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ABSTRACT 

Vehicles powered by electricity and alternative-fuels are becoming a more popular 

form of transportation since they have less of an environmental impact than standard 

gasoline vehicles. Unfortunately, their success is currently inhibited by the sparseness of 

locations where the vehicles can refuel as well as the fact that many of the vehicles have 

a range that is less than those powered by gasoline. These factors together create a “range 

anxiety” in drivers, which causes the drivers to worry about the utility of alternative-fuel 

and electric vehicles and makes them less likely to purchase these vehicles. For the new 

vehicle technologies to thrive it is critical that range anxiety is minimized and 

performance is increased as much as possible through proper routing and scheduling. 

In the case of long distance trips taken by individual vehicles, the routes must be 

chosen such that the vehicles take the shortest routes while not running out of fuel on the 

trip. When many vehicles are to be routed during the day, if the refueling stations have 

limited capacity then care must be taken to avoid having too many vehicles arrive at the 

stations at any time. If the vehicles that will need to be routed in the future are unknown 

then this problem is stochastic. For fleets of vehicles serving scheduled operations, 

switching to alternative-fuels requires ensuring the schedules do not cause the vehicles to 

run out of fuel. This is especially problematic since the locations where the vehicles may 

refuel are limited due to the technology being new.  

This dissertation covers three related optimization problems: routing a single electric 

or alternative-fuel vehicle on a long distance trip, routing many electric vehicles in a 

network where the stations have limited capacity and the arrivals into the system are 
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stochastic, and scheduling fleets of electric or alternative-fuel vehicles with limited 

locations to refuel. Different algorithms are proposed to solve each of the three problems, 

of which some are exact and some are heuristic. The algorithms are tested on both 

random data and data relating to the State of Arizona. 
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Chapter 1 

INTRODUCTION 

The environmental, geopolitical, and financial implications of the global dependence 

on oil are well known and documented, and much is being done to lessen our use of the 

substance. One focus of this issue has been on replacing gasoline powered automobiles 

with vehicles that used electric motors or alternative-fuels. Governments and automotive 

companies have recognized the value of these vehicles in helping the environment 

(Hacker et al., 2009) and are encouraging the ownership of electric and alternative fuel 

vehicles through economic incentives (Gallagher and Muehlegger, 2011). Cities and 

private companies are assisting the owners of these new types of vehicles by creating the 

infrastructure to allow them to refueling in well trafficked areas (Senart et al., 2010; 

Vaughan, 2011), however the refueling stations are still sparsely located when compared 

to gas stations. 

For many electric vehicles, such as the Nissan LEAF or Tesla Model S Sedan, the 

primary method of recharging the vehicle battery is to plug the battery into the power grid 

at places like home or the office (Bakker, 2011; Kurani et al., 2008). Because the battery 

has a low capacity and cannot travel far before requiring a recharge, this method has the 

implicit assumption that the vehicle will be used only for driving short distances. Range 

anxiety, when the driver is concerned that the vehicle will run out of charge or fuel before 

reaching the destination, is a major hindrance for the market penetration of electric and 

alternative-fuel vehicles (Jeeninga et al., 2002; Sovacool and Hirsh, 2009; Yu et al., 

2011). These inherent problems, combined with a current lack of refueling infrastructure, 
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are inhibiting a wide-scale adoption of electric and alternative-fuel vehicles. The 

problems are especially apparent during intercity trips, where the vehicle needs to 

recharge or refuel several times before arriving at the destination.  

For the case of electric vehicles, companies are trying to overcome this limited range 

requirement in two different ways. Rapid recharge stations are locations where a vehicle 

can be charged in only a few minutes to near full capacity. Besides being much more 

costly to operate rapid recharge stations than standard electric power outlets, the vehicles 

still take more time to recharge than a gasoline vehicle would take to refuel (Botsford and 

Szczepanek, 2009). Another refueling infrastructure design is to have battery-exchange 

stations. These stations remove a pallet of batteries that are nearly depleted from a 

vehicle and replace the battery pallet with one that has already been charged (Shemer, 

2012). This method of refueling has the advantage that it is reasonably quick since the 

vehicle does not need to wait for the batteries to be charged. The unfortunate downside is 

that all of the vehicles serviced by the battery-exchange stations are required to use the 

identical pallets and batteries so that they can be interchanged without issue. In 

conjunction to the battery-exchange concept, it is assumed that there is a viable business 

model that provides a reasonable profit for companies that establish battery-exchange 

facilities for the public. Battery-exchange stations have been implemented in the 

countries of Israel and Denmark by the company Better Place (Better Place, 2013), but 

unfortunately they have yet to take off (Kershner, 2013) and this has forced the company 

into bankruptcy. The electric vehicle company Tesla Motors Inc., which currently sells 
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plug-in electric vehicles, has recently shown their cars working with battery-exchange 

technology (Motavalli, 2013). 

There are several different types of alternative-fuel vehicles that are in development 

and production (Ogden et al., 1999). Some alternative-fuel vehicles are in production for 

use in limited geographical locations, such as the Honda Civic GX powered by 

compressed or liquefied natural gas for use in the Los Angeles metropolitan area (Kuby et 

al., 2013). Toyota also plans on putting a hydrogen powered vehicle into production for 

use in California starting in 2015 (Lavrinc, 2014). These vehicles are required to refuel at 

specialized stations since they cannot use gasoline. The lack of availability of these 

stations still cause range anxiety to be a concern, even though the range of the vehicles is 

typically longer than that of electric vehicles. 

This dissertation will focus on addressing the routing and scheduling questions that 

arise from the implementation of electric and alternative-fuel vehicles. Specifically it will 

focus on several types of situations depending on the decision making entity. In the 

simplest case, the vehicle is controlled independently by the user, such as with a 

consumer purchased alternative-fuel car where the driver plans the route the vehicle will 

take. In the fleet setting, the vehicles are fully coordinated by a central planning agency, 

such as with electric buses being routed around a city. There can also be cases of partially 

centralized control, where a central agency plans a subset of the decisions. An example of 

this case would be a group of consumer electric vehicles where the drivers decide the 

origin, destination, and departure time, while the central agency decides at which stations 

the vehicles swap their batteries based on battery availability at the stations. 
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Since the problems inherent in the implementation of electric and alternative-fuel 

vehicles are similar, this dissertation will in most cases be applicable to both types of 

vehicles. The main exception to this is with electric vehicles using battery exchange 

stations, since the infrastructure has to handle the demand so that the stations do not run 

out of charged batteries. Throughout the document there will be instances where we use 

the term electric vehicles or alternative-fuel vehicles, but they are interchangeable unless 

otherwise specified. Note that throughout this document the term refueling station will be 

used to mean rapid recharging stations, battery-exchange stations, and/or alternative-fuel 

stations depending on the context, and similarly the term refuel will be used to mean 

visiting one of those stations to recharge a battery, exchange a battery, or refuel the 

vehicle respectively. 

The dissertation is broken down into four main chapters. Chapter 2 will be on how to 

route a single electric or alternative-fuel vehicle given constraints on the distance the 

vehicle can travel before refueling and where it can refuel. Chapter 3 will extend the 

work in the first section to allow for routing many vehicles at once in a network with 

limited availability at the refueling stations. This primarily concerns the case of routing 

electric vehicles with battery swapping, since the refueling stations will have a limited 

number of available charged batteries on hand. The chapter will assume that the when 

routing a vehicle what vehicles will arrive in the future is unknown. Chapter 4 focuses on 

how to schedule a fleet of electric or alternative-fuel vehicles that are to be assigned to 

trips with specified starting and ending times. This chapter is relevant for cases such as 

using alternative-fuel buses to serve different routes in a city. Finally, Chapter 5 presents 
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some additional results for each of the previous three chapters. This includes adding 

stochastic edge lengths to the single vehicle routing problem, adding variable arrival rates 

to the network routing problem, and adding the decision on where to locate refueling 

stations when planning fleet schedules. Below we give a more in depth overview of each 

of the main topics. 

1.1. Routing issues for a single vehicle 

Taking a trip, especially one through lowly populated areas, requires the driver to plan 

when the vehicle will need to be refueled. Given the abundance of gasoline stations for 

standard vehicles, drivers usually consider refueling only when their fuel tank is low. In 

the case of electric and alternative-fuel vehicles, planning when to refuel is more 

important than for gasoline vehicles, since there are few places to refuel which increases 

the possibility of completely running out of fuel. Likewise, understanding routing would 

be even more critical for planning facility placement, since the infrastructure would 

gradually involve so at least initially the density of the refueling stations would be very 

low. The low density of refueling stations makes it unlikely a station would fall directly 

on the shortest route for a vehicle, therefore one needs to develop models which look for 

the routes from origins to destinations that include detouring to refueling stations. 

Objectives for these models could be to (a) minimize the total detouring distances and (b) 

minimize the total number of refueling stops. Such shortest route models relate to the 

constrained shortest path problem (Beasley and Christofides, 1989; Desrochers and 

Soumis, 1988; Handler and Zang, 1980; Xiao et al., 2005). However, it is surprising that 

detouring is not a consideration in these models. 
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Related to this detouring issue is managing the anxiety of the driver. The anxiety 

function is the propensity of a driver to delay refueling the vehicle while increasing the 

risk of possibly running out of fuel. For example, a driver with an extremely high anxiety 

will refuel their vehicle at every possible instance, to completely minimize the possibility 

of running out of fuel. A driver with a low anxiety will refuel the vehicle as rarely as 

possible, to minimize the number of instances where she needs to stop and refuel. Most 

drivers fall somewhere in between these two extremes, balancing a desire to travel as 

quickly as possible with a desire to lower the risk of getting stuck. 

Chapter 2 of the dissertation provides methods for finding the shortest walks for 

vehicles with a limited range. These algorithms handle the case where the number of 

stops is restricted, as well as when the objective is to minimize driver anxiety rather than 

driving time. Using randomly generated data, the algorithms are tested and compared to 

finding the shortest path without being concerned about fuel. This chapter was previously 

published in the journal Networks and Spatial Economics (Adler et al., 2014), and the 

copyright is held by Springer. Section 5.1 of the dissertation modifies this problem by 

adding stochastic edge lengths to it, which may require the driver to change the route 

once they set out. 

1.2. Routing issues for multiple vehicles 

An extension of the problem of routing a single electric vehicle that uses battery 

swapping stations is to consider the case where the routes are planned by a central agency 

based on the number of batteries available at each location. If each driver is planning 

their route independently and they are each taking the shortest route possible, a highly 



 7  

visited battery-exchange station could run out of batteries leaving drivers stranded. Thus 

if the routes are planned by a central agency they can possibly avoid having vehicles 

arriving at battery swapping stations that have no charged batteries by having drivers take 

routes that are not necessarily the shortest. 

Since each vehicle arrives into the routing system when the driver turns it on and 

requests a route, the central planning agency will not know at exactly what time each 

vehicle will need to be routed. The agency may at most have the rate at which vehicles 

are expected to arrive to travel between each origin and destination pair. The decision of 

which route to send a vehicle on must be made at the time the vehicle requests it, before 

knowing what other vehicles will turn on in the future. If the objective is to minimize the 

travel time of all vehicles, this problem is an online stochastic optimization problem, 

since the decisions have to be made before full routing demand is revealed. 

Chapter 3 of this dissertation covers the topic of how to route electric vehicles in a 

network with capacitated battery-exchange stations and unknown future arrivals. The 

system is modeled as a Markov chance-decision process, which allows for the status of 

the batteries at the stations to be considered as the state of the system. Time over the 

course of the day is broken into discrete units, and during each time unit there is the 

possibility of a single car arriving. This assumes that the probability that two or more 

vehicles arriving during the same time unit is negligible, which is valid if the time units 

are sufficiently small. The vehicle arrival process is modeled as a Poisson process, and 

how they are routed are decisions which change the state of the system. Since finding the 

optimal policy for the Markov chance-decision process is intractable for all but trivial 
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cases, approximate dynamic programming techniques are used. The approximate 

dynamic programming algorithm is tested on data involving the Arizona highway system. 

Section 5.2 of the dissertation extends the problem by removing some assumptions from 

Chapter 3, such as assuming that vehicles drop off batteries having zero charge 

remaining. 

1.3. Scheduling issues 

The problems involved in scheduling a fleet of vehicles to service routes at specific 

times, for example a fleet of buses in a city, are broadly referred to as vehicle scheduling 

problems (VSP) which have been well studied and documented (Bodin et al., 1983; Dror, 

2000; Freling et al., 2001; Golden, 1988; Laporte, 2009). In these problems there are 

typically a fleet of vehicles each which is stored at a depot, and there are a set of trips to 

serve throughout the day each with specific start and end times and locations. Traveling 

between the locations has a specific cost, and the objective of the problem is to serve all 

of the trips with a minimum cost. In the case of a fleet of buses in the city, the tasks 

would be bus trips with specific start and end times that need to be served for picking up 

and dropping off passengers. 

Changing the fleet to one that uses electric or alternative-fuel vehicles increases the 

complexity of the problem because of the limited range of the vehicles. This range limit 

will require the vehicles to refuel several times during their use throughout the day, 

sometimes having to detour significantly from the original route due to the limited 

number of refueling stations. Refueling is also complicated by the fact that the vehicle 

cannot refuel during an assigned trip, only before or after a trip is completed. Thus, 
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despite the fact that electric and alternative-fuel vehicles have less of an environmental 

impact than gasoline ones, some inefficiency is added by requiring frequent stops. An 

explicit requirement of refueling, sometimes several times during a set of trips, adds not 

only the refueling requirements for the vehicles but also a detouring component to 

planning that is not present in the standard VSP problems. Cases of the vehicle 

scheduling problem with time and fuel constraints have been covered before, but not with 

the specific ability to refuel at specialized stations. 

In Chapter 4 of this dissertation we present the alternative-fuel multiple depot vehicle 

scheduling problem. This problem takes the classic multiple depot vehicle scheduling 

problem and adds a constraint on the distance a vehicle can travel before refueling. The 

refueling can be done at a fixed set of specified locations. An exact column generation 

algorithm is proposed to solve the problem, and several heuristic methods are discussed. 

The column generation algorithm and one heuristic algorithm are tested on both 

randomly generated data and data from Valley Metro, the organization that provides 

public transportation for the Phoenix Arizona metropolitan area. In Section 5.3 of the 

dissertation we modify the problem to allow for the decision of where to place the 

refueling stations to be made in addition to the scheduling decisions. 

Parts of this introduction chapter were included in Mirchandani et al. (Mirchandani et 

al., 2014). 
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Chapter 2 

THE ELECTRIC VEHICLE SHORTEST WALK PROBLEM 

This chapter focuses on only one aspect of the overall electric and alternative-fuel 

vehicle design problem: finding the shortest walk from an origination point 𝑠 to a 

destination 𝑡 with minimum cost. This is route referred to as a “walk” as opposed to a 

“path” since a detour to exchange or charge a battery may include repeat arcs which are 

normally not included in shortest paths. In this chapter for simplicity we will assume the 

vehicles are electric vehicles (EV) and the stations are battery-exchange stations, 

however this problem applies to any scenario where there only a limited number of places 

for “refueling.” This is true not only for electric vehicles but also other alternative fuel 

vehicles where a refueling infrastructure still needs to be developed, for example 

hydrogen powered vehicles (Ogden et al., 1999) where empty tanks or canisters are 

exchanged for full ones at special stations. 

Consider the underlying scenario. Taking a trip, especially one through lowly 

populated areas, requires the driver to plan when the vehicle will need to be refueled. 

Given the abundance of gasoline stations for standard vehicle, drivers of these vehicles 

usually consider refueling only when their fuel tank is low. The search for a good 

refueling point can be further aided by navigation systems and smart phone apps, such as 

Google Maps, that provide motorists the location of gasoline stations in the vicinity. In 

the case of EVs, planning refueling is more important than for gasoline vehicles, since 

there are few places to recharge. Hence, one needs to develop models which look for the 

shortest routes from origins to destinations that include detouring when necessary. 
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The problem of finding the shortest path for an electric vehicle was originally 

discussed by Ichimori et. al. (Ichimori et al., 1981) where a vehicle has a limited battery 

and is allowed to stop and recharge at certain locations. This chapter improves on that 

work by adding a limit to the number of times the vehicle can stop, as well as running 

empirical tests to validate the algorithm and describing several special case modifications 

(such as minimizing the maximum anxiety). We also provide an illustrated example of 

the algorithm. The problem presented by Ichimori et al. was discussed by Lawler 

(Lawler, 2001) who sketched a polynomial algorithm for its solution. If each arc requires 

an amount of fuel that does not depend on the length of the arc, and the goal is to find the 

shortest path constrained on the amount of fuel used (and the vehicle cannot stop to 

refuel), then the problem is exactly the shortest weight-constrained path problem (Garey 

and Johnson, 1979). This problem is NP-hard and has been discussed extensively in the 

literature (Beasley and Christofides, 1989; Desrochers and Soumis, 1988; Handler and 

Zang, 1980). Adding refueling stations to the shortest weight-constrained path problem 

has been discussed by Laporte and Pascoal (Laporte and Pascoal, 2011) and Smith et al. 

(Smith et al., 2012), although since the fuel and length components of the arcs are not 

related the problem is still NP-hard. The problem described in this chapter can be solved 

in polynomial time since the fuel and length components of each arc are equal; this 

allows for more efficient solutions. Sachenbacher (Sachenbacher, 2010) has studied route 

planning for electric vehicles on a single battery use where parts of the trip can return 

energy to the battery. 
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There is a complementary location problem, which is not addressed in this chapter, 

where we wish to locate “refueling” stations in a region where there are currently none. 

The problem of optimally locating such refueling stations has been investigated by 

several researchers (Capar and Kuby, 2012; Kuby and Lim, 2007; Kuby, 2005; Lim and 

Kuby, 2010; Upchurch et al., 2009). Typically, they use modifications of flow capturing 

or flow interception models (Berman et al., 1992; Hodgson, 1990; Rebello et al., 1995), 

to cover as many Origin-Destination routes as possible with a given number of stations. 

To compare proposed models, standard 𝑝-median and 𝑝-center problems (e.g. 

(Mirchandani and Francis, 1990)) have been used as proxies for maximizing proximity to 

stations and coverage by stations, respectively, for locating the stations. The developed 

models have been compared empirically for specific scenarios in order to choose one 

location model over another (Lim and Kuby, 2010). However, these models do not take 

into consideration the likely possibility of vehicles making detours to refuel; therefore the 

direct consideration of locating facilities to minimize detouring distances and or 

minimizing detouring stops have not been included in the model developments. 

Another location issue relates to the effect of locating battery exchange-stations on 

origin and destination traffic patterns of the driving population. If travelers from origins 

to destinations do not choose the shortest routes but instead choose routes that minimize 

their detouring costs due to refueling, then the addition of battery exchange stations 

would change traffic patterns to a new equilibrium. There has been some recent 

consideration of the effect of EVs on traffic assignment and traffic equilibrium, but the 
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research is only on restricting the distances electric vehicles can travel and assumes no 

refueling. (Jiang et al., 2012). 

2.1. The shortest electric vehicle walk problem 

We will assume a network model. The prototypical problem is to find the “best” walk 

from a given origin to a given destination, possibly making battery exchanges (we will 

refer this generically to “refueling” when the context is clear). Any solution walk must 

have no segment without refueling with a length greater than 𝜔, where 𝜔 is the distance 

the vehicle can travel on a full battery. The vehicle must make no more than 𝑝 battery 

exchanges, where 𝑝 > 0 (when 𝑝 = 0 this is the trivial shortest path problem). We use 

the general term route to refer to the movement of an electric vehicle on the network that 

includes a set of refueling stops along the electric vehicle walk. While there are many 

different criteria that could be used, initially consider the objective being optimized is the 

minimization of travel distance of the route, i.e. the length of the walk the electric vehicle 

route takes. 

Let 𝐺 = (𝑉, 𝐸) be an undirected network with node set 𝑉 and edge set 𝐸, and let 𝑛 =

|𝑉| and 𝑚 = |𝐸| be the number of vertices and edges respectively. Let vertices 𝑠, 𝑡 ∈

𝑉represent the starting and ending points of a trip by the electric vehicle. Let 𝑑𝑖𝑗 denote 

the length each edge (𝑖, 𝑗) ∈ 𝐸 and let 𝐵 ⊆ 𝑉 be the given set of charging locations. We 

define the electric vehicle shortest walk problem (EV-SWP) as the problem of finding the 

shortest walk in 𝐺 starting at 𝑠 and ending at 𝑡 such that any walk contained in the path 

starting and ending at nodes in {𝑠, 𝑡} ∪ 𝐵 has length at most 𝜔 and the vehicle stops to 
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recharge at most 𝑝 times. In the unconstrained-stops version of the problem as many 

refueling stops make be taken as necessary (𝑝 = ∞). 

The EV-SWP can be formulated as a linear integer program. In our solution, the 

electric vehicle will likely make several trips between different refueling stations. Let 

these walks between {𝑠, 𝑡} ∪ 𝐵 be called subtrips. The vehicle will make at most 𝑝 + 1 of 

these subtrips, since the vehicle can only stop at 𝑝 refueling stations. Define the decision 

variable 𝑥𝑖𝑗𝑘 for (𝑖, 𝑗) ∈ 𝐸 and 𝑘 ∈ {1, … , 𝑝 + 1} as whether or not the electric vehicle 

will travel from 𝑖 to 𝑗 during its 𝑘th subtrip. Let 𝑦𝑖𝑘 for 𝑖 ∈ 𝐵 ∪ {𝑡} and 𝑘 ∈ {1,… , 𝑝} 

represent the decision for whether or not the vehicle stops at station 𝑖 after subtrip 𝑘. The 

index 𝑖 can also take the value of 𝑡 to represent the vehicle reaching the destination 

without having to exchange batteries the full  𝑝 times and so it artificially exchanges at 

the end point. The integer program is now the following: 

 

Minimize�� ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑖,𝑗:(𝑖,𝑗)∈𝐸
𝑝+1
𝑘=1   (1) 

s. t.�� ∑ 𝑥𝑗𝑖𝑘𝑗:(𝑗,𝑖)∈𝐸 − ∑ 𝑥𝑖𝑗𝑘𝑗:(𝑖,𝑗)∈𝐸 = 0���∀𝑖 ∈ 𝑉 ∖ (𝐵 ∪ {𝑠, 𝑡}), 𝑘 = 1,… , 𝑝 + 1  (2) 

∑ 𝑥𝑗𝑖𝑘𝑗:(𝑗,𝑖)∈𝐸 + 𝑦𝑖𝑘−1 − ∑ 𝑥𝑖𝑗𝑘𝑗:(𝑖,𝑗)∈𝐸 − 𝑦𝑖𝑘 = 0�����∀𝑖 ∈ 𝐵 ∪ {𝑡}, 𝑘 = 2,… , 𝑝  (3) 

∑ 𝑥𝑗𝑖1𝑗:(𝑗,𝑖)∈𝐸 − ∑ 𝑥𝑖𝑗1𝑗:(𝑖𝑗)∈𝐸 − 𝑦𝑖1 = 0�����∀𝑖 ∈ 𝐵 ∪ {𝑡}  (4) 

∑ 𝑥𝑖𝑗𝑝+1𝑗:(𝑖,𝑗)∈𝐸 + 𝑦𝑖𝑝 − ∑ 𝑥𝑗𝑖𝑝+1𝑗:(𝑗,𝑖)∈𝐸 = 0�����∀𝑖 ∈ 𝐵  (5) 

∑ 𝑥𝑠𝑗𝑘𝑗:(𝑠,𝑗)∈𝐸 − ∑ 𝑥𝑗𝑠𝑘𝑗:(𝑗,𝑠)∈𝐸 = 0�����𝑘 = 2,… , 𝑝 + 1�����  (6) 

∑ 𝑥𝑠𝑗1𝑗:(𝑠,𝑗)∈𝐸 − ∑ 𝑥𝑗𝑠1𝑗:(𝑗,𝑠)∈𝐸 = 1�����  (7) 

∑ 𝑥𝑗𝑡𝑝+1𝑗:(𝑗,𝑡)∈𝐸 + 𝑦𝑡𝑝 − ∑ 𝑥𝑡𝑗𝑝+1𝑗:(𝑡,𝑗)∈𝐸 = 1  (8) 

∑ 𝑦𝑖𝑘𝑖∈𝑅∪{𝑡} = 1�����𝑘 = 1,… , 𝑝  (9) 

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑗:(𝑖,𝑗)∈𝐸𝑖∈𝑉 ≤ 𝜔�����𝑘 = 1,… , 𝑝 + 1  (10) 

𝑥𝑖𝑗𝑘 ∈ {0,1}�����∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1,… , 𝑝 + 1  (11) 

𝑦𝑖𝑘 ∈ {0,1}�����∀𝑖 ∈ 𝐵 ∪ {𝑡}, 𝑘 = 1,… , 𝑝  (12) 
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Constraints (2) ensure the conservation laws hold for each vertex not in 𝐵 ∪ {𝑠, 𝑡}. 

Constraints (3) through (6) ensure that conservation laws hold for the vertices in 𝐵 ∪

{𝑠, 𝑡}, since special care is need to ensure that when a battery is exchanged the next 

subtrip starts. Constraints (7) and (8) ensure that the vehicle starts at origin 𝑠 and ends at 

destination 𝑡. Constraint (9) ensures that between each subtrip exactly one battery 

exchange station (or 𝑡) is visited. Constraint (10) ensures that the vehicle can indeed 

traverse each subtrip without running out of battery power. Because the problem is 

formulated as a binary integer program here, using an off-the-shelf optimization program 

to solve it will likely take non-polynomial time. 

If there is no limit on the number of stops (i.e. the vehicle can make up to |𝐵| stops) 

and the only concern is to minimize total distance, then it can be shown that the problem 

can be easily solved in polynomial time using the standard shortest path labeling 

algorithm (Ahuja et al., 1993), albeit up to |𝐵| times. We will first describe the algorithm 

with an illustration before we analyze it. Suppose we wish to travel from vertex 𝑠 to 

vertex 𝑡 in the network of Fig. 1. The triangular nodes in the figure are refueling stations. 
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Fig. 1. The example road network. 

When the range 𝜔 is large, say greater than 50, then the shortest path from 𝑠 to 𝑡 can 

be found using a shortest path algorithm such as Dijkstra’s (Ahuja et al., 1993); the bold 

path shown in Fig. 1 is the shortest path of length 39. Note that this path does not pass 

any refueling points.  

If the range was 20 then the vehicle will have to refill at least once to reach vertex t. 

The shortest path tree from 𝑠 to all reachable nodes within distance 𝜔 = 20 is shown in 

Fig. 2. As shown in the figure, two stations are reachable from 𝑠, the station at vertex 𝑒 

and the station at vertex 𝑖.  
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Fig. 2. The example network with range-limited shortest path tree from 𝑠 and the 

distances to reachable nodes from 𝑠. 

We then can do the same with these two stations as the starting points. Fig. 3 shows the 

range limited shortest path tree starting at the green station. Now from the station 𝑒 we 

can reach three stations, 𝑖, 𝑘 and, 𝑚 at distances 4, 20, and 18 as shown in the boxed 

labels of Fig. 3.  
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Fig. 3. The example network with range-limited shortest path tree from 𝑒 and distances to 

nodes reachable from 𝑒. 

We can repeat this for each of the reachable stations and will come up with the following 

network of range-limited shortest paths between stations, origin and destination, where 

each of the edges correspond to a path in a range-limited shortest path tree. We refer to 

this undirected network as the refueling shortest path network (RSPN) denoted by 𝐺′ =

(𝑉′, 𝐸′), and let 𝑛′ = |𝑉′| and 𝑚′ = |𝐸′|. Observe that RSPN can be obtained in, at most, 

(|𝐵| + 1) iterations of the shortest path algorithm: one iteration for the starting node and 

one for each of the stations. Fig. 4 shows the RSPN for the example. 

 

Fig. 4. Refueling Shortest Path Network (RSPN) for the example. 
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This corresponds to electric vehicle walk in the original network 𝑠-𝑎-𝑑-𝑒(refuel)-𝑑-𝑔-

𝑚(refuel)-𝑛-𝑡. The paths 𝑠-𝑒, 𝑒-𝑚, and 𝑚-𝑡 are each subtrips in the solution. Note that 

the walk includes a cycle 𝑑-𝑒-𝑑 and a detour 𝑔-𝑚-𝑛 as compared to the shortest segment 

𝑔-𝑙-𝑚 in the shortest path from 𝑠 to 𝑡 (see Fig. 5). 

 

Fig. 5. The EV shortest walk for the example problem. 

Theorem: The EV shortest walk problem can be solved in 𝒪(|𝐵|�(𝑛 log2 𝑛 +

𝑚))�time. 

Proof: First note that we solved |𝐵| + 1 shortest path problems for starting node s and 

one for each station in set 𝐵. The best known bound for a shortest path algorithm is 

𝑛 log2 𝑛 + 𝑚 where 𝑛 is the number of vertices and 𝑚 the number of edges in the 

original network. Finally, there is the step that solves the problem on the refueling 

shortest path network which has complexity 𝒪(|𝐵|(log2|𝐵| + 𝑚′)) if solved by the best 
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known algorithm; this is asymptotically dominated by 𝒪(|𝐵|�(𝑛 log2 𝑛 + 𝑚)). The 

theorem follows.  

2.2. The restricted EV shortest walk problem 

Up to now the number of stops to reach the destination has not been restricted. In the 

restricted case 𝑝 < |𝐵| stops, we need to find the solution to a stop-limited walk in 

RSPN. That is, we need the solution to the shortest walk between vertices 𝑠 and 𝑡 that has 

at most 𝑝 + 1 edges in RSPN. It is not immediately clear if this problem still polynomial 

time solvable. The structure of the problem allows us to develop a preprocessing 

polynomial network transformation to the classical shortest path problem which of course 

is polynomial solvable.  

Notice that for a given graph 𝐺 and 𝑏1, 𝑏2 ∈ 𝐵, there is a single shortest path to get 

between the two refueling stations 𝑏1 and 𝑏2 that does not depend on 𝑠 and 𝑡. If we know 

that the vehicle is going to refuel at 𝑏1 then refuel next at 𝑏2, we do not need to know any 

other information to find the path the vehicle will take between these two refueling 

stations. If the length of the shortest path between 𝑏1 and 𝑏2 is greater than 𝜔, then no 

feasible solution can have the vehicle refuel at 𝑏1 then refuel next at 𝑏2. So now we will 

create a directed graph where the vertices represent the refueling stations as well as 𝑠 and 

𝑡, and directed edges represent paths from stations and the start/end nodes to other 

stations and start/end nodes that are reachable with fuel 𝑤. If we are restricted to 𝑝 

refueling stops, then 𝑝 + 2 copies of these directed arcs are needed. One may think of 

each network copy signifies the reachable nodes with a fully-charged battery (or with a 

full fuel tank). The RSPN for the example gives the multi-level network shown in Fig. 6 
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when we are restricted to a maximum of 2 refueling stops (edge lengths are removed for 

readability).  

 

Fig. 6. Multilevel network when the number of refueling stops is restricted to a maximum 

of two. 

We create a directed graph 𝐺′′ = (𝑉′′, 𝐸′′) that is a transformation of RSPN, 𝐺′ =

(𝑉′, 𝐸′). The vertex set 𝑉′′ = {𝑥[𝑖]: 𝑥 ∈ {𝑠, 𝑡} ∪ 𝐵, 𝑖 ∈ {0,1, … , 𝑝 + 1}} has 𝑝 + 2 copies 

of each vertex in {𝑠, 𝑡} ∪ 𝐵. We define the arc set as 𝐸′′ = 𝐸1
′′ ∪ 𝐸2

′′ where 𝐸1
′′ =

{(𝑎[𝑖], 𝑏[𝑖+1]): (𝑎′, 𝑏′) ∈ 𝐸′, 𝑖 ∈ {0,1, … , 𝑝}} and 𝐸2
′′ = {(𝑡[𝑖], 𝑡[𝑖+1]): 𝑖 ∈ {0,1, … 𝑝}}. The 

distance mapping is defined for arcs in 𝐸1
′′ as 𝑑′′(𝑎[𝑖], 𝑏[𝑖+1]) = 𝑑′(𝑎′, 𝑏′) and for arcs in 
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𝐸2
′′ as 𝑑′′(𝑡[𝑖], 𝑡[𝑖+1]) = 0. Thus, the distances in this new graph between levels are the 

same as those between vertices in the RSPN, except for the addition of zero distance 

edges which allow the vehicle to go from any of the 𝑡[𝑖] nodes to the 𝑡[𝑝+1] node penalty 

free. This graph has the property that any path from 𝑠[0] to 𝑡[𝑝+1] contains exactly 𝑝 + 1 

arcs, and corresponds to a path in 𝐺′ that travels from 𝑠 to 𝑡 in at most 𝑝 + 1 edges. Thus, 

to find the stop-limited shortest walk, we need to find the shortest path in 𝐺′′ from 𝑠[0] to 

𝑡[𝑝+1]. The shortest path will contain exactly 𝑝 intermediate nodes, and the number of 

refueling stations the vehicle will stop at corresponds to the number of intermediate 

nodes in the path until reaching the first termination node 𝑡[𝑖]. The bold edges in Fig. 6 

show this shortest path for the example: 𝑠0 to 𝑒1 (then stopping to exchange batteries), 𝑒1 

to 𝑚2 (again stopping to exchange batteries), and then to destination 𝑡3, with the travel 

distance 43 as discovered earlier.  

