study did not emphasize model commparof nested models, so the LR
test was not discussed further.

One common classification system utilized in meamd covariance structure
modeling puts global fit indices into three broadups: absolute, parsimonious, and
incremental. Absolute indices compare the obsevaeidnce-covariance matrix to the
model-implied variance-covariance matrix. Exammeabsolute indices include the
Model T statistic, which is the foundation for some of tiker fit indices (Yuan, 2005),
Standardized Root Mean Squared Residual (SRMR)Garmdiness-of-fit Index (GFI).

Parsimonious indices (also called penalized indlicexke adjustments based on
the number of parameters in the model. Model coriiglés considered in conjunction
with the deviance statistic. Each variant modiftes deviance statistic in a different way,
but they all offer a way to evaluate whether moadélimcreasing complexity (i.e. more
parameters) are worth it. Examples of parsimonindiges include Adjusted Goodness-
of-Fit Index (AGFI), Root Mean Squared Error of Appimation (RMSEA), AIC, and
BIC.

Incremental indices compare the model of inter@st baseline model where all
the model parameters are independent of each dtherbaseline model is a worst-case
scenario which provides no explanatory power wheateg which is akin to having no
model at all (i.e. associations are products ohchalone). Examples of incremental
indices include Comparative Fit Index (CFI), Norntadindex (NFI), and Nonnormed

Fit Index (NNFI). Residuals between the observetirmndel-implied variance-
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covariance matrices can be inspected manuallyaphgeally to investigate localized
data-model fit. In addition, these residuals ao®rporated into many fit indices.

Two of the most commonly used relative indices/Akaike’s information
criterion (AIC; Akaike, 1974), and Bayesian infortoa criterion (BIC; Schwarz, 1978).
When used in a framework with no reference distrdmu(NRD), the model with the
lowest index value is taken as the best-fitting eloRelative fit indices should not be
used as the sole justification for a model becaus®del that fits better than its
competitors may still fit poorly by absolute crieerThese indices are useful for ranking a
set of models that all fit adequately in an abskénse (Rupp, Templin, & Henson,
2010, p. 279). AIC is given by

AIC = -21In(L) + 2p 9),
wherep is the number of estimated parameters. BIC isrgbse

BIC = —2In(L) + In(n) p (20),
wheren is the sample size.

Tests of incremental fit, including the LR test anfibrmation criteria like the
AIC and BIC, may be used with BNs, but not mucteaesh has been done to guide
interpretations of these statistics in this con{&upp, Templin, & Henson, 2010).
Within a PPMC framework, the deviance term (L3lmaries across replications within a
given model, and therefore can be utilized as erejmncy measure (Gelman et al., 2003;
see Steedle, 2008, for an application). By contmisen computing AIC and BIC within
a PPMC frameworkn in Equation 9 ang in Equations 9 and 10 are constants across
replications for any given model, so AIC and BICrdu provide additional utility above

and beyond the deviance term. For this reasonadegiwas used in the present study
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while AIC and BIC were not. GDDM (Levy & SvetinaQ?1)evaluates whether the

dimensionality for a given set of items is adeglyatepresented by the specified model:
N (Xij - E(Xij|9i; wj)) (Xijr — E(Xij'|9i' w;j:))
Zj>jl N

GDDM = -1 (1D),

whereX; is the scored value (1 or 0) from examinea observablg 6; are the student

model variables for examineéew; are the conditional probabilities that govern the
distribution of observablg N andJ are the number of examinees and observables,
respectively, an&(X; | 0i, ®;) is the model-implied expected value from examinee
observablg, which in the context of dichotomous observaldethe model-implied
probability that the examinee correctly completesadspect of the task captured by that
observable. Note that a set of observables comigapglihe GDDM can consist of the
full set of observables, in which case it functiassan assessment of global fit, or a
subset of observables (as few as two), in whick gdsinctions as a local fit tool. A
standardized version of the GDDM (SGDDM; Levy, Xigl, & Svetina, 2012) has been
developed to overcome limitations associated witperties of the covariance metric:

N

Z(Xij - E(xij |0, ’mj))(xij' - E(xij |0, ’(’Jj))

- .
Y~ O 100,002 |06 ~E(X; 10,,0,)°
N N

SGDDM = (12).
JI-1/2

Local fit. Limited information fit statistics, including univate and bivariate

statistics, have been used in BNs (and other CDMBEIp investigate local dependence
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(Levy et al., 2009; Levy, 2011), item fit, and wammation, to help address the need for
indices of global fit (Rupp, Templin, & Henson, Z)1A drawback of these statistics
within an HT framework is that their reference dimitions remain unknown. These
statistics retain some heuristic utility, even whiea reference distributions are only
approximations, but thevalues cannot be taken at face value. Future reséaneeded
to clarify the advantages and disadvantages ofjusatistics heuristically versus
committing to a framework which estimates the refee distributions empirically. The
framework emphasized in the present study was PRiC;onceptually related
techniques within a frequentist framework (i.e. PiByht yield similar findings.

Chen and Thissen (1997) used a simulation studgniapare the effectiveness of
four statistics (Yen'§);, Pearson’g?, The Likelihood Ratiaz?, and The Standardized
Coefficient Difference) for detecting local depende among item pairs in IRT models.
Qs, x?, andG? were each found to be preferable to the otheetimdices under some
conditions.

Sinharay and Almond (2007) useg &type item-fit statistic to help detect
misfitting items in a BN with two latent classestb Tatsuoka’s (1984) mixed-number
subtraction data:

N, (Oxi — Ex)?
)(]Z — k( kj k]) (13),
- Eyj(Ny — Ey;)

whereN,, is the number of examinees with skill pattky@, ; is the number of
examinees with skill patterathat responded correctly to itgprandEy; is the product of

the expected proportion of correct responses ftiepek multiplied byN,, . Note that

because equivalence-class membership is not actlzkerved(, ; is substituted by
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Dk Ny, wherepy ;is the median proportion of class membership froengosterior
distribution.

The Item Consistency Index (ICl; Lai, Gierl, & C@0Q12) is an item-fit index for
use in CDMs. It was developed from the personi#lague Hierarchy Consistency
Index (HCI; Cui & Leighton, 2009). The ICl is givday

2% [Zges; X, (1= Xiy) + Thes; X3, (1= Xi))]

ICI; =1 —
] NC

(14),

;
WhereXij is student’s score for iten), S; is an index set that includes items requiring
the subset of attributes measured by itemg is student’s score to iteng where iteny
belongs tas; , S/is an index set that includes items requiringtalt, not limited to, the
attributes measured by itgmX;, is student’s score to itenh where iterh belongs to
i, andNC]. is the total number of comparisons for iteacross all students. The kernel

of the ICI counts the number of mismatches betwkerobserved and expected
responses to items as dictated by the hypothesipel@l. This count is then divided by
the number of possible comparisons being madd]igigla proportion of mismatched
comparisons. The numeric constant “2” in the nutoerserves to change the index from
a proportion metric ranging from 0 to 1, to a netanging from -1 to 1. The resulting
quantity is then subtracted from 1 to translateitidex into matched comparisons, as
opposed to mismatched comparisons.

The next three indices (WPI, RPS, and GLS) belorgylarge family of statistical
functions known traditionally as scoring rules. $@ecoring rules were developed

historically outside of psychometrics, and haveapmieared much in the psychometric
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literature. However, given their general structamel broad applicability in other
statistical applications, they were considered ineae potentially valuable fit functions.
Weaver's Surprise Index (WSI; Weaver, 1948) makés@nction between “rare” events
and “surprising” events, the latter being distifiom the former by virtue of being
unusual in relation to alternative outcomes, asoepgd to simply being unusual in an
absolute sense. Weaver reminds us that in a soemhére all possible outcomes are
equally rare, a rare outcome would be inevitabk slrould therefore be construed as
unsurprising. Researchers are cautioned againsikimg rare events for surprising
events. The WSI provides a formal computation opsse, thereby relieving the
researcher of embarrassing emotional attributionmare events. The WSI ranges from
unity to infinity, with values indicating surprises they grow increasingly large. In
addition to showing how to compute his surpriseeiydVeaver also demonstrated how
he interpreted its outputted values: “A Surprisaeix of 3 or 5 is surely not large; one of
10 begins to be surprising; one of 1,000 is dedlgisurprising; one of 1,000,000 or
larger is very surprising indeed; one of 1,000,000,000 would presumably qualify as a

miracle” (Weaver, 1948, p. 392).

_E@® _pf+pt +p)pa’
pi pi

(15)

The Ranked Probability Score (RPS; Epstein, 196%) eeveloped by Edward
Epstein in the context of weather forecasting, whetegories of potential temperatures
were assigned probabilities and forecasts weresasddased on whether observed
temperatures fell within specified temperature emn(gategories). Epstein noted that pre-

existing indices did not take into account how mtaiktance” existed between the
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observed category and the predicted category,tareearhich he incorporated into the
RPS. RPS scores range from zero to one, with & sfarero indicating the worst
possible prediction (i.e. an outcome which is tblapopposite of the expectation), and a
score of one indicating perfect prediction.

2

k-1|/ i 2 K
RPS, = > ! E E + E ! 16
T2 k- D 4 P )R- e
L=

n=1 n=i+1

Williamson et al. (2000) found Good’s Logarithndcore (GLS; Good, 1952) to
be unique in its ability to detect errors of notlesinclusion or exclusion, although it did
not perform as well as the WSI or RPS in termsetécting other types of errors, namely
node inclusion or exclusion, edge inclusion or egin, and prior probabilities. The
GLS was developed as a tool for quantifying theihodémprobabilistic judgments by
experts. As a side note, Good also provided a fatoywhich experts’ payments would
vary as a function of accuracy. Good described faamethod of introducing piece-work
into the Meteorological Office. The weather fordeasvould lose money whenever he
made an incorrect forecast.” (Good, 1952, p. 1TB¢ GLS is given by

GLS = log (bp;) a7)
when the predicted event occurs, and

GLS =log b(1 —p;) (18)
when the predicted event does not occur. The priaoability of event isp;, andb is a
penalty term which was designed to keep the exXpmrt guessing the marginal
expectation instead of considering as much evidasqessible in a particular case. The

penalty term is given by
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b =—3"_,x;logx; (19),
wherer is the number of possible outcomes and the marginal probability associated
with categoryj. The GLS ranges from zero to infinity, with valudszero representing
perfect prediction and increasingly large valuggesenting inaccuracy.

Note that while RPS, WSI, and GLS can be impleeeats item-fit functions,
they exemplify the principle that fit functions caften be used in a variety of ways.
Williamson et al (2000) describe how these threetions can be aggregated to assess
item fit, person fit, or global fit, depending dmetneeds of the researcher. This principle
of variable use applies to many of the fit funciarsed in model criticism research.

Person fit. Person fit is a way to evaluate whether a partramladel applies
adequately to certain response patterns, and ley&ixh, to the respondents represented
by those response patterns. Person-fit statistigsotl directly test the cause of an
aberrant response pattern. Causal interpretatiss lbe investigated and validated
separately. In many person-fit applications, this misfitting individuals who are of
interest. For example, these fit statistics havenhesed to identify cheating, test anxiety,
faking (of personality or clinical diagnoses), ack of motivation (Karabatsos, 2003;
Meijer and Sijtsma, 2001). In other applicationss ithe improvement of data/model fit
that is of interest. Misfitting people degrade thuality of the estimated model
parameters. Removing misfitting people from the ganeffectively redefines the
population to which the remaining sample will getize. The loss of generalizability in
this process is compensated by improved predictiamderstanding of the remaining

persons who do adequately fit the employed model.
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Person-fit statistics measure the extent to whideoved response patterns are
deviant from typical response patterns that areebgal under the utilized model. The
statistics are often model-specific; in such cagessearcher must painstakingly choose
from the large family of person-fit statistics tlts been developed. Armstrong and Shi
(2009) introduced a model-free approach to pergdosflinear tests, based on likelihood
ratios. Emons, Sijtsma, and Meijer (2005) propaséuree-step methodology to initiate
an investigation of person fit. The first stepasuse a global person-fit statistic to
identify questionable response patterns. The sestamlinvolves graphical construction
of a person response function (PRF), which requiatharametric kernel smoothing of
the observed response pattern. The third stepuvasalsing a local person-fit statistic to
test specific items which appeared to cause iregdigs in the PRF. Glas and Meijer
(2003) used PPMC in a simulation study to complaeedietection rates and false alarm
rates of 8 person-fit indices to detect aberraspoase patterns in a 3-parameter normal
ogive (3PNO) model. “Bayesigrvalues” were reported as an outcome.

Meijer and Sijtsma (2001) reviewed 40 person-fiices. The authors grouped
the indices into two main categories: group-depan@ek.a. non-parametric, model-
free) and IRT-based (a.k.a. model-dependent). kKaisals (2003) compared 36 person-fit
indices using simulation study implementing a Rasdidel. He characteriz H], which
is a correlation between one observed responserpathd the remaining observed
response patterns, as the top-performing indexoadth there were a few others that
performed nearly as well.

According to Cui and Leighton (2009), the group-elegient category of person-

fit statistics assumes unidimensionality. Due @ hulti-dimensional nature of CDMs,
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existing person-fit statistics are not appropriateCDMs. The authors consequently
introduced the Hierarchy Consistency Index (HCi)dwaluating person-fit in cognitive
diagnostic models. HCI values range from -1 to ith Wower scores indicating response
patterns that are expected with lower frequencegmgihe cognitive model. The HCI for
student is given by

2 Zjescorrecti desj Xij (1 - Xig)

HCI; =1 -
l NCL

(20),

whereS ., rect; IS an index set that includes items correctly aed by studeni Xi, is
student’s score for item), where itenj belongs t& ., rect; ; Sj IS and index set that
includes items requiring the subset of attributessured by item Xi, Is student’s

score to iteng where iteng belongs td; , andN,, is the total number of comparisons

for all the items that are correctly answered loyglenti. The kernel of the HCI counts the
number of mismatches between the observed respenta and the expected response
vector as dictated by the Q matrix. This counhentdivided by the number of possible
comparisons being made, yielding a proportion efmatched comparisons. The numeric
constant “2” in the numerator serves to changeritiex from a proportion metric
ranging from O to 1, to a metric ranging from -11tavhich its creators preferred on the
basis of interpretability. The resulting quantiytihen subtracted from 1 to transfer the
focus of the index from mismatches to matches.

Research on discrepancy measures. Many different discrepancy measures have
been employed in the literature using applied daiarelatively few simulation studies
exist where discrepancy measures have been systaltyatompared and evaluated.

Among studies of the latter variety, attention baen divided across different modeling
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paradigms. Levy, Mislevy, and Sinharay (2009) amtbaely related follow-up study
(Levy, 2011) operated within an IRT/PPMC framewad#fklliamson (2000) and
Williamson, Mislevy, & Almond (2000) used a BN/PEamework. Levy (2006)
contained two simulation studies within a PPMC feavork, one using IRT models and
the other using BNs. Both types of sources aboveidisition studies using PPMC with
alternative psychometric models, and applicatidi3RMC using BNs—were used to
inform the choices of discrepancy measures fopthsent study.

In a simulation study, Levy (2006) compared thdqrenrance of eight
discrepancy measures for criticizing the fit (bigge associations) in BN models which
ignored inhibitory relationships in the generatetibd Model-based covariance (MBC;
Reckase, 1997) an@; (Yen, 1993) were found to perform the best. Fasicrépancy
measures that performed similarly to each otheewategorized together as the next
best: covariance, residual item covariance (McDad8aMok, 1995), log odds ratio
(Agresti, 2002), and standardized log odds ratsidieal (Chen & Thissen, 1997).
Finally, X? andG? (Chen & Thissen, 1997) were found to be less lisieéun the other
discrepancy measures because they did not indivatdirectionality of detected misfit.

In closely related work, Levy, Mislevy, & Sinharé2009) investigated the utility
of several different discrepancy measures to clfackultidimensionality when data
were generated to have various forms of multidingeradity but were estimated with a
(2PL) unidimensional IRT model. They found a Ma#ttalenszel statistic (MH; Agresti,
2002), model-based covariance (MBC; Reckase, 199id),Yen'sQ; (Yen, 1993) to be
most effective at detecting multidimensionalitytheir conditions. Less effective

bivariate measures included the covariance, rekithma covariance (Fu et al., 2005),
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natural log of the odds-ratio (Agresti, 2002), anslardized odds-ratio residual (Chen &
Thissen, 1997), and the item-pair version¥ ®andG? (e.g. Chen & Thissen, 1997).

The latter two are nondirectional measures of aggon, which may partly explain their
poor performance relative to the other bivariat@suees. The univariate measuxés

G2, and proportion correct were found to be uselesietectors of multidimensionality.

In an extension of the previous studies, Levy (30@dnd that the same pattern of results
was generally supported for models with conjunctivdtidimensionality.

In studies where many hours of computing time ageiired, choosing among
similarly performing discrepancy measures can Haenced by practical considerations
such as how much processing time is required. ¥amele, Levy (2006) reported that
model-based covariance (MBC; Reckase, 1997)&and en, 1993) performed similarly
to each other as discrepancy measures of bivassteciation (in MIRT and BN models),
while generally performing better than the otheestigated discrepancy measui@s.
possessed the additional benefit of having simgenputational requirements (i.e. less
computing time), and was therefore the preferredrdpancy measure of bivariate
association in subsequent studies in the sameliresearch (e.g. Levy, Crawford, Fay,
& Poole, 2011).

Li, Cohen, Kim, and Cho (2009) compared five indioé model selection for
mixture IRT models. The competing models of intevesre non-nested, and therefore a
likelihood ratio (LR) test could not be employed foodel selection. The authors used a
simulation study to investigate the most effectivethod for selecting the best-fitting
model from among a group of candidate models. Dmepeting methods of model

selection included: PPMC using a single discrepaneasure (OR), AIC, BIC, DIC, and
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Bayes factor (PsBF). The authors generally recontie@®I1C as the preferred index, but
results were complex. Perhaps their results woaldt been different if a different
discrepancy measure had been used instead of O&eStited in the previous
paragraphs found OR to be inferior to other disaney measures for detecting
multidimensionality in IRT models, but it remains @pen question whether the preferred
discrepancy measures in those studies would haterped better than OR in IRT
mixture models in the Li et al. (2009) study. Altlgh the focus of the present study was
not model selection, the results of the presemtystould potentially help to inform
researchers about which discrepancy measuresetct sdien conducting studies of
model selection. The choice of discrepancy meassr@grucial decision when
implementing a PPMC framework, yet the number ofl&s devoted to recommending
different discrepancy measures for different madgpurposes is underdeveloped.

In a simulation study that used a parametric boapging framework to
investigate the utility of various indices for detiag model misspecifications in BNs,
Williamson, Almond, and Mislevy (2000) found Weageburprise Index (WSI; Weaver,
1948), Ranked Probability Score (RPS; Epstein, 1,968 Good’s Logarithmic Score
(GLS; Good, 1952) to be the most effective fit fimgs. Overall, RPS was judged to be
the most effective index, and was recommendeddteating the following model
misspecifications (see Figure 2 for illustratiomapplicable misspecifications): node
inclusion (adding a variable that should not bthenmodel), node exclusion (omitting a
variable that should be in the model, strong edgkision (including a strong
dependency in the model between two variablesaifgahot strongly associated in the
data), strong edge exclusion (omitting a dependé&mwcy the model between two
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variables that are strongly associated in the datde state exclusion (omitting from the
model a level of the variable that exists in theaflaand prior probability errors
(specifying prior probabilities in the model whiake do not accurately represent the true

population probabilities).

Panel D: Edge Exclusion Error Panel E: Edge Inclusion Error

Figure 2.BN misspecifications. Panel A shows the generatiogel. Subsequent panels
include dashed lines to illustrate how misspecifreatiels differ with respect to the
generating model. Adapted from Williamson, Aimoadd Mislevy (2000).
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Judged to be next most effective was WSI, which rgaemmended for detecting a
similar slew of model misspecifications: node irsttun and exclusion, strong edge
inclusion and exclusion, and weak edge exclusidt® @as deemed third most useful
despite being relatively less effective overallgdngse it detected types of
misspecifications that were not detected by theritidices, namely nodsateinclusion
and exclusion. The effectiveness of all indices ingzoved to some degree as sample
size increased from 100 to 1000. Williamson andcbesuthors called for future research
on the generalizability of their findings to diféert BN structures---which is a
contribution of the current study.
Label Switching

The ordering, naming, or numbering of categoriesespondents within discrete
models such as BNs or LCAs is arbitrary and unirtgsdrwithin a given context, but it
must remain consistent lest complications ariseelLawitching refers to the problematic
situation where alternative forms of the otherwiseninal assignment process are mixed
together within the same analytical context. Ladvatching in BNs can obscure the
underlying story that is told by parameter estiraafi¢ functions, and graphs (an example
is provided in the results section). Results fram method that aggregates information
across alternatively labeled solutions can be ingohdrevious research devoted to label
switching (e.g. Chung, Loken, & Schafer, 2004; &5, 2000) has discussed a number
of alternative procedures for fixing (avoiding) ghe@blem, the most common of which
are identifiability constraints and relabeling aitfums. This is an active area of research

with much yet to be learned about the tradeoffs@ated with various approaches.
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Summary

The current study aimed to help meet the growingated for psychometric
model checking tools for BNs by exploring the tjilof several different types of fit
functions for critiquing the fit of complex multiiensional BNs. This study differed
from previous studies in important ways. First, gle@merating and scoring models in the
present study were multidimensional, so it was omkmwhether fit functions that had
successfully detected evidence of multidimensityati unidimensional models would
be successful in this new role. Second, the BNBis1study were more complex than
BNs reported in previous PPMC research. This coxiylevas not included simply to
extend previous research, but was based on existotgls being used in an innovative
operational performance assessment (Rupp et d12)20

The potential toolkit for PPMC users is limitleagedo the flexibility of PPMC to
incorporate any fit function that may be of thematuse, but the current toolkit for BN
users is limited by the sparsity of examples inliteeature for models like the ones
included in this study. Simulation studies areipatarly useful for investigating
methodological tools because they allow researddiaow (and control) the properties
of the data. The current study represented an extphy step into a vast methodological
space. Many of the design features could have ibeglemented in so many different
ways and still have forged new ground. This studybd have looked much different if it
had been designed only from a methodological petsfge However, the study was
motivated within the context of specific modelingeriences, based on repeated efforts
to critique related BNs with a limited number obl®and wanting to know if additional
tools could improve our ability to critique thosedels.
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Method
Simulation Study

A simulation study was conducted to investigateuti@y of conducting PPMC
with a variety of fit functions to detect differetypes of misfit in complex BN models.
The following subsections describe the featureah®imodels used to simulate and fit the
data. Later sections describe the fit functions @mdome variables.

Manipulated Factors. The various models described here are variatiores on
common theme, motivated by an existing complexgoerdnce assessment (Rupp et al.,
2012), and briefly described here. The generahta®ucture consisted of three
discretized latent variables, each measured bypseswf 33 dichotomously scored
observed variables. The three latent variablesesgmted sequentially-offered
educational content, with mastery of subsequentetrsomewhat dependent upon
mastery of previous content. The first latent alead,) was the foundational latent
construct. It was relatively easy for students tstar, but was important for mastery of
subsequent construc ndds). The dependence among the latent variables will b
discussed in further detail later, after otherdead of the models have been presented.
Across all models, the theoretical importancésafas evidenced by the relatively large
number of observed variables devoted to its measemecompared to the numbers of
observed variables measurifygand6s. Each observed variable represented specific
aspects of a broad series of behaviors on an opgedeperformance assessment.

BN models were manipulated along two factors: latamniable dependency
structure and number of latent classes. The “latanable dependency structure” factor
had 3 levels (“simple”, “contextual”, “complex’@nd the “number of latent classes”
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factor had 2 levels (“2 latent classes”, “3 latelasses”), resulting in a total of 6 different
BNs. Figures 3-8 show diagrams of the six modeify accompanying conditional
probability table (CPT) templates, which expressrtiodeled dependencies among
variables. The CPT templates are also presentegp@mlently in Tables 2-5, 7-9, 11-16,
and 19-21.

Simple structure: Models 1 and 2. As can be seen in Figures 3 and 4 respectively,
Models 1 and 2 exhibited simple structure, whiclansethat each observed variable
measured only a single latent variable. The thaint variablesdg, 6,, 63) were
measured respectively by fifteen, twelve, and sigepvables. The decision to have
different numbers of measured variables per latantible reflected a desire to retain
fidelity to real-world models that motivated thisidy. It would be unlikely for task
designers in this applied setting to restrict thelres to a uniform number of observed
variables per latent construct. It was thereformtarest to investigate how discrepancies
in the number of observed variables per latente might impact model criticism
tools. Models 1 and 2 differed from each other gltre second manipulated factor, with
Model 1 having two classes per latent variable, iodel 2 having three classes per
latent variable.

