
Programmed DNA Self-Assembly and Logic Circuits

by

Wei Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2014 by the
Graduate Supervisory Committee:

Hao Yan, Co-Chair
Yan Liu, Co-Chair

Julian Chen
Ian Gould

ARIZONA STATE UNIVERSITY

May 2014

i

ABSTRACT

 DNA is a unique, highly programmable and addressable biomolecule. Due

to its reliable and predictable base recognition behavior, uniform structural

properties, and extraordinary stability, DNA molecules are desirable substrates for

biological computation and nanotechnology. The field of DNA computation has

gained considerable attention due to the possibility of exploiting the massive

parallelism that is inherent in natural systems to solve computational problems.

This dissertation focuses on building novel types of computational DNA systems

based on both DNA reaction networks and DNA nanotechnology.

 A series of related research projects are presented here. First, a novel,

three-input majority logic gate based on DNA strand displacement reactions was

constructed. Here, the three inputs in the majority gate have equal priority, and the

output will be true if any two of the inputs are true. We subsequently designed

and realized a complex, 5-input majority logic gate. By controlling two of the five

inputs, the complex gate is capable of realizing every combination of OR and

AND gates of the other 3 inputs. Next, we constructed a half adder, which is a

basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim

of these two projects was to develop novel types of DNA logic gates to enrich the

DNA computation toolbox, and to examine plausible ways to implement large

scale DNA logic circuits. The third project utilized a two dimensional DNA

origami frame shaped structure with a hollow interior where DNA hybridization

seeds were selectively positioned to control the assembly of small DNA tile

building blocks. The small DNA tiles were directed to fill the hollow interior of

ii

the DNA origami frame, guided through sticky end interactions at prescribed

positions. This research shed light on the fundamental behavior of DNA based

self-assembling systems, and provided the information necessary to build

programmed nanodisplays based on the self-assembly of DNA.

iii

ACKNOWLEDGEMENTS

 First and foremost, I would like to thank my wife Yu Liu, without whom I

would not have accomplished all that I have. I am enormously grateful for her

love, support, and encouragement. I would also like to thank my parents. They

were very supportive during my five year PhD study.

 I want to acknowledge my advisors, Dr. Hao Yan and Dr. Yan Liu. They

brought me into the world of DNA nanotechnology. Their broad knowledge and

earnest attitude about science guided me through my research. I am also grateful

to the members of my committee, Dr. Julian Chen and Dr. Ian Gould, for their

time and guidance.

Finally, I want to thank all the past and present graduate students,

postdoctoral researchers, and lab members who I have interacted with along the

way. Their advice and support have been greatly helpful. I give my special thanks

to Dr. Yang Yang. He inspired me with many research ideas and provided

extensive experimental support. I would also acknowledge Dr. Zhao Zhao and Dr.

Minghui Liu for training me in sound lab techniques. I also want to thank Dr.

Jeanette Nangreave for helping edit official documents.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 DNA COMPUTATION AND DNA NANOTECHNOLOGY1

 1.1 Abstract ...1

 1.2 Introduction ...2

 1.2.1 DNA ..2

 1.2.2 Structural Properties of DNA ..3

 1.2.3 DNA Strand Displacement Reactions8

 1.3 DNA Nanotechnology ...10

 1.4 DNA Computation ..13

 1.4.1 DNA Computation and Its History13

 1.4.2 Methods Used in DNA Computation14

 1.4.3 Comparison between DNA Computation and

Silicon-Based Computing..20

 1.5 References ...22

 2 MULTI-FUNCTIONAL DNA LOGIC CIRCUIT: 3-INPUT

MAJORITY LOGIC GATE AND MULTIPLE INPUT LOGIC

CIRCUIT BASED ON DNA STRAND DISPLACEMENT25

 2.1 Abstract ...25

 2.2 Introduction ...26

v

CHAPTER Page

 2.3 Architecture Design ...27

 2.3.1 Single 3-input Majority Gate ...27

 2.3.2 Logic Gate Cascade ...31

 2.4 Results and Discussion ..36

 2.4.1 Assembly of the Calculators ..36

 2.4.2 Gel Characterization of Calculator Formation and

Operation with Inputs ..37

 2.4.3 Detecting the Operation of a Single Majority Gate39

 2.4.4 Assembling a Multi-Functional Circuit42

 2.5 Conclusion ...46

 2.6 References ...47

 3 DNA BASED ARITHMETIC FUNCTIONS: 1-BIT FULL

ADDER AND HALF ADDER BASED ON DNA STRAND

DISPLACEMENT ..49

 3.1 Abstract ...49

 3.2 Introduction ...49

 3.3 Architecture Design ...52

 3.3.1 Design of XOR Gate ...53

 3.3.2 Design of AND gate ..59

 3.3.3 Design of Half Adder ..64

 3.3.3 Design of Full Adder ...65

 3.4 Results and Discussion ..65

vi

CHAPTER Page

 3.4.1 Operation of a Single XOR Gate ...65

 3.4.2 Operation of a Single AND Gate ..68

 3.4.3 Operation of a Half Adder ...71

 3.4.4 Operation of a Full Adder ...71

 3.5 Conclusion ...71

 3.6 References ...72

 4 CONTROLLED NUCLEATION AND GROWTH OF DNA

TILE ARRAYS WITHIN PRESCRIBED DNA ORIGAMI

FRAMES AND THEIR DYNAMICS ...74

 4.1 Abstract ...74

 4.2 Introduction ...75

 4.3 Architecture Design ...76

 4.3.1 Design of the DNA DX Tiles and 2D Array76

 4.3.2 Design of the DNA Origami Frame76

 4.3.3 Design of the Frame-Array Hybrid Structure78

 4.4 Results and Discussion ..79

 4.4.1 Preparation and Characterization of the Origami and

Tiles ...79

 4.4.2 Directed Self-Assembly Process, Purification, and

Characterization ...80

 4.4.3 Kinetics Characterized with FS-AFM82

 4.4.4 Kinetics Characterized with Fluorescence84

vii

CHAPTER Page

 4.5 Conclusion ...89

 4.6 References ...90

 5 SUMMARY AND OUTLOOK ...92

 5.1 Summary ...92

 5.2 Future Perspectives..94

 5.2.1 Computational Systems with Signal Feedback94

 5.2.2 Programmed Nanodisplay ...95

 5.3 References ...97

BIBLIOGRAPHY ..99

APPENDIX

A SUPPLEMENTAL INFORMATION FOR CHAPTER 2106

B SUPPLEMENTAL INFORMATION FOR CHAPTER 3120

C SUPPLEMENTAL INFORMATION FOR CHAPTER 4129

D PERMISSIONS TO USE COPYRIGHTED MATERIALS174

E CO-AUTHOR APPROVAL ..199

viii

LIST OF TABLES

Table Page

2.1 Truth table of a 3-input majority logic gate ...28

2.2 Computing patterns of the multi-functional circuit under different

preset values of X1 and Y1 ..32

3.1 Truth table of a half adder ..51

3.2 Truth table of a full adder ...52

3.3 Truth table of an XOR gate ..53

3.4 Truth table of an AND gate ..59

ix

LIST OF FIGURES

Figure Page

1.1 The double helical DNA structure proposed by Watson and Crick in

1953...2

1.2 The primary structure of DNA ..4

1.3 The structure of Watson-Crick base pairing ...5

1.4 The stereo-view of a B-form DNA double helix ..6

1.5 A comparison between structures of A-form, B-form, and Z-form

DNA ..7

1.6 The process of a strand displacement reaction ...9

1.7 Structural DNA Nanotechnology ..12

1.8 The Hamiltonian path ...16

1.9 A square root calculation based on a DNA strand displacement

reaction network..18

1.10 DNA tile self-assembling into a Sierpinski triangle pattern following

the XOR function ..19

2.1 Architectural design of a 3-input majority gate based on DNA strand

displacement reactions ..29

2.2 Properties of a 3-input majority gate and the design of a multi-

functional circuit ...31

2.3 Designed reaction flow of the multi-functional circuit34

2.4 Native polyacrylamide gel electrophoresis confirming the formation

of the single gate Calculator of the single gate ...36

x

Figure Page

2.5 Native PAGE demonstrating the single gate design Calculator38

2.6 Kinetic characterization of the single 3-input majority gate41

2.7 Kinetic characterization of the multi-functional circuit composed of

two 3-input majority gates ..44

3.1 Logic diagrams of a half adder and a full adder ...50

3.2 Architecture design of an XOR gate ...54

3.3 Reaction scheme of the XOR gate under conditions with one input

strand and with two input strands ...56

3.4 Architecture design of an AND gate...60

3.5 Reaction of the AND gate under conditions with one input strand,

and with two input strands ..63

3.6 Kinetic characterization of the XOR gate ...66

3.7 Kinetic characterization of a single AND gate ...68

3.8 Implementation of a half adder with kinetics for a single XOR gate

and a single AND gate ..70

4.1 DNA origami controlled assembly of a 2D DX tile array within a

DNA origami frame of fixed size ...77

4.2 AFM images of the DNA origami frame and the frame – DX tile

array hybrid ...81

4.3 FS-AFM images showing the dynamic nucleation and growth of DX

tiles within the DNA origami frame ...84

4.4 Nucleation kinetics monitored by fluorescence ..88

xi

Figure Page

5.1 Two examples of programmed nanodisplay with limited types of

pixels ...96

1

Chapter 1

DNA Computation and DNA Nanotechnology

1.1 Abstract

 In this chapter, I will introduce and summarize the development of research in

DNA Computation and DNA Nanotechnology. DNA (deoxyribonucleic acid) is the

genetic carrier in biological systems. Studying the information encoded in DNA

molecules is essential for understanding the secrets of life. Recently, DNA has been

explored as a structural material in both computation and nanotechnology, apart from its

biological function. DNA computation is an interdisciplinary area of research that bridges

chemistry, biology, and computer science. It focuses on discovering, programming, and

operating DNA reaction networks to achieve mathematical functions. It has demonstrated

great potential application in regulating biochemical systems by executing logic

computations. DNA nanotechnology utilizes DNA as a building material to construct

well defined nanostructures. Scientists have developed a wide range of one-dimensional

(1D), two-dimensional (2D), and three dimensional (3D) DNA structures. These

structures can be divided into two categories: (1) 2D arrays or 3D crystals composed of

branched DNA tiles as repeating units, and (2) DNA origami with precise shapes and

sizes normally formed from a single, long scaffold strand and numerous unique short

staples strands. These biocompatible and programmable templates have been used for the

study of DNA properties, protein science, drug delivery, energy transfer, and many other

areas. Both DNA computation and DNA nanotechnology are very important modern

research areas, and the two research areas benefit from each other in terms of design

principles and manipulation techniques.

2

1.2 Introduction

 1.2.1 DNA. DNA is a biological macromolecule used by all known living

organisms and many viruses to store genetic information.1 The genetic information

encoded in DNA molecules specifies the sequence and function of all of the proteins that

are synthesized in a cell and carries the instructions for the behaviors of the cell and the

development of entire organisms.

Figure 1.1. The double helical DNA structure proposed by Watson and Crick in 1953.1 A

double helix is composed of two single stranded DNA molecules. Each strand and the

overall double helix follow a right-handed spiral pattern. The orange and blue spirals

represent the sugar-phosphate backbone, and the grey rods represent the base pairs. The

red arrows indicate the direction of each single strand from 5’ to 3’.

3

 DNA was first extracted and identified by Johannes Friedrich Miescher in 1869.2

Since the discovery of DNA, scientists have been endeavoring to study the structure,

property, function, and synthesis of DNA and other nucleic acids, and their relation to the

natural world. The iconic double helical structure of DNA molecules was first proposed

by J. D. Watson and F. H. C. Crick in 1953.1 (Figure 1.1) Over six decades after

revealing the right handed double helical DNA structure, scientists have made

tremendous progresses in research areas related to DNA, e.g. bioinformatics, genetic

engineering and whole genome sequencing. Even today, DNA is one of the most

important and interesting research areas of chemists, biologists, and even computer

scientists.

 1.2.2 Structural Properties of DNA. DNA is a biopolymer composed of

repeating units called nucleotides. The structure of DNA can be described by three levels

of structure: primary, secondary, and tertiary.3

The primary structure of a DNA molecule is the linkage between each individual

nucleotide and the sequence of the different nucleotides in a DNA molecule.4 In DNA

molecules, a nucleotide contains three groups: a phosphate group, a 2’-deoxy-D-ribose

sugar group, and a nucleobase.3 (Figure 1.2) The nucleobase connects to the 1’ carbon of

the 2’-deoxyribose, and the phosphate forms a phosphate ester with the 5’-hydroxyl

group of the 2’-deoxyribose in each nucleotide. In DNA polymers, the 5’-phosphate of a

nucleotide also connects to the 3’-hydroxy group of the 2’-deoxyribose in another

nucleotide, thus forms a phosphate di-ester. The phosphate-sugar-phosphate linkage

forms the backbone of a DNA molecule.3 There are four types of nucleobases in natural

DNA, which are adenine, thymine, cytosine, and guanine. Thymine and cytosine are

4

derivatives of purine, and adenine and guanine are derivatives of pyrimidine. The

structures of the four bases are shown in Figure 1.2. Adenine, thymine, cytosine, and

guanine are usually abbreviated as A, T, C, and G, respectively. The sequence of a DNA

molecule is defined as the sequence of the bases from the 5’ end to the 3’ end of a single

strand. The direction of single-stranded DNA (ssDNA) is also the direction from the 5’

end to the 3’ end. The 5’ end is defined as the end that does not have any nucleotide

linked to the 5’ carbon of the 2’-deoxyribose, and the 3’ end is defined as the end that

does not have any nucleotide linked to the 3’ carbon of the 2’-deoxyribose.4 (Figure 1.2)

Figure 1.2. The primary structure of DNA. Each individual unit in the polymer is a

nucleotide. The phosphate-sugar-phosphate linkage forms the backbone of the molecule.

The structure of the four nucleobases adenine (A), thymine (T), guanine (G), and

5

Cytosine (C) are shown from top to bottom. The 5’ end of the molecule is at the top, and

the 3’ end is at the bottom. The sequence of the DNA molecule shown in the figure is

ATGC.

The secondary structure is any stable structure adopted by a nucleic acid by all or

some of its nucleotides.4 The foundation of the secondary structure of DNA is based on

the Watson-Crick base pairing rule.1 Two bases, one each from complementary single

strands, pair with each other through hydrogen bonds. Specifically, adenine pairs with

thymine through two hydrogen bonds, and guanine pairs with cytosine through three

hydrogen bonds. (Figure 1.3)

Figure 1.3. The structure of Watson-Crick base pairing. Adenine pairs with thymine

through two hydrogen bonds, and guanine pairs with cytosine through three hydrogen

bonds.

N

NN

N
NH H

R1

N

O

O

NH R2

A

T

N

N

N
O

NN
R1

H

H

H

N

N

O

N
R2

H

H
C

G

6

Figure 1.4. The stereo-view of a B-form DNA double helix. The two component strands

are anti-parallel to each other. The double helix and the two component strands follow a

right-handed spiral. PDB ID: 1BNA.5

The predominant secondary structure observed under physiological conditions is

B-form DNA, which is the double helical structure proposed by Watson and Crick. In B-

form DNA, the two component strands hybridize with each other in an anti-parallel

fashion, which means the directions of the two component strands are opposite. The

double helix and each component strand in the double helix all adopt a right-handed

7

conformation. (Figure 1.4) The bases between complementary strands in the duplex form

base pairs according to the Watson-Crick pairing rule.4 As the base pairs gradually rotate

from the neighboring pairs along the helical axis, the inner angle between the two

backbones forms the minor groove of the double helix, and the outer angle forms the

major groove of the double helix. In B-form DNA, the diameter of a duplex is 2 nm. Each

turn of the double helix contains 10.5 base pairs on average. The length of one full turn of

the double helix is 3.4 nm. (Figure 1.5B)

Figure 1.5. A comparison between structures of A-form, B-form, and Z-form DNA. (A)

Structure of A-form DNA. PDB ID: 213D.6 (B) Structure of B-form DNA. PDB ID:

1BNA.5 (C) Structure of Z-form DNA. PDB ID: 2DCG.7

 Besides B-form DNA, there are two other forms of DNA double helices that are

well characterized. One is A-form DNA, and the other is Z-form DNA. A-form DNA is

favored in dehydrated conditions, thus is also often seen in crystals. A-form DNA is also

a right-handed structure. But there are several structural differences between A-form and

8

B-form DNA. One difference is that the diameter of an A-form DNA double helix is 2.6

nm, which is larger than that of B-form DNA. Another difference is that one full turn in

A-form DNA contains 11 base pairs, instead of the 10.5 base pairs in B-form DNA. The

length of a full turn in A-form DNA is 2.8 nm, which is shorter than one turn of B-form

DNA. (Figure 1.5A) The origin of the conformational difference between A-form and B-

form DNA is the different conformation of the sugar pucker. In A-form DNA, the sugar

pucker conformation is C3’ endo, while it is C2’ endo in B-form DNA.5

Z-form DNA is a left-handed spiral structure. The predominant sequence pattern

of Z-form DNA is an alternating purine-pyrimidine sequence. The sugar pucker

conformation of the pyrimidines is C2’ endo, while the purine sugar pucker is C3’ endo,

thus, the sugar-phosphate backbone displays a zig-zag conformation. The diameter of a

Z-form double helix is 1.8 nm. Each full turn has 12 base pairs, and each full turn is 4.4

nm in length.5 (Figure 1.5C).

The tertiary structure of DNA is a higher structure order than the secondary

structure. It corresponds to the precise three-dimensional structure of DNA. One example

of DNA tertiary structure is supercoiled DNA. A DNA supercoil is a coil of DNA double

helices.

1.2.3 DNA Strand Displacement Reactions. Two DNA strands with partially or

fully complementary domains hybridize with each other, and then displace one or more

pre-hybridized domains in the two strands. This process is called DNA strand

displacement. This reaction can occur either between two double-stranded DNAs

(dsDNA) or one ssDNA and one dsDNA.8

9

Figure 1.6 shows the strand displacement reaction process between an ssDNA and

dsDNA. The DNA duplex displays a single-stranded overhang, which is called toehold.9

The toehold first binds another ssDNA with a complementary region. Then, if they have

the same sequence, the segment of DNA next to the toehold region on the ssDNA

migrates along the duplex and replaces the opposite strand. This step is called branch

migration. Branch migration is a random displacement process that contains a series of

reversible single nucleotide dissociation and hybridization steps.10 When the branch

migrates to the point that one strand dissociates from the complex, strand displacement is

complete. The reaction is driven by the enthalpy change in the system as the end product

has more base pairs.

Figure 1.6. The process of a strand displacement reaction. (A) DNA is represented by

directional lines with the arrow pointing to the 3’ end. (B) The strand displacement starts

with the binding of the toehold domains. The braches migrate after the hybridization of

the toeholds. The strand displacement is complete when the branch migration reaches the

end and the pre-hybridized strand dissociates.

10

 The kinetics of strand displacement reactions can be tuned by varying the length

and sequences of the toehold domain as the toehold binding step is the rate limiting

step.11-13 The second order reaction rate constant ranges from 1 M-1∙s-1 to 6×106 M-1∙s-1.

Increasing the length of toeholds and the G/C content in the toeholds can increase the

reaction rate constant. And generally, the reaction rate constant stops increasing when the

length of the toehold reaches >7 nucleotides.13

1.3 DNA Nanotechnology

In the early 1980’s, Nadrian Seeman created an artificial DNA tile structure

containing four ssDNAs rationally designed to form a four-way branched junction.14 This

work marks the beginning of DNA nanotechnology. DNA nanotechnologists engineer the

interactions between DNA strands to fabricate and study nanoscale materials composed

of DNA. Since the double-crossover (DX) DNA tile, which has a rigid conformation, was

developed in 1993,15 numerous tile-based DNA nanostructures have been designed and

realized, including multi-helix bundles, cross shaped tiles or 3- and 5-point stars that

assemble into 3D geometric polyhedrons, like cubes,16 tetrahedra,17 octahedra, icosahedra,

and buckyballs.18 Many periodic structures, such as nanotubes19,20 and 2D lattice arrays,21

have also been assembled utilizing the tile structures as repeating units.22 (Figure 1.7)

In 2006, an important DNA nanostructure, DNA origami, was first developed.23

DNA origami structures contain one long ssDNA as a scaffold. This scaffold is usually

single stranded viral genomic DNA, and M13mp18 DNA is the most widely used.

Through a specific design, hundreds of short ssDNA oligomers are mixed with the

scaffold strand. These short ssDNA are usually called staple strands or helper strands,

and are usually 30-50 nucleotides long. Each staple strand is a specifically designed

11

sequence that hybridizes to multiple regions of the scaffold strand, thus brings specific

regions into the desired adjacent positions. Finally, after all the staple strands hybridize to

the correct complementary regions, the scaffold strand is folded into a well-defined shape

based on the initial design. With this approach, many well controlled 2D structures with

definite shapes and sizes are demonstrated on the sub-hundred nanometer scale.23 Soon

after that, many reports of 3D origami and origami with curvatures were published, thus

making DNA origami a versatile and highly customizable material.24-28

 DNA origami is a type of highly addressable structure. By modifying the staple

strands, DNA origami can easily host other functional molecules or particles, such as

proteins, peptides, virus capsids, nanoparticles, and carbon nanotubes.29 This makes DNA

origami a powerful tool in many research areas.

DNA origami and other types of structural DNA engineering have revealed their

capability in scientific endeavors, but still face many future challenges. These challenges

include gaining finer spatial control, expression and assembly in vivo, and reducing the

cost of assembly. There are also potential new applications of DNA nanotechnology, like

biomimetic systems and diagnostics and therapeutics for human health.29

12

Figure 1.7. Structural DNA Nanotechnology. (A) DNA nanostructures based on DNA

base pairing. (B) DNA multi-helix bundle, 2D lattice array of DNA tiles, and 3D DNA

polyhedral structures. (C) The formation of DNA origami. One long ssDNA scaffold,

13

usually viral genomic DNA, and multiple staple strands are used. The staple strands are

programmed to bind to specific positions on the scaffold, thus folding the scaffold strand

into a pre-designed shape. (D) 3D DNA origami and DNA origami with curvature on

their component DNA double helices. Panel A, Panel B, left and part of the middle image

reproduced with permission from refs 22, 20, 19, and 21. Copyright 2012, 2005, and

1999 American Chemical Society. Parts of panel B, middle and right, and panel D, right

and part of middle image, reproduced with permission from refs 30, 17, 25, and 27.

Copyright 2003, 2005, 2009, and 2011 AAAS. Part of panel B, right, panel C, panel D,

left, and part of panel D, middle, reproduced with permission from refs 31, 16, 18, 23,

and 26. Copyright 2009, 1991, 2008, 2006, and 2009 Nature Publishing Group.

1.4 DNA Computation

 1.4.1 DNA Computation and Its History. DNA computation and other forms of

biological computation are interdisciplinary subjects that bridge chemistry, biology, and

computer science. Compared to traditional silicon-based computation, DNA computation

utilizes DNA and other biomolecules, and the interactions between these molecules to

realize logical and mathematic functions. DNA is generally considered the best candidate

for molecular level computation. One of the advantages of DNA over other types of

biomolecules is that DNA is a very robust molecule. It is stable under a wide range of

chemical conditions. DNA also has a relatively simple structure, and the behaviors of

DNA molecules are highly predictable and programmable because of Watson-Crick base

pairing. Another reason for DNA being popular in molecular programming is the easy

accessibility of synthetic DNA.

14

 The idea of molecular computation was first introduced by R. P. Feynman in his

visionary presentation, There’s Plenty of Room at the Bottom, at the 1959 annual meeting

of the American Physical Society.32 Feynman talked about miniaturizing computers in his

talk. Although he did not propose any practical methods, he first pointed out the direction

of developing computational system at molecular level. In 1994, 35 years after

Feynman’s talk, the first DNA computing system was developed by Leonard Adleman.33

He solved the Hamiltonian path problem with a set of DNA strands and series of ligation,

amplification, and purification operations on the DNA strands. In the two decades after

this work, DNA computation has developed rapidly. In 2000, the idea of using enzyme

free DNA strand displacement reactions to program molecular machines and reaction

networks was developed.9 Boolean logic circuits based on enzyme free DNA reaction

system were realized in 2006.34 Since then, developing complicated and functional logic

circuits have been popular research topics in DNA computation.35,36

 1.4.2 Methods Used in DNA Computation. There are many methods scientists

have applied to DNA computation. One method is enzyme catalyzed DNA reactions.

This method has the advantage of being able to select from various enzymes and reaction

types, thus it makes the programming of computing operations easy and versatile.

However, with enzymes in the system, the reactions are often restricted to the optimal

conditions of the enzyme, such as narrow ranges of temperature, buffer concentration,

light intensity, etc. The procedures also often involve multiple steps of separation of the

enzymes and DNA.

The first DNA computation research, the Hamiltonian path problem by Leonard

Adleman, was realized with multiple enzyme-catalyzed reactions of DNA. Figure 1.8

15

shows the Hamiltonian path graph Adleman used to demonstrate the process of DNA

computation. For a graph with multiple vertices and directional edges going from one

vertex to another, if there is a path composed of existing edges in the graph that goes

through all vertices and only once through any individual vertex, that path is a

Hamiltonian path of the graph. Adleman assigned a random 20 nucleotide long DNA

single strand to each vertex i in the graph. These strands are named Oi, with

complementary strands Oi*. Specifically, the starting vertex and ending vertex are

referred to as vertex 0 and vertex 6, respectively, in Figure 1.8. Every edge i-j, which is

directional from vertex i to vertex j, is represented by a 20 nucleotides ssDNA named Oi-j,

which starts with the ten terminal 3’ end bases of Oi, and ends with the ten terminal 5’

end bases of Oj. All Oi* and Oi-j are mixed and annealed for hybridization. At this point,

every path in the graph has a corresponding DNA duplex in the system. The nicks in

these duplexes are ligated with DNA ligase. Then the mixture solution is amplified by

polymerase chain reaction (PCR), only using O0 and O6* as primers, such that only the

paths starting at the entrance and ending of the exit are amplified. Then gel

electrophoresis is used to purify the paths with the correct length. In the case shown in

Figure 1.8, the expected Hamiltonian path should contain six edges, so the corresponding

dsDNA should be 120 nucleotides long. The strands with the correct starting/ending

points and correct length are then subjected to multi-step purification with magnetic

beads modified with Oi*. In each step, only beads modified with a single Oi* sequence

are used. Until all six Oi* are used once, any correct length strands missing any Oi

domain, which means the path missing a vertex i, are removed. At the end, the remaining

strands are sequenced to prove it represents the Hamiltonian path.33

16

Figure 1.8. The Hamiltonian path. The graph with the same vertices and edges was used

as the example in Adleman’s work.33 A Hamiltonian path exists in the graph, which is 0-

1-2-3-4-5-6. Each vertex is assigned a random 20 nucleotide long ssDNA. For example,

Vertex 2 is assigned as Strand a-b, and Vertex 3 is assigned as c-d. Each edge is

represented by a 20 nucleotide ssDNA, which starts with ten terminal bases the 3’ end of

the starting vertex, and ends with the ten terminal bases of the 5’ end of the ending vertex.

For example, Edge 2-3 is represented as Strand b-c, as Domain b is the 3’ end domain of

the starting Vertex 2, and Domain c is the 5’ end domain of the ending Vertex 3. Edge 3-

2 is represented as Strand d-a following the same rule.

17

 Another method in DNA computation is enzyme-free DNA reactions. The most

powerful and well-studied reaction used in this category is toehold mediated strand

displacement. A representative example of research utilizing this method is a binary

square root calculation developed in 2011.35 The authors designed a DNA strand

displacement reaction network with two inputs, which are both ssDNA. The two input

strands react and produce the same reactive species. By tuning the relative concentration

of threshold dsDNA, which can consume the reactive species produced by the inputs, the

function of the strand displacement reaction network can be switched between an AND

gate and an OR gate of the two input strands. In this design of the logic gates, the input

and output signals are all ssDNA, and the presence or absence of the signal DNA

molecule means the signal is true or false, respectively. (Figure 1.9A) The goal was to

construct the logic circuit shown in Figure 1.9C, which functions as a binary square root

calculation. However the circuit contains a NOT function, which is difficult to realize

with molecular computation, because once the downstream signal molecules are

consumed, the output cannot be reversed by the upstream signal molecules. So instead,

the authors constructed the logic circuit shown in Figure 1.9D to implement the function

of the circuit shown in Figure 1.9C. The circuit shown in Figure 1.9D is a dual-rail input

system. Each input or output signal in Figure 1.9C is divided into two signals. For

example, input X1 is divided into X1
0 and X1

1. These two signals are exclusive to each

other. They cannot be true and false at the same time. If X1
1 is true and X1

0 is false, X1 is

true. Otherwise X1 is false. The authors successfully realized a four-digit binary square

root calculation with this strategy. And more importantly, they demonstrated a practical

method to scale up DNA logic systems for complicated applications.35

18

Figure 1.9. A square root calculation based on a DNA strand displacement reaction

network. (A) The design of a single logic gate which can be switched between AND and

OR gates by tuning the relative concentration of duplex Th. (B) Fluorescence kinetic

results of the OR gate and AND gate. (C) The diagram of a four-digit binary square root

logic circuit. (D) A dual-rail input logic circuit implementing the circuit in panel C. (E)

Fluorescence kinetic results of the square root calculation. Figure reproduced with

permission from ref 35. Copyright 2011 AAAS.

DNA computation and DNA nanotechnology are two naturally compatible areas.

Although the goals of the two areas are different, they both use DNA molecules as

materials, and the programming strategies are usually the same. As a result, DNA

nanotechnology can be utilized for presenting mathematical and logical systems. In 2004,

a DNA Sierpinski triangle constructed from DNA tiles was published. The authors used a

set of unique DX tiles with carefully designed sticky ends and a long ssDNA template as

19

a nucleation seed to achieve a binary XOR function between each neighboring tile pair

and thus created a Sierpinski triangle fractal pattern. The system has a moderate error rate

of 1% to 10%. Although it is not perfect, the starting points of assembly errors are

traceable. Also, this work demonstrated the Turing-universal capability of engineered

DNA self-assembly.37 (Figure 1.10)

Figure 1.10. DNA tiles self-assembling into a Sierpinski triangle pattern following the

XOR function. (A) Two groups of DNA tiles are employed in the system. One group of

tiles shown in grey represents a binary 0. The other group of tiles shown in white

represents a binary 1. A pair of neighboring tiles yields an output tile in the next row. The

value of the output tile is the result of the XOR function of the values of the parent tiles.

The tiles following the designed rule form a Sierpinski triangle pattern of the tiles of the

20

value of 1. (B) Translating the model in Panel A into DNA tiles. (C) Four types of tiles,

of which two tiles have the value 1 and the other two tiles have the value 0, are used. (D)

The expected pattern with no errors. (E) The expected error-prone pattern. (F) AFM

result of the pattern. The scale bar is 100 nm. Figure reproduced with permission from ref

37. Copyright 2004 Rothemund et al.

Besides these three methods, another interesting method has also been used in

DNA computation - programmed reactions catalyzed by DNAzymes, which is not

discussed further.38,39

1.4.3 Comparison between DNA Computation and Silicon-Based Computing.

Since people are very familiar with silicon-based computers, and the development of

DNA computation is still at an early stage, people always tend to compare DNA

computation with silicon-based computations. This topic can be discussed in two ways,

one is the pros and cons of DNA computation, and the other is the applications of the two

types of computations.

The biggest disadvantage of DNA computation is the low reaction or assembly

rate. The typical time required by a DNA system to finish a simple logic operation ranges

from a couple of hours to one day. The long time required by DNA and other

biomolecular computation and programming techniques renders these systems far inferior

to silicon-based computers in terms of calculation capability. This disadvantage is

determined by the nature of DNA molecules, thus it is very difficult to overcome, even

with an expectation of the development of DNA computation.

21

Another limiting factor of DNA computation is the lifetime of the materials being

used. The lifetime of biological molecules is usually much shorter than inorganic

materials used in traditional computers, even if they are stored under proper conditions.

DNA is a relatively robust biomolecule, but it is still prone to degradation in the presence

of small amounts of proteins, micro-organisms, or metal ions. The physical stability issue

makes the operating conditions of DNA and other biomolecular computing systems

limited to those proper for biochemical reactions. Also, long term information storage is

difficult to achieve.

