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ABSTRACT  
   

Buyers have private information on auctioning divisible goods. Linearity could be 

a useful property on measuring their marginal utility on those goods or on their bidding 

strategies under such a share auction environment. This paper establishes an auction 

model with independent private-values paradigm (IPVP) where bidders have linear 

demand. A mechanism design approach is applied to explore the optimal share auction in 

this model. I discuss the most popular auction formats in practice, including Vickrey 

auction (VA), uniform-price auction (UPA) and discriminatory price auction (DPA). The 

ex-post equilibriums on explicit solutions are achieved. I found VA does not generally 

constitute an optimal mechanism as expected even in a symmetric scenario. Furthermore, 

I rank the different auction formats in terms of revenue and social efficiency. The more 

private information bidders keep, the lower revenue VA generates to seller, and it could 

be even inferior to UPA or DPA. My study aggregates dispersed private information with 

linearity and is robust to distributional assumption. 
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CHAPTER 1 

INTRODUCTION 

Auctions of divisible goods are common in many markets, especially in markets for 

financial securities, which include the auctions of treasury bills and bonds, defaulted 

bonds and loans in the settlement of credit default swaps, energy products, and 

environmental emission permits, say Carbon Dioxide Pollution Permit CDPP. In those 

auctions, the bids specify quantities of the divisible goods: the share of stock, megawatt-

hours of electricity, or the tons of emissions, and also, the unit or total price to pay for 

those shares. We called such selling mechanisms share auctions. 

Rather than selling the whole unit to one individual buyer (called the unit auction or 

indivisible good auction), share auction is designed to enable smaller firms and more 

risk-averse firms to participate in the auctions of highly risky leases by allowing them to 

bid for fractional working interest shares, thereby reducing their capital requirements for 

payment of the sale price, and also reducing their exposure to risk. Analyzing the bidding 

behavior in these auctions helps us better understand information aggregation, allocative 

efficiency, and market design. 

In a typical share auction, bidders submit demand schedules. The auctioneer 

computes the aggregate demand and the market clearing (or stop-out) price by equalizing 

demand and available supply of shares in aggregation. Then the target is divided to those 

bidders by specific rules. Three sealed-bid auction formats for the sale of divisible goods 

are of particular interest. The first two are important on practical grounds, they are widely 

used in real world, and the last, although not widely used, is of special interest for 
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theoretical reasons. All of them are based on standard auction pricing rules where the 

highest bids win, but different on payment rules. 

• Uniform Price Auction UPA: each bidder pays the stop-out price for the total share he 

wins. 

• Discriminatory Price DPA: each bidder pays what he bids, up to the share he wins. 

The rule is comparable to the first price auction for indivisible good.  

• Vickrey Auction VA: each bidder pays the highest losing bids, up to the share he wins. 

It is comparable to the second price auction for indivisible good. Ausubel (2004) 

proposes a dynamic ascending-bid auction for homogeneous goods. The auctioneer calls 

a price, bidders respond with quantities and the process iterates with increasing price until 

demand is no greater than supply. Items are awarded at the current price whenever they 

are clinched. It shows that with private values, this auction yield exactly the same 

outcome as sealed-bid Vickrey auction, but has advantage through its operability, 

simplicity and privacy preservation. 

There has been a longstanding debate between the two mechanisms most commonly 

used to sell divisible goods: the discriminatory-price (“pay-as-bid” or “multiple-price”) 

auction and the uniform-price (“single price”) auction. Rostek, Weretka and Pycia (2010) 

cite an interesting cross-country study on Treasury practices. Out of 48 countries it 

surveyed, 24 use a DPA to finance public debt, 9 use a UPA, 9 employ both auction 

formats, depending on the type of security being issued, and the remaining 6 countries 

use a different mechanism. Apart from financial securities, the two formats have also 

become standard designs when selling divisible goods in other markets. For energy 

products, U.K. electricity generators adopted UPA in 1990 and switch to DPA in 2000. 
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The national exchange for sulfur-dioxide emission permits uses a discriminatory price 

format. The European Union implemented the Emission Trading Scheme ETS for trading 

on CDPP and other climate policy relevant products. Their auctions are conducted as a 

sealed bid uniform price auction. 

Two general questions will naturally be inquired by both practitioners and 

economics theorists. First, among UPA, DPA, VA and any potential others, which one is 

the best rule or mechanism to sell a divisible good at the seller’s interests? Second, what 

is the best rule at society’s interest, is a specific auction Pareto-optimal or efficient? Of 

course the answers depend on the bidding environment including bidder’s information 

structure, risk preference and the bidding rules allowed where the seller cares about the 

combination of efficiency (allocating the multi units divisible goods to the bidders who 

value them the most) and the revenue maximization. 

Due to the complexity of modeling a divisible goods market that covering every 

detail of trading process, quite few conclusions are known about the optimality of a share 

auction with strategic bidders, even about the superiority of either UPA or DPA. Our 

study provides those results and examines the optimal design of divisible good markets in 

a simple setting, without losing the key features under preliminary environment. The core 

assumptions of our model are illustrated in the following. 

Linearity is the first and the most critical assumption we make on our model. 

Holmstrom and Milgrom (1987) argue the linear contract could be the optimal 

compensation scheme even if the agent has a rich set of actions to choose from, including 

highly nonlinear scheme. Linear equilibria are tractable, particularly in the presence of 

independent private information, have desirable properties like simplicity, and have 
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proved to be very useful as a basis for empirical analysis. Hortacsu (2002) uses detailed 

bidder-level data from Turkish treasury auction market to show that bidders’ demand 

functions can be represented quite closely by a simple linear interpolation of the bids. A 

straight line interpolation through the multiple price-quantity pairs can explain 92% of 

the variation in the multiple price and quantity pairs submitted by the bidders. Hence, a 

divisible-good auction model that would generate linear demand functions for each 

bidder as equilibrium bidding strategies would provide a good description of the data. 

Kastl (2012) shows that on the share auction where bidders are required to submit 

multiple price-quantity pairs as their bidding strategies, they would submit few step bid 

functions than the maximal number are allowed to use. It is another evidence to support 

the bidding equilibriums on divisible goods could be as simple as a linear combination.  

In our model, a given quantity of a perfectly divisible good is sold to strategic 

buyers who have (weakly) decreasing linear marginal utility (e.g., mean-variance 

preferences). So it is a simple and smart way to account for bidder’s risk preference. 

Maskin and Riley (2000) assumed bidders have a general decreasing demand on divisible 

goods and they tried to characterize the optimal auction in their model under independent 

private-values paradigm IPVP. But no explicit solution can be derived due to the 

generality of demand function. Tenorio (1999) in a private value but indivisible multiple 

unit auction gave a geometric form to bidders’ utility function so analytical solution 

could be derived easier. Similar to that idea, we take the setting as Rostek, Weretka and 

Pycia (2010), bidders have a quadratic utility function on the share they get. Such a 

function is concave so bidders are risk averse, which is equivalent to the setting that each 
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bidder has a constant marginal value for the good, up to a fixed capacity. Similar setup 

does also appear in Vives (2010, 2011), Du and Zhu (2013) and Ollikka (2011).  

We examine the comparative design of three auction formats for divisible goods: the 

commonly used uniform and discriminatory price auctions, and as a theoretical 

benchmark, Vickrey auction. By analyzing linear Nash equilibria, we are able to 

characterize bidder equilibrium price impact and deliver sharp comparisons. 

Another important perspective that highly discussed among different auction models 

is the information structure of bidders. The common value environment is proper to 

model the auctioning object with the ex-post fixed valuation, say the lease for gas or oil 

exploration, and most of financial securities. However, some empirical studies suggested 

that in practice, players in those common value divisible goods may well have private 

values. Hortacsu and Kastl (2008) exploited data from Canadian Treasury bill auctions. 

They developed a test applying structural and nonparametric estimation to see if bidder’s 

values are private. They cannot reject the null hypothesis of private values in 3-months 

treasury bills, but reject private values for 12-months treasury bills. Intuitively, in the 

long run, the security price goes stable and its valuation seems to be same for everyone, 

but in short run, price fluctuates a lot so bidders have to value its risk and their personal 

preference on investment. In this scenario, a private value model may work better. What 

is more, there is some share auction examples fit into the IPVP perfectly. Consider a 

CDPP auction mentioned above. Factories sell their redundant CDPP quota to different 

buyers, including industry competitors, NGO or even individual environmentalists. 

Buyers are not profit-incentive at this auction because there is no second-hand market 
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exists. They value the object independently for different purposes, but not the common 

price it worth on market, if there exists so.  

In our model, bidders start with private valuations of the divisible goods and have 

diminishing marginal values for owning it. Due to the independence, a bidder's one-

dimensional demand schedule handles the (𝑛 − 1) dimensional uncertainty regarding all 

other bidders' valuations. 

Working with linearity and independent private value paradigm allows us to 

overcome the complexity of optimal auction design. But given the lack of dominance of 

equilibrium sets for the different auction formats, it is hard to compare the revenue or 

other criteria without an explicit equilibrium selection. For instance, in the uniform price 

design, the equilibrium selection that has become the workhorse model in the financial 

microstructure and industrial organization literature is the linear Bayesian Nash 

equilibrium as Kyle (1985, 1989). This paper implements ex post equilibrium as the 

solution concept. The bidder would not deviate from his strategy even if he would 

observe the private information or signals of others. It is robust and implies no regret. 

Beyond this, ex post equilibrium is also unshakeable with different distributional 

assumptions and increasing transformation of bidders’ utility functions, see Du and Zhu 

(2013), in which ex post equilibrium is characterized in uniform price double auctions of 

divisible assets. Other representing papers study equilibria that are ex post optimal with 

respect to supply shocks when bidders have symmetric information regarding the asset 

value. Related papers include Klemperer and Meyer (1989), Ausubel, Cramton, Pycia, 

Rostek, and Weretka (2011) and Rostek and Weretka (2012), among others. 
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We now proceed to the main predictions of this article. When bidders have linear 

marginal utility under the IPVP as the information structure, we achieve the explicit 

optimal share auction. Most notably, the optimal solution performs as the competitive 

market equilibrium. The seller aggregates bidders’ demand with virtual valuations as the 

estimation of the private signals. Market equilibrium price, or we call it the shadow price 

in this optimization process, will be decided by equalizing exogenous total supply and 

endogenous aggregate demand. To compensate information advantage that bidders hold, 

seller could not fully extract all of surplus but leave positive information rent as the 

consumer surplus through the payment rules. Since the asymmetric and independent 

private value bidders have, one can expect the solution we have is neither universal nor 

anonymous that each bidder’s type distribution counts for the optimal result. It is also not 

efficient because the virtual valuation could not fully reveal the true information of 

bidders, where the similar arguments applied in the canonical optimal unit auction design 

by Myerson (1981). The unexpected result is that even in a symmetric environment with 

much stronger assumption, Vickrey auction could not attain to the optimal solution, 

which not analogy to the second price auction in indivisible goods. Some previous studies 

shows the VA or VA with reserve price could constitute an optimal auction. Those 

include independent private value models like Harris and Raviv (1981-1, 1981-2), Segal 

(2004); interdependent model like Ausubel and Cramton (2004). We show VA would 

approximate the solution if the inverse hazard rate is low in which bidders lose their 

information advantage.  

Following the symmetric environment, we look at the comparative performance of 

various practical designs of divisible good markets, including UPA, DPA and VA. With 
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the strong linear ex-post equilibrium concept applied, we could do the revenue ranking 

for those different auction formats. Some studies on common value divisible goods 

auctions predict the ranking is ambiguous due to the specific properties of distributions, 

e.g. Back and Zender (1993), Wang and Zender (2002) or Ausubel, Cramton, Pycia, 

Rostek and Weretka (2011). We conclude under IPVP, the DPA dominates the UPA for 

all distributions considered, but how the VA is ranked depends on the variance of bidders’ 

private signals. This finding coincides with the optimal mechanism we derived. When the 

variance of private values is small which means bidders keep relatively lower information 

advantages, then the revenue ranking 𝑉𝐴 ≻ 𝐷𝑃𝐴 ≻ 𝑈𝑃𝐴 holds. In the limit if variance is 

pretty closed to zero, the VA is approaching the optimal solution that revenue dominance 

of DPA will diminish. We would have the revenue equivalence of 𝑉𝐴 ≻ 𝐷𝑃𝐴~𝑈𝑃𝐴. On 

the opposite way, if the variance is relatively high enough, we could have 𝐷𝑃𝐴 ≻ 𝑈𝑃𝐴 ≻

𝑉𝐴. To understand the expected-revenue dominance of the DPA over the UPA in non-

competitive auctions, it is useful to pin down the effects from which the revenue 

differences derive in the two formats. On the robust ex-post equilibriums we derived, the 

UPA design indeed fosters more aggressive bidding than DPA, measured by lower 

demand reduction.  

Further, our analysis draws attentions to the social welfare. Unlike most of literature 

discussing common value divisible goods market with symmetric bidders, that the 

equilibrium allocations are trivially efficient, we can compare the efficiency of auction 

formats under IPVP. Since truth-telling constitute the dominant strategy, the VA 

obviously generate the potential highest total welfare for both seller and bidders. We also 



  9 

predict the UPA is more efficient than DPA by maintaining higher ex-post aggregate 

social welfare.  

Our study is related to share auction design under IPVP. So we would make couple 

of policy suggestions to the relevant markets which best fit into our model, especially 

those where assets liquidity is relevantly low, like emission allowance markets, landing 

slots or import quota licenses. On the best interests of seller, the auction designer should 

evaluate how much they know about the potential auction participants before he/she 

choose the relevant formats. If the auctioneer get enough information concern bidders’ 

reservation price in advance, the sealed-bid VA or on equivalence the ascending bid 

clinging auction proposed by Ausubel (2004) which is more straight forward in practice, 

sounds more dominant in expected revenue. Otherwise, without any information 

advantage, the seller should pursue the DPA rather than VA or UPA. But on the best 

interests of the whole society, Ausubel’s auction is better than any other share auction 

format. 

There is lack of general theoretical guidelines for the optimal design of divisible 

good markets. The reasons behind include the multi-dimensional uncertainty in 

mechanism design for multi-unit auctions, the complexity of bidders’ demand and so on. 

Harris and Raviv (1981-1, 1981-2) look at the optimal mechanism when bidders’ type 

space is discrete. Under the IPVP environment, the optimal auction approaches the VA or 

some modified VA (Harris and Raviv 1981-2) if the number of private types going to 

infinity. Segal (2004) allows the continuous type space but assume bidders have unit 

demand.1

                                                
1 The demand of each bidder is either one or zero. 

 It shows that when bidders’ valuations are independently draw from the same 
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known distribution (symmetric IPVP), the optimal mechanism is equivalent to the 

Vickrey-Groves-Clarke mechanism in which each buyer pays the externality he imposes 

on others. So efficiency can be achieved there. Maskin, Riley and Hahn (1989) build up 

their model with symmetric IPVP but allow generally downward-sloping demand of 

bidders. They start with unit demand and conclude the standard selling procedure that 

winners are the highest bidders equal to supply and they pay their bids constitute an 

optimal solution. But when it extends to multiunit demands, the story changes that those 

standard formats are not optimal anymore. The new optimal selling procedure involves a 

nonlinear pricing scheme which implicitly predetermined, but could not explicitly be 

solved in the model. 

