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ABSTRACT 

 DNA is a unique, highly programmable and addressable biomolecule. Due 

to its reliable and predictable base recognition behavior, uniform structural 

properties, and extraordinary stability, DNA molecules are desirable substrates for 

biological computation and nanotechnology. The field of DNA computation has 

gained considerable attention due to the possibility of exploiting the massive 

parallelism that is inherent in natural systems to solve computational problems. 

This dissertation focuses on building novel types of computational DNA systems 

based on both DNA reaction networks and DNA nanotechnology. 

 A series of related research projects are presented here. First, a novel, 

three-input majority logic gate based on DNA strand displacement reactions was 

constructed. Here, the three inputs in the majority gate have equal priority, and the 

output will be true if any two of the inputs are true. We subsequently designed 

and realized a complex, 5-input majority logic gate. By controlling two of the five 

inputs, the complex gate is capable of realizing every combination of OR and 

AND gates of the other 3 inputs.  Next, we constructed a half adder, which is a 

basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim 

of these two projects was to develop novel types of DNA logic gates to enrich the 

DNA computation toolbox, and to examine plausible ways to implement large 

scale DNA logic circuits. The third project utilized a two dimensional DNA 

origami frame shaped structure with a hollow interior where DNA hybridization 

seeds were selectively positioned to control the assembly of small DNA tile 

building blocks. The small DNA tiles were directed to fill the hollow interior of 
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the DNA origami frame, guided through sticky end interactions at prescribed 

positions. This research shed light on the fundamental behavior of DNA based 

self-assembling systems, and provided the information necessary to build 

programmed nanodisplays based on the self-assembly of DNA. 
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Chapter 1 

DNA Computation and DNA Nanotechnology 

1.1 Abstract 

 In this chapter, I will introduce and summarize the development of research in 

DNA Computation and DNA Nanotechnology. DNA (deoxyribonucleic acid) is the 

genetic carrier in biological systems. Studying the information encoded in DNA 

molecules is essential for understanding the secrets of life. Recently, DNA has been 

explored as a structural material in both computation and nanotechnology, apart from its 

biological function. DNA computation is an interdisciplinary area of research that bridges 

chemistry, biology, and computer science. It focuses on discovering, programming, and 

operating DNA reaction networks to achieve mathematical functions. It has demonstrated 

great potential application in regulating biochemical systems by executing logic 

computations. DNA nanotechnology utilizes DNA as a building material to construct 

well defined nanostructures. Scientists have developed a wide range of one-dimensional 

(1D), two-dimensional (2D), and three dimensional (3D) DNA structures. These 

structures can be divided into two categories: (1) 2D arrays or 3D crystals composed of 

branched DNA tiles as repeating units, and (2) DNA origami with precise shapes and 

sizes normally formed from a single, long scaffold strand and numerous unique short 

staples strands. These biocompatible and programmable templates have been used for the 

study of DNA properties, protein science, drug delivery, energy transfer, and many other 

areas. Both DNA computation and DNA nanotechnology are very important modern 

research areas, and the two research areas benefit from each other in terms of design 

principles and manipulation techniques.  
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1.2 Introduction 

 1.2.1 DNA. DNA is a biological macromolecule used by all known living 

organisms and many viruses to store genetic information.1 The genetic information 

encoded in DNA molecules specifies the sequence and function of all of the proteins that 

are synthesized in a cell and carries the instructions for the behaviors of the cell and the 

development of entire organisms. 

 

Figure 1.1. The double helical DNA structure proposed by Watson and Crick in 1953.1 A 

double helix is composed of two single stranded DNA molecules. Each strand and the 

overall double helix follow a right-handed spiral pattern. The orange and blue spirals 

represent the sugar-phosphate backbone, and the grey rods represent the base pairs. The 

red arrows indicate the direction of each single strand from 5’ to 3’. 
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 DNA was first extracted and identified by Johannes Friedrich Miescher in 1869.2 

Since the discovery of DNA, scientists have been endeavoring to study the structure, 

property, function, and synthesis of DNA and other nucleic acids, and their relation to the 

natural world. The iconic double helical structure of DNA molecules was first proposed 

by J. D. Watson and F. H. C. Crick in 1953.1 (Figure 1.1) Over six decades after 

revealing the right handed double helical DNA structure, scientists have made 

tremendous progresses in research areas related to DNA, e.g. bioinformatics, genetic 

engineering and whole genome sequencing. Even today, DNA is one of the most 

important and interesting research areas of chemists, biologists, and even computer 

scientists. 

 1.2.2 Structural Properties of DNA. DNA is a biopolymer composed of 

repeating units called nucleotides. The structure of DNA can be described by three levels 

of structure: primary, secondary, and tertiary.3  

The primary structure of a DNA molecule is the linkage between each individual 

nucleotide and the sequence of the different nucleotides in a DNA molecule.4 In DNA 

molecules, a nucleotide contains three groups: a phosphate group, a 2’-deoxy-D-ribose 

sugar group, and a nucleobase.3 (Figure 1.2) The nucleobase connects to the 1’ carbon of 

the 2’-deoxyribose, and the phosphate forms a phosphate ester with the 5’-hydroxyl 

group of the 2’-deoxyribose in each nucleotide. In DNA polymers, the 5’-phosphate of a 

nucleotide also connects to the 3’-hydroxy group of the 2’-deoxyribose in another 

nucleotide, thus forms a phosphate di-ester. The phosphate-sugar-phosphate linkage 

forms the backbone of a DNA molecule.3 There are four types of nucleobases in natural 

DNA, which are adenine, thymine, cytosine, and guanine. Thymine and cytosine are 
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derivatives of purine, and adenine and guanine are derivatives of pyrimidine. The 

structures of the four bases are shown in Figure 1.2. Adenine, thymine, cytosine, and 

guanine are usually abbreviated as A, T, C, and G, respectively. The sequence of a DNA 

molecule is defined as the sequence of the bases from the 5’ end to the 3’ end of a single 

strand. The direction of single-stranded DNA (ssDNA) is also the direction from the 5’ 

end to the 3’ end. The 5’ end is defined as the end that does not have any nucleotide 

linked to the 5’ carbon of the 2’-deoxyribose, and the 3’ end is defined as the end that 

does not have any nucleotide linked to the 3’ carbon of the 2’-deoxyribose.4 (Figure 1.2) 

 

Figure 1.2. The primary structure of DNA. Each individual unit in the polymer is a 

nucleotide. The phosphate-sugar-phosphate linkage forms the backbone of the molecule. 

The structure of the four nucleobases adenine (A), thymine (T), guanine (G), and 
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Cytosine (C) are shown from top to bottom. The 5’ end of the molecule is at the top, and 

the 3’ end is at the bottom. The sequence of the DNA molecule shown in the figure is 

ATGC. 

 

The secondary structure is any stable structure adopted by a nucleic acid by all or 

some of its nucleotides.4 The foundation of the secondary structure of DNA is based on 

the Watson-Crick base pairing rule.1 Two bases, one each from complementary single 

strands, pair with each other through hydrogen bonds. Specifically, adenine pairs with 

thymine through two hydrogen bonds, and guanine pairs with cytosine through three 

hydrogen bonds. (Figure 1.3) 

 

 

Figure 1.3. The structure of Watson-Crick base pairing. Adenine pairs with thymine 

through two hydrogen bonds, and guanine pairs with cytosine through three hydrogen 

bonds. 
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Figure 1.4. The stereo-view of a B-form DNA double helix. The two component strands 

are anti-parallel to each other. The double helix and the two component strands follow a 

right-handed spiral. PDB ID: 1BNA.5 

 

The predominant secondary structure observed under physiological conditions is 

B-form DNA, which is the double helical structure proposed by Watson and Crick. In B-

form DNA, the two component strands hybridize with each other in an anti-parallel 

fashion, which means the directions of the two component strands are opposite. The 

double helix and each component strand in the double helix all adopt a right-handed 
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conformation. (Figure 1.4) The bases between complementary strands in the duplex form 

base pairs according to the Watson-Crick pairing rule.4 As the base pairs gradually rotate 

from the neighboring pairs along the helical axis, the inner angle between the two 

backbones forms the minor groove of the double helix, and the outer angle forms the 

major groove of the double helix. In B-form DNA, the diameter of a duplex is 2 nm. Each 

turn of the double helix contains 10.5 base pairs on average. The length of one full turn of 

the double helix is 3.4 nm. (Figure 1.5B) 

 

Figure 1.5. A comparison between structures of A-form, B-form, and Z-form DNA. (A) 

Structure of A-form DNA. PDB ID: 213D.6 (B) Structure of B-form DNA. PDB ID: 

1BNA.5 (C) Structure of Z-form DNA. PDB ID: 2DCG.7 

 

 Besides B-form DNA, there are two other forms of DNA double helices that are 

well characterized. One is A-form DNA, and the other is Z-form DNA. A-form DNA is 

favored in dehydrated conditions, thus is also often seen in crystals. A-form DNA is also 

a right-handed structure. But there are several structural differences between A-form and 
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B-form DNA. One difference is that the diameter of an A-form DNA double helix is 2.6 

nm, which is larger than that of B-form DNA. Another difference is that one full turn in 

A-form DNA contains 11 base pairs, instead of the 10.5 base pairs in B-form DNA. The 

length of a full turn in A-form DNA is 2.8 nm, which is shorter than one turn of B-form 

DNA. (Figure 1.5A) The origin of the conformational difference between A-form and B-

form DNA is the different conformation of the sugar pucker. In A-form DNA, the sugar 

pucker conformation is C3’ endo, while it is C2’ endo in B-form DNA.5 

Z-form DNA is a left-handed spiral structure. The predominant sequence pattern 

of Z-form DNA is an alternating purine-pyrimidine sequence. The sugar pucker 

conformation of the pyrimidines is C2’ endo, while the purine sugar pucker is C3’ endo, 

thus, the sugar-phosphate backbone displays a zig-zag conformation. The diameter of a 

Z-form double helix is 1.8 nm. Each full turn has 12 base pairs, and each full turn is 4.4 

nm in length.5 (Figure 1.5C). 

The tertiary structure of DNA is a higher structure order than the secondary 

structure. It corresponds to the precise three-dimensional structure of DNA. One example 

of DNA tertiary structure is supercoiled DNA. A DNA supercoil is a coil of DNA double 

helices. 

1.2.3 DNA Strand Displacement Reactions. Two DNA strands with partially or 

fully complementary domains hybridize with each other, and then displace one or more 

pre-hybridized domains in the two strands. This process is called DNA strand 

displacement. This reaction can occur either between two double-stranded DNAs 

(dsDNA) or one ssDNA and one dsDNA.8 
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Figure 1.6 shows the strand displacement reaction process between an ssDNA and 

dsDNA. The DNA duplex displays a single-stranded overhang, which is called toehold.9 

The toehold first binds another ssDNA with a complementary region. Then, if they have 

the same sequence, the segment of DNA next to the toehold region on the ssDNA 

migrates along the duplex and replaces the opposite strand. This step is called branch 

migration. Branch migration is a random displacement process that contains a series of 

reversible single nucleotide dissociation and hybridization steps.10 When the branch 

migrates to the point that one strand dissociates from the complex, strand displacement is 

complete. The reaction is driven by the enthalpy change in the system as the end product 

has more base pairs.  

 

Figure 1.6. The process of a strand displacement reaction. (A) DNA is represented by 

directional lines with the arrow pointing to the 3’ end. (B) The strand displacement starts 

with the binding of the toehold domains. The braches migrate after the hybridization of 

the toeholds. The strand displacement is complete when the branch migration reaches the 

end and the pre-hybridized strand dissociates. 
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 The kinetics of strand displacement reactions can be tuned by varying the length 

and sequences of the toehold domain as the toehold binding step is the rate limiting 

step.11-13 The second order reaction rate constant ranges from 1 M-1∙s-1 to 6×106 M-1∙s-1. 

Increasing the length of toeholds and the G/C content in the toeholds can increase the 

reaction rate constant. And generally, the reaction rate constant stops increasing when the 

length of the toehold reaches >7 nucleotides.13 

1.3 DNA Nanotechnology 

In the early 1980’s, Nadrian Seeman created an artificial DNA tile structure 

containing four ssDNAs rationally designed to form a four-way branched junction.14 This 

work marks the beginning of DNA nanotechnology. DNA nanotechnologists engineer the 

interactions between DNA strands to fabricate and study nanoscale materials composed 

of DNA. Since the double-crossover (DX) DNA tile, which has a rigid conformation, was 

developed in 1993,15 numerous tile-based DNA nanostructures have been designed and 

realized, including multi-helix bundles, cross shaped tiles or 3- and 5-point stars that 

assemble into 3D geometric polyhedrons, like cubes,16 tetrahedra,17 octahedra, icosahedra, 

and buckyballs.18 Many periodic structures, such as nanotubes19,20 and 2D lattice arrays,21 

have also been assembled utilizing the tile structures as repeating units.22 (Figure 1.7) 

In 2006, an important DNA nanostructure, DNA origami, was first developed.23 

DNA origami structures contain one long ssDNA as a scaffold. This scaffold is usually 

single stranded viral genomic DNA, and M13mp18 DNA is the most widely used. 

Through a specific design, hundreds of short ssDNA oligomers are mixed with the 

scaffold strand. These short ssDNA are usually called staple strands or helper strands, 

and are usually 30-50 nucleotides long. Each staple strand is a specifically designed 
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sequence that hybridizes to multiple regions of the scaffold strand, thus brings specific 

regions into the desired adjacent positions. Finally, after all the staple strands hybridize to 

the correct complementary regions, the scaffold strand is folded into a well-defined shape 

based on the initial design. With this approach, many well controlled 2D structures with 

definite shapes and sizes are demonstrated on the sub-hundred nanometer scale.23 Soon 

after that, many reports of 3D origami and origami with curvatures were published, thus 

making DNA origami a versatile and highly customizable material.24-28  

 DNA origami is a type of highly addressable structure. By modifying the staple 

strands, DNA origami can easily host other functional molecules or particles, such as 

proteins, peptides, virus capsids, nanoparticles, and carbon nanotubes.29 This makes DNA 

origami a powerful tool in many research areas. 

DNA origami and other types of structural DNA engineering have revealed their 

capability in scientific endeavors, but still face many future challenges. These challenges 

include gaining finer spatial control, expression and assembly in vivo, and reducing the 

cost of assembly. There are also potential new applications of DNA nanotechnology, like 

biomimetic systems and diagnostics and therapeutics for human health.29 
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Figure 1.7. Structural DNA Nanotechnology. (A) DNA nanostructures based on DNA 

base pairing. (B) DNA multi-helix bundle, 2D lattice array of DNA tiles, and 3D DNA 

polyhedral structures. (C) The formation of DNA origami. One long ssDNA scaffold, 
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usually viral genomic DNA, and multiple staple strands are used. The staple strands are 

programmed to bind to specific positions on the scaffold, thus folding the scaffold strand 

into a pre-designed shape. (D) 3D DNA origami and DNA origami with curvature on 

their component DNA double helices. Panel A, Panel B, left and part of the middle image 

reproduced with permission from refs 22, 20, 19, and 21. Copyright 2012, 2005, and 

1999 American Chemical Society. Parts of panel B, middle and right, and panel D, right 

and part of middle image, reproduced with permission from refs 30, 17, 25, and 27. 

Copyright 2003, 2005, 2009, and 2011 AAAS. Part of panel B, right, panel C, panel D, 

left, and part of panel D, middle, reproduced with permission from refs 31, 16, 18, 23, 

and 26. Copyright 2009, 1991, 2008, 2006, and 2009 Nature Publishing Group. 

 

1.4 DNA Computation 

 1.4.1 DNA Computation and Its History. DNA computation and other forms of 

biological computation are interdisciplinary subjects that bridge chemistry, biology, and 

computer science. Compared to traditional silicon-based computation, DNA computation 

utilizes DNA and other biomolecules, and the interactions between these molecules to 

realize logical and mathematic functions. DNA is generally considered the best candidate 

for molecular level computation. One of the advantages of DNA over other types of 

biomolecules is that DNA is a very robust molecule. It is stable under a wide range of 

chemical conditions. DNA also has a relatively simple structure, and the behaviors of 

DNA molecules are highly predictable and programmable because of Watson-Crick base 

pairing. Another reason for DNA being popular in molecular programming is the easy 

accessibility of synthetic DNA. 
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 The idea of molecular computation was first introduced by R. P. Feynman in his 

visionary presentation, There’s Plenty of Room at the Bottom, at the 1959 annual meeting 

of the American Physical Society.32 Feynman talked about miniaturizing computers in his 

talk. Although he did not propose any practical methods, he first pointed out the direction 

of developing computational system at molecular level. In 1994, 35 years after 

Feynman’s talk, the first DNA computing system was developed by Leonard Adleman.33 

He solved the Hamiltonian path problem with a set of DNA strands and series of ligation, 

amplification, and purification operations on the DNA strands. In the two decades after 

this work, DNA computation has developed rapidly. In 2000, the idea of using enzyme 

free DNA strand displacement reactions to program molecular machines and reaction 

networks was developed.9 Boolean logic circuits based on enzyme free DNA reaction 

system were realized in 2006.34 Since then, developing complicated and functional logic 

circuits have been popular research topics in DNA computation.35,36 

 1.4.2 Methods Used in DNA Computation. There are many methods scientists 

have applied to DNA computation. One method is enzyme catalyzed DNA reactions. 

This method has the advantage of being able to select from various enzymes and reaction 

types, thus it makes the programming of computing operations easy and versatile. 

However, with enzymes in the system, the reactions are often restricted to the optimal 

conditions of the enzyme, such as narrow ranges of temperature, buffer concentration, 

light intensity, etc. The procedures also often involve multiple steps of separation of the 

enzymes and DNA.  

The first DNA computation research, the Hamiltonian path problem by Leonard 

Adleman, was realized with multiple enzyme-catalyzed reactions of DNA. Figure 1.8 
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shows the Hamiltonian path graph Adleman used to demonstrate the process of DNA 

computation. For a graph with multiple vertices and directional edges going from one 

vertex to another, if there is a path composed of existing edges in the graph that goes 

through all vertices and only once through any individual vertex, that path is a 

Hamiltonian path of the graph. Adleman assigned a random 20 nucleotide long DNA 

single strand to each vertex i in the graph. These strands are named Oi, with 

complementary strands Oi*. Specifically, the starting vertex and ending vertex are 

referred to as vertex 0 and vertex 6, respectively, in Figure 1.8. Every edge i-j, which is 

directional from vertex i to vertex j, is represented by a 20 nucleotides ssDNA named Oi-j, 

which starts with the ten terminal 3’ end bases of Oi, and ends with the ten terminal 5’ 

end bases of Oj. All Oi* and Oi-j are mixed and annealed for hybridization. At this point, 

every path in the graph has a corresponding DNA duplex in the system. The nicks in 

these duplexes are ligated with DNA ligase. Then the mixture solution is amplified by 

polymerase chain reaction (PCR), only using O0 and O6* as primers, such that only the 

paths starting at the entrance and ending of the exit are amplified. Then gel 

electrophoresis is used to purify the paths with the correct length. In the case shown in 

Figure 1.8, the expected Hamiltonian path should contain six edges, so the corresponding 

dsDNA should be 120 nucleotides long. The strands with the correct starting/ending 

points and correct length are then subjected to multi-step purification with magnetic 

beads modified with Oi*. In each step, only beads modified with a single Oi* sequence 

are used. Until all six Oi* are used once, any correct length strands missing any Oi 

domain, which means the path missing a vertex i, are removed. At the end, the remaining 

strands are sequenced to prove it represents the Hamiltonian path.33 
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Figure 1.8. The Hamiltonian path. The graph with the same vertices and edges was used 

as the example in Adleman’s work.33 A Hamiltonian path exists in the graph, which is 0-

1-2-3-4-5-6. Each vertex is assigned a random 20 nucleotide long ssDNA. For example, 

Vertex 2 is assigned as Strand a-b, and Vertex 3 is assigned as c-d. Each edge is 

represented by a 20 nucleotide ssDNA, which starts with ten terminal bases the 3’ end of 

the starting vertex, and ends with the ten terminal bases of the 5’ end of the ending vertex. 

For example, Edge 2-3 is represented as Strand b-c, as Domain b is the 3’ end domain of 

the starting Vertex 2, and Domain c is the 5’ end domain of the ending Vertex 3. Edge 3-

2 is represented as Strand d-a following the same rule. 
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 Another method in DNA computation is enzyme-free DNA reactions. The most 

powerful and well-studied reaction used in this category is toehold mediated strand 

displacement. A representative example of research utilizing this method is a binary 

square root calculation developed in 2011.35 The authors designed a DNA strand 

displacement reaction network with two inputs, which are both ssDNA. The two input 

strands react and produce the same reactive species. By tuning the relative concentration 

of threshold dsDNA, which can consume the reactive species produced by the inputs, the 

function of the strand displacement reaction network can be switched between an AND 

gate and an OR gate of the two input strands. In this design of the logic gates, the input 

and output signals are all ssDNA, and the presence or absence of the signal DNA 

molecule means the signal is true or false, respectively. (Figure 1.9A) The goal was to 

construct the logic circuit shown in Figure 1.9C, which functions as a binary square root 

calculation. However the circuit contains a NOT function, which is difficult to realize 

with molecular computation, because once the downstream signal molecules are 

consumed, the output cannot be reversed by the upstream signal molecules. So instead, 

the authors constructed the logic circuit shown in Figure 1.9D to implement the function 

of the circuit shown in Figure 1.9C. The circuit shown in Figure 1.9D is a dual-rail input 

system. Each input or output signal in Figure 1.9C is divided into two signals. For 

example, input X1 is divided into X1
0 and X1

1. These two signals are exclusive to each 

other. They cannot be true and false at the same time. If X1
1 is true and X1

0 is false, X1 is 

true. Otherwise X1 is false. The authors successfully realized a four-digit binary square 

root calculation with this strategy. And more importantly, they demonstrated a practical 

method to scale up DNA logic systems for complicated applications.35 
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Figure 1.9. A square root calculation based on a DNA strand displacement reaction 

network. (A) The design of a single logic gate which can be switched between AND and 

OR gates by tuning the relative concentration of duplex Th. (B) Fluorescence kinetic 

results of the OR gate and AND gate. (C) The diagram of a four-digit binary square root 

logic circuit. (D) A dual-rail input logic circuit implementing the circuit in panel C. (E) 

Fluorescence kinetic results of the square root calculation. Figure reproduced with 

permission from ref 35. Copyright 2011 AAAS. 

 

DNA computation and DNA nanotechnology are two naturally compatible areas. 

Although the goals of the two areas are different, they both use DNA molecules as 

materials, and the programming strategies are usually the same. As a result, DNA 

nanotechnology can be utilized for presenting mathematical and logical systems. In 2004, 

a DNA Sierpinski triangle constructed from DNA tiles was published. The authors used a 

set of unique DX tiles with carefully designed sticky ends and a long ssDNA template as 
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a nucleation seed to achieve a binary XOR function between each neighboring tile pair 

and thus created a Sierpinski triangle fractal pattern. The system has a moderate error rate 

of 1% to 10%. Although it is not perfect, the starting points of assembly errors are 

traceable. Also, this work demonstrated the Turing-universal capability of engineered 

DNA self-assembly.37 (Figure 1.10) 

 

Figure 1.10. DNA tiles self-assembling into a Sierpinski triangle pattern following the 

XOR function. (A) Two groups of DNA tiles are employed in the system. One group of 

tiles shown in grey represents a binary 0. The other group of tiles shown in white 

represents a binary 1. A pair of neighboring tiles yields an output tile in the next row. The 

value of the output tile is the result of the XOR function of the values of the parent tiles. 

The tiles following the designed rule form a Sierpinski triangle pattern of the tiles of the 
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value of 1. (B) Translating the model in Panel A into DNA tiles. (C) Four types of tiles, 

of which two tiles have the value 1 and the other two tiles have the value 0, are used. (D) 

The expected pattern with no errors. (E) The expected error-prone pattern. (F) AFM 

result of the pattern. The scale bar is 100 nm. Figure reproduced with permission from ref 

37. Copyright 2004 Rothemund et al. 

 

Besides these three methods, another interesting method has also been used in 

DNA computation - programmed reactions catalyzed by DNAzymes, which is not 

discussed further.38,39 

1.4.3 Comparison between DNA Computation and Silicon-Based Computing. 

Since people are very familiar with silicon-based computers, and the development of 

DNA computation is still at an early stage, people always tend to compare DNA 

computation with silicon-based computations. This topic can be discussed in two ways, 

one is the pros and cons of DNA computation, and the other is the applications of the two 

types of computations. 

The biggest disadvantage of DNA computation is the low reaction or assembly 

rate. The typical time required by a DNA system to finish a simple logic operation ranges 

from a couple of hours to one day. The long time required by DNA and other 

biomolecular computation and programming techniques renders these systems far inferior 

to silicon-based computers in terms of calculation capability. This disadvantage is 

determined by the nature of DNA molecules, thus it is very difficult to overcome, even 

with an expectation of the development of DNA computation. 
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Another limiting factor of DNA computation is the lifetime of the materials being 

used. The lifetime of biological molecules is usually much shorter than inorganic 

materials used in traditional computers, even if they are stored under proper conditions. 

DNA is a relatively robust biomolecule, but it is still prone to degradation in the presence 

of small amounts of proteins, micro-organisms, or metal ions. The physical stability issue 

makes the operating conditions of DNA and other biomolecular computing systems 

limited to those proper for biochemical reactions. Also, long term information storage is 

difficult to achieve. 

Currently, programmed DNA computing systems cannot be built up and 

characterized without the help of silicon-based computers. The artificial synthesis of the 

DNA components, concentration measurements for adjusting the component 

stoichiometry, and signal detection to read out the computation results all depend on 

instruments that are controlled by silicon-based computers. Even with the rapid 

development of biological and chemical sciences, it is not realistic to think that an 

independent bio-computer that can rival silicon-based computers will be developed. 

However, replacing or realizing the same functions of traditional computers is not 

necessary or practical.  

Traditional computers utilized the bi-stable properties of materials to realize the 

binary function. There is no intermediate state between “0” and “1”. In DNA operations, 

the molecular signals have continuous intensities. The up side of this is that continuous 

signal intensities have a better tolerance for error. The down side is the dilemma of 

having a signal not significantly distinct enough to be assigned either “0” or “1”.  
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While bearing the disadvantages above, DNA computation has a significant 

natural advantage: DNA is biocompatible. This makes DNA a perfect tool for 

programming and regulating other biochemical reaction systems both in vivo and in vitro. 

DNA can be used to sense a biological signal, compute, return a result and actuate, e.g. 

release a drug.40-44 

The other advantage of DNA computation is the different performance routine 

from that of traditional computers that can sometimes significantly simplify a problem. 

For example, in the Hamiltonian path work by Adleman, the author used a single DNA 

solution to generate all possible paths in the graph, which is a massively parallel 

processing strategy. This is superior to the brute force strategy used in traditional 

computers. 

The pros and cons of DNA computation determine that its application area is 

different from that of the silicon-based computers. DNA computation and molecular 

programming are aimed to be applied in biological systems, which are currently 

developed in bioengineering and nanomedicine.45,46 
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Chapter 2 

Multi-Functional DNA Logic Circuit: 3-Input Majority Logic Gate and Multiple 

Input Logic Circuit Based on DNA Strand Displacement 

Adapted with permission from Li, W.; Yang, Y.; Yan, H.; Liu, Y., Three-Input Majority 

Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement. Nano 

Lett. 2013, 13, 2980-2988. Copyright 2013 American Chemical Society. 

