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ABSTRACT  
   

Species distribution modeling is used to study changes in biodiversity and species range 

shifts, two currently well-known manifestations of climate change. The focus of this study is to 

explore how distributions of suitable habitat might shift under climate change for shrub 

communities within the Santa Monica Mountains National Recreation Area (SMMNRA), through a 

comparison of community level to individual species level distribution modeling.  Species level 

modeling is more commonly utilized, in part because community level modeling requires detailed 

community composition data that are not always available. However, community level modeling 

may better detect patterns in biodiversity.  To examine the projected impact on suitable habitat in 

the study area, I used the MaxEnt modeling algorithm to create and evaluate species distribution 

models with presence only data for two future climate models at community and individual 

species levels.  I contrasted the outcomes as a method to describe uncertainty in projected 

models. To derive a range of sensitivity outcomes I extracted probability frequency distributions 

for suitable habitat from raster grids for communities modeled directly as species groups and 

contrasted those with communities assembled from intersected individual species models.  The 

intersected species models were more sensitive to climate change relative to the grouped 

community models.  Suitable habitat in SMMNRA’s bounds was projected to decline from about 

30-90% for the intersected models and about 20-80% for the grouped models from its current 

state.  Models generally captured floristic distinction between community types as drought 

tolerance.  Overall the impact on drought tolerant communities, growing in hotter, drier habitat 

such as Coastal Sage Scrub, was predicted to be less than on communities growing in cooler, 

moister more interior habitat, such as some chaparral types.  Of the two future climate change 

models, the wetter model projected less impact for most communities.  These results help define 

risk exposure for communities and species in this conservation area and could be used by 

managers to focus vegetation monitoring tasks to detect early response to climate change.  

Increasingly hot and dry conditions could motivate opportunistic restoration projects for Coastal 

Sage Scrub, a threatened vegetation type in Southern California.    
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INTRODUCTION 

 Species distribution modeling (SDM) is used to study changes in biodiversity and species 

range shifts (Franklin, 2010; Guisan and Thuiller, 2005; Guisan and Zimmerman; 2000), two 

currently well-known manifestations of climate change (Chen et al. 2011; Thomas et al. 2010; 

Kelly and Goulden, 2008; Parmesan and Yohe, 2003; Shafer et al. 2001; Iverson and Prasad, 

1998). The focus of this study is to explore how the distributions of suitable habitat might shift 

regionally under climate change for shrub communities within the Santa Monica Mountains 

National Recreation Area, through a comparison of community level to individual species level 

distribution modeling.   SDM under climate change uses correlative models to project realized 

niches into potentially non-analogue climate space but the precision of such forecasts cannot be 

determined (Pearson & Dawson, 2003).  A search for congruence in results through varying 

approaches is one way to explore and describe the uncertainty arising from these projections.   

The central premise of species distribution modeling is that environmental requirements 

for a species can be derived from its observed distribution.  In general, species distribution 

models (SDMs) statistically correlate biological survey data with environmental variables as 

predictors, and then map potentially suitable habitat in geographic space as a function of those 

environmental variables (Franklin, 2010; Pearson and Dawson, 2003), capturing the response to 

those variables that is inherent in a species’ spatial distribution.   Species level modeling is more 

commonly utilized, in part because community level modeling may require detailed community 

composition data that are not always available. 

  However, community level modeling can be used to derive patterns in community 

biodiversity that may not be possible through species level modeling (Ferrier and Guisan, 2006).   

Community models correlate a set of environmental variables to the observed distribution of all 

the community members simultaneously, rather than limiting this association to a single species, 

pooling the data from differing locations to detect shared patterns (Ferrier and Guisan, 2006).  

The advantage of the community approach is that response is embodied within a strong collective 

signal that might otherwise be missed if modeling at the individual species level (Elith et al. 2006), 

and it circumvents the need to combine individual species models (Mokany et al. 2011).   Recent 
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studies suggest that further exploration into community modeling is warranted (Chapman and 

Purse, 2011; Baselga and Araújo 2010; Riordan and Rundel, 2009; Wisz et al. 2008; Elith and 

Leathwick, 2007; Elith et al. 2006; Hernandez et al. 2006; Rehfeldt et al. 2006).   Individual and 

community level approaches can be complementary because they differ in their limitations 

(Dubuis et al. 2011) and theoretical underpinnings (Guisan and Rahbek, 2011), making a 

comparison useful.   
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LITERATURE REVIEW 

Climate Change As a Threat To Biodiversity 

 One of the greatest threats to Earth’s biodiversity today is climate change (Thomas et al. 

2004; Root et al. 2003; McCarty, 2001).  Climate provides the physical template for plant 

distribution (Brown, 1995) and denotes a particular suite of influences that creates pattern in the 

spatial variation of vegetation (Box, 1996; Holdridge, 1947).  It is expected that under climate 

change suitable habitat will shift (Thomas et al. 2004), and that plants will compensate by 

similarly shifting geographic distributions as the primary way to escape intolerable environmental 

changes (Huntley, 1991).   

Climate change may affect not only the distribution of suitable habitat but also the 

composition of plant biodiversity as individual species shift their ranges, promoting reorganization 

in their communities (Walther, 2010).  Landscape fragmentation is a compounding threat (Thuiller 

et al. 2005; Davis and Shaw, 2001; Shafer et al. 2001), and could impede community 

reorganization under climate change, where species may not enjoy the freedom of movement 

that historically enabled tracking of favorable climate through dispersal.  Small-ranged species 

are vulnerable to extinction due to habitat loss, including habitat loss due to climate change 

(Pimm and Raven, 2000).  This may particularly impact chaparral species in SMMNRA, where 

dispersal distances for many chaparral species is short (Keeley and Davis, 2007; Syphard et al. 

2006).   

 Conservation Planning In a Nationally Significant Biodiversity Hotspot  

The Santa Monica Mountains National Recreation Area (SMMNRA), an administrative 

unit of the National Park Service (NPS), is the world’s largest urban park and comprises 

approximately 62,000 hectares within a Mediterranean-type ecosystem (MTE).  The SMMNRA 

encompasses the largest expanse of mainland MTE in the national park system, extending 74 

kilometers along an east-west direction, from Point Mugu in Ventura County to Griffith Park in Los 

Angeles County (NPS, FAQs).  Its bounds lie entirely within the California Floristic Province 

(CFP) (Figure 1), an exceptionally diverse phytogeographic region of 29,380,400 hectares that 
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covers most of California.  Nearly 40% of the plant species found within the CFP are endemic 

(Stebbins and Major, 1965).   

The CFP, and SMMNRA inclusively, is targeted for conservation priority as a Biodiversity 

Hotspot.  Biodiversity Hotspots feature endemic species, possessing more than 1.5% of global 

plant diversity uniquely within their bounds, and have lost more than 70% of their original habitat 

(Myers et al. 2000).  Occurring in one of the world’s five regions comprising MTE, SMMNRA 

represents a vulnerable region of biodiversity, where more than 1,000 plant species provide 

habitat for approximately 500 mammal, bird, reptile, and amphibian species (NPS, n.d.). 

Given that globally, MTEs are thought to be sensitive to all global climate change drivers 

(Sala et al. 2000), climate change is likely to impact both the extent and diversity of plant 

communities in SMMNRA.  In California, climate change is projected to induce shifts in vegetation 

types, including shrublands (Lenihan et al. 2008; Kelly and Goulden 2008).  Within mountainous 

MTEs, thermophilic and sclerophyllous species in particular (lower elevation species resistant to 

drought and heat) are projected to shift and increase in range (Ruiz-Labourdette et al. 2012).  

However, mountainous regions offer high topographic relief, providing microhabitat that can 

function as refugia habitat to facilitate species persistence (Franklin, et al. 2013), perhaps for 

species less drought tolerant.  Comparing sensitivities between grouped community and 

intersected species models, as was done for this study, contrasts broader scaled bioclimatic 

effects of climate change with more topographic mediated climate change effects and may 

capture refugia habitat.  

In addition to anticipated effects of climate change in California and for MTEs in general, 

the SMMNRA suffers from pressures related to urbanization (Underwood et al. 2009; Swenson 

and Franklin, 2000).  Adjacent to Los Angeles, the second largest metropolitan area in the United 

States (NPS, 2005), nearly 70,000 people live within its borders in a patchwork of private and 

parkland property.  As an administrative unit, the NPS is required by Congress to manage to 

preserve and enhance SMMNRA’s recreational and scientific value, along with its scenic, natural 

and historic setting.  Anticipating the potential impact of climate change in pragmatic and can help 

define risk exposure for communities and species in this conservation area. 
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Justification for Community Modeling 

 Community-level models are used less frequently than individual species-level models in 

SDM because paleoecological evidence suggests that species within a community will respond to 

climate change individually with differing rates and directions, forming new community 

associations rather than responding as a whole unit (Davis and Shaw, 2001; Huntley, 1991; 

Graham and Grimm 1990).  However, this dichotomous view of plant response as either strictly 

individualistic or communal is likely oversimplified (Lortie, et al. 2004, Callaway, 1997; Brown, 

1995).  Shipley and Keddy (1987) demonstrated community assemblages are organized as 

neither individualistic nor as community units, concluding that plant community assemblage 

occurs along a spectrum of community to individualist organization.  Plant communities buffer 

effects of environmental change drivers with plant–plant interactions through a variety of 

mechanisms and interactions (Wisz, et al, 2013; Gilman et al, 2010).  Further, the relative effects 

of species interactions and environmental conditions on survival remains largely unknown 

(Brooker, 2006).  California Mediterranean flora is strongly correlated with climate and geography 

(Ackerley, 2009), its inertial resistance unknown; here, existing community composition may 

stabilize selection for reassembly even under shifting climate (Ackerly, 2003).      
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RESEARCH OBJECTIVES 

 My overarching objective was to determine which communities are most vulnerable to 

climate change in SMMNRA.  Projecting future changes can assist managers of protected areas 

anticipate the impacts of climate change on biodiversity.  This study tested an application of 

community modeling; such models are presumably advantageous because managers of 

protected areas concerned with overall biodiversity may find a synthesized product more useful.   

Such a product can assist SMMNRA managers with climate change mitigation and contribute to 

the conservation of this flora.  

