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ABSTRACT

This dissertation introduces stochastic ordering of instantaneous channel powers of

fading channels as a general method to compare the performance of a communica-

tion system over two different channels, even when a closed-form expression for the

metric may not be available. Such a comparison is with respect to a variety of per-

formance metrics such as error rates, outage probability and ergodic capacity, which

share common mathematical properties such as monotonicity, convexity or complete

monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in

conjunction with the stochastic Laplace transform order between two fading channels

implies the ordering of the two channels with respect to the metric. While it has

been established previously that certain modulation schemes have convex symbol er-

ror rates, there is no study of the complete monotonicity of the same, which helps in

establishing stronger channel ordering results. Toward this goal, the current research

proves for the first time, that all 1-dimensional and 2-dimensional modulations have

completely monotone symbol error rates. Furthermore, it is shown that the frequently

used parametric fading distributions for modeling line of sight exhibit a monotonicity

in the line of sight parameter with respect to the Laplace transform order. While the

Laplace transform order can also be used to order fading distributions based on the

ergodic capacity, there exist several distributions which are not Laplace transform

ordered, although they have ordered ergodic capacities. To address this gap, a new

stochastic order called the ergodic capacity order has been proposed herein, which can

be used to compare channels based on the ergodic capacity. Using stochastic orders,

average performance of systems involving multiple random variables are compared

over two different channels. These systems include diversity combining schemes, re-

lay networks, and signal detection over fading channels with non-Gaussian additive

noise. This research also addresses the problem of unifying fading distributions. This
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unification is based on infinite divisibility, which subsumes almost all known fading

distributions, and provides simplified expressions for performance metrics, in addition

to enabling stochastic ordering.
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Chapter 1

INTRODUCTION

This age, rightly dubbed as the “information age” has witnessed tremendous and ever

increasing growth in terms of communication technology and paraphernalia. Indeed,

the world has become a highly connected and well networked place, and much of it

is due to the foundations laid down by [1]. For example, Shannon theory forms the

basis of the internet, which connects virtually every other person on the face of the

earth; it triggered the development of deep space networks, permitting us to explore

the heavens; terrestrial navigation using global positioning has become a possibility,

thanks to digital communications; people can now connect while on the move as a

result of development in the area of wireless communications.

Wireless systems such as cellular phones, wireless internet devices and bluetooth

devices have become ubiquitous in the communication arena. Although diverse in

their nature of operation, each of these devices can be thought of as a transmitter-

receiver pair, where the transmission of the signal is over a wireless medium (channel).

This transmission experiences random fluctuations in signal strength due to various

physical factors that impair the wireless channel. This phenomenon is known as fading

in wireless communication parlance, and stochastic models known as fading distribu-

tions are built to capture this effect in a system. Some typical fading distributions

are summarized in Table 1.1.

For a wireless system, a number of performance metrics to assess the quality of the

system have been defined in the communication theory literature. A few examples

are (i) the outage probability, which gives a measure of how often the channel is not

good enough to support reliable communication, (ii) the average symbol error rate

1



Name Probability Density Function Parameters

Rayleigh f(x) = x
σ2 exp(−x2/2σ2) σ ≥ 0

Rician f(x) = x
σ2 exp(−x2+a2

2σ2 )I0(ax/σ
2) a, σ ≥ 0.

Nakagami-m f(x) = 2mm

Γ(m)Ωmx2m−1 exp(−mx2/Ω) m ≥ 0.5, Ω > 0.

Hoyt f(x) = 1+q2

qΩ
exp

(

(1+q2)2x2

4q2Ω

)

I0

(

(1−q4)x2

4q2Ω

)

q ∈ (0, 1), Ω ≥ 0.

Weibull f(x) = (k/λ)(x/λ)k−1 exp(x/λ)k k > 0, λ > 0.

Log-normal f(x) = 1
xσ

√
2π

exp(− (log x−µ)2

2σ2 ) σ ≥ 0, µ < ∞.

Table 1.1: Commonly used fading distributions.

(SER), which is a measure of the average number of errors in signal transmission over

all possible states of the fading channel, (iii) the ergodic capacity, which measures the

maximum rate of signal transmission which can guarantee reliable communication,

assuming that the communication duration is long enough to experience all possible

channel states, and (iv) the diversity order, which is a measure of the number of

independent communication channels used by the system. More precise definitions of

these metrics will be provided in the forthcoming chapters.

Given the vast number of wireless systems with different purposes operating over

fading channels, it is of interest to know how to decide whether one communication

channel is superior to another. The performance of such systems are quantified by

averaging a metric (e.g. bit or symbol error rates, or channel capacity) over the

distribution of the random channel. Very often, when one channel is better than

another in terms of a particular metric, it is also better with respect to another

metric. However, this is not always true. Traditionally, answering this question

has relied on single parameter comparisons between channels using characteristics

such as diversity order, “amount of fading”, Ricean factor and others [2]. These are

parametric approaches that quantify how much fading the channel exhibits, but do not
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provide a unified framework to compare channels across many different performance

metrics. In this work, we propose to use stochastic orders to address this issue.

The theory of stochastic orders (or dominance) provides a comprehensive frame-

work to compare two random variables (RVs) or vectors [3]. The simplest and most

widely used stochastic order compares the cumulative distribution functions (CDF)

of two RVs, which defines a partial order between pairs of RVs. When the RVs

represent instantaneous signal to noise ratios (SNRs) in a fading environment, this

corresponds to comparing the outage probabilities in a wireless communication con-

text. Another stochastic order worth mentioning is the stochastic Laplace transform

(LT) order, which compares the real-valued Laplace transforms of RVs. There are

many other stochastic orders that capture comparisons of RVs in terms of size, and

variability. Different than the related majorization theory [4, 5], which defines a

partial order on deterministic vectors, stochastic orders apply to random variables.

Stochastic ordering has become an indispensable tool in many increasingly diverse

areas of probability and applied statistics over the past sixty years. Examples of

such areas include reliability theory [6], actuarial sciences [7], risk analysis [8], eco-

nomics [9] and stochastic processes [10]. However, the applications of this set of tools

in physical layer wireless communications are surprisingly very few, although it has

found numerous applications in communication networks (please see [10], [11], [3, Ch.

13-14] and the references therein).

One of the primary focus areas of this work is to employ the stochastic ordering

theory to compare two wireless systems based on a particular set of metrics. In order

to do so, the metric of choice, for e.g., the SER, needs to possess certain mathematical

properties such as convexity or complete monotonicity. We recall that convex SERs

have a negative first derivative and a positive second derivative with respect to the

SNR. Since the convexity of the SER plays a critical role in various optimization

3



problems [12, 13], it has been the subject of investigation in the literature (see, for

e.g., [14]). On the other hand, if all the successive derivatives of the SER also alternate

in sign (referred to as complete monotonicity), then it is possible to express the SER

as a positive mixture of decaying exponentials. This property proves to be extremely

useful in comparing two fading channels using the LT order, as described in Chapter

3 of this dissertation. Despite the potential applications of complete monotonicity

(c.m.) of the SER, it has not been investigated in its full generality previously.

Consequently, we devote some attention to this issue in Chapter 4.

So far, we have mentioned how existing stochastic orders such as the LT order

can be tailored to compare fading channels based on the average SER. Instead, if

one wishes to compare fading channels based on the ergodic capacities, the LT order

can still be used, however, not every pair of fading channels which can be compared

based on the ergodic capacity is captured by the LT order. Further, it turns out that

none of the existing stochastic orders completely characterizes every pair of fading

channels ordered according to the ergodic capacity. We therefore develop a stochastic

order, which is new to both information theory as well as stochastic ordering theory,

which can be used to compare any two fading channels based on the ergodic capacity.

Such comparisons can be made even in cases when a closed-form expression for the

ergodic capacity is not analytically tractable.

While it is not difficult to verify whether two members of a given parametric fading

distributions satisfy a particular stochastic order, there is no systematic method to

do so for two distributions which do not belong to the same parametric fading family.

This is partly due to the fact that there is no unified fading distribution which houses

all of the known fading distributions and possesses properties which might be helpful

from a stochastic ordering perspective. It is therefore of interest to see if the typical

distributions used for multipath, shadowing and composite multipath/shadowing may

4



be unified under a common class with desirable analytical properties. Through a uni-

fication of fading distributions, it may be possible to obtain canonical expressions for

the performance metrics of fading channels, thereby simplifying performance analysis

of fading channel systems. The unified model may also permit the comparison of two

different fading distributions with respect to system performance metrics such as the

average SER, using stochastic ordering. It is therefore compelling to develop a unified

study of fading models, with these goals in mind. The model proposed in Chapter

5.6 is based on nonnegative infinitely divisible (ID) distributions. A RV is said to be

infinitely divisible, if it can be written as a sum of n ≥ 1 independent and identically

distributed (i.i.d.) RVs, for each n. Through this unification, it is observed that

almost every distribution used to model multipath, shadowing and composite mul-

tipath/shadowing such as Rayleigh, Rician, Nakagami-m and lognormal are seen to

be included in the class of ID RVs. The mathematical properties of this class of RVs

makes it attractive from a performance analysis and stochastic ordering perspective.

1.1 Contributions and Organization of the Dissertation

In the previous section, we identified several gaps or shortcomings of techniques

used for comparing fading channels using conventional methods. In doing so, we

hinted at proposed solutions for the same. In what follows, we clearly identify and

summarize the contributions of this work.

We propose to develop a systematic framework using the general theory of stochas-

tic orders in Chapter 3, which can provide a means to compare two fading channels.

In addition, we give a wide range of examples illustrating how different stochastic

orders are appropriate for comparing systems using different metrics with analytical

properties such as monotonicity, convexity, and complete monotonicity, which shed

light into the connections between performance metrics such as error rates and er-

5



godic capacity. Additionally, we find the conditions under which a composite system

formed using multiple fading links retains the order satisfied by the averages of per-

formance metrics of individual systems. Such a system may involve combinations

in parallel, in series, or otherwise, as may be seen in relay networks. Such a study

permits the comparison of performance of systems, even in settings where closed-form

expressions for the performance metrics are not tractable.

In Chapter 4, it is shown that the SER of an arbitrary multi-dimensional constella-

tion in the absence of coding, when impaired by additive independent and identically

distributed (i.i.d.) Gaussian noise under maximum likelihood (ML) detection can be

represented as a product of a power of the SNR and a completely monotone function

of SNR. This result also generalizes to SERs under compound Gaussian noise, which

includes many non-Gaussian noise distributions such as Middleton class-A noise [15]

and symmetric alpha-stable noise [16]. The SER of an arbitrary multi-dimensional

constellation is shown to be completely monotone if the constellation matrix has a

rank of one or two. Since complete monotonicity implies convexity, the SER is a

convex function of the SNR, provided that the constellation matrix has a rank of one

or two. For constellation matrices whose rank is greater than two, it is shown that

the complete monotonicity of the SER depends on the constellation geometry and

choice of prior probabilities. This work also describes a novel stochastic order for

fading distributions, which can be used to order the average SERs of arbitrary multi-

dimensional complex constellations over quasi-static fading channels, and generalizes

the existing LT order on random variables.

A new stochastic order to compare two fading channels based on the ergodic

capacity is introduced in Chapter 5. A detailed discussion of its properties, exam-

ples and extensions relevant to wireless communications, including the multiple-input

multiple-output (MIMO) case is presented. Many parametric fading distribution fam-
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ilies such as the Nakagami-m, Rician and Hoyt are observed to have the property that

the ergodic capacity is monotone with respect to the line of sight (LoS) parameter

for each of these distributions. Consequently, the instantaneous SNR of these fading

channels serve as examples of ergodic capacity ordered random variables. The prop-

erties of this stochastic order are useful in obtaining comparisons of the performance

of systems involving multiple SNR RVs. Such comparisons of ergodic capacities can

be made even in cases when a closed-form expression for the ergodic capacity is not

available. A MIMO extension of the definition of the ergodic capacity order, which

can be used to order positive semi-definite symmetric random matrices is also given.

Chapter 6 proposes a new unified fading model using ID RVs. This unified model

includes many popular fading models such as Rayleigh, Rician and Nakagami-m mod-

els, and any RV belonging to this class can be decomposed into the sum of n ≥ 1

i.i.d. RVs, for each n. The properties of ID RVs are very relevant in asymptotic per-

formance analysis of wireless systems and stochastic ordering of fading distributions

within the class.

1.2 A Note on Notation

Here are some remarks on the notations used in this dissertation. The set of real

numbers, positive integers and complex positive semi-definite symmetric matrices of

size n× n are denoted by R, N, and Sn
+ respectively, while all other sets are denoted

using script font. For a finite set B the cardinality is denoted by |B|, while the

indicator function is defined as I(x ∈ K) = 1, if x ∈ K and 0, otherwise. For a

Radon measure µ(·) on a Borel set of R+, µ(u) is used to represent µ([0, u]). We

write f1(x) = O(f2(x)), x → a to indicate that lim supx→a(f1(x)/f2(x)) < ∞, and

f1(x) ∼ f2(x), as x → a to indicate limx→a f1(x)/f2(x) = 1.

Vectors and matrices are denoted by boldface lower-case and upper-case letters
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respectively. The transpose operator is denoted by (·)T. For both vectors and matri-

ces, ||·|| denotes the L2 norm. The trace and determinant of a matrix M are denoted

by tr M and det (M) respectively. The jth column vector and the kth row vector

of the matrix M are denoted by mj and mk respectively. The identity matrix is

denoted by I. If ai ∈ R, i = 1, . . . , N , then diag (a1, . . . , aN) is the diagonal matrix

whose (i, i) element is ai, i = 1, . . . , N . The ith smallest eigenvalue of A ∈ RN×N is

denoted by λi(A), i = 1, . . . , N . For a random variable X , FX (x) and fX (x) de-

note the cumulative distribution function (CDF) and the probability density function

(PDF) respectively. E [g(X)] is used to denote the expectation of the function g(·)

over the PDF of X . The multivariate real (circularly symmetric complex) Gaussian

distribution with mean vector a, and covariance matrix C is denoted by N (a,C)

(CN (a,C)). The Laplace transform and Laplace exponent of a nonnegative RV X

are defined as φ
X
(·) = E [exp(−sX)] and γX(s) = − logE [exp(−sX)] respectively,

which are defined for s ≥ 0.
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Chapter 2

MATHEMATICAL PRELIMINARIES

This chapter summarizes some of the mathematical concepts used in the forthcoming

chapters. Notions such as complete monotonicity and stochastic ordering are used in

almost all the chapters that follow, and as a result, these are discussed to reasonable

depth here.

2.1 Some Special Classes of Functions

In what follows, some classes of functions such as completely monotone functions,

Bernstein functions and Thorin-Bernstein functions are described. While the follow-

ing discussion is sufficient for the applications in the scope of the current thesis, the

interested reader is referred to [17] for a more comprehensive account.

2.1.1 Completely Monotone Functions

A function g : (0,∞) → R is completely monotone (c.m.), if and only if it has

derivatives of all orders which satisfy

(−1)n
d
n

dxn
g(x) ≥ 0, (2.1)

for all n ∈ N ∪ {0}, where the derivative of order n = 0 is defined as g(x) itself. The

celebrated Bernstein’s theorem [17] asserts that, g : (0,∞) → R is c.m. if and only if

it can be written as a mixture of decaying exponentials:

g(x) =

∞
∫

0

exp(−ux)µ(du), (2.2)
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which is a Lebesgue integral with respect to a positive measure µ on [0,∞). When

µ(du) = µ(u)du, then we call µ as the representing function of g. It is straightforward

to verify that c.m. functions are positive, decreasing and convex, and that positive

linear combinations of c.m. functions are also c.m. The set of c.m. functions is

denoted by CM. g(x) = 0.5 exp(−x) is an example of a c.m. function in a wireless

communications context, as it corresponds to the SER of differential phase shift keying

in AWGN.

A function g : (0,∞) → R is said to be completely monotone of order α ∈ N if

and only if xαg(x) is c.m.. If g is c.m. of order α, then g is also c.m. of order β,

where 0 ≤ β < α. In [18, Theorem 1.3], it is shown that a necessary and sufficient

condition for g to be c.m. of order α is that g(x) must be represented in the form

(2.2), where the integral converges for all x > 0. In addition, µ must be α − 1 times

differentiable, with the kth derivative of µ(u) equal to zero at u = 0 for 0 ≤ k ≤ α−2,

and d
α−1µ(u)/duα−1 non-negative, right-continuous and non decreasing.

2.1.2 Stieltjes Functions

The set of Stieltjes functions is a subclass of CM, and is denoted by S. A function

g : (0,∞) → [0,∞) is said to belong to S if it admits the representation

g(x) = a/x+ b+

∫

(0,∞)

(x+ u)−1µ(du) , (2.3)

where a, b ≥ 0, and µ is a nonnegative measure on (0,∞) which satisfies the con-

vergence condition
∫

(0,∞)
(1 + u)−1µ(du) < ∞. It is easy to show that any Stieltjes

function is also a double Laplace transform of a nonnegative function. A necessary

and sufficient condition for x 7→ g(x) ∈ S is that x 7→ (g(x−1))−1 also belongs to S

[17, p. 66].
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2.1.3 Bernstein Functions

A function g : (0,∞) → R is a Bernstein function, if g(x) ≥ 0, ∀x > 0, and

dg(x)/dx is c.m. The set of all Bernstein functions is denoted by BF . An equivalent

representation of g ∈ BF is the following [17, p. 15]

g(x) = a+ bx+

∫

(0,∞)

(1− exp(−ux)) τ(du) , (2.4)

for some a, b ≥ 0, where τ is a nonnegative measure on (0,∞) satisfying
∫

(0,1)
τ(du)+

∫

[1,∞)
uτ(du) < ∞. In this case, τ is known as the Levy measure of g. Bernstein

functions are relevant to this work, because the instantaneous capacity function

g(x) = log(1 + x) is a Bernstein function. Furthermore, the Laplace exponents of

non-negative infinitely divisible RVs introduced in Chapter 5.6 are also Bernstein

functions.

An important property is that the set BF is closed under positive linear combi-

nations: if gi ∈ BF , and ai ≥ 0, i = 1, . . . , N , then
∑N

i=1 aigi ∈ BF . Further, if

g1(x) is c.m., and g2(x) ≥ 0 is a Bernstein function, then the composition g1 (g2(x))

is completely monotonic. Some examples of Bernstein functions are g(x) = xα, for

0 < α < 1, g(x) = x/(1+x) and g(x) = log(1+x). The representation of the capacity

function log(1 + x) in the form (2.4) is known as Frullani’s integral [19, p. 6], and is

given by

log (1 + x) =

∞
∫

0

(

1− e−sx
) e−s

s
ds . (2.5)

2.1.4 Thorin-Bernstein Functions

A Bernstein function g is called a Thorin-Bernstein function [17, pp. 73-79], if

it admits the representation given by (2.4), where sτ(s) is c.m.. The family of all

Thorin-Bernstein functions is denoted by T BF . A necessary and sufficient condition
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for g : (0,∞) → (0,∞) to be in T BF is that g can be represented as follows [17, p.

73]:

g(x) = a+ bx+

∫

(0,∞)

log (1 + x/u)µ(du) , (2.6)

for some a, b ≥ 0 and µ is a positive measure on (0,∞), which satisfies the convergence

condition
∫ 1

0
| logu|µ(du) +

∫∞
1

u−1µ(du) < ∞. In this case, µ is called the Thorin

measure of g, and
∫

(0,∞)
µ(du) is called the mass of the Thorin measure, or the Thorin

mass.

We refer to any g2 ∈ T BF which satisfies the property that g1(g2(·)) ∈ T BF for

all g1 ∈ T BF as a composable Thorin-Bernstein function (we denote the set of all

such functions by CT BF). A necessary and sufficient condition for any g2 to belong

to CT BF is that (dg2(x)/dx)/g2(x) ∈ S [17, Theorem 8.4]. Functions belonging to

the class T BF are of particular relevance to this work, since the Shannon capacity

function C(x) := log (1 + x) not only belongs to BF , but also belongs to T BF , as

seen from (2.5) and (2.6). Moreover, the Laplace exponents of generalized gamma

convolutions described in Chapter 5.6 are also Thorin-Bernstein functions.

It is useful to define a multivariate extension of a Thorin-Bernstein function. A

function g : Rm → R belongs to T BFm if g(x1, . . . , xm) is a Thorin-Bernstein function

in each argument, when all other arguments are treated as constants. Further, if g

is composable in each variable when all other variables are fixed, then g is said to

belong to the set CT BFm. An example of function in CT BFm can be verified to be

g(x1, . . . , xM) =
∑M

i=1 αixi, αi ≥ 0, i = 1, . . . ,M .
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2.1.5 Matrix Functions

Let φ : R → R, and λi ∈ R, i = 1, . . . , N . If D = diag (λ1, . . . , λN), we define

φ(D) = diag (φ(λ1), . . . , φ(λN)). If A ∈ Sn
+, so that

A = Udiag (λ1(A), . . . , λN(A))UH , (2.7)

where U is a unitary matrix, then we define φ(A) = Uφ(D)UH, provided φ is well

defined on the eigenvalues of A. In this way, φ(A) can be defined for all Hermitian

matrices of any order [20]. In this work, the scalar function and its matrix extension

are denoted using the same symbol, and the argument of the function defines the

specific context. Matrix functions find applications in Section 5.4. We also make

use of multivariate functions with matrix arguments in this work, which are defined

through the Cauchy integral formula as given in [21]. While we refrain from providing

the explicit definition here due to its rather technical nature, it suffices to note that

such functions satisfy the following two properties [21], which will be used in our

work.

Lemma 2.1.1. If Am ∈ Sn
+, m = 1, . . . ,M then

tr f(A1, . . . ,AM) =
n
∑

i1=1

. . .
n
∑

iM=1

f(λi1(A1), . . . , λiM (AM)) . (2.8)

Lemma 2.1.2. [21, Theorem 3.4], [21, p. 13] Let Am ∈ Sn
+, m = 1, . . . ,M . If f

is a multivariate matrix function well defined on the eigenvalues of Am, and φ is a

univariate matrix function which is well defined on the eigenvalues of f(A1, . . . ,Am),

then φ(f(A1, . . . ,Am)) = (φ ◦ f)(A1, . . . ,Am).

2.2 Transforms of Random Variables

In what follows, some transforms of densities of RVs are discussed. While this

material is fairly standard, it is maintained here for the sake of completeness.
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2.2.1 Laplace Transform

The (real-valued) Laplace transform (LT) of a nonnegative random variable X is

defined as

φX (ρ) = E [exp(−ρX)] , ρ ≥ 0 . (2.9)

Clearly, φX (ρ) can be obtained from the moment generating function (MGF) of X

by evaluating the MGF at −ρ, and from the characteristic function evaluated at jρ,

where j =
√
−1. Due to the existence of the characteristic function of a RV, it follows

that the LT of a nonnegative RV always exists, even if the density does not.

2.2.2 Shannon Transform

The Shannon transform of a nonnegative random variable X is defined as [22, pp.

44]:

C
(X)

(ρ) := E [log (1 + ρX)] , ρ ≥ 0. (2.10)

Two new representations of C
(X)

(ρ), which are useful in this work are now obtained.

Using (2.5), it is easy to show that (2.10) can be represented as a Laplace transform,

given by

C
(X)

(ρ) =

∞
∫

0

exp(−u/ρ)
1− φX(u)

u
du , (2.11)

for ρ > 0. Using (2.2) with (2.11), it is immediate that C
(X)

(ρ) is a c.m. function

of 1/ρ. A second representation of C
(X)

(ρ) which can be derived from (2.11) shows

that C
(X)

(ρ) is also the Stieltjes transform [23, p. 325] of the complimentary CDF

of X , when evaluated at 1/ρ:

C
(X)

(ρ) =

∞
∫

0

1− FX (u)

(1/ρ+ u)
du , (2.12)
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where ρ > 0. Representation (2.12) is used in proving some properties of the ergodic

capacity order discussed in Section 5.2.2. Additionally, (2.12) permits us to comment

on the existence of C
(X)

(ρ), which to the best of our knowledge has not been found

elsewhere in the literature.

Proposition 2.2.1. If C
(X)

(ρ) exists for any ρ ∈ (0,∞), then C
(X)

(ρ) exists for

every ρ ∈ (0,∞).

Proof. From (2.12), it is seen that C
(X)

(ρ) is the Stieltjes transform of a real valued

function. If the Stieltjes transform of a function exists at any point on R+, then it

exists at all points on R+ [23, p. 326]. This completes the proof.

We now provide examples of random variables for which the ergodic capacity is

finite for ρ < ∞ using the following proposition:

Proposition 2.2.2. Let FX (·) denote the cumulative distribution function of a RV

X. If for some δ ∈ (0, 1],
∫ t

0
1− FX (u) du = O(t1−δ), t → ∞, then C

(X)
(ρ) < ∞.

Proof. First, observe that
∫∞
0
(s + t)−1

dα(t) exists if α(t) = O(t1−δ), t → ∞, for

some δ > 0 [23, p. 330 (Theorem 3b)]. The proposition then follows by letting

α(t) =
∫ t

0
1− FX (u) du. This completes the proof.

In Proposition 2.2.2, the case of δ = 1 is equivalent to the condition that the mean

of X is finite. It is therefore straightforward to see that the ergodic capacity of fading

distributions such as Nakagami-m and Rician is finite at all finite SNR, since these

distributions have finite average power.

2.3 Stochastic Ordering

Stochastic orders are binary relations between random variables, which can be

used to compare them based on a variety of criteria. The literature on stochastic
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ordering, primarily in reliability theory and statistics, delineates numerous stochastic

orders, many of which fall under the subclass of integral stochastic orders. We begin

with a short description of the theory of integral stochastic orders, which can be found

in [7, 3].

