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ABSTRACT 

Science, Technology, Engineering & Mathematics (STEM) careers have been 

touted as critical to the success of our nation and also provide important opportunities for 

access and equity of underrepresented minorities (URM’s).  Community colleges serve a 

diverse population and a large number of undergraduates currently enrolled in college, 

they are well situated to help address the increasing STEM workforce demands.  

Geoscience is a discipline that draws great interest, but has very low representation of 

URM’s as majors.  

 What factors influence a student’s decision to major in the geosciences and are 

community college students different from research universities in what factors influence 

these decisions?  Through a survey-design mixed with classroom observations, structural 

equation model was employed to predict a student’s intent to persist in introductory 

geology based on student expectancy for success in their geology class, math self-

concept, and interest in the content.  A measure of classroom pedagogy was also used to 

determine if instructor played a role in predicting student intent to persist.  The targeted 

population was introductory geology students participating in the Geoscience Affective 

Research NETwork (GARNET) project, a national sampling of students in enrolled in 

introductory geology courses. 

 Results from SEM analysis indicated that interest was the primary predictor in a 

students intent to persist in the geosciences for both community college and research 

university students.  In addition, self-efficacy appeared to be mediated by interest within 

these models.  Classroom pedagogy impacted how much interest was needed to predict 
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intent to persist, in which as classrooms became more student centered, less interest was 

required to predict intent to persist.  Lastly, math self-concept did not predict student 

intent to persist in the geosciences, however, it did share variance with self-efficacy and 

control of learning beliefs, indicating it may play a moderating effect on student interest 

and self-efficacy. 

 Implications of this work are that while community college students and research 

university students are different in demographics and content preparation, student-

centered instruction continues to be the best way to support student’s interest in the 

sciences.  Future work includes examining how math self-concept may play a role in 

longitudinal persistence in the geosciences. 
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Introduction 

Setting the Stage 

In an effort to understand why issues of equity and access to the sciences are 

important, it helps to consider how the population in the United States is predicted to 

change and how that will impact future job vacancies in the sciences.  By 2050, the 

current underrepresented population (Hispanic, African-American, Asian and mix of 2 or 

more races) will comprise nearly half of the population (Day, 1996), as a result, the 

current majority White population will no longer be the dominant contributors to the job 

market.  If Science, Technology, Engineering and Mathematics (STEM) jobs currently 

held by the majority are not replaced and filled by individuals in the growing minority 

groups, the nation faces a possible crisis.  If the current shortages in the STEM workforce 

were filled with representative members of underrepresented groups as currently reflected 

in the U.S. population, there would be no shortfall in the workforce (May & Chubin, 

2003), the challenge for meeting that demand however is our current post-secondary 

programs are not producing enough STEM majors of any ethnicity to fill the demand 

(Carnevale, Smith & Strohl, 2010).   

In addition to addressing the needs of the nation, STEM careers can provide 

opportunities of access and equity for underrepresented minorities (URM’s).  Access is 

defined as the opportunity for anyone, regardless of ethnicity, sex, socioeconomic status 

(SES), disability, age or other demographic category to achieve a college education.  This 

is possible due to changing policies from a merit-based access (those who have 

historically had the ability and the societal opportunities, for example White, Protestant, 
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upper class males in the U. S.) to an equity-based access, in which opportunities are 

available to help create a level playing field even if those background experiences are not 

the same, for example, need-based financial support (Clancy & Goastellec, 2007).  The 

importance for providing equitable access is due to the advantages that come for those 

who are able to obtain a college education.  For example, individuals who have a post-

secondary education are more likely to have careers where on-the-job training allows for 

skill development that results in adaptability to changes in technology and job demands 

(Carnevale, et al., 2010). Current job projections indicate that more than 90% of all 

STEM jobs will require at least some college within the next decade (Carnevale, et al., 

2010).   

Some have suggested that a possible source for increasing URM’s in STEM 

overall, as well as within the geosciences, is from the community colleges (e.g., 

Hagedorn & Purnamasari, 2012; Holdren & Lander, 2012; National Research Council 

and National Academy of Engineering, 2012; van der Hoeven Kraft, Guertin, Filson, 

MacDonald & McDaris, 2011a).   Community colleges are well situated to potentially 

provide a greater pool of URM’s for STEM, since students from community colleges are 

generally older (28 vs. 21 yrs. old average age), more diverse (42.7% minorities vs. 

37.5% minorities), and have more first generation college students (42% vs. 30%) than 

their four-year counterparts (National Center for Education Statistics [NCES], 2001; 

National Science Foundation [NSF], (2009); American Association of Community 

Colleges [AACC], 2012).  In addition, there is evidence that 44% of all students with 

Science and Engineering (S&E) bachelor’s degrees have taken some of their coursework 
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at the community college (Tsapogas, 2004).  However, there are tremendous hurdles for 

students from community colleges to over come in order to become STEM majors.  Only 

17% of students who receive an associates (2-year) degree go on to complete a 4-year 

degree (Carnevale, et al., 2010).  A recent report on geoscience majors indicated that only 

14% of all students with a B.A. or B.S. in the geosciences took a geoscience course at the 

community college (Wilson, 2013). 

Developmental education is a growing role that community colleges fill in 

preparing students for their academic transfer. Developmental education (also known as 

remedial, compensatory, preparatory, or basic skills studies) are the courses that students 

need to take when they enter college that are below the college level coursework, and 

therefore are not transferrable to four-year institutions (Cohen & Brawer, 2008; Hagedorn 

& DuBray, 2010).  Ninety-eight percent of all community colleges provide some form of 

developmental education (Parsad & Lewis, 2004).   

One of the most problematic developmental courses, especially for STEM majors 

is math.  In one study, more than 76% of all students with a desire for a career in STEM 

required some form of pre-gatekeeper math class (a class that is needed prior to the 

college-level course that is part of an actual STEM program), 36% of whom were at the 

developmental level (Hagedorn & DuBray, 2010). While 75% of students were able to 

pass their first math course in the trajectory of getting to college-preparedness, it took 

repeated attempts for some of them to do so (9-17% depending on the course). For these 

students, the developmental courses are gatekeeper courses.  If a student enters the 

community college at the developmental level, it can take four or more semesters of 
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successfully passing each course to get to the math courses that are transferrable to a 

four-year institution and counted toward a STEM degree (Hagedorn & DuBray, 2010). 

The difference between students who require a remedial course and those who do not, 

can be the difference between successfully transferring to a four-year institution and 

completing within a six-year time frame and taking much longer, if completing at all 

(Bailey, Jenkins, & Leinbach, 2005).  Developmental math courses have been described 

as, “a firing squad,” in response to the attrition that occurs (National Research Council 

and National Academy of Engineering [NRC & NAE], 2012; p. 32).  Math is a major 

hurdle for students interested in entering STEM. 

 

Literature Review 

The following presents the current research on persistence at the college, 

classroom and individual scale.  This literature review helps to set the stage for what gaps 

remain in the literature about persistence in STEM programs at the college level, 

particularly, community college students in the geosciences. Geosciences are defined as 

including geology, physical geography, meteorology, oceanography, and planetary, 

Earth, and environmental sciences. 

Persistence at the College Scale 

Tinto (1993) established a model for explaining persistence among students in 

college in general.  Particularly important are issues of academic and social integration.  

Tinto (1993) describes the importance of both opportunities for students to be engaged 

academically, with a voice in their learning experience and clear goals for their academic 
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success.  This academic engagement is enhanced and augmented by the social 

interactions.  These opportunities for engagement begin in the classroom, and spiral 

outside from there.  As a student has an opportunity to experience a learning community 

in a classroom, s/he is more likely to engage outside of the classroom with both 

classmates and the instructor.  Tinto argues that this is even more important in institutions 

that are commuter/non-residential campuses since students are less likely to have 

interactions outside of the classroom (Tinto, 2006).  Evidence shows that students at 

community colleges are more likely to persist if they engage in learning communities that 

offer opportunities to develop social networks at the same time as they are academically 

engaged in their learning environment (Tinto, 1997).  In addition, these interactions and 

feelings of integration are most critical in the first year of college (Tinto, 2006).  Most of 

the current research done on persistence at the college scale has been at four-year 

colleges, very few have occurred at community colleges (Tinto, 2006). As such, this 

model may be less appropriate in predicting persistence in STEM for community colleges 

students, because students at the community college are potentially different based on 

their preparation level and social capital. Community colleges are more likely to have a 

higher representation of URM’s because of the affordability, the lower admission 

restrictions and developmental education courses, and the flexibility for working with 

students who may be working and/or have family obligations (Parsad & Lewis, 2004; 

Bailey et al., 2005; Horn & Nevill, 2006; Cohen & Brawer, 2008; Provasnik & Planty, 

2008).  As a result, community colleges should be of interest for recruiting for STEM 

majors, and has been specifically identified by the President’s Council of Advisors on 
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Science and Technology (PCAST) as one of the possible sources for the 1 million new 

STEM majors needed to fill the needs of the workforce (Holdren & Lander, 2012).   

There are several identified institutional factors that influence persistence in 

STEM majors, particularly URM’s.  These factors are common to those identified by 

Tinto (1993) in his larger persistence model as developing relationships with peers 

outside of the classroom through school-sponsored organizations and informal study 

groups (Espinosa, 2011). In addition, opportunities for undergraduate research positively 

impact persistence, whereas highly selective institutions and those with high ratios of 

graduate students to undergraduate students negatively predict persistence (Griffith, 

2010; Espinosa, 2011).  

While students have hurdles to overcome becoming STEM majors at the 

community college, the geosciences have more challenges than most STEM majors.  

There are several factors needed for students to choose to become a major: 1) knowledge 

and interest in the subject area; 2) earning potential (somewhat mediated by 

socioeconomic status); 3) the skill set required to be successful and an ability to 

accurately gauge those skills for a given task, and 4) a feeling of a connection to a given 

community (Tinto, 1997; Montmarquette, Cannings, & Mahseredjian, 2001; 

Harackiewicz et al., 2008). 

Geology is a topic that is generally relegated to middle school curriculum and 

when taught in high school, is commonly taught as the non-college track Earth Science 

course (Lewis, 2008).  In fact, enrollment in Earth Science in high school was found to be 

the one science course in high school that negatively predicted persistence in STEM 
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majors in college (Maltese & Tai, 2011).  As a result, most students receive very little 

exposure to the content prior to taking a college-level geology course.  Interest 

researchers may not agree about the semantics of what different degrees of interest are, 

but they generally do all agree that in order to be interested in a topic, one must have 

knowledge about it (Krapp, 2002; Hidi & Renninger, 2006).  As a result, many students 

who choose to become geology majors are those who “discover” it in college.  Houlton 

(2010) did research on why students choose to become majors, and she categorized them 

into three different groups: natives (those who knew about geology prior to taking a 

course and knew they wanted to become majors), immigrants (those who chose to 

become majors after exposure to the content) and refugees (those who abandoned/were 

rejected from other science majors).  Most majors are from the middle category, 

immigrant or introduced1 (Houlton, 2010; LaDue & Pacheco, 2012).  Quantitative data 

from recent graduates confirms these findings where only 23% of a national sampling of 

geology majors in 2013 chose to become majors prior to entering college, whereas more 

than 50% decide to become majors within the first two years of college (Wilson, 2013). 

Research at Northern Arizona University indicated that students had very little prior 

knowledge about the topic of geology and what kinds of careers they could have as a 

geologist (Hoisch & Bowie, 2010).  If students lack models for a future pathway, it will 

be difficult to determine the relevance of the course content at the college level (Husman 

1	
  Due	
  to	
  the	
  potential	
  confusion	
  of	
  “immigrant”	
  from	
  Houlton’s	
  work	
  to	
  immigrant	
  population	
  in	
  
the	
  demographics	
  at	
  a	
  community	
  college,	
  I	
  will	
  use	
  the	
  term,	
  “introduced”	
  instead.	
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et al., 2007).  This adds to the importance of the classroom environment above and 

beyond general persistence research.   

The research clearly identifies that creating a community is critical for student 

persistence in college in general, STEM fields, and geosciences specifically.  However, 

most of this research has been done at the four-year college level.  What has not been 

clearly identified is the role of community at community colleges, particularly for STEM 

and geoscience majors.  

Measuring Persistence at the Classroom Scale 

Most of the research of persistence in academic classrooms and college in general 

is done at four-year institutions, however an important common theme across different 

studies is the role of the classroom.  There are many factors over which teachers and 

institutions have very little control, such as students’ background experiences and cultural 

values. The environment created within the classroom is an example of a predictor of 

general academic persistence.  

Barnett (2011) applied Tinto’s model of persistence at college to a community 

college classroom setting in an effort to determine what the role of the classroom and 

instructor played in a student’s decision to remain in college.  She argued that the role of 

the classroom was the most critical for persistence of community college persistence 

since most students are non-residential and working at least part time, they do not have 

the opportunity to engage in social interactions outside of the classroom.  In addition, she 

argued that URM students are less likely to fit the same integration model proposed by 

Tinto (1993), and that they would need to feel validated before they could feel integrated 
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(Barnett, 2011).  As a result, she measured student feelings of validation and student 

feelings of integration in the classroom.  She administered a survey to students in English 

101 classes, which was a requirement for all programs in the general education transfer 

pathway.  The survey asked questions around categories of 1) students known and feeling 

valued, 2) caring instruction, 3) appreciation for diversity, and 4) mentoring and a 

modified pre-existing survey on feelings of integration.  She found that academic 

integration was mediated by student feelings of validation in the classroom (the strongest 

predictor was caring instruction), which then predicted persistence as measured by 

intending to enroll the following semester (Barnett, 2011).  The key idea here is that the 

classroom experience that a faculty creates for students does play a role in predicting 

persistence.  

Another way that the classroom experience has been measured is from an external 

observer than from student self-report.  The external observer has the opportunity to see 

interactions on a more global scale than the individual student’s perspective.  One 

measure that captures this classroom environment, through instructor pedagogy, 

specifically designed for the STEM college classroom is from the Reformed Teaching 

Observation Protocol (RTOP) instrument.  The RTOP is designed to quantify the 

classroom pedagogy at the college level through a series of measures that capture how 

reformed a classroom is based on student and teacher interactions as well as from the 

environment that the teacher creates for his/her students (Sawada et al., 2002).  It was 

originally designed to measure the instructional practices in college science courses tied 

to the Arizona Collaborative for the Excellence in the Preparation of Teachers (ACEPT) 
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program (Sawada et al., 2002). However, due to the wide range of capabilities of the 

RTOP, it has been used in many different science classrooms (e.g., Ebert-May et al., 

2011 for Biology; Falconer, Wycoff, Joshua, & Sawada, 2001 for Physics; Roehrig & 

Garrow, 2007 for Chemistry; Budd et al., 2010 for Geology) for purposes ranging from 

measuring fidelity of professional growth programs (Ebert-May et al., 2011) to 

characterizing classroom learning environments from teacher-centered to student-

centered based on the learning environment creating by the teacher and the level of 

interactions between the teacher and the student and between the students (Budd, van der 

Hoeven Kraft, McConnell & Vislova, 2013).  The RTOP instrument specifically looks 

for instructor-student interactions, student-student interactions, and the classroom 

environment created for students by the instructor. These factors are the key aspects that 

Tinto argues are so critical for creating the learning communities within the classrooms 

as the first step toward integrating students onto campus (Tinto, 2006).   

By measuring the classroom pedagogy through the specific factors identified in 

the RTOP, it is possible to determine how instructors may shape the development of 

interest and student persistence.  Prior research indicates that instructors can help to 

develop student’s value of science and expectancy for careers in STEM through 

interventions where students make connections between what they are learning in the 

class and their own personal interests (Hulleman & Harackiewicz, 2009).  The 

environment that the teacher creates for students is particularly important in helping to 

sustain interest for females through middle school and high school (Maltese & Tai, 

2010). 
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The sense of community that is created in the geosciences is something that is 

commonly cited as one of the largest reasons for becoming and persisting as a major for 

both majority and minority populations (Levine, Gonzalez, Cole, Fuhrman, & Carlson Le 

Floch, 2007; LaDue & Pacheco, 2012) and extends beyond the individual classroom 

community.  This sense of community is similar to those factors described by Tinto 

(1997). Specific factors beyond the classroom community that help encourage (or 

discourage) students to persist as geoscience majors include the outdoor experiences and 

associated culture as well as an appreciation for Earth, which are unique to the field 

sciences such as the geosciences (Levine et al., 2007; LaDue & Pacheco, 2012).  With 

this strength in recruiting majors, also lies geosciences greatest weakness.  The 

geosciences are NOT just outdoor activities.  Some students who are less inclined to 

camp outdoors or hike in the wilderness may find aspects of geosciences very interesting, 

but because the culture of geosciences focuses on the outdoors it can deter some students 

from choosing to pursue it as a major (Levine et al., 2012).  In fact, a disconnect or 

discomfort with the outdoors can be a deterrent and a detriment to learning for those who 

have more of an urban-based identity (Orion & Hofstein, 1994; Gruenewald, 2003), who 

may be a larger representation of students attending suburban and urban community 

colleges.  By supporting students to generate a connection to the content through 

curriculum that imbues a connection to a place of meaning has been strongly advocated 

in the geoscience community (e.g., Semken & Butler-Freeman, 2008), and may be a way 

to support developing community for students who don’t readily identify with the 

outdoors. 
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What remains to be examined are what the characteristics of community college 

classrooms that help to lead to persistence in the geosciences.  We know general aspects 

that encourage or discourage students to persist at the college level in general due to 

classroom experiences and within different STEM environments.  The geosciences have 

experiences in and out of the classroom, although the introductory level general limits the 

opportunities for some of the field-based experiences that have been found to encourage 

students to become majors.  In addition, the challenges of providing meaningful outdoor 

experiences for community college students have been relatively unexplored (Wilson, 

2012). 

Measuring Persistence at the Individual Scale 

While the classroom experience is critical for many students in choosing to 

persist, there are also individual factors that motivate an individual to choose to persist.  

The motivation theories of Expectancy x Value, interest, and self-concept have all been 

identified as powerful individual predictors for student persistence at the college level 

and in STEM particularly.   

Expectancy-Value Theory. The Expectancy x Value  (E x V) theory in 

motivation is a powerfully predictive model of student persistence in education in general 

(Eccles & Wigfield, 2002). Expectancy is a measure of one’s belief that they are capable 

of being successful in a given task or domain and is informed based on previous feedback 

of performance and how it is internalized.  Value is a measure of a combination of utility, 

attainment, intrinsic/interest, and perceived cost.  Utility value is how useful a given topic 

or task is for an individual, attainment value is how important the topic or task is, interest 
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is how much the topic or task is enjoyable and perceived cost is a gauge of how much 

time and effort one is willing to put forth (Schunk, Pintrich, & Meece, 2008).  Both 

components are critical for determine motivating behaviors such as persistence, choice 

and performance (Eccles, 1983; Eccles & Wigfield, 2002). Eccles (1983) first described 

this theory in an effort to explain the lack of presence of women in the sciences.  The 

critical essence of E x V theory is that women may perform just as well as men in math 

and sciences, but they do not choose to enter those domains as majors or professions.  E x 

V explains this phenomenon by ascribing the differences in both expectancy and value 

for these topics because if either function of the theory is low, than the motivation to 

persist declines and disappears altogether if either of the two functions becomes zero 

(Eccles, 1983; Nagengast et al., 2011).  In order to better understand student motivation 

to learn, why students persist in the light of failure, and how to influence it, the E x V 

theory becomes more relevant, this is particularly salient for URM’s in the sciences 

(Eccles, 1994; Wigfield & Eccles, 2000).  

