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ABSTRACT  

   

Glioblastoma (GBM) is the most common primary brain tumor with an incidence 

of approximately 11,000 Americans. Despite decades of research, average survival for 

GBM patients is a modest 15 months. Increasing the extent of GBM resection increases 

patient survival. However, extending neurosurgical margins also threatens the removal of 

eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its 

complete resection. The central hypothesis of this dissertation is that targeting genes and 

proteins that regulate GBM motility, and developing techniques that safely enhance 

extent of surgical resection, will improve GBM patient survival by decreasing infiltration 

into eloquent brain regions and enhancing tumor cytoreduction during surgery. Chapter 2 

of this dissertation describes a gene and protein; aquaporin-1 (aqp1) that enhances 

infiltration of GBM. In chapter 3, a method is developed for enhancing the diagnostic 

yield of GBM patient biopsies which will assist in identifying future molecular targets for 

GBM therapies. In chapter 4, an intraoperative optical imaging technique is developed for 

improving identification of GBM and its infiltrative margins during surgical resection. 

This dissertation aims to target glioblastoma infiltration from molecular and cellular 

biology and neurosurgical disciplines. In the introduction; 1. A background of GBM and 

current therapies is provided. 2. A protein that decreases GBM survival is discussed. 3. 

An imaging modality utilized for improving the quality of accrued GBM patient samples 

is described. 4. An overview of intraoperative contrast agents available for neurosurgical 

resection of GBM, and discussion of a new agent for intraoperative visualization of GBM 

is provided. 
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CHAPTER 1 

INTRODUCTION 

 New brain tumors are diagnosed in more than 40,000 Americans each year . They 

are the second most common cause of cancer death up to age 35, with a slight peak 

among children between 6 and 9 years old; but these tumors are most common among 

middle-aged and older adults. About half of brain tumors are primary - i.e. their origin is 

intracranial, the remaining tumors are metastases to the brain (Schneider, Mawrin et al. 

2010).   

 Initial efforts to characterize brain tumors were made by Rudolph Virchow in the 

mid-nineteenth century. His work identified gliomas as a major class of brain tumors 

(Ferguson and Lesniak 2005). In1926 Percival Bailey and Harvey Cushing published a 

landmark paper classifying gliomas into 13 unique groups. Bailey later refined this 

classification into 10 groups. These initial studies showed that each type of brain tumor 

produced a unique prognosis (Bailey 1985, Ferguson and Lesniak 2005). 

 

Cell Types 

 Glial cells provide the support structure of the brain. These cells include 

oligodendrocytes, microglia, ependymal cells, and astrocytes. Oligodendrocytes modulate 

salutatory conduction in the central nervous system (CNS) through axonal myelination. 

Microglia are the macrophages of the brain, and respond to pathogens within the CNS. 

Ependymal cells line ventricles within the CNS and are the source of cerebrospinal fluid. 

Astrocytes provide structural and biochemical support, are involved in synaptic 

transmission, and respond to brain injuries (Kandel, Schwartz et al. 2000, McCoy and 
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Sontheimer 2010, Clarke and Barres 2013). Glial cell interaction is currently a heavily 

studied field in neuroscience.  

 

Brain Tumors 

 Primary brain tumors, tumors that arise from cells within the brain, can be 

classified as benign or malignant. Non-diffuse tumors, such as low grade meningiomas, 

schwannomas, and pituitary adenomas typically grow slowly and discreetly. These 

tumors can often be removed by surgery. In contrast, malignant tumors such as high 

grade gliomas diffusely invade the brain (Louis, Deutsches Krebsforschungszentrum 

Heidelberg. et al. 2007). These tumors present a challenge to surgical resection and 

detection of their infiltrative elements (Roberts, Valdes et al. 2012). 

 Clinical prognostic factors for gliomas include tumor grade, patient age, and 

performance status (DP Byar 1983, Mahaley, Mettlin et al. 1990, Daumas-Duport 1992, 

Barker, Prados et al. 1996). The most important current criteria for diagnosis and 

treatment of human infiltrative gliomas are histologic subtype and grade. Subtype is 

based on visual and molecular similarity of neoplastic cells to normal cells in the central 

nervous system. Thus, astrocytomas look like cells of astrocytic lineage and express 

markers linked to normal astrocytes, and oligodendrogliomas look like cells of 

oligodendroglial lineage, etc. Histologic grade is scored by the degree of endothelial 

hyperplasia, necrosis, nuclear atypia, and mitotic activity with low grade tumors 

exhibiting cellular atypia. High grade gliomas, which tend to be the most infiltrative, 

exhibit 3 to 4 of these criteria (Daumas-Duport, Scheithauer et al. 1987, Daumas-Duport, 

Scheithauer et al. 1988, Daumas-Duport 1992). 
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Current Therapy 

 Glioblastoma is the most common primary brain tumor. Average GBM survival is 

12-15 months. Less than 30% of the 27,000 patients diagnosed with GBM each year will 

survive beyond 2 years (Schneider, Mawrin et al. 2010, Teodorczyk and Martin-Villalba 

2010). In 1980, the post-resection median survival of GBM patients was six months. If 

chemotherapy and radiation were included at the time the median survival increased to 

approximately twelve months (Salcman 1980). Decades of focused research have 

improved GBM characterization and diagnosis. However, current median survival for 

GBM after aggressive treatment is a modest 12-15 months (Georges, Zehri et al. 2014). 

Thirty years of research has only increased survival approximately 3 months.  

 Standard GBM treatment is surgical resection followed by radiation and treatment 

with the alkylating agent, temozolomide (Hegi, Diserens et al. 2005). GBM resection is 

aimed at maximal safe resection as aggressive surgery prolongs patient survival. 

However, in some cases, GBM may reside in critical regions that preclude resection 

(Sanai and Berger 2008, Sanai and Berger 2009, Sanai and Berger 2011, Sanai, Polley et 

al. 2011, Bloch, Han et al. 2012). Regardless of completeness of resection, infiltrative 

cells always remain following surgical cytoreduction leading to recurrence (Di, Mattox et 

al. 2010). Controlling and/or targeting infiltrative tumor cells may improve the extent of 

surgical resection and improve patient survival. 

 Temozolomide (TMZ), a chemotherapeutic agent introduced in 1999, has 

increased GBM patient survival approximately 3 months. This cytotoxic agent, once 

converted to its active form in the alkaline tumor environment, damages DNA by 

methylating DNA guanine bases at the N7, N3, and O-6 positions. TMZ’s cytotoxic 
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effects are mediated by its methylation of guanine at the O6 position (O6-MeG). This 

prohibits DNA strand elongation by a persistent mismatch of O6-MeG to thymine rather 

than cystine. Missmatch repair results in a persistent O6-MeG in the template strand and 

futile cycling of DNA repair which leads to cessation of cell replication and death. 

However, some tumor cells express MGMT; an enzyme that can efficiently repair O6-

MeG.  Tumors with this enzyme respond poorly to TMZ (Zhang, Stevens et al. 2012, 

Hart, Garside et al. 2013). Infiltrative tumor cells may also be less responsive to TMZ 

since these cells have decreased mitotic activity and may be further away from the 

alkaline tumor environment (Wolf, Agnihotri et al. 2011, Zhang, Stevens et al. 2012). 

Therefore, agents specifically targeting infiltrative cells may be required in addition to 

standard chemotherapeutics. 

 Radiation is an anti-neoplastic therapeutic typically used with chemotherapy. 

Radiation damages DNA in mitotically active cells. Cancer cells are less capable of 

dealing with DNA damage and eventually decrease in mitotic activity or die. Radiation 

therapy relies on generation of free radicals in oxygen-rich environments. Infiltrative 

cells undergo a change known as the Warburg effect. Once infiltrative cells migrate away 

from vasculature their oxygen access diminishes and they switch from aerobic to 

anaerobic metabolism (Warburg effect).This altered environment and metabolism may 

attenuate the effects of radiation on infiltrative tumor cells (Wolf, Agnihotri et al. 2010, 

Wolf, Agnihotri et al. 2011).   

 Surgical resection, TMZ therapy, and radiation are the current standard of care for 

GBM patients (Schneider, Mawrin et al. 2010, Sanai, Polley et al. 2011, Hart, Garside et 

al. 2013). However, infiltrative tumor cells may be less receptive to all these therapeutic 



  5 

approaches by evading resection and altering physiologic properties targeted by 

chemotherapy and radiation (Wolf, Agnihotri et al. 2010, Wolf, Agnihotri et al. 2011, 

Mattox, Li et al. 2012). Controlling GBM infiltration may improve patient outcomes by 

increasing the efficacy of current GBM therapies. 

 

GBM Infiltration 

The infiltrative nature of GBM allows tumor regions to evade surgical resection 

(Orringer, Lau et al. 2012) and may attenuate the effectiveness of tumor-specific 

therapeutic agents (Wolf, Agnihotri et al. 2011). Identifying genes and proteins that 

regulate tumor cell motility may improve efficacy of current therapeutics by providing 

additional clinical targets for GBM therapy. Inhibiting tumor infiltration may also allow 

GBM to be treated as a chronic disease by controlling its damage to surrounding brain.  

Secondly, developing methods to identify infiltrative cells during surgical resection could 

lead to a greater extent of tumor resection and increased patient survival (Sanai and 

Berger 2008, Sanai, Polley et al. 2011, Bloch, Han et al. 2012). 

 

Aquaporin-1 

We recently identified aquaporin-1expression (AQP1 = gene, aqp1 = protein) as a 

predictor of GBM patient survival. A clinical nine gene predictive indicator of GBM 

survival suggests AQP1 is independently prognostic (Colman, Zhang et al.). AQP1 

expression is linked to increased motility in normal (McCoy and Sontheimer) and 

neoplastic glial cells (McCoy and Sontheimer 2007). Our experiments with cultured 

human GBM cells reveal that AQP1 enhanced motility without significantly altering cell 
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growth or proliferation. Previously, the physiological role of aqp-1 expression in GBM 

was unknown. Chapter 2 of this thesis addresses a gap in knowledge related to aqp-1’s 

role in GBM motility.  

 Aquaporins (AQPs) are a family of mammalian transmembrane proteins. They 

were first identified by Peter Agre in 1991 while studying red blood cells. CHIP28, later 

named Aquaporin 1, was the first aquaporin discovered.  These small channel proteins 

(267 amino acids, 30kDA) are mostly known for water transport. We now know of 13 

aquaporin proteins (aqp). Aqps 1-6 have been identified to transport water. AQPs 7-13 

have been reported to transport water and glycerol (Gonen and Walz 2006).   

 Aquaporins are tetramers composed of 4 identical monomers. Each monomer 

contains two repeating elements that contain an asparagine-proline-alanine (NPA) motif. 

The NPA motifs align once the monomer folds and effectively form a water channel. The 

channel forms an hour-glass shape. At its narrowest point, the channel transports 

individual water molecules (Agre 2006).  

 

Aquaporin-1 and Cell Motility 

 Several aquaporins - AQP-1, 3, 4, 5, and 9 – have been linked to cell motility 

(Loitto, Karlsson et al. 2009).  AQP1 is overexpressed in migrating endothelial cells and 

AQP3 increases motility of keratinocytes in the skin and corneal epithelial cells in the 

eye. Normally, AQP1 is only expressed in ependymal cells within the CNS. However, 

AQP1 and AQP4 are both overexpressed in migrating reactive astrocytes responding to 

traumatic injury.  AQP1 is also linked to motility in neoplasms of the breast, CNS, and 

lung (Verkman, Hara-Chikuma et al. 2008).   
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 The mechanism of AQP1-mediated motility in GBM and other neoplasms is 

unknown. Proposed mechanisms of AQP-1 mediated motility include: 1) Rapid water 

flux may promote cell morphological changes during migration through narrow spaces, 

2) Water flux through AQP1 may generate a propulsive force to facilitate directional 

movement, 3) Local increases in hydrostatic pressure may detach the cell membrane from 

the cytoskeleton resulting in repolymerization of the cytoskeleton to support the 

protruded membrane. However, these mechanisms have not been rigorously tested.  

Assembly of aquaporins’ 4 subunits creates a central pore in the protein that transports K
+
 

ions (Yool and Campbell 2012). Hypotheses of AQP1 mediated motility have focused on 

water transport, while the functional role of AQP1’s potassium ion transport in motility 

has been generally overlooked.   Increased potassium conductance has been shown to 

enhance the motility of GBM cells (Catacuzzeno, Aiello et al. 2011). If AQP1 

overexpression similarly alters K
+
 conductance, its role in cell motility may be 

independent of water transport.    

 

Aquaporin-1 Water Transport Inhibition 

 Independent study of aqp1-mediated water transport or ion transport on cell 

motility is not possible with current aqp1 inhibitors. The commonly used aqp1 inhibitors 

in basic science are mercurial compounds such as HgCl2 and tetraethylammonium 

(TEA). Unfortunately, these agents are toxic and/or nonspecific for independent testing 

of AQP1’s water transport function (Brooks, Regan et al. 2000, Farina, Rocha et al. 

2011).  
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 HgCl2 inhibits AQP1-facilitated water transport by forming a covalent bond with 

its cysteine 189 residue. C189 is in the pore forming region of loop E, and binding of 

HgCl2 to this region effectively blocks the water channel (Yool, Brown et al. 2010).  

Unfortunately, HgCl2 is cytotoxic.  It inhibits enzymatic processes, blocks sulfur 

oxidation processes, enzymatic processes involving B6 and B12, alters cytochrome C 

processes, and affects cellular mineral levels of Ca, Mg, Zn, and Li. In humans it can 

cause allergic, immune, and autoimmune responses. Therefore, independent study of 

aqp1-mediated water transport is problematic with HgCl2 (Sutton and Tchounwou 2006). 

 TEA may be a less toxic alternative to Hg for inhibiting AQP1 water transport. 

This compound reversibly binds Tyrosine 186 in AQP1. TEA appears more specific to 

AQP1 than Hg and may be less cytotoxic. However, this agent also blocks some K+ 

channels. This precludes its use as a specific agent targeting the water transport function 

of AQP1 without influencing K+ conductance (Brooks, Regan et al. 2000). 

 Independent of water transport, aqp1 promotes cation conductance when 

expressed in oocytes (Boassa, Stamer et al. 2006). Targeted substitution of asparagine for 

glutamate in the first transmembrane portion of AQP1 has generated a water-

impermeable aqp-1 mutant (e17n). Tested in oocytes, e17n failed to produce water flux, 

but produced cation conductance. Though specific inhibitors of AQP1-mediated water 

transport are under development (Antonio Frigeri 2007), their antineoplastic activity has 

not been rigorously studied. Non-water permeating aqp1 mutants, such as e17n, allow for 

immediate study of specific inhibition of aqp1’s water channel.  

 Chapter 2 of this thesis investigates the relationship between AQP1 water 

transport and GBM invasion in vitro and in vivo. Our results suggest aqp1 harbors a 
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undocumented function that promotes tumor cell motility independent of water transport. 

This suggests novel inhibitors of aqp1-mediated GBM motility must target regions 

outside of the water channel. 

 

Cellular Screening of Biospecimens 

 Our work identifying AQP1 as a prognostic factor was made possible by studying 

biobanked samples of human GBM. During surgical resection of tumors, tumor samples 

are immediately frozen and stored for future diagnostic or analytical use (Vaught, 

Henderson et al. 2012). The necrotic nature of GBM is an obstacle for this technique, as 

many biobanked samples do not contain the cellularity to appropriately re-capitulate the 

features of the original tumor.  Incorporated into neuro-oncology studies, necrotic tissues 

could produce erroneous results for researchers (Botling and Micke 2011, Lim, 

Dickherber et al. 2011, Basik, Aguilar-Mahecha et al. 2013). In clinical trials, GBM 

patient responses are correlated with molecular characteristics of the participants’ 

tumors.  Therefore, storage of necrotic tissue could be detrimental to collecting useful 

information during a clinical trial. A method for screening biospecimens prior to storage 

could improve the quality of tissue samples collected for research and clinical use. 

 

Confocal Reflectance Microscopy 

 Confocal reflectance microscopy (CRM) is an optical imaging modality that can 

sample thick tissue without the application of contrast agents. CRM generates contrast by 

raster-scanning a laser across a sample and collecting back-scattered photons after they 

have passed through a confocal aperture. Similar to fluorescence confocal microscopy, 
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this technique can generate thin optical sections from examined tissues. However, CRM 

does not excite fluorophores or cause a detectable Stokes shift (Wirth, Snuderl et al. 

2012, Georges, Zehri et al. 2014). Therefore, CRM introduces a small fraction of 

potentially damaging laser energy into sampled tissue and does not require application of 

exogenous contrast agents.  

 In chapter 3, we evaluate the effectiveness of CRM for determining the cellularity 

of GBM tissue samples prior to biobanking. Secondly, we test if this imaging technique 

alters the molecular characteristics of examined tissue. We believe CRM will provide 

means for increasing the diagnostic yield of GBM biospecimens by assessing their 

cytoarchitecture prior to biobanking. 

 

Visualizing Surgical Margins 

 Extent of glioblastoma surgical resection and survival are directly correlated. 