Let G denote a class of real valued functions g : R+ → R, and X and Y be RVs

with CDFs FX (·) and FY (·) respectively. We define the integral stochastic order with

respect to G as [7]:

X ≤G Y ⇐⇒ E [g(X)] ≤ E [g(Y )] , ∀g ∈ G. (2.13)

In this case, G is known as a generator of the order ≤ G . A stochastic order can have

more than one generator. For a given stochastic order, it is of interest to identify

“large” generators which are useful in identifying the equivalence of two orders. The

largest generator set of functions for a stochastic order contains all other generators,

and is termed the maximal generator [7]. It is also of interest to find “small” gener-

ators which specify necessary conditions for the ordering of two RVs. We now give

three examples of integral stochastic orders by specifying the corresponding generator

set of functions G.

2.3.1 Usual Stochastic Order

The usual stochastic order compares the magnitude of two RVs. In this case a

small generator G is the set of all non-decreasing indicator functions : G = {g(x) :

g(x) = I[x > ρ], ρ ∈ R}. From (2.13) it follows that this order is equivalent to

comparing the CDFs of the RVs. Formally, we write

X ≤ st Y ⇐⇒ FX (x) ≥ FY (x) ∀x . (2.14)

To see the interpretation of this in the context of wireless channels, consider two

channels to be compared, with channel powers X := |hX |2 and Y := |hY |2, where
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hX and hY correspond to the complex channel gains of two wireless systems. The

usual stochastic ordering of X and Y is equivalent to comparing their corresponding

outage probabilities for all outage thresholds. The maximal generator for the usual

stochastic order is the set of all increasing functions [7]. As a result, with the choice

g(x) = x in (2.13), we obtain E [X ] ≤ E [Y ] whenever X ≤ Lt Y , which agrees with

the intuition that a larger random variable must have a larger mean value.

2.3.2 Convex Order

In this case G is the set of all convex functions, and the order is denoted as

X ≤ cx Y . Since g(x) = x and g(x) = −x are both convex, from (2.13), we have

E [X ] = E [Y ] whenever X and Y are convex ordered. Therefore, convex ordering

establishes that the RVs have the same mean andX is “less variable” than Y . Clearly,

in the fading context, this can be used to identify channels with “less fading”. Since

≤ cx is a measure of variability, one would expect that a degenerate RV is less in the

convex sense than any other RV with the same mean. Indeed, this is the case: If

FX(x) = I[x ≥ µ], then X ≤ cx Y for all RVs Y with E [Y ] = µ. So the degenerate

RV has an absolute minimum dispersion, as measured by the convex order, which is

a consequence of Jensen’s inequality.

Many performance metrics, such as channel capacity, error rates for different mod-

ulations [14] and coding schemes in wireless systems are convex or concave functions

of the instantaneous SNR. Therefore, establishing convex ordering of two RVs can

help us qualitatively measure the relative average performance of the corresponding

systems. Note that if instead of convex functions, the class G is chosen as the set of

all concave functions, one would get the same order with a reversal in the inequality.

Verifying the usual stochastic ordering of two RVs is straightforward through

(2.14). What follows are easily testable sufficient conditions for X ≤ cx Y . Let
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S− (g(x)) denote the number of sign changes of g(x) as x increases over [0,∞), then

X ≤ cx Y if E [X ] = E [Y ] and any of the following hold [3]:

S− (fY (x)− fX (x)) = 2 and the sign sequence is +,−,+. (2.15)

S− (FY (x)− FX (x)) = 1 and the sign sequence is +,− , (2.16)

where fX (·) and fY (·) are the probability density functions (PDFs) of X and Y

respectively.

Interestingly, to the best of our knowledge, although convex ordering of RVs is

widely used in many other areas, it has never been used in physical-layer wireless

communications.

Increasing Concave Order

Let X and Y be two RVs. Then X is said to be increasing concave ordered with Y

(denoted X ≤ icv Y ) if and only if E [g(X)] ≤ E [g(Y )] for all non-decreasing concave

functions g, such that the expectations exist. A necessary and sufficient condition for

the ≤ icv order to hold [3] is the following:

X ≤ icv Y ⇐⇒
x
∫

−∞

FX (u) du ≥
x
∫

−∞

FY (u) du , ∀x . (2.17)

It is easy to see that by choosing g(x) = x, which is non-decreasing and concave, we

obtain

X ≤ icv Y =⇒ E [X ] ≤ E [Y ] , (2.18)

whenever the expectations exist.
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2.3.3 Laplace Transform Order

Similar to ≤ st and ≤ cx , it is possible to order random variables based on LTs.

In this case, G = {g(x) : g(x) = − exp (−ρx) , ρ ≥ 0}, so that

X ≤ Lt Y ⇐⇒ E [exp(−Y ρ)] ≤ E [exp(−Xρ)] , ∀ ρ > 0 . (2.19)

Interpreting exp(−ρx) as being proportional to the instantaneous error rate (as in the

case for differential-PSK (DPSK) modulation and Chernoff bounds for other modu-

lations), LT ordering of the instantaneous SNRs in (2.19) can be interpreted as an

inequality in the average error rates satisfied at all values of SNR ρ. One of the

powerful consequences of LT ordering is that

X ≤ Lt Y ⇐⇒ E [g(X)] ≥ E [g(Y )] , (2.20)

for all c.m. functions g(·) [3, pp. 96]. A similar result with a reversal in the inequality

states that

X ≤ Lt Y ⇐⇒ E [g(X)] ≤ E [g(Y )] , (2.21)

for all Bernstein functions g(·).

It is useful to mention that for any two RVs X and Y , X ≤ cx Y ⇒ Y ≤ Lt X ,

which follows from the fact that − exp(−ρx) is concave in x for any ρ > 0. Hence,

convex ordering provides a method to generate or verify LT ordering between two

RVs. Indeed either of the conditions (2.15) or (2.16) together with equal mean values

for X and Y imply that X ≤ Lt Y . Further, observe that X ≤ st Y ⇒ X ≤ Lt Y ,

which follows since − exp(−ρx) is increasing in x for ρ > 0.

Another useful result for Laplace transform ordered RVs is the following:

Lemma 2.3.1. Let X1, . . . , XM be independent and Y1, . . . , YM be independent. If

Xm ≤ Lt Ym, m = 1, . . . ,M , then g (X1, . . . , XM) ≤ Lt g (Y1, . . . , YM), if g(x1, . . . , xM)

is a c.m.d function of xi, when all other arguments of g are viewed as constants.
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In a wireless communications context, let ρ ≥ 0 be the average SNR, and ρX , ρY

represent the instantaneous SNRs of two fading distributions. If g(x) corresponds to

the instantaneous symbol error rate Pe(ρx) of a modulation scheme with c.m. error

rate function, then (2.20) can be used to obtain comparisons of averages of symbol

error rates over pairs of fading channels, even in cases where a closed-form expression

for the same is intractable.

The definition of the LT order can be generalized to apply to nonnegative mea-

sure on R+. Let µ be a nonnegative measure. Its Laplace transform is defined as
∫∞
0

exp(−su)µ(du). This is used to define the LT order between two nonnegative mea-

sures. If µ1 and µ2 are two nonnegative measures, then µ1 is said to be dominated

by µ2 in the Laplace transform sense (denoted by µ1 ≤ Lt µ2) whenever:

∫ ∞

0

exp(−su)µ1(du) ≥
∫ ∞

0

exp(−su)µ2(du), ∀s ≥ 0 . (2.22)

2.4 Introduction to Polyhedra and Polytopes

A set P ⊆ RN is a polyhedron if it is the intersection of finitely many closed

half-spaces, i.e., P := {x|Ax ≤ b}, for some A ∈ RM×N , b ∈ RN , and the inequality

is applied component-wise [24]. A bounded polyhedron is referred to as a polytope.

In a digital communications context, it is known that the decision region of a multi-

dimensional constellation impaired by white Gaussian noise is a polyhedron.

A face of a polyhedron P is the intersection of P with a supporting hyperplane of

P. The dimension of a face is defined as the dimension of its affine hull. Faces of P

of dimension zero, dimension one, and dimension N − 1 are known as vertices, edges

and facets of P, respectively.

Some examples of polyhedra relevant to this research are described next. A polyhe-

dral cone is a polyhedron, which is defined as cone(Y) := {∑M
i=1 λiyi | yi ∈ Y, λi ≥ 0},

where Y is a non-empty set of points in RN . If the elements of Y are linearly inde-
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pendent, then the polyhedral cone is called a simplicial cone. A well known result

in combinatorial geometry literature is that any polyhedral cone admits a decompo-

sition into simplicial cones [25, Lemma 1.40]. In this context, a decomposition of a

polyhedron P is defined as a collection of sets {P1, . . . ,PR}, such that ∪R
r=1Pr = P,

and the intersection of any two sets in the decomposition is a common face of both,

or the empty set.

2.5 Regular Variation

Some concepts from regular variation theory are now briefly touched upon, as this

will be used for asymptotic analysis of performance metrics of fading channels. In

vague terms, regular variation captures asymptotic polynomial-like behavior.

A real valued function H(x) : R+ 7→ R+ is said to be regularly varying at ∞

(or at 0) if limx→∞H(tx)/H(x) (or limx→0H(tx)/H(x)) exists, and is equal to tr,

with 0 < |r| < ∞. It is said to be slowly varying at ∞ (or at 0) if r = 0. If H

is differentiable with h(x) = dH(x)/dx, and h(x) = mxm−1l(x), where l is slowly

varying at 0, then H(x) ∼ xml(x), as x → 0.
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Chapter 3

STOCHASTIC ORDERS FOR FADING CHANNELS

3.1 Motivation and Literature Survey

As discussed in Chapter 1, stochastic ordering theory has the potential to provide

comparisons of wireless communication systems based on a variety of performance

metrics, such as the error rate and the ergodic capacity. Despite its immediate ap-

plicability in wireless communications, to the best of our knowledge, there is no

systematic exploitation of the general stochastic ordering theory which can be used

to provide a means for comparing wireless systems. We now review the limited lit-

erature on the applications of stochastic orders in physical layer communications.

Bounds on the per cell sum rate under arbitrary fading in the high SNR regime have

been obtained using the aforementioned outage-based “usual stochastic order” in [26].

Stochastic ordering has also been applied to obtain bounds on the outage probability

in Bluetooth piconets under Ricean fading in [27]. In [28], the usual stochastic order

is used to bound monotone performance metrics in Ricean fading environments with

beam selection. Reference [29] shows that stochastic ordering of the SNR between

the sender and any two receivers is sufficient for the existence of a degraded channel

in a layered erasure broadcast channel modelled using the binary expansion model.

All the above references use the usual stochastic order, which can be interpreted

as a comparison of the outage probabilities, and do not exploit the full gamut of

stochastic orders available [3]. In this chapter, we give a wide range of examples

illustrating how different stochastic orders are appropriate for comparing systems

using different metrics with analytical properties such as monotonicity, convexity, and
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complete monotonicity, which shed light into the connections between performance

metrics such as error rates and ergodic capacity. Additionally, we find the conditions

for the preservation of inequalities satisfied by the averages of performance metrics

of individual systems, when multiple such systems are combined. These may be

combinations in parallel, in series, or otherwise, as may be seen in relay networks.

Such a study permits the comparison of performance of systems, even in settings

where closed-form expressions are not tractable.

In this chapter, Pe,i (ρ) denotes the SER conditioned on the ith symbol of the con-

stellation being transmitted. Pe(ρ) denotes the SER averaged over the constellation.

P e(ρ) denotes the average SER over a fading channel (where the averaging is over

the constellation points and the fading channel statistics).

In the rest of the chapter, we illustrate the power of the stochastic ordering frame-

work in comparing wireless channels and systems. We will investigate the convexity

and complete monotonicity properties related to the error rate and capacity expres-

sions in Section 3.2, which will facilitate comparing the average performances of sys-

tems by using (2.20) and (2.21). In Section 3.3 we identify commonly used channel

distributions which are LT or convex ordered. Section 3.4 investigates the conditions

under which these stochastic orders are preserved in complex systems where the per-

formance of their constituent parts satisfy an order. Finally, relevant simulations to

supplement the theoretical results are provided in Section 3.5.

3.2 Ordering of Average Error Rate and Ergodic Capacity Metrics

We now discuss how the tools provided by stochastic ordering theory can be used

to compare the average error rate and ergodic capacity of two different systems.
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3.2.1 Symbol Error Rate

It has been established in [12] that the error rate of binary signalling in the pres-

ence of noise with a uni-modal and differentiable PDF is a convex function of the

SNR when maximum likelihood decoding is performed. Also, it is known that the

instantaneous error probabilities of all one-dimensional and two-dimensional constel-

lations with ML decoding in the presence additive white Gaussian noise (AWGN) is a

convex function of the SNR [14]. In this section, we go one step further and establish

the complete monotonicity of some two-dimensional modulation schemes, which will

be useful in establishing inequalities between averaged performance metrics. It is

well known that Q (
√
x) is c.m. [30], from which the complete monotonicity of the

instantaneous error rate of the form Pe (ρx) = aQ
(√

bρx
)

easily follows, for a, b > 0.

Here a and b are modulation dependent constants which can be chosen to get exact

performance in some cases (e.g. a = 1, b = 2 for BPSK), or approximations in oth-

ers (a = 3/4, b = 4/5 for 16-QAM). For the exact case, it follows from (2.20) that

E [Pe (ρY )] ≤ E [Pe (ρX)], for ρ > 0 whenever X ≤ Lt Y .

We now establish, for the first time, the complete monotonicity of exact symbol

error rates of square M-QAM and M-PSK modulations which are not in the form

Pe (ρx) = aQ
(√

bρx
)

, and offer sharper results than those mentioned above, since

they do not rely on approximations.

The M-PSK symbol error rate is given by the following [2, pp.195]:

P PSK
e (ρx) =

1

π

(M−1)π/M
∫

0

exp
(

−ρx
α PSK

sin2 θ

)

dθ , (3.1)

where α PSK := sin2(π/M). After a change of variables, (3.1) can be expressed as the
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Laplace transform of a positive function:

P PSK
e (ρx) =

√
α PSK

2π

∞
∫

0

e−ρux

I

[

u ≥ α PSK

sin2((M−1) π
M )

]

u
√
u− α PSK

du , (3.2)

which together with Bernstein’s Theorem suggests that P PSK
e (ρx) is c.m..

Consider now the square M-QAM error rate function [2, pp.195]:

P QAM
e (ρx) = aQ

(√
α QAM ρx

)

− bQ2
(√

α QAM ρx
)

, (3.3)

where α QAM := 3/(M−1), a := 4(
√
M−1)/

√
M and b := a2/4. Note that 0 ≤ b ≤ a.

We claim that (3.3) is c.m. for any a, b such that b ≤ a. To see this, recall

Qk
(√

x
)

=
1

π

π/2k
∫

0

exp
(

− x

2 sin2 θ

)

dθ , (3.4)

for k = 1, 2 [2]. After a change of variables similar to (3.1), we obtain

P QAM
e (ρx) =

√
α QAM

2π

∞
∫

0

e−uρx

[

aI [0.5 ≤ u ≤ 1]

u
√
2u− 1

+
(a− b)I [u ≥ 1]

u
√
2u− 1

]

du , (3.5)

which is also c.m. by Bernstein’s theorem, since b ≤ a. In conclusion, whenever

X ≤ Lt Y , E [Pe (ρY )] ≤ E [Pe (ρX)] for all average SNR ρ, where Pe (·) could be

given by either (3.1) or (3.3). This follows from the definition of the LT order and

the c.m. properties of instantaneous error rates of M-QAM or M-PSK modulations.

3.2.2 Ergodic Capacity

We now show that stochastic ordering of instantaneous channel power distribu-

tions implies that their ergodic channel capacities satisfy a corresponding inequality

at all average SNRs. We begin with the case where only the receiver has channel

status information (CSI).
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Ergodic Capacity with Receive CSI only

The instantaneous capacity, conditioned on the channel power X = x when only

the receiver has CSI is given by C(ρx) = log(1 + ρx), where ρ is the average SNR.

Since dC(ρx)/dx = ρ/(1 + ρx) is c.m. in x, from (2.21) X ≤ Lt Y implies that

the ergodic capacities satisfy EX [C (ρX)] ≤ EY [C (ρY )] for ρ ≥ 0. Recall that by

(2.19), LT ordering of the channels X and Y can be interpreted as a comparison of

the average error rates, when the instantaneous error rate is a decaying exponential.

As a result, one can loosely say that if the average error rates of two channels X

and Y satisfy the inequality (2.19) at all SNRs, then so do the ergodic capacities.

Surprisingly, however, the converse is not true, as we now illustrate. Consider a

Pareto-type distribution, which is appropriate for modeling the instantaneous SINR

in the presence of interference [31] :

FX (z) =
zβ

(1 + zβ)
, z > 0, β > 0 . (3.6)

Using integration by parts and simplifying, we obtain

EX [C (ρX)] =

∞
∫

0

ρ

(1 + ρz)(1 + zβ)
dz . (3.7)

Taking the derivative with respect to β, it is seen that EX [C (ρX)] is a decreasing

function of β, for ρ > 0. This shows that for βX ≤ βY , EX [C (ρX)] ≥ EY [C (ρY )]

for ρ > 0. On the other hand, since FX (z) = zβ + o(zβ) near z = 0, the aver-

age symbol error rate for an exponential instantaneous error rate function satisfies

E [exp(−ρX)] = (Gc ρ)
−β + o

(

ρ−β
)

, where Gc is the array gain and β is the diversity

order [32]. Hence, as β increases, the high-SNR average error rate decreases, while

the capacity also decreases at all SNR ρ! Interpreting the ergodic capacity as what

is achievable by coding over an i.i.d. time-extension of the channel, we reach the

conclusion that even though Y offers more diversity than X for an uncoded system,
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the i.i.d. extension of X lends itself to more diversity than that of Y . To put it

more simply, at high SNR, it is possible for one channel to be superior to another in

terms of error rates in the absence of coding, while being inferior when the capacity

achieving code is employed over both channels.

Channel Inversion and Delay-Limited Capacity

When CSI is available at the transmitter, it can be used for power adaptation. A

simple, suboptimal approach is to “invert” the channel at the transmitter, so that

effectively the receiver sees a non-fading AWGN channel. Such an approach is viable

only when E [X−1] < ∞, leading to a finite average transmit power. This is the

case whenever the channel offers a diversity order strictly greater than one. Channel

inversion has the advantage that a channel code designed for the AWGN channel

can be used effectively, and that the code length need not depend on the channel

coherence time to average out the fading. This “delay-limited” approach [33] gives

rise to an achievable rate given by

C
X

CI(ρ) = log

(

1 +
ρ

E [X−1]

)

. (3.8)

Clearly, since g(x) = x−1 is a c.m. function of x, E [X−1] ≥ E [Y −1], whenever

X ≤ Lt Y . This implies C
X

CI(ρ) ≤ C
Y

CI(ρ) for all ρ, since C
X

CI(ρ) in (3.8) is a decreasing

function of E [X−1].

Optimal Power and Rate Adaptation (OA)

It is well known that CI is not optimal, since when the channel gain becomes arbi-

trarily small, the transmitter uses extremely high power. To overcome this limitation,

the optimal power and rate adaptation scheme is proposed in [33], where water-filling

across time is performed subject to an average transmit power constraint. The ca-
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pacity so obtained over a channel with instantaneous SNR X is given by [33] :

C
X

OA(ρ) =

∞
∫

zt(ρ)

log

(

zt(ρ)

z

)

d [1− FX (z)] , (3.9)

where zt(ρ) is the signaling threshold, which is implicitly governed by the power

constraint as follows:
∞
∫

zt(ρ)

(

1

zt(ρ)
− 1

z

)

dFX (z) = ρ . (3.10)

It can be shown that X ≤ Lt Y does not guarantee C
X

OA(ρ) ≤ C
Y

OA(ρ) for all ρ.

However, in what follows, we will show that under the stronger assumption X ≤ st Y ,

C
X

OA(ρ) ≤ C
Y

OA(ρ) for all ρ.

Using integration by parts on (3.10), it is observed that for X ≤ st Y , we

have zXt (ρ) ≥ zYt (ρ). Now, integrating (3.9) by parts, under the assumptions that

lim
z→∞

(1 − FX (z)) log(z/zXt (ρ)) = 0 and lim
z→∞

(1 − FY (z)) log(z/zYt (ρ)) = 0, it is seen

that C
X

OA(ρ) ≤ C
Y

OA(ρ) for ρ ≥ 0, since zXt (ρ) ≥ zYt (ρ). Therefore, X ≤ st Y ⇒

C
X

OA(ρ) ≤ C
Y

OA(ρ), for ρ > 0.

3.3 Ordering of Parametric Fading Distributions

We now proceed to show that commonly used parametric fading distributions are

completely monotonic in the line of sight parameter with respect to LT and convex

orders.

3.3.1 Nakagami Fading

Consider Nakagami fading model, where the envelope
√
X is Nakagami and the

channel power X is Gamma distributed [34], with PDF given by

fX (x) =
mm

Γ(m)
xm−1 exp(−mx) , x ≥ 0 . (3.11)
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Since E [exp(−ρX)] = (1 + ρ/m)−m is a decreasing function of m for each ρ, it follows

that if the m parameters of two channel distributions satisfy mX ≤ mY , then X ≤ Lt

Y , where X and Y have normalized Gamma distributions with parameters mX and

mY respectively. This shows that for example, all the performance metrics in (3.1) or

(3.3) that are c.m. have averages over fading distributions that satisfy the inequality

EY [Pe (ρY )] ≤ EX [Pe (ρX)] for all values of average SNR ρ. A similar claim with a

reversal in the inequality can be made for the ergodic capacity metric. Note that the

PDFs of X and Y in (3.11) are defined to satisfy E [X ] = E [Y ] = 1, independent of

the fading parameter m. Hence, the improvements in error rate or ergodic capacity

at all values of ρ with increased m is not due to an improvement in average SNR.

A stronger convex ordering result can also be established. Since E [X ] = E [Y ],

mX ≤ mY ⇒ Y ≤ cx X can be shown by using (2.15). We can summarize the

results herein by using the terminology that the normalized Gamma distribution is

monotonically increasing in m with respect to the orders ≤ Lt and ≤ cx .

3.3.2 Ricean Fading

As in the Nakagami case, the Rice distribution will also be shown to be monotonic

in the LoS parameter K with respect to the orders ≤ Lt and ≤ cx . The instantaneous

channel power distribution is given by

fX (x) = (1 +K) exp(−K) exp [−(K + 1)x] I0

(

2
√

K(K + 1)x
)

, (3.12)

where I0(·) is the modified Bessel function of the first kind of order zero. Clearly,

E [X ] = 1 is independent of K. Taking the Laplace transform of (3.12), we have

E [exp(−Xρ)] = (1 +K)/(1 +K + ρ) exp [Kρ/(1 +K + ρ)], which decreases with K

for each ρ. This implies that, similar to the Nakagami case, increasing K without

increasing the average SNR improves the average symbol error rate, ergodic capacity,
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or any average metric obtained from a c.m. or c.m.d function. Thus, if KX ≤ KY

are the Ricean parameters of two channels, then X ≤ Lt Y . Similar to the Nakagami

case, equation (2.15) can be used to establish a stronger claim that Y ≤ cx X .

In this specific Ricean context, similar results for the ergodic capacity are found

in [35] and the references therein, in a more general MIMO setting. However, in these

results, either the channel power increases with an increase in the LoS component, or

only an asymptotically large number of antennas is considered.

3.4 Communication Systems Involving Multiple RVs

In the following discussion, we will consider systems involving multiple indepen-

dent random channel coefficients and compare their performance in two different sets

of channels, where the channel powers associated with the first system are denoted by

X := [X1, . . . , XM ] while those of the second channel by Y := [Y1, . . . , YM ]. Toward

this goal, we use the following result [3, pp. 97], which shows that LT ordering is

preserved by multivariate functions that are c.m.d.:

Theorem 3.4.1. Let X1, . . . , XM be independent and Y1, . . . , YM also be independent.

If Xm ≤ Lt Ym for m = 1, . . . ,M , then g (X1, . . . , XM) ≤ Lt g (Y1, . . . , YM) for all

functions g : Rm → R+ such that for m = 1, . . . ,M , (∂/∂xm) g (x1, . . . , xM) is c.m.

in xm, when all other variables are fixed.

We now investigate the systems for which the combined instantaneous SNR is

given by a function g(x) := g(x1, . . . , xM), which satisfies the conditions of Theorem

3.4.1. Unless otherwise mentioned, we will assume throughout that Xm ≤ Lt Ym for

m = 1, . . . ,M .
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3.4.1 Maximum Ratio Combining

Consider a SIMO diversity combining system with M receive antennas which have

complete CSI. If maximum ratio combining (MRC) is performed, conditioned on the

channel powers Xm = xm for m = 1, . . . ,M , the instantaneous SNR at the output of

the combiner is proportional to

g
MRC

(x) =

M
∑

m=1

xm , (3.13)

which satisfies the conditions of Theorem 3.4.1 as easily seen by taking derivatives.

Thus, we infer that when MRC is performed, g
MRC

(X) ≤ Lt g
MRC

(Y). Conse-

quently, whenever Pe (ρx) is c.m. and C(ρx) is c.m.d., the average error rates satisfy

EY [Pe (ρg
MRC

(Y))] ≤ EX [Pe (ρg
MRC

(X))] for all ρ, and the ergodic capacities satisfy

EY [C(ρg
MRC

(Y))] ≥ EX [C(ρg
MRC

(X))], for all ρ.