Currently, programmed DNA computing systems cannot be built up and

characterized without the help of silicon-based computers. The artificial synthesis of the

DNA components, concentration measurements for adjusting the component

stoichiometry, and signal detection to read out the computation results all depend on

instruments that are controlled by silicon-based computers. Even with the rapid

development of biological and chemical sciences, it is not realistic to think that an

independent bio-computer that can rival silicon-based computers will be developed.

However, replacing or realizing the same functions of traditional computers is not

necessary or practical.

Traditional computers utilized the bi-stable properties of materials to realize the

binary function. There is no intermediate state between “0” and “1”. In DNA operations,

the molecular signals have continuous intensities. The up side of this is that continuous

signal intensities have a better tolerance for error. The down side is the dilemma of

having a signal not significantly distinct enough to be assigned either “0” or “1”.

22

While bearing the disadvantages above, DNA computation has a significant

natural advantage: DNA is biocompatible. This makes DNA a perfect tool for

programming and regulating other biochemical reaction systems both in vivo and in vitro.

DNA can be used to sense a biological signal, compute, return a result and actuate, e.g.

release a drug.40-44

The other advantage of DNA computation is the different performance routine

from that of traditional computers that can sometimes significantly simplify a problem.

For example, in the Hamiltonian path work by Adleman, the author used a single DNA

solution to generate all possible paths in the graph, which is a massively parallel

processing strategy. This is superior to the brute force strategy used in traditional

computers.

The pros and cons of DNA computation determine that its application area is

different from that of the silicon-based computers. DNA computation and molecular

programming are aimed to be applied in biological systems, which are currently

developed in bioengineering and nanomedicine.45,46

1.5 References

(1) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.

(2) Dahm, R. Dev. Biol. 2005, 278, 274.

(3) Hecht, S. M. Bioorganic Chemistry: Nucleic Acids; OUP USA, 1996.

(4) Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Lehninger Principles of

Biochemistry; W. H. Freeman, 2005.

(5) Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.;

Dickerson, R. E. Proc. Natl. Acad. Sci. 1981, 78, 2179.

(6) Ramakrishnan, B.; Sundaralingam, M. Biophys. J. 1995, 69, 553.

23

(7) Wang, A. H. J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; van Boom, J. H.;
van der Marel, G.; Rich, A. Nature 1979, 282, 680.

(8) Zhang, D. Y.; Seelig, G. Nat. Chem. 2011, 3, 103.

(9) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(10) Radding, C. M.; Beattie, K. L.; Holloman, W. K.; Wiegand, R. C. J. Mol. Biol.

1977, 116, 825.

(11) Yurke, B.; Mills, A., Jr. Genet. Program Evolvable Mach 2003, 4, 111.

(12) Li, Q.; Luan, G.; Guo, Q.; Liang, J. Nucleic Acids Res. 2002, 30, e5.

(13) Zhang, D. Y.; Winfree, E. J. Am. Chem. Soc. 2009, 131, 17303.

(14) Seeman, N. C. J. Theor. Biol. 1982, 99, 237.

(15) Fu, T. J.; Seeman, N. C. Biochemistry 1993, 32, 3211.

(16) Chen, J.; Seeman, N. C. Nature 1991, 350, 631.

(17) Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.;

Schmidt, C. F.; Turberfield, A. J. Science 2005, 310, 1661.

(18) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. Nature 2008,

452, 198.

(19) Mathieu, F.; Liao, S.; Kopatsch, J.; Wang, T.; Mao, C.; Seeman, N. C. Nano Lett.

2005, 5, 661.

(20) Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; LaBean, T. H.

Nano Lett. 2005, 5, 693.

(21) Mao, C.; Sun, W.; Seeman, N. C. J. Am. Chem. Soc. 1999, 121, 5437.

(22) Fu, J.; Liu, M.; Liu, Y.; Yan, H. Acc. Chem. Res. 2012, 45, 1215.

(23) Rothemund, P. W. K. Nature 2006, 440, 297.

(24) Ke, Y.; Douglas, S. M.; Liu, M.; Sharma, J.; Cheng, A.; Leung, A.; Liu, Y.; Shih,

W. M.; Yan, H. J. Am. Chem. Soc. 2009, 131, 15903.

(25) Dietz, H.; Douglas, S. M.; Shih, W. M. Science 2009, 325, 725.

24

(26) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh,
W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.;
Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Nature 2009, 459, 73.

(27) Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. Science 2011, 332, 342.

(28) Han, D.; Pal, S.; Liu, Y.; Yan, H. Nat. Nano. 2010, 5, 712.

(29) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat. Nano. 2011, 6, 763.

(30) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301,

1882.

(31) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M. Nature

2009, 459, 414.

(32) Feynman, R. P. J. Microelectromechanical Systems 1992, 1, 60.

(33) Adleman, L. M. Science 1994, 266, 1021.

(34) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

(35) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(36) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano Lett. 2013, 13, 2980.

(37) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS. Biol. 2004, 2, e424.

(38) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.

Nat. Nano. 2010, 5, 417.

(39) Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. Sci. Rep. 2013, 3.

(40) Parker, J. EMBO reports 2003, 4, 7.

(41) Douglas, S. M.; Bachelet, I.; Church, G. M. Science 2012, 335, 831.

(42) Benenson, Y. Curr. Opin. Biotech. 2009, 20, 471.

(43) Surana, S.; Bhat, J. M.; Koushika, S. P.; Krishnan, Y. Nat. Commun. 2011, 2, 340.

(44) Hemphill, J.; Deiters, A. J. Am. Chem. Soc. 2013, 135, 10512.

25

Chapter 2

Multi-Functional DNA Logic Circuit: 3-Input Majority Logic Gate and Multiple

Input Logic Circuit Based on DNA Strand Displacement

Adapted with permission from Li, W.; Yang, Y.; Yan, H.; Liu, Y., Three-Input Majority

Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement. Nano

Lett. 2013, 13, 2980-2988. Copyright 2013 American Chemical Society.

2.1 Abstract

In biomolecular programming, the properties of biomolecules such as proteins

and nucleic acids are harnessed for computational purposes. The field has gained

considerable attention due to the possibility of exploiting the massive parallelism that is

inherent in natural systems to solve computational problems. DNA has already been used

to build complex molecular circuits, where the basic building blocks are logic gates that

produce single outputs from one or more logical inputs. We designed and experimentally

realized a 3-input majority gate based on DNA strand displacement. One of the key

features of a 3-input majority gate is that the 3 inputs have equal priority, and the output

will be true if any of the two inputs are true. Our design consists of a central, circular

DNA strand with 3 unique domains between which are identical joint sequences. Before

inputs are introduced to the system, each domain and half of each joint is protected by

one complementary ssDNA that displays a toehold for subsequent displacement by the

corresponding input. With this design the relationship between any two domains is

analogous to the relationship between inputs in a majority gate. Displacing two or more

of the protection strands will expose at least one complete joint and return a true output;

displacing none or only 1 of the protection strands will not expose a complete joint and

26

will return a false output. Further, we designed and realized a complex 5-input logic gate

based on the majority gate described here. By controlling 2 of the 5 inputs the complex

gate can realize every combination of OR and AND gates of the other 3 inputs.

2.2 Introduction

The ability to program interactions between biomolecules can help us to

understand life processes and activities at the molecular level. DNA is an ideal candidate

for molecular programming that facilitates both in vivo and in vitro applications1 because

of its biological and physical properties. The behavior of DNA molecules with particular

sequences can be reliably predicted according to the Watson-Crick base-pairing principle.

The recent developments in the field of structural DNA nanotechnology2 provide many

different platforms onto which logically programmed DNA interactions can be combined

and organized.

The first employment of DNA as molecular programming reagent resulted in a

solution to the seven-city Hamilton path problem.3 Since then, several enzyme-

catalyzed4-6 and enzyme-free7-10 DNA automata systems have been designed and realized.

In the enzyme-free systems single-stranded DNA (ssDNA) molecules are used as input

signals. Introducing the input signals to a system containing other double-stranded DNA

(dsDNA) molecules displaying ssDNA toeholds results in a series of toehold directed

strand displacement reactions11-15 and the release of an ssDNA molecule as a detectable

output signal. Computing circuits based on DNA strand displacement that demonstrate

complicated computations such as binary square root 16 and network computations17 were

achieved with high efficiency and accuracy. In these computing circuits both AND and

OR gates were utilized.

27

In this work we achieved the construction of a 3-input majority logic gate by

programming DNA interactions. A majority logic gate with multiple inputs returns true

outputs, if and only if more than half of the inputs are true. A 3-input majority gate is one

of the most basic logic gates and has been demonstrated using magnetic quantum-dot

cellular automata (MQCA).18 With multiple inputs this gate can accept and produce a

high volume of information; thus, on the molecular level a 3-input majority gate can

serve as a basic and versatile building block for constructing more complex circuits. Here

we experimentally realized a 3-input majority gate with programmed DNA strand

displacement reactions for the first time, and demonstrated that it reliably produces all the

correct outputs with different combinations of the inputs. We further constructed a 5-

input computing circuit implemented solely by linking two 3-input majority gates

together. This circuit can be tuned to accomplish four different computing patterns

among the various combinations of the inputs.

2.3 Architecture Design

2.3.1 Single 3-input Majority Gate. For a 3-input majority gate (see Figure

2.1A), if any 2 or all of the 3 inputs are true, the output is true. The truth table (Table 2.1)

specifies that the 3 inputs have the same priority among one another. Thus, for a 3-input

majority gate the outputs between any combinations of 2 or 3 inputs should not be

distinguishable. To construct a 3-input majority gate from DNA molecules we

implemented a circular DNA strand consisting of 3 distinct segments, A, B, and C

(Figure 2.1B); in each segment the middle portion is unique (M1, M2 and M3, 16 nts

each), and the 3 joints are identical (RS2 18 nts and RS1, 8 nts). Before performing the

computation segments A, B, and C each hybridize to a complementary ssDNA molecule

28

(A*, B* and C*, respectively) forming a circular (quasi-triangular) duplex. Strands A*,

B*, and C* each have two domains: one domain is fully complementary to A, B, and C,

respectively, and the other domain displays a toehold (T1*, T2*, and T3*, 10 nts each)

for initiating the strand displacement reaction. This circular duplex structure is referred to

as a “Calculator” herein.

Table 2.1. Truth table of a 3-input majority logic gate

Input A Input B Input C Output

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

Three unique input strands (Inputs A, B, and C) are designed to be fully

complementary to A*, B* and C* (both domains). When the inputs are introduced to the

computing system toehold-mediated strand displacement reactions are initiated. For those

cases in which there are 2 or 3 inputs (i.e. majority input) (Figure 2.1C), ssDNA from 2

or 3 sides of the Calculator are released. The release events expose a single joint (for 2

inputs), or all three joints (for three inputs), in the Calculator structure and Segments A, B,

and C is/are concurrently exposed as ssDNA. The exposure of at least one joint domain

29

(all with the same sequence) is defined as a positive output. A “Detector” is utilized to

recognize and report the output. The detector is composed of two strands that form a

duplex displaying a toehold, and is labeled with a fluorescence dye and a corresponding

dark quencher on the two component strands. The strand that is modified with the dark

quencher carries the toehold that is fully complementary to the output. When it hybridizes

with the output, the fluorescence-dye-modified strand is released to the solution and an

increase in the fluorescence intensity of the dye is detected as proof of a true output.

Figure 2.1. Architectural design of a 3-input majority gate based on DNA strand

displacement reactions. (A) Symbolic representation of the majority logic gate. (B)

Design of the Calculator structure. The circular ssDNA (left) is composed of 3 segments,

A (RS2-M1-RS1), B (RS2-M2-RS1), and C (RS2-M3-RS1). Each segment has 42 nts.

30

RS1 and RS2 are 8 and 18 nts long, respectively. The RS1-RS2 joint sequence is repeated

in the circular structure 3 times. M1, M2, and M3 are each 16 nts long and have distinct

sequences. ssDNA A*, B*, and C* are hybridized with A, B, and C, respectively,

forming the Calculator structure (right). A*, B*, and C* each have 2 domains: one

domain, RS1*-M1(2,3)*-RS2*, is fully complementary to A, B or C. The other domain,

T1(2,3)*, is a unique sequence toehold for initiating the computation process. (C) 2 or 3

inputs lead to a true output. Here a representative 2 input model is shown. Input A and

Input B are fully complementary to A* and B*, respectively. The toeholds, T1 and T2,

first hybridize with T1* and T2*. Next, the input strands fully displace A* and B* from

the circular structure. Finally A* and B* hybridize with Input A and Input B and are

displaced from the Calculator. The RS1-RS2 joint (output) on the circular strand is then

fully exposed, yielding a true output. A “Detector” is pre-mixed with the Calculator. The

Detector is a duplex of RS2 and RS2*-RS1*. RS2 is modified with 6-carboxyfluorescein

(FAM) at the 3’ end. RS2*-RS1* is modified with Iowa BlackTM dark quencher (IABk)

at the 5’ end. RS1 in the output and RS1* in the Detector serve as toeholds and RS2-

FAM is displaced from the dark quencher, thus the true output is revealed by a

fluorescence increase. (D) One or no input leads to a false output. A representative 1

input (e.g. Input A) case is shown. Only A* is released by Input A, thus no continuous

RS1-RS2 is exposed and the output is 0. The Detector duplex is highly stable and the

fluorescence remains quenched through the computation process.

 When only 1 or no input (minority input) is introduced (Figure 2.1D), none of the

joint domains of the 3 segments is fully exposed. Even though 2 joint domains may be

31

partially exposed, because they are operating separately at opposite ends of a segment

they cannot disassemble the detector duplex and the output remains 0.

2.3.2 Logic Gate Cascade. As indicated by the truth table (Table 2.1), an

important property of a 3-input majority gate is that if any of the 3 inputs is preset as 1,

the logic gate becomes an OR gate for the remaining 2 inputs (Figure 2.2A), and if any of

the 3 inputs is preset as 0, the logic gate becomes an AND gate for the remaining 2 inputs

(Figure 2.2B). This ability to switch between OR and AND gates makes the 3-input

majority gate a versatile building block for constructing more complex computing

circuits.

Figure 2.2. Properties of a 3-input majority gate and the design of a multi-functional

circuit. (A) If any 1 of the 3 inputs of a majority gate is preset as 1, the gate becomes an

OR gate of the remaining 2 inputs. In the figure, Input A is preset as 1. The relationship

between Inputs B and C becomes an OR function (B + C). (B) If any 1 of the 3 inputs of

a majority gate is preset as 0, the gate becomes an AND gate of the remaining 2 inputs. In

32

the figure, Input A as 0 is shown. The relationship between Inputs B and C becomes an

AND function (B ∙ C). (C) The multi-functional circuit contains 2 majority gates and has

a depth of 2. The output of the first generation, Majority Gate Y (MY), is employed as

one input of the second generation, Majority Gate X (MX). There are 5 input of the circuit:

Y1, Y2, and Y3 to MY; X1, and X2 to MX. The output of the second generation is the

output of the entire circuit.

Table 2.2. Computing patterns of the multi-functional circuit under different preset

values of X1 and Y1

X1 Y1 Computation Pattern

0 0 Y2 ∙ Y3 ∙ X2

1 0 Y2 ∙ Y3 + X2

0 1 (Y2 + Y3) ∙ X2

1 1 Y2 + Y3 + X2

 To demonstrate switching of a 3-input majority gate we assembled a computing

circuit composed of 2 majority gates arranged sequentially (Figure 2.2C). Majority Gate

Y (MY) is the first generation gate. The output of MY is utilized as one of the inputs of

Majority Gate X (MX), which is the second generation gate. The output from MX is read

as the final output of the circuit. The circuit has 5 inputs in total: Y1, Y2, and Y3 in MY;

X1, and X2 in MX. By assigning values of 0 or 1 to any one of the inputs in each majority

gate, this circuit can be switched between 4 different computing patterns for the

33

remaining 3 inputs (Table 2.2). These 4 logical computing patterns represent all the

combinations of OR and AND functions between the 3 inputs.

Based on the success of the single majority gate design described above (shown in

Figure 2.1C, D), we engineered a 2-generation circuit as shown in Figure 2.3. Similarly,

the Calculator structures in both generations feature a circular (quasi-triangular) design.

The sequences of the joint domains between any 2 arms of Calculator Y (first generation)

are all the same such that fully exposing any of the joints results in a true output of MY.

Each joint domain is fully complementary to arm X3 in Calculator X (the second

generation). Therefore, the output of MY acts as an intermediate of the circuit and can be

used as an input for the next generation calculator. For example, if the output of MY is

true, MX receives a true input from MY; and if the output of MY is false, MX receives a

false input from MY. Depending on the output of MY and the additional 2 inputs of MX

(X1 and X2) Calculator X produces the final output of the circuit. For example, if any 2

or 3 of the inputs for MX are present, 2 or 3 of the arm strands (X1*, X2*, and X3*) are

displaced from Calculator X, exposing at least one joint domain of the circular strand as

ssDNA which yields a true final output. Conversely, if only 1 or none of the inputs for

MX is present, the final output is false. The output reacts with the “Detector”, binding

with the dark quencher labeled strand and releasing the fluorescence of the dye modified

strand. The output is visualized by an increase in the fluorescence intensity of the dye,

following the same mechanism as for the single majority gate.

34

Figure 2.3. Designed reaction flow of the multi-functional circuit. Majority Gate Y (MY),

the first generation in the circuit, is shown in the upper-left. Majority Gate X (MX), the

35

second generation in the circuit, is shown in the lower-right. For MY, there are 3

segments in circular Calculator Y, each with 3 domains. One domain of the circular

strand is M1-P3-M2. A second domain is Q1(2,3); Q1, Q2, and Q3 are each a unique

sequence. The third domain is TX3. The 3 joint segments of the circular strand are all

TX3-M1-P3-M2. Once Calculator Y has 2 or 3 arms displaced it will return a true MY

output, exposing the Intermediate (TX3-M1-P3-M2) as ssDNA. This Intermediate is fully

complementary to arm strand X3* in Calculator X, and can therefore serve as an input of

MX. TX3 in the Intermediate functions as a toehold and M1-P3-M2 displaces the

remainder of X3* from Calculator X. For MX, there are also 3 segments in Calculator X.

The design of Calculator X is similar to the design of the single gate shown in Figure 2.1,

except for the length of each domain. The intermediate, and the other 2 Inputs of MX,

Input X1 and Input X2, determine the output of the overall circuit. The ssDNA output

signal is the repeating joint sequence of the circular strand in Calculator X, M2-M1.

Similar to the single gate design the output of the circuit can be detected via changes in

the fluorescence of a dye molecule. A representative computing pattern example is shown

in the figure. Input Y1 is preset as 0, which means that no ssDNA Input Y1 is introduced

to the reaction. Input X1 is also preset as 0. As a result of the preset values of Inputs Y1

and X1, the computing pattern in the figure is Y2 ∙ Y3 ∙ X2. Inputs Y2, Y3, and X2 are all

present in the reaction system so the logical computing result is 1 ∙ 1 ∙ 1 = 1. The lengths

(in base pairs) of the domains in the figure: TX1(2,3) = TX1(2,3)* = 10. P1(2,3) =

P1(2,3)* = 9. M1 = M1* = 8. M2 = M2* = 15. TY1(2,3) = TY1(2,3)* = 10. Q1(2,3) =

Q1(2,3)* = 11.

36

2.4 Results and Discussion

2.4.1 Assembly of the Calculators. The central circular ssDNA molecules (126

nts long for the single 3-input majority gate, 159 nts long for MY and 96 nts for MX) in

the calculators are prepared by ligating one or two linear ssDNAs end to end (See

APPENDIX A for Figure S2.1). T4 DNA ligase is used to catalyze the circularization

reactions. The termini of the ssDNA fragments are specifically paired and joined by

hybridizing to 20-nt ssDNA templates and the resulting nicks are then sealed with T4

DNA ligase. The circular ssDNA is purified and recovered by denaturing polyacrylamide

gel electrophoresis (PAGE). The overall recovery yield of the purified circular ssDNA is

30% to 50% (APPENDIX A, Figure S2.2A); note that the circularized strands are

resistant to degradation by exonuclease I (APPENDIX A, Figure S2.2B). The purified

central circular ssDNA is hybridized with the 3 arm strands, forming the Calculator

(Figure 2.4). The molar ratio between the circular ssDNA and each arm strand is 1:1.1.

Figure 2.4. Native polyacrylamide gel electrophoresis confirming the formation of the

single gate Calculator of the single gate. Lane 1: 10 bp DNA ladder. The three intense

37

bands are 50 bps, 100 bps and 150 bps from bottom to top, respectively. Lane 2: center

circular strand. Lanes 3 – 5: center strand with one arm strand: A*, B* or C*,

respectively. Lanes 6 – 8: center strand with two arm strands: A* + B*, A* + C*, or B*

+ C*, respectively. Lane 9: center strand with three arm strands: A* + B* + C*, forming

the complete Calculator structure. Lane 10: 100 bp DNA ladder. For each segment of the

center circular strand, the two termini are portions of the repeating sequence. As a result,

if a segment of the center strand does not have a fully complementary arm strand present

in the system, its two ends may hybridize with the excess arm strands intended to interact

with other segments such that with the middle portion of the segment is not bound. This

process may result in species with retarded mobility as shown in Lanes 3 to 8.

2.4.2 Gel Characterization of Calculator Formation and Operation with

Inputs. The Calculators are prepared with excess arm strands that do not need to be

removed before use. After a Calculator is prepared the specific input strands are mixed

with the Calculator at a molar ratio of 1.2:1. The input strands displace the arm strands

from the central circular strand of the Calculator. The structural changes of the Calculator

corresponding to single gate reactions were characterized by native PAGE (Figure 2.5).

The gel image shown in Figure 2.5 clearly demonstrates the difference between

true and false outputs of the logic gate for different input combinations. Lane 2

corresponds to no inputs and the intact Calculator migrates as a single band. Lanes 3, 4,

and 5 correspond to systems with a single input. Multiple bands are present in the gel

image, but the emergence of species with fully exposed circular strand joints was not

38

observed. Lanes 6 to 9 correspond to systems with 2 or 3 inputs where at least one output

ssDNA is evident.

Figure 2.5. Native PAGE demonstrating the single gate design Calculator. Lane 1: 10 bp

DNA ladder. The three intense bands are 50 bps, 100 bps and 150 bps from bottom to top,

respectively. Lane 2: the fully assembled Calculator. Lanes 3 – 5: the Calculator with a

single input: Inputs A, B, or C respectively. Lanes 6 – 8: the Calculator with two inputs:

Inputs A + B, Inputs A + C, or Inputs B + C, respectively. Lane 9: the calculator with all

three inputs. Lane 10: 100 bp DNA ladder. For each segment of the center circular strand,

the two termini are portions of the repeating sequence. As a result, if a segment of the

center strand does not have a fully complementary arm strand present in the system, its

two ends may hybridize with the excess arm strands intended to interact with other

segments such that with the middle portion of the segment is not bound. This process

may result in species with retarded mobility as shown in Lanes 3 to 8.

39

2.4.3 Detecting the Operation of a Single Majority Gate. A fluorescent dye

molecule was used to detect the products of the 3-input majority gate and to follow the

kinetics of the logic computing reactions (Figure 2.6). The Calculator, a specific

combination of inputs, and the FAM - Iowa BlackTM modified Detector are mixed and the

fluorescence intensity of FAM (Ex 490 nm, Em 520 nm) is measured every 30 seconds at

constant temperature of ~ 20°C.

At the beginning of the reaction the fluorescence intensities of all input

combinations are low because the FAM modified strand in the detector remains

hybridized to the dark quencher modified strand. For reactions with one or no input, no

output ssDNA is produced as the reaction proceeds. Thus, the FAM strands are never

released from interaction with the dark quencher. The fluorescence intensities of these

reactions remain at a low level throughout the experiment, indicating a false output of the

majority logic gate.

For reactions with two or three inputs, one or three ssDNA output domains of the

Calculators are exposed. The outputs are subsequently recognized by the Detector

through toehold hybridization events. Next, the output displaces the FAM modified

strand (toehold mediated displacement) from the dark quencher modified strand. As a

result the fluorescence intensity increases, indicating the true output. The reaction rates

are high at the initial stages of the reaction and slow down considerably as more and

more Calculator species and ssDNA inputs are consumed. After the reaction reaches

equilibrium the fluorescence intensity of that system remains constant. The computation

of each input combination finishes in 0.5 to 1.5 hours.

40

From the design shown in Figure 2.1 it is apparent that if all 3 inputs are

introduced to the Calculator, 3 ssDNA output domains would be exposed. Therefore, the

molar ratio between the output and the Calculator is 3:1. However, for the three cases

with combinations of 2 inputs the molar ratio between the output species and the

Calculator is 1:1 because there is only one output domain exposed per Calculator. Thus,

when there is 3 or more fold excess of the Detector present, the final fluorescence

intensity of the 3-input model is expected to be 3 times higher than the 2-input cases

(Figure 2.6B). If the amount of the Detector in the system is decreased to the same level

as that of the Calculator, the final fluorescence intensities of the true output cases will be

limited by the availability of the Detector. Figure 2.6A illustrates such a scenario in

which four true outputs yield similar fluorescence intensity levels. The reaction kinetics

is the fastest for the system with all three inputs, and for the 2-input systems the rates are

similar when input B is absent, but become much slower when either input A or C is

missing. The 1- to 2-fold difference in the reaction kinetics is not well understood. We

speculate that it may originate from sequence-specific interactions between the DNA

strands, especially in the toehold regions.

The raw data collected from the fluorescence experiments is the absolute intensity

of the detector bound dye at each time point in the reaction. The fluorescence increase for

each reaction is calculated by subtracting the initial intensity from the final intensity. For

cases with a 1:1 Detector to Calculator ratio, the fluorescence increase is normalized to 1

(Figure 2.6A). The curves corresponding to reactions with 2 or 3 inputs plateau above

0.75, while the curves with one or no input reach equilibrium very close to 0.

41

Figure 2.6. Kinetic characterization of the single 3-input majority gate. (A) The ratio

between the Detector and the Calculator is 1:1. (B) The ratio between the Detector and

the Calculator is 4:1. Each curve in these two graphs represents a reaction corresponding

to the inputs specified next to each curve. The fluorescence measurement begins at the

moment that the Calculator, the Detector, and the inputs of each reaction are mixed. The

fluorescence intensity is collected every 0.5 minutes. The fluorescence increase is

calculated by subtracting the initial intensity from the final intensity, normalized and

plotted. For a 1:1 or 4:1 Detector to Calculator ratio, single or no input cases all return an

output of 0. The 2 or 3 input cases all return an output above 0.75. The 3 inputs case for a

4:1 Detector to Calculator ratio returns an output of 2.7, very close to the theoretically

predicted value of 3.

For cases with a 4:1 Detector to Calculator ratio, the fluorescence increase is

normalized to the largest intensity increase of the 2-input reactions (Figure 2.6B).

Notably, the curve corresponding to the 3-input reaction plateaus at more than 2.5, while

the curves corresponding to the 2-input reactions all plateau around 1. These results, in

42

accordance with the 3-input majority gate truth table, validate that our DNA based logic

gate functions as designed.

2.4.4 Assembling a Multi-Functional Circuit. Based on the success of the single

3-input majority gate, we went on to construct a two-generation majority gate circuit. The

circuit is composed of two majority gates operated in series (Figure 2.3). These two

majority gates were individually verified and the kinetics were examined (APPENDIX A,

Figure S2.4). As shown in Table 2.2, by presetting one input in each gate of the circuit

(Y1 and X1, for example), the circuit can realize four different computational patterns

depending on the identities of the preset inputs. For each computation pattern there are

eight unique operations, depending on the combinations of the other three inputs. Figure

2.7 presents the kinetics of these computing systems with different input combinations,

with each panel of graphs representing one computing pattern. In each panel the

fluorescence output versus time plots represent the reaction kinetics of a combination of

inputs (specified next to each curve). The specific combinations of inputs are represented

by three numbers that correspond to Y2, Y3 and X2, respectively. The output of Y2 and

Y3 serves as the intermediate that passes information from the first generation (MY) to

the second generation (MX). For example, the operation 1 + 1 + 0 implies the following

information: 1) the relationship between Y2 and Y3 is “OR”, which only occurs when

Input Y1 is preset as 1; 2) the relationship between (Y2 + Y3) and X2 is “OR”, which

only occurs when Input X1 is preset as 1; 3) the intermediate between the 2 generations is

the result of Y2 + Y3 = 1 + 1 = 1. Therefore, the expected final output is 1. In another

example, the operation (1 + 0) ∙ 1 implies the following information: 1) the relationship

between Y2 and Y3 is “OR”, which only occurs when Input Y1 is preset as 1; 2) the

43

relationship between (Y2 + Y3) and X2 is “AND”, which only occurs when Input X1 is

preset as 0; 3) the intermediate between the 2 generations is the result of Y2 + Y3 = 1 + 0

= 1. Here, the final output is 1.

Figure 2.7A depicts the results of presetting both Y1 and X1 as 0. Thus, the

circuit functions as Y2 ∙ Y3 ∙ X2. For all the input combinations of Y2, Y3 and X2, only

the system in which all three inputs are true returns a true output. The other seven input

combinations should all return false. We experimentally confirmed this for all situations,

except for 0 ∙ 1 ∙ 1, where we observed minimal signal leakage. If we specify a > 0.5

threshold for a true value, the result can be considered to be false.

In Figure 2.7B, Y1 is preset as 1 and X1 is preset as 0. The circuit functions as

(Y2 + Y3) ∙ X2. For this computing pattern, input combinations of (1 + 0) ∙ 1, (0 + 1) ∙ 1,

and (1 + 1) ∙ 1, return true. The other five combinations of input s, (0 + 0) ∙ 0, (1 + 0) ∙ 0,

(0 + 1) ∙ 0, (0 + 0) ∙ 1, and (1 + 1) ∙ 0, return false. As shown in the figure the reaction rate

is the highest for the system with all 3 true inputs. Here, the reactions are monitored for

12 hours. Within this time the fluorescence intensity of the other 2 true output systems

reaches 75% of that of the highest output, thus representing successful true outputs. The

remainder of the operations yield different levels of fluorescence intensities all below 0.3,

thus can be considered to be false outputs.

In Figure 2.7C, Y1 is preset as 0 and X1 is preset as 1. The circuit functions as Y2

∙ Y3 + X2. Five combinations of inputs of this circuit return true, and the other three

combinations return false. The combinations leading to the true output are 0 ∙ 0 + 1, 1 ∙ 1

+ 0, 1 ∙ 0 + 1, 0 ∙ 1 + 1, and 1 ∙ 1 + 1. Among the five true outputs, three reactions are

relatively fast. The fastest reactions finish in approximately 4 hours, while the two slower

44

reactions reach 70% intensity (of the fastest) in 12 hours. The operations with false

outputs all plateaued below 0.3.

Figure 2.7. Kinetic characterization of the multi-functional circuit composed of two 3-

input majority gates. (A) Input Y1 is preset as 0; Input X1 is preset as 0. The computation

pattern is Y2 ∙ Y3 ∙ X2. Only when Y2, Y3, and X2 are all true does the circuit return true.

(B) Input Y1 is preset as 1; Input X1 is preset as 0. The computation pattern is (Y2 + Y3)

∙ X2. Three input combinations return true outputs. (C) Input Y1 is preset as 0; Input X1

is preset as 1. The computation pattern is Y2 ∙ Y3 + X2. Five input combinations return

true outputs. (D) Input Y1 is preset as 0; Input X1 is preset as 1. The computation pattern

is Y2 + Y3 + X2. Seven input combinations return true outputs. Only when Y2, Y3, and

X2 are all false does the circuit return false. Each curve in these four graphs represents a

reaction where the input combination is labeled at the end of the curve. The fluorescence

measurement begins at the moment that the Calculator, the Detector, and the inputs of

45

each reaction are mixed. The fluorescence intensity is measured every minute. The

fluorescence increase is calculated by subtracting the initial intensity from the final

intensity, normalized and plotted.

The final computing pattern of the circuit is Y2 + Y3 + X2, which can be realized

by presetting Input Y1 and X1 both 1 (Figure 2.7D). If any input among Y2, Y3, and X2

is true, the circuit returns true. Indeed, only 0 + 0 + 0 returns a false output. Five input

combinations that have at least one true input from the second generation gate, or both

true inputs from the first generation gate, have similar kinetics and produce final

fluorescence intensities between 1.0-1.1, representing a true output. The fluorescent

intensity of the curves corresponding to the other two cases (with a true input from only

one of the first majority gates) plateaus at 0.6 in 12 hours with slower kinetics, and also

represents a true output.