Maximum survival benefit is achieved at greater than 98% tumor volume reduction 

(Lacroix, Abi-Said et al. 2001, Tonn, Thon et al. 2012). However, high degrees of 

resection are difficult to achieve due to the infiltrative nature of GBM and the 

Neurosurgeon’s goal of preserving eloquent brain. A means for intraoperative 

examination of glioma tissue at a cellular level could increase tumor cytoreduction by 

allowing immediate detailed differentiation between tumor and normal brain (Sanai 

2012). Neurosurgeons are equipped with MRI, ultrasonography, and macroscopic 

fluorescence guided-surgery, but these technologies do not provide visualization of 

detailed infiltrative tumor margins. In chapter 4, we show the use of a novel contrast 
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agent can immediately provide specific intraoperative visualization of astrocytic tumors, 

such as GBM, at the cellular level. 

 

Sulforhodamine 101 

 Advancing optical technologies such as a laser scanning confocal micropscopy 

(LSCM) may provide real time histopathological information of GBM in vivo and ex vivo 

(Foersch, Heimann et al. 2012). LSCM allows microscopic tissue analysis with cellular 

and subcellular detail. Contrast of morphological details is typically generated with the 

application of exogenous fluorescent dyes (Udovich, Besselsen et al. 2009).  This 

technology has recently been studied in the neurosurgical setting to improve resection by 

providing immediate histological assessment of tumor margins (Sanai, Eschbacher et al. 

2011). Currently, three fluorescent contrast agents are approved for in vivo neurosurgical 

applications, these include fluorescein sodium (FNa), indocyanine green (ICG), and 

aminolevulinic acid (5-ALA). Unfortunately, FNa and ICG only provide non-specific 

staining, and 5ALA photobleaches too quickly for cellular imaging (Mooney, Zehri et al. 

2014). The development of new fluorescent contrast agents that specifically stain 

astrocytic tumors could provide specific intraoperative diagnoses and allow better 

identification of the infiltrative margin of brain tumors. 

 Sulforhodamine 101 (SR101) is a red fluorescent contrast agent that rapidly labels 

astrocytes with glial fibrillary acidic protein (GFAP)-like specificity; the target for 

immunohistochemistry staining of astrocytes and astrocytomas (Berens, Bjotvedt et al. 

1993, Nimmerjahn, Kirchhoff et al. 2004). However, SR101 is capable of labeling 

astrocytic cells in minutes, whereas conventional GFAP staining requires a minimum of 



  12 

24 hours (Nimmerjahn and Helmchen 2012). SR101’s potential for neurosurgical use has 

not been studied. In chapter 4 of this dissertation, we hypothesized that if SR101 

similarly labels tumors of astrocytic lineage, such as GBM, it could provide a rapid 

alternative to GFAP for intraoperative identification of GBM and its infiltrative margins. 

Unlike fluorescein and indocyanine green, SR101 is capable of providing specific 

intracellular staining of astrocytic cells. Due to its strong quantum yield and resilience to 

photobleaching, SR101 can provide real-time visualization of astrocytic cells at the 

cellular level, which is not possible with 5-ALA.  

 In chapter 4 of this thesis, we aim to establish whether the selective staining of 

astrocytic tumors with SR101 is a reliable and reproducible method for rapidly 

identifying human astrocytoma cells in cell culture, animal models, and fresh human 

brain tumor biopsies. We hypothesize that combined use of live-cell imaging with SR101 

could provide a rapid method for identifying GBM and its infiltrative margins. 

 

Summary 

 Infiltrative tumor cells provide a challenge to the clinical and surgical treatment of 

GBM. This dissertation addresses a means for clinically targeting the infiltration of GBM 

by: 

1. Identifying AQP1 as a gene and protein that enhances the infiltration of GBM.   

2. Developing a GBM biospecimen screening technique that will aide in discovering 

future GBM molecular targets. 

3. Identifying a new GBM-specific contrast agent that can intraoperatively assess GBM 

and its margins.  
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 In chapter two, we study the role of AQP1 overexpression in GBM. We identify 

the prognostic role of this gene and protein from human biospecimens and test its 

physiological effects in cell culture and animal models of GBM. Next, we develop GBM 

cells expressing mutants of this protein to determine if its role in GBM cell migration is 

mediated by water transport. We find aqp1 overexpression can upregulate GBM cell 

motility independently of water transport. 

 In chapter three we recognize the current problem of over-sampling necrotic 

tissue in GBM biobanking. We test confocal reflectance microscopy as a means for 

screening GBM tissue prior to biobanking. We further evaluate the influence this imaging 

modality has on downstream molecular analysis of the GBM biospecimens. We find 

CRM can immediately differentiate cellular from non-cellular GBM biospecimens 

without altering their molecular characteristics. 

Lastly, in chapter four we identify a new intraoperative contrast agent that may assist the 

identification of GBM and tumor margins during resection. We test this contrast agent in 

cell culture, animal models of GBM, and fresh human ex vivo brain tumor biopsies. As a 

negative control, we also test this contrast agent on an animal model of central nervous 

system lymphoma and non-astrocytic human brain tumor biopsies. We find SR101 can 

provide intraoperative specific visualization of astrocytic tumors and their margins. 
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CHAPTER 2A 

AQUAPORIN 1 PREDICTS SURVIVAL OF MALIGNANT GLIOMA PATIENTS 

AND INCREASES GLIOMA CELL INVASIVENESS  

Glioblastoma (World Health Organization grade 4 glioma; GBM) are highly 

vascular, infiltrative tumors with 12-15 month median patient survival. Standard 

treatment is surgical resection, radiation and chemotherapy, but provides modest survival 

benefit.  Since GBM are infiltrative, local therapies do not remove all neoplastic 

elements, and appropriate therapeutic alternatives for infiltrative cells are not available. 

These studies address a potential therapeutic target, the water channel protein aquaporin 1 

(aqp1).  Literature suggests expression of the aquaporin 1 gene (AQP1) correlates 

negatively with patient survival, and links the protein to cell movement.  Our clinical data 

indicate AQP1 RNA and aqp1 protein are independently prognostic.  We developed ex 

vivo, and in vivo assays to model likely mechanisms underlying the clinical effects of 

AQP1. The results suggest that AQP1 decreases GBM patient survival by altering the 

motility of GBM, but not cell proliferation or survival.  Our results suggest that aqp1 

protein is a viable therapeutic target. 
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Introduction 

 

Malignant gliomas represent a treatment challenge for the neuro-oncology team.  

Patients with the most malignant and common glioma, World Health Organization (WHO) 

grade 4 or glioblastoma multiforme (GBM), most often die within 2 years of diagnosis, 

and fewer than 10% become long-term survivors (Stupp, Mason et al. 2005). Even when 

the surgeon achieves a gross total resection of tumor, microscopic residual cells nearly 

always remain.  Standard therapy treats residual tumor with radiation and chemotherapy, 

but poor patient survival highlights the challenges of tumor cell invasion for GBM 

therapy.   

Although GBM patient survival is not favorable, clinical-pathologic and molecular 

approaches suggest there are several forms of disease, and these affect patient outcome.  

Clinical-pathologic prognostic factors indicate that GBM behavior depends on patient age 

at diagnosis and performance status, in addition to grade (Scott, Scarantino et al. 1998, Li, 

Wang et al. 2011).  We recently developed a 9-gene molecular indicator of survival that is 

independent of patient age and tumor grade for patients treated with surgery, radiotherapy, 

and the alkylating agent temozolamide (Colman, Zhang et al. 2010).  One of the mRNA 

indicators, aquaporin 1 (AQP1), is a major contributor to this signature of GBM gene 

expression marking poor survival (Phillips, Kharbanda et al. 2006).  The work we report 

here investigates whether a biologic function of AQP1 underlies its relationship to 

survival, and determines whether its expression marks prognosis.  

Aquaporins quickly conduct water across membranes and prevent movement of 

various ions and other solutes (Gonen and Walz 2006). There are 14 known aquaporins in 

humans (Verkman 2005, Papadopoulos and Verkman 2013).  AQP1, 4, and 9 are found in 

http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Ion
http://en.wikipedia.org/wiki/Solution
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the central nervous system. AQP1 is expressed in cerebrospinal fluid-producing cells 

lining the ventricles, and highly expressed in migrating reactive astrocytes.  AQP4 is 

expressed in endothelial cells and astrocytes throughout the brain. AQP9 is found in the 

retina. 

Aqp1 is a 28 KDa cell membrane channel protein that allows rapid water 

movement in response to osmotic gradients. It is a 28KDa member of a large protein 

family (MIP – major intrinsic proteins) that forms pores in cell membranes.  Aqp1 

functions in water movement across membrane barriers in kidney, brain, eye, erythrocytes, 

GI tract, sweat glands, and vascular endothelia (Agre, King et al. 2002, Saadoun, 

Papadopoulos et al. 2002, McCoy and Sontheimer 2007, Hara-Chikuma and Verkman 

2008, Papadopoulos, Saadoun et al. 2008).  Expression in the central nervous system is 

typically limited to cells lining the ventricles, and extraventricular expression typically 

relates to pathological processes (Papadopoulos and Verkman 2013).  

Oncology literature suggests aqp1 is related to the malignant phenotype. Recent 

work indicates AQP1 is a prognostic indicator for clear-cell renal cell carcinoma(Huang, 

Murakami et al. 2009), and  neoplastic cells of several cancers, including GBM, highly 

express AQP1 RNA (Markert, Fuller et al. 2001, Saadoun, Papadopoulos et al. 2002, 

Hoque, Soria et al. 2006). One report indicates that aqp1 overexpression allows anchorage 

independent growth in NIH 3T3 cells (Hoque, Liu et al. 2000), and others suggest it 

enhances migration and localizes to cell processes associated with movement (Nagashima, 

Fujimoto et al. 2006, Verkman, Hara-Chikuma et al. 2008). Sontheimer et. al. showed that 

reactive astrocytes responding to brain injury express AQP1(McCoy and Sontheimer 
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2010), and that protein kinase C regulates aqp4 water permeability, which is rate limiting 

for glioma invasion(McCoy, Haas et al. 2010).   

We hypothesized both aquaporin 1 protein (aqp and mRNA  (AQP1) are 

prognostic markers for GBM patients based on AQP1’s presence in a survival-associated 

mesenchymal gene signature (Phillips, Kharbanda et al. 2006, Huang, Murakami et al. 

2009)and in a multi-gene predictor of survival (Colman, Zhang et al. 2010).  This 

manuscript builds on existing AQP1 mRNA microarray data by validating both protein 

and mRNA as prognostic in formalin-fixed, paraffin-embedded (FFPE) tissue sections of 

human tumors, and by suggesting that their relationship to invasion and motility underlies 

aquaporin1’s negative impact on glioma patient survival.   

 

Materials and Methods 

Human Patient selection 

We collected clinical data on patients with primary WHO grade IV GBM resected 

at the University of Texas M. D. Anderson Cancer Center from 1993 to 2005.  Accessible 

electronic and/or written clinical records, and formalin fixed, paraffin embedded (FFPE) 

tumor tissue were other selection criteria.  We excluded recurrent tumors.  We (K.D.A.) 

re-reviewed the histopathologic diagnosis of all tumors to confirm grading and evaluate 

tissue suitability for immunohistochemical (IHC) staining.  We collected patient clinical 

data, including age at diagnosis, date of surgery, date of last follow-up/death, vital status, 

and date of radiographic progression. The University of Texas M. D. Anderson Cancer 

Center Institutional Review Board approved all clinical studies. 
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Human Immunohistochemistry 

We carried out IHC staining of FFPE tissue with anti-human Aquaporin 1, clone 

1/22 mouse monoclonal antibody (Abcam,Cambridge, MA).  We incubated tissue in 

primary antibody at 4°C overnight at 1:7500 dilution.  Two independent reviewers scored 

IHC blinded to clinical data with a 3-tier system: high, strongly positive in the majority of 

tumor cells in at least 1 medium power (100 X) microscopic field; intermediate, 

weak/patchy staining in tumor cells; negative, no staining. We repeated the assay and 

reached consensus for cases with scoring discrepancy. We re-coded cases scored as 

intermediate and high as "positive" for multivariate analysis because univariate analysis 

did not distinguish between intermediate and high staining patient outcomes.  

 

Real-time, reverse transcription polymerase chain reaction (qRT-PCR) 

A neuropathologist (K.D.A.) selected FFPE tumor tissue for qRT-PCR by macro-

dissection based on representative hematoxylin and eosin stained sections.  We isolated 

total RNA with the MasterPure Complete RNA Purification kit (Epicentre 

Biotechnologies, Madison, WI) according to the manufacturer's instructions for paraffin-

embedded tissue. We reverse transcribed 10 µg of total RNA with random hexamers using 

TaqMan Reverse Transcription reagents (Applied Biosystems, Foster City, CA).  We 

performed and reported qRT-PCR results as previously described (Colman, Zhang et al. 

2010). 
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Statistical Analysis of GBM Cases 

The primary clinical endpoints for analysis were overall survival, progression-free 

survival, and response to radiotherapy.  We measured follow-up intervals from date of 

surgical resection to date of death or last contact.  We defined time to progression from 

the date of surgery to the date of tumor recurrence or growth as first documented by MRI. 

We used the method of Kaplan and Meier (Kaplan and Meier 1958) for survival analysis 

and made comparisons using the logrank test.  We determined univariate associations by 


2
 test or, when appropriate, the Fisher exact test (Fisher 1922) for categorical variables 

and the Wilcoxon rank sum test (Wilcoxon 1945) or Student t-test, when appropriate, for 

associations with continuous variables.  We carried out multivariate analysis using the 

Cox proportional hazards model (Cox 1972) for survival or Spearman's rank sum test 

(Spearman 1904).  We determined the AQP1 qRT-PCR threshold best able to partition 

patients by vital status into high and low AQP1 expression by recursive partitioning.  

Analysis was in JMP 6.0.3 for Macintosh (SAS Institute, Cary, NC).  

 

AQP1 U251 Glioma Model.   

 We cloned human AQP1 cDNA and red fluorescent protein (RFP) into mammalian 

retroviral expression vector pLXSN (Clonetech, Mountain View, CA).  We generated and 

packaged pLXSN-AQP1, pLXSN-RFP, and pLXSN-EV (empty vector) virus with 

Phoenix A cells (American Type Culture Collection, Manassas, VA).  We infected U251 

glioma cells (American Type Culture Collection) and selected with appropriate antibiotics 

and by fluorescence activated cell sorting for RFP to generate stable nonclonal cell lines: 

U251 parental: U251 cells infected with pLSXN-RFP.  U251-AQP1:  U251 cells infected 
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with pLSXN-RFP and pLXSN-AQP1.  U251-EV: U251 infected with pLSXN-RFP and 

pLXSN.  We incubated all lines in Dulbecco’s Minimal Essential Medium (DMEM) with 

pyruvate, supplemented with 10% FBS, 1% non essential amino acids, and 1% L-

glutamine (all from Invitrogen, Grand Island, NY), at 37
0
C at 100% relative humidity 

(Jung, Kim et al.) under 5%CO2.  In some experiments, we treated the cultures overnight 

with tetraethylammonium chloride (TEA, TOCRIS, Ellisville, MO ). 

 

Immunocytochemistry on Cell Lines 

 We grew U251 derivative lines to 80% confluence on laminin coated coverslips, 

fixed with 4% paraformaldehyde for 10 min at room temperature, and washed 3X with 

phosphate buffered saline (PBS).  We permeabilized with 0.2% Triton X-100/PBS 

(Invitrogen, Grand Island, NY), blocked with 3% horse serum/PBS for 1hr at room 

temperature, and incubated at 4°C overnight with rabbit primary polyclonal antibody to 

aqp1 (Millipore, Billerica, MA) diluted 1:1000 in PBS.  Following three PBS washes, we 

incubated with secondary Fluorescein-5-Isothiocyanate (FITC) Donkey anti rabbit 

antibody (Millipore) diluted 1:500 with PBS on the coverslips for 2hr at room 

temperature. After washing 3X with PBS, we mounted the coverslips on slides with 4’, 6-

diamidino-2-phenylindole (DAPI)/Prolong Gold  (Invitrogen, Grand Island, NY), and 

imaged with a 63X/1.4NA oil immersion objective on a Zeiss 710 confocal microscope. 

We visualized the FITC by exciting with 488nm diode laser and collecting 505-525nm 

emission. We visualized DAPI by exciting with a 405nm diode laser and collecting 

emission at 450-475nm. Supplemental Figure 5 indicates Aqp1 localizes to apparent 
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lamellipodia of U251-AQP1.  This confirms previous literature (Papadopoulos, Saadoun 

et al. 2008), and suggests normal physiological localization of aqp1 in U251-AQP1 cells.   

 

Immunofluorescent Confocal Microscopy of Rat Brain Tumor Slices 

 We permeablized Serial 40um brain sections with PBS containing 0.3% triton, 

blocked with CAS block (Invitrogen), and incubated overnight in anti-aqp1 primary 

antibody (Millipore). The next day, we rinsed and incubated sections with Alexa488 anti-

rabbit secondary and DAPI (invitrogen). Following immunofluorescent labeling, we 

mounted sections on slides with Vectashield (Vector labs) and coverslipped with No:1.5 

glass.  