3.4.2 Equal Gain Combining

Next, assume that the SIMO diversity system adopts equal gain combining (EGC)

at the receiver. In this case, conditioned on the instantaneous channel powers Xm =

xm for m = 1, . . . ,M , the instantaneous SNR at the combiner is proportional to

g
EGC

(x) =
1

M

(

M
∑

m=1

√
xm

)2

. (3.14)

The derivative (∂/∂xi) gEGC
(x1, . . . , xM) = M−1

(

M
∑

m=1

√
xm

)

/
√
xi is a c.m. function

of xi, for i = 1, . . . ,M . Therefore, equal gain combining of a better set of branches

results in a better system overall, as also expressed more rigorously after (3.13) in the

MRC example.
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3.4.3 Selection Combining

In contrast to the previous two examples, this example shows that even though

the individual branch instantaneous channel powers are LT ordered, the combined

SNR at the output of the combiner need not be LT ordered. For selection combining

(SC), conditioning on the instantaneous channel powers Xm = xm for m = 1, . . . ,M ,

we have

g
SC

(x) = max
m

xm , (3.15)

which is not differentiable, and hence is not c.m.. In fact, Xm ≤ Lt Ym, m = 1, . . . ,M

does not imply maxmXm ≤ Lt maxm Ym. We provide a simple counterexample in

Section 3.5. This shows that even though channels Ym provide better average error

rates at all ρ thanXm, form = 1, . . . ,M for a SISO system, the composite SC channel

does not.

3.4.4 Multi-hop Amplify and Forward (AF)

Consider a multi-hop system with M links subject to AWGN, where Xm is the

channel power gain over the mth link. It is assumed that the mth node has channel

information of the (m− 1)th hop, for m = 2, . . . ,M , and the amplification factor for

each node is the same. Conditioned on the instantaneous channel powers Xm = xm

for m = 1, . . . ,M , the SNR at the destination in this case is proportional to [36]:

g
MH-AF

(x) =

[

M
∏

m=1

(

1 +
1

xm

)

− 1

]−1

. (3.16)

Taking the partial derivatives of g
MH-AF

(x) with respect to each xm for m = 1, . . . ,M ,

it is seen that g
MH-AF

(x) satisfies the conditions of Theorem 3.4.1. Thus, g
MH-AF

(X) ≤ Lt

g
MH-AF

(Y). As a result, the average error rates for the multi-hop AF system satisfy

EY [Pe (ρg
MH-AF

(Y))] ≤ EX [Pe (ρg
MH-AF

(X))], for ρ > 0. Importantly, a closed-

form expression for the average performance of this system is not tractable for most
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practical channel distributions. Despite this, it is still possible to compare the error

rates of two otherwise identical systems systems with two sets of LT ordered channel

powers at all average SNRs.

3.4.5 Multi-hop Channels with Decode and Forward

Consider an M-hop channel, where each terminal decodes a received symbol into

a binary alphabet and forwards it over to the next terminal. Let the instantaneous

error rate over the ith link be given by Pe
i
(ρxi) , i = 1, . . . ,M , where we assume

0 ≤ Pe
i
(x) ≤ 1/2 is c.m.. For convenience, we define X1:m := [X1, . . . , Xm] and let

Pe1:m
(ρX1:m) be the combined instantaneous error rate of the first 1 ≤ m ≤ M hops.

We have the following:

Theorem 3.4.2. Let X1, . . . , XM be independent, and likewise for Y1, . . . , YM . Sup-

poseXm ≤ Lt Ym for m = 1, . . . ,M . Then EX1:m

[

P
e1:m

(ρX1:m)
]

≥ EY1:m

[

P
e1:m

(ρY1:m)
]

, m =

1, . . . ,M .

Proof. For any m, viewing the m-hop channel as a series cascade of the first m − 1

hops and the mth hop, we have the following:

Pe1:m
(ρX1:m) = Pe1:m−1

(ρX1:m−1) (1− Pem
(ρxm))

+ (1− Pe1:m−1
(ρX1:m−1))Pem

(ρxm) , (3.17)

for m = 2, . . . ,M . To prove the theorem, we will use induction. Clearly, Theorem

3.4.2 holds for m = 1. Taking expectation of both sides of (3.17), we have

EX1:m

[

Pe1:m
(ρX1:m)

]

= EX1:m−1

[

Pe1:m−1
(ρX1:m−1)

]

(

1− EXm

[

Pem
(ρXm)

])

+
(

1− EX1:m−1

[

Pe1:m−1
(ρX1:m−1)

])

EXm

[

Pem
(ρXm)

]

.

(3.18)
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We have EX1:m−1

[

Pe1:m−1
(ρX1:m−1)

]

≥ EY1:m−1

[

Pe1:m−1
(ρY1:m−1)

]

by the induction

hypothesis, and EX1:m

[

Pe1:m
(ρX1:m)

]

≥ EY1:m

[

Pe1:m
(ρY1:m)

]

follows because Pem
(·)

is c.m. and Xm ≤ Lt Ym. The theorem then follows because the RHS of (3.18) is of

the form P1(1− P2) + P2(1− P1), which is an increasing function of both P1 and P2,

since 0 ≤ P1 ≤ 1/2, 0 ≤ P2 ≤ 1/2.

Note that Theorem 3.4.2 and its proof carry over when each hop adopts M-ary

modulation as well, provided that ρ is large enough to ensure 0 ≤ EX1:m

[

Pe1:m
(ρX1:m)

]

≤

1/2.

3.4.6 Post Detection Combining

Consider an M-antenna post-detection combining (PDC) scheme, where the in-

stantaneous symbol error rate on the mth branch is Pem
(ρxm) and is c.m. as in the

previous example. The instantaneous probability of error of the PDC system is given

by1 [37] :

Pe
1:M

(ρX1:M) =
M
∑

k=M+1
2

∑

Sk

(

∏

i∈Sk

Pe
i
(ρxi)

)





∏

j∈Sc
k

(

1− Pe
j
(ρxj)

)



 , (3.19)

where Sk is a set running over all subsets of {1, . . . ,M} with k elements. Taking

expectation with respect to X1:M , which is assumed to have independent components,

we have,

EX1:m

[

Pe1:m
(ρX1:m)

]

=

M
∑

k=M+1
2

∑

Sk

(

∏

i∈Sk

EXi

[

Pe
i
(ρXi)

]

)





∏

j∈Sc
k

(

1− EXj

[

Pe
j
(ρXj)

])



 . (3.20)

1We assume M is odd. Extensions to even M are straight-forward by adding a tie breaker term

to (3.19).
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Clearly, the average error rate is an increasing function of EXm

[

Pem
(ρXm)

]

, since it is

not possible to get improved performance by increasing the average error rate on any

particular link. This shows that when Xm ≤ Lt Ym, form = 1, . . . ,M , and Pem
(ρx) is

c.m., so that the average error rates of PDC satisfy EX

[

Pem
(ρXm)

]

≥ EY

[

Pem
(ρYm)

]

for ρ > 0, it follows that EX

[

Pe
1:M

(ρX1:M)
]

≥ EY

[

Pe
1:M

(ρY1:M)
]

for ρ > 0.

3.4.7 Generalized Multi-branch Multi-hop AF Cooperative Relay Networks

We now consider the generalized relay structure illustrated Fig. 3.1, which con-

sists of M independent branches, each involving Nm relays, for m = 1, . . . ,M , which

assist the direct link between the source S and the destination D by performing am-

plify and forward (AF). It is assumed that all the links are impaired by AWGN with

fixed variance. This model requires the branches to communicate through mutually

orthogonal channels, so that M independent copies are available at the destination

which performs MRC (using combining coefficients given in [38]). Although approxi-

mate expressions for the error rate have been obtained for the case of Ricean fading

in [38], closed-form expressions are intractable.

Note that the two-hop fixed AF relay, which finds frequent application in coopera-

tive diversity literature [38] and illustrated in Fig. 3.2 is a special case of this general

relay, with M = 1 and Nm = 1. Thus, the forthcoming results obtained for the gen-

eral case apply for the two-hop relay as well. We now show that the exact average

symbol error rate can be compared over a number of fading distributions where the

pairs of channel powers are LT ordered. To this end, we show that the output SNR of

the MRC combiner at the destination satisfies the conditions of Theorem 3.4.1. Let

X0,0 denote the channel power on the direct link, and Xm,n the channel power at the

nth hop on link m. Since the destination performs MRC, the instantaneous output

SNR is the sum of individual end-to-end branch SNRs, each of which are given by
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Figure 3.1: Multi-branch multi-hop cooperative relay network. Rm,1 . . .Rm,Nm
rep-

resent the relays on the mth link from the source S to the destination D. The corre-
sponding instantaneous channel power gains are denoted as Xm,0 . . .Xm,Nm

.

Figure 3.2: Two hop AF cooperative relay network.

(3.16). Thus, conditioned on Xm,n = xm,n for m = 0, . . . ,M and n = 0, . . . , Nm, and

defining g
MB-MH-AF

(X) := g
MB-MH-AF

(

x0,0 , x1,0 , . . . , x1,N1
, . . . , x

M,NM

)

, we have

g
MB-MH-AF

(X) =
M
∑

m=1

[

Nm
∏

n=1

(

1 +
1

xm,n

)

− 1

]−1

+ x0,0 . (3.21)

As shown in the arguments following (3.16), the summand in the RHS of (3.21) has

a c.m. derivative in each variable. Combining this with Theorem 3.4.1, we have

EY [Pe (ρg
MB-MH-AF

(Y))] ≤ EX [Pe (ρg
MB-MH-AF

(X))] for ρ > 0.

3.4.8 Combined Multipath Fading and Shadowing

It is well known that the effect of shadow fading on the instantaneous SNR

distribution can be modeled as a product of a shadowing random variable with a

multipath fading random variable [2]. Let X1 ≤ Lt Y1 be the two multipath fad-

ing SNR distributions, and X2 ≤ Lt Y2 be the two shadowing distributions. Then,

from Theorem 3.4.1, it follows that the composite RV satisfies X1X2 ≤ Lt Y1Y2,
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since g(x1, x2) = x1x2 has a c.m. derivative in each variable. We conclude that

EX1,X2 [Pe (ρX1X2)] ≥ EY1,Y2 [Pe (ρY1Y2)] , ∀ρ, whenever Pe (·) is c.m.. Such conclu-

sions can be drawn even in cases where the composite distribution of X1X2 or Y1Y2

cannot be written in closed-form.

3.4.9 Systems with non-Gaussian Channel Noise

In this discussion, we assume the following system model:

Z =
√

ρXS +W , (3.22)

where for simplicity, S ∈ {−1, 1}, ρX is the instantaneous SNR, ρ the average SNR,

and W is non-Gaussian noise.

Gaussian Mixture

In this model, W represents compound Gaussian noise (also called Gaussian mixture),

which can be written asW =
√
AG, where A is a positive valued RV, which represents

the scale of G, and G ∼ N (0, 1). Such a formulation is possible for symmetric alpha-

stable noise, Middleton class-A noise, as well as other compound Gaussian noise

distributions. The error rate conditioned on the channel power X = x is given by

Pe (ρx) = EA

[

Q
(

√

2ρx

A

)]

, (3.23)

which is a c.m. function of x as can be verified by differentiating inside the expectation

with respect to x. Using (2.20), this shows that when X ≤ Lt Y then the average

error rates satisfy EX [Pe (ρX)] ≥ EY [Pe (ρY )], even for mixed (compound) Gaussian

noise. Similar results can also be shown to hold for noise distributions such as the

Laplace distribution which cannot be expressed as a compound Gaussian.
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Bounded Noise

Recall the system model from (3.22). If |W | ≤ C for some constant C, almost surely

then FW (x) = 1 for x ≥ C and 1 − FW

(√
2x
)

= 0 for x2/2 ≥ C. It is clear from

Bernstein’s theorem that a function, such as 1 − FW

(√
2x
)

with bounded support

cannot be c.m.. From this, we can conclude that if the noise is bounded, it is possible

for two SNR distributions to be LT ordered, although EY [Pe (ρY )] need not be less

than EX [Pe (ρX)] for all ρ > 0. This negative result emphasizes the effect of the

noise distribution in claims of ordering and concludes our discussion of systems with

non-Gaussian noise.

3.5 Simulations

We now corroborate our theoretical results using Monte-Carlo simulations. For

ease of notation, we define P
X

e (ρ) := EX [Pe (ρX)] to denote the average error

rates of SISO systems operated in the channel power X . Also, we use P
X

e (ρ) :=

EX [Pe (ρg (X))] to represent the average error rates of systems involving multiple

channel power coefficients.

One of the central results of Section 3.2.2 is that it is possible for one channel to

be superior to another (in terms of error rates) at high SNR in the absence of coding,

while being inferior when the capacity achieving code is used over both channels.

This is illustrated in Fig. 3.3, which shows the comparative error rate performance

of DPSK employed over an interference dominated fading channel with Pareto type

distributed instantaneous SINR (having parameters βX = 2 and βY = 5. Clearly,

since P
X

e (ρ) < P
Y

e (ρ) for ρ < −0.5 dB and vice-versa for ρ > −0.5 dB, the system

with channel power X is not better than that with channel power Y at every average

SNR. On the other hand, Fig. 3.4, shows that the ergodic capacity of the system
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Figure 3.3: Error probability comparison of DPSK modulation, under two different
fading scenarios with LT ordered Pareto-type SIR distributions, using parameters
βX = 2 and βY = 5.

with instantaneous channel X is consistently larger than that when operated in the

channel Y with parameter βY = 5. Figures 3.5, 3.6 and 3.7 show the performance

of diversity combining schemes such as MRC, EGC and SC with L = 3 branches

over two sets of i.i.d Ricean fading channels with parameters KX = 2 and KY = 5.

Note that from Subsection 3.3.2, Xm ≤ Lt Ym for m = 1, 2, 3. The trend observed

in the performance analysis curves obtained herein can be equivalently obtained for

any other sets of LT ordered channel power random variables, using any modulation

scheme whose error rate is a c.m. function of the channel power.

In Fig. 3.5, we demonstrate that LT ordering of the instantaneous SNR distribu-

tions for the individual branches can be used to compare average error rates when

MRC is performed at the receiver. For L = 3 receive diversity branches, it is observed

that the error rate of BPSK in the channel with instantaneous SNR ρY is consistently

less than that in the channel with instantaneous SNR ρX , which agrees with the fact
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Figure 3.4: Ergodic capacity comparison of two different fading scenarios with LT

ordered Pareto-type SNR distributions, using parameters βX = 2 and βY = 5. C
X
(ρ)

(C
Y
(ρ)) represents the ergodic capacity in the channel power X (Y ).

that since the channel power for Ricean fading is c.m. in K, Xm ≤ Lt Ym, for

m = 1, 2, 3, and hence P
Y

e (ρ) ≤ P
X

e (ρ) for ρ > 0.

Figure 3.6 illustrates that when Xm ≤ Lt Ym, for m = 1, 2, 3, we get P
Y

e (ρ) ≤

P
X

e (ρ) for ρ > 0 for the case of EGC employing BPSK. The error rate curves help

demonstrate that fading channels with larger Ricean parameters offer smaller error

rates than those with smaller Ricean parameters at all values of average SNR ρ when

EGC is used, as predicted in Subsection 3.4.2. Such a conclusion is not present in the

literature due to the unavailability of a closed-form expression for the average error

rate of coherent EGC in Ricean channels, which is applicable in all SNR regimes [2].

The comparative performance of SC using DPSK symbols is shown in Fig. 3.7.

It is evident that although the individual branch SNRs are LT ordered, P
Y

e (ρ) ≥

P
X

e (ρ), for ρ < −0.4 dB, while P
Y

e (ρ) ≤ P
X

e (ρ), for ρ ≥ −0.4 dB. This cross-over

point is clearly depicted in Fig. 3.7 using a linear scale for the error rate axis, since
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Figure 3.5: Error rate comparison of maximum ratio combining using L = 3 anten-

nas with BPSK. P
X

e (ρ) corresponds to the average symbol error rate under Ricean

fading with parameter KX = 2 and P
Y

e (ρ) to the average symbol error rate under
Ricean fading with parameter KY = 5.

it is more easily discernible compared to the conventional log scale. Hence, selection

combining of a better set of channels (in terms of error rates) need not yield a better

system overall, at low SNR.

The performance of a multi-hop amplify and forward relay is studied in Fig. 3.8.

We assume the model described in Section 3.4.4 withM = 3 relays under two different

Ricean fading scenarios, one with parameter KX = 2 and the other with KY = 5. It

is observed that the average symbol error rate of Y is consistently less than that of

X at all SNRs. This, due to the fact that Xm ≤ Lt Ym, m = 1, 2, 3 ⇒ P
Y

e (ρ) ≤

P
X

e (ρ) , ∀ρ.

Fig. 3.9 illustrates the comparative performance of an uncoded BPSK system over

an additive compound Gaussian noise channel subject to two different Ricean fading

effects modeled using parameters KX = 2 and KY = 5. We show that P
Y

e (ρ) ≤
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Figure 3.6: Error rate comparison of equal gain combining using L = 3 antennas

with BPSK. P
X

e (ρ) corresponds to the average error rate under Ricean fading with

parameter KX = 2 and P
Y

e (ρ) to the average symbol error rate under Ricean fading
with parameter KY = 5.

P
X

e (ρ) for all ρ > 0, when the noise follows a symmetric alpha-stable distribution

with a characteristic exponent of 1.6. This shows that LT ordering results apply to

systems with compound Gaussian noise, since an alpha-stable RV can be written as
√
AG, where G ∼ CN (0, 1) and A is a positively skewed alpha-stable RV [37]. Such

results are not found in literature, since a closed-form expression for the average error

rate of BPSK under Ricean fading with symmetric alpha-stable noise is analytically

intractable. In fact, even for the special case of K = 1 i.e. Rayleigh fading, a

closed-form expression valid in the asymptotic high SNR regime is known [37].

In direct contrast to the results for the compound-Gaussian noise case, LT ordering

of channel powers does not imply that the average error rate performance for noise

with bounded support will satisfy the corresponding inequality at all SNR. In fact,

as depicted in Fig. 3.10, where the unit-variance noise is assumed to be uniformly
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Figure 3.7: Error rate comparison of selection combining using L = 3 antennas with

DPSK. P
X

e (ρ) corresponds to the average symbol error rate under Ricean fading with

parameter KX = 2 and P
Y

e (ρ) to the average symbol error rate under Ricean fading
with parameter KY = 5.

distributed on [−
√
3,
√
3], it is observed that for ρ < 2.6 dB, P

X

e (ρ) ≤ P
Y

e (ρ), while

the opposite holds for ρ > 2.6 dB. This corroborates the claim of Subsection 3.4.9,

which states that LT ordering of channel powers does not imply that the average error

rates satisfy P
Y

e (ρ) ≤ P
X

e (ρ) for all ρ > 0, under noise with finite support.
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Figure 3.8: Error rate comparison of M = 3 hop amplify-forward relay with BPSK

under Ricean fading. P
X

e (ρ) corresponds to the average symbol error rate under

Ricean fading with parameter KX = 2 and P
Y

e (ρ) to the average error rate under
Ricean fading with parameter KY = 5.

44



0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

ρ (dB)

S
y
m

b
o
l
E

rr
o
r

P
ro

b
a
b
il
it
y

P
e
(ρ

)

 

 

P
X

e
(ρ)

P
Y

e
(ρ)

Figure 3.9: Performance comparison of BPSK in compound Gaussian noise (normal-

ized symmetric alpha-stable distribution with characteristic exponent 1.6). P
X

e (ρ)
corresponds to the average symbol error rate under Ricean fading with parameter

KX = 2 and P
Y

e (ρ) corresponds to the average symbol error rate under Ricean
fading with parameter KY = 5.
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Figure 3.10: Performance comparison of BPSK in noise with finite support (sym-

metric uniformly distributed noise with unit variance). P
X

e (ρ) corresponds to the

average symbol error rate under Ricean fading with parameter KX = 2 and P
Y

e (ρ)
corresponds to the average error rate under Ricean fading with parameter KY = 5.
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Chapter 4

SYMBOL ERROR RATES OF ARBITRARY CONSTELLATIONS IN AWGN -

REPRESENTATION AND PROPERTIES

4.1 Motivation and Literature Survey

The complete monotonicity of a performance metric such as the symbol error rate

plays a pivotal role in ordering two fading channels with respect to this metric, as

described in Chapter 3. Consequently, a study of the complete monotonicity prop-

erties of the SER of arbitrary constellations is useful, although it is largely absent

in the literature. Specifically, investigations into the properties of the SER of one-

dimensional and two-dimensional constellations have revealed the convexity of the

SER with respect to the signal-to-noise ratio (SNR) under impairing additive white

Gaussian noise (AWGN) [12, 14]. Some special cases of two dimensional constella-

tions such as M-ary phase shift keying (M-PSK) and M-ary quadrature amplitude

modulation (M-QAM) have SERs which are known to be completely monotone func-

tions of the SNR [39, 30], which is a stronger condition than convexity. On the other

hand, constellations of dimensionality greater than two (which we refer to as “higher

dimensional constellations” henceforth) have found practical applications in satellite

communications [40, 41] and more recently, in optical communications [42, 43]. Inves-

tigations of the convexity properties of the SER of such constellations are relatively

scarce in the literature. It is known that the second derivative of the SER of a con-

stellation of dimensionality greater than two is non-negative at sufficiently high SNR

[14]. Although this result is a general one, it does not provide a conclusive means of

determining whether a given arbitrary constellation has a convex SER or not. For
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certain higher dimensional constellations, analytical expressions for the SER have

been derived in the literature, which can be used to deduce the convexity of the SER.

For example, the class of constellations of dimensionality 2, 3, 4 and 5 described in [44]

can be verified to have convex SERs under AWGN, by differentiation of the analytical

SER expressions given in [44]. On the other hand, verifying if a SER is completely

monotone is difficult, even if a closed form expression for the SER is available. It has

been established recently, that if the rank of a constellation matrix is at most two,

then it will have a completely monotone SER under AWGN with ML detection [45].

However, there has been no investigation into the complete monotonicity properties

of the SER for higher dimensional constellations, which can be used to simplify the

expressions for average SERs over fading channels, and to establish useful compar-

isons of average SERs of a system under two different fading channels, as described

in Chapter 3 and [39].

In this work, it is shown that the SER of an arbitrary multi-dimensional constella-

tion in the absence of coding, when impaired by additive independent and identically

distributed (i.i.d.) Gaussian noise under maximum likelihood (ML) detection can be

represented as a product of a power of the SNR and a completely monotone function

of SNR. This result also generalizes to SERs under compound Gaussian noise, which

includes many non-Gaussian noise distributions such as Middleton class-A noise [15]

and symmetric alpha-stable noise [16]. The SER of an arbitrary multi-dimensional

constellation is shown to be completely monotone if the constellation matrix has a

rank of one or two. Since complete monotonicity implies convexity, the SER is a

convex function of the SNR, provided that the constellation matrix has a rank of one

or two. For constellations matrices whose rank is greater than two, it is shown that

the complete monotonicity of the SER depends on the constellation geometry and

choice of prior probabilities. This work also describes a novel stochastic order for
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fading distributions, which can be used to order the average SERs of arbitrary multi-

dimensional complex constellations over quasi-static fading channels, and generalizes

the existing Laplace transform order on random variables.

The rest of the chapter is organized as follows: Section 2.1 surveys the relevant

mathematical background. Section 4.2 describes the system model. The result on the

representation of the SER of an arbitrary multi-dimensional constellation is detailed

in Section 4.3. In Section 4.4, the applications such as (i) ordering the average SERs of

constellations with c.m. SERs over two different fading channels, and (ii) comparing

the average SER of an arbitrary constellation using a newly proposed stochastic order,

are discussed.

4.2 System Model

In this chapter, the transmission of an N -dimensional uncoded baseband signal s

through AWGN is considered, which is described as follows:

y = s + z , (4.1)

where the transmitted symbol s ∈ RN is chosen from S := {s1, . . . , sM}. The con-

stellation matrix corresponding to S is defined as S := [s1, . . . , sM ], and the reduced

dimension of S is defined as the rank of S, which is denoted by N∗. In (4.1), the noise

is assumed to be z ∼ N (0, (1/ρ)I), ρ > 0. When the signal energy is normalized as

M−1
∑M

i=1 ||si||2 = 1, then M−1
∑M

i=1 ||si||2 /E
[

zTz
]

= ρ represents the average SNR

per dimension. At the receiver, the ML detector under AWGN is assumed, where the

detected symbol ŝ is given by:

ŝ = argmin
s∈S

||y − s||2 , (4.2)
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which is the ML detector for white Gaussian noise. Assuming that the origin of the

coordinate system is shifted to si, the Voronoi region of si, denoted by Ki is given by

Ki := {x ∈ RN |Aix ≤ bi}, (4.3)

where Ai ∈ RF×N , where F ≤ M , and the jth row of Ai is a
T
j,i = (sj−si)

T/ ||sj − si||,

while the jth element of bi is bj,i = ||sj − si|| /2. It is assumed that (4.3) is a non-

redundant description of Ki. The minimum distance dmin of the constellation is

defined through its square as d2min := min
si,sj∈S;sj 6=si

||si − sj ||2 = 4min
i,j

b2j,i [46].