There is relatively more literature focus on comparison of different share auction 

formats on ground, with for instance seller’s revenue ranking. In the canonical and one of 

the earliest analyses of price-quantity choice issue in divisible good, Wilson (1979) 

shows by examples that compared to unit auction, the seller might experience a 

remarkable reduction in revenue. It is a common value environment with constant 

marginal utility that each bidder submits a decreasing bidding strategy 𝑞(𝑝) as demand 

schedule. The inferiority of share auction exists in all formats, UPA, DPA and VA. The 

multiplicity of equilibrium strategies enables the bidders to choose one that could be 

severely disadvantageous to the seller. Following Wilson’s setup, Back and Zender (1993) 

conclude UPA might be worse than DPA on seller’s expected revenue. But there may be 

other equilibira where the ranking of the auctions is reversed. Same revenue ranking is 

also characterized in Wang and Zender (2002). They prove when bidders are risk averse, 

there may exist equilibira of UPA that provide higher expected revenue than DPA. 
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Rostek, Weretka and Pycia (2010) further extend this common value model with bidders 

have decreasing marginal utility and linear Bayesian Nash equilibrium. Their model 

accommodates small and large markets, as well as different risk preferences of the buyers 

and the sellers. The revenue ranking that 𝐷𝑃𝐴 ≻ 𝑉𝐴 ≻ 𝑈𝑃𝐴 with strategic risk-averse 

bidders is concluded. Ollikka (2011), which has the similar model setup, verified the 

same revenue ranking by various numerical examples. Kremer and Nyborg (2004-1, 

2004-2) illustrate the underpricing exist in UPA and provide a simple allocation rule (pro 

rata) that specify the way divided in cases of excess demand to eliminate this effect. 

Some other papers have the models of private value. Kastl (2012) restricts bidders’ 

strategy into finite number of bids with price-quantity combinations. The equilibrium 

existence is discussed in both UPA and DPA. Tenorio (1999) looks at the case that seller 

auction-off multi identical units with bidders have different risk attitude (risk averse, risk 

neutral or risk prefer). He concludes both reservation price and reservation quantity 

would increase the expected revenue. Kyle (1989) introduced private information into a 

double auction for a risky asset of unknown liquidation value and derived a unique 

symmetric linear Bayesian equilibrium in demand schedules when traders have constant 

absolute risk aversion, there is noise trading, and uncertainty follows a Gaussian 

distribution. 

The balance of paper is organized as follows. Section 2 presents the general model. 

Section 3 defines and characterizes the optimal share auction under our framework. The 

linear ex-post equilibria of different auction formats and the revenue ranking and 

efficiency are discussed in Section 4. Section 5 concludes. All proofs are included in 

Appendices. 
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CHAPTER 2 

MODEL 

There is totally 𝐼 unit divisible good to be auctioned off from a risk-neutral seller (she) 

and 𝑛 potential risk-averse bidders (he) are bidding for it. Seller is seeking to maximize 

her expected profit from the payments. Bidder 𝑖’s utility is characterized by the amount 

of divisible good received 𝑞𝑖, where ∑ 𝑞𝑖𝑛
𝑖=1 ≤ 𝐼,𝑞𝑖 ≥ 0 ∀𝑖 as the feasibility conditions 

and the money he pays. His utility 𝑢𝑖 is given by a quasi-linear consumer revenue 

function 𝑣𝑖(𝑞𝑖) + 𝑚𝑜𝑛𝑒𝑦𝑖. We assume bidder’s willingness to pay or the marginal value 

of 𝑞𝑖 is linear, 

𝜕𝑣𝑖(𝑞𝑖)
𝜕𝑞𝑖

= 𝛼𝑖 − 𝛽𝑖𝑞𝑖 

where the stochastic intercept 𝛼𝑖 > 0 is the private information of him, and the parameter 

𝛽𝑖 > 0 that measures the convexity of his utility function is public information. Vives 

(2010) interpret 𝛽𝑖 as an adjustment for transaction cost or opportunity cost. Rostek, 

Weretka and Pycia (2010) further argue that when the auctioned good is a risky asset 

with a normally distributed payoff, and the bidders have CARA utility functions, then 𝛽𝑖 

measures risk aversion. Put this framework under the competitive market environment, it 

is exactly the same to say each bidder face a linear demand 𝑝 = 𝛼𝑖 − 𝛽𝑖𝑞𝑖 that 𝑝 ≥ 0 is 

the market price on the target goods. Then we have a linear-quadratic consumer revenue 

function.  

𝑣𝑖(𝑞𝑖) = � (𝛼𝑖 − 𝛽𝑖𝑞𝑖)
𝑞𝑖

0
𝑑𝑞𝑖 = 𝛼𝑖𝑞𝑖 −

1
2
𝛽𝑖𝑞𝑖2 
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Figure 1 shows this relationship clearly. 

 
 

The linear-quadratic utility function is widely utilized in Vives (2011), Rostek and 

Weretka (2012), Rostek, Weretka and Pycia (2010), Du and Zhu (2013) and Ollikka 

(2011), but the models have different information structures. 

The information structure we adopt here is called independent private values 

paradigm IPVP. Bidder knows his type 𝛼𝑖, but 𝛽𝑖 is common knowledge. They are 

asymmetric. Their private information is independently distributed on the interval 

𝜒𝑖 = [𝑤𝑖,𝑤𝑖] according to the density function 𝑓𝑖. Let players’ type space be 𝜒 =

∏ [𝑤𝑖 ,𝑤𝑖]𝑛
𝑖=1 , realized types 𝛼 = (𝛼1,𝛼2, … ,𝛼𝑛), 𝛼−𝑖 = (𝛼1, … ,𝛼𝑖−1,𝛼𝑖+1, … ,𝛼𝑛) 

and 𝜒−𝑖 = ∏ [𝑤𝑗,𝑤𝑗]𝑗≠𝑖 , for notational ease. Define 𝑓(𝛼) to be the joint density of 𝛼, and 

𝑓−𝑖(𝛼−𝑖) to be the joint density of 𝛼−𝑖. 

In a share auction, each bidder is required to submit a bidding strategy 𝑏𝑖(𝛼𝑖) 

simultaneously. The seller should decide allocation rules 𝑞𝑖(𝑏1,𝑏2, … ,𝑏𝑛), 

where ∑ 𝑞𝑖𝑛
𝑖=1 ≤ 𝐼, 𝑞𝑖 ≥ 0 ∀𝑖, and payment rules 𝑚𝑖(𝑏1, 𝑏2, … ,𝑏𝑛) for each bidder. For 

𝛼𝑖 

𝑞𝑖 
𝛽𝑖 

𝑣𝑖(𝑞𝑖) 

𝑝 

𝑞 

Figure 1: The Linear Demand and Consumer Revenue 
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instance, the most popular divisible good auction in practice is called uniform-price 

auction UPA. It requires bidder to submit his demand schedule 𝑏𝑖(𝑝;𝛼𝑖) which is 

unobservable to others except the seller. The demand schedule specifies that he wishes to 

buy a quantity 𝑏𝑖(𝑝;𝛼𝑖) of the target good at price 𝑝. Then the seller determines the 

selling price 𝑝∗ from market clearing condition 

�𝑏𝑖(𝑝∗;𝛼𝑖)
𝑛

𝑖=1

= 𝐼 

After this, bidder 𝑖 is awarded the quantity 𝑞𝑖 = 𝑏𝑖(𝑝∗;𝛼𝑖) and he pays 𝑚𝑖 = 𝑏𝑖(𝑝∗;𝛼𝑖)𝑝∗ 

as the payment. Other auction formats people interested in are discriminatory auction DA 

and Vickrey Auction, for instance. We will discuss them all in details later on. 
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CHAPTER 3 

OPTIMAL AUCTIONS DESIGN 

Among different kind of auction rules, let’s look at what is the optimal one for 

maximizing seller’s revenue.  

3.1 Setup 

First of all, in the language of mechanism design, we are interested in a direct auction 

scheme that all bidders will submit their types rather than demand schedules.  

Definition 1. From seller’s perspective, a direct mechanism (𝑞,𝑚) is a pair of 

functions 𝑞:𝜒 → ∆;𝑚: 𝜒 → ℝ𝑁, where ∆= {(𝑞1,𝑞2, … , 𝑞𝑛):∑ 𝑞𝑖𝑛
𝑖=1 ≤ 𝐼,𝑞𝑖 ≥ 0 ∀𝑖}, 

𝑞𝑖(𝛼) is the share that 𝑖 will get and 𝑚𝑖(𝛼) is the relative payment.  

By Revelation Principle, we can just restrict our attention to direct mechanisms to 

find out an optimal one. 

Each bidder’s utility is his consumer revenue 𝑣𝑖 and money transfer 𝑚𝑖. Given a 

direct mechanism (𝑞,𝑚), if 𝑖 reports 𝑧𝑖 and other bidders truthfully reveal their types, his 

ex-post2

 𝑢𝑖(𝑧𝑖,𝛼−𝑖) = 𝑣𝑖(𝑞𝑖) + 𝑚𝑜𝑛𝑒𝑦𝑖 = 𝛼𝑖𝑞𝑖(𝑧𝑖,𝛼−𝑖) −
1
2
𝛽𝑖𝑞𝑖2(𝑧𝑖,𝛼−𝑖) −𝑚𝑖(𝑧𝑖 ,𝛼−𝑖) 

 utility would be the consumer revenue add money transfer 

(1)  

Then the ex-mid utility of him when reporting 𝑧𝑖  can be represented as  𝛼𝑖𝑄𝑖(𝑧𝑖) −

1
2𝛽𝑖𝑅𝑖(𝑧𝑖) −𝑀𝑖(𝑧𝑖), where  

𝑄𝑖(𝑧𝑖) = � 𝑞𝑖(𝑧𝑖,𝛼−𝑖)
 𝜒−𝑖

𝑓−𝑖(𝛼−𝑖)𝑑𝛼−𝑖 

                                                
2 We adopt the phrases ex-post, ex-mid, ex-ante to express the different stages of information revelation. Ex-post means 
when all bidders private information are revealed; ex-mid means bidder is unknown about others’ types except his own; 
ex-ante is the stage that all kinds of private information are unknown for seller. 
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is the expected share he would get when he reports 𝑧𝑖 and all others tell the truth. 

Similarly, define 

𝑀𝑖(𝑧𝑖) = � 𝑚𝑖(𝑧𝑖,𝛼−𝑖)
 𝜒−𝑖

𝑓−𝑖(𝛼−𝑖)𝑑𝛼−𝑖 

to be the expected payment of 𝑖 when he reports 𝑧𝑖 and all other bidders tell the truth.  

Last, let 

𝑅𝑖(𝑧𝑖) = � 𝑞𝑖2(𝑧𝑖,𝛼−𝑖)
 𝜒−𝑖

𝑓−𝑖(𝛼−𝑖)𝑑𝛼−𝑖 

just for ease of notation purpose. 

By Revelation Principle, given equilibrium for any auction format, there always 

exists a direct mechanism that the truth telling is equilibrium and the outcomes are the 

same as the original auction format. So in the process of finding an optimal auction, we 

could only restrict our attention on those direct mechanisms where bidders have no 

incentive to hide their types. 

Definition 2. The direct mechanism (𝑞,𝑚) is said to be incentive compatible (IC) if 

and only if for all buyer 𝑖, all his type 𝛼𝑖 and other potential types 𝑧𝑖, 

𝑈𝑖(𝛼𝑖) ≡ 𝛼𝑖𝑄𝑖(𝛼𝑖) −
1
2
𝛽𝑖𝑅𝑖(𝛼𝑖) −𝑀𝑖(𝛼𝑖) ≥   𝛼𝑖𝑄𝑖(𝑧𝑖) −

1
2
𝛽𝑖𝑅𝑖(𝑧𝑖) −𝑀𝑖(𝑧𝑖) 

Now we are interested in what kind of direct auction formats are satisfied IC 

condition. The following proposition will tell you that. 
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Proposition 1.  (Incentive Compatible) The direct mechanism (𝑞,𝑚) is incentive 

compatible (IC) if and only if the following two conditions are satisfied: 

(1) Allocation rule: 𝑄𝑖(𝛼𝑖) is increasing on 𝛼𝑖 

(2) Payment rule: 𝑀𝑖(𝛼𝑖) = 𝛼𝑖𝑄𝑖(𝛼𝑖) − 1
2𝛽𝑖𝑅𝑖(𝛼𝑖) − ∫ 𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖

𝛼𝑖
𝑤𝑖

− 𝑈𝑖�𝑤𝑖� 

This conclusion is very intuitive. Basically, it says a direct auction scheme would 

implement truth telling if it awards more shares of goods, on expectation, to bidder who 

has higher reported marginal value. Also, please notice that through the definition of IC 

condition, the payment rule is equivalent to  

𝑈𝑖(𝛼𝑖) = 𝑈𝑖�𝑤𝑖� + � 𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖
𝛼𝑖

𝑤𝑖

 (2)  

It tells us the expected utility to bidders depends only on the allocation rule 𝑞, with 

an additive constant comes from 𝑈𝑖�𝑤𝑖�. Due to this specific property of an incentive 

compatible direct auction scheme, we need a boundary condition to figure out the 

payment rule. Following the general literature of mechanism design, we assume the 

bidder will not participate in the auction if he could not expect to get a positive payoff. 

Definition 3. The direct mechanism (𝑞,𝑚) is said to be individual rational (IR) if for 

all buyer 𝑖, all his type 𝛼𝑖, the expected payoff 𝑈𝑖(𝛼𝑖) ≥ 0 on the equilibrium.  

By equation (2), it is straight forward to conclude that for any direct mechanism 

satisfied IC, the individual rationality IR is equivalent to 𝑈𝑖�𝑤𝑖� ≥ 0,∀𝑖 . 
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3.2 Solution 

Now let us view the seller as the designer of the auction and looking for the one with 

maximal expected revenue among all direct mechanisms that are incentive compatible 

and individually rational. Under our information structure, we should forget that seller 

does not know any potential bidder’s type before the auction. So she is designing the 

optimal share auction (𝑞,𝑚) which would generate the highest ex-ante expected revenue 

or payment through the aggregation of all bidders. 

Proposition 2. (Designer’s Problem) Suppose 𝑞 = (𝑞1(𝛼),𝑞2(𝛼), … , 𝑞𝑛(𝛼)) maximize 

�{𝜑𝑖(𝛼𝑖)𝑞𝑖(𝛼) − 1
2
𝛽𝑖𝑞𝑖2(𝛼)}

𝑛

𝑖=1

, 3 

subject to the feasibility conditions ∑ 𝑞𝑖(𝛼)𝑛
𝑖=1 ≤ 𝐼,𝑞𝑖(𝛼) ≥ 0 ∀𝑖,∀𝛼 and 𝑞𝑖(𝛼) is 

increasing on 𝛼𝑖 for any 𝛼−𝑖. Suppose also that for ∀𝑖,∀𝛼  

𝑚𝑖(𝛼) = 𝛼𝑖𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)−� 𝑞𝑖(𝑡𝑖,𝛼−𝑖)𝑑𝑡𝑖

𝛼𝑖

𝑤𝑖

. (3)  

then (𝑞,𝑚) is an optimal share auction. 

To better interpret the process of optimal auction design, here are some preliminary 

works including assumption and technical lemma. For ease of notation reason, we utilize 

𝜑𝑖 to stand for 𝜑𝑖(𝛼𝑖) and 𝑞𝑖 for 𝑞𝑖(𝛼) in the left of this section and relative proof.  

Assumption 1. (Regularity) The virtual valuation 𝜑𝑖 is increasing on 𝛼𝑖 for any 

bidder 𝑖. Such an auction design problem is called regular. 