 To explore this objective, I created and evaluated species distribution models with the  

MaxEnt modeling algorithm at community and individual species levels, using a combination of 

frameworks described previously (Elith et al. 2010; Riordan and Rundel, 2009; Ferrier and 

Guisan, 2006).  MaxEnt is a machine learning program that estimates the optimal probability 

distribution to assign continuous probabilities of the occurrence of the target response variable 

(species) to each pixel in a grid, indicating relative cell by cell probabilities of suitable habitat for 

the study area (Phillips et al. 2006).  I used MaxEnt to generate probability grids in conjunction 

with a Geographical Information System (GIS) to overlay and compare the resulting predictive 

models for dominant species in SMMNRA.  Future climate data was substituted for current 

climate data in the models to compare distributions of suitable habitat between levels of 

aggregation as an estimate of climate change response for each community. 
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RESEARCH QUESTIONS 

1.  What environmental drivers are important in the community models versus the species 

models? 

 To answer this question, I examined community and species level response curves 

(relating the probability of species occurrence to the value of each environmental predictor) and 

the relative importance of environmental variables generated within the modeling process.  The 

importance of particular environmental drivers identified sensitivities to climatic change. 

2.  Will the extent of suitable habitat for communities currently protected by SMMNRA’s 

administrative bounds remain so under climate change? 

 To answer this question, I used two complementary approaches: 

i.  To predict changes in suitable habitat for each community, I overlaid SMMNRA’s boundary 

onto its modeled distribution under current and future climate (“climate change”)  and extracted 

the probabilities from cells across the area to derive a set of probability frequency distributions for 

comparison under each climate model. 

ii.  I did a similar comparison, but instead overlaid SMMNRA’s boundary onto assembled models 

derived from the intersection of individual species models, and calculated the combined 

probability value at each intersected pixel to derive a comparative set of frequency distributions 

under each climate model. 

Hypotheses 

Question 1 

  I expected the community models would demonstrate sensitivity to broad-scale climatic 

variables, and the species models would be more sensitive to finer-scale substrate and 

topographic variables.  

Question 2 

 I expected the community models would capture a wider range of ecological tolerances 

than the intersected species models.  The response curves for communities should be smoothed 

relative to individual species with broad amplitude of response because a wider range of 
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environmental tolerances are incorporated into the models.   Therefore, the broad response 

amplitude in the community models will decrease apparent sensitivity to climate change relative 

to the intersected species models.  



  9 

DATA AND METHODS 

Study Area: The Santa Monica National Recreation Area (SMMNRA) Biogeographical 

Setting  

 SMMNRA as an administrative unit covers 62,360 hectares, and includes much of the 

Santa Monica Mountains, however, an additional 28,000 hectares beyond SMMNRA’s bounds is 

required to define the entire Santa Monica Mountains Zone of about 89,000 hectares.  The Santa 

Monica Mountains form the southernmost mountain chain in the Transverse Ranges of Southern 

California, with a mean elevation of 304 meters (NPS, 2005).    

 The California Floristic Province (CFP) is composed of six second-tier regions defined by 

topographic, climatic and plant community variations.  The Southwestern California (SW) second-

tier region covers much of southern California, and is bounded by the transition to the desert 

regions on the east and the peaks of the Santa Ynez Mountains on the north.  Within the SW 

region is the sub-region Transverse Ranges (TR), a third-tier geographical area characterized by 

its series of west to east-orientated mountain ranges, which collectively become increasingly 

higher, hotter and drier to the east. SMMNRA (Figure 1) lies within the lowest, coolest and wettest 

portion of the TR (Hickman, 1993).  

Data 

 Individual species occurrence points and community assemblages.  Georeferenced 

occurrence points from within the SW region were obtained for 23 chaparral shrub species from 

the Consortium of California Herbaria (CCH) (http://ucjeps.berkeley.edu/consortium/) and the 

California Department of Fish and Game’s Natural Diversity Databases (http://www.dfg.ca.gov/ 

whdab/html/cnddb.html).  The data are compiled from a variety of sources, including herbarium 

records and ecological surveys taken from within the SW region between 1930 and 2004, by 

agencies such as The California Native Plant Society, The National Park Service and California 

State Parks.  Because the data are derived from multiple sources and due to their arrangement in 

the databases, they are “presence only” (Graham et al. 2004) because absence is not necessarily 

known.  Occurrence points from historical (1930’s) surveys were excluded due to climate change 

that is thought to have occurred since then (Cayan et al. 2008).  Species points total 13,849, with 
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a minimum and maximum of 79 and 1,587, for an average of 717 points per species (Appendix 

A).  The occurrence points extracted from the database for this study are for common shrub or 

sub-shrub dominants of chaparral shrub communities in SMMNRA and additionally include less 

common species in SMMNRA, yet are still diagnostic or ‘indicator’ species (Jennings, et al. 2009) 

for plant communities. 

 Presence points in the models.  The community models were based on all occurrences 

for the community indicator species as a group.   In other words, duplicate occurrence locations 

were permitted to accommodate records indicating multiple species occurring in a single location 

in addition to unique occurrences.  The resulting group assembly models give the distribution of 

suitable habitat for each community in terms of its component species. 

 In contrast, the individual indicator species models did not contain locational duplicates 

because ultimately the individual models were assembled into communities by the intersection of 

overlapping pixels.  The intersected models give the distribution of suitable habitat for each 

community in terms of the overlapping distributions of component species. 

 After applying models to future climate data and obtaining the probability grids at both 

levels of data aggregation, I delimited the modeled area encompassed by SMMNRA’s bounds to 

explore the range of outcomes for the management unit.  

Basis for species assemblages.  To establish baseline and spatial assessments of 

vegetative communities for conservation planning and inventory purposes,  the NPS undertook 

an extensive vegetation classification and mapping project beginning in 2001; this effort was in 

accordance with a then-recent mandate to develop and improve vegetative mapping on federal 

lands.  The objective was to develop a classification that met both NPS and US National 

Vegetation Classification System standards (Keeler-Wolf et al, 2007; Keeler-Wolf and Evens, 

2006).     

  The US National Vegetation Classification System defines vegetation types hierarchically 

(Jennings et al. 2008), and this study focused on two levels in that hierarchy, the Alliance and 

Association.  A vegetation alliance is defined based on the dominant (or diagnostic) species of a 

vegetation stand.  The presence of one or more dominant species are a reflection of regional to 
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sub-regional climate, substrate, hydrology, moisture, nutrients and disturbance regimes, while an 

association is more narrowly defined by a recurring species composition as a response to all the 

above but additionally to topo-edaphic factors (Jennings et al. 2008).  For the NPS Vegetation 

Classification, these groups were refined to the association level by factors such as elevation, 

slope, aspect, soil texture and geology, and were used in part to develop and map broad 

“ecological zones” defined by maritime, upland-continental, hot and dry or moist and shady 

conditions within SMMNRA (Keeler-Wolf et al. 2007).   

 I used combinations of these associations to create the eight species assemblages as a 

basis for modeling.  To generalize the range of tolerance outside SMMNRA for the community 

assemblages and to improve model calibration, I combined associations within alliances if their 

distributions within SMMNRA’s ecological zones more or less overlapped to create assemblages 

composed of species that will similarly respond to environmental variations over the SW region 

(Listed in Appendices B and C).   

 I could not group Coastal Sage Scrub (CSS) assemblages similarly because most 

associations contained less widespread species (e.g. Eriogonum cinereum) or were associated 

with a variety of “phases”, an association sub-category, or disturbance (Keeler-Wolf and Evens, 

2006).  To generate species assemblages incorporating similar environmental responses for 

CSS, I combined species sharing broad response to temperature and moisture gradients as 

above (Keeler-Wolf, et al. 2007), then refined by comparing to updated classifications (Davis et 

al. 1994) previously classified by Axelrod (1978) and then Westman (1981).  The mapped 

distributions for the CSS communities are given in Figure 2, South West Ecoregion Modeled 

Distributions for CSS. 

 In the study region, the range of recurring species composition creates a mosaic of 

vegetation that makes organization even at the alliance level difficult (Keeley and Davis, 2007).   

To represent the vegetation realistically, I shared (overlapped) species between assemblages.  

To construct the eight assemblages, I used the 13,849 occurrence points for a total of 22,955 

points within the assemblages, where 9,106 of those points were used more than once, or about 

40% of the points. 
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 Climate models.  Models were developed using the PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) current climate dataset, comprising monthly climate 

averages for the period of 1971-2000 (www.prism.oregonstate.edu).  This model was interpolated 

utilizing local regression techniques to account for spatially varying elevation relationships and 

terrain induced climate transitions, suitable for California’s high topographic relief (Daly, 2006).  

 To encompass a range of outcomes for comparison, models trained on current climate 

were projected onto two future climate models for one emissions scenario averaged for years 

2071–2100 to generate two modeled outcomes for each community or species.  I used the 

National Center for Atmospheric Research and Department of Energy group’s Parallel Climate 

Model (PCM1) and the National Oceanic Atmospheric Administration Geophysical Fluid 

Dynamics Laboratory (GFDL) group’s CM2.1 General Circulation Models (GCMs), under the 

Intergovernmental Panel on Climate Change A2 emission scenario (Cayan et al. 2008).  These 

climate models were used because they accurately reflect California’s historical (late nineteenth 

and entire-twentieth century) precipitation and temperature regime, in addition to its spatial 

structure (Cayan et al. 2008).  In general, the GFDL GCM projects a warmer and drier future, with 

warmer temperatures and less precipitation relative to PCM 1model projections.   

  I used the less conservative (A2) of the two available emission scenarios used to force 

the models because it is estimated that actual C02 concentrations have already exceeded this 

projected threshold (Sitch, et al. 2005).  I refer to these models as PCM A2 and GDFL A2.  

According to both models, California will generally experience more warming in summer than in 

winter (but with relatively less warming for PCM A2), with the majority of precipitation continuing 

to occur in winter.  However, the PCM A2 model projects a wetter future and change in the 

precipitation regime, with an extrinsic fall season peak for southern California where precipitation 

currently occurs nearly exclusively in winter (Cayan et al. 2008).   

 Environmental variables.  I used a set of 11 eco-physiologically appropriate bioclimatic 

and terrain variables (Appendix D) previously used for modeling plant species’ distributions in this 

region (Franklin et al. 2013; Franklin, 1998; Franklin, 1995).   A combination of terrain and 

bioclimatic temperature and moisture-related variable is necessary, at least for individual species 
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models, to model the realized niche (Gioia and Pigott, 2001).  Terrain variables such as slope and 

potential summer solstice solar insolation were derived from the U.S. Geological Survey’s 30-m 

resolution digital elevation model.  Soil depth, available water capacity and pH were obtained 

from the State Soil Geographic Data Base (STATSGO; details in Appendix D).  The remaining 

bioclimatic variables were selected and derived as described in Franklin et al. (2013).  The PCM 

A2 and GDFL A2 models were spatially downscaled to 90-m resolution to accommodate 

California’s topographic variability (Flint and Flint, 2012).   I have resampled the environmental 

data, including the climate data, to 100-m (1 hectare) resolution.  