The probability of error Pe,i (ρ), given that si is transmitted is given by

Pe,i (ρ) :=
( ρ

2π

)N/2
∫

RN−Ki

exp
[

−ρ

2
xTx

]

dx , (4.4)

where S1 − S2 := {x ∈ S1|x /∈ S2} is the relative complement of S2 in S1. The

probability of error averaged across all possible transmitted symbols is given by

Pe(ρ) =

M
∑

i=1

Pr[s = si]Pe,i (ρ) , (4.5)

where Pr[s = si] represents the a priori probability of transmitting si.

For any constellation S, there exists an equivalent full rank constellation S∗, which

has the same SER as that of S. Such a definition is useful in developing a represen-

tation for the SER of a multidimensional constellation.

Definition 4.2.1 (Reduced Constellation). Let S = UΣVT be a singular value de-

composition of S, where U ∈ RN×N , Σ ∈ RN×M and V ∈ RM×M , and the diagonal

matrix consisting of the first N∗ rows and first N∗ columns of Σ contains the non-zero

singular values of S. Then the N∗ ×M matrix S∗ given by the first N∗ rows of ΣVT

is defined as the reduced constellation of S.

By definition, the number of rows of S∗ is no greater than that of S. In addition,

S∗ can be shown to have the same SER as S. To see this, recall that the SER of
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the minimum distance detector depends only on the distance between the column

vectors of S and the Frobenious norm of S. It then suffices to show that the columns

of S∗ have the same distance properties and norm as that of S. To this end, observe

that ΣVT = UTS has the same distance and norm properties as that of S, since

it is an orthogonal transformation on S. Further, by construction, the last N − N∗

rows of ΣVT are zeros. Hence, the distance and norm properties of ΣVT and S∗ are

identical. In addition, since z is AWGN, multiplying z by an orthogonal matrix does

not change its statistics. It thus follows that the SER of S∗ and S are identical. To

conclude the discussion of reduced constellations, an example of a constellation and

its reduced constellation is provided. Consider S = {s1, s2}, where s1 = [
√
0.5

√
0.5]T,

and s2 = [−
√
0.5 −

√
0.5]T. Using the definition of the reduced constellation, it is

straightforward to see that the reduced constellation corresponding to S is the BPSK

constellation set, and therefore the SER of S is identical to that of BPSK.

4.3 Symbol Error Rates of Multi-Dimensional Constellations

Throughout the chapter, the focus is to obtain a functional characterization of the

SER of a multidimensional constellation, rather than to obtain bounds or closed-form

expressions for the SER. Such a characterization can be used to uncover its convexity

and complete monotonicity properties.

4.3.1 Symbol Error Rates Under AWGN

To begin with, it is assumed the the transmitted symbol is a real vector, and the

additive noise is white Gaussian. For constellations with reduced dimension N∗ = 1,

the SER of the detector (4.2) under AWGN can be seen to be a positive linear

combination of c.m. functions of the form Q
(√

2ρη
)

, η > 0, which is c.m.. The

functional structure of the SER of constellations with N∗ ≥ 2 is addressed in Theorem
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4.3.1, whose proof requires a result from the combinatorial geometry literature, which

is stated next.

Lemma 4.3.1. Let P be an N-dimensional polyhedron in RN with F facets. If P

contains the origin in its interior, then RN admits the decomposition X := {Df,q
f
}f,q

f
,

f = 1, . . . , F , q
f
= 1, . . . , Q

f
, where Df,q

f
are N-dimensional simplicial cones, and f

can be viewed as an index of the facets of P.

Proof. The proof of this lemma rests on the fact that it is possible to decompose

RN into a set F consisting of polyhedral cones C1, . . . ,CF , using the facets of an

N -dimensional polyhedron P ∈ RN , which contains the origin in its interior [24,

pp. 192]. Since every polyhedral cone admits a decomposition into N -dimensional

simplicial cones [25, Lemma 1.40], it is possible to decompose each Cf into a set of

N -dimensional simplicial cones {Df,q
f
}q

f
, for f = 1, . . . , F . Consequently, RN admits

a decomposition into N -dimensional simplicial cones, given by {Df,q
f
}f,q

f
.

In other words, using the facets of an N -dimensional polyhedron P ⊆ RN which

contains the origin, it is possible to decompose RN into a collection of N -dimensional

simplicial cones. In what follows, the representation theorem is stated.

Theorem 4.3.1. For a constellation S ⊆ RN , whose reduced constellation is S∗ and

reduced dimension is N∗ ≥ 2, the SER of the detector (4.2) under AWGN admits the

representation

Pe(ρ) = ρpfcm(ρ) , (4.6)

where fcm(ρ) is c.m., and p ≥ N∗/2−1. In (4.6), the representing function of fcm(ρ)

satisfies µ(u) = 0 when u < d2
min

/4, and µ(u) ≥ 0 otherwise, where dmin is the

minimum distance of the constellation.
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Proof. Throughout this appendix, we work with the reduced constellation S∗, with

rank N∗. Recall the AWGN system model (4.1). To obtain an expression for the

symbol error rate averaged over all constellation points Pe(ρ), we first evaluate Pe,i (ρ)

given by (4.4), and then use (4.5). For the sake of simplicity, we assume that the

Voronoi region of s∗i ∈ S∗ is a polytope. The following proof can easily be extended to

cases when Ki is an unbounded polyhedron, by assuming an additional facet c0x ≤ 1,

which turnsKi into a polytope [24, pp. 75], and subsequently taking the limit of Pe(ρ)

so obtained as c0 → 0.

We begin with an outline of the proof. In general, evaluating (4.4) is not straight-

forward, since Ki is a polytope. However, the Gaussian integral in (4.4) can be sim-

plified, if the region of integration is of the form Z− Z̃, where Z is an N -dimensional

simplicial cone, and Z̃ is the intersection of a halfspace and Z. To this end, we show

that the Voronoi region of s∗i has a dimension of N∗, so that Lemma 4.3.1 can be used,

and thus Pe,i (ρ) in (4.4) can be rewritten as a sum of integrals over regions of the form

Z − Z̃, where Z and Z̃ are as defined above. Each of these integrals when expressed

in hyperspherical coordinates yields a canonical structure, which can be algebraically

manipulated to obtain (4.6) in the Theorem. In order to show that N∗/2−1 in (4.6) is

the smallest exponent for which the Theorem holds, an argument involving complete

monotonicity of order α is provided towards the end of this appendix.

In what follows, we present the details of the proof. Let Ki be a non-redundant

description of the Voronoi region of s∗i ∈ S∗, for i = 1, . . . ,M . With a slight abuse of

notation, we are dropping the superscript ∗ from Ki, to simplify the notation. First,

we show that Ki satisfies the conditions of Lemma 4.3.1. To this end, for any set of

affinely independent points in space (such as S∗), the dimension of the Voronoi region

corresponding to each point is equal to the dimension of the affine hull of the set (N∗,

when the set of points is S∗) [47, p. 232]. Therefore, Ki is an N∗-dimensional polytope
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in RN∗

. Also, since the origin of the coordinate system is shifted to s∗i , 0 ∈ Ki. Thus,

Ki satisfies the conditions of Lemma 4.3.1. As a result, using Lemma 4.3.1 we obtain

a set Xi := {Df,q,i}q,f , which is a decomposition of RN∗

into N∗-dimensional simplicial

cones (see Fig. 1). Clearly, every x /∈ Ki satisfies x ∈ Df,q,i−Ki for some {q, f}. Let

the number of facets of Ki be Fi. It now follows that

Pe,i (ρ) =

Fi
∑

f=1

Qf,i
∑

q=1

Jf,q,i(ρ) , (4.7)

where

Jf,q,i(ρ) =
( ρ

2π

)N∗/2
∫

Df,q,i−Ki

exp

(

−ρ

2

N∗

∑

k=1

x2
k

)

dx1 . . . dxN∗ . (4.8)

Figure 4.1: Voronoi region for signal point s∗i ∈ S∗, where the reduced dimension
of the constellation S is N∗ = 2. The origin of the coordinate axes is shifted to s∗i .
Using Lemma 1, RN∗

is decomposed into a collection of 2-dimensional simplicial cones
Xi := {D1,1,i, . . . ,D6,1,i} using the facets of Ki.

In order to simplify the integral in (4.8), we switch to the hyperspherical coordinate

system [48], which is a generalization of the spherical coordinate system to higher
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Figure 4.2: The 2-dimensional simplicial cone D1,1,i obtained using Lemma 1 with
Ki, represented in hyperspherical coordinates.

dimensions. In this system, x ∈ RN∗

is uniquely represented as [r, φ1, . . . , φN∗−1
],

where r = ||x||, and φk is the angle between x and the kth edge of Df,q,i, k =

1, . . . , N∗−1. More precisely, let v
k,q

define the unit vector in the direction of the kth

edge of Df,q,i, for k = 1, . . . , N∗. Then, φk = cos−1(x Tvk,q/ ||x||), k = 1, . . . , N∗ − 1

(See Fig. 4.2 for a two-dimensional example.).

Next, we obtain the region of integration in (4.8) in hyperspherical coordinates.

For any x ∈ Df,q,i−Ki represented by [r, φ1, . . . , φN∗−1
], the parameter r must satisfy

rf,q,i(φ) ≤ r ≤ ∞ , (4.9)

where rf,q,i(φ) is the distance of the point x ∈ {x|aT
f,ix = bf,i} from the origin. An

expression for rf,q,i(φ) can be found by representing the hyperplane aT
f,ix = bf,i in

hyperspherical coordinates, using the inverse hyperspherical transform relations

xk = r cosφk

k−1
∏

k1=1

sinφ
k1
, k = 1, . . . , N∗ − 1 ,

xN∗ = r
N∗−1
∏

k1=1

sinφ
k1

, (4.10)
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and solving for r as a function of φ := [φ1, . . . , φN∗−1]. Thus, we get

rf,q,i(φ) =
bf,i

N∗−1
∑

k=1

ak,f,i cosφk

k−1
∏

k1=1

sin φ
k1
+ aN∗−1,f,i

N∗−1
∏

k1=1

sinφ
k1

, (4.11)

In (4.11), ak,f,i is the kth element of aT
f,i. Also, for any x ∈ Df,q,i −Ki, it is seen that

φk must be at least 0 radians (if x = αv
k,q
, α > 0), and at most φk,f,q,i, which is the

angle between v
N∗,q

and v
k,q
, k = 1, . . . , N∗ − 1. In other words,

0 ≤ φ
k
≤ cos−1

(

vT
N∗,q

v
k,q

)

=: φk,f,q,i . (4.12)

It is useful to note that φk,f,q,i ≤ π, since it is the angle between any two edges of the

simplicial cone Df,q,i, which is at most π.

Thus, (4.8) can now be reformulated in hyperspherical coordinates, with the limits

of integration given by (4.9) and (4.12) as

Jf,q,i(ρ) =
( ρ

2π

)N∗/2

φN∗−1,f,q,i
∫

0

. . .

φ1,f,q,i
∫

0

∞
∫

rf,q,i(φ)

rN
∗−1s(φ)e−ρr2/2

drdφ , (4.13)

where s(φ) :=
∏N∗−2

k=1 sinN∗−k−1 φk arises from the Jacobian of the transformation,

and dφ = dφ1 . . . dφN∗−1
. Substituting u = r2/2 in (4.13), and changing the order of

integration, we get

Pe,i (ρ) = ρN
∗/2

∞
∫

0

e−ρuµ̃i(u)du , (4.14)

where µ̃i(u) is given by

µ̃i(u) :=
1

2πN∗/2

Fi
∑

f=1

Qf,i
∑

q=1

L
∑

l=1

θN∗−1,f,q,i,l
∫

θN∗−1,f,q,i,l

. . .

θ1,f,q,i,l
∫

θ1,f,q,i,l

s(φ)uN∗/2−1·

I
[

rf,q,i(φ)
2 ≤ u

]

dφ . (4.15)
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In (4.15), L is the number of convex intervals of [φ1, . . . , φN∗−1] obtained after chang-

ing the order of integration, since the inverse function of rf,q,i(φ)
2 is not unique.

We now show that µ̃i(u) ≥ 0, which, together with Bernstein’s Theorem implies

that the integral in (4.14) is equivalent to a c.m. function of ρ. To this end, ob-

serve that the integrand in (4.15) is non-negative for u ≥ 0, because s(φ) ≥ 0 for

φk,f,q,i ∈ [0, π], k = 1, . . . , N∗ − 1. Consequently, the result obtained after the N∗ − 1

fold integration in (4.15) is also non-negative. Thus, µ̃i(u), which is a scaled version of

a sum of non-negative integrals, is also non-negative. Therefore, through Bernstein’s

Theorem, we can assert that Pe,i (ρ) = ρN
∗/2f̃cm,i(ρ), where f̃cm,i(ρ) is a c.m. function.

Now, using (4.14) in (4.5), we get

Pe(ρ) = ρN
∗/2

∞
∫

0

e−ρuµ̃(u)du , (4.16)

where µ̃(u) :=
∑M

i=1 Pr[s = si]µ̃i(u). Thus, Pe(ρ) = ρN
∗/2f̃cm(ρ), where f̃cm(ρ) is c.m.

through Bernstein’s Theorem, because µ̃(u) ≥ 0 as it is a positive linear combination

of non-negative functions µi(u), i = 1, . . . ,M .

Next, we strengthen the representation (4.16) by showing that ραf̃cm(ρ) is c.m.

for α = 1. To this end, recall from Section 2.1.1 that the necessary and sufficient

condition for a c.m. function to be c.m. of order 1 is that its representing function

be nonnegative and increasing. This is indeed the case for µ̃(u). Thus, we have just

showed that f̃cm(ρ) is c.m. of order α = 1. Denoting fcm(ρ) := ρf̃cm(ρ), which we

have just showed to be c.m., we get a stronger representation for the SER using (4.16)

as follows

Pe(ρ) = ρ
N∗

2
−1fcm(ρ) , (4.17)

where fcm(ρ) is c.m..

Next, the support of the representing function of fcm(ρ) is investigated. Let µ(u)
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be the representing function of fcm(ρ). Integration by parts on (4.16) yields

µ(u) =

M
∑

i=1

Fi
∑

f=1

Qf,i
∑

q=1

L
∑

l=1

θN∗−1,f,q,i,l
∫

θN∗−1,f,q,i,l

. . .

θ1,f,q,i,l
∫

θ1,f,q,i,l

s(φ)
Pr[s = si]

2πN∗/2

(

(N∗/2− 1)u
N∗

2
−2I

[

rf,q,i(φ)
2 ≤ u

]

+ u
N∗

2
−1I

[

rf,q,i(φ)
2 = u

]

)

dφ , (4.18)

which is zero if u < min
q,f,i

inf
φ

rf,q,i(φ)
2, and non-negative otherwise. Recalling the

expression for rf,q,i(φ) from (4.11), it is immediately seen that min
q,f,i

inf
φ

rf,q,i(φ)
2 =

minf,i b
2
f,i. Observing that minf,i b

2
f,i = d2min/4, we conclude that the support of µ is

contained in [d2min/4,∞).

This concludes the proof of the Theorem.

To prove Theorem 4.3.1, we work with a reduced constellation S∗ that is full rank.

This is needed since Lemma 4.3.1 is used in Theorem 4.3.1, where P is a Voronoi region

with dimension N∗. This highlights the need to work with the reduced constellation

and dimension. The proof of this Theorem can be viewed as a generalization of

the method adopted in [49] to obtain an expression for the SER of arbitrary two-

dimensional constellations under AWGN.

As an example to corroborate Theorem 4.3.1, consider the square M-QAM con-

stellation under AWGN. For this constellation, it is known that dmin =
√
2 and

Pe(ρ) = ω1Q
(√

ηρ
)

− ω2Q2
(√

ηρ
)

, with ω1 = 4(
√
M − 1)/

√
M, η = 3/(M − 1) and

ω2 = ω2
1/4 [2]. In this case, Pe(ρ) can be represented in the form (4.6), where p = 0

(since N∗ = 2), and the representing function of fcm(ρ) is given by

µ(u) =

√
η

2π

[

ω1I[0.5 ≤ u ≤ 1]

u
√
2u− 1

+
(ω1 − ω2)I[u ≥ 1]

u
√
2u− 1

]

, (4.19)

which is zero when u < 0.5 and non-negative when u ≥ 0.5, because ω1 − ω2 > 0.

Further, since p = 0, it is obvious that the squareM-QAM constellation is an example

of a constellation which has a c.m. SER.
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According to Theorem 4.3.1, the SER of every constellation can be written as

Pe(ρ) = ρpfcm(ρ), where p = N∗/2 − 1 and fcm is c.m.. However, it is possible

that the SER of some constellations admit a representation of the form (4.6), where

the exponent of ρ is less than N∗/2 − 1. As a result, constellations for which this

exponent is zero have c.m. SERs. The following corollary of Theorem 4.3.1 establishes

a necessary and sufficient condition for the SER of a constellation to be c.m..

Corollary 4.3.1. The SER of S using the detector (4.2) under AWGN is c.m. if its

reduced dimension satisfies N∗ ≤ 2. Conversely, let µ(u) =
∫∞
0

eρuρ−(N∗/2−1)Pe(ρ)dρ,

µ̂(u) =
∫ u

0
µ(u− v)v−1/2

dv and r = ⌈N∗/2− 2⌉. If N∗ > 2 and N∗ is even (odd), the

SER is c.m. if and only if µ(u) (µ̂(u)) is r times differentiable, and d
kµ(u)/duk ≥ 0

(dkµ̂(u)/duk ≥ 0) for 0 ≤ k ≤ r, and d
rµ(u)/dur(drµ̂(u)/dur) is increasing and

continuous.

Proof. The direct part of the corollary for constellations with N∗ = 1 is immediate,

since Pe(ρ) is a positive linear combination of functions of the form Q
(√

2ρη
)

, η > 0,

which is known to be c.m. (see e.g. [39]). Also, the complete monotonicity of the SER

for the case of N∗ = 2 is straightforward from Theorem 4.3.1. To see the converse, we

use the necessary and sufficient condition for a function f(ρ) to be c.m. of order α, as

described in Section 2.1.1. For the case when N∗ is even, we assume f(ρ) = fcm(ρ),

where fcm is as defined in Theorem 4.3.1, and α = N∗/2 − 1. For the case of odd

N∗, we assume f(ρ) = ρ−1/2fcm(ρ), and α = ⌈N∗/2 − 1⌉. The converse thus easily

follows.

In other words, Corollary 4.3.1 states that the complete monotonicity of the SER

for constellations with N∗ ≤ 2 does not depend on the geometry of the constel-

lation. However, for constellations with higher reduced dimensions, the complete

monotonicity of the SER depends on the differentiability of the representing function
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corresponding to fcm(ρ), which is a function of the constellation geometry and the

a-priori probabilities. Although Corollary 4.3.1 is applicable to any constellation, it

is not easy to obtain the equivalent set of conditions on the constellation geometry

and prior probabilities under which the SER of a constellation with N∗ > 2 is c.m.,

and this is posed as an open problem.

Next, we provide instructive examples through which the complete monotonicity

of the SER can be seen to depend on the constellation geometry for N∗ = 3. First,

consider the constellation where the points are chosen as the vertices of a cube. In

this case, the SER is given by Pe(ρ) = 1 − (1 − Q
(√

2ρ
)

)3, which can be rewritten

in the form (2.2), with µ(u) = (3/π)I[1 ≤ u ≤ 2] + (π − cos−1(α(u)))/2π2I[3 ≤ u ≤

4] + (π + cos−1(α(u)))/2π2I[u ≥ 4], where α(u) = (3u2 − 12u + 8)/(u − 2)3. Since

µ(u) ≥ 0, from Bernstein’s theorem, Pe(ρ) is c.m.. On the other hand, consider the 3-

D square QAM constellation, whose points are given by all possible sign permutations

of (±1/
√
6,±1/

√
6,±1/

√
6) and (±1/

√
2,±1/

√
2,±1/

√
2). For this case, under the

assumption of equal prior probabilities, numerical evaluation of the SER shows non-

convexity (Fig. 4.3). As a result, from (2.1), the SER is not c.m.. Therefore, the c.m.

properties of the SER of a constellation with N∗ > 2 depends on the geometry and

prior probabilities. With reference to existing literature, Corollary 4.3.1 is a useful

generalization of [14, Theorem 2], which does not address complete monotonicity, or

the possibility of reduced dimension. Further, from Corollary 4.3.1, it follows that the

SER of any two-dimensional constellation under AWGN is convex. This particular

consequence of Corollary 4.3.1 has been previously established in [14, Theorem 1]

using a different approach. In what follows, the behavior of second derivative of the

SER for constellations with N∗ > 2 is studied.

Corollary 4.3.2. If the reduced dimension N∗ of a constellation S is greater than two,

then the SER of the detector (4.2) under AWGN satisfies P
′′

e
(ρ) ≥ 0 when ρ ≥ ρ0,
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Figure 4.3: Second derivative of Pe(ρ) for the 3-dimensional square QAM constella-
tion. Since the SER is not convex, this is an example of a constellation with N∗ = 3
whose SER is not c.m..

where ρ0 := 4(p+
√
p)/d2

min
, p = N∗/2− 1, and dmin is the minimum distance of the

constellation.

Proof. Recall from Theorem 4.3.1 that for a constellation with reduced dimension

N∗, the SER can be written as

P
=

e (ρ)p
∞
∫

0

exp(−ρu)µ(u)du , (4.20)

where p = N∗/2 − 1, with µ(u) being zero when u ∈ [0, d2min/4), and non-negative

otherwise. We now obtain sufficient conditions for P
′′

e (ρ) ≥ 0. Differentiating (4.20)

twice with respect to ρ, we obtain

P
′′

e (ρ) = ρp−2

∞
∫

0

e−ρuµ(u)

(

u− p−√
p

ρ

)(

u− p+
√
p

ρ

)

du , (4.21)

where the differentiation under the integral sign in (4.20) is permitted, because the

limits of integration are independent of ρ. A sufficient condition for (4.21) to be non-

negative is that the integrand in (4.21) is non-negative. Accordingly, observe that

the integrand in (4.21) is non-negative when u ≥ (p +
√
p)/ρ. Thus, if the support
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of µ is a subset of [(p +
√
p)/ρ,∞), it follows that P

′′

e (ρ) ≥ 0. In other words, if

ρ ≥ 4(p+
√
p)/d2min, we have P

′′

e (ρ) ≥ 0, which proves the result.

A similar but weaker result has been obtained in [14], where ρ0 = 4(N+
√
N)/d2min.

Corollary 4.3.2 provides a larger region where the SER has positive second derivative,

which is an improvement over [14], since N∗/2 − 1 < N∗ ≤ N . Although Corollary

4.3.2 establishes a bound on the values of SNR for which the second derivative becomes

non-negative, it does not forbid P
′′

e (ρ) ≥ 0 for ρ < ρ0. Indeed, it is possible for some

multi-dimensional constellation with N∗ > 2 to posses a convex SER. An example

of such a constellation is one with N = 3, wherein the points correspond to the

vertices of regular convex polytope (RCP) [44], for which convexity follows from the

expression for the SER given by [44, Eqn. (2) - (7)].

It is useful to observe that Theorem 4.3.1 and its corollaries can be extended to the

case where S is an arbitrary complex constellation, and the additive noise is circularly

symmetric complex Gaussian noise, as shown in [50].

4.3.2 Extension to Compound Gaussian Noise

In what follows, Theorem 4.3.1 and its corollaries are generalized to the case of

additive compound Gaussian noise.

The system model considered is still as in (4.1), except that the additive noise is

assumed to be z =
√
Wg, where W is a positive RV, which is independent of each

component of g := [G1, . . . , GN ]
T, and Gk ∼ N (0, 1/ρ) are i.i.d., for k = 1, . . . , N . It

should be noted that the elements of z are statistically dependent but uncorrelated

in this case. Depending on the distribution of W , a number of noise distributions

of interest arise from this formulation. For example, when W is an affine function

of a Poisson RV, z follows a Middleton class-A distribution [15], which is used to

model multi-user interference; if W is a positively skewed alpha-stable RV with a
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characteristic function ϕ
W
(ω) = exp[−|ω|α(1 − jsgn(ω) tanπα/2)], where j =

√
−1,

0 < α < 1, and sgn(x) is the sign of x, then z follows the symmetric alpha-stable

distribution [16], with characteristic function ϕ
Z
(ω) = exp[−|ω|2α]. For different

values of α, many impulsive noise distributions are obtained. For example, when

α = 1/2, z is Cauchy distributed noise [16].

In this discussion, the minimum distance detector (4.2), which is still the maxi-

mum likelihood detector for dependent but uncorrelated compound Gaussian noise,

is assumed to be used at the receiver side. The reduced constellation corresponding

to S is defined as in Definition 4.2.1 and is denoted by S∗. It is not difficult to show

that the SER of S and S∗ are identical under additive compound Gaussian noise.

An extension of Theorem 4.3.1 to the case of additive compound Gaussian noise

is now developed. Conditioning on W = w, z is an i.i.d. multivariate Gaussian,

in which case Theorem 4.3.1 can be invoked to get Pe(ρ|W = w) = ρpfcm(ρ;w),

where fcm(ρ;w) is c.m. in ρ for each w. Averaging over the distribution of W , the

equivalent of Theorem 4.3.1 for the case of compound Gaussian noise is obtained,

since the expectation can be interpreted as a positive linear combination of fcm(ρ;w),

which results in a c.m. function, denoted by fcm(ρ).

Extensions of the corollaries of Theorem 4.3.1 for the case of compound Gaussian

noise are also seen to be true, since they are obtained from the generalization of

Theorem 4.3.1 to this noise model, without any additional assumptions.