Theorem: The 𝑝-stops limited EV shortest walk problem can be solved in 

𝒪(𝑝|𝐵|�(𝑛 log2 𝑛 + 𝑚)) time. 

Proof: Let  𝑇1 represent the time required to transform 𝐺′ into 𝐺′′, and let 𝑇2 represent the 

time required to find the shortest path in 𝐺′′ from 𝑠[0] to 𝑡[𝑝+1]. Note that 𝑇1 =

�𝒪(𝑝(𝑛′ + 𝑚′)) since it creates 𝑝 + 1 copies of 𝑉′ and 𝑝 copies of 𝐸′. Since 𝑛′ = |𝐵| +

2, this means  𝑇1 = �𝒪(𝑝(|𝐵| + 𝑚′)). Also, by the construction of 𝐺′′ note that |𝑉′′| ≤

(𝑝 + 2)(|𝐵| + 2) and |𝐸′′| ≤ (𝑝 + 1)𝑚′. Thus finding the shortest path in 𝐺′′ will take 

𝑇2 = �𝒪(𝑝(|𝐵| log2 𝑝|𝐵| + 𝑚′)) time. 
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The overall run time 𝑇 of the 𝑝-stops limited EV walk algorithm therefore is from first 

finding 𝐺′, the RSPN, whose complexity is O(|𝐵|�(𝑛 log2 𝑛 + 𝑚)), plus 𝑇1 =

�𝒪(𝑝(|𝐵| + 𝑚′)) and plus 𝑇2 = �𝒪(𝑝(|𝐵| log2 𝑝|𝐵| + 𝑚′)) time. All terms are dominated 

by 𝒪(𝑝|𝐵|�(𝑛 log2 𝑛 + 𝑚)). The theorem follows. The 𝑝-stops limited case has a higher 

complexity due to having to make 𝑝 + 2 copies of the RSPN graph, which is not needed 

if the number of stops is unlimited.  

2.3. Experimental results 

We tested the algorithm on randomly generated data to determine effectiveness of the 

algorithm. When generating random networks, we wanted to ensure that the random 

networks reasonably resembled potential real world road networks. This required the 

network to be planar, and for vertices in the network to be positioned in ℝ2. Further the 

edges between vertices had to relate to the distances between the vertices in ℝ2. Thus, the 

random network data was generated in the following way. On input 𝑛, the nodes 𝑉 such 

that |𝑉| = 𝑛 were randomly selected from {1,2, … ,100}2, representing points in a 

discretized plane. The edges 𝐸 were defined as the Delaunay triangulation of the points 

𝑉, and for each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, the length of the edge was set to be the 𝐿1 (Manhattan) 

distance between 𝑣𝑖 and 𝑣𝑗 . This method of generating the edges was used since it would 

allow for the edges to be both planar and reasonably sized in relation to the node 

locations. The vehicle was set to have a distance capacity 𝜔 = 35. 

To determine which vertices should be the refueling stations, the following algorithm 

was implemented: 
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1. Initialize 𝐵 as a random vertex 𝑣 ∈ 𝑉. 

2. For each 𝑣 ∈ 𝑉, find the minimum distance 𝛿(𝑣) between 𝑣 and any element of 

𝐵 ∖ {𝑣}. 

3. Let �̇� be the vertex with the maximum distance. If 𝛿(�̇�) ≤ 𝜔, then stop. 

Otherwise, let �̈� ∈ 𝑉 ∖ 𝐵 such that �̈� has the maximum distance of all vertices 

that are not already refueling stations. Add �̈� to 𝐵 and repeat step 2. 

4. Picking station locations in this manner has the advantage that all of the vertices 

in the network will be within battery distance of a refueling station. After 𝐵 is 

determined, 𝑠 and 𝑡 are selected randomly from the vertices 𝑉 ∖ 𝐵. 

Once 𝐺, 𝐵, 𝑠 and 𝑡 are generated, the graph is checked to ensure there exists a feasible 

way for the vehicle to get from 𝑠 to 𝑡 using the refueling stations of 𝐵. If there is not, the 

randomly generated road network is thrown out. While this method generated data that 

had many of the properties of real-world road networks, it did not allow for direct control 

of the number of refueling stations and the number of edges. Fig. 7 shows an example 

random network. 

 

Fig. 7. An example randomly generated network and its corresponding RSPN. 

Intersection

BE station

Start/end vertex
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We generated 1,000 random networks with 𝑛 = 100, and compared three different 

shortest paths: 

1. The path if there was no distance constraint, i.e. the shortest direct path between 

𝑠 and 𝑡. 

2. The path if the vehicle had a distance constraint, but had no limit on the amount 

of times it could stop. 

3. The path if the vehicle was allowed to make one less stop than that in path (2). 

In the vast majority of casts (985) there was no feasible stop-restricted path, i.e. the 

shortest path with distance constraints already also had the least number of stops. Fig. 8 

shows the runtime of the shortest walk algorithm without stop limit as a function of the 

number of refueling stations in the network. Each trial had a different number of edges, 

which explains some of the variance in the runtime. Overall, the runtime increases 

linearly as the number of charging stations increases, which is expected. 
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Fig. 8. The number of charging stations in the network versus the runtime of the 

algorithm. 

For the stop-restricted algorithm, Fig. 9 shows the number of allowed stops versus the 

runtime of the algorithm with a fitted 3rd degree polynomial curve. This graph only 

includes generated instances where the number of allowed stops was at least 1. There 

does not appear to be a strong relationship between the number of stops versus the 

runtime. This is due to the fact that finding the RSPN takes substantially more time than 

finding the shortest path in the multi-level network. 
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Fig. 9. The number stops allowed in the restricted algorithm versus the runtime of the 

algorithm. 

Fig. 10 shows the length of the fuel constrained shortest walk compared to the 

unconstrained shortest path between the starting and ending nodes. In most cases the 

increase in route length due to detouring is less than 10%, however it can be over twice as 

long due to unfortunate refueling station placement.  
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Fig. 10. A comparison of path lengths between the unconstrained shortest path and the 

EV shortest walk. 

We also compared the solutions from our algorithm to the solutions generated by using 

CPLEX to solve the integer programming formulation in equations (1)-(12). We took 

each of the 1,000 randomly generated networks used earlier and solved them using the 

IBM ILOG CPLEX IDE. We found that the CPLEX solver gave the same solution for 

each of the problems, typically in a matter of seconds, provided a solution existed. In the 

event that there was no feasible solution the algorithm did not seem to halt, even after 

twenty minutes. Thus to ensure a solution existed, for each of the 1,000 problems we set 

𝑝 to be either the number of stops used in the unconstrained-stops version of the problem, 

or 1 if the solution to the unconstrained-stops problem was a route without any battery-

exchanges. A comparison of the runtimes of the integer program on the 1,000 problems is 

shown in Fig. 11. While the vast majority of the problems ran in under 5 seconds, several 

of the sample problems took well over 20 seconds and four had to be cut off after running 

for 10 minutes. This is compared to our algorithm in MATLAB which consistently ran 
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under a tenth of a second. Table 1 shows the runtimes and route lengths for the EV-SWP 

algorithm in MATLAB compared to the CPLEX implementation (when it successfully 

completed) and the unconstrained shortest path algorithm solved in MATLAB. 

 

Fig. 11. A histogram of the runtimes for the CPLEX formulation for the EV-SWP. 

Table 1  

A comparison of the runtimes for the EV-SWP in MATLAB and the formulation solved 

in CPLEX, along with the runtimes for unconstrained shortest path algorithm in 

MATLAB 
Measure   Runtime (seconds)   Route length 

    EV-SWP 

(MATLAB) 

EV-SWP 

(CPLEX) 

Shortest path 

(MATLAB) 

  EV-SWP Unconstrained 

Mean  0.0599 3.5755 0.0004  79.403 65.889 

Median  0.0567 1.857 0.0004  75.500 65.500 

95th 

percentile 
  0.0641 5.7682 0.0005   162.000 118.000 

 

2.4. Special cases 

The algorithm can be adjusted to handle the case that the vehicle begins the trip with only 

𝜔𝐿 fuel, where 𝜔𝐿 < 𝜔. The only change required is to instead of using a given distance 

function 𝑑, use a distance function 𝑑𝐿 defined as 
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𝑑𝐿(𝑒) = {
𝑑(𝑒) + (𝜔 − 𝜔𝐿) 𝑒�adjacent�to�𝑠

𝑑(𝑒) otherwise
 

Using this distance function will cause the vehicle to artificially travel a less than distance 

𝜔 − 𝜔𝐿 after the trip begins, which is equivalent to starting with only 𝜔𝐿 fuel.  

The algorithm can also be altered for the case when the vehicle needs to go from 𝑠 to 𝑡 

and back to 𝑠. Given 𝐺 = (𝑉, 𝐸), 𝑠, 𝑡, 𝐵, 𝑑, 𝜔, 𝑝, create a new undirected instance 𝐺∗ =

(𝑉∗, 𝐸∗), 𝑠∗, 𝑡∗, 𝐵∗, 𝑑∗, 𝜔∗, and 𝑝∗ where: 

𝑉∗ = {𝑣𝑖: 𝑣 ∈ 𝑉, 𝑖 ∈ {1,2}} 

𝐸∗ = {(𝑎1, 𝑏1): 𝑎, 𝑏 ∈ 𝑉, (𝑎, 𝑏) ∈ 𝐸} ∪ {(𝑎2, 𝑏2): 𝑎, 𝑏 ∈ 𝑉, (𝑎, 𝑏) ∈ 𝐸} ∪ {(𝑡1, 𝑡2)} 

𝑑∗(𝑎𝑖, 𝑏𝑖) = 𝑑(𝑎, 𝑏)�����∀𝑎, 𝑏 ∈ 𝑉, (𝑎, 𝑏) ∈ 𝐸, 𝑖 = {1,2} 

𝑑∗(𝑡1, 𝑡2) = �0 

𝑠∗ = 𝑠1,�����𝑡
∗ = 𝑠2,�����𝐵

∗ = {𝑏𝑖: 𝑏 ∈ 𝐵, 𝑖 ∈ {1,2}},�����𝜔∗ = 𝜔,�����𝑝∗ = 𝑝. 

This new graph 𝐺∗ is two copies of the original graph 𝐺, where the vertices and edges are 

labelled by which copy they are in. The starting point is the vertex 𝑠 in the first copy and 

the ending point is the vertex 𝑠 in the second copy. The graph also has a distance zero 

edge between 𝑡1 and 𝑡2 (the vertex 𝑡 in the two copies) which forces the vehicle to travel 

through the point 𝑡1, the original destination, on its way from 𝑠1 to 𝑠2. After the shortest 

walk is found, the {1,2} labels can be removed and the shortest route corresponds to the 

optimal solution in the original graph. The algorithm for going to and from a destination 

is the same as the original problem on a graph that is twice as large. 
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2.5. Routes that minimize anxiety 

We now define a related problem shortest route problem that considers driver’s anxiety.  

Here we define the anxiety level of the driver as a monotonically increasing function of 

the charge (fuel) used from the battery from full; the lower the charge (fuel) the higher 

the anxiety. We assume that like in previous sections the level of charge in the battery 

decreases as the vehicle travels, until it reaches a refueling station.  Hence, the level of 

anxiety monotonically increases with distance traveled since fully charged. Every time 

the vehicle recharges the driver’s anxiety drops to its minimum. Fig. 12 gives a typical 

trajectory of anxiety as driver travels from 𝑠 to 𝑡. 

 

Fig. 12. Typical anxiety trajectory for a trip. Here the highest anxiety is just before first 

refuel. 

Notice that since anxiety is monotonic the driver’s anxiety is lowest when the vehicle is 

fully charged and reaches the highest point when the vehicle has traveled furthest after 

refueling. Therefore the problem of minimizing the maximum anxiety is simply that of 

finding a walk from 𝑠 to 𝑡 with the minimum maximum edge in the RSPN. Because the 

RPSN is an undirected graph, finding a minimum spanning tree (MST) in the RSPN 

gives all the min-max paths in RSPN, in particular the min-max path from 𝑠 to 𝑡 (Ahuja 

Distance

Anxiety

Start Refuel 1 Refuel 2 End
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et al., 1993); the best complexity of finding MST is simply 𝒪(𝑚′ log2 𝑛′) using Kruskal’s 

algorithm. As an example, the MST for the example RSPN is given in the bold lines in 

Fig. 13. 

 

 

Fig. 13. MST of the example RSPN. 

 

Now the min-max anxiety path is 𝑠-𝑎-𝑑-𝑒(refuel)-𝑖(refuel)-ℎ-𝑘(refuel)-𝑜-𝑡 with the total 

travel distance of 44 whereas the walk that minimized distance had distance length of 43. 

Notice that this route has three refueling stops with the maximum anxiety corresponding 

to the arc of length 16 from station 𝑖 to station 𝑘. The overall complexity for the 

unconstrained-stop case, including the time for building the RSPN, is 𝑂(|𝐵|(𝑛 log2 𝑛 +

𝑚)) since finding the minimum spanning tree is dominated by complexity in creating the 

RSPN. 

 

If we were restricted to at most 𝑝 stops on the 𝑠-𝑡 route, then the same solution approach 

will apply the the problem as to that of the restricted case for the shortest walk problem. 

Again create a (𝑝 + 2)-level directed RSPN network using the same procedure as Section 
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3 and look for a min-max directed path from 𝑠 to 𝑡 in this network. Such a problem was 

referred to as the bottleneck shortest path by Kaibal and Peinhardt (Kaibel and Peinhardt, 

2006), where the bottleneck corresponds to the largest arc in the path. Such a path can be 

found by modifying Dijkstra’s algorithm so that the temporary labeling updates to next 

node 𝑗 from node 𝑖 uses the operation: 

New�temporary�label�on�node�𝑗� = max(permanent�label�on�𝑖, new�arc�length�𝑑𝑖𝑗) 

Hence, the overall complexity is the same as for the shortest walk case: 

𝒪(𝑝|𝐵|(𝑛 log2 𝑛 + 𝑚)). Kaibal and Peinhardt propose an algorithm for the bottleneck 

shortest path problem which runs in 𝒪(𝑚′ log log 𝑚′) time, and if implemented would 

give a complexity of 𝒪(|𝐵|(𝑛 log2 𝑛 + 𝑚) + 𝑚′ log log𝑚′), which may or may not be 

lower depending on the graph. Returning to the example, if we were restricted to 

maximum of 2 stops, then the solution min-max path is 𝑠0-91-112-𝑡3 which also has a 

max arc length of 16 and a distance of 44 units. 

This approach to finding the min-max anxiety can also handle the special cases from 

Section 5. In the case where the trip begins with partially charged battery, simply add a 

dummy arc (𝑠𝑜, 𝑠)�of distance corresponding to charge 𝜔 − 𝜔𝐿�and repeat above 

procedure to find min-max anxiety path with or without stop-restrictions. To find the 

shortest route from 𝑠 to 𝑡 and back, generate a new graph which has two copies of the 

original graph using the procedure in Section 5, then run the min-max anxiety path 

algorithm on it. 
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2.6. Conclusion 

Although electric vehicles have been around for a while, they have neither been 

widely accepted by commuters nor by organizations with service fleets. The benefits for 

owning EVs are many, which include little or no emissions, energy efficient, less 

dependent on non-renewable resources and rechargeable at homes and offices. It is 

predominately the “range anxiety” that discourages people and organizations from 

owning EVs, while electric-gasoline hybrid vehicles are becoming increasingly attractive 

since there is no range anxiety; because when batteries lose their charge vehicles can use 

back-up gasoline power. Unlike gasoline refueling stations which are practically 

everywhere, battery exchange or quick-charging facilities are hardly anywhere. Hence, 

establishing and operating a battery exchange (or recharging) infrastructure is essential 

for EVs to have a larger market share. The design of such an infrastructure requires one 

to minimize the detouring necessary for battery recharging through proper vehicle 

routing, and requires minimize waiting times at the stations to pick up recharged batteries 

by locating and sizing battery exchange network. This chapter addressed the first problem 

of routing to minimize detouring; the research team is conducting further research on 

sizing of network of facilities to minimize wait times. 

For minimizing detouring, the EV shortest walk problem was defined to determine the 

route from a starting point to a destination; this route may include cycles for detouring to 

recharge batteries. Two such problem scenarios were studied: one is the problem of 

traveling from an origin to a destination to minimize the travel distance when one or 

more battery recharge/exchange stops may be made; the other is to travel from origin to 
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destination when a maximum of 𝑝 stops can be made. It was shown that both of these 

problems are polynomially solvable. The first problem requires several runs of a shortest 

path algorithm for determining shortest path trees totaling 𝒪(|𝐵|�(𝑛 log2 𝑛 + 𝑚)) 

elementary operations, where |𝐵|, 𝑛, and 𝑚 are the number of located stations, number of 

nodes in the network, and number of arcs, respectively. The second problem requires an 

additional network transformation and also several shortest path trees, totaling 

𝒪(𝑝|𝐵|�(𝑛 log2 𝑛 + 𝑚)) operations. The algorithms were tested on randomly generated 

data, and it was shown that they are quick and efficient to run. Other cases of routing with 

battery-exchange stops were analyzed, specifically the case when the vehicle starts 

partially charged, the case when the vehicle needs to make a round trip, and the case 

where the goal is to minimize driver anxiety. 

One large area of future work is to adjust the problem to make it stochastic instead of 

deterministic. This could involve having the edge lengths be random variables as well as 

having a random variable for the distance the vehicle can travel before being stranded. 

We discuss this problem further in Section 5.1. 
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Chapter 3 

ONLINE ROUTING AND BATTERY RESERVATIONS FOR ELECTRIC VEHICLES 

IN A NETWORK WITH BATTERY SWAPPING 

One possible method for powering electric vehicles that drive long distances is to have 

the vehicles swap their batteries at battery-exchange stations on the route. These stations 

would be run by a company with central control, and would charge the vehicles to have a 

fresh battery replace their empty ones. Since the construction of battery-exchange stations 

and their infrastructure is very expensive, they have only been placed in a limited number 

of locations so far. In addition, the extra batteries that are stored in the station are also 

expensive, so to keep inventory costs low it is best to stock the stations with as few 

batteries as required. The number of batteries needed by vehicles visiting the station 

throughout the day depends on the location of the station, the day of the week, the 

weather, and many other variables. Further, the manner in which the vehicles arrive 

affects the number of batteries needed; if the vehicles all tend to arrive around the same 

time then more batteries are needed since there will not be enough time for them to be 

recharged after being dropped off. Since the exact distribution of cars that will pass 

through a station is unknown when the stations are constructed, each station has to be 

designed to handle near the maximum demand that station is expected to receive at any 

given time. In the event that no full batteries are available at a station, an arriving vehicle 

will have to wait until a battery is charged before it can leave the station. If a driver of a 

vehicle is informed in advance that there will be no available batteries at a station they 

planned to stop at, then that station could be avoided by taking a circuitous route 
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involving a station having charged batteries. The decision on how many batteries to place 

at a station has to balance the company’s desire to minimize inventory costs with need for 

drivers to not have to wait when there are no batteries available. It is possible that by 

balancing the vehicles needing battery swaps across many stations, fewer vehicles would 

arrive at the stations when no batteries are available which would improve the service 

they receive. 

The goal of this chapter is to devise an algorithm for real-time routing of electric 

vehicles with swappable batteries that balances the desire for drivers to have quick trips 

with the need for the operating company to balance the battery swap loads across the 

stations. Further, the algorithm will make reservations for each vehicle at all of the 

battery-exchange stations on the selected route. Making reservations will remove the 

possibility that the batteries the vehicle expected to receive are unavailable due to other 

vehicles taking them. The objective of the routing and reservation algorithm is to 

minimize the total expected travel times of not only the particular vehicle being routed at 

each decision, but of future vehicles as well. Because of this objective, part of the routing 

and reservation process is to understand how a set of battery reservations could affect 

future arrivals into the system. 

This chapter assumes that there is a viable business model for the development and 

operation of a network of battery-exchange systems. Thus, for our purposes we assume 

that the stations have already been located and built to hold a set number of batteries that 

are constantly being charged. In practice, an algorithm like this would require an onboard 

computer unit in each vehicle that communicates with a central server that does the 
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routing and reservations. When a fleet of cars is produced to be compatible with a set of 

battery-exchange stations, the operating company of the stations will likely be involved 

in the design and production of the vehicles. In the case of the company Better Place, 

they collaborated with Renault Fluence Z.E. so that their vehicles could be used in the 

network (Kershner, 2013). Because of this involvement, the operating company can 

ensure that each vehicle has a compatible computer unit installed that communicates with 

the operating company’s central server. The battery-swap operating company could 

implement such a routing and reservation software system that provides to each vehicle a 

route from its origin to its destination, along with where to stop to swap the battery so the 

vehicle does not run out of charge; the system would also make reservations for battery 

swaps at the stations where the vehicle intends to stop. 

The routing and reservation system would make the route suggestion based on the 

current battery charge levels at each station along with the pre-existing reservations made 

by earlier vehicles, which would be stored in the central server. The model in this chapter 

assumes that when the vehicle turns on and requests a route to a destination, it will be 

provided with a single route from the routing and reservation system, and that the driver 

will take the given route exactly. The envisioned steps in this routing and reservation 

process for each vehicle are: 

1. When the electric vehicle is turned on, the driver would input a destination into 

the vehicle’s system unit. This, combined with the origin of the trip determined 

by the GPS location of the vehicle, would be sent to the central server. 
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2. The central server receives this origin and destination (OD) pair and, using the 

current battery levels at the stations and the reservations already made, 

determines which route the vehicle should take and when and where the vehicle 

should stop to swap its battery. 

3. The central server makes reservations for the batteries at each of the stations for 

the most convenient times the vehicle would require it, subject to availability. 

4. The central server sends the selected route and reservation times to the unit 

onboard the vehicle, and the driver begins to travel the route. 

We assume that since the batteries are reserved the vehicles will always find them 

available precisely when they were reserved for. We do not allow for any randomness in 

the amount of time it takes to traverse a road, nor that the driver of a vehicle can change 

its route partway through its route. Thus the assumed road network and driver behavior 

are fully deterministic, although the arrivals of vehicles into the system are stochastic. 

Since many different vehicles will be routed, this is an online system that is fully aware 

of all of the routes taken by the vehicles that have previously arrived in the system. 

Although future routing and reservation decisions are not known at the time a new route 

is given, the rate of demand for each origin and destination pair is known and assumed to 

be fixed over time. 

In this research we assume that the goal is to find routes for vehicles that take the least 

amount of time (as opposed to other metrics such as distance travelled). The amount of 

time it takes to travel a route is dependent on three components: 

1. the time spent by the vehicle driving along roads, 
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2. the time spent having the battery swapped at each station, and 

3. the time spent having the vehicle wait at a station for a battery to become 

available. 

Although the summation of these times can be found directly to compute the travel time, 

it is also possible that some of these time components are considered worse for drivers 

than others and a weighted sum is more appropriate. For instance, waiting at a station for 

a battery to become available could be more frustrating than driving, so for example 

every minute waiting for a battery could be worth two minutes of driving time. We refer 

to the weighted sum of the travel time as the value of the route. 

The simplest routing and reservation software could be designed using a greedy 

algorithm which would find the best route for each particular driver, using for example 

the shortest walk algorithm presented in Chapter 2. It may however be in the best interest 

of the company to suggest that some vehicles take slightly longer routes so that other 

vehicles have much shorter routes. In this case the company is trying to minimize the 

average route values across all vehicles, rather than trying to sequentially minimize each 

trip individually. For example consider simple the road network in Fig. 14 where the edge 

lengths denote travel times. In this network the electric vehicles have a range of 12 time 

units, and battery swapping is instantaneous. Here there are two OD pairs for vehicles to 

take. For vehicles driving from origin 1 to destination 1 there is a single route of value 20 

that stops at station 1. For vehicles driving from origin 2 and destination 2 there are two 

routes: one stopping at station 1 which has a value of 20 and one stopping at station 2 
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which has a value of 22. Also assume that station 1 has a single battery on hand, while 

station 2 has many batteries available for swaps. 

Suppose a vehicle arrives wanting to travel from origin 2 to destination 2 and there is 

an available battery at both stations 1 and 2. The shortest route for the vehicle would be 

to stop at station 1, however that would require the vehicle to take the only battery at the 

station. If immediately after routing this vehicle a second vehicle arrived wanting to 

travel between origin 1 and destination 1, it would have no choice but to wait for the 

battery at station 1 to become available. Thus, the best global decision may be to have the 

first vehicle stop at station 2 taking the slightly longer path, which allows a future vehicle 

to get a battery at station 1 without having to wait. This problem of online routing of 

vehicles to minimize total route value is the focus of this chapter. 

 

Fig. 14. An example route network with two origin and destination pairs. 

We will model the system as a Markov Chance-Decision Process (MCDP) 

(Hentenryck et al., 2009) where the states describe the current reservations at the stations 

and the actions are routing the vehicles that arrive. An MCDP is a modification of the 

standard Markov Decision Process (MDP) (Russell and Norvig, 2009). In a MDP, an 

agent moves between states by taking actions which move the agent to each state with a 
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specified probability. When the agent is in a state a policy determines an action for the 

agent to take. In an MDP the uncertainty occurs after an action is selected and is involved 

with determining which state the agent will end up in. In an MCDP, when the agent is at a 

state first a random outcome is selected. The outcomes determine which possible states 

the agent is allowed to transition to, and the agent may transition to any of them with 

certainty. Thus in an MCDP the uncertainty occurs before action is taken by randomly 

selecting which possible actions are available to the agent, and there is no uncertainty 

once the action is chosen. 

In the case of routing electric vehicles through a network with reservations, during 

each interval of time it is unknown whether or not a vehicle will arrive needing to be 

routed, and if it does arrive what its OD pair will be. When a vehicle does arrive, its OD 

pair becomes known and the algorithm routes it precisely, and given the routing and 

reservations made the new state of the system is then exactly known. Then, in the next 

time step a new vehicle may arrive and request a route and reservations; this process is 

repeated until the end of the day. Note that the time periods are chosen to be small 

enough so that two or more vehicles do not arrive at the same time, as in a Poisson 

process. 

The optimal policy for routing may be very complicated and depend on not only if 

batteries are available at the different stations, but how many batteries are available and 

when they are available. Finding the optimal policy for routing vehicles is intractable due 

to the large number of possible options for routing and reservations over the course of a 

day, and thus our best hope is to find an approximate solution. We provide a solution 
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using the approximate dynamic programming technique of linear temporal differencing 

(Powell, 2011). 

The problem of routing a single electric vehicle through a network where the vehicle 

has a limited range and must stop at a charging or battery-exchange station was first 

discussed by Ichimori et al. (Ichimori et al., 1981). The paper solves for the case where 

the amount of battery charge consumed by the vehicle is proportional to distance it 

travels. The work was extended to limit the number of stops in the previous chapter of 

this dissertation. In the case that the battery consumed along a stretch of road is not 

dependent on the distance, for example in the case when it also depends on the speed 

limit of the road, then the problem becomes NP-complete (Laporte and Pascoal, 2011; 

Smith et al., 2012). The problem of routing an electric vehicle has also been discussed for 

the situation where the vehicle can recharge on certain roads, like when it is going 

downhill (Sachenbacher et al., 2011). We note that when the station sizes are not limited 

by the number of available batteries, then each arriving electric vehicle will be routed 

using the shortest path methods discussed above since they will not need to compete for 

available batteries. 

The problem of routing multiple electric vehicles to stations as they arrive has been 

discussed by de Weerdt et al. (de Weerdt et al., 2013) where they route the vehicles based 

on the forecasted future demand for the day as well as the current vehicles in the system. 

The algorithm they suggest still only finds the optimal route for each vehicle individually 

rather than trying to minimize the total route times of all the vehicles. The problem of 

placing and sizing the battery-exchange stations while simultaneously finding the routes 
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the vehicles will take between OD pairs has been discussed by Mak et al. (Mak et al., 

2013). That analysis assumes that the route between an OD pair is fixed after construction 

of the stations, while we allow for vehicle routes to change throughout the day as 

different stations run out of batteries. Approximate dynamic programming has been used 

to find when to charge the batteries at a battery-exchange station (Worley and Klabjan, 

2011). Here vehicles arrive at a single battery-exchange station and the batteries are 

charged at different times to minimize the cost of electricity used. 

The chapter is arranged as follows. The problem is formalized in Section 3.1 where 

the problem input and output are defined. In Section 3.2.1 we show how the problem can 

be transformed into a Markov chance-decision process. Since the MCDP painfully suffers 

from the curse of dimensionality, Section 3.2.2 shows how the problem can be 

approximated using temporal differencing of linear models. Finally, in Section 3.3 we 

illustrate the use of our algorithm to find the approximate solution for the Arizona road 

network assuming different amounts of demand. 

3.1. Problem description 

We will discretize time into small units of constant length. At the start of each time 

unit, there is a chance a vehicle will arrive wanting to travel from a particular origin to a 

particular destination. At each time period at most one vehicle could arrive, and the 

probability that a vehicle would arrive for any particular OD pair is constant throughout 

the day. For each possible origin and destination pair, there is a predetermined list of 

possible routes for the vehicle to take. 
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A vehicle is assigned a route before embarking, and when the route is selected each 

station that will be visited will have a battery reservation made at it. The reservations are 

made at the stations in the order that the stations will be visited, since the vehicle may 

have to wait at earlier stations for a charged battery and that should be taken into account 

when batteries are being reserved later in the route. When a vehicle arrives at a station it 

will wait until a battery is available for it to take. In addition, the vehicle cannot take a 

battery that is already reserved for another vehicle unless the battery this vehicle drops 

off will be fully charged and ready for pick up when the second vehicle arrives. This 

prevents battery reservations from being snatched away. If there is a battery that meets 

these criteria, the vehicle will take it as early as possible – we will never allow a vehicle 

to wait at a station when it could take a battery. 

3.1.1. Problem input 

The road network is represented as an undirected graph 𝐺 = (𝑁, 𝐸) where 𝑁 is a set of 

nodes representing intersections and 𝐸 is a set of edges representing the roads in the 

network. Placed at certain predefined intersections in the network are 𝛽 battery-exchange 

stations. Let {𝑏1, 𝑏2, … , 𝑏𝛽} = 𝐵 ⊆ 𝑁 be the intersections that have battery-exchange 

stations. Each station 𝑏𝑖 has 𝑛𝑖 batteries for 𝑖 = 1,… , 𝛽. It is likely that stations placed in 

more heavily trafficked locations will have more batteries, so we do not assume that all of 

the stations have the same number of batteries. We are interested in routing many 

different vehicles that have different possible origins and destinations. Let 

{(𝑜1, 𝑑1), (𝑜2, 𝑑2), … , (𝑜𝜎, 𝑑𝜎)} ⊆ 𝑁 × 𝑁 be the set of 𝜎 possible origin and destination 

pairs, so each pair represents one possible combination of a starting point and an ending 
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point. Let 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝜎} and 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝜎}. We assume that 𝑜𝑗 ≠ 𝑑𝑗 for any 

OD pair 𝑗, since in that case the vehicles would not travel at all. For an example network 

see Fig. 15 which contains three OD pairs. Notice that while in Fig. 15 each node is used 

in at most one OD pair, it is possible that a node can be in multiple OD pairs and it can 

also be the location of battery exchange station simultaneously. 

 

Fig. 15. An example network with OD pairs and battery exchange stations. 