The Q-matrix for Models 1 and 2 is provided in TableAlQ-matrix features the
complete list of observed variables as rows andctmeplete list of latent variables as

columns.
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Table 1

Q-matrix for Models 1 and 2
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observed task, while a value of 1 indicates thist it
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The entries in th€-matrix specify whether a latent skill is requireddach observab
variable. A value of “0” in thQ-matrix indicates that the latent skill is not regdi for
successful completion of the observed variable|endnivalue of “1” indicates that it
required. Rows in th®-matrix thus summarize the patterns of latent skdtguired for
each item, and ¢domns summarize the groups of observables requaaud latent skill
All observed variables in Model 1 followed the sadependency structure wi

respect to their latent parent (see Figur

CPT template 3 (B3)
Two latent parents
CPT template 2 (B7) 1 parent 2% parent:
Parentf; 1 2 81 8, 1

CPT template 1 (8;)

(T3 B (FURN R (]

|X:- IX2 IIX3 ||X¢ IXS "Xe le"- Ixs Ixe lec"XuI b ASE] bSE

CPT template 4 (Observables 1-33)
[Latent parent Observable (x;)
1] 1
1 .8 2
2 2 .8

Figure 3 BN Generating Model 1: Simple structure, ent variables, 2 latent class

Specifically, examinees with a value of 1 on therta parent had a 20% probability
correctly completing the observable and an 80% gty of not completing th
observable correctly, while examinees with a vali 2 on the latent parent had an 8
probability of correctly completing the observabled a 20% probability of ne

completing the observable correctly (see Table
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Table 2

CPT Template 4

Child value

Parent value 0 1
1 .8 2

2 2 8

Note This template applies to.ObservabIes 1-33 in Madeee Figure 3), Observables
4-5, 9-10, 14-15, 19-21, and 25-27 in Model 3 (Begire 5), and Observables 4-15, 19-
27, and 31-33 in Model 5 (see Figure 7).
This represented a two-class solution in whichclass with greater probability of
success was conceived as relative masters of tigtraot, while the class with lower
probability of success was conceived as relativemasters. These observables
discriminated strongly between the two classesafrenees, because there was a large
difference between the conditional probabilitiesaorrect (or incorrect) response for
the classes (0.8 - 0.2 = .6). The decision to boltstant the “quality” of the observables
represented a choice of convenience. Observablasatice would be expected to vary
with respect to this property. However, task desigralways strive to create observables
of high quality (discriminating power), so it wasasonable to investigate the properties
of an assessment that held this desirable, albéitteous, property. In the context of this
simulation study, varying the discrimination betwexservables would have created
undesirable noise that could have obscured eftd@seater interest. It was therefore
believed that sacrificing this type of fidelity warth the increased clarity with respect
to prioritized purposes.

As can be seen from Figure 4, the observed vagabl®lodel 2 followed one of

two dependency structures in relation to their eis¢ed latent variables.
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CPT template 7 (83)
Two latent parents
1st parent: 2nd parent:

8 8, 1.2 3
1 1 21110
CPT template 6 (8;) 1 2 slz2lo
Latent parent: 1 3 R
b L 2 3 2 1 3|7]0
; : ; 'é g 2 2 1]s8]a
CPT template 5 (8;) 3 o | 53 7 ; i g 2 L
- =i
1 2 3 3 2 0]2].8
k l 4 l = 3 3 0l1lse

|X1 IX: "X3 IM IXS "Xs "X? "Xs IX; FchFu Fu |F13 FHF!S'FR& Fl“-lFlSlFlQ I’-izc |F21F:2|F23 I’-(ules F:a";z“- Fzs |F:9|F30|F31IF32IF33|

(Observables 1-8. 16-21.28-30) (Observables 9-15, 22-27.31-33)
CPT template & Observable (x;) CPT template 9 Observable (x;)
Latent parent 0 1 Latent parent 0 1
1 0.8 02 1 08 0.2
2 0.2 08 2 0.8 02
3 0.2 0.8 3 0.2 0.8

Figure 4 BN Generating Model 2: Simple structure, 3 latariables, 3 latent classt

The increased complexity compared to Model 1 wastduhe addition of a thir
class of examinees per latent varialf;, 6,, 63). The number of latentasses
represented a convenient and theoretically relewagtto alter model complexity.
model with fewer classes is more parsimonious aacemestrictive because it classif
students into a smaller number of distinct catexgoeven though their terns of
responses retain the same variability as in thepeoison model. For example, a mo
with two classes (e.g., content master anc-master) posits that students can onl
categorized into these two groups, according to frepensity to coectly complete thi
observed tasks. Additional classes allow for greffe&ibility regarding the classificatio

of response patterns (e.g., Mastery, Pi-mastery, and Nomastery levels). Holdin
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constant the other factor (dependency structuredlats with three latent classes per
latent variable were expected to fit better thartmore restrictive, two-class
counterparts. The number of latent classes wasetpent to manipulate in the sense that
it did not require modifications to the DAG. Speakigenerally, additional classes cause
the number of estimated conditional probabilitesicrease precipitously, which can
impede or even prevent estimation.

Note in Tables 3 and 4 that Class 1 had the safte@6bability of success
across all observables as was the case in Mo@gldLClass 1 retained its interpretability
as a low-performing or non-mastery class. Simila@iass 3 represented the high-
performing or mastery class having 80% probabditguccessfully completing each
observable task (as did Class 2 in Model 1).

Table 3

CPT Template 8

Child value

Parent value 0 1
1 .8 2

2 2 .8

3 2 8

Note This template applies to Observables 1-8, 168, ,28-30 in Model 2 (see Figure
4), Observables 4, 5 and 19-21 in Model 4 (seerEig) and Observables 4-8 and 19-21
in Model 6 (see Figure 8).
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Table 4

CPT Template 9

Child value

Parent value 0 1
1 .8 2

2 .8 2

3 2 8

Note This template applies to Observables 9-15, 22a8d,31-33 in Model 2 (see Figure
4), Observables 9, 10, 14-15, and 25-27 in Modek4 Figure 6), and Observables 9-15,
22-27, and 31-33 in Model 6 (see Figure 8).

The additional class was the middle-performingantipl mastery class. This middling
class performed as the mastery class on some ealtdesvbut performed as the non-
mastery class on the remaining observables. Speaityfi examinees within Class 2
(middle class) in Model 2 had an 80% probabilitycofrectly completing Observables 1-
8, 16-21, and 28-30 (represented in Figure 4 byenguares), and a 20% probability of
correctly responding on Observables 9-15, 22-2d,3nR33 (represented in Figure 4 by
shaded squares). Any single observable discrimirgttengly between two classes of
examinees but was unable to distinguish the tHasisc It was the performanaeross
observables that distinguished the additional dlasgodel 2 (see also Models 4 and 6),
not relative performance on any single observalies pattern of performance across
observables represented a particular hypothegartil mastery, namely that partial
mastery consisted of the ability to do well on saraestituent tasks but not others. By
contrast, an alternative conception of partial msfnot represented in the present
study) might consist of in-between probabilitiessatcess across all (or some)

constituent observables. For example, on a giveemable the mastery class might have
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an 80% probability of success, the -mastery class a 20% probability of success,
the partialmastery class a 50% probability of succ

Context effects. Models 3 and 4. As can be seen in Figures 5 and 6 respectri
Models 3 and 4 had seven additional latent varsabtenpared tModels 1 and 2. Th
additional latent variable®9{— 610) in Models 3 and 4 were measured by-overlapping
subsets of theame observed variables that measured the thexg {atriables commc

to all the modelsty, 62, 63).

CPT template 3 (B3)
CPT template 2 (8;) Two latent parents
Parent: §; First Second

CPT template 1 (8;) 1 2 parent: ©;, parent 8, 1 2
1 2 1 9 | 1 1 1 911
T 2 19 ) z 1913
2 1 .57
2 2 €| 9

CPT template 11
(Observables 1-3,6-8,11-13, 16-18,22-24, 28-33)
CPT template 10 (84-8yp) CPT template 4 Two latent parents Observable (x;)
1 2 (Observables 4-5,9-10,14-15,19-21, 25-27) st i Sescodpaicd 0 1
2 | 8 Latent parent Observable (x;) 1 1 8 2
0 1 1 2 8 )
1 8 2 2 1 8 2
2 i b 2 2 2 8

Figure 5 BN Generating Model 3: Context effects, 10 latariables, 2 latent classt
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CPT template 12
(Observables 1-3, 6-8, 16-18, 28-30)

Two latent parents Observable (xj)
First parent Second parent 1] 1
1 1 0.8 02
1 2 0.8 02
2 1 0.8 0.2
2 2 0.2 0.3
2 1 0.8 02
3 2 02 0.8

1

[E ]

L)

CPT template 13

(Observables 11-13, 22-24, 31-33)
Two latent parents

First parent

Second parent
1

[T Y

Observable (xj)
0 1
0.8 02
0.8 02
0.8 02
0.8 02
0.8 02
02 0.8

CPT template 7

Two latent parents

First parent  Second parent 1

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
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Figure 6 BN Generating Model 4. Context effects, 10 lateariables, 3 latent class

These additional latent variables were conceivetbasextual variables th
shared some residual dependence not measured tprithary” latent constructs. Fc
example, in the domain of computer networkthatmotivated this study, the observ
variables were opeanded tasks that simulated -world situations that comput
networking technicians are faced with when configgicomputing devices as part o
network. Clusters of observed variables might ls®aated by device (e.g. rout
switch, pesonal computer, printer, server, etc.) or by undional prompts that are
function of a specific testing environment. Rim{@010) showed that -factor models
can be constrained into testlet models and seorder models, which are shown to

formally equivalent. The biactor model was implemented as part of the prestely
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because it represented the most general (flexablgjese variants. Having a high value
on the contextual variables might be thought ahasanswers to questions like: “Did the
examinee understand how to apply their knowledgksédils in the context of this
specific device typology?” or “Did the examinee argtand how the assessment
instructions applied to this cluster of tasks?tdh be seen in Figures 5 and 6 that the
contextual latent variabldg - 6;0had no parents, so the proportions provided in CPT
template 10 (see Table 5) were the marginal classlmerships for these variables.

Table 5

CPT Template 10
Latent value
1 2
Probability 2 .8

Note This template applies #.- 8,, in Model 3 (see Figure 5) and Model 4 (see Figure
6).

These proportions indicate that 80% of the exansifeethe population) possess the
knowledge and skills implied by a contextual lateatiable, and that 20% of the
examinees do not. The choice to have a relatiatyel proportion of students possess
each context variable reflects the theoreticaltmmsthat context variables in practice are
not usually designed to impede students. Contexarébles are conceived as
representing challenges to some students, but @gnaligning with proficiency on the
primary latent variable. The choice to hold thisgmrtion constant across all contextual
variables reflected a desire to simplify this comgat of the design, as opposed to the
more realistic option of letting contextual effeetsy across latent variables. Future
research could explore alternatives of these dewsiFor a more detailed account of

some different types of contextual effects thatehbgen modeled in CDMs, including
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inhibitory effects like those modeled in the prassndy, see Almond, Mulder, Hemat,

and Yan (2009). Th&®-matrix for Models 3 and 4 is provided in Table 6.

Table 6

Q-matrix for Models 3 and 4
Observable Number of
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Note A value of 0 indicates that the latent skill @& mequired to correctly complete the

observed task, while a value of 1 indicates thist it
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Models 3 and 4 differed from each other along #mad manipulated factor,
with Model 3 having two classes per latent variasld Model 4 having three classes per
latent variable. Note that two classes were alvesysnated for each contextual latent
variable 04-610) regardless of whether there were two or thregselsa pefi-03. The
decision to hold constant the number of classes@aextual variable was due to a
theoretical conception which viewed them as bemgggnt or absent, but not varying
categorically within each context. By contrast,wiag the strength of the context effects
acrossf,-010 could be sensible theoretically, but it was nonhipalated in the present
study. Future research could explore this issue.

As can be seen from Table 7, all observed variabigstwo latent parents in
Model 3 (Observables 1-3, 6-8, 11-13, 16-18, 22a24l 28-33, represented in Figure 5
by shaded squares) followed a more complex depegpdgructure in relation to their
associated latent variables than did the obsersaftith one latent parent (Observables 4-
5, 9-10, 14-15, 19-21, and 25-27, representeddarEi5 by white squares).
Table 7

CPT Template 11

Child value
Parent 1 Parent 2 0 1
1 1 .8 2
1 2 .8 2
2 1 .8 2
2 2 2 8

Note This template applies to Observables 1-3, 6-8.3,116-18, 22-24, and 28-33 in
Model 3 (see Figure 5), and Observables 1, 3, 8628, and 30 in Model 5 (see Figure
7).

The modeled relationships here were conjunctivegmmg that both latent constructs
were required for having a strong (80%) probabibtyorrectly completing the observed
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task. Examinees with only one of the requisiteitidd, or neither, had a lower (20%)
probability of correctly completing the task.

As was the case in Model 2, observables with otemtgparent in Model 4 (see
Figure 6) followed one of two dependency pattespe¢ified by Tables 3 and 4)
depending on whether the partial mastery classoretgd as the mastery or non-mastery
class on a particular observable. Similarly, obakles with two latent parents in Model
4 followed one of two dependency structures acogrth the differential behavior of the
partial mastery class, but with the necessary levallded complexity due to the role of
the additional latent variables (specified by Tat8eand 9).

Table 8

CPT Template 12

Child value
Parent 1 Parent 2 0 1
1 1 .8 2
1 2 .8 2
2 1 .8 2
2 2 2 8
3 1 .8 2
3 2 2 8

Note This template applies to Observables 1-3, 6-8.8,6and 28-30 in Model 4 (see
Figure 6).
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Table 9

CPT Template 13

Child value
Parent 1 Parent 2 0 1
1 1 .8 2
1 2 .8 2
2 1 .8 2
2 2 .8 2
3 1 .8 2
3 2 2 .8

Note This template applies to Observables 11-13, 22284 31-33 in Model 4 (see
Figure 6).

Note that because there was no partial masteryg wldb respect to the contextual
variables (those variables had two classes achlos®dels), examinees lacking the
contextual skill always performed as the non-mastéass regardless of their value for
the primary latent variable. In other words, exaemwith skill profiles [1,1], [2,1], and
[3,1] each had the same 20% probability of sucaessss all observables with two latent
parents. By contrast, examinees who did possestitextual skill differed in their
probabilities of success according to their skilldl on the primary latent variable, such
that the middle class performed as the masterg dagbservables 1-3, 6-8, 16-18, and
28-30 and as the non-mastery class on Observablé8,122-24, and 31-33.

Complex Structure: Models 5 and 6. As can be seen in Figures 7 and 8
respectively, Models 5 and 6 exhibited complexcitite, meaning some observed
variables measured more than one primary latemaar Observables 1, 3, 16, 18, 28,
and 30 had two latent parents (represented in €gaand 8 by lighter shading), while
Observables 2, 17, and 29 had three latent pafeuesented in Figures 7 and 8 by

darker shading). The three latent variabbgst,, 63) were measured respectively by
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nineteen, sixteen, and ten observables; the inedeasmber of measured variables per
latent variable relative to Models 1 and 2 was uadded cross-loadings between the
aforementioned observables and their latent parbtddels 5 and 6 differed from each
other along the second manipulated factor, with 8&dhaving two classes per latent
variable, and Model 6 having three classes pentatariable. Th&-matrix for Models 5
and 6 is provided in Table 10.

Table 10

Q-matrix for Models 5 and 6

Observable Number of
€9 Parents 0

H

o
NFPFRPRPRPRPRPRPRPRPNWONPRPRPRRPRPRPRPREPREPREPREPRERENWON
P ooooooooookHrkHEREFEREFEFEFEERPERPERFEPRPEEEREERERERE
olFRPRrPRPPRPRPPPRPRLPPPLPRPROOOCDOOOCDOOOCOOCOOR RSP
PlooocoocooocoocoooklRrPoooocooocoocoocooocooookkof
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29 3 1 1 1
30 2 0’1 1
31 1 0 01
32 1 0O 0 1
33 1 0O 01

Note A value of 0 indicates that the latent skill &t mequired to correctly complete t
observed task, while a valoé 1 indicates that it is.

As can be seen from Figure 7, all observed varsabiéh one latent parent
Model 5 followed the same dependency structureletion to their associated late

variables as did the observables with one latergrppan Mocels 1 and 3 (see Table :

CPT template 1 (B) CPT template 2 {B7) CPT template 3 (83)
1 : Parent: 8 1 2 First parent: 81 Second parent-8; 1 2
T s 1 9 1 1 1 1
1 2 2 1 9 3

CPT template 14 (Observables 2. 17, 29)
== Three latent parents Observable (xj)
: First Second  Third
CPT template 11 (Observables 1, 3, 16, 18, 28, 30) jparent patent pareat 0__1
Two latent parents Observable (x) CPT template 4 ; ; 1 z i
[First parent  Second parent 0 1 {Observables 4-13, 19-27, 31-33) T ] ; .S .3
1 1 2 2 [Latent parent Observable (x) : L - -
1 2 8 2 0 1 ; i ; : ‘:’
2 1 3 2 1 “ 2 3 . 3 :8 3
2 2 2 8 2 2 8
2 2 1 8] 2
2 2 2 2] 8

Figure 7. BN Generating Model 5: Complex structure, 3riateaariables, 2 latent class

Similarly, all observed variables with two latemrents in Model 5 followed Table 7
did the observables with two latent parents in M@i@odel 1 did not have ar

observables with multiple parents). The observabi@sthree latent parents follow the
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specifications shown in Table 11, where it candmnghat these observables
discriminated strongly between the examinees titabiddid not possess all three latent
parent variables.

Table 11

CPT Template 14

Child value
Parent 1 Parent 2 Parent 3 0 1
1 1 1

NNNDNPR PR
NNRPRPNNRE
NFPNRPNRPN
o NN NNNNN

N[N 00 00 00 0 0 O ™

Note This template applies to Observables 2, 17, &nia odel 5 (see Figure 7).

Examinees possessing all three latent skills hetdoag (80%) probability of completing
the observables correctly, while examinees with, twee, or none of the requisite skills
had a low (20%) probability of success.

For Model 6 (see Figure 8) observables with orentgparent in followed one of
two dependency patterns (specified by Tables 3amgpending on whether the partial
mastery class responded as the mastery or nonf#ynakiss on a particular observable(as
was the case in Models 2 and 4). Examinees wergereglto have at least partial mastery
(a value of 2 or 3) on all requisite skills in orde have an 80% probability of correctly

completing an observable with multiple parents.
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{(Obszrvablzs4-8, 15-21) Observables 9-13, 22-27, 31-33),
(CPT templatz § Observable () (CPT template 8 Obsarvable (x) CPT templat= 6 (5,)
[Lztzntparent 0 1 L atent parent i} 1 [ atentparent§, 1 3 3
1 8 2 1 8 2 1 Fl3lo
CPT templat=3 (8,) 2 2 8 2 8 2 2 1] & [3
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CPT templat= 135
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IFirst parant Second parent 1
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Figure 8 BN Generatig Model 6: Complex structure, 3 latent variabBktent class..

Note in Model 6 that the crc-loadings were associated with observables wher
partial mastery class responded as the mastery. damnsequently, observables with t
latent parergtin Model 6 followed a single dependency structecified by Table 1:
while observables with three latent parents folldwaesingle dependency structi

specified by Table 13.
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Table 12

CPT Template 15

Child value

Parent 1 Parent 2 0 1
1 1 .8 2
1 2 .8 2
1 3 .8 2
2 1 .8 2
2 2 2 8
2 3 2 8
3 1 .8 2
3 2 2 8
3 3 2 8

Note This template applies to Observables 1, 3, 162&8and 30 in Model 6 (see Figure
8).

Table 13

CPT Template 16

Child value
Parent 1 Parent 2 Parent 3 0 1

1 1 1 8 2
1 1 2 8 2
1 1 3 8 2
1 2 1 8 2
1 2 2 8 2
1 2 3 8 2
1 3 1 8 2
1 3 2 8 2
1 3 3 8 2
2 1 1 8 2
2 1 2 8 2
2 1 3 8 2
2 2 1 8 2
2 2 2 2 .8
2 2 3 2 .8
2 3 1 8 2
2 3 2 2 .8
2 3 3 2 .8
3 1 1 8 2
3 1 2 8 2
3 1 3 8 2
3 2 1 8 2
3 2 2 2 .8
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Note This template applies to Observables 2', 17, &t Zodel 6 (see Figure 8).

Latent dependency structures. Models 1, 3, and 5. Looking across Models 1, 3,
and 5, note that the same latent dependency steuwstas maintained amoifig, 6,, and
03. Generally speaking, the choices and specificatd®etailed hereafter regarding the
latent dependency structures were motivated byigueviindings within a research
program at the Cisco Networking Academy. A hiergralas implied by this structure,
with 6; functioning as a parent 65 and6s, ando, as a parent dfs. It can be seen théf
had no parents, so the proportions provided ind alwere the marginal class
memberships for this variable.

Table 14

CPT Template 1

Latent value
1 2
Probability A 9

Note This template applies #) in Model 1 (see Figure 3), Model 3 (see Figureaby
Model 5 (see Figure 7).

These proportions indicate that 90% of the exansipessessed the knowledge and skills
implied by this latent variable, and that 10% af #xaminees did not. Shifting attention
to Table 15, it can be seen that the knowledges&illd represented b§; were important

for acquiring the knowledge and skills represeitgé,:
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Table 15

CPT Template 2

Child value

Parent value 1 2
1 .9 A
2 A1 .9

Note This template applies #, in Model 1 (see Figure 3), Model 3 (see Figureay
Model 5 (see Figure 7).

Among students who posses$ed90% also possesség while 10% lackeds.
Similarly, of the students who lackéd 90% also lacke@h, while 10% possesséd. As
can be seen in Table 16, the knowledge and skitisesented b§; were also important
for acquiring the knowledge and skills represeitteés, but the relationship was
complicated by the influence 64, which was also useful for acquirifg but not as
strongly a%®;.

Table 16

CPT Template 3

Child value
Parent 1 Parent 2 1 2
1 1 9 A1
1 2 v 3
2 1 3 v
2 2 A1 9

Note This template applies #& in Model 1 (see Figure 3), Model 3 (see Figureaby
Model 5 (see Figure 7).

One consequence of retaining the same latent depeias$ across these models
was that the marginal model-implied latent clagsnierships remained constant as well

(see Table 17), with the caveat that for ModeleaHtdition of the contextual latent
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variables created many additional subclasses (Tldblaay be useful for this
conception).

Table 17

Marginal latent variable proficiencies for Genenagj Models 1, 3, and 5

marginal
Latent Profile 06; 6, 03 membership
1 1 1 1 .081
2 1 1 2 .009
3 1 2 1 .007
4 1 2 2 .003
5 2 1 1 .027
6 2 1 2 .063
7 2 2 1 .081
8 2 2 2 729

Note For Model 3 the 8 latent profiles shown here egpnt aggregations across the
contextual latent variables (see Table 18).

Table 18

Marginal latent variable proficiencies for Genenagi Model 3
Latent

Profile 91 92 93 94 95 96 97 93 eg elc

1 1 1 1 1 1 1 1 1 1 1

Note Rows have been collapsed (...) due to space coasimes.
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These model-implied memberships were calculateshbyiplying the three conditional
probability values that were relevant to each lapeafile. For example, the first row in
Table 17 corresponds to Latent Profile 1, wherdestts lacked each of the latent
variablesd1, 0,, andfs. The probability associated with Level 1 in Tab#e(0.1) was
multiplied by the analogous probabilities from TeblL5 and 16 (0.9 and 0.9
respectively), yielding 0.1 * 0.9 * 0.9 = .081,&M1%. These same model-implied
memberships can be imposed upon Model 3 if onéshaf the various configurations of
contextual latent proficiencies as subsets withendight latent profiles characterized by
proficiency patterns on the three primary latentaldes. Table 18 illustrates that for
each primary proficiency profile there were 128testual proficiency profiles, resulting
in a total of 1,024 proficiency profiles for Mod#&l Within each primary profile, the
memberships were uniformly distributed due to et that each contextual latent
variable was exogenous and was governed by CPT [aei0 (see Table 5).

Latent dependency structures. Models 2, 4, and 6. Looking across Models 2, 4,
and 6, note that the same latent dependency stesoivere maintained amofg 6., and
03. The patterns described in the previous sectioMifaidels 1, 3, and 5 generally hold
for these models as well, with the added complexits third latent class (see Tables 19-
21).

Table 19

CPT Template 5

Latent value
1 2 3
Probability .1 A .8

Note This template applies & in Model 2 (see Figure 4), Model 4 (see Figurea@y
Model 6 (see Figure 8).

61



Table 20

CPT Template 6

Child value
Parent value 1 2 3
1 e 3 0
2 A .6 3
3 0 3 7

Note This template applies # in Model 2 (see Figure 4), Model 4 (see Figurea@j
Model 6 (see Figure 8).

Table 21

CPT Template 7

Child value
Parent 1 Parent 2 1 2 3
1 1

W WMNDNDDNEFEPRE
N, WODNEFE OWDN
COO L iwwmo
o oo N W
®NihihOOOO

3 3 0 A .9
Note This template applies # in Model 2 (see Figure 4), Model 4 (see Figurea@y
Model 6 (see Figure 8).

The marginal model-implied latent class membersfopshese three models are
provided in Table 22.

Table 22

Marginal latent variable proficiencies for Genenagj Models 2, 4, and 6

marginal
Latent Profile 6; 6, 03 membership
1 1 1 1 .063
2 1 1 2 .007
3 1 1 3 0
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4 1 2 1 024
5 1 2 2 .006
6 1 2 3 0
7 1 3 1 0
8 1 3 2 0
9 1 3 3 0
10 2 1 1 .003
11 R .007
12 2 1 3 0
13 2 2 1 .006
14 2 2 2 048
15 2 2 3 .006
16 2 3 1 0
17 2 3 2 027
18 2 3 3 .003
19 3 1 1 0
20 3 1 2 0
21 3 1 3 0
22 3 2 1 0
23 3 2 2 048
24 3 2 3 192
25 3 3 1 0
26 3 3 2 .056
27 3 3 3 504

Note.For Model 4 the 27 latent profiles shown here espnt aggregations across the
contextual latent variables (see Table 23).