We imaged slides on a Zeiss LSM710 laser scanning confocal microscrope using a 

405nm laser to excite Dapi and a 488nm laser to excite Alexa488. Lasers were raster 

scanned sequentially to minimize overlap between emission spectra. We tiled low 

magnification images with a 10x/0.3NA air objective with the confocal aperature set to 

collect fluorescence from a 30um thick focal plane. For other magnifications, we set the 

confocal aperature to one Airy unit to minimize photon collection outside the focal plane. 

We acquired 20x images with a 20x/0.8NA objective, and 63x images with a 63x/1.4NA 

objective. We used NIH Image J linear functions for all image processing.  

Ki67 Cell Proliferation Assay 

We immunostained serial 4um paraffin-embedded sections from AQP1 overexpressing 

(n=5) and Control (n=5) xenograft tumors for Ki67 (MIB-1) and lightly counterstained 

with hematoxylin.  A neuropathologist (JE) calculated the MIB-1 labeling indices. 
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Cell Counting Proliferation Assay 

We plated 
 
10

5 
cells into 6 well plates (VWR, Radnor, PA) harvested in triplicate 

every day for 8 days and counted with a Z2
TM 

Coulter Counter (Beckman Coulter, Inc., 

Hialeah, FL.).  

 

Cell Survival Assay 

We plated 50-100 single cells/well of a 6 well plate, incubated for 10-20 days, and 

counted colonies in triplicate wells after staining with methylene blue. We define a colony 

as an aggregate of at least 50 cells (Franken, Rodermond et al. 2006).  

 

Wound closure assay.   

We plated ~10
5 

cells in 6 well plates, incubated to 100% confluence in 2-3 days, 

cleared a standard area with a pipette tip, and measured the gap with a Zeiss Axiovert 200 

inverted microscope using the Zeiss software line tool to define upper and lower 

boundaries. We typically measured 5 random sites/time point/cell type, and calculated 

means, standard deviation, and % gap closure based on differences between time of 

observation and time at start.  We obtained similar wound closure results using cell 

proliferation inhibitor hydroxyurea (5mM) (Sigma, St. Louis, MO), previously described 

as an inhibitor of cell proliferation (Jung, Kim et al. 2002).  

 

Water flux assay 

We plated five thousand U251-AQP1 cells into each well of a 96 well plate. After 

two hours, we reduced the volume of each well to 30ul and transferred the plate to the 
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stage of a DIC-capable Zeiss 710 LSM equipped with a transmitted light PMT.  While 

imaging at 2hz, we added 200ul of hypotonic (150mOsm) artificial cerebrospinal fluid 

(aCSF) to each well at ~130ul/second (Normotonic aCSF: 126 mM NaCl, 26 mM 

NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM MgSO4, 2 mM CaCl2 and 10 mM 

glucose, pH 7.4).  We measured changes in cell cross-sectional area over time with image 

J software to estimate rate of cell swelling after hypotonic shock. We used a one-way 

ANOVA followed by a Fisher’s LSD multiple comparisons test to detect differences in 

cell cross sectional area among doses TEA.   

 

Boyden Chamber Migration Assay 

We starved cell suspensions of 0.5-1 x 10
6 

 cells/ml in serum free media 

overnight, added 300µl to the upper well of a Boyden Chamber (McCoy and Sontheimer 

2007) with CytoSelect Cell Migration 8µm pore size polycarbonate membrane inserts 

(Cell Biolabs, San Diego, CA)  and 500µl of media containing 10% fetal bovine serum to 

the lower wells.  We incubated 5hr at 37°C, 5% C02, aspirated the media inside the insert, 

transferred the insert to a clean well and quantitated migratory cells at the bottom of the 

insert with CyQuant® GR Dye (Jones, Gray et al. 2001) Kit (Invitrogen, Grand Island, 

NY) by detaching the cells, incubating in dye and reading on a fluorescent plate reader 

(Beckman Coulter, Brea, CA) at 520nm. 

 

Matrigel Invasion 

We cultured cells on glass-bottomed 35mm culture dishes with #1.5 optical glass 

coated with poly L Lysine (MatTek, Ashland, MA), aspirated media following adhesion, 
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covered cells with 100ul of matrigel (BD Bioscience, San Diego, CA), and incubated 15-

20min at 37°C to solidify. We replaced media above the matrigel, and incubated 36 hrs at 

37°C, 95% RH, 5% C02. We measured invasion with a Zeiss 710 inverted confocal 

microscope using Zeiss Zen software in z stack mode taking six readings on x/z and y/z 

line scans at 3 locations per dish. 

 

Murine Brain Slice Invasion 

All animal experiments reported in this manuscript were performed in accordance 

with the guidelines and regulations set forth by the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and were approved by the Institutional Animal 

Care and Use Committee of the Barrow Neurological Institute of St. Joseph’s Hospital 

and Medical Center, Phoenix, Arizona.   

We decapitated a deeply anesthetized rat using 0.1-0.2 ml/250 g of 75.8mg/ml 

Ketamine and 4.8mg/ml of Xylazine, excised the brain, and placed it in cold sterile PBS.  

We cut a 4-5mm slice with a 1mm metal template, attached it to a platen in a Vibratome 

1500 (Vibratome, St. Louis, MO), cut 300µm coronal slices, floated each in a chamber 

slide in slice medium (DMEM, 10% FBS, 1% NEAA, 1% L-gluNH2, 1X 

Penicillin/streptomycin (Invitrogen, Grand Island, NY), and finally removed the medium, 

leaving a flat, centrally located slice. We injected approximately 1 x 10
5
 cells in 1µl on 

the caudate/putamen of the slice, adhered by incubating 1hr at 37°C, 95% RH, 5% C02, 

and incubated the preparation in slice medium.  We measured invasion with a Zeiss 710 

confocal microscope using Zeiss Zen software in z stack mode using six readings on x/z 

and y/z line scans at 3 locations per slice.  
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Human Xenograft in Nude Rat 

Twenty-six male Crl:NIH-Foxn1
rnu

 rats (5 weeks age) from The Charles River 

Laboratories International, Inc. (Wilmington, MA) were anesthetized by intramuscular 

injection of of 10 mg/kg xylazine and 80 mg/kg ketamine (Wyeth, Madison, NJ) and 

placed in a rodent stereotactic headframe (Model 900, David Kopf Instruments, Tujunga, 

CA). A 10-mm incision was made to expose bregma. A bur hole was made 3.5 mm 

lateral to bregma. U251 (n=13 rats) or U251-AQP1 cells (n=13 rats) were infused at a 

depth of 4.5 mm below the surface of the brain after the syringe (Hamilton) was 

advanced 5.0 mm to create a 0.5-mm pocket. The cell suspension was infused using a 

UMP3-1 UltraMicroPump microinjector (WPI, Sarasota, FL) set to a volume of 10 µL 

with an infusion rate of 3.00 µL/minute. The needle was withdrawn 2 minutes after the 

injection to minimize backflow of the cell suspension. The bur hole was covered with 

bone wax, the skin incision was sutured, and the rats were allowed to recover. Rodents 

were monitored daily for dietary and behavioral changes, and were euthanized at first 

sign of morbidity.  

 

Results 

Aquaporin1 protein predicts poor GBM patient survival  

 

We evaluated 186 GBMs for aqp1 expression and correlated to patient outcome. 

Table 1 indicates patient characteristics. Progression-free survival. At a median follow-

up of 57 weeks, aqp1 was prognostic for progression-free survival (Figure 1A). The 

median actuarial time to progression was 36 weeks in the low expressing group compared 
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to 16 weeks in the high-expressing groups. The 6-month PFS was 18% vs. 37% in the 

low -expressing groups. Overall survival.  The median overall survival in the aqp1 high-

expressing group was 50 wks vs. 97 wks in the low-expressing group (p<0.0001, log-

rank test) (Figure 1B).  Recursive, split-sample validation achieved significance in all 

iterations by univariate analysis. Patients with high aqp1 expression had a nearly two fold 

increased risk of death compared to those with low expression. Multivariate analysis 

including age and extent of surgical resection demonstrated aqp1 was an independent 

prognostic factor (Table 2).  

 

AQP1 mRNA levels predict patient survival 

 We reverse transcribed total RNA derived from 67 formalin-fixed paraffin 

embedded (FFPE) GBM with sufficient available tissue and quantitated  AQP1 cDNA via 

qRT-PCR to support our IHC data. Tumors from patients with < 2yr survival had 2.9-fold 

higher median expression than tumors from patients with > 2yr survival (p=0.0069, 

Wilcoxon rank sum test) (Figure 1C).   Two yr survival for high vs. low tumor AQP1 

expression was 67% vs. 29%, consistent with IHC data (p=0.0001, log-rank test) (Figure 

1D) 
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Figure 1: Aquaporin-1 expression is prognostic in GBM.  (A) Progression-free survival.  

Kaplan-Meier curves demonstrate progression-free survival (PFS) probability for 186 

GBM patients as a function of aqp1 staining by IHC. The data show that high aqp1 

expression (red) is associated with poor PFS for patients with GBM. Kaplan-Meier curves 

demonstrate better PFS among patients with low aqp1 expression by IHC.  (B) Overall 

survival.  Low aquaporin-1 expression (blue) associated with improved overall survival.  

(C) qRT-PCR AQP1 on 71 FFPE GBM tumors. Values represent fold change (2
-ΔΔCt

) 

normalized to the tumor with lowest expression among all cases. Significantly higher 

RNA levels in tumors from typical GBM survivors (TS, <2yrs) compared to long-term 

survivors (LTS, >/= 2yrs) (Wilcoxon rank sum test).  (D) Recursive partitioning identified 

a cut-off for AQP1 expression that best separates survivors from deceased. Stratification 

(“low” <24.7 fold (blue); “high” >/= 24.7 fold (red)) correlated with OS.  
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Aqp1 overexpression stimulates glioma cell movement.   

In vitro wound closure (Figure 2A- 2C) and migration (Figure 2D) assays indicate 

direct correlation between AQP1 expression and glioma movement in the absence of host 

tissue.  At two days, wound closure rate was ~3 fold and migration rate ~4 fold faster in 

aqp1 overexpressors. 

Experiments in murine brain slices confirm increased invasion of U251-AQP1 

overexpressors over U251-EV empty vector controls (Figure 2E).  At day 2, controls 

invade approximately 35 um, but U251-AQP1 overexpressors invade approximately 51 

um.   Similarly, cultures under matrigel indicate that AQP1 overexpressers bleb more and 

migrate faster than U251-EV empty vector controls at 36 hr (29.9 +/- 12.0um vs. 19.27+/-

9.5um; p=0.02).  (Supplemental Figure 1).   

Experiments with the putative inhibitor of Aqp1-mediated water diffusion, TEA 

(Figure 2E) suggest motility is related to aqp1 function.  The dose response curve for 

U251-AQP1 indicates 100 µM TEA limits wound closure to 10%.   Literature (Brooks, 

Regan et al. 2000) suggests that tetraethylammonium chloride (TEA) blocks aqp1 

channels at this concentration. Water flux studies indicate a dose dependent relationship 

between TEA and Aqp1-mediated water transport in our cells, and confirms that our TEA 

concentrations inhibit water transport (Supplemental Figure 2). The motility increase in 

empty vector controls at 0.03 mM TEA and in U251-AQP1 at higher TEA concentrations 

suggest that TEA action – and U251 motility - are not simple functions of aqp1 water 

transport activity.  
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Figure 2: AQP1 overexpression enhances U251 motility.  (A) Wound closure of U251-

EV with empty vector expression at 2 days (B) Wound closure of U251 with AQP1 

overexpression at 2 days; note greater wound closure compared to U251-EV.  (C) U251-

AQP1 close wounds faster than U251-EV and parental controls 2 days after scratch; p= 

0.0008.  (D) U251-AQP1 overexpression increases migratory activity in a Boyden 

chamber assay. Parental U251 and U251-EV are negative controls. Relative fluorescence 

units are proportional to the number of cells moving across a membrane in the chamber.  

Stable AQP1 overexpressors (AQP1-U251) migrated more quickly than either control 

(p= 0.037). ( (E) U251-AQP1 is more invasive than U251-EV in Thy1-YFP mouse brain 

slice. (Day 2 p-value is 9.9E-09) (F) Putative Aqp1 inhibitor tetraethyl ammonium 

chloride (TEA) inhibits wound closure. TEA inhibits wound closure of AQP1-U251 but 

not controls in a dose dependent fashion. The error bars reflect +/- 1SD.  Scale bars equal 

200um.  
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Supplemental Figure 1: U251-AQP1 Migrates faster in Matrigel than control, U251-EV 

at 24 hr.   Confocal images of cells growing into matrigel layered onto cultured cell 

monolayer.  Z Axis indicates matrigel depth.  Note blebbing in U251-AQP1 (AQP1) are 

absent in U251-EV (Control).  
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Supplemental 2: TEA attenuates AQP1 mediated water transport. After 150mOSM 

hypoosmolar exposure, U251-aqp1 cells’ cross-sectional area increased at a rate at least 

four-fold greater than control cells (pLXSN) and TEA treated cells. Cross sectional area 

of U251-aqp1 cells dosed with 0.03mM TEA increased significantly faster than higher 

TEA doses, but were significantly slower than U251-aqp1cells not treated with TEA. 

This suggests a dose response relationship between apparent water transport as measured 

by cell swelling and concentration of the putative channel blocker TEA.   
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Control experiments suggest that aquaporin overexpression does not affect 

proliferation or cell survival in U251-AQP1 overexpressors and U251-EV controls in 

culture.  Our xenograft data confirm this: the MIB-1 labeling index in the most 

proliferative areas was 49.5% for control tumors and 51% for AQP1 over-expressing 

tumors (Supplemental Fig 3). The results indicate equivalent cell proliferation in U251-

AQP1 overexpressors and U251-EV controls. 

Aqp1 immunohistochemistry and confocal fluorescence imaging in rodent 

xenografts confirm that U251-AQP1 tumors are more invasive than U251-EV controls 

(Figure 3). The AQP1 cells created a tumor edge with cell clusters/cords that appeared 

infiltrative (Fig 3A-3E), whereas the controls produced a circumscribed tumor with a 

more solid edge (Fig 3F-J).  Furthermore, we identified U251-AQP1 cells migrating in 

white matter tracts and in corpus callosum, where Aqp1 expression was directed toward 

the contralateral hemisphere (Supplemental Fig 4).  Controls did not exhibit this invasive 

behavior.  However, both Aqp1 overexpressors and empty vector controls had 

pleomorphic nuclei. 

 

Glioblastoma AQP1 overexpression decreases survival in rodent xenografts 

We produced rodent orthotopic xenografts from human control U251 and U251-

AQP1 glioma cells (n= 13 rodents per group). Kaplan-Meier curve and log rank test show 

median survival for rodents implanted with control U251 glioma cells is 36 days 

compared to 29 days for U251-AQP1 rodents; p=0.0002 (Figure 4).  
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Supplemental figure 4: U251-AQP1 cells in white matter tract orient Aqp1 expression 

towards contralateral hemisphere. Confocal image of immunostained brain section from 

rodent xenograft implanted with U251-AQP1. Section stained for Aqp1 (green) and cell 

nuclei (blue). (A) Low magnification of tumor margin near the corpus callosum. Dashed 

line indicates location of brain hemispheric separation. (B) Inset from A with AQP1-

expressing cell in the corpus callosum. Note AQP1 expression oriented away from tumor 

and toward contralateral hemisphere. Scale bar equals 50um  
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Supplemental Figure 3: AQP1 expression does not alter in vivo tumor proliferation. (A-

B)Sections from rodent xenografts immunostained with the proliferative marker Ki67 and 

counterstained with hematoxylin.  (C)  U251-pLXSN tumors and U251-AQP1 tumors do 

not have significantly different Ki67 proliferative indices (p=0.42).      
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Figure 3: Aquaporin-1 expression enhances infiltration at the tumor margin. Confocal 

fluorescence images of Aqp1- overexpressing (A-E)  and control (F-J) xenograft tumors 

stained for Aqp1 (green). DAPI counterstain (red) indicates cell nuclei. (A) Aqp1 staining 

shows expression maintained in vivo. (B) DAPI staining of Aqp1-expressing brain 

section reveals hypercellular tumor.(C) DAPI and Aqp1 staining merged. Note overlap 

between Aqp1 and tumor.  (D) DAPI staining at inset in Fig 3C; DAPI stained nuclei of 

infiltrative U251 cell clusters/cords at the tumor margin (arrows). (E) Aqp1 expression in 

infiltrative cell clusters/cords in Fig 3D (F) Minimal aqp1 staining in control tumor. (G) 

DAPI staining of brain section reveals hypercellular control tumor. (H) Merged image. (I) 

Inset from Fig 3H; note well-defined tumor border with solid tumor structure (arrows). 

(J)  Merged image from fig 3H shows minimal Aqp1 staining. Scale bars equal 500um (C 

& H) and 20um (E & J).  
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Figure 4: Aquaporin-1 overexpression decreases survival of rodent xenografts. Kaplan-

Meier comparison of rodents intracranially implanted with human U251-AQP1 glioma 

cells to rodents implanted with control U251 glioma cells. Mean survival of U251-AQP1  

xenografts is 29 days versus 36 days for control xenografts; p = 0.0002.  
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Supplemental 5: Aqp1 Immunocytochemistry.  We grew RFP-expressing U251-AQP1 

cells on coverslips to ~70% confluence. Polyclonal antibody to Aqp1 and FITC conjugate 

secondary antibody confirm membrane bound Aqp1 (green) in edge extensions (1). Scale 

bar equals 5um.   
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Discussion 

Our data indicate aquaporin 1 protein (aqp1) and message (AQP1) gauge GBM 

patient outcome, play a critical role in invasion, but do not affect cell proliferation or cell 

survival.  The data suggest aqp1’s clinical effects are related to its effects on motility, and 

not on cell growth or survival.  