                                                
3 𝜑𝑖(𝛼𝑖) ≡ 𝛼𝑖 −

1−𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

 is called virtual valuation of a bidder with his type as 𝛼𝑖. 
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The regularity assumption on 𝜑𝑖 is generally taken for most of classic mechanism 

design approach. It include most of popular continuous random distribution 𝐹𝑖 on type 

space 𝜒𝑖 = [𝑤𝑖 ,𝑤𝑖]. For instance, say 𝐹𝑖 is uniform distribution. We have 𝑓𝑖(𝛼𝑖) = 1
𝑤𝑖−𝑤𝑖

 

and 𝐹𝑖(𝛼𝑖) = 𝛼𝑖−𝑤𝑖
𝑤𝑖−𝑤𝑖

. So 𝜑𝑖(𝛼𝑖) = 2𝛼𝑖 − 𝑤𝑖 that is increasing on 𝛼𝑖. Please notice that 

𝛾𝑖(𝛼𝑖) ≡
1−𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

 is actually the reciprocal function of hazard rate of 𝐹𝑖, so we call it 

inverse hazard rate. Bulow and Roberts (1989) gives very intuitive explanation of what 

does the virtual valuation 𝜑𝑖 mean in traditional economics that we will discuss it later on. 

Without loss of generality, we rank all virtual valuation as 

𝜑1 ≥ 𝜑2 ≥ ⋯ ≥ 𝜑𝑀 > 0 ≥ 𝜑𝑀+1 ≥ ⋯ ≥ 𝜑𝑛 

where 𝑀 ∈ {1,2, … ,𝑛}. Please be aware that it does not necessarily imply the ranking of 

bidder’s type 𝛼𝑖 even though we assume 𝜑𝑖 is increasing. Think of the asymmetric 

information environment that different bidder have different virtual valuation. Then the 

following important technical lemma is characterized for the purpose of optimality 

planning. 

Lemma 1. Let 𝜎𝐾 ≡ ∑ 𝜑𝑖−𝜑𝐾
𝛽𝑖

𝐾
𝑖=1 − 𝐼, where 𝐾 ∈ {1,2, … ,𝑀}. Then there is a unique 

𝐿 ∈ {1,2, … ,𝑀} such that 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤ 𝜎𝐿 < 0 ≤ 𝜎𝐿+1 ≤ ⋯ ≤ 𝜎𝑀, or 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤

σM < 0 such that L = M.  

We called this specific bidder with 𝐿th highest virtual valuation 𝜑𝐿 the pivotal 

bidder. It is an important intermediate result for solving the optimality problem. We will 

discuss more intuition later on that why we need such a definition. 

Thus, we obtain the main result of this section as following 
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Proposition 3. (Optimal Share Auction) Suppose the auction design problem is regular, 

then the following direct auction scheme (𝑞,𝑚) constitute an optimal share auction: 

(1) Allocation rules: 

If  ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 ≤ 𝐼, 𝑞𝑖 = 𝜑𝑖

𝛽𝑖
 for ∀𝑖 ≤ 𝑀 and 𝑞𝑖 = 0 for ∀𝑖 > 𝑀; 

If  ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 > 𝐼, 𝑞𝑖 = 𝜑𝑖−𝜆

𝛽𝑖
 for ∀𝑖 ≤ 𝐿 where 𝜆 =

∑ 𝜑𝑖
𝛽𝑖

𝐿
𝑖=1 −𝐼

∑ 1
𝛽𝑖

𝐿
𝑖=1

 and 𝑞𝑖 = 0 for ∀𝑖 > 𝐿; 

(2) Payment rules: 

𝑚𝑖(𝛼) = 𝛼𝑖𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)−� 𝑞𝑖(𝑡𝑖,𝛼−𝑖)𝑑𝑡𝑖

𝛼𝑖

𝑤𝑖

. 

To better understand the optimal share auction we obtain, let’s look at what is the 

virtual valuation 𝜑𝑖(𝛼𝑖). It is well known that in optimal indivisible good design under 

the independent private values paradigm IPVP, the target will be awarded to the bidder 

with highest 𝜑𝑖(𝛼𝑖) if it is positive. Bulow and Roberts (1989) argue 𝜑𝑖(𝛼𝑖) is actually 

the marginal revenue of seller when she charges the bidder 𝑖 a take-it-or-leave-it offer at 

price 𝛼𝑖 for this indivisible good. After though, the seller choose the winner with the 

highest marginal revenue.  

In our model, the 𝐼 units divisible good is not necessary to be awarded to one 

individual buyer. The seller is trying to assign her good to bidders who have relatively 

stronger incentive to buy, that is to say, to bidders who has higher demand 𝑝 = 𝛼𝑖 − 𝛽𝑖𝑞𝑖. 

Under the asymmetric information environment, since 𝛼𝑖 is unknown before trading, 

seller will use 𝜑𝑖(𝛼𝑖) instead. The virtual valuation here could be interpreted as the 
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marginal revenue of seller when she charges 𝛼𝑖 at the last traded small amount from 

𝑞𝑖 = 0.  

On the optimality, the seller will choose bidder with positive 𝜑𝑖(𝛼𝑖) as candidates 

and their demands or marginal revenue as 𝑝 = 𝜑𝑖(𝛼𝑖) − 𝛽𝑖𝑞𝑖. In the scenario of 

indivisible good, the winner must be with 𝜑𝑖(𝛼𝑖) > 0 since the seller would lose money 

when facing negative marginal revenue. Similar to that, in our optimal solution of 

divisible good, we only assign the share to bidder who has positive virtual valuation, or 

positive demand. Then to be more specifically on the allocation rule, if the market cannot 

be cleared, which is ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 ≤ 𝐼, then each candidate will be awarded the maximal 

potential demand as 𝑞𝑖 = 𝜑𝑖
𝛽𝑖

. But if ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 > 𝐼, the market will be cleared by aggregate 

demand equaling total supply. Then the market price  

𝑝 =
∑ 𝜑𝑖

𝛽𝑖
𝐿
𝑖=1 − 𝐼

∑ 1
𝛽𝑖

𝐿
𝑖=1

 

where 𝐿 ≤ 𝑀 is the number of winning bidders. At mean while 𝑝 = 𝜆, the market price is 

actually the Shadow Price from the optimality problem. So we are not surprised the 

shares are allocated by demand at the price 𝑞𝑖 = 𝜑𝑖−𝜆
𝛽𝑖

 for ∀𝑖 ≤ 𝐿. 

Here is an example with a couple of simple numbers to show how this auction works 

optimally on allocation, from seller’s perspective.  

Example 1. (Uniform Distribution) Suppose the auction is under a symmetric 

environment that every bidder has the marginal value of 𝑞𝑖 as 𝛼𝑖 − 𝑞𝑖 where his type 𝛼𝑖  is 
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dropped onto a uniform distribution in [0,1]. The market supply 𝐼 = 1. Now the virtual 

valuation 𝜑𝑖 = 2𝛼𝑖 − 1. 

First of all, suppose there are two bidders competing in this auction. Figure 2 

illustrates the optimal allocation rule for different type spaces.  

 
 

Basically, seller will not trade any in ○1 ; sell to only one bidder on his maximal 

demand in ○2  and ○3 ; sell to both bidders on their maximal demands in ○4  and sell to 

both bidders by market clear condition in○5 . 

Secondly, one more bidder join the auction. We have types 𝛼1 = 1,𝛼2 = 0.75,𝛼3 =

0.6, then their virtual valuation 𝜑𝑖 are 1, 0.5 and 0.2 respectively. All of them have a 

positive virtual valuation, but it does not necessarily guarantee their winning. In this case, 

𝜎2 = −0.5 < 0, 𝜎3 = 0.1 > 0, the pivotal bidder is the one with 2nd highest 𝜑𝑖, so the 3rd 

player is ruled out of the auction. The clearance price 𝜆 = 0.25. Then 𝑞1 = 0.75 and 

𝑞2 = 0.25. ▲ 

1
2
 

 

𝛼𝑖 + 𝛼𝑖 = 3
2
 

𝛼1 

𝛼2 
0 1 

1
2
 

1 

○1  

○2  

○3  

○4  
○5  

○1  𝑞1 = 𝑞2 = 0 
○2  𝑞1 = 2𝛼1 − 1;𝑞2 = 0 
○3  𝑞1 = 0;𝑞2 = 2𝛼2 − 1 
○4  𝑞1 = 2𝛼1 − 1;𝑞2 = 2𝛼2 − 1 
○5  𝑞1 = 𝛼1 − 𝛼2 + 1

2
; 𝑞2 = 𝛼2 − 𝛼1 + 1

2
 

 

Figure 2: Optimal Allocation Rule with Two Bidders 
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3.3 Discussion 

Before we proceed to the next section, there are still couples of interested questions 

including model assumption, solution and extension to be discussed in more details. 

First, how to interpret the optimal payment rules? By Proposition 3 (Optimal Share 

Auction), we get:  

� 𝑞𝑖(𝑡𝑖,𝛼−𝑖)𝑑𝑡𝑖
𝛼𝑖

𝑤𝑖

= 𝛼𝑖𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)−𝑚𝑖(𝛼) = 𝑣𝑖�𝑞𝑖(𝛼)� − 𝑚𝑖(𝛼) ≥ 0 

So the winning bidders will walk away with positive consumer surplus. The surplus 

∫ 𝑞𝑖(𝑡𝑖 ,𝛼−𝑖)𝑑𝑡𝑖
𝛼𝑖
𝑤𝑖

 can be referred as the informational rent for the compensation of 

bidders holding their private information in the auction. Take all others’ types 𝛼−𝑖 as 

given, the higher of bidder 𝑖’s type 𝛼𝑖, the more rent he benefited from getting more share. 

The seller could not fully extract all the bidders’ surplus, in order to implement an 

incentive compatible scheme. 

Second, we should be careful on the feasibility conditions. The feasible constraints 

∑ 𝑞𝑖(𝛼)𝑛
𝑖=1 ≤ 𝐼, 𝑞𝑖(𝛼) ≥ 0 ∀𝑖,∀𝛼 is reasonable in the manner of we are selling something 

concrete and physical. For instance, a large Pepperoni pizza, Outer Continental Shelf 

OCS lease or the right for oil exploration. But in a more general auction format where 

both buying and selling are involved from bidders (to be more specific, the auction 

participants), 𝑞𝑖(𝛼) < 0 is possible. Sometimes it is referred as a Double Auction. Most 

of these scenarios happen in capital market, like trading of securities or other derivatives, 

both longing and shorting are generally allowed in advance market. In such a setting, we 

do not need this feasibility condition anymore, for instance, Du & Zhu (2013). Our result 

can easily be extended over there. 
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Third, the linear demands 𝑝 = 𝛼𝑖 − 𝛽𝑖𝑞𝑖 of bidders implicitly imply 𝑞𝑖 ≤
𝛼𝑖
𝛽𝑖

, the 

maximal quantity demand at 𝑝 = 0. If 𝑞𝑖 > 𝛼𝑖
𝛽𝑖

, bidder could not get any additional payoff 

through more share of goods. So the ex-post consumer revenue  

𝑣𝑖(𝑞𝑖) = 𝛼𝑖𝑞𝑖 −
1
2
𝛽𝑖𝑞𝑖2 =

𝛼𝑖2

2𝛽𝑖
 

will be the same for any 𝑞𝑖 > 𝛼𝑖
𝛽𝑖

. The specific case is not included in the previous analysis, 

especially for IC conditions. Next, we show the optimal solution derived before will not 

be contradict with this. By Proposition 3 (Optimal Share Auction), since 𝜑𝑖(𝛼𝑖) = 𝛼𝑖 −

1−𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

< 𝛼𝑖, the ex-post allocation share 𝑞𝑖 ≤
𝛼𝑖
𝛽𝑖

 in any case. Then let’s look at the 

payment rule 𝑚𝑖, do the derivative on 𝛼𝑖, we have: 

𝜕𝑚𝑖

𝜕𝛼𝑖
= 𝑞𝑖 + 𝛼𝑖

𝜕𝑞𝑖
𝜕𝛼𝑖

− 𝛽𝑖𝑞𝑖
𝜕𝑞𝑖
𝜕𝛼𝑖

− 𝑞𝑖(𝛼𝑖 ,𝛼−𝑖) = (𝛼𝑖 − 𝛽𝑖𝑞𝑖)
𝜕𝑞𝑖
𝜕𝛼𝑖

≥ 0 

with the increasing property of 𝑞𝑖 on 𝛼𝑖. Now consider we are on the truth-telling 

equilibrium of the optimal direct mechanism we have derived. Suppose bidder 𝑖 reports a 

type 𝑧𝑖′ rather than 𝛼𝑖 to achieve a larger share 𝑞𝑖(𝑧𝑖′,𝛼−𝑖) such that 𝑞𝑖(𝑧𝑖′,𝛼−𝑖) > 𝛼𝑖
𝛽𝑖

. With 

𝜕𝑞𝑖
𝜕𝛼𝑖

≥ 0 and 𝜕𝑚𝑖
𝜕𝛼𝑖

≥ 0, there always exists 𝑧𝑖′′ < 𝑧𝑖′, such that 𝑞𝑖(𝑧𝑖′,𝛼−𝑖) > 𝑞𝑖(𝑧𝑖′′,𝛼−𝑖) ≥

𝛼𝑖
𝛽𝑖

 and 𝑚𝑖(𝑧𝑖′,𝛼−𝑖) > 𝑚𝑖(𝑧𝑖′′,𝛼−𝑖). So switching from 𝑧𝑖′ to 𝑧𝑖′′ can strictly reduce the 

payment but keep the bidder the revenue as the same, which is equivalent to say bidder 𝑖 

has no incentive to hidden his true type, in order to get share higher than 𝛼𝑖
𝛽𝑖

. 

Fourth, the optimal mechanism is not an efficient one on maximizing the aggregate 

social welfare include seller and bidders. It is simply because that in some circumstance, 
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the divisible good is not traded even though some bidders have positive value while it is 

zero value for seller.  

Last, in the canonical model of optimal indivisible good auction design with IPVP as 

the information structure, it is well known that a second-price auction a reserve price is 

an optimal auction if the problem is regular and symmetric. Similarly, in the framework 

of share auction, the Vickrey auction which could also implement the truth-telling 

strategies is the parallel second-price auction for divisible goods. People might be 

interested in whether Vickrey auction is an optimal one based on our model? We will 

study it further more in later sections. 
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CHAPTER 4 

EQUILIBRIUMS AND EFFICIENCY 

A common aspect of auction is that they extract information solely from bids, which is 

simple to be executed. The scheme rules should capture potential buyers regarding their 

willingness to pay, but no matter whom they are and what they are bidding for. Auctions 

are universal in the sense that they might be utilized to sell any good. Also, they are 

called anonymous if the identities of the buyers play no role in determining who wins the 

object and who pays how much. But the optimal share auction we derived last section is 

neither universal (the allocation rules depend on the value distribution to the item for sale) 

nor anonymous (bidders’ type distribution play an important role). From the practical 

standpoint, beyond a direct mechanism, we are going to look at some specific indirect 

auction mechanism where bidders submit their bidding schemes instead of revealing their 

own types.  

We study the most popular auction formats in markets for divisible goods, the 

commonly used uniform price auction UPA and discriminatory price auction DPA, as 

well as the theoretical benchmark of the Vickrey auction VA. Among those auction 

formats, bidders submit their downward-sloping bid schedules, or their demand to specify 

the quantity 𝑞𝑖 for each price 𝑝. Then the seller will find the market price or the stop-out 

price 𝑝∗ to equalize aggregate demand and total units of supply. To be more careful, we 

figure out if there is no such price or multiple stop-out prices exist, the seller will keep 

the good herself. But we could show later on that there is a unique market price in our 

model. In all three auctions, they implement the same allocation rules that shares bidders 

get are decided by 𝑞𝑖(𝑝∗). The difference are coming from the payment rules: 
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• UPA: each bidder pays the stop-out price for the total share he wins. 

• DPA: each bidder pays the valuation he revealed through the submitted bidding 

schedule, up to the share he wins. 

• VA: each bidder pays the valuation below the residual supply he faced, up to the share 

he wins.  