Finally, Table 23 illustrates that for each of 8¥primary proficiency profiles for Model
4 there were 128 contextual proficiency profilesulting in a total of 3,456 proficiency
profiles. The model-implied memberships shown ibl&&22 represent the collective
memberships of the 128 contextual profiles withaoheprimary profile. Within each
primary profile, the memberships were uniformlytdisited due to the fact that each
contextual latent variable was exogenous and wasrged by CPT Template 10 (see

Table 5).
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Table 23

Marginal latent variable proficiencies for Genenagj Model 4

Latent Profile 6, 0
1 1
129
257
385
513
641
769
897
1025
1153
1281
1409
1537
1665
1793
1921
2049
2177
2305
2433
2561
2689
2817
2945
3073
3201
3329
3456 3 3 3 2 2 2 2
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Note Most rows have been omitted due to space coraides.

In summary, all investigated models shared the sam&ber of observed
variables (33), but varied with respect to thedtrte of latent variables. Models with
simple or complex structure had three latent véemblwhile context-effect models had
ten latent variables. Latent structure was mantpdlaecause it represented an important
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type of model modification that researchers emjhgyractice. Due in part to
computational demands, it was beyond the scopleeodurrent study to manipulate latent
structure more extensively. Ideally it would be &fcial to vary the latent structures to a
greater degree, and to investigate the implicatadnarious model modification
strategies, but those developments were left tordutesearch. In the present study, the
choices were intended to represent the most conandmmportant strategies that would
have relevance to the applied researchers who ateththe study.

Conditions. Each of the six BN models was used as a genenataugl, and for
each generating model a subset of the same BN sa@al used as scoring models,
resulting in a total of 11 conditions (see Tablé. 24
Table 24

Table of Conditions
Scoring Model

Model Description Gelizl(()eéztlmg 112]3] 4|5 6
Simple structure 2 latent classes 1
Simple structure 3 latent classes 2
Context effects 2 latent classes 3
Context effects 3 latent classes 4
Complex structure 2 latent classes 5
Complex structure 3 latent classes 6

Note White square indicates condition is includedha study, shaded square indicates
condition is not included in the study.

Conditions were denoted by abbreviations for theegating and scoring models

separated by a period. For example, “1.1” indic#tas Model 1 was used as the
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generating model and the scoring model, while “tntficates that Model 5 was used as
the generating model and Model 1 was used as trenganodel.

Fully crossing the manipulated factors was not d=knecessary because some
conditions resulting from a fully crossed desigfedd mostly redundant information.
For example, consider the first row of Table 24evendata were generated using the
most restrictive model (Model 1). Using the samaleigModel 1) as the scoring model
was a necessary step because this condition sasvadontrol group. However, using
Model 2 as a scoring model for data generated fvtodel 1would not provide valuable
fit information. The more restricted version (Mod¢lwas a special case which can be
obtained from Model 2 by restricting membershiphe third latent class to zero. There
was perhaps something to be learned in such condiibout the efficiency of estimation
routines, the impact of maintaining a constant darsjze when estimating increasing
numbers of parameters, etc., but there would haee diminishing returns with respect
to the performance of data-model fit techniquese@ithe relatively steep cost in
computing time per condition in this study, usingcaring model that was known to be a
more general case of a generating model did noésept an efficient use of resources.
The discussion section provides approximationfi@fcbmputing time required to
complete the simulation component of this study.

Replications.Each condition was replicated 100 times. Replicetivithin the
same condition differed from each other due onlgampling variability, which refers to
the effects of using random processes to obtaamgpke from a population of potential
values. The purpose of replication in this conteas to mitigate the effects of sampling
variability by obtaining a larger sample of exchaalgle studies drawn randomly from
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the population of studies to which they belong. Theice of how many replications to
conduct was a tradeoff between resources and dexability. Each replication was
somewhat costly in terms of computing time, yetais important to have enough
replications to ameliorate the influence of sangphariability on interpretations made
from the study. It was believed that 100 replicasistruck an appropriate balance
between these opposing considerations, influenggadvious research and available
computing resources.

Sample sizeSample size in the context of the present studyrseb the number
of simulees used to estimate the parameters ohtitels, which was 1000. Varying the
sample size would have increased the study’s plbdigeneralize its findings to studies
using other (most likely smaller) sample sizes. ido&r, adding even one additional
sample size would have greatly increased the totalputational time required for this
study, so it did not seem justified relative to thelusion of other elements (e.g. more
model variants or fit functions) that were moretcainto the purposes of the study.
Previous studies have well established the fintlvag model criticism tools perform
better as sample size increases (e.g. Williamsah,62000), so it was believed that
computational resources were better utilized foeotlesign considerations. A sample
size of 1000 might be considered large in the cdrdesome research settings, but was
relatively small in the context of the Cisco netiwng academy, and therefore
represented a very realistic baseline from whichsgess these model-checking
procedures.

Estimation. WinBUGS version 1.4.3 (Spiegelhalter, Thomas, B&dtunn,
2007) was used to conduct the MCMC estimationmaR2Winbugs package in R
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version 3.0.0 (R Core Development Team, 2013). @ mdependent chains were used,
with start values drawn randomly from probabilitgtdbutions spanning the range of
potential parameter values (when possible; seé satitching subsections of method and
results sections for more details). Convergenceasgessed using a criterion of
approximately 1.0 on the Brooks-Gelman-Rubin diagicgdBGR; Brooks and Gelman,
1998) in conjunction with visual inspection of tegalots from pilot replications.
Autocorrelations from pilot replications were inspel to determine the necessity of
thinning.

Label Switching. Label switching was handled using a strategy afjagsg the
most unambiguous response patterns from each elat@ theoretically appropriate latent
classes, as opposed to estimating the latent wlassherships for those simulees. For
example, a response pattern of all 1's (i.e. agoecore on the exam) was assigned to
the mastery class for each primary latent variabiee to the fact that samples (of
N=1000) did not always contain enough perfect scayeanchor each latent class in the
“correct” labeling orientation, a variety of the sitmnambiguous response patterns were
included. Across all replications and latent vaeabthe average number of memberships
assigned in this way per latent variable was apprately 78 (out of 1000).

For Models 3 and 4, which included seven contexXataht variables in addition
to the three primary latent variables, a more cocafgd strategy was necessary.
Assigning values on the contextual latent variablesed on response patterns alone was
not sufficient because there were only three olad#es per contextual latent variable. In
these models, constraints were imposed upon thditammal probabilities of observables
with a contextual latent variable parent, such thatestimated probability of
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successfully completing an observable for the n@stery class could not exceed that of
a partial-mastery class, and the estimated prababflsuccess for a partial-mastery
class could not exceed that of a mastery classelbenstraints, in conjunction with the
strategy of assignments on the primary latent bégmfor unambiguous response
patterns, were sufficient to prevent label switghim most replications. In the results
section, a modification is described that elimidatee observed label switching in all
subsequent replications.
Fit Functions

A total of thirteen fit functions were includedtims study (SGDDM was used in
five ways). Functions were selected to addressmdifit levels of misfit. Table 25 lists the
fit functions and their levels of analysis withiretPPMC framework implemented in the
present study.
Table 25

Fit functions and their levels of analysis

Fit function Level of analysis

Deviance global

Proportion Correct observable

Qs pairs of observables

SGDDM global; subscales; pairs of observables
v*-type index observable

Ranked Probability Score (RPS) observable

Good's Logarithmic Scale (GLS) observable

Hierarchical Consistency Index (HCI) person

Item Consistency Index (ICI) observable
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Deviance.Deviance is a global measure of data-model fit|&tang deviance
within an NRD framework is possible for model compan purposes, but not for
evaluating the fit of a single model in isolatidie deviance scale does not lend itself to
absolute interpretations because the propertigsedifkelihood function vary with
respect to model features. Within an HT framewddyiance is computed as a single
number per replication and evaluated as a chi-sqieat with approximate degrees of
freedom n-(p+1), where n is the number of indepahdbservations and p is the number
of estimated parameters. Within PPMC, there istridution of realized deviance
values, based on the observed data and the poddatiobution of the parameters, and
there is a distribution of posterior predicted eaubased on the posterior predictive data
and the posterior distribution of parameters. Bbstributions (realized and posterior
predictive) are represented by the same samplestépor draws.

Proportion correct. Proportion correct is computed at the observahel le
directly from data, as opposed to requiring mo@dehmeters. The inclusion of this fit
function was primarily for verifying that PPMC pm@gnming code was functioning
properly. Speaking generally, proportion correc feature of model fit that is easy to
reproduce, even for models that fit poorly accagdm other DMs.

Q3. Q; was the only fit function in this study that colldve been evaluated
within all of the model-checking frameworks. Theras some known redundancy with
SGDDM in the sense that both indices evaluate &ssmts between observables as a
test of local dependenc@; has been a popular choice in past PPMC research, s
comparing the performance @§to SGDDM within this study helped to establish the

utility of SGDDM and helped to expand the genesrdiitity of previousQ;findings.
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Standardized generalized dimensionality discrepancgneasure (SGDDM).
SGDDM was applied at three different levels aldmg global-local spectrum. At the
most local level, it was applied to each pair odervables while aggregating across
examines. Secondly, it was applied to the setbsévables associated with each of
three primary latent variables. This second levelggregation was akin to a subscale
level. Thirdly, SGDDM was aggregated at the gldbakl, meaning that the full set of 33
observables was included.

x%-type item fit index. This fit function was included primarily becausevis
one of the few fit functions that had been demaustt in the BN literature. Additionally,
x? tests have been used commonly in IRT for itenstitthe performance of this function
may be of interest to a broader audience.

Ranked probability score (RPS)RPS was an appealing fit function because it
performed well in a previous BN simulation studyilli&®mson, Almond, and Mislevy,
2000), and because it can be aggregated acrosvables or examinees. In the present
study, RPS was aggregated at the observable Evaluating RPS within an NRD
framework is only possible when adopting a modefgarison approach due to the fact
that cutoff values have not been established evegit modeling contexts. Furthermore,
an analytical reference distribution has not baepgsed for RPS, so evaluation within
an HT framework is not yet possible.

Good’s logarithmic scale (GLS)In previous BN research (Williamson, Almond,
and Mislevy, 2000) GLS was more successful at detgstate misspecification errors
than RPS, despite better overall performance by. &A&n that one of the manipulated

factors in this study was the number of statedaient variable (latent classes), it was of
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interest to assess whether GLS would be effectitbe current study. Evaluating GLS
within an NRD framework is only possible when adiogta model-comparison approach
due to the fact that cutoff values have not beéabéished in relevant modeling contexts.
Furthermore, an analytical reference distributias hot been proposed for GLS, so
evaluation within an HT framework is not yet pos$sib

Hierarchy consistency index (HCI).HCI and ICI (below) are analogues of each
other, aggregated across different units. HCI agsegerson fit by aggregating across
observables, while the ICI assesses observalilg figygregating across examinees. HCI
and ICI were included in this study because thesewecently developed for use in
CDMs. Their utility for BNs has not yet been eststkd, but conceptually they seemed
well-suited for the present application. Theseardiwere designed for use in
conjunctive models only. The dependency relatiqrsimn the present study are not
strictly conjunctive, but they can be viewed asragpmately conjunctive.

Item consistency index (ICI).ICI assesses fit at the level of observables. The
creators of ICI proposed a criterion of .5 (Laie@iand Cui, 2012) for evaluating
whether an observable fits, with values above.e5, (irom .5 to 1) indicating adequate fit
and values below .5 (i.e., -1 to .5) indicating fhig his criterion corresponds to an
observable with at least 75% of its observed resp®matching the responses expected
by Q-matrix specifications.

Outcome Variables

The fit functions in this study were conceptualizéoihg two dimensions:
effectiveness and efficiency. Effectiveness wasmeefas the propensity to correctly
identify data-model misfit, while efficiency refex to the amount of computing time
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required. If two fit functions took the same amoahtime to compute, then the function
with increased effectiveness was preferred. Sitgil&rtwo fit functions were equivalent
in terms of their effectiveness, then the functiequiring less time would be preferred. If
two fit functions differed with respect to theifeftiveness and efficiency, then deciding
between them became more situation-specific anddeggendent. The following
outcomes, with the exception of computing time,evatended to help researchers
evaluate the effectiveness of the fit functionshwégard to detecting data-model misfit.
The inclusion of computing time was intended tghelsearchers evaluate efficiency,
and therefore to inform a researcher about theetffs of using various fit functions.

PPP-valuesThe primary outcome measure of this study was igteilsution of
PPP-values. In addition to graphical presentatithrese distributions were summarized
using median values across replications, and ptigpsrof replications in which the
PPP-value was “extreme”. From a Bayesian perspedi?P-values should not be
interpreted with respect to a cutoff value. Howeverfacilitate comparisons to other
frameworks, extreme PPP-values were defined &825or > .975, or in other words the
5% most extreme PPP-values (akimte .05). Note that in null conditions (i.e. whem th
scoring model was the same as the generating mileputcome measure represented
an empirical Type-I error rate, and in misspeciftedditions it reflected observed power.
For localized fit functions, heat maps were usesummarize findings across
observables or observable pairs. Squares in thentegas were shaded to represent
categorical ranges of values.

Effect Size.An effect size measure was created to help sumeariarmation
not revealed by the PPP-values, namely the magniifithe differences between
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realized and posterior predicted values. The mé&rehce between realized and
posterior predicted values was divided by the steshdeviation of those same

differences:

ES

(21),

_ XN=1Dn(y,0) — D, (y"?,0) / Yn=1(Dn(y,0) — D, (y™P, ©))?
B N N

wheren was one ofN draws from the posterior distributiob(y, ®) were values of the
discrepancy measure using the observed dat® gytf?, ®) were values of the
discrepancy measure using replicated data. Theaweds therefore standard deviation
units of the differences, which varied acrossuidtions. Conceptually, the PPP-value is
a measure of how often posterior predicted valuesex realized values, with no
distinction made for the degree of excess. Theceffize is meant to quantify the
magnitude of the differences between realized arstigpior predicted values on a scale
that is standardized with respect to the variagbditthose differences.

Larger effect sizes are driven either by largenarator terms (holding constant
the denominator), or by smaller denominator ternoéding constant the numerator), or
by both factors in conjunction. The main reasonaftarge numerator is systematically
large differences between realized and posterdlipted values. The main reason for a
small denominator is small variability in the dié&ces between realized and posterior
predicted values, irrespective of the size of thatiferences.

Computing time. Computing time was evaluated descriptively, with
representative examples drawn for illustrative psgs. Including computing time as a
formal factor would have created many logisticallgpems, including standardization of

computing resources across conditions. The inatusf@omputing time as an outcome
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was meant to help characterize the results witheresto the investment of practical
resources. General statements including approxiowatguting time were included, but
precise computational comparisons were not attesmpte
Results

MCMC

A burn-in of 100 iterations was used for most ctinds; the exceptions were
Conditions 3.3 and 4.4 which had a burn-in of 70€) Condition 6.6 which had a burn-
in of 3000. A thinning factor of 10 was adequateniaimize autocorrelations for most
conditions, while a factor of 20 was used for Ctinds 3.3, 4.4, and 6.6. In all
conditions, sufficient iterations were run to yidld0 draws from each of three chains. A
total of 300 draws was used to represent the postdistribution in the PPMC analysis
conducted in R.
Label Switching

As described in the method sectitimg practice of assigning top-performing and
bottom-performing response patterns (simulees)dsteny and non-mastery latent
classes respectively was theoretically sufficienprevent label switching (e.g. Chung,
Loken, & Schafer, 2004), but label switching nelieléss occurred intermittently in a
minority of replications (the number of affecteglieations ranged from O to 63 across
conditions with a mean of 29). The problem firstgented itself as two distinct clusters
of points in deviance PPP-scatterplots where desiclgster was expected (examples for
comparison are shown in Figures 9 and 10), thotigérandications were subsequently

discovered elsewhere.
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Figure 9 Scatterplot of deviance values from a typicaliogpion of Condition 1.1.
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Figure 1Q Scatterplot of deviance values from a replicabbondition 1.1 with
“partial label switching”.

Upon further investigation it was determined tladadl switching was affecting one or
more (but not all) of the latent variables. Thesaféd variable(s) was not consistent. We
began referring to this phenomenon as “partialllaiMgching” to differentiate it from

the type of label switching we had warded agaimgtrevious research where all latent
variables were affected. Theoretically, all of MEMC chains in this study would have

moved to and from these alternatively labeled samstif allowed an infinite number of
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iterations. A sudden switch from one labeling siyste another would be caused by an
extreme draw of candidate values. However, in practo such within-chain switching
was observed. Any given chain remained internallysestent with regard to its labeling
in the finite number of observed draws, but acitssns it was evident that alternative
labeling existed. In affected replications, typigao chains stabilized on the
“correctly” labeled solution and the third chaialsitized on a partially label-switched
solution, although rarely it was observed that thiains exhibited partial label switching
and the third was “correctly” labeled.

Alternative methodologies were explored for elinting the occurrence of
partially mislabeled solutions (e.g. stronger aprtlass assignments, different MCMC
updater methods, restricting latent variable CP/Rip@ter values, restricting observable
CPT parameter values, and post-hoc relabeling)ast beyond the scope of this study to
investigate label switching methodologies systegadlti, but the issues mentioned
briefly here could be investigated in future resbaSuffice it to say that the approach
adopted here was to place restrictions on the whitwes for some parameters (in addition
to retaining the initial methodology of assignindremely unambiguous response
patterns to specific classes). This approach coadpf@vorably to other attempted
methods in terms of its effectiveness and timefnaad seemed to come at a reasonable
price in terms of assumptions.

In the initial methodology, all start values hagbe&lrawn from uniform
distributions that spanned the entire range ofiptesparameter values. In hindsight this
choice was less desirable because it permittethbied-switched solutions in some
replications, whereas a less conservative approaciid have avoided them altogether.
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However, even after imposing range restrictionsame start values, start values were
still more widely dispersed than in previous reskavith similar models (e.g. Levy et.
al, 2011), so it could be argued that even the frembimethodology was relatively
conservative. The parameters were still allowedaly over a comparatively wide range
of the possible values; they were just restrictddtive to the initial settings. Note that
restricting the start values in this way did noftriffier) restrict the parameter values; it
simply restricted the locations where the searébiethe posterior distribution were
allowed to begin. The replications that exhibitedtial label switching were stored for
reference purposes and for potential future rebeartd additional replications were run
using the restricted start value methodology.
Distributions of PPP-values

Figure 11 shows smoothed density plots of theilidions of PPP-values for
each of the 13 fit functions, pooled into two greugefined as the six null conditions and

the five misspecified conditions.
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Figure 11 Distributions of PPP-values pooled across comakti Misspecified conditions
are represented by thicker lines and null condstiare represented by thinner lines. The
x-axis of each panel spans the full range of pés$PP- values (0 to 1). The y-axis of

each panel is proportional to frequency.
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Within each panel, the x-axis represents the &lge of possible PPP-values from O to 1
and the y-axis is proportional to frequency. Fa finst five panels representing deviance
and the global and subscale aggregations of SGDé&3dectively, each condition is
represented by 100 PPP-values (one per replicatmma total of 600 values when
pooled across the six null conditions, or 500 valwden pooled across the five
misspecified conditions. Additional pooling exigts the other fit functions, which
consist of finer grain sizes and have multiple RBRes per replication. The observable-
level fit functions (PCy% RPS, GLS, and ICI) contribute one PPP-value psenable
in each replication, or 3300 values per conditiime densities pooled across null and
misspecified conditions represent 19,800 and 16P50R-values respectively. By
comparison, the bivariate fit functions SGDDM dpglcontribute one PPP-value for
each of 528 unique pairings of observables peraapbdn, or 52,800 values per
condition. The densities pooled across null andspasified conditions represent 316,800
and 264,000 PPP-values respectively. Lastly, theopelevel fit function HCI
contributes one PPP-value for each of 1000 simydeeseplication, or 100,000 values
per condition. The densities pooled across nullrarsspecified conditions represent
600,000 and 500,000 PPP-values respectively. €aed bf aggregation is not ideal for
most of the fit functions, but it is useful for higghting the low relative utility of some of
the fit functions before moving on to more apprafgiviews for the more promising
functions.

In a hypothesis-testing framework, uniformity ire thull distribution offers a
number of attractive features, including producliype-I error rates at the nominal level.
The benefits of uniformity have also been advocéteth a Bayesian, non-hypothesis-
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testing viewpoint (e.g. Berkhof, van Mechelen, &iBan, 2004). Therefore one criterion
of good performance for each of the null distribo8 in Figure 11 is to be uniform
throughout the range of possible values (0 to bweler, the most important feature
when comparing the two densities within a pandtighire 11 is the extent to which they
can be distinguished from one another, becauseittreshapes are far from ideal,
separation between the two indicates the potefatiadutoff values to be developed,
albeit perhaps heuristically. In practice, researslobtain a single PPP-value that
summarizes the relationship between realized DMesbnd posterior predicted DM
values, but the observed PPP-value is itself a neewita different (meta) sampling
distribution that can only be viewed in a simulatgtudy where it is known how the
realized data were generated. Hypothetically spegki a given pair of PPP-value
sampling distributions were completely separaten tiny observed PPP-value would
with certainty indicate whether or not a model pessfication existed, irrespective of
the degree of fit indicated by the PPP-valuefit€gbnversely, if a pair of PPP-value
sampling distributions overlapped completely, taeg observed PPP-value would be
useless as an indicator of model misspecificatecabse sampling variability alone
would be equally likely to have produced the obsdr?PP-value (i.e. there exists no
difference to detect between the sampling distigmst of PPP-values).

For example, consider the densities of PPP-valueddviance in the first panel.
It can be seen that all observed PPP-values weateld near the center of the possible
range, but that misspecified conditions tended¢alypce smaller PPP-values than null

conditions.
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Using conventional hypothesis-testing criteria iagbice would result in no power to detect the itekt existed in misspecified

conditions (see first column of Table 26).

Table 26

Proportion of PPP-values flagged as extreme acrep$ications by condition and fit function

Fit Function
SGDDM SGDDM SGDDM SGDDM SGDDM
Conditon Deviance global 0, 0, 0;  bivarate Q; PC x° RPS GLS ICI HCI

11 0 02 10 05 01 04 04 © 0 0 0 0o .05
2.1 0 1 1 1 1 09 o0 0O O Oo 0 .09 .06
2.2 0 10 .04 0 0 03 03 0 0 @ o 0 .03
3.1 0 1 1 1 1 06 06 O O O 0o .03 .07
3.3 0 0 0 01 0 02 02 0 0 0 0O C .04
4.1 0 1 1 1 1 08 o0& 0O O O o 28 .07
4.4 0 0 02 0 0 01 01 0 o0 0 o© ¢ .03
5.1 0 93 18 19 58 05 03 © 0 0 0o 0 .05
5.5 0 07 12 07 .02 03 04 © O O O 0 .05
6.1 0 1 1 1 1 110 10 O o0 o0 0o .06 .07
6.6 0 02 .04 01 0 03 .03 O c o o 0 .03

By contrast, alternative criteria could theoretictle constructed by considering the location whkeenull and misspecified

densities cross (see Hjort, Dahl, & Steinbakk, 300®served PPP-values below that threshold wawgdest that the source of

the realized data was a misspecified model becgarspling variability alone was less likely to predPPP-values that low.



The distributions for the poorest-performing gradpiit functions (PCy?, RPS, and

GLS) were far from uniform across all null conditg The PPP-values for these
functions were centered properly near .5 but batsgersed, and there was virtually no
separation between null and alternative distrimgic€Consequently, these functions were
excessively conservative in null conditions and ed@ss in misspecified conditions.
Though not apparent from the viewpoint offered IyuFe 11, the distributions of PPP-
valuesper observabléa more meaningful aggregation for observabletlaugctions)

were all similarly shaped. These functions did staaw differential performance across
observables. Further presentation of the resultth&se fit functions was therefore
omitted.

The distributions of deviance PPP-values were ghajmilarly to the previous
group of poor-performing functions, with the imgaont distinction that there was some
separation between null and alternative distrimgim terms of location. In other words,
despite a dramatic departure from the ideal ofarmtfty in the null case, the separation
between distributions would make it possible taceyea cutoff value for use in practice.
It was beyond the goals of this study to invesggacommended cutoff values for fit
functions, but these results suggest that it wbelghossible to do so if deviance was
needed as a global fit function for some theorétieason. However, across all
misspecified conditions in this study, the deviaR&¥-value in every replication was
less extreme (closer to .5) than the SGDDM glolPRalue. This indicates that for the
conditions studied here, there were no situationghich deviance was sensitive to misfit
but SGDDM was not. Given the superior performarfad® global SGDDM fit function,
there seems little reason for including deviancaraassessor of global fit for the types of
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violations simulated here when SGDDM is availabler this reason, further details of the deviansglte have been omitted. ICI
was the only investigated observable-level fit timtto display any power for detecting the typémesfit modeled in this study.
Figure 11 was suggestive of ICI's utility, but aggation across observables obscures the undergsudfs. When viewed at the

observable level (see Figure 12), the performan¢€lacan be understood more clearly.