Species Distribution Models 

  MaxEnt.  The MaxEnt modeling algorithm is one of the most accurate and effective 

machine learning algorithms used to develop predictive models utilizing presence only data (Elith 

et al. 2010; Elith et al. 2006; Graham et al. 2008).  In general, generative or inductive machine 

learning methods are appropriate for large and complex datasets.   MaxEnt has been shown to 

accurately capture known response curves with simulated data (Elith and Graham, 2009) and is 

particularly suited for regional modeling (Elith et al. 2006).   MaxEnt has successfully been used 

to model Coastal Sage Scrub communities in this region (Riordan and Rundel, 2009).  

 MaxEnt’s algorithm estimates the probability distribution of maximum entropy, as derived 

from patterns found within the data.  It estimates the optimal probability distribution from which it 

is assumed that the presence data are drawn (Phillips et al. 2009).  The best model output (as a 

set of probabilities) is that which creates the most uniform distribution, or where the distribution is 

closest to the average observed distribution based on habitat occurrence likelihoods over the 

entire dataset. It yields the conditional probability of presence, given a particular set of 

environmental conditions, where the response variable is the probability of a site being suitable.  

The output is a grid of probabilities that refer to the likelihood of suitable habitat being found in 

that pixel (Phillips and Dudik, 2008).   

Current climate SDMs. 

 Settings.  Community models for current climate were run using MaxEnt software, 

version 3.3.3k (Phillips, et al. 2006, http://www.cs.princeton.edu/~schapire/ MaxEnt/).  I did not 
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use the default settings for MaxEnt, but instead followed best practices for reliability and 

projection to novel conditions as recommended in Elith et al. 2010, varying the regularization 

parameter to 2.5 (to “enforce smooth responses”) and using “hinge only” features (Phillips and 

Dudik, 2008) to build a more generalized and GAM-like model (Elith et al. 2011).  Additionally, I 

“jackknife sampled” my data into train and test partitions (Fielding and Bell, 1997) of 60/40 ratio 

respectively, using the subsample and random seed settings to divide training and test data into 

ten random partitions. Ten replicates were run for each community model to derive the average 

behavior of the models (Phillips et al. 2006).  Individual species’ models for current climate were 

run using the same settings.   

 To compensate for spatial and environmental bias in occurrence locations, I used the 

“samples with data” (SWD) format to implement a restriction on background points (Phillips, 

2011).  Spatial bias may be distinct from environmental bias, if spatially biased localities 

successfully capture the relevant range of environmental conditions (Elith et al. 2011).  In 

contrast, environmental bias violates the assumption that localities in environmental space are 

random, such that the biased representation of environmental conditions is disproportionate to 

the true conditions (Phillips et al.  2006; Phillips et al. 2009). 

 The data points I used are spatially biased, with 86% located within SMMNRA’s boundary 

(Table 1; Figure 3).  A first run of the community models predicted high probabilities within 

SMMNRA for all communities and low probabilities elsewhere over the SW region, without much 

differentiation between communities.  This suggested environmental bias.  I determined that my 

data were environmentally biased using a null model procedure to compare the real SDMs built 

with the environmental conditions associated with actual occurrence points to models run using 

the same number but randomly drawn points taken from a representative environmental grid 

covering the entire SW region (Raes and ter Steege, 2007) (Figure 4). 

 To correct for environmental bias, essentially factoring it out (Dudik et al. 2006), I used a 

Target Group Background (Phillips et al. 2009; Phillips Dudik, 2008), rather than allowing MaxEnt 

to draw background points randomly over the entire SW region.  In this case, MaxEnt restricts the 

background data it draws from to the locations of presence points for all the species, so that both 
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presence points and background points used to construct the model share the same sampling 

bias.  In addition, restricting the background focuses differentiation between occupied and 

unoccupied sites to the local area and may refine the model (e.g. Figures 5 and 6) (Bystriakova et 

al. 2012; Elith et al. 2011; Phillips et al. 2009).  

 Calibration/Validation.  To improve accuracy and calibration for current climate relative 

to known distributions, models were developed for the entire SW region to encompass the core of 

the ranges for most of the constituent species of the SMMNRA communities.  To assess which 

models might be less trustworthy for future climate prediction, all calibration/validation analyses 

were conducted on both the community and single species models before projecting.  The 

collection of performance metrics described below allowed me to gauge which models might 

project more successfully than others.  

 Visual assessment:  Correspondence between areas of high predicted probability and 

occurrence points can indicate the model is fitted well.  I overlaid occurrence points onto modeled 

results to assess the fit to current climate.  Additionally, MaxEnt generates a series of plots, or 

“response curves”, depicting the probability of species presence as a function of each of the 

predictor variables.  I used these plots along with the modeled distributions to evaluate their 

plausibility based on known environmental tolerances for the community or species. 

 Quantitative Assessment.  MaxEnt output generates a number of performance metrics:  

the fractional predicted area, the extrinsic omission error rate, test gain and the AUC (Phillips, 

2011).   The fractional predicted area and extrinsic omission rate are related and are useful 

indicators of model performance.  The extrinsic omission rate provides a measure of model over-

fitting.  A model with a high omission error rate predicts to an area that is too small, is overly 

specific, and incorrectly excludes true positives from the predicted area (because the fractional 

predicted area in the model is small).  Low omission error rates indicate that false negatives are 

low (so true positives are higher), increasing the certainty that the species would actually be 

found where the model predicts (Fielding and Bell, 1997). 

 However, for presence only data models, low omission error rates are a better measure 

of over-prediction than for over-fitting because the omission rate is estimated as presence 
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distinguished from random (as background data) rather than from true absence because absence 

is not known.  The lack of true absence data could cause model over-prediction due to decreased 

characterization of unfavorable sites (Pearson et al. 2006).  An over-predicted model predicts an 

area that is too large and is overly general or sensitized because it incorporates too many false 

positives.  A model that reduces over-prediction reduces the number of false positives and so 

predicts to a smaller area.  A good fitting model balances over-prediction and over-fitting, 

predicting to the smallest predicted fractional area with the lowest extrinsic omission error 

(Anderson et al. 2003).       

 As a metric of model fit, MaxEnt calculates the fractional area predicted to be suitable if 

the logistic probabilities were converted to binary data over a range of threshold values.   MaxEnt 

then uses the fractional area predicted to calculate the extrinsic omission error rate for test data 

falling outside the predicted area.  The extrinsic omission error rate is the fraction of the test 

localities that fall into pixels not predicted as suitable by the model.  A 10% extrinsic omission 

error rate corresponds to a threshold where the model is neither over-fitted nor over-predicted 

(Anderson et al. 2003).  I used MaxEnt’s Cumulative 10% Omission rate to assess model 

predictive power without actually converting to binary values.   

 Test gain is a measure of goodness-of-fit, and indicates how closely the model is 

concentrated around the presence samples.  In MaxEnt, the value given to the gain for the model 

is the exponent on  e  indicating the average likelihood of the presence samples relative to a 

random background pixel; the greater the gain the better the model fit (Phillips 2011).   

 The area under the curve (AUC) uses test data to calculate model performance over all 

fitted thresholds. The AUC refers to the area under the curve relative to a receiver operating 

characteristic (ROC) curve and quantifies the ability of the model to discriminate observed 

presences from observed absences (Fielding and Bell, 1997). For presence only data this 

definition is again modified, where AUC scores represent the ability of the model to distinguish 

presence data from background data, rather than distinguishing presence from absence.  For 

presence only data, the AUC characterizes the probability that a classifier will assign a randomly 
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chosen positive instance more often than a randomly chosen negative (or background) instance 

(Phillips, et al. 2006).    

 AUC measures relative ranking of predictions and can be used to compare relative model 

performance but does not assess the model’s fit (Lobo et al. 2008).  However, the AUC has been 

previously utilized to assess MaxEnt performance in this region (e.g., Riordan and Rundel 2009; 

Saatchi et al. 2008), and so I provide AUC values for comparison.  

 Finally, MaxEnt calculates a one-tailed binomial test on the significance of its predictions, 

assessing the ability of the model to correctly classify the test data points as presences within the 

predicted area as compared to random background points, given the same predicted area 

(Phillips, et al. 2006).  I used this to verify that the models are valid. 

 Future climate SDMs.  For each community and modeling approach, I re-estimated a 

model based on current climate using the same settings described above but did not divide my 

data into train and test partitions because using the complete data set will on average build the 

best model for projection (Fielding and Bell, 1997).  I then projected each model onto each future 

climate scenario by using each set of future climate grids as projection layers in MaxEnt. 

Additionally, to allow for conservative prediction I “clamped” the models. 

 MESS maps and clamping.  When projecting a model onto another climate, MaxEnt 

generates a file representing “novel” environmental conditions as part of the multivariate 

environmental similarity surface (MESS) analysis.  It calculates a measure of similarity of the 

training and prediction environments to quantify the extent of extrapolation between the current 

climate and the projected model.  It is species independent and is a measure of the differences 

between climates.  MaxEnt uses the “novel” file to generate its “clamping” layer, showing values 

for which the model would be required to fit outside the training range of the variables. These are 

treated as if they exceed the tolerances of the species, zeroing out the species response where 

this occurs.  Clamping the model means that it is not required to extrapolate beyond the range for 

which it was calibrated (Thuiller et al. 2004), reducing uncertainty.  I applied the “clamping” option 

to the future climate projected models, so that the response is constant where values for 

projected environmental variables exceed those found under current climate (Phillips, 2011).   
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 Methods to Answer Question 1.   What environmental drivers are important in the 

community models versus the species models? 

 Most important variables.  MaxEnt determines variable importance by a jackknife 

procedure and importance is measured by a decrease in AUC based on training gain (Phillips, 

2011).  The variable with the lowest gain (and hence the largest change in gain when the variable 

is dropped in the jackknifing procedure) is the most important variable (Elith et al. 2010).  The 

drop in AUC is displayed as a percentage in a table as “permutation importance”.  To identify the 

most influential community predictors, I used this table to identify variables with an importance 

value greater than or equal to 10 percent 

 Explain Tool.  Additionally, for projected models, MaxEnt calculates a multivariate 

environmental similarity surface (MESS) with an “explain tool” that produces a clickable map 

allowing the user to view the fitted response functions of the model at any point. Because I used 

the SWD format in my models, I was able to utilize this tool under current climate because I am 

“projecting” onto current climate.  To create images and maps for distribution models trained 

using the SWD format, a raster environmental layer must be used for the projection (Phillips, 

2011).  “Projecting” the model onto current climate allowed me to use this tool to examine areas 

of high or low prediction accuracy in terms of response curves at specific locations to aid in 

ecological interpretation and comparison between models. 