2.1 Abstract 

In biomolecular programming, the properties of biomolecules such as proteins 

and nucleic acids are harnessed for computational purposes. The field has gained 

considerable attention due to the possibility of exploiting the massive parallelism that is 

inherent in natural systems to solve computational problems. DNA has already been used 

to build complex molecular circuits, where the basic building blocks are logic gates that 

produce single outputs from one or more logical inputs. We designed and experimentally 

realized a 3-input majority gate based on DNA strand displacement. One of the key 

features of a 3-input majority gate is that the 3 inputs have equal priority, and the output 

will be true if any of the two inputs are true. Our design consists of a central, circular 

DNA strand with 3 unique domains between which are identical joint sequences. Before 

inputs are introduced to the system, each domain and half of each joint is protected by 

one complementary ssDNA that displays a toehold for subsequent displacement by the 

corresponding input. With this design the relationship between any two domains is 

analogous to the relationship between inputs in a majority gate. Displacing two or more 

of the protection strands will expose at least one complete joint and return a true output; 

displacing none or only 1 of the protection strands will not expose a complete joint and 
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will return a false output. Further, we designed and realized a complex 5-input logic gate 

based on the majority gate described here. By controlling 2 of the 5 inputs the complex 

gate can realize every combination of OR and AND gates of the other 3 inputs. 

2.2 Introduction 

The ability to program interactions between biomolecules can help us to 

understand life processes and activities at the molecular level. DNA is an ideal candidate 

for molecular programming that facilitates both in vivo and in vitro applications1 because 

of its biological and physical properties. The behavior of DNA molecules with particular 

sequences can be reliably predicted according to the Watson-Crick base-pairing principle. 

The recent developments in the field of structural DNA nanotechnology2 provide many 

different platforms onto which logically programmed DNA interactions can be combined 

and organized. 

The first employment of DNA as molecular programming reagent resulted in a 

solution to the seven-city Hamilton path problem.3 Since then, several enzyme-

catalyzed4-6 and enzyme-free7-10 DNA automata systems have been designed and realized. 

In the enzyme-free systems single-stranded DNA (ssDNA) molecules are used as input 

signals. Introducing the input signals to a system containing other double-stranded DNA 

(dsDNA) molecules displaying ssDNA toeholds results in a series of toehold directed 

strand displacement reactions11-15 and the release of an ssDNA molecule as a detectable 

output signal. Computing circuits based on DNA strand displacement that demonstrate 

complicated computations such as binary square root 16 and network computations17 were 

achieved with high efficiency and accuracy. In these computing circuits both AND and 

OR gates were utilized.  
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In this work we achieved the construction of a 3-input majority logic gate by 

programming DNA interactions. A majority logic gate with multiple inputs returns true 

outputs, if and only if more than half of the inputs are true. A 3-input majority gate is one 

of the most basic logic gates and has been demonstrated using magnetic quantum-dot 

cellular automata (MQCA).18 With multiple inputs this gate can accept and produce a 

high volume of information; thus, on the molecular level a 3-input majority gate can 

serve as a basic and versatile building block for constructing more complex circuits. Here 

we experimentally realized a 3-input majority gate with programmed DNA strand 

displacement reactions for the first time, and demonstrated that it reliably produces all the 

correct outputs with different combinations of the inputs. We further constructed a 5-

input computing circuit implemented solely by linking two 3-input majority gates 

together. This circuit can be tuned to accomplish four different computing patterns 

among the various combinations of the inputs.  

2.3 Architecture Design 

2.3.1 Single 3-input Majority Gate. For a 3-input majority gate (see Figure 

2.1A), if any 2 or all of the 3 inputs are true, the output is true. The truth table (Table 2.1) 

specifies that the 3 inputs have the same priority among one another. Thus, for a 3-input 

majority gate the outputs between any combinations of 2 or 3 inputs should not be 

distinguishable. To construct a 3-input majority gate from DNA molecules we 

implemented a circular DNA strand consisting of 3 distinct segments, A, B, and C 

(Figure 2.1B); in each segment the middle portion is unique (M1, M2 and M3, 16 nts 

each), and the 3 joints are identical (RS2 18 nts and RS1, 8 nts). Before performing the 

computation segments A, B, and C each hybridize to a complementary ssDNA molecule 
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(A*, B* and C*, respectively) forming a circular (quasi-triangular) duplex. Strands A*, 

B*, and C* each have two domains: one domain is fully complementary to A, B, and C, 

respectively, and the other domain displays a toehold (T1*, T2*, and T3*, 10 nts each) 

for initiating the strand displacement reaction. This circular duplex structure is referred to 

as a “Calculator” herein. 

Table 2.1. Truth table of a 3-input majority logic gate 

Input A Input B Input C Output 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

1 1 0 1 

1 0 1 1 

0 1 1 1 

1 1 1 1 

 

Three unique input strands (Inputs A, B, and C) are designed to be fully 

complementary to A*, B* and C* (both domains). When the inputs are introduced to the 

computing system toehold-mediated strand displacement reactions are initiated. For those 

cases in which there are 2 or 3 inputs (i.e. majority input) (Figure 2.1C), ssDNA from 2 

or 3 sides of the Calculator are released. The release events expose a single joint (for 2 

inputs), or all three joints (for three inputs), in the Calculator structure and Segments A, B, 

and C is/are concurrently exposed as ssDNA. The exposure of at least one joint domain 
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(all with the same sequence) is defined as a positive output. A “Detector” is utilized to 

recognize and report the output. The detector is composed of two strands that form a 

duplex displaying a toehold, and is labeled with a fluorescence dye and a corresponding 

dark quencher on the two component strands. The strand that is modified with the dark 

quencher carries the toehold that is fully complementary to the output. When it hybridizes 

with the output, the fluorescence-dye-modified strand is released to the solution and an 

increase in the fluorescence intensity of the dye is detected as proof of a true output. 

 

Figure 2.1. Architectural design of a 3-input majority gate based on DNA strand 

displacement reactions. (A) Symbolic representation of the majority logic gate. (B) 

Design of the Calculator structure. The circular ssDNA (left) is composed of 3 segments, 

A (RS2-M1-RS1), B (RS2-M2-RS1), and C (RS2-M3-RS1). Each segment has 42 nts. 
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RS1 and RS2 are 8 and 18 nts long, respectively. The RS1-RS2 joint sequence is repeated 

in the circular structure 3 times. M1, M2, and M3 are each 16 nts long and have distinct 

sequences.  ssDNA A*, B*, and C* are hybridized with A, B, and C, respectively, 

forming the Calculator structure (right). A*, B*, and C* each have 2 domains: one 

domain, RS1*-M1(2,3)*-RS2*, is fully complementary to A, B or C. The other domain, 

T1(2,3)*, is a unique sequence toehold for initiating the computation process. (C) 2 or 3 

inputs lead to a true output. Here a representative 2 input model is shown.  Input A and 

Input B are fully complementary to A* and B*, respectively. The toeholds, T1 and T2, 

first hybridize with T1* and T2*. Next, the input strands fully displace A* and B* from 

the circular structure. Finally A* and B* hybridize with Input A and Input B and are 

displaced from the Calculator. The RS1-RS2 joint (output) on the circular strand is then 

fully exposed, yielding a true output. A “Detector” is pre-mixed with the Calculator. The 

Detector is a duplex of RS2 and RS2*-RS1*. RS2 is modified with 6-carboxyfluorescein 

(FAM) at the 3’ end. RS2*-RS1* is modified with Iowa BlackTM dark quencher (IABk) 

at the 5’ end. RS1 in the output and RS1* in the Detector serve as toeholds and RS2-

FAM is displaced from the dark quencher, thus the true output is revealed by a 

fluorescence increase. (D) One or no input leads to a false output. A representative 1 

input (e.g. Input A) case is shown. Only A* is released by Input A, thus no continuous 

RS1-RS2 is exposed and the output is 0. The Detector duplex is highly stable and the 

fluorescence remains quenched through the computation process. 

 

 When only 1 or no input (minority input) is introduced (Figure 2.1D), none of the 

joint domains of the 3 segments is fully exposed. Even though 2 joint domains may be 
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partially exposed, because they are operating separately at opposite ends of a segment 

they cannot disassemble the detector duplex and the output remains 0. 

2.3.2 Logic Gate Cascade. As indicated by the truth table (Table 2.1), an 

important property of a 3-input majority gate is that if any of the 3 inputs is preset as 1, 

the logic gate becomes an OR gate for the remaining 2 inputs (Figure 2.2A), and if any of 

the 3 inputs is preset as 0, the logic gate becomes an AND gate for the remaining 2 inputs 

(Figure 2.2B). This ability to switch between OR and AND gates makes the 3-input 

majority gate a versatile building block for constructing more complex computing 

circuits. 

 

Figure 2.2. Properties of a 3-input majority gate and the design of a multi-functional 

circuit. (A) If any 1 of the 3 inputs of a majority gate is preset as 1, the gate becomes an 

OR gate of the remaining 2 inputs. In the figure, Input A is preset as 1. The relationship 

between Inputs B and C becomes an OR function (B + C). (B) If any 1 of the 3 inputs of 

a majority gate is preset as 0, the gate becomes an AND gate of the remaining 2 inputs. In 
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the figure, Input A as 0 is shown. The relationship between Inputs B and C becomes an 

AND function (B ∙ C). (C) The multi-functional circuit contains 2 majority gates and has 

a depth of 2. The output of the first generation, Majority Gate Y (MY), is employed as 

one input of the second generation, Majority Gate X (MX). There are 5 input of the circuit: 

Y1, Y2, and Y3 to MY; X1, and X2 to MX. The output of the second generation is the 

output of the entire circuit. 

 

Table 2.2. Computing patterns of the multi-functional circuit under different preset 

values of X1 and Y1 

X1 Y1 Computation Pattern 

0 0 Y2 ∙ Y3 ∙ X2 

1 0 Y2 ∙ Y3 + X2 

0 1 (Y2 + Y3) ∙ X2 

1 1 Y2 + Y3 + X2 

 

 To demonstrate switching of a 3-input majority gate we assembled a computing 

circuit composed of 2 majority gates arranged sequentially (Figure 2.2C). Majority Gate 

Y (MY) is the first generation gate. The output of MY is utilized as one of the inputs of 

Majority Gate X (MX), which is the second generation gate. The output from MX is read 

as the final output of the circuit. The circuit has 5 inputs in total: Y1, Y2, and Y3 in MY; 

X1, and X2 in MX. By assigning values of 0 or 1 to any one of the inputs in each majority 

gate, this circuit can be switched between 4 different computing patterns for the 
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remaining 3 inputs (Table 2.2). These 4 logical computing patterns represent all the 

combinations of OR and AND functions between the 3 inputs. 

Based on the success of the single majority gate design described above (shown in 

Figure 2.1C, D), we engineered a 2-generation circuit as shown in Figure 2.3. Similarly, 

the Calculator structures in both generations feature a circular (quasi-triangular) design. 

The sequences of the joint domains between any 2 arms of Calculator Y (first generation) 

are all the same such that fully exposing any of the joints results in a true output of MY. 

Each joint domain is fully complementary to arm X3 in Calculator X (the second 

generation). Therefore, the output of MY acts as an intermediate of the circuit and can be 

used as an input for the next generation calculator. For example, if the output of MY is 

true, MX receives a true input from MY; and if the output of MY is false, MX receives a 

false input from MY. Depending on the output of MY and the additional 2 inputs of MX 

(X1 and X2) Calculator X produces the final output of the circuit. For example, if any 2 

or 3 of the inputs for MX are present, 2 or 3 of the arm strands (X1*, X2*, and X3*) are 

displaced from Calculator X, exposing at least one joint domain of the circular strand as 

ssDNA which yields a true final output. Conversely, if only 1 or none of the inputs for 

MX is present, the final output is false. The output reacts with the “Detector”, binding 

with the dark quencher labeled strand and releasing the fluorescence of the dye modified 

strand. The output is visualized by an increase in the fluorescence intensity of the dye, 

following the same mechanism as for the single majority gate. 
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Figure 2.3. Designed reaction flow of the multi-functional circuit. Majority Gate Y (MY), 

the first generation in the circuit, is shown in the upper-left. Majority Gate X (MX), the 
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second generation in the circuit, is shown in the lower-right. For MY, there are 3 

segments in circular Calculator Y, each with 3 domains. One domain of the circular 

strand is M1-P3-M2. A second domain is Q1(2,3); Q1, Q2, and Q3 are each a unique 

sequence. The third domain is TX3. The 3 joint segments of the circular strand are all 

TX3-M1-P3-M2. Once Calculator Y has 2 or 3 arms displaced it will return a true MY 

output, exposing the Intermediate (TX3-M1-P3-M2) as ssDNA. This Intermediate is fully 

complementary to arm strand X3* in Calculator X, and can therefore serve as an input of 

MX. TX3 in the Intermediate functions as a toehold and M1-P3-M2 displaces the 

remainder of X3* from Calculator X. For MX, there are also 3 segments in Calculator X. 

The design of Calculator X is similar to the design of the single gate shown in Figure 2.1, 

except for the length of each domain. The intermediate, and the other 2 Inputs of MX, 

Input X1 and Input X2, determine the output of the overall circuit. The ssDNA output 

signal is the repeating joint sequence of the circular strand in Calculator X, M2-M1. 

Similar to the single gate design the output of the circuit can be detected via changes in 

the fluorescence of a dye molecule. A representative computing pattern example is shown 

in the figure. Input Y1 is preset as 0, which means that no ssDNA Input Y1 is introduced 

to the reaction. Input X1 is also preset as 0. As a result of the preset values of Inputs Y1 

and X1, the computing pattern in the figure is Y2 ∙ Y3 ∙ X2. Inputs Y2, Y3, and X2 are all 

present in the reaction system so the logical computing result is 1 ∙ 1 ∙ 1 = 1. The lengths 

(in base pairs) of the domains in the figure: TX1(2,3) = TX1(2,3)* = 10.  P1(2,3) = 

P1(2,3)* = 9. M1 = M1* = 8. M2 = M2* = 15. TY1(2,3) = TY1(2,3)* = 10. Q1(2,3) = 

Q1(2,3)* = 11. 
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2.4 Results and Discussion 

2.4.1 Assembly of the Calculators. The central circular ssDNA molecules (126 

nts long for the single 3-input majority gate, 159 nts long for MY and 96 nts for MX) in 

the calculators are prepared by ligating one or two linear ssDNAs end to end (See 

APPENDIX A for Figure S2.1). T4 DNA ligase is used to catalyze the circularization 

reactions. The termini of the ssDNA fragments are specifically paired and joined by 

hybridizing to 20-nt ssDNA templates and the resulting nicks are then sealed with T4 

DNA ligase. The circular ssDNA is purified and recovered by denaturing polyacrylamide 

gel electrophoresis (PAGE). The overall recovery yield of the purified circular ssDNA is 

30% to 50% (APPENDIX A, Figure S2.2A); note that the circularized strands are 

resistant to degradation by exonuclease I (APPENDIX A, Figure S2.2B). The purified 

central circular ssDNA is hybridized with the 3 arm strands, forming the Calculator 

(Figure 2.4). The molar ratio between the circular ssDNA and each arm strand is 1:1.1. 

 

Figure 2.4. Native polyacrylamide gel electrophoresis confirming the formation of the 

single gate Calculator of the single gate. Lane 1: 10 bp DNA ladder. The three intense 
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bands are 50 bps, 100 bps and 150 bps from bottom to top, respectively. Lane 2: center 

circular strand. Lanes 3 – 5: center strand with one arm strand: A*, B* or C*, 

respectively. Lanes 6 – 8: center strand with two arm strands: A* + B*, A* + C*, or B* 

+ C*, respectively. Lane 9: center strand with three arm strands: A* + B* + C*, forming 

the complete Calculator structure. Lane 10: 100 bp DNA ladder. For each segment of the 

center circular strand, the two termini are portions of the repeating sequence. As a result, 

if a segment of the center strand does not have a fully complementary arm strand present 

in the system, its two ends may hybridize with the excess arm strands intended to interact 

with other segments such that with the middle portion of the segment is not bound. This 

process may result in species with retarded mobility as shown in Lanes 3 to 8.  

 

2.4.2 Gel Characterization of Calculator Formation and Operation with 

Inputs. The Calculators are prepared with excess arm strands that do not need to be 

removed before use. After a Calculator is prepared the specific input strands are mixed 

with the Calculator at a molar ratio of 1.2:1. The input strands displace the arm strands 

from the central circular strand of the Calculator. The structural changes of the Calculator 

corresponding to single gate reactions were characterized by native PAGE (Figure 2.5). 

The gel image shown in Figure 2.5 clearly demonstrates the difference between 

true and false outputs of the logic gate for different input combinations. Lane 2 

corresponds to no inputs and the intact Calculator migrates as a single band. Lanes 3, 4, 

and 5 correspond to systems with a single input. Multiple bands are present in the gel 

image, but the emergence of species with fully exposed circular strand joints was not 
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observed. Lanes 6 to 9 correspond to systems with 2 or 3 inputs where at least one output 

ssDNA is evident. 

 

Figure 2.5. Native PAGE demonstrating the single gate design Calculator. Lane 1: 10 bp 

DNA ladder. The three intense bands are 50 bps, 100 bps and 150 bps from bottom to top, 

respectively. Lane 2: the fully assembled Calculator. Lanes 3 – 5: the Calculator with a 

single input: Inputs A, B, or C respectively. Lanes 6 – 8: the Calculator with two inputs: 

Inputs A + B, Inputs A + C, or Inputs B + C, respectively. Lane 9: the calculator with all 

three inputs. Lane 10: 100 bp DNA ladder. For each segment of the center circular strand, 

the two termini are portions of the repeating sequence. As a result, if a segment of the 

center strand does not have a fully complementary arm strand present in the system, its 

two ends may hybridize with the excess arm strands intended to interact with other 

segments such that with the middle portion of the segment is not bound. This process 

may result in species with retarded mobility as shown in Lanes 3 to 8. 
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2.4.3 Detecting the Operation of a Single Majority Gate. A fluorescent dye 

molecule was used to detect the products of the 3-input majority gate and to follow the 

kinetics of the logic computing reactions (Figure 2.6). The Calculator, a specific 

combination of inputs, and the FAM - Iowa BlackTM modified Detector are mixed and the 

fluorescence intensity of FAM (Ex 490 nm, Em 520 nm) is measured every 30 seconds at 

constant temperature of ~ 20°C. 

At the beginning of the reaction the fluorescence intensities of all input 

combinations are low because the FAM modified strand in the detector remains 

hybridized to the dark quencher modified strand. For reactions with one or no input, no 

output ssDNA is produced as the reaction proceeds. Thus, the FAM strands are never 

released from interaction with the dark quencher. The fluorescence intensities of these 

reactions remain at a low level throughout the experiment, indicating a false output of the 

majority logic gate. 

For reactions with two or three inputs, one or three ssDNA output domains of the 

Calculators are exposed. The outputs are subsequently recognized by the Detector 

through toehold hybridization events. Next, the output displaces the FAM modified 

strand (toehold mediated displacement) from the dark quencher modified strand. As a 

result the fluorescence intensity increases, indicating the true output. The reaction rates 

are high at the initial stages of the reaction and slow down considerably as more and 

more Calculator species and ssDNA inputs are consumed. After the reaction reaches 

equilibrium the fluorescence intensity of that system remains constant. The computation 

of each input combination finishes in 0.5 to 1.5 hours. 



40 
 

From the design shown in Figure 2.1 it is apparent that if all 3 inputs are 

introduced to the Calculator, 3 ssDNA output domains would be exposed. Therefore, the 

molar ratio between the output and the Calculator is 3:1. However, for the three cases 

with combinations of 2 inputs the molar ratio between the output species and the 

Calculator is 1:1 because there is only one output domain exposed per Calculator. Thus, 

when there is 3 or more fold excess of the Detector present, the final fluorescence 

intensity of the 3-input model is expected to be 3 times higher than the 2-input cases 

(Figure 2.6B). If the amount of the Detector in the system is decreased to the same level 

as that of the Calculator, the final fluorescence intensities of the true output cases will be 

limited by the availability of the Detector. Figure 2.6A illustrates such a scenario in 

which four true outputs yield similar fluorescence intensity levels. The reaction kinetics 

is the fastest for the system with all three inputs, and for the 2-input systems the rates are 

similar when input B is absent, but become much slower when either input A or C is 

missing. The 1- to 2-fold difference in the reaction kinetics is not well understood. We 

speculate that it may originate from sequence-specific interactions between the DNA 

strands, especially in the toehold regions.   

The raw data collected from the fluorescence experiments is the absolute intensity 

of the detector bound dye at each time point in the reaction. The fluorescence increase for 

each reaction is calculated by subtracting the initial intensity from the final intensity. For 

cases with a 1:1 Detector to Calculator ratio, the fluorescence increase is normalized to 1 

(Figure 2.6A). The curves corresponding to reactions with 2 or 3 inputs plateau above 

0.75, while the curves with one or no input reach equilibrium very close to 0.  
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Figure 2.6. Kinetic characterization of the single 3-input majority gate. (A) The ratio 

between the Detector and the Calculator is 1:1. (B) The ratio between the Detector and 

the Calculator is 4:1. Each curve in these two graphs represents a reaction corresponding 

to the inputs specified next to each curve. The fluorescence measurement begins at the 

moment that the Calculator, the Detector, and the inputs of each reaction are mixed. The 

fluorescence intensity is collected every 0.5 minutes. The fluorescence increase is 

calculated by subtracting the initial intensity from the final intensity, normalized and 

plotted. For a 1:1 or 4:1 Detector to Calculator ratio, single or no input cases all return an 

output of 0. The 2 or 3 input cases all return an output above 0.75. The 3 inputs case for a 

4:1 Detector to Calculator ratio returns an output of 2.7, very close to the theoretically 

predicted value of 3. 

 

For cases with a 4:1 Detector to Calculator ratio, the fluorescence increase is 

normalized to the largest intensity increase of the 2-input reactions (Figure 2.6B). 

Notably, the curve corresponding to the 3-input reaction plateaus at more than 2.5, while 

the curves corresponding to the 2-input reactions all plateau around 1. These results, in 
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accordance with the 3-input majority gate truth table, validate that our DNA based logic 

gate functions as designed. 

2.4.4 Assembling a Multi-Functional Circuit. Based on the success of the single 

3-input majority gate, we went on to construct a two-generation majority gate circuit. The 

circuit is composed of two majority gates operated in series (Figure 2.3). These two 

majority gates were individually verified and the kinetics were examined (APPENDIX A, 

Figure S2.4). As shown in Table 2.2, by presetting one input in each gate of the circuit 

(Y1 and X1, for example), the circuit can realize four different computational patterns 

depending on the identities of the preset inputs. For each computation pattern there are 

eight unique operations, depending on the combinations of the other three inputs. Figure 

2.7 presents the kinetics of these computing systems with different input combinations, 

with each panel of graphs representing one computing pattern. In each panel the 

fluorescence output versus time plots represent the reaction kinetics of a combination of 

inputs (specified next to each curve). The specific combinations of inputs are represented 

by three numbers that correspond to Y2, Y3 and X2, respectively. The output of Y2 and 

Y3 serves as the intermediate that passes information from the first generation (MY) to 

the second generation (MX). For example, the operation 1 + 1 + 0 implies the following 

information: 1) the relationship between Y2 and Y3 is “OR”, which only occurs when 

Input Y1 is preset as 1; 2) the relationship between (Y2 + Y3) and X2 is “OR”, which 

only occurs when Input X1 is preset as 1; 3) the intermediate between the 2 generations is 

the result of Y2 + Y3 = 1 + 1 = 1. Therefore, the expected final output is 1. In another 

example, the operation (1 + 0) ∙ 1 implies the following information: 1) the relationship 

between Y2 and Y3 is “OR”, which only occurs when Input Y1 is preset as 1; 2) the 
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relationship between (Y2 + Y3) and X2 is “AND”, which only occurs when Input X1 is 

preset as 0; 3) the intermediate between the 2 generations is the result of Y2 + Y3 = 1 + 0 

= 1. Here, the final output is 1. 

Figure 2.7A depicts the results of presetting both Y1 and X1 as 0. Thus, the 

circuit functions as Y2 ∙ Y3 ∙ X2. For all the input combinations of Y2, Y3 and X2, only 

the system in which all three inputs are true returns a true output. The other seven input 

combinations should all return false. We experimentally confirmed this for all situations, 

except for 0 ∙ 1 ∙ 1, where we observed minimal signal leakage. If we specify a > 0.5 

threshold for a true value, the result can be considered to be false.  

In Figure 2.7B, Y1 is preset as 1 and X1 is preset as 0. The circuit functions as 

(Y2 + Y3) ∙ X2. For this computing pattern, input combinations of (1 + 0) ∙ 1, (0 + 1) ∙ 1, 

and (1 + 1) ∙ 1, return true. The other five combinations of input s, (0 + 0) ∙ 0, (1 + 0) ∙ 0, 

(0 + 1) ∙ 0, (0 + 0) ∙ 1, and (1 + 1) ∙ 0, return false. As shown in the figure the reaction rate 

is the highest for the system with all 3 true inputs. Here, the reactions are monitored for 

12 hours. Within this time the fluorescence intensity of the other 2 true output systems 

reaches 75% of that of the highest output, thus representing successful true outputs. The 

remainder of the operations yield different levels of fluorescence intensities all below 0.3, 

thus can be considered to be false outputs.  

In Figure 2.7C, Y1 is preset as 0 and X1 is preset as 1. The circuit functions as Y2 

∙ Y3 + X2. Five combinations of inputs of this circuit return true, and the other three 

combinations return false. The combinations leading to the true output are 0 ∙ 0 + 1, 1 ∙ 1 

+ 0, 1 ∙ 0 + 1, 0 ∙ 1 + 1, and 1 ∙ 1 + 1. Among the five true outputs, three reactions are 

relatively fast. The fastest reactions finish in approximately 4 hours, while the two slower 
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reactions reach 70% intensity (of the fastest) in 12 hours. The operations with false 

outputs all plateaued below 0.3.   

 

Figure 2.7. Kinetic characterization of the multi-functional circuit composed of two 3-

input majority gates. (A) Input Y1 is preset as 0; Input X1 is preset as 0. The computation 

pattern is Y2 ∙ Y3 ∙ X2. Only when Y2, Y3, and X2 are all true does the circuit return true. 

(B) Input Y1 is preset as 1; Input X1 is preset as 0. The computation pattern is (Y2 + Y3) 

∙ X2. Three input combinations return true outputs. (C) Input Y1 is preset as 0; Input X1 

is preset as 1. The computation pattern is Y2 ∙ Y3 + X2. Five input combinations return 

true outputs. (D) Input Y1 is preset as 0; Input X1 is preset as 1. The computation pattern 

is Y2 + Y3 + X2. Seven input combinations return true outputs. Only when Y2, Y3, and 

X2 are all false does the circuit return false. Each curve in these four graphs represents a 

reaction where the input combination is labeled at the end of the curve. The fluorescence 

measurement begins at the moment that the Calculator, the Detector, and the inputs of 
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each reaction are mixed. The fluorescence intensity is measured every minute. The 

fluorescence increase is calculated by subtracting the initial intensity from the final 

intensity, normalized and plotted. 

 

The final computing pattern of the circuit is Y2 + Y3 + X2, which can be realized 

by presetting Input Y1 and X1 both 1 (Figure 2.7D). If any input among Y2, Y3, and X2 

is true, the circuit returns true. Indeed, only 0 + 0 + 0 returns a false output. Five input 

combinations that have at least one true input from the second generation gate, or both 

true inputs from the first generation gate, have similar kinetics and produce final 

fluorescence intensities between 1.0-1.1, representing a true output. The fluorescent 

intensity of the curves corresponding to the other two cases (with a true input from only 

one of the first majority gates) plateaus at 0.6 in 12 hours with slower kinetics, and also 

represents a true output.  

  The 4 plots shown in Figure 2.7 demonstrate that the signal leakage of each false 

computation pattern is controlled below 30%. The true outputs all reach intensities higher 

than 60%. This suggests that the 2-generation logic gate cascade is functioning properly. 

However, some reactions are obviously slower and result in lower intensities than others. 