Observable
Conditon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 291382 33
 PARANYANPAN AN ANV ANVANTARTANTANVANVAN AN AWAWAWANARAN AN AW AW AW ANAWAVAWAWAWAWAWAN
S N LN LN A 0 N L AN ANVAWANTANVANVANAN W S O W O SV AAVAWAVAVAVAV AN/ AWAVAVAN
22 ANANANNNAANANANANAN NN ANANANNNNAN AN AN AN
CR N LU N7 A AN (N W NEZA VAN LS W R VANAN S (S (SR AVAVAV S N ANV AVAVAV AN AV AVANVAN
33 ANNAANNANANNAANNANNPCA NNANNANN NN AR A A
a1 o ANE D AN AN AN L AANAAN L ANA
a4 N PANNNANNANNNAN AN ANNANANASCONN AN A A A A
A ANANIVANTANTAWARAR NI AN AW AN AN AN AN AV AN AN AWAW AN AN AW AW AWAWAVANVAVAVAW AN AN
56 ANANNNANNAANANNANANNANNN A NN NANANA NN NANAN NN
R AN AN AN LW AW AN ARVANVAWANTANZANVAN W W W W W SV ANVAVAUAWAWAVAVAVAVAVAVAN

66 [N\ JUN AN AA A A AACATAATA AU ACACATA A A A AR A ALUA

Figure 12 PPP-value distributions for the ICI fit functibg condition and observable. Each density in th&irmeepresents 100
PPP-values (1 per replication).

While it is true that all the ICI PPP-value distrilons in null conditions were far from uniformetie was sufficient power in

some misspecified conditions to indicate that IQuld be useful as part of a PPMC toolkit. SpecifycdCI had its greatest



power in conditions where the model misspecificqaioicluded an additional latent
class. However, even within these conditions withisspecified number of latent classes
(2.1, 4.1, and 6.1), the observed power of ICI diasnatically greater for some
observables than others, even holding constar€Bietemplate. For example, the
second row of Figure 12 shows the distributionkCofPPP-values for each observable
within Condition 2.1. In this row, the most extrentistributions correspond to
Observables 16-21, which are the observables ptday, and governed by CPT
Template 8 where the partial mastery class behasdlde mastery class. This finding is
complicated by the fact that the remainder of theeovables governed by the same CPT
template and parented by a different latent vagigxhibited minimal power. The
location of the PPP-value distributions for Obsbélga 1-8 (governed by the same CPT
template but parented I8y) and Observables 28-30 (governed by the same @Rplate
but parented b@s) were in the same direction as those from Obséggab 8 but were
less extreme. These results are examined in gréetaif later.
Global SGDDM

As depicted in the second panel of Figure 11, thiblutions of global SGDDM
PPP-values were dramatically different for null amdspecified conditions. The
distributions from null conditions approached umifdty, while the distributions from
misspecified conditions were located almost exgklgiwithin the extreme lower tail.
Condition 5.1 was the only misspecified conditioittvany non-zero PPP-values.

Three different ways to summarize the distributiohBPP-values were
implemented in this study. For the global SGDDM RRRies, each summary told much
the same story. Looking down the second columnaiid 26, it can be seen that there
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was a large disparity between the proportions teexe PPP-values from null and misspecified cooisti The proportions of
PPP-values flagged as extreme in the null condit{ari, 2.2, 3.3, 4.4, 5.5, and 6.6) ranged frddno0.10, and were all much
smaller than the proportions from the misspecitiedditions (2.1, 3.1, 4.1, 5.1, and 6.1), whichgethfrom .93 to 1.00. The
median PPP-values displayed a similar patternsfatity (see the second column of Table 27): nmsdiathe null conditions
ranged from .41 to .50, while the medians fromrthespecified conditions were all zero.

Table 27

Median PPP-value across replications by conditiowl it function

Fit Function
SGDDM SGDDM SGDDM SGDDM SGDDM
Conditon Deviance global 0, 0, 0; bivarate Q; PC ¥ RPS GLS ICI HCI

1.1 48 41 52 47 53 50 50 49 51 51 50 45 .49
2.1 43 0 0 0 0 47 47 49 50 50 49 .27 .49
2.2 47 54 52 56 52 50 50 .49 51 51 50 46 .50
3.1 42 0 0 0 0 50 50 .49 50 .50 .50 .20 .48
3.3 50 49 47 52 53 50 50 &L 51 51 52 41 .50
4.1 39 0 0 0 0 A7 4T 49 49 49 49 12 .49
4.4 48 48 44 48 52 50 50 B0 51 51 51 42 .50
5.1 46 0 19 22 02 49 49 49 50 50 .50 42 50
5.5 47 54 60 49 55 50 50 .EO 51 51 51 42 .50
6.1 43 0 0 0 0 49 49 49 50 50 .49 .27 .50
6.6 47 52 49 47 50 50 50 .49 51 51 50 44 .50
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This pattern continued for the median effect sizieome (see the second column of Table 28). Theamexdfect sizes in the null

conditions ranged from -.11 to .22, and were drazally smaller than the median effect sizes fromnhisspecified conditions,

which ranged from 3.60 to 15.06.

Table 28

Median effect size across replications by conditiad fit function

Fit Function
SGDDM SGDDM SGDDM SGDDM SGDDM
Conditon Deviance global 01 0, 0; bivarate Q; PC ¥ RPS GLS ICI HCI
1.1 06 22 .05 05 ~ 08 0 0 0 .01 -01 -03 .01
2.1 17 13.02 9.20 9.18 5.32 06 06 0O .03 02 0 .03
2.2 .0¢ ~.10 _.07 ~.16 -.09 01 ©1 o0 0 -01 -01 .01
3.1 19 9.41 9.97 7.35  13.02 01 -01 0O .03 02 -02 .06
3.3 03 02 07 -.08 _.07 01 .01 0 -01 -02 -06 .01
4.1 27 1506 1402 1252 8.49 07 07 0O 05 .04 .01 .09
4.4 04 06 13 .09 -.06 01 .01 0 -01 -02 -02 .01
5.1 11 3.60 89 78 2.21 01 o011 o0 01 0 -02 .01
5.5 08 11 -.23 01 _.16 01 -01 0O 0 -01 -04 .01
6.1 19 13.20 8.27 8.64 6.09 02 02 0 .03 02 .01 .04
6.6 .0¢ _.04 _.01 05 01 0 O ©O0 0 -02 -01 .01

Taken collectively, these three columns of ressuiggest that the global SGDDM fit function perfochveell in terms of

distinguishing between null and misspecified cdod&. One notable difference among the three outsamthat the proportion-

.02

.05
.05

A1
.06

17
.10
.05

.04

.07

.06



flagged and median-PPP-values outcomes displakediaf ceiling effect. All
misspecified conditions had a median PPP-valuenf,s0 comparative judgments of
misfit across conditions were not possible. Sirhyjlahe proportion flagged was 1 for all
misspecified conditions except Condition 5.1 (pmbijpo = .93), indicating that the
degree of misfit in Condition 5.1 was less thandtieer four conditions, but no further
distinctions were possible. By comparison, a usifaiure of the effect size outcome was
that it did not have a ceiling. The scale of the@fsize outcome permitted distinctions
among conditions in terms of overall degree of inteht were not apparent using the
proportion flagged and median PPP-value outcommscifically, the degree of misfit
across replications as characterized by largestanadfect size to smallest median
effect size was Condition 4.1 (ES = 15.06), Cond#i6.1 (ES = 13.20), Condition 2.1
(ES = 13.02), Condition 3.1 (ES = 9.41), and Caadib.1 (ES = 3.60). This pattern is
telling because the three conditions with the grgtamisfit all had the partial mastery
class misspecification. Additionally, the contextuariables misspecification produced
greater misfit than the cross-loadings misspedifica as evidenced by the worse fit for
Condition 3.1 relative to Condition 5.1 as wellGendition 4.1 relative to Condition 6.1.

Figures 13-14 depict scatterplots of realized awstgyior predicted SGDDM
values across all 100 replications of each comlifidne figures are paneled by condition,
with null conditions and misspecified condition®gped together to facilitate

comparisons of the manipulated factors across tiondi
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Figure 13 Scatterplots of SGDDM global values in null cdratis. Posterior predicted
values are on the y-axis and realized values atb®Rr-axis.
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The x-axis of each scatterplot contains the redlizdues, while posterior predicted
values are plotted along the y-axis. Each grayrdtite scatterplots represents one draw
from a posterior distribution (300 draws were uBedh each of 100 replications for a
total of 30,000 draws per condition). The open llaiccles represent the centroids (i.e.
the mean realized and posterior predicted valuesadthe 300 draws within a given
replication). Each centroid can be thought of asramary of the 300 draws from the
replication it represents. The centroids are inetltbr graphical purposes only, to help
the reader perceive patterns when viewing the gradpRMC analyses do not make use of
the centroids. The centroids are simply auxiliafprmation to facilitate digestion of the
results in the current context of a simulation gtuelgure 13 suggests that global
SGDDM performed similarly across the six null cdrmais, although some slight
differences are perceptible. The shape of theescatieach panel is best described as
roughly spherical. Generally speaking, the SGDDNMigaranged from .022 to .028 for
realized and posterior predicted data (Conditidnchn be seen to have a slightly
narrower range of values). By comparison, the neisied conditions featured in Figure
14 displayed patterns that were different fromrtheil counterparts and from each other.

In each misspecified condition, posterior predictatlies had less variability than
did realized values, and were generally smallenagnitude. These tendencies were less
severe for Condition 5.1 than for the other misgptconditions. Generally speaking,
these patterns held for the subscale aggregatice&DDM as well (see Figures 15-20),
though contrasts between conditions (e.g. betwestdi@on 5.1 and the other

misspecified conditions) were more striking for ®oaf the subscales than for others.
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Figure 14 Scatterplots of SGDDM global values in misspeciftedditions. Posterior
predicted values are on the y-axis and realizedegare on the x-axis.

92



Condition 1.1

Condition 2.2

Wy vy

o o

[Ty =

=) =}

=] (]

[aa] o

[Ty =

=) =

uy uy

g | v, e AR % s 8‘ | e A AT S ey

= =

=] (]

(o] ol

= =

=1 =

Wy vy

S 1 S 1

= T T T T T = T T T T T
0.015 0.020 0.025 0.030 0.035 0.015 0.020 0.025 0.030 0.035

Condition 3.3 Condition 4.4

Wy vy

[ad] o

[Ty =

=) =}

= =

[ad] o

[Ty =

=) =}

wy vy

S _ o o e i gt o 8 _ BRI S X T

=) =

[a=] (]

[ (o}

= =

=) =

wy vy

S A S A

= 0.015 0.020 0.025 0.030 0.035 = 0.015 0.020 0.025 0.030 0.035

Condition 5.5 Condition 6.6

w vy

o o

= =

= o

= (]

P o

= =

= o

wy vy

g | [ S i e le g - oy Ead

=) =

(==} =

(] ol

= =

=) =

Wy vy

S 1 S 1

= T T T T T = T T T T T
0.015 0.020 0.025 0.030 0.035 0.015 0.020 0.025 0.030 0.035

Figure 15 Scatterplots of SGDDM subscd@evalues in null conditions. Posterior
predicted values are on the y-axis and realizedesahre on the x-axis.
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Figure 16 Scatterplots of SGDDM subscdlevalues in misspecified conditions.
Posterior predicted values are on the y-axis aalizesl values are on the x-axis.
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Figure 17 Scatterplots of SGDDM subscdlevalues in null conditions. Posterior
predicted values are on the y-axis and realizedesahre on the x-axis.
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Figure 18 Scatterplots of SGDDM subscdlgvalues in misspecified conditions.
Posterior predicted values are on the y-axis aalizesl values are on the x-axis.
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Figure 19 Scatterplots of SGDDM subscdlgvalues in null conditions. Posterior
predicted values are on the y-axis and realizedesahre on the x-axis.
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Figure 2Q Scatterplots of SGDDM subscdlgvalues in misspecified conditions.
Posterior predicted values are on the y-axis aalizesl values are on the x-axis.
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SGDDM Subscalef,

As depicted in the third panel of Figure 11, th&tribbutions of PPP-values for
SGDDM subscal®, tended to be different for null and misspecifiedditions. The
distributions from null conditions approached umifdty, while the distributions from
misspecified conditions were located almost exgkigiwithin the extreme lower tail
except for Condition 5.1. Condition 5.1 was theyanisspecified condition with any
non-zero PPP-values. Figure 16 makes it easy tthaé¢he misfit in Condition 5.1 was
to a smaller degree than the other misspecifieditions, although it tended to be in the
same direction in the aggregate. Condition 5.1 thasnly misspecified condition in
which any of the sampled MCMC iterations had pasteredicted values exceeding
realized values (i.e. grey dots above the idefti); indeed Condition 5.1 even had
some replications with PPP-values above .5, inhgdhat the majority of iterations
within those replications exhibited over-prediction

The proportions of PPP-values flagged as extrehiel (€olumn of Table 26) in
the null conditions ranged from .02 to .12. Thegamions from the misspecified
conditions were 1.00 except for Condition 5.1, vahicas .18. The median PPP-values
(third column of Table 27) displayed a similar patt medians in the null conditions
ranged from .44 to .60, while the medians fromrthespecified conditions were .00
except for Condition 5.1 which was .19. This patteontinued for the median effect size
outcome (see the third column of Table 28). Theiaredffect sizes in the null
conditions ranged from -.28 to .18, and were sm#llen the median effect sizes from

the misspecified conditions, which ranged fromt®34.02.
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SGDDM Subscaled,

As depicted in the fourth panel of Figure 11, tisrtbutions of PPP-values for
SGDDM subscal®, were quite different for null and misspecified ddions. The
distributions from null conditions approached unifaty, while the distributions from
misspecified conditions tended toward the extreomest tail. Condition 5.1 was the only
misspecified condition with any non-zero PPP-valliégure 18 shows that the misfit in
Condition 5.1 was not as severe. Condition 5.1 tha®nly misspecified condition in
which any of the sampled MCMC iterations had pasteredicted values exceeding
realized values (i.e. grey dots above the idefitig). Condition 5.1 had some
replications with PPP-values above .5, indicatimg the majority of iterations within
those replications exhibited this characteristic.

The proportions of PPP-values flagged as extremeat{f column of Table 26) in
the null conditions ranged from .00 to .07, whitegortions from the misspecified
conditions were 1.00 except for Condition 5.1 whighs .19. The median PPP-values
(fourth column of Table 27) displayed a similartpat: medians in the null conditions
ranged from .47 to .56, while the medians fromrthespecified conditions were .00
except for Condition 5.1 which was .22. This pattef results continued for the median
effect size outcome (fourth column of Table 28)eThedian effect sizes in the null
conditions ranged from -.16 to .09, and were sm#llien the median effect sizes from
the misspecified conditions, which ranged fromt@82.52.

SGDDM Subscalefs

As depicted in the fifth panel of Figure 11, thetdbutions of PPP-values for

SGDDM subscal®; were different for null and misspecified condisofhe

100



distributions from null conditions approached umiaty, while the distributions from
misspecified conditions were located almost exgklgiwithin the extreme lower tail.
Condition 5.1 was the only misspecified conditiottvany non-zero PPP-values. Figure
20 shows that Condition 5.1 was the only misspediiondition in which any of the
sampled MCMC iterations had posterior predictedi@alexceeding realized values (i.e.
grey dots above the identity line).

The proportions of PPP-values flagged as extreee Table 26) in the null
conditions ranged from .00 to .02, while the prajos from misspecified conditions
were 1.00 except for Condition 5.1, which was H& median PPP-values (see the fifth
column of Table 27) displayed a similar patternednans in the null conditions ranged
from .50 to .55, while the medians from the mis#pemt conditions were .00 except for
Condition 5.1 which was .02. The pattern of resatistinued for the median effect size
outcome (see the fifth column of Table 28). The rmee@ffect sizes in the null conditions
ranged from -.16 to .01, and were smaller thamibdian effect sizes from the
misspecified conditions, which ranged from 2.21.3002.

To better understand why subscale SGDDM detects@itmiore often foB3 than
for 6, or 0;, consider Figure 21, which shows the conditiomabpbility of a correct
response by observable for each latent proficigmofile. The upper panel refers to the
realized data and the lower panel refers to théepios predicted data. The middle panel
shows Model 1 generating parameters for referengeoges, i.e. to help illustrate which

conditional probabilities were affected by the mladesspecification in Condition 5.1.

101



[40)»

Conditional probability of a correct response (Mdilgenerating parameters)

Proﬁcienciesprop. of Observable (x

[01,02,05] sSimueeg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26| 27 28 Q¢ 38 32 33
[1,1,1] .08

[1,1,2] .01

[1,2,1] .01

[1,2,2] .00

[2,1,1] .03

[2,1,2] .06

[2,2,1] .08 .8(C (o] . .80 0 .80

[2,2,2] .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .8 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80|.80 .80 .80 .80 .®O .8(

Conditional probability of a correct response Madgenerating parameters)

ProficienciesProp. of Observable (x

[01.05,05] simuleeg 1 2 3 9 10 11 12 13 14 16 17 18 19 20 21 22 26) 27 28 @< 33 32 33
[1,1,1] .

112 .
[1,2,1]

[1,2,2] . . . . . . . . . . .80 .80 .80 .80 .®0 .8(
[2,1,1] .

[2,1,2] . . . . . . . . . . . . . . . .20 .80 .80 .80 .80 .8(
[2,2,1] .

[2,2,2] . . . . . . . . . . . . . . . . . . . . . .80].80 .80 .80 .80 .®0 .8(

Conditional probability of a correct response (Gim5.1 estimated parameters)
Proficienciesprop. of Observable (x
[01,02,05] simuleeg 1 9 10 11 12 13 14 16 17 18 19 20 21 22 26) 27 28 @< 33 32 33

[1.1.1] .09

[1,1,2] .00
[1,2.1] 01 80 .74 .74 80 .80 .80 .80 .80 .80 .80 .80

[1,2,2] .00 .80 .80 .80 80 .80 .78 .18 .B0 .8(
[2,1,1] 06 | .74 69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

[2,1,2] .03 .74 69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .21 .80 .78 .7 .80 .8(
[2,2,1] .08 .74 69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80

[2,2,2] 72 74 69 .73 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .8 .80 .74 .74 .80 .80 .80 .80 .80 .80 .80 .80f.80 .80 .78 .7 .BO .8(

Figure 21 Conditional pro.bability of a correct responseleﬁyeni proficiency. Upper panel shows values aggegad from Model
5. Middle panel shows values as generated from Mhdewer panel shows the mean of 30,000 estimeahaes (300 posterior
draws from each of 100 replications) from Conditioth.



The key point in the upper panel is that the tiagent variables parented a different
number of observables, yet each latent variableimvpacted by the same number of
crossloadings in the misspecification. These coagbhgs translated to seven conditional
probabilities being affected within each latentiable. Forts, the seven impacted
conditional probabilities represent a larger praoiporof the corresponding response
patterns, meaning that the correlations (SGDDMes)among the relevant response
patterns would be affected more by the misspetifindor 63 than forf, or 6;. This
interpretation is further evidenced in the loweng@éay noting the consequences on the
estimated conditional probabilities. The discrepasbetween the upper and lower panel
are proportionally more prevalent in the third id@t observables relative to the first two
blocks. In other words, one can see from the padtir the figure why the correlations
within the third block of variables changed moreha posterior predicted data relative to
the realized data.

Global and subscale SGDDM discrepancy measureslesseuited to detect the
crossloadings misspecification in Condition 5.htiek to the other misspecified
conditions because this misspecification producedenocalized effects. The global and
subscale aggregations associated with this midggs®n included larger portions of the
data that were unaffected by the misspecificatamtdid the other misspecifications. In
other words, the summary statistics were dilutea gpeater extent by well-fitting data
due to the aggregation process. Looking againqtres 3 and 7, only nine observables
had conditional probability tables that differedveeen the generating and scoring
models in Condition 5.1, meaning that for 24 of 83eobservables sampling variability
was the only factor responsible for differencesveen observed and model-implied
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responses. For the nine observables that did hfeeetit CPTs between Model 1 and
Model 5, only the latent profiles with mastery & first latent parent and non-mastery
on the second latent parent were impacted by ffereinces in these conditional
probabilities (see Figure 21), leaving a large prapn of simulees with expected
probabilities of success that were equal acrossbakrvables in both models. Compared
to the other misspecifications, Condition 5.1 appedo be the most localized model
misspecification in the sense that the matrix gfested response probabilities across all
simulees and observables appeared least distuetsve to the same matrix from the
generating model (a comparison of Figure 21 to feig22-25 is suggestive of this
principle). This interpretation is further suppartey bivariate evidence presented in the
next section. At the bivariate level greater detaib afforded by the aggregation across
528 pairs of observables as opposed to a singlelmnibdee subscales, or 33 observables,

which better isolated areas of fit and misfit.
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GOT

Conditional probability of a correct response (Mdlgenerating parameters)

Proficienciesprop. o

Observable (X

[01,02,05] simuleefs 1 9 10 11 12 13 14
[1,1,1]

[1.1,2] 01

[1,1,3] .00

[1,2,1] .02

[1,2,2] .01

[1,2,3] .00

[1,3,1] .00

[1,3,2] .00

[1,3,3] .00

[2,1,1] .00 }

[2,1,2] 01 | .80 .80 .80 .80 .80 .80 .80

[2,1,3] 00 | .80 .80 .80 .80 .80 .80 .80

[2,2,1] 01 | .80 .80 .80 .80 .80 .80 .80

[2,2,2] .05 | .80 .80 .80 .80 .80 .80 .80

[2,2,3] 01 | .80 .80 .80 .80 .80 .80 .80

[2,3,1] 00 | .80 .80 .80 .80 .80 .80 .80

[2,3,2] 03 | .80 .80 .80 .80 .80 .80 .80

[2,3,3] .00 | .80 .80 .80 .80 .80 .80 .80

[3.1,1] 00 | .80 .80 .80 .80 .80 .80 .80

[3.1,2] .00 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,1,3] .00 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,2,1] .00 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,2,2] .05 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,2,3] 19 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,3,1] 00 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,3,2] .06 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80
[3,3,3] 51 | .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

16 17 18 19 20 21 22 23 24 25 26§ 27 28

.20 .80 .80
.20 .80 .80 .80 .80 .8(
.20 .80 .80
.20 .80 .80 .80 .®O .8(
.80 .80 .80
.80 .80 .80 .80 .®O .8(
.20 .80 .80
.20 .80 .80 .80 .80 .8(
.20 .80 .80
.20 .80 .80 .80 .80 .8(

Q¢ 33 32 33

.80
.80
.80

.80 .80 .80 .80 .80 .80 .80 .80 .80 .80

.80
.80
.80

.80 .80 .80 .80 .80 .80 .80 .80 .80 .80

80 .80 .80
80 .80 .80 .80 .®O .8(
.20 .80 .80
.20 .80 .80 .80 .®O .8(
.20 .80 .80
.20 .80 .80 .80 .80 .8(

Conditional probability of a correct response (Giiowl2.1 estimated parameters)

Proficienciesprop. o Observable (X
[01,02,03] simulee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26
[1,1,1] .15 45 45 44 44 45 44 45 .67 .67 .67 .67 .67 .20 .51 .
[1,1,2] .01 45 45 44 44 45 44 45 .67 .67 .67 .67 .67 .20 .81 81 .&4
[1,2,1] .01 45 45 44 44 45 44 45 .80 .80 .81 .80 .81 .79 .51 .52
[1,2,2] .00 45 45 44 44 45 44 45 .80 .80 .81 .80 .81 .79 81 81 .&
[2,1,1] .03 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .67 .67 .67 .67 .67 .20 .51 .52
[2,1,2] .20 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .67 .67 .67 .67 .67 .20 .81 .81 .84 .
[2,2,1] .04 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .80 .80 .81 .80 .81 .79 .79 .79 .51 .52
[2,2,2] .55 .80 .80 .80 .80 .80 .80 .81 .80 .79 .79 .78 .79 .79 .79 .80 .80 .81 .80 .81 .81 .79 .79 .79 .79 .79}.79 .81 81 & 7B .7

Figure 22 Conditional probability of a correct responsddig
Model 2. Lower panel shows the mean of 30,000 eg&chval

nt proficiency. Upper panel shows the valuegeaerated from
ues from Condition 2.1.
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Conditional probability of a correct response (M@®&lgenerating parameters)

Proficienciesprop. o Observable (x

[61,0,,05] simuleep 1 10 11 12 13 16 17 18 19 20 21 22 23 24 25 26/ 27 28 Q¢ 33 32 33
[1,1,1]
[1,1,2] .01
[1,2,1] .01
[1,2,2] .00

.20 .68 .68 .6B .68 .68

.80
.80 (.80 .68 .68 .6B .68 .68

[2.1,1] 03
[2.1,2] .06 |.20 .68 .68 .6B .68 .64
[2,2,1] .08

[2,2,2] 73 80[.80 .68 .68 .6B .68 .68

Conditional probability of a correct response (Middgenerating parameters)

Proficienciesprop. o Observable (x
[01,0,,05] simuleep 1 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26[ 27 28 Q9 33 32 33
[1,1,1]

[1,1,2] .01 .20 .80 .80 .8D .80 .8(
[1,2,1] .01 .80

[1,2,2] .00 .80.80 .80 .80 .80 .®0 .8(
[2,1,1] .03

[2,1,2] .06 .20 .80 .80 .80 .®0 .8(
[2,2,1] .08

[2,2,2] .73 .80 .80 .80 .80 .80 .BO .8(

Conditional probabilty of a correct response (Cinl3.1 estimated parameters)
Proficienciesprop. o Observable (x
[01,0,,05] simuleep 1 10 11 12 13 14 16 17 18 19 20 21 22 26[ 27 28 Q9 33 32 33

[1,1,1]

[1.1,2] .01 |22 73 73 8 M 7
[1,2,1] .01 .80

[1.2,2] .00 80[.80 .73 .73 .78 B .7
[2.1,1] .04

[2.1,2] .06 |.22 73 73 8 M 7
[2,2,1] .18 .69 68 .68 .80 .80 .80 .69 .68 .69 .80 .80

[2,2,2] .61 .68 .68 .68 .80 .80 .68 .68 .68 B0 .80 .68 .68 6B .8 69 .68 .68 .80 .80 .80 .69 .68 .69 .80 .80||.80 .73 .73 .78 .13 7

Figure 23 Conditional probability of a correct responsddignt proficiency. Upper panel shows the valuegeserated from
Model 3 (marginalized over contextual latent prigincies). Middle panel shows the values as gercefeden Model 1. Lower
panel shows the mean of 30,000 estimated valuésg@sterior draws from each of 100 replicationsjrfrCondition 3.1.