Throughout the left of section, we are interested in three different perspectives: first, 

what are the equilibriums for those auction formats under our model setting? Second, 

which one will generate relative higher revenue for the seller? Last, which one is more 

efficient through maximizing the total social welfare? 

4.1 Linear ex-post Equilibirums 

The equilibrium concept we implement here is ex-post equilibrium. First of all, we will 

proceed to define the notion of the equilibrium, and then characterize it in all auction 

formats. 

Definition 4. An ex-post equilibrium in our model of share auctions is a profile of 

bidding schedule (𝑞1(𝑝),𝑞2(𝑝), … , 𝑞𝑛(𝑝)) such that for any profile of bidders’ types 𝛼, 

bidder 𝑖 has no incentive to deviate from 𝑞𝑖(𝑝). That is for any alternative strategy 𝑞𝚤�(𝑝) 

of bidder 𝑖 

𝑢𝑖(𝑞𝑖(𝑝),𝑝∗) ≥ 𝑢𝑖(𝑞𝚤�(𝑝),𝑝�∗) 

where 𝑢𝑖 is the ex-post utility, 𝑝∗ is the stop-out price with 𝑞𝑖(𝑝) and 𝑝�∗ is the new stop-

out price given 𝑞𝚤� (𝑝). 

This definition further emphasizes the robustness of ex-post equilibrium. It does not 

require bidders to have common knowledge about other’s types or even distribution. 
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Another advantage of this concept is that the equilibrium is less sensitive to bidder’s 

preference. If a profile of bidding schedule (𝑞1(𝑝),𝑞2(𝑝), … ,𝑞𝑛(𝑝)) build up an ex-post 

equilibrium with the linear-quadratic utility function 𝑢𝑖, then it is still the equilibrium for 

preference utility function of the form 𝑔(𝑢𝑖) where 𝑔 is a strictly increasing function. 

We follow the same model framework of last section, except some of variations or 

additional technical conditions for analytical purpose. All of those assumptions will better 

serve our characterization of uniqueness equilibriums for different auction formats. 

Assumption 2. (Linearity) Among any possible ex-post equilibrium with 

downward-sloping bid schedule 𝑞𝑖(𝑝), we are looking for such equilibriums where the 

strategy is linear on price 𝑝, such that  𝑞𝑖(𝑝) =  𝑎𝑖 −  𝑏𝑖𝑝,  𝑎𝑖 > 0,  𝑏𝑖 > 0. 

Assumption 3. (Symmetry) Bidders have the same convexity of their preference, 

which is 𝛽𝑖 = 𝛽𝑗 = 𝛽,∀𝑖 ≠ 𝑗. They also have the same types 𝛼𝑖 = 𝛼𝑗 = 𝛼,∀𝑖 ≠ 𝑗.  on the 

same interval �̅� = [𝑤,𝑤] following 𝐹 as the distribution. 

All of the auction formats, VA, UPA and DPA, are implementing the same 

allocation rules. Bidders are asked to submit demand schedule as 𝑞𝑖(𝑝) =  𝑎𝑖 −  𝑏𝑖𝑝, then 

the stop-out price is generated through market clearing condition: 

𝑝∗ =
∑  𝑎𝑖𝑛
𝑖=1 − 𝐼
∑  𝑏𝑖𝑛
𝑖=1

 (4)  

and the share bidder 𝑖 obtains is 

𝑞𝑖∗ =
 𝑎𝑖 ∑  𝑏𝑖𝑛

𝑖=1 −  𝑏𝑖 ∑  𝑎𝑖𝑛
𝑖=1 +  𝑏𝑖𝐼

∑  𝑏𝑖𝑛
𝑖=1

 (5)  

With that information, we have a couple of more assumptions regarding the trading 

feasibility of share auctions.  
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Assumption 4. (Market Clearance) There exists positive market clearing price 

𝑝∗ > 0 on equilibriums of any auction format. In another word, the market supply 𝐼 is not 

as high as the maximal aggregate demand 𝐼 ≤ ∑ 𝑎𝑖∗𝑛
𝑖=1 , where 𝑎𝑖∗ is on equilibriums 

𝑞𝑖∗(𝑝) = 𝑎𝑖∗ − 𝑏𝑖∗𝑝. 

Assumption 5. (Participation) The auctions end up with all bidders participate into 

the allocation with 𝑞𝑖∗ > 0 or 𝐼 > ∑ 𝑎𝑖∗𝑛
𝑖=1 − 𝑎𝑖

∗

𝑏𝑖
∗ ∑ 𝑏𝑖∗𝑛

𝑖=1  at equilibriums.  

The purpose of participation assumption is to set up the environment to be 

analytically convenient. It is also equivalent to assume a double auction background 

where 𝑞𝑖∗ > 0 for any 𝑖 need not to be satisfied. 

With the allocation rules above, the payment rules of different auction formats are 

defined respectively. 

4.1.1 Vickrey Auction 

First of all, in Vickrey auction, bidder 𝑖 is facing the residual supply as 4  

𝑆𝚤�(𝑝) = 𝐼 − Σ−𝑖𝑞𝑖(𝑝) = 𝐼 − Σ−𝑖𝑎𝑖 + (Σ−𝑖𝑏𝑖)𝑝 

The bidder is required to pay the highest losing bids ex-post. So the money transfer would 

be the area below inverse residual supply function up to the winning share 𝑞𝑖∗: 

                                                
4 We have the notations Σ𝑖 ≡ Σ𝑖=1𝑛 , and Σ−𝑖 ≡ Σ𝑗=1,𝑗≠𝑖

𝑛  in what following. 
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𝑚𝑖
𝑉𝐴 = � 𝑆𝚤�

−1(𝑝)𝑑𝑞
𝑞𝑖
∗

0
 

= �
(𝑞 − 𝐼 + ∑  𝑎𝑖)−𝑖

∑  𝑏𝑖−𝑖
𝑑𝑞

𝑞𝑖
∗

0
 

=
1

∑  𝑏𝑖−𝑖
(−�𝐼 −�  𝑎𝑖

−𝑖

�𝑞𝑖∗ +
1
2 𝑞𝑖

∗2) 

Now we can start to determine the linear bidding strategies as ex-post equilibriums. 

Proposition 4. (Equilibrium in VA) In a unique linear ex-post equilibrium, the strategy of 

each bidder with type 𝛼𝑖 is equal to 

𝑞𝑖∗(𝑝) =
1
𝛽 (𝛼𝑖 − 𝑝) 

It is not surprised that the familiar truth-telling strategies are obtained in VA. We are 

more interested in whether it is an optimal share auction under this symmetric 

environment, that parallel to the second-price auction with reserve price constituting an 

optimal one in indivisible goods. Since 𝑎𝑖 = 𝛼𝑖
𝛽

, 𝑏𝑖 = 1
𝛽

, the share bidder 𝑖  wins on 

equilibrium is  

𝑞𝑖𝑉𝐴 =
𝑛𝛼𝑖 − ∑ 𝛼𝑖𝑖 + 𝛽𝐼

𝛽𝑛  

Comparing with optimal solution we derive in last section by Proposition 3 (Optimal 

Share Auction), plus the symmetric, market clearance and participation assumptions 

above, the respective optimal allocated share is  

𝑞𝑖𝑂𝑃𝑇 =
𝜑𝑖 − 𝜆
𝛽 =

𝑛𝜑𝑖 − ∑ 𝜑𝑖𝑖 + 𝛽𝐼
𝛽𝑛  
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So we conclude, VA is not an optimal share auction in general. But in extreme case 

where the information asymmetric are fully eliminated such that 𝜑𝑖 = 𝛼𝑖 or the inverse 

hazard rate 𝛾(𝛼𝑖) = 1−𝐹(𝛼𝑖)
𝑓(𝛼𝑖)

= 0, for ∀𝛼𝑖 ∈ [𝑤,𝑤] ,  ∀𝑖 , then 𝑞𝑖𝑉𝐴 = 𝑞𝑖𝑂𝑃𝑇  and we can 

easily verify that 𝑚𝑖
𝑉𝐴 = 𝑚𝑖

𝑂𝑃𝑇 in this symmetric scenario.  

We know the inverse hazard rate should not always be zero since the optimal share 

auction would not hold anymore under complete information. The relationship between 

the optimal one and the VA could be addressed more formal as following: 

𝛾(𝛼𝑖) ⟶ 0,⟹ 𝑞𝑖𝑉𝐴 ⟶ 𝑞𝑖𝑂𝑃𝑇 ,𝑚𝑖
𝑉𝐴 ⟶ 𝑚𝑖

𝑂𝑃𝑇 

As long as the inverse hazard rate function of bidders’ private information closed to zero, 

the VA will be infinitely approximate to an optimal share auction. More discussion of 

this finding will be emphasized in later sections. 

4.1.2 Uniform-Price Auction 

Secondly, the payment in UPA is as simply as the multiplication of stop-out price and 

the share bidders received. 

𝑚𝑖
𝑈𝑃𝐴 = 𝑝∗𝑞𝑖∗ 

So the linear bidding strategies as ex-post equilibriums are derived as following. 

Proposition 5. (Equilibrium in UPA) In a unique linear ex-post equilibrium, the strategy 

of each bidder with type 𝛼𝑖 is equal to 

𝑞𝑖∗(𝑝) =
1
𝛽 �

𝑛 − 2
𝑛 − 1�

(𝛼𝑖 − 𝑝) 

Equilibrium exists if and only if n>2. 
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There is the demand reduction for equilibrium in UPA where the bidding demand 

they submit is  

𝑝 = 𝛼𝑖 −  𝛽 �
𝑛 − 1
𝑛 − 2�𝑞𝑖 

It is from the fact that, with positive probability, the bid for the share 𝑞𝑖 > 0 will 

determine the price paid on all shares he wins. So any overbid may result in potential loss 

ex-post. 

We observe several important properties of this equilibrium. First of all, there is no 

demand reduction present at 𝑞𝑖 = 0. This is coinciding with the famous result in 

indivisible multiple units auction, e.g. Krishna (2002). Since price impact externality is 

linear and increasing in 𝑞𝑖, the demand deduction is increasing as so. To be more 

precisely, we could measure the demand reduction by 

∆𝐷𝑖 = 𝛼𝑖 −  𝛽𝑞𝑖 − �𝛼𝑖 −  𝛽 �
𝑛 − 1
𝑛 − 2�𝑞𝑖� =  �

𝛽
𝑛 − 2�𝑞𝑖 

So the second property is that the magnitude of the reduction is decreasing as more 

bidders joining the auction. When the number of bidders gets arbitrarily large, the 

equilibrium is converging to truth-telling strategy profiles that no demand reduction 

exists. Because the more players compete for the target good, the less effect will be taken 

on the stop-out price from each individual bidding schedule. Bidders will gradually 

incline to truly reveals their real demand rather than manipulate it through demand 

reduction. Last, the equilibrium bidding strategies in our model does not depend on the 

total supply 𝐼. We know the number of units available matters in indivisible multi-units 

auction, e.g. Krishna (2002). Bidders will decide how defensive (the demand reduction) 

they bid on each different units while knowing the total number of target goods. But in 
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the divisible property and linearity bidding strategies make this process smoothly. The 

participation assumption further dilutes the effect of exogenous supply on equilibriums. 

The linear marginal utility assumption might be also relevant but not critical. In the 

similar research like Ollikka (2011) and Du, Zhu (2013) with linear quadratic utility on 

share auction, both of their solutions on UPA are related on market supply. 

4.1.3 Discriminatory Price Auction 

Next, we will look at discriminatory price auction. Again, in the indivisible case, the 

equilibrium bidding involve “flat demand”, that bidders have incentive to reduce their 

winning bids on the last units since it will not influence their winning shares but will do 

decrease their payments.  

While for Discriminatory Price Auction, winners pay what they bid, so  

𝑚𝑖
𝐷𝑃𝐴 = �  𝑞𝑖−1(𝑝)𝑑𝑞

𝑞𝑖
∗

0
= �

( 𝑎𝑖 − 𝑞)
 𝑏𝑖

𝑑𝑞
𝑞𝑖
∗

0
=
𝑎𝑖
𝑏𝑖
𝑞𝑖∗ −

1
2𝑏𝑖

𝑞𝑖∗
2 

The equilibrium solution is more complex than VA and UPA. 

Proposition 6. (Equilibrium in DPA) There is no linear ex-post equilibrium in the 

general format of  𝑞𝑖(𝑝) =  𝑎𝑖 −  𝑏𝑖𝑝, but in a special case where bidding strategy is 

proportional to 𝛼𝑖 − 𝑝, then the following demand schedule constitutes an ex-post 

equilibrium profile: 

𝑞𝑖∗(𝑝) =
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

(𝛼𝑖 − 𝑝) 

Equilibrium exists if and only if n>2. 
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As we expect, due to the pay-as-you-bid rule, bidding for one realization of the 

market clearance does affect payments for other realization, so it is very challenging to 

characterize equilibriums, especially on ex-post. Some related literature, say Rostek, 

Weretka and Pycia (2010), Ollikka (2011), deduce the explicit solution on ex-ante with 

solution concept as symmetric linear Bayesian equilibrium, which implement different 

kinds of technical assumption on information structure. The IPVP framework could 

reduce these interactive effects on different states but not eliminate them at all. The 

specific solutions we provide here avoid the incentive of “flat demand”. Since the 

linearity of bidding profiles restrict their strategies on winning shares. Whenever they 

reduce their bids, they should weigh the tradeoff between decreasing of payment as well 

as losing shares. It is also comparable with other ex-post equilibriums in VA and UPA. 

The demand reduction of DPA is further enforced as twice large as UPA 

∆𝐷𝑖 =  �
2𝛽
𝑛 − 2�𝑞𝑖 

It is intuitive because the bidder will pay all consumer surpluses as he bids rather than the 

universal stop-out price. Figure 3 summarizes the ex-post equilibriums we derive for 

different auction formats. 
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Table 1 further summarize the comparison of VA, UPA and DPA with respective to 

ex-post equilibriums, the market clearing or stop-out prices, which are derived by market 

clearing conditions as equation (4), and magnitude of demand reduction. 

Table 1: Comparisons of Different Auction Formats 

 VA UPA DPA 
Equilibriums 

(𝒒𝒊∗) 
1
𝛽 (𝛼𝑖 − 𝑝∗) 

1
𝛽 �

𝑛 − 2
𝑛 − 1� (𝛼𝑖 − 𝑝∗) 

1
2𝛽 �

𝑛 − 2
𝑛 − 1�

(𝛼𝑖 − 𝑝∗) 

Stop-out Prices 
(𝒑∗) 

∑ 𝛼𝑖𝑖 − 𝛽𝐼
𝑛  

∑ 𝛼𝑖𝑖 − �𝑛 − 1
𝑛 − 2� 𝛽𝐼
𝑛  

∑ 𝛼𝑖𝑖 − 2 �𝑛 − 1
𝑛 − 2� 𝛽𝐼
𝑛  

Demand Reduction 
(∆𝑫𝒊) 0 �

𝛽
𝑛 − 2� 𝑞𝑖 �

2𝛽
𝑛 − 2� 𝑞𝑖 

 

4.2 Revenue Ranking 

In this section, we present the revenue comparison of VA, UPA and DPA. From the 

seller’s perspective, we are interested in which auction format will bring higher ex-ante 

Figure 3: The Demand Reduction of Different Auction Formats 

𝛽𝑖 ○
1  ○2  ○3  

𝑝 

𝑞 

𝛼𝑖 ○1  𝑉𝐴: 𝑞𝑖∗(𝑝) =
1

𝛽(𝛼𝑖 − 𝑝) 

○2  𝑈𝑃𝐴: 𝑞𝑖∗(𝑝) =
1
𝛽
�
𝑛 − 2
𝑛 − 1

� (𝛼𝑖 − 𝑝) 

○3  𝐷𝑃𝐴: 𝑞𝑖∗(𝑝) =
1

2𝛽
�
𝑛 − 2
𝑛 − 1

� (𝛼𝑖 − 𝑝) 
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expected revenue, based on fixed total divisible goods supply 𝐼 and the same number of 

attendance 𝑛 for different auctions. 