Generally, the more true inputs (including the controlled two preset inputs, Y1 and X1) in 

a system, the faster the reaction is. For example, in Figure 2.7B, (1 + 1) ∙ 1 is faster than 

both (1 + 0) ∙ 1 and (0 + 1) ∙ 1. In addition, if the true output depends on a true 

intermediate transferred from the first generation (MY) to the second generation (MX), the 

reaction is slower. The different rates of each computation reaction can be easily 

explained. The intermediate that is transferred from MY to MX is within the circular 
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strand of the MY Calculator. Its exposure induces the strand displacement reaction 

between the intermediate segment in the middle of the circular strand on MY and the 

strands bound to the circular MX Calculator to expose the final output. Both circular 

structures in this step experience a crowed physical environment for the reaction, thus 

slowing down the strand displacement reaction in the MX Calculator. 

The main source of leakage of the system is the “cross talk” between the two 

generations. Specifically, the three inputs of MY all have the whole sequence of the 

intermediate from MY to MX, except the toehold. An ssDNA domain can displace an 

identical domain from a dsDNA, although the reaction rate is magnitudes lower than 

toehold directed strand displacement.9,10 The inputs of MY can displace the X3* strand in 

MX. So when there are inputs of both the two generations present at the same time and 

the output should be 0, there is possible outstanding leakage. The strategy used to control 

the leakage is to use higher concentration of the first generation than the second 

generation, so the reaction rate ratio between the toehold-directed strand displacement 

and the undesired non-toehold-directed reaction is increased. In preliminary experiments, 

the concentration ratio between MY and MX was 1:1. The outstanding leakage was about 

50%. The concentration ratio between MY and MX is 2:1 in the experiments of Figure 2.7. 

The leakage is well controlled below 30%. 

2.5 Conclusion 

We experimentally realized a 3-input majority gate based on enzyme free DNA 

strand displacement reactions. A 3-input majority gate is a basic and a versatile logic gate 

that can be switched between OR and AND gates. The circular structural design 

presented here provides a new route for designing complex logic gates and may serve as 
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an efficient candidate in designing efficient DNA computing circuits. By combining two 

3-input majority gates in series, we realized a multi-functional circuit that can be 

employed in four different forms according to the demand. 

Although our design does require a change in the length of strands (which may 

cause slower reaction kinetics) when scaling up computing circuits, it still provides an 

alternative strategy for constructing complex circuits. Due to the nature of our majority 

gate where the inputs and outputs are all ssDNA, it is foreseeable that a circular logic 

gate can be combined with other existing DNA logic gates13,16 for construction of larger 

circuits for more advance computation. 
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Chapter 3 

DNA Based Arithmetic Functions: 1-Bit Full Adder and Half Adder Based on DNA 

Strand Displacement 

3.1 Abstract 

 Biomolecular programming utilizes the reactions and information stored in 

biological molecules such as proteins and nucleic acids for computational purposes. DNA 

has proven itself as a perfect candidate for building biomolecular logic operating systems 

due to its highly predictable molecular behavior. In this work we designed and realized 

an XOR logic gate and an AND logic gate based on DNA strand displacement reactions. 

These logic gates utilize ssDNA as input and output signals. The XOR gate and AND 

gate were used as building blocks for constructing half adder and full adder logic circuits. 

An adder is a basic arithmetic unit in computing. This work provides the DNA molecular 

programming field a potential universal arithmetic tool. 

3.2 Introduction 

 Programming reaction networks of biological systems is an important way for 

scientists to understand the secret of life at the molecular level. These biological systems 

with computational functions have been applied in bioengineering and nanomedicine.1,2 

DNA is an ideal biomolecular candidate for building up molecular automata, because the 

behavior of DNA molecules can be precisely predicted according to Watson-Crick base 

pairing. This advantage has promoted DNA systems to facilitate both in vivo and in vitro 

applications.3 The rapidly developing field of structural DNA nanotechnology also 

mutually benefits from programmed DNA interactions by providing various structural 

platforms 4-8 and adopting programming principles.9,10 
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Figure 3.1. Logic diagrams of a half adder and a full adder. (A) The logic diagram of a 

half adder. The easiest construction of a half adder contains one XOR gate (drawn in red) 

and one AND gate (drawn in blue). The two logic gates share the same two inputs. The 

output of the AND gate is the “carry” of the result. The output of the XOR gate is the 

“sum” of the result. (B) The logic diagram of a full adder. The easiest construction of a 

full adder is composed of two half adders as shown in Panel A. The first half adder drawn 

in red uses Input X and Input Y as inputs. One of the two inputs of the second half adder 

(drawn in blue) is the output of the XOR gate in the first half adder. The other input of 

the second half adder is Cin, which is usually a bit carried from the previous stage. The 

“sum” bit in the output is the output of the XOR gate in the second half adder, and is 

abbreviated as “S”. The “carry” bit in the output is the result of an OR operation of the 
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outputs of the two AND gates. This bit is usually used as the input carry in the next stage, 

and it is abbreviated as “Cout”. 

 

Since the first example of DNA computation solved a seven-city Hamiltonian 

path problem,11 several molecular DNA automata systems have been designed and 

developed. These systems include enzyme catalyzed12,13 and enzyme-free10,14-17 DNA 

reaction networks, DNAzyme facilitated reactions,18,19 and programmed self-assembly of 

DNA nanostructures.6,8 In enzyme-free computation systems, the input signals and output 

signals are usually designed in the same form, which is typically single-stranded DNA 

(ssDNA). Upon mixing the input ssDNA with a system containing a set of programmed 

double-stranded DNA (dsDNA) molecules, a series of toehold directed DNA strand 

displacement reactions occur and yield a ssDNA product as a detectable output.7,20-25 A 

few complicated computations including binary square root26 and neural network 

mimicry27 have been demonstrated using the DNA strand displacement strategy. 

Table 3.1. Truth Table of a Half Adder 

Input X Input Y C S 

0 0 0 0 

1 0 0 1 

0 1 0 1 

1 1 1 0 

 

In this work we aim to construct a half adder digital circuit and a full adder digital 

circuit based on programmed DNA reactions. An adder is a digital circuit that functions 
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as the addition of numbers. A binary half adder performs the addition of its two inputs, 

and yields two outputs, a sum and a carry (Figure 3.1A, Table 3.1). A binary full adder 

adds three numbers. In addition to the two inputs of a half adder, a full adder has one 

more input, which is usually a bit carried over from the previous stage. A full adder also 

has two outputs, a sum and a carry for the next stage (Figure 3.1B, Table 3.2). A 1-bit 

adder is a basic arithmetic logic unit. It is an important and fundamental operation in 

computation. 

Table 3.2. Truth Table of a Full Adder 

Input X Input Y Input Cin Cout S 

0 0 0 0 0 

1 0 0 0 1 

0 1 0 0 1 

0 0 1 0 1 

1 1 0 1 0 

1 0 1 1 0 

0 1 1 1 0 

1 1 1 1 1 

 

3.3Architectural Design 

 The designs of the half adder and full adder circuits are based on the logic 

diagrams shown in Figure 3.1. The two logic circuits are mainly constructed from two 

types of logic gate building blocks, an XOR gate and an AND gate. We anticipate that 

once an XOR gate and an AND gate are designed and realized, with ssDNA representing 
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the input and output signals (the input and output strands all have the same length), we 

can implement the half adder and full adder based on these single logic gates. The OR 

gate, after the two AND gates in the full adder (Figure 3.1B), is spontaneously realized if 

the two AND gates are designed with the same output sequence. 

Table 3.3. Truth Table of an XOR Gate 

Input X Input Y Output 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

 

3.3.1 Design of XOR Gate. A two-input XOR gate (red in Figure 3.1A) performs 

an exclusive OR function of the inputs.  The logic operation returns true if one and only 

one of the inputs is true. If the two inputs are the same, false or true, the logic gate returns 

false. The truth table of an XOR gate is shown in Table 3.3. From the truth table, it is 

easy to imagine that the two input strands or the active species generated by each input 

strand can be designed to be fully complementary to each other, so that when both inputs 

are present, the fully complementary species hybridize with each other and render the 

product inactive, thus yielding no output strands.  

Figure 3.2 shows our design of the XOR gate based on DNA strand displacement 

reactions. The two input signals are represented by two ssDNAs. The logic gate program 

contains four linear dsDNAs and one DNA hairpin structure. The output is one domain in 

the hairpin stem, which is protected if the hairpin is not opened. The output domain in the 
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hairpin structure has the same length as the input strands. This design makes the XOR 

logic gate easy to implement in logic gate cascades, where the output of one gate can be 

directly utilized by the next logic gate as an input. If the output is not passed to the next 

logic gate, the output domain can be detected by a reporter duplex modified with 

fluorescent dye and dark quencher on the two component strands, respectively. 

 

Figure 3.2. Architectural design of an XOR gate. The input signals of the logic gate are 

represented by two ssDNAs referred to as Input X and Input Y, respectively. The 

programmed gate contains four linear dsDNAs (X1, X2, Y1, Y2) and one hairpin 

structure (H). Each component strand and the hairpin strand are individually named and 

labeled in the figure. Each domain in the strands are also named and labeled. The output 

sequence is the 5’ stem and the loop portion of the hairpin, which is protected if the 

hairpin is not opened by the upstream reactions. If the logic gate operation yields a true 

output, which is represented by the B-T7*-T6* domain in the opened hairpin, the output 

sequence can react with a fluorescent dye and dark quencher modified Reporter duplex 

(R) and displace the fluorescent dye strand from the dark quencher strand. The true 
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output can thus be detected by a fluorescence intensity increase. The domains referred to 

as “T” and a number are designed to function as toeholds, and are each 5 nucleotides (nts) 

long, except that the T7h domain in the hairpin is 2 nts. The domains A, A*, B, and B* 

are 12 nts long. There is a one nucleotide “cap” on the 5’ end of T5 in both Strands X2- 

and Y2-. (See supporting information for details.) The fluorescent dye is 6-

carboxyfluorescein (6-FAM), λEx = 495 nm, λEm = 520 nm. The dark quencher is Iowa 

Black FQ, with an absorbance spectrum ranging from 420 nm to 620 nm with an 

absorbance maximum at 531 nm. 

 

In the absence of any input strands, the dsDNA and hairpin in the program do not 

react with each other, thus the output domain remains protected during the entire 

computing process, yielding no fluorescence increase. If any single input strand is added 

to the system, the output domain is deprotected from the hairpin structure after three steps 

of strand displacement reactions, thus the XOR gate returns a true output. Figure 3.3A 

shows the operation with the presence of Input X as an example. When the two inputs are 

both added to the system, each input strand releases another ssDNA after the first strand 

displacement reaction. The two ssDNA released by the inputs are fully complementary to 

each other. At this step, these two strands hybridize to each other and lose the ability to 

execute the downstream reactions. The reaction network stops and yields no output strand. 

Figure 3.3B shows the detailed reactions with both of the inputs. The overall design 

features a seesaw pattern at every strand displacement reaction except for the reaction of 

the final fluorescence reporter. The seesaw pattern incorporates an extra toehold domain 

on the end of the migration domain of each strand displacement reaction. At the end of 
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branch migration, the extra five-base long toehold is not stable enough to maintain 

hybridization, thus, self-dissociates to finish the strand displacement reaction. This 

toehold can also initiate the reverse strand displacement reaction. Making each step in the 

reaction network reversible benefits the system with a self-correction function.27 

 

Figure 3.3. Reaction scheme of the XOR gate under conditions with one input strand, 

and with two input strands. (A) Reaction of the XOR gate with only one input. Input X is 
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shown in the figure as an example. T1* domain in Input X and T1 domain in X1- strand 

work as toeholds and initiate the strand displacement reaction. As Input X migrates along 

X1-, X1+ is finally dissociated from X1-. Similarly, X1+ displaces X2+ from X2-. X2+, 

with active toehold T5*, opens the hairpin structure and exposes the output sequence B-

T7*-T6*. This output displaces the fluorescence dye strand from the dark quencher 

strand, thus increases the fluorescence intensity of the system. (B) Reaction of the XOR 

gate with both of the inputs. The first reaction step of the two input strands is the same as 

in Panel A. Input X and Input Y produce single-stranded X1+ and Y1+. X1+ and Yi+ are 

fully complementary to each other. These two strands hybridize and form a dsDNA 

without any active toehold. The reaction stops at this step and the output domain in the 

hairpin is not exposed, thus, there is no fluorescence intensity increase. 

 

One important feature in the design of the XOR gate is that the two input stands 

are not fully complimentary to each other. Although Domain A* in Input X and Domain 

A in Input Y are complementary to each other and are expected to hybridize as they are 

mixed, the active toeholds in the two inputs are not protected and are still expected to 

initiate the downstream strand displacement reactions. The two strands produced by the 

two inputs individually after the first step of reactions are then fully hybridized to each 

other and have all toeholds blocked. This design can avoid potential difficulties in two 

different conditions. The first condition is when the relative concentration of one input is 

higher than the other. If the inputs are designed to fully hybridize to each other, the 

excess amount of one input may continue to yield an unexpected true output. With the 

current design, even if one input is in excess,  X1+ and Y1+ are produced in equal 
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amounts, thus, the excess of an individual input will not sabotage the result. The second 

condition is for the half adder and full adder circuits (Figure 3.1): there is always an AND 

gate sharing the same input strands with the XOR gate. For AND gates, we do not want 

the two inputs to inactivate each other when they co-exist. 

 Another feature of the design of the XOR gate is that a hairpin structure is used to 

shield the output. From Figure 3.3 we can see that for each input strand, the active 

toehold domain is on the 3’ end of the migrating domain. However, after the second step 

of reaction, the active toehold domain is moved to the 5’ end of the migrating domain in 

the resulting active species. A hairpin structure can be employed to easily reverse the 

relative position of the toeholds so that migrating domains in the output strand have the 

same polarity as the input strands. However, a hairpin structure is usually more 

thermodynamically stable than a linear DNA duplex. The melting temperature of a 

hairpin with a loop of five to eight nucleotides and a five-base-pair stem is much higher 

than room temperature,28 which is the typical operating temperature of DNA strand 

displacement reactions. So if a true output is expected, and if toehold T7h in hairpin 

strand H is as long as other toehold domains, T7h-T7* hybridization will not be able to 

spontaneously dissociate at the end of the branch migration to open the hairpin, thus, the 

active toehold T6* of the output domain will be still protected within the hairpin loop. In 

order to solve this problem, we reduced the length of T7h in the hairpin by several bases 

at the 5’ end. For every base removed from T7h, the stem of the hairpin is reduced by one 

base pair and the loop increased by one nucleotide. We carefully examined the effect of 

the length of T7h, and found the optimal length of T7h is 2 nucleotides. This length 

allows sufficient opening of the hairpin, and a toehold long enough to initiate reversible 



59 
 

strand displacement reaction for self-correction. The effect of the length of T7h is 

discussed in detail in the supporting information. 

 3.3.2 Design of AND gate. An AND gate (blue in Figure 3.1A) is a basic logic 

gate that returns true only if both of its two inputs are true. If neither or only one input is 

true, the output of the AND gate is false. The truth table of an AND gate is shown in 

Table 3.4.   

Table 3.4. Truth Table of an AND Gate 

Input X Input Y Output 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

 

The design strategy of the AND gate is based on DNA strand displacement and 

involves converting the two input strands into the same active intermediate species with 

an equivalent of the total inputs. If one input is added, the amount of the intermediate is 

one equivalent. If both inputs are added, the amount of the intermediate is two 

equivalents. Then a threshold dsDNA is used to consume one equivalent of the reactive 

intermediate. Thus, only when there are two inputs yielding two equivalents of the 

intermediate will one equivalent of the intermediate surpass the threshold and finally 

produce a true output strand.26  



60 
 

 

Figure 3.4. Architectural design of an AND gate. The input signals of the logic gate are 

represented by two ssDNA named Input X and Input Y, respectively. The programmed 

gate contains five linear dsDNA (M, N, P, Q, V) and one hairpin structure (S). Each 

component strand and the hairpin strand are individually named and labeled in the figure. 

Each domain in the strands are also named and labeled. The output sequence is the 5’ 

stem and the loop of the hairpin, which is protected if the hairpin is not opened by the 

upstream reactions. If the logic gate yields a true output, which is represented by the D-

T11*-T10* domain in the opened hairpin, the output sequence will react with a 

fluorescent dye and dark quencher modified Reporter duplex (W) and displace the 

fluorescent dye strand from the dark quencher strand. The true output can thus be 

detected by a fluorescence intensity increase. The domains referred to as “T” and a 

number are designed to function as toeholds, and are 5 nts long each, except that T11h in 

the hairpin is 2 nts. The Domains A, A*, C, C*, D, D*, E, and E* are 12 nts long. 

Domains A+1/2 and A-1/2 are 6 nts at the 5’ end and 3’ end, respectively. Domains A*+1/2 

and A*-1/2 are 6 nts at the 5’ end and 3’ end, respectively. Domain E*-1/2 is 6 nts at the 3’ 

end of Domain E*. There is a one nucleotide “cap” on the 3’ end of Domain C in Strand 
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Q+. (See supporting information for details.) The fluorescent dye is 

hexachlorofluorescein (HEX), λEx = 538 nm, λEm = 555 nm. 

 

The design of the AND gate with DNA strands is shown in Figure 3.4. The 

system is similar to that of the XOR design. The two inputs are represented by two 

ssDNAs. The programmed gate contains five linear dsDNA and a hairpin structure. The 

output is also the 5’ stem and the loop in the hairpin, which is protected if the hairpin is 

not opened by the upstream reactions. A Reporter DNA double helix modified with 

fluorescent dye and dark quencher is added in the system to detect the output strand by an 

increase in fluorescence. In order to realize the function of an AND gate, a hairpin 

structure is not necessary. Here, the hairpin keeps the input and output strands of the 

AND gate in the same format of those in the XOR gate. In addition, the rate hairpin 

opening is expected to be slower than the strand displacement reaction of a linear dsDNA. 

Thus, introducing a hairpin structure brings the operating time of the AND gate in the 

same range as the XOR design, which is preferred in multiple gate logic circuits. 

The detailed operation with each input combination is shown in Figure 3.5. The 

first two steps of the reactions of each input are designed to convert the different input 

strands into the same reactive species, single-stranded P+. If only one input is added, one 

equivalent of P+ is produced. If both inputs are added, two equivalents of P+ are 

produced. There is a threshold structure in the system, which binds to ssDNA P+ quickly, 

and converts one equivalent of P+ to waste. As a result, if only one input is added, the 

reactive strand P+ is completely consumed and no downstream reaction occur, thus, no 

output strand is produced. If both of the two inputs are added, after one equivalent of P+ 
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is consumed, the surviving equivalent of P+ participates in the downstream reactions and 

finally yields a true output that is detected by an increase in fluorescence. 

 Strands M+, M-, N+, and N- all have only half of the corresponding domain A or 

A*. This strategy is used to avoid interaction between M+ and N+ when the two inputs 

are present. In our preliminary experiments, we used full-length A and A* domains in 

these four strands and observed that the reaction with two inputs does not produce any 

output in a reasonable time period. We then tried to remove the threshold from the system, 

expecting the reactions with one input and two inputs would all show a fluorescence 

increase. To our surprise, the total reaction rate with two inputs is slower than the rates of 

reactions with only one input. We propose that the hybridization between Domain A* in 

M+ and Domain A in N+ significantly slow down the reaction. Next we removed half of 

Domain A and Domain A* in these strands, leaving the strand displacement reactions 

with the inputs still possible, but avoiding hybridization between M+ and N+. Domain 

A*-1/2 in M+ has the same sequence as the terminal 6 bases at the 3’ end of Domain A*, 

so A*-1/2 is complementary to the terminal 6 bases at the 5’ end of Domain A. However, 

Domain A-1/2 in Strand N+ is the same as the terminal 6 bases at the 3’ end of Domain A. 

As a result, M+ and N+ do not interact with each other, thus, the reaction rate did not 

decrease as observed in the preliminary experiments. 
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Figure 3.5. Reaction of the AND gate under conditions with one input strand, and with 

two input strands. (A) Reaction of the AND gate with only one input. Input X is shown in 

the figure as an example. T1* domain in Input X and T1 domain in X1- strand work as 

toeholds and initiate the strand displacement reaction. As Input X migrates along M-, M+ 

is finally dissociated from M-. Similarly, M+ displaces P+ from P-. Only one equivalent 

of P+ is generated at this step. ssDNA P+ can either bind to Q- or V+. Strand Q- displays 

an E*-1/2 domain as a part of a longer toehold compared to V+, so P+ prefers to bind to Q- 

and is so consumed by the threshold duplex formed from Q+ and Q-. The reaction stops 

at this step and the output domain in the hairpin is not exposed, thus, there is no 

fluorescence intensity increase. (B) Reaction of the AND gate with both of the inputs. 

The first reaction step of the two input strands is the same as in Panel A. Input X and 

Input Y produce single-stranded M+ and N+. The relative concentrations of M+ and N+ 

are both one equivalent. M+ and N+ displace P+ from P- at the same time, and produce 

two equivalents of ssDNA P+. One equivalent of P+ is consumed by the threshold Q+/Q- 

structure, and the remaining equivalent continues to the downstream reactions and finally 

opens the hairpin structure, exposing the output domain in the hairpin. This output 

displaces the fluorescence dye strand from the dark quencher strand, thus increases the 

fluorescence intensity of the system. 

 

 3.3.3 Design of Half Adder. The half adder circuit in Figure 3.1 does not require 

cascading logic gates. The XOR gate and the AND gate in the circuit are in the same 

layer. A pair of XOR and AND gates with the same input sequences mixed in the same 

system can function as a half adder. Here the reactive species in the reaction network of 



65 
 

each logic gate do not interact with the strands in the other logic gate to any considerable 

extent (any consecutive sequence similarity < 4 nt). Since the fluorescent dyes used in the 

two gates are different with no spectral overlap in their absorbance and emission, there 

will be no significant fluorescence signal interference. 

 3.3.4 Design of Full Adder. The logic diagram of the full adder shown in Figure 

3.1B involves one cascading logic gate in the circuit. The output of the XOR gate in the 

first half adder is used as one input of the two logic gates in the second half adder. This 

logic gate cascade requires the sequence of one input of the second half adder to be 

designed as the same as the output of the first XOR gate. 

 One of the two outputs of the full adder is the “carry”, which is the result of an 

OR function of the result of the two AND gates in the circuit. This OR gate does not 

require any special design. If the output sequences of the two AND gates are designed to 

be the same, they spontaneously realize the OR gate function. If any one or both of the 

two AND outputs is true, the carry output is true. 

3.4 Results and Discussion 

 3.4.1 Operation of a Single XOR Gate. The dsDNA in the XOR gate are all 

individually annealed from the component ssDNA. The assembled dsDNA are then 

mixed together. In order to monitor the fluorescence intensity change of each reaction 

with a specific input combination, the measurement of the fluorescence intensity at the 

emission wavelength starts immediately after the input strand combination is added to the 

solution. The fluorescence intensity is measured once every minute. The relative 

concentrations of each input strand and the dsDNA in the solution are all the same. The 
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final concentration of each species is 0.5 μM. The solution is controlled under a constant 

temperature of 25 oC during the whole measurement process. 

 

Figure 3.6. Kinetic characterization of the XOR gate. The fluorescence measurement 

starts at the moment the inputs strand(s) is mixed with the other strands in each reaction. 

The input combination corresponding to each curve is labeled on the right. The 

fluorescence intensity is collected once each minute. The data is normalized to the 

intensity level of the true output sample at 8 hours. The reactions with single inputs both 

return true outputs. The reaction with no input strand shows no significant fluorescence 

change, indicating a false output. The reaction with two inputs returns a false output as 

designed. It shows a leakage of about 27%, which is acceptable. 

 

 The kinetics of the XOR logic gate is shown in Figure 3.6. The fluorescence 

intensities in the four reactions with different input combinations all started from a low 

level. The reaction system without any input strands does not show any significant 
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fluorescence intensity change over eight hours. The reaction with both of the inputs 

shows an observable fluorescence increase. The total intensity increase over eight hours 

is not significant compared to the fluorescence change of the reactions with a single input. 

The result of the reaction with both inputs should be considered as a negative output, as 

well as the result of the reaction without any input strand. The two reactions with a single 

input show a steady fluorescence increase over the eight hour measurement period. The 

increase slows down after two hours. The two reactions nearly finish within eight hours. 

The final fluorescence intensities are significantly higher than those of the reactions with 

both or neither of the inputs, and should be considered to be true outputs. 

The data shown in Figure 3.6 are normalized. In each reaction, the initial intensity 

is subtracted from the intensity at each time point to calculate the fluorescence increase. 

The fluorescence increase at each time point is then divided by the highest final level (at 

8 hours), which is the fluorescence increase of one of the two reactions with a single 

input. The reaction kinetics of the two single-input reactions are similar to each other. 

The final fluorescence intensities are at the same level, within 10% of one another. 

The fluorescence increase of the reaction with both inputs shows moderate 

leakage, which is about 27% of the true output. This leakage level is entirely acceptable. 

Figure 3.3B shows that Strand X1+ and Y1+ should fully hybridize to each other and 

form non-reactive dsDNA as designed. The origin of the leakage might be that although 

the hybridization between Strand X1+ and Y1+ should be fast, a small portion of Strand 

X1+ and/or Y1+ still goes on to the slower downstream reactions.   

 3.4.2 Operation of a Single AND Gate. The experimental operation of a single 

AND gate is the same as the XOR gate. All the double helical structures or the hairpins 
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are pre-annealed. The pre-assembled double strands are then mixed. The fluorescence of 

the solution is monitored as soon as the input strands are added and mixed. The final 

concentration of each strand is 0.5 μM. The experiment is conducted and kept at 25 oC. 

The fluorescence intensities of each reaction with different input combinations are 

collected every minute. 

 

Figure 3.7. Kinetic characterization of a single AND gate. The fluorescence 

measurement starts at the moment when the inputs strands are mixed with the other 

strands in each reaction. The input combination corresponding to each curve is labeled on 

the right. The fluorescence intensity is collected once each minute. The data are 

normalized to the intensity level of the true output sample at 24 hours. The reaction with 

both inputs returns a true output. The reactions with only one input strand shows no 

significant fluorescence change, indicating a false output. The reaction with no input 

returns a false output as designed. All reactions show a fast, non-specific fluorescence 
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increase over the first hour of the reactions. The reason for this fluorescence change is not 

clear. 

 

The fluorescence kinetics of the AND gate is shown in Figure 3.7. There is a fast 

fluorescence increase at the beginning of all the reactions. The reason for this small 

intensity increase is not clear. Despite the small fluorescence change in the first hour of 

the reactions, the reactions with one input or no input do not exhibit fluorescence 

increases over the measurement time. These indicate the false output of the AND gate 

when any one of the inputs is absent. The reaction with two input strands shows a 

significant fluorescence increase, which indicates a true output. The fluorescence 

intensity of the true output increased more slowly for the first eight hours than later. The 

slow increase in this period corresponds to the threshold being consumed. The whole 

reaction process is slower than the operation of the XOR gate shown in Figure 3.6. One 

reason for the slow AND gate operation might be that the design of the AND gate 

involves five steps of reactions from the input strands to the separation of the fluorescent 

dye from the dark quencher, which is one additional step than the reaction of the XOR 

gate. In addition, consuming the threshold in the AND gate takes extra time. 

 The data shown in Figure 3.7 are normalized in the same way as the XOR gate. 

The final relative intensities of the reactions with a single input are relatively high and 

reach a level of nearly 40%. However, the high final fluorescence level originates from 

the non-specific fluorescence increase that occurs during the first hour. Despite the initial 

issue, the fluorescence intensities of the false-output reactions do not shown significant 

change over the remainder of the measurement period. On the other hand, at the 24 hour 
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time point, the fluorescence intensity of the true-output reaction is still steadily increasing. 

If observed for a longer time, the difference between the positive and negative outputs 

would be larger than what is shown in Figure 3.7. 