Wigfield & Eccles (2000) found that expectancy for success declines as students 

get older, either due to better gauging and understanding of feedback and students are 

engaged more in social comparison with peers or because the school environment 

changes in a way that makes evaluation more important and competition between peers 

more likely thus lowering their achievement beliefs.  Either way, as a result, utility value 

generally declines over time/age.  As such, not all measure of value may be as helpful for 

measuring students at the college level. 
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Pintrich, Smith, Garcia and McKeachie (1991; 1993) developed an instrument, 

the Motivated Strategies for Learning Questionnaire (MSLQ) that measures constructs 

for expectancy and value and has demonstrated strong predictive validity for student 

performance and persistence across both four and two year colleges (Pintrich, Smith, 

Garcia & McKeachie, 1991; Duncan & McKeachie, 2005).   

Sullins, Hernandez, Fuller, and Tashiro (1995) applied an expectancy-value 

framework with students in a college-level biology course in an effort to determine who 

was more likely to persist in science courses (as measured by continued enrollment in 

courses).  They found that students who ranked high in both expectancy and value were 

more likely to enroll in another science course than those who ranked either expectancy, 

value or both low.   

The MSLQ has been applied in many different college science classrooms (for 

example, McKeachie, Lin & Strayer, 2002 in Biology; Zusho, Pintrich, & Coppola, 2003 

in chemistry; Zusho, Karabenick, Rhee Bonney, and Sims, 2007 in psychology and 

chemistry; Salamonson, Everett, Koch, Wilson & Davidson, 2009 with medical students) 

and has predicted persistence, use of self-regulatory strategies for students, and 

performance.   

An example of the application of the MSLQ as it pertains to persistence within the 

framework of E x V theory, was in a high school biology course, where it was used to 

determine measures of student motivation as a predictor of persistence in science, 

measured as a self-report of effort engaged in a given task (DeBacker & Nelson, 1999).  
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The authors found a difference in male versus female effort reports, but both reports of 

effort were impacted by value and expectancy for success. 

Recent work from the NSF-funded project, “Geoscience Affective Research 

NETwork” (GARNET) has collected data on the interests, expectancies for success, and 

classroom experiences in introductory geology classes primarily from administration of 

the MSLQ (McConnell et al., 2009).  Over 3,000 students have responded to survey 

questions about their introductory geology courses over the past 4 years. From these data, 

we are beginning to learn more about this introductory geology student population. 

However, as is common in motivation research (e.g., Vanderstoep, Pintrich, & Fagerlin, 

1996; van der Veen & Peetsma, 2009) student motivations generally decline through the 

course of the semester.  What is intriguing is that this decline appears to be buffered by 

the classroom environment (van der Hoeven Kraft, Stempien, Matheney, & McConnell, 

2011b), incoming interest and outgoing expectancy for success (Hilpert, van der Hoeven 

Kraft, Husman, Jones & McConnell, 2013).  In addition, we see differences with URM’s 

in these introductory geology classroom with regards to motivation and use of self-

regulatory strategies that may have implications for teaching practices at the community 

colleges who serve a greater percentage of URM’s (van der Hoeven Kraft et al., 2010a; 

2010b).   

Recent analysis of the GARNET data indicates that the subscales of self-efficacy 

and control of learning are the most reliable measures from the original MSLQ that 

measure expectancy (Hilpert, Stempien, van der Hoeven Kraft, & Husman, 2013).  The 

difference between expectancy and self-efficacy is that self-efficacy helps to inform 
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expectancy. Expectancy is a more future-oriented motivation, and thus predictive of 

future actions.  Prior experiences help to inform current expectancies in addition to social 

environment and cultural background.  How prior experiences are interpreted can 

influence memories and perceptions of a future task, which then inform the expectancy 

and value for persisting in a given task (Schunk, Pintrich, & Meece, 2008). 

Interest as a Measure of Value. Value for the expectancy x value theory has 

multiple constructs (Eccles & Wigfield, 2002). In science classrooms, interest has been 

demonstrated to be a strong predictor of persistence, more so than performance.  

Although a correlation exists between interest and achievement, which is stronger in the 

sciences than in the humanities, performance alone neither guarantees increased interest 

nor does it predict future actions, e.g., continuing on as a major (Shiefele, Krapp & 

Winteler, 1992; Harackiewicz, Durik, Barron, Linnenbrink-Garcia, & Tauer, 2008).	
  

Interest is a blend of both affective and cognitive components that drives motivation and 

involves some form of an interaction between the individual and the environment (Hidi, 

Renninger, & Krapp, 2004; Renninger & Hidi, 2011). In addition, interest is content-

specific, which means there must be interest in something specific in order for interest to 

develop.	
  	
  	
  

What may be most beneficial for developing interest, and with it a growing level 

of expertise, is what happens at the classroom level through the way the content is 

addressed, the community that is created within the classroom, if learning is well-

supported, and with opportunities for students to be partners in their collective learning 



	
  

	
   17 

experience (Alexander, 1997; Häussler & Hoffman, 2000; Hulleman & Harackiewicz, 

2009; Rotgans & Schmidt, 2011).   

At the college level, Harackiewicz and her colleagues (2000 & 2008) examined 

persistence with students in psychology classrooms as measured by continuing to take 

another course in psychology and also continuing on as majors.  They found that the 

culture created in the classroom can foster the development of interest.  A well-developed 

interest in the subject can lead to registering for another course (Harackiewicz, Barron, 

Tauer, Carter & Elliot, 2000) and even continue on as a major (Harackiewicz et al., 

2008).  While the classroom environment can strongly influence student’s interest, the 

measure of interest is at the individual student level. 

Interest has been measured in many different ways, but a number of studies 

specific to the sciences and persistence examine interest as levels of interest.  For 

example, Palmer (2009) asked students to rate their interest in different parts of an 

inquiry science lesson from very boring to very interesting.  Swarat, Ortony and Revelle 

(2012) had students rate different topics in biology on a Likert scale from 1-6 on different 

topics and lessons for what they found was interesting.  Post, Stewart & Smith (1991) 

measured interest by a basic measure of not interested to very interested (4 options) for 

different STEM and non-STEM careers, and found that interest better predicted Black 

women persisting than did measures of self-efficacy.  

Within the geosciences, in the GARNET project, we have found that a high 

number (31%) of students enter introductory geology courses with at least some prior 

interest in the sciences (Gilbert et al., 2012). Preliminary analyses indicate that this prior 
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interest is one of the greatest predictors for measures of persistence as determined by 

student self-report of taking another geology course (Hilpert et al., 2013). With these 

different studies in STEM and in geology specifically, it is possible that interest is a 

better measure of value than value from the MSLQ. 

Math Self-Concept. Self-concept is generally considered to be a more global 

construct as an individual gauge of expectancy for success based on both cognitive and 

affective experiences, whereas self-efficacy is a more task-specific construct that is based 

on a cognitive evaluation of prior performances (Bong & Clark, 1999; Bong & Skaalvik, 

2003). For example, there is some evidence that math self-efficacy and anxiety both 

impact an individuals math self-concept (Parajes & Miller, 1994).  Math self-efficacy is 

gauged much more toward the confidence to solve specific math problems and 

performance in task-specific math problems, and less about the overall confidence toward 

math courses in general (Parajes & Miller, 1994). Math self-concept is based on social 

comparison of others, and as a result, is more predictive measure of affective measures 

like value rather than performance-based measures (Bong & Clark, 1999).   

Math self-concept may be particularly salient for URM’s, due to the role of social 

comparison. African-American students who have a strong race centrality and possess 

racial stereotypes about academic prowess, are more likely to have lowered academic 

self-concept (Okeke, Howard, Kurtz-Costes, & Rowley, 2009).  In addition, research has 

shown, that when controlling for academic ability, URM students attending a four-year 

college were just as likely to declare a STEM major as white males were, however they 

did not persist in equal numbers (Riegle-Crumb & King, 2010).  So even if URM’s have 
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high self-efficacy for their academic experience, if they are particularly cognizant of 

social comparison, self-concept may be a more reliable predictor of persistence at the 

college level. 

For students at the community college, the choice to persist in college, and STEM 

courses particularly, may have more to do with the global construct of math self-concept 

rather than the more task specific math self-efficacy due to the social comparison and the 

population that is more likely to attend a two-year college (Marsh, 1986; Grandy, 1998). 

This is based on the ongoing development of identity and the high degree of students 

attending community college who require developmental math courses (Arnett & Tanner, 

2006; Hagedorn & DuBray, 2010). Due to these challenges, self-concept may extend 

beyond just URM’s at the community college population, to the population at large.  

Math courses are important predictors in choosing to pursue STEM degrees.  

Math is critical for STEM degrees, and persistence in STEM is somewhat dictated by a 

students ability to persist in math.  Maltese & Tai (2011) followed students from high 

school to college completion to determine what factors influence persistence in STEM. 

While ultimately, the greatest predictor of STEM degrees was the number of science 

courses taken in high school, they did find that confidence in math at the 10th grade was 

an important predictor in persistence in STEM degrees.  In addition, Eccles (1994) found 

that it wasn’t math self-efficacy that predicted women choosing to pursue STEM degrees, 

rather it was their valuing of math (and science).  Astin and Astin (1992) found that math 

and academic competency measures were the greatest predictors in students choosing to 

pursue STEM degrees.  Mau (2003) found that the greatest predictor of URM’s in 
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persistence for STEM degrees were math self-efficacy and academic proficiency (as 

measured by standardized instruments of reading and math). 

For URM’s who had high SAT math scores (over 550), math and science 

performance were still likely to play a role in predicting persistence in STEM degrees 

(Grandy, 1998).  Because there are factors beyond just the cognitive gauging of prior 

performances that may be influencing students perceptions of math ability, math self-

concept may be more appropriate of a measure than math self-efficacy for predicting 

persistence in STEM programs. 

In order to best capture the full experience of students in introductory geology 

classrooms at the community college, it is important to measure both the classroom level 

and the individual factors (such as expectancy, interest and math self-concept) that may 

influence persistence in geology courses.  Particularly important is the math self-concept 

in distinguishing between university and community college populations of geology 

students.  Grandy (1998) found that students who attended two-year colleges had an 

impact on persistence in STEM degrees for males who already had higher math 

achievement.  Since many of the two-year college population lack a strong math 

background (Hagedorn & DuBray, 2010), this makes math self-concept all the more 

critical for this particular population in predicting persistence. 

When considering the skill set required for geoscience majors rather than an 

introductory geoscience course, there is generally a disconnect.  Most introductory 

geology courses do not have pre-requisite math courses and most students who enroll in 

introductory geology courses are enrolled for the purposes of fulfilling a general science 
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requirement (Gilbert et al., 2012).  However, the requirement for most geoscience majors 

is calculus at a minimum.  After enrolling in an introductory geoscience course, many 

students will choose to not persist when confronted with the math requirements relative 

to their own capability perceptions.  Even those who became majors described the math 

curriculum as one of their greatest challenges (LaDue & Pacheco, 2013).  So while they 

may be interested, it may not be enough of an internalized interest to overcome the work 

required to become a major, or it may be that the math requirements preclude some 

students who lack a strong self-concept in math.  As such, I would predict that math self-

concept would play a larger role in predicting persistence in the geosciences at the 

community colleges than it would at the university. 

In order to for students to better understand geosciences and potentially persist as 

majors, the critical aspect is to have students return to take another course.  The more 

content to which they are exposed, the broader of a perspective and understanding of 

what is involved in geosciences, the more they may be able to visualize a future career 

and thus choose to persist as a major (Montmarquette et al., 2001).   

The question is, how do these different factors influence a student’s decision to 

enroll in another geology course and potentially begin on a pathway as a geology major?  

Ultimately, I believe it is influenced by both classroom level factors and the individual 

factors students bring to the classroom.  As identified by this literature review, there are 

large gaps in what we know about factors that affect student persistence in geoscience 

classrooms at the community college. 
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Hypothesis & Research Questions 

When considering persistence in the geosciences at the community college, it is 

important to consider the factors of efficacy and interest in the content area as a measure 

of expectancy x value.  Expectancy x value has shown to predict motivation to persist in 

other disciplines and grade levels.  In addition, I predicted that the classroom may play a 

role, for some students in these classrooms. Lastly, I hypothesized that math self-concept 

will play a role for students in the community college setting as compared to those at 

four-year institutions since math self-concept is more influenced by past experiences of 

success and/or failure (Marsh, 1986). I hypothesized that these factors helped to predict 

student intent to persist in the introductory geoscience courses.  As such, the research 

questions for this proposal were: 

1) Was there a demographic difference between students attending introductory 

geology at four-year colleges (specifically research 1 institutions, R1) versus 

those attending community colleges (CC)? 

2) Did students attending R1 universities differ significantly from students at a 

community college in their expectancy, interest, and math self-concept?  

3) Was there a significantly positive relationship between expectancy, interest 

and decision to continue in another geology class? 

4) Was there a differential impact of classroom environment on efficacy, interest, 

as it pertained to persistence? 

5) Did math self-concept contribute to the overall measure of geology 

expectancy for either R1 or CC students? 
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6) How did the role of math self-concept impact the predictive validity of a 

student’s intent to persist in R1 Universities as compared to those attending a 

community college? 

Because the GARNET project was already implemented in introductory geology 

classrooms around the country, I was well situated to pose this question to a readily 

available population across the country.  The GARNET project is a continuing NSF-

funded program to assess what the level of motivation and self-regulation are with 

introductory geology students both entering and leaving the classroom (McConnell & van 

der Hoeven Kraft, 2011).  MSLQ, RTOP, and demographic data (Appendix A) have been 

collected from 3 different R1 institutions and 7 different community colleges (in addition 

to other institution types) since 2008.) Persistence was be measured as Harackiewicz et 

al. (2000) and Sullins et al., 1995 both measured persistence, by intention to enroll in 

another course of the same topic.   

 

Methods 

Participants 

Two sets of data for this project were used: the larger GARNET data set of 

students from 2008-2013, and a smaller subset of data that included the math self-concept 

items from Spring 2013.  All data were collected in introductory physical geology 

classrooms.  The spring 2013 data were collected at the following research institutions: 

University of Colorado at Boulder, North Carolina State University, and University of 

North Dakota, and the following community colleges: Mesa Community College (AZ), 
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Scottsdale Community College (AZ), North Hennepin Community College (MN), and 

Los Angeles Valley College (CA).  Additional data from the larger dataset included data 

from Highline Community College (WA) and Community College of Rhode Island, in 

addition to the previous institutions listed.  All of these institutions were participants in 

the GARNET project. In previous semesters, we have had almost 50:50 representation of 

men and women (48.75 and 51.25, respectively), 57.86% of participants were 18-21 

years old, the largest percent of older students were represented at the community college 

(20% of the student population was greater than 25 years old), and most of the 

participants were Caucasian (79.94%), with a highest percent of non-Caucasian 

participants at the community college and public four-year institutions (approximately 

30% of both populations had identified some race/ethnicity other than non-Hispanic 

white).  

Measures 

The measures for this research included the following valid and reliable 

instruments: the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, 

Smith, Garcia & McKeachie, 1993), specifically the self-efficacy and control of learning 

beliefs sub-scales; the Self Description Questionnaire III (SDQ III; Marsh, 1984), 

specifically the math self-concept subscale; the Reformed Teaching Observation Protocol 

(RTOP; Sawada et al., 2002) to measure the classroom environment, and an additional 

survey (from the GARNET project) to determine outgoing interest, intent to persist as 

measured by intending to take another geology course, as well as general demographic 

information such as ethnicity, sex, age, and prior course work in STEM at both high 
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school and college level. Table 1 presents a breakdown of the instruments and the time 

frame of data used as they related to the research questions and the methods for analyzing 

them. 

Table 4.1 
 
Detailed breakdown of methods and instruments applied to the research questions 
 
Research Question Instrument Data Gathered Analysis Dataset 

Was there a demographic 
difference between students 
attending introductory geology 
at four-year colleges 
(specifically research 1 
institutions [R1]) versus those 
attending community colleges 
(CC)? 
 

GARNET 
demographic 
Survey 
(Appendix A) 

Age, Sex (Gender 
on the survey), and 
Race/Ethnicity 

Chi-
squared 

Spring 
2013 
(CCS and 
R1S) 

Did students attending R1 
differ significantly from 
students at a CC in their 
expectancy, interest, and math 
self-concept?  
 

MSLQ 
(Appendix B), 
GARNET 
survey, & 
SDQIII 
(Appendix C) 

Self-efficacy, 
control of learning 
beliefs (Geology 
expectancy), interest 
& math self-concept 

Chi-
squared 
and t-test 

Spring 
2013 and 
compared 
to 2008-
2013 
dataset 

Was there a significantly 
positive relationship between 
expectancy, interest and 
decision to continue in another 
geology class? 
 

MSLQ & 
GARNET 
survey 

Geology 
expectancy, interest 
& reported decision 
to enroll in another 
geology course 

Structural 
Equation 
Modeling 
(SEM) 

2008-
2013 
(CCF and 
R1F) 

Was there a differential impact 
of classroom environment on 
efficacy, interest, as it 
pertained to persistence? 
 

MSLQ, 
GARNET 
survey, RTOP 
(Appendix D) 

Geology 
expectancy, interest, 
and classroom 
experience 

SEM 

2008-
2013 
(CCF and 
R1F) 

Did math self-concept 
contribute to the overall 
measure of geology 
expectancy for either R1 or CC 
students? 
 

MSLQ, 
GARNET 
survey, SDQ 
III 

Geology 
expectancy, interest, 
math self-concept, 
and classroom 
experience 

SEM 

Spring 
2013 
(CCS and 
R1S) 

How did the role of math self-
concept impact the predictive 
validity of a student’s intent to 
persist in R1 Universities as 

MSLQ, 
GARNET 
survey, SDQ 
III 

Geology 
expectancy, interest, 
math self-concept, 
and classroom 

SEM 

Spring 
2013 
(CCS and 
R1S) 
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compared to those attending a 
community college? 

experience 

 

Geology Expectancy.  The MSLQ subscale items of self-efficacy and control of 

learning beliefs have been determined to be excellent predictors of the overall measure of 

geology course expectancy (Hilpert et al., 2012).  The MSLQ has been applied in 

introductory science courses at the community college, and found to be valid and reliable 

measures (Duncan & McKeachie, 2005; Gilbert et al., 2012).  Statements such as, “If I 

try hard enough, then I will understand the course material,” are measured on a 7-point 

Likert scale.  The items for this instrument are in Appendix B. 