Proposition 7. (Revenue Ranking) In the respective linear ex-post equilibriums of 

different auction formats, the ex-ante expected total revenues for seller are ranked as 

following: 

(1) 𝐸[𝑅𝐷𝑃𝐴] ≥ 𝐸[𝑅𝑈𝑃𝐴] 

(2) 𝐸[𝑅𝑉𝐴] ≥ 𝐸[𝑅𝑈𝑃𝐴] if and only if 𝑉𝑎𝑟[𝛼] ≤ 𝛽2𝐼2

𝑛(𝑛−1)(𝑛−2)
 

(3) 𝐸[𝑅𝑉𝐴] ≥ 𝐸[𝑅𝐷𝑃𝐴] if and only if 𝑉𝑎𝑟[𝛼] ≤ 2𝛽2𝐼2

𝑛2(𝑛−1)(𝑛−2)
 

In our model, the DPA is dominant of UPA on expected payment regardless of 

uncertainty on bidders’ type space. This conclusion could be understood from two points. 

First, the DPA is trying to extract the full surplus from bidders while UPA only charges 

at the minimal winning price. Second, the larger demand reduction in DPA will lead to 

less equilibrium price impact.  

For VA, the ranking of the expected payment depend on number of bidders, total 

exogenous supply, the magnitude of bidder’s risk aversion and the volatility of other 

competitor’s types. The higher degree of bidder’s risk-aversion, the larger of divisible 

shares and the less players participate in the auction, the VA is more preferred. On an 

extreme case where no asymmetric information exists as 𝑉𝑎𝑟[𝛼] = 0, then VA is 

absolute dominant all other two auctions. Moreover, as we discuss in last section, VA is 

closer to the optimal auction format as long as more bidders’ private information is 

revealed publicly. Intuitively, since VA is the mechanism that will implement truthful 
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revealing of bidder’s private information, the revenue seller transfers to bidder in this 

auction is the information rent she pays. So we could capture this rent by measuring the 

uncertainty of bidders’ type by 𝑉𝑎𝑟[𝛼]. So the revenue ranking reinforces our finding 

about the comparison of VA and the optimal auction. When 𝑉𝑎𝑟[𝛼] is as small as zero, 

the inverse hazard rate 𝛾(𝛼𝑖) for any bidder 𝑖 is approximate to zero as well, then VA 

constitute the optimal share auction on the limit.  

When we look at the difference between UPA and DPA: 

𝐸[𝑅𝐷𝑃𝐴] − 𝐸[𝑅𝑈𝑃𝐴] =
(𝑛 − 2)

4𝛽 𝑉𝑎𝑟[𝛼] 

So the revenue equivalence of UPA and DPA would hold on limit if the uncertainty of 

bidders’ private information is approaching zero. 

4.3 Efficiency 

Due to the varied purpose of holding an auction, it might also be interesting to look at the 

efficiency, measuring by total social welfare. For instance, in selling of the oil 

exploration right, the seller would like to maximize her expected revenue. But for some 

environmental related goods, such as Carbon Dioxide Pollution Permit CDPP, the 

auctioneer might consider a lot of factors to balance the interests of different groups, 

rather than pursuing a maximal profit.  

We measure the social welfare by adding the total surplus all bidders maintain and 

the aggregate payments seller earned at the end of auction where all private information 

is revealed.  



  38 

Definition 5. An efficient share auction is the auction with the allocation rules 𝑞 that  

𝑚𝑎𝑥
𝑞1 ,𝑞2 ,…,𝑞𝑛

𝑊 = �𝑣𝑖(𝑞𝑖)
𝑛

𝑖=1

= �(𝛼𝑖𝑞𝑖 −
1
2
𝛽𝑖𝑞𝑖2)

𝑛

𝑖=1

 

subject to the feasibility conditions ∑ 𝑞𝑖𝑛
𝑖=1 ≤ 𝐼, 𝑞𝑖 ≥ 0 ∀𝑖 on ex-post. 

The optimality process of total social welfare defined above is exactly the same as a 

market clearing process. The stop-out price is derived by equalizing market supply 𝐼 to 

total market demands where every bidder just submit their true marginal utility as 

𝑝 = 𝛼𝑖 − 𝛽𝑖𝑞𝑖. It is also equivalent to a VA since truth-telling strategies are implemented 

there. So the next proposition will illustrate the efficiency comparison of different 

auctions. 

Proposition 8. (Efficiency Ranking) In the symmetric environment, VA is an efficient 

share auction on equilibriums, the ex-post total social welfare of different auction 

formats on equilibriums are ranked as following: 

𝑊𝑉𝐴 ≥ 𝑊𝑈𝑃𝐴 ≥ 𝑊𝐷𝑃𝐴  

This result can be understood with the demand reduction of three different auction 

formats, like what illustrated in Figure 3. The higher degree of defensive bidding, the 

lower equilibrium price would be expected to beyond the stop-out price deduced from 

true demands. Then we would expect more efficiency loss on the equilibriums.  
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CHAPTER 5 

CONCLUSIONS 

This paper explore the optimal share auction with bidders have linear marginal utility or 

demands. The information structure is IPVP. On optimality, the seller designs the 

allocation rules through a competitive equilibrium process. The stop-out price or shadow 

price is deduced by equalizing market supply and aggregate market demands which are 

represented as individual’s marginal revenue, or the so called virtual valuation. We show 

the mechanism that implements truth-telling, like Vickrey auction, is not generally an 

optimal one in this class of share auctions. But the difference between the VA and 

optimal solution will converge to zero when bidders keep almost null private information. 

We also compare the most popular auction formats for divisible goods, including 

VA, UPA and DPA. The linear ex-post equilibriums are characterized. We found the 

ranking of magnitude of demand reduction would be DPA>UPA>VA, which would 

affect their performance on revenue generating and social efficiency achieving. With 

further ranking formats in term of revenue, the result show DPA would dominant UPA 

regardless of information distribution. VA could be ranked higher or lower than the other 

two, depends on the volatility of private information. Last, we compare the efficiency of 

different auctions. The VA turns out to be an efficient share auction on ex-post while 

DPA is the format which loss the most of social welfare through the largest demand 

reduction on bidding, then the largest twist on stop-out price. 



  40 

REFERENCES 

Ausubel, Lawrence M. "An efficient ascending-bid auction for multiple objects."The 
American Economic Review 94.5 (2004): 1452-1475. 

Ausubel, Lawrence M., and Peter Cramton. "Auctioning many divisible goods."Journal 
of the European Economic Association 2.2‐3 (2004): 480-493. 

Ausubel, Lawrence M., and Peter Cramton. "Vickrey auctions with reserve 
pricing." Economic Theory 23.3 (2004): 493-505. 

Ausubel, Lawrence M., Peter Cramton, Marek Pycia, Marzena Rostek, and Marek 
Weretka. Demand Reduction, Inefficiency and Revenues in Multi-Unit Auctions. Working 
paper, (2011). 

Back, Kerry, and Jaime F. Zender. "Auctions of divisible goods: on the rationale for the 
treasury experiment." Review of Financial Studies 6.4 (1993): 733-764. 

Bulow, Jeremy, and John Roberts. "The simple economics of optimal auctions."The 
Journal of Political Economy (1989): 1060-1090. 

Du, Songzi, and Haoxiang Zhu. "Ex Post Equilibria in Double Auctions of Divisible 
Assets." Available at SSRN 2040609 (2013). 

Harris, Milton, and Artur Raviv. "Allocation mechanisms and the design of 
auctions." Econometrica: Journal of the Econometric Society (1981): 1477-1499. 

Harris, Milton, and Artur Raviv. "A theory of monopoly pricing schemes with demand 
uncertainty." The American Economic Review (1981): 347-365. 

Holmstrom, Bengt, and Paul Milgrom. "Aggregation and linearity in the provision of 
intertemporal incentives." Econometrica: Journal of the Econometric Society(1987): 303-
328. 

Hortaçsu, Ali. "Bidding behavior in divisible good auctions: theory and evidence from 
the Turkish Treasury auction market." Análisis del Mecanismo de Subastas de Valores 
Gubernamentales en México (2002). 



  41 

Hortaçsu, Ali, and Jakub Kastl. Do Bidders in Canadian Treasury Bill Auctions Have 
Private Values?. mimeo, 2008. 

Kastl, Jakub. "On the properties of equilibria in private value divisible good auctions with 
constrained bidding." Journal of Mathematical Economics (2012). 

Klemperer, Paul D., and Margaret A. Meyer. "Supply function equilibria in oligopoly 
under uncertainty." Econometrica: Journal of the Econometric Society(1989): 1243-1277. 

Kremer, Ilan, and Kjell G. Nyborg. "Divisible-good auctions: The role of allocation 
rules." RAND Journal of Economics (2004): 147-159. 

Kremer, Ilan, and Kjell G. Nyborg. "Underpricing and market power in uniform price 
auctions." Review of Financial Studies 17.3 (2004): 849-877. 

Krishna, Vijay. Auction theory. Academic press, 2009. 

Kyle, Albert S. "Continuous auctions and insider trading." Econometrica: Journal of the 
Econometric Society (1985): 1315-1335. 

Kyle, Albert S. "Informed speculation with imperfect competition." The Review of 
Economic Studies 56.3 (1989): 317-355. 

Maskin, Eric, John Riley, and F. Hahn. "Optimal multi-unit auctions." The economics of 
missing markets, information, and games (1989). 

Myerson, Roger B. "Optimal auction design." Mathematics of operations research 6.1 
(1981): 58-73. 

Ollikka, Kimmo. "Design of multi-unit auctions in emission allowance markets with 
common and private values." Manuscript,University of Helsinki (2011). 

Rostek, Marzena, and Marek Weretka. "Price inference in small 
markets."Econometrica 80.2 (2012): 687-711. 

Rostek, Marzena, Marek Weretka, and Marek Pycia. "Design of divisible good 
markets." Manuscript, University of Wisconsin at Madison (2010). 



  42 

Segal, Ilya. "Optimal pricing mechanisms with unknown demand." The American 
economic review 93.3 (2003): 509-529. 

Tenorio, Rafael. "Multiple unit auctions with strategic price-quantity 
decisions."Economic Theory 13.1 (1999): 247-260. 

Vives, Xavier. "Asset auctions, information, and liquidity." Journal of the European 
Economic Association 8.2‐3 (2010): 467-477. 

Vives, Xavier. "Strategic supply function competition with private 
information."Econometrica 79.6 (2011): 1919-1966. 

Wang, James JD, and Jaime F. Zender. "Auctioning divisible goods." Economic 
Theory 19.4 (2002): 673-705. 

Wang, Mian. "Share Auctions with Linear Demand." Manuscript, Arizona State 
University (2010). 

Wilson, Robert. "Auctions of shares." The Quarterly Journal of Economics(1979): 675-
689. 



43 

APPENDIX A  

PROOFS  



44 

Proof. Proposition 1  (Incentive Compatible) The technique applied here is similar to the 

canonical analysis of optimal auction design in indivisible good with information 

structure as IPVP, say Myerson (1981). 

The definition of incentive compatibility condition is equivalent to that 

𝑈𝑖(𝛼𝑖) = 𝑚𝑎𝑥
𝑧𝑖∈𝜒𝑖

{𝛼𝑖𝑄𝑖(𝑧𝑖)−
1
2
𝛽𝑖𝑅𝑖(𝑧𝑖) −𝑀𝑖(𝑧𝑖)} 

where 𝛼𝑖𝑄𝑖(𝑧𝑖) − 1
2𝛽𝑖𝑅𝑖(𝑧𝑖) −𝑀𝑖(𝑧𝑖) is an affine function of 𝛼𝑖. Therefore 𝑈𝑖 is a convex 

function. Also, by Envelope Theory, 𝑈𝑖 ′(𝛼𝑖) = 𝑄𝑖(𝛼𝑖). So we have the first condition 

that 𝑄𝑖(𝛼𝑖) is increasing on 𝛼𝑖 and  

𝑈𝑖(𝛼𝑖) = 𝑈𝑖�𝑤𝑖� + � 𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖
𝛼𝑖

𝑤𝑖

 

Then by the definition of 𝑈𝑖(𝛼𝑖), it is equivalent to the second condition.  

For the converse way, the following inequality hold for any 𝛼𝑖, 𝑧𝑖, 

� 𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖
𝑧𝑖

𝛼𝑖
≥ 𝑄𝑖(𝛼𝑖)(𝑧𝑖 − 𝛼𝑖) 

if 𝑄𝑖(𝛼𝑖) is increasing. With the second condition applied to both 𝛼𝑖 and 𝑧𝑖, we have  

𝑈𝑖(𝑧𝑖) ≥ 𝑈𝑖(𝛼𝑖) + 𝑄𝑖(𝛼𝑖)(𝑧𝑖 − 𝛼𝑖) 

Since it is hold for any 𝛼𝑖, 𝑧𝑖, we also have  

𝑈𝑖(𝛼𝑖) ≥ 𝑈𝑖(𝑧𝑖) + 𝑄𝑖(𝑧𝑖)(𝛼𝑖 − 𝑧𝑖) = 𝛼𝑖𝑄𝑖(𝑧𝑖) −
1
2
𝛽𝑖𝑅𝑖(𝑧𝑖) −𝑀𝑖(𝑧𝑖) 

which build up the IC condition. ■ 

Proof. Proposition 2  (Designer’s Problem) The seller is seeking maximizing her ex-ante 

expected revenue 



45 

𝐸[𝑅] = �𝐸[𝑀𝑖(𝛼𝑖)]
𝑛

𝑖=1

 

For each individual bidder under payment rule of IC 

𝐸[𝑀𝑖(𝛼𝑖)] = � 𝑀𝑖(𝛼𝑖)𝑓𝑖(𝛼𝑖)𝑑𝛼𝑖
𝑤𝑖

𝑤𝑖

 

= −𝑈𝑖�𝑤𝑖� + � �𝛼𝑖𝑄𝑖(𝛼𝑖) −
1
2
𝛽𝑖𝑅𝑖(𝛼𝑖)� 𝑓𝑖(𝛼𝑖)𝑑𝛼𝑖

𝑤𝑖

𝑤𝑖

 

−� � 𝑄𝑖(𝑡𝑖)𝑓𝑖(𝛼𝑖)𝑑𝑡𝑖
𝛼𝑖

𝑤𝑖

𝑑𝛼𝑖
𝑤𝑖

𝑤𝑖

 

By interchanging the order of integration in the last term:  

� � 𝑄𝑖(𝑡𝑖)𝑓𝑖(𝛼𝑖)𝑑𝑡𝑖
𝛼𝑖

𝑤𝑖

𝑑𝛼𝑖
𝑤𝑖

𝑤𝑖

= � � 𝑄𝑖(𝑡𝑖)𝑓𝑖(𝛼𝑖)𝑑𝛼𝑖𝑑𝑡𝑖
𝑤𝑖

𝑡𝑖

𝑤𝑖

𝑤𝑖

 

= � (1− 𝐹𝑖(𝑡𝑖))𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖
𝑤𝑖

𝑤𝑖

 

Then we write the ex-ante expected payment from bidder 𝑖 as  

𝐸[𝑀𝑖(𝛼𝑖)] = −𝑈𝑖�𝑤𝑖�

+ � �𝛼𝑖𝑄𝑖(𝛼𝑖) −
1
2
𝛽𝑖𝑅𝑖(𝛼𝑖) −

1− 𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

𝑄𝑖(𝛼𝑖)�𝑓𝑖(𝛼𝑖)𝑑𝛼𝑖
𝑤𝑖

𝑤𝑖

 

= −𝑈𝑖�𝑤𝑖� + � �𝛼𝑖𝑞𝑖(𝛼) − 1
2
𝛽𝑖𝑞𝑖2(𝛼)−

1 − 𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

𝑞𝑖(𝛼)�𝑓(𝛼)𝑑𝛼
𝜒

 

Define the virtual valuation of bidder 𝑖 with type 𝛼𝑖 as 𝜑𝑖(𝛼𝑖) ≡ 𝛼𝑖 −
1−𝐹𝑖(𝛼𝑖)
𝑓𝑖(𝛼𝑖)

, so 

now the auction design problem is turning to be 

𝑚𝑎𝑥
(𝑞,𝑚)

{���𝜑𝑖(𝛼𝑖)𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)�

𝑛

𝑖=1

𝑓(𝛼)𝑑𝛼
𝜒

−�𝑈𝑖�𝑤𝑖�
𝑛

𝑖=1

} 
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subject to  

(IC-Allocation Rule): 𝑄𝑖(𝛼𝑖) is increasing on 𝛼𝑖 

(IC-Payment Rule): 𝑀𝑖(𝛼𝑖) = 𝛼𝑖𝑄𝑖(𝛼𝑖) − 1
2𝛽𝑖𝑅𝑖(𝛼𝑖)− ∫ 𝑄𝑖(𝑡𝑖)𝑑𝑡𝑖

𝛼𝑖
𝑤𝑖

− 𝑈𝑖�𝑤𝑖� 

(IR): 𝑈𝑖�𝑤𝑖� ≥ 0,∀𝑖 

(Feasibility): ∑ 𝑞𝑖(𝛼)𝑛
𝑖=1 ≤ 𝐼,𝑞𝑖(𝛼) ≥ 0 ∀𝑖,∀𝛼 

The idea to solve this optimality problem is like this. If we can find the direct 

mechanism (𝑞,𝑚) that maximizing the revenue ex-post, then it will be also the solution 

ex-ante.  