L0T

Conditional probability of a correct response (Matgenerating parameters)
Proficienciesprop. o Observable ¢x
[010203] simleep1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26| 27 28 Q@< 33 32 33
[1,1,1]

[1,1,2] .01

[1,1,3] .00 20 .68 .68 .6B .6B .68
[1,2.1] .02

[1,2,2] 01 K

[1,2,3] .00 68 .68 .68 .80 .80 .§ 20 .68 .68 .6B .68 .64
[1,3.1] .00

[1,3.2] .00 .

[1,3,3] .00 68 .68 .68 .80 .80 .80 .68 .68 .68 .80 .80 .80 .68 .68 .6B .GB .64
[2.1.1] .00

[2,1,2] .01 .20 .68 .68

[2,1,3] .00 Lo 68 68 6B .68 .6
[2.2.1] 01| 68 .68 .68 .80 .80 .68 .68

[2.2,2] 05 | 68 68 .68 .80 .80 .68 .68 .20 68 .68

[2.2,3] 01| 68 68 .68 .80 .80 .68 .68 Lo 68 68 6B .68 .6
[2,3.1] 00 | 68 68 .68 .80 .80 .68 .68

[2,3.2] 03| 68 68 .68 .80 .80 .68 .68 80 .68 .68

[2,3,3] 00 | 68 68 .68 .80 .80 .68 .68 Lo 68 68 .6B @8 .64
[3,1,1] 00 | 68 68 .68 .80 .80 .68 .68 .

[3.1,2] 00 | 68 68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80 . .

[3,1,3] 00 | 68 68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3.2.1] 00 | 68 68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3.2,2] 05 | 68 68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3,2,3] 19 | .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3,3.1] 00 | .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3,3.2] 06 | .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

[3,3,3] 51 | .68 .68 .68 .80 .80 .68 .68 .68 .80 .80 .68 .68 .80

Conditional probability of a correct response (Giinl4.1 estimated parameters)

Proficienciesprop. o Observable §x

[01,02,05] simulee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 27 28 Q€ 3B 32 33
[1,1,1] .39 .45 .57 .57 57 .68 .68

[1,1,2] .39 .45 .57 .57 57 .68 .68

[1,2,1] .39 .45 .69 .69 .69 .81 .81

[1,2,2] .39 45 . .69 .69 .69 .81 .81

[2,1,1] .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .69 .79 .57 .57 .57 .68 .68

[2,1,2] .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .69 .79 .57 .57 .57 .68 .68

[2,2,1] .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .69 .79 .69 .69 .69 .81 .81

[2,2,2] .68 .80 .80 .69 .69 .69 .79 .79 .67 .67 .69 .79 .69 .69 .69 .81 .81

Figure 24 Conditional probability of a correct responsddignt proficiency. Upper panel shows the valuegeserated from
Model 4 (marginalized over contextual latent prigfncies). Lower panel shows the mean of 30,00@neséid values (300
posterior draws from each of 100 replications) fréondition 4.1.
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Conditional probability of a correct response (Mdilgenerating parameters)
Proficienciesprop. o Observable (x

[01,62,03] simuleef 1 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 27 28 Q@¢ 33 32 33

[1,1,1]
[1,1,2]
[1,1,3]
[1,2,1]
[1,2,2]
[1,2,3]
[1,3,1]
[1,3,2]
[1,3,3]
[2,1,1]
[2,1,2]
[2,1,3] ) .80 .80 .80 .80 . . 2D 80 .
[2,2,1] : : 80 .80 .80 . : .80 .80 .¢

[2,2,2] ) .80 .80 .80 .80 .80 .80 . 80 .80 .80 .80 .80 . -20 .80 .80

[2,2,3] ) .80 .80 .80 .80 .80 .80 . 80 .80 .80 .80 .80 .¢ .20 .80 .80 .80 .B0 .8(
[2,3.1] . . .80 .80 .80 . 8di2620 80 .80 .80 .80 .80 .80 .80 .

[2,3,2] ) .80 .80 .80 .80 .80 .80 . .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80[.80 .80 .80

[2,3,3] : .80 .80 .80 .80 .80 .80 . .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 . Lo 80 .80 .80 .80 .8(
[3,1,1] .
[3.1.2] ) .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 . .20
[3,1,3] 20

[3.:2,1]

[3.2,2] . .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .8 .80 .80 .80 .80 .80 .§ .20 .80 .80

[3,2,3] . .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80 .8 .80 .80 .80 .80 .80 .§ .20 .80 .80 .8D .B0 .8(
331 . 802020 so 80 .80 .80 .80 .80 .80 .80 .80 .80 .8( .s(MEEOMEB0 .80 80 .80 .80 .80 .80 .80 .

[3.3,2]

[3,3,3] . . . . . . . . . . . . . . . . . . . . . . . . . . .80 .80 .80 .80 .80 .8(

Conditional probability of a correct response (Giioml6.1 estimated parameters)

Proficienciesprop. o Observable {x

[01,02,03] simuleeg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 27 28 Q@° 33 32 33
[1,1,1] .15 41 44 45 .44 .62 .61 .62 .67 .66
[1,1,2] .01 41 .44 45 .44 .62 .61 .62 .67 .66
[1,2,1] .01 41 .44 45 .44 .80 .81 .80 .80 .80
[1,2,2] .01 41 44 45 44 .80 .81 .80 .80 .80
[2,1,1] .02 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .62 .61 .62 .67 .66
[2,1,2] .21 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .62 .61 .62 .67 .66
[2,2,1] .02 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 .80 .81 .80 .80 .80
[2,2,2] .56 .80 .80 .80 .80 .80 .80 .80 .78 .78 .78 .78 .78 . .80 .81 .80 .80 .80

Figure 25 Conditional probability of a correct responsddignt proficiency. Upper panel shows the valigegenerated from
Model 6. Lower panel shows the mean of 30,000 eg&éthvalues from Condition 6.1.
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Bivariate SGDDM

The detail of the feedback provided by the bivarigtfunctions (SGDDM
bivariate andQs) gets obscured when aggregated across variabbkegsivas done in
Figure 11 and Tables 26-28. Those high-level agdregs were included to facilitate
comparisons across fit functions, but to reallyrappate the effectiveness of the bivariate
fit functions, they must be viewed at the more #peand appropriate grain-size of the
variable pair. This is important because not alialde pairs were expected to show poor
fit in misspecified conditions.

For all null conditions the results for the bivaei&sGDDM fit function were
highly similar, so they are represented collecyiv®} Figure 26, which depicts a heat

map of median PPP-values from Condition 1.1.
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Proportion flagged = 0

over=0 0.97

under =0

0.7

0.5

0.25

0.025
0

Figure 26 Heat map of median PPP-values for bivariate SGCfBiMCondition 1.1.

Each square in the matrix represents the medidd@PPP-values (1 per replication) for
one pair of observables. White (black) squaresatdithat the posterior predicted values
were systematically lower (higher) than the realizalues. This figure also represents
the similar figures produced for bivariate SGDDMi&ps fit functions for Conditions
1.1,2.2,3.3,4.4,5.5, and 6.6.

Each of the 528 squares in the figure represeptsidian of 100 PPP-values for one
pair of observables. White squares indicate trapttsterior predicted values were

systematically lower than the realized values, Whiteans that the association between
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the pair of observables was stronger in the obslete¢a than was accounted for by the
model (i.e. positive local dependence). Black sgsiamdicate that the posterior predicted
values were systematically higher than the realaddes, which means that the
association between the pair of observables wasgdr according to the model than was
observed in the realized data (i.e. negative Idepkendence). Grey squares of varying
shades indicate that the median PPP-values wemxtretme enough to warrant a flag
(i.e. more moderate levels of positive or negalibeal dependence). As can be seen from
this figure, none of the observable pairs had nreBilaP-values below .025 or above .975
in any of the null conditions. Note thatthin any given replication, it was typical to
observe about 21variable pairs with values thiseexé¢, approximately 4% (see Figure
27). However, the identity of those flagged pahlarmged across replications, suggesting

that the cause was random variation and not sysiemésfit.
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Proportion flagged = 0.044

over = 0.021
under = 0.023

0.02
0

Figure 27 Heat map of PPP-values within a single replicatithe PPP-values are
represented categorically by shaded squares. Eaehesin this heat map represents the
PPP-value from a pair of observables within Repilical of Condition 1.1.

From a hypothesis-testing perspective the obsefypd-| error rate was around 4%,
which is slightly conservative compared to the ittadal alpha level of 5%. The pattern
of grey squares in this heat map is consistent avgampling variability explanation, and

supports a cautious approach to the interpretatidlagged variable pairs when working

with a single observed data set. Clusters of fldggpiares, especially among variables
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with theoretical connections, are more likely tpresent true misfit than isolated flagged

squares.
Figure 28 depicts results from Condition 2.1, aaregle of a heat map with

evidence of systematic error (misfit) as opposeshiopling variability.

Proportion flagged = 0.091 33

1
over=0 0.97
under = 0.091
0.7
0.5
0.25
6
5
4
3
2
0.025
1 0

Figure 28 Heat map of median PPP-values for bivariate SGDidK); for Condition

2.1. Each square in the matrix represents the media00 PPP-values (1 per
replication) for one pair of observables. Whiteaftl) squares indicate that the posterior
predicted values are systematically lower (highiesp the realized values.
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Recall that Model 2 differed from Model 1 only erins of the addition of a partial
mastery class, where the definition of partial rmgstonsisted of mastery-like
performance on a subset of observables that spaiinthdee latent variables and non-
mastery performance on the remaining observables.elwere three latent dimensions
in the generating model and scoring model, ancetkent dimensions were measured
by the same observables in both models.

The most important feature in this heat map ishinee triangle-shaped clusters of
white squares, each representing a local areaisdbring model (Model 1) where the
median PPP-values across 100 replications werelass025. The largest such cluster
corresponds to the bivariate associations amongi@disles 1-8 (i.e. Observable Pairs
1/2,1/3, 1/4 . . . 7/8), the second cluster cgoeasls to the bivariate associations among
Observables 16-21 (i.e. Observable Pairs 16/11816/6/19. . . 20/21), and the third
cluster corresponds to the bivariate associatiomeng Observables 28-30 (i.e.
Observable Pairs 28/29, 28/30, and 29/30). Theacheristic common to these 17
observables is that they were governed by CPT Tammgl in the generating model
(Model 2), in which the partial mastery class wadikely as the mastery class to
successfully complete the observable. The keymdiffee between the clusters is that
each had a different parent: the first clusteretieled or9,, the second of,, and the
third on0s. There were residual associations (i.e. positealldependence) among these
observable pairs in the data (generated from May#iat were not accounted for by the
scoring model (Model 1). In summary, a consequehditing a two-class model to data
with three classes was that simulees in the pamzstery classes were grouped together
with the non-mastery simulees, perhaps becausetyymts diverged from the larger
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majority of simulees who performed well acrossosiéervables. Poor performance on
any cluster of observables therefore would havgastgd membership in the only
available alternative class. However, for simulebs were partial masters, their
tendency to do well on subsets of observables msteil as stronger associations among
those observables than the scoring model coulduamtdor. This interpretation is
supported by evidence at a finer-grained leveletéill that will be presented later in the
HCI and ICI sections, specifically the proportimisimulees within the latent

proficiency profiles and the degree of inter-obsabte agreement and disagreement
within those groups of simulees.

The other two extreme medians in the heat mapgspanding to white squares
for Observable Pairs 3/29 and 7/29) are embedd#dnaa rectangular section of
observable pairs that had relatively low median®&Bes but did not warrant a flag
according to the .025 decision rule. This rectaaggtoup represents the observable pairs
that relate Observables 1-8 (fhegroup whose intra-cluster observable pairs wdre al
flagged) to Observables 28-30 (hegroup whose intra-cluster observable pairs wdre al
flagged). The analogous observable pairs relatiegther flagged triangular clusters
exhibited similar levels of positive local dependeifti.e. the rectangular cluster relating
Observables 1-8 to Observables 16-21, and thenguair cluster relating Observables
16-21 to Observables 28-30). The fact that thestamgular clusters relating the white
clusters to each other were not white (flaggedysedves tells us that the scoring model
did a better job of accounting for the relationshyetween dimensions than it did within
the “partial mastery” clusters of observables witbach dimension. This is a clue that
the positive local dependence within each whitsteluwas not due to misspecifications
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in the relationships between dimensions. Indeexlbihariate associations between
observables modeled from different dimensions gdlyecontained less local
dependence than associations within the same diarerihis accurately reflects the
nature of the misspecification, which spannedred!latent variables but was restricted to
a subset of observables governed by a particuldart€Rplate. Contemplating the entire
pattern of PPP-values, as opposed to focusingamthe flagged values, gives the
researcher the best opportunity to distinguishtips of misspecification from other
types.

To further detail the observed patterns of mediBR®alues in this heat map, it
may be useful to categorize the observables acuptditheir latent parentage and their
CPT templates. For example, in the generating mimdé€londition 2.1 (see Figure 4)
this categorization yields six categories (or @usy of observables, each with a different
combination of parentag@;( 6, or63) and CPT template (8 or 9). Observables 1-8 had
0, as their parent and were governed by CPT Templabservables 9-15 shared the
same latent parent with the previous observablasywbre structured according to CPT
Template 9. Observables 9-16 shared CPT Temphaith8bservables 1-8 but the
latent parent wal,, etc. This categorization is useful because tlepes of median
PPP-values in Figure 28 followed the interactiom®ag these clusters.

Consider the first cluster of observables (i.e.&ables 1-8), the cluster
parented by, and governed by CPT Template 8. Observable paihshath members
from this cluster were all flagged due to theirrerte positive local dependence, as noted
above. By comparison, pairings of an observablm f@uster 1 with an observable from
Cluster 2 (shared parentage, different CPT Temg)atievays yielded modest negative
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local dependence, represented in the heat maggsguares having median PPP-values
between .5 and .75. Continuing to move from leftight within the bottom eight rows of
the heat map in Figure 28, pairings of an obseev/aibim Cluster 1 with an observable
from Cluster 3 (different parentage, shared CPTptata) consistently yielded positive
local dependence, represented in the heat mae digltest grey squares and having
median PPP-values between .025 and .25. Pairingeéee Cluster 1 and Cluster 4
(different parentage, different CPT templates)rbtl consistently yield positive or
negative local dependence, but were always in theest range, .25 to .75. Pairings
between Cluster 1 and Cluster 5 (different paremtagared CPT template) yielded
positive local dependence, including the only fledignedian PPP-values that did not
come from intra-cluster pairings of observablesr@Esponding to white squares for
Observable Pairs 3/29 and 7/29). Pairings betweesté® 1 and Cluster 6 (different
parentage, different CPT templates) did not coestst yield positive or negative local
dependence, but were always in the modest rang¢o .Z5.

In summary of Cluster 1, the strongest local depand was positive local
dependence among pairings of observables withaime parent and same CPT template.
Next in magnitude was the positive local dependemseng pairings of observables with
different parents but the same CPT template. Smglein magnitude was the negative
local dependence among pairings with the same pategmifferent CPT templates.
Lastly, pairings of observables with different pgeeand different CPT templates yielded
local dependence in the modest range and of vadinegtion, akin to what was seen due

to sampling variability alone in null conditionseésFigure 26).
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The second cluster of observables (Observableg @d% parented b§; and
governed by CPT Template 9. Observable pairs woth members from this cluster
tended to exhibit positive local dependence, thawghpairings only modestly. Pairings
of an observable from Cluster 2 with an observéiolen Cluster 3 (different parents,
different templates) yielded modest local dependendoth directions, as did pairings
from Cluster 2 with Cluster 4 (different parentsme template). Pairings between Cluster
2 and Cluster 5 (different parents, different tesigs) consistently yielded modest
negative local dependence (.5 to .75). Pairingadsen Cluster 2 and Cluster 6 (different
parents, same template) yielded modest positived ibependence (.25 to .5), with one
pairing below .25. In summary of Cluster 2, th@sgest local dependence was positive
local dependence among pairings of observablesthéisame parent and same CPT
template, though none of these pairs were flaggedwo pairs were modest in
magnitude. The remaining pairings were all modesize, though some were systematic
in direction.

The third cluster of observables (Observables 16A2E parented by, and
governed by CPT Template 8, and was generally stargiin behavior with the patterns
observed for Cluster 1. Observable pairs with lmoémbers from Cluster 3 were all
flagged due to their extreme positive local depecdePairings of an observable from
Cluster 3 with an observable from Cluster 4 (saarem, different templates) yielded
modest negative dependence (.5 to .75). Pairinygcle@ Cluster 3 and Cluster 5
(different parents, same template) consistentlidge positive local dependence,
represented in the heat map as the lightest grigareg and having median PPP-values
between .025 and .25. Pairings between ClustedX4umster 6 (different parents,
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different templates) yielded modest local dependendoth directions (.25 to .75). In
summary of Cluster 3, the strongest local depergleras positive local dependence
among pairings of observables with the same pamshisame CPT template. Next in
magnitude was the positive local dependence amainmgs of observables with
different parents but the same CPT template. R@nvith the same parent but different
CPT templates yielded modest negative local depeeddairings of observables with
different parents and different CPT templates wdltbcal dependence in the modest
range and of varying direction, akin to what wasnsdue to sampling variability alone in
null conditions (see Figure 26).

The fourth cluster of observables (Observables 22aas parented b, and
governed by CPT Template 9, and was generally stargiin behavior with the patterns
observed for Cluster 2. Observable pairs with lmombers from Cluster 4 exhibited
positive local dependence, though only modestlyirRgs of an observable from Cluster
4 with an observable from Cluster 5 (different paisedifferent templates) yielded
modest local dependence in both directions, apaiings of Cluster 4 with Cluster 6
(different parents, same template). In summarylaét@r 4, local dependence was
always modest in magnitude, and predominantly whuétctional (akin to sampling
variability). Systematic positive local dependedad exist among pairings of
observables with the same parent and same CPTatmphd systematic negative local
dependence did exist between pairings of ClusterGluster 3 (same parent, different
templates).

The fifth cluster of observables (Observables 28v#8s parented b§s and
governed by CPT Template 8, and was generally stargiin behavior with the patterns
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observed for Clusters 1 and 3. Observable paits bath members from Cluster 5 were
all flagged due to their extreme positive local elegience. Pairings of an observable from
Cluster 5 with an observable from Cluster 6 (saaremt, different templates) yielded
negative local dependence (.75 to .975). This 3u&er of dark grey squares
(Observable Pairs (28/31, 28/32, 28/33, 29/31,2%9/33, 30/31, 30/32, and 30/33) had
relatively high median PPP-values, though not exérenough to be flagged. Recall that
the analogous clusters of observable pair®f@nd6, were in the same direction but not
as strong in magnitude, which suggests that eshm#te parameters for observables
dependent upobs was more difficult in this model than for obserleshdependent dfy
or 0,. For dimensions with more observables per dimen@pando,), the scoring model
did a better job of identifying the heterogeneityang observables (i.e. those governed
by different CPTs), whereas the observables dep¢mad; were seen by the scoring
model as a more homogenous group than they weesajed to be due in part to the
lower number of observables dependenés<n

In summary of Cluster 5, the strongest local depand was positive local
dependence among pairings of observables withaime parent and same CPT template.
Next in magnitude was the negative local dependanuang pairings of observables
with different parents but the same CPT templatd,the negative local dependence
among pairings with the same parent but differddT @mplates. Pairings of observables
with different parents and different CPT templatetded modest local dependence
which was systematically negative with respect liost@r 2 and in both directions with

respect to Cluster 4.
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The sixth cluster of observables (Observables 383 parented b§; and
governed by CPT Template 9, and was generally stargiin behavior with the patterns
observed for Cluster 2 and Cluster 4. Observabhs path both members from Cluster 6
exhibited positive local dependence (.025 to .#®ugh none were flagged. In summary
of Cluster 6, the strongest local dependence wasiy®local dependence among
pairings of observables with the same parent amet 2P T template, which were similar
in magnitude to the negative local dependence wveddor pairings with the same parent
and different templates. Pairings with differentgrdas and the same template exhibited
modest negative local dependence with respectust€l 2, but were modest in both
directions with respect to Cluster 4. The pairingth different parents and different
templates were modest and bidirectional, akin topdilg variability (see Figure 26).

In summary of Figure 28, the overall pattern of plaeentage/template effects
described above (same/samdifferent/same> same/different different/different)
provided diagnostic clues as to the charactenstierences between the scoring and
generating models. The intra-cluster pairings for given cluster, which are represented
by the triangle-shaped regions bordering the diabonFigure 28, had the strongest local
dependence within the rows and columns which cparded to that cluster, but the local
dependence was only flagged for clusters govergaddoCPT template 8. Collectively
these patterns across clusters painted an ordetly@ that reflected the impact of the
partial mastery misspecification.

Figure 29 depicts a heat map of median PPP-vatudbhéd bivariate SGDDM fit
function for Condition 3.1. Recall that Model 3fdifed from Model 1 only in terms of
the addition of seven contextual latent variables.
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Figure 29 Heat map of median PPP-values for bivariate SGDiDK); for Condition

3.1. Each square in the matrix represents the media00 PPP-values (1 per
replication) for one pair of observables. Whiteaft) squares indicate that the posterior
predicted values are systematically lower (highiesp the realized values.

The most extreme medians are represented by senadhtgangle-shaped clusters of
white squares and one square-shaped cluster &f damres. The white squares indicate

residual dependencies in the data not accountdalftite scoring model (positive local

dependence), while the black squares indicatethleatnodel overestimated the
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dependencies relative to the observed data (negaital dependence). The seven
triangle-shaped clusters of white squares eackesept a local area in the scoring model
(Model 1) where the median PPP-values across Jfi¢agons were less than .025.
Each such cluster corresponds to the bivariatecegsms among three observables:
Observables 1-3 (i.e. Observable Pairs 1/2, 1/8,24B), Observables 6-8 (i.e.
Observable Pairs 6/7, 6/8, and 7/8), ObservableEs3l(le. Observable Pairs 11/12,
11/13, and 12/13), Observables 16-18 (i.e. Obsé\Rairs 16/17, 16/18, and 17/18),
Observables 22-24 (i.e. Observable Pairs 22/22422ihd 23/24), Observables 28-30
(i.e. Observable Pairs 28/29, 28/30, and 29/303eBtables 31-33 (i.e. Observable Pairs
31/32, 31/33, and 32/33). The characteristic comtdhese 21 observables is that they
were influenced by a contextual latent variabléhm generating model (Model 3). There
were residual associations among these observalvkeip the data that were not
accounted for by the scoring model (Model 1).

Regarding the 3x3 cluster of black squares, the miplicated observable pairs
(28/31, 28/32, 28/33, 29/31, 29/32, 29/33, 30/3133, and 30/33) represent the inter-
cluster observable pairs that relate Observableéd028vhose intra-cluster observable
pairs were all flagged) to Observables 31-33 (whioa-cluster observable pairs were
all flagged). These black squares indicate thastoeing model overestimated the
residual dependencies between observable pairbddét as their primary latent parent
but had different contextual latent variables a&srteecond latent parent. The analogous
clusters of observable pairs frand6, did not exhibit this pattern, which suggests that
accounting for the variability in responses to obables dependent up®swas more
difficult in this model than for observables depentond, or 6,. Consistent with
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conditional covariance theory (Zhang and Stout9)9@cal dependence was more
pronounced between observable-pairs reflectingifit multiple dimensions in the case
of B3 due to its higher proportion of multidimensionainns relative t®; ando..

In contrast to the pattern discussed previouslyHerpartial mastery
misspecification, the pattern of median PPP-vafaeson-flagged variable pairs in the
case of this contextual variable misspecificatiarevall modest in magnitude (.25 to .75)
and did not show systematic patterns of directionalhis may be due in part to the fact
that none of the contextual latent variables spameltiple primary latent variables,
which was the case for the partial mastery mis$igation. If a single “large” contextual
latent variable had been defined to coincide vhithgame 17 observables that defined
CPT Template 8), then greater similarities woukélly have resulted. Stated differently,
if definitions of partial mastery had been openadilized as seven clusters of three
observables within the context of individual prim&atent variables, then the cross-
cluster patterns reported previously may have gisaped. This confound in the study
design prohibits a definitive answer. Future resle@ould explore whether alternatively
framed misspecifications can produce matching pegtef bivariate data model misfit,
potentially even to the extent of model equivalence

Figure 30 depicts a heat map of median PPP-vatuaké bivariate SGDDM fit
function for Condition 4.1. Recall that Model 4fdifed from Model 1 along both

manipulated dimensions: contextual latent variables$ a third latent class.
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Figure 3Q Heat map of median PPP-values for bivariate SGDiDK); for Condition

4.1. Each square in the matrix represents the media00 PPP-values (1 per
replication) for one pair of observables. Whiteaft) squares indicate that the posterior
predicted values are systematically lower (highiesp the realized values.