4.4 Applications

In this section, applications of Theorem 4.3.1 and Corollary 4.3.1 in the context

of ordering of wireless system performance is presented.
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4.4.1 Applications in Stochastic Ordering

Complete monotonicity of SER for complex constellations with a reduced dimen-

sion of one or two, as suggested by extension of Corollary 4.3.1 to complex constella-

tions finds immediate application in comparing the average SER of such constellations

over two different fading channels using the theory of stochastic ordering mentioned

in Section 2.3. To elucidate further, the following system model is considered:

y = hs+ v , (4.22)

where the effect of quasi-static fading is captured by the complex scalar RV h whose

real and imaginary parts are independent of each other, s ∈ S with s ∈ CN , and z ∼

CN (0, (1/ρ)I) is the circularly symmetric AWGN. For this system, the instantaneous

channel gain is defined as X := |h|2, and the instantaneous SNR is given by ρX .

Assuming that the receiver has full channel state information, the instantaneous SER

can be shown to be a function of the instantaneous SNR only, and the average SER

is obtained by taking the expectation of the instantaneous SER over the distribution

of the instantaneous channel gain. In this application, goal is to compare the average

SER of the system (4.22) under two different fading channels with instantaneous

channel gains X1 and X2.

To begin with, let S be a complex constellation with a reduced dimension less

than or equal to two, which has c.m. SER according to the complex extension

of Corollary 4.3.1. Now, consider two fading scenarios with instantaneous channel

gains X1 and X2, such that X1 ≤ Lt X2. Then, according to (2.20), E [Pe(ρX2)] ≤

E [Pe(ρX1)] , ∀ρ > 0. As a result, complete monotonicity of SER can be exploited to

compare two fading channels at all SNR, based on the average SER, even in cases

where the expression for the average SER is not analytically tractable. As an il-

lustrative example, consider the quadrature-PSK (QPSK) constellation, for which
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the reduced dimension can be seen to be equal to 2, and Pe (ρx) = Q
(√

2ρx
)

(as-

suming equal prior probabilities), which is c.m. in x. Now, assume QPSK is used

over two different Nakagami-m fading channels, the first one with LoS parameter

m1 and instantaneous channel gain X1, and the second one with LoS parameter m2

and instantaneous channel gain X2, where m2 ≥ m1 so that X1 ≤ Lt X2. In this

case, (2.20) implies that E
[

Q
(√

2ρX2

)]

≤ E
[

Q
(√

2ρX1

)]

, ∀ρ > 0, which provides

a way of comparing the average SERs over two fading channels with different LoS

parameters.

The complex extension of Corollary 4.3.1 suggests that the SER of a complex

constellation with reduced dimension greater than or equal to four is not c.m., and

thus the LT ordering of instantaneous channel gains of two fading channels does not

provide a conclusive comparison of the average SER of these channels. Motivated by

this, a new stochastic order is introduced next, which can be used to compare the

average SER of a multidimensional complex constellation over two different complex

fading channels. The stochastic order ≤G(p) is formally defined below.

Definition 4.4.1. Let X1 and X2 be two positive RVs, and let p ≥ 0 be fixed. Then

X1 ≤G(p) X2 if and only if E [Xp
1 exp(−ρX1)] ≥ E [Xp

2 exp(−ρX2)] for all ρ > 0.

In other words, for every p ≥ 0, ≤G(p) is an integral stochastic order in the sense

of (2.13), with Gp = {g(x) | g(x) = −xp exp(−ρx), ρ ≥ 0}. A necessary and sufficient

condition for X1 ≤G(p) X2 can be proved to be as follows:

Theorem 4.4.1. Let X1 and X2 be two positive RVs, and p ≥ 0. Then, X1 ≤G(p) X2

if and only if

E [Xp
1fcm(X1)] ≥ E [Xp

2fcm(X2)] , (4.23)

where fcm(·) is c.m..
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Proof. For any two non-negative RVs X1 and X2, we have

X1 ≤G(p) X2 ⇔ E [Xp
1 exp(−ρX1)] ≥ E [Xp

2 exp(−ρX2)] , ∀ρ ≥ 0. (4.24)

We now establish the following:

X1 ≤G(p) X2 ⇔ E [Xp
1fcm(ρX1)] ≥ E [Xp

1fcm(ρX1)] ∀ρ ≥ 0, (4.25)

where fcm(ρ) :=
∫∞
0

exp(−ρu)µ(u)du is a c.m. function, for some µ(u) ≥ 0. Assume

u > 0, then X1 ≤G(p) X2 ⇒ E [Xp
1 exp(−ρX1u)] ≥ E [Xp

2 exp(−ρX2u)] ∀ρ > 0. Next,

observe that

E [Xp
1fcm(ρX1)] = E





∞
∫

0

Xp
1 exp(−uρX1)µ(u)du



 =

∞
∫

0

E [Xp
1fcm(ρX1)]µ(u)du

(4.26)

≥
∞
∫

0

E [Xp
2fcm(ρX2)]µ(u)du = E [Xp

2fcm(ρX2)] , (4.27)

∀ρ ≥ 0, provided the expectations exist. This proves the direct part of the theorem.

To see the converse, let fcm(ρ) = exp(−ρx), which is c.m. in ρ for each x > 0.

Verifying the ≤G(p) order for any pair of random variables, when p ∈ N ∪ {0}

is relatively straightforward, and can be done by comparing the pth derivative of the

real-valued Laplace transforms of the densities of the two RVs. Clearly, ≤G(p) is the LT

order, when p = 0. In this case, the envelope fading distributions for
√
X1 and

√
X2

such as Nakagami-m satisfy X1 ≤G(0) X2, when m1 ≤ m2 [39]. Intriguingly however,

for any p > 0, fading channels modelled using Nakagami-m or Rician distributions do

not satisfy the ≤G(p) order with respect to their corresponding line of sight parameters.

For example, in the Nakagami-m fading scenario, X = |h|2 in (4.22) is Gamma

distributed. In this case,

E [Xp exp(−ρX)] =
mm(m+ ρ)−m−pΓ[m+ p]

Γ[m]
, (4.28)
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which increases with m for small ρ and decreases otherwise, for any fixed p > 0.

Thus, if p > 0, X1 � Gp X2.

Some implications of Theorem 4.4.1 to the ordering of average SERs of multidi-

mensional constellations over fading channels are now considered. If X1 and X2 are

the instantaneous channel gains of two fading scenarios characterized by (4.22), then

according to Theorem 4.4.1, it is easy to show that

X1 ≤G(p) X2 ⇒ E [Pe (ρX1)] ≥ E [Pe (ρX2)] , ∀ρ > 0 , (4.29)

where Pe (·) is the instantaneous SER of a complex constellation S with reduced

dimension N∗, and p = N∗/2 − 1. This is because, from the complex extension

of Theorem 4.3.1 we have Pe(ρ) = ρpfcm(ρ), which implies Pe(ρ) ∈ {g(ρ)|g(ρ) =

ρpfcm(ρ), p ≥ 0 }, and thus (4.29) follows from Theorem 4.4.1.

It has been reported in the literature that, it is possible to find a fading distribu-

tion such that the SER of the AWGN channel is worse than that under the fading

case at low SNR, when higher dimensional constellations are employed [14]. However,

examples of such fading distributions have not been a subject of investigation. Using

(4.29), it is now shown that the Nakagami-m fading case is an such an example. To

begin with, consider the pure AWGN channel (i.e. the no fading scenario, where

Pr[X1 = 1] = 1), for which E [Xp
1 exp(−ρX1)] = exp(−ρ). If X2 denotes the instan-

taneous channel gain of a Nakagami-m fading channel, then for every 0 < m < ∞,

we now argue that there exists a ρ1 > 0 such that E [Pe(ρX1)] ≥ E [Pe(ρX2)] for

ρ ≤ ρ1, while E [Pe(ρX1)] ≤ E [Pe(ρX2)], for ρ ≥ ρ1. To this end, observe that

E [Xp
1 exp(−ρX1)] is greater than E [Xp

2 exp(−ρX2)] when ρ ≤ ρ1, and vice-versa

when ρ ≥ ρ1. Therefore, from (4.29), the AWGN channel is worse than a Nakagami-

m channel in terms of SER of constellations with N∗ > 2 at low SNR.

Next, a relation between X1 ≤Gq X2 and X1 ≤G(p) X2 is obtained, where p, q ≥ 0.
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Theorem 4.4.2. Let X1 and X2 be two positive RVs. Then, for 0 ≤ q ≤ p, X1 ≤G(p)

X2 ⇒ X1 ≤G(q) X2.

Proof. Since X1 ≤G(p) X2, from Theorem 4.4.1, E [Xp
1fcm(X1)] ≥ E [Xp

2fcm(X2)], for

every c.m. function fcm(·). Choose fcm(x) := x−kgcm(x), where 0 ≤ k ≤ p, and

gcm(x) as some c.m. function. Clearly, fcm(x) as defined is c.m., since x−k is c.m. for

k ≥ 0 and a product of c.m. functions is also c.m.. As a result, according to Theorem

4.4.1, X1 ≤G(p) X2 implies E
[

Xp−k
1 gcm(X1)

]

≥ E
[

Xp−k
2 gcm(X2)

]

. The theorem then

follows by assuming q = p− k.

Theorem 4.4.2 in conjunction with (4.29) implies that if X1 ≤G(p) X2, then X2 is

better than X1 in terms of average SERs of all constellations at all average SNR, with

the reduced dimension of the constellation satisfying N∗/2−1 ≤ p. It is interesting to

investigate the conditions on X1 and X2 such that X1 ≤G(p) X2 for all p ≥ 0. In that

case, X2 will be better than X1 in terms of average SERs of any multi-dimensional

constellation at all SNRs. However, this condition is not satisfied by any pair of

random variables, as described in the following Theorem:

Theorem 4.4.3. There are no two positive random variables which satisfy X1 ≤G(p)

X2, for all p ≥ 0.

Proof. Let X1, X2 be non-negative RVs with PDFs fX1 (x) and fX2 (x) respectively.

We now show thatX1 ≤G(p) X2 cannot hold for all p ≥ 0, by showing thatX1 ≤G(p) X2

does not hold for every p in a subset or R ∪ {0}, i.e., for p ∈ N ∪ {0}. In order to

satisfy Theorem 4.4.1 for every p ∈ N ∪ {0}, we require for every p

(−1)p
dp

dρp
[E [exp(−ρX1)]− E [exp(−ρX2)]] ≥ 0 ∀ρ, (4.30)

since
∫∞
0

sp exp(−ρs)µ(s)ds = (−1)p(∂p/∂ρp)
∫∞
0

exp(−ρs)µ(s)ds. Recalling the def-

inition of a c.m. function from (2.1), we gather that E [exp(−ρX1)]− E [exp(−ρX2)]
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in (4.30) must be a c.m. function. Consequently, Bernstein’s Theorem mandates that

fX1 (x)−fX2 (x) ≥ 0 ∀x. However, this condition is never satisfied by any pair of ran-

dom variables, since both the density functions must individually integrate to unity,

which cannot be the case if fX1 (x) ≥ fX2 (x) ∀x. Thus, the Theorem follows.

As described in the paragraph above Theorem 4.4.2, the AWGN channel is not

the best channel in terms of SER of constellations with N∗ > 2 at all SNR. According

to Theorem 4.4.3, there is no fading distribution which dominates every other fading

distribution in the sense of ≤G(p) for all p ≥ 0. Therefore, unlike cases where the SER

metric is convex, where AWGN (no fading) outperforms any fading, this is not the

case forN∗ > 2. Moreover, Theorem 4.4.3 suggests that there is no fading distribution

which serves the role of “best” fading distribution, in terms of SERs of constellations

of every dimension.
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Chapter 5

ERGODIC CAPACITY ORDERING USING THE SHANNON TRANSFORM

5.1 Motivation and Literature Survey

In this chapter, a stochastic order which can be used to compare fading channels

based on the Shannon transform of the instantaneous SNR is discussed. A fading

channel is said to be better than another in the ergodic capacity order, if its cor-

responding Shannon transform is bigger for all ρ. The proposed order is a kind of

stochastic order on positive RVs. Previously, the stochastic LT order, which com-

pares the real-valued Laplace transforms of RVs has been used to compare two fading

distributions and applied to comparing the average error rate of M-QAM modula-

tions (See Chapter 3 or [39]). This can be explained by the fact that error rates of

some modulations are non-negative integral mixtures of decaying exponentials, which

can also be viewed as the Laplace transform. It has been shown in Chapter 3 that

LT ordering of instantaneous SNRs implies ordering of ergodic capacities, but not

conversely.

The ergodic capacity order presented in this Chapter is new to both stochastic

ordering literature as well as information theory literature. Many parametric fading

distribution families such as the Nakagami-m, Rician and Hoyt are observed to have

the property that the ergodic capacity is monotone with respect to the line of sight

(LoS) parameter for each of these distributions, as shown herein. Consequently, the

instantaneous SNR of these fading channels serve as examples of ergodic capacity

ordered random variables. The properties of this stochastic order are useful in ob-

taining comparisons of the performance of systems involving multiple SNR RVs, as
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described in Section 5.3. For example, let {Xi}Mi=1 and {Yi}Mi=1 be two sets of fading

channels such that the ergodic capacity ofXi is less than that of Yi, i = 1, . . . ,M at all

SNR. Then, the properties of the ergodic capacity order provide the conditions under

which a composite system consisting of {Xi}Mi=1 as the component fading channels

has a smaller ergodic capacity than that of a system with components {Yi}Mi=1. Such

comparisons of ergodic capacities can be made even in cases when a closed-form ex-

pression is not available. A MIMO extension of the definition of the ergodic capacity

order, which can be used to order positive semidefinite symmetric random matrices

is given in Section 5.4.

We now proceed to define a stochastic order for comparing fading distributions

based on the Shannon transform, which is defined in Section 2.2.2.

5.2 The Ergodic Capacity Order

Recall that the ergodic capacity of a single-input single-output (SISO) system is

given by E [log (1 + ρX)], where X is the square of the amplitude of the complex

fading gain, and is defined as the instantaneous fading power of the channel. It is

straightforward to see through an application of Jensen’s inequality that the AWGN

channel (with no fading) outperforms every fading distribution with same average

channel power, in terms of the ergodic capacity at all SNR. However, given two

fading distributions, it is not trivial to compare them based on the ergodic capacity, as

obtaining a closed-form expression for the ergodic capacity of many fading channels is

analytically intractable. Motivated by this, we propose a stochastic ordering method,

which can be used to compare the ergodic capacity of two different fading channels.
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5.2.1 Definition

Definition 5.2.1. If X and Y are arbitrary nonnegative RVs, then X is said to

be dominated by Y in the ergodic capacity order (i.e. X ≤ c Y ), if the Shannon

transforms of X and Y exist and C
(X)

(ρ) ≤ C
(Y )

(ρ) for ρ ≥ 0.

For this stochastic order, the generator is chosen as

G = {g(x) : g(x) = log (1 + ρx) , ρ ≥ 0}. (5.1)

Distributions of interest for which the ergodic capacity is finite at all finite SNR can

be determined using either Proposition 2.2.1 or Proposition 2.2.2. Next, some useful

properties of the capacity order and a few examples of ergodic capacity ordered RVs

are discussed.

5.2.2 Properties

The following properties hold for nonnegative RVs.

S1: X ≤ c Y ⇐⇒ E [g(X)] ≤ E [g(Y )], ∀g ∈ T BF , such that the expectations

exist.

S2: X ≤ c Y ⇐⇒ g(X) ≤ c g(Y ), ∀g ∈ CT BF .

S3: X ≤ Lt Y =⇒ X ≤ c Y .

S4: Let X1, . . . , XM be independent and Y1, . . . , YM be independent. If Xm ≤ c

Ym, m = 1, . . . ,M , then g (X1, . . . , XM) ≤ c g (Y1, . . . , YM), ∀g ∈ CT BFM .

S5: If X ≤ c Y and Y ≤ c Z, then X ≤ c Z.

S6: If X ≤ c Y and Y ≤ c X , then FX (·) = FY (·) a.e.
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The proofs of these properties can be obtained from the proofs of the more general

MIMO ergodic capacity order (introduced in Section 5.4), which are presented at the

end of this Chapter. A straightforward implication of Property S1 is that if X ≤ c Y ,

then E [X ] ≤ E [Y ], since g(x) = x is a Thorin-Bernstein function. In other words, if

one fading channel has a higher ergodic capacity than another at all SNR, then it is

necessary that the average fading power of the first channel is no smaller than that of

the second. Properties S5 and S6 together constitute the definition of a partial order,

and consequently ≤ c is a partial order on nonnegative RVs.

Interpreting ρX and ρY as the instantaneous SNRs of two different fading chan-

nels, Properties S1-S6 are useful in obtaining the conditions under which the ergodic

capacity of a composite system with coding/decoding capabilities only at the trans-

mitter/receiver under the channel Y is greater than that under X at all SNR. Al-

though Property S3 suggests that every pair of Laplace transform ordered random

variables also obey the ergodic capacity order, the converse is not true in general. A

counterexample can be found in [39, 51]. Thus, it is possible that the average symbol

error rate of differential binary phase shift keying modulation in channel X is less

than that in Y at high SNR, while the situation reverses when the capacity achieving

code is applied on both channels. Interpreting the ergodic capacity as what is achiev-

able by coding over an i.i.d. time-extension of the channel, we reach the conclusion

that even though Y offers more diversity than X for an uncoded system, the i.i.d.

extension of X lends itself to more diversity than that of Y . To put it more simply, at

high SNR, it is possible for one fading channel to be superior to another in terms of

error rates in the absence of coding, while being inferior when the capacity achieving

code is employed over both channels.
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5.2.3 Extension to Nonnegative Measures

Shannon Transform Order

In what follows, a generalized version of the ergodic capacity order applicable to order

nonnegative measures is described.

Let µ be a non-negative measure on R+. Its Shannon transform is defined as
∫∞
0

log(1 + s/u)µ(du). If µ1 and µ2 are two non-negative measures for which the

Shannon transforms exist and are finite, then we say µ1 is dominated by µ2 in the

Shannon transform sense, and write µ1 ≤ S µ2 to denote
∫∞
0

log(1 + s/u)µ1(du) ≤
∫∞
0

log(1 + s/u)µ2(du), for all s ≥ 0. Note that when µ1 and µ2 are probability

measures, then the ergodic capacity order defined in Definition 5.2.1 can be obtained.

Some properties of the Shannon transform order are the following:

P1: If
∫∞
0

µ1(du) =
∫∞
0

µ2(du) < ∞, then µ1 ≤ Lt µ2 =⇒ µ1 ≤ S µ2

P2: µ1 ≤ S µ2 ⇐⇒
∫∞
0

σ(u)µ1(du) ≤
∫∞
0

σ(u)µ2(du), for all {σ ∈ T BF|σ(0) = 0}.

P3: Let
∫∞
0

µ1(du) ≤
∫∞
0

µ2(du). Then µ1 ≤ S µ2 ⇐⇒
∫∞
0

σ(u)µ1(du) ≤
∫∞
0

σ(u)µ2(du), for all σ ∈ T BF .

Applications of this generalization can be found in Chapter 5.6.

5.2.4 Examples

Next, we give examples of pairs of RVs X, Y relevant to wireless communications,

for which X ≤ c Y holds. In general, establishing ergodic capacity ordering using

its definition is often inconclusive, since the corresponding integrals are intractable.

Fortunately, using Property S3, it is possible to provide examples of pairs of RVs which

obey capacity ordering. In what follows, examples of parametric fading distributions

which obey the ergodic capacity order are given. These distributions are also known

to satisfy the Laplace transform order [39].
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Nakagami Fading

The Nakagami-m fading model, for which the envelope
√
X is Nakagami distributed,

and the instantaneous fading power X is Gamma distributed, with PDF given by

fX (x) =
mm

Γ(m)
xm−1 exp(−mx) , x ≥ 0 , (5.2)

where m > 0 is the line of sight parameter, and Γ(r) :=
∫∞
0

tr−1 exp(−t)dt is the

gamma function. Let X ∼ Gamma(mX), and Y ∼ Gamma(mY ) with mX ≤ mY . For

this case, it is easy to verify that X ≤ Lt Y , which implies that X ≤ c Y , according

to Property S3. Property S3 requires the existence of the Shannon transforms, which

is proved as follows. Observing that E [X ] = E [Y ] = 1 is finite, from Proposition

2.2.2, the Shannon transforms exist. This is because setting δ = 1 in Proposition

2.2.2 is equivalent to saying that the mean value is finite.

Rician Fading

The Rician fading model: In this case, the envelope of the fading i.e.,
√
X is Rice

distributed with line of sight parameter K, and the corresponding instantaneous

fading power distribution is given by

fX (x) = (K + 1) exp [−(K + 1)x−K] I0

(

2
√

K(K + 1)x
)

, (5.3)

where I0(t) :=
∑∞

m=0(t/2)
2m/(m!Γ(m + 1)) is the modified Bessel function of the

first kind of order zero. If the distribution of X and Y have parameters KX and

KY respectively, with KX ≤ KY , then X ≤ c Y . The existence of the Shannon

transforms is established in way similar to that of the Nakagami-m case.
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Hoyt Fading

The Nakagami-q (Hoyt) fading model: The envelope
√
X of the fading RV is Hoyt

distributed, and the density of the instantaneous fading power is given by

fX (x) = a exp(−a2x)I0(bx) , (5.4)

where a = (1 + q2)/2q, b = (1 − q4)/4q2. If X and Y have parameters qX and qY

respectively, where qX ≤ qY , then X ≤ c Y . The existence of the Shannon transforms

is established in way similar to that of the Nakagami-m case.

For the cases of Nakagami, Rician and Hoyt fading, the increase in ergodic capacity

with increase in the LoS parameter of the distribution is not due to an increase in the

average fading power, since E [X ] = E [Y ], which is independent of the LoS parameter.

In what follows, we show that ergodic capacity ordering of a given SISO system

under two different fading channels can be used to make meaningful conclusions when

a number of such systems are combined to form a system involving multiple random

variables.

5.3 Systems Involving Multiple Random Variables

In order to illustrate the applicability of the ergodic capacity order to compare

the performance of systems, we provide examples of composite systems where ergodic

capacity ordering of component SISO systems can be used to conclude the capacity

ordering of the system, and also some applications where this is not necessarily the

case. Such generic conclusions can be made even when closed form expressions for

the ergodic capacity are not available. Throughout, we assume that the receiver has

a perfect estimate of the instantaneous fading power, while the transmitter does not

possess any such information.

76



5.3.1 Diversity Combining Systems

As examples of systems involving multiple fading links, we first consider diversity

combining schemes such as maximum ratio combining (MRC) and equal gain com-

bining (EGC) using M receive antennas, for which we aim to compare the ergodic

capacity under two different fading scenarios. Using the properties of the ergodic

capacity order, we now show that diversity combining systems formed using a better

set of components yields a system with a higher ergodic capacity, for the two schemes

considered.

Maximum Ratio Combining

Conditioned on the instantaneous fading power Xm = xm, m = 1, . . . ,M , the fading

power after combining is given by

g
MRC

(x1, . . . , xM) =
M
∑

m=1

xm . (5.5)

The ergodic capacity corresponding to this combining scheme is given by

C
(X)

MRC (ρ) = E [log (1 + ρg
MRC

(X1, . . . , XM))] . (5.6)

It is easy to see that C
(Y )

MRC (ρ) is finite if the Shannon transforms of Ym, m = 1, . . . ,M

exist. We then obtain the following result, which can be used to compare the ergodic

capacity of MRC in two different fading environments characterized by instantaneous

fading powers (X1, . . . , XM) and (Y1, . . . , YM):

Proposition : If Xm ≤ c Ym, m = 1, . . . ,M , then C
(X)

MRC (ρ) ≤ C
(Y )

MRC (ρ), at all

ρ ≥ 0.

Proof. We first verify that g
MRC

(·) is a composable Thorin-Bernstein function. Then,

we use Property S4 to conclude C
(X)

MRC (ρ) ≤ C
(Y )

MRC (ρ), at all ρ ≥ 0, when Xm ≤ c Ym,

m = 1, . . . ,M .
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To show that g
MRC

(·) ∈ CT BF , treat x1 in g
MRC

(·) as the variable, while treat-

ing other arguments as constants, to get g
MRC

(x1; x2, . . . , xM) = x1 + k, where k =

∑M
m=2 xm. By definition, g

MRC
∈ CT BF if and only if

hMRC(x) :=
g′
MRC

(x; x2, . . . , xM)

g
MRC

(x; x2, . . . , xM)
= (x+ k)−1 (5.7)

is a Stieltjes function. This is indeed the case, since hMRC(·) satisfies (2.3) with

a = 0, b = 0, and µ(s) = δ(s). Now, assuming Xm ≤ c Ym, m = 1, . . . ,M , we have

from Property S4 g
MRC

(X1, . . . , XM) ≤ c g
MRC

(Y1, . . . , YM), which implies C
(X)

MRC (ρ) ≤

C
(Y )

MRC (ρ), at all ρ ≥ 0.

Thus, if Ym dominates Xm in the ergodic capacity order for m = 1, . . . ,M , then the

MRC system with fading links given by Y1, . . . , YM will have a higher ergodic capacity

than that with X1, . . . , XM at all SNR.