First of all, we looks for increasing 𝑞𝑖(𝛼) on 𝛼𝑖 that will maximize 

∑ �𝜑𝑖(𝛼𝑖)𝑞𝑖(𝛼)− 1
2𝛽𝑖𝑞𝑖

2(𝛼)�𝑛
𝑖=1  under feasibility conditions. The monotone property of 

𝑞𝑖(𝛼) 𝑤𝑖𝑙𝑙 𝑖𝑚𝑝𝑙𝑦 the allocation rule of IC. Second, we set 𝑈𝑖�𝑤𝑖� = 0,∀𝑖, then IR is 

satisfied while maximizing −∑ 𝑈𝑖�𝑤𝑖�𝑛
𝑖=1 . Third, the ex-post payment rule is derived 

from allocation rule with 𝑈𝑖�𝑤𝑖� = 0 as  

𝑚𝑖(𝛼) = 𝛼𝑖𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)−� 𝑞𝑖(𝑡𝑖,𝛼−𝑖)𝑑𝑡𝑖

𝛼𝑖

𝑤𝑖

 

That will give you the ex-mid expected payment 𝑀𝑖(𝛼𝑖) of bidder 𝑖 as condition IC-

Payment Rule characterized. ■ 

Proof. Lemma 1 First of all, 𝜎𝐾 is increasing on 𝐾 since 

𝜎𝐾 − 𝜎𝐾−1 = ��
1
𝛽𝑖

𝐾−1

𝑖=1

� (𝜑𝐾−1 − 𝜑𝐾) ≥ 0 

There is a unique 𝐿 such that 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤ 𝜎𝐿 < 0 ≤ 𝜎𝐿+1 ≤ ⋯ ≤ 𝜎𝑀. 

Secondly, 𝜎1 = −𝐼 < 0, so it is possible that 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤ 𝜎𝑀 < 0. ■ 
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Proof. Proposition 3  (Optimal Share Auction) By Proposition 2 (Designer’s Problem), 

the payment rules is characterized as 

𝑚𝑖(𝛼) = 𝛼𝑖𝑞𝑖(𝛼)− 1
2
𝛽𝑖𝑞𝑖2(𝛼)−� 𝑞𝑖(𝑡𝑖 ,𝛼−𝑖)𝑑𝑡𝑖

𝛼𝑖

𝑤𝑖

. 

We only need to solve the allocation rules 𝑞 from the following problem: 

𝑚𝑎𝑥
𝑞1 ,𝑞2 ,…,𝑞𝑛

�(𝜑𝑖𝑞𝑖 −
1
2
𝛽𝑖𝑞𝑖2

𝑛

𝑖=1

) 

subject to the the feasibility conditions ∑ 𝑞𝑖𝑛
𝑖=1 ≤ 𝐼, 𝑞𝑖 ≥ 0 ∀𝑖,∀𝛼 and 𝑞𝑖 is increasing on 

𝛼𝑖 for any 𝛼−𝑖. The solution is separated into several steps: 

Step.1: 𝑞𝑖 = 0 for ∀𝑖 > 𝑀.  

Think about 𝑀 is coming from  

𝜑1 ≥ 𝜑2 ≥ ⋯ ≥ 𝜑𝑀 > 0 ≥ 𝜑𝑀+1 ≥ ⋯ ≥ 𝜑𝑛 

by ranking of virtual valuation. For ∀𝑖 > 𝑀, 𝜑𝑖𝑞𝑖 − 1
2𝛽𝑖𝑞𝑖

2 ≤ 0. Then we further reduce 

the optimal problem into: 

𝑚𝑎𝑥
𝑞1 ,𝑞2 ,…,𝑞𝑀

�(𝜑𝑖𝑞𝑖 −
1
2
𝛽𝑖𝑞𝑖2

𝑀

𝑖=1

) 

subject to ∑ 𝑞𝑖𝑀
𝑖=1 ≤ 𝐼 𝑎𝑛𝑑 𝑞𝑖 ≥ 0 ∀𝑖 

Step.2: The first order conditions FOCs are both necessary and sufficient to derive the 

solutions.  

The objective function is concave on the arguments (𝑞1,𝑞2, … , 𝑞𝑀). What is more, it is 

separable additive concave since for each 𝑖 ∈ {1,2, … ,𝑀}, 𝜑𝑖𝑞𝑖 − 1
2𝛽𝑖𝑞𝑖

2 is concave on 𝑞𝑖. 

Step.3: FOCs  

(𝑞𝑖):𝜑𝑖 − 𝛽𝑖𝑞𝑖 = 𝜆 − 𝜇𝑖, for ∀𝑖 ∈ {1,2, … ,𝑀}; 
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(𝜆): 𝜆 ≥ 0, ∑ 𝑞𝑖𝑀
𝑖=1 − 𝐼 ≤ 0 and 𝜆(∑ 𝑞𝑖𝑀

𝑖=1 − 𝐼) = 0; 

(𝜇𝑖):𝜇𝑖 ≥ 0, 𝑞𝑖 ≥ 0, 𝜇𝑖𝑞𝑖 = 0, for ∀𝑖 ∈ {1,2, … ,𝑀}, 

where 𝜆 and 𝜇𝑖 are Lagrange Multiplier to respective inequality constraints. Specifically, 

𝜆 is the shadow price of optimization problem. 

Step.4: Solutions  

(1) If 𝜆 = 0, 𝜑𝑖 − 𝛽𝑖𝑞𝑖 = −𝜇𝑖 ≤ 0, then 𝑞𝑖 ≥
𝜑𝑖
𝛽𝑖

 ∀𝑖. 

  If 𝜇𝑖 > 0 ⇒  𝑞𝑖 = 0, contradict with 𝑞𝑖 ≥
𝜑𝑖
𝛽𝑖

 ∀𝑖; 

  If 𝜇𝑖 = 0 ⇒  𝑞𝑖 = 𝜑𝑖
𝛽𝑖

, that we need ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 − 𝐼 ≤ 0 to be satisfied. 

(2) If 𝜆 > 0, then the feasibility constraint is binding as ∑ 𝑞𝑖𝑀
𝑖=1 = 𝐼. 

  If 𝑞𝑖 > 0 ⇒  𝜇𝑖 = 0 ⇒ 𝑞𝑖 = 𝜑𝑖−𝜆
𝛽𝑖

> 0, where 𝜆 < 𝜑𝑖 need to be checked; 

  If 𝑞𝑖 = 0 ⇒   𝜑𝑖 = 𝜆 − 𝜇𝑖 , then 𝜇𝑖 = 𝜆 − 𝜑𝑖 ≥ 0 ⇒   𝜆 ≥ 𝜑𝑖 > 0.  

Scenario (1) indicates the allocation rule when feasibility constraint is not binding, so if 

∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 ≤ 𝐼, 𝑞𝑖 = 𝜑𝑖

𝛽𝑖
 for ∀𝑖 ≤ 𝑀 and 𝑞𝑖 = 0 for ∀𝑖 > 𝑀. 

Scenario (2) tells us whether bidder 𝑖 could get a positive share or not depends on his 

virtual valuation. The bidder get 𝑞𝑖 > 0 if and only if 𝜑𝑖 > 𝜆. Suppose there are totally 𝐾 

winners as the result of auction. So 

𝜑1 ≥ 𝜑2 ≥ ⋯ ≥ 𝜑𝐾 > 𝜆 ≥ 𝜑𝐾+1 ≥ ⋯ ≥ 𝜑𝑀 

Hence by the binding budget constraint, ∑ 𝑞𝑖𝐾
𝑖=1 = ∑ 𝜑𝑖−𝜆

𝛽𝑖
𝐾
𝑖=1 = 𝐼, we have the shadow 

price: 

𝜆 =
∑ 𝜑𝑖

𝛽𝑖
𝐾
𝑖=1 − 𝐼

∑ 1
𝛽𝑖

𝐾
𝑖=1
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First of all, 𝜆 > 0 since 𝜆 ≥ 𝜑𝑀 > 0. In the extreme case where 𝐾 = 𝑀, then ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 −

𝐼 > 0 ⇒  𝜆 > 0. Otherwise, if ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 − 𝐼 ≤ 0, we go back to Scenario (1). 

Secondly, 𝜆 < 𝜑𝐾 is equivalent to 𝜎𝐾 = ∑ 𝜑𝑖−𝜑𝐾
𝛽𝑖

𝐾
𝑖=1 − 𝐼 < 0. Hence by Lemma 1, the 

unique number of winning bidders is set by 𝐾 = 𝐿. 

So in this scenario, we have the solution of 𝑞𝑖 as below: 

If ∑ 𝜑𝑖
𝛽𝑖

𝑀
𝑖=1 > 𝐼, 𝑞𝑖 = 𝜑𝑖−𝜆

𝛽𝑖
 for ∀𝑖 ≤ 𝐿 where 𝜆 =

∑ 𝜑𝑖
𝛽𝑖

𝐿
𝑖=1 −𝐼

∑ 1
𝛽𝑖

𝐿
𝑖=1

 and 𝑞𝑖 = 0 for ∀𝑖 > 𝐿; 

Combining Scenario (1) and (2), we have fully characterized the optimal allocation rules 

of share auction. What left is to check if the direct mechanism (𝑞,𝑚) we derived above 

constitutes an incentive compatible auction scheme. 

Step.5: 𝑞𝑖 is increasing on 𝛼𝑖, for ∀𝑖,∀𝛼−𝑖. 

With regularity assumption and the allocation rule 𝑞 get above, what we need to prove is 

that 𝑞𝑖 increasing on 𝜑𝑖, for ∀𝑖,∀𝜑−𝑖.  

Given a realized ex-post 𝜑−𝑖, let us re-rank their virtual valuations among 𝑛 − 1 

bidders.  

𝜑1 ≥ 𝜑2 ≥ ⋯ ≥ 𝜑𝑀 > 0 ≥ 𝜑𝑀+1 ≥ ⋯ ≥ 𝜑𝑛−1 

We can also find the pivotal bidder as the 𝐿th highest virtual valuation. To avoid any 

unnecessary confusion, we adopt (𝐿� ,𝑀�), instead of (𝐿,𝑀), to index the group 𝜑−𝑖. Then 

we discuss different scenarios same as above through whether the total-supply constraint 

is binding or not. 

(1) If ∑ 𝜑𝑗
𝛽𝑗

𝑀�
𝑗=1 > 𝐼 
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By Lemma 1, there exists unique 𝜑𝐿� > 𝜑𝑖∗ ≥ 𝜑𝐿�+1, such that equation (*) holds 

(∗)   �
𝜑𝑗
𝛽𝑗

𝐿�

𝑗=1

+
𝜑𝑖∗

𝛽𝑖
− 𝐼 − ��

1
𝛽𝑗

𝐿�

𝑗=1

+
1
𝛽𝑖
�𝜑𝑖∗ = 0 

We define inequalities �𝐿�� and �𝐿� + 1� for further reference 

�𝐿��   �
𝜑𝑗
𝛽𝑗

𝐿�

𝑗=1

− 𝐼 − ��
1
𝛽𝑗

𝐿�

𝑗=1

�𝜑𝐿� < 0 

�𝐿� + 1�   �
𝜑𝑗
𝛽𝑗

+
𝐿�

𝑗=1

𝜑𝐿�+1
𝛽𝐿�+1

− 𝐼 − ��
1
𝛽𝑗

𝐿�

𝑗=1

+
1

𝛽𝐿�+1
�𝜑𝐿�+1 ≥ 0 

(1.1) If 𝜑𝑖 ≤ 𝜑𝑖∗, then 𝑞𝑖 = 0 

(1.2) If 𝜑𝑖∗ < 𝜑𝑖 ≤ 𝜑𝐿� , then 𝑞𝑖 = 𝜑𝑖−𝜆
𝛽𝑖

, where 𝑞1,𝑞2,…, 𝑞𝐿� ,𝑞𝑖 > 0 

(∗)  ⇒  �
𝜑𝑗
𝛽𝑗

𝐿�

𝑗=1

+
𝜑𝑖
𝛽𝑖
− 𝐼 − ��

1
𝛽𝑗

𝐿�

𝑗=1

+
1
𝛽𝑖
�𝜑𝑖 < 0  ⇒   𝑞𝑖 > 0 

�𝐿� + 1�  ⇒  �
𝜑𝑗
𝛽𝑗

+
𝜑𝑖
𝛽𝑖

+
𝐿�

𝑗=1

𝜑𝐿�+1
𝛽𝐿�+1

− 𝐼 − ��
1
𝛽𝑗

𝐿�

𝑗=1

+
1
𝛽𝑖

+
1

𝛽𝐿�+1
�𝜑𝐿�+1 ≥ 0 ⇒  𝑞𝐿�+1 = 0  

Then 

𝜕𝑞𝑖
𝜕𝜑𝑖

=
1
𝛽𝑖
�1−

1
𝛽𝑖

∑ 1
𝛽𝑗

𝐿�
𝑗=1 + 1

𝛽𝑖

� > 0 

(1.3) If 𝜑𝐿� < 𝜑𝑖 ≤ 𝜑𝐿�−1, then 𝑞𝑖 = 𝜑𝑖−𝜆
𝛽𝑖

, where 𝑞1,𝑞2,…, 𝑞𝐿�−1,𝑞𝑖 > 0, with the 

possibility that 𝑞𝐿� = 0. 