Value.  Interest as a measure of value has a rich and well-developed literature 

base (for a full review, see Renninger & Hidi, 2011).  While there are disagreements 

about how to measure interest and what are the key factors that determine a triggered 

interest (external) from an internal, developed interest (Hidi & Renninger, 2006; Krapp, 

2002), it is almost universally agreed that interest in a topic requires one to know 

something about the topic.  By asking a general question about a students’ interest in the 

discipline after the course is completed will help to gauge a global measure of interest.  

Interest will be measured in response to the question, “in general, how interested in 

science are you?” on a 4-point Likert scale. This measure of interest is similar to that 

measured by Post et al. (1991), Palmer (2009), and Swarat et al. (2012).  The item for this 

instrument are available in Appendix A. 

Math Self-Concept. Math self-concept is closely linked to actual math 

performance (Marsh, 1986) and can be measured from the SDQ III (Marsh, 1984).  The 

SDQ III was specifically designed for university-aged students, so while the community 
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college may have a greater age range, the general target population has been addressed 

within the validity research of this instrument.  Items from this instrument are in 

Appendix C. 

Classroom Environment. The RTOP measures interactions that occur in the 

classroom to determine the degree to which the classroom is reformed from teacher to 

student-centered (Lawson et al., 2002, Sawada et al., 2002).  This instrument has content 

validity (Piburn et al., 2000) and when observers are trained, the instrument has high 

reliability (Sawada et al., 2002).  Recently, the RTOP was used to characterize 

introductory geology classrooms. This research was with some of the same classrooms as 

used in this research project (Budd et al., 2013). Since community college students spend 

most of their time on campus in the classroom, the environment the instructor creates 

through his/her pedagogical approach is an important factor in determining how well 

engaged and integrated students may become in the geosciences (Barnett, 2010; Center 

for Community College Student Engagement, 2010). The rubric used for scoring these 

classrooms as developed by Budd et al. (2013) is in Appendix D. 

Intent to persist.  Intent to persist was measured based on student report of 

choosing to take another geology course at the conclusion of their current geology course.  

This is part of the survey from the GARNET project is presented in Appendix A. 

Procedure 

In order to test this model, I used a survey-design mixed with classroom 

observation. Most of these questions were already implemented in the GARNET design, 

the SDQ III added 10 questions (Appendix C) that were implemented into the existing 
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GARNET survey structure for the Spring of 2013.  Institutional Review Board exemption 

status was granted by Arizona State University prior to the collection of the Spring 2013 

data, and had previously been approved at Maricopa Community College District for the 

data collected prior to that date (Appendix E).  

All analyses were quantitative, which means that I should be able to make 

generalizations to a broader population of students in introductory geology courses at 

these types of institutions with statistically significant findings.  Because GARNET has 

the largest collection of student motivation data, at this time, it represents our closest 

approximation of the true population of students in introductory geology classrooms in 

the U.S.   

Characterizing the data. The dataset collected in the spring of 2013 was a 

sample of the larger dataset gathered as part of the GARNET project.  GARNET has 

collected data every fall and spring semester since Fall 2008.  Spring 2013 was the first 

semester to collect math self-concept. In order to leverage the full dataset when math 

self-concept was not a part of the analysis, I did a comparison between the full dataset 

and the spring 2013 subset to assure that the spring 2013 population was representative of 

the larger population dataset.  This larger dataset represents over 4000 students in more 

than 130 different geology sections across the country (Stempien et al., 2013).  Because 

this represents the largest sampling of introductory geology students in any research 

context, much less with motivation and interest data, this larger dataset currently 

represents the best representation of the introductory geology population as a whole in 

the U.S.  
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I did chi-squared tests for the ordinal items of interest and intent for the 

comparison between the spring sample and the GARNET population.  For the continuous 

items of self-efficacy and control of learning beliefs, I ran a t-test.  In an effort to prevent 

an increase in type-1 error, I combined self-efficacy and control of learning beliefs into 

the one variable of expectancy, as advocated by Hilpert et al., 2013.  However, since this 

sample is much smaller than the population dataset, it is inappropriate to run a t-test with 

such large difference in population values (Boos, 2003; McKinnon, 2009), so I ran a 

bootstrap of the full dataset to create 1,000 trial runs of the appropriate population size 

randomly selected from the entire GARNET dataset for the R1 and the CC populations 

each and ran a one-item t-test.  I also compared effect sizes for all analyses, because 

analyses with large sample sizes can result in statistically significant findings, even when 

they are not meaningful, so effect sizes can better reveal an appropriate comparison 

across populations (Cohen, 1969).   

The MSLQ items have been tested for reliability with this population previously 

(Gilbert et al., 2012), but the math self-concept items had not.  As a result, these items 

were analyzed for reliability with the introductory geology students using Cronbach’s 

alpha, which tests the internal consistency of items in a survey instrument (Cronbach, 

1951). 

Since individuals were nested within institutions, I tested the variance within the 

student samples as compared to between classrooms with each institutional type (R1S and 

CCS) to determine if multi-level modeling would be a more appropriate approach to the 

analysis.  In multilevel modeling, instructors would be on one level and students would 
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be on a different level to account for the non-randomness that situates students in 

individual classrooms.  Testing for the variance within the classroom as compared to 

between the classrooms determines where the greater source of variance lies.  If the 

variance was greater within each classroom than between each classroom, multilevel 

modeling would not add much benefit (Hox & Maas, 2001). 

I used a listwise deletion approach to missing data when characterizing the 

population and doing the descriptive statistics, which is to say, I removed students from 

the pre-analysis who had not completed a post-analysis for the CCS and R1S samples.  In 

order to assure that I was not making assumptions about this missing population relative 

to previous GARNET analyses, I calculated the response rate for students who completed 

the pre but not the post, and compared these results to those of the GARNET project data 

as a whole.  Lastly, I analyzed the basic characteristics of the sample data to determine if 

the responses were normally distributed.   

Characterizing the population. I compared the responses from the demographic 

survey (Appendix A) with a chi-squared analysis comparing participants from the R1S to 

the CCS samples in the nominal and ordinal values of age, sex (gender on the survey), 

race/ethnicity, previous science and math courses, reason for choosing the course, and 

choice in majors.  I also compared the responses of expectancy and math self-concept at 

the different institution types using a paired t-test.  Because these scores were based on 

items with more than 5 stem options (7 for expectancy and 8 for math self-concept), it 

was appropriate to use these as continuous variables (Rhemtulla, Brosseau-Liard, & 

Savalei, 2012).  However, because interest and intent have only 4 stem options (e.g., very 
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likely, somewhat likely, somewhat unlikely, very unlikely), I treated them as ordinal 

variables and as a result applied a chi-squared test when comparing these scores. 

In order to determine if the variables of self-efficacy, control of learning beliefs, 

interest, and math self-concept were appropriate measures for predicting intent to persist, 

I initially tested the variables in a bivariate regression. Bivariate regression examines the 

linear relationship between two variables in which they are normalized to represent a 

range of 0-1: no relationship to a perfect correlation, respectively.  There are three major 

assumptions with this analysis: 1) there is no measurement error in any of the individual 

scales, 2) values are independent from each other and represent a random sample from 

the population, and 3) variances are normally distributed across values (Cohen, Cohen, 

West & Aiken, 2003).  For variables that are ordinal, the Spearman rho correlation is 

more appropriate than the Pearson product-moment correlation (Green & Salkind, 2008).   

SPSS software, version 21.0 (IBM, 2012) was used for all of the descriptive 

statistics and general characterizations of the data (e.g., t-tests, chi-squared tests, bivariate 

correlations, and bootstrapping). 

Using Structural Equation Modeling. Multiple regression is a common method 

to analyze the relationship between multiple variables like those in this project. Multiple 

regression allows researchers to determine the correlation between a given outcome 

variable (dependent variable) and multiple independent variables (Cohen et al., 2003).  

However, one of the assumptions in standard multiple regression is that there is no 

measurement error, which in social science research is almost never the case.  Another 

limitation of multiple regression is that there are a limited number of relationships that 
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can be specified between variables (Cohen et al., 2003).  Structural Equation Modeling 

(SEM) is more powerful than a standard multiple regression analysis because it allows 

you to account for 1) measurement error which results in a more reliable measure of 

regression and 2) multiple variables and the relations between those variables (Hoyle, 

2012). 

Structural Equation Modeling is a statistical approach to assessing a hypothesis 

through a series of regression equations such that the relationships can be modeled 

pictorially (Byrne, 2012).  SEM is used to test a series of constructs through a 

theoretically-proposed model using both continuous and discrete variables that allow 

researchers to make predictions (Tabachnick & Fidell, 2001).  

SEM analysis contains two unique models: 1) a measurement model, which tests 

the relationship the data have to each other through a factor analysis; and 2) a structural 

model that allows researchers to make theory-driven claims about the directional 

relationship of the data (Kline, 2012), these directional claims are what allow for 

predictions. So the measurement model tests if relationships exist between the proposed 

constructs in the model and the structural model allows researchers to test if the proposed 

directionality maps onto those constructs.  Figure 4.1 introduces basic terminology 

associated with the measurement model and figure 4.2 introduces the basic terminology 

associated with the structural model. 
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Figure 4.1.  Illustration of the basic structure of a measurement model for SEM. 
 

The latent factors are larger constructs (e.g., self-efficacy) that are informed by a 

series of survey items (or other variables, such as test scores). Manifest (or observed) 

variables are similar to latent construct, but they are represented by only one survey item 

or by a directly observed measure. The arrows in the model that circle back onto a 

variable or factor represent the measurement error for the individual items, or individual 

variance that exists for a given factor.  The single headed arrow from the individual items 

to the constructs represent the factor loadings, which is the amount that each individual 

item contributes to a given construct.  The double-headed curved arrows between the 

factors represents the shared variance, or correlation, between the different factors.  A 

manifest variable can be used in measurement models, but they are items that either have 

only one item to represent a given construct or are a directly observed phenomena.  The 

weakness of a manifest is due to the lack of accounting for measurement error. However, 

because manifest variables can have a shared variance with other factors it is important to 

keep them at the factor level (Byrne, 2012; Hoyle, 2012).  
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Figure 4.2.  Illustration of the basic structure of a structural model for SEM. 
 

In figure 4.2, the structural model has the same elements as the measurement 

model, but there is now a directional path, which minimizes some of the correlations. As 

a result, the structural model is nested within the measurement model.  Nesting measures 

a goodness-of-fit for the structural model.  The goodness-of-fit does not assess the 

directionality of the arrow, because that is theory-based rather than quantitatively 

assessed (Byrne, 2012; Hoyle, 2012). 

The proposed measurement and structural models for this research are presented 

in Figure 4.3 and 4.4.  The predictive variable in the structural model is intent to persist.  

The latent variables are the Math Self-Concept (MSC), Self-Efficacy (SE), Control of 

Learning Beliefs (CLB). Interest is a manifest variable and Classroom Pedagogy (RTOP) 

is measured at the instructor level and is an observed variable, so will be treated 

differently. 
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Figure 4.3. Proposed measurement model for this research project 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4. Proposed structural model for this research project 
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The method for establishing a SEM with a solid foundation is based in many 

decisions.  Some of these decisions are with the data itself prior to analysis, how to best 

analyze the data based on those initial decisions, what type of measurement model to use, 

choosing when to modify the measurement model, and what the a priori structural model 

should be. Figure 4.5 is a flow chart representing the decisions made for this research.  

Some of these decisions were based on the software, all SEM analyses were done using 

MPlus version 7.0 (Muthén & Muthén, 1998-2012). 
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Figure 4.5. A decision map for SEM analysis 
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Data assumptions and decisions. Prior to any measurement or structural analysis 

of the data, it is important for the researcher to be aware of the general characteristics of 

the data.  Measurement decisions are influenced by the normality or non-normality of the 

data, the type of data collected, whether it be continuous variables, ordinal, or nominal 

data, and how to best arrange the data for the structural model in order to make the most 

parsimonious possible model.   

Standard SEM analyses assume all data are multivariate normal.  Data that are 

heavily skewed by a shift in means and/or kurtotic by a shift in variance relationships can 

impact the shape of the normal curve, which then impacts the accurate fit and 

interpretation of the data (DeCarlo, 1997; Byrne, 2012).  When data are not normally 

distributed, there are ways to address this in MPlus software, however, it is important to 

be aware of the degree of normality or non-normality of your data prior to analysis (Yuan 

& Chan, 2005). In addition, ordinal or nominal data are generally not normally 

distributed, and as such will influence the decisions made for the type of analysis.  For 

this project, I did an analysis of the normality of the data prior to any SEM analysis.  In 

addition, both the interest and intent variables were ordinal, and as a result, informed 

some of my chosen methods to employ in MPlus. 

SEM generally requires large sample sizes, 100 at a minimum, and many analyses 

rely on more than 1,000, particularly as models become more complex (Tabachnick & 

Fidell, 2001).  When sample sizes are below 100, the models can become underpowered 

and difficult to determine if the models are appropriate.  The tests to determine if a model 

is appropriate can become skewed and less reliable with smaller sample sizes (Bentler, 
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1990).  The data collected from the Spring 2013 CC sample (CCS) were lower than 

predicted, and thus impacted the choice of estimator. 

Data characteristics are important to know, because they influence the researchers 

decisions with which estimator method to use.  An estimation method informs how the 

model is analyzed, based on how the data are treated.  Which estimation method is 

chosen can influence the quality of the model parameter estimates, their associated 

standard error estimates, and the overall model fit statistics (Lei & Wu, 2012).  An 

estimator essentially determines how well the variance-covariance matrix fits to the 

model of how it should ideally fit through an iterative process.  The most common 

estimator is the Maximum Likelihood estimator (ML), with the assumption that the data 

are multivariate normally distributed and continuous data.  If data are non-normal and/or 

categorical (fewer than 5 categories; Rhemtulla et al., 2012), than the ML estimator is not 

robust and can lead to inflated model fit likelihood and deflated standard error estimates 

(Lei & Wu, 2012). More recently, estimators are available that adjust the ML estimator 

for non-normal data known as an adjusted version of the Satorra-Bentler statistic (Lei & 

Wu, 2012).  For categorical data, the weighted least squares (WLS) takes a different 

approach to estimating the model fit so that it relaxes the asymptotic assumption of the 

data distribution, and as such can be much more robust to model fit, but relies on large 

(>1,000) sample sizes (Lei & Wu, 2012).  In general, ordinal data represent a larger 

spectrum of a construct, but are represented by a smaller range (Byrne, 2012). For 

example, interest in science is represented by an infinite range of possible responses from 

strongly agree to strongly disagree, but in this research it was only represented by four 
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options.  The WLS estimator accounts for this theoretically larger range by calculating 

thresholds and using those thresholds in the place of means in a continuous item 

(Rhemtulla et al., 2012). More recent modifications have allowed for using a smaller 

sample size with a modified version of the WLS, known as the Diagonally Weighted 

Least Squares (DWLS) where it is computationally less intense (Lei & Wu, 2012).  

Depending on which data I was using determined my estimator.  When just analyzing 

data from continuous variables, I used the MLR (ML estimator in MPlus available for 

non-normally distributed continuous data). When analyzing the variables, both 

continuous and ordinal (interest and intent), I used the DWLS estimator in MPlus, 

WLSMV (Muthén & Muthén, 1998-2012).   

Another concern is when data are missing in a larger data set.  There are several 

options for missing data, the most common approach in the social sciences has been 

listwise deletion (Graham & Coffman, 2012).  For example, students who did not 

complete the semester (and/or the post-survey) were not included in an analysis because 

we did not have their post-data.  The problem with listwise deletion, particularly with 

SEM, is that this method removes information that is not missing at random. Because, for 

example, the reasons a student did not complete the course or the survey are probably due 

to specific reasons.  This non-randomness of removal potentially impacts the overall 

score means, the strength of relationships between variables, and may result in estimation 

bias and a loss of statistical power (Graham & Coffman, 2012).  However, where there 

are small sample sizes, listwise deletion may be the best option since other variables rely 

on a large data set to draw inferences about the missing data (Little, 2013).  Multiple 
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imputation (MI) is another approach to handling missing data, where it pulls from the 

data that does exist to estimate a plausible value.  However, it is still based on the idea 

that the data are missing at random, rather than not-at-random (Graham & Coffman, 

2012).  In addition, it requires a large dataset from which to pull other possible variables 

(Little, 2013), if large percentages of a small data set are missing, it may rely too heavily 

on the data that are present, in addition MI can be problematic for ordinal variables 

(Graham & Coffman, 2012).  Lastly, Full-Information Maximum Likelihood (FIML) is 

the most robust way of treating missing data in which there are multiple steps to impute 

the missing data pulling from the full dataset (Graham & Coffman, 2012).  When dealing 

with missing data in this project, most of the analysis was based only on post-results, so 

there was no need for handling missing data as the subjects of focus were those students 

completing the course, and there were no missing data from the Spring 2013 (CCS and 

R1S) post-survey responses. However, in cases within the larger 2008-2013 GARNET 

dataset (CCF and R1F) where there were missing data, I employed the MPlus default for 

handling missing data, which is a form of FIML for the SEM measurement and structural 

analyses. 

When creating a theoretical model for SEM analysis, there are decisions that need 

to be made about how individual items measure larger latent constructs. A researcher can 

accept the default created by the original designers of survey items.  Alternatively, 

parceling is an option if there are similar items that may co-vary. Parceling is the process 

of bundling individual items and taking their average score as a manifest or observed 

variable that informs a larger latent construct.  The benefit of parceling is that it 
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maximizes the reliability, or the common-to-unique factor variance, increases the 

tendency toward multivariate normality, and creates a more parsimonious model (Little, 

Cunningham, Shahar & Widaman, 2002). The disadvantage is that it can increase the 

possibility of Type-I error by capitalizing on chance (Marsh et al., 2013).  However, 

when the larger latent construct is of interest rather than individual items, and when 

parceling is considered carefully with theoretical considerations, it can greatly strengthen 

the overall model fit (Little et al., 2002; Little, Rhemtulla, Gibson & Schoemann, 2013).  

I chose to parcel the self-efficacy (from eight items to four) and math self-concept items 

(from ten items to five). 

Measurement model decisions. Once the data have been analyzed and established 

into a measurement model, the next steps in decision making include how to assure that 

your model is appropriately identified, how to handle comparison of models across 

groups, and whether to employ a confirmatory or exploratory factor analysis with the 

data. 

The identification of a given model is based on the number of correlations within 

the model as compared to the number of parameters, or the number of factor loadings and 

number of factor correlations.  The number of correlations minus the number of 

parameters represents the degrees of freedom.  In order to generate a meaningful 

measurement model, it must be a minimum of a just-identified model, where the number 

of parameters is equal to the number of correlations, and the degrees of freedom are zero.  