The results depicted in Figure 30 can be genedalbgribed as a blending of Figures 28
and 29, as a function of the interaction of the experimental factors. In Condition 3.1

(Figure 29) all white squares were part of a clustehree observable pairs

corresponding to the intra-member associationdeévables with two latent parents.
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The differences between Condition 3.1 (Figure 2@) @ondition 4.1 (Figure 30) can be
described as exceptions to that pattern. Obseryae 31/32, 31/33, and 32/33 meet
that definition but were not flagged. These obseleswere governed by a CPT table
where the partial mastery class acted as the natenyaclass. In Condition 2.1, no such
observables were flagged. There were 13 obseryalnig that did not meet that
definition and were flagged (Observable Pairs 246819, 16/20, 16/21, 17/19, 17/20,
17/21, 18/19, 18/20, 18/21, 19/20, 19/21, 20/2hEesk observables were generated
according to a CPT table where the partial mastkxss acted as the mastery class. In
Condition 2.1, all such observables were flagged.

Figure 31 depicts a heat map of median PPP-vatudhké bivariate SGDDM fit
function for Condition 5.1. Recall that Model 5fdifed from Model 1 only in terms of

twelve crossloadings that gave nine observabletiaola parents.
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Figure 31 Heat map of median PPP-values for bivariate SGDiDK); for Condition

5.1. Each square in the matrix represents the media00 PPP-values (1 per
replication) for one pair of observables. Whiteaft) squares indicate that the posterior
predicted values are systematically lower (highiesp the realized values.

In the heat map there are eleven white squares @bhtotal (proportion flagged =

.02). Each white square represents a pair of obbs with median PPP-values less

than .025 (Observable Pairs (1/2, 1/30, 2/3, 2118, 2/29, 2/30, 3/17, 3/18, 3/32,

17/18). There were residual associations among thleservable pairs in the data
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(generated from Model 5) that were not accountedbycthe scoring model (Model 1).
These eleven observable pairs were not spatialsteled in the figure, but a meaningful
pattern does exist based on the membership ofitbigo: all but one were associations
between observables generated with multiple pa{@tiservables 1-3, 16-18, and 28-
30). Of the 36 observables pairs meeting thisroite 10 were flagged (28%). The
remaining flagged pair (Observable Pair 3/32) wamaalous in the sense that it was the
only bivariate association flagged in which one rbemhad a single parent and the other
member had multiple parents, among 216 such asgo@aHowever, this pair can also
be thought of as a member of the group of 45 oladdevpairs in which both member
observables were dependent upanThis group accounted for all but three of the
medians outside the central category (.25 to IT&)were not from pairs of multi-parent
observables (the remaining three were Observalalies /31, 1/32, and 1/33, which
were relatively high but not flagged). Among thd&epairs where both observables were
a child off3, nine observable pairs were flagged as havingmély low median PPP-
values (20%), 24 pairs had relatively low mediansveere not flagged (53%), and three
pairs had relatively high medians but were notdk)(7%). This finding was part of a
larger trend thaft; exhibited greater local dependence thaar 61 due to the larger
proportion of multidimensionality if.

Figure 32 depicts a heat map of median PPP-vatudhéd bivariate SGDDM fit
function for Condition 6.1. Recall that Model 6fdifed from Model 1 along both
manipulated factors: the addition of twelve croadiags, and the addition of a third

latent class (partial mastery).
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Proportion flagged = 0.117 33

over=0 0.97
under = 0.117
0.7
0.5
0.25
6
5
4
3
2
0.025
1 0

Figure 32 Heat map of median PPP-values for bivariate SGDidK); for Condition

6.1. Each square in the matrix represents the media00 PPP-values (1 per
replication) for one pair of observables. Whiteaftl) squares indicate that the posterior
predicted values are systematically lower (highiesp the realized values.

In the heat map there are 62 white squares amoBigo® (proportion flagged = .12).
Each white square represents a pair of observalilbes median PPP-value less than
.025. The results depicted for Condition 6.1 (F&g82) can be generally described as a
blending of Condition 2.1 (Figure 28) and Conditma (Figure 31), as an interaction

between the two experimental factors. The patte@dndition 6.1 (Figure 32) is most
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reminiscent of the pattern observed in Figure 28fondition 2.1, but with additional
white squares in places consistent with the findingn Condition 5.1 (Figure 31) that
observable pairs in which both members had mulpplents were sometimes flagged. In
Condition 6.1, 25 of the 36 pairings meeting thidedon were flagged (69%), as
opposed to 10 out of 36 in Condition 5.1 (28%). Tlhg rate among observable pairs
where both members had multiple parents thus isecea the presence of the additional
latent class. The interaction between factors eanidwed from the perspective of the
finding from Condition 2.1, namely that the flagaa@ecreased among observable pairs
where both members were governed by a CPT temiplathich the partial mastery class
behaved as the mastery class. In Condition 6.bf 8% 46 pairings meeting that
criterion were flagged (78%) as opposed to 46 6d6an Condition 2.1 (100%). The
flag rate among observable pairs with one membeénganultiple parents was also
larger in Condition 6.1 (6 of 216, or 2.8%) relatito Condition 5.1 (1 of 216, or 0.5%).
The flagged observable pairs in that category Wété, 4/28, 4/29, 7/16, 7/29, and 8/28.
Finally, Observable Pairs 31/32, 31/33, and 32/88vilagged despite that fact
that they did not meet any of the criteria previpassociated with flags. These
observables sharéd as their only parent and were governed by a CP8revthe partial
mastery class acted as the non-mastery class. Howbis finding can be explained
within the context of conditional covariance theampich states that at higher
proportions of multidimensional items multidimensadity can be revealed in terms of
item pairs that reflect the primary dimension omilindings of this description were
reported by Levy et al. (2009) in a related stutgppears that the high proportion of
multidimensional observables dependent ufxofthree out of six observables, or 50%)
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relative to the analogous proportions @ei(three out of twelve observables, or 25%) or
01 (three out of fifteen observables, or 20%) wasraributing factor. Note that this
factor was present in Condition 5.1, where the sabservables had relatively low PPP-
values but were not flagged, so the presence adddéional latent class appears to have
interacted as well. The additional latent clasgt#sif (i.e. Condition 2.1) resulted in low
PPP-values for these same observables, but nenextenough to be flagged.
Qs

The results for th€s fit function were nearly identical to the bivape8GDDM
results across all conditions. No differences in afithe graphs were perceived, and the
only entries in Tables 26-28 that differed betw#entwo functions were the proportion
flagged values for Condition 5.5, and the differetitere was a single unit in the second
decimal place. Consequently the results forQgéunction were not provided due to their
redundancy with the SGDDM bivariate results.

HCI
As an indicator of person fit, the HCI fit functigrelded a PPP-value in each

replication of each condition for each person ($eeu However, simulees did not retain
their “identities” across replications because sawulees were generated for each
replication, so consistency across replications ngasa meaningful outcome at the
person level (as was consistency across replicaibthe observable level for the
observable-level fit functions). Even though misgfiy persons were not explicitly
generated into the data, it was of interest to kindwether the misfit from model
misspecifications would be evident when inspectethfa person-fit perspective. Figure

33 shows the HCI PPP-value distributions by coaditi

131



Condition 1.1 . Condition 2.1 Condition 2.2

8 8 8

I i -

s s s

H H H

s s s

g g g
H

g Condition 3.1 g Condition 3.3 g Condition 4.1

Condition 4.4 ’ Condition 5.1 Condition 5.5
g g g
Condition 6.1 Condition 6.6
g g

Figure 33 Distributions of PPP-values for HCI by conditidrhe x-axis spans the 0 to 1
range of possible values, with 100 bins at increisien.01. The horizontal line at
y=1000 represents uniformity because there ared000salues per condition.
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Generally speaking, the distributions approachetbmity. Misspecified conditions
manifested higher frequencies of extreme values dié null conditions, suggesting that
HCI had power to detect misfitting response pagt¢simulees). Looking down the last
column of Table 26, it can be seen that the propuestof PPP-values flagged as extreme
in the null conditions ranged from .03 to .05, \efthe proportions from the misspecified
conditions ranged from .05 to .07, indicating the$specified conditions on average had
approximately 20 additional extreme response patezlative to null conditions. The
medians of the 11 sets of 100,000 PPP-values (f@¥dns x 100 replications) were
consistently centrally located across conditioaagmg from .48 to .50 (see Table 27).
The median effect sizes in the null conditions exhffom .01 to .06 (see Table 28),
while the median effect sizes from the misspecifiedditions ranged from .02 to .04.
Across all conditions, the empirical sampling dizitions of HCI exhibited a
negative skew that looked like a mixed modal dsttion (see Figure 34), with the

smaller mode representing the negative HCI valuesthe misfitting response patterns.
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Condition 1.1 Condition 2.1 Condition 2.2
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Figure 34 Densities of posterior pred'itr:'t”ed HCI values bgditon. The vertical lines
represent the means of realized values.
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To tease out the characteristics of simulees tlea¢ Wagged, Tables 29 and 30 report the
proportion of simulees from each proficiency prtihat were flagged in each condition.
Table 29 applies to conditions where the data \gereerated by a model with two latent
classes per primary latent variable (Conditions 3.1, 3.3, 5.1, and 5.5), and Table 30
applies to conditions where the data were genetatedmodel with three latent classes
per primary latent variable (Conditions 2.1, 2.2,,41.4, 6.1, and 6.6).

Table 29

Generated primary latent variable proficienciesdmndition for conditions with two
latent classes per primary latent variable

Proportion flagged withi
LV proficiency profie

condition
Proportion
LV proficiencies  within all
[01,02,03] simulees Nulrk 3.1 5.1
[1,1,1] .08 .03 .04 .04
[1,1,2] .01 .02 .03 .01
[1,2,1] .01 .02 .04 .00
[1,2,2] .00 .04 .05 .04
[2,1,1] .03 .03 .05 .01
[2,1,2] .06 .04 .05 .02
[2,2,1] .08 .05 .07 .08
[2,2,2] 73 .05 .07 .05

Note Flagging refers to simulees with HCI PPP-valgss lthan .025 or greater than
.975. *Null conditions with 2 latent classes werg, B.3, and 5.5.
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Table 30

Generated primary latent variable proficienciesdondition for conditions with three
latent classes per primary latent variable

Proportion flagged within
LV proficiency profie

condition
Proportion
LV proficiencies  within all
[01,02,03] simuees Nulk 2.1 4.1 6.1
[1,1,1] .06 .03 .54 47 .46
[1,1,2] .01 02 .23 .26 .46
[1,1,3] .00 -- -- -- --
[1,2,1] .02 .01 .03 .06 .18
[1,2,2] .01 .01 .02 .03 .06
[1,2,3] .00 -- -- -- --
[1,3,1] .00 -- -- -- --
[1,3,2] .00 -- -- -- --
[1,3,3] .00 -- -- -- --
[2,1,1] .00 .01 .01 .02 .05
[2,1,2] .01 .00 .00 .02 .02
[2,1,3] .00 -- -- -- --
[2,2,1] .01 .00 .00 .00 .00
[2,2,2] .05 .01 .00 .00 .00
[2,2,3] .01 .00 .00 .00 .0l
[2,3,1] .00 -- -- -- --
[2,3,2] .03 .00 .01 .01 .0l
[2,3,3] .00 .00 .01 .02 .02
[3,1,1] .00 -- -- -- --
[3,1,2] .00 -- -- -- --
[3,1,3] .00 -- -- -- --
[3,2,1] .00 -- -- -- --
[3,2,2] .05 .01 .01 .03 .0l
[3,2,3] .19 .02 .02 .03 .02
[3,3,1] .00 -- -- -- --
[3,3,2] .06 .03 .03 .05 .03
[3,3,3] 51 .04 04 .06 .04

Note Flagging refers to simulees with HCI PPP-valgss lthan .025 or greater than
.975. *Null conditions with 2 latent classes werg, B.3, and 5.5.
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Generally speaking, the patterns evident in TaBlé2 conditions with two latent
classes per primary latent variable were relativetyak compared to the patterns evident
in Table 30 for the conditions with three laterstsdes per primary latent variable,
suggesting that HCI was less sensitive to the etk and crossloadings
misspecifications than to the partial mastery nesgration. The “null” column within
Table 29 shows that simulees in conditions 1.1,&18 5.5 tended to get flagged at
approximately the nominal rate of 5% if they beledgo the profile with the highest
proficiencies (i.e. profile [2,2,2]). This profilgas by far the largest, comprising about
73% of all simulees in these conditions. Simule&h wther proficiency profiles were
flagged at slightly conservative rates, with pramms ranging from .02 to .04.

For Condition 3.1, the proportion of flagged sineddrom each proficiency
profile was elevated by one or two points relatwv¢he null conditions. This indicates
that more simulees were flagged marginally in Cbodi3.1 than in the null conditions,
but that no profile in particular was more susdaptto misfit than the others. For
Condition 5.1, differences between the flag ratesefich proficiency profile relative to
the null conditions were directionally inconsistand small in magnitude, ranging from -
.01 to .03.

Shifting attention to the conditions with threeelait classes per primary latent
variable in Table 30, the findings were more siiikiln Condition 2.1, 54% of the
simulees with non-mastery status on all three tatanables (i.e. profile [1,1,1]) were
flagged. This translates to about 30 additionadtd simulees per replication relative to
the null conditions. Further inspection of thesaidees indicated that their realized HCI
values tended to be around two standard devialomesr than their posterior predicted
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HCI values, which means that the degree of migtibaited by HCI to these simulees
was much stronger in their realized response pettiian in their replicated response
patterns. Simulees from proficiency profile [1,1ly&re also flagged at a
disproportionately high rate of 23%, while otheofdes were flagged at rates similar to
the null conditions (differences.02). Results for Condition 4.1 were generallyiknto
Condition 2.1, with profiles [1,1,1] and [1,1,2]lekiting proportions of .47 and .26
respectively. The proportion flagged from profileZ,1] was .06 (a difference of .05
relative to the null conditions), while the diffexees relative to the null conditions for all
other profiles were .02. In Condition 6.1 profiles [1,1,1] and [1,1]ch had
proportions of .46, and the proportion flagged frprafile [1,2,1] was .18. Profiles

[1,2,2] and [2,1,1] had proportions of .06 and r@8pectively (corresponding to
differences of .05 and .04 relative to the nuhditions), and the differences relative to
the null conditions for all other profiles were02. Figure 22 can be used to explain
these findings by focusing on Condition 2.1 asllastrative example. Each row in the
figure provides the conditional probability of argxt response to each observable for a
given latent proficiency profile. In the first pdnealues correspond to the parameters as
generated by Model 2, which had three latent ctakseeach of three latent variables for
a total of 27 latent profiles. When data generétesh Model 2 were fit to Model 1,

which had two latent classes per latent variablaftotal of eight latent profiles, the
resultant estimates of conditional probability paesers shown in Panel 2 reflect the
coerced consolidation of 27 categories into 8 aaieg. Such a process necessitates
changes to the definitions of at least some categoor changes to the aggregated
characteristics of members within a given categorypoth. For example, consider the
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first row in Figure 22: the “non-mastery” classgenerated from Model 2 (i.e. profile
[1,1,1] ) had a 20% probability of correctly resdorg to each observable, but the [1,1,1]
profile as estimated by Model 1 when fit to the satata had a substantially larger
chance of correctly responding to Observables16&1, and 28-30. Inspection of
individual response patterns confirmed that simsufeem Condition 2.1 who were
flagged for having extreme HCI PPP-values were ragesassigned to appropriate classes
(e.g. response patterns generated from profile]Llytere assigned to profile [1,1,1] by
the scoring model). The reason for their extrenhaly realized HCI values relative to
their posterior predicted HCI values was direatyltto the categorical definitions in the
scoring model relative to the generating model.aRebat posterior predicted response
patterns were generated from estimated model paeasnensistent with the values in
Panel 2, but realized response patterns were geddram the parameters in Panel 1. It
is clear from row by row comparisons that certaiofiges in Panel 1 were less likely to
generate response patterns that would be conswaiithArthe consolidated categorization
of simulees as expressed in Panel 2.

It is important to note that response patternsidividual simulees from
throughout the response space could be providedamples of the underlying principle
that simulees were flagged by HCI not because resppatterns were necessarily
extreme (i.e. the realized HCI value could havenlsegywhere in the spectrum), but
because the disparity between the realized HClevahd posterior predicted HCI values
was systematically large. Profile [1,1,1] was thefile most affected by this principle in
the investigated conditions, which is why it isrigeused as an illustrative example, but
this principle applies to the other profiles andestconditions as well. The definition of
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profile [1,1,1] in the scoring model allowed fotamger degree of success on the
assessment than did the definition of profile [} in the generating model. HCI detected
the fact that simulees who performed low in thdized dataset were often much more
successful in the posterior predicted data becthgsebenefitted from the relaxed
definition of the lowest category. This is ironiedause the lowest performing examinees
would serve as prototypes of “non-mastery” accaydman intuitive taxonomy, but the
scoring model’s [1,1,1] profile class was more lustve of response patterns generated
from what were conceived of as the “partial masteagegories. The simulees with the
lowest levels of mastery were thus disproportiolyetagged by HCI because their
extreme levels of non-mastery were less consistéhtthe homogenized definition of
non-mastery constructed by the categorically retsttli scoring model.

HCI provided its strongest evidence of misfit foe tlatent class misspecification,
while the contextual variable misspecification &ne crossloadings misspecification
displayed weaker evidence. The overall patterresilts suggests that HCI can provide
useful fine-grained feedback within a PPMC framew@y inspecting differences in the
realized response patterns of flagged personsvelat their posterior predicted response
patterns, researchers can identify weaknessesiatesbwith the estimated (scoring)
model. While it may be too soon to speculate orgéeeralizability of these findings,

HCI appears promising as a PPMC fit function evéenvperson misfit is not the focal
interest.
ICI

As noted previously when presenting the distrimgiof PPP-values aggregated

across null and misspecified conditions, the pemntorce of ICI differed somewhat across
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misspecified conditions and across observablesmsibme conditions. To help detail these differanéggures 35-37 depict heat
maps for the ICI fit function by condition and obssble, with each figure mapping one of the threie@mes used in this study:
proportions of extreme PPP-values (Figure 35), are@iPP-values (Figure 36), and median effect Eigeile 37).

Observable
Conditon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 281362 33

1.1 .00 .00 .00 .00 .0D .00 .00 .00 .00 .00 |00 .00 |.00|.00 .00 .OC.0mw .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00

2.1 .01/ .01 .00 .00 .01 .01 .01 .01 .00 .00 /00 .00 |.00 .00 HOOASEIAAS .4'.00 .00 .00 .00 .00 .00 .01 .01 .01 .01 O1 . 0.90
2.2 .00 .00 .00 .00 .0D .00 .00 .00 .00 .00 |00 .00 |.00/|.00 .00 .0C.0mw) .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0.80
3.1 .09 .09 .09 .00 .00 .03 .04 .07 .00 .00 .12 .05 |.05|.00 .00 .OC.02 .00 .00 .00 .04 .02 .01 .00 .DO .00 04 .05 .05 .03|.01 0.70
3.3 .00 .00 .00 .00 .0D .00 .00 .00 .00 .00 |00 .00 |.00/|.00 .00 .0C.0mw .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0.60
4.1 .39 .86 .35 .02 .01 3680 .00 .00 03 .01 |.00 .OO-.27 .31 .86 .00 .00 .00 .00 .00 .-.98 .00 .00 0.50
4.4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 |00 .00 |.00/|.00 .00 .0C.0mw .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0.40
5.1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 |00 .00 |.00|.00 .00 .OC.0m .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0.30
5.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 |00 .00 |.00|.00 .00 .OC.0m .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0.20
6.1 .00 .00 .00 .00 .00 .00 .00 .00 .OO0 .00 00 .00 |.00|.00/.00 .37.332 .20 .28 .27 .01 .01 .01 .01 .D1 .01 0O .00 .00 .02|.02 0.10
6.6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 |00 .00 |.00|.00| .00 .0C.0w .00 .00 .00 .00 .00 .00 .00 .DO .00 OO .00 .00 .00|.00 0

Figure 35 Heat map of proportions of extreme PPP-valuessaaill replications for ICI by condition and ohsdie. Each square
in the matrix represents a proportion of 100 PPIBegflagged as extreme (less than .025 or grédaar.975). Increasingly dark
shading is used for larger proportions.

Focusing first on Figure 35, each square in the imag@ represents a proportion of 100 PPP-valuggdid as extreme (less than

.025 or greater than .975). For the null conditjadhese proportions represent the observed Typei mtes, while in the



misspecified conditions they represent observedgpoMote that these power rates would be
different for alternative alpha levels. In the figuincreasingly dark shading is used for larger
proportions. For all null conditions, and additibpdor Condition 5.1, the proportion of extreme
PPP-values was .00 across all observables (asitovall conditions for the other observable-
level fit functions: PCy?, RPS, and GLS). This is consistent with what deysicted in Figure
11, where it was seen that the distributions of-R&Res in these conditions never included the
values defined as extreme. Of greater complexitigesdifferential performance across
observables for the remaining four misspecifieddioons (2.1, 3.1, 4.1, and 6.1).

For Condition 2.1, the proportion of flagged PPRsga ranged from .00 to .01 for all
observables except Observables 16-21, which rainged.45 to .52. The six observables with
higher flag rates hath as their parent and were governed by CPT Tempglabbservables with
a different CPT structure and a different pareet Observables 31-33), observables with the
same parent but a different CPT structure (i.e.eBlables 22-27), or observables with the same
CPT structure but a different parent (i.e. Obselesal-8 and 28-30) were flagged at near-zero
rates.

The pattern of results for Condition 6.1 was simitaCondition 2.1. The proportion of
flagged PPP-values ranged from .00 to .02 forladleovables except Observables 16-21, which
ranged from .20 to .37. The characteristic comnoathése six observables with higher flag rates
was that they haéh as a parent, and they were governed by a CPT &enipl which the partial
mastery class was as likely as the mastery clalss smccessful. Observables with different
parentage and/or governed by CPT structures inhwthie partial mastery class was equal to the

non-mastery class were flagged at near-zero rates.
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For Condition 3.1, the observables with a singlerlaparent (those corresponding to
CPT Template 4: Observables 4-5, 9-10, 14-15,1,%8d 25-27) had proportions of .00, while
proportions for observables with two latent pareatsyed from .00 to .12. In Condition 4.1
observables were governed by one of four CPT teteglavith somewhat differing results
according to template. Observables governed by G#iiplate 9 (Observables 9-10, 14-15, and
25-27) had proportions of .00, while proportionsdbservables governed by CPT Template 13
ranged from .00 to .03. Results within CPT Temp&ateere strikingly divergent. Observables
4-5 had proportions of .02 and .00, while Obsemalil9-21 ranged from .27 to .36. Observables
governed by CPT Template 12 all had non-trivialgombions, but rates varied widely:
Observables 1-3 and 6-8 ranged from .35 to .41lewDibservables 16-18 and 28-30 ranged from
.96 to 1.00.

When looking across the columns of Figure 35, tlestrstriking feature is that
Observables 16-21 were flagged in at least 20%eféplications for Conditions 2.1, 4.1, and
6.1, but were flagged in 0% of the replicationstfog remaining conditions (except two
observables were flagged in 2% of replications amdition 3.1). The characteristic common to
the three conditions with higher flag rates wasl#tent class misspecification (presence of the
partial mastery class in the generating modelsibtuthe scoring models). However, within these
three conditions the observables with the same €Riplate but different parents (i63.0r 63)
exhibited minimal power. This inconsistency will hscussed in further detail later.

Moving on to the second outcome, Figure 36 depidisat map of the median PPP-

values across all replications for the ICI fit ftioa by condition and observable.
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Observable
Conditon 1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 281382 33 1

2.1 12 .12 .12 .12 .14 .12 .13 . .42 .03 .08 .03 .03 .0?

2.2
3.1 2 .08 .08 .C 45 .08 .07 .46 .09 .09 3 .10 .11 .G 47 .24 .22
3.3

43 .15 .15

.45 .0C .00 .04 .04 .04

4.1 .03 .04 .03 .15 .17 .03 .03 .(
4.4
51
55
6.1
6.6

50 .00 .00

.18 .16 .16 .15 .15 . .44 .21 .20

.37 .04 .034 .04 .04 .04

'~ Figure 36 Heat map of median PPP-values across all refitafor ICI by condition and observable. Each squ@a the matrix
* represents the median of 100 PPP-values (1 pécatiph) for each observable across conditions.
Each square in the matrix represents the medid0@PPP-values (one per replication). The shadileg were chosen for
comparability to a hypothesis-testing frameworlad (white) shading indicates a median in the ufiperer) 2.5% of possible
values, yielding 5% of the distribution as “extréreaough warrant a flag of misfit. Conditions 2rida4.1 were the only
conditions to exhibit median values in the flaggadges. For Condition 2.1, Observable 21 was flddgesdian = .02), and for

Condition 4.1, Observables 16-18 and 28-30 weggéd (all medians = .00).
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Note that different decision criteria would yieldferent visual patterns and interpretations, It tinderlying results (i.e. the

distributions of PPP-values) would remain the sdfoe.example, in Condition 3.1 the observablesiariced by a contextual

latent variable exhibited median PPP-values thagviax from centralized but were not below the .€i#8shold. This is an

example of how PPP-value distributions can yieftedent interpretations depending on how they ararsarized.