 The 4 plots shown in Figure 2.7 demonstrate that the signal leakage of each false

computation pattern is controlled below 30%. The true outputs all reach intensities higher

than 60%. This suggests that the 2-generation logic gate cascade is functioning properly.

However, some reactions are obviously slower and result in lower intensities than others.

Generally, the more true inputs (including the controlled two preset inputs, Y1 and X1) in

a system, the faster the reaction is. For example, in Figure 2.7B, (1 + 1) ∙ 1 is faster than

both (1 + 0) ∙ 1 and (0 + 1) ∙ 1. In addition, if the true output depends on a true

intermediate transferred from the first generation (MY) to the second generation (MX), the

reaction is slower. The different rates of each computation reaction can be easily

explained. The intermediate that is transferred from MY to MX is within the circular

46

strand of the MY Calculator. Its exposure induces the strand displacement reaction

between the intermediate segment in the middle of the circular strand on MY and the

strands bound to the circular MX Calculator to expose the final output. Both circular

structures in this step experience a crowed physical environment for the reaction, thus

slowing down the strand displacement reaction in the MX Calculator.

The main source of leakage of the system is the “cross talk” between the two

generations. Specifically, the three inputs of MY all have the whole sequence of the

intermediate from MY to MX, except the toehold. An ssDNA domain can displace an

identical domain from a dsDNA, although the reaction rate is magnitudes lower than

toehold directed strand displacement.9,10 The inputs of MY can displace the X3* strand in

MX. So when there are inputs of both the two generations present at the same time and

the output should be 0, there is possible outstanding leakage. The strategy used to control

the leakage is to use higher concentration of the first generation than the second

generation, so the reaction rate ratio between the toehold-directed strand displacement

and the undesired non-toehold-directed reaction is increased. In preliminary experiments,

the concentration ratio between MY and MX was 1:1. The outstanding leakage was about

50%. The concentration ratio between MY and MX is 2:1 in the experiments of Figure 2.7.

The leakage is well controlled below 30%.

2.5 Conclusion

We experimentally realized a 3-input majority gate based on enzyme free DNA

strand displacement reactions. A 3-input majority gate is a basic and a versatile logic gate

that can be switched between OR and AND gates. The circular structural design

presented here provides a new route for designing complex logic gates and may serve as

47

an efficient candidate in designing efficient DNA computing circuits. By combining two

3-input majority gates in series, we realized a multi-functional circuit that can be

employed in four different forms according to the demand.

Although our design does require a change in the length of strands (which may

cause slower reaction kinetics) when scaling up computing circuits, it still provides an

alternative strategy for constructing complex circuits. Due to the nature of our majority

gate where the inputs and outputs are all ssDNA, it is foreseeable that a circular logic

gate can be combined with other existing DNA logic gates13,16 for construction of larger

circuits for more advance computation.

2.6 References

(1) Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Small 2011, 7, 1673.

(2) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat. Nano. 2011, 6, 763.

(3) Adleman, L. M. Science 1994, 266, 1021.

(4) Stojanovic, M. N.; Stefanovic, D. Nat. Biotech. 2003, 21, 1069.

(5) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.

Nat. Nano. 2010, 5, 417.

(6) Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. Nature 2004, 429, 423.

(7) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(8) Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.;

Simmel, F. C. Phys. Rev. Lett. 2003, 90, 118102.

(9) Yurke, B.; Mills, A., Jr. Genet Program Evolvable Mach 2003, 4, 111.

(10) Zhang, D. Y.; Winfree, E. J. Am. Chem. Soc. 2009, 131, 17303.

(11) Soloveichik, D.; Seelig, G.; Winfree, E. Proc. Natl. Acad. Sci. 2010, 107, 5393.

(12) Phillips, A.; Cardelli, L. J. R. Soc. Interface 2009, 6, S419.

48

(13) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

(14) Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E. Science 2007, 318, 1121.

(15) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318.

(16) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(17) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(18) Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G. H.; Porod, W. Science 2006,

311, 205.

49

Chapter 3

DNA Based Arithmetic Functions: 1-Bit Full Adder and Half Adder Based on DNA

Strand Displacement

3.1 Abstract

 Biomolecular programming utilizes the reactions and information stored in

biological molecules such as proteins and nucleic acids for computational purposes. DNA

has proven itself as a perfect candidate for building biomolecular logic operating systems

due to its highly predictable molecular behavior. In this work we designed and realized

an XOR logic gate and an AND logic gate based on DNA strand displacement reactions.

These logic gates utilize ssDNA as input and output signals. The XOR gate and AND

gate were used as building blocks for constructing half adder and full adder logic circuits.

An adder is a basic arithmetic unit in computing. This work provides the DNA molecular

programming field a potential universal arithmetic tool.

3.2 Introduction

 Programming reaction networks of biological systems is an important way for

scientists to understand the secret of life at the molecular level. These biological systems

with computational functions have been applied in bioengineering and nanomedicine.1,2

DNA is an ideal biomolecular candidate for building up molecular automata, because the

behavior of DNA molecules can be precisely predicted according to Watson-Crick base

pairing. This advantage has promoted DNA systems to facilitate both in vivo and in vitro

applications.3 The rapidly developing field of structural DNA nanotechnology also

mutually benefits from programmed DNA interactions by providing various structural

platforms 4-8 and adopting programming principles.9,10

50

Figure 3.1. Logic diagrams of a half adder and a full adder. (A) The logic diagram of a

half adder. The easiest construction of a half adder contains one XOR gate (drawn in red)

and one AND gate (drawn in blue). The two logic gates share the same two inputs. The

output of the AND gate is the “carry” of the result. The output of the XOR gate is the

“sum” of the result. (B) The logic diagram of a full adder. The easiest construction of a

full adder is composed of two half adders as shown in Panel A. The first half adder drawn

in red uses Input X and Input Y as inputs. One of the two inputs of the second half adder

(drawn in blue) is the output of the XOR gate in the first half adder. The other input of

the second half adder is Cin, which is usually a bit carried from the previous stage. The

“sum” bit in the output is the output of the XOR gate in the second half adder, and is

abbreviated as “S”. The “carry” bit in the output is the result of an OR operation of the

51

outputs of the two AND gates. This bit is usually used as the input carry in the next stage,

and it is abbreviated as “Cout”.

Since the first example of DNA computation solved a seven-city Hamiltonian

path problem,11 several molecular DNA automata systems have been designed and

developed. These systems include enzyme catalyzed12,13 and enzyme-free10,14-17 DNA

reaction networks, DNAzyme facilitated reactions,18,19 and programmed self-assembly of

DNA nanostructures.6,8 In enzyme-free computation systems, the input signals and output

signals are usually designed in the same form, which is typically single-stranded DNA

(ssDNA). Upon mixing the input ssDNA with a system containing a set of programmed

double-stranded DNA (dsDNA) molecules, a series of toehold directed DNA strand

displacement reactions occur and yield a ssDNA product as a detectable output.7,20-25 A

few complicated computations including binary square root26 and neural network

mimicry27 have been demonstrated using the DNA strand displacement strategy.

Table 3.1. Truth Table of a Half Adder

Input X Input Y C S

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 0

In this work we aim to construct a half adder digital circuit and a full adder digital

circuit based on programmed DNA reactions. An adder is a digital circuit that functions

52

as the addition of numbers. A binary half adder performs the addition of its two inputs,

and yields two outputs, a sum and a carry (Figure 3.1A, Table 3.1). A binary full adder

adds three numbers. In addition to the two inputs of a half adder, a full adder has one

more input, which is usually a bit carried over from the previous stage. A full adder also

has two outputs, a sum and a carry for the next stage (Figure 3.1B, Table 3.2). A 1-bit

adder is a basic arithmetic logic unit. It is an important and fundamental operation in

computation.

Table 3.2. Truth Table of a Full Adder

Input X Input Y Input Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

1 1 0 1 0

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

3.3Architectural Design

 The designs of the half adder and full adder circuits are based on the logic

diagrams shown in Figure 3.1. The two logic circuits are mainly constructed from two

types of logic gate building blocks, an XOR gate and an AND gate. We anticipate that

once an XOR gate and an AND gate are designed and realized, with ssDNA representing

53

the input and output signals (the input and output strands all have the same length), we

can implement the half adder and full adder based on these single logic gates. The OR

gate, after the two AND gates in the full adder (Figure 3.1B), is spontaneously realized if

the two AND gates are designed with the same output sequence.

Table 3.3. Truth Table of an XOR Gate

Input X Input Y Output

0 0 0

1 0 1

0 1 1

1 1 0

3.3.1 Design of XOR Gate. A two-input XOR gate (red in Figure 3.1A) performs

an exclusive OR function of the inputs. The logic operation returns true if one and only

one of the inputs is true. If the two inputs are the same, false or true, the logic gate returns

false. The truth table of an XOR gate is shown in Table 3.3. From the truth table, it is

easy to imagine that the two input strands or the active species generated by each input

strand can be designed to be fully complementary to each other, so that when both inputs

are present, the fully complementary species hybridize with each other and render the

product inactive, thus yielding no output strands.

Figure 3.2 shows our design of the XOR gate based on DNA strand displacement

reactions. The two input signals are represented by two ssDNAs. The logic gate program

contains four linear dsDNAs and one DNA hairpin structure. The output is one domain in

the hairpin stem, which is protected if the hairpin is not opened. The output domain in the

54

hairpin structure has the same length as the input strands. This design makes the XOR

logic gate easy to implement in logic gate cascades, where the output of one gate can be

directly utilized by the next logic gate as an input. If the output is not passed to the next

logic gate, the output domain can be detected by a reporter duplex modified with

fluorescent dye and dark quencher on the two component strands, respectively.

Figure 3.2. Architectural design of an XOR gate. The input signals of the logic gate are

represented by two ssDNAs referred to as Input X and Input Y, respectively. The

programmed gate contains four linear dsDNAs (X1, X2, Y1, Y2) and one hairpin

structure (H). Each component strand and the hairpin strand are individually named and

labeled in the figure. Each domain in the strands are also named and labeled. The output

sequence is the 5’ stem and the loop portion of the hairpin, which is protected if the

hairpin is not opened by the upstream reactions. If the logic gate operation yields a true

output, which is represented by the B-T7*-T6* domain in the opened hairpin, the output

sequence can react with a fluorescent dye and dark quencher modified Reporter duplex

(R) and displace the fluorescent dye strand from the dark quencher strand. The true

55

output can thus be detected by a fluorescence intensity increase. The domains referred to

as “T” and a number are designed to function as toeholds, and are each 5 nucleotides (nts)

long, except that the T7h domain in the hairpin is 2 nts. The domains A, A*, B, and B*

are 12 nts long. There is a one nucleotide “cap” on the 5’ end of T5 in both Strands X2-

and Y2-. (See supporting information for details.) The fluorescent dye is 6-

carboxyfluorescein (6-FAM), λEx = 495 nm, λEm = 520 nm. The dark quencher is Iowa

Black FQ, with an absorbance spectrum ranging from 420 nm to 620 nm with an

absorbance maximum at 531 nm.

In the absence of any input strands, the dsDNA and hairpin in the program do not

react with each other, thus the output domain remains protected during the entire

computing process, yielding no fluorescence increase. If any single input strand is added

to the system, the output domain is deprotected from the hairpin structure after three steps

of strand displacement reactions, thus the XOR gate returns a true output. Figure 3.3A

shows the operation with the presence of Input X as an example. When the two inputs are

both added to the system, each input strand releases another ssDNA after the first strand

displacement reaction. The two ssDNA released by the inputs are fully complementary to

each other. At this step, these two strands hybridize to each other and lose the ability to

execute the downstream reactions. The reaction network stops and yields no output strand.

Figure 3.3B shows the detailed reactions with both of the inputs. The overall design

features a seesaw pattern at every strand displacement reaction except for the reaction of

the final fluorescence reporter. The seesaw pattern incorporates an extra toehold domain

on the end of the migration domain of each strand displacement reaction. At the end of

56

branch migration, the extra five-base long toehold is not stable enough to maintain

hybridization, thus, self-dissociates to finish the strand displacement reaction. This

toehold can also initiate the reverse strand displacement reaction. Making each step in the

reaction network reversible benefits the system with a self-correction function.27

Figure 3.3. Reaction scheme of the XOR gate under conditions with one input strand,

and with two input strands. (A) Reaction of the XOR gate with only one input. Input X is

57

shown in the figure as an example. T1* domain in Input X and T1 domain in X1- strand

work as toeholds and initiate the strand displacement reaction. As Input X migrates along

X1-, X1+ is finally dissociated from X1-. Similarly, X1+ displaces X2+ from X2-. X2+,

with active toehold T5*, opens the hairpin structure and exposes the output sequence B-

T7*-T6*. This output displaces the fluorescence dye strand from the dark quencher

strand, thus increases the fluorescence intensity of the system. (B) Reaction of the XOR

gate with both of the inputs. The first reaction step of the two input strands is the same as

in Panel A. Input X and Input Y produce single-stranded X1+ and Y1+. X1+ and Yi+ are

fully complementary to each other. These two strands hybridize and form a dsDNA

without any active toehold. The reaction stops at this step and the output domain in the

hairpin is not exposed, thus, there is no fluorescence intensity increase.

One important feature in the design of the XOR gate is that the two input stands

are not fully complimentary to each other. Although Domain A* in Input X and Domain

A in Input Y are complementary to each other and are expected to hybridize as they are

mixed, the active toeholds in the two inputs are not protected and are still expected to

initiate the downstream strand displacement reactions. The two strands produced by the

two inputs individually after the first step of reactions are then fully hybridized to each

other and have all toeholds blocked. This design can avoid potential difficulties in two

different conditions. The first condition is when the relative concentration of one input is

higher than the other. If the inputs are designed to fully hybridize to each other, the

excess amount of one input may continue to yield an unexpected true output. With the

current design, even if one input is in excess, X1+ and Y1+ are produced in equal

58

amounts, thus, the excess of an individual input will not sabotage the result. The second

condition is for the half adder and full adder circuits (Figure 3.1): there is always an AND

gate sharing the same input strands with the XOR gate. For AND gates, we do not want

the two inputs to inactivate each other when they co-exist.

 Another feature of the design of the XOR gate is that a hairpin structure is used to

shield the output. From Figure 3.3 we can see that for each input strand, the active

toehold domain is on the 3’ end of the migrating domain. However, after the second step

of reaction, the active toehold domain is moved to the 5’ end of the migrating domain in

the resulting active species. A hairpin structure can be employed to easily reverse the

relative position of the toeholds so that migrating domains in the output strand have the

same polarity as the input strands. However, a hairpin structure is usually more

thermodynamically stable than a linear DNA duplex. The melting temperature of a

hairpin with a loop of five to eight nucleotides and a five-base-pair stem is much higher

than room temperature,28 which is the typical operating temperature of DNA strand

displacement reactions. So if a true output is expected, and if toehold T7h in hairpin

strand H is as long as other toehold domains, T7h-T7* hybridization will not be able to

spontaneously dissociate at the end of the branch migration to open the hairpin, thus, the

active toehold T6* of the output domain will be still protected within the hairpin loop. In

order to solve this problem, we reduced the length of T7h in the hairpin by several bases

at the 5’ end. For every base removed from T7h, the stem of the hairpin is reduced by one

base pair and the loop increased by one nucleotide. We carefully examined the effect of

the length of T7h, and found the optimal length of T7h is 2 nucleotides. This length

allows sufficient opening of the hairpin, and a toehold long enough to initiate reversible

59

strand displacement reaction for self-correction. The effect of the length of T7h is

discussed in detail in the supporting information.

 3.3.2 Design of AND gate. An AND gate (blue in Figure 3.1A) is a basic logic

gate that returns true only if both of its two inputs are true. If neither or only one input is

true, the output of the AND gate is false. The truth table of an AND gate is shown in

Table 3.4.

Table 3.4. Truth Table of an AND Gate

Input X Input Y Output

0 0 0

1 0 0

0 1 0

1 1 1

The design strategy of the AND gate is based on DNA strand displacement and

involves converting the two input strands into the same active intermediate species with

an equivalent of the total inputs. If one input is added, the amount of the intermediate is

one equivalent. If both inputs are added, the amount of the intermediate is two

equivalents. Then a threshold dsDNA is used to consume one equivalent of the reactive

intermediate. Thus, only when there are two inputs yielding two equivalents of the

intermediate will one equivalent of the intermediate surpass the threshold and finally

produce a true output strand.26

60

Figure 3.4. Architectural design of an AND gate. The input signals of the logic gate are

represented by two ssDNA named Input X and Input Y, respectively. The programmed

gate contains five linear dsDNA (M, N, P, Q, V) and one hairpin structure (S). Each

component strand and the hairpin strand are individually named and labeled in the figure.

Each domain in the strands are also named and labeled. The output sequence is the 5’

stem and the loop of the hairpin, which is protected if the hairpin is not opened by the

upstream reactions. If the logic gate yields a true output, which is represented by the D-

T11*-T10* domain in the opened hairpin, the output sequence will react with a

fluorescent dye and dark quencher modified Reporter duplex (W) and displace the

fluorescent dye strand from the dark quencher strand. The true output can thus be

detected by a fluorescence intensity increase. The domains referred to as “T” and a

number are designed to function as toeholds, and are 5 nts long each, except that T11h in

the hairpin is 2 nts. The Domains A, A*, C, C*, D, D*, E, and E* are 12 nts long.

Domains A+1/2 and A-1/2 are 6 nts at the 5’ end and 3’ end, respectively. Domains A*+1/2

and A*-1/2 are 6 nts at the 5’ end and 3’ end, respectively. Domain E*-1/2 is 6 nts at the 3’

end of Domain E*. There is a one nucleotide “cap” on the 3’ end of Domain C in Strand

61

Q+. (See supporting information for details.) The fluorescent dye is

hexachlorofluorescein (HEX), λEx = 538 nm, λEm = 555 nm.

The design of the AND gate with DNA strands is shown in Figure 3.4. The

system is similar to that of the XOR design. The two inputs are represented by two

ssDNAs. The programmed gate contains five linear dsDNA and a hairpin structure. The

output is also the 5’ stem and the loop in the hairpin, which is protected if the hairpin is

not opened by the upstream reactions. A Reporter DNA double helix modified with

fluorescent dye and dark quencher is added in the system to detect the output strand by an

increase in fluorescence. In order to realize the function of an AND gate, a hairpin

structure is not necessary. Here, the hairpin keeps the input and output strands of the

AND gate in the same format of those in the XOR gate. In addition, the rate hairpin

opening is expected to be slower than the strand displacement reaction of a linear dsDNA.

Thus, introducing a hairpin structure brings the operating time of the AND gate in the

same range as the XOR design, which is preferred in multiple gate logic circuits.

The detailed operation with each input combination is shown in Figure 3.5. The

first two steps of the reactions of each input are designed to convert the different input

strands into the same reactive species, single-stranded P+. If only one input is added, one

equivalent of P+ is produced. If both inputs are added, two equivalents of P+ are

produced. There is a threshold structure in the system, which binds to ssDNA P+ quickly,

and converts one equivalent of P+ to waste. As a result, if only one input is added, the

reactive strand P+ is completely consumed and no downstream reaction occur, thus, no

output strand is produced. If both of the two inputs are added, after one equivalent of P+

62

is consumed, the surviving equivalent of P+ participates in the downstream reactions and

finally yields a true output that is detected by an increase in fluorescence.

 Strands M+, M-, N+, and N- all have only half of the corresponding domain A or

A*. This strategy is used to avoid interaction between M+ and N+ when the two inputs

are present. In our preliminary experiments, we used full-length A and A* domains in

these four strands and observed that the reaction with two inputs does not produce any

output in a reasonable time period. We then tried to remove the threshold from the system,

expecting the reactions with one input and two inputs would all show a fluorescence

increase. To our surprise, the total reaction rate with two inputs is slower than the rates of

reactions with only one input. We propose that the hybridization between Domain A* in

M+ and Domain A in N+ significantly slow down the reaction. Next we removed half of

Domain A and Domain A* in these strands, leaving the strand displacement reactions

with the inputs still possible, but avoiding hybridization between M+ and N+. Domain

A*-1/2 in M+ has the same sequence as the terminal 6 bases at the 3’ end of Domain A*,

so A*-1/2 is complementary to the terminal 6 bases at the 5’ end of Domain A. However,

Domain A-1/2 in Strand N+ is the same as the terminal 6 bases at the 3’ end of Domain A.

As a result, M+ and N+ do not interact with each other, thus, the reaction rate did not

decrease as observed in the preliminary experiments.

63

64

Figure 3.5. Reaction of the AND gate under conditions with one input strand, and with

two input strands. (A) Reaction of the AND gate with only one input. Input X is shown in

the figure as an example. T1* domain in Input X and T1 domain in X1- strand work as

toeholds and initiate the strand displacement reaction. As Input X migrates along M-, M+

is finally dissociated from M-. Similarly, M+ displaces P+ from P-. Only one equivalent

of P+ is generated at this step. ssDNA P+ can either bind to Q- or V+. Strand Q- displays

an E*-1/2 domain as a part of a longer toehold compared to V+, so P+ prefers to bind to Q-

and is so consumed by the threshold duplex formed from Q+ and Q-. The reaction stops

at this step and the output domain in the hairpin is not exposed, thus, there is no

fluorescence intensity increase. (B) Reaction of the AND gate with both of the inputs.

The first reaction step of the two input strands is the same as in Panel A. Input X and

Input Y produce single-stranded M+ and N+. The relative concentrations of M+ and N+

are both one equivalent. M+ and N+ displace P+ from P- at the same time, and produce

two equivalents of ssDNA P+. One equivalent of P+ is consumed by the threshold Q+/Q-

structure, and the remaining equivalent continues to the downstream reactions and finally

opens the hairpin structure, exposing the output domain in the hairpin. This output

displaces the fluorescence dye strand from the dark quencher strand, thus increases the

fluorescence intensity of the system.

 3.3.3 Design of Half Adder. The half adder circuit in Figure 3.1 does not require

cascading logic gates. The XOR gate and the AND gate in the circuit are in the same

layer. A pair of XOR and AND gates with the same input sequences mixed in the same

system can function as a half adder. Here the reactive species in the reaction network of

65

each logic gate do not interact with the strands in the other logic gate to any considerable

extent (any consecutive sequence similarity < 4 nt). Since the fluorescent dyes used in the

two gates are different with no spectral overlap in their absorbance and emission, there

will be no significant fluorescence signal interference.

 3.3.4 Design of Full Adder. The logic diagram of the full adder shown in Figure

3.1B involves one cascading logic gate in the circuit. The output of the XOR gate in the

first half adder is used as one input of the two logic gates in the second half adder. This

logic gate cascade requires the sequence of one input of the second half adder to be

designed as the same as the output of the first XOR gate.

 One of the two outputs of the full adder is the “carry”, which is the result of an

OR function of the result of the two AND gates in the circuit. This OR gate does not

require any special design. If the output sequences of the two AND gates are designed to

be the same, they spontaneously realize the OR gate function. If any one or both of the

two AND outputs is true, the carry output is true.

3.4 Results and Discussion

 3.4.1 Operation of a Single XOR Gate. The dsDNA in the XOR gate are all

individually annealed from the component ssDNA. The assembled dsDNA are then

mixed together. In order to monitor the fluorescence intensity change of each reaction

with a specific input combination, the measurement of the fluorescence intensity at the

emission wavelength starts immediately after the input strand combination is added to the

solution. The fluorescence intensity is measured once every minute. The relative

concentrations of each input strand and the dsDNA in the solution are all the same. The

66

final concentration of each species is 0.5 μM. The solution is controlled under a constant

temperature of 25 oC during the whole measurement process.

Figure 3.6. Kinetic characterization of the XOR gate. The fluorescence measurement

starts at the moment the inputs strand(s) is mixed with the other strands in each reaction.

The input combination corresponding to each curve is labeled on the right. The

fluorescence intensity is collected once each minute. The data is normalized to the

intensity level of the true output sample at 8 hours. The reactions with single inputs both

return true outputs. The reaction with no input strand shows no significant fluorescence

change, indicating a false output. The reaction with two inputs returns a false output as

designed. It shows a leakage of about 27%, which is acceptable.

 The kinetics of the XOR logic gate is shown in Figure 3.6. The fluorescence

intensities in the four reactions with different input combinations all started from a low

level. The reaction system without any input strands does not show any significant

67

fluorescence intensity change over eight hours. The reaction with both of the inputs

shows an observable fluorescence increase. The total intensity increase over eight hours

is not significant compared to the fluorescence change of the reactions with a single input.

The result of the reaction with both inputs should be considered as a negative output, as

well as the result of the reaction without any input strand. The two reactions with a single

input show a steady fluorescence increase over the eight hour measurement period. The

increase slows down after two hours. The two reactions nearly finish within eight hours.

The final fluorescence intensities are significantly higher than those of the reactions with

both or neither of the inputs, and should be considered to be true outputs.

The data shown in Figure 3.6 are normalized. In each reaction, the initial intensity

is subtracted from the intensity at each time point to calculate the fluorescence increase.

The fluorescence increase at each time point is then divided by the highest final level (at

8 hours), which is the fluorescence increase of one of the two reactions with a single

input. The reaction kinetics of the two single-input reactions are similar to each other.

The final fluorescence intensities are at the same level, within 10% of one another.

The fluorescence increase of the reaction with both inputs shows moderate

leakage, which is about 27% of the true output. This leakage level is entirely acceptable.

Figure 3.3B shows that Strand X1+ and Y1+ should fully hybridize to each other and

form non-reactive dsDNA as designed. The origin of the leakage might be that although

the hybridization between Strand X1+ and Y1+ should be fast, a small portion of Strand

X1+ and/or Y1+ still goes on to the slower downstream reactions.

 3.4.2 Operation of a Single AND Gate. The experimental operation of a single

AND gate is the same as the XOR gate. All the double helical structures or the hairpins

68

are pre-annealed. The pre-assembled double strands are then mixed. The fluorescence of

the solution is monitored as soon as the input strands are added and mixed. The final

concentration of each strand is 0.5 μM. The experiment is conducted and kept at 25 oC.

The fluorescence intensities of each reaction with different input combinations are

collected every minute.

Figure 3.7. Kinetic characterization of a single AND gate. The fluorescence

measurement starts at the moment when the inputs strands are mixed with the other

strands in each reaction. The input combination corresponding to each curve is labeled on

the right. The fluorescence intensity is collected once each minute. The data are

normalized to the intensity level of the true output sample at 24 hours. The reaction with

both inputs returns a true output. The reactions with only one input strand shows no

significant fluorescence change, indicating a false output. The reaction with no input

returns a false output as designed. All reactions show a fast, non-specific fluorescence

69

increase over the first hour of the reactions. The reason for this fluorescence change is not

clear.

The fluorescence kinetics of the AND gate is shown in Figure 3.7. There is a fast

fluorescence increase at the beginning of all the reactions. The reason for this small

intensity increase is not clear. Despite the small fluorescence change in the first hour of

the reactions, the reactions with one input or no input do not exhibit fluorescence

increases over the measurement time. These indicate the false output of the AND gate

when any one of the inputs is absent. The reaction with two input strands shows a

significant fluorescence increase, which indicates a true output. The fluorescence

intensity of the true output increased more slowly for the first eight hours than later. The

slow increase in this period corresponds to the threshold being consumed. The whole

reaction process is slower than the operation of the XOR gate shown in Figure 3.6. One

reason for the slow AND gate operation might be that the design of the AND gate

involves five steps of reactions from the input strands to the separation of the fluorescent

dye from the dark quencher, which is one additional step than the reaction of the XOR

gate. In addition, consuming the threshold in the AND gate takes extra time.

 The data shown in Figure 3.7 are normalized in the same way as the XOR gate.

The final relative intensities of the reactions with a single input are relatively high and

reach a level of nearly 40%. However, the high final fluorescence level originates from

the non-specific fluorescence increase that occurs during the first hour. Despite the initial

issue, the fluorescence intensities of the false-output reactions do not shown significant

change over the remainder of the measurement period. On the other hand, at the 24 hour

70

time point, the fluorescence intensity of the true-output reaction is still steadily increasing.

If observed for a longer time, the difference between the positive and negative outputs

would be larger than what is shown in Figure 3.7.

Figure 3.8. Implementation of a half adder with kinetics for a single XOR gate and a

single AND gate. (A) The result of 0 + 0. The carry and sum outputs are both 0,

indicating 0 + 0 = 0. (B) The result of 1 + 0. The sum output is 1, and the carry output is

0, indication 1 + 0 = 1. (C) The result of 0 + 1. The sum output is 1, and the carry output

is 0, indication 0 + 1 = 1. (D) The result of 1 + 1. The sum output is 0, and the carry

output is 1, indication 1 + 0 = 10. The results shown in the four panels correspond to

successful implementation of individually operated single gates. The fluorescence

intensities of each logic gate are normalized individually.

71

 3.4.3 Operation of a Half Adder. The half adder does not contain any cascading

logic gates, so we expected that the construction of a half adder could be achieved by

simply mixing the XOR and AND gates. However, we found after mixing the two

systems together, each strand in a single gate is diluted. The designs are sensitive to

concentration changes because the hairpin opening depends on the strand concentration

(see supporting information for details). Thus, we have not yet achieved adequate

experimental result with both gates in the same solution.

 However, if we combine the results of the single gates to implement a half adder,

the correct half adder operation can be simulated based on the operation of the individual

gates. The combination of single AND and XOR gates is shown in Figure 3.8. The four

panels individually show input combinations. The result clearly demonstrates a binary

adding function of two digits.

3.4.3 Operation of a Full Adder. The experiments are still ongoing. The

operation of a full adder faces the same difficulties as the half adder. The concentration of

each strand is significantly diluted after mixing multiple gates in the same solution,

making the reaction kinetics difficult to predict and control. We are developing a

plausible approach to increase the concentration of each strand, so that the logic operation

can be carried out without significant errors in a reasonable time period.

3.5 Conclusion

In summary, we have designed and experimentally realized an XOR logic gate

and an AND logic gate based on DNA strand displacement reactions. The XOR gate is an

important logic gate in digital circuits. It functions as an essential role in basic arithmetic

circuits, such as adders and subtractors. We also explored the construction of a half adder

72

and full adder with our designs of the XOR gate and the AND gate. The experiments are

still ongoing. The main difficulty in the operation of scaled-up systems is that the

reactions of the hairpin structures are kinetically and thermodynamically affected by the

concentration. We are still looking for methods to improve the reaction of the hairpins,

either by adding supporting strands, similar to fuel strands, to the systems, or by

experimentally increasing the operating concentration of the DNA strands.

 An adder is a basic arithmetic unit. Our work provides a potential approach to the

construction of large scale arithmetic systems with DNA strands. This may largely

broaden the potential applications in the field of DNA molecular programming.

3.6 References

(1) Simmel, F. C. Nanomedicine 2007, 2, 817.

(2) Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H.

Angewandte Chemie International Edition 2009, 48, 872.

(3) Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Small 2011, 7, 1673.

(4) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat Nano 2011, 6, 763.

(5) Lin, C.; Liu, Y.; Yan, H. Biochemistry 2009, 48, 1663.

(6) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proceedings of

the National Academy of Sciences 2009, 106, 6054.

(7) Li, W.; Yang, Y.; Jiang, S.; Yan, H.; Liu, Y. J Am Chem Soc 2014, 136, 3724.

(8) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS Biol 2004, 2, e424.

(9) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Nano Letters 2012, 12, 3290.

(10) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(11) Adleman, L. M. Science 1994, 266, 1021.

(12) Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. Nature 2004, 429, 423.

73

(13) Stojanovic, M. N.; Stefanovic, D. Nat Biotech 2003, 21, 1069.

(14) Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.;

Simmel, F. C. Physical Review Letters 2003, 90, 118102.

(15) Yurke, B.; Mills, A., Jr. Genet Program Evolvable Mach 2003, 4, 111.

(16) Zhang, D. Y.; Winfree, E. J Am Chem Soc 2009, 131, 17303.

(17) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano Letters 2013, 13, 2980.

(18) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.

Nat Nano 2010, 5, 417.

(19) Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. Sci. Rep. 2013, 3.

(20) Soloveichik, D.; Seelig, G.; Winfree, E. Proceedings of the National Academy of

Sciences 2010, 107, 5393.

(21) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.;

Seelig, G. Nat Nano 2013, 8, 755.

(22) Phillips, A.; Cardelli, L. J R Soc Interface 2009, 6, S419.

(23) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

(24) Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E. Science 2007, 318, 1121.

(25) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318.

(26) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(27) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(28) Rentzeperis, D.; Alessi, K.; Marky, L. A. Nucleic Acids Research 1993, 21, 2683.