Equal Gain Combining

For the case of equal gain combining, the ergodic capacity is given by

C
(X)

EGC (ρ) = E [log (1 + ρg
EGC

(X1, . . . , XM))] , (5.8)

where g
EGC

(·) represents the combined instantaneous fading power, and is given by

g
EGC

(x1, . . . , xM) = M−1

(

M
∑

m=1

√
xm

)2

. (5.9)

It is possible to show that C
(Y )

EGC (ρ) is finite if the Shannon transforms of Ym, m =

1, . . . ,M exist, by using the Cauchy-Schwarz inequality in addition to showing that

the Shannon transform of
√
Y m exists if the Shannon transform of Ym exists. While

closed-form expressions for the ergodic capacity of equal gain combining for several

fading distributions are unknown, it is still possible for us to compare these quantities

using the ergodic capacity ordering of component branches:
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Proposition : Let Xm ≤ c Ym, m = 1, . . . ,M . Then C
(X)

EGC (ρ) ≤ C
(Y )

EGC (ρ), at all

ρ ≥ 0.

Proof. We first prove that g
EGC

∈ CT BF , and then use Property S4 to complete the

proof. In order to show that g
EGC

∈ CT BF , treat x1 as the variable and all the other

arguments of g
EGC

as constants, so that g
EGC

(x1; x2, . . . , xM) = M−1(x1+2
√
x1k+k2),

where k =
∑M

m=2 xm. By definition, g
EGC

(·) in CT BF if and only

h(x) :=
g′
EGC

(x; k)

g
EGC

(x; k)
= (x+ k

√
x)−1 (5.10)

is a Stieltjes function. To show that h ∈ S, observe that (h(x−1))−1 = x−1 + kx−1/2

is a Stieltjes function, since any function of the form xα−1, 0 ≤ α ≤ 1 is a Stieltjes

function [17, p. 13], and positive linear combinations of Stieltjes functions also yields

a Stieltjes function. To complete the argument, since (h(x−1))−1 ∈ S, h(x) must also

belong to S [17, p. 66]. Consequently, g
EGC

(·) ∈ CT BF . The rest of the proof follows

arguments similar to the MRC case.

Using Proposition 5.3.1, we infer that if a collection of SISO systems with higher

ergodic capacity is combined to form an EGC system, then the composite EGC

system will have higher overall ergodic capacity.

5.3.2 Multi-Hop Amplify-Forward Relay System

We now turn our attention to multi-hop amplify-forward (MH-AF) relay systems.

This is an example of a system where despite component-wise ergodic capacity or-

dering of individual hops, the overall system need not have a higher ergodic capacity

at all SNR. The system consists of a source, which transmits data to a destination

using M − 1 half-duplex variable gain relays, which possess receive CSI (Figure 5.1).

The source transmits in time slot 1 to relay 1, and relay m in turn amplifies and
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Figure 5.1: M-hop relay. S represents the source, Rm represent the relays and D
represents the destination.

retransmits to relay m+ 1 in time slot m + 1, m = 1, . . . ,M − 2, while relay M − 1

amplifies and transmits to the destination in time slot M . The gain of the mth relay

node is given by αm = ρ/(ρXm−1 + 1) [52], where Xm is the instantaneous fading

power of the mth hop, for m = 1, . . . ,M − 1. X0 denotes the instantaneous fading

power of the channel between the source and the first relay node. It is assumed that

coding/decoding capabilities are provided to the transmitter/receiver alone. In this

case, the end-to-end ergodic capacity is given by

C
(X)

MH−AF (ρ) = E
[

log
(

1 + g
MH−AF

(X0, . . . , XM−1)
)]

, (5.11)

where g
MH−AF

(x0, . . . , xM−1) := (
∏M−1

m=0 [(1 + (ρxm)
−1)] − 1)−1. Exact expressions for

the ergodic capacity in arbitrary fading channels are intractable, even for the two-

hop case. Previously, the ergodic capacity of such a relay in fading channels has been

obtained as an infinite series in [53]. Nevertheless, even in the absence of closed-form

expressions, it is possible to compare the ergodic capacities of two such relay networks

which are identical, except for the fading distribution across the hops. In order to

compare the performance of the MH-AF relay in two different fading scenarios, let

Xm and Ym denote the instantaneous fading power of the mth link of the first and

second fading channels respectively, for m = 0, . . . ,M − 1.

Proposition : If Xm ≤ Lt Ym, m = 0, . . . ,M − 1, then C
(X)

MH−AF (ρ) ≤ C
(Y )

MH−AF (ρ)

at all ρ ≥ 0.

Proof. To establish this result, we recall that a property similar to Property S4

holds for LT ordered random variables: If Xm ≤ Lt Ym, m = 0, . . .M − 1, then
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g(X0, . . . , XM−1) ≤ Lt g(Y0, . . . , YM−1), whenever g which is a Bernstein function in

each variable, while viewing all the other variables as constants [3, Theorem 5.A.7].

Now, this can be established by straight-forward differentiation with respect to xi.

As a result, if the instantaneous fading powers satisfy Xm ≤ Lt Ym, m = 0, . . . ,M−1,

then g
MH−AF

(X0, . . . , XM−1) ≤ Lt g
MH−AF

(Y0, . . . , YM−1), and therefore we observe

from Property S3 that

g
MH−AF

(X0, . . . , XM−1) ≤ c g
MH−AF

(Y0, . . . , YM−1). (5.12)

The proposition then follows, since ergodic capacity ordered RVs have ordered expec-

tations.

In other words, if each hop of Y dominates the corresponding hop of X in the Laplace

transform order, then the overall ergodic capacity of the M-hop MH-AF relay formed

using {Ym}M−1
m=0 will be higher than that formed using {Xm}M−1

m=0 .

However, this conclusion does not hold if we make the weaker assumption that

Xm ≤ c Ym, instead of Xm ≤ Lt Ym, m = 0, . . . ,M − 1. In other words, compo-

nentwise ordering of links in the ergodic capacity ordering sense does not imply the

ordering of the overall system. To see a counterexample, consider the case of an in-

terference dominated channel, where the instantaneous fading power to interference

power ratio Xm are independent and Pareto-type distributed with parameter βX [31]:

FXm
(x) =

xβX

1 + xβX
, x > 0, βX > 0 , (5.13)

and Ym similarly with parameter βY , where βX ≤ βY . In this case, it can be shown

that Xm ≤ c Ym, but Xm � Lt Ym, m = 0, . . . ,M − 1. As an illustrative example,

Fig. 5.2 shows the numerically evaluated ergodic capacities of a multi-hop relay

with M = 3 hops under Pareto-type distributed signal-to-interference ratio with

parameters βX = 1 and βY = 3, so that for each hop Xm ≤ c Ym, m = 0, 1, 2 is
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Figure 5.2: Ergodic capacity of amplify-forward relay with M = 3 slots. The
instantaneous SINR is Pareto distributed with parameters βX = 1 (dashed line) and
βY = 3 (solid line).

satisfied. It is observed from Fig. 5.2 that for ρ < ρ0, where ρ0 ≈ 5 dB, X is a

better channel than Y in the ergodic capacity order, while for ρ ≥ ρ0, the situation

is reversed. In summary, the MH-AF system is an example of a case where contrary

to intuition, it is possible for a fading channel system {Ym}M−1
m=0 to not have a higher

ergodic capacity at all SNR than that of {Xm}M−1
m=0 , even though the ergodic capacity

of each Ym is higher than that of Xm, m = 0, . . . ,M − 1 at all SNR.

5.3.3 Fading Multiple Access Channel

In this example, we focus on comparing the ergodic capacity regions of a multi-

user Gaussian MAC network in two different fading scenarios. Consider the following

system model:

r =
√
ρ

M
∑

m=1

hmsm + v , (5.14)
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Figure 5.3: M-user multiple access channel.

where r is the received signal, ρ is the average SNR of each user, sm is the transmitted

symbol of user m, hm is the complex i.i.d (across time) ergodic fading between each

user and the destination, and v is the AWGN at the receiver. It is assumed that only

the receiver possesses CSI of all the users. The receiver intends to decode the signals

from all the users. If Xm := |hm|2, m = 1, . . . ,M , then the ergodic capacity region

C
(·)
MAC (ρ) is the set of all rate M-tuples that satisfy [54, pp. 407],

∑

m∈S
Rm(ρ) ≤ E

[

log

(

1 + ρ
∑

S
Xm

)]

, (5.15)

where S ⊂ 2{1,...,M}. Using the ergodic capacity order, we can now make the following

observation which links the ordering of ergodic capacities of each user to the overall

ergodic capacity region of the fading MAC.

Proposition : If Xm ≤ c Ym, m = 1, . . . ,M , then C
(X)

MAC (ρ) ⊆ C
(Y )

MAC (ρ), for ρ ≥ 0.

Proof. To begin with, observe that g
MAC,S

(x1, . . . , xM) :=
∑

S xm belongs to CT BF |S|.

If Xm ≤ c Ym, m = 1, . . . ,M , then

g
MAC,S

(X1, . . . , XM) ≤ c g
MAC,S

(Y1, . . . , YM), ∀S ⊂ 2{1,...,M} , (5.16)

due to Property S4. Hence, if Xm ≤ c Ym, m = 1, . . . ,M , then C
(X)

MAC (ρ) ⊆ C
(Y )

MAC (ρ),

for all ρ ≥ 0.

In other words, if each user of the system X has a higher ergodic capacity than the

corresponding user in the system Y , then C
(X)

MAC (ρ) ⊆ C
(Y )

MAC (ρ), for ρ ≥ 0.
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5.4 MIMO Ergodic Capacity Order

In this section, the ergodic capacity ordering of MIMO systems is presented. Some

properties of this stochastic order are discussed, and an application of this framework

in a MIMO MAC setting is presented. Before doing so, we formally define a MIMO

system through its single letter characterization:

y =
√
ρHs+ v , (5.17)

where y is the received signal, H is a complex NR×NT random matrix which captures

the effect of ergodic quasi-static fading, v ∼ CN (0, I) is the additive noise, s is the

transmitted symbol vector, and ρ is the average SNR per transmit antenna. H and

v are assumed to be i.i.d across time, as a result of which a time index has not been

used in (5.17). Further, it is assumed that the receiver tracks the channel fading

realizations H, while no such CSI is available at the transmitter. For this system

model, the instantaneous fading power is given by HHH, and is denoted as X. In

this case, the ergodic capacity is the Shannon transform of the instantaneous fading

power, and is given by C
(X)

MIMO (ρ) = E [log det (I+ ρX)].

Remark: The Shannon transform for an arbitrary distribution on positive semidefinite

matrices need not exist. Using Proposition 2.2.2, it can be shown that the Shannon

transform for a positive semidefinite matrix X exists, if there exists some δ ∈ (0, 1],

such that
∫ t

0
E
[

1− FλQ(X) (u)
]

du = O(t1−δ), t → ∞, where Q is uniformly picked

from {1, . . . , n}.

In what follows, we define a partial order on the instantaneous fading power, which

can be used to compare the ergodic capacity of composite MIMO systems under two

different fading environments.
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5.4.1 Definition and Properties

Definition 5.4.1. For two random positive semidefinite matrices X, Y, we say that

X is dominated by Y in the MIMO ergodic capacity order, and write X �c Y, if the

Shannon transforms of X and Y exist and E [tr log (I+ ρX)] ≤ E [tr log (I+ ρY)],

for all ρ ≥ 0.

In Definition 5.4.1, log(·) is to be viewed as a matrix function, in the sense of

Section 2.1.5. It is easy to show that X �c Y is equivalent to E [log det (I+ ρX)] ≤

E [log det (I+ ρY)], at all ρ ≥ 0. In contrast to the ergodic capacity order on random

variables, the MIMO ergodic capacity corresponding to two different random matrices

X and Y may be identical (for example, when Y = UXUH, where U is a unitary

matrix). In this circumstance, we write X =c Y. In what follows, some properties

of the MIMO ergodic capacity order are developed, which can be viewed as matrix

analogues to the properties developed in Section 5.2.2. The following properties are

true for random matrices X,Y,Z ∈ Sn
+, for which the Shannon transforms exist.

M1: X �c Y ⇐⇒ E [tr g(X)] ≤ E [tr g(Y)], for all g : R → R, such that g ∈ T BF ,

provided the expectations exist.

M2: X �c Y ⇐⇒ g(X) �c g(Y), for all g : R → R, such that g ∈ CT BF .

M3: E [tr exp(−ρX)] ≥ E [tr exp(−ρY)] ∀ρ ≥ 0 then X �c Y.

M4: Let {Xm}Mm=1, {Ym}Mm=1 be independent random matrices in Sn
+, such that

Xm �c Ym, m = 1, . . . ,M . Let g(X1:M) := g(X1, . . . ,XM), i.e., g operates

on M Sn
+ matrices and produces a Sn

+ matrix. If g : RM → R is such that

g ∈ CT BFM then g(X1:M) �c g(Y1:M).

M5: If X �c Y, and Y �c Z, then X �c Z.
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M6: X =c Y if and only if
∑n

i=1 Fλi(X) (u) =
∑n

i=1 Fλi(Y) (u), where Fλi(X) (·) is the

marginal CDF of the ith largest eigenvalue of X.

The proofs of properties M1-M4, and M6 can be found toward the end of this

Chapter, while Property M5 is straight-forward to establish, and its proof is omitted.

Property M3 provides a useful sufficient condition to verify if two random matrices

obey the MIMO ergodic capacity order. This is because

E
[

tr e−ρX
]

≥ E
[

tr e−ρY
]

⇐⇒
n
∑

i=1

E
[

e−ρλi(X)
]

≥
n
∑

i=1

E
[

e−ρλi(Y)
]

, ∀ρ ≥ 0, (5.18)

and Laplace transforms of the eigenvalue distributions are more easy to compute,

when compared to the expectations of the log-determinants.

Next, we form an interesting interpretation of Property M6. From Property M6,

it follows that X =c Y ⇐⇒ EQ[FλQ(X) (u)] = EQ[FλQ(Y) (u)], where Q is uniformly

picked from {1, n}. In other words, if the distribution of an eigenvalue picked ran-

domly and uniformly from both matrices is identical, then the two random matrices

are regarded to be the same with respect to the MIMO ergodic capacity order.

Although the proposed definition of the MIMO ergodic capacity order is one of

many different possible partial orders on matrices, we assert that it is a natural gen-

eralization of the ergodic capacity order defined in Section 5.2. This is also elucidated

by the fact that the properties M1-M3 and M5 are indeed straight-forward matrix

generalizations of properties S1-S3 and S5 respectively. Further, the MIMO ergodic

capacity order bears the following connection with the ergodic capacity order defined

for random variables:

Proposition : Let λQ(X) ≤ c λQ(Y), where λQ(X) is an eigenvalue of X picked

uniformly from the set of eigenvalues of X. Then X �c Y. Conversely, if X �c Y,

then λQ(X) ≤ c λQ(Y).
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Given two MIMO fading systems X and Y, Proposition 5.4.1 implies that Y

dominates X in the MIMO ergodic capacity order, if and only if a uniformly randomly

selected eigen-channel of Y has a larger ergodic capacity than that of a uniformly

randomly selected eigen-channel of X.

5.4.2 Application

An illustrative example to elucidate the efficacy of the MIMO ergodic capacity

order is the M user Gaussian MIMO-MAC, where user i possesses Nt antennas. We

assume that only the receiver has CSI, and that each antenna of each user transmits

independent signals. Further, each user is allocated the same transmit power ρ per

transmit antenna. In this case, the ergodic capacity region CMM(ρ) is given by [55]:

CX
MM(ρ) :=

{

(R1, . . . , RM) :
∑

i∈S
Ri ≤ E

[

log det
(

I+ ρg
MM,S

(X1:M)
)]

,

∀S ⊆ {1, . . . ,M}} , (5.19)

where g
MM,S

(X1:M) :=
∑

i∈S
Xi, with S ⊆ {1, . . . ,M}. Clearly, when Xi is assumed to

be the variable while viewing all other arguments of g
MM,S

(·) as constant matrices,

it can be seen that g
MM,S

(·) is a Thorin-Bernstein matrix function of Xi, for i =

1, . . . ,M . Therefore, through property M4, g
MM,S

(X1:M) �c g
MM,S

(Y1:M), whenever

Xi �c Yi, i = 1, . . . ,M . Consequentially, CX
MM(ρ) ⊆ CY

MM(ρ), for ρ ≥ 0.

5.5 Conclusion

The ergodic capacity order and its properties can be exploited to obtain compar-

isons of ergodic capacities of composite systems across two different fading channels

whose instantaneous SNRs satisfy the ergodic capacity order. For systems such as

MRC and EGC which involve multiple instantaneous SNR RVs, we conclude that

combining a better set of channels (in the ergodic capacity order) produces a sys-
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tem with a higher ergodic capacity. This conclusion is true for all systems whose

end-to-end instantaneous SNR belongs to the CT BFm set. For systems whose end-

to-end SNR does not belong to CT BFm, component-wise ergodic capacity ordering

of instantaneous SNR need not produce a system with a higher ergodic capacity. An

example to illustrate this point is the MH-AF relay for which the instantaneous SINR

is Pareto-type distributed. An extension of the ergodic capacity order to MIMO sys-

tems is also proposed herein. The properties of the ergodic capacity order can be

used to compare the capacity regions of systems such as the multi-user MAC in two

different fading environments, for both the single and multiple antenna case.

5.6 Proofs: Properties of MIMO Ergodic Capacity Order

We now discuss the proofs of the properties of the MIMO ergodic capacity order.

The proofs of the properties S1-S6 of the ergodic capacity order (for scalar RVs) are

special cases of Properties M1-M6 respectively, and can be obtained by setting n = 1.

Proof of Property M1

Assume X �c Y. Using the identity det (I+ ρX) =
∏n

i=1 (1 + ρλi(X)), we can

write

X �c Y ⇐⇒ E

[

n
∑

i=1

log(1 + ρλi(X))

]

≤ E

[

n
∑

i=1

log(1 + ρλi(Y))

]

, ∀ρ > 0. (5.20)

Multiplying (5.20) by ρ−1, and taking the limit as ρ → 0, it is seen that

X �c Y =⇒ E [tr X] ≤ E [tr Y] , (5.21)

provided the Shannon transforms ofX andY exist, and E [tr X] < ∞ and E [tr Y] <

∞.
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It now follows from (5.20) and (5.21) that

X �c Y ⇐⇒ E

[

n
∑

i=1

log(1 + tρλi(X))µ(t) + a + bλi(X)

]

≤ E

[

n
∑

i=1

log(1 + tρλi(Y))µ(t) + a + bλi(Y)

]

,

∀a, b ≥ 0, µ(t) ≥ 0, ρ > 0, t > 0 . (5.22)

Integrating the right hand side of (5.22) over t in the interval [0,∞) preserves the

inequality in (5.22). Therefore,

X �c Y =⇒ E





n
∑

i=1

a+ bλi(X) +

∞
∫

0

log(1 + tρλi(X))µ(t)dt





≤ E





n
∑

i=1

a+ bλi(Y) +

∞
∫

0

log(1 + tρλi(Y))µ(t)dt



 , ∀ρ > 0 . (5.23)

The summand in (5.23) is an arbitrary Thorin-Bernstein function, since a, b, µ are

arbitrary and nonnegative. Denoting this Thorin-Bernstein function by g, the direct

part of the property is proved by observing from Section 2.1.5 that E [
∑n

i=1 g(λi(X))] =

E [tr g(X)]. To prove the converse, choose g(A) = log(I+ ρA).

Proof of Property M2

Let X,Y ∈ Sn
+, and X �c Y. Let φ : R → R belong to T BF , and g : R → R

belong to CT BF . Using the definition of matrix functions, it is easy to see that

f(X) := φ(g(X)) ∈ T BF . From Property M1, it is seen that X �c Y ⇐⇒

E [tr φ(g(X))] ≤ E [tr φ(g(Y))]. In other words, g(X) �c g(Y), which proves the

direct part of the property. To see the converse, choose f as the identity map.
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Proof of Property M3

Let X,Y ∈ Sn
+, and X �c Y. Using Frullani’s formula (2.5), it is evident that an

equivalent condition to X �c Y is given by

X �c Y ⇐⇒

E





∞
∫

0

e−s

s

n
∑

i=1

(

1− e−ρsλi(X)
)

ds



 ≤ E





∞
∫

0

e−s

s

n
∑

i=1

(

1− e−ρsλi(Y)
)

ds



 .

(5.24)

Commuting the expectation and integral in (5.24), we get

X �c Y ⇐⇒
∞
∫

0

e−s

s
E

[

n
∑

i=1

e−ρsλi(X)

]

ds ≥
∞
∫

0

e−s

s
E

[

n
∑

i=1

e−ρsλi(Y)

]

ds. (5.25)

Therefore, if E [
∑n

i=1 exp(−ρλi(X))] ≥ E [
∑n

i=1 exp(−ρλi(X))] , ρ > 0, then X �c

Y. Finally, observing that E [
∑n

i=1 exp(−ρλi(X))] = E [tr exp(−ρX)], the proof is

concluded.

Proof of Property M4

This property is proved using mathematical induction. To begin with, choose a

matrix function φ ∈ T BF , and X1:m := [X1, . . . ,Xm] have independent and nonneg-

ative random matrices as components. Assume likewise for Y1:m := [Y1, . . . ,Ym].

Now, for m = 1, Property M4 is true due to Property M2. Next, let us assume

Property M4 to be true for sequences of length m − 1. Thus, for g ∈ CT BFm we

have g([C X1:m−1]) �c g([C Y1:m−1]), where g([C X1:m−1]) := g(C,X1, . . . ,Xm−1),

and C ∈ Sn
+. This implies

E [tr φ (g([C X1:m−1]))] ≤ E [tr φ (g([C Y1:m−1]))] , (5.26)
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where we have used Lemma 2.1.1 and Lemma 2.1.2. Next, for sequences of length m,

consider

E [tr φ (g(X1:m)) |X1 = C] = E [tr φ (g([C X2:m]))] (5.27)

≤ E [tr φ (g([C Y2:m]))] = E [tr φ (g(Y1:m)) |Y1 = C] , (5.28)

where (5.28) follows from (5.27) due to (5.26). Now, taking the expectation with

respect to X1 on the left hand side of (5.27) and the right hand side of (5.28), we

get E [tr φ (g(X1, . . . ,Xm))] ≤ E [tr φ (g(Y1, . . . ,Ym))]. Since in the above argu-

ment, X1 is an indeterminate parameter, the same line of reasoning applies when

conditioning on any other parameter, and the proof of the property thus follows.

Proof of Property M6

Let X,Y ∈ Sn
+, and E [log det (I+ ρX)] = E [log det (I+ ρY)]. Using the repre-

sentation of the log-determinant in terms of the eigenvalues, and (2.12), it is seen

that

X =c Y ⇐⇒
∞
∫

0

n
∑

i=1

1− Fλi(X) (u)

1/ρ+ u
du =

∞
∫

0

n
∑

i=1

1− Fλi(Y) (u)

1/ρ+ u
du . (5.29)

To see the direct part of the Property, recall the Stieltjes transform of a function of

bounded variation is in a one-to-one correspondence with the function, and
∑n

i=1 1−

Fλi(X) (u) is of bounded variation. It is therefore immediate that if E [log det (I+ ρX)] =

E [log det (I+ ρY)], then
∑n

i=1 Fλi(X) (u) =
∑n

i=1 Fλi(Y) (u), a.e. To see the converse,

let
∑n

i=1 Fλi(X) (u) =
∑n

i=1 Fλi(Y) (u) a.e. Then according to (5.29), E [log det (I+ ρX)] =

E [log det (I+ ρY)].
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5.7 Motivation and Literature Survey

It is of interest to see if the typical distributions used for multipath, shadowing

and composite multipath/shadowing may be unified under a common class with de-

sirable analytical properties. There have been multiple efforts toward unifying fading

distributions in the past. One of the unified models - the spherically invariant random

process has been proposed as a general model for the fading envelope RV as variance

mixture of a Rayleigh RV [56]; a unification proposed in [57] models the instanta-

neous channel power RV as the product of a gamma RV and a generalized-gamma

RV. While this model encompasses many known fading distributions, it does not in-

clude some distributions such as the Pareto distribution, which has been used in [31]

to account for interference. Another unification in the literature is the generalized

gamma distribution (also known as the Stacy distribution [58]), which is shown to

correspond to the distribution of the envelope, when the received signal is composed

of clusters of multipath components, and the receiver possesses power-law nonlinear-

ity [59]. While this is a physically motivated fading model, it does not include fading

distributions such as the Beta-prime distribution, which is used to model the signal

to interference ratio in cognitive radio applications [60]. There are several other refer-

ences where a unified fading model is proposed [61, 62]. However, they do not include

some popularly used fading distributions such as the Rician distribution.

In this chapter, we propose to unify fading distributions by modeling their instan-

taneous channel power as an infinitely divisible (ID) RV. A RV is said to be infinitely

divisible, if it can be written as a sum of n ≥ 1 independent and identically distributed

(i.i.d.) RVs, for each n. Intuitively, this means that the channel can be viewed as

a (time/frequency/antenna) diversity combining system with n i.i.d. channels, for

every n ≥ 1. Infinitely divisible RVs have many interesting mathematical properties
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[63], which are relevant in the performance analysis of wireless systems. Furthermore,

almost every distribution used to model multipath, shadowing and composite multi-

path/shadowing is seen to be included in the class of ID RVs, as shown in this work.

Furthermore, most of these distributions are members of a special subclass of ID RVs

known as generalized gamma convolutions (GGCs). Consequently, special attention

is devoted to this subclass of ID RVs. Formally, GGCs are defined as the weak limits

of finite convolutions of Gamma distributions, and have been thoroughly studied in

[64, 65, 66, 67]. There are numerous applications of GGCs in financial economics

[68, 69, 70] and risk analysis [71, 72]. GGCs possess remarkable analytical structure

and closure properties. For example, a sum of independent GGC RVs is a GGC; the

product of independent RVs belonging to a subclass of GGC RVs is a GGC. These

properties make GGCs an attractive model for multipath fading, shadowing or com-

posite models that incorporate both. Despite possessing properties which are useful

in fading system analysis, to the best of our knowledge, no applications of GGCs has

been found in the wireless communications literature.