Shifting attention to the third outcome, Figure@advides a heat map of the median effect sizesaalb replications for

the ICI fit function by condition and observableadg square in the matrix represents a median o&ff@6t sizes (one per

replication). Increasingly darker shading indicdteger median effects.
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Observable
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 281382 33
1.1 l 1 1 1 .1 1 .2 2 12 2 .2 11 .1 112 1.1 11 1221 .1 .1 .2 2 2 .1 2

2 1 3 3 2 2 JRECEREEEEE 0 o 1

220 121111111 1111.1.1.2.12.1.02.2.2
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33 33.3.1.23323:223322.1.233.1.1.2.3.2
44 3 2 2 1.0 33.3.22232.31.132323.1.122.1
51 |48 5 2 2 121211121 1/145222.2.2
55 3 4 3.2 2112211111 238.442.1.1.2.2
o1 IEIEECECEEEEE - : : 3 3 3 JNECECENENE » o 1
66 3 .4 2 1.1 .1.1.1.1.1.1.122.12.42.2.2.2.1.2
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Figure 37 Heat map of median effect size values acrogeplications for ICI by condition and observablack square in the
matrix represents the median of 100 effect sizgge(Xeplication) for each observable across coondit



The median effects in null conditions ranged frdn®5 to 0.43. Some differentiation of
effect size was evident across observables acgptdi@PT templates, though not as
strongly as in misspecified conditions. For exampléCondition 6.6 the observables
with three latent parents (governed by CPT Temdl&)eesach had median effect sizes
around 0 .4, while median effect sizes for all othleservables in that condition were less
than 0.3. In Conditions 3.3 and 4.4, observabl#ganced by a contextual latent variable
(CPT Templates 11-13) tended to have slightly langedian effect sizes than
observables with a single latent parent. Theserfgelsuggest that the effect size metric
was somewhat sensitive to the fact that some donditprobabilities were more difficult
to estimate than others, and that sampling variglailone caused noticeable differences
in effect sizes across some CPT templates.

In the misspecified conditions, the differentiatminvalues across observables
according to CPT template tended to be much strokge example, in the second row
of Figure 37, it can be seen that for Condition th&édian effects for observables
governed by CPT Template 8 (Observables 1-8, 1&42d 28-30) ranged from about 0.3
to 2.0, while the observables governed by CPT Tata@ (Observables 9-15, 22-27, and
31-33) ranged from about -0.1 to 0.3. A pattern wlas evident within the observables
associated with CPT 8, with larger effects for abables dependent upén (1.9 to 2.0)
versuds; (1.1 to 1.2), both of which were much larger titlamse ford; (0.3 to 0.6).

For Condition 3.1, median effects for observabléh & single latent parent (CPT
Template 4. Observables 4-5, 9-10, 14-15, 19-8d,25-27) ranged from about 0.1 to
0.2, while observables with the additional influerat a contextual latent variable (CPT
Template 11. Observables 1-3, 6-8, 11-13, 16-2& 4 and 28-33) ranged from about
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0.6 to 1.4. A pattern was also evident within thearvables associated with CPT 11,
with larger effects for observables associated @it{D.1 to 0.4) 00, (1.2 to 1.4) thafs
(0.6 to 0.8).

Condition 4.1 had median effects ranging from ©.8.0 for the twelve
observables with two latent parents and which weastered by the partial mastery class
(those corresponding to CPT Template 12: Obsersdblg 6-8, 16-18, and 28-30),
while the observables corresponding to CPT Tem@@d@bservables 4-5 and 19-21)
ranged from 0.9 to 1.8, and all other observaldaged from -0.1 to 0.3. Patterns within
the CPT templates exhibiting larger effects wer@ragvident. Observables associated
with CPT 12 showed larger effects for observabsspaated wittd, (3.0) orfs (2.9 to
3.0) tharb; (1.8 to 1.9). Observables associated with CPTo8vel larger effects for
observables associated with(1.7 to 1.8) thaf; (0.9 to 1.1). Observables associated
with CPT 13 (Observables 11-13, 22-24, and 31-B8)ved larger effects for
observables associated with(about 1.1) thafs (-0.5) orf, (0.2 to 0.3). Note that some
of the large median effect sizes in this conditiare associated with observables that
were not flagged according to the proportion ofexte PPP-values. This illustrates the
importance of not relying on the effect sizes egidely, but rather considering them in
the context of the PPP-values.

Condition 5.1 exhibited less clean patterns acobservables than the other
misspecified conditions. Most of the single-paraservables in this condition had effect
sizes in the 0.1 to 0.2 range, but strong exceptomeurred for Observables 31-33, which
had median values of approximately 0.5 to 0.6. diervables with three latent parents
(CPT Template 14: Observables 2, 17, and 29) hatlameffects of similar magnitude
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(0.4 to 0.6), while observables with two latentgras (CPT Template 11: Observables 1,
3, 16, 18, 28, and 30) ranged from about -0.2%0 0.

For Condition 6.1, the median effects for obsergalhtom CPT Template 9
(Observables 9-15, 22-27, and 31-33) ranged fr@dmd)0.8, while those from CPT
Template 8 (Observables 4-8 and 19-21) ranged r@o 1.7. Patterns within the CPT
templates exhibiting larger effects were again entdObservables associated with CPT
8 showed larger effects for observables assocuaitdd, (1.7) tharb, (1.0 to 1.1).
Observables associated with CPT 13 (Observablds3122-24, and 31-33) showed
larger effects for observables associated 94t{0.8) thard; (0.3) or6, (0.0 to 0.1).
Among observables with two or three latent paréh¢snplates 15 and 16), the
observables associated with(Observables 16-18) showed larger median efféctsto
1.8) than did those @ (0.9 to 1.0) 063 (0.2).

To clarify the mechanisms underlying the perforneaotICI, Condition 2.1 is
used as an illustrative example. Due to similasibetween ICl and HCI, the principles
discussed previously in the context of HCI res(dese Figure 22) are relevant for
understanding the performance of ICI. The reswoitsahy given observable using ICI can
be thought of as a weighted average of the effdessribed for particular proficiency
profiles in the HCI results. As with HCI, the esserf ICI boils down to comparisons
between observed (or posterior predicted) resppaterns and the response patterns
implied by theQ-matrix for the scoring model. The proportion osmiatches when
comparing the observed and implied responses fafeared to as “mismatches per
comparison” or MPC) is rescaled to form the indatue: ICI =1 - 2*MPC. To
understand why ICI PPP-values tended to be moreregtfor observables parented by
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0, than by9; or 63, consider Figure 38, which reports the mismatgeescomparison

(MPC) for simulees within each proficiency levelezfch latent variable.

Mean mismatches per comparison (realized data)

Proportior Observable (x
0, of simulees 1 2 3 4 5 6 7 8 9 10 11 1z 13 14 15
1 .10 32 32 32 32 32 32 32 32 .32 .32 .32 .32 .32 .32 .32
2 .10 50 50 50 50 50 50 50 50 53 53 52 53 53 .53 .53
3 .80 32 32 32 32 32 32 32 32 32 .32 32 .32 .32 .32 .32
0, 16 17 18 19 20 21 22 3 24 25 26 27
1 .08 32 32 32 32 32 32 .32 32 32 .32 .32 .32
2 .33 52 5652 52 52 52 52 52 52 52 52 52 .52
3 .59 32 32 32 32 32 .32 .32 .32 .32 .32 .32 .32
03 28 29 30 31 32 33
1 .10 32 32 32 32 .32 .32
2 .20 54 54 54 54 54 53
3 .70 32 .32 .32 .32 .32 .32
Mean mismatches per comparison (posterior preditba)
Proportior Observable (x
0,1 of simulees 1 2 3 4 5 6 7 8 9 10 11 1z 13 14 15
1 A7 48 .48 48 48 48 48 .48 48 .40 .40 .40 .40 .40 .40 .40
2 .83 32 32 32 32 32 32 32 32 33 .33 .33 .33 .33 .33 .33
0, 16 17 18 19 20 21 22 3 24 25 26 27
1 .38 53 53 53 53 53 53 47 47 47 47 47 47
2 .62 32 32 32 32 32 32 .33 .33 .33 .33 .33 .33
03 28 29 30 31 32 33
1 .25 50 50 .50 .42 42 42
2 .75 .33 .33 .33 .35 .35 .35

Figure 38 Mean MPC by latent proficiency and observableGondition 2.1. Upper
panel represents realized data generated from Mbd&wer panel represents posterior
predicted data generated by the estimated parasngbtem Model 1 was fit to data
generated from Model 2.

The upper panel represents the realized data anldwer panel represents the posterior

predicted data. Simply put, there was a greatgrqtimn of simulees with a partial

mastery proficiency level fd¥, than forb, or 03, and it was these partial-mastery

simulees whose response patterns were more likgyoduce mismatches relative to the

response patterns implied by tQematrix for the scoring model. The partial mastery
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class was by definition in conflict with an assuiaptunderlying ICI: that th€-matrix is
sufficient to predict response patterns. In@amatrix, proficiency was a dichotomous
prospect, with success or failure implied by thespnce or absence of the latent trait. For
simulees with partial mastery status on a latexit, tthe aforementioned assumption did
not hold. The inability of th€-matrix to account for the response behavior ofiglar
mastery simulees was borne out by the increasedfahismatches for partial-mastery
simulees in the realized data, but it was the difteproportions of partial-mastery
simulees across latent variables that impacte@stimation of conditional probability
parameters for the scoring model, the subsequemrgton of posterior predicted data,
and the relative value of the resultant posterredjcted ICI values to the observed ICI
values (i.e. the PPP-values).

From the viewpoint offered by Figure 38 it is cl¢aat in the realized data the
typical level of mismatch was relatively consistantoss observables for simulees within
a given proficiency level. Proficiency values obrl3 (non-mastery or mastery)
corresponded to approximately 1 mismatch in evergriparisons, while proficiency
values of 2 (partial mastery) corresponded to apprately 1 mismatch for every 2
comparisons. The key point of the upper panelaste three latent variables differed
with respect to the proportion of simulees havimg lhigher mismatch rate (i.e. simulees
in the partial mastery class). In the realized d2886 of simulees were partially
proficient on6,, while 20% were partially proficient di3 and 10% were partially
proficient ono.

The lower panel of Figure 38 tells the analogowsdightly more complicated
story about the absolute fit of each observabtbéénposterior predicted data. While

150



simulees with proficiency values of 2 (mastery) heldtively consistent levels of
mismatch across all observables (approximatelyshraich per 3 comparisons as was
the case in the realized data), the level of mismédr simulees with proficiency values
of 1 (non-mastery) aligned with the blocks of obadltes corresponding to combinations
of CPT template and latent parent. MPC valuesifoukees with proficiency values of 1
was approximately 1 mismatch per 2 comparison®fservables 1-8, 16-21, and 28-30,
which were the observables where the partial mastass responded like the mastery
class (CPT Template 8), while for the remainingestaables (CPT Template 9) MPC
values were somewhere between the two levels mbtnus far: Observables 9-15(MPC
= .40, Observables 22-27(MPC = .47), and Obsersa&1e33(MPC = .42). The
divergence of MPC values within proficiency levdbt each latent variable was
reflective of the fact that this less-proficienags in the scoring model was a coerced
homogenization of the heterogeneity that existetthérealized data (see Figure 22).
However, the consequences for the posterior predidata were more detectable with
respect td, due to the larger proportion of partial-mastemdees. Specifically, the
estimated conditional probability parameters formbers of the non-mastery classes in
the scoring model (which allowed for only two clessrepresented a composite of the
partial- mastery and non-mastery classes thatezkistthe realized data. Féy, the
estimated conditional probabilities of the relevabservables was pulled higher (toward
the level of the mastery class) by the masterytpggormance of the partial mastery
class on those observables, while the analogoasreders for the observables
underlyingf; andfs were impacted to a lesser degree commensurateheithsmaller
proportions of partial-mastery simulees.
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Table 31 depicts a simplified example of how caondél probability patterns
impact the ICl computations. The purpose of thideas to further illustrate the process
by which patterns of conditional probabilities sashthose provided in Figure 22
translate into MPC values like those provided igure 38.

Table 31

Simplified example of the impact of conditionalbability patterns on ICI outcomes
Realizecd Postpre(« Realizec Postpret

Realzed CF Postpred CPMPC  MPC ICI ICI PPP-value
1 1 1 1 O 0 1 1 5
0 0 0 0 0 0 1 1 5
0 1 0 1 1 1 -1 -1 5
.80 .80 .80 .80 .32 .32 0.36 0.36 5
.20 .20 .20 .20 .32 .32 0.36 0.36 5
.20 .80 .20 .80 .68 .68 -0.36 -0.36 5
.20 .80 .20 .67 .68 .60 -0.36 -0.20 > .5
.20 .80 .20 .52 .68 51 -0.36  -0.02 >> .5
.20 .80 .20 .45 .68 A7 -0.36 0.06 >>> 5
.20 .80 .80 .80 .68 32 -0.36 0.36 >>>> 5
0 1 1 1 1 0 -1 1 >>>>> 5
.80 .80 .20 .45 .32 A7 0.36 0.06 <.5
.80 .80 .20 .52 .32 Bl 0.36 -0.02 << .5
.80 .80 .20 .67 .32 .60 0.36 -0.20 <<< .5
.80 .80 .20 .80 .32 .68 0.36 -0.36 <<<<.5
1 1 0 1 0] 1 1 -l <<<<< 5

For the purposes of this example consider onlydservables, where the scoring model
implies that both observables reflect a singlenaébility, and that success on both
observables requires this latent ability accordmthe associate@-matrix. The first two
columns in Table 31 represent conditional probaédifor the two theoretical
observables in realized data. The next two colurapsesent conditional probabilities for
the same two observables in posterior predicteal ddite remaining columns are
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computations based upon the first four columndizea and posterior predicted MPC
and ICl values, and PPP-values. MPC is the ratimiefnatches to comparisons. ICl is a
linear transformation of MPC: ICI = 1 — 2*MPC. PR&lues are the proportion of
posterior predicted ICI values that meet or exdbedealized ICI value. Note that
because there is only a single inter-observablepamison (per simulee) in this simplified
example, the MPC, ICI, and PPP-values for both miasdes are equal. Therefore a
single column was used to represent values thdy &appoth observables.

In the first row of Table 31, the conditional prblddy of success in the realized
data on both observables in the simplified exam@se 1, meaning that all simulees
always completed both observables correctly. Tleesponding realized MPC value of
0 reflects the fact that there were no mismatcleésden the observed response patterns
and the response patterns implied by the scoringeht@ matrix (i.e. there was zero
disagreement between observed responses that wereted to agree according to the
Q-matrix). The corresponding realized ICI value ohdicates perfect fit between the
observed and model-implied responses to the olsiefgy The posterior predicted
values in this row mirror the realized values. HRP-value of 0.5 reflects the
expectation that upon many replications of a PPMicgss, the realized ICI (or MPC)
value for each observable should be centered wgpect to the posterior predicted ICI
(or MPC) values.

The next five rows of Table 31 illustrate that wheer the pattern of conditional
probabilities is the same for realized and postenedicted data, the PPP-values should
be centered (indicating good fit) regardless ofghsolute fit as indicated by the MPC
and ICl values. The absolute fit of the observabemeasured by MPC or ICI varies
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independently of the relative fit measured by tR&Ralues. As in Row 1, Row 2
exhibits perfect agreement between the two obskrsai the realized and posterior
predicted data, so the indicators of fit are ideaitbetween Row 1 and Row 2 despite the
values of the conditional probabilities taking bie bpposite extreme of 0 instead of 1. In
Row 3 the observables are in perfect disagreemémth is reflected by MPC and ICI
values taking on the extreme opposite values vesipect to Rows 1 and 2 yet
maintaining perfect fit with respect to the PPPuesl due to the match between realized
and posterior predicted response patterns. RowkHelv the patterns of Rows 1-3 but
use conditional probability values that governethdgeneration within the current study.

Rows 7-11 of Table 31 illustrate that PPP-valudklvei greater than .5 to the
extent that posterior predicted ICI values exceadized ICI values, which is to say that
there is greater inter-observable agreement ipdséerior predicted data than in the
realized data (i.e. smaller discrepancy betweemrdinelitional probabilities of success).
Conversely, Rows 12-16 illustrate that PPP-valudide less than .5 to the extent that
realized ICI values exceed posterior predictedv@lies, which occurs in this example
when there is greater inter-observable agreemeheinealized data than in the posterior
predicted data.

Figure 39 illustrates how inter-observable agrednmatch) and disagreement
(mismatch) vary as a function of the conditionallabilities of a correct response for

two given observables.
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Observable 2 Observable 2
Correct Incorrect Correct Incorrect
2 .8 .8 2
_ 3 _ B
23520 04 | .16 2352 16 | .04
< =
£ g
2 2
3 8 3 8
Es| 16 | 64 28 64 | .16
Match= .04 + .64 = .68 Match=.16 +.16 = .32
Mismatch =.16 + .16 = .32 Mismatch = .04 + .64 = 68
Observable 2 Observable 2
Correct Incorrect Correct Incorrect
2 .8 67 .33
_ 3 _ B
2861 13 | 54 2 567| 45 | 22
= =
£ £
2 2
5 % 5 3
E330 07 | 26 E330 22 | 11
Match= .13 + 26 = .39 Match= .45 +.11 = .56
Mismatch = .54 + .07 = 61 Mismatch = .22 + 22 = 44

Figure 39 Examples of int-observable agreement (matchpalisagreemet
(mismatch) as a function of the conditional probabs of a correct respon:

Within the context of this simplified example, tb@mputations illustrated in this figu
are equivalent to the MPC computations shown preshoin Table 31because there
only one interebservable comparison (per simulee). For examplesider the upper le
panel of Figure 39which illustrates the int-observable agreement and disagreer
that would be expected between two observablesaeitiditiona probabilities of succes
of .2. This corresponds also to the realized dathe fifth row of the simplified examp
shown in Table 31Assuming the responses to each observable tadependent withil

the context of the model (i.e. after conditionirpon the latent variable that parents t
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observables), a probabilistic representation oftlie possible outcomes is presented. In
approximately 4% of the outcomes, simulees woupoad correctly to both
observables. In approximately 16% of the outcors@siilees would respond correctly to
Observable 1 but incorrectly to Observable 2, angniother 16% percent of the
outcomes simulees would respond incorrectly to @ladde 1 but correctly to
Observable 2. In approximately 64% of the outcoreesulees would respond
incorrectly to both observables. In total, 68%ltd tesponses are matches (agreement
between observables) and 32% are mismatches (desagnt between observables). By
comparison, the proportions of agreement and degsgent in the upper right panel of
Figure 39 switch with respect to the upper leftgddrecause the conditional probabilities
of success and failure for Observable 2 are indeitethis case, there is a 16% chance
that any given simulee will answer both observabtasect, a 4% chance that
Observable 1 will be answered correctly but Obdale/a incorrectly, a 64% chance that
Observable 1 will be answered incorrectly but Obalele 2 correctly, and a 16% chance
that both observables will be answered incorredthe lower panels provide additional
examples using alternative conditional probabwN#jues. The values in all four panels
were selected for continuity with values in Figd@& which becomes useful when
applying the principles illustrated here back te thore complex case of the present
study. MPC, ICI, and HCI computations in the preéstady can be thought of as
aggregations of computations like those illustrateBigure 39.

In the more complex case of the present studysaets about which inter-
observable comparisons are included in a given coatipn are based upon logical rules
implied by the relationship between a giv@matrix and scoring model. One reason for
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using Condition 2.1 as the illustrative exampleuoderstanding the mechanisms
underlying the performance of HCI and ICl is tHa tomparison-inclusion rules implied
by theQ-matrix are more easily represented in a figurae thay would be for conditions
like 4.1 or 6.1 where the comparison rules are dmajed by multiple parents for some
observables.

Figure 38, Table 31, and Figure 40 were provideldelp reconcile the apparent
inconsistency of ICI across conditions and obsdes(seen in Figures 12 and 35-37)
using Condition 2.1 as an illustrative example. htan point of these was to emphasize
that ICI values were aggregations across diffelyges of simulees having different
degrees of misfit and who were disproportionatefyresented. Each proficiency profile
represented in Figure 22 was itself an aggregaonoss individual simulees with
varying degrees of misfit, but each profile hag@idal level of misfit that was implied
by the pattern of conditional probabilities of m@mbers. Decomposing such high-level
aggregations into constituent parts made it possdkee that when underlying factors
were accounted for, ICI performed consistentlyradte

Discussion
Discrepancy Measures

Consistent with previous PPMC research, all ingagéd fit functions tended to
perform conservatively, but SGDDN)s;, and HCI only mildly so. Adequate power to
detect at least some types of misfit was demorstiay SGDDMQs3, HCI, ICI, and to a
lesser extent Deviance, while P€, RPS, and GLS were powerless across all
investigated factors. Bivariate SGDDM a@Qd were extremely similar in their
effectiveness and in terms of computation times®tidy therefore offered no basis for
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choosing one over the other. Each could be recordeteas a useful member of the
PPMC toolkit. However, their apparent redundanagyggsts that using either is
preferable to using both.

The observed power of SGDDM as a global measurelvidsin all misspecified
conditions except Condition 5.1, the crossloadmgsspecification, where observed
power was .93. This finding is consistent with fimgs in Levy and Svetina (2011),
which found that GDDM performed a bit better ated¢ihg what amount to extra
variables than it did at crossloadings, holdingeotihings roughly constant. In the
present study, part of the reason for this relaiivderperformance may have been due to
design elements within this specific crossloadimgsspecification. It is possible that
alternative crossloadings misspecifications wowdenyielded more or less observed
power in terms of extreme global SGDDM PPP-values.

Building upon findings from Levy, Mislevy, and Sifay (2009) that bivariate fit
functions were useful for detecting multidimensidgathe bivariate fit functions in this
study (SGDDM ands) were found to provide powerful and detailed fesszkbfor all
investigated types of misfit. The differential effe by CPT table highlighted in the
results section demonstrated the effectivenedsedbitvariate fit functions for detecting
systematic differences in the conditional probébasi of successfully completing
observables between observed and model-impliedadatss different combinations of
complex multidimensional BNs.

The heat maps of median PPP-values for the bieaB&DDM for the five
misspecified conditions in this study each refldadéferent patterns of positive and
negative local dependence, while holding constamstoring model. This finding is
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useful for understanding that both positive andatigg local dependence can be caused
by a single underlying misspecification, and th#fedent patterns of such dependencies
may suggest clues as to the identity of the migBpatton. Observed patterns of positive
and negative local dependence mimicked those ifasistudies in IRT (Levy et al.,
2009) including those with conjunctive effects (ke2011).

For unidimensional IRT models, Habing and Rous2083) proved that positive
and negative dependencies are always balanceddsettaudata constitute a closed
system. Recent work has suggested that the sam@pgbes would apply for
multidimensional IRT models (Levy & Svetina, 20HHd BNs (Levy et. al, 2011), but in
these contexts the speculation is yet unproven pfésent study argues for the position
that positive dependencies in one locality indi¢ghteexistence of negative dependencies
somewhere else. In practice, one seeks to idesmtifyterpretation that is consistent with
the entire pattern of positive and negative loegdehdence. Given the complexity of
such patterns, and the limitations associated eathgorized representations, it may not
be clear how a coherent cause could manifest lgpastof local dependence. Sometimes
a theoretically grounded explanation may only beaagnt for part of the observed
pattern. In the author’s previous experience, k@sglone type of misfit (over or under
predictions) tends to resolve both. Positive latglendence among some observables
and negative local dependence among other obsessaah be jointly caused by the
same source of misfit, so implementing model modifons consistent with theoretical
moorings for the most prominent pattern of misfaymesolve less clearly understood

local dependencies as a byproduct. The reportedtsesiggest that specific
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interpretations could potentially be identifiedpractice by diagnosing observed patterns
of positive and negative local dependence relatv@mulated results.

The breadth of effectiveness of the bivariateuftdtions to detect a variety of
misspecifications could also create ambiguity wheneralized to the variety and
complexity of misspecifications that exist with Irdata. It is likely to be much more
difficult in practice to diagnose a misspecificatioased solely on the patterns of positive
and negative local dependence provided by bivafitafienctions. The bivariate heat
maps provided examples of differential pattern®sethe small number of
misspecifications investigated here, but it is wnkn whether such examples will
become more or less ambiguous with future rese&mhexample, in this study the
contextual variable misspecification affected thobservables per contextual variable,
and produced flags for each intra-cluster pairinpw the contextual grouping.
Meanwhile, the partial mastery misspecificationdueed flags for each intra-cluster
pairing of observables that were relevant to tHend®n of partial mastery, which
spanned all three primary latent variables. If¢betextual latent variables had
represented the same observables as the defindfqreatial mastery represented, then
distinguishing between these two types of misspEtibns may or may not have been
possible. Therefore, observing a cluster of flaaggesenting all the intra-cluster pairings
of a set of observables in practice could represgnér type of misspecification (or
potentially other types of non-investigated typémasspecifications). The cross-loadings
misspecification produced a similar but weakergrattin that only a subset of the intra-

cluster pairings of misspecified observables wkxggded. In practice this type of
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misspecification could also become entangled vinéhdthers when attempting to
interpret complex patterns of results under varyiogditions.

A strategy to help reduce the ambiguity that magheoud interpretation of
bivariate heat maps is to include fit functions s@effectiveness is more limited with
regard to misspecifications, creating roles fontres diagnostic specialists (see
comments regarding ICI below). While the explicataf such roles will require future
research, the present study suggests that sinmukstiiolies devoted to this purpose could
assemble a group of discrepancy measures to duedarocess of attributing specific
misspecifications to observed patterns of misfit.

The finding by Williamson, Mislevy, and Almond (200that GLS was useful for
detecting errors associated with the number ohtatlasses was not replicated under the
investigated conditions. In the present study,v@s better suited for detecting latent
class misspecifications than was GLS, but ICI shibreeluced power for detecting the
other types of investigated misspecifications. magower utility of ICI relative to
SGDDM may enhance diagnostic potential when batictions are used in conjunction
for model modification purposes. For example, wB&DDM flags a cluster of variable
pairs, many alternative causal misspecificationg beapossible. If ICI does not flag a
variable that is implicated by SGDDM, then an aiddil latent class may not be the best
modification to make, whereas it might be if batindétions do implicate the variable in
guestion.