74

Chapter 4

Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA

Origami Frames and Their Dynamics

Adapted with permission from Li, W.; Yang, Y.; Jiang, S.; Yan, H.; Liu, Y., Controlled

Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and

Their Dynamics. J. Am. Chem. Soc. 2014, 136, 3724-3727. Copyright 2014 American

Chemical Society.

4.1 Abstract

Controlled nucleation of nanoscale building blocks with seeds programmed on

geometrically defined nanoscaffold provides a unique strategy to study and understand

the dynamic processes of molecular self-assembly. Here we utilize a two dimensional

(2D) DNA origami frame with a hollow interior and selectively positioned DNA

hybridization seeds to control the self-assembly of DNA tile building blocks, where the

small DNA tiles are directed to fill the hollow interior of the DNA origami frame, guided

through sticky end interactions at prescribed positions. This design facilitates the

construction of an origami-DNA array hybrid that adopts the overall shape and

dimensions of the origami frame and contains a 2D array in the core consisting of a large

number of simple repeating DNA tiles. The formation of the origami-array hybrid was

characterized with Atomic Force Microscopy (AFM), and the nucleation dynamics were

monitored with time-series AFM scanning and fluorescence spectroscopy, revealing a

faster kinetics of growth within a frame compared to those without a frame. Our study

provides insights for understanding the fundamental processes of DNA based self-

assembling systems.

75

4.2 Introduction

DNA tiles composed of a small number of short synthetic DNA oligomers have

been employed as building blocks for the assembly of two-dimensional (2D) and three

dimensional (3D) nanostructures.1-3 Various current and potential future applications of

these DNA nanostructures have been demonstrated in biosensing, nanoelectronics, and

molecular programming.4-11 2D arrays of repeating small DNA tiles with designed sticky

ends (single stranded overhangs) can grow into large arrays that reach micrometer to sub-

millimeter scales.3,12,13 However, the lack of a defined boundary renders the 2D arrays of

DNA tiles less than adequate when precise size control is desired.

DNA origami2,14,15 contains normally one long scaffold DNA strand (e.g. a single

stranded DNA viral genome) and many (~ 200) short staple strands with designed

sequences that hybridize to different part of the scaffold strand and help it to form a

desired shaped nanostructure. Intrinsically, DNA origami will have well defined shapes

and dimensions. Other scaffold-less non-repeating DNA nanostructures16,17 also can

achieve the precise size and shape control. However, hundreds or even thousands of

unique DNA strands are required to reach ~ 100 nm size scale. Expanding the size of

DNA origami without sacrificing assembly yield and cost is an ongoing problem.18-21

Here we utilize a hollow 2D DNA origami structure as a frame to direct the assembly of a

2D array of double-crossover (DX) tiles with high assembly yields and fixed dimensions,

and at the same time to investigate how controlled nucleation of DNA tiles with

programmed seeds can help understand the dynamic processes of DNA self-assembly.

This hybrid structure adopts the advantages of fixed dimensions from DNA origami and

large sizes from DNA tile arrays.

76

4.3 Architecture Design

4.3.1 Design of the DNA DX Tiles and 2D Array. The 2D array we utilized is

composed of four unique DX tiles (Figure 4.1A, Figure S4.1). Each tile has a length of

four full DNA helical turns (42 bp), which is ~ 13.6 nm. The four sticky ends displayed

from each tile are specifically designed to be complementary to one another so that the

four tiles spontaneously self-assemble into a 2D array when mixed together, where Tiles

A and B are arranged alternately to form one column, and Tiles C and D are arranged

alternatively to form a second column. The two columns alternately bind to each other to

form the 2D array (interior part of Figure 4.1C).

4.3.2 Design of the DNA Origami Frame. The DNA origami designed here

consists of two distinct scaffold strands, using ssDNA from M13mp18 (7249 nts long)

and phi X 174 (5286 nts long) (Figure 4.1B, Figure S4.3). By combining the two

scaffolds within a single structure we were able to significantly increase the size of the

origami frame (~73% larger than origami structures assembled from M13mp18 DNA

alone), such that a relatively large number of DX tiles could be incorporated into the

DNA origami. However, a larger frame is likely to suffer from slow assembly rates and

result in low yield of the frame alone. To overcome these difficulties we maximized the

contact between the two scaffolds that compose the frame. We assumed this strategy

would increase the probability of effective cooperative assembly between the two long

scaffold strands.18,19 In order to demonstrate that the growth of the 2D array within the

origami frame can be asymmetric, the origami frame was designed with one half wider

than the other half (resembling an L-shape).

77

Figure 4.1. DNA origami controlled assembly of a 2D DX tile array within a DNA

origami frame of fixed size. (A) The four unique DX tiles employed to assemble the 2D

array. Each tile is four full helical turns along the helical axes. Unique sticky ends on Tile

A and Tile B are denoted as a-h. The complementary sticky ends on Tile C and Tile D are

78

denoted as a’-h’, respectively. (B) The origami frame structure. The origami frame is 210

nm long along the helical axis. The wider edge is 95 nm. The narrower edge is 60 nm.

The hollow interior is 150 nm long and 15 or 32 nm wide. Sticky ends are located along

the inner edges to initiate and direct the nucleation of DX tiles within the frame. The

origami frame is scaffolded by two different single strands: M13mp18, which is shown in

black, and phi X 174, which is shown in grey. (C) The origami frame directed assembly

of a 2D array of DX tiles. The origami frame is designed to accommodate 82 DX tiles.

The sticky ends displayed from the origami frame only associate with Tile A or B, so that

nucleation begins with Tile A and B (but not with Tile C or D). The tiles are arranged in

alternating columns of Tiles A and B, and Tiles C and Tile D, respectively. The inset in C

shows the tile-origami connection and the tile-tile connection.

4.3.3 Design of the Frame-Array Hybrid Structure. The DNA origami frame

has a hollow interior. At several locations along the inner face of the top and bottom

edges of the origami we pre-positioned 42 bp long DNA duplexes linked to the frame

through two crossovers (the same size as half of a DX tile). Both ends of these duplexes

displayed a sticky end, with an inter-molecular distance equal to the length of a DX tile.

Besides these sticky ends along the top and bottom edges, the inner face of each of the

DNA helices comprising the origami frame displayed a pair of sticky ends with designed

sequences. Upon mixing of the origami frame and small DX tiles, the sticky ends along

the inner edge of the frame serve as nucleation sites for the growth of a 2D array within

the origami structure (Figure 4.1C). The specific sequences of the sticky ends facilitate

the association of either Tile A or Tile B, starting from the inner corners (with three

79

sticky end interactions required to realize each tile attachment) and along the inner edges

of the frame (with two sticky end interactions required for each tile attachment). After

one Tile A and one Tile B from consecutive rows are securely positioned, the sticky ends

displayed from the two tiles work cooperatively to bind either Tile C or Tile D. As the

nucleation and growth process continue, the origami frame is gradually filled by a 2D

array of DX tiles (Figure 4.1C).

4.4 Results and Discussion

4.4.1 Preparation and Characterization of the Origami and Tiles. The DNA

origami frame was prepared by mixing the two scaffold strands (1:1 molar ratio) with 430

helper strands. The mixture was then cooled from 90 oC to 4 oC over 12 hours. The

excess helper strands were removed by Amicon spin columns (Millipore) with 100KD

molecular weight cut off membrane filters. The formation of the origami frame was

evaluated by atomic force microscopy (AFM) (Figure 4.2A). The origami frame formed

well, as designed in Figure 4.1B. Since the two scaffold strands are in contact with one

another in many areas of the structure there is a chance that more than one of each

scaffold could be linked together to form larger aggregations with ill- defined shapes

(Figure S4.4). Increasing the molar ratio between the helper strands and the scaffold

strands helped to reduce the occurrence of aggregation. With 30 fold excess of helper

strands, the formation yield of the origami frame is ~70% based on AFM images.

The four unique DX tiles were prepared separately by annealing the respective

strands mixtures (5 strands each) from 90 oC to 4 oC over two hours. When the tiles are

mixed in the absence of the origami frame structure, they form 2D arrays of various sizes

and unregulated boundaries (Figure S4.5).

80

4.4.2 Directed Self-Assembly Process, Purification, and Characterization. The

DNA origami frame directed assembly of a 2D array of DX tiles was achieved by mixing

the origami frame with Tiles A-D. As shown in Figure 4.1C, the assembly ratio of each of

the individual tiles to the origami frame varied from 16:1 to 25:1. Considering the

possibility of spontaneous formation of “unframed” 2D arrays that are not initiated and

directed by the origami structure, all tiles were mixed with the origami frame at a molar

ratio of 100:1 which ensured that there was a large excess of tiles in solution. The tile and

origami frame mixture was incubated at 25 oC overnight. Next, the origami frame-2D

array hybrid was purified by agarose gel electrophoresis to remove the excess free DX

tiles and “unframed” tile arrays (Figure S4.6). The band corresponding to the framed

arrays was cut and extracted from the gel and then characterized by AFM (Figure 4.2B).

The AFM images show that the DX tiles fit well into the origami frame as designed.

Approximately 70% of the origami frames were fully filled with the 2D array without any

deformation. Most of the defective frame-array hybrids were grown in deformed frames.

Only a few were incompletely filled.

The frame-array hybrids cannot be sufficiently separated from the frame-free 2D

arrays using agarose gel electrophoresis (Figure S4.7) due to their similarity in size. In

order to obtain a cleaner separation, the origami frame was modified with biotin by

covalently label one help strand with a biotin, and subsequently separated from the

frame-free 2D arrays and individual tiles using monomeric avidin resin (Thermo

Scientific), finally eluded by washing with extra free biotin. The AFM images show that

the frame-array hybrids purified by this method (Figure 4.2C) are well-formed with fewer

impurities visible in the background (Figure S4.8). Note that in Figure 4.2C, every

81

origami frame has a bright spot at the inner corner position, which is the position of the

helper strand with biotin modification protruding from the origami surface. The yield and

defects observed are similar to those purified using the gel electrophoresis method.

Figure 4.2. AFM images of the DNA origami frame and the frame – DX tile array

hybrid. (A) Empty DNA origami frame. (B) Origami frame – array hybrid, after

82

purification by agarose gel electrophoresis. (C) Origami frame – array hybrid. Here, the

frames are modified with biotin. The frame-array hybrid is purified by binding to mono-

avidin beads and then eluting with excess biotin. The scale bars in the three figures are

100 nm.

The sources of defects in the frame-array hybrids required careful examination

(Figure S4.10). We propose that one major origin of the defects is a “cross-talk” between

the complementary sticky ends in different rows of the tile array. Because the inner

corner positions of the frame each provide three sticky ends for the tiles to attach with,

and the positions along the inner edges each provide two sticky ends, we envision that the

first step of the self-assembly process is the association of the tiles at the inner corners of

the frame, followed by association with the inner edges, effectively creating a new

boundary one layer inward. At the same time, this process exposes additional sticky ends

that allow tiles in a second row (or column) to attach. It is at this stage, due to the

flexibility of DX tiles at the crossover points, that two sticky ends on tiles in non-

neighboring rows within the same column (with a gap the width of one- or two-tiles) may

be able to hybridize to the corresponding sticky ends displayed from a single tile in the

next column such that the frame shrinks in width and bends inwards (thus, the frame-

array hybrid would appear thinner). Similarly, but oppositely, there could be more rows

of tiles inserted than designed, causing the frame-array hybrid to appear wider than

designed.

4.4.3 Kinetics Characterized with FS-AFM. In order to better understand the

self-assembly process of the DX tiles within the DNA origami frame, the nucleation and

83

growth process was monitored using real-time AFM scanning which allows imaging of a

liquid sample consecutively when it is deposited on a flat mica surface. Each scan can be

collected in a short time (< 1 min per 516x516 pixel image) without compromising the

image quality. First, the empty DNA origami frame, together with Tiles C and D (in a

ratio of 1:100:100, respectively) were deposited on a mica surface. Because the sticky

ends displayed from the frame are all designed to associate with Tiles A and B but not

Tiles C or D, and Tiles C and D do not associate each other, the nucleation does not start

at this stage. Next, a mixture of Tiles A and B (100 fold excess to the origami frame) was

injected into the sample droplet. Nucleation is expected to begin immediately and

continuous AFM imaging in the same area was initiated. Figure 4.3 shows the

consecutive AFM images collected at constant time intervals (87 seconds per image) that

monitor the dynamic self-assembly of DX tiles within the origami frame. From the

images, we observed that the nucleation of DX tiles starts in the direction parallel to the

DNA helices along the left and right inner edges as well as in the direction perpendicular

to the helices along the top and bottom inner edges. We should point out that the excess

tiles may undergo spontaneous nucleation in solution, and small sections of frame-free

2D arrays appear nearby, as first observed in the second image. Spontaneous nucleation

in solution is apparently slower than nucleation within the frame. It is also possible that

nucleation happens in solution at an earlier time and is deposited between collection of

the first and second image. Regardless, growth outside the frame does appear to occur

more rapidly than within the frame possibly due to less structural constrains as the tiles

grow outwards instead of inwards. As the concentration of free DX tiles quickly

decreases after the nucleation step the growth of the tile array within the origami frame

84

significantly slows down before the frame is completely filled. Nevertheless, the

nucleation and growth process within the origami frame is finished within 1 hour. The

same process is expected to be faster in solution without the restriction of the surface.

Figure 4.3. FS-AFM images showing the dynamic nucleation and growth of DX tiles

within the DNA origami frame. As soon as the reactants are all deposited on the mica

surface, scanning begins. The total scan time for each image is 87 seconds. Frame 8 to

Frame 13 is not shown because there is little change of the images in the time period. The

sequential images reveal that nucleation along the DNA helices is faster than in the

direction perpendicular to the helices. The scale bar is 100 nm.

4.4.4 Kinetics Characterized with Fluorescence. While time-series AFM

scanning establishes direct observation of the nucleation process, it is likely that the mica

85

surface restricts the ability of the tiles to enter the origami frame, thus making the

nucleation kinetics different from that in solution. Therefore, we modified one of the DX

tiles with a fluorescent dye and a neighboring tile with a dark quencher, and studied the

nucleation kinetics in solution by monitoring the change in fluorescence intensity of the

dye with time. Specifically, the ssDNA located comprising sticky end d’ on Tile C was

modified with 6-carboxyfluorescein (6-FAM), and the ssDNA comprising sticky end d on

Tile A was modified with an Iowa Black dark quencher (Figure 4.4A, Figure S4.12A).

Upon association of the four tiles within the 2D array (with our without the DNA origami

frame) 6-FAM is positioned adjacent to the dark quencher, and its fluorescence intensity

should decrease as the self-assembly proceeds (Figure 4.4B).

This fluorescence change with time was monitored using a fluorometer (λex =

495 nm, λem = 520 nm), which reflects the kinetics of the tile-tile assembly process

(Figure 4.4C, and additional data shown in Figure S4.12B). In Figure 4.4C, four curves

are shown to represent four different experiments. The slowest decay represents the self-

assembly of the four tiles in the absence of origami frame. This very slow reaction rate

indicates that the spontaneous nucleation process in solution is significantly slower than

with a seed. The remaining three curves represent the reaction kinetics with varying

molar ratios between each tile and the origami seed (100:1, 100:2, and 100:3,

respectively). As expected, as the concentration of the nucleation seed increases, the

initial rate of the reaction becomes higher.

The concentration of the origami seed and the DX tiles used for fast-scan AFM

experiment were 4 fold smaller than those used for the fluorescence measurements.

Therefore, the spontaneous nucleation and growth rate observed in solution is apparently

86

much slower than on the mica surface. The rapid emergence of seed-free nucleation in the

FS-AFM image (Figure 4.3) could result from a surface mediated process, where the

mica may also act as a nucleation point, aiding the tile-tile assembly.22-24 For surface

mediated assembly on mica, with the exception of a short delay time (between image

frames 1 and 2), the spontaneous nucleation and growth rate outside the frame seems

comparable with the seeded nucleation and growth within the frame. Meanwhile, for the

assembly process in solution, the seeded nucleation and growth rate within the origami

frame is much faster than the spontaneous nucleation and growth rate without the frame.

This result indicates the importance of the nucleation in the kinetics of tile array

assembly.25

In order to characterize the kinetics of the nucleation, we built a reaction model to

calculate the reaction rate constant, k, from our data. The reaction rate between Tile C and

the origami frame can be expressed by

−𝑑[𝐶]
𝑑𝑡

= 𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ [𝐶] (1)

We assume that at the initial stages of seeded nucleation, a small number of tiles

assembled inside the origami frame do not affect the accessibility or diffusion of the

origami significantly, thus, we may treat the concentration of origami in Equation (1) as a

constant. At a certain time t, the concentration of unassembled Tile C is

−𝑑[𝐶]
𝑑𝑡

= 𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ [𝐶] (2)

This assumption fails when the origami is more thoroughly filled, which would

change the properties of the frame, and thus, the reaction rate constant k. Therefore, we

87

only collected and analyzed the fluorescence change in the early stages (the first 10

minutes) where only a small percentage of the assembly process is complete.

The fluorescence intensity observed is the sum of fluorescence intensities from

the free and associated Tile C, which are linear to the concentrations of each species,

𝐼𝑡 = 𝑎 ∙ [𝐶]𝑡 + 𝑏 ∙ ([𝐶]0 − [𝐶]𝑡) = (𝑎 − 𝑏) ∙ [𝐶]𝑡 + 𝑏 ∙ [𝐶]0 (3)

Here, a and b are constants. We normalized the fluorescence intensity by dividing

both sides of Equation (3) by the initial intensity, a∙[C]0, and obtained

𝐼𝑡
𝐼𝑖𝑛𝑖

= 𝑎−𝑏
𝑎∙[𝐶]0

∙ [𝐶]𝑡 + 𝑏
𝑎
 = 𝑎−𝑏

𝑎
∙ 𝑒−𝑘∙[𝑜𝑟𝑖𝑔𝑎𝑚𝑖]∙𝑡 + 𝑏

𝑎
 (4)

Therefore, a linear equation can be obtained:

ln � 𝐼𝑡
𝐼𝑖𝑛𝑖

− 𝑏
𝑎
� = −𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ 𝑡 + ln 𝑎−𝑏

𝑎
 (5)

The ratio of b/a is experimentally measured as 0.399, which equals the ratio of the

fluorescence intensity of the fully assembled structure of all four tiles, to that of

individual Tile C in the presence of the same concentration of Tiles A and C. The data in

Figure 4.4C and Figure S4.12B were fit by Equation (5), and the nucleation rate constant

k obtained from the slope is (2.3±0.4)×105 M-1∙s-1. We should note that in the actual self-

assembly process, we experimentally follow the change of the occupancy status at one of

the sticky end on Tile C (where the fluorescence dye is labeled). The nucleation sites for

Tile C in the origami frame must be first generated by the binding of A and B tiles first

and then regenerated by the self-assembly of other three types of tiles. Each regeneration

cycle requires the attachment of three to five tiles of other types. Thus, the time that it

takes for the attachment of a random individual tile in the origami frame is expected to

be, on average, one third to one fifth of the nucleation time of Tile C. Therefore, the

88

nucleation rate constant for random tile association should be 3-5 times the value of

constant k that we determined from our model. Considering this factor, the nucleation rate

constant falls in the same order of magnitude as 106 M-1∙s-1, consistent with values

previously reported in the literature.25,26

Figure 4.4. Nucleation kinetics monitored by fluorescence. (A) Tile C is modified with

the fluorescence dye 6-FAM at sticky end d’. Tile A is modified with Iowa black dark

89

quencher at sticky end d. Tile B and Tile D are not modified. (B) After assembling the

four tiles, either with or without the presence of the origami frame, the fluorescence dye

is arranged adjacent to the dark quencher. The fluorescence intensity decreases as the

self-assembly process proceeds. In Panels A and B, the yellow dots represent 6-FAM, and

the black dots represent the dark quencher. (C) Normalized fluorescence decrease. The

normalization is achieved by dividing the fluorescence intensity by the initial intensity of

each experiment. With the same amount of tiles present, the initial intensities in each

experiment are the same. The cyan curve shows that without the presence of the origami

seed, the nucleation exhibits a very slow rate. The orange, red, and blue curves show the

reaction process with origami concentrations of 0.2 nM, 0.4 nM, and 0.6 nM,

respectively. The tile concentrations are 20 nM for each tile, in all experiments.

4.5 Conclusion

In summary, we successfully utilized a large DNA origami frame to regulate the

growth of a 2D array of DX DNA tiles with high yield. The dynamics of nucleation were

monitored using time-series AFM and fluorescence kinetics. We obtained the nucleation

rate constant of assembly with and without the DNA origami seed. The assembly of the

frame-array hybrid structures takes advantage of the properties of DNA origami and 2D

arrays such that it has a defined shape and dimensions with aperiodic peripheral

sequences and a solid periodic core that consists of a small number of DNA sequences. A

fixed number of each DX tile was incorporated into the 2D array, which is variable

according to the design of the frame and the identities of the sticky ends. 2D DNA arrays

are powerful templates for patterning proteins and inorganic materials.12 Our approach

90

will be useful and efficient to create DNA based nanodevices when definite boundaries

and exact numbers of addressable positions are required.

4.6 References

(1) Seeman, N. C. J. Theor. Biol. 1982, 99, 237.

(2) Rothemund, P. W. K. Nature 2006, 440, 297.

(3) Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Nature 1998, 394, 539.

(4) Seeman, N. C. Nature 2003, 421, 427.

(5) Gothelf, K. V.; LaBean, T. H. Org. Biomol. Chem. 2005, 3, 4023.

(6) Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.;

Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf,
K. V. Nat. Nano. 2010, 5, 200.

(7) Deng, Z.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y. J. Am. Chem. Soc. 2012,

134, 17424.

(8) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proc. Natl. Acad.

Sci. 2009, 106, 6054.

(9) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(10) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(11) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano. Lett. 2013, 13, 2980.

(12) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301,

1882.

(13) He, Y.; Chen, Y.; Liu, H.; Ribbe, A. E.; Mao, C. J. Am. Chem. Soc. 2005, 127,

12202.

(14) Dietz, H.; Douglas, S. M.; Shih, W. M. Science 2009, 325, 725.

(15) Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. Science 2011, 332, 342.

(16) Wei, B.; Dai, M.; Yin, P. Nature 2012, 485, 623.

(17) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Science 2012, 338, 1177.

91

(18) Zhao, Z.; Liu, Y.; Yan, H. Nano. Lett. 2011, 11, 2997.

(19) Yang, Y.; Han, D.; Nangreave, J.; Liu, Y.; Yan, H. ACS Nano 2012, 6, 8209.

(20) Pound, E.; Ashton, J. R.; Becerril, H. c. A.; Woolley, A. T. Nano. Lett. 2009, 9,

4302.

(21) Zhang, H.; Chao, J.; Pan, D.; Liu, H.; Huang, Q.; Fan, C. Chem. Commun. 2012,

48, 6405.

(22) Sun, X.; Hyeon Ko, S.; Zhang, C.; Ribbe, A. E.; Mao, C. J. Am. Chem. Soc. 2009,

131, 13248.

(23) Lee, J.; Hamada, S.; Hwang, S. U.; Amin, R.; Son, J.; Dugasani, S. R.; Murata, S.;

Park, S. H. Sci. Rep. 2013, 3.

(24) Hamada, S.; Murata, S. Angew. Chem., Int. Ed. 2009, 48, 6820.

(25) Schulman, R.; Winfree, E. Proc. Natl. Acad. Sci. 2007, 104, 15236.

(26) Pinheiro, A. V.; Nangreave, J.; Jiang, S.; Yan, H.; Liu, Y. ACS Nano 2012, 6,

5521.

92

Chapter 5

Summary and Outlook

5.1 Summary

DNA computation and biological molecular programming have been under

development for two decades.1 A broad range of molecular programming methods and

design strategies have been proposed and realized. These methods and strategies include

enzyme catalyzed reaction networks, enzyme-free reactions, and programmed nanoscale

DNA self-assemblies. The biological nature of DNA molecules make DNA based

molecular programming suitable for applications in bioengineering and nanomedicine.2,3

Computational DNA systems have also been combined with the fast developing area of

DNA nanotechnology, which provides a versatile and highly compatible platform for

DNA computation.4,5

DNA molecular programming has developed rapidly, yet still faces some

technical challenges. One challenge is to develop new types of computational operations

based on DNA molecules. The computational operations can be considered as basic tools

in the toolbox for solving problems with programmed DNA systems and the more tools

that we have, the more versatile the functions that are possible. Another challenge is to

build larger scale DNA systems to solve more complicated biological problems. Building

large scale DNA computational systems has already been demonstrated to be

experimentally practical.6,7 However, more successful examples and practical

optimizations are still highly desired. The third challenge is to incorporate new design

rules into DNA and other biological molecular programming systems.

93

In this dissertation, I discussed three research projects that aimed to tackle the

three challenges mentioned above. In Chapter 2 and Chapter 3, new types of logic gates

based on DNA strand displacement reactions were described. A three-input majority gate

was demonstrated in Chapter 2, and an XOR gate was demonstrated in Chapter 3. A

three-input majority gate is a versatile gate, which can function as either a two-input

AND gate or a two-input OR gate by changing the value of the third input. The majority

gate was utilized to construct a multi-functional logic circuit based on this unique

property. An XOR gate is the key logic gate in the simplest half adder and full adder

circuits. We aimed to implement the functions of adders with the XOR gate and other

logic gates. This would provide a basic building block for arithmetic purposes.

In Chapter 4 we first proposed to construct a programmable nanodisplay system.

Large DNA origami and small DNA tiles were hybridized together and the self-

assembling behaviors were studied. If it becomes possible to control the assembly pattern

of the tiles through programming the sticky-ends of the DNA origami platform and tile

pixels, a programmed nanoscale display may be realized.

All the work demonstrated in this dissertation is at the frontier of engineering

DNA. The computational DNA molecular programming projects provide new DNA

computation tools and design principles, and may be used in artificial manipulation of

biochemical reaction systems. The DNA nanotechnology project was aimed at studying

the fundamental properties of DNA origami, DNA tiles, and the self-assembly process of

DNA nanostructures. The research results provide a new type of DNA nanostructure with

remarkable advantages. It also provides a platform for visionary computational DNA

self-assembly on the nanometer scale.

94

5.2 Future Perspectives

 In addition to the efforts reported in this dissertation, we have some ideas about

how to tackle the challenges of DNA and other biological molecular programming

strategies in the future.

 5.2.1 Computational Systems with Signal Feedback. Feedback is a process in

which information about two factors mutually affect each other. Signal feedback is a

common process seen in biology and computer science. Developing biological

computation systems with signal feedback functions is important and useful. Current

examples of DNA molecular programming systems with feedback functions are usually

based on recycling of output strands. This strategy has been used to mimic neural

systems7 and model chemical reaction networks.8

 Our perspective is to develop a feedback mechanism at nanometer scale.

Molecular delivery is a research area that scientists have always been interested in. It is

directly associated with drug delivery. Our goal is to design a guest molecule

transportation system using DNA nanotechnology, where a DNA robot carries the guest

along a series of routes and passes several vortices. With a feedback mechanism that

sends a signal when the guest molecule is delivered to the expected destination, that can

then in turn direct the release of the second signal further directs the route of the next

robot, we can avoid unnecessary vortices. Here, the signal would be reactive DNA

strands. The signal strand would be amplified through an enzyme-catalyzed or enzyme-

free process so that there would be enough copies of the signal strands reacting with the

wrong vortices, thus blocking all unnecessary routes of the DNA nanorobot. This strategy

would significantly increase the efficiency of molecular delivery, which is superior to

95

strategies that deliver guest molecules in bulk and only utilize those that arrive at the

correct target. In addition, the feedback mechanism would avoid any unnecessary

traversing that occurs in traditional targeted molecular delivery.

5.2.2 Programmed Nanodisplay. DNA nanostructures have been used to

construct well-defined 2D or 3D structures with high resolution.9,10 The current strategies

use unique DNA units as the pixels and voxels to construct arrays that display particular

patterns. Unfortunately, each pattern requires a unique set of DNA units.

Our perspective is to design a program composed of a limited number of DNA

tiles with different surface features. These tiles could be programmed to display specific

sticky-ends. The tiles can self-assembly to each other through these sticky-ends. Once a

nucleation seed with specifically designed nucleation sites is added to the mixture of tiles,

the tiles will spontaneously assemble on the seed and display a desired pattern from the

surface features of the tile.

Figure 5.1 shows a schematic design of the nanodisplay system. Figure 5.1A and

Figure 5.1B demonstrate two sets of programs composed of several four-sticky-end tiles.

The tiles feature two values represented by two types of surface structures, representing

binary 1 and 0. When the tiles are mix under self-assembly conditions, two tiles can

anchor a third tile through the sticky-ends, and the value of the third tile is the calculation

result of the first two tiles. The calculation rule is determined by the specifically designed

sticky-ends on the tiles. Figure 5.1A shows the tiles defining an AND calculation rule.

And Figure 5.1B shows the tiles defining an OR calculation rule.

96

With the program designed, an input represented by a DNA origami nucleation

seed can be introduced. The final pattern of the tile array, which is the output of the

process, is based on the sticky-end arrangement on the nucleation seed.

Figure 5.1. Two examples of programmed nanodisplay with limited types of pixels. A set

of tiles are designed with two “face values”, 0 and 1. Two tiles arranged side by side

97

(parent tiles) connect to the next tile (daughter tile) through two sticky-ends, of which

one sticky-end is from one tile, and the other sticky-end from the other tile. Thus, the tiles

can grow into a 2D lattice array. The sticky-ends on the tiles are programmed, so the face

value of the daughter tile follows a designed calculation of the parent tile face values. A

DNA origami nucleation seed is added to the tiles as the input of the program. The tiles

nucleate on the seed and self-assemble into a pattern determined by the sticky-ends on the

seed. (A) An example when the tiles are programmed to process an AND operation. (B)

An example when the tiles are programmed to process an OR operation.

With a comparable working principle as liquid crystal displays in which every

pixel can be well controlled, this strategy could be developed on a large scale with more

adequate controls over the assembly pattern of the DNA tiles. This nanodisplay research

would have great potential in miniaturizing computational systems and nanoscale

information storage/processing with biological molecules.

5.3 References

(1) Adleman, L. M. Science 1994, 266, 1021.

(2) Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H.

Angew. Chem., Int. Ed. 2009, 48, 872.

(3) Simmel, F. C. Nanomedicine 2007, 2, 817.

(4) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS. Biol. 2004, 2, e424.

(5) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proc. Natl. Acad.

Sci. 2009, 106, 6054.

(6) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(7) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

98

(8) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.;
Seelig, G. Nat. Nano. 2013, 8, 755.

(9) Wei, B.; Dai, M.; Yin, P. Nature 2012, 485, 623.

(10) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Science 2012, 338, 1177.

99

Bibliography

Chapter 1 References

(1) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.

(2) Dahm, R. Dev. Biol. 2005, 278, 274.

(3) Hecht, S. M. Bioorganic Chemistry: Nucleic Acids; OUP USA, 1996.

(4) Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Lehninger Principles of

Biochemistry; W. H. Freeman, 2005.

(5) Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.;

Dickerson, R. E. Proc. Natl. Acad. Sci. 1981, 78, 2179.

(6) Ramakrishnan, B.; Sundaralingam, M. Biophys. J. 1995, 69, 553.

(7) Wang, A. H. J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; van Boom, J. H.;

van der Marel, G.; Rich, A. Nature 1979, 282, 680.

(8) Zhang, D. Y.; Seelig, G. Nat. Chem. 2011, 3, 103.

(9) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(10) Radding, C. M.; Beattie, K. L.; Holloman, W. K.; Wiegand, R. C. J. Mol. Biol.

1977, 116, 825.

(11) Yurke, B.; Mills, A., Jr. Genet. Program Evolvable Mach 2003, 4, 111.

(12) Li, Q.; Luan, G.; Guo, Q.; Liang, J. Nucleic Acids Res. 2002, 30, e5.

(13) Zhang, D. Y.; Winfree, E. J. Am. Chem. Soc. 2009, 131, 17303.

(14) Seeman, N. C. J. Theor. Biol. 1982, 99, 237.

(15) Fu, T. J.; Seeman, N. C. Biochemistry 1993, 32, 3211.

(16) Chen, J.; Seeman, N. C. Nature 1991, 350, 631.

(17) Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.;

Schmidt, C. F.; Turberfield, A. J. Science 2005, 310, 1661.

(18) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. Nature 2008,

452, 198.

100

(19) Mathieu, F.; Liao, S.; Kopatsch, J.; Wang, T.; Mao, C.; Seeman, N. C. Nano Lett.
2005, 5, 661.

(20) Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; LaBean, T. H.