Median overall and progression free survival doubled when GBM had low aqp1, 

median survival quadrupled when tumor had low AQP1, and tumors from long term 

survivors (> 2 yr OS) expressed about 50% less AQP1 than tumors from typical 

survivors.  This prognostic power is independent of age, performance status, or extent of 

resection (Fig 1, Table 2). The results mirror previous descriptions of a mesenchymal 

GBM group associated with poor survival (Phillips, Kharbanda et al. 2006) and a nine 

gene predictor of survival after standard therapy (Colman, Zhang et al. 2010). AQP1 was 

the leading prognostic indicator in the nine gene predictor series. 

We show in Supplemental Figure 5 that aqp1 localizes to edge processes of the 

cell called lamellipodia (Saadoun, Papadopoulos et al. 2005). Lamellipodia are sheetlike 

extensions of cytoplasm forming transient adhesion to the cell substrate enabling 

movement.  The data indicate that aqp1 protein is closely associated with cell movement. 

Our data demonstrate that AQP1 expression correlates directly with cell migration 

and invasion as shown by wound closure, Boyden Chamber, brain slice, and matrigel 

assays (Figure 2 and Supplemental Figure 1).  The wound closure rate tripled for U251-

AQP1 compared to U251-EV controls and migration rate in a Boyden chamber 

quadrupled for U251-AQP1 compared to U251-EV control.  The murine brain slice assay 
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indicates much greater invasion for U251-AQP1 than U251EV.  The matrigel invasion 

data support the wound and Boyden chamber data.  Invasion of U251-AQP1 is 2-3X the 

rate of U251-EV in matrigel after 24hr incubation. The results indicate that aqp1 protein 

is closely associated with cell movement.   

Literature supports our wound and Boyden Chamber assay results. Stable 

transfection of non-endothelial cells with AQP1 accelerated cell migration(Saadoun, 

Papadopoulos et al. 2005) and aqp1-deficient kidney epithelial cells slowed migration 

measured by in vivo  wound healing, and by Boyden chamber assay (Hara-Chikuma and 

Verkman 2006). AQP1 and AQP5 levels also correlated with invasion in human corneal 

epithelial cells (HCEC) and cell lines (CEP117) (Shankardas, Patil et al. 2010).    

Verkman hypothesizes (Verkman 2005) that aqp1 expression on lamellipodia of 

migrating cells allows alterations in osmolality following actin depolymerization and ion 

influx to  drive water flux, increasing local hydrostatic pressure and regulating membrane 

protrusion. Data suggest that aqp1 localizes to lamellipodia and allows quick changes in 

lamellipodial volume (Verkman, Hara-Chikuma et al. 2008). The hypothesis predicts 

greater water diffusion mediated by aqp1 results in faster cell movement. Our IHC data 

support this hypothesis by localizing aqp1 to the lamellipodia involved in migration.  

This typical aqp1 pattern of distribution also suggests that overexpressed aqp1 in our 

model emulates natural protein distribution after translation, and suggests that 

relationships between aqp1 and motility in our model represent physiologic aqp1 

function.  

Central nervous system AQP1 expression is typically limited to ependymal cells 

of the choroid plexus (Oshio, Watanabe et al. 2005, Papadopoulos and Verkman 2013).  
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Therefore, AQP1 overexpression within glioma cells suggests tumor cell genetic 

instability and/or presence of a different cell type.     

 Our nude rat xenograft model demonstrates aggressive behavior of U251-AQP1 

cells.   Figure 3 and supplemental 4 indicate an infiltrative growth pattern at the tumor 

margin compared to the well-delineated tumor in U251-EV controls. Figure 4 shows the 

effect of GBM AQP1 overexpression on rodent survival. The results suggest the 

relationship between poor survival and aqp1 expression in human disease results from 

aqp1’s effects on tumor motility. Histologically, nuclei were equally pleomorphic in 

control and AQP1 overexpressors and the proliferative index was similar between both 

groups (Supplemental Figure 3). Our data suggest aqp1 expression does not affect cell 

proliferation or colony formation, consistent with other reports (Saadoun, Papadopoulos 

et al. 2005, Hara-Chikuma and Verkman 2006) . 

Water penetration across tissue compartments is an important function of aqp1.  

The relationship between motility and TEA treatment (Figure 2E) suggests aqp1-

mediated motility is not entirely regulated by water movement, and confirms that TEA 

concentrations we use for the experiment reported in fig 2E inhibit water transport in our 

system. The motility increase in empty vector controls at 0.03 mM TEA and in U251-

AQP1 at higher TEA concentrations suggest that TEA action – and U251 motility - are 

not simple functions of aqp1 water transport activity. TEA’s ability to inhibit aqp1-

mediated water permeation was originally established and then validated by 

mutagenizing loop E of aqp1(Jung, Kim et al. 2002).  Our data indicate that TEA inhibits 

Aqp1 mediated water transport and wound closure in a dose dependent manner – 100 uM 

is the optimal inhibitory concentration for wound closure.  The small motility increases in 
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U251-AQP1 overexpressors at higher TEA concentrations suggest TEA also affects other 

processes associated with motility.  Its ability to increase motility in control U251 cells 

strengthen this likelihood.  In our experiments, controlling for TEA’s nonspecific effects 

on motility strengthen aqp1’s relationship to motility. One well-known activity of TEA is 

to inhibit K+ channel function (Post, Hume et al. 1992); perhaps this or other effects of 

TEA are a basis for the  behavior we document in Figure 2E.  Literature suggests TEA 

inhibition of Cl- and K+ channels result in inhibition of human malignant glioma cell 

invasion(Soroceanu, Manning et al. 1999) although increases in the motility of control 

cells (Figure 3E) suggest this is not the case in our system.  

 

Conclusion 

Aqp1 is an independent prognostic factor in GBM patients.  Our studies of aqp1 

overexpression suggest its effects on cell migration form the basis of this protein’s ability 

to affect patient outcome.  These data suggest aqp1 is a candidate for therapeutic 

intervention. 
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Table 1. Characteristics of patients examined for aqp1 expression 

 

 Value N (%) 

Total patients  187 (100) 

Median age, years 59   

Age range 19-84    

 Number <50y   47 (25) 

 Number ≥50y   140 (75) 

Median follow-up, weeks 55   

 Follow-up range, weeks 1-394   

Median survival (weeks)    

 Overall 58   

 Progression-free 26   

Vital Status    

 Alive  36 (19) 

 Deceased  151 (81) 

Karnofsky Performance Status    

 <70  5 (3) 

 70 – 80  82 (44) 

 90 – 100  100 (53) 

RTOG RPA Class (Scott, 

Scarantino et al. 1998) 
   

 III  29 (16) 

 IV  134  (73) 

 V+VI  21 (11) 

Surgical Resection    

 Gross-total  97 (52) 

 Subtotal  88 (47) 

 Biopsy only  2 (1) 
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Table 2: Aqp1 expression is an independent predictor of survival.  

 

Variable Hazard Ratio (95% CI) p-value 

Age (<50y vs. ≥ 50y) 2.3 (1.5 – 3.7) 0.0001 

KPS (<70 vs. 70-80) 1.1 (0.5 – 1.0) 0.0980 

 (70-80 vs ≥90) 1.4 (0.4 – 2.6)  

Surgical resection  

(GTR vs. STR/biopsy) 

1.2 (1.0 – 1.4) 0.0850 

Aquaporin-1  (high vs. low) 1.9 (1.3 – 2.9) 0.0001 
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     CHAPTER 2B 

AQUAPORIN-1 OVEREXPRESSION ENHANCES GLIOMA CELL MOTILITY 

INDEPENDENTLY OF WATER TRANSPORT 

Introduction 

New brain tumors arise in more than 40,000 Americans each year. They are the 

second most common cause of cancer death up to age 35, with a slight peak among 

children between 6 and 9 years old, but these tumors are most common among middle-

aged and older adults. About half of brain tumors are primary - i.e. their origin is 

intracranial; the remaining are metastatic. Clinical prognostic factors for primary brain 

tumors include tumor grade, patient age, performance status, and radiation response (DP 

Byar 1983, Mahaley, Mettlin et al. 1990, Daumas-Duport 1992, Barker, Prados et al. 

1996). Grade IV glioma (GBM) is the most common primary brain tumor. Standard 

GBM treatment is surgical resection followed by radiation and temozolomide (Hegi, 

Diserens et al. 2005). Aggressive resection improves survival (Sanai and Berger 2008). 

However, infiltrative cells remain following GBM resection leading to recurrence. 

We recently reported aquaporin-1 (aqp1) gene and protein as predictors of GBM 

infiltration and patient survival. A clinical nine gene predictive indicator of GBM 

survival suggests AQP1 is independently prognostic (Colman, Zhang et al.). AQP1 

expression is linked to increased motility in normal and neoplastic glial cells(McCoy and 

Sontheimer 2007). Our previous work shows that AQP1 promotes GBM migration and 

invasion. AQP1 is also linked to motility in neoplasms of the breast, CNS, and lung 
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(Verkman, Hara-Chikuma et al. 2008).  Thus, developing an aqp1-targeted GBM therapy 

may provide a versatile antineoplastic. However, the mechanistic role of aqp1-mediated 

motility is unknown.    

     We know of 16 aquaporin proteins (aqp) - water channels that facilitate 

transmembrane water movement. Some aquaporin genes - AQP-1, 3, 4, 5, and 9 - are 

implicated in cell motility (Loitto, Karlsson et al. 2009). Functional inhibitors of 

aquaporin water transport are nonspecific (TEA), and/or toxic (Hg). Thus, independent 

study of aqp1-mediated water transport on cell motility is not possible with current aqp1 

inhibitors.  

Non-water permeating aqp1 mutants allow specific study of aqp1’s water channel 

(Yool 2007). Aqp1’s 267 amino acid sequence consists of cytosolic loops B and D and 

extracellular loops A, C, and E. In aqp1’s tertiary structure, NPA motifs of loops B and E 

interact to form the water pore. Mutants alter the alignment of these motifs and restrict 

water transport. One well-characterized aqp1 mutant substitutes an asparagine for the 

glutamic acid at the 17 position of the protein (e17n). This mutant functionally inhibits 

water transport without altering other characteristics of the protein.  (Jung, Preston et al. 

1994).   

     Although specific inhibitors of aqp1-mediated water transport are under 

development (Antonio Frigeri 2007, Yool 2007), their antineoplastic activity has not been 

rigorously studied. This work investigates the relationship between aqp1 water transport 

and GBM invasion by studying the effects of e17n overexpression in human GBM cells. 
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We hypothesize glioma cells overexpressing e17n will have impaired motility compared 

to glioma cells overexpressing aqp1. 

 

Materials and Methods 

Cell lines  

 We cloned aquaporin-1 (AQP1) and mutant non-water permeating aquaporin-1 

(e17n) cDNA into mammalian retroviral vector pLXSN(clonetech), and generated viral 

particles with PhoenixA cells. We infected two human cell lines (Ln18,U251) with aqp1, 

e17n, and empty vector cDNA. Cells were selected with 1mg/ml of genticin (Gibco) for 

three weeks and tested for aqp1 and e17n expression by and immunofluorescence. Cells 

were maintained in standard DMEM culture media without antibiotic supplementation. 

 

Immunofluorescence   

 Cells were cultures on No. 1.5 coverslips and fixed with 4% paraformaldehyde 

then rinsed 3x10 min in PBS, permeabilized with 0.3% triton for 1 hour, and blocked for 

1 hour (Cas Block; Invitrogen). Samples were then incubated overnight in 0.1% aqp1 

primary antibody (Millipore), rinsed 3x15min with PBS, and incubated with Alexa488 

secondary antibody. Samples were incubated for 15 minutes in DAPI and placed on 

slides with #1.5 coverslips. 

 We imaged the fluorescently stained cells with a Zeiss710 laser scanning 

confocal microscope using zen software. DAPI was visualized with 405nm excitation and 

450nm emission, and Alexa488 with 488 excitation and 525nm emission. To minimize 

signal overlap between each fluorophore, we sequentially rastered each laser line during 
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excitation. We minimized collection of signal from outside the focal plane by setting the 

confocal aperature to one Airy unit.    

Cell Swelling Assay  

 We placed 1,000 cells into wells of a 96-well glass bottom plate (MatTek). Cell 

swelling was monitored during immediate 200mOSM hypotonic shock at 2hz using a 

Zeiss laser scanner confocal microscope (Zeiss LSM710/Live Duo) set for transmitted 

light microscopy. We quantified the rate of cell swelling by measuring cell cross 

sectional areas with NIH image J software.  

 

Wound Assay  

 We seeded 200,000 cells into each well of a six well plate. At 100% confluency, a 

line of cells was removed from each well with a p200 pipette tip. Five points per scratch 

were imaged with a Zeiss inverted phase contrast microscope equipped with a motorized 

stage and mark and find module. Identical regions were imaged every twelve hours for 36 

hours and data was analyzed by repeated measures ANOVA followed by Tukeys multiple 

comparisons test.  

 

Growth Assay  

 We conducted growth assays on U251 and Ln18 cell lines by seeding 35,000 cells 

into each well of a twelve well plate. We trypsinized and counted cells from 4 wells per 

cell type (control, e17n, and aqp1) with a coulter counter at days 1,3,5, and 9. Data was 

grouped by parental cell line and analyzed by ANOVA and Tukeys multiple comparisons 

tests. 
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Rodent xenografts 

  All animal procedure were approved by ASU/BNI IACUC committees in 

agreement with NIH standards. Five-week-old male athymic rats were anesthetized with 

ketamine/xylazine/acepromazine and placed into a stereotaxic frame(Kopf). A 5mm 

midline incision was made superficial to bregma, and a small burr hole was created at 3.5 

lateral to bregma. We infused 1.0x10
6
 cells suspended in 10ul of serum free media 

4.5mm deep at 3ul/min (Quintessential Injector;Stoelting). Animals were administered 

Caprofen to minimize discomfort following surgery and monitored animals daily for 

morbidity. 

 

Histology 

  Rodent xenografts were deeply anesthetized and sacrificed by cardiac perfusion 

of PBS followed by fresh 4% paraformaldehyde (PFA). Brains were excised, fixed 

overnight in 4degree celsius PFA, and rinsed three times with PBS. Brains were 

embedded in paraffin, sectioned at 5um and stained with hematoxylin and eosin.  

 

Results 

 Immunofluorescence 

  To study targeted inhibition of aqp1 water transport, we acquired a mutant 

Aquaporin-1 (e17n) that has restricted water transport (Yool 2007). We infected two gbm 

cell lines (Ln18 and U251) with aqp1, e17n, and EV viral vectors. We used 

immunofluorescence to show aqp1 and e17n expression in transduced cells and 

negligible native aqp1 expression in controls (Figure1: A-F).  

1a 1b 
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Figure 1: Expression of aquaporin and e17n in two human glioma cell lines.  