�𝐿��  ⇒  �
𝜑𝑗
𝛽𝑗

𝐿�−1

𝑗=1

+
𝜑𝑖
𝛽𝑖
− 𝐼 − ��

1
𝛽𝑗

𝐿�−1

𝑗=1

+
1
𝛽𝑖
�𝜑𝑖 < 0  ⇒   𝑞𝑖 > 0 
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But  

�
𝜑𝑗
𝛽𝑗

𝐿�

𝑗=1

+
𝜑𝑖
𝛽𝑖
− 𝐼 − ��

1
𝛽𝑗

𝐿�

𝑗=1

+
1
𝛽𝑖
�𝜑𝐿� = �

𝜑𝑗
𝛽𝑗

𝐿�

𝑗=1

− 𝐼 − ��
1
𝛽𝑗

𝐿�

𝑗=1

�𝜑𝐿� +
1
𝛽𝑖

(𝜑𝑖 − 𝜑𝐿�) 

could be either positive or negative. If it is negative, 𝑞𝐿� > 0, we have the same winning 

group with 𝑞1,𝑞2,…, 𝑞𝐿� , 𝑞𝑖 > 0; if it is positive, 𝑞𝐿� = 0 

𝜕𝑞𝑖
𝜕𝜑𝑖

=
1
𝛽𝑖
�1 −

1
𝛽𝑖

∑ 1
𝛽𝑗

𝐿�−1
𝑗=1 + 1

𝛽𝑖

� 

is still positive but less than the previous case. 

(1.4) Keep increasing 𝜑𝑖 and repeat the analysis above, there might be less and less 

winning bidders left. But first of all, 𝑞𝑖 will be positive always. Secondly, 𝑞𝑖 will be 

increasing also, even though 𝜕𝑞𝑖
𝜕𝜑𝑖

 get smaller when more bidders are excluded. Figure 4 

shows the relationship between 𝑞𝑖 and 𝜑𝑖 in this scenario. 

 

 

(2) If ∑ 𝜑𝑗
𝛽𝑗

𝑀�
𝑗=1 ≤ 𝐼 

Figure 4: The Positive Relationship between 𝑞𝑖 and 𝜑𝑖 

�
𝜑𝑗
𝛽𝑗

𝑀�

𝑗=1

≤ 𝐼 

 

𝛽𝑖 �𝐼 −�
𝜑𝑗
𝛽𝑗

𝑀�

𝑗=1

� 

 

𝜑𝑖∗ 
 

𝜑𝐿−1 𝜑𝑖∗ 
 

𝜑𝐿 
 

0 0 

𝑞𝑖 𝑞𝑖 

𝜑𝑖 𝜑𝑖 

�
𝜑𝑗
𝛽𝑗

𝑀�

𝑗=1

> 𝐼 
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(2.1) If 𝜑𝑖 ≤ 0, then 𝑞𝑖 = 0 

(2.2) If 0 < 𝜑𝑖 ≤ 𝛽𝑖(𝐼 − ∑ 𝜑𝑗
𝛽𝑗

𝑀�
𝑗=1 ), then 𝑞𝑖 ≥

𝜑𝑖
𝛽𝑖

. 𝜕𝑞𝑖
𝜕𝜑𝑖

= 1
𝛽𝑖

> 0 

(2.3) If 𝜑𝑖 > 𝛽𝑖(𝐼 − ∑ 𝜑𝑗
𝛽𝑗

𝑀�
𝑗=1 ), then we go back to the same situation as scenario (2), 

𝑞𝑖 = 𝜑𝑖−𝜆
𝛽𝑖

. When keep increasing on 𝜑𝑖, more and more bidders are exclude. We always 

have an increasing 𝑞𝑖 but smaller slope. Figure 4 shows how 𝑞𝑖 will be increasing on 𝜑𝑖 

in this scenario. 

Combining Scenario (1) and (2), we show why the allocation rule 𝑞𝑖 we characterize 

is increasing on 𝛼𝑖, for ∀𝑖,∀𝛼−𝑖. 

Through step.1 to step.5, we conclude this proposition. ■ 

Proof. Proposition 4  (Equilibrium in VA) First of all, we derive have some preliminary 

comparative statics, which could be applied not only in VA, but all other auction formats. 

By equation (4) of market clearing conditions, 

𝜕𝑝∗

𝜕𝑎𝑖
=

1
∑ 𝑏𝑖𝑖

> 0 

𝜕𝑞𝑖∗

𝜕𝑎𝑖
= 1 − 𝑏

𝜕𝑝∗

𝜕𝑎𝑖
=
∑ 𝑏𝑖−𝑖
∑ 𝑏𝑖𝑖

> 0 

𝜕𝑝∗

𝜕𝑏𝑖
=
𝐼 − ∑ 𝑎𝑖𝑖
(∑ 𝑏𝑖𝑖 )2 =

𝜕𝑝∗

𝜕𝑎𝑖
(−𝑝∗) < 0 

𝜕𝑞𝑖∗

𝜕𝑏𝑖
= −𝑝∗ − 𝑏𝑖

𝜕𝑝∗

𝜕𝑏𝑖
=

(𝐼 − ∑ 𝑎𝑖𝑖 )∑ 𝑏𝑖−𝑖
(∑ 𝑏𝑖𝑖 )2 =

𝜕𝑞𝑖∗

𝜕𝑎𝑖
(−𝑝∗) < 0 

Secondly, we look at the ex-post utility of bidder 𝑖 under VA, 

 𝑢𝑖𝑉𝐴(𝛼) = 𝑣𝑖(𝑞𝑖)−𝑚𝑖
𝑉𝐴 = �𝛼𝑖 +

𝐼 − ∑ 𝑎𝑖−𝑖
∑ 𝑏𝑖−𝑖

� 𝑞𝑖∗ −
1

2 �𝛽 + 1
∑ 𝑏𝑖−𝑖

� 𝑞𝑖∗
2
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The first order conditions FOCs of 𝑎𝑖 and 𝑏𝑖 are respectively as : 

(𝑎𝑖)：�𝛼𝑖 +
𝐼 − ∑ 𝑎𝑖−𝑖
∑ 𝑏𝑖−𝑖

− �𝛽 +
1

∑ 𝑏𝑖−𝑖
� 𝑞𝑖∗�

𝜕𝑞𝑖∗

𝜕𝑎𝑖
= 0 

(𝑏𝑖)： �𝛼𝑖 +
𝐼 − ∑ 𝑎𝑖−𝑖
∑ 𝑏𝑖−𝑖

− �𝛽 +
1

∑ 𝑏𝑖−𝑖
� 𝑞𝑖∗�

𝜕𝑞𝑖∗

𝜕𝑏𝑖
= 0 

By −(𝑎𝑖)𝑝∗ − (𝑏𝑖) = 0, they are equivalent to  

𝛼𝑖 +
𝐼 − ∑ 𝑎𝑖−𝑖
∑ 𝑏𝑖−𝑖

− �𝛽 +
1

∑ 𝑏𝑖−𝑖
� 𝑞𝑖∗ = 0 

with the expression of market clearing share 𝑞𝑖∗, it is also equivalent to  

�(𝛼𝑖 − 𝛽𝐼)𝑏𝑖 − 𝑎𝑖 + 𝐼� + (𝛽𝑏𝑖 − 1)� 𝑎𝑖
−𝑖

− (𝛽𝑎𝑖 − 𝛼𝑖)� 𝑏𝑖
−𝑖

= 0 

This should be hold for any profile of bidders’ types 𝛼 = (𝛼1,𝛼2, … ,𝛼𝑛), then for any 

competitors’ bidding strategies 𝑎−𝑖 = (𝑎1, … ,𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑛) and 

𝑏−𝑖 = (𝑏1, … , 𝑏𝑖−1, 𝑏𝑖+1, … , 𝑏𝑛), following the definition of ex-post equilibrium. So there 

is 

(𝛼𝑖 − 𝛽𝐼)𝑏𝑖 − 𝑎𝑖 + 𝐼 = 𝛽𝑏𝑖 − 1 = 𝛽𝑎𝑖 − 𝛼𝑖 = 0 

where we could derive 𝑎𝑖 = 𝛼𝑖
𝛽

; 𝑏𝑖 = 1
𝛽

, that conclude the truth-telling as the unique ex-

post linear equilibrium in VA. ■ 

Proof. Proposition 5  (Equilibrium in UPA) The ex-post utility of bidder 𝑖 under UPA is: 

𝑢𝑖𝑈𝑃𝐴(𝛼) = 𝑣𝑖(𝑞𝑖) −𝑚𝑖
𝑈𝑃𝐴 = (𝛼𝑖 − 𝑝∗)𝑞𝑖∗ −

1
2𝛽𝑞𝑖

∗2 

The first order conditions FOCs of 𝑎𝑖 and 𝑏𝑖 are respectively as: 

(𝑎𝑖)：− 𝑞𝑖∗
𝜕𝑝∗

𝜕𝑎𝑖
+ (𝛼𝑖 − 𝑝∗ − 𝛽𝑞𝑖∗)

𝜕𝑞𝑖∗

𝜕𝑎𝑖
= 0 
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(𝑏𝑖)：− 𝑞𝑖∗
𝜕𝑝∗

𝜕𝑏𝑖
+ (𝛼𝑖 − 𝑝∗ − 𝛽𝑞𝑖∗)

𝜕𝑞𝑖∗

𝜕𝑏𝑖
= 0 

By equation (4), −(𝑎𝑖)𝑝∗ − (𝑏𝑖) = 0, and 𝑞𝑖∗ = 𝑎𝑖 − 𝑏𝑖𝑝∗, they are equivalent to  

�−𝑎𝑖 − 𝛽𝑎𝑖�𝑏𝑖
−𝑖

+ 𝛼𝑖�𝑏𝑖
−𝑖

� + �𝑏𝑖 + 𝛽𝑏𝑖�𝑏𝑖
−𝑖

−�𝑏𝑖
−𝑖

� 𝑝∗ = 0 (6)  

Similar as the proof of equilibriums in VA, following the definition of ex-post 

equilibrium, this must be hold for any profile of bidders’ types 𝛼 = (𝛼1,𝛼2, … ,𝛼𝑛), then 

for any competitors’ bidding strategies 𝑎−𝑖 = (𝑎1, … , 𝑎𝑖−1,𝑎𝑖+1, … ,𝑎𝑛) and 𝑏−𝑖 =

(𝑏1, … , 𝑏𝑖−1, 𝑏𝑖+1, … , 𝑏𝑛). So for any bidder 𝑖 

𝑏𝑖 + 𝛽𝑏𝑖�𝑏𝑖
−𝑖

−�𝑏𝑖
−𝑖

= 0 

−𝑎𝑖 − 𝛽𝑎𝑖�𝑏𝑖
−𝑖

+ 𝛼𝑖�𝑏𝑖
−𝑖

= 0 

(7)  

It is generally a non-linear system that we could not solve 𝑎𝑖 and 𝑏𝑖 explicitly, but some 

quick observations can make the solution much simpler as we image.  

First of all, it is easier to derive a symmetric solution where 𝑏𝑖 = 𝑏𝑗  ∀𝑖 ≠ 𝑗, then 𝑏𝑖 =

1
𝛽

(𝑛−2
𝑛−1

) with 𝑛 > 2. When 𝑛 = 2, the FOC of (6) can not be hold that there is no ex-post 

solution exists in this scenario. From equation (7), 𝑎𝑖 = 𝛼𝑖𝑏𝑖 , then we prove the liner 

bidding strategy on equilibrium would be  

𝑞𝑖∗(𝑝) =
1
𝛽 �

𝑛 − 2
𝑛 − 1� (𝛼𝑖 − 𝑝) 

Secondly, we show the symmetric solution is the unique one under this setup. If there are 

𝑏𝑖 ≠ 𝑏𝑗, say 𝑏𝑖 > 𝑏𝑗, then FOC of (6) is equivalent to 1
𝑏𝑖

= 𝛽 + 1
∑ 𝑏𝑖−𝑖

. Thus 
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1
𝑏𝑖
−

1
𝑏𝑗

=
𝑏𝑗 − 𝑏𝑖
𝑏𝑖𝑏𝑗

=
𝑏𝑖 − 𝑏𝑗

(∑ 𝑏𝑖−𝑖 )(∑ 𝑏𝑗−𝑗 ) ⟹−
1
𝑏𝑖𝑏𝑗

=
1

(∑ 𝑏𝑖−𝑖 )(∑ 𝑏𝑗−𝑗 ) 

That is the contradiction with 𝑏𝑖 > 0,∀𝑖. ■ 

Proof. Proposition 6  (Equilibrium in DPA) The ex-post utility of bidder 𝑖 under DPA is: 

𝑢𝑖𝐷𝑃𝐴(𝛼) = 𝑣𝑖(𝑞𝑖) −𝑚𝑖
𝐷𝑃𝐴 = (𝛼𝑖 −

𝑎𝑖
𝑏𝑖

)𝑞𝑖∗ −
1
2 (𝛽 −

1
𝑏𝑖

)𝑞𝑖∗
2 

The first order conditions FOCs of 𝑎𝑖 and 𝑏𝑖 are respectively as : 

(𝑎𝑖)：−
1
𝑏𝑖
𝑞𝑖∗ + (𝛼𝑖 −

𝑎𝑖
𝑏𝑖
− 𝛽𝑞𝑖∗ +

𝑞𝑖∗

𝑏𝑖
)
𝜕𝑞𝑖∗

𝜕𝑎𝑖
= 0 

(𝑏𝑖)：
𝑎𝑖
𝑏𝑖2
𝑞𝑖∗ −

1
2𝑏𝑖2

𝑞𝑖∗
2 + (𝛼𝑖 −

𝑎𝑖
𝑏𝑖
− 𝛽𝑞𝑖∗ +

𝑞𝑖∗

𝑏𝑖
)
𝜕𝑞𝑖∗

𝜕𝑏𝑖
= 0 

By equation (4), −(𝑎𝑖)𝑝∗ − (𝑏𝑖) = − 1
2𝑏𝑖

2 𝑞𝑖∗
2 < 0, which is contradict with (𝑎𝑖) = (𝑏𝑖) =

0. So there is no linear ex-post equilibrium exist in the general format 𝑞𝑖(𝑝) = 𝑎𝑖 − 𝑏𝑖𝑝. 

But comparing with the solution of last two auction formats VA and UPA, if we look at a 

special case where the submitted demand schedule is proportional to 𝛼𝑖 − 𝑝 or we have 

𝑎𝑖 = 𝛼𝑖𝑏𝑖 , then the equilibrium is achievable. Now we are looking for the optimal 

bidding strategy 𝑞𝑖(𝑝) = 𝑏𝑖(𝛼𝑖 − 𝑝)  to maximize the ex-post utility of bidder 𝑖  under 

DPA 

𝑢𝑖𝐷𝑃𝐴(𝛼) = −
1
2 (𝛽 −

1
𝑏𝑖

)𝑞𝑖∗
2 

The first order conditions FOC of 𝑏𝑖 can be represented as: 

(
1
𝑏𝑖
− 𝛽)𝑞𝑖∗

𝜕𝑞𝑖∗

𝜕𝑏𝑖
−

1
2𝑏𝑖2

𝑞𝑖∗
2 = 0 
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Where 𝑞𝑖∗ = 𝑏𝑖(𝛼𝑖 − 𝑝∗)  and the new stop-out price 𝑝∗ = ∑ 𝑏𝑖𝛼𝑖𝑖 −𝐼
∑ 𝑏𝑖𝑖

. So we can further 

reduce it into 

(−
1
2 𝑏𝑖 − 𝛽𝑏𝑖�𝑏𝑖

−𝑖

+
1
2�𝑏𝑖

−𝑖

)(𝛼𝑖 − 𝑝∗)2 = 0 (8)  

Then for any bidder 𝑖, − 1
2
𝑏𝑖 − 𝛽𝑏𝑖 ∑ 𝑏𝑖−𝑖 + 1

2
∑ 𝑏𝑖−𝑖 = 0 must be hold. 