The time period in which the battery-exchange stations are open is split into 𝑇 + 1 

discrete units {0, … , 𝑇}. Associate with each edge 𝑒 ∈ 𝐸 a nonnegative integer length 𝑙(𝑒) 

representing the number of time units it takes for a vehicle to traverse the road. Let 

𝑙′(𝑣1, 𝑣2) for 𝑣1, 𝑣2 ∈ 𝑁 be a function that returns the minimum path length in 𝐺 between 

two vertices, which can be computed using Dijkstra’s algorithm. The battery capacity of 

the electric vehicles in the network is an integer 𝜔 representing the number of time units 

the vehicle can travel between battery swaps. Each vehicle starts at its origin with a full 

battery. For simplicity we assume that when a vehicle drops off a battery at a charging 
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station it is fully depleted. The act of swapping the battery takes 𝑔 time units, and when a 

battery is dropped off at a station it takes ℎ time units to fill to fully charged. Only once 

the battery is full may it be swapped into a new vehicle. At the start of each time interval 

at most one vehicle can arrive in the system. Assume that no vehicle arrives into the 

system with probability 𝑝0, and a vehicle arrives wanting to travel from 𝑜𝑗 to 𝑑𝑗 with 

probability 𝑝𝑗 for each OD pair 𝑗 = 1, … , 𝜎. Since these probabilities cover all of the 

possible arrival cases, we have that ∑ 𝑝𝑗
𝜎
𝑗=0 = 1. Also assume that each OD pair will 

require stopping to exchange batteries at least once on the way, otherwise they do not 

need to be considered in the model. Let 𝜌1 ≥ 0 be the penalty multiplier to swapping 

time incurred and let 𝜌2 ≥ 0 be the penalty multiplier to waiting time incurred. If a 

vehicle arrives at time 𝑡 and assigned a route with 𝜓𝑡
𝑑𝑟𝑖𝑣𝑒 time units driving, 𝜓𝑡,𝑖

𝑠𝑤𝑎𝑝
 time 

units swapping batteries at station 𝑖, and 𝜓𝑡,𝑖
𝑤𝑎𝑖𝑡  time units waiting at station 𝑖, we say the 

route assignment has value 𝜓𝑡 = 𝜓𝑡
𝑑𝑟𝑖𝑣𝑒 + 𝜌1 ∑ 𝜓𝑡,𝑖

𝑠𝑤𝑎𝑝𝛽
𝑖=1 + 𝜌2 ∑ 𝜓𝑡,𝑖

𝑤𝑎𝑖𝑡𝛽
𝑖=1 . 

For each OD pair 𝑗, let ℛ𝑗 be the set of routes that the vehicle is allowed to travel 

between 𝑜𝑗 and 𝑑𝑗. Each route 𝑅 ∈ ℛ𝑗 is a sequence (𝑏1
𝑅 , 𝑏2

𝑅 , … , 𝑏|𝑅|
𝑅 ) of battery exchange 

stations that the vehicle will visit between the origin and destination in the order the 

stations will be visited. Thus the length of the shortest path between the stations in the 

sequence 𝑙′(𝑏𝑖
𝑅 , 𝑏𝑖+1

𝑅 ) for 𝑖 = 1, … , |𝑅| − 1 must each be at most 𝜔 since the vehicle must 

be able to travel between the stations without running out of charge. Further, the shortest 

path between 𝑜𝑗 and the first station in the sequence and the shortest path between 𝑑𝑗 and 

the last station in the sequence must both have length at most 𝜔. If a vehicle is assigned a 



 48  

route where the vehicle travels between two battery-exchange stops, then there is a single 

shortest path in 𝐺 for the vehicle to take between those two stations. Thus the travel times 

between stations can be computed in advance and used for any routes that contain that 

pair of exchange-stations, and when making routing decisions the travel times between 

stations can be found by doing a table lookup. For example for the network in Fig. 15 

with 𝑤 = 10, for the OD pair (𝑜1, 𝑑1) one possible set ℛ1 is ℛ1 = {(𝑏1, 𝑏2), (𝑏3)}. In this 

case the first sequence represents taking the path 𝑜1 − 𝑥1 − 𝑏1 with minimal length 

𝑙′(𝑜1, 𝑏1) = 4, swapping for the first time, followed by path 𝑏1 − 𝑥1 − 𝑑2 − 𝑏2 with 

minimal length 𝑙′(𝑏1, 𝑏2) = 8, swapping for the second time, then getting to the 

destination by 𝑏2 − 𝑥8 − 𝑑1 with minimal length 𝑙′(𝑏2, 𝑑1) = 7. 

The set ℛ𝑗 is a user input for each OD pair 𝑗 and may be a subset of all feasible routes. 

The route sets may be restricted to avoid allowing routes that have too high values or too 

many stops. For example with the network in Fig. 15 another possible value for ℛ1 is 

{(𝑏1, 𝑏2), (𝑏3), (𝑏4, 𝑏3)}, which has the additional sequence where the vehicle stops at 

station 𝑏4 before visiting 𝑏3. Since the sequence (𝑏4, 𝑏3) is more circuitous than (𝑏3) 

which visits station 𝑏3 directly, it may be best to exclude it. Let the single element set 

ℛ0 = {∅} represent the possible routes to take when no vehicle arrives to be routed: since 

there are no decisions to make when no vehicles arrive, the only possible choice is to not 

visit any stations. 

For each OD pair 𝑗 and corresponding route set ℛ𝑗, let 𝐿𝑗 be the minimal value of 

routes in set ℛ𝑗 assuming each station has an available battery at any time. For example 

assume that for the network in Fig. 15 we have that 𝑔 = 2, 𝜌1 = 2, and 𝜌2 = 4. Using set 
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ℛ1 defined above, the value 𝐿1 = 9 + 2 ⋅ 2 + 8 = 21, since the minimal time under the 

best conditions would be found using the second sequence (𝑏3) which has a shortest path 

of length 9, one swap taking 2 time units (weighted twice as heavily by 𝜌1), then a final 

path of length 8. The value 𝐿𝑗 can be thought of as the best case value for a vehicle to 

travel between OD pair (𝑜𝑗 , 𝑑𝑗). For a vehicle traveling OD pair 𝑗 assigned at time 𝑡 with 

a route value of 𝜓𝑡, the delay penalty 𝜓𝑡 − 𝐿𝑗 is the increased value of the route that is 

assigned compared to the best case value. 

3.1.2. Reservation policy 

When a vehicle arrives into the system wanting to traverse OD pair 𝑗, it is immediately 

given a route 𝑅 ∈ ℛ𝑗 to take from 𝑜𝑗 to 𝑑𝑗. When the vehicle is assigned the route a 

battery reservation will be made at each of the battery-exchange stations it will visit. The 

reservation will state at what time the vehicle will be picking up the battery. A battery can 

only be reserved at a time when (1) there is a battery available and (2) the battery to be 

picked up will not be needed by any vehicle before the battery to be dropped off will be 

refilled. The second condition ensures that the reservation does not conflict with one 

already in place. For example, suppose that in the network in Fig. 15 both station 𝑏1 and 

𝑏2 have a single battery and again 𝑔 = 2 and ℎ = 6. If a vehicle using pair (𝑜1, 𝑑1) wants 

to reserve the battery at station 𝑏1 at 𝑡 = 120, then that battery must be available not only 

at 𝑡 = 120 but also 𝑡 = 121, 𝑡 = 122, … , 𝑡 = 127. Only at time 𝑡 = 128 will the old 

battery of this vehicle be ready to be put into a new vehicle. Having the battery be 

available between 𝑡 = 120 and 𝑡 = 127�will ensure that no other vehicle can reserve the 

battery when it is being swapped or when it is charging. The reservation need not be 
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made for the exact time the vehicle arrives, only the earliest available time after a vehicle 

arrives. That is to say the vehicle may reserve a battery for a later than when it would 

arrive at the station if taking a battery that is available earlier would violate a previous 

reservation; however we assume a vehicle will never voluntarily wait if there is a battery 

available that would not cause a conflict with another reservation. If a vehicle arrives at a 

station after time 𝑇, which for instance could occur if the vehicle turns on to be routed at 

time 𝑡 = 𝑇 − 1, assume there will be a battery immediately available at the station for it.  

For a more in depth example consider the network in Fig. 15 and a vehicle travelling 

from 𝑜1 to 𝑑1 wanting to use route (𝑏1, 𝑏2) and suppose the vehicle is being routed at 

time 𝑡 = 33. Assume that the two stations each have a single battery, and station 𝑏1 

already has a reservation at time 32 and station 𝑏2 has a reservation at time 52. At the 

time of the assignment the reservations for batteries of the vehicle being routed have to 

be made at the two stations. Leaving at 𝑡 = 33, the vehicle will arrive at vertex 𝑏1 at time 

37. Since the battery at station 𝑏1 is already reserved by another vehicle at time 32, it is 

therefore not available between times 32 through 39 (due to swapping and charging time 

of the battery being dropped off by the earlier reservation). Thus a reservation is made at 

time 40, and with this delay plus the 2 time periods to swap the battery, the vehicle will 

be done at station 𝑏1 at the end of time period 41. Thus with the 7 time units it takes to 

travel between 𝑏1 and 𝑏2, the vehicle will arrive at station 𝑏2 at the start of time period 

48. The battery at station 𝑏2 is full and available at time 48, but another vehicle already 

has a reservation at time 52. Thus a reservation cannot be made at time 48 since the 

battery would then be unavailable to the car arriving at time 52. Since it takes 8 time 
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units to swap and charge, the reservation has to be made at time 60. Therefore the vehicle 

will leave the station at location 𝑏2 at the start of time period 62 (since it will swap 

during periods 60 and 61) and will arrive at the destination at time 69. If the waiting 

penalty and swap penalty are 2 and 4 respectively, the value of this trip is: 

𝜓33 = 𝜓33
𝑑𝑟𝑖𝑣𝑒 + 𝜌1 ∑ 𝜓33,𝑖

𝑠𝑤𝑎𝑝
𝛽

𝑖=1
+ 𝜌2 ∑ 𝜓33,𝑖

𝑤𝑎𝑖𝑡
𝛽

𝑖=1

= 18 + 2 ⋅ (2 + 2 + 0 + 0) + 4 ⋅ (3 + 12 + 0 + 0) = 86. 

This calculation can be done entirely before the route has begun to be traversed, and so 

once the vehicle sets out it is exactly known how long the trip will take including waiting 

at stations. 

3.1.3. Problem output 

The solution to the problem is a function that, upon arrival of a vehicle at time 𝑡 

wanting to travel between an OD pair 𝑗𝑡, takes the current battery levels of the stations 

and the already made reservations and outputs a route that minimizes 

𝔼𝑡 [𝜓𝑡 + 𝔼𝑡+1 [𝜓𝑡+1 + 𝔼𝑡+2[⋯+ 𝔼𝑇[𝜓𝑇]]]]. 

Thus the algorithm makes decisions not only to minimize the value of the trip the 

vehicle is about to take, but also of the trips future vehicles may take. Notice that this is 

equivalent to minimizing the delay penalties, the differences between the trip values and 

the best case trip values, on each trip between 𝑡 and 𝑇: 

𝔼𝑡 [(𝜓𝑡 − 𝐿𝑗𝑡) + 𝔼𝑡+1 [(𝜓𝑡+1 − 𝐿𝑗𝑡+1
) + 𝔼𝑡+2 [⋯+ 𝔼𝑇[𝜓𝑇 − 𝐿𝑗𝑇

]]]]. 
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We will use this equivalent objective function. Unfortunately finding the exact 

solution is intractable for all but the smallest cases, and so we will provide an 

approximate solution. 

3.2. Solution theory 

3.2.1. Markov chance-decision process 

For a vehicle wanting to traverse between an OD pair there may be many different 

routes the vehicle should take depending on the station conditions. When a vehicle 

arrives all of the reservations that have already been made by other vehicles are known, 

so the actual routes the previous vehicles have taken are irrelevant. That is to say the best 

route for the vehicle to take only depends on the current reservations and battery levels at 

the station at the time of routing and not on previous decisions made. In this way the 

system is Markovian. Thus, we will model the system using a specialized Markov 

Decision Process (MDP) called a Markov Chance-Decision Problem (MCDP). While 

MCDPs and MDPs have the same expressive power, in certain situations the MCDP has 

easier computations. The MCDP model fits especially well into the framework of this 

problem since the chance and the decision have clear analogs to the vehicles being 

routed. 

A Markov Chance-Decision Problem (MCDP) is formally defined as a tuple 

(𝒮, 𝑆0, Ξ, 𝑍, 𝐶) where: 

 𝒮 is a finite set of states; 

 𝑆0 ∈ 𝒮 is the initial state; 
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 Ξ = (𝜉𝑡)𝑡≥0 is the input process. It is a Markov chain with a state set 𝐽, an initial 

probability distribution 𝜇 ∈ prob(𝐽) and a 𝐽 × 𝐽 transition matrix 𝑄; 

 𝑌: 𝒮 × 𝐽 → 2𝒮 is a transition mapping with 𝑌(𝑆, 𝑗) ≠ ∅ for all 𝑆 ∈ 𝒮 and 𝑗 ∈ 𝐽; 

and, 

 𝐶: 𝑆 × 𝐽 × 𝑆 → ℝ is the cost map. 

In a MCDP the agent starts at initial state 𝑆0, and at the start of each time period 𝑡, the 

agent is in state 𝑆𝑡. At time 𝑡 the Markov chain Ξ transitions from state 𝑗𝑡−1 ∈ 𝐽� by one 

step to a new state 𝑗𝑡 ∈ 𝐽 using matrix 𝑄. The agent then has the choice to move to any 

state 𝑆𝑡+1� ∈ 𝑌(𝑆𝑡, 𝑗𝑡) and receives a cost 𝐶(𝑆𝑡, 𝑗𝑡, 𝑆𝑡+1). A visual representation of the 

progression of an MCDP can be seen in Fig. 16. In this figure the agent starts in a state 𝑆0 

and then a random outcome 𝑗0 occurs. This leads to a set of new possible states 𝑌(𝑆0, 𝑗0) 

of which 𝑆1 ∈ 𝑌(𝑆0, 𝑗0) is chosen for the next state. This repeats indefinitely for the 

infinite version of an MCDP, and for the finite time version of a MCDP, 𝑇 transitions 

occur. The initial state of the input process is randomly distributed by 𝜇. A policy for a 

MCDP is a mapping 𝜋: 𝒮 × 𝐽 → 𝒮 such that 𝜋(𝑆, 𝑗) ∈ 𝑌(𝑆, 𝑗) for all 𝑆 ∈ 𝒮 and 𝑗 ∈ 𝐽. For 

a finite MCDP the objective is to find a policy that minimizes the expected sum of the 

costs taken from transitioning from 𝑆0 over the course of the 𝑇 transitions. Formally our 

objective is to find the policy 𝜋 that is the solution to: 

min
𝜋

(𝔼
𝑗1

[ min
𝑆1∈𝜋(𝑆0,𝑗1)

(𝐶(𝑆1, 𝑗1, 𝑆0)

+ 𝔼
𝑗2

[ min
𝑆2∈𝜋(𝑆1,𝑗2)

(𝐶(𝑆2, 𝑗2, 𝑆1) + ⋯ 𝔼
𝑗𝑇

[ min
𝑆𝑇∈𝜋(𝑆𝑇−1,𝑗𝑇)

(𝐶(𝑆𝑇 , 𝑗𝑇 , 𝑆𝑇−1))])])]). 
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Fig. 16. The progression of states for a finite time MCDP. 

An optimal policy for a finite time MCDP can be found using dynamic programming 

(DP). In dynamic programming, the value of each state is determined by starting at the 

latest state in time and working backwards until the first time period. Define the value of 

a state 𝑉𝑡(𝑆𝑡, 𝑗𝑡−1) for states 𝑆𝑡 ∈ 𝒮𝑡 for  𝑡 = 1,… , 𝑇 − 1 as 

𝑉𝑡(𝑆𝑡, 𝑗𝑡−1) = 𝔼
𝑗𝑡

[ min
𝑆𝑡+1∈𝑌(𝑆𝑡,𝑗𝑡)

(𝐶(𝑆𝑡, 𝑗𝑡, 𝑆𝑡+1) + 𝑉𝑡+1(𝑆𝑡+1)) |�𝑗𝑡−1] , 

and for 𝑆𝑇 ∈ 𝒮𝑇 let 𝑉(𝑆𝑇) = 𝔼
𝑗𝑇

[ min
𝑆𝑇

′ ∈𝑌(𝑆𝑇,𝑗𝑇)
𝐶(𝑆𝑇 , 𝑗𝑇 , 𝑆𝑇

′ )]. These values can be calculated 

by first finding the values for 𝑆𝑇 ∈ 𝒮𝑇, then computing the values 𝑆𝑇−1 ∈ 𝒮𝑇−1 and so on. 

For a more in depth overview of dynamic programming see (Bertsekas, 2007). 

In the case of this network routing problem, the state of the system depends on how 

many batteries are unavailable at each station during each time period future. Let 𝑡 be the 

current time. At any time period 𝑡, … , 𝑇 for a station 𝑏𝑖, between 0 and 𝑛𝑖 batteries may 

be unavailable. As time passes less information needs to be stored since fewer time 

periods remain until the end of the day. Fig. 17 shows the state for a network with a 

single battery-exchange station with four batteries at time 𝑡 = 10, and then the state after 

a vehicle makes a reservation and time passes to 𝑡 = 11. In this figure it takes two time 

units to swap the battery and six to fully charge an empty one. Notice that what may have 
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happened is a vehicle wanted a reservation at time 17, but the only two batteries available 

at time 17 would be needed by two other vehicles at times 19 and 20. Thus the 

reservation had to be postponed until time 22, and the vehicle would have to wait at the 

station for 5 extra time units. The reservation takes up 8 time units, 2 to actually do the 

swapping and 6 to charge. 

 

Fig. 17. An example of the state of a single station and the station after a vehicle makes a 

reservation and time steps by one unit. 

At time period 𝑡 for 𝑡 = 0,… , 𝑇, the possible states of station 𝑖 are 

𝒮𝑡
𝑖 = {0, … , 𝑛𝑖}

𝑇−𝑡, 

which represents the number of unavailable batteries at station 𝑖 during each time period 

from 𝑡 until the end of the day. We define the possible states of the system at time 𝑡 for 
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𝑡 = 0,… , 𝑇 as 𝒮𝑡 = 𝒮𝑡
1 × 𝒮𝑡

2 × ⋯× 𝒮𝑡
𝛽

. This represents all possible combinations of 

states of each station. The set 𝒮 represents the possible states of the entire system 

𝒮 = ⋃𝒮𝑡

𝑇

𝑡=0

 

where each state of the system encompasses the unavailable batteries of each of the 

battery-exchange stations from the current time until the end of the day. For convenience, 

for a state 𝑆𝑡 ∈ 𝒮𝑡 to refer to the number of batteries available at station 𝑖 at time 𝜏 ≥ 𝑡 

we use the notation 𝑆𝑡(𝑖, 𝜏). Also for convenience, define the function Λ: 𝒮 → 𝒮 as the 

function that maps 𝒮𝑡 → 𝒮𝑡+1 (progressing a state one step forward in time) by removing 

the first element of each 𝒮𝑡
𝑖. So for an example state (2,3,1,0,0,1) where there is a single 

station and 7 time periods until the end of the day, Λ((2,3,1,0,0,1)) ↦ (3,1,0,0,1). This 

represents the state that the system would be in after no vehicles are routed but time steps 

by one unit. 

The initial state 𝑆0 represents the stations before any vehicles arrive, and thus 𝑆0 is a 

tuple of 𝑇 ⋅ 𝛽 zeros. The input process Ξ = (𝜉𝑡)𝑡≥0 determines which vehicles arrive at 

each time period. Thus the state set 𝐽 is the possible desired OD pairs a vehicle could 

arrive wanting to travel: 𝐽 = {0,1,2, … , 𝜎}. Here the values 𝑗 = 1,… , 𝜎 represents a 

vehicle arriving wanting to travel from origin 𝑜𝑗 to destination 𝑑𝑗, and the value 0 ∈ 𝐽 

represents no vehicle arriving at that time period. Since the vehicle arrivals at different 

times are independent, we can simply define the transition matrix 𝑄 such that 𝑄𝑗𝑗′ = 𝑝𝑗 

for all 𝑗, 𝑗′ ∈ 0,1, … , 𝜎. The 𝜇 vector is unnecessary, also due to the fact that the arrivals 

are independent during each time period. 
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The transition mapping 𝑌 will describe the possible ways a vehicle could be routed. 

An (𝑆𝑡, 𝑗𝑡) pair represents the state of the system at time 𝑡 and which vehicle has just 

arrived, and 𝑌(𝑆𝑡, 𝑗𝑡) is the set of all possible states the system can transition to. Each 

𝑆𝑡+1� ∈ 𝑌(𝑆𝑡, 𝑗𝑡) has a one-to-one correspondence with the routes in ℛ𝑗𝑡  since each 

possible route gives a new state that the system could transition to. In the case that 𝑗𝑡 = 0, 

there is a single element in 𝑌(𝑆𝑡, 𝑗𝑡), the state where no new reservations are made to the 

current state but time steps forward by one interval. Thus, when 𝑗𝑡 = 0 We have that 

𝑌(𝑆𝑡�𝑗𝑡) = {Λ(𝑆𝑡)}. 

The exact mathematical formulation of transition function 𝑌 is cumbersome to define 

explicitly since it has to encompass the logic of when is the earliest a reservation could be 

made after a vehicle arrives as described in Section 3.1.2. It is however fairly 

straightforward to write an algorithm that on input (𝑆𝑡, 𝑗𝑡) gives set 𝑌(𝑆𝑡, 𝑗𝑡). That 

algorithm can be seen in Fig. 18. This algorithm also returns a matrix 𝑍 where each 

column corresponds to a route in ℛ𝑗𝑡 . The column is a (𝛽 + 1)-vector where the 𝑖th entry 

is in the column is the penalty incurred for waiting at station 𝑖 and the (𝛽 + 1)th entry is 

the time travelled by the vehicle plus the penalty for all of the battery swapping times. 

This matrix 𝑍 will be used by later calculations in the MCDP. In the algorithm, variable 𝑎 

tracks the time at which the vehicle arrives at each station in the route, 𝑓 tracks how long 

the vehicle will wait at the current station. 

The algorithm iterates through the stations along each route, and determining how 

long the vehicle will have to wait when it arrives at the station before it can leave with a 

new battery. Starting with the first station in the sequence, the algorithm checks if there 
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will be no available batteries at any time between when the vehicle arrives assuming no 

wait, (𝑎 + 𝑤) for 𝑤 = 0, and up to when the battery the vehicle swapped out would be 

fully charged, which is (𝑎 + 𝑤 + 𝑔 + ℎ). If indeed there is a point in that interval where 

no batteries will be available then the vehicle must wait to get a battery. The value 𝑤′ is 

added to the waiting time, where 𝑤′ is the count of the number of instances in the time 

sequence where no batteries are available. The value 𝑤′ provides an amount of time that 

is necessary but not sufficient to ensure the vehicle has waited enough for a battery to be 

available. The algorithm then checks if the updated wait time 𝑤 is sufficient, and if not 

the process is repeated until a valid waiting time is found. Once the algorithm determines 

how long the vehicle will wait at the station, the arrival time at the next station is 

calculated and the process continues for that station. 
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On input 𝑆𝑡 , 𝑗𝑡  
Initialize 𝑌 ← ∅, 𝑎 ← 0, 𝑤 ← 0, 𝑖 ← 0, 

Initialize 𝑆𝑡
′  as a (𝑇 − 𝑡)-tuple of zeros 

Initialize 𝑍 as a (𝛽 + 1) ×  ℛ𝑗𝑡  -matrix 

For each  𝑅 = (𝑏1
𝑅 , 𝑏2

𝑅 , … , 𝑏|𝑅|
𝑅 ) ∈ ℛ𝑗𝑡  

 Set 𝑖 ← 𝑖 + 1 

Set 𝑎 ← 𝑙′(𝑜𝑗𝑡 , 𝑏1
𝑅) 

Set 𝑆𝑡
′ ← 𝑆𝑡  

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑙′(𝑜𝑗𝑡 , 𝑏1
𝑅) 

For  𝑥 ← 1, … |𝑅| 
Set 𝑓 ← 0 

While 𝑆𝑡(𝑏𝑥
𝑅 , 𝑦) ≥ 𝑛𝑥

𝑅  for any 𝑦 ∈ {𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + ℎ − 1, 𝑇)} 
 Set 𝑤 ← 𝑤 + 𝑤′ where 𝑤′ is the count of times 𝑆𝑡(𝑏𝑥

𝑅 , 𝑦) ≥ 𝑛𝑥
𝑅  for 𝑦 ∈

{𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + ℎ − 1, 𝑇)} 
End while 

 Set 𝑎 ← 𝑎 + 𝑤 + 𝑔 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) + 𝜌1𝑔 

Set 𝑍(𝑏𝑥
𝑅 , 𝑖) ← 𝜌2𝑤 

 For each 𝑦 ∈ {𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + ℎ − 1, 𝑇)} 
Set 𝑆𝑡

′(𝑏𝑥
𝑅 , 𝑦) ← 𝑆𝑡

′(𝑏𝑥
𝑅 , 𝑦) + 1 

End for 

If 𝑥 < |𝑅| then 

Set 𝑎 ← 𝑎 + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) 

  End if 

 End for 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑑𝑗𝑡) 

Replace column 𝑖 of 𝐿 with 𝑧 

 Set 𝑌 ← 𝑌 ∪ Λ(𝑆𝑡
′) 

End for 

Return 𝑌, 𝑍 

 

Fig. 18. An algorithm for the mapping 𝑌: 𝑆 × 𝐽 → 2𝑆 that provides the state of the system 

after a vehicle has been routed and also returns the route length and waiting times. 

Finally, we define the cost function 𝐶: 𝑆 × 𝐽 × 𝑆 → ℝ, which describes the cost of 

taking a transition from (𝑆𝑡, 𝑗𝑡) to 𝑌(𝑆𝑡, 𝑗𝑡). For (𝑆𝑡, 𝑗𝑡) where 𝑆𝑡 ∈ 𝒮𝑡 and 𝑗𝑡 ∈ {0,… , 𝜎}, 

let 𝑆𝑡
′ ∈ 𝑌(𝑆𝑡, 𝑗𝑡) correspond to taking path 𝑅 which is column 𝑖 in 𝑍. The value of the of 
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the route, denoted 𝜓𝑡(𝑅) is the value in the Fig. 18 found by summing the column 𝑖 of 

matrix 𝑍, since the first 𝛽 entries are the weighted wait times at the stations and the 

(𝛽 + 1)th entry is the weighted time travelling and swapping. The cost function mapping 

is 𝐶(𝑆𝑡, 𝑗𝑡, 𝑆𝑡
′) ↦ 𝜓𝑡(𝑅) − 𝐿𝑗𝑡 , which represents the delay penalty the vehicle will take if 

that route is assigned. If the vehicle were to take the shortest possible route and had no 

delays, the resulting cost would be the minimum value 0. Technically if 𝑆𝑡
′ ∉ 𝑌(𝑆𝑡, 𝑗𝑡) we 

then assign the cost 𝐶(𝑆𝑡, 𝑗𝑡, 𝑆𝑡
′) ↦ ∞, although this is important only for ensuring 𝐶 is a 

proper mapping. Further we also define cost function 𝐶1: 𝑆 × 𝐽 × 𝑆 → ℝ as 

𝐶1(𝑆𝑡, 𝑗𝑡, 𝑆𝑡
′) ↦ 𝜓𝑡

𝑑𝑟𝑖𝑣𝑒(𝑅) + 𝜓𝑡
𝑠𝑤𝑎𝑝(𝑅) − 𝐿𝑗𝑡: the cost attributed to the vehicle taking a 

longer route and making addition battery swaps beyond the minimum (but not associated 

with waiting). Also define the cost functions 𝐶𝑖
2: 𝑆 × 𝐽 × 𝑆 → ℝ as 𝐶𝑗

2(𝑆𝑡, 𝑗𝑡, 𝑆𝑡
′) ↦

𝜓𝑡,𝑖
𝑤𝑎𝑖𝑡(𝑅) for 𝑗 = 1,… , 𝛽: the cost attributed to the vehicle having to wait at station 𝑖. 

Thus cost 𝐶 is equal to the summation 𝐶1 + 𝐶1
2 + 𝐶2

2 + ⋯+ 𝐶𝛽
2, which is the cost of 

travelling time and swapping time, plus the waiting incurred at each station. Each of these 

costs is stored in a different row in 𝑍; the cost 𝐶1 is the (𝛽 + 1)th entry of 𝑍 and 𝐶𝑖
2 is the 

𝑖th row of 𝑍 for 𝑖 = 1,… , 𝛽. The component cost functions 𝐶1, 𝐶1
2, 𝐶2

2, … , 𝐶𝛽
2 will be used 

for calculations later, but with only 𝐶 we now have a full description of the MCDP for the 

network routing problem. The optimal policy for the MCDP will correspond to the 

function that takes as input the state of the system and the vehicle that arrives and outputs 

the optimal route for that vehicle to take. 
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3.2.2. MCDP approximation using linear temporal differencing 

As stated previously, for a Markov decision process the methods for finding the 

optimal policy typically rely on dynamic programming. These techniques compute the 

value of being in a particular state, where the value of a state is the expected cost incurred 

after arriving in that state and having the agent continue in the Markov decision process. 

Once the values of each state are found, each decision can be made to minimize the sum 

of the expected value of the action plus the expected value of the next state. While value 

iteration and other techniques can be used on MCDPs as well as MDPs, in both cases the 

algorithms that find the optimal policy become intractable for a large number of states. 

The problem of routing and reserving batteries for electric vehicles has an immense 

number of states. In fact at time period 𝑡 there are ∏ (𝑏𝑖 + 1)𝑇−𝑡+1�𝛽
𝑖=1  possible states, so 

for example in a system with 10 stations each having 5 batteries with 20 time periods 

before the end of the day there are (620)10 ≈ 4.27 ⋅ 10155 states. 

Thus, we need to find an approach that will grant a solution that may not be optimal 

but is still better than using a naïve policy such as the greedy routing of each vehicle. For 

that we turn to approximate dynamic programming. Here we will still attempt to find the 

value of each state of the MCDP, only now we will accept approximate solutions for the 

values. Notice that in the case of the network routing and reservation problem the value 

of a state represents the estimated delay penalties of all of the future arrivals. 

3.2.2.1. Approximate dynamic programming 

In Approximate Dynamic Programming (ADP) (Powell, 2011), rather than computing 

the exact value for each state, the values of the states are approximated. Unlike the 
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standard dynamic programming algorithm which computes the values of each state 

backwards, typically in approximate dynamic programming the state values are given 

approximations and using the approximations the algorithm steps forward in time. Here 

we present the Q-learning ADP algorithm (Russell and Norvig, 2009) but modified for 

MCDPs instead of the classic MDP. Let 𝑉𝑡(𝑆𝑡, 𝑗𝑡) be the value of being in state 𝑆𝑡 at time 

𝑡 and then having the random outcome 𝑗𝑡 occur. This represents the value of the state 

after the uncertain outcome 𝑗𝑡 has happened. We could also measure the value of the state 

before the uncertainty (and decision making), which we will denote 𝑉𝑡(𝑆𝑡|𝑗𝑡−1), since it 

depends on the previous state of the Markov chain. Let �̅�𝑡
𝑚−1(𝑆𝑡, 𝑗𝑡) be an approximation 

of 𝑉𝑡(𝑆𝑡, 𝑗𝑡), and let (𝑗0
𝑚, 𝑗2

𝑚, … , 𝑗𝑇−1
𝑚 ) be a randomly generated realization of Ξ. Then we 

can compute a new and hopefully closer approximation �̅�𝑡
𝑚(𝑆𝑡, 𝑗𝑡) for 𝑉𝑡(𝑆𝑡, 𝑗𝑡) by 

finding for each 𝑡 = 0,… , 𝑇 

𝑣𝑡
𝑚 = min

𝑆𝑡+1
𝑚 ∈𝑌(𝑆𝑡

𝑚,𝑗𝑡
𝑚)

(𝐶(𝑆𝑡
𝑚, 𝑗𝑡

𝑚, 𝑆𝑡+1) + ∑ �̅�𝑡+1
𝑚−1(𝑆𝑡+1, 𝑘)𝑃(𝑘|𝑗𝑡

𝑚)

𝑘∈𝐽

) , 

and letting 𝑆𝑡+1
𝑚  be the value that minimizes 𝑆𝑡+1. Then using a stepsize parameter 0 <

𝛼 ≤ 1, 

�̅�𝑡
𝑚(𝑆𝑡, 𝑗𝑡) = {

(1 − 𝛼𝑚)�̅�𝑡
𝑚−1(𝑆𝑡, 𝑗𝑡) + 𝛼𝑚𝑣𝑡

𝑚 𝑆𝑡 = 𝑆𝑡
𝑚

�̅�𝑡
𝑚−1(𝑆𝑡, 𝑗𝑡) otherwise.

 

The algorithm works by using an approximation of the value of the possible next 

states to determine which action to take. Since in an MCDP which chance outcome will 

occur at the next state is unknown, the possible outcomes are averaged using the 

probabilities of the outcomes. The values of the states before the uncertainty can then be 

computed as �̅�𝑡
𝑚(𝑆𝑡|𝑗𝑡−1) = �∑ �̅�𝑡+1

𝑚 (𝑆𝑡+1, 𝑘)𝑃(𝑘|𝑗𝑡−1)𝑘∈𝐽 . As new approximations are 
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generated for the values of the states the approximations should hopefully get more 

accurate. 