Immunofluorescent images of U251 cells infected to overexpress AQP1 or e17n  (DP 

Byar). Dapi counterstain to visualize cell nuclei. (A,D) U251 and Ln18 cells transduced 

with AQP1 strongly express the protein in the cytoplasm and cell membrane. (B,E) Cells 

infected with e17n localize the protein to the plasma membrane and cytoplasm. Note 

greater cytoplasmic localization for the mutant aqp1 (C,F). Empty vector U251 and Ln18 

cells express minimal aqp1.  
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Water Flux Assay 

 We utilized a water flux assay to test the function of e17n. We monitored the 

percent change in cell cross-sectional area by time-lapse imaging after immediate 

exposure to hypotonic (200 mOsm) aCSF. We found cells expressing aqp1 increased in 

cross-sectional area at a greater rate than e17n or empty vector control cells which did not 

differ in rate of increase (p< 0.0001). This confirms aqp1 overexpression increases water 

flux whereas e17n expression does not increase water flux above rate of control cells 

(Figure 2). 
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Figure 2: Water flux assay AQP1 overexpressing glioma cells transport water at a greater 

rate than mutant and empty vector cells. (Verkman, Hara-Chikuma et al.) Cells prior to 

hypo-osmotic challenge. (D-F) Cells during 200mOsm challenge. Note multiple 

membrane blebs in AQP1 overexpressing cells. (Bar Graph) AQP1 overexpressing cells 

transport water at a greater rate than e17n and empty vector cells.  
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Cell Motility    

 We tested e17n-mediated motility with a wound assay. Two cell lines engineered 

to express aqp1, e17n, and empty vectors were cultured. A wound was made in each well 

once cells reached confluency. We found e17n and aqp1 overexpression both 

independently promote wound closure in GBM cells compared to control cells (p< 0.05) 

(Figure3: A-E)  

 

Cell Growth  

 We implanted a growth curve to determine effects of aqp1 and e17n on cell 

growth. We observed the greatest rate of cell growth occurred between days 3 and 5 for 

all cell groups. There was no difference between growth of control cells or e17n and aqp1 

overexpressing cells at any time point for Ln18 and U251 cell lines (p> 0.05)(Figure3: 

F&G) .   
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Figure 3: Cell Motility and Growth 

Aqp1 upregulates motility independently but does not alter cell proliferation.. (A-E) 

Wound closure assays. (Verkman, Hara-Chikuma et al.) Phase contrast images of (A) 

empty vector U251, (B) e17n-U251, and (C) AQP1-U251 after 36hours of wound. (D,E) 

Empty vector u251 show decreased wound closure at 36 hours compared to e17n and 

AQP1 expressing glioma cells. (F,G) Cell growth assays. (F)Ln18 and (G) U251 cells 

overexpressing AQP1 and e17n have similar growth to empty vector control cells. Scale 

bar equals 200um. 
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Rodent Xenografts  

 We intracranially injected male nude rats with 1.0x10
6 

newly developed U251 

cells expressing aqp1, e17n, and empty vectors. H & E staining of these xenografts 

contrasts normal tissue with lighter staining, and neoplastic tissue with dark staining. Our 

data suggest both aqp1 and e17n produce more infiltrative tumor margins than tumors not 

overexpressing these proteins. (Figure4: A-C).  
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Figure4: Mutant Xenograft Histology 

AQP1 enhances brain tumor infiltration and decreases rodent survival. (Verkman, Hara-

Chikuma et al.) H and E stained sections from rodent xenografts. (A) Empty vector 

control human glioma cell tumor border. Note well delineated tumor margin. (B) Aqp1- 

overexpressing tumor margin with infiltrative cells. (C) Mutant aquaporin tumor with 

infiltrative tumor margin. Scale bar equals 200um.  
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Discussion 

 Aquaporin-1 is upregulated in cancers of the breast, colon, and kidney (Otterbach, 

Callies et al. 2008, Huang, Murakami et al. 2009, Jiang 2009). Our previous work 

additionally showed AQP1 was overexpressed in glioblastoma (Oshio, Binder et al. 

2005). We found aqp1 to be predictive of GBM patient survival, with low aqp1 

expressors surviving 97 weeks, and high expressors surviving an average of 50 weeks. In 

GBM, aqp1 increases the infiltration of tumor cells without effecting their growth or 

proliferation. A similar hyper-motile phenotype is appreciated in other cancers that over-

express aqp1 (Hu and Verkman 2006, Jiang 2009). Current hypotheses attribute changes 

in motility to water transport (Papadopoulos, Saadoun et al. 2008). However, our findings 

suggest aqp1 harbors a water transport-independent function that accelerates cell motility. 

 Therapeutic targeting of AQP1 is hindered by the lack of aqp1-specific agents. To 

circumvent this, researchers have used non-specific water channel inhibitors such as 

mercury and tetraethylammonium (TEA). However, these inhibitors block additional 

channels (ie: TEA) and/or are toxic (ie:Hg) (Brooks, Regan et al. 2000, Farina, Rocha et 

al. 2011). Therefore, our findings that e17n and aqp1 similarly increase motility in glioma 

cells suggest pure inhibition of water transport will not necessarily inhibit aqp1-mediated 

motility. 

 Our observations suggest aqp1 up-regulates cell motility independently of water 

transport. Others have eluded to multiple functions for aqp1 (Monzani, Bazzotti et al. 

2009, Yool and Campbell 2012). In our studies, we developed glioma cells expressing a 

mutant aqp1 incapable of water transport (e17n). We verified the lack of water transport 
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for e17n with hypotonic cell-swelling assays and found e17n-expressing cells to transport 

water at a similar rate to empty vector control cells; a rate much less than cells expressing 

aqp1. Our in-vitro assays show that glioma cell lines over-expressing e17n have 

enhanced motility similar to cells over-expressing wild-type aqp1. 

 Our previous work with rodent xenografts showed that a typically non-invasive 

human glioma cell line could become more invasive after aqp1 overexpression. The 

infilitrative margins we observed in e17n- overexpressing tumors suggest this effect is 

independent of water transport. This is in contrast to control tumors that produce well-

demarcated tumor margins.  

 We recognize limitations in our work include the use of cell lines that do not fully 

recapitulate the human form of GBM. Future work exploring the effects of aqp1 and e17n 

expression in primary tumor cells and neurospheres may provide additional insight 

towards the mechanism(s) decreasing human survival.  However, our data suggest 

targeting aqp1 molecular regions outside the water channel may be required to control the 

malignancy of high grade tumors such as glioblastoma. 
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CHAPTER 3 

CONTRAST-FREE MICROSCOPIC ASSESSMENT OF GLIOBLASTOMA 

BIOSPECIMENS PRIOR TO BIOBANKING 

 Glioblastoma (World Health Organization grade 4 glioma; GBM) is the most 

common primary brain tumor with a 12-15 month median patient survival. Improving 

patient survival involves better understanding the biological mechanisms of GBM 

tumorgenesis and seeking targeted molecular therapies. Central to furthering these 

advances is the collection and storage of surgical biopsies (biobanking) for research. 

Unfortunately, due to the necrotic feature of GBM and our inability to assess tissue prior 

to biobanking, the majority of biobanked GBM samples lack appropriate cellularity to be 

utilized in research. This manuscript addresses an imaging modality (confocal reflectance 

microscopy; CRM) for safely screening GBM biopsies prior to biobanking to increase the 

quality of tissue provided for research and clinical trials. CRM is a light scattering 

imaging modality that can generate contrast from cells and tissue without exogenous 

contrast agents. Our data indicate that CRM can immediately identify cellularity of tissue 

biopsies from animal models of GBM. When screening fresh human biopsies, CRM can 

differentiate a cellular GBM biopsy from a necrotic biopsy. Compared to controls, CRM 

does not alter the DNA, RNA, or protein expression of sampled tissue. Our data illustrate 

CRM’s potential for rapidly and safely screening clinical biopsies prior to biobanking. 

This information can augment data gained from resected tissue for molecular and 

translational research, and for determining the eligibility of GBM patients for enrollment 

into clinical trials. Secondly, this method provides a digital histological record of a 

biopsy that can be stored along with a biobanked specimen. Our data show CRM to be a 
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robust screening technique that can improve the quality of tissue biobanked for 

glioblastoma patients. 

 

Introduction 

 Each year, over 22,000 Americans are diagnosed with high-grade gliomas. More 

than half of these brain tumors are Glioblastoma (GBM), the most aggressive and 

essentially non-curable form of this disease (Dolecek, Propp et al. 2012). Standard 

treatment for newly diagnosed GBM is surgical resection followed by ionizing radiation 

and chemotherapy (Lefranc, Brotchi et al.) . However, current therapeutic approaches 

provide minimal survival benefit with median survival remaining formidably at 12 

months and two-year survival remaining less than 30%  (Stupp, Mason et al. 2005, 

Furnari, Fenton et al. 2007). 

  A key component to improving patient survival involves a better understanding 

of the biological mechanisms in tumor formation and seeking targeted molecular 

therapies (Mohyeldin and Chiocca 2012). With recent advances in medical genetics, 

computational biology, and biotechnology, novel molecular approaches such as immune, 

vaccine, and gene therapy are being extensively explored in treating brain tumors. Central 

to furthering these advances requires collecting surgical biopsies (biobanking) to study 

for gliomagenesis or to assess a patient’s eligibility for potential life-prolonging clinical 

trials.  Unfortunately, due to the necrotic feature of malignant gliomas and our inability to 

assess tissue prior to biobanking, the majority of biobanked GBM samples lack 

appropriate cellularity to be utilized in these two research arenas. A method for safely 
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screening tissue biopsies prior to biobanking is needed to increase the quality of tissue 

provided for research and clinical trials.  

Confocal reflectance microscopy (CRM) is an optical imaging modality that can 

rapidly assesses tissue without physical manipulation or application of exogenous 

contrast agents (Campo-Ruiz, Ochoa et al. 2002, Tilli, Cabrera et al. 2007). In CRM, a 

laser is raster-scanned across a specimen without generating a detectable stokes-shift. 

Photons from the laser are scattered back towards the objective and passed through a 

confocal aperature. This allows multiple optical sections to be collected from a sample 

without physical sectioning. When applied to thick tissue samples, CRM can identify 

individual cells and structural components within the tissue (Campo-Ruiz, Ochoa et al. 

2002). Compared to other optical sectioning techniques (ie: fluorescence confocal 

microscopy, structured illumination, non-linear microscopy), CRM introduces a fraction 

of energy into tissue samples. Thus, it is least likely to alter tissue characteristics by 

generation of free radicals or thermal energy. 

We hypothesized CRM would provide a safe and rapid means for screening GBM 

tissue appropriate for biobanking. In this study we first utilize CRM to assess tissue 

cellularity from rodent glioma models, then evaluate alterations to the molecular integrity 

of tissue imaged with CRM. Lastly, we test CRM on clinical samples with a pathology-

based CRM system. Our data illustrate CRM’s potential for screening clinical biopsies 

prior to biobanking. Though multidiscipline applications for intraoperative CRM exist, 

our immediate goal is to determine its efficacy as a robust screening technique that will 

improve the quality of tissues collected and biobanked for brain tumor patients. 
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Material and Methods 

Intracranial implantation  

Nude rats were acquired from Charles River Laboratories. Rats (n=5) were 

anesthetized by intramuscular injection of a mixture of 10 mg/kg xylazine and 80 mg/kg 

ketamine (Wyeth, Madison, NJ) and placed in a small animal stereotactic headframe 

(Model 900, David Kopf Instruments, Tujunga, CA). A 10-mm incision was made 

starting between the animal’s eyes to expose bregma. A bur hole was made 3.5 mm 

lateral to bregma. Human glioma cells (U251; ATCC) were infused at a depth of 4.5 mm 

below the surface of the brain after the syringe (Hamilton) was advanced 5.0 mm to 

create a 0.5-mm pocket. The cell suspension was infused using a UMP3-1 

UltraMicroPump microinjector (WPI, Sarasota, FL) set to a volume of 10 µL with an 

infusion rate of 3.00 µL/minute. The needle was withdrawn 2 minutes after the injection 

to minimize backflow of the cell suspension. The bur hole was covered with bone wax, 

the skin incision was sutured, and the rats were allowed to recover.  

 

Rodent tissue 

Twenty-eight days after implantation, rodent xenografts were deeply anesthetized 

using xylazine and ketamine (previously described). They were immediately decapitated, 

and their brains were removed. Immediately, coronal slices (350 μm thick) were cut from 

the cerebrum on a Leica VT1200 vibratome and placed in artificial cerebrospinal fluid 

(aCSF) containing the following (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 

NaH2PO4, 2 MgSO4, 2 CaCl2 and 10 glucose, pH 7.4.  Slices were then fixed in 4% 

paraformaldehyde at 4 degrees Celsius overnight and washed three times with phosphate 
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buffered saline (PBS). Three tumor containing slices per animal were incubated with 

DAPI for 45 minutes at room temperature, rinsed three times with PBS, and placed into 

number 1.5 glass bottom dishes (MatTek) for imaging. A coefficient of determination 

analysis was used to compare cells identified with CRM to cells labeled with DAPI. 

Rodents utilized for molecular experiments (n=2) were deeply anesthetized using 

xylazine and ketamine and rapidly decapitated. Whole brains were placed in ice cold 

aCSF and sectioned into 1mm coronal sections using a rodent brain block. The cerebrum 

from each section was blocked into 4 equivalent sections. Two sections were 

immediately frozen in liquid nitrogen (LN2) for reference. At 15, 30, 45, 60, 90, and 

120minutes two sections were placed into glass bottom dishes. At each time point, the 

cortex, corpus callosum, and caudate/putamen from one section was imaged with CRM. 

As a control, one section was simultaneously placed on the stage of the microscope but 

not imaged. Each section was frozen in LN2 and stored at -80° C for assessment of DNA, 

RNA, and protein.  

 

Imaging  

All samples were imaged in uncoated No.1.5 glass-bottom dishes (MatTek corp). 

CRM was conducted with a Zeiss invereted 710 laser scanning confocal microscope 

equipped with a 40x/1.2NA water emersion objective. For reflectance imaging, a 633-nm 

diode laser was raster scanned across the sample and reflected photons were collected by 

tuning the emission filters to allow photons with the same wavelength of the incident 

laser passage to the photomultiplier tube. For DAPI imaging, samples were excited with a 

405-nm diode laser and 430-490nm emission collected. The confocal aperture was set to 
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one Airy unit for all imaging. The laser and gain values were set to fill the dynamic range 

of the photomultiplier tube, and the frame size was set to sample at nyquist. Images were 

collected in 12-bit format absent of nonlinear processing.  

 

DNA Isolation & Analysis 

 DNA was isolated from brain tissue using the QIAamp DNA Mini (Qiagen), per 

manufacter’s instructions. DNA was quantified using the Nanodrop Spectrophotometer 

(Thermo Scientific). Samples were loaded in equal concentrations (100 ng) in a 1% 

agarose gel with ethidium bromide and imaged on an Alpha Imager (Alpha Imager). 

 

RNA Isolation and Analysis 

 Tissue was homogenized in 500 ul Ambion’s Cell Disruption Buffer (Life 

Technologies) and subsequently isolated using Ambion’s mirVana kit (Life 

Technologies), per manufacturer's instructions. RNA concentrations were determined 

using the Nanodrop Spectrophotometer (Thermo Scientific) and provided information for 

the dilutions necessary to remain within the dynamic range of the Bioanalyzer. The 

integrity of the RNA was assessed using Agilent 2100 Bioanalyzer Nanochips (Agilent 

Technologies). 

 

Western Blot Analysis 

 Frozen tissue was sectioned on dry ice and protein lysate was made by placing 

brain sections into 750 ul Ambion’s Cell Disruption Buffer (Life Technologies); 

triturated using RNase-free pipettes; and sonicated using Covaris Sonolab at 2 X 5% for 5 
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seconds; 2 X 20% for 15 seconds; 2 X 20% for 15 seconds; 2 X 5% for 5 seconds 

(Covaris Inc).  

 Protein concentrations were quantified by BCA (Pierce, Thermo Scientific) and 

18 ug/lane was loaded in 4-12% NuPage Bis-Tris gels (Invitrogen) and run using NuPage 

electrophoresis reagents (Invitrogen). Protein was transferred onto Novex nitrocellulose 

membrane (Invitrogen) and thereafter incubated for an hour in blocking solution 

consisting of 5% bovine serum albumin (Sigma Aldrich) in tris-buffered saline with 0.1% 

Tween (Thermo Fisher Scientific). Primary antibodies were incubated for 12 hours at 4 C 

while secondary HRP-conjugated antibodies were incubated for 1 hour at room 

temperature. Blots were probed for AKT (1:1000; Cell Signaling; Cat#: 9272) and 

GAPDH (1:60,000; Millipore; Cat#: AB2302). Horseradish peroxidase (HRP)-

conjugated secondary antibodies were Anti-Rabbit (1:2000; Cell Signaling; Cat#: 7074) 

and Anti-Chicken (Millipore; Cat#:12-341). 

 Blots were developed by using Pierce SuperSignal Chemiluminescent Substrate 

(Thermo Fisher Scientific) per manufacturer’s instructions. Protein signal was detected 

on film (General Electric).  

 

Statistical Analysis 

 Coefficient of correlation (R
2
 value) was determined between DAPI stained nuclei 

and nuclei detected by RCM using Graphpad Prizm. Differences were considered 

statistically significant for probability of less than .05. The Agilent 2100 Bioanalyzer 

provided an RNA integrity number ( RIN) calculated algorithmically by including the 

28s/18s ribosomal RNA bands, the region before the peaks, signal areas, and intensities. 
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An elevated threshold baseline and a decreased 28s:18s ratio are both indicative of RNA 

degradation while high 28S and 18S ribosomal RNA peaks as well as a small amount of 

5s RNA or a RNA number of greater than 7.5 are indicative of intact RNA (Fleige and 

Pfaffl 2006). Image J was used to determine density (intensity) of bands on a western 

blot. Data analysis consisted of determining relative density. Results will be expressed as 

the means and mean square error (SEM) data with normal distribution that will be 

compared by one-way analysis of variance and student’s t-test. 

 

Clinical Samples 

This research was approved by the Institutional Review Board of St. Joseph's 

Hospital and Medical Center and Barrow Neurological Institute, Phoenix, Arizona, where 

all surgery was performed. Preoperatively, patients signed an informed consent for 

participation.  Samples (mean size, 4 x 2 x 2 mm) were obtained at the time of 

craniotomy from within the tumor mass at a location determined to be safe by the 

surgeon. Tissue samples were placed in ice-cold aCSF and transported from the operating 

room to the pathology-based CRM system. There, the samples were immediately placed 

in #1.5 glass-bottom dishes (MatTek) and imaged. Investigators conducting imaging 

experiments were unaware of the pathological diagnosis at the time of imaging. Final 

diagnosis was determined by traditional immunohistochemistry and paraffin-embedded 

hematoxylin and eosin staining of the sampled tissue.  For the purpose of comparisons, 

the histopathological diagnosis made by a board-certified neuropathologist was accepted 

as the final diagnosis.   
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Results 

Reflectance imaging differentiates neoplastic cellular tumor from acellular tissue. 