 

Figure 3.8. Implementation of a half adder with kinetics for a single XOR gate and a 

single AND gate. (A) The result of 0 + 0. The carry and sum outputs are both 0, 

indicating 0 + 0 = 0. (B) The result of 1 + 0. The sum output is 1, and the carry output is 

0, indication 1 + 0 = 1. (C) The result of 0 + 1. The sum output is 1, and the carry output 

is 0, indication 0 + 1 = 1. (D) The result of 1 + 1. The sum output is 0, and the carry 

output is 1, indication 1 + 0 = 10. The results shown in the four panels correspond to 

successful implementation of individually operated single gates. The fluorescence 

intensities of each logic gate are normalized individually. 
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 3.4.3 Operation of a Half Adder. The half adder does not contain any cascading 

logic gates, so we expected that the construction of a half adder could be achieved by 

simply mixing the XOR and AND gates. However, we found after mixing the two 

systems together, each strand in a single gate is diluted. The designs are sensitive to 

concentration changes because the hairpin opening depends on the strand concentration 

(see supporting information for details). Thus, we have not yet achieved adequate 

experimental result with both gates in the same solution. 

 However, if we combine the results of the single gates to implement a half adder, 

the correct half adder operation can be simulated based on the operation of the individual 

gates. The combination of single AND and XOR gates is shown in Figure 3.8. The four 

panels individually show input combinations. The result clearly demonstrates a binary 

adding function of two digits. 

3.4.3 Operation of a Full Adder. The experiments are still ongoing. The 

operation of a full adder faces the same difficulties as the half adder. The concentration of 

each strand is significantly diluted after mixing multiple gates in the same solution, 

making the reaction kinetics difficult to predict and control. We are developing a 

plausible approach to increase the concentration of each strand, so that the logic operation 

can be carried out without significant errors in a reasonable time period. 

3.5 Conclusion 

In summary, we have designed and experimentally realized an XOR logic gate 

and an AND logic gate based on DNA strand displacement reactions. The XOR gate is an 

important logic gate in digital circuits. It functions as an essential role in basic arithmetic 

circuits, such as adders and subtractors. We also explored the construction of a half adder 
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and full adder with our designs of the XOR gate and the AND gate. The experiments are 

still ongoing. The main difficulty in the operation of scaled-up systems is that the 

reactions of the hairpin structures are kinetically and thermodynamically affected by the 

concentration. We are still looking for methods to improve the reaction of the hairpins, 

either by adding supporting strands, similar to fuel strands, to the systems, or by 

experimentally increasing the operating concentration of the DNA strands. 

 An adder is a basic arithmetic unit. Our work provides a potential approach to the 

construction of large scale arithmetic systems with DNA strands. This may largely 

broaden the potential applications in the field of DNA molecular programming. 

3.6 References 

(1) Simmel, F. C. Nanomedicine 2007, 2, 817. 
 
(2) Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H. 

Angewandte Chemie International Edition 2009, 48, 872. 
 
(3) Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Small 2011, 7, 1673. 
 
(4) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat Nano 2011, 6, 763. 
 
(5) Lin, C.; Liu, Y.; Yan, H. Biochemistry 2009, 48, 1663. 
 
(6) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. Proceedings of 

the National Academy of Sciences 2009, 106, 6054. 
 
(7) Li, W.; Yang, Y.; Jiang, S.; Yan, H.; Liu, Y. J Am Chem Soc 2014, 136, 3724. 
 
(8) Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS Biol 2004, 2, e424. 
 
(9) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Nano Letters 2012, 12, 3290. 
 
(10) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. Nature 

2000, 406, 605. 
 
(11) Adleman, L. M. Science 1994, 266, 1021. 
 
(12) Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. Nature 2004, 429, 423. 



73 
 

(13) Stojanovic, M. N.; Stefanovic, D. Nat Biotech 2003, 21, 1069. 
 
(14) Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. I.; 

Simmel, F. C. Physical Review Letters 2003, 90, 118102. 
 
(15) Yurke, B.; Mills, A., Jr. Genet Program Evolvable Mach 2003, 4, 111. 
 
(16) Zhang, D. Y.; Winfree, E. J Am Chem Soc 2009, 131, 17303. 
 
(17) Li, W.; Yang, Y.; Yan, H.; Liu, Y. Nano Letters 2013, 13, 2980. 
 
(18) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.; Willner, I. 

Nat Nano 2010, 5, 417. 
 
(19) Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. Sci. Rep. 2013, 3. 
 
(20) Soloveichik, D.; Seelig, G.; Winfree, E. Proceedings of the National Academy of 

Sciences 2010, 107, 5393. 
 
(21) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; 

Seelig, G. Nat Nano 2013, 8, 755. 
 
(22) Phillips, A.; Cardelli, L. J R Soc Interface 2009, 6, S419. 
 
(23) Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Science 2006, 314, 1585. 
 
(24) Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E. Science 2007, 318, 1121. 
 
(25) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318. 
 
(26) Qian, L. L.; Winfree, E. Science 2011, 332, 1196. 
 
(27) Qian, L. L.; Winfree, E.; Bruck, J. Nature 2011, 475, 368. 
 
(28) Rentzeperis, D.; Alessi, K.; Marky, L. A. Nucleic Acids Research 1993, 21, 2683. 



74 
 

Chapter 4 

Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA 

Origami Frames and Their Dynamics 

Adapted with permission from Li, W.; Yang, Y.; Jiang, S.; Yan, H.; Liu, Y., Controlled 

Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and 

Their Dynamics. J. Am. Chem. Soc. 2014, 136, 3724-3727. Copyright 2014 American 

Chemical Society. 

4.1 Abstract 

Controlled nucleation of nanoscale building blocks with seeds programmed on 

geometrically defined nanoscaffold provides a unique strategy to study and understand 

the dynamic processes of molecular self-assembly. Here we utilize a two dimensional 

(2D) DNA origami frame with a hollow interior and selectively positioned DNA 

hybridization seeds to control the self-assembly of DNA tile building blocks, where the 

small DNA tiles are directed to fill the hollow interior of the DNA origami frame, guided 

through sticky end interactions at prescribed positions.  This design facilitates the 

construction of an origami-DNA array hybrid that adopts the overall shape and 

dimensions of the origami frame and contains a 2D array in the core consisting of a large 

number of simple repeating DNA tiles. The formation of the origami-array hybrid was 

characterized with Atomic Force Microscopy (AFM), and the nucleation dynamics were 

monitored with time-series AFM scanning and fluorescence spectroscopy, revealing a 

faster kinetics of growth within a frame compared to those without a frame. Our study 

provides insights for understanding the fundamental processes of DNA based self-

assembling systems. 
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4.2 Introduction 

DNA tiles composed of a small number of short synthetic DNA oligomers have 

been employed as building blocks for the assembly of two-dimensional (2D) and three 

dimensional (3D) nanostructures.1-3 Various current and potential future applications of 

these DNA nanostructures have been demonstrated in biosensing, nanoelectronics, and 

molecular programming.4-11 2D arrays of repeating small DNA tiles with designed sticky 

ends (single stranded overhangs) can grow into large arrays that reach micrometer to sub-

millimeter scales.3,12,13  However, the lack of a defined boundary renders the 2D arrays of 

DNA tiles less than adequate when precise size control is desired. 

DNA origami2,14,15 contains normally one long scaffold DNA strand (e.g. a single 

stranded DNA viral genome) and many (~ 200) short staple strands with designed 

sequences that hybridize to different part of the scaffold strand and help it to form a 

desired shaped nanostructure. Intrinsically, DNA origami will have well defined shapes 

and dimensions. Other scaffold-less non-repeating DNA nanostructures16,17 also can 

achieve the precise size and shape control. However, hundreds or even thousands of 

unique DNA strands are required to reach ~ 100 nm size scale. Expanding the size of 

DNA origami without sacrificing assembly yield and cost is an ongoing problem.18-21 

Here we utilize a hollow 2D DNA origami structure as a frame to direct the assembly of a 

2D array of double-crossover (DX) tiles with high assembly yields and fixed dimensions, 

and at the same time to investigate how controlled nucleation of DNA tiles with 

programmed seeds can help understand the dynamic processes of DNA self-assembly. 

This hybrid structure adopts the advantages of fixed dimensions from DNA origami and 

large sizes from DNA tile arrays. 
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4.3 Architecture Design 

4.3.1 Design of the DNA DX Tiles and 2D Array. The 2D array we utilized is 

composed of four unique DX tiles (Figure 4.1A, Figure S4.1). Each tile has a length of 

four full DNA helical turns (42 bp), which is ~ 13.6 nm. The four sticky ends displayed 

from each tile are specifically designed to be complementary to one another so that the 

four tiles spontaneously self-assemble into a 2D array when mixed together, where Tiles 

A and B are arranged alternately to form one column, and Tiles C and D are arranged 

alternatively to form a second column. The two columns alternately bind to each other to 

form the 2D array (interior part of Figure 4.1C). 

4.3.2 Design of the DNA Origami Frame. The DNA origami designed here 

consists of two distinct scaffold strands, using ssDNA from M13mp18 (7249 nts long) 

and phi X 174 (5286 nts long) (Figure 4.1B, Figure S4.3). By combining the two 

scaffolds within a single structure we were able to significantly increase the size of the 

origami frame (~73% larger than origami structures assembled from M13mp18 DNA 

alone), such that a relatively large number of DX tiles could be incorporated into the 

DNA origami. However, a larger frame is likely to suffer from slow assembly rates and 

result in low yield of the frame alone. To overcome these difficulties we maximized the 

contact between the two scaffolds that compose the frame. We assumed this strategy 

would increase the probability of effective cooperative assembly between the two long 

scaffold strands.18,19 In order to demonstrate that the growth of the 2D array within the 

origami frame can be asymmetric, the origami frame was designed with one half wider 

than the other half (resembling an L-shape).  
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Figure 4.1. DNA origami controlled assembly of a 2D DX tile array within a DNA 

origami frame of fixed size. (A) The four unique DX tiles employed to assemble the 2D 

array. Each tile is four full helical turns along the helical axes. Unique sticky ends on Tile 

A and Tile B are denoted as a-h. The complementary sticky ends on Tile C and Tile D are 
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denoted as a’-h’, respectively. (B) The origami frame structure. The origami frame is 210 

nm long along the helical axis. The wider edge is 95 nm. The narrower edge is 60 nm. 

The hollow interior is 150 nm long and 15 or 32 nm wide. Sticky ends are located along 

the inner edges to initiate and direct the nucleation of DX tiles within the frame. The 

origami frame is scaffolded by two different single strands: M13mp18, which is shown in 

black, and phi X 174, which is shown in grey. (C) The origami frame directed assembly 

of a 2D array of DX tiles. The origami frame is designed to accommodate 82 DX tiles. 

The sticky ends displayed from the origami frame only associate with Tile A or B, so that 

nucleation begins with Tile A and B (but not with Tile C or D). The tiles are arranged in 

alternating columns of Tiles A and B, and Tiles C and Tile D, respectively. The inset in C 

shows the tile-origami connection and the tile-tile connection.  

 

4.3.3 Design of the Frame-Array Hybrid Structure. The DNA origami frame 

has a hollow interior. At several locations along the inner face of the top and bottom 

edges of the origami we pre-positioned 42 bp long DNA duplexes linked to the frame 

through two crossovers (the same size as half of a DX tile). Both ends of these duplexes 

displayed a sticky end, with an inter-molecular distance equal to the length of a DX tile.  

Besides these sticky ends along the top and bottom edges, the inner face of each of the 

DNA helices comprising the origami frame displayed a pair of sticky ends with designed 

sequences. Upon mixing of the origami frame and small DX tiles, the sticky ends along 

the inner edge of the frame serve as nucleation sites for the growth of a 2D array within 

the origami structure (Figure 4.1C).  The specific sequences of the sticky ends facilitate 

the association of either Tile A or Tile B, starting from the inner corners (with three 
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sticky end interactions required to realize each tile attachment) and along the inner edges 

of the frame (with two sticky end interactions required for each tile attachment).  After 

one Tile A and one Tile B from consecutive rows are securely positioned, the sticky ends 

displayed from the two tiles work cooperatively to bind either Tile C or Tile D. As the 

nucleation and growth process continue, the origami frame is gradually filled by a 2D 

array of DX tiles (Figure 4.1C). 

4.4 Results and Discussion 

4.4.1 Preparation and Characterization of the Origami and Tiles. The DNA 

origami frame was prepared by mixing the two scaffold strands (1:1 molar ratio) with 430 

helper strands. The mixture was then cooled from 90 oC to 4 oC over 12 hours. The 

excess helper strands were removed by Amicon spin columns (Millipore) with 100KD 

molecular weight cut off membrane filters. The formation of the origami frame was 

evaluated by atomic force microscopy (AFM) (Figure 4.2A). The origami frame formed 

well, as designed in Figure 4.1B. Since the two scaffold strands are in contact with one 

another in many areas of the structure there is a chance that more than one of each 

scaffold could be linked together to form larger aggregations with ill- defined shapes 

(Figure S4.4). Increasing the molar ratio between the helper strands and the scaffold 

strands helped to reduce the occurrence of aggregation. With 30 fold excess of helper 

strands, the formation yield of the origami frame is ~70% based on AFM images.  

The four unique DX tiles were prepared separately by annealing the respective 

strands mixtures (5 strands each) from 90 oC to 4 oC over two hours. When the tiles are 

mixed in the absence of the origami frame structure, they form 2D arrays of various sizes 

and unregulated boundaries (Figure S4.5).  
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4.4.2 Directed Self-Assembly Process, Purification, and Characterization. The 

DNA origami frame directed assembly of a 2D array of DX tiles was achieved by mixing 

the origami frame with Tiles A-D. As shown in Figure 4.1C, the assembly ratio of each of 

the individual tiles to the origami frame varied from 16:1 to 25:1. Considering the 

possibility of spontaneous formation of “unframed” 2D arrays that are not initiated and 

directed by the origami structure, all tiles were mixed with the origami frame at a molar 

ratio of 100:1 which ensured that there was a large excess of tiles in solution. The tile and 

origami frame mixture was incubated at 25 oC overnight. Next, the origami frame-2D 

array hybrid was purified by agarose gel electrophoresis to remove the excess free DX 

tiles and “unframed” tile arrays (Figure S4.6). The band corresponding to the framed 

arrays was cut and extracted from the gel and then characterized by AFM (Figure 4.2B). 

The AFM images show that the DX tiles fit well into the origami frame as designed. 

Approximately 70% of the origami frames were fully filled with the 2D array without any 

deformation. Most of the defective frame-array hybrids were grown in deformed frames. 

Only a few were incompletely filled.  

The frame-array hybrids cannot be sufficiently separated from the frame-free 2D 

arrays using agarose gel electrophoresis (Figure S4.7) due to their similarity in size. In 

order to obtain a cleaner separation, the origami frame was modified with biotin by 

covalently label one help strand with a biotin, and subsequently separated from the 

frame-free 2D arrays and individual tiles using monomeric avidin resin (Thermo 

Scientific), finally eluded by washing with extra free biotin.  The AFM images show that 

the frame-array hybrids purified by this method (Figure 4.2C) are well-formed with fewer 

impurities visible in the background (Figure S4.8). Note that in Figure 4.2C, every 
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origami frame has a bright spot at the inner corner position, which is the position of the 

helper strand with biotin modification protruding from the origami surface. The yield and 

defects observed are similar to those purified using the gel electrophoresis method.  

 

Figure 4.2. AFM images of the DNA origami frame and the frame – DX tile array 

hybrid. (A) Empty DNA origami frame. (B) Origami frame – array hybrid, after 
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purification by agarose gel electrophoresis. (C) Origami frame – array hybrid. Here, the 

frames are modified with biotin. The frame-array hybrid is purified by binding to mono-

avidin beads and then eluting with excess biotin. The scale bars in the three figures are 

100 nm.  

 

The sources of defects in the frame-array hybrids required careful examination 

(Figure S4.10). We propose that one major origin of the defects is a “cross-talk” between 

the complementary sticky ends in different rows of the tile array. Because the inner 

corner positions of the frame each provide three sticky ends for the tiles to attach with, 

and the positions along the inner edges each provide two sticky ends, we envision that the 

first step of the self-assembly process is the association of the tiles at the inner corners of 

the frame, followed by association with the inner edges, effectively creating a new 

boundary one layer inward.  At the same time, this process exposes additional sticky ends 

that allow tiles in a second row (or column) to attach. It is at this stage, due to the 

flexibility of DX tiles at the crossover points, that two sticky ends on tiles in non-

neighboring rows within the same column (with a gap the width of one- or two-tiles) may 

be able to hybridize to the corresponding sticky ends displayed from a single tile in the 

next column such that the frame shrinks in width and bends inwards (thus,  the frame-

array hybrid would appear thinner). Similarly, but oppositely, there could be more rows 

of tiles inserted than designed, causing the frame-array hybrid to appear wider than 

designed.  

4.4.3 Kinetics Characterized with FS-AFM. In order to better understand the 

self-assembly process of the DX tiles within the DNA origami frame, the nucleation and 
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growth process was monitored using real-time AFM scanning which allows imaging of a 

liquid sample consecutively when it is deposited on a flat mica surface. Each scan can be 

collected in a short time (< 1 min per 516x516 pixel image) without compromising the 

image quality. First, the empty DNA origami frame, together with Tiles C and D (in a 

ratio of 1:100:100, respectively) were deposited on a mica surface. Because the sticky 

ends displayed from the frame are all designed to associate with Tiles A and B but not 

Tiles C or D, and Tiles C and D do not associate each other, the nucleation does not start 

at this stage. Next, a mixture of Tiles A and B (100 fold excess to the origami frame) was 

injected into the sample droplet. Nucleation is expected to begin immediately and 

continuous AFM imaging in the same area was initiated.  Figure 4.3 shows the 

consecutive AFM images collected at constant time intervals (87 seconds per image) that 

monitor the dynamic self-assembly of DX tiles within the origami frame. From the 

images, we observed that the nucleation of DX tiles starts in the direction parallel to the 

DNA helices along the left and right inner edges as well as in the direction perpendicular 

to the helices along the top and bottom inner edges. We should point out that the excess 

tiles may undergo spontaneous nucleation in solution, and small sections of frame-free 

2D arrays appear nearby, as first observed in the second image.  Spontaneous nucleation 

in solution is apparently slower than nucleation within the frame. It is also possible that 

nucleation happens in solution at an earlier time and is deposited between collection of 

the first and second image. Regardless, growth outside the frame does appear to occur 

more rapidly than within the frame possibly due to less structural constrains as the tiles 

grow outwards instead of inwards. As the concentration of free DX tiles quickly 

decreases after the nucleation step the growth of the tile array within the origami frame 
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significantly slows down before the frame is completely filled. Nevertheless, the 

nucleation and growth process within the origami frame is finished within 1 hour.  The 

same process is expected to be faster in solution without the restriction of the surface.  

 

Figure 4.3. FS-AFM images showing the dynamic nucleation and growth of DX tiles 

within the DNA origami frame. As soon as the reactants are all deposited on the mica 

surface, scanning begins. The total scan time for each image is 87 seconds. Frame 8 to 

Frame 13 is not shown because there is little change of the images in the time period. The 

sequential images reveal that nucleation along the DNA helices is faster than in the 

direction perpendicular to the helices. The scale bar is 100 nm. 

 

4.4.4 Kinetics Characterized with Fluorescence. While time-series AFM 

scanning establishes direct observation of the nucleation process, it is likely that the mica 
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surface restricts the ability of the tiles to enter the origami frame, thus making the 

nucleation kinetics different from that in solution. Therefore, we modified one of the DX 

tiles with a fluorescent dye and a neighboring tile with a dark quencher, and studied the 

nucleation kinetics in solution by monitoring the change in fluorescence intensity of the 

dye with time. Specifically, the ssDNA located comprising sticky end d’ on Tile C was 

modified with 6-carboxyfluorescein (6-FAM), and the ssDNA comprising sticky end d on 

Tile A was modified with an Iowa Black dark quencher (Figure 4.4A, Figure S4.12A). 

Upon association of the four tiles within the 2D array (with our without the DNA origami 

frame) 6-FAM is positioned adjacent to the dark quencher, and its fluorescence intensity 

should decrease as the self-assembly proceeds (Figure 4.4B).  

This fluorescence change with time was monitored using a fluorometer (λex = 

495 nm, λem = 520 nm), which reflects the kinetics of the tile-tile assembly process 

(Figure 4.4C, and additional data shown in Figure S4.12B). In Figure 4.4C, four curves 

are shown to represent four different experiments. The slowest decay represents the self-

assembly of the four tiles in the absence of origami frame. This very slow reaction rate 

indicates that the spontaneous nucleation process in solution is significantly slower than 

with a seed. The remaining three curves represent the reaction kinetics with varying 

molar ratios between each tile and the origami seed (100:1, 100:2, and 100:3, 

respectively). As expected, as the concentration of the nucleation seed increases, the 

initial rate of the reaction becomes higher.  

The concentration of the origami seed and the DX tiles used for fast-scan AFM 

experiment were 4 fold smaller than those used for the fluorescence measurements. 

Therefore, the spontaneous nucleation and growth rate observed in solution is apparently 
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much slower than on the mica surface. The rapid emergence of seed-free nucleation in the 

FS-AFM image (Figure 4.3) could result from a surface mediated process, where the 

mica may also act as a nucleation point, aiding the tile-tile assembly.22-24 For surface 

mediated assembly on mica, with the exception of a short delay time (between image 

frames 1 and 2), the spontaneous nucleation and growth rate outside the frame seems 

comparable with the seeded nucleation and growth within the frame. Meanwhile, for the 

assembly process in solution, the seeded nucleation and growth rate within the origami 

frame is much faster than the spontaneous nucleation and growth rate without the frame. 

This result indicates the importance of the nucleation in the kinetics of tile array 

assembly.25  

In order to characterize the kinetics of the nucleation, we built a reaction model to 

calculate the reaction rate constant, k, from our data. The reaction rate between Tile C and 

the origami frame can be expressed by  

−𝑑[𝐶]
𝑑𝑡

= 𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ [𝐶]        (1) 

We assume that at the initial stages of seeded nucleation, a small number of tiles 

assembled inside the origami frame do not affect the accessibility or diffusion of the 

origami significantly, thus, we may treat the concentration of origami in Equation (1) as a 

constant. At a certain time t, the concentration of unassembled Tile C is 

−𝑑[𝐶]
𝑑𝑡

= 𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ [𝐶]        (2) 

This assumption fails when the origami is more thoroughly filled, which would 

change the properties of the frame, and thus, the reaction rate constant k. Therefore, we 
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only collected and analyzed the fluorescence change in the early stages (the first 10 

minutes) where only a small percentage of the assembly process is complete.  

The fluorescence intensity observed is the sum of fluorescence intensities from 

the free and associated Tile C, which are linear to the concentrations of each species,  

𝐼𝑡 = 𝑎 ∙ [𝐶]𝑡 + 𝑏 ∙ ([𝐶]0 − [𝐶]𝑡) = (𝑎 − 𝑏) ∙ [𝐶]𝑡 + 𝑏 ∙ [𝐶]0   (3)  

Here, a and b are constants. We normalized the fluorescence intensity by dividing 

both sides of Equation (3) by the initial intensity, a∙[C]0, and obtained 

𝐼𝑡
𝐼𝑖𝑛𝑖

= 𝑎−𝑏
𝑎∙[𝐶]0

∙ [𝐶]𝑡 + 𝑏
𝑎
 = 𝑎−𝑏

𝑎
∙ 𝑒−𝑘∙[𝑜𝑟𝑖𝑔𝑎𝑚𝑖]∙𝑡 + 𝑏

𝑎
     (4) 

Therefore, a linear equation can be obtained:  

ln � 𝐼𝑡
𝐼𝑖𝑛𝑖

− 𝑏
𝑎
� = −𝑘 ∙ [𝑜𝑟𝑖𝑔𝑎𝑚𝑖] ∙ 𝑡 + ln 𝑎−𝑏

𝑎
      (5)  

The ratio of b/a is experimentally measured as 0.399, which equals the ratio of the 

fluorescence intensity of the fully assembled structure of all four tiles, to that of 

individual Tile C in the presence of the same concentration of Tiles A and C. The data in 

Figure 4.4C and Figure S4.12B were fit by Equation (5), and the nucleation rate constant 

k obtained from the slope is (2.3±0.4)×105 M-1∙s-1. We should note that in the actual self-

assembly process, we experimentally follow the change of the occupancy status at one of 

the sticky end on Tile C (where the fluorescence dye is labeled). The nucleation sites for 

Tile C in the origami frame must be first generated by the binding of A and B tiles first 

and then regenerated by the self-assembly of other three types of tiles. Each regeneration 

cycle requires the attachment of three to five tiles of other types. Thus, the time that it 

takes for the attachment of a random individual tile in the origami frame is expected to 

be, on average, one third to one fifth of the nucleation time of Tile C. Therefore, the 
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nucleation rate constant for random tile association should be 3-5 times the value of 

constant k that we determined from our model. Considering this factor, the nucleation rate 

constant falls in the same order of magnitude as 106 M-1∙s-1, consistent with values 

previously reported in the literature.25,26  

 

Figure 4.4. Nucleation kinetics monitored by fluorescence. (A) Tile C is modified with 

the fluorescence dye 6-FAM at sticky end d’. Tile A is modified with Iowa black dark 
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quencher at sticky end d. Tile B and Tile D are not modified. (B) After assembling the 

four tiles, either with or without the presence of the origami frame, the fluorescence dye 

is arranged adjacent to the dark quencher. The fluorescence intensity decreases as the 

self-assembly process proceeds. In Panels A and B, the yellow dots represent 6-FAM, and 

the black dots represent the dark quencher. (C) Normalized fluorescence decrease. The 

normalization is achieved by dividing the fluorescence intensity by the initial intensity of 

each experiment. With the same amount of tiles present, the initial intensities in each 

experiment are the same. The cyan curve shows that without the presence of the origami 

seed, the nucleation exhibits a very slow rate. The orange, red, and blue curves show the 

reaction process with origami concentrations of 0.2 nM, 0.4 nM, and 0.6 nM, 

respectively. The tile concentrations are 20 nM for each tile, in all experiments. 

 

4.5 Conclusion 

In summary, we successfully utilized a large DNA origami frame to regulate the 

growth of a 2D array of DX DNA tiles with high yield. The dynamics of nucleation were 

monitored using time-series AFM and fluorescence kinetics. We obtained the nucleation 

rate constant of assembly with and without the DNA origami seed. The assembly of the 

frame-array hybrid structures takes advantage of the properties of DNA origami and 2D 

arrays such that it has a defined shape and dimensions with aperiodic peripheral 

sequences and a solid periodic core that consists of a small number of DNA sequences. A 

fixed number of each DX tile was incorporated into the 2D array, which is variable 

according to the design of the frame and the identities of the sticky ends.  2D DNA arrays 

are powerful templates for patterning proteins and inorganic materials.12 Our approach 
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will be useful and efficient to create DNA based nanodevices when definite boundaries 

and exact numbers of addressable positions are required.  
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Chapter 5 

Summary and Outlook 

5.1 Summary 

DNA computation and biological molecular programming have been under 

development for two decades.1 A broad range of molecular programming methods and 

design strategies have been proposed and realized. These methods and strategies include 

enzyme catalyzed reaction networks, enzyme-free reactions, and programmed nanoscale 

DNA self-assemblies. The biological nature of DNA molecules make DNA based 

molecular programming suitable for applications in bioengineering and nanomedicine.2,3 

Computational DNA systems have also been combined with the fast developing area of 

DNA nanotechnology, which provides a versatile and highly compatible platform for 

DNA computation.4,5  

DNA molecular programming has developed rapidly, yet still faces some 

technical challenges. One challenge is to develop new types of computational operations 

based on DNA molecules. The computational operations can be considered as basic tools 

in the toolbox for solving problems with programmed DNA systems and the more tools 

that we have, the more versatile the functions that are possible. Another challenge is to 

build larger scale DNA systems to solve more complicated biological problems. Building 

large scale DNA computational systems has already been demonstrated to be 

experimentally practical.6,7 However, more successful examples and practical 

optimizations are still highly desired. The third challenge is to incorporate new design 

rules into DNA and other biological molecular programming systems. 
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In this dissertation, I discussed three research projects that aimed to tackle the 

three challenges mentioned above. In Chapter 2 and Chapter 3, new types of logic gates 

based on DNA strand displacement reactions were described. A three-input majority gate 

was demonstrated in Chapter 2, and an XOR gate was demonstrated in Chapter 3. A 

three-input majority gate is a versatile gate, which can function as either a two-input 

AND gate or a two-input OR gate by changing the value of the third input. The majority 

gate was utilized to construct a multi-functional logic circuit based on this unique 

property. An XOR gate is the key logic gate in the simplest half adder and full adder 

circuits. We aimed to implement the functions of adders with the XOR gate and other 

logic gates. This would provide a basic building block for arithmetic purposes.  