 Methods to Answer Question 2.   Will the extent of suitable habitat for communities 

currently protected by SMMNRA’s administrative bounds remain so under climate change? 

 Probability frequency distributions.   MaxEnt provides a logistically scaled (Phillips 

and Dudik, 2008) probability surface ranging from 0 to 1 that can be imported as a raster into a 

GIS for analysis on a pixel by pixel basis.  I applied a GIS overlay of SMMNRA bounds onto the 

probability grids to obtain frequency distributions of the probabilities for community and individual 

species models under both current and future climate models.   

 I extracted the probabilities directly from the community models to obtain their frequency 

distributions.  To obtain probability frequency distributions from the individual species models as 

representatives of my defined communities, I intersected their probability grids.  At each pixel 
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intersection, pixels were averaged as a geometric rather than an arithmetic mean to ensure 

intersected grids combined all component species yet did not exclude those with very small 

values.   I extracted the combined pixels to derive the frequency distribution for the probabilities 

within the area for the assembled communities.   

 I compared the set of frequency distributions from current climate models for each 

community and intersected species models to those for future climates to obtain a summary of 

projected change in habitat suitability within SMMNRA.   

  Significance testing on probability frequency distributions.  Two non-parametric 

tests measured significance of climate change response.  A two-tailed Wilcoxon Matched Pairs 

Signed Ranks T Test compared changes in median values as response to climate change by 

organizational level.  The expectation was that if community models are less sensitive to climate 

change, differences in median values for the community models would be non- or less significant 

than for the intersected models.   A Wilcoxon-Mann-Whitney test compared inter-community 

differences for changes in median values as response to climate change for both intersected and 

modeled communities separately.    

 Marginal response curves smoothness: Standard deviation.  As a measure of 

response curve shape, the standard deviation on the y axis for marginal response curve plots 

was calculated for each model for all environmental variables concomitantly important for 

communities and their component species.  Smaller values were thought to indicate less 

variability on the amplitude and spread of the range on y for the response variable, resulting in a 

flatter curve.  I used this measure to determine if the community models more often exhibited a 

generalized, or less variable, response as hypothesized in Question 2.  

 Marginal response curves smoothness: Gower’s General Coefficient of Similarity.  

As a more comprehensive measure of response curve shape, I used Gower’s General Coefficient 

of Similarity (Gower, 1971) to calculate a matrix of similarities for measurements derived from 

response curve plots for variables commonly important for species and the community.   The 

calculation compared the minimum, maximum and standard deviation for y and the area under 

the curve for all pairs (note that this area under the curve of the response plots is different from 



  20 

the AUC of the ROC plot that was used as a measure of model performance).  I used this 

measure to compare relative similarity in response curve shape for species and communities as 

another method to evaluate community model generalization.   
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RESULTS 

Current Climate 

 Model fit.  The best fitting models had the highest values for test gain with the lowest 

predicted area (Appendix E).  The Ceanothus cuneatus and the Venturan CSS communities had 

the best fitting models.  The Ceanothus cuneatus community had the highest value for test gain 

(0.281), with the second lowest value for predicted area (0.736), while the The Venturan CSS 

community had the second highest value for test gain (0.223), with the lowest value for predicted 

area (0.709) The Ceanothus megacarpus community was the worst fitting model and had the 

lowest value for test gain (0.085) with the highest predicted area (0.792).  The test AUCs ranged 

high to low for the same communities, 0.701, 0.686 and 0.559 respectively.  All model omission 

rates were significant according to MaxEnt’s calculated one-tailed binomial test, indicating all the 

models correctly classified the test data points as presences at a statistically significant level (not 

shown) relative to background samples. 

 The species models had higher test gain and AUC values, with lower predicted area 

values and omission rates (Appendix E).   Riordan and Rundel (2009) found group models were 

likely to over-predict the distribution specific to individual species, and similarly, the community 

models in this study were fitted less well.  For both species and community models, there was a 

tendency for the rarest species (defined by low number of presence points) to have better fitting 

models, as has been previously noted (Syphard and Franklin, 2010; Hernandez et al. 2006; 

Brotons et al. 2004).  Overall, the values for test gain are low, particularly for the community 

models (Appendix E) but are not necessarily less accurate.  Because the data points used in this 

study were spatially and environmentally biased, (Data and Methods: Species Distribution 

Models, page 14) I used Target Group Background (Data and Methods: Species Distribution 

Models, pages 14-15).  The models were created using a set of background points restricted to 

the occurrences for all the species which may or may not include presences.  This decreases the 

likelihood that a test data point will be distinguished from a randomly selected background pixel, 

thus decreasing the values for both the test AUC and test gain.  Moreover, due to the way 

presence only data models are constructed, the AUC > 0.7 “good model” standard does not 
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apply, and models with low AUCs may not reflect decreased model accuracy but rather a broad 

niche amplitude or habitat generalism  (Raes and ter Steege, 2007, Lobo et al. 2008).   Values for 

test AUC and test gain can nevertheless be used to compare relative accuracy between models 

within this study, or between studies.   For example, AUCs and test gain values are similar in 

relative rank for six species I have modeled in common with Riordan and Rundel (2009).   

Intersected species models versus modeled communities.  As expected, the 

community models captured a wider range of ecological tolerances.  Variable selection between 

species and community models differed.  Topographic and substrate level variables were 

important in the species models only, confirming the hypothesis for Research Question 1, that 

species models would demonstrate sensitivity to topographic variables more often than the 

community models.  The difference helps to substantiate the model set and confirms the models 

represent a range of ecological tolerance.  The community models represented the union of 

environmental tolerances for component species, because suitable habitat requirements were 

pooled and incorporated into the model.  In contrast, the intersected species models, calculated 

as the geometric mean of stacked individual models, were more restrictive because low to zero 

values within a pixel for one species lowers or eliminates suitability for the other species.  

Therefore, the intersected community models were less inclusive, while the modeled community 

models were more inclusive.   

  Community models appeared more diffused and predicted to a larger area because the 

less inclusive intersected species models incorporated a larger proportion of small pixel values.  

Medians for pixel value distributions for intersected models were consistently lower in all cases 

for both current and future climate, with exceptions for the Ceanothus megacarpus and Diegan 

CSS communities, where both were about equivalent. The contrast between intersecting and 

modeling communities directly is illustrated in Figure 7 for the Ceanothus cuneatus community  

within the study area.  In Figure 8, boxplots show the distribution of suitable habitat probabilities 

within SMMNRA for all pixel values from the modeled grids corresponding to Figure 7.   

 Environmental drivers: Community models. With the exception of Soil pH for Scrub 

Oak, all important environmental drivers for community models were climatic at the ≥ 10 percent 
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permutated importance threshold.  Overall, the variables chosen by MaxEnt as most important for 

these models fit expectations, indicating that collectively modeling dominants captures bioclimatic 

trends influencing distribution. 

Precipitation of Warmest Quarter (BIO18), a measure of summer rain, was the most 

frequently important in the community models, and was important for all of them (Figure 9; 

Appendix F).  Response curves indicated that probabilities for suitable habitat varied similarly 

among communities, increasing sharply at the lowest values (< 20 mm) before leveling off.  

Exceptions were for coastal Diegan and Venturan CSS, where response curves dipped sharply 

rather than leveling off at >20 mm.    

 The Aridity Index, or Annual Precipitation/Potential Evaporation (BIO24) was the second 

most frequent important variable, for 7 of 8 communities.  Riversidean Scrub, Diegan and 

Venturan CSS responded negatively to decreasing Aridity (values > 50), along with the 

Ceanothus megacarpus and Ceanothus crassifolius communities, while the more mesic Scrub 

Oak and Northern Mixed communities responded positively (values > 100).  The Ceanothus 

cuneatus community responded similarly (though BIO24 not ≥ 10 percent important).   

 Temperature Seasonality (BIO4), a proxy for coastal proximity, was important for 5 of the 

8 communities: all 3 CSS, Ceanothus megacarpus and the Ceanothus cuneatus communities. 

The response curve for Venturan CSS was highest at the lowest values for Temperature 

Seasonality, i.e. coastal, very low elevation habitat.  Riversidean Sage Scrub response was low 

at both low and high values, peaking at mid-range.  Diegan CSS and Ceanothus megacarpus 

were intermediate to Venturan and Riversidean Scrub, while Ceanothus cuneatus favored the 

highest values, or least coastal, high elevation habitat.  

 Temperature of Warmest Month (BIO5), a measure of summer temperature intensity, 

was important for 4 or the 8 communities. Of these, the most heat tolerant was Riversidean Sage 

Scrub, followed by the Ceanothus crassifolius community, with Diegan CSS and Ceanothus 

megacarpus communities being about equivalent.  

 Cumulative Growing Degree Days above 5 C degrees (BIO20), a measure of growing 

season length, was important for 2 communities, Venturan CSS and Ceanothus crassifolius, both 
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preferring high values.  Soil pH was important for Scrub Oak, the only topographic variable 

important in any of the community models.  Annual Precipitation (BIO12) was ≤ 10 percent 

important for all modeled communities, suggesting the importance of precipitation seasonality 

rather than its annual amount.  

 Environmental drivers: Species models.  Temperature Seasonality (BIO4) was the 

most frequently important variable in the species models.  Of 32 species models, Temperature 

Seasonality was important for 23 of them.  Nearly all the CSS-type species models favored low 

values (coastal, temperature modulated habitat).  The exceptions were Salvia apiana, favoring 

higher values for Temperature Seasonality (and belonging  to the “interior” CSS community, 

Riversidean Sage Scrub), and Artemesia californica and Rhus ovata, responding neutrally 

(variable ≤ 10% important).   Other non-CSS type examples for species favoring high values 

(interior habitat more likely to experience freezing temperatures) were Ceanothus cuneatus and 

C. leucophylla.   

Precipitation of Warmest Quarter (BIO18) ranked a close second in frequency of 

importance, and of 32 species models it was important for 22 of them.  Species favoring low 

values (little summer rain) were generally coastal.   Soil pH (PH) was important for 7 species 

models, Available Water Capacity (AWC) and Potential Summer Solstice Solar Insolation 

(SUMRAD) were each important for 4 models.   Appendix Table F gives a full account of 

variables with ≥ 10 percent permutated importance for both species and community models.  