Nano Lett. 2005, 5, 693.

(21) Mao, C.; Sun, W.; Seeman, N. C. J. Am. Chem. Soc. 1999, 121, 5437.

(22) Fu, J.; Liu, M.; Liu, Y.; Yan, H. Acc. Chem. Res. 2012, 45, 1215.

(23) Rothemund, P. W. K. Nature 2006, 440, 297.

(24) Ke, Y.; Douglas, S. M.; Liu, M.; Sharma, J.; Cheng, A.; Leung, A.; Liu, Y.; Shih,

W. M.; Yan, H. J. Am. Chem. Soc. 2009, 131, 15903.

(25) Dietz, H.; Douglas, S. M.; Shih, W. M. Science 2009, 325, 725.

(26) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh,

W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.;
Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Nature 2009, 459, 73.

(27) Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. Science 2011, 332, 342.

(28) Han, D.; Pal, S.; Liu, Y.; Yan, H. Nat. Nano. 2010, 5, 712.

(29) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat. Nano. 2011, 6, 763.

(30) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301,

1882.

(31) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M. Nature

2009, 459, 414.

(32) Feynman, R. P. J. Microelectromechanical Systems 1992, 1, 60.

(33) Adleman, L. M. Science 1994, 266, 1021.

(34) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

(35) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(36) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano Lett. 2013, 13, 2980.

(37) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS. Biol. 2004, 2, e424.

101

(38) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.
Nat. Nano. 2010, 5, 417.

(39) Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. Sci. Rep. 2013, 3.

(40) Parker, J. EMBO reports 2003, 4, 7.

(41) Douglas, S. M.; Bachelet, I.; Church, G. M. Science 2012, 335, 831.

(42) Benenson, Y. Curr. Opin. Biotech. 2009, 20, 471.

(43) Surana, S.; Bhat, J. M.; Koushika, S. P.; Krishnan, Y. Nat. Commun. 2011, 2, 340.

(44) Hemphill, J.; Deiters, A. J. Am. Chem. Soc. 2013, 135, 10512.

Chapter 2 References

(1) Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Small 2011, 7, 1673.

(2) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat. Nano. 2011, 6, 763.

(3) Adleman, L. M. Science 1994, 266, 1021.

(4) Stojanovic, M. N.; Stefanovic, D. Nat. Biotech. 2003, 21, 1069.

(5) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.

Nat. Nano. 2010, 5, 417.

(6) Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. Nature 2004, 429, 423.

(7) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(8) Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.;

Simmel, F. C. Phys. Rev. Lett. 2003, 90, 118102.

(9) Yurke, B.; Mills, A., Jr. Genet Program Evolvable Mach 2003, 4, 111.

(10) Zhang, D. Y.; Winfree, E. J. Am. Chem. Soc. 2009, 131, 17303.

(11) Soloveichik, D.; Seelig, G.; Winfree, E. Proc. Natl. Acad. Sci. 2010, 107, 5393.

(12) Phillips, A.; Cardelli, L. J. R. Soc. Interface 2009, 6, S419.

(13) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

102

(14) Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E. Science 2007, 318, 1121.

(15) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318.

(16) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(17) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(18) Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G. H.; Porod, W. Science 2006,

311, 205.

Chapter 3 References

(1) Simmel, F. C. Nanomedicine 2007, 2, 817.

(2) Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H.

Angewandte Chemie International Edition 2009, 48, 872.

(3) Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Small 2011, 7, 1673.

(4) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat Nano 2011, 6, 763.

(5) Lin, C.; Liu, Y.; Yan, H. Biochemistry 2009, 48, 1663.

(6) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proceedings of

the National Academy of Sciences 2009, 106, 6054.

(7) Li, W.; Yang, Y.; Jiang, S.; Yan, H.; Liu, Y. J Am Chem Soc 2014, 136, 3724.

(8) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS Biol 2004, 2, e424.

(9) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Nano Letters 2012, 12, 3290.

(10) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature

2000, 406, 605.

(11) Adleman, L. M. Science 1994, 266, 1021.

(12) Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. Nature 2004, 429, 423.

(13) Stojanovic, M. N.; Stefanovic, D. Nat Biotech 2003, 21, 1069.

(14) Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.;

Simmel, F. C. Physical Review Letters 2003, 90, 118102.

(15) Yurke, B.; Mills, A., Jr. Genet Program Evolvable Mach 2003, 4, 111.

103

(16) Zhang, D. Y.; Winfree, E. J Am Chem Soc 2009, 131, 17303.

(17) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano Letters 2013, 13, 2980.

(18) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I.

Nat Nano 2010, 5, 417.

(19) Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. Sci. Rep. 2013, 3.

(20) Soloveichik, D.; Seelig, G.; Winfree, E. Proceedings of the National Academy of

Sciences 2010, 107, 5393.

(21) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.;

Seelig, G. Nat Nano 2013, 8, 755.

(22) Phillips, A.; Cardelli, L. J R Soc Interface 2009, 6, S419.

(23) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585.

(24) Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E. Science 2007, 318, 1121.

(25) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318.

(26) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(27) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(28) Rentzeperis, D.; Alessi, K.; Marky, L. A. Nucleic Acids Research 1993, 21, 2683.

Chapter 4 References

(1) Seeman, N. C. J. Theor. Biol. 1982, 99, 237.

(2) Rothemund, P. W. K. Nature 2006, 440, 297.

(3) Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Nature 1998, 394, 539.

(4) Seeman, N. C. Nature 2003, 421, 427.

(5) Gothelf, K. V.; LaBean, T. H. Org. Biomol. Chem. 2005, 3, 4023.

(6) Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.;

Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf,
K. V. Nat. Nano. 2010, 5, 200.

104

(7) Deng, Z.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y. J. Am. Chem. Soc. 2012,
134, 17424.

(8) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proc. Natl. Acad.

Sci. 2009, 106, 6054.

(9) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(10) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(11) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano. Lett. 2013, 13, 2980.

(12) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301,

1882.

(13) He, Y.; Chen, Y.; Liu, H.; Ribbe, A. E.; Mao, C. J. Am. Chem. Soc. 2005, 127,

12202.

(14) Dietz, H.; Douglas, S. M.; Shih, W. M. Science 2009, 325, 725.

(15) Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. Science 2011, 332, 342.

(16) Wei, B.; Dai, M.; Yin, P. Nature 2012, 485, 623.

(17) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Science 2012, 338, 1177.

(18) Zhao, Z.; Liu, Y.; Yan, H. Nano. Lett. 2011, 11, 2997.

(19) Yang, Y.; Han, D.; Nangreave, J.; Liu, Y.; Yan, H. ACS Nano 2012, 6, 8209.

(20) Pound, E.; Ashton, J. R.; Becerril, H. c. A.; Woolley, A. T. Nano. Lett. 2009, 9,

4302.

(21) Zhang, H.; Chao, J.; Pan, D.; Liu, H.; Huang, Q.; Fan, C. Chem. Commun. 2012,

48, 6405.

(22) Sun, X.; Hyeon Ko, S.; Zhang, C.; Ribbe, A. E.; Mao, C. J. Am. Chem. Soc. 2009,

131, 13248.

(23) Lee, J.; Hamada, S.; Hwang, S. U.; Amin, R.; Son, J.; Dugasani, S. R.; Murata, S.;

Park, S. H. Sci. Rep. 2013, 3.

(24) Hamada, S.; Murata, S. Angew. Chem., Int. Ed. 2009, 48, 6820.

(25) Schulman, R.; Winfree, E. Proc. Natl. Acad. Sci. 2007, 104, 15236.

105

(26) Pinheiro, A. V.; Nangreave, J.; Jiang, S.; Yan, H.; Liu, Y. ACS Nano 2012, 6,
5521.

Chapter 5 References

(1) Adleman, L. M. Science 1994, 266, 1021.

(2) Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H.

Angew. Chem., Int. Ed. 2009, 48, 872.

(3) Simmel, F. C. Nanomedicine 2007, 2, 817.

(4) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS. Biol. 2004, 2, e424.

(5) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proc. Natl. Acad.

Sci. 2009, 106, 6054.

(6) Qian, L. L.; Winfree, E. Science 2011, 332, 1196.

(7) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368.

(8) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.;

Seelig, G. Nat. Nano. 2013, 8, 755.

(9) Wei, B.; Dai, M.; Yin, P. Nature 2012, 485, 623.

(10) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Science 2012, 338, 1177.

106

APPENDIX A

SUPPLEMENTAL INFORMATION FOR CHAPTER 2

107

Supporting Information for

3-Input Majority Logic Gate and Multiple Input Logic Circuit Based on DNA

Strand Displacement

Wei Li, Yang Yang, Hao Yan, Yan Liu

 Department of Chemistry and Biochemistry and The Biodesign Institute

Arizona State University, Tempe, AZ 85287

108

S2.1 Circularization of the central strands in the Calculators

The circularization is achieved by first hybridizing the two ends of the linear

strand (126nt in the single 3-input majority gate, 96 nt in MX and 159 nt in MY) with one

20 nt ssDNA, then ligate the nick on the duplex using T4 DNA ligase (Figure S2.1). 250

pmol linear strand, and 2.5 nmol 20 nt strand are mixed in 1 mL 1×T4 DNA ligase buffer

(New England Biolabs). The solution is heated at 90 oC for 5 minutes, and then cooled

with ice. 2000 unit of T4 DNA ligase is added to the cooled solution. The solution then is

incubated at 16 oC overnight.

Figure S2.1. The strategy of circularizing the central strand of the Calculators.

After the reaction, the solution is concentrated with Amicon Ultra centrifugal

filter (3K Dalton) (Millipore) to about 30 µL. Then the ligated central circular strand is

purified with polyacrylamide gel electrophoresis (6% gel, in 1×TBE buffer, 45 mA/gel,

and 1.5 hours).

A purifying gel image (EB stained) is shown in Figure S2.2A. This gel shows the

result of the circularization of the central strand of the single gate design. The band of the

circular strand is cut out from the gel and chopped into small pieces. The shredded gel

blocks containing the product is soaked in 500 µL elution buffer (500 mM NH4OAc, 10

mM Mg(OAc)2, and 2mM EDTA) overnight. The central strand is then extracted from

the gel by centrifugation using a Spin X device. The solution is then washed with butanol.

109

1 mL ethanol is mixed with the 500 µL solution to precipitate the DNA molecules. The

solution is kept at -20 °C to make the precipitation fast and complete. Then solid DNA

product is separated with centrifuge, and then dried under vacuum in a vacufuge

(Eppendorf).

Figure S2.2. Denaturing gel images showing the circularization and characterization of

the center strand in the single gate design. (A) The circularization of the center strand.

Lane 1: ssDNA ladder, the three bands from top to bottom are, 159 nt, 109 nt, and 96 nt

linear ssDNA. Lane 2: the linear pre-center strand (126 nt). Lane 3: the crude product

after circularization with T4 DNA ligase. The most intense band with a similar mobility

of the 159 nt strand, is identified as the target product, the circular central strand. Above

110

the target product are the bands of concatamers. (B) The circular central strand product

pextracted from the left gel is subjected to exonuclease I digestion. Lane 1: ssDNA ladder,

same as in (A). Lane 2: the linear center strand with no exonuclease I. Lane 3: circular

central strand with no exonuclease I. Lane 4: the linear center strand with exonuclease I.

Lane 5: circular central strand with exonuclease I. The gel shows that, under the same

exonuclease I conditions, the linear strand in Lane 4 is almost all degraded, while the

strand in Lane 5 is not affected. This confirms that the product from Gel (A) is the

desired circular strand.

The product from the gel purification is subject to exonuclease I digestion (5 pmol

DNA strand in 10 µL 1×NEB buffer 1 (New England Biolabs) with 1 unit exonuclease I

(New England Biolabs), incubated at 37 oC for 1 hour). Exonuclease I cleaves single

strand from 3’ end to 5’ end. If the product recovered from the gel is the circular target

product, it should be resistant to digestion by exonuclease I. The result in Figure S2.2B

confirms that the recovered DNA strand is the target circular product.

111

S2.2 Preparation of the Calculators

The purified center circular strand is mixed with the respective side strands A*,

B*, and C*, in 1×TAE/Mg2+ buffer (1 mM tris acetate, 1 mM EDTA, 12.5 mM

magnesium acetate). The final concentration of the center circular strand is 0.5 µM, and

the molar ratio of a side strand to the center strand is varied from 1.2:1 to 1:1. For the

single gate experiments, more than 1:1 ratio can be used. For multi-gate cascade, 1:1 ratio

is used. The solution is incubated in a PCR machine, at 90 oC for 5 min, 88 oC for 5 min.

Then the temperature is dropped 4 oC every 5 min until it reaches 25 oC. The prepared

Calculator solution is stored at 4 oC before use.

112

S2.3 Preparation of the Detectors

The fluorescence dye modified ssDNA and dark quencher modified ssDNA are

mix in 1 × TAE/Mg2+ buffer, at the concentration of 0.5 µM each. The solution is

incubated in a PCR machine, at 90 oC for 5 min, then 88 oC for 5 min, with the

temperature drops 4 oC every 5 min until it reaches 25 oC. The Calculator solution is

stored at 4 oC before use. Figure S2.3 shows a native polyacrylamide gel electrophoresis

image characterizing the formation of the Detector of the single gate design.

Figure S2.3. Native polyacrylamide gel showing the formation of the Detector of the

single gate design. The gel electrophoresis is conducted in 1 × TAE/Mg2+ buffer under

200 Volts. The gel is stained with SBRY Gold. Lane 1: 10 bp DNA ladder. Lane 2: 6-

113

carboxyfluorescein (FAM) modified RS2 ssDNA. The thin slower band is the self-dimer

of the RS2 ssDNA. The lower intense band is the monomer form. Lane 3: Iowa Black

dark quencher modified RS2*-RS1* ssDNA. No band is visible in this lane, because the

Iowa Black dark quencher quenches the fluorescence of SBRY Gold staining. Lane 4:

The Detector duplex. The intensity of the band is much lower than that of lane 2, due to

the quenching effect of the Iowa Black dark quencher on the fluorescence of SBRY Gold

staining and the fluorescence of the FAM on its complementary strand.

114

S2.4 Fluorescence Kinetics Measurements

Fluorescence kinetics of the single gate design is monitored with a Nanolog

fluorometer (Horiba Jobin Yvon). This fluorometer is capable to measure the

fluorescence intensity of one sample at one time. The excitation wavelength is set at 495

nm for 6-FAM. The detection wavelength is set at 520 nm for the emission of 6-FAM.

The Calculator, input strands, and Detector are mixed in a quartz fluorescence cuvette.

The final volume is 120 µL. The reaction buffer is 1×TAE/Mg2+ buffer. The sample is

controlled at 25 oC. The Calculator concentration at the beginning of the reaction is 15

nM. The ratio of the Input strand to the Calculator is 1.5:1. The Detector concentration is

of the same concentration or 4 folds of the Calculator. Upon the mixing of the reactants,

the fluorescence intensity of the sample is measured at every 30 second.

Fluorescence kinetics of the multi-function circuit based on 2 majority gates, and

the fluorescence kinetics of each of the two gates, are monitored with a Stratagene

MX3005P realtime PCR (Agilent). This realtime PCR is set at a constant temperature of

30 oC. The fluorescence intensities of the samples are measured every cycle of 1 minute.

The realtime PCR can measure the fluorescence intensity of up to 96 samples at one time.

The filter is set at 488 nm for excitation and 520 for emission. The Calculators, input

strands, and Detector are mixed in an optical PCR tube. The final volume is 30 µL. The

reaction buffer is 1×TAE/Mg2+ buffer. The MX Calculator concentration at the beginning

of the reaction is 67 nM. MY Calculator concentration 135 nM. The concentration of the

Input X1 and X2 is 67 nM each. The concentration of the Input Y1, Y2, and Y3 is 135

nM each. The Detector concentration is 33 nM. Upon the mixing of the reactants, the

fluorescence intensity of the sample is measured every minute.

115

The experiment in Figure 2.7C (Y1 = 0, X1 = 1, Y2 ∙ Y3 + X2) is conducted in 2

steps. Calculator MY is mixed with all the input strands and incubated at 30 oC overnight.

Then Calculator MX and the Detector are added, and the fluorescence intensity change is

monitored.

The fluorescence intensity increase of each reaction is calculated by subtracting

the initial intensity from the final intensity. The reactions under the same computation

pattern or single gate are normalized, by setting the highest fluorescence increase as

100%.

116

S2.5 Fluorescence Kinetics Result of the Two Individual Majority Gate in the Multi-

Function Circuit

Figure S2.4. Kinetic experiments of the individual majority gates in the multi-function

circuit. (A) Kinetics of the second generation gate MX. The ratio between the Detector

and the Calculator is 1:1. (B) Kinetics of the second generation gate Mx. The ratio

between the Detector and the Calculator is 4:1. (C) Kinetics of the first generation gate

MY. The ratio between the Detector and the Calculator is 1:1. (D) Kinetics of the first

generation gate MY. The ratio between the Detector and the Calculator is 4:1. Each curve

in these two graphs represents a reaction with the input combination labeled at the end of

the curve. The measurement of the fluorescence intensity is started as soon as the

Calculator, the Detector, and the inputs of each reaction are mixed at 1-minute intervals.

The fluorescence increase is calculated by subtracting the initial intensity from the final

intensity. The output is normalized to the highest intensity change to be 1 in A and C ,

and to the highest intensity change to be 1 for the 2-input cases in B and D.

117

S2.6 DNA Sequences

The sequences of the strands used in each design are shown with the schematic

figures in Figure S2.5.

Figure S2.5. Sequences of the DNA strands used in the experiments. (A) The sequence

of the single gate design. (B) The sequence of the multi-function circuit. The stars in (A)

and (B) represent 6-FAM (fluorescein) fluorescence dye. The black dots in (A) and (B)

represent Iowa Black Dark Quencher.

118

S2.7 Effect of Secondary Structure of Inputs on Reaction Rates

If the toehold of an input strand is involved in stable secondary structures, the

reaction rate would significantly decrease. A set of toehold sequences which is different

from the sequences in Figure S2.5A is shown in Figure S2.6A. In this set of sequences,

the toehold in Input B has a stable secondary structure (Figure S2.6B). The reaction

kinetics is shown in Figure S2.6C. The reactions, of which the true outputs depend on the

presence of Input B, are obviously slower than the reactions with Input A and Input C.

This result is an example of the effect of the sequences on the reaction rate.

Figure S2.6. Effect of secondary structure of inputs on reaction rates. (A) Sequences of

logic gate strands. (B) The sequence of Input B and the secondary structure of Input B.

119

The toehold in Input B at 5’ end is involved in the secondary structure, thus the exposed

part is only 2 nt long. (C) The fluorescence kinetics of the logic gate in (A). The true

output of reactions A&B and B&C depend on the strand displacement of Input B, so the

reaction rate is much lower than those of reactions A&C and A&B&C. The final

normalized fluorescence intensities of A&C and A&B&C are lower than 1, because the

initial reaction rates are high. Before the starting of the monitoring of the reactions, the

fluorescence already increased. After the normalization, the final value is lower than 1.

120

APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 3

121

Supporting Information for

: 1-Bit Full Adder and Half Adder Based on DNA Strand Displacement

Wei Li, Hao Yan, Yan Liu

 Department of Chemistry and Biochemistry and The Biodesign Institute

Arizona State University, Tempe, AZ 85287

122

S3.1 Experimental Materials and Methods

S3.1.1 Materials. All DNA strands were purchased from Integrated DNA

Technologies, Inc. (www.IDTDNA.com) in the format of desalted dry powder. The

strands were all purified using denaturing polyacrylamide gel electrophoresis (10% 19:1

acrylamide/bisacrylamide, containing 50% urea) in 1×TBE buffer (pH 8.0, 89 mM tris

base, 89 mM boric acid, 2 mM EDTA). The bands corresponding to the full length

strands were individually excised from the gel, chopped into small pieces, soaked in 500

µL elution buffer (500 mM NH4OAc, 10 mM Mg(OAc)2, and 2 mM EDTA) and then

shaken overnight to allow the DNA strands to elute from the gel blocks into the solution.

After filtering out the gel blocks, the solutions were then mixed with butanol to extract

any organic residue. After removing the butanol layer, 1 mL of ethanol was mixed with

each solution to precipitate the DNA molecules. The mixtures were kept at -20 oC to

ensure rapid and complete DNA precipitation. Then the purified DNA strands were spun

down using a centrifuge, and then dried under vacuum. The DNA strands were then

reconstituted in pure water and their concentrations were measured by absorbance at 260

nm.

S3.1.2 Assembly Procedure. Each DNA duplex was assembled by mixing the

component strands in an equal molar ratio (4 mM) in 20 µL 1×TAE/Mg2+ buffer. The

solution was annealed in a PCR thermocycler with the temperature decreased from 90 oC

to 25 oC at a rate of 4 oC every 5 minutes, and then kept at 25 oC. For each reaction with a

specific combination input, 5 µL of the total solution is used to mix with other strands.

S3.1.3 Fluorescence Kinetics. The fluorescence kinetics experiments were

performed on a real-time PCR thermocycler (Stratagene Mx3005P). The thermocycler

123

program is set that the time of each cycle is one minute, so the fluorescence intensity of

the solution can be collected once every minute. The temperature of all the cycles is set

as 25 oC. The program contains 1440 cycles, so the fluorescence of the solution is

monitored for 24 hours. The filters for FAM and HEX fluorescent dyes are selected in the

instrument control.

The final concentration of each DNA strand in the solution is about 0.5 µM after

mixing the input strand. The buffer condition is 1×TAE/Mg2+ buffer. The fluorescence

intensity measurement starts as soon as the input strands are added.

S3.1.4 Fluorescence Data. For each reaction, the first trace is the original data

collected by the fluorometer. The second trace is the increase of each reaction at each

time point. This is calculated by subtracting the starting fluorescence intensity from the

intensity at each time point. The third trace is the data after normalization. All the data in

the second trace is divided by the highest fluorescence increase among the reactions of

the same logic gate operation. The data in the third trace are shown in Figure 3.6, Figure

3.7, and Figure 3.8.

124

S3.2 Capping Technique

 In the design of the XOR gate and AND gate, we incorporated the “capping

technique”. Figure S3.1 shows the position of the caps we placed on the strands.

Figure S3.1. The positions of the caps. The caps in the design if marked with red circles.

Each cap is a one nucleotide extension from the main strand, and complementary to the

corresponding base to the other component strand in the duplex.

 The capping technique was introduced by L. L. Qian and E. Winfree (Science

2011, 332, 1196). The purpose of the caps is to prevent the non-specific π- π stacking

directed DNA strand displacement reaction (Figure S3.2), which may contribute to the

leakages of the reactions. Because of the cap, even two DNA double helices stack

125

together, the first “loose” base in the single-stranded migrating domain is different from

the first base in the double-stranded domain, and the branch migration cannot occur. It is

preferred to add caps wherever is possible in the design.

Figure S3.2. The caps can prevent π- π stacking directed DNA strand displacement

reactions.

126

S.3.3 Length of the Toehold Domain in the Hairpins

 In the designs of both the XOR gate and AND gate, the outputs are protected in a

hairpin structure. With an optimal hairpin loop length, 5 to 8 bases, the hairpin stem is far

more stable than a linear DNA double helix of the same length. The yields of the reaction

shown in Figure S3.3 is calculated with NuPack.org, and shown in Table S3.1 and Table

S3.2, with

Figure S3.3. The opening reaction of the hairpin structure.

Table S3.1. Relation between Length of T7h and Reaction Yield

Length of T7 5 4 3 2 1 0

Yield (%) 0.12 0.12 0.12 1.9 3.2 57

Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt

Concentration: 100 nM; Temp. = 25 oC

127

Table S3.2. Relation between Temperature, Concentration and Reaction Yield

Yield (%)
Temp. (oC)

15 25 35

Conc.

(nM)

10 1.1 0.20 0

100 9.3 1.9 0.56

1000 40 15 5.1

Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt, T7 = 2 nt

128

S3.4 Using Halves of Domain A and A* in the Design of AND Gate

 In the design of the AND gate, domains named A+1/2, A-1/2, A*+1/2, and A*-1/2.

These domains correspond to halves of the full length domains A and A*. The subscript

+1/2 represents the 5’ end six nucleotides of the full length domain, while the subscript -

1/2 represents the 3’ end six nucleotides of the full length domain.

 Domain A+1/2 is complementary to Domain A*-1/2, but does not hybridize with

A*+1/2. Similarly, Domain A-1/2 is complementary to Domain A*+1/2, but does not

hybridize with A*-1/2. This strategy can prevent the hybridization of the reactive strands

in the AND gate, and avoid the reaction rate being slowed down when both two inputs

are added.

129

APPENDIX C

SUPPLEMENTAL INFORMATION FOR CHAPTER 4

130

Supporting Information for

Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA

Origami Frames and Their Dynamics

Wei Li, Yang Yang, Shuoxing Jiang, Hao Yan, Yan Liu

Department of Chemistry and Biochemistry and The Biodesign Institute

Arizona State University, Tempe, AZ 85287

131

S4.1 Experimental Materials and Methods

S4.1.1 Materials. All DNA helper strands used in the origami frame were

purchased in 96-well plates from Integrated DNA Technologies, Inc.

(www.IDTDNA.com), desalted, with concentrations normalized to 200 µM. Single

stranded M13mp18 viral DNA and phi X 174 DNA were purchased from New England

Biolabs, Inc. (NEB, catalog number: N4040S and N3023S). All DNA strands in the DNA

origami frame were used without further purification.

All DNA strands used in the DX tiles were purchased from Integrated DNA

Technologies, Inc. (www.IDTDNA.com) in the format of desalted dry powder. The tile

strands were all purified using denaturing polyacrylamide gel electrophoresis (10% 19:1

acrylamide/bisacrylamide, containing 50% urea) in 1×TBE buffer (pH 8.0, 89 mM tris

base, 89 mM boric acid, 2 mM EDTA). The bands corresponding to the full length

strands were individually excised from the gel, chopped into small pieces, soaked in 500

µL elution buffer (500 mM NH4OAc, 10 mM Mg(OAc)2, and 2 mM EDTA) and then

shaken overnight to allow the DNA strands to elute from the gel blocks into the solution.

After filtering out the gel blocks, the solutions were then mixed with butanol to extract

any organic residue. After removing the butanol layer, 1 mL of ethanol was mixed with

each solution to precipitate the DNA molecules. The mixtures were kept at -20 oC to

ensure rapid and complete DNA precipitation. Then the purified DNA strands were spun

down using a centrifuge, and then dried under vacuum. The DNA strands were then

reconstituted in pure water and their concentrations were measured by absorbance at 260

nm.

132

S4.1.2 Assembly Procedure. The DNA origami frame structure was assembled

by mixing M13mp18 DNA (10 nM) and phi X 174 DNA (10 nM) with the helper strands

in a 1:1:30 molar ratio in 1×TAE/Mg2+ buffer (pH 8.0, 20 mM Tris base, 20 mM acetic

acid, 2 mM EDTA, 12.5 mM Mg(OAc)2). The final volume of the reaction was 100 µL.

The solution was annealed in a PCR thermocycler with the temperature decreased from

90 oC to 70 oC at a rate of 1 oC every 5 minutes, from 70 oC to 40 oC at a rate of 1 oC

every 15 minutes, then from 40 oC to 25 oC at a rate of 1 oC every 10 minutes, and finally

kept at 4 oC. Following annealing, the origami frame was washed with 1×TAE/Mg2+

buffer three times and passed through a 100 kD MWCO Microcon centrifugal filter

device (Amicon, catalog number: UFC510096) to remove the excess helper strands.

Each DNA DX tile was assembled by mixing all the strands in the tile in an equal

molar ratio (1 mM) in 100 µL 1×TAE/Mg2+ buffer. The solution was annealed in a PCR

thermocycler with the temperature decreased from 90 oC to 25 oC at a rate of 4 oC every 5

minutes, and then kept at 25 oC.

The DNA origami frame – DX tile 2D array hybrid was assembled by mixing 1

pmol of purified DNA origami frame (100 µL, 10 nM) with the solutions of the four DX

tiles. The amount of each tile was 100 pmol (100 µL, 1 mM). The final 500 µL solution

was incubated at 25 oC overnight. Then the mixture was concentrated to 100 µL using a

100 kD MWCO Amicon centrifugal filter device.

S4.1.3. Agarose Gel Electrophoresis Purification. The assembled frame-array

hybrid was loaded onto an agarose gel (0.3% agarose containing 0.5 µg/mL ethidium

bromide, 1×TAE/Mg2+ buffer) and subjected to gel electrophoresis at 80 volts for one

hour on an ice-water bath. The product band was excised from the gel and shredded. The

133

shredded gel blocks were transferred into a Freeze 'N Squeeze DNA Gel Extraction Spin

Column (Bio-Rad, catalog number: 732-6165) and centrifuged to recover the buffer

containing the purified product. The product was then stored at 4 oC and characterized by

AFM.

S4.1.4 Monomeric Avidin Resin Purification. 100 µL Monomeric Avidin Resin

(Thermo Scientific, catalog number: 53146) suspension was transferred into a

SigmaPrepTM spin column (Sigma, catalog number: SC1000). The resin was washed with

1×PBS buffer once (Sigma, catalog number: P4417), then washed with 2 mM biotin

solution to block the non-reversible binding sites, and finally regenerated with glycine

solution. The resin and biotin modified DNA origami frame – 2D array hybrid were

mixed and incubated for 30 minutes. The resin bound with the frame-array hybrid was

then washed with 1×PBS buffer to remove the free 2D array and DX tiles. The purified

frame-array hybrid was then displaced from the resin with 100 µL biotin (2 mM) solution.

The solution containing the purified product was then stored at 4 oC and subjected to

AFM characterization.

S4.1.5 AFM Imaging. The AFM imaging was performed using a Dimension

FastScan AFM (Bruker). The samples (2 µL to 5 µL) were deposited onto freshly cleaved

mica (Ted Pella, Inc.) and left to adsorb for 2 min. Buffer (1×TAE/Mg2+, 100 µL) was

added on top of the sample and the sample was imaged in ScanAsyst in Fluid mode,

using ScanAssyst Fluid+ probes (Bruker).

S4.1.6 Fluorescence Kinetics. The fluorescence kinetics experiments were

performed using a Nanolog fluorometer (Horiba Jobin Yvon). The origami frame was

purified with 100 kD MWCO Microcon centrifugal filter devices (Amicon, catalog

134

number: UFC510096) to remove excess helper strands. The concentration of the origami

stock solution was 10 nM. The concentration of each tile stock solution was 1 μM. The

sample chamber of the fluorometer was preset at 21 oC. 2.4 μL of Tile C solution (labeled

with Fluorescein), and 2.4 μL of Tile D solution were added to a 120 μL quartz

fluorescence cuvette. 1×TAE/Mg2+ buffer was added to make the final volume 120 μL.

To the reaction with tile/origami at a molar ratio of 100:1, 2.4 μL the purified origami

solution was added. To the reaction with tile/origami at a molar ratio of 100:2 or 100:3,

the volume of the origami stock solution added was doubled or tripled. The sample was

placed in the fluorometer and the time dependence of the intensity was monitored. Then

2.4 μL of Tile A solution (labeled with a black quencher) and 2.4 μL of Tile B solution

were added to the cuvette and mixed well. The fluorescence intensity was measured once

every 30 seconds, with an integration time of 10 seconds. The fluorescence intensities

were first corrected for the volume difference, to a total volume of 124.8 μL after the

addition of Tile A and B and then the data were corrected for photo bleaching using a

control with the same concentration of Tile C and Tile A.

S4.1.7 Fluorescence Data. For each reaction, the first trace is the original data

collected by the fluorometer. The second trace is the data after correcting for the volume

change. The third trace is the data after correcting for photo bleaching. The fourth trace is

the data after normalization, which was used to generate the plots shown in Figure 4.4C

and Figure S4.11B.

135

S4.2 Design of the DX Tiles

Figure S1. The design of the four DX tiles. (A) Schematic design of the four tiles. The

four tiles share the same sequences of Strands 2, 3, and 5. Each tile has a specific Strand

1 and 4. The sticky end pairing e.g. a, a’ are marked for each tile. (B) The detailed design

of the four tiles. Each tile is four helical turns long. Strand 3 is 42 nts long. Strands 2 and

5 are both 37 nts long. Strands 1 and 4 are both 26 nts long.