In other words, the number of variances and co-variances are equal to the things in the 

model a researcher would like to estimate. Much more meaningful comparisons occur 
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when models are over-identified, or there are leftover degrees of freedom.  Models are 

not possible when they are under-identified. In addition, you must have more than two 

latent constructs predicting one outcome in the final structural model in order to be more 

than just-identified (Byrne, 2012; Hoyle, 2012). 

When comparing different groups, one of the most critical parts of the 

measurement model analysis is to establish multiple group invariance or equivalency in 

response to the items across these groups.  Groups are defined by the researcher, and ones 

that represent different populations that may be expected to respond to survey items 

differently, such as individuals from different countries, different age groups of students, 

or students attending different types of institutions.  Because these groups are 

independent of one another, I need to establish that the data are not invariant across the 

groups (Byrne, 2012).  Jöreskog (1971) was the first to describe this process, by which he 

argued that if groups are invariant, they can be pooled for analysis.  By examining the 

variances and co-variances across the groups, a researcher can determine if participants in 

different groups are responding to questions in a similar manner. This would indicate that 

both groups are interpreting the questions in the same way, thus making the items 

invariant to the groups.  The traditional way to measure invariance is to test at three 

levels of increasing restriction to the model across the groups where configural tests the 

parameters across groups, which are then followed by a weak invariance, testing the 

measurement equivalence and the strong invariance, testing the structural equivalence.  In 

this research, I was particularly interested if I could compare how R1 students responded 

to the survey items as compared to CC students.  As a result, an invariance test was 
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required.  The challenge for this project was that by combining manifest and latent 

variables due to the properties of the data, the traditional measures of group invariance 

were not available to be tested (Byrne, 2012).  As a result, my test for invariance was less 

conservative than the more traditional configural test with follow-ups. I chose to employ 

a test that compared groups invariance through an omnibus goodness-of-fit test, which 

essentially equates to the configural test, but does not allow for follow-up tests (Byrne, 

2008).  However, measurement and structural equivalence were tested across the latent 

variables (SE, CLB, & MSC).   

The last decision prior to doing the factor analysis of a measurement model is 

determining if it will be a Confirmatory Factor Analysis (CFA) or an Exploratory Factor 

Analysis (EFA).  Both factor analyses measure the variance and covariances between 

different measures or indicators.  In a CFA, these variances are restricted to a 

parsimonious, theoretically-driven idea of what should and should not correlate. Whereas 

an EFA is a data-driven decision making process, which allows the researcher to free up 

all the variables and create a more parsimonious model based on the data itself (Brown & 

Moore, 2012). In SEM analysis, the CFA-EFA process can be somewhat fluid, where 

starting with a CFA of pre-defined theoretical constructs can change into an EFA by 

looking at the modification indices in the output from the analysis.  At the measurement 

level, choosing a CFA or EFA is largely based on the goals of the researcher.  If I were 

testing the individual items and whether they mapped onto a given construct, an EFA 

would be the logical process.  The modification indices are what would be the source of 

information from which choices can be made about better fitting models based on 
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variables that share variance with multiple latent constructs and/or other items (Byrne, 

2012). I chose not to employ an EFA approach for my measurement models since the 

self-efficacy, control of learning beliefs, and math self-concept subscales are already well 

supported within the literature, so I used a CFA in which I examined the relationships 

between the constructs.  In fact, using modification indices at the measurement model as 

an EFA could lead to a bad model that would be based on data rather than prior work 

(Byrne, 2012). 

Structural model decisions. The last step in SEM analysis is the actual structural 

analysis.  In this portion of modeling, a model is generated that predicts an outcome, 

which is directionally based.  The analysis measures the loading on the predicted 

outcome by the different predicted measures based on the CFA/EFA measurement model.  

The final decisions for the structural model are how to best compare the best-fitting 

models, which are based on fit indices. 

In SEM, the most traditionally reported fit index is the chi-squared, goodness-of-

fit test.  A chi-squared test determines how well your more parsimonious model fits 

relative to a completely unrestrained model with all parameters varying with one another 

(Bentler, 1990).  Chi-squared tests are highly subject to poor measurement fit when the 

models have large sample sizes or are not multivariate normally distributed.  As a result, 

most models in the social sciences will be underestimated applying a chi-squared test 

because they tend to either violate the multivariate normality assumption or contain large 

sample sizes (Yu, 2002; West, Taylor & Wu, 2012).  As a result, different fit indices 

(both goodness and badness of fit) have emerged.  There are absolute fit indices, such as 
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Standardized Root Mean square Residual (SRMR), which measures the parameters 

relative to the error variances relative to a weight matrix, and has been standardized to a 

0-1 value, in which the closer to 0 the better (a badness of fit).  It is sensitive to N, but 

does not penalize someone for a more complex model or greater number of parameters 

(West et al., 2012).  For non-normally distributed data, particularly with ordinal data, the 

WRMR has the most consistent power with acceptable type I error across all sample sizes 

(Yu, 2002). An example of comparative fit is the Comparative Fit Index (CFI), which is 

robust to non-normality and small sample sizes, but it may be overly conservative with an 

N less than 200 (Bentler, 1990). It is generally encouraged that researchers report the chi-

squared and several selected model fit indices to illustrate the overall fit of a model. 

Table 4.2 represents the indices I used for this project and the generally accepted cut-off 

values.  It should be noted however, that rigorous cut-off values are less appropriate when 

data are non-normally distributed (Yuan & Chan, 2005), so any criteria for cut-offs with a 

non-normally distributed and small data sets must be measured with caution.  

Table 4.2 
 
Fit indices reported in this research with cut-off values and affordances and constraints 
of each. 
 
Fit Index Cutoff Type of Fit Reason for including 

Chi-Square < 0.05 Goodness  Standard practice to report, unreliable with 
smaller sample sizesa 

RMSEA < 0.06 Badness Standard practice to report, tends to over 
reject with smaller sample sizesa,b 

CFI > 0.95-.96 Goodness Least sensitive to N and robust to non-
normalitya, b, c 

WRMR < 0.95-1.0 Badness Appropriate with ordinal data (low type-I 
error for non-normally distributed data)b 

SRMR < 0.08 Badness Appropriate for continuous data, sensitive to 
N, but not to model complexitya 

a West et al., 2012, b Yu, 2002 c Bentler, 1990 
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Ultimately, the fit indices are what are used to make decisions about how well a 

structural model fits the data.  If a model does not fit the data, the researcher can decide 

to stop and end the research, or decide to do a post-hoc analysis using modification 

indices, similar to that mentioned in the measurement model of a CFA analysis moving 

into a an EFA.  The same caution serves the researcher here, such that decisions that are 

still theoretically sound rather than simply relying on the data to inform these decisions. 

While I did not employ an EFA during the measurement model phase, I did choose to 

employ post-hoc analyses of structural models which resulted in some EFA based on the 

reality of the actual data rather than the idealized theoretically proposed model.  

However, all decisions were checked to assure they still met with the original intent of 

the proposed model. 

Finally, when different estimators are used, the traditionally reported chi-squared 

tests may not be as reliable of a comparison.  In this project, with the use of ordinal 

variables, interest and intent to persist, a different estimator was used.  As a result, the 

chi-squared test comparison required a “difftest” result, in which a hypothesis test of 

nested models was used to obtain a reliable chi-squared value (Muthén & Muthén, 1998-

2012).  When comparing the two groups (R1 and CC), I tested the chi-squared tests as a 

modification of the standard test Δchi-squared = [chi-squared1 –chi-squared2], Δdf = [df1-

df2].  Traditionally, in SEM, degrees of freedom are determined by the number of 

parameters in the model, however, in this case, since both models had the same number 

of parameters, it was not possible to obtain a traditional measure of Δdf.  As a result, I 

modified the Δdf test to be = [n1-n2] (a more traditional measure of degrees of freedom in 
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regression analysis; Cohen et al., 2003).  Cutoff criterion for this test were p > 0.05 for 

ΔΧ2 and < 0.01 for ΔCFI (Cheung & Rensvold, 2002), because I was testing the 

hypothesis that there was not a significant difference between these populations.  When 

testing for invariance across the continuous variables only (SE, CLB, & MSC), the 

estimator used was MLR in MPlus, which is treated for non-normally distributed data.  

As a result, Χ2 for each MLR model is reported, but are not reliable to be used for 

goodness-of-fit comparisons.  

Using Structural Equation Modeling to Compare and Contrast Populations. 

In order to determine if there was a significantly positive relationship between geology 

expectancy, interest and students intent to persist in another geology class, I conducted a 

SEM analysis for both the R1F and CCF population.  When analyzing a model with a 

second order model, like expectancy as represented by sub-latent constructs of CLB & 

SE, a minimum of three constructs must be used in order to assure that the model is not 

just identified (Byrne, 2012).  As a result, in this initial analysis, I treated CLB and SE as 

their own latent constructs rather than as a second order expectancy construct.  Further 

analyses determined if expectancy was an appropriate assumption for these SEM models. 

Ideally, the most appropriate analysis for determining the role of instructor in 

student’s intent to persist should be multi-level modeling (MLV) in which instructor 

RTOP score is on one level and the student data are on a different level (Byrne, 2012).  

Some argue that a minimum of 100 instructors would be required to do a MLV analysis 

(Hox & Maas, 2001), but others have argued that stability and reliability can still be 

obtained with numbers closer to 50 (Cheung & Au, 2005). Even at 50, there were not 
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enough instructor RTOP scores for any institution from the entire GARNET population 

to be able to do this analysis.  As a result, I treated the different RTOP groups as ordinal 

variables as student-centered, transitional, and traditional (high to low) as defined by 

Budd et al., 2013.  In order to test this variable, I separated students from different 

classrooms into different models comparing the high RTOP category with the medium 

RTOP category for the community college population and all RTOP categories for the R1 

population.  I only created two categories for the community college population because 

there was only one classroom that fit the low category.  I ran each of the tests as an 

omnibus test similar to how I tested for invariance across groups. If these populations 

were different, they would fail the invariance test. 

Lastly, I examined the role that math self-concept played in these models.  

Initially, I ran a CFA model with the continuous items only (SE, CLB, and MSC) to 

determine if a 2nd order factor of overall geology expectancy was a more appropriate fit 

for the data in either population.  Based on these findings, I ran a final structural model 

using SE, CLB, MSC, and Interest in predicting intent to persist (Intent) for both 

populations (figure 4.4). 

After all models were analyzed, I then tested for mediation and moderation.  

Baron and Kenny (1986) proposed a method to test for mediation and moderation of an 

outcome illustrated in figure 4.6 and 4.7. In mediation, if a variable, such as interest were 

removed from the model, and another variable, such as self-efficacy were to predict 

intent to persist, the original variable (e.g., interest) may serve as a mediator.  A further 

test for this mediation is if those same variables were significantly related in a basic 
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regression. So if self-efficacy were to predict intent to persist when interest was removed, 

but only co-varied with interest when interest was in the model, then it would be likely 

that interest served as a mediator.   

 

 

 

Figure 4.6. Adapted model of mediation from Baron & Kenny (1986) 

In contrast, moderation influences a model in a much more subtle way.  Figure 

4.7 illustrates how moderation might influence variables within this model. 

 

 

 

 

Figure 4.7. Adapted model of moderation from Baron & Kenny (1986) 

 In this case, if both variables self-efficacy and interest predicted intent to persist, 

but there was an interaction that influenced the strength or even the direction of the 

predictor, it may indicate a moderating relationship.  Put another way, a moderating 

variable can impact the strength of an association either through dampening or enhancing 

an effect (Little, 2013). 
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Results 

Characterizing the data 

In order to compare the R1S and CCS sample responses, chi-squared tests 

compared the interest and intent to persist variables. Results are reported in table 5.1.   

 
Table 5.1 
   
Results from Chi-squared tests comparing R1S and CCS to the R1F and CCF. 
 
Variable Institution Χ2 df p Cramér’s V 

Interest R1 54.11 4 < 0.001 0.15 
CC 8.33 4 0.08 0.13 

Intent R1 24.53 4 < 0.001 0.10 
CC 3.61 4 0.46 0.08 

Note: R1S and CCS represent the Spring 2013 GARNET dataset, R1F and CCF represent the full 
GARNET population 
 

Table 5.1 illustrates that while there are statistically significantly differences 

between R1F and R1S, they are not meaningful differences based on the Cramér’s V 

effect size.  Effect sizes less than 0.30 are considered to be small and less than 0.10 are 

inconsequential (Cohen, 1969). The sample sizes of the full GARNET data set for these 

analyses were 2,339 and 454 for the R1F and CCF populations, respectively. After 

bootstrapping the larger population to calculate a t-value and standard deviation for an 

equivalent size population, t-test comparisons revealed minor differences in R1F and R1S 

and no difference between CCF and CCS.  Results reported in table 5.2 illustrate that 

while there were statistically significant differences between R1F and R1S, the differences 

were small as the effect size from Cohen’s d illustrates.  
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Table 5.2.  
 
Results from t-test comparing R1S and CCS with bootstrapped population of R1F and 
CCF. 
 
Institution Sample set N M sd t df p d 

R1 Bootstrap 167 60.91 13.21 3.24 165 0.001 -0.24 Spring 13 166 63.96 12.13 

CC Bootstrap 79 63.38 13.22 -0.27 77 0.79 -0.02 Spring 13 78 63.09 15.06 
Note: R1S and CCS represent the Spring 2013 GARNET sample, R1F and CCF represent the full 
GARNET population 
 

Item reliability tests determined if the math self-concept items could be 

appropriately used with this population.  These resulted in highly reliable Cronbach alpha 

values (α = 0.941; αR1S = 0.946; αCCS = 0.930) which were better than or the same 

reliability as the initially reported results of α = 0.93 (Marsh, 1984).  

Analysis of variance components of the CCS and R1S demonstrated that between 

83.3% and 97.1% of the variability in the expectancy scores was attributable to within 

student variability, as opposed to between institution/classrooms, and that between 93.1% 

and 95.1% of the variability in the math self-concept scores was attributable to within 

student variability, as opposed to between instructors.  In addition, analysis of variance 

components demonstrated that between 98.6% and 99.4% of the variability in the interest 

scores was attributable to within student variability, as opposed to between instructor and 

that between 90.9% and 94.4% of the variability in intent to persist was attributable to 

within student variability, as opposed to between instructor/institution.  All of this 

suggests that multilevel modeling would not provide much benefit.  In addition, as 

reported in Budd et al., 2013, many of these introductory geology classrooms are similar 

in what is happening in these classrooms.  
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In examining the missing data for the CCS and R1S sample, the range of students 

who completed both pre and post tests were 43%-100%.  Other than the lowest 

completion percent (27), this range was well within the general range of responses within 

the entire GARNET data set for 2012-2013 collection year (29-94%, average 71% 

response rate).  One classroom’s data were thrown out from the CCS dataset due to the 

large number of missing post-responses (73%) and the procedure for reminding faculty to 

administer the post-survey was not followed.  As such it seemed to represent an outlier of 

extreme missing data and would likely not be representative of the larger data set, and 

could even possibly skew the results.  In addition, all of the items analyzed for the SEM 

analyses were from post-semester responses only, as a result, this cross-sectional dataset 

prevented the need to handle a large degree of missing data. In SEM analysis, there were 

between 2 and 3 missing data patterns for the R1F population and between 1 and 2 

missing data patterns for the CCF population.   

In examining the descriptive statistics for characterizing the general scores from 

student responses to the categories of expectancy, math self-concept, interest and intent to 

persist, there was a small to moderate negative skew to a number of the items.  Table 5.3 

provides a characterization of the data. The non-normality of these data were not extreme 

(Rhemtulla et al., 2012), but were considered when analyzing the data.  

Table 5.3.  
 
Descriptive statistics of the four major subscales used for this research at each 
institution. 
 
Subscale item Institution type Mean s.d. Skewness Kurtosis 

Interest R1 3.08 0.962 -0.625 -0.783 
CC 2.99 0.845 -0.903 0.647 
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Intent R1 2.46 1.094 0.150 -1.282 
CC 2.37 0.982 0.200 -0.932 

Expectancy R1 63.96 12.13 -0.298 -0.475 
CC 62.92 15.00 -0.627 -0.255 

Math Self-concept R1 50.24 18.38 -0.200 -0.694 
CC 45.08 19.07 -0.101 -1.042 

Note: These data are from the CCS and R1S sample 
 

In comparing the samples of R1S to CCS for measurement invariance when using 

SEM, I conducted an omnibus test comparing chi-squared values and CFI values.  Table 

5.4 reports the values between these two samples.  

Table 5.4 
 
Measurement invariance omnibus test all variables. 
 
Population N Χ2 a df CFI 
R1 166 28.19 4 0.94 
CC 78 25.34 4 0.94 
Note: These tests are based on CFA that included self-efficacy, control of learning beliefs, math 
self-concept, interest and intent to persist variables 
a Χ2 is a report of the difftest result from MPlus software due to use of categorical and continuous 
variables. 
 

Chi-squared difference test (Χ2
R1- Χ2

CC, NR1-NCC) revealed that ΔΧ2 = 2.85, ΔN 

(substituting for df) = 88, p = 1.0.  The ΔCFI values = -0.006, which is within the 

accepted cutoff of 0.01 (Cheung & Rensvold, 2002).  These results allowed me to make 

comparisons across institutional populations in a meaningful and consistent way. 

In testing the continuous variables only, for a full invariance test, I tested for 

configural, weak and strong invariance.  The results are reported in table 5.5.  The test for 

invariance holds across all levels, so the sample of R1S and CCS responses can be 

compared across groups.  While the nested p value for the strong invariance test is less 
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than the 0.05 cutoff, because it is still within the CFI < 0.01, which is a more reliable 

measure for small sample sizes, I found this to be an acceptable measure of invariance. 

Table 5.5 
 
Measurement invariance tests for continuous items  
 
Test Χ2  df nested p CFI ΔCFI 
Configural 200.78 124  0.96  
Weak 214.34 134 0.19 0.96 0.002 
Strong 233.15 144 0.04 0.95 0.005 
Note: Each test is nested within the previous. 
 
Characterizing the population 

In order to characterize and compare R1S sample to the CCS sample, a series of 

chi-squared analyses tested demographic differences.  The first test comparing the 

proportion of sex represented in the sample (gender on the survey) revealed that there 

was no significant difference between the two groups (Pearson Χ2
sex(1, N = 245) = 1.76, p 

= 0.18, Φ = 0.09).  There were 88 men and 79 women in the R1S data set and 34 and 44 

men and women, respectively, in the CCS dataset.  In comparing the proportion of 

different ages, races, and choice of major, there were significant differences between 

these two samples (Pearson Χ2
age(3, N = 245) = 29.55, p < 0.001, Cramérs V = 0.35; 

Pearson Χ2
race-all(8, N = 245) = 44.04, p < 0.001; Pearson Χ2

race-condensed(1, N = 245) = 

30.49, p <0.001, Φ = 0.35; Pearson Χ2
major(3, N = 245) = 18.54, p <0.001, Cramérs V = 

0.28).  Results from these comparisons are visually presented as comparisons in figures 

5.1-5.3.   