Table 2, Community and Species Model Variable Selection Comparison gives a more succinct 

view summarizing the contrast between variables selected as important in the community models 

with those in the species models.  Figure 9, Frequency of Variable Importance ≥ 10 Percent 

Permutated Value gives the frequencies for variables selected as important in all the models.   

Marginal Response Curves Smoothness. 

Standard deviation.  For Research Question 2, I hypothesized that the community 

response curves would appear smoothed, or generalized relative to the species response curves, 

but calculating the standard deviation on the Y axis as a measure of model generalization did not 

confirm this expectation.  I expected that for the species models, the standard deviation on the y 
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axis for response curve plots would be greater more frequently than for the community models, 

though it was more often lower, with greater values occurring in only 38% of cases for equivalent 

variables (Appendix G, Standard Deviation on Y Axis for Marginal Response Curve Plots).    

 Gower Similarity Coefficient Matrices.  Similarity coefficients indicated that response 

curves for the community models are generalized, confirming in part the hypothesis for Research 

Question 2.  If community response curves represent a collective average of component species’ 

curves, similarity should be greater among species relative to the community curves (down 

column one for each matrix) than among species (the remaining comparisons within each matrix).  

The rate for dissimilarity between species and communities in column one was consistently less 

than the rate for dissimilarity between species, indicating that species curves were more often 

similar to their collective average for the community.  Coefficient values exceeding 0.5 were 

considered dissimilar; the rate of dissimilarity between values in column one exceeded or was 

equivalent to that for the remaining values within the matrix in only two cases (Appendix H; rate 

calculations not shown).   

 Figure 10, Response Curves for Temperature Seasonality (BIO4) for Modeled Scrub Oak 

Community gives an example illustrating how, by visual inspection, community curve shapes 

seemed an aggregate of the more variable shapes for the component species, appearing to 

represent their collective average. 

Future Climate 

 Summary community response to climate change.  Across the SMMNRA study area, 

suitable habitat is predicted to decrease for most communities under both climate change GCMs 

for either modeling approach, with exceptions for community modeled Riversidean Sage Scrub 

and Diegan CSS.  The intersected species modeling approach predicts a relatively greater 

percentage decrease in summed probabilities for suitable habitat (30-90%) than the community 

modeling approach (20-80%), with the exception of the Ceanothus megacarpus community under 

the PCM A2 climate model.  Generally, the greater percentage decrease in suitable habitat 

predicted by the intersected approach occurred when using the GFDL A2 climate model, the 

warmer and drier of the two climate models (Figure 11; also Appendix I, 1-8, Box Plot Graphs by 
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Community).  Numerical values for the summed probabilities as extracted from modeled grids for 

all models are given in Table 3.   Less impact under the PCM A2 model is supported by an earlier 

simulated model study projecting that an increase in precipitation as a result of climate change 

could mean less stressful conditions for shrubland species here (Malanson and O’leary, 1995), 

and their ability to facultatively respond to increased summer rain (Minnich, 1985).  

 Differences in community median habitat suitability between current and averaged future 

climates models was significant (α = 0.05) based on a two-tailed Wilcoxon Matched Pairs Signed 

Ranks T Test (p = 0.02344 for community models; p = 0.007813 for intersected models, 

confidence level 0.95).   Both modeling approaches predict a significant decline in habitat 

suitability for these communities in response to climate change, but the p value for the community 

models was less significant than for the intersected models.  Significance indicates that median 

differences between pairs of samples (before and after climate change across communities) are 

not random. This result confirms the hypothesis for Research Question 2, that the increased 

range of environmental tolerances present in the community models will decrease their apparent 

sensitivity to climate change relative to the intersected models.    

Prominent Trends.   

Community models.  All non-CSS community responses were highly statistically 

significant (Table 4).   The decrease in suitable habitat for the community models was generally 

attributable to GFDL A2, except for the three CSS/Scrub communities, for which habitat suitability 

either increased or was less affected.   Group level community models indicated that suitable 

habitat for all three CSS communities will decrease less for climate change conditions (Figure 11, 

Community Response to Climate Change as Percent Change in SMMNRA Suitable Habitat 

Probability Sums).  Suitable habitat for Riversidean Sage Scrub increased under the GFDL A2 

GCM, and for Diegan CSS, it increased for both GDFL A2 and PCM A2 climate models.  

Venturan CSS was less affected using GFDL A2 than PCM A2.  A Wilcoxon-Mann-Whitney test 

indicated that differences in median probability values between communities for averaged climate 

change response were less significant for the Riversidean Scrub and Venturan CSS modeled 

communities (Table 4).  Significance indicates the samples (as probabilities sampled from each 
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community for current and averaged climate change) do not come from populations with identical 

distributions and are distinct from one another.  Diegan CSS was not differentiated along with the 

other two CSS communities as less significant because the test was two tailed, so significance 

was detected in either direction.  Consequently, the change in suitable habitat for Diegan CSS 

was similar in magnitude for significance for non-CSS communities, though in the positive 

direction to indicate habitat gain.   In contrast, for non-CSS communities predicted habitat decline 

was greater.  Of these communities, Northern Mixed and Scrub Oak shared the largest negative 

response to climate change (Figure 11).    

 Intersected models.  The response to climate change differed somewhat when species 

were intersected to form communities.  CSS and non-CSS communities were not statistically 

distinguishable.  Rather, statistical significance between communities for response to averaged 

climate change was indicated for all the communities, except for the Ceanothus megacarpus 

community (Table 4).  As an intersected model Ceanothus megacarpus community habitat was 

predicted to decrease much less under the PCM A2 climate model compared to all other 

communities. This was an exception in the intersected models.   Like the modeled communities, 

the percentage decrease in probability sums for GFDL A2 was greater than for PCM A2, but 

decreases for PCM A2 were comparable to GFDL A2 (or relatively greater) and therefore more 

pronounced in the intersected models.    

Consistency across modeling approach and climate models.  The chaparral models 

were consistent across modeling approaches.  The predicted decline in habitat for chaparral 

models differed in magnitude somewhat but retained their relative relationships between GCMs.  

Generally all chaparral habitat will be worse off if climate change presents as the GFDL A2 GCM 

(hotter and drier), especially for the Northern Mixed, Scrub Oak and Ceanothus cuneatus 

communities. Of the chaparral models, the Ceanothus megacarpus community was particularly 

consistent and nearly identical across modeling approaches.  The Ceanothus megacarpus 

community was predicted to be the least impacted for any chaparral community, but this 

nonetheless corresponds to a decline of about 40% for suitable habitat.  Habitat for this 
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community was predicted to decrease minimally (2-3%) if climate change presents as the PCM 

A2 GCM (Figure 11).   

The CSS models were less consistent across modeling approaches.  The intersected 

models differed in magnitude and varied in their response and sensitivity to GCMs (Figure 11).  

For Riversidean Sage Scrub and Diegan CSS, positive response in the modeled communities to 

GFDL A2 became negative when species were intersected, with a larger net decrease for Diegan 

CSS.  Venturan CSS decreased markedly when intersected (Figure 11; Appendix I, Box Plot 

Graphs by Community: Figures I-3 for Diegan CSS and I-8 for Venturan CSS).  For Riversidean 

Coastal Sage Scrub, the predicted small increase in suitable habitat for GFDL A2 reversed when 

the species models were intersected because habitat for Salvia apiana and Rhus ovata decline 

more than for Eriogonum fasciculatum.   Diegan CSS habitat is predicted to increase when 

species are modeled as a group for both GCMs but decreased when individual responses were 

intersected due to Encelia californica sensitivity to both GCMs, Artemesia californica to the wetter 

PCM A2 climate, and the sensitivity of Salvia melifera to the GFDL A2 GCM.  The large decline 

projected for suitable habitat for the intersected Venturan CSS models is primarily due to an 

extreme response for one of the four species, Salvia leucophylla, for both GCMs.  
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DISCUSSION 

Ecological Implications for Modeled Trends 

 At the regional scale, vegetation in southern California has been significantly shaped by 

temperature and precipitation gradients (Ackerly, 2009).  Given species in a group respond 

similarly to these gradients, group models can adequately describe habitat requirements and 

suitability for the whole assemblage.   Riordan and Rundel (2009) successfully modeled suitable 

habitat for CSS and found their three floristic groups (spatially defined as coastal, interior and 

widely distributed) were also distinguished by response to temperature and precipitation.   

Such climatic controls have contributed to the biogeographic and physiognomic 

separation of CSS and chaparral.  Coastal Sage Scrub is the more drought tolerant vegetation 

type and generally grows near the coast where precipitation is lower, while chaparral is found 

further inland at higher, moister elevations (Harrison et al, 1971).  Environmental drivers 

designated by MaxEnt as most important in both the community and species models supports 

these long standing observations.  For example, the importance of summer rain in both the 

community (ranking as most frequently important) and species models (second most frequent) 

reflects the long established Mediterranean climate, characterized in part by the absence of 

summer rain (Axelrod, 1978).    

In this study, the Impact of climate change is predicted to be less overall for drier, lower 

elevation habitat.  Two trends were evident across modeling approaches, though more consistent 

in the modeled communities.  One was that the CSS communities (Riversidean Sage Scrub, 

Diegan and Venturan CSS) were less responsive to climate change than the chaparral 

communities.  The other was that of the five chaparral communities, three (Northern Mixed, Scrub 

Oak and Ceanothus cuneatus) were more responsive to climate change.  The remaining two 

chaparral communities (Ceanothus megacarpus and C. crassifolius) were relatively less 

responsive, similarly ranking with CCS (Table 5, Sorting By Increasing Response To Averaged 

Climate Change Between  Mesic And Non-Mesic Communities).   I refer to the separation 

between communities as mesic or non-mesic as an approximation of their relative drought 

tolerance.  
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Differentiation between mesic or non-mesic communities in the chaparral models might 

be explained by taxonomic division within the Ceanothus genus, which is divided into two 

subgenera: Ceanothus and Cerastes.  Members of these subgenera have diversified to adapt to 

particular temperature and precipitation gradients even though they live in close proximity (Burge 

et al, 2011).  Members of the subgenus Cerastes (Ceanothus megacarpus, C. crassifolius and C. 

cuneatus) tolerate water stress better than Ceanothus subgenus species (C. spinosus, C. 

oliganthus and C. leucophylla) (Davis et al, 1999; Davis et al, 2007).  The high-elevation Northern 

Mixed community contains all three less drought tolerant Ceanothus subgenus species and Scrub 

Oak contains one of them, C.spinosus.  While C. cuneatus is a more drought tolerant Cerastes 

species, it may experience the most water stress of the Cerastes group at high elevation 

(compare Ewers et al, 2003 with Davis et al, 1999) and may be why it was consequently grouped 

with the mesic communities in the models for this study.      