 To investigate the potential of reflectance imaging for differentiating cellular 

tumor biopsies from acellular biopsies, we imaged acute slices generated from rodents 

intracranially implanted with human glioma cells. We incubated slices with DAPI to 

label all cell nuclei, then sequentially imaged the slices with CRM and LSCM (n=15 

slices from 5 animals). We collected five images per acute slice and compared cells 

identified with CRM to cells identified with DAPI. We found CRM provided definitive 

contrast between cell nuclei, cytoplasm, and extracellular tissue. Within tumor regions, 

CRM provided contrast to visualize hypercellular regions and relatively acellular regions 

with isolated cell populations (Fig1. A-C & E-G). In hypercellular and acellular regions 

we found CRM contrast correlated with r
2
=0.97 and r

2
=.098; respectively, to cells labeled 

with DAPI (Fig1. D&H).   
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Figure1: Reflectance  confocal imaging identifies cellular tumor in rodent acute slices.  

Cellular Tumor (A-D).  (A) Reflectance image of rodent xenograft tumor region; note 

shading of cell nuclei. (B) Dapi stain of identical tumor region identifies all cells in the 

field of view. (C) Overlay shows location of cells contrasted by reflectance to cells 

labeled with dapi. (D) Plot of coefficient of determination and confidence intervals for 

tumor cells identified by reflectance imaging. r
2
=0.97.  Cellular tumor and acellular tissue 

interface (E-H).  (E) Reflectance image of cellular tumor and adjacent acellular region 

from rodent xenograft; note isolated cell populations. (F) Fluorescence confocal image of 

identical region labeled with dapi. (G) Overlay of reflectance and fluorescence images 

from tumor and peritumoral tissue interface. (H) Plot of coefficient of determination and 

confidence intervals for cells identified by reflectance imaging at tumor and interface 

acellular tissue interface. r
2
= 0.98. Scale bar equals 20um  
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Reflectance imaging does not alter the molecular characteristics of examined tissue. 

 To determine if CRM alters the molecular characteristics of tissue, we examined 

DNA, RNA, and protein from tissue imaged with CRM to tissue immediately frozen for 

analysis and compared that with tissue that had reflectance imaging and was left out for 

varying amount of time. Although the typical time from surgical resection to reception in 

pathology and assessment using CRM typically takes 15 minutes, we tested out to 180 

minutes. Neoplastic tissues are heterzyogous in terms of cellularity and gene and protein 

expression and may yield inter-specimen molecular variability. Therefore, we conducted 

these experiments on control tissue harvested from rodent normal brain.  

  DNA quality was assessed in CRM imaged samples, which showed no difference 

compared to immediately frozen controls. Discrete DNA bands were detectable up to 180 

minutes after extraction (Fig. 2B) suggesting no degradation of DNA elements. RNA 

integrity number (RIN) was generated to determine the integrity of isolated RNA. RIN 

number of 1 suggests strong degradation while RIN greater than 8 suggest minimal 

degradation (Fleige and Pfaffl 2006). RIN number was comparably the same between 

control and CRM imaged groups (Figure 2C), indicating no effect of CRM on RNA 

integrity of imaged samples. RNA integrity remained the relatively the same up to 120 

minutes post-biopsy. There was a slight decrease over time in RIN value that was similar 

for both the control and CRM tissue, most likely due to RNases within the tissue over 

time. Protein kinase B (AKT), a protein involved in GBM pathogenesis, was examined 

for potential damage post-imaging with CRM. Western blot analysis of extracted tissue 

showed that up to120 minutes post-extraction, discrete AKT bands were detectable and 

contained similar density to control samples (Fig. 2E).  
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Figure 2: CRM does not alter DNA, RNA, or protein of examined tissue.A) CRM image 

of fresh brain tissue at cerebral cortex 90 minutes post-excision. Scale bar equals 20um. 

B) Gel electrophoresis of genomic DNA extracted from  control and CRM imaged 

biopsies; note similar bands across time course. C=control and R= CRM. between 

imaged and control biopsies. C) Time course comparison of RNA integrity for all imaged 

and control samples; note similar RNA integrity for all samples. D) Western blot analysis 

showing expression of AKT over 120-minute time course. Protein signal did not degrade 

over time course or when exposed to CRM.  R= Confocal Reflectance Microscopy, C= 

Control.  



  75 

CRM differentiates human cellular from acellular brain tumor biopsies. 

  To test the ability of CRM to differentiate cellular tumor from acellular tissue 

samples in a clinical setting, we imaged two fresh human brain tumor biopsies; one 

yielding radiation necrosis tissue. Tissue samples were placed in ice-cold aCSF and 

imaged with CRM. Imaging time per sample was less than 2 minutes. Samples were then 

compared to final histpathological diagnosis.  

 Similar to our findings in rodent xenografts, we found that CRM contrasted 

cellular regions from acellular regions in human biopsies. Tissue samples identified as 

cellular with CRM were found to be cellular with proceeding standard histopathological 

assessment (Figure3 A,C). CRM failed to identify cellular regions in necrotic tissue 

samples (Figure3 B,D).  
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Figure3: Reflectance imaging immediately identifies cellular and necrotic fresh human 

brain tumor biopsies. (A-C) Glioblastoma.  A) Low magnification CRM image of ex vivo 

human GBM biopsy imaged with CRM. B) High magnification of cellular region 

identified from inset of A, note arrowheads identifying cells within region. C) 

Corresponding H&E image.  (D-F) Necrotic  sample.  D) Low magnification image of ex 

vivo  necrotic biopsy imaged with CRM. E) High magnification inset from D. Note lack 

of distinct cells. F) H&E from corresponding section. Scale bar equals 20um.  
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Discussion: 

 Our data illustrate confocal reflectance microscopy’s utility as a safe and rapid 

technique for identifying the cellularity of glioma tissue prior to biobanking. This 

imaging modality can be immediately utilized on fresh tissue samples without application 

of exogenous contrast agents and without altering the molecular characteristics of 

examined tissue. CRM can provide a much needed tool for neurosurgery-neuropathology 

teams by maximizing the quality of tissue samples collected during surgical resection. 

Although other imaging modalities may provide excellent images, their greater energy 

input and the possible need to use exogenous fluorophores could affect future molecular 

analysis of the tissue (Liao, Tsytsarev et al. 2013).  

We found CRM did not alter the DNA, RNA, or protein that could be extracted 

and quantified from tissue biopsies screened up to 2 hours after resection. CRM images 

collected from these samples could be digitally stored and potentially recalled with 

biobanked specimens. We found CRM may have diagnostic utility, as many images 

revealed distinct morphological details such as; cellularity, vasculature, and necrosis 

(Figures 1and 3) typically identified with traditional histopathological H & E staining.  

Many translational neuro-oncology studies rely on human GBM tissue samples 

that appropriately represent an original tumor. Unintentional utilization of necrotic or 

non-representative tissue samples in studies can lead to erroneous results that will not 

improve our knowledge of the disease. In studies that advance to clinical trials, patient 

biopsies are often screened to determine eligibility for a targeted clinical trial. CRM’s 

nondestructive tissue assessment can ensure patients are not mistakenly excluded from 

potential life-prolonging treatments, particularly when standard therapy has failed. 
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Screening for high quality tissue specimens with CRM can facilitate the advancement of 

our knowledge of gliomagenisis, and can ensure qualified patients receive potential life-

prolonging therapies (Rainov and Heidecke 2011).  

 Current limitations of CRM include limited imaging depth penetration. With our 

imaging parameters, CRM could assess tissue from the surface to 200-300 microns 

within. However, we did not find this limitation altered the accuracy of tissue assessment 

in our studies. Additionally, few pathology departments currently contain the imaging 

hardware or personnel required to screen tissue biopsies with CRM. Modernization of 

pathology departments may include addition of confocal microscopes and other systems 

capable of CRM that will allow the screening of samples within two-hours time. Lastly, 

ex vivo CRM is limited by the ability to only assess tissue that is intraoperatively selected 

to represent tumor. A hand held intraoperative CRM device could potentially overcome 

human sampling error and allow assessment of tissue samples prior to resection.   

CRM technology has shown utility in providing cellular and subcellular detail, 

specifically in diagnosing dermatological conditions, identifying neoplastic tissue and 

margins, and assessing diseased and normal liver tissue (Rajadhyaksha, Gonzalez et al. 

1999, White, Tearney et al. 2000, Campo-Ruiz, Ochoa et al. 2002, Clark, Gillenwater et 

al. 2003, Drezek, Richards-Kortum et al. 2003, Gonzalez, Swindells et al. 2003, Hicks, 

Swindells et al. 2003, Curiel-Lewandrowski, Williams et al. 2004, Campo-Ruiz, Lauwers 

et al. 2005). Our study is the first to assess human brain tumor biopsies with CRM for 

biobanking purposes. By quantifying DNA, RNA, and protein, we also demonstrate for 

the first time CRM’s ability to assess tissue cytoarchitecture without altering tissue 
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molecular integrity, meaning that no part of the tissue to be banked needs to be discarded 

in the assessment process.  

Conclusion 

Confocal reflectance microscopy can screen brain tumor tissue cellularity for 

inclusion into biobanks while preserving the molecular integrity of tissue samples. CRM 

provides a rapid imaging modality that can accurately provide ex vivo morphological 

information in animal models and fresh human biopsies. In comparison to traditional 

histopathological methods, this technique does not rely on exogenous dyes or fixation 

and sectioning. Furthermore, this technique preserves the DNA, RNA, and protein 

characteristics of tissues, allowing further analysis of imaged specimens. Future technical 

developments of CRM include utilization of a handheld confocal endomicroscope for 

imaging, which would allow rapid and safe histopathological assessments in vivo. Further 

applications of CRM may include rapid ex vivo and in vivo examination of brain tumors 

in addition to glioblastoma. This technique ensures that high quality specimens are 

biobanked for future molecular studies of tumor samples and for assessing patient 

eligibility for clinical trials based on tumor characteristics.  
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CHAPTER 4 

RAPID AND SPECIFIC DIAGNOSIS OF HUMAN ASTROCYTIC BRAIN TUMORS 

BY IMMEDIATE EX VIVO IMAGING WITH SULFORHODAMINE 101 

 Brain tumor resection is guided by intraoperative diagnostics. However, current 

histopathological techniques lack the specificity and speed required to be effective 

intraoperative diagnostic tools.  Here we show that imaging of fresh human brain tumors 

rapidly labeled with the physiological fluorophore sulforhodamine 101 (SR101) can 

differentiate astrocytic tumors, reactive astrocytes and tumor margins from non-astrocytic 

brain tumors and normal brain.  Acute slices from orthotopic human glioma (n=8) and 

lymphoma (n=6) xenografts were incubated with SR101 or its fixabale analog and 

imaged with confocal microscopy. A subset of slices (n=18 slices) were respectively 

counter-immunostained with GFAP and CD20 for stereological assessment of SR101 co-

localization. Additionally, sixty-five undiagnosed fresh human samples were examined 

by quickly incubating with SR101, immediately imaging, and comparing to final 

pathological diagnosis. SR101 differentiated astrocytic tumor cells from reactive 

astrocytes and lymphoma cells. In acute slices, SR101 labeled 86.50% (+/-1.86; 

p<0.0001) of astrocytoma cells and 2.19% (+/-0.47; p<0.0001) of lymphoma cells. In 

human biopsies, SR101 rapidly labeled reactive astrocytes and selectively identified 12 of 

13 astrocytomas without labeling non-astrocytic tumors. SR101 rapidly and selectively 

labels human astrocytic tumors and astrocytes in a time frame that supports intraoperative 

decision-making. This is the first reported use of a functional dye on living human brain 

tumor tissue to provide a clinically meaningful immediate histopathological diagnosis. 
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Clinical application of SR101 could improve intraoperative decision-making, ultimately 

improving patient care. 

 

Introduction 

Intraoperative histopathological diagnosis guides the surgical resection strategy 

for numerous cancers, including intrinsic brain tumors such as astrocytomas.  However, 

frozen-section analysis, the method of choice for obtaining such diagnoses, often 

produces artifacts and provides only limited nonspecific information about tissue based 

on its morphology and cellular architecture (Gal 2005, Lechago 2005).  When an accurate 

intraoperative diagnosis cannot be obtained, clinical teams must wait for postoperative 

antibody staining of biopsied tissue to identify its specific molecular markers, a process 

that often requires 24-72 hours.  Consequently, the inability of the frozen section to 

consistently provide rapid and specific information can limit definitive intraoperative 

surgical planning.  Furthermore, while rapid identification of the tumor core is important 

for diagnosis, identification of the tumor margin is most critical for guiding astrocytoma 

resection. 

Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most common 

subtype of astrocytoma with a median survival of 12-15 months (Wen and Kesari 2008).  

Length of survival is directly related to extent of GBM tumor resection, which is based 

on frozen-section analysis of biopsied tissue to identify tumor margins (Lacroix, Abi-Said 

et al. 2001, Powell 2005, Pichlmeier, Bink et al. 2008).  In contrast, definitive resection 

of the common central nervous system (CNS) tumor, CNS lymphoma, remains 

contraindicated; diagnostic biopsy alone is the most common reason for surgical 
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intervention. GBM and lymphoma have similar clinical presentations, and can be difficult 

to differentiate on diagnostic imaging (Ferreri, Reni et al. 2009, Ricard, Idbaih et al. 

2012). Consequently, clinical decision-making depends on tissue biopsy and 

histopathological analysis. Furthermore, frozen-section analysis often fails to be 

diagnostic, necessitating the need for postoperative antibody staining of resected brain 

tissue. Glial fibrillary acidic protein (GFAP) is a useful immunohistochemical tool, which 

combined with cellular morphology assists in the diagnosis of astrocytomas. GFAP 

positivity supports the diagnosis of GBM, whereas CD20 positivity supports a diagnosis 

of CNS B-cell lymphoma.  Although effective, such postoperative staining requires 24 

hours to obtain a diagnosis—too slow to guide intraoperative decision-making.   

Although its underlying mechanism is incompletely understood, SR101 is a red 

fluorescent dye used in neuroscience research for the rapid and specific labelling of 

astrocytes (Nimmerjahn, Kirchhoff et al. 2004, Kafitz, Meier et al. 2008).  Similar to 

GFAP, SR101 labels astrocytic cells, and it has been used to label rodent astrocytoma 

cells in culture (Lai, Bechberger et al. 2007).  If SR101 also labels GBM and other cells 

of astrocytoma lineage, it could provide a clinical alternative to GFAP for differentiating 

GBM from lymphoma during intraoperative diagnosis.  We hypothesized that the 

combined use of live-cell imaging with targeted fluorophores could improve the current 

standard of care by providing rapid and specific intraoperative diagnoses of astrocytic 

tumors. Specifically, we evaluated the utility of sulforhodamine 101 (SR101) to rapidly 

distinguish tumor type and neuropathological diagnosis of astrocytoma in cell culture, 

animal tumor models, and freshly resected human brain tumors.   
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Materials and Methods 

Cell culture 

We acquired human glioma cell line U251 and human CNS lymphoma cell line 

MC116 from American Type Culture Collection (ATCC). The cell lines were maintained 

in culture with Dulbecco’s Modified Eagle Medium (DMEM)  media supplemented with 

10% fetal bovine serum, and Roswell Park Memorial Institute Medium (RPMI) 1640 

media supplemented with 20% FBS (all from Invitrogen, Grand Island, NY). Cells were 

grown at 37°C in a humidified incubator under 5% CO2.  

In Vitro SR101 labeling 

U251 glioma cells were labeled by incubating 100,000 cells on a collagen-coated 

glass-bottom dish (MatTek). After 24 hours, the medium was replaced with artificial 

cerebrospinal fluid (aCSF) containing 2 μM SR101 (Sigma) for 20 minutes, followed by 

two 5-minute washes with standard aCSF.  

 

Animals  

Fifteen male Crl:NIH-Foxn1
rnu

 rats (5 weeks age) were obtained from The 

Charles River Laboratories International, Inc. (Wilmington, MA). Experiments were 

performed in accordance with the guidelines and regulations set forth by the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Institutional Animal Care and Use Committee of the Barrow 

Neurological Institute of St. Joseph’s Hospital and Medical Center, Phoenix, Arizona.  
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Intracranial implantation  

The rats were anesthetized by intramuscular injection of a mixture of 10 mg/kg 

xylazine and 80 mg/kg ketamine (Wyeth, Madison, NJ) and placed in a small animal 

stereotactic headframe (Model 900, David Kopf Instruments, Tujunga, CA). A 10-mm 

incision was made starting between the animal’s eyes to expose bregma. A bur hole was 

made 3.5 mm lateral to bregma. U251 (n=9 rats) or MC116 cells (n=6 rats) were infused 

at a depth of 4.5 mm below the surface of the brain after the syringe (Hamilton) was 

advanced 5.0 mm to create a 0.5-mm pocket. The cell suspension was infused using a 

UMP3-1 UltraMicroPump microinjector (WPI, Sarasota, FL) set to a volume of 10 µL 

with an infusion rate of 3.00 µL/minute. The needle was withdrawn 2 minutes after the 

injection to minimize backflow of the cell suspension. The bur hole was covered with 

bone wax, the skin incision was sutured, and the rats were allowed to recover.  