Students attending CC were older than those at a R1. The proportion of students 

over the age of 22 in a CC classroom was 0.33 relative to 0.11 for a R1 student.  The 
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probability of a student over the age of 22 attending a CC as 3.0 times as likely than at a 

R1. 

 
Figure 5.1. Students ages represented at both institutions reported as percentages.  CCS 
students are generally older than their R1S counterparts in this study. 
 

Students in an introductory geology classroom at a R1 were more likely (0.43) to 

be a declared a STEM major (Earth Science or any other STEM) than at a CC (0.16).  

The probability of a STEM major in a R1 introductory geology classroom was 2.7 times 

more likely than at a CC.  In addition, CC students were less certain about their major 

overall.  The proportion of undecided majors at a CC was 0.5 versus 0.29 for R1 students 

in introductory geology classrooms.  The probability of an undeclared major at a CC was 

1.7 times more likely than at a R1. 
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Figure 5.2. Students at the community college are more likely to be undeclared or non-
stem relative to their R1 counterparts.  R1 students are more likely to be declared STEM 
majors. 
 

Because race had several occurrences of fewer than 5 cases, I chose to combine 

the non-white race into one category for a more accurate chi-square test.  In that analysis, 

the proportion of nonwhite students at R1’s versus CC’s was 0.14 and 0.46, respectively.  

The probability of a non-white student attending a CC was 3.3 more times as likely 

(0.46/0.14) than at a R1. 
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Figure 5.3. The range of races for participants in this study.  While most of the 
participants are white from both institutions, students from community colleges are more 
likely to be non-white. 
 

Comparisons of the nominal data of previous science and math courses are 

reported in table 5.6 (homogeneity of variance is not assumed due to some of the results 

as skewed and/or kurtotic, table 5.3).  It appears that high school graduation requirements 

assure equal amount of science courses for all students, however, community college 

students had completed a significantly fewer number of math courses entering into 

college, and were more likely to be in one of their first college level science courses. 
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Table 5.6  
 
Comparison of previous science and math courses taken by students enrolled at different 
institutions.   
 
Courses Institution Mean s.d. t p df d 
College 
science 

R1 1.59 1.33 3.89 0.0001 176.5 0.59 CC 0.95 1.13 
High School 
math 

R1 3.64 0.80 2.68 0.008 158.5 0.43 CC 3.36 0.76 
High school 
science 

R1 3.44 1.28 0.55 0.59 130.4 0.096 CC 3.33 1.53 

College math R1 1.65 1.24 -0.50 0.62 150.6 0.081 CC 1.74 1.34 
Note: College science and High school math are statistically significant when applying Holm’s 
Bonferonni test (Holm, 1979). 
 

Comparing reasons students enrolled in their introductory geology courses, the 

overwhelming reason for enrollment for all students was to satisfy a general education 

requirement, which agrees with previous findings (Gilbert et al., 2012). Figure 5.4 

illustrates the responses to each of the different categories.  Students were able to select 

more than one response, so the sums are greater than the total N. Results are reported in 

table 5.7.  The proportion of students who were more likely to enroll as a general 

education requirement at a R1 versus a CC was 0.70 versus 0.84, respectively.  As a 

result, the probability of a CC student enrolling in an introductory geology class due to a 

general education requirement was 1.21 times more likely than a R1 student. In addition, 

the probability that students who anticipated that the class would be easier (than other 

general education requirements) at a R1 than a CC was 1.5 times more likely.  However, 

the proportion of students at a R1 who were enrolling because they were more interested 

was higher at a R1 than at a CC (0.39 versus 0.24, respectively).  As a result, the 

probability of a student interested in the topic was 1.6 times more likely than in a CC 
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classroom.  Both of these results have implications for student motivation and incoming 

expectancies and valuing of the course.  A R1 student had a higher probability of 

capitalizing on social capital by entering in the course based on a recommendation (0.35 

versus 0.19 for a CC student).  The probability of a R1 student receiving a 

recommendation for taking the course was 1.8 times as likely than for a CC student.  

Lastly, it should be noted that students may have misinterpreted the option of “required 

for a major/minor,” when examining the percent responses to choosing the course for a 

general education requirement and required for a major/minor, the total percent adds to 

more than 100% for both the R1 and CC response sets.  Ideally, these two options should 

be an either/or situation, so it should not add to more than 100% responses.  It is possible 

that some students were interpreting a requirement for graduation (general education 

requirements) as part of the requirement for their major. 

 
Figure 5.4.  Reasons students selected to enroll in the course, most students are enrolled 
for general education requirements, but also have other reasons for enrolling. 
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Table 5.7 
 
Reasons for students enrolling in the course.  
 
Reason for 
enrolling 

Institutiona N proportion Χ2 df p ϕ 

General 
Education  

R1 116 0.70 5.77 1 0.02 0.15 CC 66 0.85 
Required for 
Major/Minor 

R1 68 0.41 0.001 1 0.98 -0.002 CC 32 0.41 

Prior Interest R1 64 0.39 5.05 1 0.03 -0.14 CC 19 0.24 

Recommendation R1 58 0.35 6.39 1 0.01 -0.16 CC 15 0.19 

Easier R1 51 0.31 2.87 1 0.09 -0.11 CC 16 0.21 
Human-Env 
Interactions 

R1 42 0.15 3.11 1 0.08 -0.11 CC 12 0.15 

Instructor R1 22 0.13 0.03 1 0.88 0.01 CC 11 0.14 

Other R1 16 0.10 1.46 1 0.23 -0.08 CC 4 0.05 

Do not know R1 4 0.02 1.92 1 0.17 -0.09 CC 0 0.00 
Note: Question and stem options are in Appendix A, students could select multiple options.  
aN for R1 = 165, CC = 78. 
 

In comparing the student responses from different institutions for expectancy, 

math self-concept, interest and intent to persist there were significant differences between 

the CCS and R1S sample (all the results assume non homogeneity of variance based on 

results from table 5.3).  An independent t-test was used to determine if there were 

differences between R1S and CCS responses for expectancy and math self-concept scores. 

There was no difference between the two samples for expectancy scores (texpectancy = 0.53 

(126.01), p = 0.60, d = 0.10), but there was a statistically significant difference in math 

self-concept between these two samples (tmath self-concept = 2.55 (142.50), p = 0.01, d = 

0.43) with a moderate effect size.  A chi-squared test was used to determine if there were 
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differences between the two samples for interest and intent to persist scores.  There was 

no difference in intent to persist (Χ2
intent = 3.81 (df = 3, N = 244), p = 0.28, Cramér’s V = 

0.13, but there was a statistically significant difference in interest scores between the R1S 

and CCS samples (Χ2
interest = 22.79 (df =3, N = 244), p < 0.001, Cramér’s V = 0.31) with a 

moderate effect size.  Based on means and standard deviations for these populations 

(table 5.3), for both interest and math self-concept, the R1 sample had higher scores 

relative to their CC counterparts.   

In order to compare the different items proposed in the structural equation model, 

a bivariate regression analysis was run using Spearman rho for ordinal values and 

Pearson product-moment correlation for values that only involved continuous variables.  

Based on the previous analysis of normality, the assumptions of these analyses were 

violated, however, it is a first pass at determining relationships.  Results are reported in 

table 5.8.  While intent to persist was not directly related to math self-concept in either 

population, it was related to other subscales, and as such merits a more detailed 

examination of how these different scales work together to predict intent to persist. 

 
Table 5.8 
 
Bivariate correlations among items used for SEM analysis with R1a and CCb students (in 
bold) 
 

 Intent to 
Persist Interest 

Control of 
Learning 
Beliefs (CLB) 

Self-
Efficacy 
(SE) 

Math Self-
Concept 
(MSC) 

Intent  --- 0.54*** 0.18 0.34** 0.04 
Interest 0.40*** --- 0.18 0.36** 0.08 
CLB 0.19* 0.25** --- 0.71*** 0.22 
SE 0.28*** 0.48** 0.64*** --- 0.32** 
MSC  0.04 0.20* 0.10 0.27** --- 
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a N = 166 (R1S), b N = 78 (CCS) 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001 
 

SEM Analysis 
Prior to SEM analysis, I initially ran the variables from the CCS and R1S samples 

in a measurement model CFA to examine the relationships of the items and chose to 

parcel the self-efficacy items and the math self-concept items.  I chose theoretically 

logical pairings, and for those that didn’t have an obvious pairing, I chose them based on 

the modification indices, and paired the low with the high (Little et al., 2012).  Table 5.9 

illustrates the pairing and indicates which were parceled based on content and which 

where parceled based on modification indices.   

Table 5.9 

Parceling of subscale items for SEM analysis 

Subscale Statements Parceled item 

Self-Efficacy 

I believe I will receive an excellent grade in 
this class 1 

6 a I expect to do well in this class 
I’m certain I can understand the most difficult 
material presented in readings for this course 2 

4 a I’m confident I can understand the most 
complex material presented by the instructor in 
this course 
I’m confident I can understand the basic 
concepts taught in this course 3 b 

7 I’m certain I can master the skills being taught 
in this class 
I’m confident I can do an excellent job on the 
assignments and test in this course 5 b 

8 Considering the difficulty of this course, the 
teacher, and my skills, I think I will do well in 
this course. 

Math Self-
Concept 

I find that mathematical problems interesting 
and challenging 1 

10 a I have never been very excited about math 
I have hesitated to take courses that involve 2 
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math 3 a 
I have generally done better in math courses 
than other courses 
Math makes me feel inadequate 4 

9 a At school, my friends always come to me for 
help in math 
I am quite good at math 5 

7 a I have always done well in math 
I have trouble understanding anything that is 
based upon math 6 

8 b I never do well on tests that require math 
a parceled based on theoretical similarities, b parceled based on modification indices 

In comparing the relationship between SE, CLB, interest and students intent to 

persist in another geology class, I conducted a SEM using the WLSMV estimator.  

Because this initial analysis did not contain math self-concept as an item, I used the CCF 

and R1F populations.  Figures 5.5 and 5.6 illustrate the models from this analysis for CCF 

and R1F. In all models, variance, co-variances and pathways are all values that are 

significant at p < 0.001 unless otherwise noted.  The initial structural analysis revealed 

that Χ2
difftest = 205.43, df = 2, p = 0.00; N = 536; RMSEA = 0.09 (0.08-0.10); CFI = 0.88; 

WRMR = 0.71. Since these values generally did not meet the cutoff criterion (table 4.2), 

a post hoc analysis revealed a shared error variance between two variables in control of 

learning beliefs increased the overall fit of the model, Χ2
difftest = 253.75, df = 3, p = 0.00; 

N = 536; RMSEA = 0.06 (0.04-0.07); CFI = 0.95; WRMR = 0.50.  Since this model was 

right at the cutoff criteria, I proceeded to share error variance with two items in the self-

efficacy subscale, which was the next recommended change in the modification indices.  

After this last test, the final model produced a strong fit, Χ2
difftest = 206.60, df =2, p = 

0.00; N = 536; RMSEA = 0.04 (0.02-0.06); CFI = 0.98; WRMR = 0.39. 
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Figure 5.5. Structural model for CCF responses predicting intent to persist based on self-
efficacy (SE), control of learning beliefs (CLB) and interest.  
Note: Post hoc analysis additional co-variances are indicated by dashed lines. New values are 
bolded. The gray arrow on intent indicates a fixed construct variance of 1.0, all construct 
variables were fixed at 1.0. 
n.s. = not significant, p values in brackets.  
 

The first model for the R1F population also did not meet the cutoff criterion, 

Χ2
difftest = 988.33, df =2, p = 0.00; N = 2505; RMSEA = 0.09 (0.08-0.09); CFI = 0.89; 

WRMR = 1.35.  As a result, I also did a post-hoc analysis for this model, however, in 

order for the models to be comparable, after examining the modification indices, I chose 

to co-vary the same subscales without creating a secondary model. The final model 
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produced a strong fit, Χ2
difftest = 999.56, df =2, p = 0.00; N = 2505; RMSEA = 0.04 (0.03-

0.04); CFI = 0.98; WRMR = 0.58. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6. Structural model for R1F responses predicting intent to persist based on self-
efficacy (SE), control of learning beliefs (CLB) and interest.  
Note: Post hoc analysis additional co-variances are indicated by dashed lines. New values are 
bolded.  
n.s. = not significant, p value provided in brackets, ** = p < 0.01.  
 

Both of these models, once adjusted for shared error variance within self-efficacy 

and control of learning belief items, predicted intent. Control of learning beliefs did not 
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of intent for the R1 population only.  Interest was the strongest predictor for success with 

both populations, predicting at least 40% of the variance in intent to persist.  

In comparing instructor pedagogy, I compared high vs. medium RTOP categories 

for the CCF population and all categories for the R1F population in omnibus tests similar 

to an invariance test. The results for these analyses are reported in table 5.10. These 

results indicate that there was likely a difference between the RTOP classrooms as the 

ΔΧ2 values did not indicate a difference, but the CFI comparisons do.  Comparing the CC 

classrooms, ΔΧ2 = 17.2, ΔN (substituting for df) = 71, p =1.0, but ΔCFI = -0.08, which 

was not within the accepted cutoff value of 0.01.  Because the ΔΧ2 is less reliable, I 

looked to the ΔCFI for a more reliable measure of comparison across classrooms when 

there was disagreement.  As a result, it appears that there was a difference between these 

two populations.  Similar comparisons existed at the R1F classroom comparisons, where 

ΔΧ2
(high-middle) = -77.65, ΔN = -314, p =1.0, and ΔCFI = 0.08; ΔΧ2

(middle-low) = 111.84, ΔN 

= 252, p =1.0, and ΔCFI = -0.07; and ΔΧ2
(high-low) = 34.19, ΔN = -62, p =0.998, and ΔCFI 

= 0.01.  These results indicated that there were differences between the classrooms, 

although the differences between the high and the low were minimal, since they were 

right at the CFI cutoff value of 0.01.   

 
Table 5.10 
 
Results of CFA comparisons between different RTOP classrooms.   
 
Institution RTOP Χ2 a df N CFI 

R1 
High 469.95 3 686 0.94 
Middle 547.60 3 1000 0.86 
Low 435.76 3 748 0.93 

CC High 153.57 3 286 0.85 
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Middle 136.37 3 215 0.93 
Note: Separation of categories is based on categories established by Budd et al., 2013 where a low 
RTOP represents a traditional classroom (RTOP < 30), middle RTOP represents a transitional 
classroom (RTOP 30-50), and high RTOP represents a student-centered classroom (RTOP > 50). 
a Results are reported as the chi-squared difftest from MPlus due to the WLSMV estimator used 
for categorical variables. 

 
When comparing the SEM models for these different classrooms, a nested chi-

squared comparison revealed that, again, there were differences in these populations.  

However, none of the originally proposed models was a strong predictor of intent to 

persist.  None of the models were within the accepted cut off values, as revealed in table 

5.11.  Post-hoc analysis revealed that when the same items in control in learning beliefs 

and self-efficacy co-varied as from the first models (figures 5.5 and 5.6), these models 

became significant (figures 5.7-5.11).  Figures 5.7 and 5.8 represent the CCF population, 

and figures 5.9-5.11, the R1F population. 

Table 5.11 
 
SEM regression results for different RTOP ranked classrooms in both original analyses 
and post-hoc (ph) results. 
 
Institution RTOP Χ2 a df N RMSEA CFI WRMR 

R1 

High 357.19 3 686 0.08 0.92 0.71 
High ph 282.11 2 686 0.03 0.99 0.39 
Middle 481.55 3 1000 0.10 0.84 1.04 
Middle ph 390.71 2 1000 0.05 0.97 0.52 
Low 382.09 3 748 0.08 0.91 0.71 
Low ph 306.42 2 748 0.03 0.99 0.37 

CC 

High 127.56 3 286 0.10 0.83 0.65 
High ph 100.57 2 286 0.06 0.95 0.39 
Middle 115.30 3 215 0.07 0.92 0.42 
Middle ph 89.75 2 215 0.04 0.98 0.30 

a Results are reported as the chi-squared difftest from MPlus due to the WLSMV estimator used 
for categorical variables. 
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Figure 5.7. SEM for high RTOP CCF classrooms.   
Note: Post hoc analysis additional co-variances are indicated by dashed lines.  New values are 
bolded.  While not indicated on the diagram, construct variance was fixed to 1.0 for all construct 
variables. 
n.s. = not significant, p values in brackets, * = p < 0.5.  
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Figure 5.8. SEM for middle scoring RTOP CCF classrooms.   
Note: Post hoc analysis additional co-variances are indicated by dashed lines.  New values are 
bolded. 
n.s. = not significant, p values in brackets.   
 

For both models at the community college (figures 5.7 & 5.8), interest continued 

to be the only predictor of intent to persist.  However the % of variance that interest 

predicted in intent to persist varied between these two models, where the middle scoring 

RTOP classrooms had a higher percent explained than the high RTOP classrooms. 
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Figure 5.9. SEM model for high scoring RTOP R1F classrooms.   
Note: Post hoc analysis additional co-variances are indicated by dashed lines.  New values are 
bolded. 
n.s. = not significant, p values in brackets, * = p < 0.5, ** = p < 0.01.  
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Figure 5.10. SEM for middle scoring RTOP R1F classrooms.   
Note: Post hoc analysis additional co-variances are indicated by dashed lines.  New values are 
bolded. 
n.s. = not significant, p values in brackets.  
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Figure 5.11. SEM for low scoring RTOP R1F classrooms.   
Note: Post hoc analysis additional co-variances are indicated by dashed lines.  New values are 
bolded. 
n.s. = not significant, p values in brackets.  
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which would indicate that students would need to have a strong interest if they were not 

engaged in the classroom to want to persist.  The one exception, high RTOP classrooms 

at the R1 (figure 5.7), had many different variables that contributed, which lessons the 

impact that interest alone would need to predict.   

In order to determine if CLB, SE, and MSC should be loaded as a second order 

factor of geology expectancy, I ran a CFA with just the continuous variables on their own 

in order to compare to the second order factor model.  Results for R1S and CCS are below 

in table 5.12 and in figures 5.12 and 5.13.  When running the 2nd order factor model, the 

self-efficacy factor loaded with a negative residual variance, which resulted in an 

impossible model. This held consistent even in post-hoc analyses.  As a result, there was 

no evidence that a second order factor model would strengthen the results of the model. 

As a result, in the final model, they were treated as separate latent constructs.  However, 

it should be noted that self-efficacy and control of learning beliefs consistently co-vary to 

a very high degree (ranges from 83-96% in all models analyzed), and as a result, the 

previous assumption for testing t-tests of self-efficacy and control of learning beliefs as a 

greater expectancy construct was appropriate, it is just not possible to test a SEM with 

only two latent constructs on a single second order factor, as the model would be just 

identified which would not change the interpretation of individual models (Byrne, 2012). 