In Chapter 4 we first proposed to construct a programmable nanodisplay system. 

Large DNA origami and small DNA tiles were hybridized together and the self-

assembling behaviors were studied. If it becomes possible to control the assembly pattern 

of the tiles through programming the sticky-ends of the DNA origami platform and tile 

pixels, a programmed nanoscale display may be realized. 

All the work demonstrated in this dissertation is at the frontier of engineering 

DNA. The computational DNA molecular programming projects provide new DNA 

computation tools and design principles, and may be used in artificial manipulation of 

biochemical reaction systems. The DNA nanotechnology project was aimed at studying 

the fundamental properties of DNA origami, DNA tiles, and the self-assembly process of 

DNA nanostructures. The research results provide a new type of DNA nanostructure with 

remarkable advantages. It also provides a platform for visionary computational DNA 

self-assembly on the nanometer scale. 
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5.2 Future Perspectives 

 In addition to the efforts reported in this dissertation, we have some ideas about 

how to tackle the challenges of DNA and other biological molecular programming 

strategies in the future. 

 5.2.1 Computational Systems with Signal Feedback. Feedback is a process in 

which information about two factors mutually affect each other. Signal feedback is a 

common process seen in biology and computer science. Developing biological 

computation systems with signal feedback functions is important and useful. Current 

examples of DNA molecular programming systems with feedback functions are usually 

based on recycling of output strands. This strategy has been used to mimic neural 

systems7 and model chemical reaction networks.8 

 Our perspective is to develop a feedback mechanism at nanometer scale. 

Molecular delivery is a research area that scientists have always been interested in. It is 

directly associated with drug delivery. Our goal is to design a guest molecule 

transportation system using DNA nanotechnology, where a DNA robot carries the guest 

along a series of routes and passes several vortices. With a feedback mechanism that 

sends a signal when the guest molecule is delivered to the expected destination, that can 

then in turn direct the release of the second signal further directs the route of the next 

robot, we can avoid unnecessary vortices. Here, the signal would be reactive DNA 

strands. The signal strand would be amplified through an enzyme-catalyzed or enzyme-

free process so that there would be enough copies of the signal strands reacting with the 

wrong vortices, thus blocking all unnecessary routes of the DNA nanorobot. This strategy 

would significantly increase the efficiency of molecular delivery, which is superior to 
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strategies that deliver guest molecules in bulk and only utilize those that arrive at the 

correct target. In addition, the feedback mechanism would avoid any unnecessary 

traversing that occurs in traditional targeted molecular delivery. 

5.2.2 Programmed Nanodisplay. DNA nanostructures have been used to 

construct well-defined 2D or 3D structures with high resolution.9,10 The current strategies 

use unique DNA units as the pixels and voxels to construct arrays that display particular 

patterns. Unfortunately, each pattern requires a unique set of DNA units. 

Our perspective is to design a program composed of a limited number of DNA 

tiles with different surface features. These tiles could be programmed to display specific 

sticky-ends. The tiles can self-assembly to each other through these sticky-ends. Once a 

nucleation seed with specifically designed nucleation sites is added to the mixture of tiles, 

the tiles will spontaneously assemble on the seed and display a desired pattern from the 

surface features of the tile. 

Figure 5.1 shows a schematic design of the nanodisplay system. Figure 5.1A and 

Figure 5.1B demonstrate two sets of programs composed of several four-sticky-end tiles. 

The tiles feature two values represented by two types of surface structures, representing 

binary 1 and 0. When the tiles are mix under self-assembly conditions, two tiles can 

anchor a third tile through the sticky-ends, and the value of the third tile is the calculation 

result of the first two tiles. The calculation rule is determined by the specifically designed 

sticky-ends on the tiles. Figure 5.1A shows the tiles defining an AND calculation rule. 

And Figure 5.1B shows the tiles defining an OR calculation rule.  
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With the program designed, an input represented by a DNA origami nucleation 

seed can be introduced. The final pattern of the tile array, which is the output of the 

process, is based on the sticky-end arrangement on the nucleation seed. 

 

Figure 5.1. Two examples of programmed nanodisplay with limited types of pixels. A set 

of tiles are designed with two “face values”, 0 and 1. Two tiles arranged side by side 
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(parent tiles) connect to the next tile (daughter tile) through two sticky-ends, of which 

one sticky-end is from one tile, and the other sticky-end from the other tile. Thus, the tiles 

can grow into a 2D lattice array. The sticky-ends on the tiles are programmed, so the face 

value of the daughter tile follows a designed calculation of the parent tile face values. A 

DNA origami nucleation seed is added to the tiles as the input of the program. The tiles 

nucleate on the seed and self-assemble into a pattern determined by the sticky-ends on the 

seed. (A) An example when the tiles are programmed to process an AND operation. (B) 

An example when the tiles are programmed to process an OR operation. 

 

With a comparable working principle as liquid crystal displays in which every 

pixel can be well controlled, this strategy could be developed on a large scale with more 

adequate controls over the assembly pattern of the DNA tiles. This nanodisplay research 

would have great potential in miniaturizing computational systems and nanoscale 

information storage/processing with biological molecules.  
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S2.1 Circularization of the central strands in the Calculators 

The circularization is achieved by first hybridizing the two ends of the linear 

strand (126nt in the single 3-input majority gate, 96 nt in MX and 159 nt in MY) with one 

20 nt ssDNA, then ligate the nick on the duplex using T4 DNA ligase (Figure S2.1). 250 

pmol linear strand, and 2.5 nmol 20 nt strand are mixed in 1 mL 1×T4 DNA ligase buffer 

(New England Biolabs). The solution is heated at 90 oC for 5 minutes, and then cooled 

with ice. 2000 unit of T4 DNA ligase is added to the cooled solution. The solution then is 

incubated at 16 oC overnight.  

 

Figure S2.1. The strategy of circularizing the central strand of the Calculators. 

 

After the reaction, the solution is concentrated with Amicon Ultra centrifugal 

filter (3K Dalton) (Millipore) to about 30 µL. Then the ligated central circular strand is 

purified with polyacrylamide gel electrophoresis (6% gel, in 1×TBE buffer, 45 mA/gel, 

and 1.5 hours). 

A purifying gel image (EB stained) is shown in Figure S2.2A. This gel shows the 

result of the circularization of the central strand of the single gate design. The band of the 

circular strand is cut out from the gel and chopped into small pieces. The shredded gel 

blocks containing the product is soaked in 500 µL elution buffer (500 mM NH4OAc, 10 

mM Mg(OAc)2, and 2mM EDTA) overnight. The central strand is then extracted from 

the gel by centrifugation using a Spin X device. The solution is then washed with butanol. 
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1 mL ethanol is mixed with the 500 µL solution to precipitate the DNA molecules. The 

solution is kept at -20 °C to make the precipitation fast and complete. Then solid DNA 

product is separated with centrifuge, and then dried under vacuum in a vacufuge 

(Eppendorf). 

 

Figure S2.2. Denaturing gel images showing the circularization and characterization of 

the center strand in the single gate design. (A) The circularization of the center strand. 

Lane 1: ssDNA ladder, the three bands from top to bottom are, 159 nt, 109 nt, and 96 nt 

linear ssDNA. Lane 2: the linear pre-center strand (126 nt). Lane 3: the crude product 

after circularization with T4 DNA ligase. The most intense band with a similar mobility 

of the 159 nt strand, is identified as the target product, the circular central strand. Above 
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the target product are the bands of concatamers. (B) The circular central strand product 

pextracted from the left gel is subjected to exonuclease I digestion. Lane 1: ssDNA ladder, 

same as in (A). Lane 2: the linear center strand with no exonuclease I. Lane 3: circular 

central strand with no exonuclease I. Lane 4: the linear center strand with exonuclease I. 

Lane 5: circular central strand with exonuclease I. The gel shows that, under the same 

exonuclease I conditions, the linear strand in Lane 4 is almost all degraded, while the 

strand in Lane 5 is not affected. This confirms that the product from Gel (A) is the 

desired circular strand. 

 

The product from the gel purification is subject to exonuclease I digestion (5 pmol 

DNA strand in 10 µL 1×NEB buffer 1 (New England Biolabs) with 1 unit exonuclease I 

(New England Biolabs), incubated at 37 oC for 1 hour). Exonuclease I cleaves single 

strand from 3’ end to 5’ end. If the product recovered from the gel is the circular target 

product, it should be resistant to digestion by exonuclease I. The result in Figure S2.2B 

confirms that the recovered DNA strand is the target circular product.  
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S2.2 Preparation of the Calculators 

The purified center circular strand is mixed with the respective side strands A*, 

B*, and C*, in 1×TAE/Mg2+ buffer (1 mM tris acetate, 1 mM EDTA, 12.5 mM 

magnesium acetate). The final concentration of the center circular strand is 0.5 µM, and 

the molar ratio of a side strand to the center strand is varied from 1.2:1 to 1:1. For the 

single gate experiments, more than 1:1 ratio can be used. For multi-gate cascade, 1:1 ratio 

is used. The solution is incubated in a PCR machine, at 90 oC for 5 min, 88 oC for 5 min. 

Then the temperature is dropped 4 oC every 5 min until it reaches 25 oC. The prepared 

Calculator solution is stored at 4 oC before use. 

  



112 
 

S2.3 Preparation of the Detectors 

The fluorescence dye modified ssDNA and dark quencher modified ssDNA are 

mix in 1 × TAE/Mg2+ buffer, at the concentration of 0.5 µM each. The solution is 

incubated in a PCR machine, at 90 oC for 5 min, then 88 oC for 5 min, with the 

temperature drops 4 oC every 5 min until it reaches 25 oC. The Calculator solution is 

stored at 4 oC before use. Figure S2.3 shows a native polyacrylamide gel electrophoresis 

image characterizing the formation of the Detector of the single gate design. 

 

Figure S2.3. Native polyacrylamide gel showing the formation of the Detector of the 

single gate design. The gel electrophoresis is conducted in 1 × TAE/Mg2+ buffer under 

200 Volts. The gel is stained with SBRY Gold. Lane 1: 10 bp DNA ladder. Lane 2: 6-
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carboxyfluorescein (FAM) modified RS2 ssDNA. The thin slower band is the self-dimer 

of the RS2 ssDNA. The lower intense band is the monomer form. Lane 3: Iowa Black 

dark quencher modified RS2*-RS1* ssDNA. No band is visible in this lane, because the 

Iowa Black dark quencher quenches the fluorescence of SBRY Gold staining. Lane 4: 

The Detector duplex. The intensity of the band is much lower than that of lane 2, due to 

the quenching effect of the Iowa Black dark quencher on the fluorescence of SBRY Gold 

staining and the fluorescence of the FAM on its complementary strand.  
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S2.4 Fluorescence Kinetics Measurements 

Fluorescence kinetics of the single gate design is monitored with a Nanolog 

fluorometer (Horiba Jobin Yvon). This fluorometer is capable to measure the 

fluorescence intensity of one sample at one time. The excitation wavelength is set at 495 

nm for 6-FAM. The detection wavelength is set at 520 nm for the emission of 6-FAM. 

The Calculator, input strands, and Detector are mixed in a quartz fluorescence cuvette. 

The final volume is 120 µL. The reaction buffer is 1×TAE/Mg2+ buffer. The sample is 

controlled at 25 oC. The Calculator concentration at the beginning of the reaction is 15 

nM. The ratio of the Input strand to the Calculator is 1.5:1. The Detector concentration is 

of the same concentration or 4 folds of the Calculator. Upon the mixing of the reactants, 

the fluorescence intensity of the sample is measured at every 30 second.  

Fluorescence kinetics of the multi-function circuit based on 2 majority gates, and 

the fluorescence kinetics of each of the two gates, are monitored with a Stratagene 

MX3005P realtime PCR (Agilent). This realtime PCR is set at a constant temperature of 

30 oC. The fluorescence intensities of the samples are measured every cycle of 1 minute. 

The realtime PCR can measure the fluorescence intensity of up to 96 samples at one time. 

The filter is set at 488 nm for excitation and 520 for emission. The Calculators, input 

strands, and Detector are mixed in an optical PCR tube. The final volume is 30 µL. The 

reaction buffer is 1×TAE/Mg2+ buffer. The MX Calculator concentration at the beginning 

of the reaction is 67 nM. MY Calculator concentration 135 nM. The concentration of the 

Input X1 and X2 is 67 nM each. The concentration of the Input Y1, Y2, and Y3 is 135 

nM each. The Detector concentration is 33 nM. Upon the mixing of the reactants, the 

fluorescence intensity of the sample is measured every minute. 
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The experiment in Figure 2.7C (Y1 = 0, X1 = 1, Y2 ∙ Y3 + X2) is conducted in 2 

steps. Calculator MY is mixed with all the input strands and incubated at 30 oC overnight. 

Then Calculator MX and the Detector are added, and the fluorescence intensity change is 

monitored. 

The fluorescence intensity increase of each reaction is calculated by subtracting 

the initial intensity from the final intensity. The reactions under the same computation 

pattern or single gate are normalized, by setting the highest fluorescence increase as 

100%.  
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S2.5 Fluorescence Kinetics Result of the Two Individual Majority Gate in the Multi-

Function Circuit 

 

Figure S2.4. Kinetic experiments of the individual majority gates in the multi-function 

circuit. (A) Kinetics of the second generation gate MX. The ratio between the Detector 

and the Calculator is 1:1. (B) Kinetics of the second generation gate Mx. The ratio 

between the Detector and the Calculator is 4:1. (C) Kinetics of the first generation gate 

MY. The ratio between the Detector and the Calculator is 1:1. (D) Kinetics of the first 

generation gate MY. The ratio between the Detector and the Calculator is 4:1. Each curve 

in these two graphs represents a reaction with the input combination labeled at the end of 

the curve. The measurement of the fluorescence intensity is started as soon as the 

Calculator, the Detector, and the inputs of each reaction are mixed at 1-minute intervals. 

The fluorescence increase is calculated by subtracting the initial intensity from the final 

intensity. The output is normalized to the highest intensity change to be 1 in A and C , 

and to the highest intensity change to be 1 for the 2-input cases in B and D.   



117 
 

S2.6 DNA Sequences 

The sequences of the strands used in each design are shown with the schematic 

figures in Figure S2.5. 

 

Figure S2.5. Sequences of the DNA strands used in the experiments. (A) The sequence 

of the single gate design. (B) The sequence of the multi-function circuit. The stars in (A) 

and (B) represent 6-FAM (fluorescein) fluorescence dye. The black dots in (A) and (B) 

represent Iowa Black Dark Quencher.  
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S2.7 Effect of Secondary Structure of Inputs on Reaction Rates 

If the toehold of an input strand is involved in stable secondary structures, the 

reaction rate would significantly decrease. A set of toehold sequences which is different 

from the sequences in Figure S2.5A is shown in Figure S2.6A. In this set of sequences, 

the toehold in Input B has a stable secondary structure (Figure S2.6B). The reaction 

kinetics is shown in Figure S2.6C. The reactions, of which the true outputs depend on the 

presence of Input B, are obviously slower than the reactions with Input A and Input C. 

This result is an example of the effect of the sequences on the reaction rate. 

 

Figure S2.6. Effect of secondary structure of inputs on reaction rates. (A) Sequences of 

logic gate strands. (B) The sequence of Input B and the secondary structure of Input B. 
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The toehold in Input B at 5’ end is involved in the secondary structure, thus the exposed 

part is only 2 nt long. (C) The fluorescence kinetics of the logic gate in (A). The true 

output of reactions A&B and B&C depend on the strand displacement of Input B, so the 

reaction rate is much lower than those of reactions A&C and A&B&C. The final 

normalized fluorescence intensities of A&C and A&B&C are lower than 1, because the 

initial reaction rates are high. Before the starting of the monitoring of the reactions, the 

fluorescence already increased. After the normalization, the final value is lower than 1. 
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
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S3.1 Experimental Materials and Methods 

S3.1.1 Materials. All DNA strands were purchased from Integrated DNA 

Technologies, Inc. (www.IDTDNA.com) in the format of desalted dry powder. The 

strands were all purified using denaturing polyacrylamide gel electrophoresis (10% 19:1 

acrylamide/bisacrylamide, containing 50% urea) in 1×TBE buffer (pH 8.0, 89 mM tris 

base, 89 mM boric acid, 2 mM EDTA). The bands corresponding to the full length 

strands were individually excised from the gel, chopped into small pieces, soaked in 500 

µL elution buffer (500 mM NH4OAc, 10 mM Mg(OAc)2, and 2 mM EDTA) and then 

shaken overnight to allow the DNA strands to elute from the gel blocks into the solution. 

After filtering out the gel blocks, the solutions were then mixed with butanol to extract 

any organic residue. After removing the butanol layer, 1 mL of ethanol was mixed with 

each solution to precipitate the DNA molecules. The mixtures were kept at -20 oC to 

ensure rapid and complete DNA precipitation. Then the purified DNA strands were spun 

down using a centrifuge, and then dried under vacuum. The DNA strands were then 

reconstituted in pure water and their concentrations were measured by absorbance at 260 

nm.  

S3.1.2 Assembly Procedure. Each DNA duplex was assembled by mixing the 

component strands in an equal molar ratio (4 mM) in 20 µL 1×TAE/Mg2+ buffer. The 

solution was annealed in a PCR thermocycler with the temperature decreased from 90 oC 

to 25 oC at a rate of 4 oC every 5 minutes, and then kept at 25 oC. For each reaction with a 

specific combination input, 5 µL of the total solution is used to mix with other strands. 

S3.1.3 Fluorescence Kinetics. The fluorescence kinetics experiments were 

performed on a real-time PCR thermocycler (Stratagene Mx3005P). The thermocycler 



123 
 

program is set that the time of each cycle is one minute, so the fluorescence intensity of 

the solution can be collected once every minute. The temperature of all the cycles is set 

as 25 oC. The program contains 1440 cycles, so the fluorescence of the solution is 

monitored for 24 hours. The filters for FAM and HEX fluorescent dyes are selected in the 

instrument control. 

The final concentration of each DNA strand in the solution is about 0.5 µM after 

mixing the input strand. The buffer condition is 1×TAE/Mg2+ buffer. The fluorescence 

intensity measurement starts as soon as the input strands are added. 

S3.1.4 Fluorescence Data. For each reaction, the first trace is the original data 

collected by the fluorometer. The second trace is the increase of each reaction at each 

time point. This is calculated by subtracting the starting fluorescence intensity from the 

intensity at each time point. The third trace is the data after normalization. All the data in 

the second trace is divided by the highest fluorescence increase among the reactions of 

the same logic gate operation. The data in the third trace are shown in Figure 3.6, Figure 

3.7, and Figure 3.8. 
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S3.2 Capping Technique 

 In the design of the XOR gate and AND gate, we incorporated the “capping 

technique”. Figure S3.1 shows the position of the caps we placed on the strands. 

 

Figure S3.1. The positions of the caps. The caps in the design if marked with red circles. 

Each cap is a one nucleotide extension from the main strand, and complementary to the 

corresponding base to the other component strand in the duplex. 

 

 The capping technique was introduced by L. L. Qian and E. Winfree (Science 

2011, 332, 1196). The purpose of the caps is to prevent the non-specific π- π stacking 

directed DNA strand displacement reaction (Figure S3.2), which may contribute to the 

leakages of the reactions. Because of the cap, even two DNA double helices stack 
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together, the first “loose” base in the single-stranded migrating domain is different from 

the first base in the double-stranded domain, and the branch migration cannot occur. It is 

preferred to add caps wherever is possible in the design. 

 

Figure S3.2. The caps can prevent π- π stacking directed DNA strand displacement 

reactions. 
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S.3.3 Length of the Toehold Domain in the Hairpins 

 In the designs of both the XOR gate and AND gate, the outputs are protected in a 

hairpin structure. With an optimal hairpin loop length, 5 to 8 bases, the hairpin stem is far 

more stable than a linear DNA double helix of the same length. The yields of the reaction 

shown in Figure S3.3 is calculated with NuPack.org, and shown in Table S3.1 and Table 

S3.2, with 

 

Figure S3.3. The opening reaction of the hairpin structure. 

 

Table S3.1. Relation between Length of T7h and Reaction Yield 

Length of  T7 5 4 3 2 1 0 

Yield (%) 0.12 0.12 0.12 1.9 3.2 57 

Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt  

Concentration: 100 nM; Temp. = 25 oC  
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Table S3.2. Relation between Temperature, Concentration and Reaction Yield 

Yield (%) 
Temp. (oC) 

15 25 35 

Conc. 

(nM) 

10 1.1 0.20 0 

100 9.3 1.9 0.56 

1000 40 15 5.1 

Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt, T7 = 2 nt  
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S3.4 Using Halves of Domain A and A* in the Design of AND Gate 

 In the design of the AND gate, domains named A+1/2, A-1/2, A*+1/2, and A*-1/2. 

These domains correspond to halves of the full length domains A and A*. The subscript 

+1/2 represents the 5’ end six nucleotides of the full length domain, while the subscript -

1/2 represents the 3’ end six nucleotides of the full length domain. 

 Domain A+1/2 is complementary to Domain A*-1/2, but does not hybridize with 

A*+1/2. Similarly, Domain A-1/2 is complementary to Domain A*+1/2, but does not 

hybridize with A*-1/2. This strategy can prevent the hybridization of the reactive strands 

in the AND gate, and avoid the reaction rate being slowed down when both two inputs 

are added. 
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4  
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S4.1 Experimental Materials and Methods 

S4.1.1 Materials. All DNA helper strands used in the origami frame were 

purchased in 96-well plates from Integrated DNA Technologies, Inc. 

(www.IDTDNA.com), desalted, with concentrations normalized to 200 µM. Single 

stranded M13mp18 viral DNA and phi X 174 DNA were purchased from New England 

Biolabs, Inc. (NEB, catalog number: N4040S and N3023S). All DNA strands in the DNA 

origami frame were used without further purification. 

All DNA strands used in the DX tiles were purchased from Integrated DNA 

Technologies, Inc. (www.IDTDNA.com) in the format of desalted dry powder. The tile 

strands were all purified using denaturing polyacrylamide gel electrophoresis (10% 19:1 

acrylamide/bisacrylamide, containing 50% urea) in 1×TBE buffer (pH 8.0, 89 mM tris 

base, 89 mM boric acid, 2 mM EDTA). The bands corresponding to the full length 

strands were individually excised from the gel, chopped into small pieces, soaked in 500 

µL elution buffer (500 mM NH4OAc, 10 mM Mg(OAc)2, and 2 mM EDTA) and then 

shaken overnight to allow the DNA strands to elute from the gel blocks into the solution. 

After filtering out the gel blocks, the solutions were then mixed with butanol to extract 

any organic residue. After removing the butanol layer, 1 mL of ethanol was mixed with 

each solution to precipitate the DNA molecules. The mixtures were kept at -20 oC to 

ensure rapid and complete DNA precipitation. Then the purified DNA strands were spun 

down using a centrifuge, and then dried under vacuum. The DNA strands were then 

reconstituted in pure water and their concentrations were measured by absorbance at 260 

nm.   
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S4.1.2 Assembly Procedure. The DNA origami frame structure was assembled 

by mixing M13mp18 DNA (10 nM) and phi X 174 DNA (10 nM) with the helper strands 

in a 1:1:30 molar ratio in 1×TAE/Mg2+ buffer (pH 8.0, 20 mM Tris base, 20 mM acetic 

acid, 2 mM EDTA, 12.5 mM Mg(OAc)2). The final volume of the reaction was 100 µL. 

The solution was annealed in a PCR thermocycler with the temperature decreased from 

90 oC to 70 oC at a rate of 1 oC every 5 minutes, from 70 oC to 40 oC at a rate of 1 oC 

every 15 minutes, then from 40 oC to 25 oC at a rate of 1 oC every 10 minutes, and finally 

kept at 4 oC.  Following annealing, the origami frame was washed with 1×TAE/Mg2+ 

buffer three times and passed through a 100 kD MWCO Microcon centrifugal filter 

device (Amicon, catalog number: UFC510096) to remove the excess helper strands. 

Each DNA DX tile was assembled by mixing all the strands in the tile in an equal 

molar ratio (1 mM) in 100 µL 1×TAE/Mg2+ buffer. The solution was annealed in a PCR 

thermocycler with the temperature decreased from 90 oC to 25 oC at a rate of 4 oC every 5 

minutes, and then kept at 25 oC. 

The DNA origami frame – DX tile 2D array hybrid was assembled by mixing 1 

pmol of purified DNA origami frame (100 µL, 10 nM) with the solutions of the four DX 

tiles. The amount of each tile was 100 pmol (100 µL, 1 mM). The final 500 µL solution 

was incubated at 25 oC overnight. Then the mixture was concentrated to 100 µL using a 

100 kD MWCO Amicon centrifugal filter device. 

S4.1.3. Agarose Gel Electrophoresis Purification. The assembled frame-array 

hybrid was loaded onto an agarose gel (0.3% agarose containing 0.5 µg/mL ethidium 

bromide, 1×TAE/Mg2+ buffer) and subjected to gel electrophoresis at 80 volts for one 

hour on an ice-water bath. The product band was excised from the gel and shredded. The 
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shredded gel blocks were transferred into a Freeze 'N Squeeze DNA Gel Extraction Spin 

Column (Bio-Rad, catalog number: 732-6165) and centrifuged to recover the buffer 

containing the purified product. The product was then stored at 4 oC and characterized by 

AFM. 

S4.1.4 Monomeric Avidin Resin Purification. 100 µL Monomeric Avidin Resin 

(Thermo Scientific, catalog number: 53146) suspension was transferred into a 

SigmaPrepTM spin column (Sigma, catalog number: SC1000). The resin was washed with 

1×PBS buffer once (Sigma, catalog number: P4417), then washed with 2 mM biotin 

solution to block the non-reversible binding sites, and finally regenerated with glycine 

solution. The resin and biotin modified DNA origami frame – 2D array hybrid were 

mixed and incubated for 30 minutes. The resin bound with the frame-array hybrid was 

then washed with 1×PBS buffer to remove the free 2D array and DX tiles. The purified 

frame-array hybrid was then displaced from the resin with 100 µL biotin (2 mM) solution. 

The solution containing the purified product was then stored at 4 oC and subjected to 

AFM characterization. 

S4.1.5 AFM Imaging. The AFM imaging was performed using a Dimension 

FastScan AFM (Bruker). The samples (2 µL to 5 µL) were deposited onto freshly cleaved 

mica (Ted Pella, Inc.) and left to adsorb for 2 min. Buffer (1×TAE/Mg2+, 100 µL) was 

added on top of the sample and the sample was imaged in ScanAsyst in Fluid mode, 

using ScanAssyst Fluid+ probes (Bruker). 

S4.1.6 Fluorescence Kinetics. The fluorescence kinetics experiments were 

performed using a Nanolog fluorometer (Horiba Jobin Yvon). The origami frame was 

purified with 100 kD MWCO Microcon centrifugal filter devices (Amicon, catalog 
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number: UFC510096) to remove excess helper strands. The concentration of the origami 

stock solution was 10 nM. The concentration of each tile stock solution was 1 μM. The 

sample chamber of the fluorometer was preset at 21 oC. 2.4 μL of Tile C solution (labeled 

with Fluorescein), and 2.4 μL of Tile D solution were added to a 120 μL quartz 

fluorescence cuvette. 1×TAE/Mg2+ buffer was added to make the final volume 120 μL. 