3.2.2.2. Temporal difference updates 

Suppose that the system is in state 𝑆𝑡
𝑚 (having previously seen 𝑗𝑡−1

𝑚 ) and we are 

already given a policy 𝜋. Also suppose there is a given future set of outcomes 

(𝑗0
𝑚, 𝑗𝑡+1

𝑚 , … , 𝑗𝑇−1
𝑚 ). One way to compute the value of the state 𝑆𝑡

𝑚 would be to follow the 

policy until the end of the horizon at time 𝑇, this would give us an approximation for 

𝑉𝑡(𝑆𝑡
𝑚|𝑗𝑡−1

𝑚 ) of 

𝑣𝑡
𝑚 = 𝐶(𝑆𝑡

𝑚, 𝑗𝑡
𝑚, 𝑆𝑡+1

𝑚 ) + 𝐶(𝑆𝑡+1
𝑚 , 𝑗𝑡+1

𝑚 , 𝑆𝑡+2
𝑚 ) + ⋯ + 𝐶(𝑆𝑇−1

𝑚 , 𝑗𝑇−1
𝑚 , 𝑆𝑇

𝑚), 

where for 𝜏 = 𝑡,… , 𝑇, 𝑆𝜏+1
𝑚 = 𝜋(𝑆𝜏

𝑚, 𝑗𝑡
𝑚). Here the value 𝑣𝑡

𝑚 is sum of all of the future 

costs that will be incurred during the time horizon. The value of the �̅�𝑡
𝑚+1(𝑆𝑡|𝑗𝑡

𝑚+1) 

could be set directly by �̅�𝑡
𝑚+1(𝑆𝑡

𝑚|𝑗𝑡
𝑚) = (1 − 𝛼𝑚+1)�̅�𝑡

𝑚(𝑆𝑡
𝑚|𝑗𝑡

𝑚) + 𝛼𝑚+1𝑣𝑡
𝑚+1. 

Alternatively, define the temporal difference as 

𝛿𝜏
𝜋,𝑚 = 𝐶(𝑆𝜏

𝑚, 𝑗𝜏
𝑚, 𝑆𝜏+1

𝑚 ) + �̅�𝜏+1
𝑚−1(𝑆𝜏+1

𝑚 |𝑗𝜏) − �̅�𝜏
𝑚−1(𝑆𝜏

𝑚|𝑗𝜏−1
𝑚 ). 

Then because the sum of the temporal differences are telescoping, it is equivalent to write  

𝑣𝑡
𝑚 = �̅�𝑡

𝑚−1(𝑆𝑡
𝑚|𝑗𝑡

𝑚) + ∑ 𝛿𝜏
𝜋,𝑚

𝑇

𝜏=𝑡

 

So the updated value is the sum of all of the differences to the current values. However 

this weighs the changes to the approximation that occur far into the future just as heavily 

as the changes that occur immediately after 𝑡. Since the earlier changes are likely more 

dependent on the particular action we take (since the decision has more of a direct 

impact), the differences can be geometrically discounted with rate 𝜆 and thus: 
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�̅�𝑡
𝑚(𝑆𝑡

𝑚|𝑗𝑡
𝑚) = �̅�𝑡

𝑚−1(𝑆𝑡
𝑚|𝑗𝑡

𝑚) + 𝛼𝑚 ∑𝜆𝑇−𝜏𝛿𝜏
𝜋,𝑚

𝑇

𝜏=𝑡

 

This method of updating the approximations is the classic temporal difference algorithm 

TD(𝜆) (Powell, 2011), with the slight modification due to using an MCDP instead of an 

MDP. We will use this algorithm for our particular MCDP.  

3.2.2.3. Temporal differences with a linear model 

While it is possible to find the optimal policy to a finite horizon MCDP using dynamic 

programming TD(𝜆), the amount of states in the network routing MCDP makes this 

technique still intractable. Dynamic programming requires the calculation of the value of 

the system in each possible state, and each state can have a unique and independently 

calculated value. It is likely the case however that the values of the states are closely 

related. For instance in the case of the network routing problem the value of states 𝑆𝑡 and 

Λ(𝑆𝑡) (i.e. no vehicle arriving and time progressing by one) should be fairly close to each 

other. If the values of the states are approximated in such a way that we utilize the 

similarities of the states, the calculation should become tractable. Thus by approximating 

the values of each state future by using linear functions the problem becomes feasible to 

solve. 

For simplicity, since in our model the random variable �𝜉𝑡 does not depend on 𝜉𝑡−1, we 

will denote the value of a state as �̅�𝑡
𝑚(𝑆𝑡) instead of �̅�𝑡

𝑚(𝑆𝑡|𝑗𝑡−1). For our problem we 

will approximate the state values using a linear model. The approximations of the state 

values will take the form of a linear model 
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�̅�𝑡
𝑚(𝑆𝑡) = ∑ 𝜃𝑡𝑓

𝑚𝜙𝑓(𝑆𝑡)

𝑓∈ℱ

, 

where 𝜙𝑓(𝑆𝑡) are basis functions used to describe the state and 𝜃𝑡𝑓
𝑚 is a set of coefficients 

for the functions, which depend on the time 𝑡 of the system and the approximation 

iteration 𝑚. The set ℱ is the indexes all of the basis functions. Now instead of finding the 

best approximation for each state at each time, we are instead interested in finding the 

optimal coefficients 𝜃𝑓,𝑡
𝑚  which best approximate each state at each time. Notice that 

because this is a finite horizon model, there is a different set of coefficients for each time 

interval and hence the index 𝑡. 

For each station 𝑏𝑖 ∈ 𝐵 and for each value 𝑞 = 1,… , 𝑛𝑖 , define the function 𝜙(𝑖,𝑞) 

which maps state 𝑆 ∈ 𝒮 to the number of time periods in which station 𝑏𝑖 has at least 𝑞 

batteries reserved. Functions 𝜙(𝑖,1), 𝜙(𝑖,2), … , 𝜙(𝑖,𝑛𝑖)
 capture the total minutes that the 

batteries at station 𝑖 are reserved for. For example, if at station 𝑏2 has two batteries in it 

(𝑛2 = 2), and at time 𝑡 = 30 there is exactly one battery reservation which makes the 

battery unavailable during times 41,42,… ,48, then 𝜙(𝑖,1) = 8 and 𝜙(𝑖,2) = 0. When using 

the functions to describe the station, we lose exactly when the batteries are reserved: we 

may know that there are 8 time periods in the future where 1 battery is unavailable, but 

we do not know when those 8 periods fall (and the time may be split into multiple 

segments). Also define the function 𝜙0(𝑆𝑡) = 𝑇 − 𝑡, which determines the number of 

time periods left until the end of the day. Therefore for this network problem ℱ =

{0, (1,1), … , (1, 𝑛1), (2,1), … , (𝛽, 𝑛𝛽)}. Additionally, since we know that the costs 

associated with routing a vehicle increase when some batteries are unavailable, as the 
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values for these basis functions increase so too should the value of the state. Having 

fewer batteries available is always worse than having more batteries available, so we can 

restrict the coefficients so that 𝜃𝑡𝑓
𝑚 ≥ 0 for all 𝑡 ∈ 𝑇, 𝑓 ∈ ℱ and all 𝑚. 

This selection of basis functions used to describe the states have that added property 

that they are scale appropriately with time. For example if between a certain time 𝑡�and 

the end of the day there are 20 time periods where station 3 has all 5 of its batteries 

reserved, what the particular value of 𝑡 is does not matter for the sum of the vehicle 

delays that are expected to occur. Thus, instead of computing parameters 𝜃𝑡𝑓
𝑚 for each 𝑡 ∈

{0,… , 𝑇} and 𝑓 ∈ ℱ we can instead compute a single value 𝜃𝑓
𝑚 for each 𝑓 ∈ ℱ and 

assume that 𝜃𝑡𝑓
𝑚 = 𝜃𝑓

𝑚 for all 𝑡 ∈ {0, … , 𝑇}. This dramatically reduces the number of 

coefficients that need to be calculated. 

There is one further complication to the computation. The equation �̅�𝑡
𝑚(𝑆𝑡) =

∑ 𝜃𝑓
𝑚𝜙𝑓(𝑆𝑡)𝑓∈ℱ  estimates the entire value of the state using each of the basis functions. 

While these basis functions should work, the network routing problem has an added 

advantage that much of the value of the state can be attributed to certain battery-exchange 

stations (and thus to particular basis functions). Recall that the cost of a transition is due 

to the amount of time travelling and swapping batteries beyond the minimum time for 

any possible route in an empty system, and the amount of time waiting at a station for a 

battery. Define base value �̅�𝑡
𝑚,1(𝑆𝑡) as the value of the state 𝑆𝑡 at time 𝑡 due to vehicle 

travel time and swap time. Define the sub-values �̅�𝑡,𝑖
𝑚,2(𝑆𝑡) for 𝑖 = 1,… , 𝛽 as the value of 

the state 𝑆𝑡 at time 𝑡 due to vehicles waiting at station 𝑖. Thus, 
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�̅�𝑡
𝑚(𝑆𝑡) = �̅�𝑡

𝑚,1(𝑆𝑡) + ∑�̅�𝑡,𝑖
𝑚,2(𝑆𝑡)

𝛽

𝑖=1

. 

Further, we can estimate these values by using: 

�̅�𝑡
𝑚,1(𝑆𝑡) = ∑ 𝜃𝑓

𝑚,1𝜙𝑓
𝑚(𝑆𝑡)

𝑓∈ℱ

 

�̅�𝑡,𝑗
𝑚,2(𝑆𝑡) = ∑𝜃(𝑖,𝑧)

𝑚,2𝜙(𝑖,𝑧)
𝑚 (𝑆𝑡)

𝑛𝑖

𝑧=0

����for�all�𝑖 = 1,… , 𝛽. 

Here 𝜃𝑓
𝑚,1

 and 𝜃𝑓
𝑚,2

 are nonnegative real numbers for each 𝑓 ∈ ℱ and we force 𝜃0
𝑚,2 = 0 

since it is not used in any of the sub-value approximations. The base value is still an 

approximation using all of the basis functions and coefficients 𝜃𝑓
𝑚,1

. The sub-value for 

each station 𝑖 is approximated using only the basis functions related to that station, i.e. 

the functions that count the number of minutes at each battery level at that station. By 

using these multiple values we decrease the likelihood that a delay caused by a station 

would be attributed to the battery level at a station on the other side of the network that 

just happened to also have a high battery level at that time. 

The algorithm to compute the values 𝜃𝑓
𝑚,1

 and 𝜃𝑓
𝑚,2

 can be seen in Fig. 19. The 

algorithm runs 𝑈 progressions through the horizon, and each state taking the action that 

provides the lowest cost using the previous approximation. The temporal differences are 

then calculated for the base value and sub-values separately, and a new set of coefficients 

are generated by finding that minimize the 𝐿2 distance of the approximate values from 

the TD values of each state, while ensuring that the coefficients are nonnegative. The 

coefficients are generated for the base values and then for each of the sub-values 
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separately, although they are all stored in a single vector. Thus we are computing 𝛽 + 1 

nonnegative least squares regressions, one for the base value and then one for each sub-

value associated with a station. The non-negativity ensures that highly correlated values 

do not cause any of the coefficients to be negative, which would suggest that having 

fewer batteries available decreases the travel time. For example, if in most of the runs a 

station 𝑖 rarely has exactly 4 batteries taken, if negative values were allowed it would be 

possible for 𝜃𝑡(𝑖,4)
𝑚,2 ≪ �0 and 𝜃𝑡(𝑖,5)

𝑚,2 ≫ �0. This also intuitively makes sense, since 

decreasing the number of available batteries should never make a state more attractive. 

The nonnegative least squares problem can be solved using standard algorithms (Lawson 

and Hanson, 1974). The algorithm requires parameters 𝑀, 𝑈, 𝛼𝑚, and 𝜆𝑚 to be tuned 

manually. 
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Initialize 𝜃𝑓
0,1 ← 0 and 𝜃𝑓

0,2 ← 0 for 𝑓 ∈ ℱ 1 

For 𝑚 ← 1, … , 𝑀 2 

For 𝑢 ← 1, … , 𝑈 3 

Set 𝑦 ← ∅ 4 

  Generate random sequence of car arrivals (𝑗0
𝑢 , … , 𝑗𝑇−1

𝑢 ) 5 

  Set 𝑆0 to be the state where all of the stations are empty 6 

  For 𝑡 ← 1 …𝑇 7 

   Set 𝑆𝑡
𝑢 ← argmin

𝑆𝑡
′ ∈𝑌(𝑆𝑡−1 ,𝑗𝑡−1

𝑢 )

(𝐶(𝑆𝑡−1
𝑢 , 𝑗𝑡−1

𝑢 , 𝑆𝑡
′) + ∑ (𝜃𝑓

𝑚−1,1 + 𝜃𝑓
𝑚−1,2)𝜙𝑓(𝑆𝑡

′)𝑓∈ℱ )  8 

  End for 9 

  For 𝑡 ← 0, … , 𝑇 − 1 10 

 Set 𝛿𝑡
1,𝑢 ← 𝐶1(𝑆𝑡

𝑢 , 𝑗𝑡
𝑢 , 𝑆𝑡+1

𝑢 ) + ∑ 𝜃𝑓
𝑚−1,1𝜙𝑓(𝑆𝑡+1

𝑢 )𝑓∈ℱ  11 

−∑ 𝜃𝑓
𝑚−1,1𝜙𝑓(𝑆𝑡

𝑢)𝑓∈ℱ   12 

   For 𝑗 = 1, … , 𝛽 13 

    Set 𝛿𝑡 ,𝑗
2,𝑢 ← 𝐶𝑗

2(𝑆𝑡
𝑢 , 𝑗𝑡

𝑢 , 𝑆𝑡+1
𝑢 ) + ∑ 𝜃(𝑗 ,𝑧)

𝑚−1,2𝜙(𝑗 ,𝑧)(𝑆𝑡+1
𝑢 )

𝑛𝑗

𝑧=0  14 

−∑ 𝜃(𝑗 ,𝑧)
𝑚−1,2𝜙(𝑗 ,𝑧)(𝑆𝑡

𝑢)
𝑛𝑗

𝑧=0   15 

   End for 16 

End for 17 

  For 𝑡 ← 0, … , 𝑇 − 1 18 

   Set 𝑦𝑡
𝑢 ,1 ← ∑ 𝜃𝑓

𝑚−1,1𝜙𝑓(𝑆𝑡
𝑢)𝑓∈ℱ + ∑ (𝜆𝑚)𝑇−𝜏𝛿𝜏

1,𝑢𝑇
𝜏=𝑡  19 

For 𝑗 ← 1, … , 𝛽 20 

    Set 𝑦𝑡 ,𝑗
𝑢 ,2 ← ∑ 𝜃(𝑗 ,𝑧)

𝑚−1,2𝜙(𝑗 ,𝑧)
𝑚 (𝑆𝑡

𝑢)
𝑛𝑗

𝑧=0 + ∑ (𝜆𝑚)𝑇−𝜏𝛿𝜏,𝑗
2,𝑢𝑇

𝜏=𝑡  21 

   End for 22 

End for 23 

End for 24 

 Set 25 

𝜃𝑚 ,1 ← argmin
𝜃≥0

∑ ∑  𝑦𝑡
𝑢 ,1 − ∑ 𝜃𝑓𝜙𝑓(𝑆𝑡

𝑢)
𝑓∈ℱ

 

2𝑇−1

𝑡=0

𝑈

𝑢=1

 26 

For 𝑗 ← 1, … , 𝛽 27 

Set 28 

𝜃𝑗
𝑚 ,2 ← argmin

𝜃≥0
∑ ∑  𝑦𝑡

𝑢 ,2 − ∑ 𝜃(𝑗 ,𝑧)
𝑚−1,2𝜙(𝑗 ,𝑧)(𝑆𝑡

𝑢)

𝑛𝑗

𝑧=0

 

2
𝑇−1

𝑡=0

𝑈

𝑢=1

 29 

End for 30 

Set 𝜃𝑚 ,1 ← 𝛼𝑚𝜃𝑚 ,1 + (1 − 𝛼𝑚 )𝜃𝑚−1,1 31 

Set 𝜃𝑚 ,2 ← 𝛼𝑚 [0, 𝜃1
𝑚 ,2,  𝜃2

𝑚 ,2, ⋯ ,  𝜃𝛽
𝑚 ,2]

′
+ (1 − 𝛼𝑚)𝜃𝑚−1,2   32 

End for 33 

 

Fig. 19. A TD(𝜆) algorithm with linear approximations for finding a policy for the 

network routing problem. 
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With the successful implementation of the algorithm in Fig. 19, we will be provided a 

set of coefficients 𝜃𝑓
𝑀,1

 and 𝜃𝑓
𝑀,2

 for 𝑓 ∈ ℱ. These coefficients can be used by the 

computer routing the vehicle to determine the best route to take. When the state of the 

system is 𝑆𝑡 and a vehicle turns on at time 𝑡 wanting to travel OD pair 𝑗𝑡 taking one of the 

possible routes in ℛ𝑗𝑡 , then for each route 𝑅 ∈ ℛ𝑗𝑡  the computer should calculate 

𝑣𝑡 = 𝜓𝑡
𝑡𝑟𝑎𝑣𝑒𝑙(𝑅) + ∑ (𝜃𝑓

𝑀,1 + 𝜃𝑓
𝑀,2)𝜙𝑓(𝑆𝑡+1)

𝑓∈ℱ
, 

where 𝑆𝑡+1 is the state of the system after the vehicle takes route 𝑅. The route selected 

should be the one that minimizes 𝑣𝑡. Finding the minimum 𝑣𝑡 can be done extremely 

quickly since it only requires one run of the algorithm in Fig. 18 for each route and a few 

summations. 

3.3. Methods 

We tested the algorithm in Fig. 19 to determine the amount of savings the algorithm 

would provide compared to the greedy policy and the run time of the algorithm. The test 

data was the Arizona state highway network from (Upchurch et al., 2009), shown in Fig. 

20 (again from (Upchurch et al., 2009)). In that paper Upchurch, Kuby, and Lim had a 

charging station located in each of the 25 cities in the network plus an addition 25 

stations located on longer roads between cities. They also used a gravity model to 

represent demand of vehicles wanting to traverse routes between each OD pair of cities. 

Here the demand was a function of the population of the OD cities and the length of the 

shortest path between them. They assumed that the electric vehicles would have a battery 

that allows them to travel 100 miles before recharging. 
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Fig. 20. The Arizona road network with battery-exchange stations from Upchurch et al. 

(Upchurch et al., 2009). 

3.3.1. Network parameters 

For this analysis we assumed that there were 18 hours of demand in the day (since 

people would not be driving late at night) and split the time span into 10 second intervals. 

Therefore in our implementation 𝑇 = 6480. We assumed that each vehicle travels at 65 

miles per hour and thus could travel for 554 time units before requiring a recharge. We 

assumed that each battery would take 120 seconds to swap, since the Tesla Model S 

Sedan was shown to take 90 seconds to swap, plus we included an additional 30 seconds 

for the driver to get out of the car and pay. The battery charging time was set to 4 hours 

based on charging a Nissan Leaf to full using a 220 volt outlet (Edmunds.com, 2013).  



 72  

Each of the battery exchange stations located in a city had 48 batteries stored in it. Each 

of the stations located along side of the highway had only 12 batteries. Given that a 

vehicle arrived in the system in need of a route, the probability that a vehicle would 

arrive for a particular OD pair was proportional to the gravity between the two cities used 

in the model from (Upchurch et al., 2009). For each OD pair 𝑗 the set of possible routes 

𝑅𝑗 was generated in the following way. First, we computed the shortest time route from 𝑜𝑗 

to 𝑑𝑗 possible, assuming the vehicle never had to wait for a battery to become available. 

Then we found all other routes that had at most the same number of battery-exchange 

stops than the shortest route. 

The probability of a vehicle arriving in each time period was taken to be values in 

{0.025,0.05,… , 0.15} and the algorithm was run on each value. The reason for testing 

many arrival rates was that if the arrival probability was sufficiently low then the greedy 

policy would be the optimal policy, since the stations would never run out of batteries (as 

was the case when the arrival probability was 0.025). Similarly, if the arrival probability 

was too high then regardless of routing policy the vehicles would be waiting at the 

stations until the end of the day, and so the greedy policy would just as effective (which 

occurred when the arrival probability was 0.15). By varying the arrival probability we 

were able to find at what point the MCDP based policy is the most effective. 

For each of the six arrival probabilities the algorithm was run to find approximations for 

the value coefficients. The algorithmic policy was there compared to the greedy policy by 

simulating 10 days of vehicles traversing the network, and for each day using the greedy 
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policy and the policy generated by the algorithm. The difference in the amount of delays 

between the two policies was used to determine which was more effective. 

3.3.2. Parameter values 

The four parameters for the algorithm were: 

 𝑀, the number of times the 𝜃𝑚 coefficients were tuned; 

 𝑈, the number of runs through the full time horizon for each run in 𝑀; 

 𝛼𝑚 the smoothing parameter for 𝜃𝑚; 

 and 𝜆𝑚 the decay parameter for the temporal differencing. 

For our trials we set 𝑀 = 24, 𝑈 = 8, 𝛼𝑚 =
20

20+𝑚
, 𝜆𝑚 = 𝛼𝑚−1 (

1−𝛼𝑚

𝛼𝑚
). There were many 

possible reasonable choices, especially for function definitions for 𝛼𝑚 and 𝜆𝑚, however 

in our experiments these seemed to prove sufficient. 

3.3.3. Results and discussion 

The calculations were done on a computer with an Intel Core 2 Duo 2.4Ghz (x2) 

processor with 4GB of RAM running Windows 7 Ultimate. The algorithm was coded in 

MATLAB 2012b. The nonnegative least squares calculation was done using the “nnls” 

package by Whiten on the MATLAB Central File Exchange (Whiten, 2012). 

Fig. 21 shows a comparison of the amount of delay incurred due to detours and 

waiting in the policy generated by the algorithm versus the greedy policy. For arrival 

probabilities between 0.05 and 0.1 the algorithm substantially lowered the amount of 

delays. When the arrival probability was 0.025 there were no delays at all (and thus the 

greedy policy was optimal). When the arrival probability was greater than 0.1 there were 
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too many cars so all of the vehicles had to wait until the end of the day before a battery 

was ready, and so the algorithm was ineffective. 

  

Fig. 21. A comparison of the algorithm vs. the greedy policy runs on different random 

networks. 

The results are further described in Table 2. In the table each row corresponds to the 

Arizona network with a different arrival probability. The last row shows the runtime in 

seconds of the algorithm to compute the coefficients. In all of the cases it took less than 

two hours to run. The 𝜃𝑚 coefficients would be pre-computed so that when the vehicles 

are routed they only need to find the value of each possible route by computing the value 

of the resulting state. The amount of time it took to route each individual vehicle during 

the 10 simulated days is shown in the second to last row. So while the computation of the 

coefficients took a substantial amount of time, actually routing the cars would take 

fractions of a second. 
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In Table 2 the 1st and 2nd rows describe the Arizona network. Rows 3 through 6 describe 

the greedy policy averaged over the 10 runs, and rows 7 through 10 describe the policy 

generated by the algorithm. The units for the routes and delay are weighted hours: hours 

either driving or being delayed, weighted by the coefficients 𝜌1 and 𝜌2 which penalize the 

time swapping batteries and waiting for a battery. The 11th row denotes the number of 

times in a day that the action taken by a vehicle using the policy generated by the 

algorithm was different than that of the greedy policy, and the 11th row shows the percent 

decrease in delays between the two policies. 

Table 2 

The algorithm and greedy policy results for each randomly generated network over ten 

runs 

Measure Arrival probability in each time period   

  0.025 0.050 0.075 0.100 0.125 0.150  

Network        

Number of batteries across stations 1500 1500 1500 1500 1500 1500  

Average number of vehicles in day 159.8 326.3 489.6 640.2 812.8 967.6  

Greedy policy        

Average total route value of all vehicles 355 728 1113 1488 2550 5338  

Average route value of each vehicle 2.2 2.2 2.3 2.3 3.1 5.5  

Average total delay for all vehicles 0 1 25 71 754 3197  

Average number of cars with any delays 0.0 4.2 76.7 178.7 392.0 549.8  

Algorithm policy        

Average total route value of all vehicles 355 728 1107 1476 2542 5334  

Average route value of each vehicle 2.2 2.2 2.3 2.3 3.1 5.5  

Average total delay for all vehicles 0 1 19 59 747 3193  

Average number of cars with any delays 0.0 4.2 77.2 178.9 390.4 548.2  

Comparison        

Average times policies differed 0 73.5 119.3 167.7 215.9 424.9  

Percent decrease in delay time -- 8.0% 23.4% 16.8% 1.0% 0.1%  

Runtimes        

Routing per vehicle (10-2 sec) 5.7 3.1 2.2 1.8 1.5 1.4  

To generate coefficients (103 sec) 3.94 4.11 4.29 4.43 4.52 4.71  
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3.4. Conclusion 

This research provides a novel framework for routing many electric vehicles through a 

network with battery exchange technology allowing for battery reservations. We have 

provided an online algorithm which routes each vehicle in a manner which tries to 

minimize the total route value of all vehicles then makes the reservations at the stations to 

be visited. This is done using an approximation of the expected future costs associated 

with taking each route possible route using an MCDP with linear temporal differencing. 

The algorithm has been shown to successfully decrease the amount of delays vehicles 

will have which should lead to better adoption of electric vehicle technology. 

There are several ways in which the model could be improved in future work. Better 

approximation functions for the state values could be found to improve the benefit of the 

algorithm. The algorithm assumes that transit times are fixed and all vehicles take their 

assigned routes, both assumptions that could be relaxed. Whether or not to charge a non-

full battery at a station can be modeled as a decision, rather than assuming the batteries 

will always be charged whenever possible. This could potentially reduce costs since less 

electricity for charging batteries may be used during peak hours. In Section 5.2 additional 

extensions to the model are discussed: allowing for the demand rate between OD pairs to 

vary over time, accounting for batteries not being empty when dropped off at a station, 

and having vehicles start along routes without full batteries.  
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Chapter 4 

THE ALTERNATIVE-FUEL VEHICLE SCHEDULING PROBLEM 

Scheduling fleets of vehicles is an important aspect of designing many logistics 

systems. There are numerous examples of logistics problems where a fleet of vehicles 

have to perform several spatial-temporal tasks with given resource constraints, such as 

passengers that must be transported by a bus fleet from origins to destinations, or cargo 

that must be moved from warehouses to businesses using a fleet of cars or trucks. A large 

class of these problems have been defined, which are referred to as Vehicle Scheduling 

Problems (VSP). These problems have been analyzed by researchers and their findings 

have been reported in the literature of Operations Research, Industrial Engineering, 

Computer Science and related fields. Additionally, vehicle scheduling has many close 

parallels to classic graph theoretic optimization problems such as the Traveling Salesman 

Problem, min-cost network flow problems, and the Capacitated Arc Routing Problem 

(CARP) (Diestel, 2000; Dror, 2000; Heineman et al., 2008).  

The multiple depot vehicle scheduling problem (MDVSP) is conceptually straight 

forward: given a set of 𝑛 service trips, with costs and times assigned for vehicles to travel 

from the end location of one service trip to the start location of another (called dead-

heading trips), and a set of vehicles located at 𝑑 depots, what is the minimum cost 

required to complete all the service trips with the vehicles? Here the service trips are 

predefined in terms start and end times and locations, and the services being performed 

during the trips could be something like picking and dropping off passengers. The 

multiple depot vehicle scheduling problem as well as generalizations and special cases of 
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it have been analyzed over the past 30 years (Bodin et al., 1983; Bunte and Kliewer, 

2009; Ceder, 2002; Daduna and Paixão, 1995; Desaulniers and Hickman, 2007; 

Desrosiers et al., 1995). 

Recent developments in alternative-fuel vehicles have created new questions in 

transportation. These vehicles, such as electric vehicles, hydrogen-gas vehicles, and bio-

fuel based vehicles, do not require the use of gasoline and are an approach to lowering 

the global dependence on oil. Alternative-fuel vehicles have special requirements on 

refueling; in the case of hydrogen-gas and bio-fuel vehicles they can only refill at special 

fueling stations (Ogden et al., 1999). An electric vehicle can either be charged by 

plugging the vehicle into the electric grid, or by swapping the spent battery of the vehicle 

with a fresh one at a battery swapping station (Botsford and Szczepanek, 2009). These 

electric vehicles are being actively researched and experimented with (Folkesson et al., 

2003), for example a fleet of electric vehicles was used at the Shanghai Expo in 2010 

(Zhu et al., 2012). Because these vehicles types are new, there is very little specialized 

infrastructure available for them and the number of refueling stations is limited. 

Additionally, the use of alternative-fuel can considerably limit the distance a vehicle can 

travel before requiring to refuel, particularly in the case of electric vehicles (Bakker, 

2011). 

This chapter focuses on the problem where a fleet of vehicles, in particular buses, is 

changed to a fleet of alternative-fuel vehicles for environmental, sustainability, or 

government regulation reasons, and where it is necessary to analyze the impacts on cost 

and fleet sizing. The major difficulty in scheduling is that since the technology is new, 
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there will be few refueling stations and thus the fuel level of the vehicles must be taken 

into account in vehicle scheduling. Since the range is constrained, more vehicles may be 

needed for covering the same service trips. Constraining the range that each vehicle may 

travel in a day in vehicle scheduling problems has been discussed before (Desrosiers et 

al., 1995; Haghani and Banihashemi, 2002) as the vehicle scheduling problem with length 

of path considerations (VSPLPR). VSPLPR is similar to the problem discussed in this 

chapter but does not allow for the vehicles to refuel and continue traveling. This is also 

similar to the vehicle scheduling problem with time constraints (Freling and Paixão, 

1995) where the time a vehicle may travel is constrained. The situation where the 

vehicles require refueling but may only refuel at their home depots has been heuristically 

solved using ant colony algorithms (Wang and Shen, 2007; Wei et al., 2010). The 

problem in this chapter differs from their work by allowing the vehicles to have several 

options on where to refuel, instead of only being able to refuel at the vehicle’s home 

depot. 

Instances of the multiple depot vehicle scheduling problem, especially when there are 

additional constraints due to time, often are solved using column generation techniques as 

first shown by Ribeiro and Soumis (Ribeiro and Soumis, 1994). Other researchers have 

extended the column generation approach by adding time constraints (Desaulniers et al., 

1998), allowing for degenerate problems (Oukil et al., 2007), and integrating crew 

scheduling into the problem (Steinzen et al., 2010). In these settings, the problem is first 

formulated as an integer program and the linear relaxation of the integer program is 

referred to the master problem. Most of the decision variables are removed from the 
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master problem to generate a new problem, called the restricted master problem. The 

dual of the restricted master problem is solved, and the solution of the dual is then used as 

the basis for a subproblem which determines additional decision variables to add to the 

restricted master problem. This is repeated until the optimal solution to the restricted 

master problem is found to be the same as the optimal solution to the master problem. In 

the event the solution is noninteger, a branch and bound technique is used until an integer 

solution is found. For an in-depth introduction to column generation see (Desrosiers and 

Lübbecke, 2005). In regards to vehicle scheduling problems, each decision variable 

typically refers to one feasible set of trips a vehicle will serve after leaving a depot. The 

column generation algorithms provide a set of feasible service trip selections for each 

vehicle, as well as the depots the vehicles will use. 

In this chapter, we will consider how the limited refueling locations and limited range 

of alternative fuel vehicles changes the multiple depot vehicle scheduling problem. The 

classic MDVSP will be modified by adding new constraints where service trips and dead-

heading trips require a certain amount of fuel, each vehicle has a limited fuel capacity, 

and there exists 𝑠 fuel stations such that a vehicle may refuel as required to continue 

traveling. The dead-heading trips now include the trips from the fuel stations to the start 

locations of service trips, and from the end locations of service trips to the fuel stations 

(as well as between the depots and fuel stations). In this model we use term “fuel” to 

represent the energy consumed by the use of an alternative-fuel vehicle, however the 

research could apply to electric vehicles by simply considering “battery charge” to be 

“fuel level” and “recharging” to be “refueling.” Our solution will be based on using a 
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column generation algorithm to repeatedly determine new possible sets of schedules for 

vehicles to serve. Because of the fuel limitation for the vehicles, determining feasible sets 

of schedules a single vehicle can serve is non-trivial, and is in fact an instance of the 

weight constrained shortest path problem with replenishment arcs (Smith et al., 2012). 

This chapter is organized as follows: Section 4.1 formally defines the problem and 

discusses how to expand the problem to handle cases that violate the assumptions made 

in the definition. Section 4.2.1 formulates the problem as a master problem and 

subproblem to be solved using the column generation approach. Section 4.2.2 discusses 

how to solve the subproblem for the column generation technique, and Section 4.2.3 

discusses the branch and bound approach. In Sections 4.3 and 4.4 heuristic approaches 

are presented and discussed. In Section 4.5 results are generated from applying the 

algorithms to both randomly generated data and data from Valley Metro, the bus service 

for the Phoenix Arizona metropolitan area. 