The class of GGCs includes a surprisingly large number of fading models such

as the lognormal, Rayleigh, Nakagami-m, generalized gamma (Stacy), Pareto, beta,

inverse Gaussian and the positive α-stable distributions. Moreover, composite multi-

path/shadowing models such as Rayleigh-lognormal, Nakagami-lognormal, and spe-

cial cases of the spherically invariant random process, and the generalized model

proposed in [57] are also GGCs. From a wireless perspective, if a system has GGC

distributed instantaneous channel power, then the fading channel is equivalent to a

coherent linear combination of (possibly infinitely) many independent branches where

the instantaneous fading power is gamma distributed. A subclass of GGCs can also

be thought of as a mixture Nakagami-m distribution, where m is random. Unifying

instantaneous channel power distributions as GGCs, it is possible to obtain novel gen-
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eralized expressions for performance metrics of wireless systems, such as the ergodic

capacity and the average SER. Furthermore, this unification reveals new stochastic

ordering relations applicable to members of GGC. Lastly, the conditions under which

systems composed of multiple fading RVs, such as diversity combining schemes have

GGC end-to-end instantaneous channel power, are obtained. This facilitates one to

obtain bounds on the performance of such systems.

The rest of the paper is organized as follows. The system model and the perfor-

mance metrics under consideration are given in Section 5.8. A short exposition of

infinite divisibility highlighting connections in wireless communications is presented

in Section 5.9. Some examples of fading distributions which are ID are also provided

in this section. Performance analysis of GGC fading channels is delegated to Section

5.11. Section 5.12 describes the stochastic ordering of GGC RVs. In Section 5.13,

multi-antenna systems such as MRC, EGC and SC are considered.

5.8 System Model

The system model under consideration is the following:

y =
√

ρXs+ w , (5.30)

where y is the received signal, ρ ≥ 0 represents the average signal to noise ratio (SNR),

s is the transmitted symbol chosen from either one of DPSK or MPSK constellations,

w is circularly symmetric additive white Gaussian noise with zero mean and unit

variance. In (5.30), X represents the magnitude square of the complex baseband

equivalent fading coefficient, and is called as the instantaneous channel power. We

normalize E [X ] = 1. Unifying the various distributions of X under the assumptions

of multipath fading, shadow fading and composite multipath/shadowing is the focus

of this work. The unification permits generalized performance analysis of the system
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with respect to three metrics: the average SER, the ergodic capacity and the outage

probability, which are defined next.

5.8.1 Average Symbol Error Rate

The average SER P e (ρ) is defined as follows:

P e (ρ) = E [Pe(ρX)] , (5.31)

where Pe(ρX) is the instantaneous SER, and is dependent on the constellation of

choice. For the case of DPSK or MPSK constellation, the instantaneous SER is c.m.,

and can be written as [50]:

Pe(ρx) =

∞
∫

0

exp(−ρux)η(u)du , (5.32)

where η(·) is given by

η(u) =



















1
2
I (u = 1) , DPSK

√
βPSK

2π

I

(

u≥ βPSK

sin2((M−1) π
M )

)

u
√
u−βPSK

, MPSK

, (5.33)

where βPSK = sin2(π/M). This representation of the SER will be used in Section

5.12.

The analysis of the asymptotic SER is considered in Section 5.11.1. In the asymp-

totically high SNR regime, P e (ρ) is given by

P e (ρ) ∼ cQl(ρ
−1)ρ−D , ρ → ∞ , (5.34)

where l(x) is slowly varying at 0. In (5.34), the diversity order D is the asymptotic

slope of the average SER on a log-log plot versus the average SNR, and is defined as

[73]

D = − 1

log t
log lim

ρ→∞

P e (ρt)

P e (ρ)
, t > 0 , (5.35)
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which is also the variation exponent of (5.31) at ∞. The term cQ in (5.34) is a

modulation dependent constant, and is given by cQ = π/4 for the case of DPSK [73],

and

cQ = (π sin2D(M−1π))−1

∫ (1−M−1)π

0

sin2D θdθ , (5.36)

for the case of MPSK [73]. We also define an asymptotic quantity known as the array

gain, which represents the shift of the average SER curve to the right on a log-log

plot, and is defined as

G = cQ lim
ρ→∞

ρDP e (ρ) . (5.37)

Although the limit in (5.37) may not exist every fading distribution, it will be shown

in Section 5.11.1 that the limit exists for GGCs satisfying certain conditions, and is

in fact, a finite constant.

5.8.2 Outage Probability

The outage probability for the system (5.30) is defined as the probability that the

instantaneous SNR is less than a fixed threshold value, and is given by

Pout(x/ρ) = Pr[X ≤ x/ρ] , (5.38)

where x is a constant.

5.9 Infinitely Divisible Fading Distributions

In what follows, a short exposition of infinite divisibility and some of its subclasses

is provided, with some examples of popularly used fading distributions which are ID.

5.9.1 Infinite Divisibility

A probability distribution is said to be infinitely divisible (ID) if, for each n ≥

1, it can be decomposed into n identical convolution factors. Some examples of
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such distributions are the Gamma, the Poisson and the Gaussian distributions. In

this paper, we refer to RVs with ID distributions as ID RVs. Non-negative ID RVs

are characterized by the fact that the Laplace exponents of such RVs are Bernstein

functions. The set of all nonnegative ID RVs is denoted by I. Nonnegative ID RVs

are very relevant from a wireless communications context, because it is intuitive to

view fading as the resulting effect of coherent combination of contributions from

multiple different sources. Indeed, almost all known instantaneous channel power

distributions are ID, with examples listed in Section 5.9.4. The infinite divisibility

of the lognormal distribution, proved by Thorin [74] revealed a very rich class of ID

probability distributions known as generalized gamma convolutions (GGC), which

possess extremely useful mathematical properties applicable to wireless systems. In

addition, several popularly used fading distributions are not only ID, but also GGC.

This fact motivates us to consider this class of ID distributions, which is discussed

next.

5.9.2 Generalized Gamma Convolutions

The subset of non-negative ID distributions for which the Laplace exponent be-

longs to T BF , constitutes the set E of GGC probability distributions. In other words,

the LT of the RV admits the form

φ(s) = exp



−as−
∞
∫

0

log(1 + s/u)µ(du)



 , (5.39)

where the parameters a ≥ 0, and µ(·) (nonnegative measure on [0,∞)) uniquely

characterize the GGC distribution. In this paper, we call the Thorin measure of the

Laplace exponent of the GGC (e.g. µ in (5.39)) as the Thorin measure of the GGC.

In a wireless context, the Thorin measure of a GGC has a physical interpretation:

Consider the case where a continuum of fading channels with Gamma distributed
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instantaneous power is coherently summed up. If the sequence of shape parameters

corresponding to each rate parameter u in [0,∞) of the Gamma distributed channels

is µ(u), then the Thorin measure of the GGC channel is µ.

In what follows, we will restrict our attention to nondegenerate GGCs with a = 0,

because a merely represents a translation of the instantaneous channel power PDF,

and performance analysis for such channels can be obtained from systems where a = 0

using straightforward algebra.

The variation exponent of the LT of the GGC near infinity will correspond to the

diversity order, and this quantity relates to the Thorin measure as follows:

Lemma 5.9.1. [64, Theorem 4.1.4] The LT of a GGC is regularly varying at ∞, and

the variation exponent equals the Thorin mass. That is, limρ→∞ φ (tρ) /φ (ρ) = t−c,

where

c =

∞
∫

0

µ(ds) (5.40)

The variation exponent of the LT of a GGC near ∞ will have applications in

asymptotic performance analysis, as discussed in Section 5.11.

The Thorin measure also determines the expected value of a GGC RV:

Proposition : Let X be a GGC. Then E [X ] =
∫∞
0

µ(du)/u, if the integral is finite.

Proof. It is easy to show for any nonnegative RV that E [X ] = − limρ→0 dφX
(ρ) /dρ.

Since the LT of a GGC is of the form φ
X
(ρ) = exp(−γ(ρ)), E [X ] = limρ→0 dγ(ρ)/dρ,

where γ(·) is the Laplace exponent of the GGC. Representing γ in terms of the Thorin

measure,

E [X ] = lim
ρ→0

∞
∫

0

1/u

1 + ρ/u
µ(du) , (5.41)
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where µ is the Thorin measure. The limit and integral can be interchanged whenever

∫ ∞

0

u−1µ(du) < ∞ , (5.42)

because under this condition dominated convergence is satisfied. Assuming (5.42) to

be true, the limit and integration are interchanged, to yield the Proposition.

If X represents the instantaneous channel power in a fading system, then Proposition

5.9.2 gives the average channel power of the system. Hereafter, we assume that the

mean of the GGC is normalized to 1, as per the discussion after (5.30). In doing so,

we ensure that ρ in (5.30) reflects the signal to noise ratio of the system.

Next, an alternate characterization of GGCs is in terms of gamma distributions

is noted. Recall that the gamma density with shape parameter α and rate parameter

θ (represented as Gamma(α, θ)) is given by

fX (x) =
xα−1θα

Γ(α)
exp (−θx) , (5.43)

where Γ(·) is the Gamma function. Then, an arbitrary GGC is a weak limit of a

sequence of convolutions of gamma distributions with suitably chosen parameters. It

is straightforward to see that, if X1 and X2 are two GGCs with Thorin measures µ1

and µ2, then X1 +X2 is a GGC with a Thorin measure µ1 + µ2.

Some useful properties of non-degenerate GGCs are now presented.

The density of a GGC always exists [64, Theorem 4.1.2, Theorem 4.1.3], and can

be written in terms of c.m. functions as follows:

Lemma 5.9.2. [64, Theorem 4.1.1, Theorem 4.1.2] The density of a GGC with

Thorin mass α < ∞ can be written in the form

fX (x) = xα−1h(x) , (5.44)
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where h(·) is a c.m. function, which is slowly varying at 0. Moreover, h(0+) is finite

if and only if
∫∞
1

log uµ(du) < ∞, and in this case

h(0+) =
1

Γ(α)
exp





∞
∫

0

log uµ(du)



 . (5.45)

The representation of the PDF of a GGC in the form (5.44) is particularly useful

to obtain asymptotic performance metrics as shown in Section 5.11.1. GGCs are also

mixtures of Gamma distributions, as summarized in the following Lemma:

Lemma 5.9.3. [64, Theorem 4.1.1] If X is a GGC with Thorin mass α < ∞, then

X = AZ, where Z ∼ Gamma(α, 1) and A ≥ 0 are independent. Moreover, h(x) in

(5.44) is given by

h(x) = (Γ(α))−1E
[

A−α exp(−x/A)
]

. (5.46)

Interpreting X as the instantaneous channel power of a GGC channel, from

Lemma 5.9.3 it is straightforward to see that every GGC channel with finite Thorin

mass is equivalent to a variance mixture of a Nakagami-m channel. This is because

the instantaneous channel power corresponding to Nakagami-m fading is Gamma dis-

tributed [34]. It is shown in Section 5.9.4 that several fading distributions such as

Nakagami-m, Pareto and generalized gamma distributions have instantaneous chan-

nel powers which are GGC RVs, and the corresponding Thorin masses are finite.

5.9.3 Hyperbolically Completely Monotone RVs

A subset of E, consisting of the distributions for which the density is a hyper-

bolically completely monotone (HCM) function is denoted by H, and the RVs corre-

sponding to distributions in this set are called HCM RVs. A function g is defined to
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be a HCM function if g(uv)g(u/v) can be written as [64, p. 68]

g(uv)g(u/v) =

∞
∫

0

exp(−λu(v + v−1))K(dλ; u) , K(dλ; u) ≥ 0 , (5.47)

for each u > 0. HCM RVs enjoy the following properties under products and quotients

of RVs, which will be useful in obtaining closure results for wireless systems involving

multiple fading RVs:

Lemma 5.9.4. If X1, X2 are independent HCM RVs, and Y is a GGC independent

of X1 and X2, then

(i) Xq
1 ∈ H, for |q| ≥ 1.

(ii) X1X2 ∈ H.

(iii) X1Y ∈ E.

The density of a HCM RV admits the following canonical characterization

Lemma 5.9.5. [64, p. 81] The density function of a HCM RV admits the canonical

form

fX (x) = Cxα−1p1(x)p2(1/x) (5.48)

where α ∈ R, and

pj(x) = exp



−bjx−
∞
∫

0

log

(

x+ y

1 + y

)

Tj(dy)



 , (5.49)

with bj ≥ 0, and Tj(dy) being non-negative measures on (0,∞) satisfying
∫∞
0
(1 +

y)−1Tj(dy) < ∞, j = 1, 2.

In the case of HCM RVs, the Thorin mass can be represented in terms of the

parameters α, bj and Tj as
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Lemma 5.9.6. [64, p. 74] If X is a HCM RV with canonical PDF parameters α, bj

and Tj, j = 1, 2, then

∫ ∞

0

µ(ds) =















α + T2([1,∞]) , if b2 = 0

∞ , if b2 6= 0

. (5.50)

Many RVs relevant to wireless communications are HCM RVs. For example, the

Gamma RV, the positive stable RV and the lognormal RV are HCM RVs.

In this work, the conditions under which the Thorin mass of a sum or product of

GGC’s is finite is required. To the best of our knowledge, these conditions were not

found elsewhere in the literature, although it is not too difficult to derive them.

Proposition : Let X1, X2, X3 be independent nonnegative RVs, where X1 and X2

are GGC’s and X3 is a HCM RV. Then

(i) The Thorin mass of X1 +X2 is finite if and only if the Thorin masses of both

X1 and X2 are finite.

(ii) The Thorin mass of X1X3 is finite if the Thorin mass of either X1 or X3 is finite.

(iii) The Thorin mass of X−1
3 is finite if the canonical parameters of X3 in (5.48)

satisfy α < ∞, b1 = 0 and T1([1,∞)) < ∞.

5.9.4 Examples

In this work, it is proposed to view instantaneous channel power distributions as

members of I. To justify that the I class is indeed a unification of fading distributions,

many of the popularly used fading channels are shown to have ID instantaneous

channel powers. Among these channels, distributions for which the instantaneous

channel power is a GGC or HCM RV are identified and summarized in Table 5.1,

as this fact will be useful in the analysis of systems, where the overall instantaneous
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Name ID GGC HCM

Rician Yes No No

Nakagami-m Yes Yes Yes

Hoyt Yes Yes Yes

Generalized gamma distribution Yes Yes Yes

Lognormal Yes Yes Yes

Generalized-K Yes Yes Yes

N∗Nakagami Yes Yes Yes

Weibull Yes Yes Yes

Positive stable Yes Yes some cases

Pareto Yes Yes Yes

Rayleigh-lognormal Yes Yes Yes

Nakagami-lognormal Yes Yes Yes

Spherically invariant random process Yes some cases some cases

Table 5.1: Commonly used fading distributions, and whether their instantaneous
channel power belongs to I, E or H.

channel power RV involves a sum or product of two or more RVs (See Section 5.13).

Explicit examples of RVs which are ID, GGC and HCM are now listed.

Rician-K Fading

Rician-K distribution is used to model the fading envelope in certain line-of-sight

scenarios [2, p. 21]. For this case, if X is a nonnegative RV corresponding to the

instantaneous channel power, then
√
X is Rice distributed with parameter K. The

LT of X is given by [2, p. 19]

φ
X
(s) =

1 +K

1 +K + s
exp

(

− Ks

1 +K + s

)

. (5.51)
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It is now shown that X is an ID RV. To begin with, the Laplace exponent of X is

obtained from (5.51) as

γX(s) =
Ks

1 +K + s
+ log

(

1 +
s

1 +K

)

. (5.52)

Using Frullani’s representation for log(1 + x) [19, p. 6], it is straightforward to show

that γX(s) can be written in the form (2.4) with a = b = 0 and

τ(s) = exp(−(1 +K)s)

(

K(1 +K) +
1

s

)

. (5.53)

Thus, γX(s) is a Bernstein function, and consequently, X is an ID RV. However, this

is not a GGC because the Laplace exponent γX(·) is not a Thorin-Bernstein function.

To see this, recall from Chapter 2.1.3 that a Bernstein function with Levy measure τ

is a Thorin-Bernstein function, if and only if sτ(s) is a c.m. function. However, by

differentiating sτ(s), where τ(s) is defined in (5.53), it is seen that the first derivative

is not non-positive at all values of s, which shows that sτ(s) is not c.m..

The instantaneous channel power corresponding to Rician-K fading is therefore

an ID RV, but not a GGC.

Spherically Invariant Random Process

The spherically invariant random process (SIRP) model has been proposed as a unified

model for the fading envelope distribution in the literature [56]. In this case, the

instantaneous channel power X is given by

X = AE , (5.54)

where E is an exponential RV, and A is a positive valued RV.

It is now shown that X for this case is always an ID RV, and is GGC and HCM

for certain special cases. To see that X is ID, observe that X is a variance mixture
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of exponentials, which is ID, according to [64, Theorem 2.4.3]. Not every member

of SIRP is a GGC. A simple counterexample is the case of Rician fading, which is

a member of SIRP according to [56], and not a GGC as seen in Section 5.9.4. The

special cases of SIRP which are GGC RVs and HCM RVs are now considered. X is

a GGC, whenever A is a GGC, according to Lemma BLAH. Also, X is a HCM RV

for all such members of SIRP where A is a HCM RV.

Nakagami-m Fading

Nakagami-m fading is used to model short-term fading effects in line of sight channels.

In addition, the Gamma distribution has also been used to model long-term fading

effects in the literature [75]. Moreover, the exponential distribution, which is a special

case of a Gamma RV with unit shape and rate parameters, arises as the instantaneous

fading power distribution in Rayleigh fading channels.

The instantaneous channel power X of Nakagami-m fading is Gamma distributed

with shape m and rate m[34]. In this case, X is a HCM, GGC and ID RV. To see that

X is a GGC, observe that the LT of X is given by φ
X
(s) = exp(−m log(1 + s/m)),

which satisfies the representation of the LT of a GGC specified in (5.39). It is then

straightforward to show using (5.39) that the Thorin measure in this case, is given by

µ(u) = mI (u = m) , (5.55)

and the Thorin mass is m, as can be verified by rewriting the PDF in the form (5.44).

Further, h(·) is given by h(x) = m exp(−mx)/Γ(m). The proof of X being a HCM

RV is given in [64, p. 75]. The canonical parameters of (5.48) are given by α = m,

b1 = m, b2 = 0, Tj = 0, j = 1, 2. Therefore, X is a HCM, GGC and ID RV
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Nakagami-q (Hoyt) Fading

Nakagami-q (Hoyt) fading is observed in scenarios such as satellite communications

subject to ionospheric scintillation [76]. Special cases of Hoyt fading are Rayleigh

fading (q = 1) and one-sided Gaussian (q = 0).

The in-phase and quadrature components of the complex baseband fading RV

for the case of Nakagami-q fading are independent zero mean Gaussian RVs with

unequal variances, such that the ratio of the quadrature variance to the in-phase

variance equals q [77, 78]. Further, the average channel power is unity if the sum of

the variances is 1. As a result, the instantaneous channel power X can be written as

X =
1

1 + q2
X1 +

q2

1 + q2
X2 , (5.56)

where X1 and X2 are independent (central) chi-squared RVs with 1 degree of freedom,

and 0 ≤ q ≤ 1.

It is now argued that X is a GGC and hence also ID. Toward this end, first

observe that Xi, i = 1, 2 is a GGC, because its Laplace exponent is given by γ(s) =

(1/2) log(1 + 2s), which is a Thorin-Bernstein function. It then follows from (5.56)

that X is a GGC, because GGCs are closed under nonnegative scaling of RVs and

addition of RVs. Moreover, using the identity φ
aX

(s) = φ
X
(as) for any nonnegative

RV X , it can be shown that the Thorin measure is given by

µ(u) =
1

2(1 + q2)
I

(

u =
1 + q2

2

)

+
q2

2(1 + q2)
I

(

u =
1 + q2

2q2

)

, (5.57)

and the Thorin mass is 1. It is also noted that X is not HCM, because the Thorin

measure of a HCM RV is allowed to have at most one atom [64, p. 88], which is not

the case for X , as observed from (5.57). Therefore, X for Hoyt fading is a GGC and

ID RV, but not a HCM RV.
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General Lognormal Distribution

The lognormal distribution is commonly used to model the long-term shadowing effect

in wireless channels [2].

The density of the general lognormal RV is given by

fX (x) = cxµ/σ2−1 exp

(

−(log x)2

2σ2

)

, (5.58)

with µ ∈ R, σ > 0, and c > 0 is a normalizing constant. It has been shown in [64,

p. 74] that the general lognormal distribution belongs to H, and hence also E and

I. Although the Thorin measure is unknown, the canonical parameters of (5.48) are

known to be b1 = b2 = 0, α = µ/σ2 and Tj(u) = σ−2u−1, u > 1 [64, p. 74], and the

Thorin mass can be calculated from (5.50) to be ∞.

Generalized Gamma Distribution (Stacy Distribution)

The instantaneous channel power X is generalized Gamma distributed, when the

envelope of the fading amplitude is modelled as a generalized Nakagami-m RV [75].

The Weibull distribution is a special case of the density in (5.60), which has been

used to approximate the multipath wireless channel from channel measurements [79].

Other distributions which are special cases of the generalized Gamma distribution are

the inverse-Gaussian distribution and the Nakagami-m distribution. Moreover, the

generalized gamma distribution arises as the instantaneous channel power distribution

in Nakagami-m fading channels with receiver non-linearity, where the non-linearity is

captured as a power parameter, since X can be written as [64, p. 13]

X = Y 1/r , (5.59)

where Y ∼ Gamma(ǫ/r, c2).
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The density of X is given by

fX (x) = c1x
ǫ−1 exp (−c2x

r) , (5.60)

where 0 < |r| ≤ 1, c1, c2 ≥ 0, and ǫ/r > 0.

It is now shown that this distribution belongs to H and consequently E and I.

Recall that the Gamma distribution belongs to H, as shown in Section 5.9.4. Using

Lemma 5.9.4, it is then seen that the generalized gamma distribution also belongs

to H, and is therefore a GGC. While the Thorin measure for the general case is

unknown, the Thorin mass is equal to ǫ if r > 0, and ∞ otherwise, as can be verified

by representing (5.60) in the form (5.44), and further, the function h(·) is given by

h(x) = c1 exp(−c2x
r).

Product of Generalized Gamma Random Variables

The product of independent generalized Gamma RVs has been proposed as a unified

fading model in the literature [62]. As a special case, a product of N independent

Gamma RVs is obtained, which is the instantaneous channel power distribution in

the generalized-K fading model [80]. Another special case of this distribution is the

N∗Nakagami fading model [61, 81], where the envelope is a product of N independent

but not necessarily identically distributed Nakagami-m RVs.

Consider X to be a product of N independent but not necessarily identically

distributed generalized Gamma distributed RVs. This distribution is HCM as ob-

served from an application of Lemma 5.9.4 and the fact that the generalized Gamma

distribution belongs to H. As a consequence, the distribution is also in E and I.
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Positive Stable Distribution

Positive stable distributions have been used to model the interference at the primary

receiver in a cognitive radio network, when the interfering secondary terminals are

distributed in a Poisson field, and there is a guard zone around the primary receiver

[82].

The positively skewed stable distribution is a heavy tailed distribution, which is

characterized by its LT as φ
X
(s) = exp(−sr), 0 < r ≤ 1. No closed form expression

for the distribution or density is known in general. Nevertheless, it is known that this

distribution is a GGC [64, p. 35], with Thorin measure given by

µ(u) =
r sin rπ

π
ur−1 , (5.61)

and Thorin mass equal to ∞. It has been established in the literature that this

distribution belongs to H when r ∈ (0, 1/4) ∪ [1/3, 1/2] [83].

Pareto Distribution

Pareto RVs are heavy-tiled distributions used to model signal to interference ratios

in interference dominated scenarios. A Pareto RV can be written in the form [64, p.

14]

X =

(

X1

X2

)
1
r

, (5.62)

where Xj ∼ Gamma(kj , 1), j = 1, 2. The fact that Pareto RVs are ratios of Gamma

RVs raised to a non-negative power, as shown in (5.62) leads to many wireless systems

with Pareto instantaneous channel power. For example, consider a system with a

transmitter, receiver and an interfering terminal. Suppose the channel between the

transmitter and the receiver, and that between the interferer and receiver are both

Nakagami-m channels (with possibly different parameters), and the receiver is non-

linear with the non-linearity captured in the form of a power parameter. Then from
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(5.62), it is clear that the instantaneous channel power is a Pareto RV. It is also noted

that special cases of the Pareto distribution with (k1 = k2 = 1, r > 0) have been used

to model the instantaneous signal to interference power in interference dominated

networks [31].

The Pareto distribution given by the density

fX (x) =
|r|

B(k2, k1)

xk1r−1

(1 + xr)k1+k2
, (5.63)

where B(a, b) :=
∫ 1

0
ta−1(1− t)b−1

dt is the Beta function, r ∈ [−1, 1], kj > 0, j = 1, 2.

The Pareto distribution belongs to H. This is because Gamma RVs are HCM,

and using Lemma 5.9.4 with (5.62), it follows that a Pareto RV is HCM. The Thorin

measure is unknown in the general case, however the Thorin mass is obtained from

Lemma 5.9.6 as k1r.