Climate change risk exposure and model uncertainty.  The goal of this study was to 

contrast grouped species with intersected species models in the context of conservation interest.  

This approach was to explore a range of climate change projections for shrub communities in 

SMMNRA as a method to evaluate uncertainty.     

Evaluating consistency across modeling approaches and between GCMs can describe 

uncertainty.  Uncertainty is reduced if a model is both ecologically plausible and consistent across 

modeling approaches.  The most consistent responses are those that retain their relative 

relationships between GCMs without extreme differences in magnitude when intersected.  Such 

changes in the intersected model indicate that when modeled alone, one or more species’ 

response to climate change diverges from the group.  This suggests experimental error, or may 

indicate species deserving enhanced observation.    

The Ceanothus megacarpus community was most consistent.  Composite species for this 

community have been found to be particularly drought tolerant (Ceanothus megacarpus and 

Salvia melifera: Kolb and Davis,1994; and  for Malsosma laurina  in Westman, 1981), but  Salvia 

melifera has also been reported to tolerate mesic conditions (e.g. Westman, 1981).  Despite their 

reported drought tolerance, previous simulations for climate change have predicted increasing 
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dominance for Ceanothus megacarpus and Salvia melifera for increased temperature and 

precipitation (Malanson and O’Leary, 1995).   Additionally, Malosma laurina has been placed into 

a large number of vegetation associations (Keeler-Wolf et al. 2007), suggesting its niche 

amplitude is wide.   AUC values for the community model and the component species are among 

the lowest, another indicator for broad niche amplitude.  Within this community model, broad 

niche amplitude may increase overlap between component species responses, smoothing the 

response range across modeling approaches to improve consistency.   

The overall consistency in the chaparral models may reflect niche partitioning among 

species in the Ceanothus subgenera Ceanothus and Cerastes.  Distributions for these subgenera 

have been observed to separate along environmental gradients such as elevation and irradiation 

(Nicholson, 1993), and are differentiated by species’ tolerance to water stress (Pratt et al, 2007; 

Meentemeyer and Moody, 2002), and freeze injury (Ewers et al, 2003; Davis et al, 2007).  Freeze 

injury and drought stress tolerance are related and work together to influence chaparral 

distribution (Davis, et al, 2007; Langan, et al. 1997).  Accordingly, indices for precipitation, aridity 

and coastal proximity (or temperature modulation) were selected as the three most frequently 

important variables across species and community levels, suggesting distinctions among these 

species were resolved and helped to improve coherence across modeling approaches. 

The CSS models were less consistent across modeling approaches, varying when 

intersected.  Diegan CSS was particularly variable and was the least consistent.  CSS as a 

vegetation type has been difficult to classify floristically; species comprising CSS are pioneering 

(Axelrod, 1978) growing in a variety of combinations in variable habitats (Rundel, 2007).   It may 

be that CSS habitat was better characterized by the more generalized community models that 

intrinsically encompass local variety in CSS.  Despite inconsistencies in the CSS models, overall, 

the predicted impact upon habitat for CSS communities was less than for chaparral.  

Such projections may be viewed as an early response to climate change outlining risk 

exposure to better inform policy.  Though validation is not possible when projecting into the 

future, I have used best practice techniques to minimize error and reduce uncertainty (Elith et al. 

2010; Hijmans and Graham, 2006), and strove to balance generalization against utility.  To 
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generalize projections without sacrificing their utility, I summed pixel probabilities to avoid 

introducing error by “thresholding”’ the data (converting pixel probabilities to presence or 

absence) (Nenzen and Araujo, 2011), and to avoid associating habitat probabilities with particular 

locations within SMMNRA.    Nevertheless, the projections do not account for fire or disturbance, 

propagule dispersal, biotic interaction or individualistic genetic responses, to name just a few 

dynamic influences these models ignore (see Wiens et al. 2009; Pearson and Dawson, 2003).  

Shifts in probability distributions for suitable habitat portrayed by these models characterize 

relative shifts given a species’ or community’s requirements are stable.  The models assume 

environmental requirements will not change over the modeled period for both species and 

communities.  

Implications For Management 

Recommendations.  To accommodate anticipated or observed changes for vegetation 

within the Park, I recommend managers implement policy based on principles of adaptive 

management.  Adaptive management is an approach used to incorporate uncertainty and 

responsive flexibility in policy decision making (Walters and Holling, 1990).   The response rate to 

climate change is unpredictable and may be slow (Ordonez, 2013), and species’ adaptive 

capacity is unknown.  Many species in this region appear to be habitat generalists (except for 

members of Ceanothus and Arctostaphylos genera), because past climatic fluctuations may have 

been too rapid to allow for strict habitat specialization (Zedler, 1994).        

Management objectives should be both habitat and species oriented.   A conservative 

expectation is that relatively mesic habitat will decrease and drier, more exposed habitat will 

increase.  Existing habitat within the SMMNRA should be monitored to detect general changes for 

dominant species across types in differing locations (e.g., CSS versus non-CSS habitats).  

Trends in species sensitivity indicators (e.g., changes in cover, fecundity, seedling survival or 

branch dieback) may indicate early response to climate change for dominant species comprising 

particular habitat types.  Shifting community character may occur at the upper elevation bound for 

CSS, since much of what has already been lost or impacted is at lower or intermediate elevation 

(Malanson and Oleary, 1995).   The SMMNRA vegetation map can help determine these 
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locations and can be used to expand or modify the already existing Inventory and Monitoring 

(I&M) in Parks program (NPS, n.d.).  Management response motivated by ongoing monitoring will 

depend on the sensitivities detected and their coherence across locations, and whether those 

trends indicate changing habitat.    

  The model projections may be considered conservation opportunities (Schwartz 2012), 

requiring flexible thinking to manage for change (Sax et al. 2013; Jackson and Hobbs, 2009).  

Nearly twenty years ago, Southern California CSS was ranked 9th of 21 most endangered 

ecosystems in the United States (Noss and Peters, 1995).  The situation has not improved since 

(Riordan and Rundel, 2014; Taylor, 2004).  Management policy could be developed to take 

advantage of favorable conditions for CSS restoration. Many CSS species are easily established 

(Bozzolo and Lipson, 2013) even when rainfall is unpredictable (DeSimone and Zedler, 2001).  

Restoration could be implemented with a particular context in mind (very broadly, high or low 

elevation habitat) on land currently under Park management or as cooperative interagency 

projects, and designed to reflect the local character of CSS habitat.  Where private ownership 

fragments public ownership, an effort can be made to acquire new landholdings, or landowner 

incentive programs (e.g., Cox and Underwood, 2011) could be adopted to increase the 

connectivity of managed area.  Contiguity of managed land, or at least cooperation from private 

landowners within SMMNRA’s larger bounds may become important to facilitate migration into 

changing habitat, especially at CSS-chaparral interfaces.  For example, this may be critical for 

Salvia leucophylla, the species primarily driving the relatively extreme response to climate change 

(as decreasing habitat) for the Venturan CSS community.  Davis and others (1994) 

recommended priority management consideration for S. leucophylla because the majority of its 

habitat in the Western transverse ranges occurred on private lands.       

Regional Context.  The community models were based on combined vegetation 

associations, sub-regional variations that are a particular expression of vegetation alliances 

existing both within and beyond SMMNRA (Keeler-Wolf et al 2007).  While some associations 

have been found only in SMMNRA, the community models in this study were calibrated regionally 

and were formed by grouping associations, and therefore may apply more generally to Southern 
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California.  Within the Southern California region, more land mass could increase opportunities 

for refugia habitat and may warrant future expansion of protected areas.  

Two of the shrub species I have included in my study, Ceanothus megacarpus and 

Ceanothus spinosus, have their center of world distribution in the Santa Monica Mountains 

(Keeler-Wolf and Evens, 2006) and while abundant in SMMNRA they are rare elsewhere.  Loarie 

and others ( 2008) projected that in general, species will recede from the center of the state, 

pursuing habitat southward to cluster about the coastal mountains of southern California, in part, 

toward SMMNRA.  As a result, SMMNRA could become a refuge for species in the CFP while 

displacing species already there.  

  Riordan and Rundel (2014) developed maps based on models combining the effects of 

land use and climate change, projecting  increasing development on lands surrounding SMMNRA 

by 2080 (Supplementary Figure S1).   Potentially, this restriction could hinder species’ ability to 

emigrate, or alternatively, immigrate inward to SMMNRA to track favorable habitat.   
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SPECIES AND ASSEMBLY POINT COUNTS   
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Species Assembly 
Species      

Frequency Common Name 

Points 
per 

Species 

Total 
Assembly 

Points 

Ceanothus crassifolius         

Ceanothus crassifolius  1 Hoaryleaf Ceanothus 221   
Malosma laurina 3 Laurel  Sumac 1587   
Rhus ovata 3 Sugar Bush 771 2579 

Ceanothus megacarpus         

Ceanothus megacarpus 1 Bigpod Ceanothus 1170   

Malosma laurina 3 Laurel  Sumac 1587   

Salvia mellifera 2 Black Sage 1169 3926 

Ceanothus cuneatus     

Ceanothus cuneatus 1 Buckbrush 160   

Cercocarpus betuloides 2 Mountain Mahogany 837   

Quercus berberidifolia 2 Scrub Oak 732   

Rhus ovata 3 Sugar Bush 771 2500 

Northern Mixed         

Arctostaphylos glandulosa  1 Eastwood's Manzanita 123   

Arctostaphylos glauca  1 Big Berry Manzanita 100   

Ceanothus leucodermis 1 Chaparral Whitethorn 79   

Ceanothus oliganthus 1 Hairy  Ceanothus 153   

Ceanothus spinosus 2 Greenbark  Ceanothus 556   

Cercocarpus betuloides 2 Mountain Mahogany 732   

Heteromeles arbutifolia 2 Toyon 1096   

Prunus illicifolia 1 Hollyleaf  Cherry 251 3090 

Scrub Oak         

Ceanothus spinosus 2 Greenbark  Ceanothus 556   

Heteromeles arbutifolia 2 Toyon 1096   

Quercus berberidifolia 2 Scrub Oak 837 2489 

Diegan CSS         

Artemisia californica 1 California  Sagebrush 1294   

Encelia californica  1 California Encelia 556   

Malosma laurina 3 Laurel  Sumac 1587   

Salvia mellifera 2 Black Sage 1169 4606 

Riversidean Sage Scrub         

Eriogonum fasciculatum 1 California Buckwheat 926   

Rhus ovata 3 Sugar Bush 771   

Salvia apiana 1 White Sage 123 1820 

Venturan CSS         

Opuntia littoralis  1 Western Prickly Pear 118   

Rhus integrifolia 1 Lemonade Berry 346   

Salvia leucophylla 1 Purple Sage 646   

Yucca whipplei  1 Our Lord's Candle 835 1945 
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APPENDIX B  