However, the CFA model illustrated a strong fit for these variables. 
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Table 5.12 
 
CFA results for continuous variables of Self-Efficacy, Math Self-Concept and Control of 
Learning Beliefs. 
 
Institution N Χ2 a df p RMSEA CFI SRMR 
R1 166 122.87 62 0.000 0.08 0.95 0.05 
CC 78 91.28 62 0.009 0.08 0.95 0.07 
a Χ2 values are not modified based on non-normality of the data, may not be reliable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.12.  CFA model for CCS sample of just continuous items.   
Note: Unless otherwise noted, all variances and co-variances are p < 0.001  
** p < 0.01, n.s. = not significant, p value in brackets. 
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Figure 5.13.  CFA model for R1S sample of just continuous items.   
Note: Unless otherwise noted, all variances and co-variances are p < 0.001 
 ** = p < 0.01, n.s. = not significant, p value in brackets. 
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include a control of learning aspect to the statements (“I have trouble understanding 

anything that is based upon math” and “I never do well on tests that require math”).  

Because the math self-concept items were only collected in the spring semester, it is 

possible that the CCS model is simply underpowered, as it is right at the CFI cut off 

value, and the RMSEA and WRMR values are within acceptable range.  Because SEM 

analyses are subject to variation based on sample size and normality, it is ultimately up to 

the researcher to determine the acceptability of a model (Byrne, 2012), as such, I think 

that the CCS model with the math self-concept variable included is likely a relatively 

good representation of the student’s intent to persist at community colleges. In comparing 

the two original models of R1S and CCS, the ΔCFI = -0.02, and the ΔΧ2 = 5.9, ΔN = 88, p 

= 1.0, which would indicate that these models are not invariant, which indicates that how 

math self-concept plays a role in these models differs. 

Table 5.13 
 
SEM regression results for the full model of Interest, Self-Efficacy, Math Self-Concept 
and Control of Learning Beliefs in predicting intent to persist. 
 
Institution N Χ2 a df p RMSEA CFI WRMR 
R1 166 17.91 3 0.001 0.05 0.93 0.56 
R1-post hoc 166 14.89 3 0.001 0.03 0.97 0.46 
CC 78 12.01 3 0.007 0.04 0.95 0.41 
a chi-squared test results from “difftest” in MPlus software calculation 
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Figure 5.14. Final SEM for CCS classrooms.   
n.s. = not significant, p values in brackets, * = p < 0.05, ** = p < 0.01.  
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Figure 5.15. Final SEM for R1S classrooms.   
Note: Post hoc analysis additional shared variance is indicated by dashed lines.  New values are 
bolded. 
n.s. = not significant, p values in brackets, * = p < 0.05.  
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and CLB in CC classrooms.  MSC is playing an indirect role in the persistence model, 

albeit one that is not immediately clear. 

Interest was consistently the most reliable predictor of intent to persist in all of the 

models for this research.  This held true even though the variable was a more global 

measure of interest, rather than course specific interest.  Initial regression analysis prior 

to any SEM indicated that self-efficacy significantly predicted intent to persist with both 

samples, and control of learning beliefs predicted intent to persist with the R1S sample 

(table 5.8).  As a result, I tested the role that self-efficacy and control of learning beliefs 

played in predicting intent to persist in each of the SEM models to determine if interest 

was acting as a possible mediator for any of these populations.  Figures 5.16 and 5.17 

illustrate the structural models for CCF and R1F models similar to those from figures 5.5 

and 5.6.  

 
 
 
 
 
 
 
 
 
Figure 5.16. Structural model for CCF with interest removed.  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), ** = p < 0.01, otherwise p < 0.001 
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Figure 5.17. Structural model for R1F with interest removed.  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), otherwise p < 0.001 
 

These figures illustrate that when interest was removed, self-efficacy replaced 

interest as the predicting variable for intent to persist, in both cases, it predicted almost 

the same amount as interest did in the original models (table 5.14).  Both of these models 

were built from the final post-hoc models where self-efficacy and control of learning 

beliefs shared error variance.  The fit indices for both of these models still indicates a 

good fit, where the CCF model was Χ2
difftest = 139.53, df = 1, p = 0.000, RMSEA = 0.04, 

CFI = 0.98, WRMR = 0.34 and the R1F model was Χ2
difftest = 681.60, df = 1, p = 0.000, 

RMSEA = 0.04, CFI = 0.98, WRMR = 0.61. 

Table 5.14 

SEM results when interest variable was removed from original models 

 
 

 

 

The story becomes a bit more complex when the role of instructor is considered as 

a function of RTOP.  Re-examining these models when interest is removed reveals a 

Institution % interest predicted 
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What predicts when interest 
was removed 
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CCF 45% Self-Efficacy 45% 
R1F 40% Self-Efficacy 44% 
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slightly more nuanced result, however, in general, self-efficacy tends to replace the role 

of interest (figures 5.18 and 5.19 for CCF structural models and 5.20-5.22 for R1F 

structural models). 

 

 

 

 

 
Figure 5.18. Structural model for CCF with interest removed in high RTOP classrooms  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), otherwise p < 0.001 
 

 

 

 

 

Figure 5.19. Structural model for CCF with interest removed in middle RTOP classrooms  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), otherwise p < 0.001 
 

 

 

 

 

 
Figure 5.20. Structural model for R1F with interest removed in high RTOP classrooms  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), * = p < 0.05, otherwise p < 0.001 
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Figure 5.21. Structural model for R1F with interest removed in middle RTOP classrooms  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), ** = p < 0.01, otherwise p < 0.001 
 

 

 

 

 

 
Figure 5.22. Structural model for R1F with interest removed in low RTOP classrooms  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, Intent = Intent to persist 
n.s. = not significant (p value in brackets), ** p < 0.01, otherwise p < 0.001 
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With the R1F classrooms, the predictors are more consistent with previous results, Self-

efficacy and negative control of learning beliefs continues to predict interest, with an 

increased weight to each individual variable, and self-efficacy replaces predicting interest 

in the R1F middle and low RTOP classrooms with fairly consistent levels of replaced % 

variance explained (table 5.15). 

Intent 

SE 

CLB 

.42** 

-.10n.s. [.47] 

.89 

.26** 

.002n.s. [.98] 

.86 Intent 

SE 

CLB 



	
  

	
   84 

Table 5.15 

SEM results when interest was removed from RTOP classroom models 

 

As with the other interest-removed models, the fit indices indicated a strong fit for 

each of these models (table 5.16). 

Table 5.16 
 
SEM regression results for different RTOP ranked classrooms where interest was 
removed. 
 
Institution RTOP Χ2 a df N RMSEA CFI WRMR 

R1F 
High 189.55 1 686 0.04 0.98 0.38 
Middle 271.64 1 1000 0.05 0.97 0.50 
Low 208.76 1 748 0.04 0.98 0.40 

CCF High 65.27 1 286 0.06 0.95 0.36 
Middle 62.58 1 215 0.03 0.99 0.25 

Note: all fit indices were based on post-hoc models from original models prior to interest removal 
where self-efficacy and control of learning beliefs shared error variance. 
a Results are reported as the chi-squared difftest from MPlus due to the WLSMV estimator used 
for categorical variables. 
 

In the final model, when interest was removed, self-efficacy again becomes the 

consistent predictor that replaces interest in predicting intent to persist.  Figures 5.23 and 

5.24 illustrate these new structural models for CCS and R1S, respectively.  Table 5.17 

compares the original model predictor of interest to the new models. 

 

RTOP scale Institution % Interest 
predicted  

What predicts intent 
after interest is removed % predicted 

High  CCF 38 Self-Efficacy 57 
Middle  CCF 37 Nothing -- 

High  R1F 51 Self-Efficacy, Control of 
Learning 

70, -25 
(respectively) 

Middle  R1F 37 Self-Efficacy 26 
Low  R1F 41 Self-Efficacy 42 
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Figure 5.23. Final structural model for CCS with interest removed  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, MSC = Math Self-Concept, Intent 
= Intent to persist 
n.s. = not significant (p value in brackets), ** p < 0.01, otherwise p < 0.001 
 

 

 

 

 

 

 

 
Figure 5.23. Final structural model for R1S with interest removed  
Note: SE = Self-Efficacy, CLB = Control of Learning Beliefs, MSC = Math Self-Concept, Intent 
= Intent to persist 
n.s. = not significant (p value in brackets), * p < 0.05, otherwise p < 0.001 
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= 0.008, RMSEA = 0.04, CFI = 0.94, WRMR = 0.42. The post-hoc interest-removed 

model for the R1S sample was a good fit, Χ2
difftest = 10.98, df = 2, p = 0.004, RMSEA = 

0.03, CFI = 0.98, WRMR = 0.46. 

Table 5.17 

SEM results when interest was removed from the final model 

 

 

 

All of the interest-removed models indicate a relationship between self-efficacy 

and interest.  In some cases, self-efficacy replaces the role of interest in an almost exact 

amount of variance.  In other cases, there is more or less variance explained by self-

efficacy than was by interest alone.  As a result, this may be an indication of possible 

moderating relationships taking place within these models. 

 

Discussion 

The results from this research reveal several possible implications for community 

college students, and students in introductory geology classrooms in general.  In 

particular, are the impacts that an instructor may play a role in student interest and the 

possible implications for student persistence in the geosciences.   

In this research, I was examining the role that self-efficacy, control of learning 

beliefs, interest and in some cases, math self-concept played in predicting a student’s 

intent to persist in taking another geology course.  For this study, self-efficacy, as 

Institution % Interest 
predicted 

What predicts intent once 
interest is removed  % predicted 

CC 52 Self-Efficacy 65 
R1 37 Self-Efficacy 34 
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measured on the MSLQ as a student’s self-evaluation of how well they expect to do in 

their geology course.  Control of learning beliefs also measured by the MSLQ as a 

measure of a student’s perception of how well they are in control of their grade and their 

ability to learn the geology content.  Because these measures were from the last third of 

the semester, it is likely to be a more accurate gauge of these measures than their 

incoming scores because they had been able to calibrate their expectations to the actual 

classroom experience (Zusho et al., 2003). The combination of self-efficacy and control 

of learning beliefs was operationalized as expectancy within portions of this research 

(Appendix B).  Math self-concept was measured from the SDQ III as a measure of a 

more global aspect of how students feel about their ability to do math and their 

preference for doing so (Appendix C).  Interest and intent to persist were both measured 

with individual items from the GARNET demographic survey (Appendix A). 

Differences between Community College and University Students 

There were measureable differences between community college students (CCS) and 

university students (R1S) both demographically and affectively.  Students enrolled in 

introductory geology classes at the community college were more diverse, older, had 

fewer STEM majors (including the geosciences), more undeclared majors, had less 

incoming interest, but also fewer expectations of the course as an easy course.  In 

addition, CCS students had fewer prior math courses and were more likely to be in their 

first college-level science course.  Many of these findings support national trends in 

which CC students are more diverse and older, and may lack the prior experiences to be 
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able to gauge what to expect from a college level course (NCES, 2001; NSF, 2009; 

AACC, 2012).  

In addition to demographic differences, there were also measureable differences 

between CCS and R1S students with regards to math self-concept and interest.  R1S 

students were leaving geology classrooms with a higher math self-concept and a greater 

interest in science.  These findings were consistent with the demographic measures.  If 

R1S students have had more math courses prior to entering the introductory science 

courses, it is likely their math self-concept will be higher.  In addition, since more R1S 

students entered the course with interest, it is likely that there will be more leaving the 

course interested.  However, these differences have not been documented in the literature 

prior to this research.  

Lastly I hypothesized that there would also be differences between CC and R1 

students with regards to intent to persist and expectancy for success in the course, and 

these differences were not found to be true.  These results counter previous findings of 

students in other STEM disciplines at the community college.  For example, student self-

efficacy in introductory engineering classrooms were found to be lower in community 

college classrooms than in R1 institutions (Baker, Wood, Corkins & Krause, 2012). If 

interest and math self-concept were lower with community college students, but intent to 

persist was not, this may indicate that even with lowered interest, CC students may be 

willing to consider taking another geology course.  

With both samples, the negative skew in intent to persist indicated that there were 

fewer numbers of students reporting continuing on to take another geology class.  This 
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was an unfortunate result, because our greatest chance of capturing students is not in the 

first course they take, but in subsequent courses.  Wilson’s recent report on geoscience 

graduates indicated that the second year of coursework was the highest likelihood of 

when students decide to become geology majors (Wilson, 2013).  This would mean that 

the chances of capturing geology majors in the introductory geology courses is low, but if 

they choose to take more geology courses, their likelihood of becoming a major 

increases. 

Role of Expectancy and Interest in Predicting Intent to Persist 

 There was a significantly positive relationship between expectancy, interest and 

intent to persist with both CCF and R1F populations.  In the CCF population, interest was 

the only direct predictor, predicting 45% of the variance in intent to persist.  Both self-

efficacy and control of learning beliefs (expectancy) played an indirect role in this model 

as they significantly co-varied with interest, but were not direct predictors of intent to 

persist.  Within the R1F population, both interest and self-efficacy predicted intent to 

persist, explaining 56% of the variance.  Again, while control of learning beliefs did not 

directly predict intent, it did significantly co-vary with both interest and self-efficacy. 

 Interest was measured as a global measure of interest, rather than specifically 

identifying a type of situational or individual interest as described by Hidi and Renninger 

(2006) or even as a subject specific measure.  And yet, in this research, it was the most 

consistent predictor of intent.  It predicted 45% of the variance in intent to persist with 

the CCF population and 40% in the R1F population.  This finding is consistent with what 

Harackiewicz and colleagues (2000) found with introductory psychology students.  
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Students who were most likely to take another psychology course were those who had the 

greatest interest.   

Role of the Instructor 

In this research, the Reformed Teaching Observation Protocol (RTOP) was used 

to measure the instructor pedagogy as classified by the degree to which they created an 

environment that allowed for students to interact with each other as much as with the 

instructor (Appendix D).  Due to limitations in the number of classrooms involved in this 

project, the RTOP was broken down into three different categories based on the degree of 

student interactivity.  From this process, it became clear that that the degree of student 

interactivity in the classroom played a role in predicting student intent to persist, 

however, the relationships were nuanced and complex.  Table 6.1 breaks down the 

relationships with the different classrooms.   

Table 6.1 

Predictors of intent to persist in different RTOP classrooms 

Institution RTOP ranking a Direct predictors of intent % predicting intent 

CCF High Interest 38 
Medium Interest 57 

R1F 
High Interest, Self-Efficacy, 

Control of Learning Beliefs 
51, 41, -20 
(respectively) 

Medium Interest 37 
Low Interest 41 

a Rankings based on recommendations by Budd et al., 2013. 

In all of these models, other than the high RTOP classrooms at the R1F, the results 

were consistent with the previous models where interest was the only direct predictor of 

intent to persist. Ignoring the high RTOP R1F classroom, a general trend of increasing 

level of interest as a predictor of intent to persist becomes apparent.  This trend may 
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indicate that instructors were supporting students in other ways not measured in this 

model that helped to predict intent to persist in classrooms where there was greater 

interaction between both classmates and the instructor.  Classrooms that were more 

instructor-centered, students needed to maintain their interest in order to persist in taking 

another geology course, as a result, interest played a larger role in predicting intent to 

persist. 

In the high RTOP R1F classroom, the relationship became much more complex.  

Self-efficacy and interest both positively predicted intent to persist and control of 

learning beliefs negatively predicted intent to persist.  This indicates that students who 

had a high self-efficacy were almost as likely to persist as those with high interest.  The 

fact that a decline in control of learning beliefs positively predicted intent to persist is a 

bit concerning.  This indicated that as students had less control over their own learning, 

the more likely they were to take another geology course.  This may have some negative 

consequences for long term persistence with majors. If students think they are simply 

good at doing geology, rather than thinking that they have worked hard to become 

proficient, when faced with future challenges, could result in a decline in persistence.   

With all of these models, there was a clear indication that instructor played a role 

in a student’s intent to persist.  This is in contrast to the initial calculation that there was 

greater variance between students within a classroom than between different classrooms.  

However, because classrooms within a given RTOP range were taught in similar ways 

(Budd et al., 2013), this discrepancy may be as a result of the commonalities within 

certain RTOP ranges. 
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While the findings may not reveal what other factors in the classroom may 

contribute to supporting students intent to persist, previous work has illustrated other 

benefits from more student-centered classrooms. Students are more likely to learn in 

student-centered classrooms, this has been demonstrated in work like that of Hake’s 

seminal work in Physics college classrooms (Hake, 1998). In addition, Zusho et al., 

(2003) demonstrated that in general, student self-efficacy declined through the course of 

the semester in other introductory science courses, but students with a high self-efficacy, 

were more likely to perform better in the course.  Our recent GARNET findings have 

confirmed these same results of increased learning gains and high self-efficacy predicting 

performance with introductory geoscience courses. In addition, we have found that 

student-centered classrooms were more likely to minimize the need for expectancy (as 

measured by self-efficacy and control of learning beliefs) to predict performance and 

learning (van der Hoeven Kraft et al., 2013).  Highly student-centered classrooms help 

support student learning, support their self-efficacy, and based on my research may also 

minimize the role that interest is needed to persist.   

Role of Math Self-Concept in Expectancy for Success 

 Expectancy has been measured in this research as combining self-efficacy and 

control of learning beliefs, however in SEM analysis, creating a second-order factor of 

expectancy from two sub-constructs does not contribute to the interpretation of the 

model.  This is because at a local level within the model, expectancy would be just-

identified and as such, limits model interpretations (Byrne, 2012).  However, I 

hypothesized that the expectancy factor would include math self-concept for the R1S 
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population and not for the CCS population, as I predicted that math self-concept would 

play a greater role on it’s own with the CCS population due to their higher need for 

developmental courses.  However, when I added math self-concept to self-efficacy and 

control of learning beliefs as contributors to a larger second order construct of expectancy 

the model fell apart for both R1S and CCS populations.  As a result, math self-concept 

was a more powerful predictor as it’s own variable than it was as a larger expectancy 

construct.  With that being said, these variables as separate latent constructs still created a 

strong measurement model where math self-concept and self-efficacy shared variance, 

but control of learning beliefs only shared variance with self-efficacy.   

 These findings are consistent that self-efficacy and self-concept measure similar 

constructs, but are distinctly different measures.  Bong and Clark (1999) argued that self-

concept is a reflective way of viewing ones self and self-efficacy is a predictive future 

path.  In my research, the consistent high level of covariance of self-efficacy and control 

of learning beliefs supports previous work that expectancy is an appropriate larger 

second-order construct encompassing self-efficacy and control of learning beliefs 

(Hilpert et al., 2013).  