To the reaction with tile/origami at a molar ratio of 100:1, 2.4 μL the purified origami 

solution was added. To the reaction with tile/origami at a molar ratio of 100:2 or 100:3, 

the volume of the origami stock solution added was doubled or tripled. The sample was 

placed in the fluorometer and the time dependence of the intensity was monitored. Then 

2.4 μL of Tile A solution (labeled with a black quencher) and 2.4 μL of Tile B solution 

were added to the cuvette and mixed well.  The fluorescence intensity was measured once 

every 30 seconds, with an integration time of 10 seconds. The fluorescence intensities 

were first corrected for the volume difference, to a total volume of 124.8 μL after the 

addition of Tile A and B and then the data were corrected for photo bleaching using a 

control with the same concentration of Tile C and Tile A. 

S4.1.7 Fluorescence Data. For each reaction, the first trace is the original data 

collected by the fluorometer. The second trace is the data after correcting for the volume 

change. The third trace is the data after correcting for photo bleaching. The fourth trace is 

the data after normalization, which was used to generate the plots shown in Figure 4.4C 

and Figure S4.11B. 

  



135 
 

S4.2 Design of the DX Tiles 

 

Figure S1. The design of the four DX tiles. (A) Schematic design of the four tiles. The 

four tiles share the same sequences of Strands 2, 3, and 5. Each tile has a specific Strand 

1 and 4. The sticky end pairing e.g. a, a’ are marked for each tile. (B) The detailed design 

of the four tiles. Each tile is four helical turns long. Strand 3 is 42 nts long. Strands 2 and 

5 are both 37 nts long. Strands 1 and 4 are both 26 nts long. 
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S4.3 PAGE Characterization of DX Tiles 

 

Figure S2. Native polyacrylamide gel electrophoresis characterization of the formation 

of the four tiles. Lanes 1 & 15: 10 bp DNA marker. Lane 2: the core structure of the 

four tiles: Strand A2 + Strand A3 + Strand A5. (For Tile B, C, and D, the core structures 

all have the same sequences as Tile A). Lane 3: core  + Strand A1. Lane 4: core + Strand 

A4. Lane 5: full Tile A (core + Strand A1 + Strand A4). Lane 6-8: the same 

combinations as Lanes 3-5 for Tile B. Lane 9-11: the same combinations as Lanes 3-5 

for Tile C. Lane 12-14: the same combinations as Lanes 3-5 for Tile D. 
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S4.4 Design of the DNA Origami Frame 

 

Figure S3. Detailed design of the DNA origami frame. The origami frame is 210 nm 

wide, 60 nm and 95 nm tall (the two sides). The blue strand represents the phi X 174 

scaffold and the red strand corresponds to the M13mp18 scaffold. The interior is 

decorated with sticky ends complementary to the sticky ends on Tiles A and B. At the 

outer ends of each helix, two extra thymine bases are added to prevent π-π stacking 

between origami. 
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S4.5 AFM Image of Empty Origami Frame 

 

Figure S4. AFM image of the empty origami frame. (A) Zoom-out AFM image of the 

empty origami frame. Most of the origami frames are well formed. There are several 

aggregated structures in the image that may be caused by crosslinking of multiple 

scaffold strands. (B) Zoom-in AFM image of selected well-formed empty origami frame. 

The scale bar is 100 nm.  



139 
 

S4.6 Examination of the spontaneous formation of the DX tile arrays 

 

Figure S5. Unregulated growth of 2D arrays of DX tiles. The four DX tiles were mixed 

together to a final concentration of 250 nM each. The mixture was incubated at 25 oC 

overnight and characterized by AFM. The four tiles form 2D arrays as designed. 
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S4.7 Agarose Gel Image of the Purification of the DNA Origami Frame – 2D Array 

Hybrid 

 

Figure S6. Image of agarose gel electrophoresis showing the purification of the origami-

2D array hybrid. Lane 1: 1kb DNA ladder. Lane 2: Empty origami frame without 

purification. The fastest intense band corresponds to the extra helper strands. The second 

fastest band corresponds to the empty origami frame. Upper faint bands are aggregated 

structures (see Figure S4). Lane 3: Origami frame and the four tiles incubated overnight 

at r.t. The faster band and the smear after it correspond to uncontrolled 2D tile-array of 

various sizes. The slower band corresponds to the origami-array hybrid, which runs faster 

than the empty origami frame in Lane 2, because once the frame is fully filled, the 

structure gets more solid. Lane 4: The four tiles incubated overnight at r.t. without the 

origami frame. The band and smear correspond to uncontrolled 2D tile-array of various 

sizes.  
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S4.8 AFM Image of DNA Origami Frame – 2D Array Hybrid Purified by Agarose 

Gel Electrophoresis 

 

Figure S7. AFM image of Frame-array hybrid purified by agarose gel electrophoresis. (A) 

Zoom-out AFM image of Frame-array hybrid purified by agarose gel electrophoresis. 

There were quite a few pieces of free 2D array of DX tiles that were not cleanly removed. 

Note that these 2D arrays had similar sizes as the frame-array hybrid, which mostly 

showed a filled interior. (B) Zoom-in AFM image of selected Frame-array hybrid 

purified by agarose gel electrophoresis. The scale bar is 100 nm.  
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S4.9 Boitin Modified DNA Origami Frame – 2D Array Hybrid Purified with 

Monomeric Avidin Resin 

 

Figure S8. AFM images of Boitin modified frame-array hybrid after purification with 

monomeric avidin resin. The origami frame was modified with biotin. When purifying 

with monomeric avidin resin, unmodified tiles and 2D arrays were washed away while 

the boitin modified frame-array hybrids were bound to the resin. The purified product 

was then washed off with excess biotin solution. (A) & (B) The AFM images show that 

using this purification method, fewer free 2D array residues remained. (C) Zoom-in AFM 

image of selected Frame-array hybrid purified with monomeric avidin resin. The scale 

bar is 100 nm. 
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S4.10 DNA Origami Frame – 2D Array Hybrid Before Purification 

 

Figure S9. AFM image of unpurified frame-array hybrid. Several, but not all of, 

distinguishable frame-array hybrid structures are marked in the image.  
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S4.11 Defects of DNA Origami Frame – 2D Array Hybrid 

 

Figure S10. Three major classes of defects in the frame-array hybrids. (A) The shrunken 

frame-array hybrid caused by sticky ends on tiles hybridizing with another row of non-

neighboring tiles. (B) The widened frame-array hybrid caused by inserting one or two 

rows of tiles between neighboring rows. (C) The bent frame-array hybrid caused by 

association of sticky ends between non-neighboring columns of tiles. Each image in the 

figure is 610 nm × 610 nm. 
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S4.12 Dynamics of the Nucleation of DX Tiles in the Origami Frame 

 

Figure S11. FS-AFM images showing the dynamics of nucleation and growth of DX tiles 

into the DNA origami frame. (A) This is another example of the experiment shown in 

Figure 3. Each frame was collected over 87 seconds. Each frame is 287 nm × 287 nm. (B) 

The full set of images in Figure 3. Each frame was collected over 87 seconds. The scale 

bar is 100 nm. 

  



146 
 

S4.13 Kinetics of the Nucleation Process of the Four Tiles 

 

Figure S12. Characterization of the kinetics of the nucleation process. (A) The 

modification of the tiles with a fluorophore and dark quencher. The 5’ end of Strand A1 
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was modified with an Iowa Black Dark Quencher. The 3’ end of Strand C2 was modified 

with 6-FAM. Upon sticky end association in the tile array formation, the fluorophore and 

the quencher are brought into close proximity and fluorescence quenching is expected.  

(B) Normalized fluorescence decrease. The concentration of each of the tiles was 20 nM 

in all experiments. The legend indicates the molar ratio between the tiles and the origami 

frame.  Each experiment was conducted in duplicate, the data of which coincided with 

each other. All curves shown are after correction for photo-bleaching. (C) Logarithm of 

the data in Panel B to the base e. The average of the curves of the reactions without 

origami seed in Panel B are subtracted from all other curves. Then ln(I/Iini) is plotted 

against time. The data are then fit by Equation 5 in the main text. 
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S4.14 DNA Sequences 

Sequences of tile strands: 

A1: AGGAACCATGAACCCTGCAGCATGTC 

A2: GCTGCAGGCGGAATCCGACCCTGTGGCGTTGCACCAT 

A3: GTCGGATTCCGCTGGCTTGCCTAGAGTCACCAACGCCACAGG 

A4: ACTCAATGGTGCACTAAACCTCTAAG 

A5: AGGTTTAGTGGTGACTCTAGGCAAGCCAGGTTCATGG 

B1: GTGATCCATGAACCCTGCAGCAGAAC 

B2=A2 

B3=A3 

B4: TAACGATGGTGCACTAAACCTAAGCT 

B5=A5  

C1: TGAGTCCATGAACCCTGCAGCAGCTT 

C2=A2 

C3=A3 

C4: TTCCTATGGTGCACTAAACCTGTTCT 

C5=A5 

D1: CGTTACCATGAACCCTGCAGCCTTAG 

D2=A2 

D3=A3 

D4: ATCACATGGTGCACTAAACCTGACAT 

D5=A5
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Sequences of the helper strands and sticky end strands in the DNA origami frame: 

Helper 1     

GTATTAACTCACTTGCCTGAGTAGACCGTTGTAGCAATACTTCTTTGATTTT 

Helper 2     AGAGTCTGTCCATCACGCAAATTAAAGAACTC 

Helper 3     CAGCAGAAGGCCTTGCTGGTAATACGAGTAAA 

Helper 4     AAACCGTCTATCAGTGAGGCCACTCCAGAA 

Helper 5     ACATCGCCCCGCCAGCCATTGCAAAGGGCGAA 

Helper 6     AAAGAACGTGGACTCCAACGTCAACAGGAAAA 

Helper 7     TAGTCTTTGGAAATACCTACATTTCCACTATT 

Helper 8     TTGTTCCAGTTTGGAACAAGAGTTGACGCT 

Helper 9     CGTGGCACTGAAATGGATTATTTAGTTGAGTG 

Helper 10     ATCAAAAGAATAGCCCGAGATAGGCATTGGCA 

Helper 11     TAGAACCCAGTCACACGACCAGTACCTTATAA 

Helper 12     

CCTGTTTGATGGTGGTTCCGAAATCGGCAAAATCATAAAAGGGAAAAATTTT 

Helper 13     GTCAACCCCGGCGTTATAACCTCAGCGAAAAT 

Helper 14     TCCACGCTGGTTTGCCCCAGCAGCACTCAA 

Helper 15     CCTAAGCACACGAAGTCATGATTGGCAAGCGG 

Helper 16     CCGCCTGGCCCTGAGAGAGTTGCAAATCGCGA 

Helper 17     CGAGAAATCAGATTGCGATAAACGGCCCTTCA 

Helper 18     AGTGAGACGGGCAACAGCTGATTGTCACAT 

Helper 19     CAGCTTATACCTGACTATTCCACTTTTTCACC 
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Helper 20     

GCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCGCAACAACTGAACGGACT 

Helper 21     TAAAACAGTGGTCATAATCATGGTGGGGAGAG 

Helper 22     GCATTAATGAATCGGCCAACGCGCGGCGAATA 

Helper 23     TTAGTAATAACAACCGCCTGCATT 

Helper 24     AAACTATCGATAAAACAGAGGTGAAAATGAAA 

Helper 25     CAATATTAATTAAAAATACCGAACCTCAAA 

Helper 26     ACGCTCATAATGCGCGAACTGATAGTCAGTTG 

Helper 27     CAATCGTCAGACAATATTTTTGAGAGGAAG 

Helper 28     GATTCACCTTCTGACCTGAAAGCGACTAACAA 

Helper 29     

TACCGCTTCTCAGCGGCAAAAATTCATTCTGGCCATAATACATTTGAGGATT 

Helper 30     TCTTTTATGAAAACCTACCGCGCATTCGAC 

Helper 31     GTGGTCGGAAAAGTCTGAAACATGAACGTTAT 

Helper 32     TAAATTTACAGAAAAAAAGTTTGTATCATT 

Helper 33     

GGAAACACGTGCCGAAGAAGCTGGAGTAACAGAATGCAATGAAGAAAACCA

C 

Helper 34     AGTACGCGTGACGATGTAGCTTTATATCAAAA 

Helper 35     AAGATGATGCTGAGAGCCAGCAGCGGCGGTCA 

Helper 36     CGAATTATGCATCACCTTGCTGAACGAACCAC 

Helper 37     TTGAATACCCTCAATCAATATCTGGCCCTAAA 

Helper 38     GGGAGAAAACAGTTGAAAGGAATTATGGCTAT 
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Helper 39     

GTTAACCATTTTACGGAACGTCAGATGAATATAAATATCTTTAGGAGCTAAG

AATA 

Helper 40     GAAATTGCTTAGAGCCGTCAATAGAACAGAGA 

Helper 41     ACCTACCATTAGACTTTACAAACATTCGCTTG 

Helper 42     TGGCAATTAAAGTTTGAGTAACATAATTATGG 

Helper 43     

GCCAGAGTGCGTATCAAGGAGCGGAATTATCACAAAGAAACCACCAGAGTG

AGAAC 

Helper 44     ATAGCCAGGCATTAACCGTCAAACGGTGTCTG 

Helper 45     TTACAGTGCCACGAAACAAACATT 

Helper 46     AATCTAAATCATTTCAATTACCTGTTAAGTGG 

Helper 47     TATCAAACCAAGTTACAAAATCGAACCTGA 

Helper 48     GCAAATCACAATAACGGATTCGCCTTAGTAGC 

Helper 49     GTTATCTAACAGTAACAGTACCTACCAACA 

Helper 50     

CTAATAGAGTAGATTTTCAGGTTTGGAAGGACGTCAATAGTCGGACAAGC 

Helper 51     

TAGAAGTATATCAAAATTATTTGCACGTAAAACAGGTATAATAACCACCATC 

Helper 52     TAATTTTACATCAATATAATCCTGGAAGAAGA 

Helper 53     TTGCGGAATCATATTCCTGATTAAAATTTA 
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Helper 54     

CATTACCAGGCGTTGACAGATGTATCCATCTGAAGCACCAACAGAAACAACC

TAGAGGAC 

Helper 55     TATAACGTCGTTTGGTCAGTTCCAGCGCATGA 

Helper 56     CATTTGAAAAAATTAATTACATTTAGCAAAAG 

Helper 57     AGCACCAAAAATAATCTCTTTAATCGCAGAGG 

Helper 58     GGTAAAGTTAGACCAAACCATGAATTTACATC 

Helper 59     ATGGCGACCATTCAAAGGATAAACGGGTTAGA 

Helper 60     CTCAAAGCGAACCAAACAGGCAAATCAGATGA 

Helper 61     TTTCAAGAAAACTTACCTTTTTTT 

Helper 62     CTGGAGACACATAAATCACCTCACTATGTGAG 

Helper 63     TTCAGCGAGCAGAAGCAATACCGGCCTCCA 

Helper 64     AGATGGCGTTGAGGCAGTCGGGAGGGTAGTCGGGATCGGAGG 

Helper 65     CAAGTAAAGGACGGTTGTCAGCGTAAAACTGG 

Helper 66     TAGCGATAAGTACATAAATCAATAAACAATTT 

Helper 67     TAATTAATCTTGCTTCTGTAAATCCCAGCAAT 

Helper 68     TTTAATGGAAACGCTTAGATTATT 

Helper 69     TGAATAACTTTCCCTTAGAATCCTAATACCAG 

Helper 70     AACAATTTGGCGGCTTTTTGACCTATCGGT 

Helper 71     AATCATAGAAGAGTCAATAGTGAATGAAAACA 

Helper 72     ATTAGAGCATGCCTACAGTATTGTGTCGCTAT 

Helper 73     TTAGACGCTGAGGTCTGAGAGATT 

Helper 74     CATCACCCCTTGAATGGCAGATTTTGGGTTAT 
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Helper 75     AGCAAGCAGCGGCCTCATCAGGGACCAGCT 

Helper 76     AAATATATAACCTCCGGCTTAGGTTTTATCAA 

Helper 77     TCGCAAGAATGTAAATGCTGATGCTTAGGAAC 

Helper 78     TTCTACCTTTTTTTTAGTTAATTT 

Helper 79     ATAACTATCAAAGAACGCGAGAAACTTGCCAC 

Helper 80     TTAGCCATTTCAAGAAGTCCTTTTATCAGA 

Helper 81     ACCGACCGGACCTAAATTTAATGGACTTTTTC 

Helper 82     ATCCTTTCACCAAATCAAGCAACTAAATCCAA 

Helper 83     TTTTCATCTTCTTGTGATAAATTT 

Helper 84     CAAGTCCACTTTATCAGCGGCAGAGAATCATA 

Helper 85     AACGGCAGGCAGCAGCAAGATAAAGCACCA 

Helper 86     CGCTCAACATAAGAATAAACACCGTTTGAAAT 

Helper 87     CGTTATACAAAAAGCCTGTTTAGTTCACGAGT 

Helper 88     TTAAGGCGTTAAAGTAGGGCTTTT 

Helper 89     ATTACTAGAAATTCTTACCAGTATCTCTTTCT 

Helper 90     GCACGCTCAGCAGAGGAAGCATCGCTCTTT 

Helper 91     GTAATTTACGCCATATTTAACAACAAAGCCAA 

Helper 92     AGTCTCATAGTTGCATTTTAGTAAATCATATG 

Helper 93     TTAATTGAGAATGGCAGAGGCATT 

Helper 94     GATTGTCCTTTGCATCTCGGCAATAAAGTACC 

Helper 95     TTGATTCTTGAATGCCAGCAATCCAGACGA 

Helper 96     ACTGAACAAGTAATAAGAGAATATGCCAACAT 

Helper 97     AAAACAGGGTAAAGTAATTCTGTCTCTTTTTG 
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Helper 98     AAATAGCAAACAACATGTTCAGCTGCGTGAAG 

Helper 99     ATATACCTGGTCTTTCGTATTCTGAATGCAGA 

Helper 100     AGAAACGAGTTTATCAACAATAGATTTTGTGC 

Helper 101     AACAGCCAAAAAATAATATCCCATAGACTCGGCGATGCT 

Helper 102     CGGATCTGAATACGCAACGCGAGCAGTCCTAATTT 

Helper 103     

AATCTCGGAAACCTGCTGTTGCTTGGAAAGATTGAATCGGCTGTCTTTCCTT 

Helper 104     GCTACAATAAGAACGGGTATTAAATGGCGCAT 

Helper 105     TTCGCTCATCTCAGCCGTTTGAGCTTGAGTAACTCCGACGAC 

Helper 106     TTTGATTTGGTCATTGGTAAAATACCGTTTTT 

Helper 107     AACCTCCCCGTAGGAATCATTACCGTCATTTC 

Helper 108     CGGTATTCCAAATCAGATATAGAAAACTACCAGATGCAA 

Helper 109     GCATCCTTGGTTCTGCGTTTGCTGATGTATTTCCTAGACAAATTA 

Helper 110     AACATACAACCATCAGCTTTACCGAATATGAG 

Helper 111     AGAAATATCCTTTGCAGTAGCGCCTCTTTCCA 

Helper 112     TTTTTTCGAGCCCCCTGAACAATT 

Helper 113     GACAAAAGGAAGCGCATTAGACGGTCAGAGAG 

Helper 114     CGACAATAGCCTTTACAGAGAGACCCAATA 

Helper 115     ACGCGCCTTTTTTTGTTTAACGTCGCAATAGC 

Helper 116     TGAACAAGTATTATTTATCCCAAAAAAGTA 

Helper 117     ACGAGCATGCCTAATTTGCCAGTTAGAAGGAA 

Helper 118     

ATCATTCCTTTATCCTGAATCTTACCAACGCTAAAATACCCAAACAAACTCA 
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Helper 119     ATTTTCATGACTTGCGGGAGGTTTACTCAACG 

Helper 120     ATAGCAAGTAAGAACGCGAGGCGTCTTCCA 

Helper 121     

GAGCCAATATTGGGAGGGTGTCAATCCTGACGGTGCTTATGGAAGCCAAGCA 

Helper 122     GAAATTGTGCCTCCAAGATTTGGATGCCACAA 

Helper 123     TCAACCGATAATTGAGCGCTAATAGAGAATTA 

Helper 124     GTTTACCACAAGAATTGAGTTAAGATAACATA 

Helper 125     ATTTTGTCAAGAAACAATGAAATAAAAAATGA 

Helper 126     AAAGAAACCGAAGCCCTTTTTAAGTCCAAATA 

Helper 127     GAAAATACGCCGAACAAAGTTACCACAAAATA 

Helper 128     ACTCCTTAAACGCAATAATAACGGCGAGCGTC 

Helper 129     CCATTAACGTCAGAAGCAGCCTTATGCACCCA 

Helper 130     GGGAGCACATATCACCATTATCGATGAAGCCT 

Helper 131     GGTGGTCTACGAAAAGACAGAATCTTTTAGCG 

Helper 132     TCTAAAAAATGCGGTTATCCATCTGGCTTATC 

Helper 133     GCAGCCAGTGAGAAAGAGTAGAAAGGCATGAA 

Helper 134     TTAGTCAGAGGGTTGAGGGAGGTT 

Helper 135     ATAACCCAGCGCCAAAGACAAAAGCATTAAAG 

Helper 136     ATAAGAGCACAATCAATAGAAAAGAGCCAT 

Helper 137     TATCTTACGCAAAGACACCACGGAACCAGTAG 

Helper 138     AGCAGATAATACATAAAGGTGGCAAACGTC 

Helper 139     ACCGAGGATTACGCAGTATGTTAGACCGTAAT 
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Helper 140     

TCACGAACTTCTCAGTAACAGATAAGAACTGGCACTTTAGCGTCAGACTGTA 

Helper 141     CAACATACATTGTAGCATTGTGCTCATAGC 

Helper 142     CCCTGCATATAGTGTTATTAATATTTCATAAT 

Helper 143     AGAGCTTGCCATTTTTCGTCCCCCACCGGA 

Helper 144     

TTGGGGATCTTGCGGCAAAACTGCGTAACCGTCTCTCAGAACCGCCACCCTC 

Helper 145     GCCTCAATCGAATATCCTTAAGAGCTGAATAG 

Helper 146     TTGAAGGTAAATATTGACGGAAATTATTGGCGACAT 

Helper 147     GTGAATTATCACCGTCACCGACTTTTCATATG 

Helper 148     TTGGGAATTAGAGCCAGCAAAATCATAAGTTT 

Helper 149     CACCATTACCATTAGCAAGGCCGGAACATATA 

Helper 150     ACCAATGAAACCATCGATAGCAGCCAAACGTA 

Helper 151     CAGTAGCGACAGAATCAAGTTTGCTGATTAAG 

Helper 152     GCGCGTTTTCATCGGCATTTTCGGCAATTCAT 

Helper 153     CCCCTTATTAGCGTTTGCCATCTTCAAGTTGG 

Helper 154     CAAAATCACCGGAACCAGAGCCACTTCGGGGC 

Helper 155     ACCGCCTCCCTCAGAGCCGCCACCTCTCGTTC 

Helper 156     CACCACCACACCCTCAGAGCCGCCGGCGTTCA 

Helper 157     AGAGCCACGAGCCGCCGCTT 

Helper 158     CAAAGCCTTTGCATTCATCAAACGTCAGACGA 

Helper 159     AATTTACCAGGAGGTTGAGGCAGGACCAGAAC 

Helper 160     TTCAGCATTGACGTTCCAGTAATT 
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Helper 161     TTGGCCTTCCAGAATGGAAAGCGCCTTGCGAC 

Helper 162     ACTGGTAATGGCTTTTGATGATACAGTCTCTG 

Helper 163     TTGCGTCATACATAAGTTTTAATT 

Helper 164     CCTCGGCACGTGTGAATCATTAGCCCCGTATA 

Helper 165     TTCGGGGTCAGTCTCAAGAGAATT 

Helper 166     TGAGACTCGCCTTGAGTAACAGTGAGGAGTGT 

Helper 167     GCGGATAATAGCGGGGTTTTGCTCTAAGAGGC 

Helper 168     AACAGTTATGAAACATGAAAGTATGCTATTTA 

Helper 169     TTGGATTAGGATGTGCCGTCGATT 

Helper 170     ACTGGCGGGCCACGTATTTTGCAAATAGGTGT 

Helper 171     GCGTAACGATAAGTATAGCCCGGAAGTACCAG 

Helper 172     TTGAGGGTTGATATCTAAAGTTTT 

Helper 173     ATCACCGTTTCCACAGACAGCCCTTGAATTTT 

Helper 174     TAAAGGAATCCAGACGTTAGTAAACATAGTTA 

Helper 175     TTTTGTCGTCTTTTGCGAATAATT 

Helper 176     CTGTATGGGGAGTGAGAATAGAAAAAAAAAAG 

Helper 177     TTTAATTTTTTCACGTTGAAAATCTCCAGGAACAAC 

Helper 178     GCTCCAAAAGGAGCCTTTAATTGTTTTCAACA 

Helper 179     AACAAGCGTTCTTGCAAATCACCATGCCAGCT 

Helper 180     CTTTCCAGTCGGGAAACCTGTCGGAAGGCG 

Helper 181     GAATCTCTATGAATGGGAAGCCTTACTGCCCG 

Helper 182     ACTCACATTAATTGCGTTGCGCTCCAAGAAGG 

Helper 183     ATAAGTCAAGGAGAAACATACGAAGTGAGCTA 
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Helper 184     GTAAAGCCTGGGGTGCCTAATGAGGCGCAT 

Helper 185     CATACAAACACTGACCCTCAGCAACATAAAGT 

Helper 186     TCCACACAACATACGAGCCGGAAGTCTTAAAC 

Helper 187     CTTCATAGCGAATCACCAGAACGGCTCACAAT 

Helper 188     TTCCTGTGTGAAATTGTTATCCGCGCCATT 

Helper 189     CTGGTGCCAGGCTGCGCAACTGTTATAGCTGT 

Helper 190     

CCCGGGTACCGAGCTCGAATTCGTAATCATGGTCGGGAAGGGCGATCGGTGC 

Helper 191     CCTCAGGATCGCTATTACGCCAGCAGAGGATC 

Helper 192     CTTGCATGCCTGCAGGTCGACTCTTGGCGAAA 

Helper 193     CTGCCAGTTGCTGCAAGGCGATTAGTGCCAAG 

Helper 194     TTGTCACGACGTTGTAAAACGACGGCCAAGTTGGG 

Helper 195     GTTCCTGATTAGTCGCAGTAGGCGCCATGC 

Helper 196     TGATAAGCAAGCACCTTTAGCGTTGATTGTAT 

Helper 197     AACGATACACAGGGTCGCCAGCATTAATAT 

Helper 198     TTCTTAGAAAATTTCACGCGGCGGTTGTTAAA 

Helper 199     CGCCATTCGGAAACCAGGCAAAGAACGCCA 

Helper 200     

GGGCCTCTAGATCGCACTCCAGCCAGCTTTCCGGTCCTGTAGCCAGCTTTCA 

Helper 201     GGGGGATGTTGAGGGGACGACGACCAACCCGT 

Helper 202     TAACGCCAATGGGCGCATCGTAACGGATTG 

Helper 203     TTCGTTGGTGTAGGGGTTTTCCCATT 

Helper 204     CCTAACGACAAGAGTAAACATAGTGGAAAACG 
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Helper 205     TCAGAAAAATTTAAATTGTAAACGATATCGGT 