4.1. Formal definition of the problem 

We define the Alternative-Fuel Multiple Depot Vehicle Scheduling Problem (AF-VSP) 

as follows. The problem is defined for a given 𝑛 service trips 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛}, 𝑏 fuel 

stations 𝐵 =� {𝜎1, 𝜎2, … , 𝜎𝑏}, and 𝑑 depots 𝐷 = {𝜃1, … , 𝜃𝑑}. For each service trip 𝜏𝑖 there 

is a start location 𝑠𝑖, and end location 𝑒𝑖, start and end times 𝑠𝑡𝑖 and 𝑒𝑡𝑖, and fuel 

requirement 𝑓𝜏(𝜏𝑖). For each depot 𝜃𝑗  there is a capacity 𝑟𝑗 representing how many 

vehicles are stationed at the depot. For any pair 𝑧1, 𝑧2 ∈ 𝑇 ∪ 𝐵 ∪ 𝐷 with 𝑧1 ≠ 𝑧2, there 

are travel times 𝑡(𝑧1, 𝑧2), costs 𝑐(𝑧1, 𝑧2), and fuel requirements 𝑓(𝑧1, 𝑧2) representing the 

respective values for the dead-heading trip from 𝑧1 to 𝑧2. Note that the costs, travel times, 
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and fuel requirement functions take as input the service trips themselves and not their 

starting and ending points, since any dead-heading trip leaving a service trip must depart 

from the service trip’s end point, and any dead-heading trip heading to a new service trip 

must arrive at the service trip’s start point. The fuel capacity of each vehicle in the fleet is 

a given value 𝜔. For these given inputs the objective is to find a feasible minimum cost 

assignment of vehicles from depots to service trips (and fuel stations between service 

trips) such that each service trip is visited by exactly one vehicle, each vehicle must start 

and end at the same depot and obey the depot capacity, and for any path a vehicle takes 

between two fuel stations or a depot the sum of the fuel requirement of the service trips 

and dead-heading trips in the path must be at most 𝜔. 

Without loss of generality assume that the vehicles have no capital cost, there is no 

cost associated with the act of refueling, and vehicles are refueled instantly on arrival. 

Also, assume that after refueling, a vehicle must take a least one service trip before 

refueling again. Later in this section it will be shown why these assumptions can be 

made. In addition each vehicle starts at the depot with 𝜔 fuel, however the depots 

themselves are not a fuel stations; if that is desired then an additional fuel station can be 

located at each depot. Also without loss of generality, assume that the service trips are 

ordered by their start time, so 𝑠𝑡𝑖 ≤ 𝑠𝑡𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. A visual representation of a 

sample AF-VSP with a single depot can be seen in Fig. 22. 
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Fig. 22. An example AF-VSP where 𝑛 = 2, 𝑏 = 2, and 𝑑 = 1. 

Two service trips 𝜏𝑖 , 𝜏𝑗 ∈ 𝑇 are compatible if 𝑒𝑡𝑖 + 𝑡(𝜏𝑖, 𝜏𝑗) ≤ 𝑠𝑡𝑗, meaning a single 

vehicle may serve both trips without violating time constraints. Two service trips 𝜏𝑖, 𝜏𝑗 ∈

𝑇 are compatible with fuel station 𝜎𝑘 ∈ 𝐵 if 𝑒𝑡𝑖 + �𝑡(𝜏𝑖, 𝜎𝑘) + 𝑡(𝜎𝑙, 𝜏𝑗) ≤ 𝑠𝑡𝑗 , meaning a 

vehicle can visit both trips and stop for fuel at 𝜎𝑘 between them without violating time 

constraints. We write the relationship for compatibility of 𝜏𝑖 and 𝜏𝑗 as comp(𝜏𝑖, 𝜏𝑗) and 𝜏𝑖 

and 𝜏𝑗 are compatible with fuel station 𝜎𝑘 as comp_fuel(𝜏𝑖, 𝜎𝑘, 𝜏𝑗). All trips are both 

compatible and compatible with fuel with any depot. We use the term schedule to refer to 

a set itinerary a vehicle would take in a day, thus a schedule is an assignment of a vehicle 

to a depot and service trips and fuel stations as an ordered sequence of elements of 𝑇 ∪

𝐵 ∪ 𝐷. In a schedule the first and last elements in the sequence are the same element of 𝐷 

(and no other elements of the sequence are in 𝐷), no two fuel stations may occur in a row, 

and the sequence must include at least one service trip. The route is considered feasible if 

it can be satisfied without the vehicle running out of fuel and the pairs of service trips in 

Service trip

Dead-heading trip

Trip start or end point

Fuel station

Depot
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the sequence must each be compatible or compatible with a fuel station if the vehicle 

refuels between them. 

The AF-VSP is a generalization of the multiple depot vehicle scheduling problem 

since VSP is a special case of AF-VSP where 𝜔 = ∞ and 𝑏 = 0. Without the fuel 

constraint the multiple depot vehicle scheduling problem is NP-hard, and thus the AF-

VSP is NP-hard as well. When the problem is restricted to a single depot, without the fuel 

constraint the problem can be solved in polynomial time. With the fuel constraint the 

problem is still NP-hard since it is an extension of the VSPLPR which was shown to be 

NP-hard in (Ball, 1980). AF-VSP with no fuel stations and a single depot (i.e. 𝐵 = ∅ and 

𝑑 = 1), is exactly the VSPLPR. It can also be shown that finding a solution to AF-VSP 

that has a cost of less than 150% of the optimal solution cost is NP-hard, by using a proof 

similar to that of CARP in (Golden and Wong, 1981). 

As previously stated, this definition of the AF-VSP makes several major assumptions: 

that at most one fuel station may be visited between pairs of service trips, that there are 

no costs associated with the number of vehicles, and that refueling is instantaneous and 

has no cost. In the case when situation violates the assumptions, then by making a few 

adjustments to it the problem can be fit into the standard framework. Below we discuss 

how to make those adjustments. 

If we allow a vehicle to visit multiple fuel stations between service trips, then we can 

create an alternate version of the problem that does not allow multiple refueling stops 

between service trips. First note that the number of fuel stations visited between service 

trips is bounded by 𝑏 since a vehicle would never want to visit the same fuel station twice 
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between two service trips. In fact for any sequence of 2 ≤ 𝑘 ≤ 𝑏 refueling stations 

{𝑚1, 𝑚2, … ,𝑚𝑘} for 𝑚1, … ,𝑚𝑘 ∈ 𝐵, and 𝑓(𝑚𝑗 , 𝑚𝑗+1) ≤ 𝜔 for all 𝑗 < 𝑘, the amount of 

fuel required for a vehicle to deadhead from a service trip to the beginning of the 

sequence of stations is uniquely determined by the fuel required to reach 𝑚1. A new 

proxy fuel station 𝜎{𝑚1,𝑚2,…,𝑚𝑘} can be created representing this sequence of refueling 

stations, where the dead-heading trips from each service trip to 𝜎{𝑚1,𝑚2,…,𝑚𝑘} have the 

same costs, travel times, and fuel requirements as the dead-heading trips to fuel station 

𝑚1. The dead-heading trips from 𝜎{𝑚1,𝑚2,…,𝑚𝑘} to each service trip 𝜏𝑖 ∈ 𝑁 have travel 

times 𝑡(𝜎{𝑚1,𝑚2,…,𝑚𝑘}, 𝜏𝑖) = 𝑡(𝑚𝑘, 𝜏𝑖) + ∑ 𝑡(𝑚𝑥−1, 𝑚𝑥)
𝑘
𝑥=2 , have the cost 

𝑐(𝜎{𝑚1,𝑚2,…,𝑚𝑘}, 𝜏𝑖) = 𝑐(𝑚𝑘, 𝜏𝑖) + ∑ 𝑐(𝑚𝑗−1, 𝑚𝑗)
𝑘
𝑗=2 �, and the fuel requirement of 

𝑓(𝜎{𝑚1,𝑚2,…,𝑚𝑘}, 𝜏𝑖) = 𝑓(𝑚𝑘, 𝜏𝑖). So the proxy station 𝜎{𝑚1,𝑚2,…,𝑚𝑘} represents the vehicle 

traveling using all of the fuel stations in that sequence. The values for the dead-heading 

trips between the refueling station and the depots can be generated in a similar manner. 

While there are at most 𝑏! possible fuel stations added, the number of additional fuel 

stations can be lowered by removing dominated sequences. Each sequence of stations 

starting with station �̅� and ending with station �̿� has a corresponding total cost and total 

traversal time. Consider two sequences 𝑀1 = {�̅�,𝑚1
1, 𝑚2

1, … ,𝑚𝑘1−1
1 , �̿�} and 𝑀2 =

{�̅�,𝑚1
2, 𝑚2

2, … ,𝑚𝑘2−1
2 , �̿�}. For the two sequences, 𝑓(𝜎𝑀1

, 𝑧) = 𝑓(𝜎𝑀2
, 𝑧) and 

𝑓(𝑧, 𝜎𝑀1
) = 𝑓(𝑧, 𝜎𝑀2

) for any 𝑧 ∈ 𝑇 ∪ 𝐵 ∪ 𝐷, since they share the same start and end 

stations. Similarly, 𝑐(𝑧, 𝜎𝑀1
) = 𝑐(𝑧, 𝜎𝑀2

) and either 𝑐(𝜎𝑀1
, 𝑧) ≤ 𝑐(𝜎𝑀2

, 𝑧) or 

𝑐(𝑧, 𝜎𝑀1
) ≥ 𝑐(𝑧, 𝜎𝑀2

) holds for all 𝑧. That is to say either the costs of the dead-heading 
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trips from first sequence are all at least as much as the costs of those from the second, or 

the costs from the second sequence are all at least as much as the costs of those from the 

first sequence. This is also true for time in addition to cost. Thus, any two sequences 

which are not Pareto optimal with respect to cost and time can be removed; this 

corresponds to sequences of fuel stations between �̅� and �̿� which are dominated by 

other sequences. 

If the use of each vehicle has an additional capital cost 𝑐vehicle that is incurred if the 

vehicle is used at all, then the cost can be added to the arcs. For each dead-heading trip 

that leaves a depot 𝜃𝑗heading to service trip or fuel station 𝑧 having cost 𝑐(𝜃𝑗 , 𝑧), change 

the cost of the service trip to 𝑐(𝜃𝑗 , 𝑧) + 𝑐vehicle. Since a vehicle will take exactly one of 

these dead-heading trips if and only if it is required for the solution, the final solution will 

have an additional cost of 𝑥 ⋅ 𝑐vehicle where 𝑥 is the number of vehicles used. Because 

each depot itself is not a fuel station, a vehicle will not traverse more than one of the trips 

leaving a depot. Similarly to the situation of the additional cost of vehicles, if refueling 

has a cost of 𝑐fuel for each visit to a fuel station, every dead-heading trip leaving a fuel 

station should have an additional cost of 𝑐fuel added to it. If there is a time 𝑡fuel 

associated with refueling, then the travel time for each dead-heading trip leaving the fuel 

station should have 𝑡fuel added to it. 

4.2. The column generation algorithm 

Before using a column generation algorithm on the AF-VSP, the problem must first be 

formulated as a binary integer programming problem. The integer program will then be 

relaxed and solved using column generation. To find a solution for the unrelaxed integer 
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version, a branch and bound method will be used. To formulate the binary integer 

programming problem, we first generate a graph corresponding to the problem and then 

make a formulation based on the graph. Let 𝐺 = (𝑉, 𝐸) be a directed graph, let 

𝑐′, 𝑓′: 𝐸 → ℝ+ be cost and fuel requirement functions, and a let 𝑤 be constant value 

representing the amount of fuel the vehicle can hold. Let ℎ(𝜏𝑖, 𝜎𝑘) represent visiting fuel 

station 𝜎𝑘 immediately after service trip 𝜏𝑖, where 𝑖 ∈ {1,… , 𝑛} and 𝑘 ∈ 𝑏. Similarly, let 

ℎ(𝜃𝑗 , 𝜎𝑘) represent visiting fuel station 𝜎𝑘 immediately after starting from depot 𝜃𝑗 . 

Define the set 𝐻 as: 

𝐻 = {ℎ(𝜏𝑖, 𝜎𝑘): 𝑖 ∈ {1,… , 𝑛}; �𝑘 ∈ {1,… , 𝑏}} ∪� {ℎ(𝜃𝑗 , 𝜎𝑘): 𝑗 ∈ {1,… , 𝑛}, 𝑘 ∈ {1,… , 𝑏}}, 

which represents all possible ways of visiting a fuel station following a service trip or a 

depot. This set will be used to determine whether or not a fuel station is compatible with 

the next service trip given what the vehicle visited immediately before. Let vertex set 𝑉 

be defined as 𝑉 = �𝐷 ∪ 𝑇 ∪ 𝐻. In this representation each fuel station in the problem is 

represented by multiple vertices since each vertex corresponds to stopping at the station 

after a particular service trip or depot. This representation is to keep track of the service 

trips that are taken before and after the refueling, and to ensure that no loops are formed 

that do not go through the depot. The arc set 𝐸 is defined as the union of arc sets 

𝐸1, … , 𝐸7 given in Table 3. 
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Table 3 

The arcs in graph 𝐺 = (𝑉, 𝐸), where 𝐸 = ⋃ 𝐸𝑖
7
𝑖=1  

Set Definition Fuel 𝑓′ Cost 𝑐′ Description 

𝐸1 {(𝜏𝑖 , 𝜏𝑗): 𝜏𝑖 , 𝜏𝑗 ∈ 𝑇, comp(𝜏𝑖 , 𝜏𝑗)} 𝑓𝜏(𝜏𝑖)

+ 𝑓(𝜏𝑖 , 𝜏𝑗) 

𝑐(𝜏𝑖 , 𝜏𝑗) service trip to service 

trip 

𝐸2 {(𝜏𝑖 , 𝜃𝑗): 𝜏𝑖 ∈ 𝑇, 𝜃𝑗 ∈ 𝐷} 𝑓𝜏(𝜏𝑖)

+ 𝑓(𝜏𝑖 , 𝜃𝑗) 

𝑐(𝜏𝑖 , 𝜃𝑗) service trip to depot 

𝐸3 {(𝜏𝑖 , ℎ(𝜏𝑖 , 𝜎𝑗)) : 𝜏𝑖 ∈ 𝑇, 𝜎𝑗 ∈ 𝐵} 𝑓𝜏(𝜏𝑖)

+ 𝑓(𝜏𝑖 , 𝜎𝑗) 

𝑐(𝜏𝑖 , 𝜎𝑗) service trip to fuel 

station 

𝐸4 {(ℎ(𝑧, 𝜎𝑗), 𝜏𝑘): 𝑧 ∈ 𝑇 ∪ 𝐷, 𝜎𝑗 ∈ 𝐵, 𝜏𝑘

∈ 𝑇, comp_fuel(𝑧, 𝜎𝑗, 𝜏𝑘)} 

𝑓(𝜎𝑗 , 𝜏𝑘) 𝑐(𝜎𝑗, 𝜏𝑘) fuel station to service 

trip 

𝐸5 {(ℎ(𝑧, 𝜎𝑗), 𝜃𝑘): 𝑧 ∈ 𝑇 ∪ 𝐷, 𝜎𝑗 ∈ 𝐵, 𝜃𝑘

∈ 𝐷} 

𝑓(𝜎𝑗 , 𝜃𝑘) 𝑐(𝜎𝑗, 𝜃𝑘) fuel station to depot 

𝐸6 {(𝜃𝑖 , 𝜏𝑗): 𝜃𝑖 ∈ 𝐷, 𝜏𝑗 ∈ 𝑇} 𝑓(𝜃𝑖 , 𝜏𝑗) 𝑐(𝜃𝑖 , 𝜏𝑗) depot to service trip 

𝐸7 {(𝜃𝑖 , ℎ(𝜃𝑖 , 𝜎𝑗)) : 𝜃𝑖 ∈ 𝐷, 𝜎𝑗 ∈ 𝐵} 𝑓(𝜃𝑖 , 𝜎𝑗) 𝑐(𝜃𝑖 , 𝜎𝑗) depot to fuel station 

 

Arc set 𝐸1 represents a vehicle taking a dead-heading trip between two service trips. 

The fuel requirement for the origin service trip is added to the fuel cost of the dead-

heading trip so that we do not need to associate fuel requirements with vertices. Arc sets 

𝐸2 and 𝐸3, between a service trip and a fuel station and depot respectively; again we add 

the fuel cost for the origin service trip. Arc sets 𝐸4 and 𝐸5 represent traveling from fuel 

stations to service trips and depots, and arc sets 𝐸6 and 𝐸7 represent traveling from depots 

to fuel stations and service trips. An example 𝐺 is given in Fig. 23, representing the AF-

VSP in Fig. 22. Note that in Fig. 23 it is assumed that service trips 𝜏1 and 𝜏2 are 

compatible with each other and with station 𝜎1. 
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Fig. 23. A graph 𝐺 corresponding to the AF-VSP in Fig. 22. 

Given graph 𝐺, functions 𝑐′ and 𝑓′, and scalar 𝑤, the AF-VSP is now the following: 

find a minimum cost set of cycles 𝐶 in 𝐺 such that each node in 𝑇 ⊆ 𝑉 is included in 

exactly one cycle, each cycle includes exactly one depot vertex, no subpaths of cycles in 

𝐶 between vertices in the set 𝐷 ∪ 𝐻 have a fuel requirement greater than 𝜔, and at most 

𝑟𝑗 cycles contain depot 𝜃𝑗 . There are several advantages to this approach to formulating 

the problem. First, we no longer have to consider the time component of the service trips; 

time is fully captured by the location of arcs in graph 𝐺. Two service trips have a path 

between them if and only if they are compatible, and similarly an edge exists from 𝜏𝑖 to 

ℎ(𝜏𝑖, 𝜎𝑗) and from ℎ(𝜏𝑖, 𝜎𝑗) to 𝜏𝑚 if and only if comp_fuel(𝜏𝑖 , 𝜎𝑗 , 𝜏𝑚). Second, each 

service trip is associated with a single vertex, so the different start and end locations of 

each service trip are accounted for in the arcs. Further, all fuel requirements are 

associated with arcs despite the fact that service trips are represented by vertices. Finally, 

every cycle in in 𝐺 corresponds to a schedule that could be taken by a vehicle, and the 
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schedule is feasible if no subpath between vertices in 𝐷 ∪ 𝐻 has a fuel requirement 

greater than 𝑤. The cost of assigning a vehicle to a particular schedule is the sum of the 

edges in the associated cycle in 𝐺. 

4.2.1. The column generation master problem 

Recall that a schedule is a sequence starting and ending with a depot and containing 

fuel stations and service trips. Let Ω represent the set of all feasible schedules for an 

instance of the AF-VSP. For a particular schedule 𝑝 ∈ Ω, let variable 𝑣𝑝
𝑖  be 1 if schedule 

𝑝 contains service trip 𝜏𝑖 and 0 otherwise. Similarly, let variable 𝑢𝑝
𝑗
 be 1 if schedule 𝑝 

starts and ends at depot 𝜃𝑗  and 0 otherwise. For each schedule 𝑝 let 𝑞𝑝 be the sum of the 

cost associated with the dead-heading trips of schedule 𝑝. With these indicator variables, 

we can define an integer programming problem to solve the AF-VSP. Let decision 

variable 𝑥𝑝 be 1 if we include schedule 𝑝 in the solution and 0 otherwise. The integer 

program is then:  

 

Minimize��� ∑ 𝑞𝑝𝑥𝑝

𝑝∈Ω

 
(13) 

subject�to����� ∑ 𝑣𝑝
𝑖𝑥𝑝 = 1

𝑝∈Ω

�����𝑖 = 1, … , 𝑛� (14) 

∑ 𝑢𝑝
𝑗
𝑥𝑝 ≤ 𝑟𝑗

𝑝∈Ω

�����𝑗 = 1,… , 𝑑 
(15) 

𝑥𝑝 ∈ {0,1}�����∀𝑝 ∈ Ω (16) 
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Here, the objective (13) is to minimize the sum of all of the costs of the schedules used 

in the solution. Constrain (14) ensures that each service trip is traversed exactly once. 

Constraint (15) ensures that no depot will have more schedules using it than the number 

of vehicles stored at that depot. This integer programming problem is of the set 

partitioning type of multiple depot vehicle scheduling formulation, since it is based on 

finding a partitioning of the service trips by the feasible schedules that can cover them. 

This integer program is essentially the same as that used by Ribeiro and Soumis (Ribeiro 

and Soumis, 1994), except the set Ω has changed from all schedules that satisfy time 

constraints to all schedules that satisfy both time and fuel constraints. Unfortunately, the 

number feasible schedules is intractable for problem with all but the smallest number of 

service trips, and thus it would not be possible to even generate this integer program, 

never mind solve it. 

We can use a column generation approach for this problem to instead solve a linear 

relaxation of the integer program. We refer to the main linear programming problem as 

the master problem, and when the problem is solved using only a subset Ω′ ⊆ Ω of all 

possible schedules we refer to it as the restricted master problem. We start by solving the 

duel of the linear relation for a small set of possible candidate schedules, and then use the 

dual of the solution to find a set of new schedules to add to the restricted master problem. 

Let 𝜋𝑖 for 𝑖 = 1,… , 𝑛�be the solutions for the dual variables associated with constraint 

(14) of the restricted master problem, and let 𝜌𝑗 for 𝑗 = 1, … , 𝑑 be the solutions 

associated with constraint (15). The next schedule to add to the restricted master problem 

is the schedule that is the solution to: 𝑞∗ = min
𝑝∈Ω

{𝑞𝑝 − ∑ 𝑣𝑝
𝑖𝜋𝑖

𝑛
𝑖=1 + ∑ 𝑢𝑝

𝑖 𝜌𝑗
𝑑
𝑗=1 }. This is 
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equivalent to finding the lowest cost feasible schedule with the additional cost of −𝜋𝑖 for 

traversing service trip 𝜏𝑖 and additional cost 𝜌𝑗 when starting from depot 𝜃𝑗 . When the 

new column is found, if 𝑞∗ < 0 then adding the column to the restricted master problem 

will improve the solution. Thus, when 𝑞∗ < 0 the column is added to the restricted master 

problem and problem is re-solved. Again a new column is added and the process 

continues. If 𝑞∗ ≥ 0, then no further columns added to the restricted master problem 

could improve the solution, and thus the solution to the restricted master problem is also 

the solution to the master problem. 

An initial set of 𝑛 dummy columns are used to start the algorithm. For each service 

trip 𝜏𝑖 let �̅�𝑖 be a dummy schedule that serves only service trip 𝜏𝑖, does not start at a 

depot, and has a cost of 𝑀 where 𝑀 is a sufficiently large number to ensure it is quickly 

removed from the solution. Therefore 𝑣�̅�𝑖

𝑖 = 1 and 𝑣�̅�𝑖

𝑖′ = 0 for 𝑖′ ≠ 𝑖, and 𝑢�̅�𝑖

𝑗
= 0 for all 

𝑗. 

4.2.2. Column generation subproblem 

To implement a column generation approach for the master problem, we need a way of 

finding new variables to add to the restricted master problem with minimal values of 𝑞∗. 

This is equivalent to finding lowest cost feasible schedules for vehicles given a particular 

set of costs. Recall that in graph 𝐺, each schedule corresponds to a cycle containing a 

single depot vertex where if a vehicle follows that cycle it will not run out of fuel. The 

lowest cost feasible schedule is the lowest cost cycle in this graph that does not have the 

vehicle run out of fuel. Therefore, given that the vehicle is based at depot 𝜃𝑗  to find the 

lowest cost feasible path of a vehicle that starts at the depot we can solve the Weight 
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Constrained Shortest Path Problem with Replenishment (WCSPP-R) (Smith et al., 2012) 

on graph 𝐺 with weights 𝑓′′ and costs 𝑐′′. Here the both the origin and destination are 𝜃𝑗 , 

the vertices in set 𝐻 are replenishment nodes, the weight capacity is 𝑤, and for edge 

(𝑣1, 𝑣2) ∈ 𝐸, the weight values are 𝑓′′(𝑣1, 𝑣2) = 𝑓′(𝑣1, 𝑣2) and the cost values are 

𝑐′′(𝑣1, 𝑣2) are 

𝑐′′(𝑣1, 𝑣2) = {

𝑐′(𝑣1, 𝑣2) − 𝜋𝑖 for�𝜏𝑖 ∈ 𝑇, 𝑣2 ∈ 𝑉

𝑐′(𝑣1, 𝑣2) for�𝑣1 ∈ 𝐻, 𝑣2 ∈ 𝑉

𝑐′(𝑣1, 𝑣2) + 𝜌𝑗 for��𝑣1 ∈ 𝐷, 𝑣2 ∈ 𝑉.
 

For simplicity we add a copy of the depot 𝜃𝑗  and label it �̅�𝑗, and label the original as 

the start node and the new one as the end node. We also remove all vertices 𝜃𝑗′ ∈ 𝐷 ∖

{𝜃𝑗}. All of the outgoing edges of 𝜃𝑗  are associated with the start node, and the all of the 

incoming edges are associated with the end node. Since this only solves the problem 

when the vehicle is based at depot 𝜃𝑗 , the problem needs to be solved for each 𝑗 = 1, … , 𝑑 

separately. 

Several solution methods for the WCSPP-R were presented by Smith et al. in their 

paper. Note that while their paper assumed replenishment is done over arcs, it is trivial to 

reformulate the problem where replenishment occurs on the vertices, as is the case in our 

problem. The solutions they present fall into two categories: label correcting algorithms 

and meta-network methods. Labeling correcting algorithms rely on storing at each vertex 

a set of possible partial paths that could be used to arrive at that vertex. When 

determining a set of labels for a vertex, partial paths that have both a higher cost and 

leave less fuel than an alternate partial path are removed. For an in-depth discussion of 

label correcting algorithms for the weight constrained shortest path algorithm see 
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Desrosiers et al. (Desrosiers et al., 1995). Meta-network methods rely on creating a new 

network which contains only vertices that represent the replenishment nodes and the start 

and end nodes. The edges in this meta-network have a cost associated with the shortest 

path between the nodes in the original graph that can be traversed without replenishment. 

Thus, once the meta-network is computed the solution can be found to the WCSPP-R by 

solving a standard unconstrained shortest path problem on the meta-network. 

Smith et al. found that the meta-network methods were not as efficient on their data 

sets. For the purposes of the AF-VSP the meta-networks are especially bad, since the 

meta-network would have 𝑏 + 2 vertices and to build the meta-network the weight 

constrained shortest paths would have to be found between each pair of vertices. The 

label correcting algorithms however are especially well suited for the AF-VSP since the 

graph in the column generation subproblem has a clear ordering in how to determine the 

labels for each node. 

The partial ordering of the vertices in graph 𝐺 from Fig. 23 can be seen in Fig. 24. For 

each fuel station 𝜎𝑘, there is only a single edge ending at vertex  ℎ(𝑧, 𝜎𝑘). That edge 

starts at vertex 𝑧, which is implicit in the design of ℎ(𝑧, 𝜎𝑘) since it represents visiting 

station 𝜎𝑘 after being at either trip or depot 𝑧. The vertex representing service trip 𝜏𝑖 can 

only be reached from depot vertex 𝜃𝑗, a vertex ℎ(𝜃𝑗 , 𝜎𝑘) for each 𝑘, a vertex representing 

service trip 𝜏𝑗 for 𝑗 < 𝑖, or from a vertex ℎ(𝜏𝑗, 𝜎𝑘) for each 𝑘�and 𝑗 < 𝑖,. This comes from 

the fact that the service trips are ordered by their start times, and so to reach a vertex 

representing a service trip you must take an edge from a vertex representing a depot, 

visiting a station after a depot, an earlier trip, or visiting a station after an earlier trip. 
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Finally, the terminal node �̅�𝑗  can be reached from any of the nodes except 𝜃𝑗  and ℎ(𝜃𝑗 , 𝑧) 

for all 𝑧. This is because a vehicle must serve at least one service trip after leaving the 

depot. Therefore we can generate the labels for the vertices by analyzing them in the 

sequence: 

{𝜃𝑗 , ℎ(𝜃𝑗 , 𝜎1), … , ℎ(𝜃𝑗 , 𝜎𝑏), 𝜏1, ℎ(𝜏1, 𝜎1), … , 

… , ℎ(𝜏1, 𝜎𝑏), 𝜏2, ℎ(𝜏2, 𝜎1),… , ℎ(𝜏2, 𝜎𝑏), 𝜏3, … , ℎ(𝜏𝑛, 𝜎𝑏)}. 

After labeling each vertex in 𝑇 ∪ 𝐻, we can find the length the paths associated with each 

label and immediately returning to the original depot. If that completed path is both 

feasible and shorter than any previous path it can be stored as the new best solution. 

 

 

Fig. 24. The graph 𝐺 from Fig. 23 with replicated node 𝜃1, ordered from left to right. 

For our purposes, with each vertex 𝑣 ∈ 𝐻 ∪ 𝑇 we will associate a set of labels 𝐿(𝑣), 

where each label corresponds to one possible partial schedule to get to that vertex. A label 

𝑟 ∈ 𝐿(𝑣) is a tuple 𝑟 = (𝑐, 𝑓, 𝑠𝑐ℎ) where 𝑐 is the cost of the schedule to get to that vertex, 

𝑓 is the remaining fuel at the point along the schedule, and 𝑠𝑐ℎ is a sequence of elements 

of 𝑇 ∪ 𝐵 ∪ 𝐷 representing the actual schedule the vehicle would take during the day 
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(although it will not be a complete schedule since the vehicle will not have returned to the 

depot at this point). For convenience we refer to the cost component of a label as 𝑙𝑐, the 

fuel component as 𝑙𝑓, and the schedule component as 𝑙𝑠𝑐ℎ; for example 𝑙𝑐(𝑟) is the cost 

component of label 𝑟 ∈ 𝐿(𝑣). For two schedules 𝑟1 = (𝑐1, 𝑓1, 𝑠𝑐ℎ1) and 𝑟2 =

(𝑐2, 𝑓2, 𝑠𝑐ℎ2) where 𝑟1, 𝑟2 ∈ 𝐿(𝑣) we say 𝑟2 is dominated by 𝑟1 if either 𝑐1 ≤ 𝑐2 and 𝑓1 <

𝑓2, or 𝑐1 < 𝑐2 and 𝑓1 ≤ 𝑓2. When 𝑟2 is dominated by 𝑟1, then label 𝑟2 can be removed 

from the label set since there is no reason to take that subschedule: schedule 𝑠𝑐ℎ2 results 

in both higher costs and leaves the vehicle with less fuel than schedule 𝑠𝑐ℎ1. Therefore, 

the algorithm for the shortest path subproblem will involve generating sets of labels and 

removing the dominated ones. 

The labeling algorithm can now be defined. For each service trip in sequence do the 

following: 

1. Generate the labels for the vertex associated with the service trip by taking the 

union of: 

a. the label associated with the schedule coming directly from the depot, 

b. the labels associated with the schedules coming from previous service trips, 

and 

c. the labels associated with the schedules coming from refueling stations 

following earlier service trips or the depot. 

2. Remove the labels that involve schedules exceeding the fuel constraint of the 

vehicle and delete dominated labels. 
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3. Generate the labels associated with visiting each refueling station following the 

service trip. 

4. Check to see if any of the schedules associated with labels at the service trip or at 

the refueling station following the service trip can reach the end depot vertex 

given the remaining fuel. If they are feasible, check if the schedules are shorter 

than the currently stored lowest cost solution, if any are then the lowest cost one 

is the new best solution. 

Because of the nature of this problem, several steps can be made particularly efficient. 

First, since at each fueling station the fuel of the vehicle is fully refreshed, all of the 

labels associated with the fueling station have a fuel value of 0. Thus there can be a 

single label that dominates all other labels (in the case that both the cost and fuel 

remaining are equal with several labels, one can be chosen arbitrarily). Each fueling 

station label set will contain a single element. Further for a service trip 𝜏𝑗, traveling from 

ℎ(𝑧, 𝜎𝑘) for some station 𝜎𝑘 to 𝜏𝑗 has the same cost and fuel requirement for all 𝑧. 

Therefore there will be only a single label associated with previously stopping at a fuel 

station that is not dominated (again choosing arbitrarily if fuel and costs are equal) since 

the labels at each fuel station have 0 fuel. Thus for each fueling station the single label to 

add to the service trip’s set can be chosen in linear time by finding the one with the 

minimum cost.  