Role of Math Self Concept in Predicting Intent to Persist 

 By adding math self-concept to the predictive model, I had hypothesized that not 

only would it increase the strength of predicting the model in predicting intent to persist, 

but that it would also be different in the pathways of how it predicted between R1S and 

CCS populations. Math self-concept did not play a significant role in predicting intent to 

persist in either model.  However, the models that included math self-concept were 
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significantly different from one another in how math self-concept interacted with other 

variables in the model.  The complexities of interactions within each model indicated that 

the more parsimonious model without math self-concept may be missing some important 

variables, and that there are other possible variables that should be considered in 

predicting persistence.  Table 6.2 illustrates the ways that the models vary with the newly 

added variable of math self-concept. 

Table 6.2 

Relationships in SEM models with Math Self-Concept 

Institution % of intent predicted by 
interest 

What co-varies with math 
self-concept 

CCS 52 Control of Learning Beliefs, 
Self-Efficacy  

R1S 37 Interest, Self-Efficacy 
 

 In the CCS model, a high degree of interest was required when predicting intent to 

persist with the math self-concept variable added into the model.  In addition, math self-

concept co-varied with self-efficacy and control of learning beliefs, but not with interest.  

In contrast, the R1S model indicated that interest played less of a role in predicting intent 

to persist and math self-concept co-varied with interest and self-efficacy.  So while both 

models were predictive of intent to persist, and math self-concept did not play a role in 

directly predicting intent to persist, how it interacted with the different variables did 

differ between different types of institutions. In particular, when interest was removed 

from the model, self-efficacy predicted a much higher amount of variance than interest 

did.  These results suggest that math self-concept may have played a moderating role in 
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interest in science and self-efficacy for the community college population, but not for the 

R1 population.   

 The relationships between math self-concept, self-efficacy and interest are not 

clear based on these models, however, a math self-concept role of moderation has 

implications for the likelihood of community college student persistence in the 

geosciences.  In particular, if students at a community college lack the cultural capital of 

access to prior math courses, it may increase the challenges students face in overcoming 

the hurdle of persisting.  This is not to say that CC students have a lowered likelihood of 

persisting because they are CC students, rather the students who are more likely to attend 

a CC are those who lack the background content which may impact their responses to 

math self-concept.  Previous research has indicated that math self-efficacy was mediated 

by math self-concept (Miller & Pajares, 1994).  Because the measures in this research 

were geology self-efficacy and math self-concept, there may not be as direct of a 

relationship, but these latent interactions may be influencing the outcome of interest on 

intent to persist.  

Interest as a Possible Mediator 

Interest was consistently the most reliable predictor of intent to persist in all of the 

models for this research.  This held true even though the variable was a more global 

measure of interest, rather than course specific interest.  When interest was removed from 

the different models, self-efficacy most consistently replaced the role of interest in 

predicting intent to persist.  This indicates that for those students who had a high self-

efficacy, must also be interested in the subject in order to persist in the discipline.  In 
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cases where self-efficacy predicted the same amount that interest predicted, it would 

indicate that self-efficacy was mediated by interest.  However, for those classrooms 

where self-efficacy did not predict the same amount as interest could that in addition to 

mediation, another variable is moderated by interest.   

The original framework posed for the model in this research was applying the 

Expectancy x Value theory (Wigfield & Eccles, 2000) in which I had predicted that both 

expectancy (as measured by self-efficacy and control of learning beliefs, and possibly 

math self-concept) and value (as measured by interest) would collectively predict intent 

to persist.  It appears that this model may not be the most appropriate framework for this 

research.  If interest was serving as a mediator, this more strongly supports Hidi & 

Renninger’s work (2006, 2010) in which they argue that other variables may be mediated 

by interest. This is supported in other research where the relationship between self-

efficacy and interest has been examined. Brown and Lent (1996) described how faulty 

efficacy perceptions influenced ones interest and career choices. These perceptions would 

prevent someone from pursuing a career path of interest because they did not perceive 

themselves capable. Gehlbach et al. (2008) found that interest in a subject was mediated 

by a declining self-efficacy.  Which meant that as student’s self-efficacy declined through 

the course of the semester, they were more likely to become interested in the subject.  

While initially this may seem counter-intuitive, they proposed that if the classroom 

activities were more closely matched to challenging a student at an optimal level (Locke 

& Latham, 2002), then interest would be promoted. This would indicate the importance 
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of student-centered instruction where students are forced to confront their own 

understanding of the content as they collaborate with classmates in negotiating content. 

The exceptions to this model of mediation were how instructor may have played a 

role in student intent to persist.  For example, in the high RTOP CCF classroom, self-

efficacy predicted more than just interest, 38% of intent to persist was predicted by 

interest, but 57% of intent to persist was predicted by self-efficacy when interest was 

removed.  In the high RTOP R1F classrooms, self-efficacy already predicted intent to 

persist independent of interest, but it loaded more strongly once interest was removed.  

This may indicate that classrooms that are more student-centered are creating an 

environment where student’s self-efficacy is strongly supported and they are sufficiently 

challenged to support their interest in the subject. In other words, students self-efficacy is 

mediated by interest and moderating by classroom student-interactions.  On the other 

extreme, in middle RTOP CCF classrooms, when interest was removed, the model was no 

longer predictive of interest.  This would indicate that the only factor that predicts intent 

to persist is interest, and once removed, students have no intent to persist in the 

geosciences.  The more avenues we can create for students to persist in the geosciences, 

the higher the probability of increasing retention over time.  As Harakiewicz and her 

colleagues (2000, 2008) found with their research, the more classes a student takes in a 

given subject, the more likely that interest is to become internalized.   

Limitations of the Study 

Ideally, for SEM analysis, there should be 200 of each groupings of students (for 

both R1 and CC) minimum, in order to assure enough power (Tabachnick & Fidell, 
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2001). In collecting data for the MSC items, there was only data for 78 students in the 

community college setting.  As a result, the ability to make broader generalizations may 

be limited.  However, since the data set were part of the larger GARNET data set, and the 

bootstrapping indicated that the Spring 2013 dataset was statistically similar in other 

responses to the larger dataset, particularly for the CC population, I feel confident that the 

final model in this analysis was likely close to representing the larger population, 

however, it may be underpowered as a result of the smaller Spring 2013 sample size. 

In addition, there are other factors that may be playing a role in determining 

STEM choices including Future Time Perspective (Husman & Lens, 1999) and values, 

particularly utility value (Hulleman & Harackiewicz, 2009; Packard, Tuladhar & Lee, 

2013) which were not measured in this project in the interest of assuring a tightly 

constrained project where I did not overburden students with too many different survey 

items. In addition, all of these methods were based on quantitative data, as a result, the 

reasons for these responses are left unanswered.  This type of question would require a 

qualitative approach, and is something currently under investigation by others within the 

GARNET project (Lukes, 2013). 

This methodology was highly dependent on self-report.  While commonly 

targeted as problematic since it is based on the perception of the individual and not 

necessarily reality, self-reports commonly reported as less reliable measures.  However, 

research consistently demonstrates that self-reports are highly predictive of behavior and 

are not biased when in a low-stakes setting (Ross, 1996; Chan, 2009).  To avoid concerns 
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of stereotype threat when answering questions about math and science, all demographic 

questions occurred after the survey itself (Steele, 1997).   

The measure of intent to persist is not the same as actual persistence.  In 

particular, CC students face tremendous obstacles in persisting based on course 

preparation, job, family, and finances (Nunez & Cuccaro-Alamin, 1998; NCES, 2001; 

Parsad & Lewis, 2004; Horn & Nevill, 2006; AACC, 2012).  With that being said, 

Barnett (2011) initially measured student’s intent to persist in her research with 

community college students, but followed with a measure of actual persistence at the 

institutional level rather than the class level and found there to be a moderate correlation 

of 0.47.  Because her measure of persistence was at the institutional level rather than at 

the class level, she did not include students who were enrolled in other institutions rather 

than the community college where she conducted her research.  Previous research on 

intent to persist versus actual persistence with the community college population, also at 

the institutional level, indicated a high predictive correlation of 66% and higher 

depending on what other variables were considered for interaction (Voorhees, 1987). 

Another important limitation was the data itself.  While each response was nested 

within each classroom and each campus, it was treated as a larger data set in order to 

make a meaningful comparison across populations. While analysis of variance of within 

versus between classroom variance indicated that multilevel modeling was not needed for 

the individual classrooms, the RTOP analysis was underpowered as a result of making it 

an ordinal value rather than continuous variables at a higher level.  Becuase there were 
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instructor effects when applying the RTOP model indicates a need to re-visit the 

multilevel modeling approach. 

While there is not a lot of agreement on how to best measure interest, a global 

measure of interest in science is not the strongest way to predict interest as it does not 

determine whether this measure is one that is situational or individual (Hidi & Renninger, 

2006).  So while interest was a strong predictor of intent to persist in this model, it was 

difficult to discern where and when that interest developed and how stable it was. 

Lastly, there were limitations with examining students choosing to enroll in 

another geology class because there may be more than one reason for persisting.  For 

example, some schools have programs where they continue in a block of two classes for 

completing their science credits.  Other schools may have limited courses in options for 

additional geology courses as available on campus.  Although, it should be noted that this 

was about measuring the student’s intent, not necessarily what options actually existed 

for the student.   

 

Next Steps & Implications 

The importance of this research is because it helps add to the literature on what 

factors predicting persistence in the introductory science courses, in particular, the 

geosciences.  While this is only one course, the ability for students to persist from one 

class to the next is the first step.  As determined by Harackiewicz et al. (2000), the more 

courses a student enrolls in a given topic, the more likely s/he is to take another future 

course.   
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Because math self-concept played an indirect relationship to intent to persist, it is 

possible that there were other variables or better predicting variables that may help 

predict intent to persist than the ones presented in these models.  While it is generally the 

goal to make as parsimonious of a model as possible, it is also best to find a model that 

explains the phenomena as accurately as possible (Byrne, 2012).  Further research in 

examining intent to persist may include self-regulatory components (e.g., metacognition 

and effort regulation), performance and learning gains, and geology self-concept (as a 

global measure rather than a class-specific focused self-efficacy).  Carlone & Johnson 

(2007) argued that a science identity was critical for the success of women of color in 

persisting in STEM fields, and as such, this may be an important variable to measure and 

consider, particularly for the URM’s in science.  Lastly, all of these data should be 

tracked and analyzed longitudinally.  In particular, Maxwell & Cole (2007) argue that 

mediation can not be measured in cross-sectional data, so in order to test the mediation 

model, it should be tested over time.  Demographic and background experiences that 

students bring to the classroom including race, sex, and background knowledge would 

also merit further investigation, while these are factors that instructors can not control, 

they can inform models of that may help to determine best practices for all students. 

Even though there were differences across the populations and models in this 

research, a consistent theme was that the environment created by the instructor did make 

a difference in a student’s intent to persist.  So while R1 and CC students were different 

demographically and in background experiences, a key recommendation would be to 

implement a greater emphasis on student-centered instruction if institutions are serious 
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about increasing majors in STEM (at least for the geosciences).  This recommendation is 

in line with both the President’s Council of Advisors on Science and Technology 

(Holdren & Lander, 2012) and Graham and colleagues (Graham, Frederick, Byars-

Winston, Hunter & Handelsman, 2013) in which the argument is made that if we do not 

improve instruction at the introductory science level in colleges and universities, we will 

not be able to increase the number of STEM majors for the purposes of creating a larger 

STEM workforce.  

With that being said, while RTOP served as a good proxy for student-centered 

instruction in the classroom, it did not capture the intricacies of what was said in the 

classroom.  The fact that the high RTOP CCF classroom did not have similar results to 

the high RTOP R1F classroom may be due to what was specifically discussed in these 

classrooms and how that may impact students at community colleges, more so than at R1 

universities.  Recent work by Packard and others (Packard et al., 2013) found that the 

more STEM community college faculty used class time to discuss the transfer process to 

a four-year institution, the more likely students were to be successful at transferring to a 

four-year institution in STEM.  This could extend to the persistence within a discipline, if 

faculty encourage students to consider more coursework in the geosciences and are 

transparent about the transfer pathways, it is possible that this dialogue could play a role 

in student persistence in the geology pathway.  In particular, Packard and other (2013) 

identify the advice provided during class time as addressing a utility value for students.  

Utility value was not measured in this research, but could provide insight into how much 
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students valued the content within the course and even what the instructor discussed that 

may not have been course specific (for example, transfer pathways).   

The consistent shared co-variance between the control of learning belief items 2 

& 4 and the combined variables of self-efficacy of 16 and 58 (Appendix B and table 5.9), 

would indicate that something within these variables is interpreted differently from how 

the original authors intended.  While there are no perfect models, the reasons for this 

consistent variance may warrant further investigation. 

Because the CCS sample was underpowered due to the small sample size, I hope 

to compare these results with a new set of participants in the GARNET population in the 

future to see if the models still holds true and consistent across semesters. 

Lastly, while intent to persist for one semester is a start to measuring the greater 

persistence model, this research should be extended to a larger longitudinal analysis.  

What is the relationship between intent to persist and actual persistence with regards to 

self-efficacy and interest? What role does math self-concept play in choosing to become a 

major?  Are there instructional settings that predict persistence for more than one 

semester? Are there certain programs that are doing a better job and supporting student’s 

persistence and what is different within those institutions versus those who are not?  

There are many questions that can build toward supporting a stronger model in 

determining how to best support student persistence in the geosciences and ultimately 

STEM as a whole. While following students from a community college poses its 

challenges, if we are serious about our commitment to increasing a more diverse STEM 

workforce (NRC & NAE, 2012), we need to determine what factors lead to success and 
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what aspects institutions and faculty can play a role in supporting students for that 

success. The work in this research is a small step down a long and important path. 
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After completing the MSLQ survey, students will then be asked the following questions 

on a separate page: 

 

Pre survey (response stems are in parentheses): 

• Age (17 or younger, 18-19, 20-21, 22-25, >25) 

• Gender (Male, Female) 

• Race/Ethnicity (Non-Hispanic White, Hispanic of Any Race, Black or African 

American, American Indian or Alaskan Native, Asian, Native Hawaiian or Other 

Pacific Islander, Some Other Race, Two or More Races, Unknown) 

• Field of Declared Major (Geology/Earth Science, Other Natural Science, 

Engineering, Technology, Math, Arts, Humanities, Social Science, Open 

Option/Undeclared) 

• If Changing Major, to what area? (Not Changing Major, Geology/Earth Science, 

Other Natural Science, Engineering, Technology, Math, Arts, Humanities, Social 

Science, Open Option/Undeclared) 

• In general, how interested in science are you? (Very interested, Somewhat 

interested, Not very interested, Not interested at all) 

• How likely is it that you will major in a natural science (i.e., physics, chemistry, 

biology, geology, etc)? (I have already declared a natural science as a major, Very 

likely I will switch to a natural science, Somewhat likely, Not very likely, 

Definitely not) 
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• In a class like this, which of the following teaching methods are most effective in 

helping you learn the material and your instructor’s expectations? (Formal lecture 

(instructor delivering information using chalkboard, overhead, and/or laptop), 

Instructor-led class discussions, conversation, and/or collective class review, 

Students working together in groups and/or student led discussions, Other) 

• Number of Full Academic Year High School Math and Science Courses 

Completed: 

o Full-Year High School Earth Science Courses: (0, 1, 2, 3 or more) 

o Other Full-Year Natural Science High School Courses (0, 1, 2, 3 or more) 

o Full-Year School Math Courses (0, 1, 2, 3, 4 or more) 

• Number of Full Term (Semester or Quarter) College Math and Natural Science 

Courses Completed (Prior to the present semester or term): 

o Term-Length College Geology Courses (0, 1, 2, 3 or more) 

o Other College-Level Term-Length Natural Science Courses (e.g., 

Astronomy, Biology, Chemistry, Meteorology, Physics, Physiology): (0, 

1, 2, 3 or more) 

o College Math Courses: (0, 1, 2, 3, 4 or more) 

• Reasons for Enrolling in This Class (Please check all that apply): (Satisfy a 

General Education Requirement, Required for Major or Minor, Easier than other 

Science Classes, Prior Interest in the Subject, Interest in Human/Environment 

Interactions, Reputation of Instructor(s), Recommendation of Friend or Advisor, 

Other Specific Reason, Don’t Know) 
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Post Test Items (Response stems in parentheses) 

• Did you take a lab (either optional or required) in conjunction with this class? 

(Yes, No) 

• In general, how interested in science area you? (Very interested, Somewhat 

interested, Not very interested, Not interested at all) 

• Do you plan to take another geology class after this one? (Very likely, Somewhat 

likely, Not very likely, Definitely not) 

• How likely is it that you will major in a natural science (i.e., physics, chemistry, 

biology, geology, etc)? (Very likely (or have already declared a natural science as 

a major), Somewhat likely, Not very likely, Definitely not) 

• In a class like this, which of the following teaching methods are most effective in 

helping you learn the material and your instructor’s expectations? (Formal lecture 

(instructor delivering information using chalkboard, overhead, and/or laptop), 

Instructor-led class discussions, conversation, and/or collective class review, 

Students working together in groups and/or student led discussions, Other). 
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APPENDIX B 

MOTIVATED STRATEGIES FOR LEARNING QUESTIONNAIRE (MSLQ) ITEMS 
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Determine how each of these statements is 1 = not at all like me to 7 = very much like 

me. 

Control of Learning Belief Items 

1. If I study in appropriate ways, then I will be able to learn the material in this 

course. 

2. It is my own fault if I don’t learn the material in this course. 

3. If I try hard enough, then I will understand the course material. 

4. If I don’t understand the course material, it is because I didn’t try hard enough. 

Self-Efficacy Items 

5. I believe I will receive an excellent grade in this class. 

6. I’m certain I can understand the most difficult material presented in the readings 

for this course. 

7. I’m confident I can understand the basic concepts taught in this course. 

8. I’m confidence I can understand the most complex material presented by the 

instructor in this course. 

9. I’m confident I can do an excellent job on the assignments and tests in this course. 

10. I expect to do well in this class. 

11. I’m certain I can master the skills being taught in this class. 

12. Considering the difficultly of this course, the teacher, and my skills, I think I will 

do well in this course. 
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APPENDIX C 

MATH SELF-CONCEPT ITEMS 
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Math Self-Concept items: 

Please determine how much you agree or disagree with the following statements about 

your feelings toward math in general.  1 = definitely false and 8 = definitely true 

 

1. I find many mathematical problems interesting and challenging 

2. I have hesitated to take courses that involve mathematics* 

3. I have generally done better in mathematics courses than other courses. 

4. Mathematics makes me feel inadequate* 

5. I am quite good at mathematics 

6. I have trouble understanding anything that is based upon mathematics* 

7. I have always done well in mathematics classes 

8. I never do well on tests that require mathematical reasoning* 

9. At school, my friends always came to me for help in mathematics 

10. I have never been very excited about mathematics* 

 

* = negative items 
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APPENDIX D 

REFORMED TEACHING OBSERVATION PROTOCOL (RTOP) SCALE 
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Lesson Design and Implementation (What Teacher Intended to Do) 
1) Instructional strategies and activities respected students’ prior knowledge and the preconceptions 
inherent therein (what’s happened before this class) 

Never occurred 
 

0 

Lesson is designed 
to inform students 
what they already 

know 
 

1 

Lesson is designed 
to assess student’s 
prior knowledge 
based on student 
input, but not to 

adjust. 
2 

Lesson is designed 
to use prior 

knowledge to build 
on and add value 
to content already 

provided 
3 

Lesson is 
designed to 

activate student 
prior knowledge 

(before any 
content delivery), 

and introduce 
content based on 
that input (and 

adjust if needed) 
4 

Comments:  
 
2) The lesson was designed to engage students as members of a learning community 

No evidence 
 

0 

Lesson has limited 
opportunities to 
engage students. 