 

Acute slices 

Twenty-eight days after implantation, rats were deeply anesthetized using the 

xylazine/ketamine mixture as described previously. They were immediately decapitated, 

and their brains were removed. Immediately, coronal slices (350 μm thick) were cut from 

the cerebral cortex on a Leica VT1200 vibratome in aCSF containing the following (in 

mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2 and 10 

glucose, pH 7.4.  Slices were then incubated at room temperature in aCSF containing 

2μM SR101 for 20 minutes followed by a 10-minute wash in aCSF. A two-tailed paired 

t-test with alpha set to 0.05 was used to compare mean fluorescence intensity (MFI) 

between tumor cells and reactive astrocytes. 
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Co-labeling 

SR101 is not amenable to fixation; we therefore used a fixable version of 

SR101(Texas Red Hydrazide) for these experiments. The staining pattern of fixable 

SR101 fluorophore mimics the staining pattern of the standard nonfixable SR101 

(Nimmerjahn, Kirchhoff et al. 2004, Kafitz, Meier et al. 2008).  For clarity, the use of the 

fixable version of SR101 is clearly indicated by the term “fixable SR101” throughout the 

text.   Fixable-SR101 and the nonfixable version had similar staining patterns, but the 

intensity and cellular staining of the fixable version was weaker than that of the standard 

SR 101. 

Acute xenograft slices were incubated with the fixable version of SR101 (Texas 

Red Hydrazide; Sigma), washed at room temperature, and fixed with 4% 

paraformaldehyde for 12 hours at 4° C. The sections were rinsed in phosphate-buffered 

saline, permeabilized with 0.3% triton, and blocked with CAS block (Invitrogen) 

(Beeman, Georges et al. 2013). The GBM xenograft slices (9 slices from 3 animals) were 

incubated in anti-GFAP primary antibody (Millipore; 1:500) for 12 hours, and the 

lymphoma sections (9 slices from 3 animals) were incubated in anti-CD20 primary 

antibody (Millipore; 1:250) for 12 hours. Sections were then rinsed and incubated with 

AlexaFluor488 secondary antibody (Invitrogen), followed by DAPI (Invitrogen) nuclear 

counterstain and mounted on slides with vectashield (Vector labs) and No 1.5 coverslips 

(VWR).  
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Stereology 

We adapted standard stereology approaches to quantify tumor cells labeled with 

fixable- SR101 and GFAP or CD20 antibodies (Mouton 2002, Kim, Lee et al. 2010).  We 

selected one rostral, midline, and caudal acute slice from each brain containing tumor 

incubated with fixable SR101. Glioma slices were immunofluorescently stained for 

GFAP, and slices containing lymphoma were stained for CD20. In each slice, 10 

randomly selected region of tumor (150 μm
2
) were optically sectioned to 50 μm with a 

Zeiss 710LSM. The first 5 μm of each image stack was discarded to minimize counts 

from cells damaged during sectioning. A maximum intensity projection image was 

generated from the remaining 45 μm, and a stereology dissector was overlaid onto the 

image. Cells within the dissector and those in contact with its left and bottom edges were 

counted for either GFAP or CD20 positivity and for SR101 positivity.  

The percent overlap between immunostaining and SR101 positivity was 

calculated. Two-tailed t-tests with alpha levels of 0.05 were used to determine statistical 

differences. A paired t-test was used to determine if staining localization between 

antibody- and SR101-labeling differed between cell types.  An unpaired t-test was used to 

compare fixable-SR101 staining between glioma and lymphoma models. 

 

Human Samples  

This research was approved by the Institutional Review Board of St. Joseph's 

Hospital and Medical Center and Barrow Neurological Institute, Phoenix, Arizona, where 

all surgery was performed. Preoperatively, 65 patients with one of 11 common brain 

tumors (Table 1) signed an informed consent for participation.  Samples (mean size, 4 x 2 
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x 2 mm) were obtained at the time of craniotomy from within the tumor mass at a 

location determined to be safe by the surgeon.  The diagnosis was determined by 

traditional immunohistochemistry and paraffin-embedded hematoxylin and eosin 

staining.  For the purpose of comparisons, the histopathological diagnosis made by a 

board-certified neuropathologist was accepted as the final diagnosis.   

Tissue samples were placed in ice-cold aCSF containing 2 μM of SR101 and were 

transported from the operating room to the laboratory. There, the samples were rinsed 

with aCSF (10 minutes), and imaged within 30 to 40 minutes of biopsy. Investigators 

conducting imaging experiments were unaware of the pathological diagnosis. 

 

Imaging 

SR101-labeled samples were placed in uncoated No.1.5 glass-bottom dishes and 

positioned on the stage of a Zeiss 710 laser scanning confocal microscope equipped with 

a 40x/1.2NA water emersion objective. We imaged SR101 by exciting the fluorophore 

with a 561-nm diode laser and collecting 595-nm to 625-nm emissions. The confocal 

aperture was set to Airy unit for all imaging. The laser and gain values were set to fill the 

dynamic range of the photomultiplier tube, and the frame size was set to sample at 

Nyquist. Images were collected in 8- and 12-bit format absent of nonlinear processing. 

An unstained adjacent tissue sample was imaged with each sample. In some cases, large 

field-of-view tiled and optically sectioned images were rapidly acquired using a Zeiss 

line-sweeping confocal microscope. For this system the frame size was fixed at 512 x 512 

by a linear charged-coupled device array.      
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Results 

SR101 labels human astrocytoma cells and reactive astrocytes 

To investigate the potential of SR101 for identifying human astrocytoma cells, we 

used differential interference contrast (DIC) with fluorescence overlay to image human 

astrocytoma cell line U251 after incubation in SR101 (n=6 cultures).  The fluorophore 

filled the cytoplasm of the cultured cells and clearly delineated cell nuclei (Figs. 1A, B).  

Next, human astrocytoma cells (U251 cell line) were implanted into the caudate-

putamen of 5 nude rats and allowed to grow for 4 weeks before the rats were sacrificed.  

This orthotopic xenograft model consistently produced astrocytic tumors as previously 

characterized (Michaud, Solomon et al. 2010, Buckingham, Campbell et al. 2011).  Live 

cell confocal images of acute slices from the cerebral cortex of the implanted animals 

(Fig. 1C) treated with SR101 showed cells in the tumor core markedly labeled with the 

fluorophore. The cells were easily distinguished from low level background staining 

(Figs. 1D, E, F).   

Confocal microscopy imaging of the acute slices treated with SR101 also showed 

distinct tumor margins that contained SR101-positive astrocytoma cells and reactive 

astrocytes (Figs. 1G, H). The fluorescence intensity from the astrocytoma cells and 

reactive astrocytes was quantified. The mean fluorescence intensity did not differ 

between the two cell types (Fig. 1I). However, reactive astrocytes were easily 

distinguished based on their distinct morphology (Fig. 1H).  Therefore, SR101 can 

rapidly identify astrocytes and astrocytoma cells in cell culture and animal models, and it 

can effectively define tumor margins in an animal model.   
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Figure1: Non-fixable SR101 labels human astrocytoma cells in culture and identifies 

tumor core and margin in rodent xenografts. U251 Astrocytoma Cell Culture (A-B).  (A) 

DIC image with fluorescent overlay of human U251 astrocytoma  cells incubated with 

SR101.  (B)  Inset showing cytoplasmic filling of cells and delineation of cell nuclei 

(arrowheads).  Acute slices from rodents intracranially implanted with U251 cells (C-H).  

(C) Acute slice containing U251 derived tumor. Representative core and margin regions 

identified by white circle and green circle respectively.  (D) Confocal fluorescence image 

of  SR101-labeled tumor core.  (E) High magnification of inset showing typical 

morphology of U251cells.  (F) Histogram of SR101 fluorescence distribution in E 

between tumor core and background.  Note the clear distinction in mean fluorescence 

intensity (MFI) between tumor (102.84) and background (8.74).  (G) Image of tumor 

margin with SR101 labeled cells.  (H) Inset of morphologically identified reactive 

astrocyte (arrow) surrounded by glioma cells (arrowheads) near the tumor margin.  (I) 

Mean fluorescence intensity of U251 cells and reactive astrocytes normalized to 

background (n=9 optical sections from 3 acute slices).  Note no statistically significant 

difference in MFI between the two cell types. Scale bar equals 20um  
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Fixable SR101 labels GFAP-positive human astrocytoma cells and reactive astrocytes 

We used confocal microscopy to compare the efficacy and localization of SR101 

and GFAP staining.  Confocal images from the tumor core regions showed numerous 

cells simultaneously filled with fixable-SR101 and labeled by GFAP (Fig. 2A-D).  In 

general, GFAP and SR101 labeled the same cells, although fixable-SR101 stained some 

cellular processes less intensely than GFAP (Figs. 2A, B, D).  Merged images from the 

tumor core showed that most cells were positive for both fixable SR101 and GFAP, 

indicating that SR101 effectively labels astrocytic tumor cells.   

We compared the staining pattern of fixable-SR101 and GFAP to determine if 

reactive astrocytes could be differentiated from neoplastic astrocytes to help identify 

tumor borders. Imaging of rat brain regions adjacent to human astrocytoma cells showed 

that the staining patterns of fixable-SR101and GFAP were similar (Figs. 2E, F). 

However, GFAP labeled membrane processes more thoroughly than the fixable-SR101. 

Cells in the peripheral regions contained extensive membrane projections that could be 

readily differentiated from cells within the tumor core that lacked this feature. When 

additional cells in these regions were stained with 4’,6-diamidino-phenylindole (DAPI) 

(Fig. 2G), groups of cells were negative for both fixable-SR101 and GFAP (Figs. 2G, H, 

arrows). These findings suggest a mixed cell population of tumor cells and nontumor 

brain cells typical of regions outside the tumor core. Together, the data indicate that 

SR101-positive cells are the GFAP-positive astrocytoma cell population.  Furthermore, 

fixable-SR101 provides morphological information that appears to differentiate 

astrocytoma cells from reactive astrocytes. 
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Figure 2: Fixable SR101 colocalizes with the astrocytic marker GFAP. Confocal imaging 

of  rodent xenograft acute slices incubated in the fixable version of SR101. Following  

incubation slices were fixed and stained with GFAP and Dapi.  Images taken from  the 

core of the astrocytoma (A-D).  Fixable SR101 fills the cell bodies of GFAP-positive 

cells in the tumor core, and weakly fills astrocytic processes (arrows).   Note the 

significant overlap of GFAP, DAPI and SR101 in the merged image.  Images taken from 

the margin of the astrocytoma (E-H) . Fixable SR101 fills cell bodies of GFAP-positive 

cells at the tumor margin. Solid arrows identify SR101 and GFAP positive cells.   Note 

the appearance of DAPI positive cells (arrowheads) unlabeled by SR101 or GFAP that 

are selectively observed at the astrocytoma margin.  Scale bar equals 20um. 
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SR101 differentiates astrocytoma from lymphoma 

 In contrast to the findings from astrocytoma cells, confocal imaging indicated 

minimal SR101 signal from the human CNS lymphoma cell line MC116 (Supplemental 

Fig. 1). In acute slices from astrocytoma and CNS lymphoma animal models incubated 

with fixable-SR101, we quantified co-localized GFAP for astrocytoma slices and CD20 

for lymphoma slices. In astrocytoma tumor regions, fixable-SR101 labeled the majority 

of cells (Figs. 3A-D, I).  The frequency of co-localization of SR101 and GFAP was 

86.50% (Fig. 3K, Table 2), with a mean of 22.30 SR101-positive cells and 20.58 GFAP-

positive cells per stereology dissector region of interest (Lacroix, Abi-Said et al.) 

(p=0.0004, Fig. 3I, Table 2).  In contrast, fixable SR101 labeled only a very small 

number of cells from ROIs in CNS lymphoma acute slices (Fig. 3E).  SR101 and CD20 

co-localized poorly (2.19%), and there were significantly more CD20-positive cells than 

fixable-SR101-positive cells (p<0.0001) (Fig. 3J, Table 2).  However, SR101 labeled a 

small number of cells in CNS lymphoma tissue that were not CD20-positive and that 

morphologically resembled reactive astrocytes (Figs. 3E, F; arrow).  SR101 distinguished 

astrocytoma from lymphoma tissue and co-localized with GFAP more frequently than 

CD20 (Fig. 3K). This finding demonstrates the strong relationship of SR101 to GFAP-

positive cells in astrocytoma, and the ability of SR101 to differentiate it from a non-

astrocytic tumor such as CNS lymphoma. 
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Figure 3: SR101 rapidly differentiates human astrocytoma from CNS lymphoma in 

rodent xenografts.  Confocal imaging of acute slices taken from xenograft animals 

implanted with astrocytoma cells (U251)(van Dam, Themelis et al.) or lymphoma cells 

(MC116)(Middle).  Slices were stained with fixable SR101 and specific markers for 

Astrocytoma (GFAP) or Lymphoma (CD20) .  Nuclei were counterstained with DAPI.  

Top:  Region from U251 astrocytoma acute slice incubated with fixable SR101 and 

counterstained with GFAP and DAPI (A-D).  Middle:  (E) SR101 labels a single cell 

(dashed arrow) in a MC116 xenograft lymphoma region.  (F) CD20  immunostaining 

labels lymphoma cells, but does not label region containing SR101-positive cell (solid 

arrow).  (G) DAPI counterstain of cell nuclei in field of view. (H) Merged lymphoma 

image indicating poor colocalization of SR101 and CD20. Scale bar equals 20um.  

Bottom:  Confocal stereology of acute slices (see Methods).  (I) Number of SR101 and 

GFAP-positive cells present in U251 xenograft astrocytoma regions are not statistically 

different (p<0.01).  (J) Number of SR101 and CD20 -positive cells present in MC116 

xenograft lymphoma regions are highly statistically different (P<0.01*).  (K)  SR101 

significantly overlaps with GFAP positive astrocytoma cells (79.6% ) compared with 

CD20 lympoma cells (1.97% )(p<0.01).   
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Supplemental 1: Non-Fixable SR101 does not label human lymphoma cells in rodent 

xenografts. (Verkman, Hara-Chikuma et al.) SR101 labeled acute slices prepared from 

rodent CNS lymphoma xenografts. (A) SR101 sparsely labels a minimal number of cells 

within the tumor region. (B) Non-specific acridine orange staining reveals a hypercellular 

tumor region. (C) Overlay image shows incomplete cytoplasmic filling of cells with 

SR101 staining. Scale bar equals 20um. 
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SR101 intraoperatively differentiates human astrocytoma from other human CNS 

neoplasms   

We studied the utility of SR101 as a broad-spectrum neurosurgical intraoperative 

diagnostic agent by intraoperative identification of astrocytic brain tumors with 

fluorescence imaging of fresh human brain tumor biopsies labeled with SR101. In brain 

without tumor, SR101 filled the cytoplasm of cells that morphologically resembled 

astrocytes (Fig. 4A). In astrocytic tumor cores, SR101 stained cytoplasm, was excluded 

from most cell nuclei, and distinguished nuclear atypia (Fig. 4C, D). The fluorescence 

detected in astrocytes and astrocytoma cells was not endogenous autofluorescence 

(Supplemental Fig. 2). In non-astrocytic tumor samples, SR101 exclusion outlined the 

location of cell bodies but did not fill cytoplasm (Figs. 4E-I).  One GBM case did not 

stain with SR101. Final neuropathological diagnosis of this case indicated the examined 

tissue consisted mostly of radiation treatment effect and not cellular GBM.  

Interestingly, SR101 did not label most oligodendroglioma samples, although 

these tumors are often positive for GFAP.  This finding suggests that SR101 also may be 

helpful for distinguishing oligodendrogliomas from other gliomas (Fig. 4H).  SR101 

failed to stain human lymphoma but labeled reactive astrocytes within the tissue, 

supporting the findings from our CNS lymphoma animal model (Fig. 4I, Supplemental 

Fig. 3).  

Together, these data show that SR101 exhibits marked specificity for human 

astrocytes, astrocytomas, and reactive astrocytes. SR101 staining coupled with confocal 

microscopy allowed human astrocytic tumors and margins as well as reactive astrocytes 

to be identified within a time frame that supports intraoperative decision-making.   
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Figure 4: SR101 selectively labels human astrocytes and astrocytic brain tumors.  Human 

brain tumor biopsies rapidly stained with SR101 and imaged with a confocal microscope. 