As discussed above, almost all of the fading distributions with ID instantaneous

channel power also belong to E. It is therefore reasonable to focus on channels with

instantaneous channel power in E. Hereafter, we refer to channels with GGC dis-

tributed channel power as GGC channels.

5.10 GGC Fading Channels as Gamma Mixtures

Let X be a GGC with finite Thorin mass α. As discussed in Lemma 5.9.3, X

can be written as AZ, where Z is Gamma distributed with parameters (α, 1), and

A is a nonnegative RV independent of Z. Using the property tZ ∼ Gamma(α, 1/t)

applicable to Gamma RVs, it is easy to see that X can be written as ÃZ̃, where Z̃ is

Gamma distributed with parameters (α, α), and Ã is a nonnegative RV independent

of Z̃. This representation shows that a GGC with channel with finite diversity order

is a Nakagami-m fading channel with shadowing, where m = α. This is because the

instantaneous channel power of a Nakagami-m channel with m = α has the same
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distribution as Z̃. Moreover, the average channel power of the shadowing RV is 1,

since it has been assumed that E [X ] = 1.

The distribution of the shadowing RV Ã is not trivial to obtain, when only the

distribution of X is known. In this case, we adapt the approach used to obtain the

mixing distribution for mixture of exponential distributions [56]. This method is

based on the fact that the Mellin transform of a product of independent RVs is the

product of the Mellin transforms of the RVs, and that the distribution and its Mellin

transform pair are unique. The Mellin transform of a nonnegative RV Ã is defined as

MÃ(s) =

∞
∫

0

fÃ(x)x
s−1

ds , (5.64)

and MÃZ(s) = MÃ(s)MZ̃(s). Therefore, the PDF of Ã can be obtained using the

inverse Mellin transform as follows:

fÃ(x) = M−1

[

MX(s)

MZ̃(s)

]

. (5.65)

The Mellin transform of Z̃ can be evaluated as m1−sΓ(s + α − 1)/Γ(α) [84, p. 312].

Thus, if the Mellin transform of the GGC X is known, then the density of X can be

obtained in terms of Meijer-G functions [56].

5.11 Performance Metrics for GGC Channels

In this Section, asymptotic expressions for average SER of GGC channels in terms

of the Thorin measure and/or the function h(·) defined in (5.44), are obtained.

5.11.1 Asymptotic Symbol Error Rate

The average SER performance of a GGC channel at high SNR is now considered,

in order to obtain the diversity order and array gain in terms of the Thorin measure.
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Proposition : Let a GGC fading channel have Thorin mass α < ∞. Then for

DPSK/MPSK, we have P e (ρ) ∼ cQh(ρ
−1)ρ−α, as ρ → ∞, where cQ depends on the

modulation scheme, and h(·) is as defined in (5.44) or (5.46).

Proof. According to [73, Theorem 4], P e (ρ) can be written as cQl(ρ
−1)ρ−D, as ρ → ∞

for DPSK and MPSK, if the asymptotic density of X has the form fX (x) = xD−1l(x),

as x → 0. GGCs with finite Thorin mass satisfy this condition as seen from Lemma

5.9.2.

Using the definition of diversity order from (5.35), it is observed from Proposition

5.11.1 that the diversity order of a GGC channel is as follows.

Corollary 5.11.1. The diversity order of DPSK/MPSK over a GGC fading channel

with Thorin mass α < ∞ is equal to α.

The asymptotic SER obtained in Proposition 5.11.1 applies to any GGC fading

channel with finite diversity order, and shows the dependence of the parameters of

the GGC on the asymptotic SER parameters. For GGC channels satisfying a certain

condition on the Thorin measure, the asymptotic SER can be written in the form

P e (ρ) ∼ Gρ−α.

Proposition : Let the Thorin measure of a GGC fading channel with finite Thorin

mass α satisfy
∫∞
1
(log u)µ(du) < ∞. Then P e (ρ) ∼ (Gρ)−α, as ρ → ∞, where

G =





cM
Γ(α)

exp





∞
∫

0

(log u)µ(du)









− 1
α

. (5.66)

Proof. From Proposition 5.11.1,

lim
ρ→∞

c−1
M ραP e (ρ)

h(ρ−1)
= 1 . (5.67)
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The limit of the ratio in (5.67) can be written as a ratio of limits of the numerator

and denominator, if and only if
∫∞
1
(log u)µ(du) < ∞, because this is the condition

under which limρ→∞ h(ρ−1) < ∞, as can be seen through an application of Lemma

5.9.2. Therefore, (5.67) simplifies to

lim
ρ→∞

c−1
M ραP e (ρ) = lim

ρ→∞
h(ρ−1) . (5.68)

The right hand side of (5.68) is given by Γ(α)−1 exp(
∫∞
0
(log u)µ(du)), as seen from

Lemma 5.9.2. Substituting this in (5.68) and rearranging,

lim
ρ→∞

P e (ρ)

ρ−αcMΓ(α)−1 exp(
∫∞
0
(log u)µ(du))

= 1 . (5.69)

This proves the Proposition.

According to Proposition 5.11.1, the slow varying function h(x) in Proposition 5.11.1

becomes a constant at 0. This conclusion is not necessarily true for fading distribu-

tions which are not GGCs, or are GGCs which do not satisfy
∫∞
1
(log u)µ(du) < ∞.

An example of a fading distribution for which the slow varying function h does not

become a constant at 0 is the case of generalized K-fading, as discussed in [73].

It is apparent from (5.66) that the array gain is inversely proportional to h(0+),

where h(·) is as defined in (5.44), because the term Γ(α)−1 exp(
∫∞
0
(log u)µ(du)) equals

h(0+), according to Lemma 5.9.2. The array gain will be useful in calculating the

performance difference between two GGC fading channels at high SNR, as discussed

in Section 5.12.3.

5.11.2 Outage Probability

Since the outage probability is equal to the distribution function of the instanta-

neous channel power, the following discussion is useful for cases when the distribution

is not available in closed form. The outage probability of a GGC fading channel can
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be shown to be a logconcave function, since the density of a GGC is a logconcave func-

tion [64, p. 67]. In what follows, an asymptotic expression for the outage probability

demonstrating the dependence on Thorin measure is presented.

Proposition : Consider a GGC channel with Thorin mass α < ∞. Then the asymp-

totic outage probability Pout(·) is given by

Pout(x) ∼ xαh(x)/α, (5.70)

as x → 0, where h(·) is as defined in (5.44) or (5.46).

Differentiating the expression the outage probability in Proposition 5.11.2 with re-

spect to α, it can be seen that the outage probability for asymptotically low threshold

values monotonically decreases with the Thorin mass. This can be justified intuitively,

since the Thorin mass represents the diversity order of the fading channel. A larger

value of diversity order corresponds to an increased number of independent fading

paths for signal reception, which reduces the probability of outage.

5.12 Stochastic Ordering of GGC Distributions

In this Section, the stochastic ordering of GGC fading channels is considered.

This will help in comparing two GGC fading channels based on general performance

metrics.

5.12.1 Laplace Transform Ordering of GGC

The comparison of GGC fading channels based on metrics which are either com-

pletely monotone (such as SERs), or possess a completely monotone derivative (such

as the ergodic capacity) is now considered. Toward this end, the Laplace transform

ordering framework proposed in [39] is employed. LT ordering between a pair of

114



instantaneous channel power distributions implies that the average SER of a constel-

lation with c.m. SER, such as the case with MPSK and MQAM, will be ordered at

all values of average SNR.

In the context of LT ordering of GGCs, a duality between the Shannon transform

ordering of the Thorin measures with the LT ordering of the fading distributions is

straightforward to see:

Proposition : Let X and Y be two GGCs with Thorin measures µX and µY . We

have X ≤ Lt Y ⇐⇒ µX ≤ S µY .

Proof. The proof of this proposition follows from the characterization of the LT of a

GGC.

The connection between the LT order and the Shannon transform order as sug-

gested by Proposition 5.12.1 can be exploited in obtaining new ordering relations

between GGC fading distributions, by using the properties of one stochastic order to

benefit the other. For instance, by observing that g(x) = log(1 + ρx) is a Bernstein

function for ρ ≥ 0, it is seen that µX ≤ Lt µY =⇒ µX ≤ S µY , for cases when

the Thorin masses of X and Y are identical. Now, using Proposition 5.12.1, it is

concluded that µX ≤ Lt µY =⇒ X ≤ Lt Y , if the diversity orders of X and Y are

equal. Therefore, the generalized LT ordering of the Thorin measures of two GGCs

with equal diversity order implies that the average SER performance at all SNR for

the first one is better than that of the second at all SNR.

Laplace transform ordering of GGCs can also be obtained through the observation

that any GGC with finite Thorin mass is a gamma variance mixture. This leads to

the following Proposition:

Proposition : Let X = AU1 and Y = BU2 be two GGCs, where A and B are

nonnegative RVs, independent of Uj ∼ Gamma(mj , 1), j = 1, 2. Then m1 ≤ m2 and
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A ≤ Lt B implies X ≤ Lt Y .

Proof. To begin with, observe that the LT of a Gamma RV monotonically decreases

with the scale parameter, when the rate is unity. Therefore, if U1 and U2 are Gamma

RVs with shape m1 and m2 respectively, and unit rate, then U1 ≤ Lt U2 ⇐⇒ m1 ≤

m2. Let A and B be non-negative RVs independent of U1 and U2, which satisfy

A ≤ Lt B. Then

E [exp(−ρAU1)] = EA [EU1 [exp(−ρAU1)]] (5.71)

≥ EA [EU2 [exp(−ρAU2)]] (5.72)

≥ EB [EU2 [exp(−ρAU2)]] , (5.73)

where (5.72) is obtained from (5.71) by observing that U1 ≤ Lt U2, and applying

(2.20) within the outer expectation in the right hand side of (5.71), since exp(−x) is

a c.m. function. Similarly, (5.73) follows from (5.72), as A ≤ Lt B.

While Proposition 5.12.1 connects the ordering of the Thorin measures and the LT

ordering of the corresponding GGCs, Proposition 5.12.1 enables the LT ordering of

pairs of GGC RVs for which the Thorin measure may not be available in closed form.

5.12.2 Comparison of GGC Channels with Equal Diversity Orders

It is well known that the AWGN (no fading) channel is a benchmark to the

performance of any fading channel, with respect to symbol error rates and ergodic

capacity. Intuitively, this is because the AWGN channel has infinite diversity order

(since a Nakagami-m with m → ∞ is an AWGN channel). However, when two GGC

fading distributions with the same diversity order are to be compared, it is in fact

observed that the Nakagami-m fading scenario is the best possible fading channel

with respect to symbol error rates of 1-dimensional or 2-dimensional constellations
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(which are convex functions) and the ergodic capacity (which is a concave function),

as seen from the following Proposition.

Proposition : Let X be a GGC with Thorin mass D and E [X ] = 1. Then U ≤ cx

X , where U ∼ Gamma(D,D).

Proof. According to Lemma 5.9.3, X can be written as AU , where U is Gamma

distributed with shape D and rate D, and A is a nonnegative RV independent of Γ.

Now, let g be a convex function. Then

EU [g(E [A]U)] ≤ E [g(X)] , (5.74)

as a consequence of Jensen’s inequality. E [A] = 1, because E [X ] has been assumed

to be 1. The proof is thus concluded.

It is now possible to see from Proposition 5.12.2 that among all GGC fading channels

with a given diversity order and unit average power, the Nakagami-m fading channel

forms the benchmark channel with respect to convex performance metrics such as

SERs of 1-dimensional or 2-dimensional constellations, and concave metrics such as

the ergodic capacity. This is because the instantaneous channel power of a Nakagami-

m channel is Gamma distributed with shape m and rate m. In other words, if the

diversity order of a GGC is D, then the average SER of any 1-dimensional or 2-

dimensional constellation is lower bounded by that of a Nakagami-m channel with

m = D, and further, the ergodic capacity is upper bounded by that of the Nakagami-

m channel with m = D.

5.12.3 Quantifying Asymptotic SER Performance Difference

While stochastic ordering techniques are capable of yielding GGC channel com-

parisons based on very general performance metrics without the need for closed form
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expressions, an inherent limitation of this method is that it is not possible to quantify

the exact performance gap of one channel with respect to the other. In the absence of

a unified fading model, it is difficult to obtain the SNR gain of one fading distribution

with respect to another, without explicitly obtaining the asymptotic SER expressions

for both channels. In this account, the properties of GGCs make it possible to pro-

duce a closed form expression for the SNR gain of one GGC with respect to another,

when comparing the SERs at high SNR. The SNR gain of one channel with respect

to another is defined as the difference between the SNR (in dB) for the asymptotic

SER of the two channels to be equal, and is denoted as gdb (X1, X2). Mathematically,

gdb (X1, X2) = lim
ρ→∞

10 log10
P

(1)

e (ρ)

P
(2)

e (ρ)
, (5.75)

where P
(1)

e (·) and P
(2)

e (·) are the SERs of the channels with instantaneous channel

power X1 and X2 respectively.

Proposition : Let X1 and X2 correspond to the instantaneous channel powers of

two GGC channels satisfying
∫∞
1

log uµj(du) < ∞, and
∫∞
0

µj(du) = α, j = 1, 2. If

MPSK or MQAM is employed, the SNR gain is given by

gdb (X1, X2) =
10

α
(log10 e)

∞
∫

0

(log u)(µ1(du)− µ2(du)) , (5.76)

where µj(·) is the Thorin measure of Xj , j = 1, 2. Equivalently,

gdb (X1, X2) =
10

D
log10

h1(0+)

h2(0+)
, (5.77)

where hj(·) are obtained from the canonical GGC PDF (5.44) of Xj, j = 1, 2.

Proof. Relation (5.77) is proved first. Then (5.76) is obtained using the relation

(5.45). Let ρ1 and ρ2 denote the average SNRs for channels X1 and X2 required to

obtain the same asymptotic SER. In other words, (G1ρ1)
−α = (G2ρ2)

−α. Relation
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(5.77) then follows by taking logarithms both sides, and substituting the array gain

expressions from (5.66).

5.13 Systems Involving Multiple GGC RVs

Many systems of practical interest involve combinations of multiple fading com-

ponents. In what follows, the conditions under which the overall end-to-end instanta-

neous channel power is a GGC with finite Thorin mass is obtained. This permits the

comparison of two GGC channel systems using Proposition 5.12.1. This facilitates

the use of Proposition 5.12.3 to quantify the high SNR gain of one GGC channel with

respect to another, since this propositions require finite Thorin mass.

5.13.1 Composite Fading Systems

Many fading models in wireless communications attempt to capture both the short

term fading effect and the long term shadowing effect through a composite fading

distribution. In such cases, the instantaneous channel power is modelled as a product

of two RVs, one corresponding to the short-term effect, and the other corresponding

to the long-term fading effect. In other words, the overall instantaneous channel

power Z can be written as Z = XY . For such systems, Z is a GGC if X is a GGC

and Y is HCM, as seen through an application of Lemma 5.9.4. The Thorin mass of

Z is finite if the Thorin mass of either X or Y is finite, as seen from Lemma 5.9.3. As

a result, common composite models such as the Rayleigh-lognormal model [85], the

Nakagami-lognormal model [86], Weibull-Gamma composite model [87], Generalized-

K [80], and the Gamma-shadowed generalized Nakagami fading model [75] have GGC

instantaneous channel powers with finite Thorin mass.

It can then be concluded using Proposition 5.12.1 that given two different com-

posite fading distributions finite Thorin mass, if the diversity order of the first one

119



is larger than the second, then to establish LT ordering of the composite distribu-

tion, it is sufficient to establish LT ordering of the mixing distribution. Further, if

the Thorin measures of the two composite distributions satisfy
∫∞
0

log uµj(du) < ∞,

then Proposition 5.12.3 can be used to quantify the high SNR gain of one system

versus the other.

5.13.2 Diversity Combining Systems

Consider a single-input multiple-output diversity combining system with L receive

antennas, and complete CSI at the receiver. It is now proved that under different

assumptions on the instantaneous channel power of each branch, the end-to-end in-

stantaneous channel power of combining schemes such as MRC, EGC and SC is a

GGC.

Maximum Ratio Combining

In the case of MRC, the instantaneous end-to-end channel power XMRC =
∑L

i=1Xi

is a GGC whenever Xi is a GGC, since a sum of GGC RVs is a GGC. It is therefore

straightforward to see that the average SER of DPSK is given by one-half φ (ρ) in

(5.39), where the Thorin measure is the sum of Thorin measures of each component

of the MRC system. The ergodic capacity and average SERs of other 2-dimensional

modulations may however not be tractable in general, for example when the branches

are independent but not identically distributed GGCs. In this case, it is possible to

obtain a performance lower bound if the diversity order is known. To this end, from

Proposition 5.9.3, if every component has finite diversity order, then the diversity

order of the MRC system is finite, and is given by D =
∑N

i=1

∫

µi(du). Now, since

XMRC is a GGC with Thorin mass D < ∞, using Proposition 5.12.2, it is seen that

the performance of the MRC system is lower bounded by that of a Nakagami-m
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channel with m = D, with respect to all convex metrics such as average SERs of

2-dimensional modulations and concave metrics such as the ergodic capacity.

Equal Gain Combining

Next, consider an EGC system, where XEGC = L−1
(

∑L
i=1

√
Xi

)2

. Although it un-

known whether XEGC is a GGC whenever Xi is a GGC or even HCM, it can be shown

that when Xi is a product of generalized Gamma distributed RVs, XEGC is a GGC.

Closed-form expressions for the average SER and ergodic capacity in this case are

intractable for many distributions such as Nakagami-m and Hoyt, which are special

cases of generalized Gamma distributions. In order to obtain a lower bound on the

performance metrics, observe from Proposition 5.9.3 that XEGC is a GGC with finite

diversity order if every branch has finite diversity order. Furthermore, the diversity

order D =
∑N

i=1

∫

µi(du) < ∞. Proposition 5.12.2 can then be used to bound the

average SER and the ergodic capacity by that of a Nakagami-m channel.

Selection Combining

On the other hand, when SC is performed, XSC = maxi=1,...,LXi. Similar to the EGC

case, it is unknown if Xi being a GGC or HCM results in a GGC distributed XSC.

However, it can be shown that when Xi is of the form Y/Z, where Y is a GGC,

and Z is an exponential RV, then XSC is a GGC. Xi can be written in this form

in several scenarios of interest, for example, in an interference limited system with

only one dominant Rayleigh faded interference source. In such cases, it is possible to

show that XSC is also a ratio of a GGC RV and an exponential RV. The diversity

order of a SC system is the same as that of an MRC system, which is given by

D =
∑N

i=1

∫

µi(du). To ensure D to be finite,
∫

µi(du) must be finite for each

i = 1, . . . , L. In other words, the Thorin mass of each branch must be finite. Since
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Figure 5.4: Average SER performance of 2-branch MRC with Pareto(1.25) dis-
tributed SNR compared with that of Nakagami-m SISO channel with m = 2.5

.

each branch instantaneous channel power is of the form Y/Z, using Proposition 5.9.3,

it is seen that it is sufficient to ensure that the Thorin mass of Y is finite, since Z

is exponentially distributed, and has Thorin mass of 1. Consequently, Proposition

5.12.2 can be employed to bound the performance of an EGC system using that of a

Nakagami-m system.

5.14 Simulations

In this section some of the theoretical results are corroborated using Monte-Carlo

simulations. In Figure 5.4, the performance of a 2-branch MRC system where the

instantaneous channel powers are Pareto distributed with parameters (1, 1, 1.25) is

simulated, and compared with that of a SISO Nakagami-m channel with m = 2.5.

The average powers of both the systems have been normalized to unity. This simula-

tion demonstrates that the average SER of the MRC system with Pareto distributed

branches, which are GGC’s with finite Thorin mass is lower bounded by that of a

Nakagami-m channel, as suggested in Section 5.13.2.
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.

In Figure 5.5, the performance of a Nakagami-m channel with m = 2 is com-

pared with that of a fading channel with generalized gamma distributed instanta-

neous channel power with parameters (ǫ = 2, r = 2, c2 = 1). The parameters of the

two distributions have been chosen such that the diversity order is 2 for both cases.

The high SNR gain in dB obtained from the simulation is found to be ≈ 1.7 dB. This

agrees with the theoretically suggested value of 1.505 dB obtained from (5.77), with

h1(0+) = 4 and h2(0+) = 2.

A simulation to provide an intuitive understanding of the structure of the Thorin

measure and its effect on the average SER performance has been provided in Figure

5.7. To this end, two different GGCs X = X1 +X2 and Y = Y1 + Y2, where X1, X2

are independent and gamma distributed with parameters (2, 1) and (2, 2) respectively,

and Y1, Y2 are independent and gamma distributed with parameters (1, 1/2) and (3, 3)

respectively, are chosen. In this case, the densities of the Thorin measure are as

depicted in Figure 5.6. The average SER for X and Y are obtained in figure 5.7. It is

observed that the average SER of X is consistently less than that of Y at all ρ ≥ 0.
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Chapter 6

CONCLUSIONS

In this Thesis, we studied four separate yet related problems (i) Stochastic ordering

and its implications in physical layer wireless communications systems;(ii) A new

canonical representation for the SER of an arbitrary constellation over an AWGN

channel; (iii) The proposition of a new stochastic order to compare fading channels

based on the ergodic capacity; and (iv) The unification of existing fading models

under the umbrella of infinitely divisible distributions.

In Chapter 3 of this dissertation, we illustrate the power of stochastic orders such

as the convex order and the LT order, which have never been used in physical layer

communication/information theory, to relate and unify existing performance met-

rics such as ergodic capacity and error rate functions through their relationship with

completely monotonic functions. We first identify that the instantaneous symbol er-

ror rate functions for various signaling constellations such as M-PSK and M-QAM

are completely monotonic functions of the instantaneous SNR. Recognizing the im-

portance of LT ordering of instantaneous SNR distributions, we identify parametric

fading distributions such as Nakagami and Ricean, which are monotonic in the LoS

parameters in the orders ≤ Lt and ≤ cx . We also lay the groundwork to find the con-

ditions for the preservation of inequalities satisfied by the averages of performance

metrics of individual systems, when multiple such systems are combined, even when

closed form expressions for such averages are not tractable. These include diversity

combining schemes such as MRC, EGC and a variety of relay networks. In summary,

this framework provides a novel approach to compare the performance of a vast range

of systems on the basis of the analytical properties of the performance metric such as
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monotonicity, convexity, or complete monotonicity, even in settings where closed-form

expressions are not tractable.

In Chapter 4, the SER of an arbitrary constellation with reduced dimension

N∗ ≥ 2 under AWGN is characterized as Pe (ρ) = ρpfcm(ρ), where fcm(·) is a c.m.

function, and p ≥ N∗/2 − 1. This representation of the SER is shown to apply to

cases when the noise follows a compound Gaussian distribution. The expression for

the SER obtained herein is useful in establishing that the SER is a c.m. function if

the constellation has a reduced dimension of one or two. The complete monotonicity

of SER for constellations with N∗ > 2 is shown to depend on the differentiability

properties of the representing function corresponding to ρ−pPe (ρ), which is a func-

tion of the constellation geometry and the prior probabilities. The exact relation

between the constellation geometry and the complete monotonicity of the SER for

constellations with N∗ > 2 is left as an open problem. Complete monotonicity of

the SER has applications in obtaining comparisons of averages of SERs over pairs

of quasi-static fading channels, such as Nakagami-m, whose instantaneous SNRs are

Laplace transform ordered. Such comparisons can be made even in cases where a

closed-form expression for the average SER is not analytically tractable. In addition,

a new stochastic ordering relation is introduced, which can be exploited to obtain

comparisons of the average SER of an arbitrary multidimensional constellation over

two different fading channels. Using such stochastic comparisons, the minimum pos-

sible SER of a constellation of a given dimension, between two fading channels may

be ordered. This provides a way to compare the channels based on their ergodic

capacities.

In Chapter 5, it is shown that the ergodic capacity order and its properties can

be exploited to obtain comparisons of ergodic capacities of composite systems across

two different fading channels whose instantaneous SNRs satisfy the ergodic capacity
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order. For systems such as MRC and EGC which involve multiple instantaneous SNR

RVs, we conclude that combining a better set of channels (in the ergodic capacity

order) produces a system with a higher ergodic capacity. This conclusion is true for

all systems whose end-to-end instantaneous SNR belongs to the CT BFm set. For

systems whose end-to-end SNR does not belong to CT BFm, component-wise ergodic

capacity ordering of instantaneous SNR need not produce a system with a higher

ergodic capacity. An example to illustrate this point is the AF relay for which the

instantaneous SINR is Pareto distributed. An extension of the ergodic capacity order

to MIMO systems is also proposed herein. The properties of the ergodic capacity

order can be used to compare the capacity regions of systems such as the multi-user

MAC in two different fading environments, for both the single and multiple antenna

case.

Finally, in Chapter 6, we propose the class of ID RVs as a new unified class

to model fading channels. This is because many popularly employed shadowing,

multipath fading and composite shadowing/multipath fading distributions such as

Rayleigh, Rician, SIRP, Nakagami-m, lognormal and Nakagami-lognormal distribu-

tions are observed to have ID instantaneous channel powers. Further, it is noted that

almost every ID fading distribution is also a GGC fading distribution. This permits

the leverage of the rich analytical properties of GGCs to help in asymptotic SER

analysis of constellations such as MPSK. Further, GGC fading channels with finite

diversity order are characterized as variance mixtures of Gamma RVs. This permits

us to stochastically order GGC fading distributions in a relatively straightforward

manner.
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