COMBINATIONS OF ASSOCIATIONS UNDER ALLIANCES FOR CHAPARRAL 

ASSEMBLAGES   
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Assembly  
USDA 
Code† 

Alliance Association 

Ceanothus cuneatus   CECU   

Ceanothus cuneatus CECU   CECU/QUBE 

Quercus berberidifolia QUBE5   

 Cercocarpus betuloides CEBE3   

 Rhus ovata RHOV   

 Ceanothus megacarpus   CEME   

Ceanothus megacarpus CEME   CEME 

Malosma laurina MALA6   CEME/MALA 

Salvia mellifera SAME3   

 Ceanothus crassifolius   CECR   

Ceanothus crassifolius  CECR   CECR 

Malosma laurina MALA6   CECR/MALA 

Rhus ovate RHOV   

 Northern Mixed   ARGL3   

Arctostaphylos glandulosa  ARGL3 CEBE ARGL3 

Arctostaphylos glauca  ARGL4 CEOL CEOL 

Ceanothus leucodermis CELE2 CESP CESP 

Ceanothus oliganthus CEOL PRIL CEBE 

Ceanothus spinosus CESP   CEBE/CESP 

Cercocarpus betuloides CEBE3   PRIL/HEAR 

Heteromeles arbutifolia HEAR5   

 Prunus illicifolia PRIL   

 Scrub Oak   QUBE   

Ceanothus spinosus CESP   QUBE/CESP 

Heteromeles arbutifolia HEAR5   
 

Quercus berberidifolia QUBE5    QUBE 

Diegan CSS   ENCA   

Artemisia californica ARCA11   ENCA/ARCA11 

Encelia californica  ENCA   ENCA 

Malosma laurina MALA6   ENCA/MALA/SAME 

Salvia mellifera SAME3   

 Riversidean Sage Scrub   ERFA/SAAP   

Eriogonum fasciculatum ERFA2   

 Rhus ovata RHOV    

 Salvia apiana SAAP2   

 Venturan CSS       

Opuntia littoralis  OPLI3   
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Rhus integrifolia RHIN2   

 Salvia leucophylla SALE3   

 Yucca whipplei  YUWH     

 

† http://plants.usda.gov  
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APPENDIX C 

COMMON ECOLOGICAL TOLERANCES FOR ASSOCIATIONS AND ALLIANCES  
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Assembly  General Tolerances for Associations/Alliance 

Ceanothus cuneatus Aspect Elevation (meters) Slope 
Frequent co-
species 

Ceanothus cuneatus NE - SE Low  226-408 m Steep QUBE/CEBE3/RHOV 

Quercus berberidifolia   

 

  
 

Cercocarpus betuloides   

 

  
 

Rhus ovata   

 

  
 

Ceanothus 
megacarpus 

  

 

  
 

Ceanothus megacarpus Variable    Low - Mid  53-730 m Moderate - Steep MALA6 /SAME3 

Malosma laurina Variable    Low - Mid  42-780 m Gentle - Steep 
 

Salvia mellifera   

 

  
 

Ceanothus crassifolius   

 

  
 

Ceanothus crassifolius    Low  312 - 640 m  Moderate - Steep MALA6/HEAR5 

Malosma laurina Variable    Low  337 - 675 m Moderate - Steep RHOV 

Rhus ovate   

 

  
 

Northern Mixed   

 

  
 

Arctostaphylos 
glandulosa  

NW 
Mid - High 557 - 878 
m  

Steep - Steep 
HEAR5/ 
(ADFA)*/ARGL4 

Arctostaphylos glauca  Variable    
Low - Mid  498 - 847 
m 

Gentle - Steep HEAR5 

Ceanothus leucodermis NE - NW Low  0 - 692 m   Steep -Very Steep HEAR5 / mesophytic  

Ceanothus oliganthus NE - NW Low  10 - 661 m Steep - Steep HEAR5 

Ceanothus spinosus NW Low  64 - 526 m   PRIL 

Cercocarpus betuloides NE - NW Low  281 - 687 m Steep - Steep 
 

Heteromeles arbutifolia   

 

  
 

Prunus illicifolia   

 

  
 

Scrub Oak   

 

  
 

Ceanothus spinosus Variable    Low  230 - 563 m Steep - Steep HEAR5 

Heteromeles arbutifolia     

Quercus berberidifolia NE - NW  
Low - Mid  119 - 783 
m 

Gentle - Very  Steep HEAR5 

Diegan CSS         

Artemisia californica SW - SE Low  3 - 423 m  Gentle - Steep MALA6/SAME3 

Encelia californica  SW - SE Low   2- 496 m Gentle - Steep ARCA11/MALA6 

Malosma laurina SW - SE Low  5 - 457 m  Gentle - Steep 
 

Salvia mellifera   

 

  
 

Riversidean Sage 
Scrub 

SW - SE Low  202 - 262 m  Steep - Very Steep YUWH / (ADFA)* 

Eriogonum fasciculatum   

 

  
 

Rhus ovata   

 

  
 

Salvia apiana   

 

  
 



  51 

Venturan CSS   

 

  
 

Opuntia littoralis    

 

  
 

Rhus integrifolia   

 

  
 

Salvia leucophylla   

 

  
 

Yucca whipplei          

 
 
* ADFA: Adenostoma fasciculatum-species not selected for study
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APPENDIX D 

BIOCLIMATIC AND TERRAIN VARIABLES 
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APPENDIX E   

COMMUNITY AND SPECIES MODELS BY PREDICTED AREA, OMISSION RATE, TEST AUC 

AND TEST GAIN 
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Predicted Area is the proportional predicted area or the fraction of all pixels that are predicted as 
suitable at a fixed 10% omission rate.   Cumulative 10% Test Omission is the fraction of the test 
localities that fall into pixels not predicted as suitable for the species at a 10% omission threshold.  
Test AUC is the probability that a test presence site will be ranked above a random background 
site.  Its value ranges from 0 to 1, with 0.5 corresponding to random prediction. Test Gain is the 
average log probability of the test samples used to test the model and is the average likelihood 
that a test sample is higher than that of a random background pixel. 

Community 
Predicted  

Area 

Cumulative 
10% Test 
Omission 

Test 
AUC 

Test 
Gain 

Presence 
Point 

Count for 
Assembly 

Ceanothus cuneatus 0.736 0.085 0.701 0.281 2500 

Venturan CSS 0.709 0.097 0.686 0.223 1945 

Scrub Oak 0.761 0.085 0.661 0.160 2489 

Riversidean Scrub 0.754 0.091 0.648 0.149 1820 

Northern Mixed 0.765 0.088 0.648 0.135 3090 

Diegan CSS 0.779 0.097 0.607 0.099 4606 

Ceanothus crassifolius 0.791 0.078 0.598 0.086 2579 

Ceanothus megacarpus 0.792 0.086 0.599 0.085 3926 

Species 
Predicted  

Area 

Cumulative 
10% Test 
Omission 

Test 
AUC 

Test 
Gain 

Presence 
Point 

Count 

Ceanothus leucodermis 0.206 0.058 0.952 2.003 79 

Ceanothus cuneatus 0.499 0.044 0.880 1.190 160 

Arctostaphylos glandulosa  0.360 0.071 0.874 1.058 123 

Arctostaphylos glauca  0.492 0.040 0.854 1.037 100 

Salvia apiana 0.543 0.049 0.850 1.000 123 

Ceanothus oliganthus 0.439 0.072 0.866 0.991 153 

Opuntia littoralis  0.418 0.061 0.858 0.918 118 

Quercus berberidifolia 0.525 0.088 0.826 0.854 837 

Ceanothus crassifolius  0.470 0.093 0.843 0.846 221 

Rhus integrifolia 0.411 0.057 0.840 0.828 346 

Salvia leucophylla 0.581 0.057 0.783 0.530 646 

Ceanothus spinosus 0.563 0.054 0.758 0.456 556 

Prunus illicifolia 0.682 0.049 0.753 0.387 251 

Encelia californica  0.620 0.096 0.737 0.373 556 

Cercocarpus betuloides 0.734 0.083 0.720 0.348 732 

Artemisia californica 0.708 0.087 0.667 0.183 1294 

Rhus ovata 0.730 0.077 0.652 0.151 771 

Eriogonum fasciculatum 0.782 0.076 0.643 0.143 926 

Heteromeles arbutifolia 0.775 0.092 0.637 0.126 1096 

Malosma laurina 0.784 0.059 0.631 0.125 1587 
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Ceanothus megacarpus  0.745 0.091 0.619 0.123 1170 

Yucca whipplei  0.784 0.092 0.636 0.123 835 

Salvia mellifera 0.807 0.087 0.586 0.072 1169 
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APPENDIX F 

ENVIRONMENTAL VARIABLES EXCEEDING A 10 PERCENT IMPORTANCE THRESHOLD 

FOR COMMUNITIES AND SPECIES 
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Numerical values are importance assigned as a percentage by MaxEnt.  Bolded numerical values 
are the variables with the highest percentage importance for that community.  Italicized numerical 
values are the variables with the highest percentage importance for that species.  Bioclimatic 
variables are shaded in grey; topographic variables are shaded in green. Unshaded variables 
were important for species but not for the community to which they belong.  Environmental 
Variables in the headings are followed by their WorldClim name in parentheses: Summer Rain or 
Precipitation of Warmest Quarter (BIO18); Aridity or Aridity Index (BIO24); Temp Season or 
Temperature of Seasonality (coefficient of variation for mean monthly temperatures) (BIO4); 
Maximum Temperature of Warmest Period (BIO5); Growing Season or Growing Degree Days > 5 
Celsius (BIO20); Annual Precipitation (BIO12); Soil pH; Soil Depth; Water Capacity; Slope Angle; 
Solar Insolation.   