Effect Size

An effect size measure for PPMC was introducedHerprimary purpose of

making distinctions between the fit of equal (oarg equal) PPP-values. This purpose
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applies to PPP-values within a replication, whioklresponds to the results that an
applied researcher would yield with real data, af as to PPP-values aggregated across
replications as reported in a simulation study sagkhis one. For example, in Figure 12
the panels representing Conditions 3.1 and 4.batfesummarized by a PPP-value of
.00. Comparison of the two scatterplots makesident that the differences between
realized and posterior predicted SGDDM global valiemnded to be larger in Condition
4.1 than in Condition 3.1, but this informatiomist contained in the PPP-values, and
even in graphical form interpreting these diffemcould become subjective owing to
perceptual differences among people. The mediattedize for Condition 4.1 was

15.06, while for Condition 3.1 it was 9.41. In tleisample, relying on the PPP-values
alone would be to essentially equate the degreesiit between the conditions by
omitting information that distinguishes them. Or tither hand, using an effect size
alone would also omit information, as it is possitd obtain equal effect sizes even when
PPP-values are opposites. The effect size is tmamtio supplement not to supplant the
PPP-value.

The effect size measure also showed some utilitgdmparing the aggregated
misfit of conditions with similar (or censored) uak on the other outcome measures. The
“proportion flagged” and “median PPP-value” outcamere more susceptible to floor
and ceiling effects due to their metrics. The @ffeze measure made it possible to
differentiate results that were artificially equatdue to the boundaries of those
outcomes. An example of this was described in ¢salts for SGDDM global.

The fit functions that were effective accordinghe PPP-values outcomes tended
to exhibit larger effect sizes in misspecified cinds than in null conditions, while fit
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functions that were ineffective in terms of PPPuesl tended to exhibit minimal effect
sizes across misspecified and null conditionsummary, the effect sizes were largely
consistent with the other outcomes, but helpedawige additional evidence for
distinguishing the effectiveness across fit funtsioEffect size is an alternative
numerical summary to the PPP-value, both of whiely ime useful abbreviations of the
complex patterns expressed more fully in grapHmah. Neither numerical summary is
an end in itself.

The ranges of observed effect sizes varied widelgss fit functions in this
study, which suggests that some fit functions maynbich more sensitive than others to
minor misspecifications. For example, the most nsbdéthe investigated
misspecifications was represented in ConditionwHich consisted of 12 crossloadings
in the generating model that were not presenterstioring model. The median effect
size across replications for deviance in this coowliwas 0.11, while for SGDDM global
it was 3.60. Both of these fit functions operatetha global level, and the disparity
between their effect sizes was not due just tathsesloadings misspecification, as
evidenced by the fact that the disparities betwhese functions for the other
misspecified conditions were even larger. In additthe disparities between the median
effect sizes of these fit functions were much serakross null conditions (the disparity
was as small as 0.01 in Condition 3.3). The magdesof the observed SGGDM effect
sizes suggest that SGDDM could potentially be simestnough to detect
misspecifications that consisted of fewer crosslugs] while the effect sizes for
deviance in Condition 5.1 were barely larger tHandffect sizes from null conditions,
suggesting that less severe misspecifications raaperdetectable. Future research is
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needed to determine whether these speculatiorecatgate. The largest median effect
size for a null condition in this study was -0.Z8adition 5.5 for SGDDM subscafe),
which suggests that modest effect sizes can beasthiby sampling variability alone and
should therefore not be interpreted as theoreyicadlaningful. Much more research is
needed to better understand the properties ohtheduced effect measure, and to
consider alternative effect measures.
Computing Time

Thus far the fit functions have been discussed Imosterms of their
effectiveness at detecting misfit, irrespectivehair efficiency in terms of computation
time. In applied studies, none of the investigdiefdinctions would likely be
prohibitively time consuming to include becauseytbperated on the order of minutes.
In the present study, computation was conductea mmmber of machines
simultaneously, with machines varying accordingh&r computational power. On the
fastest machine, which was approximately four time$ast as the slower machines, the
following fit functions took about one minute eaochconduct PPMC per replication:
Deviance, SGDDMQs, PC, and;®. The other functions took longer to compute (GLS
6 min, RPS= 8 min, HCI= 30 min, and ICk 35 min), due partly to the looping over
simulees that was required for each of these, anHE€I and ICI due also to multiple
conditioning statements within each loop over semsl Presumably the computation
times for these functions would decrease relatviae faster fit functions with smaller
samples. It is also possible that more efficiengpamming could reduce these
computation times. It should be emphasized thaethienes varied considerably even
within this study, as they reflect a number of uhdeg influences, including differences
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across conditions, the structure of the user-cdeeteode, number of subjects, sample
sizes, numbers and sizes of files read and writtember of MCMC chains, iterations,
replications, etc. The issue of computation timeised simply to illustrate the point that
at present it is a legitimate practical considerator many users or would-be users of
PPMC. In this study, hundreds of computer hoursewad@voted to the simulation
component. As a helpful tip, it was found that mmgnmultiple R sessions
simultaneously on a given machine greatly impravedrate of completion, particularly
on machines with multi-core processors. If a silg)jlgession had been used for this
study, it would have taken about 50 days for tlstefst available machine to complete
just the simulation component (or about 200 daysHe slowest), assuming
uninterrupted 24-hour days. PPMC in WinBUGS and &y itme overly time consuming
when a researcher’s goal is to select the bestgithodel among a number of competing
alternatives, such as when a variety of modificetiare possible based on PPMC
feedback from an initial model. Programming, estingg and analyzing phases can each
take a number of hours or days depending on tkerostances. One possible approach
in such situations is to use a graphical BN progsach Netica or GeNie to more rapidly
select among competing models based on logliketih@bues, then to critique the
chosen model(s) in greater detail using PPMC pnaeed Future research is needed to
establish whether such a strategy would be effectiv
Recommendations

For use in practice to critique the data modedfiinultidimensional BNs using
PPMC, the following recommendations are given réiga discrepancy measures.
SGDDM (orQs) should be utilized at global and bivariate leyalsd additionally at
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subscale levels when applicable. At the globallleahe measure is primarily useful for
summarizing or ranking the misfit of comparable ®igdAt the bivariate level valuable
diagnostic feedback can be harvested but is patBnéimbiguous, particularly without
content expertise to help identify theoreticalllexant patterns. HCI is recommended as
a measure of person fit even in applications wperson fit is not of central interest due
to the alternative perspective that aggregatidheperson level provides. Comparisons
of realized response patterns to posterior predliceponse patterns for flagged
examinees can point to specific model inadequaara$.are recommended when fine-
grained feedback is desired. HCI may be more usefuatent class misspecifications
than for other types of misspecifications. IClesemmended as a measure of observable
(item) fit, and like HCI is also best suited forteleting latent class misspecifications, but
it may also be useful for diagnosing other misdjEations when used in conjunction
with SGDDM. If SGDDM indicates misfit but ICI doe®t, a latent class
misspecification may be a less likely cause. HQ@ K21 were designed for use in
conjunctive models only, and are expected to perfooorly in fully compensatory
structures. Models investigated in the presentyshadl some conjunctive approximations
and some compensatory elements. Alternative iterel-end person-level discrepancy
measures will likely need to be found for compeosamodels. Deviance is not
recommended per se, but is relatively easy to imphg and may prove more capable of
detecting types of misfit not investigated in tbigdy. PC is recommended as a
procedural check due to its computational easardatpretational transparency. It is a

convenient tool for verifying that PPMC computedeas functioning properly.
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Regarding the examination and summarization oflistiis recommended that
researchers use varying kinds of aggregation aggeptation. Plots of realized versus
posterior predicted values contain rich informatibat is not contained in PPP-values (or
effect sizes) alone. In situations where graphitspplays are impractical due to volume,
PPP-values and effect sizes can be used togettiegrmiphical samples to summarize
information. PPP-values are not recommended fantlstdichotomous decision rules
akin to hypothesis testing. In situations wheragien rules are implemented for
convenience (e.g. heat maps), alternative dectsiteria should be explored to see how
interpretations might change.

Limitations

The present study helped to answer ongoing queséibaut the usefulness of
PPMC for detecting data model misfit in BNs, butnyguestions were raised as well.
While some useful discrepancy measures have beetifidd, there is no limit to the
number that could be investigated due to the fiewilof PPMC. Similarly, the models
investigated in this study mimicked models impletedrin an applied research program,
but limitless opportunities exist for alternativedel structures and misspecifications.
Features held constant in the present study, suitleastrength of the contextual effects
across latent variables, could be manipulated syaieally within a separate
investigation. Similarly, features that varied e tpresent study, such as the number of
observed variables per primary latent variable)adbte held constant in alternative
studies to better isolate other factors of inter&sjuestion raised in the results section
for the bivariate fit functions is whether alternnaty constructed misspecifications could
produce matching patterns of bivariate data modsfitmit was beyond the scope of this
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study to systematically investigate the partiakladwitching phenomenon encountered
herein, but the options for handling this typeaiddl switching could be explored in
simulation studies devoted to the purpose of comgaliternative methodologies. The
effect size introduced in this study was essentmltandardized difference score

between realized and posterior predicted values,taka Cohen’sl, but many

alternatives are possible. In addition to the feitiesearch needed to better understand the
performance of the introduced effect measure,radtere effect measures could be
compared.

The present study began with the intention of campgahe effectiveness of the
PPMC framework to the alternative frameworks disedsin the appendix. The scope of
that initial design was reduced (thankfully) tooads within the PPMC framework
exclusively, but questions remain about when adtieve frameworks might offer
advantages over PPMC. These advantages are preguimedily to consist of
computational advantages (i.e. heuristic technisuiag offer results that approximate
PPMC results in less time), though other advantagegossible as well. Future research
is needed to clarify the advantages and disadvastafusing statistics heuristically
versus committing to a framework that estimates¢ference distributions empirically.
Within frameworks that estimate empirical referedis#ributions (i.e. PPMC vs. PB),
future research is needed to compare the similafitgsults between these conceptually

similar but philosophically divergent methods.
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APPENDIX

DESIGN SIMPLIFICATION AND ALTERNATIVE FRAMEWORKS
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Pursuant to recommendations obtained from thed&son committee during the
proposal defense meeting, it was determined tleas¢bpe of the proposed project would
be narrowed. Specifically, only the PPMC framewwds to be investigated in the
present study, leaving comparisons to NRD and tdméworks for future investigation.
This design simplification focused and prioritizbée purpose of the study around
understanding the utility of the fit functions withPPMC, as opposed to comparing the
utility of different frameworks. The main purposktioe simplified design was therefore
to describe the performance of the discrepancy amesasinder the proposed conditions.
The principal outcome measure of the study remaumethanged: the proportion of
replications in which misfit was indicated by exire PPP-values for each fit function.
Removal of the NRD and HT frameworks did not desecthe computational burden
appreciably because most of the computational louofiéhe original design was due to
PPMC. The following discussion of alternative framoeks may still be of interest for a
reader who is considering this study within a mbobader model-checking context.
Alternative Frameworks

Model criticism is accomplished by mathematicaidiions that highlight
particular features of the data-model relationshilpe output from a particular fit
function can be interpreted in a number of difféneays, even holding constant a given
model and dataset. These different ways to prostaigextual meaning to the output of
fit functions are labeled here as alternative matheicking frameworks, and are
organized into four categories based on what theutied values from fit functions are
referenced against: no reference distribution (NRpothesis testing (HT), parametric
bootstrapping (PB; a.k.a. resampling), and post@riedictive model checking (PPMC).
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In the sections below, each model criticism framdws discussed in terms of
how fit functions are contextualized. Briefly sunmmad, the NRD framework does not
appeal to reference distributions, but rather diyexvaluates the fit function values
relative to values obtained from competing modet®walues recommended from
experts (based on some theoretical and/or empgrcainding). An HT framework
appeals to an analytically derived sampling distidn of the fit function, which is the
distribution of values the fit function would bepected to take if the same model were to
be fit again and again under replicated conditi@es repeated independent samples from
the same population). PB appeals to a referentgbdison of fit-function values
empirically generated from a point estimate (fregise solution) of the model
parameters. PB and HT share frequentist philosegsué differ in the ways replications
are defined. PPMC appeals to a reference distabudf fit-function values from a
Bayesian posterior distribution, most often empiticgenerated, unless conjugacy
allows the posterior predictive distribution todi®ained analytically. PPMC and PB are
related conceptually but differ in their philosogdliunderpinnings and computational
implementation.

Given a particular model and dataset, a fit func{®.g.Qs) highlights some
feature of the data-model relationship. In our ingrexampleQsserves as a check of
the local independence assumptiorQAvalue is computed for each pair of variables in
the model, and those values can range from -1 T&é& values of th€; fit function are
interpreted within the context of the given moded @ataset. Are the observ@g values
consistent with what would be expected given tladipular model? As will be
discussed in greater detail in sections to follthe, four alternative model checking
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frameworks each appeal to different reference pdontinterpretation of fit functions.
The functions themselves are to some degree irgegdable, though there are some
functions which are suited better or worse to cerframeworks.

No reference distribution. It is possible to interpret the value of a fit ftioa
solely within the context of the fit function scailself, by comparing an observed value
directly to another value of interest. In the NRBrfiework, reference values are often
obtained from competing models (i.e. relative @mparisons). Alternatively, reference
values are obtained by an appeal to authoritabueces in the literature, whether they
are methodological studies yielding recommendedeslor applied studies similar to
the study providing the observed values.

Running Example using Qs. The fit functionQs; can be evaluated differently
according to one’s model-checking framework. Innefliamework, the mathematical
function contained in Equation 4 is used to asessesidual associations among pairs
of modeled variables. The question becomes howrta in evaluation of the magnitude
of the Qs function with respect to some frame of reference.

When no distribution of reference values is usked,abserve; value for each
pair of variables is compared directly to an analegvalue from a competing model, or
to ana priori cutoff value, perhaps recommended by previousarekers in the domain
or by methodologists. In IRT models, a cutoff vabie2 has been used Qg (Chen &
Thissen, 1997), meaning that values between .2.@nddicate an acceptably low level
of residual dependence, while values between .2lgpd between -.2 and -1) indicate
levels of residual dependence that are large entmuglarrant concern about LI violation.
For example, consider a researcher who obser@svalue of .17 for a pair of variables.
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Within the NRD framework, the observed value@afis less than the cutoff value of .2,
indicating that the model exhibited an adequatellef/fit in terms of the residual
dependencies between this pair of observed vasable

Note that this is the only framework in which tHeservedQ; values are not
measured against a reference distribution. Thegserpf a reference distribution, which
will be exemplified in the other frameworks, isgauge the frequency with which an
observed value would be expected, typically exg@ss an interval consisting of values
equal to and greater than the observed value wardassumed (null) model. The
judgment one typically makes in such a framewottkis a nhormative (norm-referenced)
judgment. Values are labeled as significant orbtss of their lower frequencies of
occurrence in the population. Alpha-level valuesjdiolging statistical significance are
relativistic; they are not anchored on the scaltheffit function per se, but are ranges of
values that occupy a predetermined portion of thidution. The lack of a reference
distribution in the NRD framework is simpler in teense that an observed value is
directly compared to an existing value from anothedel, or from some authoritative
source. The comparison value is the criterion afcgfit, and the subsequent criterion-
referenced judgment is an easy one: the ldy¢as better in an absolute sense.

Hypothesis testing An HT framework compares the observed statisticiua
sample of data) to the distribution of the saméstia that would be observed upon
repeated sampling of equally-sized data sets flensame population (i.e. the sampling
distribution). The location of the observed statisain then be expressed in terms pf a

value, which represents the proportion of the samgmistribution with values of the test
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statistic that are more extreme than the obserakeevAna-value of .05 is the most
conventional criterion of statistical significangged in psychological domains.

Running Example using Qs. In the context of HT, the observ€l value for each
pair of variables is measured against an anallgid&rived reference distribution. For a
given pair of variables, the observ@dvalue is interpreted as a member of a population
of values that would be observed if the study weree replicated an infinite number of
times. The relative magnitude of the observed valuelation to this analytic derivation
of population values (sampling distribution) proesdthe researcher with the context to
judge the significance of the observation. Yen @&)98oposed that the mean of the
sampling distribution for th@; statistic in IRT models should be A/), and the
variance of a Fisher to z- transformation should be ©/@). Chen and Thissen (1997)
argued that those normal-theory assumptions orly\Wwben the residuals being
correlated byQs follow a bivariate Gaussian distribution (whichymat be the case for
IRT or BN models). A preferred sampling distributtiftor Qs has yet to be established,
which is problematic when working within this framerk. The two frameworks
discussed below circumvent this problem of needimgjytic reference distributions for
fit functions by generating appropriate referenistrdbutions empirically.

Parametric bootstrapping. A technique related philosophically to HT---both
frameworks stem from a frequentist origin---is R0 called resampling (Efron, 1979;
Efron & Tibshirani, 1993; Langeheine, Pannekoeky/@n de Pol, 1996; von Davier,
1997). Within the PB framework, reference distribag are built empirically using
generated data. The generated data consist ofpheuléplications generated from the
same set of model parameters (i.e. the “soluticorhfwhatever estimation routine was
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used). Depending on the fit functions being usieel generated data may be compared to
the observed data at this stage, or the model mag-lstimated using each of the newly
generated datasets to obtain resultant model p&eesrfeom each solution that can then
be used to calculate fit functions (e.g. Templitd&nson, 2006). In either case, the
statistics that comprise the reference distribusitam from the replicated datasets and
serve as the empirical sampling distribution fa thodel fit statistics from the original
dataset.

Stated more formally, ldt represent the vector of proportions in the poparat
which constitute the probabilities of all possidsponse patterns, and petepresent a
sample fronP. The sum oP (or of anyp) for any BN is 1, but the number of possible
response patterns for typical BNs is so largettiaiprobability of individual response
patterns is often infinitesimal. L& represent the population model parameters, such
thatP is a function F) of those parameterB,= F(0). The parametric bootstrap
procedure begins with an estimate of the populatiodel parameter®(,.) derived
from an observed samplps). Letp represent the bootstrapped datasets (samples)

which are then generated from the model:

—~ yields = R
F(®obs) — P1, P2, -~ Pn (A1),

wheren is the number of bootstrapped datasets. Featfithe observed data () can

be compared to the bootstrapped dfjauging functions that do not require model
parameters, i.€(pops) cOmpared td (1), T(P,), .., T(Pr), WwhereT is a test statistic
capturing a feature of the data. Or, for functiceguiring model parameters, the model is

re-estimated to yiel®,, 9, ..., ®,, which can then be compared@g,, , i.e.,
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D(pobss Oobs) cOmpared td(py, 8,), (P2, 03), ..., T(Pn, ©,), whereD denotes a
function capturing data-model fit in terms of theadepancy between the data and the
parameters.

Running Example using Qs. In the context of PB, the observed value for each
pair of variables is measured against an empiyiggherated reference distribution.
Using the model parameters estimated from re-gjttire model to the bootstrapped data,
a Qs value for each pair of variables is calculatechggach bootstrapped data set. If 500
bootstrapped data sets are used, then each seinsoa; value for each pair of
observed variables. For a given pair of observe@bkes, the 50@; values coming
from 500 different bootstrapped datasets form éfierence distribution for the single
observed); value. The observe@; value and the 500 replicated values are posited as
members of the same population of values. The mureist whether it is appropriate to
consider the observed value as having come frorsghee population as the others. The
relative magnitude of the observed value in retatmthe distribution of empirically
generated values provides the researcher withaheext to judge the significance of the
observation.

Summary of alternative frameworks. The purpose of a fit function is to
highlight some feature of the data-model relatigmshhe output from a particular fit
function can be interpreted in a number of difféneays, even holding constant a given
model and dataset. These different ways of progidontextual meaning to the outputted
values from fit functions are labeled here as a#tve model-checking frameworks, and
are organized into four categories based on wheadtitputted values of the fit functions

are referenced against: Posterior predictive modetking (PPMC), parametric
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bootstrapping (PB; a.k.a. resampling), hypothessting (HT), and no referen
distribution (NRD). Figure A1 summarizes the difet characteristics and gene

procedures of these four framewo
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Figure A1 Comparison of four moc-checking frameworks using Direct Data Disp
(DDD) andQs as example fit function

The alternative model checking frameworks each alpgpedifferent reference
for interpretation of fit functions. Briefly summaed, PPMC appeals to a referel
distribution of fitfunction values empirically generated from a Bage$osterio
distribuion. PB appeals to a reference distribution «function values empiricall
generated from a point estimate (frequentist smi)tof the model parameters. |
appeals to an analytically derived sampling disitidn of the fit function, which is th
distribution of values the fit function would be expedt to take if the same model were
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be fit again and again under replicated conditiddBD makes direct comparisons
without appeal to a distribution of reference value

It was beyond the scope of the present study &nsktely compare the various
tradeoffs associated with these four frameworks.gxample, one dimension the
frameworks could be compared along is computatispaéd. Consider the running
example usin@s, a fit function that can be computed within anythed four frameworks.
What are the various computational requirementscasted with the frameworks as they
each employ the same fit function? As describetienpreceding paragraphs, each
framework shares the computations in Equation £&uwh pair of observed variables in
the data set of interest. The number of variablespsigiven by

JU-1/2 (A2),
whered is the number of observed variables. In a datagbt33 observed variables (the
number of observed variables in the present stuldgje are 528 computations to
perform in order to obtain the obsern@gvalues. This set of 528 computations would be
executed under any of the frameworks. The NRD fraonk requireonly these
calculations, while the other three frameworks negjadditional calculations.

The HT framework requires the reference distributm be analytically derived.
In the case of);, sampling distributions have been proposed for mddels (Yen, 1984;
Yen, 1993) with some debate regarding their acqufag. Chen & Thissen, 1997), but
have not been thoroughly investigated in the cdrdéBNs (Rupp, Templin, & Henson,
2010, Ch. 12). Setting aside the serious and gitehibitively difficult issue of obtaining
a trusted sampling distribution, the computatietuired under this framework when a

sampling distribution has been obtained are ongjhdly more than what is required
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under the framework with no reference distributiBach observed value is located
within the sampling distribution, and typicallyassigned @-value corresponding to the
area of the distribution occupied by values morteegie than the observed value. A set
of 528p-value calculations would thus represent the aoliii computations needed
under the HT framework relative to the NRD framekvor

The PPMC framework is considerably more intenswajgutationally than the
HT or NRD frameworks because a reference distouts built using replicated
(generated) datasets. In addition to the computstiequired to generate the replicated
datasets, the calculations required for the obsleteta (see Equation 4) are repeated
using each replicated dataset as a substitutbdéooliserved dataset. If 500 replicated
datasets are generated, there are 528 * 500 =@B@{computations. The step of
locating the observed values in relation to theneice values, which was carried out
under the HT framework, can be applied to the PRM@ework as well, although these
PPP-values should not be equated with a formal thygses test (Levy, 2011; Sinharay,
2006b).

The PB framework is the most computationally denramh thisQs; example.
Setting aside any differences in the computatideatands for estimation of a Bayesian
solution (posterior distribution) relative to adreentist solution for the same model (if
the model can be estimated using frequentist tgclas), the two frameworks differ
when model parameters are required as inputs éofittfunction (which is the case in
this Qs example). Recall that for PPMC each generatedsdatames from a different set
of model parameters, each representing a unigwe fdoan the posterior distribution,
while for PB the generated datasets all come fioersaame set of model parameters.
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When bootstrapped model parameters are requireaffofunction, each bootstrapped
dataset must be re-estimated to obtain those bappstd model parameters. This
additional estimation time is prohibitive for somgplications. Then, for each
bootstrapped dataset (typically numbering in thedneds) and its associated model
parameters, the calculations performed using tisemwled data are replicated (see
Equation 4). If 500 bootstrapped datasets are g&krthere will be 528 * 500 =
264,000Q3 computations. In the PB framework, each of the &@28rved); values
would belong to a population Qf; values represented by the set of 500 bootstrapped
values. A final step, as in the HT framework, icédculatep-values to summarize the
location of the observed values with respect tadierence values. Note that in
situations where model parametersraserequired as inputs for a fit function, the PB and
PPMC frameworks converge in their methodology aftergenerated datasets are
complete. The procedures for comparing observedyandrated data when model
parameters are irrelevant are quite similar fortéie frameworks, and would be
essentially equivalent in terms of post-estimatomputational demands.

In summary, to compare the four frameworks on thedsion of computational
burden using th&s function, one must first consider the time neefdednodel fitting, in
which it is often the case that PPMC takes longer td the need to reach the full
posterior distribution. Regarding the computaticimak after model fitting, the
frameworks are loosely ranked, from fastest to skiwin the following order: NRD, HT,
PPMC, and PB. This ordering would be expected td fur any fit function that relies
on model parameters for its computation, as opptsétifunctions that require data
only. For fit functions that do not require modakrpmeters as input, the order of
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computational difficulty could change with respexPPMC and PB, depending on the
amount of time required for model estimation. In, Bi& bootstrapped parameters come
from re-estimating the model using each of the stoapped datasets. In PB, the
bootstrapped parameters come from re-estimatinghteel using each of the
bootstrapped datasets. For relatively complex nspdeé time required to re-estimate a
model solution for each bootstrapped dataset cexdded the time required to conduct
PPMC, which relies on a single (albeit often slovestimation routine to obtain the
distributions of all model parameters included urttie posterior distribution umbrella.
Computational comparisons between PPMC and PBiffiereiht models and fit functions

are of interest for future research.

190