The full algorithm is given in Fig. 25 with a subfunction in Fig. 26. This algorithm 

returns the shortest schedule from the depot 𝜃𝑗  and the cost of the schedule. First, the 

algorithm generates the labels for the stations visited immediately after the depot. Then 
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for each service trip in order, the algorithm generates the labels for that service trip using 

the ones from the previous service trips and from visiting stations immediately before the 

service trip. For each service trip the labels for the stations following the service trip are 

generated, and the cost returning to the depot is compared to the current shortest 

schedule. The subfunction DeleteLabels first removes any labels that are associated with 

schedules that have the vehicle using more than 𝜔 fuel between refueling stations. The 

remaining labels are sorted in ascending order by remaining fuel and schedule cost, and 

then the labels are checked to see if any are dominated. The dominated labels are 

removed and the set of non-dominated labels is returned. 

This algorithm finds the shortest path with replenishment for a vehicle that leaves 

from a given depot. Every time a new column is generated, the algorithm needs to be run 

for each depot independently. While running the algorithm for each starting depot 

increases the runtime of the algorithm, there are two positive notes. First, finding the 

shortest path for each depot can be done in parallel which speeds up the algorithm 

considerably. Second, rather than only adding the schedule with the minimum value of 𝑞∗ 

to the restricted master problem, the shortest schedules for each depot can all be added as 

columns to the restricted master problem, provided the columns have negative solution 

costs. This will allow for the restricted master problem to more quickly converge on a 

solution. Note that it may be possible that some of the solutions generated by using 

different depots may already be in the restricted master problem, so care should be taken 

to ensure they are not duplicated. 
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Function ShortestPathWithReplenishment 
On input of graph 𝐺 =  (𝑉, 𝐸) where 𝑉 = 𝜃𝑗 ∪ 𝑇 ∪ 𝐻 and 𝑐′′  and 𝑓 ′′  are functions on 𝐸 

Initialize 𝑏𝑒𝑠𝑡𝑠𝑐ℎ ← {}, 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡 ← ∞, 𝐿(𝑣) ← ∅ for each 𝑣 ∈ 𝐻 ∪ 𝑇  

For 𝑘 =  1 to 𝑏 \\ Initialize the labels of the stations following the depot. 

 If 𝑓 ′′ (𝜃𝑗 , ℎ(𝜃𝑗 , 𝜎𝑘)) ≤ 𝜔 

𝐿 (ℎ(𝜃𝑗 , 𝜎𝑘)) ← {(𝑐′′ (𝜃𝑗 , ℎ(𝜃𝑗 , 𝜎𝑘)) , 0, {𝜃𝑗 , 𝜎𝑘})} 

 End if 

End for 

For 𝑖 =  1 to 𝑛 \\ For each trip in order 

 𝐿(𝜏𝑖) ← 𝐿(𝜏𝑖) ∪ (𝑐′′ (𝜃𝑗 , 𝜏𝑖), 𝑓 ′′ (𝜃𝑗 , 𝜏𝑖), {𝜃𝑗 , 𝜏𝑖})  

  For 𝑘 = 1 to 𝑏 \\ Find the best label for each station. 

  𝑎 = argmin
𝑎

 𝑙𝑐(𝑟) + 𝑐′′ (ℎ(𝑎, 𝜎𝑘), 𝜏𝑖) 
{𝑟} = 𝐿(ℎ(𝑎, 𝜎𝑘)),

𝑎 ∈ {𝜃𝑗 , 𝜏1, … , 𝜏𝑖−1}, comp_fuel(𝑎, 𝜎𝑘 , 𝜏𝑖)
  

  𝐿(𝜏𝑖) ← 𝐿(𝜏𝑖) ∪ { 

𝑙𝑐(𝑟) + 𝑐′′ (ℎ(𝑎, 𝜎𝑘), 𝜏𝑖),

𝑙𝑓(𝑟) + 𝑓 ′′ (ℎ(𝑎, 𝜎𝑘), 𝜏𝑖),

{𝑙𝑠𝑐ℎ(𝑟), 𝜏𝑖}

  {𝑟} = 𝐿(ℎ(𝑎, 𝜎𝑘))  

 End for 

 For 𝑖′ = 1 to 𝑖 − 1 \\ Join the labels from the previous trips. 

  If comp(𝜏𝑖 ′ , 𝜏𝑖) Then 𝐿(𝜏𝑖) ← 𝐿(𝜏𝑖) ∪

{(𝑙𝑐(𝑟) + 𝑐′′ (𝜏𝑖 ′ , 𝜏𝑖), 𝑙𝑓(𝑟) + 𝑓 ′′ (𝜏𝑖 ′ , 𝜏𝑖), {𝑙𝑠𝑐ℎ(𝑟), 𝜏𝑖}) 𝑟 ∈ 𝐿(𝑡𝑖 ′ )} 

 End for 

 𝐿(𝜏𝑖) ← DeleteLabels(𝐿(𝜏𝑖)) 

For 𝑘 = 1 to 𝑏 \\ Find the best labels for each station following the trip 

  𝑟 = argmin
𝑟 ′ ∈𝐿(𝜏𝑖)

{𝑙𝑐(𝑟′) 𝑙𝑓(𝑟′) + 𝑓 ′′ (𝜏𝑖 , ℎ(𝜏𝑖 , 𝜎𝑘)) ≤ 𝜔} 

  𝐿(ℎ(𝜏𝑖 , 𝜎𝑘)) ← {(𝑙𝑐(𝑟) + 𝑐′′ (𝜏𝑖 , ℎ(𝜏𝑖 , 𝜎𝑘)), 0, {𝑙𝑠𝑐ℎ(𝑟), 𝜎𝑘})} 

  If for {𝑟} = 𝐿(ℎ(𝜏𝑖 , 𝜎𝑘)), 𝑙𝑓(𝑟) + 𝑓 ′′ (ℎ(𝜏𝑖 , 𝜎𝑘), 𝜃𝑗 ) ≤ 𝜔 and 𝑙𝑐(𝑟) +

𝑐′′ (ℎ(𝜏𝑖 , 𝜎𝑘), 𝜃𝑗 ) < 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡   

   𝑏𝑒𝑠𝑡𝑠𝑐ℎ ← {𝑙𝑠𝑐ℎ(𝑟), 𝜃𝑗 } 

𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡 ← 𝑙𝑐(𝑟) + 𝑐′′ (ℎ(𝜏𝑖 , 𝜎𝑘), 𝜃𝑗 ) 

  End if 

 End for 

 𝑟 = argmin
𝑟 ′ ∈𝐿(𝜏𝑖)

{𝑙𝑐(𝑟
′) 𝑙𝑓(𝑟′) + 𝑓 ′′ (𝜏𝑖 , 𝜃𝑗 ) ≤ 𝜔} 

 If 𝑙𝑐(𝑟) + 𝑐(𝜏𝑖 , 𝜃𝑗 ) < 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡  Then 𝑏𝑒𝑠𝑡𝑠𝑐ℎ ← {𝑙𝑠𝑐ℎ(𝑟), 𝜃𝑗 }, 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡 ← 𝑙𝑐(𝑟) +

𝑐′′ (𝜏𝑖 , 𝜃𝑗 ) 

End for 

Return (𝑏𝑒𝑠𝑡𝑠𝑐ℎ , 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡 )  

Fig. 25. A function to solve the weight constrained shortest path problem for a fixed 

depot. 
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Function DeleteLabels 

On input set 𝐿 

𝐿 ← 𝐿 ∖ {𝑟 𝑟 ∈ 𝐿, 𝐿𝑓(𝑟) > 𝜔} 

Sort 𝐿 in ascending order of 𝐿𝑓 then by ascending order of 𝐿𝑐  

𝐿′ ← ∅ 

𝑐̅ ← ∞ 

For each 𝑟 ∈ 𝐿 (in sorted order) 

 If 𝐿𝑐(𝑟) ≥ 𝑐̅ 
  𝐿′ ← 𝐿′ ∪ {𝑟} 
 Else 

  𝑐̅ ← 𝐿𝑐(𝑟) 
 End if 

End for 

𝐿 ← 𝐿 ∖ 𝐿′  

Return 𝐿    

Fig. 26. A subfunction of the function in Fig. 25 which deletes dominated and invalid 

labels. 

4.2.3. The branch and bound algorithm 

The column generation approach finds a solution to the relaxed formulation of the AF-

VSP, so the solution it provides may have a noninteger number of vehicles assigned to a 

schedule (but between zero and one). Thus, we will use a branch and bound approach 

when the solution is noninteger. For an introduction to branch and bound techniques see 

Winston and Venkataraman (Winston and Venkataraman, 2003). We start by storing an 

upper bound of ∞ for the solution. When a new integer solution is found, if it has a cost 

lower than the current best cost then it is stored as the new best solution and its cost is 

used as a new upper bound. When a noninteger solution is generated, if the relaxed cost is 

greater than the current upper bound the problem is pruned since no integer solutions 

found by branching will be as good as the current best. If the noninteger solution has a 

relaxed cost less than the current best upper bound, the problem branches into two new 
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problems. This continues until all of the branches have either ended in integer solutions 

or have been pruned since their lower bound is too high. 

To define the branching procedure, note that in a noninteger solution to the relaxed 

AF-VSP there must be either a pair of service trips (𝜏𝑗 , 𝜏𝑖) or a depot and a service trip 

(𝜃𝑘, 𝜏𝑖) such that the schedules in the solution that contain the pair have a noninteger sum 

of solution values. A pair is contained in a schedule if either both elements fall next to 

each other in the schedule, or there is only a fuel station between them in the schedule. In 

the case that it is a pair of service trips (𝜏𝑗, 𝜏𝑖) the problem can be branched into two new 

problems. In one branch, any schedule that serves trip 𝜏𝑖 must serve trip 𝜏𝑗 as the 

previous service trip, although stopping to refuel between the service trips is allowed. 

Thus a schedule that has a vehicle serve trip 𝜏𝑗, refuel at station 𝜎𝑘, then serve trip 𝜏𝑖 

would be acceptable, but a schedule that has a vehicle serve trip 𝜏𝑘 for 𝑘 ≠ 𝑗 then trip 𝜏𝑖 

would not be allowed. In the other branch, a schedule must not have service trip 𝜏𝑗 

followed by service trip 𝜏𝑖, even with a refueling stop between them. In this sense we are 

branching on the service trip pair (𝜏𝑗, 𝜏𝑖) where one branch must include the pair (𝜏𝑗 , 𝜏𝑖) 

in a schedule in the solution, and in the other branch all schedules in the solution must 

exclude pair (𝜏𝑗 , 𝜏𝑖). In the event that the pair is a depot and a service trip (𝜃𝑘 , 𝜏𝑖) the 

branching uses the pair. In one branch any vehicle serving trip 𝜏𝑖 must be stationed at 

depot 𝜃𝑘 and serve trip 𝜏𝑖 as its first service trip in the schedule. In the other branch a 

vehicle cannot serve trip 𝜏𝑖 as the first trip after leaving depot 𝜃𝑘. 

As the branch and bound algorithm progresses the problems to be solved will have a 

longer and longer list of pairs that must be included or excluded. This data can be entirely 
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stored as a subset Γ ⊆ (𝑇 ∪ 𝐷) × 𝑇 representing which pairs should be excluded from 

any schedule in the problem. In the case a pair (𝑎, 𝑏) is excluded then that pair is an 

element of Γ. If a pair (𝑎, 𝑏) is included in the solution then any pair with the second 

element of 𝑏 but the first element not equaling 𝑎 is in Γ; i.e. ((𝑇 ∪ 𝐷) ∖ {𝑎}) × {𝑏} ⊆ Γ. 

Thus, when the algorithm branches on pair (𝑎, 𝑏) at a problem with excluded set Γ then 

two new problems need to be solved: one with excluded pair set Γ0 = Γ ∪ (𝑎, 𝑏) 

representing removing pair (𝑎, 𝑏) from the possible solutions and one with excluded pair 

set Γ1 = Γ ∪ ((𝑇 ∪ 𝐷) ∖ {𝑎}) × {𝑏} representing forcing (𝑎, 𝑏) to be in the solution. 

When the two new problems are set up to be solved after branching at a previous 

problem, the column generation algorithm must be run on both of them. However rather 

than starting with only the initial dummy variables in the solution as discussed in Section 

4.2.1, the columns from the previous problem can be used. The only exception is the any 

of the columns in the previous problem that violated the excluded pair sets need to be 

removed. It is likely that only a small amount of additional columns need to be generated 

before each of the new problems will find a solution. To generate columns that do not 

violate the excluded pairs, the labeling algorithm from Section 4.2.2 needs to be adjusted. 

This can be done simply by when aggregating the sets of labels for each service trip, 

excluding labels from trips that would include excluded pairs. For example, if (𝜏𝑗 , 𝜏𝑖) is 

an excluded pair, then when finding the label set 𝐿(𝜏𝑖) none of the labels from 𝐿(𝜏𝑗) nor 

𝐿 (ℎ(𝜏𝑗 , 𝜎𝑘)) for any 𝑘 can be used. 
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4.3. A heuristic algorithm for AF-VSP 

Due to the fact that both AF-VSP and WCSPP-R are NP-hard problems, the column 

generation algorithm will become prohibitively time consuming to run for problems with 

large numbers of trips. Thus, it is important to have heuristic algorithms available, 

especially since modern fleets may need to serve thousands of trips in a day. Here we 

present a heuristic algorithm for the AF-VSP based on the concurrent scheduler 

algorithm (Bodin et al., 1978). The concurrent scheduler algorithm is a heuristic 

algorithm used to solve constrained vehicle scheduling problems such as the VSPLPR. 

The algorithm assigns the first service trip to vehicle 1, then iterates through the 

remaining service trips. For each service trip, if it is feasible to assign it to an existing 

vehicle, assign it to the vehicle that adds the least cost to the total problem. If no vehicle 

can serve the service trip given their current assignments, or if it would be cheaper to 

assign it to a vehicle that is currently assigned to no service trips, assign the trip to a new 

vehicle stationed at one of the depots that have unassigned vehicles. We will need a 

method for taking trips assigned to a vehicle and determining if they are feasible to serve 

given fuel constraints, and if so where the vehicle should stop to refuel. We will refer to 

such a method as the Fuel Scheduling Algorithm (FSA), which we will devise later. 

Given such an algorithm exists, we can use it to assign refueling stops to schedules and 

determine the costs of serving the schedules with alternative fuel vehicles. Using the FSA 

the concurrent scheduler heuristic is as follows: 

1. Assign the first service trip 𝜏1 to vehicle 1. For each depot with available vehicles, 

use the FSA to determine which stations to refuel at if the vehicle were stored at 
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that depot. For the depot with the minimum cost assignment, assign the vehicle to 

that depot. Set 𝑖 = 2. 

2. Determine which assigned schedules are compatible with service trip 𝜏𝑖 (i.e. 

which vehicles assigned to routes could serve trip 𝑡𝑖 without violating time 

constraints). Find the cost of assigning the trip to each compatible vehicle using 

FSA. Also, use the FSA to find the cost of assigning a vehicle stored at each of 

the depots with available capacity. Assign the trip to either the already assigned 

vehicle with a minimum cost, or if it is cheaper assign the service trip to a new 

vehicle from a depot with available capacity, 

3. Set 𝑖 = 𝑖 + 1. If 𝑖 > 𝑛 stop and return the assignment, otherwise go to 2. 

While this algorithm is likely to provide solutions that are suboptimal, it has the 

advantage of being extremely fast. Each service trip has to be analyzed only once, and for 

each service trip the fuel sequencing problem has to be solved only once for each depot 

with an available vehicle and once for each vehicle currently assigned to schedules where 

the most recently assigned trip is compatible with the current one. Further, this 

computation can be made especially quickly by storing information on the schedules after 

assigning each trip. Since this algorithm runs quickly, it can be used to generate a feasible 

starting point for more effective algorithms such as large neighborhood search. 

The concurrent scheduler algorithm requires that we have the fuel scheduling 

algorithm: a method of taking a vehicle assigned to a sequence of service trips and 

determining where and when the vehicle should stop to refuel with minimal cost. Such a 

method would be useful for other algorithms as well since it would allow for first solving 
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a problem by ignoring the fuel constraints, and then including them later. It is possible 

that there are several ways to assign fuel stations to a sequence of trips to make the trips 

feasibly serviced by a vehicle with limited fuel capacity, and thus we desire the one with 

minimal cost. It also is possible that the set of service trips a vehicle is serving cannot be 

feasibly visited by using any combination of fuel stations, for instance if there is a trip 

that has a fuel requirement greater than the fuel capacity of a vehicle. The problem of 

finding which fuel stations to stop at is a special case of AF-VSP where 𝑑 = 1 and 𝑟1 =

1, since the problem is to find the lowest cost schedule for a single vehicle to serve a set 

of routes from a given starting depot. This problem is not unlike the simple fixed-route 

vehicle refueling problem (Lin et al., 2007), where a vehicle is on a fixed schedule and 

the amount to refuel at each stop needs to be determined. In this case however, a vehicle 

needs to detour to refuel and has to choose a single station out of a set of possible ones, 

and so the choice of where to refuel is more constraining.  

Since this is a special case of the AF-VSP with a single vehicle, we can simplify the 

column generation subproblem algorithm to solve it. Because only a single vehicle can be 

used, the vehicle must be assigned to all of the service trips, and thus the objective is to 

find a weight constrained shortest path with replenishment, similarly to the column 

generation subproblem from Section 4.2.2. In fact the only difference is that in the fuel 

station sequence problem, each service trip must be visited by the vehicle being assigned 

to the path, while the general column generation subproblem may allow for service trips 

to be skipped. The graph 𝐺 for the column generation subproblem can be used here as 

well. An example of a special case of 𝐺 for an AF-VSP network where 𝑑 = 1 and 𝑟1 = 1 
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can be seen in Fig. 27. Thus, the fuel station sequence problem can be solved using a 

similar algorithm to the column generation subproblem, with only a minor change. Again 

we use a labeling algorithm and the same labeling system as Section 4.2.2 where each 

label is of the form (𝑐, 𝑓, 𝑠𝑐ℎ). Now the labeling algorithm on page 96 can be performed 

after changing step 1 for each service trip to: 

1. Do one of the following: 

a. In the case that this is the first service trip, generate the labels for the vertex 

associated with the trip by taking the union of the label associated with the 

schedule coming directly from the depot and the labels from vertices 

representing coming from refueling stations immediately after the depot. 

b. In the case that this is the not the first service trip, generate the labels for the 

vertex associated with the trip by taking the union of the set of labels from the 

previous trip in the sequence and the labels on vertices representing refueling 

stations visited after the previous trip. 

This updated algorithm is the FSA. The change to step 1 forces the minimum length path 

to visit each service trip in the sequence, but otherwise the algorithm remains the same. 

Labels are associated with each vertex, and the vertices associated with each refueling 

station have a single label that dominates the rest. The algorithm now either returns the 

minimum cost path which contains the stations the vehicle should visit (or the algorithm 

finds no solution if there is no way to satisfy the fuel constraints while serving the set of 

trips). The algorithm can also store the labels for later use. This can be useful if additional 
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service trips may be added to the end of the schedule, since all of the labels from earlier 

service trips will stay the same. 

 

Fig. 27. Graph 𝐺 for an example AF-VSP where 𝑑 = 1 and 𝑟1 = 1 for finding where on a 

sequence of service trips to stop and refuel. 

Theorem: This algorithm solves the fuel station sequencing problem in 

𝒪(𝑏𝑛2 log(𝑏𝑛) + 𝑏2𝑛) time. 

Proof: Recall that the label sets associated with the vertices in 𝐻 each have a single label 

since the vehicle refuels at the station so the lowest cost label will dominate the rest. Thus 

for vertex 𝜏𝑖 the label set 𝐿(𝜏𝑖) has a size at most |𝐿(𝜏𝑖−1)| + 𝑏 for 𝑖 > 1, and when 𝑖 =

1, |𝐿(𝜏1)| = 𝑏 + 1 since the only labels are from visiting the fuel station or arriving 

directly from the depot. This bounds the label set size to |𝐿(𝜏𝑖)| ≤ 𝑏(𝑖 − 1) + 1, and for 

each trip vertex the labels need to be sorted. Since there are 𝑛 service trip labels each 

needing to be sorted, finding the labels for all of the service trips will require 

𝒪(𝑏𝑛2log(𝑏𝑛))�computations. Since the labels associated with refueling stations do not 

need to sort the labels and instead only need to find the minimum cost label, a label for a 

station following service trip 𝜏𝑖 will require 𝒪(𝑏𝑖) computations. Since there are 𝑏 ⋅ (𝑛 +

1) vertices in 𝐻, when all of the calculations attributed to the refueling station vertices 
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are combined the computations will require 𝒪(𝑏2𝑛) time. Therefore the total complexity 

of the algorithm is 𝒪(𝑏𝑛2 log(𝑏𝑛) + 𝑏2𝑛).  

Additionally, in the case that the minimum fuel requirement of a service trip is 

bounded below by 𝛾 > 0, then the FSA solves the problem in 𝒪(𝑏2𝑛) time. Since the 

fuel requirement is bounded, a vehicle cannot serve more than ⌊
𝜔

𝛾
⌋, trips before refueling, 

and thus any schedule that has 𝑞 trips between two stations is infeasible where 𝑞 = ⌊
𝜔

𝛾
⌋ +

1. Therefore for any trip 𝜏𝑖, the labels associated with the trip must not include any partial 

schedule where the vehicle has not stopped at any of the last 𝑞 possible refueling stations. 

Suppose that 𝐿(𝜏𝑖) does include a label 𝑟 where the schedule includes vertex ℎ(𝑧, 𝜎𝑘) for 

some 𝑧 and 𝑘, and that the schedule includes not refueling station vertices after that one. 

In this case we know that 𝑟 is the only label that has ℎ(𝑧, 𝜎𝑘) as the most recent fuel stop, 

since all other labels of that type will be dominated. Therefore the number of labels for 

𝐿(𝜏𝑖) is bounded and is a constant with respect to 𝑛. Thus, the computational complexity 

of finding the labels associated with service trip vertices is only 𝒪(𝑏𝑛). Since for each 

service trip the following vertices representing fuel stations need to find the minimum 

cost labels and there are 𝑠 fuel station vertices for each trip, the fuel station labels in total 

require 𝒪(𝑏2𝑛) time. 𝒪(𝑏2𝑛) dominates the computational complexity in this case. 

4.4. Heuristic algorithms for AF-VSP based on MDVSP 

There are many different heuristics that have been proposed for the multiple depot 

vehicle scheduling problem, see the work of Pepin et al. (Pepin et al., 2009) for a recent 

comparison of five of them on different sets of data. One possible method for finding 
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good heuristics for the AF-VSP would be to modify MDVSP heuristics to add the fuel 

constraint. Three of the algorithms Pepin et al. analyzed are based on set-partitioning 

formulations of the MDVSP, and because the AF-VSP formulation we proposed is of the 

set partitioning type they provide good candidates for modifying into AF-VSP 

algorithms. The three heuristic algorithms are: 

1. truncated column generation, 

2. large neighborhood search, and 

3. tabu search. 

We will briefly discuss the merits of each of these algorithms individually as applied to 

the AF-VSP. For more in-depth explanations for the heuristics see the Pepin et al. paper. 

Each of these methods holds potential to be used with the AF-VSP, however since they 

each have their own advantages and disadvantages investigating their use would be a 

good area for future research. 

4.4.1. Truncated column generation 

When using truncated column generation for the MDVSP, rather than repeating the 

column generation algorithm until the next candidate variable to add has a value of 𝑞∗ ≥

0, the algorithm instead stops when the value of the solution to the restricted master 

problem has not decreased by more than 𝑧𝑚𝑖𝑛 over a length of 𝐼 iterations where 𝑧𝑚𝑖𝑛 and 

𝐼 are predetermined parameters. Since the column generation algorithm tends to converge 

to a solution slowly when nearing completion, this alteration will cause the algorithm to 

terminate when the solution seems to be close to optimal which dramatically lowers 

computation time. Once a solution to the relaxed problem is found, if the solution is 
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noninteger then one of the nonzero and noninteger decision variables can be set to 1 and 

the problem can be resolved. So rather than branching by attempting to both include and 

exclude noninteger decision variables, instead the heuristic solution will assume some of 

the variables need to be included. 

The truncated column generation algorithm can easily be applied to AF-VSP by 

modifying the stopping criterion for the algorithm in Section 4.2.1. Unfortunately, in the 

AF-VSP the column generation subproblem is NP-hard, so for large numbers of service 

trips the time to compute which variables to add to the restricted master problem could 

make this heuristic infeasible, even for large values of 𝑧𝑚𝑖𝑛 and 𝐼. For the truncated 

column generation method to be effective for large numbers of service trips the 

subproblem of the weight constrained shortest path problem with replenishment would 

need to be approximated as well. 

4.4.2. Large neighborhood search 

The large neighborhood search heuristic begins with a suboptimal solution for the 

MDVSP, then repeatedly takes subsets of the solution and reoptimizes the service trips in 

that subset. For the MDVSP this involves first finding an assignment of the service trips 

to vehicles, then taking a the set of schedules assigned to a subset of all vehicles and 

solving the MDVSP exactly on the service trips in those schedules, using the vehicles 

assigned to those trips plus whatever other vehicles remain unassigned. Finding the exact 

MDVSP solution for those subset of trips can be done using an algorithm of the user’s 

choice such as a column generation approach. For the AF-VSP, the large neighborhood 

search algorithm involves first finding a suboptimal solution for the entire problem. This 
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can be done using the concurrent scheduler algorithm. Then subsets of the service trips 

can be reoptimized using the exact column generation algorithm. The number of 

schedules to reoptimize at each iteration needs to balance the desire to have more 

schedules to better optimize the problem and the desire to have fewer schedules so that 

the exact solution is found faster. Rather than finding the exact solution to the subset of 

the service trips, it may make sense for large problems to approximate the subset solution 

using a different heuristic such as truncated column generation. 

4.4.3. Tabu search 

The tabu search technique involves searching the space of all solutions to the MDVSP 

(including infeasible solutions that have vehicles taking service trips too late) to find the 

lowest cost feasible one. For an overview of tabu search see (Glover, 1990). Starting at an 

initial element in the solution space, other neighboring solutions are considered, where a 

solution is a neighbor if it can be achieved by making a single alteration, or move, from 

the current solution. The lowest valued neighboring solution is selected as the next 

solution, and the move used to arrive at that solution is added to a temporary list of 

unavailable moves. The list of unavailable moves is used to avoid repeating solutions. 

The value of a neighboring solution is a function of the cost of that solution, a penalty 

depending on if the time constraints of the problem are broken by the solution, a penalty 

for if the solution was visited before, and a random value to cause the state space to be 

explored. In the case of the tabu search based MDVSP heuristic in Pepin et al., the two 

moves considered were reassigning a single service trip to a different vehicle and 

swapping two service trips between vehicles.  
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For the AF-VSP again the initial solution can be found using the concurrent scheduler. 

The two moves from Pepin et al. can also be used in the case of AF-VSP to generate 

solutions. When calculating the cost change for moving a service trip to a new schedule, 

the FSA algorithm can be used to compute the cost of the schedule that the service trip is 

assigned to, and the new cost of the schedule that no longer contains the service trip. 

Unfortunately to generate the full set of neighboring solutions every possible move must 

be considered, and so the FSA algorithm may need to be run 𝒪(𝑛) times, which may 

cause the procedure to become burdensome for a problem with a large number of service 

trips. 

4.5. Empirical results 

We tested the column generation and concurrent scheduler algorithms in two different 

ways: we generated random networks to see how the algorithms preformed on a number 

of different sized problems, and we tested the method on real world bus data from Valley 

Metro, the regional transit system of the Phoenix Arizona metropolitan area. Valley Metro 

is a unified organization containing the transit systems of different cities in the Phoenix 

area, and includes buses, light rail, and ride sharing. For our analysis we focused only on 

the bus service of Valley Metro. While the exact column generation algorithm was only 

used on a small subset of the Valley Metro bus service trips, we also tested the concurrent 

scheduler heuristic algorithm on a large set of Valley Metro trips. 

4.5.1. Randomly generated data 

First, we tested the two algorithms using randomly generated data created using a 

modification on the method of (Dell’Amico et al., 1993). Their method was altered so we 



 113  

only considered short service trips since our vehicles would not have enough fuel to serve 

a long service trip, and we removed the cost of waiting between service trips. To generate 

a problem for a given 𝑛 number of service trips, 𝑏 number of fuel stations, and 𝑑 depots, 

a set of 𝑣 relief points was randomly selected, where each relief point was uniformly 

chosen from a 60 by 60 grid. The relief points served as a set of potential starting and 

ending locations for the service trips, as well as potential locations for the depot and fuel 

stations. The number of relief points 𝑣 was an integer randomly chosen from a uniform 

distribution spanning set {⌈
𝑛

3
⌉ , ⌈

𝑛

3
+ 1⌉ ,… , ⌈

𝑛

2
⌉}. The fuel stations were located at 

randomly selected relief points without replacement, and 𝑑 of the fuel stations were 

chosen to also be depots (and thus there must be at least as many fuel stations as depots). 

For a problem with 𝑛 service trips and 𝑑 depots, each depot was given a uniformly 

random integer number of vehicles in the set {⌈3 +
𝑑

2.5𝑑
⌉ , … , ⌊3 +

𝑑

3.5𝑑
⌋}. The starting and 

ending locations of each service trip were also randomly selected from the relief point 

locations, but unlike fuel stations multiple service trips could share relief points, 

including relief points that are fuel stations. Let 𝜃(𝑎, 𝑏) represent the Euclidean distance 

between relief points 𝑎 and 𝑏. The travel time between relief points was taken to be the 

same as the distance between the points, and refueling was set to require requires 5 units 

of time with a cost of 150. The fuel capacity of a vehicle 𝜔 is set as 𝜔 = 150. 

For a given service trip 𝜏𝑗 ∈ 𝑁 between relief points 𝑎 and 𝑏, the starting time 𝑠𝑡𝑗 was 

an integer chosen randomly with a probability of 15% of being uniformly chosen from in 

[420,480), a 70% probability of being uniformly chosen from [480,1019), and a 15% 

probability of being uniformly chosen from [1020,1080). The ending time 𝑒𝑡𝑗 was 
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chosen as a uniformly random integer from [𝑠𝑡𝑗 + 𝜃(𝑎, 𝑏) + 5,… , 𝑠𝑡𝑗 + 𝜃(𝑎, 𝑏) + �40]. 

The fuel spent on service trip 𝜏𝑗 was set as 𝑓(𝜏𝑗) �= 𝜃(𝑎, 𝑏). For all dead-heading trips, 

the fuel and costs requirements are given in Table 4. The costs were different than in 

Dell'Amico et al. since we added a cost of refueling and have removed a cost for a 

vehicle waiting between service trips. The cost of waiting was removed since it would not 

be possible to factor in the time for edges between service trips and fueling stations. We 

also added an additional capital cost of 2000 for each bus to be used. 

Table 4 

The cost and fuel requirements for dead-heading trips in the randomly generated data 
Origin Destination Fuel Cost Description 

𝜏𝑖 ∈ 𝑇 𝜏𝑗 ∈ 𝑇 𝜃(𝜏𝑖 , 𝜏𝑗) 10𝜃(𝜏𝑖 , 𝜏𝑗) service trip to service trip 

𝜏𝑖 ∈ 𝑇 𝜎𝑗 ∈ 𝐵 𝜃(𝜏𝑖 , 𝜎𝑗) 10𝜃(𝜏𝑖 , 𝜎𝑗) service trip to fuel station 

𝜏𝑖 ∈ 𝑇 𝜃𝑗 ∈ 𝐷 𝜃(𝜏𝑖 , 𝜃𝑗) 10𝜃(𝜏𝑖 , 𝜃𝑗) service trip to depot 

𝜎𝑖 ∈ 𝐵 𝜏𝑗 ∈ 𝑁 𝜃(𝜎𝑖 , 𝜏𝑗) 150 + 10𝜃(𝜎𝑖 , 𝜏𝑗) fuel station to service trip 

𝜎𝑖 ∈ 𝐵 𝜃𝑗 ∈ 𝐷 𝜃(𝜎𝑖 , 𝜃𝑗) 150 + 10𝜃(𝜎𝑖 , 𝜃𝑗) fuel station to depot 

𝜃𝑖 ∈ 𝐷 𝜏𝑗 ∈ 𝑁 𝜃(𝜃𝑖 , 𝜏𝑗) 2000 + 10𝜃(𝜃𝑖 , 𝜏𝑗) depot to service trip 

𝜃𝑖 ∈ 𝐷 𝜎𝑗 ∈ 𝐵 𝜃(𝜃𝑖 , 𝜎𝑗) 2000 + 10𝜃(𝜃𝑖 , 𝜎𝑗) depot to fuel station 

 

All of the results were computed on a personal computer having an Intel core 2 duo 

2.4Ghz dual core processor and 4GB of memory that was running Windows 7 Ultimate. 

All of the algorithms were coded in MATLAB version 2012b. For the column generation 

subproblem, the shortest routes between the different depots were solved in parallel using 

the MATLAB Parallel Computing Toolbox. 