Helper 206     

TGACCGCTATATAAGCTAAAACTAGCATGTCAAATTCGCATTAAATTTCAAGT

TGC 

Helper 207     AAGAGAATTTTTTTAACCAATAGGAAAACATC 

Helper 208     TCAGGTCAAATTCGCGTCTGGCCTCACCGCTT 

Helper 209     TGCCGGAGAAATGTGAGCGAGTAAAGTATCGG 

Helper 210     ATGATATTCCGTGGGAACAAACGGCCGTGCAT 

Helper 211     AAGCAAATGCCCCAAAAACAGGAAAACATCAT 

Helper 212     TTTGTTAAATCATATGTACCCCGGTTCTTG 

Helper 213     TCAGCTCACGATGAACGGTAATCGAGCTTGCA 

Helper 214     TCAAAAATTTGCCTGAGAGTCTGTAGAAGT 

Helper 215     TCAACATTAGGGTAGCTATTTTTGAGAGATCTACCTCAGGAG 

Helper 216     CGGATTCTCAACCGTTCTAGCTGAGCAACGGA 

Helper 217     ACCGTAATGAGACAGTCAAATCAATGTGTA 

Helper 218     TTGAGAAAGGCCGGGGATAGGTCATT 

Helper 219     GGTAACGCTGCATGAAGTAATCACGTTGATAA 

Helper 220     CGTCATTTGGCGAGAAAGCTCAGTAAAGGCTA 

Helper 221     CGGCGCTTTGTTTTTGAGATGGCATAAATTAA 

Helper 222     TTAGGGTTCGAGCATCATCTTGATCCATCAAT 

Helper 223     CCTACTGATCGGAGGTTTTACCTCCAAATGAATGGACAGCCA 

Helper 224     GACCCATAACCGTGCTCA 

Helper 225     AACCATAAAGCCTCGGTACGGTCATACTTTTG 
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Helper 226     GGTAAAGATGCAATGCCTGAGTAAAGGATA 

Helper 227     TTTATATTTTAAATTCAAAAGGGTTT 

Helper 228     TTAGGGATTTCAAATAACCCTGAAGGCATCCA 

Helper 229     ACCAAAAAGCCTTTATTTCAACGCTAAGCTCA 

Helper 230     CGGGAGAACATTATGACCCTGTAAGGCATGGT 

Helper 231     AAAATTTTGAGCATAAAGCTAAAAGGCAAA 

Helper 232     TTATAAAGCCTCATAGAACCCTCATT 

Helper 233     AATCCACTTCGTGCCAAGAAAAGCACAAATGC 

Helper 234     GGAGTGGCCCAGTAGTGTTAACAGTCGGTTGT 

Helper 235     CAATATAAATTAACACCATCCTTCATTTTCAT 

Helper 236     GAATTAGCTAAATCATACAGGCACATCAAT 

Helper 237     TTTTAACATCCAAAAAATTAAGCATT 

Helper 238     TCTACAGTTGAGGGACATAAAAAGATGAACTT 

Helper 239     ATGGTCAACGAGCTGAAAAGGTGGTCGGGAGA 

Helper 240     TTGGGGCGTAACCTGTTTAGCTATACGGAGAG 

Helper 241     TCTACTAATGACCATTAGATACAAGTTGAT 

Helper 242     TTTAGATTTAGTTTAGTAGTAGCATT 

Helper 243     ACGACCAAGACGCAATGGAGAAAGTAAAAATG 

Helper 244     GCGATAACGCGTCCATCTCGAAGGTTTCGCAA 

Helper 245     CGCCAACGCGGAGTAGTTGAAATGTAATTGCT 

Helper 246     TCCCAATTTTCATTCCATATAACGTTTTAA 

Helper 247     TTTGTCTGGAAGTCTGCGAACGAGTT 

Helper 248     CGCTCGGCAGATGGGAAAGGTCATGTAATAAG 
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Helper 249     CATTTTTGTGCTGTAGCTCAACATAGTCGCCA 

Helper 250     GAATATAACGGATGGCTTAGAGCTAAGGGGCC 

Helper 251     ATATGCAAAATTGCTCCTTTTGAAGCAAAC 

Helper 252     TTAGAGTACCTTTCTAAAGTACGGTT 

Helper 253     TTTAGTACTAATTTATCCTCAAGTGCGGCATA 

Helper 254     ACATACCATGCAATTAAAATTGTTTAAGAGGT 

Helper 255     GAAGCCCCAAGACGAGCGCCTTTAGATTGCAT 

Helper 256     TCCAACAGGCGAACCAGACCGGAAAGACTT 

Helper 257     TTCGAGCTTCAAAGTCAGGATTAGTT 

Helper 258     ATAAAAAATCCAAGTATCGGCAACACGACATT 

Helper 259     CTGGCCAATCACAACCACACCAGAAGCAGCATAGCAATCATA 

Helper 260     TTACCTTTCCAGGGCGAGCGCCAGCGCTTGCC 

Helper 261     ACTATTATTTAAGAGGAAGCCCGAGACCACCT 

Helper 262     CAAAAAGAAGTCAGAAGCAAAGCGCGCACGTT 

Helper 263     CAAATATCTCAAAAATCAGGTCTTGCTTTA 

Helper 264     TTATGACCATAAAGCGTTTTAATTTT 

Helper 265     ACTCATCGAGCAGGTTTAAGAGCCAACGAACC 

Helper 266     TCAGCGGCCGCACGTAATTTTTGAAACGTTTT 

Helper 267     CTGCGCGTCGTCAGTAAGAACGTCTTACCCTG 

Helper 268     GCTCAAAGACCTTTCTTTTTGGGTGGAGGC 

Helper 269     TTCTTCTGACACGCAAGGTAAACGAGAGGGGG 

Helper 270     AACAGTTCTGAATCCCCCTCAAATAGCGTC 

Helper 271     TTTAAATATTCATAGAAAACGAGATT 
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Helper 272     CTGTCGCACTACGCGATTTCATAGGTAATTAT 

Helper 273     CAGCGCCTCATTAATAATGTTTTCCGAACAAT 

Helper 274     GGCTTTTGAAATGTTTAGACTGGAAGTGTTTC 

Helper 275     CTCCAGCAATAAACCAACCATCATAATCGG 

Helper 276     TAATAGTACAAAAGAAGTTTTGCCTGAACATA 

Helper 277     CAATACTGCGATAAAAACCAAAAAAGAGCA 

Helper 278     TTTTACCAGACGACGGAATCGTCATT 

Helper 279     TGAGTTTCACCGCCACCCTCAGAAAGCGTCCT 

Helper 280     CCACAACCAACCAGAACGTGAAAACCGCCACC 

Helper 281     CAAGCCCACACCACCCTCATTTTCTCAACAGG 

Helper 282     CATAGAAAGCCACTTCTCCTCATCGTGCCGATCCGTCTG 

Helper 283     ACCAGAGTCGGCCAGTCCTTGACGAACCAACGCGT 

Helper 284     AGAATCTCTACCATGAACAAAATGATGGCG 

Helper 285     GCAAGGATCAAAGTAAGAGCTTCTTCAACAAG 

Helper 286     CTCAGAGCATAGGAACCCATGTACGGAAGTAG 

Helper 287     CTTTAAGCCCAACAGCCATATAAGTTCCAT 

Helper 288     CAGTTTTTACTTTTTGTTAACGTAGCAAGGTC 

Helper 289     AAAGGTCGAGGTCGAATTTTCTCCGTAAAC 

Helper 290     TAAGGGAACCGAACAAGATAATTTTTCGACT 

Helper 291     GTGAGCATTCTGAACAGCTTCTTGCGTAACAC 

Helper 292     GGATTAAGTGGTTTTTAGTGAGTTAGGGATAG 

Helper 293     GGCGTCGCTCCTAGACCTTTAGCATTTAGCCA 

Helper 294     TTTTTGCGCCACTTCGATTTAATTATTTTCCG 
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Helper 295     GTAACTTTGTAATTCCTGCTTTATCGAGCTGC 

Helper 296     CGACAGCTCACTCCGTGGACAGATTTCTTAAA 

Helper 297     TCTTTAGCGTCGTAACCCAGCTTGACAATG 

Helper 298     CATATCTGTTCTGCTTCAATATCTCCGATATA 

Helper 299     AAGCAGTATCCCAGCCTCAATCTGTTAAAG 

Helper 300     

CATCAGAAAGCGATAAAACTCGCCGCCAAAACGTTCAGCAGCGAAAGACAG

C 

Helper 301     TATCAGCTTGCTTTCGAGGTGAATTTGTCATT 

Helper 302     CAGCTTGATACCGATAGTTGCGCCGGTAAGTT 

Helper 303     ACAACAACCATCGCCCACGCATAAGGTTGAAC 

Helper 304     TTCGGTCGCTGAGGCTTGCAGGGACATCTCTC 

Helper 305     GCCGCTTTTGCGGGATCGTCACCCCGGCTACA 

Helper 306     ATCGGAACGAGGGTAGCAACGGCTACTTCTGC 

Helper 307     CATTAAAGGATATTCACAAACAAAGCATGAGC 

Helper 308     TCGTCAGCATCATAAAACGCCTCCAATATC 

Helper 309     GCAGTCGGGCAAGAACCATACGACTAAATCCT 

Helper 310     ACGAAAATTCAGGCACACAAAAACGCATGG 

Helper 311     TATTATTCATGCCCCCTGCCTATTTACTGATA 

Helper 312     ACCATAAGCGATTGCGTACCCGACTCGGAACC 

Helper 313     AAATGAAGCCGCATAAAGTGCACGACCAAA 

Helper 314     ATTAGGGTCGAACTGCGATGGGCACCGCCA 

Helper 315     CTGTAGCAACTCAGGAGGTTTAGTATACTGTA 
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Helper 316     CCCTCAGAGTCACCAGTACAAACGCGGCTC 

Helper 317     GTTTCAGCGATTTTGCTAAACAACTACAACGC 

Helper 318     ATTCTGATTTTCATCCCGAAGTTATCGGTT 

Helper 319     AGCGTACCTTGAATGTTGACGGGACGTAAATT 

Helper 320     GAGCAGGATGACGGCAGCAATAAATAGCGAGA 

Helper 321     ATAAGCAAAAGCGAGGGTATCCCAAGAAAGAT 

Helper 322     ACACTATCATTACGAGGCATAGTCACATTC 

Helper 323     TTCGCCAAAAGGAATAACCCTCGTTT 

Helper 324     TAGCAATCAGCGACGAGCACGAGACAAAGTCC 

Helper 325     TAACGGAATGAGATTTAGGAATACCTCAACAG 

Helper 326     TCATCAGTCAACATTATTACAGGTTCGGTTAA 

Helper 327     AACTAATGAAATCTACGTTAATAAACTGGC 

Helper 328     TTGTTGGGAAGAACAGATACATAATT 

Helper 329     TGTTCAGTAAAATCGAAATCATCTGCGGTCAG 

Helper 330     GGACTCAGACCTATTAGTGGTTGAGTACGGAT 

Helper 331     ATCCAAAAAAAGCGGTCTGGAAACAAACACCA 

Helper 332     TAGAGGCCCGGCAGAAGCCTGAATAAACGAAC 

Helper 333     GTGAATAAAGTAAATTGGGCTTGAGAGCTTAA 

Helper 334     TCATTATATTATGCGATTTTAAGGATGGTT 

Helper 335     TTTGTGAATTACCCCAGTCAGGACTT 

Helper 336     GAACGAGTGGCTTGCCCTGACGAGAGGCGCAT 

Helper 337     TAATTTCAAACGTAACAAAGCTGTAATCTT 

Helper 338     TTTTACCCAAATCACTTTAATCATTT 
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Helper 339     CGAGGCGCGAACGGTGTACAGACCACAGCATC 

Helper 340     TCCGCGACTGACCTTCATCAAGAGCTCATTCA 

Helper 341     AGGCTGGCCTGCTCCATGTTACTTAAAACACT 

Helper 342     GACAAGAATCGCCTGATAAATTGCCAAGCG 

Helper 343     TTGATTTGTATCACCGGATATTCATT 

Helper 344     GTCATGGAATATCCGAAAGTGTTAAGCCGGAA 

Helper 345     ACGAAAGAACCCCCAGCGATTATATGTCGAAA 

Helper 346     CATCTTTGGGCAAAAGAATACACTACAGAGGC 

Helper 347     

CGAAACAACACTACGAAGGCACCGAGGAAGTTTCCATTAAACGGGTAAATT 

Helper 348     TTATACGTAATGCAGTACAACGGATT 

Helper 349     TTTGAGGACTAAAGACTTTTTCATAACCTAAA 

Helper 350     CTTTGAAAGAGGACAGATAGACGGTCAATCA 

 

Sticky End Left 1     

ATCACGGCCGCTGCACCAGCAAGAAACCAATCCGCGGCATTGATTGCT 

Sticky End Left 2     

TTCCTACTGACGGATGCCACCGGAAGACATGGCGCCTGTATGGGTTCT 

Sticky End Left 3     

ATCACTGGTACCTCAAAACTAGGGCATCACCTTGAAGTCACTGGACAT 

Sticky End Left 4     

TTCCTCCATGAACTGCAACGTACCAGCACCAGAAACGTATCGCGTTCT 
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Sticky End Left 5     

ATCACGGTGGTCAGCTCAGGAAATAAGTGCCAGCCGCCGTCCAGACAT 

Sticky End Left 6     

TTCCTTCCTTGACTCAACCATACCCCAAGCATTAAAGCACGACGTTCT 

Sticky End Left 7     TCGCCGACCAAATCCGGCGCAGGCCAGGACAT 

Sticky End Left 8     ATCACAGGTACACGAATCCGGGACAT 

Sticky End Left 9     

TTCCTCGCTCCGTAGCGTGACATTATGAAAAATATACTTATACGTTCT 

Sticky End Left 10     

ATCACCACACGCTTCATCCTTAATTCAAAATAATCGCCGTCCAGACAT 

Sticky End Left 11     

TTCCTTCTAGATCTGTCAAAAACGATCTTGAACACTCTCTTAAGTTCT 

Sticky End Left 12     

ATCACGGTTCGCAGCATTGGGATTCAACGTGAGAGCGGAAGTCGACAT 

Sticky End Left 13     

TTCCTACAAACGTCTGTACCATACAGTCACGCAAACTTCCTTCGTTCT 

Sticky End Left 14     

ATCACCAGCGTATGTAGGAAGTGTACGGCCATTAGAAGCTTCAGACAT 

Sticky End Left 15     GCGTGTAGCAACGCTACCTTGCGCCTAGTTCT 

 

Sticky End Right 1     

GAAGCGGAGCAGTCCAAATAAAATAGTTCCAGGAGCCTTAG 
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Sticky End Right 2     

TGAGTTCGCTGATGTTATAGATATTTATTGGTATATGCCGCAGCTT 

Sticky End Right 3     

CGTTATCGGCCAATCAGGGTTAAGTTCACCATATGTTATGTCTTAG 

Sticky End Right 4     

TGAGTCTTGCGGCAACGTGACGAAGAGTCAATATGTCAAGCAGCTT 

Sticky End Right 5     

CGTTAATCTACGTGCAAGGCCACTCTGACCAGCAGCCGAGACTTAG 

Sticky End Right 6     

TGAGTCCACCTATAAGGAAGCCAGCCAGTTTGATGAGCACTAGCTT 

Sticky End Right 7     

CGTTAGTTCGGATATATTAGACACTCGCAACGGCTAATGGCCTTAG 

Sticky End Right 8     

TGAGTGGCCGAGACTGCGGACGAAGACATTACAGGTAGTCCAGCTT 

Sticky End Right 9     

CGTTAGGACAGCGTCACTCCTTCTTTAACCGGAGGTGGCCGCTTAG 

Sticky End Right 10     

TGAGTCTGAACACCGCTCGACGCTCCATGATGACAGGAACAAGCTT 

Sticky End Right 11     

CGTTACACGCGGAGACAGGCCGTATAAACGCAATTATAGGCCTTAG 

Sticky End Right 12     

TGAGTGTGCTCGCGCCTCAACGCCAAACTTTGTCAGTCCTCAGCTT 
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Sticky End Right 13     

CGTTACACTCTTCTACTCGTCAGAACTTGACTCATCGCCGACTTAG 

Sticky End Right 14     

TGAGTATAGACGCATGATTTCTTATAGTAATCCACGCTCTTTTAAAATGCTGA

CCAA 

 

Sticky End Up 1     TAAACGTTATTGCCCGGCGCCAGGTCCAGCTT 

Sticky End Up 2     TTCCTCCGAAGAGTCACACAGTCCTTGACGAAATAAA 

Sticky End Up 3     AACTCGTATTCTGAATAATGGAAATCATGGAGCTGGCTTAG 

Sticky End Up 4     

ATCACCCAGTGCCGAACCATTGTTTGGATTATACTTAAATCCTTTGCCCGATT

AAACT 

Sticky End Up 5     GGGTCGGCATCAAAAGCAATCGGCCGCAGCTT 

Sticky End Up 6     

TTCCTCGAGCCAGCCTGATTAGCATGCCCAGAGATTAGATCAACATC 

Sticky End Up 7     TCAGGAACGTTGAACACGACCAGCATAAAGCCTCTTCTTAG 

Sticky End Up 8     

ATCACTGCTACAGGAAATGAATGTTTATAGGTCTAAAGAAACGCGGCACAAA

GGTACT 

Sticky End Up 9     GTCAGTATGCAAATTAGCAACCAGTGGAGCTT 

Sticky End Up 10     TTCCTAGAGCTCCATGTCAATAGATGTGGGAGCAAAC 
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Sticky End Down 1     

TGAGTGCGGACGCCCTTCTGTTGATAAGCAAGCATCTCATAAGTCC 

Sticky End Down 2     

TTTCCAGAGTAGAAACCAATCAATGTGTTTTCCATAATAGAATTAGGCGTTCT 

Sticky End Down 3     

CGTTAAGTAAGGTGCATTCCAAGTACCGCACTCGATTAGTTGCTATTTTGGCC

GT 

Sticky End Down 4     

TAAATCAAATCGAGAACAAGCAAGCTGACGGAAATGCGACAT 

Sticky End Down 5     

TGAGTGCCGGCCTAGTCAACCTCAGCACTAACCTTGCGAGCGCCCA 

Sticky End Down 6     AAGAGCCATACCGCTGATCAAGAACTGTTCT 

Sticky End Down 7     

CGTTACGTGTTGGCAGTGAGCTTTATCAATACCCAGAAGGGTAATAAGTCGA

TAC 

Sticky End Down 8     

CGTTATTCAGTCGAAGCATATTAAGGCTCACCTTTAGCACTGGTAG 

Sticky End Down 9     

CCAGCAGTGACAGAATCGTTAGTTGTGACTCATATCTAAATGGCCAGGGACA

T 

 

Sticky End-Scaffold Linker Left 1     CCATACAGCAGCGGCC 

Sticky End-Scaffold Linker Left 2     CAGTGACTCCGTCAGT 
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Sticky End-Scaffold Linker Left 3     GCGATACGAGGTACCA 

Sticky End-Scaffold Linker Left 4     TGGACGGCGTTCATGG 

Sticky End-Scaffold Linker Left 5     GTCGTGCTTGACCACC 

Sticky End-Scaffold Linker Left 6     CTGGCCTGGTCAAGGA 

Sticky End-Scaffold Linker Left 7     GTATAAGTGTGTACCT 

Sticky End-Scaffold Linker Left 8     TGGACGGCACGGAGCG 

Sticky End-Scaffold Linker Left 9     TTAAGAGAAGCGTGTG 

Sticky End-Scaffold Linker Left 10     GACTTCCGGATCTAGA 

Sticky End-Scaffold Linker Left 11     GAAGGAAGTGCGAACC 

Sticky End-Scaffold Linker Left 12     TGAAGCTTACGTTTGT 

Sticky End-Scaffold Linker Left 13     TAGGCGCAATACGCTG 

 

Sticky End-Scaffold Linker Up 1     

GGACCTGGAAATGGTTAACGCTTGTCCGACTCTTCGG 

Sticky End-Scaffold Linker Up 2     

CCAGCTCCCAACGCCATCTCCTCCGATCCGGCACTGG 

Sticky End-Scaffold Linker Up 3     

GCGGCCGACGCACTCTGGCGTCCTCTAGGCTGGCTCG 

Sticky End-Scaffold Linker Up 4     

AAGAGGCTCGATCAGTAGGTGGCTGTCCACTGTAGCA 

Sticky End-Scaffold Linker Up 5     

CCACTGGTTATAGCGGTCATGAGCACGGTGGAGCTCT 
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Sticky End-Scaffold Linker Right 1     GCTCCTGGATCAGCGA 

Sticky End-Scaffold Linker Right 2     GCGGCATATTGGCCGA 

Sticky End-Scaffold Linker Right 3     ACATAACAGCCGCAAG 

Sticky End-Scaffold Linker Right 4     GCTTGACAACGTAGAT 

Sticky End-Scaffold Linker Right 5     TCTCGGCTATAGGTGG 

Sticky End-Scaffold Linker Right 6     AGTGCTCAATCCGAAC 

Sticky End-Scaffold Linker Right 7     GCCATTAGTCTCGGCC 

Sticky End-Scaffold Linker Right 8     GGACTACCCGCTGTCC 

Sticky End-Scaffold Linker Right 9     CGGCCACCGTGTTCAG 

Sticky End-Scaffold Linker Right 10     TGTTCCTGTCCGCGTG 

Sticky End-Scaffold Linker Right 11     GCCTATAAGCGAGCAC 

Sticky End-Scaffold Linker Right 12     GAGGACTGGAAGAGTG 

Sticky End-Scaffold Linker Right 13     TCGGCGATGCGTCTAT 

 

Sticky End-Scaffold Linker Down 1     

GCCTAATTATTCAGATCCGAGCATCGCCGGCGTCCGC 

Sticky End-Scaffold Linker Down 2     

GCATTTCCAGATGAGCGAAGTCGTCGGAGACCTTACT 

Sticky End-Scaffold Linker Down 3     

AGTTCTTGACCAAGGATGCTTGCATCTGGAGGCCGGC 

Sticky End-Scaffold Linker Down 4     

CCGGATTCTGATTGGCCAGTATGATTGCTCCAACACG 
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Sticky End-Scaffold Linker Down 5     

CCTGGCCACCGACTCTGGTCAGACGGATCCGACTGAA 
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Helpers modified with biotin: 

Biotin Helper 158     

CAAAGCCTTTGCATTCATCAAACGTCAGACGATTTTTTTTTTTTTTTTTTTT 

Biotin Helper 159     

AATTTACCAGGAGGTTGAGGCAGGACCAGAACTTTTTTTTTTTTTTTTTTTT 

Biotin Helper 161     

TTGGCCTTCCAGAATGGAAAGCGCCTTGCGACTTTTTTTTTTTTTTTTTTTT 

Biotin Helper 162     

ACTGGTAATGGCTTTTGATGATACAGTCTCTGTTTTTTTTTTTTTTTTTTTT 

Biotin 20A     [5’ biotin]AAAAAAAAAAAAAAAAAAAA 
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APPENDIX D 

PERMISSIONS TO USE COPYRIGHTED MATERIALS 

  



175 
 

Nature Publishing Group 

 



176 
 

 



177 
 

 



178 
 

 



179 
 

 



180 
 

 



181 
 

 

  



182 
 

AAAS 

 



183 
 

 



184 
 

 



185 
 

 



186 
 

 



187 
 

 



188 
 

 



189 
 

 



190 
 

 



191 
 

 

  



192 
 

American Chemical Society 

 



193 
 

 



194 
 

 



195 
 

 



196 
 

 



197 
 

 

  



198 
 

Other Sources 

 

For Figure 1.10.  

Rothemund, P. W. K.; Papadakis, N.; Winfree, E. PLoS Biol 2004, 2, e424. 

Copyright: © 2004 Rothemund et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original work is properly 

cited. 



199 
 

APPENDIX E 

CO-AUTHOR APPROVAL 

  



200 
 

I verify that the following co-authors have approved of my use of our publications in my 

dissertation. 

Yan Liu (Arizona State University) 

Hao Yan (Arizona State University) 

Yang Yang (Arizona State University1) 

Shuoxing Jiang (Arizona State University) 

 

1Note: The author’s address is listed as when the research was performed. 


	Title Page
	00 Preliminary Pages
	01 Chapter 1
	02 Chapter 2
	03 Chapter 3
	04 Chapter 4
	05 Chapter 5
	06 Bibliography
	07 Appendix A
	08 Appendix B
	S3.1.3 Fluorescence Kinetics. The fluorescence kinetics experiments were performed on a real-time PCR thermocycler (Stratagene Mx3005P). The thermocycler program is set that the time of each cycle is one minute, so the fluorescence intensity of the so...
	The final concentration of each DNA strand in the solution is about 0.5 µM after mixing the input strand. The buffer condition is 1×TAE/Mg2+ buffer. The fluorescence intensity measurement starts as soon as the input strands are added.
	S3.1.4 Fluorescence Data. For each reaction, the first trace is the original data collected by the fluorometer. The second trace is the increase of each reaction at each time point. This is calculated by subtracting the starting fluorescence intensity...
	S3.2 Capping Technique
	In the design of the XOR gate and AND gate, we incorporated the “capping technique”. Figure S3.1 shows the position of the caps we placed on the strands.
	/
	Figure S3.1. The positions of the caps. The caps in the design if marked with red circles. Each cap is a one nucleotide extension from the main strand, and complementary to the corresponding base to the other component strand in the duplex.
	The capping technique was introduced by L. L. Qian and E. Winfree (Science 2011, 332, 1196). The purpose of the caps is to prevent the non-specific π- π stacking directed DNA strand displacement reaction (Figure S3.2), which may contribute to the lea...
	/
	Figure S3.2. The caps can prevent π- π stacking directed DNA strand displacement reactions.
	S.3.3 Length of the Toehold Domain in the Hairpins
	In the designs of both the XOR gate and AND gate, the outputs are protected in a hairpin structure. With an optimal hairpin loop length, 5 to 8 bases, the hairpin stem is far more stable than a linear DNA double helix of the same length. The yields o...
	/
	Figure S3.3. The opening reaction of the hairpin structure.
	Table S3.1. Relation between Length of T7h and Reaction Yield
	Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt
	Concentration: 100 nM; Temp. = 25 oC
	Table S3.2. Relation between Temperature, Concentration and Reaction Yield
	Lengths: T5 = T5* = T7 = T6* = 5 nt, A* = B = B* = 12 nt, T7 = 2 nt
	S3.4 Using Halves of Domain A and A* in the Design of AND Gate
	In the design of the AND gate, domains named A+1/2, A-1/2, A*+1/2, and A*-1/2. These domains correspond to halves of the full length domains A and A*. The subscript +1/2 represents the 5’ end six nucleotides of the full length domain, while the subsc...
	Domain A+1/2 is complementary to Domain A*-1/2, but does not hybridize with A*+1/2. Similarly, Domain A-1/2 is complementary to Domain A*+1/2, but does not hybridize with A*-1/2. This strategy can prevent the hybridization of the reactive strands in ...