136

S4.3 PAGE Characterization of DX Tiles

Figure S2. Native polyacrylamide gel electrophoresis characterization of the formation

of the four tiles. Lanes 1 & 15: 10 bp DNA marker. Lane 2: the core structure of the

four tiles: Strand A2 + Strand A3 + Strand A5. (For Tile B, C, and D, the core structures

all have the same sequences as Tile A). Lane 3: core + Strand A1. Lane 4: core + Strand

A4. Lane 5: full Tile A (core + Strand A1 + Strand A4). Lane 6-8: the same

combinations as Lanes 3-5 for Tile B. Lane 9-11: the same combinations as Lanes 3-5

for Tile C. Lane 12-14: the same combinations as Lanes 3-5 for Tile D.

137

S4.4 Design of the DNA Origami Frame

Figure S3. Detailed design of the DNA origami frame. The origami frame is 210 nm

wide, 60 nm and 95 nm tall (the two sides). The blue strand represents the phi X 174

scaffold and the red strand corresponds to the M13mp18 scaffold. The interior is

decorated with sticky ends complementary to the sticky ends on Tiles A and B. At the

outer ends of each helix, two extra thymine bases are added to prevent π-π stacking

between origami.

138

S4.5 AFM Image of Empty Origami Frame

Figure S4. AFM image of the empty origami frame. (A) Zoom-out AFM image of the

empty origami frame. Most of the origami frames are well formed. There are several

aggregated structures in the image that may be caused by crosslinking of multiple

scaffold strands. (B) Zoom-in AFM image of selected well-formed empty origami frame.

The scale bar is 100 nm.

139

S4.6 Examination of the spontaneous formation of the DX tile arrays

Figure S5. Unregulated growth of 2D arrays of DX tiles. The four DX tiles were mixed

together to a final concentration of 250 nM each. The mixture was incubated at 25 oC

overnight and characterized by AFM. The four tiles form 2D arrays as designed.

140

S4.7 Agarose Gel Image of the Purification of the DNA Origami Frame – 2D Array

Hybrid

Figure S6. Image of agarose gel electrophoresis showing the purification of the origami-

2D array hybrid. Lane 1: 1kb DNA ladder. Lane 2: Empty origami frame without

purification. The fastest intense band corresponds to the extra helper strands. The second

fastest band corresponds to the empty origami frame. Upper faint bands are aggregated

structures (see Figure S4). Lane 3: Origami frame and the four tiles incubated overnight

at r.t. The faster band and the smear after it correspond to uncontrolled 2D tile-array of

various sizes. The slower band corresponds to the origami-array hybrid, which runs faster

than the empty origami frame in Lane 2, because once the frame is fully filled, the

structure gets more solid. Lane 4: The four tiles incubated overnight at r.t. without the

origami frame. The band and smear correspond to uncontrolled 2D tile-array of various

sizes.

141

S4.8 AFM Image of DNA Origami Frame – 2D Array Hybrid Purified by Agarose

Gel Electrophoresis

Figure S7. AFM image of Frame-array hybrid purified by agarose gel electrophoresis. (A)

Zoom-out AFM image of Frame-array hybrid purified by agarose gel electrophoresis.

There were quite a few pieces of free 2D array of DX tiles that were not cleanly removed.

Note that these 2D arrays had similar sizes as the frame-array hybrid, which mostly

showed a filled interior. (B) Zoom-in AFM image of selected Frame-array hybrid

purified by agarose gel electrophoresis. The scale bar is 100 nm.

142

S4.9 Boitin Modified DNA Origami Frame – 2D Array Hybrid Purified with

Monomeric Avidin Resin

Figure S8. AFM images of Boitin modified frame-array hybrid after purification with

monomeric avidin resin. The origami frame was modified with biotin. When purifying

with monomeric avidin resin, unmodified tiles and 2D arrays were washed away while

the boitin modified frame-array hybrids were bound to the resin. The purified product

was then washed off with excess biotin solution. (A) & (B) The AFM images show that

using this purification method, fewer free 2D array residues remained. (C) Zoom-in AFM

image of selected Frame-array hybrid purified with monomeric avidin resin. The scale

bar is 100 nm.

143

S4.10 DNA Origami Frame – 2D Array Hybrid Before Purification

Figure S9. AFM image of unpurified frame-array hybrid. Several, but not all of,

distinguishable frame-array hybrid structures are marked in the image.

144

S4.11 Defects of DNA Origami Frame – 2D Array Hybrid

Figure S10. Three major classes of defects in the frame-array hybrids. (A) The shrunken

frame-array hybrid caused by sticky ends on tiles hybridizing with another row of non-

neighboring tiles. (B) The widened frame-array hybrid caused by inserting one or two

rows of tiles between neighboring rows. (C) The bent frame-array hybrid caused by

association of sticky ends between non-neighboring columns of tiles. Each image in the

figure is 610 nm × 610 nm.

145

S4.12 Dynamics of the Nucleation of DX Tiles in the Origami Frame

Figure S11. FS-AFM images showing the dynamics of nucleation and growth of DX tiles

into the DNA origami frame. (A) This is another example of the experiment shown in

Figure 3. Each frame was collected over 87 seconds. Each frame is 287 nm × 287 nm. (B)

The full set of images in Figure 3. Each frame was collected over 87 seconds. The scale

bar is 100 nm.

146

S4.13 Kinetics of the Nucleation Process of the Four Tiles

Figure S12. Characterization of the kinetics of the nucleation process. (A) The

modification of the tiles with a fluorophore and dark quencher. The 5’ end of Strand A1

147

was modified with an Iowa Black Dark Quencher. The 3’ end of Strand C2 was modified

with 6-FAM. Upon sticky end association in the tile array formation, the fluorophore and

the quencher are brought into close proximity and fluorescence quenching is expected.

(B) Normalized fluorescence decrease. The concentration of each of the tiles was 20 nM

in all experiments. The legend indicates the molar ratio between the tiles and the origami

frame. Each experiment was conducted in duplicate, the data of which coincided with

each other. All curves shown are after correction for photo-bleaching. (C) Logarithm of

the data in Panel B to the base e. The average of the curves of the reactions without

origami seed in Panel B are subtracted from all other curves. Then ln(I/Iini) is plotted

against time. The data are then fit by Equation 5 in the main text.

148

S4.14 DNA Sequences

Sequences of tile strands:

A1: AGGAACCATGAACCCTGCAGCATGTC

A2: GCTGCAGGCGGAATCCGACCCTGTGGCGTTGCACCAT

A3: GTCGGATTCCGCTGGCTTGCCTAGAGTCACCAACGCCACAGG

A4: ACTCAATGGTGCACTAAACCTCTAAG

A5: AGGTTTAGTGGTGACTCTAGGCAAGCCAGGTTCATGG

B1: GTGATCCATGAACCCTGCAGCAGAAC

B2=A2

B3=A3

B4: TAACGATGGTGCACTAAACCTAAGCT

B5=A5

C1: TGAGTCCATGAACCCTGCAGCAGCTT

C2=A2

C3=A3

C4: TTCCTATGGTGCACTAAACCTGTTCT

C5=A5

D1: CGTTACCATGAACCCTGCAGCCTTAG

D2=A2

D3=A3

D4: ATCACATGGTGCACTAAACCTGACAT

D5=A5

149

Sequences of the helper strands and sticky end strands in the DNA origami frame:

Helper 1

GTATTAACTCACTTGCCTGAGTAGACCGTTGTAGCAATACTTCTTTGATTTT

Helper 2 AGAGTCTGTCCATCACGCAAATTAAAGAACTC

Helper 3 CAGCAGAAGGCCTTGCTGGTAATACGAGTAAA

Helper 4 AAACCGTCTATCAGTGAGGCCACTCCAGAA

Helper 5 ACATCGCCCCGCCAGCCATTGCAAAGGGCGAA

Helper 6 AAAGAACGTGGACTCCAACGTCAACAGGAAAA

Helper 7 TAGTCTTTGGAAATACCTACATTTCCACTATT

Helper 8 TTGTTCCAGTTTGGAACAAGAGTTGACGCT

Helper 9 CGTGGCACTGAAATGGATTATTTAGTTGAGTG

Helper 10 ATCAAAAGAATAGCCCGAGATAGGCATTGGCA

Helper 11 TAGAACCCAGTCACACGACCAGTACCTTATAA

Helper 12

CCTGTTTGATGGTGGTTCCGAAATCGGCAAAATCATAAAAGGGAAAAATTTT

Helper 13 GTCAACCCCGGCGTTATAACCTCAGCGAAAAT

Helper 14 TCCACGCTGGTTTGCCCCAGCAGCACTCAA

Helper 15 CCTAAGCACACGAAGTCATGATTGGCAAGCGG

Helper 16 CCGCCTGGCCCTGAGAGAGTTGCAAATCGCGA

Helper 17 CGAGAAATCAGATTGCGATAAACGGCCCTTCA

Helper 18 AGTGAGACGGGCAACAGCTGATTGTCACAT

Helper 19 CAGCTTATACCTGACTATTCCACTTTTTCACC

150

Helper 20

GCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCGCAACAACTGAACGGACT

Helper 21 TAAAACAGTGGTCATAATCATGGTGGGGAGAG

Helper 22 GCATTAATGAATCGGCCAACGCGCGGCGAATA

Helper 23 TTAGTAATAACAACCGCCTGCATT

Helper 24 AAACTATCGATAAAACAGAGGTGAAAATGAAA

Helper 25 CAATATTAATTAAAAATACCGAACCTCAAA

Helper 26 ACGCTCATAATGCGCGAACTGATAGTCAGTTG

Helper 27 CAATCGTCAGACAATATTTTTGAGAGGAAG

Helper 28 GATTCACCTTCTGACCTGAAAGCGACTAACAA

Helper 29

TACCGCTTCTCAGCGGCAAAAATTCATTCTGGCCATAATACATTTGAGGATT

Helper 30 TCTTTTATGAAAACCTACCGCGCATTCGAC

Helper 31 GTGGTCGGAAAAGTCTGAAACATGAACGTTAT

Helper 32 TAAATTTACAGAAAAAAAGTTTGTATCATT

Helper 33

GGAAACACGTGCCGAAGAAGCTGGAGTAACAGAATGCAATGAAGAAAACCA

C

Helper 34 AGTACGCGTGACGATGTAGCTTTATATCAAAA

Helper 35 AAGATGATGCTGAGAGCCAGCAGCGGCGGTCA

Helper 36 CGAATTATGCATCACCTTGCTGAACGAACCAC

Helper 37 TTGAATACCCTCAATCAATATCTGGCCCTAAA

Helper 38 GGGAGAAAACAGTTGAAAGGAATTATGGCTAT

151

Helper 39

GTTAACCATTTTACGGAACGTCAGATGAATATAAATATCTTTAGGAGCTAAG

AATA

Helper 40 GAAATTGCTTAGAGCCGTCAATAGAACAGAGA

Helper 41 ACCTACCATTAGACTTTACAAACATTCGCTTG

Helper 42 TGGCAATTAAAGTTTGAGTAACATAATTATGG

Helper 43

GCCAGAGTGCGTATCAAGGAGCGGAATTATCACAAAGAAACCACCAGAGTG

AGAAC

Helper 44 ATAGCCAGGCATTAACCGTCAAACGGTGTCTG

Helper 45 TTACAGTGCCACGAAACAAACATT

Helper 46 AATCTAAATCATTTCAATTACCTGTTAAGTGG

Helper 47 TATCAAACCAAGTTACAAAATCGAACCTGA

Helper 48 GCAAATCACAATAACGGATTCGCCTTAGTAGC

Helper 49 GTTATCTAACAGTAACAGTACCTACCAACA

Helper 50

CTAATAGAGTAGATTTTCAGGTTTGGAAGGACGTCAATAGTCGGACAAGC

Helper 51

TAGAAGTATATCAAAATTATTTGCACGTAAAACAGGTATAATAACCACCATC

Helper 52 TAATTTTACATCAATATAATCCTGGAAGAAGA

Helper 53 TTGCGGAATCATATTCCTGATTAAAATTTA

152

Helper 54

CATTACCAGGCGTTGACAGATGTATCCATCTGAAGCACCAACAGAAACAACC

TAGAGGAC

Helper 55 TATAACGTCGTTTGGTCAGTTCCAGCGCATGA

Helper 56 CATTTGAAAAAATTAATTACATTTAGCAAAAG

Helper 57 AGCACCAAAAATAATCTCTTTAATCGCAGAGG

Helper 58 GGTAAAGTTAGACCAAACCATGAATTTACATC

Helper 59 ATGGCGACCATTCAAAGGATAAACGGGTTAGA

Helper 60 CTCAAAGCGAACCAAACAGGCAAATCAGATGA

Helper 61 TTTCAAGAAAACTTACCTTTTTTT

Helper 62 CTGGAGACACATAAATCACCTCACTATGTGAG

Helper 63 TTCAGCGAGCAGAAGCAATACCGGCCTCCA

Helper 64 AGATGGCGTTGAGGCAGTCGGGAGGGTAGTCGGGATCGGAGG

Helper 65 CAAGTAAAGGACGGTTGTCAGCGTAAAACTGG

Helper 66 TAGCGATAAGTACATAAATCAATAAACAATTT

Helper 67 TAATTAATCTTGCTTCTGTAAATCCCAGCAAT

Helper 68 TTTAATGGAAACGCTTAGATTATT

Helper 69 TGAATAACTTTCCCTTAGAATCCTAATACCAG

Helper 70 AACAATTTGGCGGCTTTTTGACCTATCGGT

Helper 71 AATCATAGAAGAGTCAATAGTGAATGAAAACA

Helper 72 ATTAGAGCATGCCTACAGTATTGTGTCGCTAT

Helper 73 TTAGACGCTGAGGTCTGAGAGATT

Helper 74 CATCACCCCTTGAATGGCAGATTTTGGGTTAT

153

Helper 75 AGCAAGCAGCGGCCTCATCAGGGACCAGCT

Helper 76 AAATATATAACCTCCGGCTTAGGTTTTATCAA

Helper 77 TCGCAAGAATGTAAATGCTGATGCTTAGGAAC

Helper 78 TTCTACCTTTTTTTTAGTTAATTT

Helper 79 ATAACTATCAAAGAACGCGAGAAACTTGCCAC

Helper 80 TTAGCCATTTCAAGAAGTCCTTTTATCAGA

Helper 81 ACCGACCGGACCTAAATTTAATGGACTTTTTC

Helper 82 ATCCTTTCACCAAATCAAGCAACTAAATCCAA

Helper 83 TTTTCATCTTCTTGTGATAAATTT

Helper 84 CAAGTCCACTTTATCAGCGGCAGAGAATCATA

Helper 85 AACGGCAGGCAGCAGCAAGATAAAGCACCA

Helper 86 CGCTCAACATAAGAATAAACACCGTTTGAAAT

Helper 87 CGTTATACAAAAAGCCTGTTTAGTTCACGAGT

Helper 88 TTAAGGCGTTAAAGTAGGGCTTTT

Helper 89 ATTACTAGAAATTCTTACCAGTATCTCTTTCT

Helper 90 GCACGCTCAGCAGAGGAAGCATCGCTCTTT

Helper 91 GTAATTTACGCCATATTTAACAACAAAGCCAA

Helper 92 AGTCTCATAGTTGCATTTTAGTAAATCATATG

Helper 93 TTAATTGAGAATGGCAGAGGCATT

Helper 94 GATTGTCCTTTGCATCTCGGCAATAAAGTACC

Helper 95 TTGATTCTTGAATGCCAGCAATCCAGACGA

Helper 96 ACTGAACAAGTAATAAGAGAATATGCCAACAT

Helper 97 AAAACAGGGTAAAGTAATTCTGTCTCTTTTTG

154

Helper 98 AAATAGCAAACAACATGTTCAGCTGCGTGAAG

Helper 99 ATATACCTGGTCTTTCGTATTCTGAATGCAGA

Helper 100 AGAAACGAGTTTATCAACAATAGATTTTGTGC

Helper 101 AACAGCCAAAAAATAATATCCCATAGACTCGGCGATGCT

Helper 102 CGGATCTGAATACGCAACGCGAGCAGTCCTAATTT

Helper 103

AATCTCGGAAACCTGCTGTTGCTTGGAAAGATTGAATCGGCTGTCTTTCCTT

Helper 104 GCTACAATAAGAACGGGTATTAAATGGCGCAT

Helper 105 TTCGCTCATCTCAGCCGTTTGAGCTTGAGTAACTCCGACGAC

Helper 106 TTTGATTTGGTCATTGGTAAAATACCGTTTTT

Helper 107 AACCTCCCCGTAGGAATCATTACCGTCATTTC

Helper 108 CGGTATTCCAAATCAGATATAGAAAACTACCAGATGCAA

Helper 109 GCATCCTTGGTTCTGCGTTTGCTGATGTATTTCCTAGACAAATTA

Helper 110 AACATACAACCATCAGCTTTACCGAATATGAG

Helper 111 AGAAATATCCTTTGCAGTAGCGCCTCTTTCCA

Helper 112 TTTTTTCGAGCCCCCTGAACAATT

Helper 113 GACAAAAGGAAGCGCATTAGACGGTCAGAGAG

Helper 114 CGACAATAGCCTTTACAGAGAGACCCAATA

Helper 115 ACGCGCCTTTTTTTGTTTAACGTCGCAATAGC

Helper 116 TGAACAAGTATTATTTATCCCAAAAAAGTA

Helper 117 ACGAGCATGCCTAATTTGCCAGTTAGAAGGAA

Helper 118

ATCATTCCTTTATCCTGAATCTTACCAACGCTAAAATACCCAAACAAACTCA

155

Helper 119 ATTTTCATGACTTGCGGGAGGTTTACTCAACG

Helper 120 ATAGCAAGTAAGAACGCGAGGCGTCTTCCA

Helper 121

GAGCCAATATTGGGAGGGTGTCAATCCTGACGGTGCTTATGGAAGCCAAGCA

Helper 122 GAAATTGTGCCTCCAAGATTTGGATGCCACAA

Helper 123 TCAACCGATAATTGAGCGCTAATAGAGAATTA

Helper 124 GTTTACCACAAGAATTGAGTTAAGATAACATA

Helper 125 ATTTTGTCAAGAAACAATGAAATAAAAAATGA

Helper 126 AAAGAAACCGAAGCCCTTTTTAAGTCCAAATA

Helper 127 GAAAATACGCCGAACAAAGTTACCACAAAATA

Helper 128 ACTCCTTAAACGCAATAATAACGGCGAGCGTC

Helper 129 CCATTAACGTCAGAAGCAGCCTTATGCACCCA

Helper 130 GGGAGCACATATCACCATTATCGATGAAGCCT

Helper 131 GGTGGTCTACGAAAAGACAGAATCTTTTAGCG

Helper 132 TCTAAAAAATGCGGTTATCCATCTGGCTTATC

Helper 133 GCAGCCAGTGAGAAAGAGTAGAAAGGCATGAA

Helper 134 TTAGTCAGAGGGTTGAGGGAGGTT

Helper 135 ATAACCCAGCGCCAAAGACAAAAGCATTAAAG

Helper 136 ATAAGAGCACAATCAATAGAAAAGAGCCAT

Helper 137 TATCTTACGCAAAGACACCACGGAACCAGTAG

Helper 138 AGCAGATAATACATAAAGGTGGCAAACGTC

Helper 139 ACCGAGGATTACGCAGTATGTTAGACCGTAAT

156

Helper 140

TCACGAACTTCTCAGTAACAGATAAGAACTGGCACTTTAGCGTCAGACTGTA

Helper 141 CAACATACATTGTAGCATTGTGCTCATAGC

Helper 142 CCCTGCATATAGTGTTATTAATATTTCATAAT

Helper 143 AGAGCTTGCCATTTTTCGTCCCCCACCGGA

Helper 144

TTGGGGATCTTGCGGCAAAACTGCGTAACCGTCTCTCAGAACCGCCACCCTC

Helper 145 GCCTCAATCGAATATCCTTAAGAGCTGAATAG

Helper 146 TTGAAGGTAAATATTGACGGAAATTATTGGCGACAT

Helper 147 GTGAATTATCACCGTCACCGACTTTTCATATG

Helper 148 TTGGGAATTAGAGCCAGCAAAATCATAAGTTT

Helper 149 CACCATTACCATTAGCAAGGCCGGAACATATA

Helper 150 ACCAATGAAACCATCGATAGCAGCCAAACGTA

Helper 151 CAGTAGCGACAGAATCAAGTTTGCTGATTAAG

Helper 152 GCGCGTTTTCATCGGCATTTTCGGCAATTCAT

Helper 153 CCCCTTATTAGCGTTTGCCATCTTCAAGTTGG

Helper 154 CAAAATCACCGGAACCAGAGCCACTTCGGGGC

Helper 155 ACCGCCTCCCTCAGAGCCGCCACCTCTCGTTC

Helper 156 CACCACCACACCCTCAGAGCCGCCGGCGTTCA

Helper 157 AGAGCCACGAGCCGCCGCTT

Helper 158 CAAAGCCTTTGCATTCATCAAACGTCAGACGA

Helper 159 AATTTACCAGGAGGTTGAGGCAGGACCAGAAC

Helper 160 TTCAGCATTGACGTTCCAGTAATT

157

Helper 161 TTGGCCTTCCAGAATGGAAAGCGCCTTGCGAC

Helper 162 ACTGGTAATGGCTTTTGATGATACAGTCTCTG

Helper 163 TTGCGTCATACATAAGTTTTAATT

Helper 164 CCTCGGCACGTGTGAATCATTAGCCCCGTATA

Helper 165 TTCGGGGTCAGTCTCAAGAGAATT

Helper 166 TGAGACTCGCCTTGAGTAACAGTGAGGAGTGT

Helper 167 GCGGATAATAGCGGGGTTTTGCTCTAAGAGGC

Helper 168 AACAGTTATGAAACATGAAAGTATGCTATTTA

Helper 169 TTGGATTAGGATGTGCCGTCGATT

Helper 170 ACTGGCGGGCCACGTATTTTGCAAATAGGTGT

Helper 171 GCGTAACGATAAGTATAGCCCGGAAGTACCAG

Helper 172 TTGAGGGTTGATATCTAAAGTTTT

Helper 173 ATCACCGTTTCCACAGACAGCCCTTGAATTTT

Helper 174 TAAAGGAATCCAGACGTTAGTAAACATAGTTA

Helper 175 TTTTGTCGTCTTTTGCGAATAATT

Helper 176 CTGTATGGGGAGTGAGAATAGAAAAAAAAAAG

Helper 177 TTTAATTTTTTCACGTTGAAAATCTCCAGGAACAAC

Helper 178 GCTCCAAAAGGAGCCTTTAATTGTTTTCAACA

Helper 179 AACAAGCGTTCTTGCAAATCACCATGCCAGCT

Helper 180 CTTTCCAGTCGGGAAACCTGTCGGAAGGCG

Helper 181 GAATCTCTATGAATGGGAAGCCTTACTGCCCG

Helper 182 ACTCACATTAATTGCGTTGCGCTCCAAGAAGG

Helper 183 ATAAGTCAAGGAGAAACATACGAAGTGAGCTA

158

Helper 184 GTAAAGCCTGGGGTGCCTAATGAGGCGCAT

Helper 185 CATACAAACACTGACCCTCAGCAACATAAAGT

Helper 186 TCCACACAACATACGAGCCGGAAGTCTTAAAC

Helper 187 CTTCATAGCGAATCACCAGAACGGCTCACAAT

Helper 188 TTCCTGTGTGAAATTGTTATCCGCGCCATT

Helper 189 CTGGTGCCAGGCTGCGCAACTGTTATAGCTGT

Helper 190

CCCGGGTACCGAGCTCGAATTCGTAATCATGGTCGGGAAGGGCGATCGGTGC

Helper 191 CCTCAGGATCGCTATTACGCCAGCAGAGGATC

Helper 192 CTTGCATGCCTGCAGGTCGACTCTTGGCGAAA

Helper 193 CTGCCAGTTGCTGCAAGGCGATTAGTGCCAAG

Helper 194 TTGTCACGACGTTGTAAAACGACGGCCAAGTTGGG

Helper 195 GTTCCTGATTAGTCGCAGTAGGCGCCATGC

Helper 196 TGATAAGCAAGCACCTTTAGCGTTGATTGTAT

Helper 197 AACGATACACAGGGTCGCCAGCATTAATAT

Helper 198 TTCTTAGAAAATTTCACGCGGCGGTTGTTAAA

Helper 199 CGCCATTCGGAAACCAGGCAAAGAACGCCA

Helper 200

GGGCCTCTAGATCGCACTCCAGCCAGCTTTCCGGTCCTGTAGCCAGCTTTCA

Helper 201 GGGGGATGTTGAGGGGACGACGACCAACCCGT

Helper 202 TAACGCCAATGGGCGCATCGTAACGGATTG

Helper 203 TTCGTTGGTGTAGGGGTTTTCCCATT

Helper 204 CCTAACGACAAGAGTAAACATAGTGGAAAACG

159

Helper 205 TCAGAAAAATTTAAATTGTAAACGATATCGGT

Helper 206

TGACCGCTATATAAGCTAAAACTAGCATGTCAAATTCGCATTAAATTTCAAGT

TGC

Helper 207 AAGAGAATTTTTTTAACCAATAGGAAAACATC

Helper 208 TCAGGTCAAATTCGCGTCTGGCCTCACCGCTT

Helper 209 TGCCGGAGAAATGTGAGCGAGTAAAGTATCGG

Helper 210 ATGATATTCCGTGGGAACAAACGGCCGTGCAT

Helper 211 AAGCAAATGCCCCAAAAACAGGAAAACATCAT

Helper 212 TTTGTTAAATCATATGTACCCCGGTTCTTG

Helper 213 TCAGCTCACGATGAACGGTAATCGAGCTTGCA

Helper 214 TCAAAAATTTGCCTGAGAGTCTGTAGAAGT

Helper 215 TCAACATTAGGGTAGCTATTTTTGAGAGATCTACCTCAGGAG

Helper 216 CGGATTCTCAACCGTTCTAGCTGAGCAACGGA

Helper 217 ACCGTAATGAGACAGTCAAATCAATGTGTA

Helper 218 TTGAGAAAGGCCGGGGATAGGTCATT

Helper 219 GGTAACGCTGCATGAAGTAATCACGTTGATAA

Helper 220 CGTCATTTGGCGAGAAAGCTCAGTAAAGGCTA

Helper 221 CGGCGCTTTGTTTTTGAGATGGCATAAATTAA

Helper 222 TTAGGGTTCGAGCATCATCTTGATCCATCAAT

Helper 223 CCTACTGATCGGAGGTTTTACCTCCAAATGAATGGACAGCCA

Helper 224 GACCCATAACCGTGCTCA

Helper 225 AACCATAAAGCCTCGGTACGGTCATACTTTTG

160

Helper 226 GGTAAAGATGCAATGCCTGAGTAAAGGATA

Helper 227 TTTATATTTTAAATTCAAAAGGGTTT

Helper 228 TTAGGGATTTCAAATAACCCTGAAGGCATCCA

Helper 229 ACCAAAAAGCCTTTATTTCAACGCTAAGCTCA

Helper 230 CGGGAGAACATTATGACCCTGTAAGGCATGGT

Helper 231 AAAATTTTGAGCATAAAGCTAAAAGGCAAA

Helper 232 TTATAAAGCCTCATAGAACCCTCATT

Helper 233 AATCCACTTCGTGCCAAGAAAAGCACAAATGC

Helper 234 GGAGTGGCCCAGTAGTGTTAACAGTCGGTTGT

Helper 235 CAATATAAATTAACACCATCCTTCATTTTCAT

Helper 236 GAATTAGCTAAATCATACAGGCACATCAAT

Helper 237 TTTTAACATCCAAAAAATTAAGCATT

Helper 238 TCTACAGTTGAGGGACATAAAAAGATGAACTT

Helper 239 ATGGTCAACGAGCTGAAAAGGTGGTCGGGAGA

Helper 240 TTGGGGCGTAACCTGTTTAGCTATACGGAGAG

Helper 241 TCTACTAATGACCATTAGATACAAGTTGAT

Helper 242 TTTAGATTTAGTTTAGTAGTAGCATT

Helper 243 ACGACCAAGACGCAATGGAGAAAGTAAAAATG

Helper 244 GCGATAACGCGTCCATCTCGAAGGTTTCGCAA

Helper 245 CGCCAACGCGGAGTAGTTGAAATGTAATTGCT

Helper 246 TCCCAATTTTCATTCCATATAACGTTTTAA

Helper 247 TTTGTCTGGAAGTCTGCGAACGAGTT

Helper 248 CGCTCGGCAGATGGGAAAGGTCATGTAATAAG

161

Helper 249 CATTTTTGTGCTGTAGCTCAACATAGTCGCCA

Helper 250 GAATATAACGGATGGCTTAGAGCTAAGGGGCC

Helper 251 ATATGCAAAATTGCTCCTTTTGAAGCAAAC

Helper 252 TTAGAGTACCTTTCTAAAGTACGGTT

Helper 253 TTTAGTACTAATTTATCCTCAAGTGCGGCATA

Helper 254 ACATACCATGCAATTAAAATTGTTTAAGAGGT

Helper 255 GAAGCCCCAAGACGAGCGCCTTTAGATTGCAT

Helper 256 TCCAACAGGCGAACCAGACCGGAAAGACTT

Helper 257 TTCGAGCTTCAAAGTCAGGATTAGTT

Helper 258 ATAAAAAATCCAAGTATCGGCAACACGACATT

Helper 259 CTGGCCAATCACAACCACACCAGAAGCAGCATAGCAATCATA

Helper 260 TTACCTTTCCAGGGCGAGCGCCAGCGCTTGCC

Helper 261 ACTATTATTTAAGAGGAAGCCCGAGACCACCT

Helper 262 CAAAAAGAAGTCAGAAGCAAAGCGCGCACGTT

Helper 263 CAAATATCTCAAAAATCAGGTCTTGCTTTA

Helper 264 TTATGACCATAAAGCGTTTTAATTTT

Helper 265 ACTCATCGAGCAGGTTTAAGAGCCAACGAACC

Helper 266 TCAGCGGCCGCACGTAATTTTTGAAACGTTTT

Helper 267 CTGCGCGTCGTCAGTAAGAACGTCTTACCCTG

Helper 268 GCTCAAAGACCTTTCTTTTTGGGTGGAGGC

Helper 269 TTCTTCTGACACGCAAGGTAAACGAGAGGGGG

Helper 270 AACAGTTCTGAATCCCCCTCAAATAGCGTC

Helper 271 TTTAAATATTCATAGAAAACGAGATT

162

Helper 272 CTGTCGCACTACGCGATTTCATAGGTAATTAT

Helper 273 CAGCGCCTCATTAATAATGTTTTCCGAACAAT

Helper 274 GGCTTTTGAAATGTTTAGACTGGAAGTGTTTC

Helper 275 CTCCAGCAATAAACCAACCATCATAATCGG

Helper 276 TAATAGTACAAAAGAAGTTTTGCCTGAACATA

Helper 277 CAATACTGCGATAAAAACCAAAAAAGAGCA

Helper 278 TTTTACCAGACGACGGAATCGTCATT

Helper 279 TGAGTTTCACCGCCACCCTCAGAAAGCGTCCT

Helper 280 CCACAACCAACCAGAACGTGAAAACCGCCACC

Helper 281 CAAGCCCACACCACCCTCATTTTCTCAACAGG

Helper 282 CATAGAAAGCCACTTCTCCTCATCGTGCCGATCCGTCTG

Helper 283 ACCAGAGTCGGCCAGTCCTTGACGAACCAACGCGT

Helper 284 AGAATCTCTACCATGAACAAAATGATGGCG

Helper 285 GCAAGGATCAAAGTAAGAGCTTCTTCAACAAG

Helper 286 CTCAGAGCATAGGAACCCATGTACGGAAGTAG

Helper 287 CTTTAAGCCCAACAGCCATATAAGTTCCAT

Helper 288 CAGTTTTTACTTTTTGTTAACGTAGCAAGGTC

Helper 289 AAAGGTCGAGGTCGAATTTTCTCCGTAAAC

Helper 290 TAAGGGAACCGAACAAGATAATTTTTCGACT

Helper 291 GTGAGCATTCTGAACAGCTTCTTGCGTAACAC

Helper 292 GGATTAAGTGGTTTTTAGTGAGTTAGGGATAG

Helper 293 GGCGTCGCTCCTAGACCTTTAGCATTTAGCCA

Helper 294 TTTTTGCGCCACTTCGATTTAATTATTTTCCG

163

Helper 295 GTAACTTTGTAATTCCTGCTTTATCGAGCTGC

Helper 296 CGACAGCTCACTCCGTGGACAGATTTCTTAAA

Helper 297 TCTTTAGCGTCGTAACCCAGCTTGACAATG

Helper 298 CATATCTGTTCTGCTTCAATATCTCCGATATA

Helper 299 AAGCAGTATCCCAGCCTCAATCTGTTAAAG

Helper 300

CATCAGAAAGCGATAAAACTCGCCGCCAAAACGTTCAGCAGCGAAAGACAG

C

Helper 301 TATCAGCTTGCTTTCGAGGTGAATTTGTCATT

Helper 302 CAGCTTGATACCGATAGTTGCGCCGGTAAGTT

Helper 303 ACAACAACCATCGCCCACGCATAAGGTTGAAC

Helper 304 TTCGGTCGCTGAGGCTTGCAGGGACATCTCTC

Helper 305 GCCGCTTTTGCGGGATCGTCACCCCGGCTACA

Helper 306 ATCGGAACGAGGGTAGCAACGGCTACTTCTGC

Helper 307 CATTAAAGGATATTCACAAACAAAGCATGAGC

Helper 308 TCGTCAGCATCATAAAACGCCTCCAATATC

Helper 309 GCAGTCGGGCAAGAACCATACGACTAAATCCT

Helper 310 ACGAAAATTCAGGCACACAAAAACGCATGG

Helper 311 TATTATTCATGCCCCCTGCCTATTTACTGATA

Helper 312 ACCATAAGCGATTGCGTACCCGACTCGGAACC

Helper 313 AAATGAAGCCGCATAAAGTGCACGACCAAA

Helper 314 ATTAGGGTCGAACTGCGATGGGCACCGCCA

Helper 315 CTGTAGCAACTCAGGAGGTTTAGTATACTGTA

164

Helper 316 CCCTCAGAGTCACCAGTACAAACGCGGCTC

Helper 317 GTTTCAGCGATTTTGCTAAACAACTACAACGC

Helper 318 ATTCTGATTTTCATCCCGAAGTTATCGGTT

Helper 319 AGCGTACCTTGAATGTTGACGGGACGTAAATT

Helper 320 GAGCAGGATGACGGCAGCAATAAATAGCGAGA

Helper 321 ATAAGCAAAAGCGAGGGTATCCCAAGAAAGAT

Helper 322 ACACTATCATTACGAGGCATAGTCACATTC

Helper 323 TTCGCCAAAAGGAATAACCCTCGTTT

Helper 324 TAGCAATCAGCGACGAGCACGAGACAAAGTCC

Helper 325 TAACGGAATGAGATTTAGGAATACCTCAACAG

Helper 326 TCATCAGTCAACATTATTACAGGTTCGGTTAA

Helper 327 AACTAATGAAATCTACGTTAATAAACTGGC

Helper 328 TTGTTGGGAAGAACAGATACATAATT

Helper 329 TGTTCAGTAAAATCGAAATCATCTGCGGTCAG

Helper 330 GGACTCAGACCTATTAGTGGTTGAGTACGGAT

Helper 331 ATCCAAAAAAAGCGGTCTGGAAACAAACACCA

Helper 332 TAGAGGCCCGGCAGAAGCCTGAATAAACGAAC

Helper 333 GTGAATAAAGTAAATTGGGCTTGAGAGCTTAA

Helper 334 TCATTATATTATGCGATTTTAAGGATGGTT

Helper 335 TTTGTGAATTACCCCAGTCAGGACTT

Helper 336 GAACGAGTGGCTTGCCCTGACGAGAGGCGCAT

Helper 337 TAATTTCAAACGTAACAAAGCTGTAATCTT

Helper 338 TTTTACCCAAATCACTTTAATCATTT

165

Helper 339 CGAGGCGCGAACGGTGTACAGACCACAGCATC

Helper 340 TCCGCGACTGACCTTCATCAAGAGCTCATTCA

Helper 341 AGGCTGGCCTGCTCCATGTTACTTAAAACACT

Helper 342 GACAAGAATCGCCTGATAAATTGCCAAGCG

Helper 343 TTGATTTGTATCACCGGATATTCATT

Helper 344 GTCATGGAATATCCGAAAGTGTTAAGCCGGAA

Helper 345 ACGAAAGAACCCCCAGCGATTATATGTCGAAA

Helper 346 CATCTTTGGGCAAAAGAATACACTACAGAGGC

Helper 347

CGAAACAACACTACGAAGGCACCGAGGAAGTTTCCATTAAACGGGTAAATT

Helper 348 TTATACGTAATGCAGTACAACGGATT

Helper 349 TTTGAGGACTAAAGACTTTTTCATAACCTAAA

Helper 350 CTTTGAAAGAGGACAGATAGACGGTCAATCA

Sticky End Left 1

ATCACGGCCGCTGCACCAGCAAGAAACCAATCCGCGGCATTGATTGCT

Sticky End Left 2

TTCCTACTGACGGATGCCACCGGAAGACATGGCGCCTGTATGGGTTCT

Sticky End Left 3

ATCACTGGTACCTCAAAACTAGGGCATCACCTTGAAGTCACTGGACAT

Sticky End Left 4

TTCCTCCATGAACTGCAACGTACCAGCACCAGAAACGTATCGCGTTCT

166

Sticky End Left 5

ATCACGGTGGTCAGCTCAGGAAATAAGTGCCAGCCGCCGTCCAGACAT

Sticky End Left 6

TTCCTTCCTTGACTCAACCATACCCCAAGCATTAAAGCACGACGTTCT

Sticky End Left 7 TCGCCGACCAAATCCGGCGCAGGCCAGGACAT

Sticky End Left 8 ATCACAGGTACACGAATCCGGGACAT

Sticky End Left 9

TTCCTCGCTCCGTAGCGTGACATTATGAAAAATATACTTATACGTTCT

Sticky End Left 10

ATCACCACACGCTTCATCCTTAATTCAAAATAATCGCCGTCCAGACAT

Sticky End Left 11

TTCCTTCTAGATCTGTCAAAAACGATCTTGAACACTCTCTTAAGTTCT

Sticky End Left 12

ATCACGGTTCGCAGCATTGGGATTCAACGTGAGAGCGGAAGTCGACAT

Sticky End Left 13

TTCCTACAAACGTCTGTACCATACAGTCACGCAAACTTCCTTCGTTCT

Sticky End Left 14

ATCACCAGCGTATGTAGGAAGTGTACGGCCATTAGAAGCTTCAGACAT

Sticky End Left 15 GCGTGTAGCAACGCTACCTTGCGCCTAGTTCT

Sticky End Right 1

GAAGCGGAGCAGTCCAAATAAAATAGTTCCAGGAGCCTTAG

167

Sticky End Right 2

TGAGTTCGCTGATGTTATAGATATTTATTGGTATATGCCGCAGCTT

Sticky End Right 3

CGTTATCGGCCAATCAGGGTTAAGTTCACCATATGTTATGTCTTAG

Sticky End Right 4

TGAGTCTTGCGGCAACGTGACGAAGAGTCAATATGTCAAGCAGCTT

Sticky End Right 5

CGTTAATCTACGTGCAAGGCCACTCTGACCAGCAGCCGAGACTTAG

Sticky End Right 6

TGAGTCCACCTATAAGGAAGCCAGCCAGTTTGATGAGCACTAGCTT

Sticky End Right 7

CGTTAGTTCGGATATATTAGACACTCGCAACGGCTAATGGCCTTAG

Sticky End Right 8

TGAGTGGCCGAGACTGCGGACGAAGACATTACAGGTAGTCCAGCTT

Sticky End Right 9

CGTTAGGACAGCGTCACTCCTTCTTTAACCGGAGGTGGCCGCTTAG

Sticky End Right 10

TGAGTCTGAACACCGCTCGACGCTCCATGATGACAGGAACAAGCTT

Sticky End Right 11

CGTTACACGCGGAGACAGGCCGTATAAACGCAATTATAGGCCTTAG

Sticky End Right 12

TGAGTGTGCTCGCGCCTCAACGCCAAACTTTGTCAGTCCTCAGCTT

168

Sticky End Right 13

CGTTACACTCTTCTACTCGTCAGAACTTGACTCATCGCCGACTTAG

Sticky End Right 14

TGAGTATAGACGCATGATTTCTTATAGTAATCCACGCTCTTTTAAAATGCTGA

CCAA

Sticky End Up 1 TAAACGTTATTGCCCGGCGCCAGGTCCAGCTT

Sticky End Up 2 TTCCTCCGAAGAGTCACACAGTCCTTGACGAAATAAA

Sticky End Up 3 AACTCGTATTCTGAATAATGGAAATCATGGAGCTGGCTTAG

Sticky End Up 4

ATCACCCAGTGCCGAACCATTGTTTGGATTATACTTAAATCCTTTGCCCGATT

AAACT

Sticky End Up 5 GGGTCGGCATCAAAAGCAATCGGCCGCAGCTT

Sticky End Up 6

TTCCTCGAGCCAGCCTGATTAGCATGCCCAGAGATTAGATCAACATC

Sticky End Up 7 TCAGGAACGTTGAACACGACCAGCATAAAGCCTCTTCTTAG

Sticky End Up 8

ATCACTGCTACAGGAAATGAATGTTTATAGGTCTAAAGAAACGCGGCACAAA

GGTACT

Sticky End Up 9 GTCAGTATGCAAATTAGCAACCAGTGGAGCTT

Sticky End Up 10 TTCCTAGAGCTCCATGTCAATAGATGTGGGAGCAAAC

169

Sticky End Down 1

TGAGTGCGGACGCCCTTCTGTTGATAAGCAAGCATCTCATAAGTCC

Sticky End Down 2

TTTCCAGAGTAGAAACCAATCAATGTGTTTTCCATAATAGAATTAGGCGTTCT

Sticky End Down 3

CGTTAAGTAAGGTGCATTCCAAGTACCGCACTCGATTAGTTGCTATTTTGGCC

GT

Sticky End Down 4

TAAATCAAATCGAGAACAAGCAAGCTGACGGAAATGCGACAT

Sticky End Down 5

TGAGTGCCGGCCTAGTCAACCTCAGCACTAACCTTGCGAGCGCCCA

Sticky End Down 6 AAGAGCCATACCGCTGATCAAGAACTGTTCT

Sticky End Down 7

CGTTACGTGTTGGCAGTGAGCTTTATCAATACCCAGAAGGGTAATAAGTCGA

TAC

Sticky End Down 8

CGTTATTCAGTCGAAGCATATTAAGGCTCACCTTTAGCACTGGTAG

Sticky End Down 9

CCAGCAGTGACAGAATCGTTAGTTGTGACTCATATCTAAATGGCCAGGGACA

T

Sticky End-Scaffold Linker Left 1 CCATACAGCAGCGGCC

Sticky End-Scaffold Linker Left 2 CAGTGACTCCGTCAGT

170

Sticky End-Scaffold Linker Left 3 GCGATACGAGGTACCA

Sticky End-Scaffold Linker Left 4 TGGACGGCGTTCATGG

Sticky End-Scaffold Linker Left 5 GTCGTGCTTGACCACC

Sticky End-Scaffold Linker Left 6 CTGGCCTGGTCAAGGA

Sticky End-Scaffold Linker Left 7 GTATAAGTGTGTACCT

Sticky End-Scaffold Linker Left 8 TGGACGGCACGGAGCG

Sticky End-Scaffold Linker Left 9 TTAAGAGAAGCGTGTG

Sticky End-Scaffold Linker Left 10 GACTTCCGGATCTAGA

Sticky End-Scaffold Linker Left 11 GAAGGAAGTGCGAACC

Sticky End-Scaffold Linker Left 12 TGAAGCTTACGTTTGT

Sticky End-Scaffold Linker Left 13 TAGGCGCAATACGCTG

Sticky End-Scaffold Linker Up 1

GGACCTGGAAATGGTTAACGCTTGTCCGACTCTTCGG

Sticky End-Scaffold Linker Up 2

CCAGCTCCCAACGCCATCTCCTCCGATCCGGCACTGG

Sticky End-Scaffold Linker Up 3

GCGGCCGACGCACTCTGGCGTCCTCTAGGCTGGCTCG

Sticky End-Scaffold Linker Up 4

AAGAGGCTCGATCAGTAGGTGGCTGTCCACTGTAGCA

Sticky End-Scaffold Linker Up 5

CCACTGGTTATAGCGGTCATGAGCACGGTGGAGCTCT

171

Sticky End-Scaffold Linker Right 1 GCTCCTGGATCAGCGA

Sticky End-Scaffold Linker Right 2 GCGGCATATTGGCCGA

Sticky End-Scaffold Linker Right 3 ACATAACAGCCGCAAG

Sticky End-Scaffold Linker Right 4 GCTTGACAACGTAGAT

Sticky End-Scaffold Linker Right 5 TCTCGGCTATAGGTGG

Sticky End-Scaffold Linker Right 6 AGTGCTCAATCCGAAC

Sticky End-Scaffold Linker Right 7 GCCATTAGTCTCGGCC

Sticky End-Scaffold Linker Right 8 GGACTACCCGCTGTCC

Sticky End-Scaffold Linker Right 9 CGGCCACCGTGTTCAG

Sticky End-Scaffold Linker Right 10 TGTTCCTGTCCGCGTG

Sticky End-Scaffold Linker Right 11 GCCTATAAGCGAGCAC

Sticky End-Scaffold Linker Right 12 GAGGACTGGAAGAGTG

Sticky End-Scaffold Linker Right 13 TCGGCGATGCGTCTAT

Sticky End-Scaffold Linker Down 1

GCCTAATTATTCAGATCCGAGCATCGCCGGCGTCCGC

Sticky End-Scaffold Linker Down 2

GCATTTCCAGATGAGCGAAGTCGTCGGAGACCTTACT

Sticky End-Scaffold Linker Down 3

AGTTCTTGACCAAGGATGCTTGCATCTGGAGGCCGGC

Sticky End-Scaffold Linker Down 4

CCGGATTCTGATTGGCCAGTATGATTGCTCCAACACG

172

Sticky End-Scaffold Linker Down 5

CCTGGCCACCGACTCTGGTCAGACGGATCCGACTGAA

173

Helpers modified with biotin:

Biotin Helper 158

CAAAGCCTTTGCATTCATCAAACGTCAGACGATTTTTTTTTTTTTTTTTTTT

Biotin Helper 159

AATTTACCAGGAGGTTGAGGCAGGACCAGAACTTTTTTTTTTTTTTTTTTTT

Biotin Helper 161

TTGGCCTTCCAGAATGGAAAGCGCCTTGCGACTTTTTTTTTTTTTTTTTTTT

Biotin Helper 162

ACTGGTAATGGCTTTTGATGATACAGTCTCTGTTTTTTTTTTTTTTTTTTTT

Biotin 20A [5’ biotin]AAAAAAAAAAAAAAAAAAAA

174

APPENDIX D

PERMISSIONS TO USE COPYRIGHTED MATERIALS

175

Nature Publishing Group

176

177

178

179

180

181

182

AAAS

183

184

185

186

187

188

189

190

191

192

American Chemical Society

193

194

195

196

197

198

Other Sources

For Figure 1.10.

Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS Biol 2004, 2, e424.

Copyright: © 2004 Rothemund et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly

cited.

199

APPENDIX E

CO-AUTHOR APPROVAL

200

I verify that the following co-authors have approved of my use of our publications in my

dissertation.

Yan Liu (Arizona State University)

Hao Yan (Arizona State University)

Yang Yang (Arizona State University1)

Shuoxing Jiang (Arizona State University)

1Note: The author’s address is listed as when the research was performed.

	Title Page
	00 Preliminary Pages
	01 Chapter 1
	02 Chapter 2
	03 Chapter 3
	04 Chapter 4
	05 Chapter 5
	06 Bibliography
	07 Appendix A
	08 Appendix B
	S3.1.3 Fluorescence Kinetics. The fluorescence kinetics experiments were performed on a real-time PCR thermocycler (Stratagene Mx3005P). The thermocycler program is set that the time of each cycle is one minute, so the fluorescence intensity of the so...
	The final concentration of each DNA strand in the solution is about 0.5 µM after mixing the input strand. The buffer condition is 1×TAE/Mg2+ buffer. The fluorescence intensity measurement starts as soon as the input strands are added.
	S3.1.4 Fluorescence Data. For each reaction, the first trace is the original data collected by the fluorometer. The second trace is the increase of each reaction at each time point. This is calculated by subtracting the starting fluorescence intensity...
	S3.2 Capping Technique
	In the design of the XOR gate and AND gate, we incorporated the “capping technique”. Figure S3.1 shows the position of the caps we placed on the strands.
	/
	Figure S3.1. The positions of the caps. The caps in the design if marked with red circles. Each cap is a one nucleotide extension from the main strand, and complementary to the corresponding base to the other component strand in the duplex.
	The capping technique was introduced by L. L. Qian and E. Winfree (Science 2011, 332, 1196). The purpose of the caps is to prevent the non-specific π- π stacking directed DNA strand displacement reaction (Figure S3.2), which may contribute to the lea...
	/
	Figure S3.2. The caps can prevent π- π stacking directed DNA strand displacement reactions.
	S.3.3 Length of the Toehold Domain in the Hairpins
	In the designs of both the XOR gate and AND gate, the outputs are protected in a hairpin structure. With an optimal hairpin loop length, 5 to 8 bases, the hairpin stem is far more stable than a linear DNA double helix of the same length. The yields o...
	/
	Figure S3.3. The opening reaction of the hairpin structure.
	Table S3.1. Relation between Length of T7h and Reaction Yield
	Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt
	Concentration: 100 nM; Temp. = 25 oC
	Table S3.2. Relation between Temperature, Concentration and Reaction Yield
	Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt, T7 = 2 nt
	S3.4 Using Halves of Domain A and A* in the Design of AND Gate
	In the design of the AND gate, domains named A+1/2, A-1/2, A*+1/2, and A*-1/2. These domains correspond to halves of the full length domains A and A*. The subscript +1/2 represents the 5’ end six nucleotides of the full length domain, while the subsc...
	Domain A+1/2 is complementary to Domain A*-1/2, but does not hybridize with A*+1/2. Similarly, Domain A-1/2 is complementary to Domain A*+1/2, but does not hybridize with A*-1/2. This strategy can prevent the hybridization of the reactive strands in ...