We used various combinations of numbers of service trips, stations, and depots. For 

each set number of service trips, stations, and depots, we randomly generated 10 feasible 

runs and averaged the results of the runs for each of the algorithms. Table 5 shows the 

results for the column generation algorithm where each row corresponds to the 10 

randomly generated instances of a particular problem size. 
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Table 5 

Results from the exact column generation solution of the AF-VSP from Section 4.2 used 

on the randomly generated data 
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10 2 2 4 3.52 3.2 0.23 5 13 2.5 5 50  

10 4 2 2 3.70 3.4 0.01 2 3 1.5 2 33  

10 4 4 2 3.86 3.6 0.03 3 7 1.7 3 53  

10 8 4 3 3.65 3.4 0.17 3 5 1.8 3 55  

20 2 2 76 6.02 5.4 0.50 147 977 7.2 14 693  

20 4 2 17 6.32 5.8 0.38 20 57 4.9 11 174  

20 4 4 13 5.84 5.4 0.16 11 43 3.5 6 186  

20 8 4 10 5.55 5.2 0.06 6 15 2.8 5 154  

30 2 2 89 8.00 7.3 0.28 102 371 8.0 12 736  

30 4 2 49 9.15 8.4 0.15 54 271 5.6 13 411  

30 4 4 42 8.24 7.7 0.09 26 81 5.1 10 398  

30 8 4 34 8.17 7.6 0.07 18 75 4.4 11 307  

40 2 2 1091 10.52 9.5 0.29 1100 7001 12.7 20 7677  

40 4 2 183 11.08 10.1 0.21 127 315 8.6 14 974  

40 4 4 68 10.01 9.2 0.12 25 91 4.8 11 483  

40 8 4 52 9.87 9.1 0.07 12 61 3.0 8 368  

50 2 2 3769 13.43 12.0 0.07 3577 11925 16.3 25 16516  

50 4 2 1616 13.44 12.1 0.05 730 5835 9.0 22 5523  

50 4 4 1159 13.49 12.4 0.28 583 4931 13.0 37 6188  

50 8 4 273 12.77 11.8 0.23 61 141 8.4 15 1000  

 

As expected, the runtime of the algorithm increased as the number of service trips 

increased. Interestingly, the instances with the fewest numbers of stations and depots 

tended to have the longest runtime, since the most columns needed to be generated by the 

algorithm before a solution was found. The set of sample problems with 50 service trips, 

2 stations, and 2 depots took the longest to run, on average over an hour. This average 

hides much of the variability: within those 10 runs the fastest took only 75 seconds and 



 116  

the slowest took over 2.5 hours. Table 6 shows a comparison of the concurrent scheduler 

heuristic to the column generation algorithm. The solution provided by the heuristic 

algorithm had on average a 3.8% higher cost than the optimal solution, and the gap 

increased with the number of service trips. However the runtime of the heuristic solution 

was dramatically lower than that of the exact solution: while the heuristic never take 

more than a second to run the runtimes for the exact algorithm went into minutes on the 

larger sample problems. Out of the 200 (20 ⋅ 10) runs, in only 12 of them did the 

heuristic solution use more buses, and in each of those runs the heuristic solution used 

only a single additional bus. 
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Table 6 

A comparison of the exact column generation algorithm to the concurrent scheduler 

heuristic algorithm on the randomly generated data 

      Column generation  Concurrent scheduler      
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10 2 2 4 3.52 3.2  0.02 3.65 3.3 3.6% 3.1%  

10 4 2 2 3.70 3.4  0.03 3.85 3.5 4.2% 2.9%  

10 4 4 2 3.86 3.6  0.04 3.95 3.6 2.4% 0.0%  

10 8 4 3 3.65 3.4  0.05 3.72 3.4 2.2% 0.0%  

20 2 2 76 6.02 5.4  0.05 6.16 5.4 2.4% 0.0%  

20 4 2 17 6.32 5.8  0.06 6.47 5.8 2.5% 0.0%  

20 4 4 13 5.84 5.4  0.09 6.12 5.5 4.9% 1.9%  

20 8 4 10 5.55 5.2  0.11 5.71 5.2 2.9% 0.0%  

30 2 2 89 8.00 7.3  0.09 8.32 7.4 3.9% 1.4%  

30 4 2 49 9.15 8.4  0.11 9.55 8.6 4.4% 2.4%  

30 4 4 42 8.24 7.7  0.15 8.62 7.8 4.7% 1.3%  

30 8 4 34 8.17 7.6  0.18 8.41 7.6 3.0% 0.0%  

40 2 2 1091 10.52 9.5  0.15 10.88 9.5 3.4% 0.0%  

40 4 2 183 11.08 10.1  0.16 11.39 10.1 2.7% 0.0%  

40 4 4 68 10.01 9.2  0.21 10.43 9.2 4.2% 0.0%  

40 8 4 52 9.87 9.1  0.25 10.35 9.2 4.8% 1.1%  

50 2 2 3769 13.43 12.0  0.21 14.11 12.2 5.0% 1.7%  

50 4 2 1616 13.44 12.1  0.22 13.93 12.2 3.6% 0.8%  

50 4 4 1159 13.49 12.4  0.30 13.97 12.4 3.6% 0.0%  

50 8 4 273 12.77 11.8  0.33 13.40 11.9 4.9% 0.8%  

 

4.5.2. Data from the Valley Metro bus service 

All the necessary information about the service trips served by Valley Metro buses is 

publicly available on the city of Phoenix website (City of Phoenix, 2013). This includes 

the start and end locations, trip times, and the trip paths themselves (of which the length 

of the service trip can be calculated). Four depot locations were found based on publicly 

available information on where the Valley Metro contractors First Transit and Veolia have 



 118  

facilities located. The four depots were chosen to be fueling stations, and four additional 

fueling station locations were selected. The four Valley Metro Transit Centers: Chandler 

Fashion Center, Metrocenter, Paradise Valley Mall, and Superstition Springs were 

selected as likely candidates to have refueling infrastructure due to their locations relative 

to the depots. 

The Valley Metro trips are organized into routes, where a route was a set of service 

trips all which shared origin and destination points (although they could be traveled in 

either direction). For example Valley Metro route 30 traverses University Dr. in Tempe 

and Mesa in both the East and West directions. For our analysis we used routes numbered 

1-575 in the Valley Metro data. This contained all of the standard bus routes, but 

excluded some others such as the Orbit routes which have specialized buses, and the 

highway rapid transit buses. This amounted to a total of 72 routes and 4,373 service trips. 

Unfortunately the Valley Metro data only contained information about the service trips 

themselves and not about the dead-heading trips between them, so to obtain this data we 

used the Bing Maps API (Microsoft, 2013). A map of the 72 routes and the stations and 

depots can be seen in Fig. 28. 

The buses were assumed to have a range of 120 kilometers before needing to be 

refueled, and refueling would take 10 minutes. Each bus was assigned a cost of 500 and 

refueling had a cost of 50, which was added to the problem formulation in the method 

from Section 4.1. The cost and fuel requirement of each service trip and dead-heading 

trip was taken to be the physical distance of the trip taken on roads. The travel time of 
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each service trip was found in the Valley Metro schedule and the travel time of each 

dead-heading trip was found using the Bing Maps API. 

 

Fig. 28. The Valley Metro network and station and depot locations. 

4.5.2.1. Exact vs heuristic algorithms on subset of Valley Metro data 

The column generation and concurrent scheduler algorithms were tested on a subset of 

the 4,373 Valley Metro service trips, since the column generation algorithm would be too 

time consuming to run on the full set of service trips. To lower the total number of trips, 

one service trip was randomly selected from all of the service trips associated with each 

route, which generated a problem with 72 service trips, 8 stations, and 4 depots. This 

random selection was done 5 times to create 5 distinct problems to test on. Each depot 

was assumed to have 10 buses available at it. The results of the algorithm can be seen in 

Table 7, where each row corresponds to one of the five randomly selected sets of service 

trips. The cost of the heuristic solution provided by the concurrent scheduler algorithm 

Depot (and station)

Refueling station

Route
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was between 8.1% and 18.7% higher than the cost of the exact solution from the column 

generation algorithm, however the concurrent scheduler took less than a second to run 

and the column generation algorithm took between 2 and 12 hours. Interestingly, both 

algorithms used the same number of buses for each solution in all but one case. 

Table 7 

The results of the testing the column generation and concurrent scheduler algorithms on a 

subset of the Valley Metro data 

  Column generation 

 Concurrent 

scheduler   
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1 9971 8964 13 1.77 1941 29 28153  0.63 9883 13 10.3%  

2 14901 8077 11 3.03 1707 32 33408  0.60 9591 12 18.7%  

3 24134 10239 16 1.59 5385 58 61578  0.74 11333 16 10.7%  

4 32851 10803 17 3.52 7467 45 81609  0.85 11998 17 11.1%  

5 37183 10614 17 3.66 7153 46 80948  0.79 11468 17 8.1%  

4.5.2.2. Heuristic algorithm on all Valley Metro service trips for routes 1-575 

The concurrent scheduler algorithm was used on the full 4,373 service trips. In 2012, 

Valley Metro had a total of 889 buses in its fleet (Valley Metro, 2013), however it is 

unclear how many of those were assigned to serve the 72 routes in this problem and how 

many were assigned to other routes. Thus, for this problem we assumed there were 600 

available buses assigned evenly across the four depots. The results of the algorithm can 

be seen in Table 8. Of the 600 buses, only 477 of them were assigned, and it took 290 

seconds to run the algorithm. 
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Table 8 

Results from applying the concurrent schedule algorithm to the 4,373 service trips from 

the Valley Metro data 

Metric Value  

Number of service trips 4373  

Number of stations 8  

Number of depots 4  

Cost 359827  

Number of available buses 600  

Number of buses used 477  

Runtime (sec) 290  

 

4.6. Conclusion 

Scheduling is an important problem in transportation systems operating a fleet of 

vehicles, and switching fleets to use alternative-fuels can create new logistical challenges 

in those systems. We have introduced the alternative-fuel multiple depot vehicle 

scheduling problem, a new generalization to the MDVSP where each vehicle has a 

limited fuel capacity and there are limited stations available for the vehicle to refuel. We 

have formulated the problem as a binary integer program, and an exact column 

generation algorithm and a heuristic algorithm to solve the problem were developed. 

These algorithms were compared on randomly generated data and real world instances 

from Valley Metro, which provided promising results for both algorithms. Further 

research areas include finding heuristic algorithms that provide better solutions and 

modifying the vehicle assignments to a particular problem when there is a sudden change 

in the network due to breakdowns or accidents. Additionally, the AF-VSP can be 

modified to also solve the decision problem of deciding where to place a limited number 

of fuel stations, which is discussed in Section 5.3.  
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Chapter 5 

EXTENSIONS 

In this chapter we will provide additional work on the topics from each of the three 

previous chapters. These additions should both provide new and interesting extensions 

for the previous chapters, as well as set up areas for future work. They take the concept of 

each chapter and alter it slightly to provide results that should be practical. Each section 

in this chapter reflects the extension for one of the previous chapters and includes results 

tested on sample data. 

5.1. Electric vehicle shortest walk extensions 

The most obvious way to extend the electric vehicle shortest walk problem is to add 

stochasticity to the problem. In Chapter 2, the arc lengths of the network were assumed to 

be deterministic. This is unrealistic since the time it takes to traverse a road is dependent 

on varying factors such as traffic and the weather. There are many possible ways of 

extending the problem to allow for stochastic shortest edges. Possibilities include having 

the arc lengths be random variables that have known distributions and reset every time 

the edge is traversed, or having a set of possible configurations for the arc lengths where 

one configuration is selected before routing begins (but what configuration the system is 

in is still unknown). In the stochastic case, the route the vehicle plans to traverse may 

change as it moves through the network due to the driver gaining more information or 

having an unexpected amount of battery charge left. Since the route can be altered during 

traversal due to a change in the state of the system or in the vehicle fuel status, instead of 
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a walk the solution is now a policy that maps the current state of the system and vehicle 

to the current route the vehicle should take. 

Adding stochastic arc lengths to the problem creates an unusual situation since it 

requires handling the possibility that the vehicle could run out of battery. In the 

deterministic case it was known with certainty whether or not a walk could be taken 

without the vehicle running out of battery. In the stochastic case of the problem, since the 

true amount of battery charge an edge requires may be unknown, the driver either has to 

accept some risk of running out of battery or never take any route that has a nonzero 

probability of running out of battery. The problem must be formulated in such a way that 

it factors into account the driver’s appetite for risk, if any. 

The problem of finding shortest paths in a stochastic network has a large body of 

research behind it. Frank presented the problem of finding the probability that paths had a 

length less than a parameter 𝑙 (Frank, 1969). Mirchandani (Mirchandani, 1976) discussed 

the shortest path problem with discrete arc lengths and Eiger et al. (Eiger et al., 1985) 

addressed the same problems that take into account traveler’s attitude towards uncertainty 

in travel times. Sigal et al. (Sigal et al., 1980) discuss the situation of trying to plan a 

route along arcs with stochastic lengths before knowing the realization of the arc lengths. 

In this case the authors were interested in finding the path with the highest probability of 

being the shortest path. The difficulty in this approach is that the lengths of each path are 

not independent, since two different paths may share arcs. In their paper they give an 

analytic method to calculate the path with the highest probability of being the shortest. In 

the electric vehicle setting this problem is complicated since a path set before the 
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realization of the random variables may not be feasible when the true lengths are 

revealed. Thus when comparing two paths 𝑗 and 𝑘 in graph 𝐺, not only would 𝑃(𝐿𝑗 <

𝐿𝑘) need to be considered where 𝐿𝑖 is the length of path 𝑖, but also 𝑃(𝐵𝑗 < 𝐵𝑘) would 

need to be considered, where 𝐵𝑖 is the probability that the car will run out of fuel if it 

takes path 𝑖. 

Polychronopoulos and Tsitsiklis (Polychronopoulos and Tsitsiklis, 1996) discuss the 

problem where the arcs are randomly distributed but not necessarily independent; the arc 

lengths are determined before the path is found however the agent taking the path does 

not know the arc lengths. It is assumed that the set of feasible realizations of the arc 

lengths is finite. Thus the agent has to balance taking the path that has the shortest 

expected length with the ability to explore and gain more information about arcs that 

have not yet been traversed. This corresponds with decreasing the cardinality of the set of 

feasible realizations given the known arc lengths. This work is also related to the work of 

Waller and Ziliaskopoulos (Waller and Ziliaskopoulos, 2002) where they modify the 

problem to limit the relationships between arcs to those which are adjacent. 

The work of Fan et al. (Fan et al., 2005) covers the dynamic policies in a stochastic 

network to try and maximize the probability of arriving on time. In this problem a vehicle 

is trying to get from a starting point to a destination in a graph 𝐺 with probabilistic arc 

lengths in a way that maximizes the probability of arriving before a certain time 𝑏. After 

traversing each arc, the vehicle can alter the path given the previously realized arc 

lengths. The ability to alter the path is relevant because it allows the driver to weigh the 

volatility of the current path against the remaining amount of time before 𝑏. In the 
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electric vehicle setting, this problem would also need to add the fact that the driver has to 

base his or her decision on how much battery is remaining in addition to the remaining 

time. 

In Kolobov et al. (Kolobov et al., 2012) the authors present a framework for stochastic 

shortest path Markov decision processes where there is the possibility of arriving at a 

failure state so the path cannot be completed. This is not unlike the situation for electric 

vehicles, since when the vehicle is stranded due to running out of battery charge it is in a 

“failure state”. They discuss the case when the failure state is given a fixed cost and an 

infinite cost. Modeling an object as it moves through a system using a Markov decision 

process has been done before, for example in routing jobs through a factory (Mirchandani 

and Veatch, 1986). 

5.1.1. Problem setup 

In this section we will formulate the electric vehicle shortest route problem for the 

case where the edge lengths are independent of each other with known discrete 

distributions. The vehicle has the option of recourse: the driver can choose a new path 

after traversing each edge. The edge lengths are randomly chosen from a given discrete 

distribution each time the vehicle traverses an edge, so there is no knowledge gained by 

taking actions when traversing the graph. Let 𝐺 = (𝑉, 𝐸) be a directed graph, where 𝑉 is 

the set of vertices and 𝐸 is the set of arcs. For each 𝑒 ∈ 𝐸, let 𝐿𝑒 be a nonnegative integer 

random variable representing the time required to traverse the edge. Assume that all of 

the 𝐿𝑖 random variables are independent, and that each traversal an edge will correspond 

with a new realization of the edge length. In this sense the edge lengths “reset” each time 
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they are travelled, and may have a new length the next time they are traversed. Let 𝐵 ⊆ 𝑉 

be a set of recharging stations on the graph. Let 𝑠 ∈ 𝑉 be the starting point of a vehicle 

and let 𝑡 ∈ 𝑉 be the desired end point of the vehicle. The charge level of the battery is 

represented as the amount of time the vehicle can travel for until the battery is empty. 

When the vehicle battery is full it can travel for 𝜔 time, and each time it traverses an edge 

𝑒 it uses 𝐿𝑒 battery. If the vehicle battery charge is ever at 0 units of time when the 

vehicle is at a location without a charging station, then the vehicle is stranded. Upon 

arriving at a refueling station 𝑣 ∈ 𝐵, the vehicle has the option to recharge which takes 𝑔𝑣 

time and refills the car to having a full battery. Upon arriving at a vertex, the vehicle has 

the option of traveling along any of the edges, however it may not alter its path in the 

middle of an edge. 

What road a vehicle drives down alters the probability that the vehicle will run out of 

battery. Certain drivers have different amounts of risk tolerance: they may be willing to 

take routes that have a higher probability of having the vehicle run out of charge in 

exchange for shorter travel times. While there are many different possible methods for 

formulating risk, we define a driver’s risk profile as a variable 𝑝 ∈ [0,1] which represents 

the minimum probability of reaching 𝑡 a driver is willing to tolerate when making each 

decision. This includes not just the chance of running out of battery during the next edge, 

but along any edge between the current location of the vehicle and the destination. For 

example if 𝑝 = 0.95 then the driver would take an action that could have up to a 5% 

chance of having the vehicle be stranded before reaching the end point, but nothing 

higher. Notice that each time the vehicle arrives at a vertex it has a new action to take, 
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and thus the value of 𝑝 is enforced at each action during the trip. In the event that all 

possible actions have an associated probability of running out of fuel greater than 𝑝, the 

driver will take the action with the lowest probability of running out of fuel. A 𝑝-feasible 

policy is a policy that ensures the driver only takes actions which respect their risk 

profile. 

We will construct a three step process for finding an optimal policy for routing an 

electric vehicle in a network with stochastic edge lengths. The policy will assume that the 

driver has a specific risk profile for how willing he or she is to have the vehicle be 

stranded. Actions that are too risky for the driver will be avoided unless no other actions 

are available. The optimal policy will minimize the expected travel time of the vehicle, 

under the assumption that if the vehicle does get stranded a second vehicle will deliver a 

new battery to it with a fixed time penalty. The three step process is: 

1. Compute for each location in the network and each possible battery charge 

level, what is the probability that the vehicle gets stranded assuming the driver 

is minimizing the probability of being stranded and not the travel time. This is 

done by formulating and finding the optimal policy for a Markov decision 

process. 

2. Using the results from the previous step, determine which actions should be 

avoided by the driver to have a 𝑝-feasible policy. 

3. Construct a new Markov decision process that does not have actions forbidden 

by the results from the previous step, and accounts for the vehicle getting a 
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replacement battery delivered if the vehicle is stranded. Find the optimal policy 

to this MDP to get the solution to the problem. 

5.1.2. Step 1: finding the probability of being stranded 

Because the knowledge of an edge length is reset after each traversal, how a vehicle 

has travels to a vertex does not impact future decisions, only where the vehicle is 

currently and how much battery it has remaining influence future decisions. Since a 

vehicle cannot alter its course while traversing an edge, when the vehicle is not stranded 

the state of the system is entirely encoded in what vertex the vehicle is along the graph, 

and how much battery it has remaining. When the vehicle is stranded, its location no 

longer matters since it will never reach the end point. Therefore, we can define a Markov 

decision process to represent the vehicle moving through the network. Let ℳ =

(𝒮, 𝐴, 𝑇, 𝑅, 𝑆0, 𝐷) be a Markov decision process with state set 𝒮, action set 𝐴, transition 

function 𝑇: 𝒮 × 𝐴 × 𝒮 → [0,1], reward function 𝑅: 𝒮 × 𝐴 × 𝒮 → ℝ, initial state 𝑆0 ∈ 𝒮 

and terminal state set 𝐷 ⊆ 𝒮. The set of possible states 𝒮 that the vehicle can be in are: 

𝒮 = {(𝑣, 𝑥): 𝑣 ∈ 𝑉, 𝑥 ∈ {0,… ,𝑤}} ∪ {𝑋}, 

where state 𝑋 represents the vehicle having run out of battery power while traversing an 

edge. Let 𝐷 = {(𝑡, 𝑥): 𝑥 ∈ [0, 𝜔]} ∪ {𝑋} be the set of terminal states. The initial state is 

𝑆0 = (𝑠, 𝜔). 

In the deterministic case of this problem where all of the edge lengths were fixed, the 

optimal solution is a walk for the vehicle to take from 𝑠 to 𝑡. The exact route the vehicle 

would take could be determined before it left the starting point. In this problem, the 

vehicle may have to alter its course depending on how much fuel it has remaining. 
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Therefore the optimal solution is a policy for the vehicle to execute. For each 𝑆 =

(𝑣, 𝑥) ∈ 𝒮 ∖ {𝑋} where 𝑣 ∈ 𝑉 and 𝑥 ∈ {0,… ,𝜔}, the set of actions 𝐴𝑠 the vehicle can 

take at that state is: 

𝐴𝑆 = {
{𝑧: (𝑣, 𝑧) ∈ 𝐸} ∪ 𝜌 𝑣 ∈ 𝐵

{𝑧: (𝑣, 𝑧) ∈ 𝐸} otherwise.
 

Here action 𝑧 ∈ 𝑉 represents the vehicle travelling to vertex 𝑥, and the action 𝜌 

represents refueling if available. Since once the vehicle is stranded it cannot move to any 

other state, define 𝐴𝑋 = ∅. The set 𝐴 = ⋃ 𝐴𝑆𝑆∈𝒮  represents all possible actions the 

vehicle can take. 

Let 𝑇: 𝒮 × 𝐴 × 𝒮 → [0,1] be a transition function representing the probability of the 

vehicle entering a new state the vehicle after executing an action from its current state. 

When 𝑆 = (𝑣, 𝑥) ∈ 𝒮 ∖ {𝑋} where 𝑣 ∈ 𝑉 and 𝑥 ∈ [0, 𝑤]: 

𝑇(𝑆, 𝑎, 𝑆′)

=

{
 
 

 
 𝑃(𝐿(𝑣,𝑣′) = 𝑥 − 𝑥′) for�𝑆′ = (𝑣′, 𝑥′) ∈ 𝒮, 𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑐 − 𝑐′ ≥ 0,

𝑃(𝐿(𝑣,𝑣′) > 𝑥) for�𝑠′ = 𝑋, 𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸,

1 for�𝑠′ = (𝑣,𝜔)�𝑎 = 𝜌, 𝑣 ∈ 𝐵
0 otherwise,

 

The transitions from non-stranded states fall into four cases. In the first case the driver 

takes an action of traversing an edge to an adjacent vertex and arriving with a specified 

amount of battery. The transition probability in this case depends on the probability that 

the edge length is the one that leaves the vehicle with the specified battery level. The 

second case is for the action when the driver tries to traverse an edge to an adjacent 

vertex but gets stranded while traversing the edge. This transition has a probability 

depending on how likely the vehicle is to run out of battery. The third case is when a 



 130  

vehicle is at a vertex that is a charging station, and the vehicle takes an action of 

recharging. This action has a guaranteed result so the transition probability is 1. Finally, 

any other transition between states will not occur and has probability 0. If the vehicle is 

in the stranded state then since it is a terminal state there are no possible actions. 

Finally, a policy is a function 𝜋: 𝒮 → 𝐴 such that 𝜋(𝑆) ∈ 𝐴𝑠 for all 𝑆 ∈ 𝒮. What the 

vehicle does upon arriving at a vertex depends on how much fuel is left in the vehicle’s 

tank. We are interested in finding a policy that gets the vehicle to its destination, which is 

represented by any of the states in 𝐷 ∖ {𝑋}, with maximal probability 

Theorem: There exists a policy 𝜋∗ that minimizes the probability that the vehicle 

reaches the terminal state 𝐵 instead of terminating states {(𝜏, 𝑥): 𝑥 ∈ {0,… , 𝜔}}. 

Proof: Construct a reward 𝑅: 𝒮 × 𝐴 × 𝒮 → ℝ+ function defined as follows: 

𝑅(𝑆, 𝑎, 𝑆′) = {
1 when�𝑠′ ∈ {(𝜏, 𝑥): 𝑥 ∈ {0,… ,𝜔}}

0 otherwise.
 

Since the only nonzero reward is incurred at a terminal state, a dynamic programming 

algorithm to find a policy 𝜋∗ that maximizes the expected sum of the rewards will 

converge to the utilities 𝑈(𝑆) for each 𝑆 ∈ 𝒮. The utility 𝑈(𝒮) corresponds with the 

probability that the vehicle will reach the end point starting from state 𝑠 and applying 

policy 𝜋∗. By the construction of the dynamic programming algorithm, policy 𝜋∗ 

minimizes the probability that the vehicle will be stranded starting from any state.  
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5.1.3. Step 2: finding the forbidden actions 

For action 𝑎 ∈ 𝐴𝑣 taken from state 𝑠, let 𝑄(𝑆, 𝑎) be the probability that the vehicle 

will be stranded at any point after taking that action, assuming the vehicle follows policy 

𝜋∗. The value 𝑄(𝑆, 𝑎) is then 

 

𝑄(𝑆, 𝑎) = ∑ 𝑈(𝑆′)𝑇(𝑆, 𝑎, 𝑆′)

𝑆′∈𝒮

 

The willingness for a driver to take a route that could cause the vehicle to be stranded 

depends on his or her tolerance for risk. Each time the driver is in state 𝑠 chooses to take 

an action 𝑎, there is an associated maximum probability that the vehicle will reach the 

destination over all possible policies. That probability is precisely 𝑄(𝑆, 𝑎). Given that the 

driver is in state 𝑠 and takes action 𝑎, if the driver is only interested in arriving at the 

destination and not how long it takes to get there then the driver will reach the destination 

with probability 𝑄(𝑆, 𝑎). It may be possible that the driver implements some policy 𝜋′ ≠

𝜋∗, in which case the probability that the vehicle will reach the destination instead of 

being stranded after applying action 𝑎 from state 𝑠 is less than or equal to 𝑄(𝑆, 𝑎). 

For each non-terminal state 𝑆 = (𝑣, 𝑥) ∈ 𝒮 ∖ 𝐷, the p-feasible actions �̅�𝑆 ⊆ 𝐴𝑆 are the 

actions that can be used in a 𝑝-feasible policy. Action set �̅�𝑆 can fall into three cases: 

1. There exists a nonempty maximal set 𝐴𝑆
′ ⊆ 𝐴𝑆 such that 𝑄(𝑎, 𝑠) ≥ 𝑝 for all 𝑎 ∈

𝐴𝑆
′ . In this case the feasible actions from 𝑆 are �̅�𝑆 = 𝐴𝑆

′ . This is the case where 

there are some actions that have a probability at most 𝑝 of leaving the vehicle 
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stranded in the future. Any of these actions with probability at most 𝑝 are 

feasible. 

2. There does not exist a nonempty set 𝐴𝑆
′ ⊆ 𝐴𝑆 such that 𝑄(𝑎, 𝑆) ≥ 𝑝 for all 𝑎 ∈

𝐴𝑆
′ , but there does exist 𝑎 ∈ 𝐴𝑆 such that 𝑄(𝑎, 𝑆) > 0. This corresponds to the 

situation where no action ensures the vehicle arrives with the desired probability, 

but there is a least one action that is not guaranteed to strand the vehicle. This 

situation is broken into two subcases depending on whether or not the vertex 𝑣 

of the state is a refueling station. If it is a refueling station and 𝑥 < 𝜔, then �̅�𝑆 =

{𝜌}, i.e. the vehicle must refuel. If 𝑥 = 𝜔 then �̅�𝑆 = {argmax𝑎{𝑄(𝑎, 𝑆): 𝑎 ∈

𝐴𝑆, 𝑎 ≠ 𝜌}}, so the vehicle must traverse the edge with the highest probability of 

getting the vehicle to the destination. If the vertex 𝑣 is not a refueling station 

then �̅�𝑆 = {argmax𝑎{𝑄(𝑎, 𝑆): 𝑎 ∈ 𝐴𝑆}}, so the vehicle must also take the edge 

with the highest probability of reaching the destination. 

3. 𝑄(𝑎, 𝑆) = 0 for all actions 𝑎 ∈ 𝐴𝑆. When the vehicle is in this state, regardless 

of what actions are taken the vehicle is going to be stranded. Here �̅�𝑆 = 𝐴𝑆, 

since regardless of what action is taken the vehicle will run out of battery and be 

stranded, and thus the driver is allowed to choose any of them. 

To find a 𝑝-feasible policy, we can use standard techniques to find policies such as value 

iteration, with the adjustment that at no point do we allow the agent to take actions that 

are not 𝑝-feasible. 
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5.1.4. Step 3: computing the value of a 𝑝-feasible policy 

The classic method of measuring the value of a policy is the one that minimizes the 

expected cost, or in this case the expected travel time. Unfortunately, just because a 

policy is 𝑝-feasible does not guarantee that by using the policy the vehicle will reach the 

destination. Therefore when computing the expected travel times the situations where the 

vehicle does not reach the destination have to be considered. There any many different 

possible methods for computing the value of a policy. One possible approach as discussed 

in Kolobov et al. (Kolobov et al., 2012) is to associate a penalty 𝑑 for reaching the fail 

state. Additionally, any other state will have a value of at most 𝑑, since if an agent gets to 

that state they would simply give up. Another possible approach would be to have the 

value of a state represent the expected value given that the agent never reaches the fail 

state. We will take the approach of removing the failure state entirely and avoiding this 

problem. We will assume that if a vehicle runs out of battery charge while traversing an 

edge, the vehicle will pay a large penalty for a new battery to be delivered to it, and the 

vehicle will then continue. Thus the MDP will have to be reconstructed so that instead of 

being stranded and ending the trip the vehicle still arrives at a state with nonzero battery 

charge but with a large negative reward. 

In this situation we construct a new Markov decision process to represent allowing the 

vehicle to have its battery replaced for a fixed cost 𝜌 after it is stranded. Thus, we no 

longer have a state for the vehicle being broken down, since any time it runs out of 

battery mid-trip it will get a new battery and continue. Thus we define a new Markov 

decision process ℳ′ = (𝒮′, 𝐴′, 𝑇′, 𝑅′, 𝑆0′, 𝐷′). Here 𝑆′ = {(𝑣, 𝑥): 𝑣 ∈ 𝑉, 𝑥 ∈ {0,… ,𝜔}}, 
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which is the state of states from ℳ excluding the state for being stranded. Similarly as 

before, the initial state 𝑆0
′ = (𝑠,𝑤) and 𝐷′ = {(𝑡, 𝑥): 𝑥 ∈ {0,… ,𝑤}}. The set of actions 𝐴′ 

is the same set of actions from ℳ, so 𝐴′ = 𝐴 = ⋃ 𝐴𝑆𝑆∈𝒮′ . The transition probability 

function needs to be altered from the original one in ℳ, since now when the vehicle runs 

out of battery charge mid-trip it needs to still reach the next vertex rather than being 

stranded. The amount of battery it will have remaining when it reaches the destination 

will relate to the fact that during the trip the battery was swapped out.  

Define the transition probability function 𝑇′: 𝒮′ × 𝐴′ × 𝒮′ as, for (𝑣, 𝑥), (𝑣′, 𝑥′) ∈ 𝒮′ 

and 𝑎 ∈ 𝐴′: 

𝑇′((𝑣, 𝑥), 𝑎, (𝑣′, 𝑥′)) =

{
 
 

 
 

𝑃(𝐿(𝑣,𝑣′) = 𝑥 − 𝑥′) for�𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑐 − 𝑐′ > 0,

𝑃(𝐿(𝑣,𝑣′) = 𝑥 + 𝜔 − 𝑥′) for��𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑐 − 𝑐′ < 0,

𝑃 (𝐿(𝑣,𝑣′) ∈ {0, 𝜔}) for��𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑥 = 𝑥′,

1 for�𝑠′ = (𝑣, 𝜔)�𝑎 = 𝜌, 𝑣 ∈ 𝐵,
0 otherwise.

 

In this function, the probability of transitioning to the new state by traversing an edge will 

yield a lower amount of battery charge if the edge was traversed without battery swap, 

which is the first case. If the battery needed to be swapped, the vehicle will arrive with 

more battery charge remaining, which is the second case. If the vehicle arrives with the 

same amount of battery charge then either the battery was not swapped or it was swapped 

and the length of the edge was precisely the amount that requires a full battery, which is 

the third case. 