It is generally a non-linear system that we could not solve 𝑏𝑖 explicitly, but mimic as the 

technique applied in the solution of UPA, we could derive a unique symmetric solution 

where 𝑏𝑖 = 𝑏𝑗  ∀𝑖 ≠ 𝑗, then 𝑏𝑖 = 1
2𝛽

(𝑛−2
𝑛−1

) with 𝑛 > 2. Since if 𝑛 = 2, the FOC of (8) can 

not be hold that there is no ex-post solution exists in this scenario. We prove the linear 

bidding strategy on equilibrium would be  

𝑞𝑖∗(𝑝) =
1

2𝛽 �
𝑛 − 2
𝑛 − 1� (𝛼𝑖 − 𝑝) 

If there are 𝑏𝑖 ≠ 𝑏𝑗, say 𝑏𝑖 > 𝑏𝑗, then FOC of (8) is equivalent to 1
𝑏𝑖

= 2𝛽 + 1
∑ 𝑏𝑖−𝑖

. Thus 

1
𝑏𝑖
−

1
𝑏𝑗

=
𝑏𝑗 − 𝑏𝑖
𝑏𝑖𝑏𝑗

=
𝑏𝑖 − 𝑏𝑗

(∑ 𝑏𝑖−𝑖 )(∑ 𝑏𝑗−𝑗 ) ⟹−
1
𝑏𝑖𝑏𝑗

=
1

(∑ 𝑏𝑖−𝑖 )(∑ 𝑏𝑗−𝑗 ) 

That is the contradiction with 𝑏𝑖 > 0,∀𝑖.  

Last, we show FOC of 𝑏𝑖 is not necessary but also sufficient condition to maximize the 

ex-post utility 𝑢𝑖𝐷𝑃𝐴(𝛼). Look at the FOC of (8), since 1
2

+ 𝛽∑ 𝑏𝑖−𝑖 > 0, if 𝑏𝑖 < 1
2𝛽

(𝑛−2
𝑛−1

), 

then FOC is greater than zero while 𝑏𝑖 > 1
2𝛽

(𝑛−2
𝑛−1

) it is less than zero. So we conclude 

𝑏𝑖 = 1
2𝛽

(𝑛−2
𝑛−1

) is the global maximization solution of 𝑢𝑖𝐷𝑃𝐴(𝛼). ■ 
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Proof. Proposition 7  (Revenue Ranking) In order to compare the ex-ante expected 

revenue generated by different auctions, we will check their individual ex-post payments 

or money transfer first. Then we put them on the aggregate level and move the time 

window to ex-ante. 

Step.1:  ex-post payments 

We have achieved the ex-post equilibriums of VA, UPA and DPA respectively. Refer to 

the summery of Table 1, their ex-post payments on equilibriums are following: 

𝑚𝑖
𝑉𝐴 = �

∑ 𝛼𝑖−𝑖

𝑛 − 1 −
𝛽𝐼

𝑛 − 1�𝑞𝑖
∗ +

𝛽
2(𝑛 − 1) 𝑞𝑖

∗2 

𝑚𝑖
𝑈𝑃𝐴 = 𝑝∗𝑞𝑖∗ 

𝑚𝑖
𝐷𝑃𝐴 = 𝛼𝑖𝑞𝑖∗ − 𝛽 �

𝑛 − 1
𝑛 − 2� 𝑞𝑖

∗2 

Step.2:  preliminary algebra on aggregation 

Before we advance to the expected aggregation payments of all competitors, here are 

some important arithmetic identities equations for further reference in reduction.  

�(�(𝛼𝑖 − 𝛼𝑗)
𝑗

)2
𝑖

= �(𝑛𝛼𝑖 −�𝛼𝑖
𝑖

)2
𝑖

= 𝑛2�𝛼𝑖2
𝑖

− 𝑛(�𝛼𝑖
𝑖

)2 

��(𝛼𝑖 − 𝛼𝑗)
𝑗𝑖

= �(𝑛𝛼𝑖 −�𝛼𝑖
𝑖

)
𝑖

= 𝑛�𝛼𝑖
𝑖

− 𝑛�𝛼𝑖
𝑖

= 0 

�(�𝛼𝑖
−𝑖

∙�(𝛼𝑖 − 𝛼𝑗)
𝑗

)
𝑖

= �(�𝛼𝑖
−𝑖

∙ (𝑛𝛼𝑖 −�𝛼𝑖
𝑖

))
𝑖

 

= 𝑛�𝛼𝑖𝛼𝑗
𝑖≠𝑗

− (𝑛 − 1)(�𝛼𝑖
𝑖

)2 

��𝛼𝑖
−𝑖𝑖

= (𝑛 − 1)�𝛼𝑖
𝑖
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�(�𝛼𝑖
𝑖

∙�(𝛼𝑖 − 𝛼𝑗)
𝑗

)
𝑖

= �𝛼𝑖
𝑖

∙��(𝛼𝑖 − 𝛼𝑗)
𝑗𝑖

= 0 

�(𝛼𝑖 ∙�(𝛼𝑖 − 𝛼𝑗)
𝑗

)
𝑖

= �(𝛼𝑖 ∙ (𝑛𝛼𝑖 −�𝛼𝑖
𝑖

))
𝑖

= 𝑛�𝛼𝑖2
𝑖

− (�𝛼𝑖
𝑖

)2 

(�𝛼𝑖
𝑖

)2 = �𝛼𝑖2
𝑖

+ �𝛼𝑖𝛼𝑗
𝑖≠𝑗

 

(𝑛 − 1)�𝛼𝑖2
𝑖

−�𝛼𝑖𝛼𝑗
𝑖≠𝑗

= �(𝛼𝑖−𝛼𝑗)2
𝑖<𝑗

 

Step.3:  aggregate ex-post payment 

With the equilibrium solutions, stop-out prices from Table 1, plus the relevant algebra 

derived from Step.1 and Step.2, we get the aggregate ex-post payment of different auction 

formats. 

�𝑚𝑖
𝑉𝐴

𝑖

= ��
1

(𝑛 − 1)�
∑ 𝛼𝑖−𝑖

𝛽 − 𝐼��
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + 𝛽𝐼

𝑛 �
𝑖

+
1

2𝛽(𝑛 − 1)�
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + 𝛽𝐼

𝑛 �
2

� 

=
1

2𝛽(𝑛 − 1)�𝛼𝑖2
𝑖

+
1

𝛽(𝑛 − 1)�𝛼𝑖𝛼𝑗
𝑖≠𝑗

−
2𝑛 − 1

2𝛽𝑛(𝑛 − 1)��𝛼𝑖
𝑖

�
2

+
𝐼
𝑛�𝛼𝑖

𝑖

−
(2𝑛 − 1)

2𝑛2(𝑛 − 1)𝛽𝐼
2 

= −
1

2𝛽𝑛(𝑛 − 1)�(𝛼𝑖−𝛼𝑗)2
𝑖<𝑗

+
𝐼
𝑛�𝛼𝑖

𝑖

−
(2𝑛 − 1)

2𝑛2(𝑛 − 1)𝛽𝐼
2 

�𝑚𝑖
𝑈𝑃𝐴

𝑖

= ��
1
𝛽 �

𝑛 − 2
𝑛 − 1�

�
∑ 𝛼𝑖𝑖 − 𝛽 �𝑛 − 1

𝑛 − 2� 𝐼
𝑛

��
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + 𝛽 �𝑛 − 1

𝑛 − 2� 𝐼
𝑛

��
𝑖
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=
𝐼
𝑛�𝛼𝑖

𝑖

−
(𝑛 − 1)
𝑛2(𝑛 − 2)𝛽𝐼

2 

�𝑚𝑖
𝐷𝑃𝐴

𝑖

= ��
𝛼𝑖
2𝛽 �

𝑛 − 2
𝑛 − 1�

�
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + 2𝛽 �𝑛 − 1

𝑛 − 2� 𝐼
𝑛

�
𝑖

−
1

4𝛽 �
𝑛 − 2
𝑛 − 1�

�
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + 2𝛽 �𝑛 − 1

𝑛 − 2� 𝐼
𝑛

�

2

� 

=
1

4𝛽 �
𝑛 − 2
𝑛 − 1��𝛼𝑖2

𝑖

−
1

4𝛽𝑛 �
𝑛 − 2
𝑛 − 1�

��𝛼𝑖
𝑖

�
2

+
𝐼
𝑛�𝛼𝑖

𝑖

−
(𝑛 − 1)
𝑛2(𝑛 − 2)𝛽𝐼

2 

=
1

4𝛽𝑛 �
𝑛 − 2
𝑛 − 1��(𝛼𝑖−𝛼𝑗)2

𝑖<𝑗

+
𝐼
𝑛�𝛼𝑖

𝑖

−
(𝑛 − 1)
𝑛2(𝑛 − 2)𝛽𝐼

2 

Step.4:  UPA versus DPA 

The ex-post aggregate payment of DPA is higher than UPA by what we derive 

�𝑚𝑖
𝐷𝑃𝐴

𝑖

−�𝑚𝑖
𝑈𝑃𝐴

𝑖

=
1

4𝛽𝑛 �
𝑛 − 2
𝑛 − 1��(𝛼𝑖−𝛼𝑗)2

𝑖<𝑗

> 0 

So we conclude DPA, which is preferred by seller, will generate higher ex-ante expected 

revenue as 𝐸[𝑅𝐷𝑃𝐴] ≥ 𝐸[𝑅𝑈𝑃𝐴]. 

Step.5:  VA versus Others 

Last, let us look at the aggregate payment of VA versus other auction formats. With the 

ex-post aggregate payments we have respectively, we can compare them on expectation 

to the uncertainty of bidder’s type distribution. 

𝐸[𝑅𝑉𝐴] − 𝐸[𝑅𝑈𝑃𝐴] = 𝐸 ��𝑚𝑖
𝑉𝐴

𝑖

−�𝑚𝑖
𝑈𝑃𝐴

𝑖

� 
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=
𝛽𝐼2

2𝑛(𝑛 − 1)(𝑛 − 2) −
1

2𝛽𝑛(𝑛 − 1)𝐸 ��(𝛼𝑖−𝛼𝑗)2
𝑖<𝑗

� 

𝐸[𝑅𝑉𝐴] − 𝐸[𝑅𝐷𝑃𝐴] = 𝐸 ��𝑚𝑖
𝑉𝐴

𝑖

−�𝑚𝑖
𝐷𝑃𝐴

𝑖

� 

=
𝛽𝐼2

2𝑛(𝑛 − 1)(𝑛 − 2) −
1

4𝛽(𝑛 − 1)𝐸 ��(𝛼𝑖−𝛼𝑗)2
𝑖<𝑗

� 

So in order to rank the revenue of different auctions, it is critical to interpret 

𝐸�∑ (𝛼𝑖−𝛼𝑗)2𝑖<𝑗 �. We know 𝛼𝑖, 𝛼𝑗 are all independent random draw from �̅� = [𝑤,𝑤] 

following 𝐹 as the same distribution. 

𝐸 ��(𝛼𝑖−𝛼𝑗)2
𝑖<𝑗

� =
𝑛(𝑛 − 1)

2 𝐸�(𝛼𝑖−𝛼𝑗)2� 

=
𝑛(𝑛 − 1)

2 ∙ 2(𝐸[𝛼2]− 𝐸2[𝛼]) 

= 𝑛(𝑛 − 1)𝑉𝑎𝑟[𝛼] 

By now, we know whether VA is a preferred auction for seller could be highly 

dependent on the volatility of bidder’s private information. To be more specific,  

𝐸[𝑅𝑉𝐴] ≥ 𝐸[𝑅𝑈𝑃𝐴] if and only if 𝑉𝑎𝑟[𝛼] ≤ 𝛽2𝐼2

𝑛(𝑛−1)(𝑛−2)
 

𝐸[𝑅𝑉𝐴] ≥ 𝐸[𝑅𝐷𝑃𝐴] if and only if 𝑉𝑎𝑟[𝛼] ≤ 2𝛽2𝐼2

𝑛2(𝑛−1)(𝑛−2)
 

which conclude the proposition. ■ 

Proof. Proposition 8  (Efficiency Ranking) Through the definition of efficient share 

auction in our model, we have already known that VA could achieve the full efficiency. 
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The only question left is which one can avoid lower welfare loss on either UPA or DPA. 

The total social welfare it generates on ex-post would be 𝑊 = ∑ (𝛼𝑖𝑞𝑖 − 1
2𝛽𝑖𝑞𝑖

2)𝑖 . Refer to 

equilibriums and relative stop-out prices listed in Table 1,  

𝑊𝑈𝑃𝐴 =
1
𝛽 �

𝑛 − 2
𝑛 − 1��𝛼𝑖(𝛼𝑖 − 𝑝∗)

𝑖

−
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

2

�(𝛼𝑖 − 𝑝∗)2
𝑖

 

=
1
𝛽 �

𝑛 − 2
𝑛 − 1��𝛼𝑖 �

∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + �𝑛 − 1
𝑛 − 2�𝛽𝐼

𝑛
�

𝑖

 

−
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

2

�(
∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + �𝑛 − 1

𝑛 − 2�𝛽𝐼
𝑛 )2

𝑖

 

𝑊𝐷𝑃𝐴 =
1

2𝛽 �
𝑛 − 2
𝑛 − 1��𝛼𝑖(𝛼𝑖 − 𝑝∗)

𝑖

−
1

8𝛽 �
𝑛 − 2
𝑛 − 1�

2

�(𝛼𝑖 − 𝑝∗)2
𝑖

 

=
1
𝛽 �

𝑛 − 2
𝑛 − 1��𝛼𝑖 �

1
2∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + �𝑛 − 1

𝑛 − 2�𝛽𝐼
𝑛

�
𝑖

 

−
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

2

�(
1
2∑ (𝛼𝑖 − 𝛼𝑗)𝑗 + �𝑛 − 1

𝑛 − 2� 𝛽𝐼
𝑛 )2

𝑖

 

Furthermore, refer the algebra on aggregation we derive in the proof of Proposition 7, 

we can compare the total welfare of UPA and DPA as: 

𝑊𝑈𝑃𝐴 −𝑊𝐷𝑃𝐴 =
1
𝛽 �

𝑛 − 2
𝑛 − 1���

𝛼𝑖
2𝑛�(𝛼𝑖 − 𝛼𝑗)

𝑗

�
𝑖

 

−
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

2

��
3

4𝑛2
��(𝛼𝑖 − 𝛼𝑗)

𝑗

�

2

+ �
𝑛 − 1
𝑛 − 2�

𝛽𝐼
𝑛 �(𝛼𝑖 − 𝛼𝑗)

𝑗

�
𝑖
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=
1
𝛽 �

𝑛 − 2
𝑛 − 1�

1
2𝑛

�𝑛�𝛼𝑖2
𝑖

− ��𝛼𝑖
𝑖

�
2

� 

−
1

2𝛽 �
𝑛 − 2
𝑛 − 1�

2 3
4𝑛2

�𝑛2�𝛼𝑖2
𝑖

− 𝑛��𝛼𝑖
𝑖

�
2

� 

=
1

2𝑛𝛽 �
𝑛 − 2
𝑛 − 1��1 −

3
4 �
𝑛 − 2
𝑛 − 1��

�𝑛�𝛼𝑖2
𝑖

− ��𝛼𝑖
𝑖

�
2

� 

Since 𝑛 > 2, then 1− 3
4
�𝑛−2
𝑛−1

� > 0, plus 𝑛∑ 𝛼𝑖2𝑖 − (∑ 𝛼𝑖𝑖 )2 = ∑ (𝛼𝑖−𝛼𝑗)2𝑖<𝑗 > 0, we 

conclude 𝑊𝑉𝐴 > 𝑊𝑈𝑃𝐴 > 𝑊𝐷𝑃𝐴 . ■ 