	09 Appendix C
	S4.1.4 Monomeric Avidin Resin Purification. 100 µL Monomeric Avidin Resin (Thermo Scientific, catalog number: 53146) suspension was transferred into a SigmaPrepTM spin column (Sigma, catalog number: SC1000). The resin was washed with 1×PBS buffer once...
	S4.1.5 AFM Imaging. The AFM imaging was performed using a Dimension FastScan AFM (Bruker). The samples (2 µL to 5 µL) were deposited onto freshly cleaved mica (Ted Pella, Inc.) and left to adsorb for 2 min. Buffer (1×TAE/Mg2+, 100 µL) was added on top...
	S4.1.6 Fluorescence Kinetics. The fluorescence kinetics experiments were performed using a Nanolog fluorometer (Horiba Jobin Yvon). The origami frame was purified with 100 kD MWCO Microcon centrifugal filter devices (Amicon, catalog number: UFC510096)...
	S4.1.7 Fluorescence Data. For each reaction, the first trace is the original data collected by the fluorometer. The second trace is the data after correcting for the volume change. The third trace is the data after correcting for photo bleaching. The ...
	S4.2 Design of the DX Tiles
	/
	Figure S1. The design of the four DX tiles. (A) Schematic design of the four tiles. The four tiles share the same sequences of Strands 2, 3, and 5. Each tile has a specific Strand 1 and 4. The sticky end pairing e.g. a, a’ are marked for each tile. (B...
	S4.3 PAGE Characterization of DX Tiles
	Figure S2. Native polyacrylamide gel electrophoresis characterization of the formation of the four tiles. Lanes 1 & 15: 10 bp DNA marker. Lane 2: the core structure of the four tiles: Strand A2 + Strand A3 + Strand A5. (For Tile B, C, and D, the core ...
	S4.4 Design of the DNA Origami Frame
	/
	Figure S3. Detailed design of the DNA origami frame. The origami frame is 210 nm wide, 60 nm and 95 nm tall (the two sides). The blue strand represents the phi X 174 scaffold and the red strand corresponds to the M13mp18 scaffold. The interior is deco...
	/
	Figure S4. AFM image of the empty origami frame. (A) Zoom-out AFM image of the empty origami frame. Most of the origami frames are well formed. There are several aggregated structures in the image that may be caused by crosslinking of multiple scaffol...
	S4.6 Examination of the spontaneous formation of the DX tile arrays
	/
	Figure S5. Unregulated growth of 2D arrays of DX tiles. The four DX tiles were mixed together to a final concentration of 250 nM each. The mixture was incubated at 25 oC overnight and characterized by AFM. The four tiles form 2D arrays as designed.
	S4.7 Agarose Gel Image of the Purification of the DNA Origami Frame – 2D Array Hybrid
	/
	Figure S6. Image of agarose gel electrophoresis showing the purification of the origami-2D array hybrid. Lane 1: 1kb DNA ladder. Lane 2: Empty origami frame without purification. The fastest intense band corresponds to the extra helper strands. The se...
	S4.8 AFM Image of DNA Origami Frame – 2D Array Hybrid Purified by Agarose Gel Electrophoresis
	/
	Figure S7. AFM image of Frame-array hybrid purified by agarose gel electrophoresis. (A) Zoom-out AFM image of Frame-array hybrid purified by agarose gel electrophoresis. There were quite a few pieces of free 2D array of DX tiles that were not cleanly ...
	S4.9 Boitin Modified DNA Origami Frame – 2D Array Hybrid Purified with Monomeric Avidin Resin
	/
	Figure S8. AFM images of Boitin modified frame-array hybrid after purification with monomeric avidin resin. The origami frame was modified with biotin. When purifying with monomeric avidin resin, unmodified tiles and 2D arrays were washed away while t...
	S4.10 DNA Origami Frame – 2D Array Hybrid Before Purification
	/
	Figure S9. AFM image of unpurified frame-array hybrid. Several, but not all of, distinguishable frame-array hybrid structures are marked in the image.
	S4.11 Defects of DNA Origami Frame – 2D Array Hybrid
	/
	Figure S10. Three major classes of defects in the frame-array hybrids. (A) The shrunken frame-array hybrid caused by sticky ends on tiles hybridizing with another row of non-neighboring tiles. (B) The widened frame-array hybrid caused by inserting one...
	S4.12 Dynamics of the Nucleation of DX Tiles in the Origami Frame
	/
	Figure S11. FS-AFM images showing the dynamics of nucleation and growth of DX tiles into the DNA origami frame. (A) This is another example of the experiment shown in Figure 3. Each frame was collected over 87 seconds. Each frame is 287 nm × 287 nm. (...
	S4.13 Kinetics of the Nucleation Process of the Four Tiles
	/
	Figure S12. Characterization of the kinetics of the nucleation process. (A) The modification of the tiles with a fluorophore and dark quencher. The 5’ end of Strand A1 was modified with an Iowa Black Dark Quencher. The 3’ end of Strand C2 was modified...
	S4.14 DNA Sequences
	Sequences of tile strands:
	A1: AGGAACCATGAACCCTGCAGCATGTC
	A2: GCTGCAGGCGGAATCCGACCCTGTGGCGTTGCACCAT
	A3: GTCGGATTCCGCTGGCTTGCCTAGAGTCACCAACGCCACAGG
	A4: ACTCAATGGTGCACTAAACCTCTAAG
	A5: AGGTTTAGTGGTGACTCTAGGCAAGCCAGGTTCATGG
	B1: GTGATCCATGAACCCTGCAGCAGAAC
	B2=A2
	B3=A3
	B4: TAACGATGGTGCACTAAACCTAAGCT
	B5=A5
	C1: TGAGTCCATGAACCCTGCAGCAGCTT
	C2=A2
	C3=A3
	C4: TTCCTATGGTGCACTAAACCTGTTCT
	C5=A5
	D1: CGTTACCATGAACCCTGCAGCCTTAG
	D2=A2
	D3=A3
	D4: ATCACATGGTGCACTAAACCTGACAT
	D5=A5 Sequences of the helper strands and sticky end strands in the DNA origami frame:
	Helper 1     GTATTAACTCACTTGCCTGAGTAGACCGTTGTAGCAATACTTCTTTGATTTT
	Helper 2     AGAGTCTGTCCATCACGCAAATTAAAGAACTC
	Helper 3     CAGCAGAAGGCCTTGCTGGTAATACGAGTAAA
	Helper 4     AAACCGTCTATCAGTGAGGCCACTCCAGAA
	Helper 5     ACATCGCCCCGCCAGCCATTGCAAAGGGCGAA
	Helper 6     AAAGAACGTGGACTCCAACGTCAACAGGAAAA
	Helper 7     TAGTCTTTGGAAATACCTACATTTCCACTATT
	Helper 8     TTGTTCCAGTTTGGAACAAGAGTTGACGCT
	Helper 9     CGTGGCACTGAAATGGATTATTTAGTTGAGTG
	Helper 10     ATCAAAAGAATAGCCCGAGATAGGCATTGGCA
	Helper 11     TAGAACCCAGTCACACGACCAGTACCTTATAA
	Helper 12     CCTGTTTGATGGTGGTTCCGAAATCGGCAAAATCATAAAAGGGAAAAATTTT
	Helper 13     GTCAACCCCGGCGTTATAACCTCAGCGAAAAT
	Helper 14     TCCACGCTGGTTTGCCCCAGCAGCACTCAA
	Helper 15     CCTAAGCACACGAAGTCATGATTGGCAAGCGG
	Helper 16     CCGCCTGGCCCTGAGAGAGTTGCAAATCGCGA
	Helper 17     CGAGAAATCAGATTGCGATAAACGGCCCTTCA
	Helper 18     AGTGAGACGGGCAACAGCTGATTGTCACAT
	Helper 19     CAGCTTATACCTGACTATTCCACTTTTTCACC
	Helper 20     GCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCGCAACAACTGAACGGACT
	Helper 21     TAAAACAGTGGTCATAATCATGGTGGGGAGAG
	Helper 22     GCATTAATGAATCGGCCAACGCGCGGCGAATA
	Helper 23     TTAGTAATAACAACCGCCTGCATT
	Helper 24     AAACTATCGATAAAACAGAGGTGAAAATGAAA
	Helper 25     CAATATTAATTAAAAATACCGAACCTCAAA
	Helper 26     ACGCTCATAATGCGCGAACTGATAGTCAGTTG
	Helper 27     CAATCGTCAGACAATATTTTTGAGAGGAAG
	Helper 28     GATTCACCTTCTGACCTGAAAGCGACTAACAA
	Helper 29     TACCGCTTCTCAGCGGCAAAAATTCATTCTGGCCATAATACATTTGAGGATT
	Helper 30     TCTTTTATGAAAACCTACCGCGCATTCGAC
	Helper 31     GTGGTCGGAAAAGTCTGAAACATGAACGTTAT
	Helper 32     TAAATTTACAGAAAAAAAGTTTGTATCATT
	Helper 33     GGAAACACGTGCCGAAGAAGCTGGAGTAACAGAATGCAATGAAGAAAACCAC
	Helper 34     AGTACGCGTGACGATGTAGCTTTATATCAAAA
	Helper 35     AAGATGATGCTGAGAGCCAGCAGCGGCGGTCA
	Helper 36     CGAATTATGCATCACCTTGCTGAACGAACCAC
	Helper 37     TTGAATACCCTCAATCAATATCTGGCCCTAAA
	Helper 38     GGGAGAAAACAGTTGAAAGGAATTATGGCTAT
	Helper 39     GTTAACCATTTTACGGAACGTCAGATGAATATAAATATCTTTAGGAGCTAAGAATA
	Helper 40     GAAATTGCTTAGAGCCGTCAATAGAACAGAGA
	Helper 41     ACCTACCATTAGACTTTACAAACATTCGCTTG
	Helper 42     TGGCAATTAAAGTTTGAGTAACATAATTATGG
	Helper 43     GCCAGAGTGCGTATCAAGGAGCGGAATTATCACAAAGAAACCACCAGAGTGAGAAC
	Helper 44     ATAGCCAGGCATTAACCGTCAAACGGTGTCTG
	Helper 45     TTACAGTGCCACGAAACAAACATT
	Helper 46     AATCTAAATCATTTCAATTACCTGTTAAGTGG
	Helper 47     TATCAAACCAAGTTACAAAATCGAACCTGA
	Helper 48     GCAAATCACAATAACGGATTCGCCTTAGTAGC
	Helper 49     GTTATCTAACAGTAACAGTACCTACCAACA
	Helper 50     CTAATAGAGTAGATTTTCAGGTTTGGAAGGACGTCAATAGTCGGACAAGC
	Helper 51     TAGAAGTATATCAAAATTATTTGCACGTAAAACAGGTATAATAACCACCATC
	Helper 52     TAATTTTACATCAATATAATCCTGGAAGAAGA
	Helper 53     TTGCGGAATCATATTCCTGATTAAAATTTA
	Helper 54     CATTACCAGGCGTTGACAGATGTATCCATCTGAAGCACCAACAGAAACAACCTAGAGGAC
	Helper 55     TATAACGTCGTTTGGTCAGTTCCAGCGCATGA
	Helper 56     CATTTGAAAAAATTAATTACATTTAGCAAAAG
	Helper 57     AGCACCAAAAATAATCTCTTTAATCGCAGAGG
	Helper 58     GGTAAAGTTAGACCAAACCATGAATTTACATC
	Helper 59     ATGGCGACCATTCAAAGGATAAACGGGTTAGA
	Helper 60     CTCAAAGCGAACCAAACAGGCAAATCAGATGA
	Helper 61     TTTCAAGAAAACTTACCTTTTTTT
	Helper 62     CTGGAGACACATAAATCACCTCACTATGTGAG
	Helper 63     TTCAGCGAGCAGAAGCAATACCGGCCTCCA
	Helper 64     AGATGGCGTTGAGGCAGTCGGGAGGGTAGTCGGGATCGGAGG
	Helper 65     CAAGTAAAGGACGGTTGTCAGCGTAAAACTGG
	Helper 66     TAGCGATAAGTACATAAATCAATAAACAATTT
	Helper 67     TAATTAATCTTGCTTCTGTAAATCCCAGCAAT
	Helper 68     TTTAATGGAAACGCTTAGATTATT
	Helper 69     TGAATAACTTTCCCTTAGAATCCTAATACCAG
	Helper 70     AACAATTTGGCGGCTTTTTGACCTATCGGT
	Helper 71     AATCATAGAAGAGTCAATAGTGAATGAAAACA
	Helper 72     ATTAGAGCATGCCTACAGTATTGTGTCGCTAT
	Helper 73     TTAGACGCTGAGGTCTGAGAGATT
	Helper 74     CATCACCCCTTGAATGGCAGATTTTGGGTTAT
	Helper 75     AGCAAGCAGCGGCCTCATCAGGGACCAGCT
	Helper 76     AAATATATAACCTCCGGCTTAGGTTTTATCAA
	Helper 77     TCGCAAGAATGTAAATGCTGATGCTTAGGAAC
	Helper 78     TTCTACCTTTTTTTTAGTTAATTT
	Helper 79     ATAACTATCAAAGAACGCGAGAAACTTGCCAC
	Helper 80     TTAGCCATTTCAAGAAGTCCTTTTATCAGA
	Helper 81     ACCGACCGGACCTAAATTTAATGGACTTTTTC
	Helper 82     ATCCTTTCACCAAATCAAGCAACTAAATCCAA
	Helper 83     TTTTCATCTTCTTGTGATAAATTT
	Helper 84     CAAGTCCACTTTATCAGCGGCAGAGAATCATA
	Helper 85     AACGGCAGGCAGCAGCAAGATAAAGCACCA
	Helper 86     CGCTCAACATAAGAATAAACACCGTTTGAAAT
	Helper 87     CGTTATACAAAAAGCCTGTTTAGTTCACGAGT
	Helper 88     TTAAGGCGTTAAAGTAGGGCTTTT
	Helper 89     ATTACTAGAAATTCTTACCAGTATCTCTTTCT
	Helper 90     GCACGCTCAGCAGAGGAAGCATCGCTCTTT
	Helper 91     GTAATTTACGCCATATTTAACAACAAAGCCAA
	Helper 92     AGTCTCATAGTTGCATTTTAGTAAATCATATG
	Helper 93     TTAATTGAGAATGGCAGAGGCATT
	Helper 94     GATTGTCCTTTGCATCTCGGCAATAAAGTACC
	Helper 95     TTGATTCTTGAATGCCAGCAATCCAGACGA
	Helper 96     ACTGAACAAGTAATAAGAGAATATGCCAACAT
	Helper 97     AAAACAGGGTAAAGTAATTCTGTCTCTTTTTG
	Helper 98     AAATAGCAAACAACATGTTCAGCTGCGTGAAG
	Helper 99     ATATACCTGGTCTTTCGTATTCTGAATGCAGA
	Helper 100     AGAAACGAGTTTATCAACAATAGATTTTGTGC
	Helper 101     AACAGCCAAAAAATAATATCCCATAGACTCGGCGATGCT
	Helper 102     CGGATCTGAATACGCAACGCGAGCAGTCCTAATTT
	Helper 103     AATCTCGGAAACCTGCTGTTGCTTGGAAAGATTGAATCGGCTGTCTTTCCTT
	Helper 104     GCTACAATAAGAACGGGTATTAAATGGCGCAT
	Helper 105     TTCGCTCATCTCAGCCGTTTGAGCTTGAGTAACTCCGACGAC
	Helper 106     TTTGATTTGGTCATTGGTAAAATACCGTTTTT
	Helper 107     AACCTCCCCGTAGGAATCATTACCGTCATTTC
	Helper 108     CGGTATTCCAAATCAGATATAGAAAACTACCAGATGCAA
	Helper 109     GCATCCTTGGTTCTGCGTTTGCTGATGTATTTCCTAGACAAATTA
	Helper 110     AACATACAACCATCAGCTTTACCGAATATGAG
	Helper 111     AGAAATATCCTTTGCAGTAGCGCCTCTTTCCA
	Helper 112     TTTTTTCGAGCCCCCTGAACAATT
	Helper 113     GACAAAAGGAAGCGCATTAGACGGTCAGAGAG
	Helper 114     CGACAATAGCCTTTACAGAGAGACCCAATA
	Helper 115     ACGCGCCTTTTTTTGTTTAACGTCGCAATAGC
	Helper 116     TGAACAAGTATTATTTATCCCAAAAAAGTA
	Helper 117     ACGAGCATGCCTAATTTGCCAGTTAGAAGGAA
	Helper 118     ATCATTCCTTTATCCTGAATCTTACCAACGCTAAAATACCCAAACAAACTCA
	Helper 119     ATTTTCATGACTTGCGGGAGGTTTACTCAACG
	Helper 120     ATAGCAAGTAAGAACGCGAGGCGTCTTCCA
	Helper 121     GAGCCAATATTGGGAGGGTGTCAATCCTGACGGTGCTTATGGAAGCCAAGCA
	Helper 122     GAAATTGTGCCTCCAAGATTTGGATGCCACAA
	Helper 123     TCAACCGATAATTGAGCGCTAATAGAGAATTA
	Helper 124     GTTTACCACAAGAATTGAGTTAAGATAACATA
	Helper 125     ATTTTGTCAAGAAACAATGAAATAAAAAATGA
	Helper 126     AAAGAAACCGAAGCCCTTTTTAAGTCCAAATA
	Helper 127     GAAAATACGCCGAACAAAGTTACCACAAAATA
	Helper 128     ACTCCTTAAACGCAATAATAACGGCGAGCGTC
	Helper 129     CCATTAACGTCAGAAGCAGCCTTATGCACCCA
	Helper 130     GGGAGCACATATCACCATTATCGATGAAGCCT
	Helper 131     GGTGGTCTACGAAAAGACAGAATCTTTTAGCG
	Helper 132     TCTAAAAAATGCGGTTATCCATCTGGCTTATC
	Helper 133     GCAGCCAGTGAGAAAGAGTAGAAAGGCATGAA
	Helper 134     TTAGTCAGAGGGTTGAGGGAGGTT
	Helper 135     ATAACCCAGCGCCAAAGACAAAAGCATTAAAG
	Helper 136     ATAAGAGCACAATCAATAGAAAAGAGCCAT
	Helper 137     TATCTTACGCAAAGACACCACGGAACCAGTAG
	Helper 138     AGCAGATAATACATAAAGGTGGCAAACGTC
	Helper 139     ACCGAGGATTACGCAGTATGTTAGACCGTAAT
	Helper 140     TCACGAACTTCTCAGTAACAGATAAGAACTGGCACTTTAGCGTCAGACTGTA
	Helper 141     CAACATACATTGTAGCATTGTGCTCATAGC
	Helper 142     CCCTGCATATAGTGTTATTAATATTTCATAAT
	Helper 143     AGAGCTTGCCATTTTTCGTCCCCCACCGGA
	Helper 144     TTGGGGATCTTGCGGCAAAACTGCGTAACCGTCTCTCAGAACCGCCACCCTC
	Helper 145     GCCTCAATCGAATATCCTTAAGAGCTGAATAG
	Helper 146     TTGAAGGTAAATATTGACGGAAATTATTGGCGACAT
	Helper 147     GTGAATTATCACCGTCACCGACTTTTCATATG
	Helper 148     TTGGGAATTAGAGCCAGCAAAATCATAAGTTT
	Helper 149     CACCATTACCATTAGCAAGGCCGGAACATATA
	Helper 150     ACCAATGAAACCATCGATAGCAGCCAAACGTA
	Helper 151     CAGTAGCGACAGAATCAAGTTTGCTGATTAAG
	Helper 152     GCGCGTTTTCATCGGCATTTTCGGCAATTCAT
	Helper 153     CCCCTTATTAGCGTTTGCCATCTTCAAGTTGG
	Helper 154     CAAAATCACCGGAACCAGAGCCACTTCGGGGC
	Helper 155     ACCGCCTCCCTCAGAGCCGCCACCTCTCGTTC
	Helper 156     CACCACCACACCCTCAGAGCCGCCGGCGTTCA
	Helper 157     AGAGCCACGAGCCGCCGCTT
	Helper 158     CAAAGCCTTTGCATTCATCAAACGTCAGACGA
	Helper 159     AATTTACCAGGAGGTTGAGGCAGGACCAGAAC
	Helper 160     TTCAGCATTGACGTTCCAGTAATT
	Helper 161     TTGGCCTTCCAGAATGGAAAGCGCCTTGCGAC
	Helper 162     ACTGGTAATGGCTTTTGATGATACAGTCTCTG
	Helper 163     TTGCGTCATACATAAGTTTTAATT
	Helper 164     CCTCGGCACGTGTGAATCATTAGCCCCGTATA
	Helper 165     TTCGGGGTCAGTCTCAAGAGAATT
	Helper 166     TGAGACTCGCCTTGAGTAACAGTGAGGAGTGT
	Helper 167     GCGGATAATAGCGGGGTTTTGCTCTAAGAGGC
	Helper 168     AACAGTTATGAAACATGAAAGTATGCTATTTA
	Helper 169     TTGGATTAGGATGTGCCGTCGATT
	Helper 170     ACTGGCGGGCCACGTATTTTGCAAATAGGTGT
	Helper 171     GCGTAACGATAAGTATAGCCCGGAAGTACCAG
	Helper 172     TTGAGGGTTGATATCTAAAGTTTT
	Helper 173     ATCACCGTTTCCACAGACAGCCCTTGAATTTT
	Helper 174     TAAAGGAATCCAGACGTTAGTAAACATAGTTA
	Helper 175     TTTTGTCGTCTTTTGCGAATAATT
	Helper 176     CTGTATGGGGAGTGAGAATAGAAAAAAAAAAG
	Helper 177     TTTAATTTTTTCACGTTGAAAATCTCCAGGAACAAC
	Helper 178     GCTCCAAAAGGAGCCTTTAATTGTTTTCAACA
	Helper 179     AACAAGCGTTCTTGCAAATCACCATGCCAGCT
	Helper 180     CTTTCCAGTCGGGAAACCTGTCGGAAGGCG
	Helper 181     GAATCTCTATGAATGGGAAGCCTTACTGCCCG
	Helper 182     ACTCACATTAATTGCGTTGCGCTCCAAGAAGG
	Helper 183     ATAAGTCAAGGAGAAACATACGAAGTGAGCTA
	Helper 184     GTAAAGCCTGGGGTGCCTAATGAGGCGCAT
	Helper 185     CATACAAACACTGACCCTCAGCAACATAAAGT
	Helper 186     TCCACACAACATACGAGCCGGAAGTCTTAAAC
	Helper 187     CTTCATAGCGAATCACCAGAACGGCTCACAAT
	Helper 188     TTCCTGTGTGAAATTGTTATCCGCGCCATT
	Helper 189     CTGGTGCCAGGCTGCGCAACTGTTATAGCTGT
	Helper 190     CCCGGGTACCGAGCTCGAATTCGTAATCATGGTCGGGAAGGGCGATCGGTGC
	Helper 191     CCTCAGGATCGCTATTACGCCAGCAGAGGATC
	Helper 192     CTTGCATGCCTGCAGGTCGACTCTTGGCGAAA
	Helper 193     CTGCCAGTTGCTGCAAGGCGATTAGTGCCAAG
	Helper 194     TTGTCACGACGTTGTAAAACGACGGCCAAGTTGGG
	Helper 195     GTTCCTGATTAGTCGCAGTAGGCGCCATGC
	Helper 196     TGATAAGCAAGCACCTTTAGCGTTGATTGTAT
	Helper 197     AACGATACACAGGGTCGCCAGCATTAATAT
	Helper 198     TTCTTAGAAAATTTCACGCGGCGGTTGTTAAA
	Helper 199     CGCCATTCGGAAACCAGGCAAAGAACGCCA
	Helper 200     GGGCCTCTAGATCGCACTCCAGCCAGCTTTCCGGTCCTGTAGCCAGCTTTCA
	Helper 201     GGGGGATGTTGAGGGGACGACGACCAACCCGT
	Helper 202     TAACGCCAATGGGCGCATCGTAACGGATTG
	Helper 203     TTCGTTGGTGTAGGGGTTTTCCCATT
	Helper 204     CCTAACGACAAGAGTAAACATAGTGGAAAACG
	Helper 205     TCAGAAAAATTTAAATTGTAAACGATATCGGT
	Helper 206     TGACCGCTATATAAGCTAAAACTAGCATGTCAAATTCGCATTAAATTTCAAGTTGC
	Helper 207     AAGAGAATTTTTTTAACCAATAGGAAAACATC
	Helper 208     TCAGGTCAAATTCGCGTCTGGCCTCACCGCTT
	Helper 209     TGCCGGAGAAATGTGAGCGAGTAAAGTATCGG
	Helper 210     ATGATATTCCGTGGGAACAAACGGCCGTGCAT
	Helper 211     AAGCAAATGCCCCAAAAACAGGAAAACATCAT
	Helper 212     TTTGTTAAATCATATGTACCCCGGTTCTTG
	Helper 213     TCAGCTCACGATGAACGGTAATCGAGCTTGCA
	Helper 214     TCAAAAATTTGCCTGAGAGTCTGTAGAAGT
	Helper 215     TCAACATTAGGGTAGCTATTTTTGAGAGATCTACCTCAGGAG
	Helper 216     CGGATTCTCAACCGTTCTAGCTGAGCAACGGA
	Helper 217     ACCGTAATGAGACAGTCAAATCAATGTGTA
	Helper 218     TTGAGAAAGGCCGGGGATAGGTCATT
	Helper 219     GGTAACGCTGCATGAAGTAATCACGTTGATAA
	Helper 220     CGTCATTTGGCGAGAAAGCTCAGTAAAGGCTA
	Helper 221     CGGCGCTTTGTTTTTGAGATGGCATAAATTAA
	Helper 222     TTAGGGTTCGAGCATCATCTTGATCCATCAAT
	Helper 223     CCTACTGATCGGAGGTTTTACCTCCAAATGAATGGACAGCCA
	Helper 224     GACCCATAACCGTGCTCA
	Helper 225     AACCATAAAGCCTCGGTACGGTCATACTTTTG
	Helper 226     GGTAAAGATGCAATGCCTGAGTAAAGGATA
	Helper 227     TTTATATTTTAAATTCAAAAGGGTTT
	Helper 228     TTAGGGATTTCAAATAACCCTGAAGGCATCCA
	Helper 229     ACCAAAAAGCCTTTATTTCAACGCTAAGCTCA
	Helper 230     CGGGAGAACATTATGACCCTGTAAGGCATGGT
	Helper 231     AAAATTTTGAGCATAAAGCTAAAAGGCAAA
	Helper 232     TTATAAAGCCTCATAGAACCCTCATT
	Helper 233     AATCCACTTCGTGCCAAGAAAAGCACAAATGC
	Helper 234     GGAGTGGCCCAGTAGTGTTAACAGTCGGTTGT
	Helper 235     CAATATAAATTAACACCATCCTTCATTTTCAT
	Helper 236     GAATTAGCTAAATCATACAGGCACATCAAT
	Helper 237     TTTTAACATCCAAAAAATTAAGCATT
	Helper 238     TCTACAGTTGAGGGACATAAAAAGATGAACTT
	Helper 239     ATGGTCAACGAGCTGAAAAGGTGGTCGGGAGA
	Helper 240     TTGGGGCGTAACCTGTTTAGCTATACGGAGAG
	Helper 241     TCTACTAATGACCATTAGATACAAGTTGAT
	Helper 242     TTTAGATTTAGTTTAGTAGTAGCATT
	Helper 243     ACGACCAAGACGCAATGGAGAAAGTAAAAATG
	Helper 244     GCGATAACGCGTCCATCTCGAAGGTTTCGCAA
	Helper 245     CGCCAACGCGGAGTAGTTGAAATGTAATTGCT
	Helper 246     TCCCAATTTTCATTCCATATAACGTTTTAA
	Helper 247     TTTGTCTGGAAGTCTGCGAACGAGTT
	Helper 248     CGCTCGGCAGATGGGAAAGGTCATGTAATAAG
	Helper 249     CATTTTTGTGCTGTAGCTCAACATAGTCGCCA
	Helper 250     GAATATAACGGATGGCTTAGAGCTAAGGGGCC
	Helper 251     ATATGCAAAATTGCTCCTTTTGAAGCAAAC
	Helper 252     TTAGAGTACCTTTCTAAAGTACGGTT
	Helper 253     TTTAGTACTAATTTATCCTCAAGTGCGGCATA
	Helper 254     ACATACCATGCAATTAAAATTGTTTAAGAGGT
	Helper 255     GAAGCCCCAAGACGAGCGCCTTTAGATTGCAT
	Helper 256     TCCAACAGGCGAACCAGACCGGAAAGACTT
	Helper 257     TTCGAGCTTCAAAGTCAGGATTAGTT
	Helper 258     ATAAAAAATCCAAGTATCGGCAACACGACATT
	Helper 259     CTGGCCAATCACAACCACACCAGAAGCAGCATAGCAATCATA
	Helper 260     TTACCTTTCCAGGGCGAGCGCCAGCGCTTGCC
	Helper 261     ACTATTATTTAAGAGGAAGCCCGAGACCACCT
	Helper 262     CAAAAAGAAGTCAGAAGCAAAGCGCGCACGTT
	Helper 263     CAAATATCTCAAAAATCAGGTCTTGCTTTA
	Helper 264     TTATGACCATAAAGCGTTTTAATTTT
	Helper 265     ACTCATCGAGCAGGTTTAAGAGCCAACGAACC
	Helper 266     TCAGCGGCCGCACGTAATTTTTGAAACGTTTT
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