The reward function needs to account for the length of the edge being traversed plus 

the cost of swapping a battery mid-trip. The function 𝑅′ is defined below, where the cases 

correspond to those of the transition function 𝑇′: 
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𝑅′((𝑣, 𝑥), 𝑎, (𝑣′, 𝑥′))

=

{
 
 

 
 

−(𝑥 − 𝑥′) for�𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑥 − 𝑥′ > 0,
−(𝑥 + 𝜔 − 𝑥′) − 𝜌 for��𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑥 − 𝑥′ < 0,

−𝑃 (𝐿(𝑣,𝑣′) = 𝜔) (𝜔 + 𝜌) for��𝑎 = 𝑣′, (𝑣, 𝑣′) ∈ 𝐸, 𝑥 = 𝑥′,

−𝑔𝑣 for�𝑠′ = (𝑣,𝜔)�𝑎 = 𝜌, 𝑣 ∈ 𝐵,
−∞ otherwise.

 

This gives a full description of a Markov decision process. The optimal policy can be 

found using standard techniques such as value iteration. While there is no discount factor, 

the value iteration algorithm should still converge for any state that could reach a 

terminal state due to the construction of the reward function, assuming a feasible path 

exists from the initial state to a terminal state. 

5.1.5. Empirical results  

We randomly generated networks to find the expected values of the optimal policies. 

We used MATLAB 2012b on an Intel Core 2 Duo 2.4Ghz (x2) processor machine with 

4GB of RAM running Windows 7 Ultimate. The random network was generated in the 

following manner for input parameters: number of intersections 𝑛, number of stations 𝑚, 

and grid size 𝑔. First, 𝑛 points were randomly selected with uniform distribution from 

{1, … , 𝑔}2, and the car was set to be able to drive at most distance 𝜔 = 35. Of those, 𝑚 

were selected to be refueling stations, and of those that were not refueling stations one 

was selected to be the start vertex and one was selected to be the end vertex. The edges 

were selected by taking the Delaunay triangulation of the vertices. For edge 𝑒 = (𝑣1, 𝑣2) 

the distribution 𝑋𝑒 was uniform between min(𝑑, ⌊0.75‖𝑣1 − 𝑣2‖2⌋) and 

min(𝑑, ⌈1.25‖𝑣1 − 𝑣2‖2⌉). The penalty for a vehicle requiring a battery to be delivered 
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was a 𝜌 = 70 and for all stations 𝑣 ∈ 𝐵 the charge time was 𝑔𝑣 = 10. For both finding 

the allowed actions and computing the optimal policy, a value iteration algorithm was 

used with 150 iterations. Table 9 gives the expected travel times for the vehicles 

following the optimal policy from the initial state at different levels of 𝑝. In most cases 

the difference between the risk free and high risk policies were small or non-existent, 

however for some networks such as the one with a grid size of 100, 200 intersections, and 

20 stations there was over a 25% difference in expected value between the risk free and 

high risk policies. In this network allowing for risk would dramatically lower the amount 

of time a driver would need. The average runtime for the algorithm was 76.0 seconds 

when there were 100 intersections and 161.0 when there were 200 intersections. 

Table 9 

Expected travel times for the electric vehicle stochastic shortest path problem 

Grid size Intersections Stations   Expected value of initial state  

        

p = 

75% 

p = 

80% 

p = 

85% 

p = 

90% 

p = 

95% 

p = 

100% 

 

100 100          

  10  70.8 70.8 70.8 70.8 70.8 70.8  

  20  101.9 101.9 104.4 105.6 114.3 126.9  

  30  94.6 94.6 94.6 95.1 96.1 97.4  

  40  100.9 100.9 100.9 101.0 101.1 101.4  

100 200          

  10  107.3 107.3 107.3 107.3 170.3 184.2  

  20  95.9 95.9 96.4 96.4 97.6 125.9  

  30  75.5 75.5 75.5 75.5 76.2 81.0  

  40  70.7 70.7 70.7 70.7 70.7 70.8  

200 100          

  10  122.3 122.3 122.6 122.8 122.8 298.3  

  20  143.5 143.5 143.5 143.5 144.1 144.1  

  30  141.2 141.2 141.2 141.2 141.2 141.2  

  40  232.4 232.4 232.4 232.4 232.7 232.7  

200 200          

  10  127.8 127.8 127.8 127.8 127.8 127.8  

  20  116.2 116.2 116.2 116.2 116.2 116.2  

  30  244.3 244.3 244.3 244.3 244.4 244.4  

    40   90.8 90.8 90.8 90.8 90.8 90.8  
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5.2. Online routing and battery reservations model extensions 

The routing and reservation system from Chapter 4 made several major simplifying 

assumptions about the system. The list of assumptions include: 

1. the rate at which vehicles arrive is constant throughout the day, 

2. vehicles will always start with a full battery and all vehicles have the same 

battery capacity, and 

3. every time a vehicle drops off a battery it will have zero charge. 

In the following subsections we will show how the model can be modified to relax these 

assumptions. Each of the assumptions will be treated independently of the others but 

constructed in such a way that several of the generalizations can be used at the same time, 

or even all of them can be used to obtain a more realistic model. 

5.2.1. Vehicle arrival rates vary during the day 

The model assumed that the rate at which vehicles arrive into the system is constant 

throughout the day. In addition the distribution of the origins and destinations is constant 

as well. This is unrealistic since the rate at which vehicles arrive will vary as time 

progresses, due to factors such as rush hour. The distribution of OD pairs will change as 

well: in the morning cars will be more likely to begin their work trips in suburban areas 

heading to work, and similarly in the evening cars will likely be heading home. To 

improve the model it would be best to allow variable arrival rates to vary over the day. 

To do this, we partition the time interval {0, … , 𝑇} into a set of 𝜅 intervals 

{{𝑇0, … , 𝑇1}, {𝑇1, … , 𝑇2}, … , {𝑇𝜅−1, 𝑇𝜅}} where 𝑇0 = 0 and 𝑇𝜅 = 𝑇. During each of these 

intervals we will have a new rate for vehicles requesting a route for OD pair 𝑗. Thus the 
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value 𝑝𝑗
𝑘 will represent a the probability that during a unit of time in interval {𝑇𝑘−1, 𝑇𝑘}, a 

vehicle will arrive at origin 𝑜𝑗 wanting to travel to destination 𝑑𝑗. Similar to before 𝑝0
𝑘 =

1 − ∑ 𝑝𝑗
𝑘𝜎

𝑗=0  for 𝑘 = 1,… , 𝜅. With this modification, the rest of the problem formulation 

stays the same. We still are interested in finding the optimal policy to route a vehicle that 

arrives at a particular time with the state of batteries at particular charge levels at the 

stations. By using different arrival rates for each OD pair in each interval, this captures 

the need to adjust total demand as a function of the time of day. 

The method of using a Markov chance-decision problem to model the system and 

approximate dynamic programming still apply as well. However we need to adjust the 

basis functions to reflect the fact that the time period is split into intervals. Recall that the 

basis functions for the original problem were 𝜙0, representing the number of time periods 

until the end of the day, and 𝜙(𝑖,𝑗) for 𝑖 = 1,… , 𝛽 and 𝑗 = 1, … , 𝑛𝑖, representing the 

number of time periods in which the station 𝑖 has at least 𝑗 batteries unavailable. Now 

that the time interval is partitioned, one set of these functions is needed for each interval. 

Thus the function 𝜙0
𝑘 will represent the number of time units remaining in time interval 

𝑘. In the case that the interval has not yet start then 𝜙0
𝑘 = 𝑇𝑘 − 𝑇𝑘−1 and if the interval 

has already been completed then 𝜙0
𝑘 = 0. Function 𝜙(𝑖,𝑗)

𝑘  represents the number of 

remaining time periods during time interval 𝑘 at which station 𝑖 has at least 𝑗 unavailable 

batteries. Again if the interval of time has been completed then by definition 𝜙(𝑖,𝑗)
𝑘 = 0. 

In the linear function to represent the state value approximation, there is a coefficient 

𝜃𝑓,𝑘
𝑚,1

 and 𝜃𝑓,𝑘
𝑚,2

 for each 𝑓 ∈ ℱ and each 𝑘 = 1, … , 𝜅. This allows the state approximation 

to treat the number of batteries available in each interval separately. This is justifiable 
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since during each of the intervals the rate at which vehicles will arrive is different. 

Further, the number of intervals can be taken to be sufficiently small such that complex 

demand functions can be sufficiently approximated by discrete time periods. Also in 

situations where there is a time interval with a dramatically varying demand rate, having 

small time intervals will allow for better fidelity in having the policies change before of 

after peak demand times. If the intervals were to be taken such that each interval is only 

one time period long, then this would equivalent to not assuming that 𝜃𝑡𝑓
𝑚 = 𝜃𝑓

𝑚 for all 

𝑡 ∈ {0,… , 𝑇} and thus treating each time period independently. 

Having different coefficients for each time interval has little impact on the runtime of 

the approximate dynamic programming algorithm. The only changes in runtime occur in 

calculating the value of the states that could be transitioned to when simulating the 

system to approximate the state values, however that time increase is small compared to 

the total runtime. The nonnegative least squares component of the optimization is most 

heavily effected by the increase in the number of coefficients, since the number of 

coefficients is a multiple of the number of intervals. 

5.2.2. Vehicles start with different battery charge levels 

Suppose we wanted to relax the assumption that vehicles will always begin trips with 

full batteries. While the vehicles may often start with a full charge since they can usually 

be plugged in at the origin, this may not always be the case. Further, the distribution may 

vary as a function of the origin location. An origin that is a residential location may be 

more likely to start with a fully charged battery than a vehicle starting at a parking 

structure that does not have a charging station. 
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For OD pair 𝑗 assume that the vehicle will start with a battery charged to 𝜒𝑗 ∈

{0,… ,𝜔}. Thus if there are to be 𝑘 possible battery levels for a vehicle to start with at a 

origin, then the origin pair should be replicated into 𝑘 pairs where each has a different 

starting battery level. Now for each OD pair 𝑗 the route set ℛ𝑗 should be generated to 

reflect the amount of starting battery power in the vehicle; no OD pair should have a 

route assigned to it that would be infeasible for it to serve. For the 𝑘 OD pairs that share 

the same origin and destination vertices but have different starting battery levels, the 

route sets can be generated simultaneously by first assuming that the battery has full 

charge and generating the route set, then for each pair with a lower battery level pruning 

all of the infeasible routes. 

5.2.3. Batteries have charge left in them when they are dropped off 

Allowing vehicles to drop off partially charged batteries is a simple modification to 

make. Notice that the charging time of a battery does not change the time required to 

traverse a route given the current state of the system, nor does it change whether or not a 

vehicle can traverse a route. When routing a vehicle, the only thing that changes due to 

this modification is the state that the system will transition to. When a battery is dropped 

off at station it may require less time to charge since it may not me empty, and thus the 

state the system transitions to will have more time periods where the battery is available 

than in the original model. 

Suppose a vehicle at time 𝑡 requests a route wanting to travel OD pair 𝑗. The algorithm 

in Fig. 20 determines the lengths of each route in ℛ𝑗 given current state of the system 𝑆𝑡, 

and thus this is the only part of the process that needs to be altered. For route 𝑅 =
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(𝑏1
𝑅 , 𝑏2

𝑅 , … , 𝑏|𝑅|
𝑅 ) ∈ ℛ𝑗 , suppose 𝛿1

𝑅 . 𝛿2
𝑅 , … , 𝛿|𝑅|

𝑅  are the battery levels remaining when the 

vehicle arrives at stations 𝑏1
𝑅 , 𝑏2

𝑅 , … , 𝑏|𝑅|
𝑅  respectively. The new algorithm can be seen in 

Fig. 29. Notice that the only change from Fig. 20 is that the occurrences of ℎ have been 

replaced with 𝛿𝑥
𝑅. Now this algorithm will provide an updated state depending on how 

long the battery will need before being fully charged. 
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On input 𝑆𝑡 , 𝑗𝑡  
Initialize 𝑌 ← ∅, 𝑎 ← 0, 𝑤 ← 0, 𝑖 ← 0, 

Initialize 𝑆𝑡
′  as a (𝑇 − 𝑡)-tuple of zeros 

Initialize 𝑍 as a (𝛽 + 1) ×  ℛ𝑗𝑡  -matrix 

For each  𝑅 = (𝑏1
𝑅 , 𝑏2

𝑅 , … , 𝑏|𝑅|
𝑅 ) ∈ ℛ𝑗𝑡  

 Set 𝑖 ← 𝑖 + 1 

Set 𝑎 ← 𝑙′(𝑜𝑗𝑡 , 𝑏1
𝑅) 

Set 𝑆𝑡
′ ← 𝑆𝑡  

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑙′(𝑜𝑗𝑡 , 𝑏1
𝑅) 

For  𝑥 ← 1, … |𝑅| 
Set 𝑤 ← 0 

While 𝑆𝑡(𝑏𝑥
𝑅 , 𝑦) ≥ 𝑛𝑥

𝑅  for any 𝑦 ∈ {𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + 𝛿𝑥
𝑅 − 1, 𝑇)} 

 Set 𝑤 ← 𝑤 + 𝑤′ where 𝑤′ is the count of times 𝑆𝑡(𝑏𝑥
𝑅 , 𝑦) ≥ 𝑛𝑥

𝑅  for 𝑦 ∈
{𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + 𝛿𝑥

𝑅 − 1, 𝑇)} 
End while 

 Set 𝑎 ← 𝑎 + 𝑤 + 𝑔 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) + 𝜌1𝑔 

Set 𝑍(𝑏𝑥
𝑅 , 𝑖) ← 𝜌2𝑤 

 For each 𝑦 ∈ {𝑎 + 𝑤, … , min(𝑎 + 𝑤 + 𝑔 + 𝛿𝑥
𝑅 − 1, 𝑇)} 

Set 𝑆𝑡
′(𝑏𝑥

𝑅 , 𝑦) ← 𝑆𝑡
′(𝑏𝑥

𝑅 , 𝑦) + 1 

End for 

If 𝑥 < |𝑅| then 

Set 𝑎 ← 𝑎 + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑏𝑥+1

𝑅 ) 

  End if 

 End for 

Set 𝑍(𝛽 + 1, 𝑖) ← 𝑍(𝛽 + 1, 𝑖) + 𝑙′(𝑏𝑥
𝑅 , 𝑑𝑗𝑡) 

Replace column 𝑖 of 𝐿 with 𝑧 

 Set 𝑌 ← 𝑌 ∪ Λ(𝑆𝑡
′) 

End for 

Return 𝑌, 𝑍 
  

Fig. 29. The algorithm from Fig. 18 with variable battery remaining amounts. 

5.2.4. Empirical results 

We took the Arizona road network from Section 3.3 and adjusted it to allow for the 

new relaxed assumptions. The course of the day was split into nine time periods, and the 

arrival probability increased linearly from 20% of the full value at time period 1 to the 
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full value at time period 5, and then decreased back until it was 20% at the last time 

period. Instead of the vehicles arriving with a full battery, the vehicles had a 50% chance 

of starting at full and a 50% chance of starting at half full. The time interval was reduced 

to having 𝑇 = 3240 time units due to the additional memory requirements for the runs. 

We assumed that the amount of time it takes to charge a battery is proportional travel 

time since the last battery swap. We used the parameters 𝑀 = 48, 𝑈 = 8, 𝛼𝑚 =
20

20+𝑚
, 

𝜆𝑚 = 0.99, which were similar to those from Section 3.3 except 𝑀 and 𝜆 were adjusted 

since the algorithm would likely take more iterations to converge. The results can be seen 

in Table 10. While the algorithm still decreased delays as compared to the greedy policy, 

the reductions were less significant than the simpler model. It is likely that with further 

adjustments to the parameters a higher amount of reduction could be observed. 
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Table 10 

The empirical results for the adjusted online routing and reservation system 

Measure Maximum arrival probability in each time period 

  0.025 0.05 0.075 0.1 0.125 0.15 

Network       

Number of batteries across stations 1500 1500 1500 1500 1500 1500 

Average number of vehicles in day 50.3 94.7 135.0 170.7 235.0 260.5 

Greedy policy       

Average total route value of all vehicles 21519 41428 58267 72008 100611 112088 

Average route value of each vehicle 8 13 19 23 33 36 

Average total delay for all vehicles 2046 4007 5920 7284 10351 11471 

Average number of cars with any delays 2877 3078 3047 3088 3072 3085 

Algorithm policy       

Average total route value of all vehicles 21416 41214 58204 71757 100592 111892 

Average route value of each vehicle 7 13 19 23 33 36 

Average total delay for all vehicles 1943 3793 5857 7033 10331 11275 

Average number of cars with any delays 2908 3087 3062 3088 3089 3085 

Comparison       

Average times policies differed 9.2 22.7 24.2 29.7 33.5 38.0 

Percent decrease in delay time 5.03% 5.34% 1.06% 3.44% 0.19% 1.70% 

Runtimes       

Routing per vehicle (10-2 sec) 0.27 0.14 0.10 0.08 0.06 0.06 

To generate coefficients (103 sec) 18161 19543 16475 17365 17290 17681 

 

5.3. Alternative-fuel vehicle scheduling problem extensions 

In addition to determining how to schedule a fleet of new alternative-fuel vehicles, 

organizations implementing alternative-fuel fleets may also need to determine where the 

refueling stations are to be placed. For instance, when gasoline buses are replaced with 

those that have swappable batteries, the locations at which the batteries can be swapped 

may also need to be decided. Rather than first placing the stations then scheduling the 

vehicles, it may make sense to determine the station locations while building the 
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schedule. This may improve the cost compared to treating the problem independently. 

This changes the problem from a scheduling problem to a location/scheduling problem. 

A similar problem to the vehicle scheduling problem is the vehicle routing problem. In 

this problem vehicles are stored at a depot and there are a set of customers that each must 

be visited by a vehicle exactly once, and the vehicles have a limit to the capacity they can 

serve. There has been some work into locating the depot while simultaneously solving the 

vehicle routing problem, see Nagy and Salhi (Nagy and Salhi, 2007) for a review of the 

research. Unfortunately, we were unaware of any research done into solving both the 

vehicle scheduling problem with the additional decision on where to locate the depot or 

depots. 

For the Alternative-Fuel Vehicle Scheduling and Location Problem (AF-VSLP), we 

take the AF-VSP and add the ability to determine where to place the stations. There is 

now a set of 𝑏 candidate locations 𝐵 = {𝜎1, … , 𝜎𝑠} of which up to 𝜁 may be included in 

the solution. Each candidate station 𝜎𝑘 has a cost of 𝜂𝑘 associated with placing a station 

at that location. The objective is now to find a minimum cost set of schedules and facility 

locations to serve a given set of trips 𝑇. 

5.3.1. Problem formulation and column generation algorithm 

The integer program representing the AF-VSP location problem is presented below. 

Again 𝑥𝑝 is the decision to have a vehicle serve schedule 𝑝 in the solution, and Boolean 

variables 𝑣𝑝
𝑖  and 𝑢𝑝

𝑗
 represent if trip 𝜏𝑖 and depot 𝜃𝑗  are in schedule. We add integer 

variable 𝑧𝑝
𝑘 to represent number of times the station 𝜎𝑘 is in schedule 𝑝, and Boolean 

decision variable 𝑠𝑘 represents whether or not to include station 𝜎𝑘 in the solution. 
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Minimize��� ∑ 𝑞𝑝𝑥𝑝

𝑝∈Ω

+ ∑ 𝜂𝑘𝜔𝑘

𝑠

𝑘=1

 (17) 

subject�to����� ∑ 𝑣𝑝
𝑖𝑥𝑝 = 1

𝑝∈Ω

�����𝑖 = 1, … , 𝑛� (18) 

∑ 𝑢𝑝
𝑗
𝑥𝑝 ≤ 𝑟𝑗

𝑝∈Ω

�����𝑗 = 1,… , 𝑑 (19) 

∑ 𝑧𝑝
𝑘𝑥𝑝 ≤ 𝑀𝑠𝑘

𝑝∈Ω

�����𝑘 = 1,… , 𝑏 (20) 

∑ 𝜔𝑘

𝑠

𝑘=1

≤ 𝜁���� (21) 

𝑥𝑝 ∈ {0,1}�����∀𝑝 ∈ Ω (22) 

𝑠𝑘 ∈ {0,1}�����𝑘 = 1, … , 𝑏 (23) 

Here the value 𝑀 = 𝑛 + ∑ 𝑟𝑗
𝑑
𝑗=1  is an upper bound on the number of times a refueling 

station can be visited in a day. The upper bound comes from the fact that a bus can stop at 

most once after leaving the depot and after every trip. This is the same integer 

programming problem as the one for the AF-VSP by with a small number of 

modifications. The objective function (17) in this problem now includes the cost of 

placing the stations. Constraint (20) ensures that vehicles only refuel at stations that are 

included in the solution, since 𝑀 is an upper bound on the number of times a station 

could be visited in a day by any vehicles and the sum of 𝑧𝑝
𝑘𝑥𝑝 is the number of times a 

station is used in a day. Constraint (21) ensures that at most 𝜁 refueling stations are 

selected for the solution. 
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This problem can be solved using a column generation approach. We begin by 

allowing all 𝑠𝑘 decision variables to be included in the solution, as well as any other 

dummy trips as described in Chapter 4. Let the dual variables associated with the 

constraints be 𝜋𝑖 for 𝑖 = 1, … , 𝑡, 𝜌𝑗 for 𝑗 = 1,… , 𝑑, 𝜙𝑘 for 𝑘 = 1,… , 𝑏, and 𝜓 for 

constraints (18) through (21) respectively. In the AF-VSP column generation algorithm, 

new columns representing possible schedules in the solution were added to the restricted 

master problem that satisfied 𝑐∗ = min
𝑝∈Ω

{𝑐𝑝 − ∑ 𝑣𝑝
𝑖𝜋𝑖

𝑛
𝑖=1 + ∑ 𝑢𝑝

𝑖 𝜌𝑗
𝑑
𝑗=1 }. Since all of the 

decision variables that represent adding stations to the problem are included for the first 

restricted master problem, like before the only columns that need to be generated are 

those for schedules to add. In the AF-VSLP, the schedules should be selected to 

minimize: 

𝑐∗ = min
𝑝∈Ω

 𝑐𝑝 − ∑ 𝑣𝑝
𝑖𝜋𝑖

𝑛

𝑖=1
+ ∑ 𝑢𝑝

𝑖 𝜌𝑗

𝑑

𝑗=1
+ ∑ 𝑧𝑝

𝑘𝜙𝑘

𝑏

𝑘=1
 . 

This cost function modifies the one from the AF-VSP by adding an additional penalty 

for visiting refueling stations. That penalty is found using the dual variables of the 

solution for the restricted master problem, similar to before. Like before, to find the new 

columns to add we need to solve a weight constrained shortest path problem with 

replenishment. Only now we have added an additional cost of 𝜙𝑘 to the route each time a 

schedule uses station 𝜎𝑘. The algorithms in Fig. 25 and Fig. 26 do not need to be changed 

for the AF-VSLP, since the underlying weight constrained shortest path problem with 

replenishment stays the same. Again the algorithm must be run separately for each depot, 

although they can be run in parallel, and the lowest cost schedules for each depot can be 
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added to the restricted master problem provided the value for 𝑐∗ is negative. Thus the cost 

function 𝑐′′ to use in the column generation subproblem needs to include the penalty for 

using a station, and is: 

𝑐′′(𝑣1, 𝑣2) = {

𝑐′(𝑣1, 𝑣2) − 𝜋𝑖 for�𝑣1 ∈ 𝑇, 𝑣2 ∈ 𝑉

𝑐′(𝑣1, 𝑣2) − 𝜙𝑘 for�𝑣1 = ℎ(𝑥, 𝜎𝑘) ∈ 𝐻; 𝑥, 𝑣2 ∈ 𝑉

𝑐′(𝑣1, 𝑣2) + 𝜌𝑗 for��𝑣1 ∈ 𝐷, 𝑣2 ∈ 𝑉.
 

This cost function has the similar bonuses and penalties for visiting trips and starting a 

depots from the original AF-VSP. It also includes a penalty 𝜙𝑘 that in incurred from any 

edge that leaves a vertex representing visiting fuel station 𝜎𝑘. 

Since there are now decision variables based on using stations in the solution, the 

branch and bound algorithm needs to be adjusted. Recall that before the branching was 

based on including and excluding a pair from (𝑇 ∪ 𝐷) × 𝑇. For the AF-VSLP we first 

branch by observing noninteger variables in the solutions that represent stations. If 𝑠𝑘 is 

noninteger for station 𝜎𝑘, then the problem should be branched into two. In one problem, 

station 𝜎𝑘 must be in the solution, in which case decision variable 𝜔𝑘 is removed from 

the master problem, the number of stations allowed in the solution is reduced by one, and 

the cost of the included station is added to the value of the solution. When solving the 

column generation subproblem, any possible schedule may include station 𝜎𝑘 for no 

additional cost; i.e. 𝜙𝑘 = 0. In the other branch, station 𝜎𝑘 cannot be included in the 

solution, in which case no schedule may include station 𝜎𝑘 and decision variable 𝜔𝑘 is 

removed from the problem. 
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5.3.2. Empirical results 

We tested the algorithm on randomly generated data. The data was generated in the 

same method as Section 4.5.1, only now the instead of 𝑠 being the number of used 

stations it is the number of candidate stations. We tested several different combinations of 

trips, candidate stations, and depots, and for each set we varied the number of allowed 

stations between 2 and 6, while keeping the rest of the problem the same. We also 

compared the results to placing stations randomly out of the possible candidates. The 

results can be seen in Table 11. Notice that compared to the AF-VSP results in Table 5, 

the relaxation gap is several order of magnitudes higher. This is due to the station 

constraints; because the 𝑀 value in constraint (20) has to be sufficiently high to allow for 

every vehicle to stop at a station between trips, the decision variables corresponding to 

using a station can be values fairly close to zero. Therefore in the linear relaxation of the 

problem the solution will only have a small component of the station costs allocated to it. 

This can be migrated by having the station number constraint (21) be strict. The solutions 

with optimal station placement have dramatically lower costs than randomly selecting 

from possible sites. This is due to the vehicles not having to travel as far, fewer stations 

being needed since they are better placed, and cheaper stations being selected as 

appropriate. 
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Table 11 

Results of applying a column generation algorithm to randomly generated data for the 

AF-VSLP 
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10 4 8                        

   2 11 4.7 3.9 1.0 127 33 71 10.0 15 23.0 82.1% 

   4 13 4.7 3.9 1.0 127 51 193 9.5 15 22.4 66.1% 

   6 13 4.7 3.9 1.0 127 53 205 9.5 15 21.9 54.8% 

20 4 8             

   2 90 7.4 6.0 1.1 127 71 129 11.9 18 62.9 84.9% 

   4 83 7.4 6.0 1.1 126 123 277 13.6 23 61.0 75.5% 

   6 94 7.4 6.0 1.1 127 147 411 13.1 21 59.6 66.0% 

30 4 8             

   2 352 10.1 8.4 1.4 104 122 221 15.8 21 94.6 89.6% 

   4 326 10.1 8.4 1.4 104 286 811 16.1 23 93.8 83.5% 

      6 446 10.1 8.4 1.4 104 495 2201 16.5 23 94.0 74.9% 
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Chapter 6 

CONCLUSION 

In this dissertation several decision problems relating to systems operations and 

infrastructure design that arise when switching from standard gasoline vehicles to ones 

that use alternative-fuels or electricity were formulated, solved, and analyzed. 

In Chapter 2 we presented a method for routing a single electric vehicle through a 

network with charging or battery exchange stations. The vehicle was routed without 

consideration for other vehicles, and the stations had unlimited capacity. The case where 

the number of battery exchange or recharging stops the vehicle could make was restricted 

was considered, as well as the case when the driver wanted to minimize range anxiety 

rather than driving distance. In all of these instances a fast polynomial-time algorithm 

was developed based on generating a meta-network representation of the original road 

network. The algorithm was tested on randomly generated data to empirically validate its 

speed and functionality. 

Chapter 3 considered the case where many electric vehicles were to be routed, and 

each routing decision for an arriving vehicle was made knowing only the rate of future 

arrivals in the system. We assumed the vehicles would use battery swapping technology, 

however the capacity at each station was limited to the number of batteries available. 

Vehicles when routed would also have batteries reserved at the stations, however if no 

batteries were available at the time the vehicle arrived the driver would have to wait until 

the reserved battery was fully charged. 
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We represented the system using the state of the batteries at each system, and the 

problem became one of finding the optimal policy for a Markov chance-decision process. 

We used approximate dynamic programming with linear temporal differencing to find a 

good routing policies. The values of each state of the system were approximated using 

linear functions to describe the available batteries at each system. Further the policy 

generated by the algorithm was improved by associating the delays to particular stations 

rather than the system as a whole. The algorithm was tested on the Arizona highway 

network using the gravity model for origin-destination demand from Upchurch et al. 

(Upchurch et al., 2009) and it was found that the delays in the system could be reduced 

by up to 23% as compared to routing the vehicles in a greedy manner. 

Scheduling fleets of alternative-fuel or electric vehicles was considered in Chapter 4. 

Here the classic multiple depot vehicle scheduling problem was modified to give the 

vehicles a limited range they could travel before needing to refuel at set locations. This 

new problem was defined to be the alternative-fuel multiple depot vehicle scheduling 

problem, and an exact column generation algorithm was proposed to solve it. A 

concurrent scheduler heuristic was developed, and other possible heuristics were 

discussed. The column generation and concurrent scheduler algorithms were tested on 

randomly generated data with up to 50 trips as well as on real world data from the Valley 

Metro transit group. 

Finally, in Chapter 5 we extended the models of each of the previous chapters with 

additional constraints and considerations. In Section 5.1 we added stochastic edge lengths 

to the problem of routing electric vehicles. This turn the problem from finding a shortest 
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walk to finding a policy to route the vehicle depending on its location and battery level. 

The problem proved to be complicated due to the possibility that the vehicle may run out 

of battery and be stranded before reaching the destination. Using the idea of imposing a 

large penalty if the vehicle ran out of fuel, representing the cost of a service vehicle 

bringing a fully charged battery to the stranded vehicle, we solved the problem using a 

value iteration scheme for the corresponding Markov Decision Process. 

In Section 5.2 we extend the problem of online routing and making battery 

reservations for electric vehicles. We extend the problem in several ways, including 

having the batteries be dropped off without being fully empty, having vehicles arrive in 

the system with different charge levels, and having multiple rates of arrivals throughout 

the day. The new extensions were also tested on the Arizona road network. 

In Section 5.3 we modified the alternative-fuel vehicle scheduling problem to also be a 

refueling station location problem. In this case instead of just scheduling the vehicles we 

also need to decide the locations of the refueling stations. This problem was solved using 

an alteration to the column generation algorithm for the original scheduling problem. The 

solutions generated by the algorithm were compared to solutions with randomly placed 

refueling stations for randomly generated sets of trips. 

There are many possible areas for future work on these topics. For the single electric 

vehicle routing problem, while we added stochastic edge lengths to the problem, we 

assumed that the edge lengths were independent, that the driver had full information on 

the distribution of the edge lengths, and that the edge lengths reset every time the driver 

traversed them. This problem could be altered so that the edge lengths are dependent and 
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based on certain scenarios, such as low or high traffic. In this version of the problem the 

driver then needs to discover which scenario they are in. This would likely convert the 

problem from being a Markov decision process to a partially observable Markov decision 

process. 

Future work for the online routing and battery reservations for electric vehicles 

problem could revolve around uncertainty in the parameters the model is based on. We 

assumed that the rate of arrivals for each OD pair was fully known, however this is 

unlikely to be the case in the real world. The problem could also be improved by 

formulating better basis functions for the system states, and by finding better weighting 

functions for the 𝜃 updates. One could also allow for vehicles to pick up non-full 

batteries, which would likely require the problem to be adjusted so that different types of 

inventory are considered (full batteries, mostly full batteries, etc). Finally, the decision 

problem of when to charge the batteries could be considered; given the cost of electricity 

throughout the day it may make sense to avoid having a battery charge that won’t be 

needed during the day. 

For the alternative-fuel vehicle scheduling problem, future work should be based on 

finding more effective heuristic techniques. Basing a heuristic on one from the multiple 

depot vehicle scheduling problem has much potential, however it is non-trivial to add the 

fuel constraints to these heuristics. A related problem could be defined to model 

rescheduling: in this situation part of the way through the day the schedule needs to be 

revised due to a stranded vehicle or some external situation. In Section 5.3 we gave an 

exact solution for the refueling location and scheduling problem, however we proposed 
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no heuristic. Future work could consider developing a heuristic for the location problem 

that effectively chooses the locations of the refueling stations as well as schedules the 

vehicles.  
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