(e.g., some 
clickers, rhetorical 

questions with 
shout out 

opportunities, 
clarification 
questions) 

1 

Lesson is designed 
for continual 
interaction 

between teacher 
and students 

2 

Lesson is designed 
to include both 

extensive teacher-
student and 

student-student 
interactions 

3 

Lesson was 
designed for 
students to 
negotiate 

meaning of 
content primarily 
through student-

student 
interaction 

4 

Comments:  
 
3) In this lesson, student exploration preceded formal presentation (students asked to think or do prior to 
content introduction) 

No exploration 
occurred 

0 

Lesson starts with 
an abstract 
exploration 

opportunity (e.g., 
what do you think 

about…) 
1 

Lesson designed 
with an initial, 

short exploration 
opportunity 
(students do 
something) 

2 

Lesson is designed 
to engage students 

in an active 
exploration 
experience 

3 

Major focus of 
the lesson is for 

students to spend 
time exploring, in 

detail. 
4 

Comments: 
 
4) This lesson encouraged students to seek and value alternative modes of investigation or of problem 
solving (questions have more than one right possible answer) 

No alternative 
modes explored 

0 

Lesson designed 
for instructor to 
ask divergent 

questions 
1 

Lesson designed 
for students to ask 

divergent 
questions, but not 

investigate 
2 

Lesson designed 
for students to 

engage in 
alternative modes 
of investigation, 

but without 
subsequent 
discussion 

3 

Lesson designed 
for students to 

engage in 
alternative modes 

and a clear 
discussion of 

these alternatives 
occurs 

4 
Comments:  
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5) The focus and direction of the lesson was often determined by ideas originating with students (is there a 
clear plan to incorporate student ideas?) 
Lesson is entirely 
instructor directed 

0 

Lesson plan 
accommodates 

instructor pausing 
for student 

questions and 
ideas 

1 

Lesson plan call 
for student 

generated ideas  
2 

Lesson plan 
designed for 

adjustments based 
on student input.   

3 

Lesson plan is 
entirely student 
directed, with 

content guided by 
instructor, but has 

allowances for 
different ideas, 
and questions 

4 
Comments:  
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Content: Propositional Knowledge (What the Teacher knows, and how well they are able to organize and 
present material in a learner-oriented setting) 
6) The lesson involved fundamental concepts of the subject (Is content concept-oriented?) 

No clear focus, 
just a series of 
random facts 

0 

A suggestion of 
concepts, but not 

obvious and 
mostly facts 
rather than 

overall concepts 
1 

Concept taught, but 
not necessarily 

within a conceptual 
framework.  Topic 
is bogged down in 

term definitions 
2 

Concepts are 
presented within a 

conceptual 
framework, but 

still contains 
miscellaneous 
details/facts 

and/or tangents 
3 

Instructor ties 
concepts to 
conceptual 
framework 
without any 
tangential 

material that 
potentially 
confounds 

4 
Comments:  
 
7) The lesson promoted strongly coherent conceptual understanding (Presented in a logical and clear 
fashion—how it’s presented; does the lesson make sense, general flow) 

Not presented in 
any logical 

manner, lacks 
clarity and no 
connections 

between material 
0 

Lesson is disjointed 
and not 

consistently 
focused on the 

concepts 
1 

Lesson is may be 
clear and/or 
logical but 
relation of 
content to 

concepts is very 
inconsistent (or 

vice versa) 
2 

Lesson is 
predominantly 
presented in a 

clear and logical 
fashion, but 

relation of content 
to concepts is not 
always obvious 

3 

Lesson is 
presented in a 
clear & logical 

manner, relation 
of content to 

concepts is clear 
throughout and it 

flows from 
beginning to end. 

4 
Comments:  
 
8) The teacher had a solid grasp of the subject matter content inherent in the lesson 

Teacher had no 
clear 

understanding of 
content 

0 

Teacher has some 
of the 

fundamentals, but 
lesson is still 

wrought with errors 
1 

Mistakes are 
common, but 

fundamentals are 
sound 

2 

May have minor 
mistakes, overall 
accurate delivery 

3 

No mistakes, all 
information 
presented is 

accurate.   
4 

Comments:  
 
9) Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was 
important to do so (variety of media and whether it improves the lesson) 

Only text/facts 
with no alternate 

delivery 
0 

Teacher uses some 
diagrams/images in 

addition to text, 
and does not 

explain them at all 
1 

Teacher uses a 
variety of media 
throughout the 

lesson, but does 
not explain them 
in a manner than 

supports/develops 
the content 

2 

Teacher uses a 
variety of media 
throughout the 

lesson, and 
occasionally 

explains them in a 
manner that 

supports/develops 
the content 

3 

Variety of 
representation 
were used to 

build the lesson 
and used to 

support/develop 
the content. 

4 

Comments:  
 
10) Connections with other content disciplines and/or real world phenomena were explored and valued 
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No connection to 
anything beyond a 

list of facts 
0 

Some connection to 
real world made in 

passing, but 
generally abstract 
or not helpful for 

content 
comprehension 

1 

Teacher makes a 
deliberate effort 

to connect to real 
world/ other 

disciplines, but 
teacher does all 

the talking 
2 

Teacher makes a 
deliberate effort to 
make connections 

to real world/ 
other disciplines, 

by promoting 
student thinking 

3 

Teacher sets up 
concept, makes 

initial 
connections and 

then, asks 
students to 

explore. 
4 

Comments:  
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Content: Procedural Knowledge (What students did) 
11) Students used a variety of means (models, drawings, graphs, symbols, concrete materials, 
manipulatives, etc.) to represent phenomena (quantity and time with materials) 

Students are not 
asked to do 

anything 
0 

Students are asked 
to represent or 

interpret 
phenomena using 

just one means 
through the course 

of the class 
1 

More than 2 
different media are 
employed to assist 
student learning 

2 

Students 
manipulate more 
than 2 media at 
least 25% of the 

class time 
3 

In any given 
moment during 

the class, 
students are 
more likely 

working with a 
variety of media 
than listening (to 

instructor or 
other students) 

4 
Comments:  
 
12) Students made predictions, estimations, and/or hypotheses and devised means for testing them 

No opportunities 
for any predictions 

(students 
explaining what 

happened, does not 
mean predicting) 

0 

Teacher may ask 
class to predict as a 
whole, but doesn’t 
wait for a response 
(first shout out, no 

wait time).  No 
means for testing. 

1 

Teacher may ask 
students to predict 
and wait for input 
(class as a whole 
or as pairs, etc).  
No means for 

testing. 
2 

Students discuss 
predictions.  Means 
for testing is highly 

prescribed. 
3 

Students guide 
questioning and 

can predict 
before explore a 

means for 
testing 

predictions. 
4 

Comments:  
 
13) Students were actively engaged in thought-provoking activity that often involved the critical 
assessment of procedures (quality) 

Students 
completely passive 

0 

Students engage in 
simple activities 
that are factually 
based (i.e., term 

recall, summarizing 
content) 

1 

Student activity 
requires some 

form of 
application (i.e., 

apply content to a 
new situation) 

2 

Student activity 
requires an analysis 
of a situation (i.e., 

compare and 
contrast competing 

ideas) 
3 

Student activity 
requires critical 

evaluation of 
content.  
Students 
negotiate 

meaning of 
content and may 
synthesize into 
something new. 

4 
Comments:  
 
14) Students were reflective about their learning (what do you think, and how do you know?) 

No reflection 
0 

Students may ask 
questions that 

indicates a thinking 
that goes beyond 

immediate content 
(trying to make 

intentional 
connections) 

1 

Teacher sets up 
opportunities for 
students to reflect 

(what do you 
think…), but 

doesn’t follow 
through with how 
this helped their 

connection to 
learning  

Students provided 
time to reflect on 

what they’ve 
learned. Some 

limited connections 
to their learning 

occur, but not a lot 
of follow through. 

3 

Students have 
specific 

opportunities to 
determine what 
they’ve learned, 
asked to make 
connections to 
their learning 

and processed as 
a class. 
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2 4 
Comments:  
 
15) Intellectual rigor, constructive criticism, and the challenging of ideas were valued (negotiating 
meaning/ debating ideas) 
Students were not 

asked to 
demonstrate rigor, 
offer criticisms, or 

challenge ideas 
0 

At least once the 
students respond 
(perhaps by shout 
out”) to teacher’s 
queries regarding 
alternate ideas, 

alternative 
reasoning, 
alternative 

interpretations. 
1 

Students 
participate in a 
teacher directed 

whole-class 
discussion 

(debate) involving 
one or more of the 

following: a 
variety of ideas, 

alternative 
interpretations, or 
alternative lines of 

reasoning. 
2 

Students engaged in 
a teacher-guided 

but student driven 
discussion (debate) 

involving one or 
more of the 

following: a variety 
of ideas, alternative 
interpretations, or 
alternative lines of 

reasoning 
3 

Students debate 
ideas (in small 
group settings) 

through a 
negotiation of 
meaning that 

results in 
deliberate use of 

evidence/ 
arguments to 

support claims. 
4 

Comments:  
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Classroom Culture: Communicative Interactions (Student-Student Interaction) 
16) Students were involved in the communication of their ideas to others using a variety of means and 
media (variety of types and scales of delivery) 

No student 
communication 

0 

At least one type of 
student-student 
communication 

(i.e., brainstorming, 
drawing pictures to 

convey ideas, 
mathematically) 

1 

Either more than 
one type of 

student-student 
communication, 

but not at a variety 
of scales (i.e., 

pairs, small group, 
group to group, 
whole class) or 

vice versa 
2 

Multiple types of 
student-student 
interactions, at 

multiple scales, but 
not at all scales of 

potential interaction 
3 

Focus of the 
class is based on 
student-student 

interactions 
through a 
variety of 
interactive 

scales and types 
(typically 
includes a 

whole class 
processing) 

4 
Comments:  
 
17) The teacher’s questions triggered divergent modes of thinking (by students) 

No divergent 
modes 

0 

Students listen to 
teacher present an 
example of  more 

than one answer or 
interpretation, but 
student thinking 

limited to 
individual questions 
about the material. 

1 

Students interact in 
response to 

teacher-framed 
question(s) that 
has/have more 

than one answer or 
interpretation, but 
the directions ask 

for just one “right” 
response 

2 

Students work on 
problems that may 
have more than one 

solution, but not 
obvious that this is 

the goal 
3 

Opportunities 
provided for 

students to ask 
divergent 

questions of 
each other and 
encouraged to 

pursue 
alternative 
solutions 

4 
Comments:  
 
18) There was a high proportion of student talk and a significant amount of it occurred between and 
among students (quantity of interactions) 
No student-student 

talk 
0 

Students talk to 
each other at least 
once (about lesson 

content) 
1 

Student-student 
talk occurs at least 

10% of the time 
during the course 

of the class 
2 

Student-student talk 
occurs more than 
25% of the time 

during the course of 
the class 

3 

In any given 
moment during 

the lesson, 
students are 

more likely to 
be talking to 

each other than 
the teacher 

(>50% student 
to student) 

4 
Comments:  
 
19) Student questions and comments often determined the focus and direction of classroom discourse 
(quality of student interactions) 

No student input 
0 

Student 
conversations are 

short and limited to 
“the answer,” no 

Student 
conversations are 

brief but do 
involve some 

Student 
conversations are in 
depth examinations 

of a problem 

Student 
conversations 
are detailed, 
multi-faceted 
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negotiation of 
meaning 

1 

negotiation of 
meaning 

2 

3 examinations of 
recent and 
previously 

learned content 
that is student 

directed 
4 

Comments:  
 
20) There was a climate of respect for what others had to say  

No ideas beyond 
instructor are 

heard 
0 

Student-student 
interactions occur, 

but they are not 
needed  

1 

Some student-
student 

interactions 
include voicing of 

ideas, opinions, 
and are well 

received and assist 
in the conversation 

2 

Most student-
student interactions 
involve talking and 

listening to one 
another and the 

ideas are heard and 
considered/ needed 

3 

Every voice is 
equitably heard, 
respected, and 

valued. Student 
talk is critical 
for success. 

4 

Comments:  
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Classroom Culture: Student/Teacher Relationships 
21) Active participation of students was encouraged and valued 
Entirely instructor 

directed, no 
student questions 

0 

Some student 
questions, may be 
opportunities to 

“shout out” ideas 
1 

Some student 
questions/ input 
are encouraged, 

and they appear to 
shift the direction 

of the lesson 
2 

Many students 
engaged some of the 

time in valuable 
conversations that 

leads to class 
discussions that 

appears to shift the 
direction 

3 

All students are 
actively 

engaged in 
meaningful 

conversation 
that guides the 
direction of the 

lesson from 
beginning to the 

end. 
4 

Comments: 
 
22) Students were encouraged to generate conjectures, (or) alternative solutions, and/or different ways of 
interpreting evidence 

Instructor may 
present 

interpretations, 
conjectures, etc., 
but asks students 

to do nothing 
0 

At least one time, 
students were 

asked to consider 
an alternate 

solution, make a 
conjecture, or 

interpret evidence 
in more than one 

way. 
1 

Teacher-student 
interactions lead 

students through a 
very directed 
format that 

considers alternate 
solutions, and/or 

conjectures and/or 
evidence 

2 

Teacher-student 
interactions 

facilitate students 
through a flexible 

format that 
considers alternate 
solutions, and/or 

conjectures, and/or 
evidence 

3 

Whole lesson is 
dedicated to 

students 
discussing, 

exploring and 
critiquing/ 

considering 
alternate 

solutions, and/or 
different ways of 

interpreting 
evidence, with 

minimal teacher 
guidance 

4 
Comments: 
 
23) In general the teacher was patient with the students (mostly about wait time) 
No opportunity to 
assess or teacher 

was not patient (no 
wait time, answers 

own questions). 
Unwanted 
behavior is 

tolerated/ ignored 
0 

There is a bit of 
wait time after 

asking a question, 
instructor avoids 
answering his/her 
own questions.  Or 

instructor works 
with student(s) to 
clarify their vague 

question 
1 

Clear wait time 
(waiting for 

multiple student 
thoughts, waiting 

for all students 
have a chance to 

consider the 
question; not just 

taking the first 
raised hand or 
“shout out”). 

2 

Providing some 
time for student-

student interaction 
(still on task), but 

may not be enough 
time for all to 
achieve goals. 

3 

Instructor 
provides 

adequate time for 
meaningful 

conversations to 
occur between 

students (enough 
time to achieve 

goal) 
4 

Comments 
 
24) The teacher acted as a resource person, working to support and enhance student investigations 
(activity beyond answering a question) 
No investigations 

(activity that 
Very teacher 

directed, limited 
Primarily directed 

by teacher with 
Students have 
freedom, but 

Students are 
actively engaged 
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engages students 
to apply content 
through problem 

solving) 
0 

student 
investigation, very 

rote 
1 

occasional 
opportunities for 
students to guide 

the direction 
2 

within confines of 
teacher directed 

boundaries 
3 

in their own 
learning process, 

students 
determine what 

and how, teacher 
is available to 

help when needed 
4 

Comments: 
 
25) The metaphor “teacher as listener” was very characteristic of this classroom 

Teacher was the 
only “talker” 

0 

At least once, 
teacher listened, 

and acknowledged 
or validated an 
idea presented. 

1 

Teacher is 
listening 

throughout (from 
beginning to end), 
but doesn’t act on 

any ideas (but does 
acknowledge) 

2 

Teacher listens 
from beginning to 
end of lesson, but 

doesn’t necessarily 
act on ideas 
throughout 

3 

Teacher listens 
and acts on what 

students are 
saying from the 
beginning to the 
end of the lesson 

(from gaining 
prior knowledge 

all the way to 
assessing student 
understanding). 

4 
Comments: 
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APPENDIX E 

HUMAN SUBJECTS APPROVAL FROM MARICOPA COUNTY COMMUNITY 

COLLEGE DISTRICT AND ARIZONA STATE UNIVERSITY 
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MCCCD - 
IR

B

DATE: January 13, 2012
TO: Kraft, Katrien, Geosciences

Wilson, Merry, Geosciences, Matheney, Ronald
FROM: MCCCD Institutional Review Board
PROTOCOL TITLE: Geoscience Affective Research NETwork (GARNET) 2
FUNDING SOURCE: National Science Foundation
PROTOCOL NUMBER: 2010-08-053
FORM TYPE: AMENDMENT
REVIEW TYPE: EXEMPT

Dear Principal Investigator,

The MCCCD IRB reviewed your protocol and determined the activities outlined do constitute human subjects research according to the Code of Federal Regulations, Title
45, Part 46.

The determination given to your protocol is shown above under Review Type.

You may initiate your project.

If your protocol has been ruled as exempt, it is not necessary to return for an annual review. If you decide to make any changes to your project design which might result
in the loss of your exempt status, you must seek IRB approval prior to continuing by submitting a modification form.
If your protocol has been determined to be expedited or full board review, you must submit a continuing review form prior to the expiration date shown above. If you
make any changes to your project design, please submit a modification form prior to continuing.

We appreciate your cooperation in complying with the federal guidelines that protect human research subjects. We wish you success in your project.

Cordially,
MCCCD IRB

Maricopa County Community College District
2411 West 14th Street

Tempe AZ, 85281
TEL: (480) 731-8701
FAX: (480) 731 8282

Page: 1
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To: Jenefer Husman
EDB

From: Mark Roosa, Chair
Soc Beh IRB

Date: 05/01/2013

Committee Action: Exemption Granted

IRB Action Date: 05/01/2013

IRB Protocol #: 1304009127

Study Title: Geoscience Affective Research Network (GARNET)

The above-referenced protocol is considered exempt after review by the Institutional Review Board pursuant to
Federal regulations, 45 CFR Part 46.101(b)(1) (2) .

This part of the federal regulations requires that the information be recorded by investigators in such a manner that
subjects cannot be identified, directly or through identifiers linked to the subjects. It is necessary that the information
obtained not be such that if disclosed outside the research, it could reasonably place the subjects at risk of criminal or
civil liability, or be damaging to the subjects' financial standing, employability, or reputation.

You should retain a copy of this letter for your records.