	09 Appendix C
	S4.1.4 Monomeric Avidin Resin Purification. 100 µL Monomeric Avidin Resin (Thermo Scientific, catalog number: 53146) suspension was transferred into a SigmaPrepTM spin column (Sigma, catalog number: SC1000). The resin was washed with 1×PBS buffer once...
	S4.1.5 AFM Imaging. The AFM imaging was performed using a Dimension FastScan AFM (Bruker). The samples (2 µL to 5 µL) were deposited onto freshly cleaved mica (Ted Pella, Inc.) and left to adsorb for 2 min. Buffer (1×TAE/Mg2+, 100 µL) was added on top...
	S4.1.6 Fluorescence Kinetics. The fluorescence kinetics experiments were performed using a Nanolog fluorometer (Horiba Jobin Yvon). The origami frame was purified with 100 kD MWCO Microcon centrifugal filter devices (Amicon, catalog number: UFC510096)...
	S4.1.7 Fluorescence Data. For each reaction, the first trace is the original data collected by the fluorometer. The second trace is the data after correcting for the volume change. The third trace is the data after correcting for photo bleaching. The ...
	S4.2 Design of the DX Tiles
	/
	Figure S1. The design of the four DX tiles. (A) Schematic design of the four tiles. The four tiles share the same sequences of Strands 2, 3, and 5. Each tile has a specific Strand 1 and 4. The sticky end pairing e.g. a, a’ are marked for each tile. (B...
	S4.3 PAGE Characterization of DX Tiles
	Figure S2. Native polyacrylamide gel electrophoresis characterization of the formation of the four tiles. Lanes 1 & 15: 10 bp DNA marker. Lane 2: the core structure of the four tiles: Strand A2 + Strand A3 + Strand A5. (For Tile B, C, and D, the core ...
	S4.4 Design of the DNA Origami Frame
	/
	Figure S3. Detailed design of the DNA origami frame. The origami frame is 210 nm wide, 60 nm and 95 nm tall (the two sides). The blue strand represents the phi X 174 scaffold and the red strand corresponds to the M13mp18 scaffold. The interior is deco...
	/
	Figure S4. AFM image of the empty origami frame. (A) Zoom-out AFM image of the empty origami frame. Most of the origami frames are well formed. There are several aggregated structures in the image that may be caused by crosslinking of multiple scaffol...
	S4.6 Examination of the spontaneous formation of the DX tile arrays
	/
	Figure S5. Unregulated growth of 2D arrays of DX tiles. The four DX tiles were mixed together to a final concentration of 250 nM each. The mixture was incubated at 25 oC overnight and characterized by AFM. The four tiles form 2D arrays as designed.
	S4.7 Agarose Gel Image of the Purification of the DNA Origami Frame – 2D Array Hybrid
	/
	Figure S6. Image of agarose gel electrophoresis showing the purification of the origami-2D array hybrid. Lane 1: 1kb DNA ladder. Lane 2: Empty origami frame without purification. The fastest intense band corresponds to the extra helper strands. The se...
	S4.8 AFM Image of DNA Origami Frame – 2D Array Hybrid Purified by Agarose Gel Electrophoresis
	/
	Figure S7. AFM image of Frame-array hybrid purified by agarose gel electrophoresis. (A) Zoom-out AFM image of Frame-array hybrid purified by agarose gel electrophoresis. There were quite a few pieces of free 2D array of DX tiles that were not cleanly ...
	S4.9 Boitin Modified DNA Origami Frame – 2D Array Hybrid Purified with Monomeric Avidin Resin
	/
	Figure S8. AFM images of Boitin modified frame-array hybrid after purification with monomeric avidin resin. The origami frame was modified with biotin. When purifying with monomeric avidin resin, unmodified tiles and 2D arrays were washed away while t...
	S4.10 DNA Origami Frame – 2D Array Hybrid Before Purification
	/
	Figure S9. AFM image of unpurified frame-array hybrid. Several, but not all of, distinguishable frame-array hybrid structures are marked in the image.
	S4.11 Defects of DNA Origami Frame – 2D Array Hybrid
	/
	Figure S10. Three major classes of defects in the frame-array hybrids. (A) The shrunken frame-array hybrid caused by sticky ends on tiles hybridizing with another row of non-neighboring tiles. (B) The widened frame-array hybrid caused by inserting one...
	S4.12 Dynamics of the Nucleation of DX Tiles in the Origami Frame
	/
	Figure S11. FS-AFM images showing the dynamics of nucleation and growth of DX tiles into the DNA origami frame. (A) This is another example of the experiment shown in Figure 3. Each frame was collected over 87 seconds. Each frame is 287 nm × 287 nm. (...
	S4.13 Kinetics of the Nucleation Process of the Four Tiles
	/
	Figure S12. Characterization of the kinetics of the nucleation process. (A) The modification of the tiles with a fluorophore and dark quencher. The 5’ end of Strand A1 was modified with an Iowa Black Dark Quencher. The 3’ end of Strand C2 was modified...
	S4.14 DNA Sequences
	Sequences of tile strands:
	A1: AGGAACCATGAACCCTGCAGCATGTC
	A2: GCTGCAGGCGGAATCCGACCCTGTGGCGTTGCACCAT
	A3: GTCGGATTCCGCTGGCTTGCCTAGAGTCACCAACGCCACAGG
	A4: ACTCAATGGTGCACTAAACCTCTAAG
	A5: AGGTTTAGTGGTGACTCTAGGCAAGCCAGGTTCATGG
	B1: GTGATCCATGAACCCTGCAGCAGAAC
	B2=A2
	B3=A3
	B4: TAACGATGGTGCACTAAACCTAAGCT
	B5=A5
	C1: TGAGTCCATGAACCCTGCAGCAGCTT
	C2=A2
	C3=A3
	C4: TTCCTATGGTGCACTAAACCTGTTCT
	C5=A5
	D1: CGTTACCATGAACCCTGCAGCCTTAG
	D2=A2
	D3=A3
	D4: ATCACATGGTGCACTAAACCTGACAT
	D5=A5 Sequences of the helper strands and sticky end strands in the DNA origami frame:
	Helper 1 GTATTAACTCACTTGCCTGAGTAGACCGTTGTAGCAATACTTCTTTGATTTT
	Helper 2 AGAGTCTGTCCATCACGCAAATTAAAGAACTC
	Helper 3 CAGCAGAAGGCCTTGCTGGTAATACGAGTAAA
	Helper 4 AAACCGTCTATCAGTGAGGCCACTCCAGAA
	Helper 5 ACATCGCCCCGCCAGCCATTGCAAAGGGCGAA
	Helper 6 AAAGAACGTGGACTCCAACGTCAACAGGAAAA
	Helper 7 TAGTCTTTGGAAATACCTACATTTCCACTATT
	Helper 8 TTGTTCCAGTTTGGAACAAGAGTTGACGCT
	Helper 9 CGTGGCACTGAAATGGATTATTTAGTTGAGTG
	Helper 10 ATCAAAAGAATAGCCCGAGATAGGCATTGGCA
	Helper 11 TAGAACCCAGTCACACGACCAGTACCTTATAA
	Helper 12 CCTGTTTGATGGTGGTTCCGAAATCGGCAAAATCATAAAAGGGAAAAATTTT
	Helper 13 GTCAACCCCGGCGTTATAACCTCAGCGAAAAT
	Helper 14 TCCACGCTGGTTTGCCCCAGCAGCACTCAA
	Helper 15 CCTAAGCACACGAAGTCATGATTGGCAAGCGG
	Helper 16 CCGCCTGGCCCTGAGAGAGTTGCAAATCGCGA
	Helper 17 CGAGAAATCAGATTGCGATAAACGGCCCTTCA
	Helper 18 AGTGAGACGGGCAACAGCTGATTGTCACAT
	Helper 19 CAGCTTATACCTGACTATTCCACTTTTTCACC
	Helper 20 GCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCGCAACAACTGAACGGACT
	Helper 21 TAAAACAGTGGTCATAATCATGGTGGGGAGAG
	Helper 22 GCATTAATGAATCGGCCAACGCGCGGCGAATA
	Helper 23 TTAGTAATAACAACCGCCTGCATT
	Helper 24 AAACTATCGATAAAACAGAGGTGAAAATGAAA
	Helper 25 CAATATTAATTAAAAATACCGAACCTCAAA
	Helper 26 ACGCTCATAATGCGCGAACTGATAGTCAGTTG
	Helper 27 CAATCGTCAGACAATATTTTTGAGAGGAAG
	Helper 28 GATTCACCTTCTGACCTGAAAGCGACTAACAA
	Helper 29 TACCGCTTCTCAGCGGCAAAAATTCATTCTGGCCATAATACATTTGAGGATT
	Helper 30 TCTTTTATGAAAACCTACCGCGCATTCGAC
	Helper 31 GTGGTCGGAAAAGTCTGAAACATGAACGTTAT
	Helper 32 TAAATTTACAGAAAAAAAGTTTGTATCATT
	Helper 33 GGAAACACGTGCCGAAGAAGCTGGAGTAACAGAATGCAATGAAGAAAACCAC
	Helper 34 AGTACGCGTGACGATGTAGCTTTATATCAAAA
	Helper 35 AAGATGATGCTGAGAGCCAGCAGCGGCGGTCA
	Helper 36 CGAATTATGCATCACCTTGCTGAACGAACCAC
	Helper 37 TTGAATACCCTCAATCAATATCTGGCCCTAAA
	Helper 38 GGGAGAAAACAGTTGAAAGGAATTATGGCTAT
	Helper 39 GTTAACCATTTTACGGAACGTCAGATGAATATAAATATCTTTAGGAGCTAAGAATA
	Helper 40 GAAATTGCTTAGAGCCGTCAATAGAACAGAGA
	Helper 41 ACCTACCATTAGACTTTACAAACATTCGCTTG
	Helper 42 TGGCAATTAAAGTTTGAGTAACATAATTATGG
	Helper 43 GCCAGAGTGCGTATCAAGGAGCGGAATTATCACAAAGAAACCACCAGAGTGAGAAC
	Helper 44 ATAGCCAGGCATTAACCGTCAAACGGTGTCTG
	Helper 45 TTACAGTGCCACGAAACAAACATT
	Helper 46 AATCTAAATCATTTCAATTACCTGTTAAGTGG
	Helper 47 TATCAAACCAAGTTACAAAATCGAACCTGA
	Helper 48 GCAAATCACAATAACGGATTCGCCTTAGTAGC
	Helper 49 GTTATCTAACAGTAACAGTACCTACCAACA
	Helper 50 CTAATAGAGTAGATTTTCAGGTTTGGAAGGACGTCAATAGTCGGACAAGC
	Helper 51 TAGAAGTATATCAAAATTATTTGCACGTAAAACAGGTATAATAACCACCATC
	Helper 52 TAATTTTACATCAATATAATCCTGGAAGAAGA
	Helper 53 TTGCGGAATCATATTCCTGATTAAAATTTA
	Helper 54 CATTACCAGGCGTTGACAGATGTATCCATCTGAAGCACCAACAGAAACAACCTAGAGGAC
	Helper 55 TATAACGTCGTTTGGTCAGTTCCAGCGCATGA
	Helper 56 CATTTGAAAAAATTAATTACATTTAGCAAAAG
	Helper 57 AGCACCAAAAATAATCTCTTTAATCGCAGAGG
	Helper 58 GGTAAAGTTAGACCAAACCATGAATTTACATC
	Helper 59 ATGGCGACCATTCAAAGGATAAACGGGTTAGA
	Helper 60 CTCAAAGCGAACCAAACAGGCAAATCAGATGA
	Helper 61 TTTCAAGAAAACTTACCTTTTTTT
	Helper 62 CTGGAGACACATAAATCACCTCACTATGTGAG
	Helper 63 TTCAGCGAGCAGAAGCAATACCGGCCTCCA
	Helper 64 AGATGGCGTTGAGGCAGTCGGGAGGGTAGTCGGGATCGGAGG
	Helper 65 CAAGTAAAGGACGGTTGTCAGCGTAAAACTGG
	Helper 66 TAGCGATAAGTACATAAATCAATAAACAATTT
	Helper 67 TAATTAATCTTGCTTCTGTAAATCCCAGCAAT
	Helper 68 TTTAATGGAAACGCTTAGATTATT
	Helper 69 TGAATAACTTTCCCTTAGAATCCTAATACCAG
	Helper 70 AACAATTTGGCGGCTTTTTGACCTATCGGT
	Helper 71 AATCATAGAAGAGTCAATAGTGAATGAAAACA
	Helper 72 ATTAGAGCATGCCTACAGTATTGTGTCGCTAT
	Helper 73 TTAGACGCTGAGGTCTGAGAGATT
	Helper 74 CATCACCCCTTGAATGGCAGATTTTGGGTTAT
	Helper 75 AGCAAGCAGCGGCCTCATCAGGGACCAGCT
	Helper 76 AAATATATAACCTCCGGCTTAGGTTTTATCAA
	Helper 77 TCGCAAGAATGTAAATGCTGATGCTTAGGAAC
	Helper 78 TTCTACCTTTTTTTTAGTTAATTT
	Helper 79 ATAACTATCAAAGAACGCGAGAAACTTGCCAC
	Helper 80 TTAGCCATTTCAAGAAGTCCTTTTATCAGA
	Helper 81 ACCGACCGGACCTAAATTTAATGGACTTTTTC
	Helper 82 ATCCTTTCACCAAATCAAGCAACTAAATCCAA
	Helper 83 TTTTCATCTTCTTGTGATAAATTT
	Helper 84 CAAGTCCACTTTATCAGCGGCAGAGAATCATA
	Helper 85 AACGGCAGGCAGCAGCAAGATAAAGCACCA
	Helper 86 CGCTCAACATAAGAATAAACACCGTTTGAAAT
	Helper 87 CGTTATACAAAAAGCCTGTTTAGTTCACGAGT
	Helper 88 TTAAGGCGTTAAAGTAGGGCTTTT
	Helper 89 ATTACTAGAAATTCTTACCAGTATCTCTTTCT
	Helper 90 GCACGCTCAGCAGAGGAAGCATCGCTCTTT
	Helper 91 GTAATTTACGCCATATTTAACAACAAAGCCAA
	Helper 92 AGTCTCATAGTTGCATTTTAGTAAATCATATG
	Helper 93 TTAATTGAGAATGGCAGAGGCATT
	Helper 94 GATTGTCCTTTGCATCTCGGCAATAAAGTACC
	Helper 95 TTGATTCTTGAATGCCAGCAATCCAGACGA
	Helper 96 ACTGAACAAGTAATAAGAGAATATGCCAACAT
	Helper 97 AAAACAGGGTAAAGTAATTCTGTCTCTTTTTG
	Helper 98 AAATAGCAAACAACATGTTCAGCTGCGTGAAG
	Helper 99 ATATACCTGGTCTTTCGTATTCTGAATGCAGA
	Helper 100 AGAAACGAGTTTATCAACAATAGATTTTGTGC
	Helper 101 AACAGCCAAAAAATAATATCCCATAGACTCGGCGATGCT
	Helper 102 CGGATCTGAATACGCAACGCGAGCAGTCCTAATTT
	Helper 103 AATCTCGGAAACCTGCTGTTGCTTGGAAAGATTGAATCGGCTGTCTTTCCTT
	Helper 104 GCTACAATAAGAACGGGTATTAAATGGCGCAT
	Helper 105 TTCGCTCATCTCAGCCGTTTGAGCTTGAGTAACTCCGACGAC
	Helper 106 TTTGATTTGGTCATTGGTAAAATACCGTTTTT
	Helper 107 AACCTCCCCGTAGGAATCATTACCGTCATTTC
	Helper 108 CGGTATTCCAAATCAGATATAGAAAACTACCAGATGCAA
	Helper 109 GCATCCTTGGTTCTGCGTTTGCTGATGTATTTCCTAGACAAATTA
	Helper 110 AACATACAACCATCAGCTTTACCGAATATGAG
	Helper 111 AGAAATATCCTTTGCAGTAGCGCCTCTTTCCA
	Helper 112 TTTTTTCGAGCCCCCTGAACAATT
	Helper 113 GACAAAAGGAAGCGCATTAGACGGTCAGAGAG
	Helper 114 CGACAATAGCCTTTACAGAGAGACCCAATA
	Helper 115 ACGCGCCTTTTTTTGTTTAACGTCGCAATAGC
	Helper 116 TGAACAAGTATTATTTATCCCAAAAAAGTA
	Helper 117 ACGAGCATGCCTAATTTGCCAGTTAGAAGGAA
	Helper 118 ATCATTCCTTTATCCTGAATCTTACCAACGCTAAAATACCCAAACAAACTCA
	Helper 119 ATTTTCATGACTTGCGGGAGGTTTACTCAACG
	Helper 120 ATAGCAAGTAAGAACGCGAGGCGTCTTCCA
	Helper 121 GAGCCAATATTGGGAGGGTGTCAATCCTGACGGTGCTTATGGAAGCCAAGCA
	Helper 122 GAAATTGTGCCTCCAAGATTTGGATGCCACAA
	Helper 123 TCAACCGATAATTGAGCGCTAATAGAGAATTA
	Helper 124 GTTTACCACAAGAATTGAGTTAAGATAACATA
	Helper 125 ATTTTGTCAAGAAACAATGAAATAAAAAATGA
	Helper 126 AAAGAAACCGAAGCCCTTTTTAAGTCCAAATA
	Helper 127 GAAAATACGCCGAACAAAGTTACCACAAAATA
	Helper 128 ACTCCTTAAACGCAATAATAACGGCGAGCGTC
	Helper 129 CCATTAACGTCAGAAGCAGCCTTATGCACCCA
	Helper 130 GGGAGCACATATCACCATTATCGATGAAGCCT
	Helper 131 GGTGGTCTACGAAAAGACAGAATCTTTTAGCG
	Helper 132 TCTAAAAAATGCGGTTATCCATCTGGCTTATC
	Helper 133 GCAGCCAGTGAGAAAGAGTAGAAAGGCATGAA
	Helper 134 TTAGTCAGAGGGTTGAGGGAGGTT
	Helper 135 ATAACCCAGCGCCAAAGACAAAAGCATTAAAG
	Helper 136 ATAAGAGCACAATCAATAGAAAAGAGCCAT
	Helper 137 TATCTTACGCAAAGACACCACGGAACCAGTAG
	Helper 138 AGCAGATAATACATAAAGGTGGCAAACGTC
	Helper 139 ACCGAGGATTACGCAGTATGTTAGACCGTAAT
	Helper 140 TCACGAACTTCTCAGTAACAGATAAGAACTGGCACTTTAGCGTCAGACTGTA
	Helper 141 CAACATACATTGTAGCATTGTGCTCATAGC
	Helper 142 CCCTGCATATAGTGTTATTAATATTTCATAAT
	Helper 143 AGAGCTTGCCATTTTTCGTCCCCCACCGGA
	Helper 144 TTGGGGATCTTGCGGCAAAACTGCGTAACCGTCTCTCAGAACCGCCACCCTC
	Helper 145 GCCTCAATCGAATATCCTTAAGAGCTGAATAG
	Helper 146 TTGAAGGTAAATATTGACGGAAATTATTGGCGACAT
	Helper 147 GTGAATTATCACCGTCACCGACTTTTCATATG
	Helper 148 TTGGGAATTAGAGCCAGCAAAATCATAAGTTT
	Helper 149 CACCATTACCATTAGCAAGGCCGGAACATATA
	Helper 150 ACCAATGAAACCATCGATAGCAGCCAAACGTA
	Helper 151 CAGTAGCGACAGAATCAAGTTTGCTGATTAAG
	Helper 152 GCGCGTTTTCATCGGCATTTTCGGCAATTCAT
	Helper 153 CCCCTTATTAGCGTTTGCCATCTTCAAGTTGG
	Helper 154 CAAAATCACCGGAACCAGAGCCACTTCGGGGC
	Helper 155 ACCGCCTCCCTCAGAGCCGCCACCTCTCGTTC
	Helper 156 CACCACCACACCCTCAGAGCCGCCGGCGTTCA
	Helper 157 AGAGCCACGAGCCGCCGCTT
	Helper 158 CAAAGCCTTTGCATTCATCAAACGTCAGACGA
	Helper 159 AATTTACCAGGAGGTTGAGGCAGGACCAGAAC
	Helper 160 TTCAGCATTGACGTTCCAGTAATT
	Helper 161 TTGGCCTTCCAGAATGGAAAGCGCCTTGCGAC
	Helper 162 ACTGGTAATGGCTTTTGATGATACAGTCTCTG
	Helper 163 TTGCGTCATACATAAGTTTTAATT
	Helper 164 CCTCGGCACGTGTGAATCATTAGCCCCGTATA
	Helper 165 TTCGGGGTCAGTCTCAAGAGAATT
	Helper 166 TGAGACTCGCCTTGAGTAACAGTGAGGAGTGT
	Helper 167 GCGGATAATAGCGGGGTTTTGCTCTAAGAGGC
	Helper 168 AACAGTTATGAAACATGAAAGTATGCTATTTA
	Helper 169 TTGGATTAGGATGTGCCGTCGATT
	Helper 170 ACTGGCGGGCCACGTATTTTGCAAATAGGTGT
	Helper 171 GCGTAACGATAAGTATAGCCCGGAAGTACCAG
	Helper 172 TTGAGGGTTGATATCTAAAGTTTT
	Helper 173 ATCACCGTTTCCACAGACAGCCCTTGAATTTT
	Helper 174 TAAAGGAATCCAGACGTTAGTAAACATAGTTA
	Helper 175 TTTTGTCGTCTTTTGCGAATAATT
	Helper 176 CTGTATGGGGAGTGAGAATAGAAAAAAAAAAG
	Helper 177 TTTAATTTTTTCACGTTGAAAATCTCCAGGAACAAC
	Helper 178 GCTCCAAAAGGAGCCTTTAATTGTTTTCAACA
	Helper 179 AACAAGCGTTCTTGCAAATCACCATGCCAGCT
	Helper 180 CTTTCCAGTCGGGAAACCTGTCGGAAGGCG
	Helper 181 GAATCTCTATGAATGGGAAGCCTTACTGCCCG
	Helper 182 ACTCACATTAATTGCGTTGCGCTCCAAGAAGG
	Helper 183 ATAAGTCAAGGAGAAACATACGAAGTGAGCTA
	Helper 184 GTAAAGCCTGGGGTGCCTAATGAGGCGCAT
	Helper 185 CATACAAACACTGACCCTCAGCAACATAAAGT
	Helper 186 TCCACACAACATACGAGCCGGAAGTCTTAAAC
	Helper 187 CTTCATAGCGAATCACCAGAACGGCTCACAAT
	Helper 188 TTCCTGTGTGAAATTGTTATCCGCGCCATT
	Helper 189 CTGGTGCCAGGCTGCGCAACTGTTATAGCTGT
	Helper 190 CCCGGGTACCGAGCTCGAATTCGTAATCATGGTCGGGAAGGGCGATCGGTGC
	Helper 191 CCTCAGGATCGCTATTACGCCAGCAGAGGATC
	Helper 192 CTTGCATGCCTGCAGGTCGACTCTTGGCGAAA
	Helper 193 CTGCCAGTTGCTGCAAGGCGATTAGTGCCAAG
	Helper 194 TTGTCACGACGTTGTAAAACGACGGCCAAGTTGGG
	Helper 195 GTTCCTGATTAGTCGCAGTAGGCGCCATGC
	Helper 196 TGATAAGCAAGCACCTTTAGCGTTGATTGTAT
	Helper 197 AACGATACACAGGGTCGCCAGCATTAATAT
	Helper 198 TTCTTAGAAAATTTCACGCGGCGGTTGTTAAA
	Helper 199 CGCCATTCGGAAACCAGGCAAAGAACGCCA
	Helper 200 GGGCCTCTAGATCGCACTCCAGCCAGCTTTCCGGTCCTGTAGCCAGCTTTCA
	Helper 201 GGGGGATGTTGAGGGGACGACGACCAACCCGT
	Helper 202 TAACGCCAATGGGCGCATCGTAACGGATTG
	Helper 203 TTCGTTGGTGTAGGGGTTTTCCCATT
	Helper 204 CCTAACGACAAGAGTAAACATAGTGGAAAACG
	Helper 205 TCAGAAAAATTTAAATTGTAAACGATATCGGT
	Helper 206 TGACCGCTATATAAGCTAAAACTAGCATGTCAAATTCGCATTAAATTTCAAGTTGC
	Helper 207 AAGAGAATTTTTTTAACCAATAGGAAAACATC
	Helper 208 TCAGGTCAAATTCGCGTCTGGCCTCACCGCTT
	Helper 209 TGCCGGAGAAATGTGAGCGAGTAAAGTATCGG
	Helper 210 ATGATATTCCGTGGGAACAAACGGCCGTGCAT
	Helper 211 AAGCAAATGCCCCAAAAACAGGAAAACATCAT
	Helper 212 TTTGTTAAATCATATGTACCCCGGTTCTTG
	Helper 213 TCAGCTCACGATGAACGGTAATCGAGCTTGCA
	Helper 214 TCAAAAATTTGCCTGAGAGTCTGTAGAAGT
	Helper 215 TCAACATTAGGGTAGCTATTTTTGAGAGATCTACCTCAGGAG
	Helper 216 CGGATTCTCAACCGTTCTAGCTGAGCAACGGA
	Helper 217 ACCGTAATGAGACAGTCAAATCAATGTGTA
	Helper 218 TTGAGAAAGGCCGGGGATAGGTCATT
	Helper 219 GGTAACGCTGCATGAAGTAATCACGTTGATAA
	Helper 220 CGTCATTTGGCGAGAAAGCTCAGTAAAGGCTA
	Helper 221 CGGCGCTTTGTTTTTGAGATGGCATAAATTAA
	Helper 222 TTAGGGTTCGAGCATCATCTTGATCCATCAAT
	Helper 223 CCTACTGATCGGAGGTTTTACCTCCAAATGAATGGACAGCCA
	Helper 224 GACCCATAACCGTGCTCA
	Helper 225 AACCATAAAGCCTCGGTACGGTCATACTTTTG
	Helper 226 GGTAAAGATGCAATGCCTGAGTAAAGGATA
	Helper 227 TTTATATTTTAAATTCAAAAGGGTTT
	Helper 228 TTAGGGATTTCAAATAACCCTGAAGGCATCCA
	Helper 229 ACCAAAAAGCCTTTATTTCAACGCTAAGCTCA
	Helper 230 CGGGAGAACATTATGACCCTGTAAGGCATGGT
	Helper 231 AAAATTTTGAGCATAAAGCTAAAAGGCAAA
	Helper 232 TTATAAAGCCTCATAGAACCCTCATT
	Helper 233 AATCCACTTCGTGCCAAGAAAAGCACAAATGC
	Helper 234 GGAGTGGCCCAGTAGTGTTAACAGTCGGTTGT
	Helper 235 CAATATAAATTAACACCATCCTTCATTTTCAT
	Helper 236 GAATTAGCTAAATCATACAGGCACATCAAT
	Helper 237 TTTTAACATCCAAAAAATTAAGCATT
	Helper 238 TCTACAGTTGAGGGACATAAAAAGATGAACTT
	Helper 239 ATGGTCAACGAGCTGAAAAGGTGGTCGGGAGA
	Helper 240 TTGGGGCGTAACCTGTTTAGCTATACGGAGAG
	Helper 241 TCTACTAATGACCATTAGATACAAGTTGAT
	Helper 242 TTTAGATTTAGTTTAGTAGTAGCATT
	Helper 243 ACGACCAAGACGCAATGGAGAAAGTAAAAATG
	Helper 244 GCGATAACGCGTCCATCTCGAAGGTTTCGCAA
	Helper 245 CGCCAACGCGGAGTAGTTGAAATGTAATTGCT
	Helper 246 TCCCAATTTTCATTCCATATAACGTTTTAA
	Helper 247 TTTGTCTGGAAGTCTGCGAACGAGTT
	Helper 248 CGCTCGGCAGATGGGAAAGGTCATGTAATAAG
	Helper 249 CATTTTTGTGCTGTAGCTCAACATAGTCGCCA
	Helper 250 GAATATAACGGATGGCTTAGAGCTAAGGGGCC
	Helper 251 ATATGCAAAATTGCTCCTTTTGAAGCAAAC
	Helper 252 TTAGAGTACCTTTCTAAAGTACGGTT
	Helper 253 TTTAGTACTAATTTATCCTCAAGTGCGGCATA
	Helper 254 ACATACCATGCAATTAAAATTGTTTAAGAGGT
	Helper 255 GAAGCCCCAAGACGAGCGCCTTTAGATTGCAT
	Helper 256 TCCAACAGGCGAACCAGACCGGAAAGACTT
	Helper 257 TTCGAGCTTCAAAGTCAGGATTAGTT
	Helper 258 ATAAAAAATCCAAGTATCGGCAACACGACATT
	Helper 259 CTGGCCAATCACAACCACACCAGAAGCAGCATAGCAATCATA
	Helper 260 TTACCTTTCCAGGGCGAGCGCCAGCGCTTGCC
	Helper 261 ACTATTATTTAAGAGGAAGCCCGAGACCACCT
	Helper 262 CAAAAAGAAGTCAGAAGCAAAGCGCGCACGTT
	Helper 263 CAAATATCTCAAAAATCAGGTCTTGCTTTA
	Helper 264 TTATGACCATAAAGCGTTTTAATTTT
	Helper 265 ACTCATCGAGCAGGTTTAAGAGCCAACGAACC
	Helper 266 TCAGCGGCCGCACGTAATTTTTGAAACGTTTT
	Helper 267 CTGCGCGTCGTCAGTAAGAACGTCTTACCCTG
	Helper 268 GCTCAAAGACCTTTCTTTTTGGGTGGAGGC
	Helper 269 TTCTTCTGACACGCAAGGTAAACGAGAGGGGG
	Helper 270 AACAGTTCTGAATCCCCCTCAAATAGCGTC
	Helper 271 TTTAAATATTCATAGAAAACGAGATT
	Helper 272 CTGTCGCACTACGCGATTTCATAGGTAATTAT
	Helper 273 CAGCGCCTCATTAATAATGTTTTCCGAACAAT
	Helper 274 GGCTTTTGAAATGTTTAGACTGGAAGTGTTTC
	Helper 275 CTCCAGCAATAAACCAACCATCATAATCGG
	Helper 276 TAATAGTACAAAAGAAGTTTTGCCTGAACATA
	Helper 277 CAATACTGCGATAAAAACCAAAAAAGAGCA
	Helper 278 TTTTACCAGACGACGGAATCGTCATT
	Helper 279 TGAGTTTCACCGCCACCCTCAGAAAGCGTCCT
	Helper 280 CCACAACCAACCAGAACGTGAAAACCGCCACC
	Helper 281 CAAGCCCACACCACCCTCATTTTCTCAACAGG
	Helper 282 CATAGAAAGCCACTTCTCCTCATCGTGCCGATCCGTCTG
	Helper 283 ACCAGAGTCGGCCAGTCCTTGACGAACCAACGCGT
	Helper 284 AGAATCTCTACCATGAACAAAATGATGGCG
	Helper 285 GCAAGGATCAAAGTAAGAGCTTCTTCAACAAG
	Helper 286 CTCAGAGCATAGGAACCCATGTACGGAAGTAG
	Helper 287 CTTTAAGCCCAACAGCCATATAAGTTCCAT
	Helper 288 CAGTTTTTACTTTTTGTTAACGTAGCAAGGTC
	Helper 289 AAAGGTCGAGGTCGAATTTTCTCCGTAAAC
	Helper 290 TAAGGGAACCGAACAAGATAATTTTTCGACT
	Helper 291 GTGAGCATTCTGAACAGCTTCTTGCGTAACAC
	Helper 292 GGATTAAGTGGTTTTTAGTGAGTTAGGGATAG
	Helper 293 GGCGTCGCTCCTAGACCTTTAGCATTTAGCCA
	Helper 294 TTTTTGCGCCACTTCGATTTAATTATTTTCCG
	Helper 295 GTAACTTTGTAATTCCTGCTTTATCGAGCTGC
	Helper 296 CGACAGCTCACTCCGTGGACAGATTTCTTAAA
	Helper 297 TCTTTAGCGTCGTAACCCAGCTTGACAATG
	Helper 298 CATATCTGTTCTGCTTCAATATCTCCGATATA
	Helper 299 AAGCAGTATCCCAGCCTCAATCTGTTAAAG
	Helper 300 CATCAGAAAGCGATAAAACTCGCCGCCAAAACGTTCAGCAGCGAAAGACAGC
	Helper 301 TATCAGCTTGCTTTCGAGGTGAATTTGTCATT
	Helper 302 CAGCTTGATACCGATAGTTGCGCCGGTAAGTT
	Helper 303 ACAACAACCATCGCCCACGCATAAGGTTGAAC
	Helper 304 TTCGGTCGCTGAGGCTTGCAGGGACATCTCTC
	Helper 305 GCCGCTTTTGCGGGATCGTCACCCCGGCTACA
	Helper 306 ATCGGAACGAGGGTAGCAACGGCTACTTCTGC
	Helper 307 CATTAAAGGATATTCACAAACAAAGCATGAGC
	Helper 308 TCGTCAGCATCATAAAACGCCTCCAATATC
	Helper 309 GCAGTCGGGCAAGAACCATACGACTAAATCCT
	Helper 310 ACGAAAATTCAGGCACACAAAAACGCATGG
	Helper 311 TATTATTCATGCCCCCTGCCTATTTACTGATA
	Helper 312 ACCATAAGCGATTGCGTACCCGACTCGGAACC
	Helper 313 AAATGAAGCCGCATAAAGTGCACGACCAAA
	Helper 314 ATTAGGGTCGAACTGCGATGGGCACCGCCA
	Helper 315 CTGTAGCAACTCAGGAGGTTTAGTATACTGTA
	Helper 316 CCCTCAGAGTCACCAGTACAAACGCGGCTC
	Helper 317 GTTTCAGCGATTTTGCTAAACAACTACAACGC
	Helper 318 ATTCTGATTTTCATCCCGAAGTTATCGGTT
	Helper 319 AGCGTACCTTGAATGTTGACGGGACGTAAATT
	Helper 320 GAGCAGGATGACGGCAGCAATAAATAGCGAGA
	Helper 321 ATAAGCAAAAGCGAGGGTATCCCAAGAAAGAT
	Helper 322 ACACTATCATTACGAGGCATAGTCACATTC
	Helper 323 TTCGCCAAAAGGAATAACCCTCGTTT
	Helper 324 TAGCAATCAGCGACGAGCACGAGACAAAGTCC
	Helper 325 TAACGGAATGAGATTTAGGAATACCTCAACAG
	Helper 326 TCATCAGTCAACATTATTACAGGTTCGGTTAA
	Helper 327 AACTAATGAAATCTACGTTAATAAACTGGC
	Helper 328 TTGTTGGGAAGAACAGATACATAATT
	Helper 329 TGTTCAGTAAAATCGAAATCATCTGCGGTCAG
	Helper 330 GGACTCAGACCTATTAGTGGTTGAGTACGGAT
	Helper 331 ATCCAAAAAAAGCGGTCTGGAAACAAACACCA
	Helper 332 TAGAGGCCCGGCAGAAGCCTGAATAAACGAAC
	Helper 333 GTGAATAAAGTAAATTGGGCTTGAGAGCTTAA
	Helper 334 TCATTATATTATGCGATTTTAAGGATGGTT
	Helper 335 TTTGTGAATTACCCCAGTCAGGACTT
	Helper 336 GAACGAGTGGCTTGCCCTGACGAGAGGCGCAT
	Helper 337 TAATTTCAAACGTAACAAAGCTGTAATCTT
	Helper 338 TTTTACCCAAATCACTTTAATCATTT
	Helper 339 CGAGGCGCGAACGGTGTACAGACCACAGCATC
	Helper 340 TCCGCGACTGACCTTCATCAAGAGCTCATTCA
	Helper 341 AGGCTGGCCTGCTCCATGTTACTTAAAACACT
	Helper 342 GACAAGAATCGCCTGATAAATTGCCAAGCG
	Helper 343 TTGATTTGTATCACCGGATATTCATT
	Helper 344 GTCATGGAATATCCGAAAGTGTTAAGCCGGAA
	Helper 345 ACGAAAGAACCCCCAGCGATTATATGTCGAAA
	Helper 346 CATCTTTGGGCAAAAGAATACACTACAGAGGC
	Helper 347 CGAAACAACACTACGAAGGCACCGAGGAAGTTTCCATTAAACGGGTAAATT
	Helper 348 TTATACGTAATGCAGTACAACGGATT
	Helper 349 TTTGAGGACTAAAGACTTTTTCATAACCTAAA
	Helper 350 CTTTGAAAGAGGACAGATAGACGGTCAATCA
	Sticky End Left 1 ATCACGGCCGCTGCACCAGCAAGAAACCAATCCGCGGCATTGATTGCT
	Sticky End Left 2 TTCCTACTGACGGATGCCACCGGAAGACATGGCGCCTGTATGGGTTCT
	Sticky End Left 3 ATCACTGGTACCTCAAAACTAGGGCATCACCTTGAAGTCACTGGACAT
	Sticky End Left 4 TTCCTCCATGAACTGCAACGTACCAGCACCAGAAACGTATCGCGTTCT
	Sticky End Left 5 ATCACGGTGGTCAGCTCAGGAAATAAGTGCCAGCCGCCGTCCAGACAT
	Sticky End Left 6 TTCCTTCCTTGACTCAACCATACCCCAAGCATTAAAGCACGACGTTCT
	Sticky End Left 7 TCGCCGACCAAATCCGGCGCAGGCCAGGACAT
	Sticky End Left 8 ATCACAGGTACACGAATCCGGGACAT
	Sticky End Left 9 TTCCTCGCTCCGTAGCGTGACATTATGAAAAATATACTTATACGTTCT
	Sticky End Left 10 ATCACCACACGCTTCATCCTTAATTCAAAATAATCGCCGTCCAGACAT
	Sticky End Left 11 TTCCTTCTAGATCTGTCAAAAACGATCTTGAACACTCTCTTAAGTTCT
	Sticky End Left 12 ATCACGGTTCGCAGCATTGGGATTCAACGTGAGAGCGGAAGTCGACAT
	Sticky End Left 13 TTCCTACAAACGTCTGTACCATACAGTCACGCAAACTTCCTTCGTTCT
	Sticky End Left 14 ATCACCAGCGTATGTAGGAAGTGTACGGCCATTAGAAGCTTCAGACAT
	Sticky End Left 15 GCGTGTAGCAACGCTACCTTGCGCCTAGTTCT
	Sticky End Right 1 GAAGCGGAGCAGTCCAAATAAAATAGTTCCAGGAGCCTTAG
	Sticky End Right 2 TGAGTTCGCTGATGTTATAGATATTTATTGGTATATGCCGCAGCTT
	Sticky End Right 3 CGTTATCGGCCAATCAGGGTTAAGTTCACCATATGTTATGTCTTAG
	Sticky End Right 4 TGAGTCTTGCGGCAACGTGACGAAGAGTCAATATGTCAAGCAGCTT
	Sticky End Right 5 CGTTAATCTACGTGCAAGGCCACTCTGACCAGCAGCCGAGACTTAG
	Sticky End Right 6 TGAGTCCACCTATAAGGAAGCCAGCCAGTTTGATGAGCACTAGCTT
	Sticky End Right 7 CGTTAGTTCGGATATATTAGACACTCGCAACGGCTAATGGCCTTAG
	Sticky End Right 8 TGAGTGGCCGAGACTGCGGACGAAGACATTACAGGTAGTCCAGCTT
	Sticky End Right 9 CGTTAGGACAGCGTCACTCCTTCTTTAACCGGAGGTGGCCGCTTAG
	Sticky End Right 10 TGAGTCTGAACACCGCTCGACGCTCCATGATGACAGGAACAAGCTT
	Sticky End Right 11 CGTTACACGCGGAGACAGGCCGTATAAACGCAATTATAGGCCTTAG
	Sticky End Right 12 TGAGTGTGCTCGCGCCTCAACGCCAAACTTTGTCAGTCCTCAGCTT
	Sticky End Right 13 CGTTACACTCTTCTACTCGTCAGAACTTGACTCATCGCCGACTTAG
	Sticky End Right 14 TGAGTATAGACGCATGATTTCTTATAGTAATCCACGCTCTTTTAAAATGCTGACCAA
	Sticky End Up 1 TAAACGTTATTGCCCGGCGCCAGGTCCAGCTT
	Sticky End Up 2 TTCCTCCGAAGAGTCACACAGTCCTTGACGAAATAAA
	Sticky End Up 3 AACTCGTATTCTGAATAATGGAAATCATGGAGCTGGCTTAG
	Sticky End Up 4 ATCACCCAGTGCCGAACCATTGTTTGGATTATACTTAAATCCTTTGCCCGATTAAACT
	Sticky End Up 5 GGGTCGGCATCAAAAGCAATCGGCCGCAGCTT
	Sticky End Up 6 TTCCTCGAGCCAGCCTGATTAGCATGCCCAGAGATTAGATCAACATC
	Sticky End Up 7 TCAGGAACGTTGAACACGACCAGCATAAAGCCTCTTCTTAG
	Sticky End Up 8 ATCACTGCTACAGGAAATGAATGTTTATAGGTCTAAAGAAACGCGGCACAAAGGTACT
	Sticky End Up 9 GTCAGTATGCAAATTAGCAACCAGTGGAGCTT
	Sticky End Up 10 TTCCTAGAGCTCCATGTCAATAGATGTGGGAGCAAAC
	Sticky End Down 1 TGAGTGCGGACGCCCTTCTGTTGATAAGCAAGCATCTCATAAGTCC
	Sticky End Down 2 TTTCCAGAGTAGAAACCAATCAATGTGTTTTCCATAATAGAATTAGGCGTTCT
	Sticky End Down 3 CGTTAAGTAAGGTGCATTCCAAGTACCGCACTCGATTAGTTGCTATTTTGGCCGT
	Sticky End Down 4 TAAATCAAATCGAGAACAAGCAAGCTGACGGAAATGCGACAT
	Sticky End Down 5 TGAGTGCCGGCCTAGTCAACCTCAGCACTAACCTTGCGAGCGCCCA
	Sticky End Down 6 AAGAGCCATACCGCTGATCAAGAACTGTTCT
	Sticky End Down 7 CGTTACGTGTTGGCAGTGAGCTTTATCAATACCCAGAAGGGTAATAAGTCGATAC
	Sticky End Down 8 CGTTATTCAGTCGAAGCATATTAAGGCTCACCTTTAGCACTGGTAG
	Sticky End Down 9 CCAGCAGTGACAGAATCGTTAGTTGTGACTCATATCTAAATGGCCAGGGACAT
	Sticky End-Scaffold Linker Left 1 CCATACAGCAGCGGCC
	Sticky End-Scaffold Linker Left 2 CAGTGACTCCGTCAGT
	Sticky End-Scaffold Linker Left 3 GCGATACGAGGTACCA
	Sticky End-Scaffold Linker Left 4 TGGACGGCGTTCATGG
	Sticky End-Scaffold Linker Left 5 GTCGTGCTTGACCACC
	Sticky End-Scaffold Linker Left 6 CTGGCCTGGTCAAGGA
	Sticky End-Scaffold Linker Left 7 GTATAAGTGTGTACCT
	Sticky End-Scaffold Linker Left 8 TGGACGGCACGGAGCG
	Sticky End-Scaffold Linker Left 9 TTAAGAGAAGCGTGTG
	Sticky End-Scaffold Linker Left 10 GACTTCCGGATCTAGA
	Sticky End-Scaffold Linker Left 11 GAAGGAAGTGCGAACC
	Sticky End-Scaffold Linker Left 12 TGAAGCTTACGTTTGT
	Sticky End-Scaffold Linker Left 13 TAGGCGCAATACGCTG
	Sticky End-Scaffold Linker Up 1 GGACCTGGAAATGGTTAACGCTTGTCCGACTCTTCGG
	Sticky End-Scaffold Linker Up 2 CCAGCTCCCAACGCCATCTCCTCCGATCCGGCACTGG
	Sticky End-Scaffold Linker Up 3 GCGGCCGACGCACTCTGGCGTCCTCTAGGCTGGCTCG
	Sticky End-Scaffold Linker Up 4 AAGAGGCTCGATCAGTAGGTGGCTGTCCACTGTAGCA
	Sticky End-Scaffold Linker Up 5 CCACTGGTTATAGCGGTCATGAGCACGGTGGAGCTCT
	Sticky End-Scaffold Linker Right 1 GCTCCTGGATCAGCGA
	Sticky End-Scaffold Linker Right 2 GCGGCATATTGGCCGA
	Sticky End-Scaffold Linker Right 3 ACATAACAGCCGCAAG
	Sticky End-Scaffold Linker Right 4 GCTTGACAACGTAGAT
	Sticky End-Scaffold Linker Right 5 TCTCGGCTATAGGTGG
	Sticky End-Scaffold Linker Right 6 AGTGCTCAATCCGAAC
	Sticky End-Scaffold Linker Right 7 GCCATTAGTCTCGGCC
	Sticky End-Scaffold Linker Right 8 GGACTACCCGCTGTCC
	Sticky End-Scaffold Linker Right 9 CGGCCACCGTGTTCAG
	Sticky End-Scaffold Linker Right 10 TGTTCCTGTCCGCGTG
	Sticky End-Scaffold Linker Right 11 GCCTATAAGCGAGCAC
	Sticky End-Scaffold Linker Right 12 GAGGACTGGAAGAGTG
	Sticky End-Scaffold Linker Right 13 TCGGCGATGCGTCTAT
	Sticky End-Scaffold Linker Down 1 GCCTAATTATTCAGATCCGAGCATCGCCGGCGTCCGC
	Sticky End-Scaffold Linker Down 2 GCATTTCCAGATGAGCGAAGTCGTCGGAGACCTTACT
	Sticky End-Scaffold Linker Down 3 AGTTCTTGACCAAGGATGCTTGCATCTGGAGGCCGGC
	Sticky End-Scaffold Linker Down 4 CCGGATTCTGATTGGCCAGTATGATTGCTCCAACACG
	Sticky End-Scaffold Linker Down 5 CCTGGCCACCGACTCTGGTCAGACGGATCCGACTGAA
	Helpers modified with biotin:
	Biotin Helper 158 CAAAGCCTTTGCATTCATCAAACGTCAGACGATTTTTTTTTTTTTTTTTTTT
	Biotin Helper 159 AATTTACCAGGAGGTTGAGGCAGGACCAGAACTTTTTTTTTTTTTTTTTTTT
	Biotin Helper 161 TTGGCCTTCCAGAATGGAAAGCGCCTTGCGACTTTTTTTTTTTTTTTTTTTT
	Biotin Helper 162 ACTGGTAATGGCTTTTGATGATACAGTCTCTGTTTTTTTTTTTTTTTTTTTT
	Biotin 20A [5’ biotin]AAAAAAAAAAAAAAAAAAAA

	10 Appendix D
	11 Appendix E