(A) Cell with astrocytic morphology from human brain labeled with SR101. (B) GBM 

margin with morphologically distinct tumor cells and reactive astrocytes  (C) Grade IV 

astrocytoma. (D) Inset from C; hypercellularity and nuclei (arrowheads) are evident . (E-

G)  Non-astrocytic tumors absent of cells cytoplasmically filled with SR101.  Dark 

regions in tissue indicate location of cell bodies. (G) Oligodendroglioma does not stain 

with SR101. (H) Lymphoma is negative for SR101 staining. Scale bar equals 20um 
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Supplemental 2: Endogenous fluorophores in human ex vivo tissue do not contribute to 

SR101 fluorescence. (A) Spectral imaging of human samples stained with SR101 

generates a single emission profile unique to SR101. Note absence of additional emission 

spectra suggesting minimal contribution of endogenous fluorophores to the overall 

fluorescence signal. (B) Red crosshairs indicate SR101 positive cell selected for spectral 

analysis.     
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Supplemental 3: SR101 identifies reactive astrocytes in a human lymphoma biopsy. (A) 

Tiled image of human CNS lymphoma composed of 53 500um
2
 optical sections contains 

SR101 positive cells with extensive processes. (B) High magnification inset 

morphologically clarifies SR101 positive cells as reactive astrocytes. Note lack of 

additional cell morphologies positive for SR101. (C) Non-specific acridine orange 

staining from adjacent biopsied region shows hypercellular tissue containing a 

heterozygous cell population. Scale bar equals 20um. 
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Discussion 

We have demonstrated a technique for identifying the most common primary 

brain tumor, astrocytoma, by ex vivo exposure to the fluorescent dye SR101. This 

technique can provide specific cellular and molecular information necessary for diagnosis 

during surgery. We tested the specificity of SR101 in human cell culture, orthotopic 

rodent xenografts, and human tumor samples. Compared to the current standard of 

immunocytochemistry and final pathological paraffin-embedded diagnoses, SR101 

provided more rapid and equally accurate identification of astrocytic tumors in all model 

systems. In human samples, SR101 provided effective visualization and differentiation of 

astrocytic tumors and, most importantly, their margins.     

Improvements in timely and accurate intraoperative diagnoses are profoundly 

needed in clinical neurosurgery. Current diagnostic techniques rely on visualization of 

tissue with standard light microscopes and conventional contrast agents, a process that 

has evolved little over the last century (Gal 2005, Lechago 2005).  Here, we have shown 

that fluorescent labeling of ex vivo tissue coupled with confocal imaging provide clear 

diagnostic benefits compared with current techniques. Our technique allows visualization 

of pathological tissue without freezing, fixing, or sectioning with their attendant artifacts 

and tissue loss (Supplemental Fig. 4). Images from tissue can provide a diagnosis within 

minutes—well within a time frame required to effectively guide a surgical approach and 

influence a patient’s care while surgery is still in progress.  

We envision that fluorescence imaging of ex vivo tissue will become a common 

technique in pathology departments in the near future.   Our results here have clearly 

indicated the potential utility of SR101 for meeting the important clinical need of 
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differentiating high-grade astrocytoma from CNS lymphoma.  Although the macroscopic 

appearance of these tumors is similar intraoperatively, their treatment plans are markedly 

distinct (Ricard, Idbaih et al. 2012). Astrocytomas require maximal safe resection to 

provide survival benefits to patients, while lymphomas are best biopsied and treated with 

adjuvant therapy. Differentiating these tumors requires a surgical biopsy followed by a 

minimum of 24 hours for diagnostic processing. We found these tumors could be 

differentiated by SR101 staining and confocal microscopy within 30 minutes of biopsy. 

This information could allow rapid modification of a surgical plan with consequent 

improvement of clinical outcomes.   

GBM contains a heterozygous population of cells that vary in terms of GFAP 

expression (Bonavia, Inda et al. 2011). SR101 labeled slightly more tumor cells in GBM 

xenografts than GFAP. This finding resembles data from normal brain showing that 

SR101 identifies subtypes of astrocytes and precursor cells that are GFAP negative 

(Kimelberg 2004, Kafitz, Meier et al. 2008). Future studies on SR101 are required to 

identify and characterize GBM precursor cells that uptake SR101. Furthermore, a direct 

comparison of the sensitivity of SR101 and GFAP in human brain tumors is warranted. 

Probes and devices that allow microscopic visualization and diagnosis of deep in 

vivo structures are under development (Michalet, Pinaud et al. 2005, Rivera, Brown et al. 

2011, Kircher, de la Zerda et al. 2012). Some in vivo fluorescence imaging instruments 

have already been tested clinically (Eschbacher, Martirosyan et al. 2012). Safety 

concerns, however, may preclude some fluorophores and imaging modalities from ever 

being approved for in vivo clinical use. Nonetheless, rapid ex vivo diagnostics could 
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complement in vivo imaging by providing information from tissues processed with 

techniques that may not be safe for in vivo clinical use.   

There are important considerations to diagnostic use of SR101.  Staining with this 

agent requires tissue to be alive and relatively healthy when it is incubated with the dye.  

Damaged cells have been reported to uptake the dye (Masamoto, Tomita et al. 2012, 

Nimmerjahn and Helmchen 2012).  However, we encountered no significant false 

positives in our experiments.  A practical limitation to the widespread use of SR101 

includes the need for immediate incubation of resected tissue in the operating room. 

Furthermore, immediate ex vivo imaging using specific fluorescent probes is not yet part 

of clinical pathological practice. Therefore, few pathology laboratories have confocal 

microscopes. Modernization of pathology departments would be needed to overcome 

these limitations.   

 

Conclusion 

 SR101 rapidly and selectively labels human astrocytic tumors and astrocytes. To 

our knowledge, our results represent the first use of a functional dye on living human 

brain tumor tissue to provide a clinically meaningful immediate ex vivo histopathological 

diagnosis.  There is compelling reason to believe that this method is only the first foray 

into a broad new area of pathology that has become possible because of the rapid and 

dramatic advances in fluorescence probes and fluorescence imaging techniques.  

Application of this technique to other tumors and diseases will only be limited by the 

identification of specific molecular targets and the development of targeted fluorophores.  
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These imaging techniques may have profound implications for improving patient 

diagnosis, clinical outcomes, and our understanding of human tumor pathophysiology. 
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Table 1. Distribution of human biopsies stained with SR101 and final diagnosis. SR101 

selectively stained 12 of 11 astrocytoma cases and oligodendroglioma. SR101 did not 

stain necrotic tissue or tumors cells from additionally sampled CNS neoplasms. 

 

Tumor Diagnosis 
Number  

of Cases 

Number  

SR101 Positive 

  Astrocytoma/GBM 

 
13 12 

  Cavernous malformation 

 
4 0 

  Chordoma 

 
1 0 

  Ependymoma 

 
2 0 

  Fibrous dysplasia 

 
1 0 

  Meningioma 

 
17 0 

  Metastasis 

 
6 0 

  Necrosis 

 
3 0 

  Oligodendroglioma 

 
6 1 

  Pituitary Adenoma 

 
5 0 

  Schwannoma 

 
5 0 

  Subependymoma 2 0 

 

  



  106 

Table 2. Stereology counts/region of interest.  We quantified colabeling of fixable-

SR101 and antibody staining in tumors with 18 acute slices from 6 rodent xenografts. 

Images were collected from 10 randomly selected 55 μM
2
 regions of interest optically 

sectioned to 50 μM. 

 

  Tumor Immunostain 

Positive 

SR101 positive Percent Overlap Total Cells 

Counted  

  

Astrocytoma  20.58 ±3.26  22.30±3.55  86.50±1.86  1316 

  Lymphoma  25.61±4.05  1.58±0.32  2.20±0.47  1657  
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CHAPTER 5 

DISCUSSION 

Infiltrative Margin 

 Tumor infiltration is detrimental to improving GBM patient care. Infiltrative cells 

undergo physiological changes which attenuate the effectiveness of current therapeutic 

agents (Horiuchi and Rosenblatt 1987, Wolf, Agnihotri et al. 2010, Wolf, Agnihotri et al. 

2011). Neurosurgery provides a treatment option, with increased extent of tumor 

resection correlating with improved patient survival (Sanai and Berger 2008, Sanai and 

Berger 2009). However, the infiltrative nature of GBM prohibits maximal tumor 

cytoreduction. Developing means for clinically targeting GBM infiltration could improve 

patient survival by- (1) Preventing distal brain parenchymal tumor infiltration, (Barker, 

Prados et al.) allowing greater extent of surgical resection, and (Waring, Steinberg et al.) 

converting GBM into a more manageable chronic disease. Chapter 2 of this dissertation 

evaluates aqp-1 as a protein involved in GBM infiltration, chapter 3 develops a method 

for improving the quality of biobanked GBM patient biopsies, and chapter 4 identified an 

optical contrast agent for improving neurosurgical resection of GBM. Our work fills gaps 

in the current knowledge of GBM by identifying a targetable gene and protein which 

regulate GBM infiltration and developing optical imaging tools for improving GBM 

diagnostics.  

 

AQP1 and Tumor Infiltration 

 Chapter 2 of this dissertation addressed aquaporin-1 and glioblastoma infiltration. 

Aqp1 is a membrane protein discovered by Peter Agre in 1991 (Agre 2006). This protein 
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belongs to a family of channel proteins that regulate cellular water transport. We 

discovered that over-expression of this protein in GBM correlates with decreased patient 

survival. Since the mechanistic role this gene and protein play in cellular motility is 

unknown, our studies address likely mechanisms underlying its prognostic power. 

 We implemented experiments with cultured human GBM cells, and found aqp1 

enhanced the motility of GBM cells in culture without altering proliferation or survival of 

tumor cells. Next, we developed rodent xenografts from human GBM cells over-

expressing AQP1, and found that tumors overexpressing aqp1 produce infiltrative tumor 

margins and decrease animal survival by nearly 20%. This suggests decreased survival in 

GBM patients overexpressing aqp1 is likely mediated by cellular motility.  

 

AQP1 Water Transport and Tumor Motility 

 After observing aquaporin-1 enhanced tumor motility and infiltration in cell 

culture and animal models, we designed experiments testing the role water transport on 

aqp1 mediated GBM motility. We acquired a well-characterized aqp1 mutant (e17n)c 

with one point mutation that effectively prohibits water transport across aqp1’s water 

channel, and generated human GBM cell lines overexpressing the mutant (Yool 2007). 

We found e17n-expressing GBM cells enhance motility similar to wild type aqp1. Our 

animal models confirmed e17n GBM cells produce infiltrative margins similar to wild 

type aqp1.   

 Our findings suggest aqp1 harbors a water transport-independent function that 

enhances tumor infiltration. This is significant to biomedical research as selective 

inhibitors of aqp1-mediated water transport are under development (Yool, Brown et al. 
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2010). Our findings suggest a region of the protein that does not regulate water transport 

must be targeted to modulate aqp1’s role in GBM motility. 

 One potential target is aqp1’s potassium ion transport function. The central pore 

of aqp1, which is created by assembly of 4 aqp1 monomers, transports potassium (Yool 

and Campbell 2012). Recent studies on GBM ion transport have shown that selective 

inhibition of K
+
 decreases motility of GBM cells (Catacuzzeno, Aiello et al. 2011). We 

hypothesize that GBM motility could be attenuated if aqp1-mediated K
+
 transport is 

inhibited. We are currently developing experiments to test this hypothesis.  

 

Reflectance Imaging and Biobanking 

 We identified AQP1 overexpression in clinical biopsies by studying biobanked 

tissue. These tissues are collected and stored by immediately freezing intraoperative 

tumor biopsies (Botling and Micke 2011, Lim, Dickherber et al. 2011, Vaught, 

Henderson et al. 2012, Basik, Aguilar-Mahecha et al. 2013). However, many biobanked 

samples are poor quality (i.e. contain a large amount of necrotic tissue), or do not 

adequately represent the characteristics of the original tumor. This is partially due to poor 

histologic tissue assessment prior to biobanking (Georges, Zehri et al. 2014). We 

hypothesized that a rapid and reliable means for differentiating cellular from necrotic 

samples prior to biobanking could profoundly improve the quality of tissues stored for 

future research.  

 The third chapter of this dissertation develops patient biopsy assessment by 

confocal reflectance microscopy (CRM) prior to biobanking. CRM is an optical imaging 

modality that generates contrast by collecting backscattered photons from an imaged 
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sample. The photons pass through a pinhole that spatially filters photons originating 

outside the focal plane. Since the technique does not rely on a Stokes shift, it requires a 

small fraction of the light energy needed for standard fluorescence confocal imaging 

(Georges, Zehri et al. 2014).  

 Biospecimen analysis by CRM requires stability of tissue DNA, RNA, and 

protein. We generated a time course of samples examined by CRM immediately after 

biopsy to 2 hours post-biopsy. Samples imaged up to 2 hours post-resection had DNA, 

RNA, and protein characteristics similar to reference controls.  

 CRM and DAPI identified similar cellular boundaries in animal glioma models, 

and CRM differentiated cellular from necrotic samples in human biopsies. Interestingly, 

CRM identified several histopathological features utilized for intraoperative diagnoses, 

such as psammoma bodies in meningiomas and antoni A/B regions in schwannomas. We 

are currently testing CRM for intraoperative neuropathologic diagnostics.  

 

Neurosurgery Cytoreduction 

 Surgical tumor cytoreduction is another means for increasing patient survival. 

Studies based on post-operative MRI show optimal survival benefits when at least 98% 

of the tumor is removed (Sanai and Berger 2008, Sanai and Berger 2009, Sanai and 

Berger 2011, Sanai, Polley et al. 2011).  

 Neurosurgeons rely on gross tumor appearance to guide resection during surgery. 

However, GBM is difficult to differentiate from non-neoplastic tissue due to its 

infiltrative nature,  In non-eloquent brain regions, a surgeon may opt for a more 

aggressive resection, possibly resecting benign tissue, in effort to maximize GBM 
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cytoreduction (Sanai 2012).  In more eloquent regions, a surgeon may choose a less 

aggressive course in effort to preserve neurological function. Neuropathologists examine 

frozen biopsy sections from presumed tumor margins intraoperatively to determine 

necessity for further resection. Unfortunately, frozen section contrast agents are not 

tumor-specific and may provide inconclusive feedback.   

 Studies with a tumor-specific contrast agent, 5 ALA, suggest that GBM extent of 

resection increases when neurosurgeons have means to distinguish neoplastic from 

normal brain tissue (Stummer, Novotny et al. 2000, Stummer, Pichlmeier et al. 2006). 

However, this contrast agent is not useful at the microscopic level, and literature suggests 

it may not be tumor-specific (Masubuchi, Kajimoto et al. 2013). We hypothesized that 

the fluorescent contrast agent Sulforhodamine 101 provides real-time intraoperative 

visualization of GBM and its infiltrative margins.  

 

Sulforhodamine 101 

 Clinicians utilize frozen sections and GFAP immunohistochemistry to 

histopathologically diagnose glioblastoma. These histologic techniques were developed 

in the early 20
th

 century, and are fundamentally the same since their inception (Gal and 

Cagle 2005, Powell 2005). Frozen sections are conducted intraoperatively, but can be 

inconclusive due to non-specific staining. GFAP immunohistochemistry provides specific 

staining of GBM, but requires 24-48 hours and is too slow for intraoperative diagnosis.  

In chapter 4 of this dissertation, we begin to develop a novel clinical fluorescent contrast 

agent - Sulforhodamine 101.  We couple the agent  with modern imaging techniques to 

provide immediate cellular visualization of GBM.   
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 SR101 is commonly used in neuroscience research to rapidly label live astrocytic 

cells with GFAP-like specificity (Nimmerjahn, Kirchhoff et al. 2004, Nimmerjahn and 

Helmchen 2012). The work in this dissertation is the first test of SR101’s clinical 

potential. Tested on cell culture, animal brain tumor models, and fresh human biopsies 

we found SR101 could rapidly label astrocytic tumors, such as GBM, with minimal 

labeling of non-astrocytic lesions. Our findings suggest significant clinical potential of 

this fluorescent contrast agent for rapid and specific intraoperative diagnosis. These 

methods could complement current neuropathologic techniques and provide much-

needed information during surgical resection. 

 

Conclusions 

 This dissertation uses interdisciplinary approaches to target the clinical problem 

of GBM infiltration. In chapter two we implemented cancer genomics plus molecular and 

cellular biology to investigate AQP1-mediated GBM patient survival. We began this 

work by analyzing biobanked human GBM biopsies and noticed many biobanked 

specimens lacked the cellularity to be utilized in research. This prompted us to 

successfully develop an optical imaging technique to screen biopsies prior to biobanking. 

Lastly, we identified and tested an intraoperative contrast agent that could improve 

neurosurgical resection of GBM.  

 GBM is the most common primary brain tumor. Despite decades of focused 

research, patient survival has only increased a few months (Salcman 1980, Georges, 

Zehri et al. 2014). The diffusely infiltrative nature of this tumor precludes effectiveness 

of current clinical approaches. By targeting a gene and protein that mediate infiltration, 
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and providing clinicians better tools for intraoperative visualization of GBM, we hope 

this dissertation is a foundation for future translational approaches aimed at improving 

GBM patient care. 
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APPENDIX B 

POSTER 

SOCIETY FOR NEURO-ONCOLOGY  

ANNUAL MEETING (2011) 

 

AQUAPORIN-1 PROMOTES INFILTRATION OF GLIOBLASTOMA AND 

PREDICTS PATIENT SURVIVAL 
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APPENDIX C  
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ANNUAL MEETING (2013) 

 

EX VIVO NEUROPATHOLOGY: IMMEDIATE AND SPECIFIC DIAGNOSIS OF 

HUMAN ASTROCYTIC BRAIN TUMORS 
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CONTRAST-FREE MICROSCOPIC ASSESSMENT OF GLIOBLASTOMA 

BIOSPECIMEN CELLULARITY PRIOR TO BIOBANKING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

134 