Bioclimatic Topographic 

Community /  
component species 

Summer Rain Aridity 
Temp 

Season 
Max 

Temp 
Growing 
Season 

Annual 
Precip 

pH 
Soil 

Depth 
Water 

Capacity 
Slope 
Angle 

Solar 
Insolation 

Ceanothus crassifolius 43 12   14 15             

Ceanothus crassifolius       37   14     24     

Malosma laurina 32 10 10 29               

Rhus ovata 46       38             

Ceanothus cuneatus 52 
  19                 

Ceanothus cuneatus     10   22 13 17 16       

Quercus berberidifolia 14   55       10         

Cercocarpus betuloides 33   11 30     11         

Rhus ovata 46       38             

Ceanothus megacarpus 38 14 24 11               

Ceanothus megacarpus 23   58 11               

Malosma laurina 32 10 10 29               

Salvia mellifera 25 30 26                 

Northern Mixed 59 22                   

Arctostaphylos glandulosa   29       44           

Arctostaphylos glauca 39     51               

Ceanothus leucodermis     79                 

Ceanothus oliganthus     30 17 10       26     

Ceanothus spinosus 29 14 26       17         

Cercocarpus betuloides 33   11 30     11         

Heteromeles arbutifolia 38 13       12         13 

Prunus illicifolia 45       25           16 

Scruboak 54 24         12         

Ceanothus spinosus 29 14 26       17         

Heteromeles arbutifolia 38 13 12               13 

Quercus berberidifolia 14   55       10         
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Bioclimatic Topographic 

Community /  
component species 

Summer Rain Aridity 
Temp 

Season 
Max 

Temp 
Growing 
Season 

Annual 
Precip 

pH 
Soil 

Depth 
Water 

Capacity 
Slope 

Solar 
Insolation 

Diegan CSS 14 41 11 11               

Artemisia californica 10         55     11   14 

Encelia californica   52 43                 

Malosma laurina 32 10 10 29               

Salvia mellifera 25 30 26                 

Riversidean Scrub 43 16 10 15               

Eriogonum fasciculatum 28 15 11 35               

Rhus ovata 46       38             

Salvia apiana   19 31 32   10           

Venturan CSS 13 11 33 
  24             

Opuntia littoralis     44 10         25     

Rhus integrifolia     49 21 12             

Salvia leucophylla     27   15 26           

Yucca whipplei 14 41 17   26             
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APPENDIX G 

STANDARD DEVIATION ON Y AXIS FOR MARGINAL RESPONSE CURVE PLOTS 
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In the left column and within each group, the community is in the top row followed by species for 
that community.  The standard deviation values are in the right column and are listed by 
environmental variable.  Note that the important environmental variables are not the same across 
communities (down columns).  Bolded values for species’ standard deviation are those that are 
greater than for the community for that variable.   
 
 

Community/Species Standard Deviation on Y Axis 

 

  
Environmental Variable ≥ 10% Importance 

    bio 4 bio 18     

Community     Ceanothus cuneatus 0.123 0.115 

  Species Cercocarpus betuloides 0.111 0.126 

  Species Ceanothus cuneatus 0.209 0.036 

  Species Quercus berberidifolia 0.208 0.070 

  Species Rhus ovata 0.053 0.157 

      bio 18 bio 24     

Community     Northern Mixed 0.129 0.089 

  Species Arctostaphylos glandulosa  0.067 0.206 

  Species Arctostaphylos glauca  0.204 0.002 

  Species Cercocarpus betuloides 0.126 0.050 

  Species Ceanothus leucodermis 0.063 0.000 

  Species Ceanothus oliganthus 0.088 0.140 

  Species Ceanothus spinosus 0.179 0.106 

  Species Heteromeles arbutifolia 0.063 0.046 

  Species Prunus illicifolia 0.163 0.048 

      bio 18 bio 24 ph1   

Community     Scrub Oak 0.099 0.071 0.110 

 Species Ceanothus spinosus 0.179 0.106 0.210 

 Species Heteromeles arbutifolia 0.063 0.046 0.080 

 Species Quercus berberidifolia 0.070 0.041 0.123 

     bio 5 bio 18 bio 20 bio 24 

Community     Ceanothus crassifolius 0.072 0.111 0.210 0.129 

Species Ceanothus crassifolius  0.240 0.105 0.117 0.000 

Species Malosma laurina 0.079 0.097 0.160 0.150 

Species Rhus ovata 0.003 0.157 0.205 0.050 

    bio 4 bio 5 bio 18 bio 24 

Community     Ceanothus megacarpus 0.204 0.034 0.123 0.113 

Species Ceanothus megacarpus 0.217 0.099 0.124 0.002 

Species Malosma laurina 0.210 0.079 0.097 0.150 

Species Salvia mellifera 0.154 0.005 0.112 0.146 
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    bio 4 bio 5 bio 18 bio 24 

Community     Diegan CSS 0.113 0.030 0.090 0.166 

Species Artemisia californica 0.031 0.010 0.106 0.052 

Species Encelia californica  0.226 0.031 0.069 0.209 

Species Malosma laurina 0.210 0.079 0.097 0.150 

Species Salvia mellifera 0.154 0.005 0.112 0.146 

    bio 4 bio 5 bio 18 bio 24 

Community     Riversidean Sage Scrub 0.202 0.078 0.134 0.095 

Species Eriogonum fasciculatum 0.194 0.100 0.093 0.140 

Species Rhus ovata 0.053 0.003 0.157 0.050 

Species Salvia apiana 0.145 0.161 0.001 0.210 

    bio 4 bio 18 bio 20 bio 24 

Community     Venturan CSS 0.206 0.048 0.086 0.183 

Species Opuntia littoralis  0.203 0.027 0.094 0.118 

Species Rhus integrifolia 0.237 0.059 0.127 0.010 

Species Salvia leucophylla 0.288 0.126 0.237 0.111 

Species Yucca whipplei  0.200 0.147 0.110 0.196 
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APPENDIX H 

GOWER SIMILARITY COEFFICIENT MATRICES 
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APPENDIX I 

BOX PLOT GRAPHS DEPICTING RESPONSE TO CLIMATE CHANGE BY MODELING 

APPROACH FIGURES 1 - 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  68 

FIGURE I-1 

In each figure, from left to right graphs 1-3 represent probability distributions extracted from the 
group models for the PRISM (current climate), PCM A2 (warmer and wetter) and GFDL A2 GCMs 
(warmer and drier) . Graphs 4-6 are for the same community as intersected species models. The 
y-axis is the probability value for suitable habitat extracted from the models.  Median values for 
the probability distributions for each graph is given in the pink boxes at the top.  Appendix  figure 
I-2 (Ceanothus cuneatus) was shown in Figure 8, but is included again for completeness.  The 
communities are displayed in alphabetical order.  
  

Ceanothus crassfolius 
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FIGURE I-2 

 
 

 
 

Ceanothus cuneatus 
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FIGURE I-3 
 
 

 

 

  

Ceanothus megacarpus 
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FIGURE I-4 

 

  

Diegan CSS 
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FIGURE I-5 

  

Northern Mixed 
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FIGURE I-6 

 

  

Riversidean CSS 
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FIGURE I-7 

  

Scrub Oak 
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FIGURE I-8 

  

Venturan CSS 
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Table 1 

Occurrence points relative to bounds for the SW Ecoregion and SMMNRA. Most of the 

occurrence points for the targeted species were recorded in SMMNRA and are geographically 

biased. 

 

Species Name Common Name              

Total 
Points 
in SW 
Region 

 Points 
outside 
SMMNRA 

Points  in 
SMMNRA 

%  in 
SMMNRA 

Ceanothus leucodermis Chaparral Whitethorn 79 71 8 10.1% 

Quercus berberidifolia Scrub Oak 837 542 295 35.2% 

Salvia apiana White Sage 123 71 52 42.3% 

Arctostaphylos glauca  Big Berry Manzanita 100 55 45 45.0% 

Ceanothus cuneatus Buckbrush 160 82 78 48.8% 

Cercocarpus betuloides Mountain Mahogany 732 264 468 63.9% 

Ceanothus crassifolius  Hoaryleaf Ceanothus 221 63 158 71.5% 

Eriogonum fasciculatum California Buckwheat 926 198 728 78.6% 

Arctostaphylos glandulosa  Eastwood's Manzanita 123 16 107 87.0% 

Prunus illicifolia Hollyleaf  Cherry 251 32 219 87.3% 

Rhus ovata Sugar Bush 771 91 680 88.2% 

Artemisia californica California  Sagebrush 1294 124 1170 90.4% 

Yucca whipplei  Our Lord's Candle 835 68 767 91.9% 

Heteromeles arbutifolia Toyon 1096 76 1020 93.1% 

Salvia mellifera Black Sage 1169 77 1092 93.4% 

Ceanothus oliganthus Hairy  Ceanothus 153 9 144 94.1% 

Malosma laurina Laurel  Sumac 1587 91 1496 94.3% 

Ceanothus megacarpus  Bigpod Ceanothus 1170 25 1145 97.9% 

Opuntia littoralis  Western Prickly Pear 118 2 116 98.3% 

Rhus integrifolia Lemonade Berry 346 2 344 99.4% 

Encelia californica  California Encelia 556 3 553 99.5% 

Ceanothus spinosus Greenbark  Ceanothus 556 1 555 99.8% 

Salvia leucophylla Purple Sage 646 0 646 100.0% 

TOTAL 
 

13849 1963 11886 
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Table 4 

 Wilcoxon-Mann-Whitney Test on Suitable Habitat Probability Medians for Difference in Current 

and Averaged Climate Change GCMs Across Communities  

The first column "Current Climate Median" are median values for probability distributions 

extracted from current climate grids; "Averaged Climate Change Median" are the distributions 

extracted from averaged PCM A2 and GFDL A2 for that community; "Difference" is the difference 

for those; p value is the probability that the two samples came from populations with equivalent 

distributions. n=100. 

Wilcoxon-Mann-Whitney Test 

Community 

Current 
Climate 
Median  

Averaged 
Climate 
Change 
Median  Difference p Value 

 

Modeled Communities 

Ceanothus crassifolius 0.515 0.298 0.217 < 2.2e-16 

Ceanothus cuneatus 0.381 0.142 0.239 < 2.2e-16 

Ceanothus megacarpus 0.504 0.384 0.120 < 2.2e-16 

Diegan CSS 0.511 0.571 -0.06 < 2.2e-16 

Northern Mixed 0.434 0.176 0.258 < 2.2e-16 

Riversidean Sage Scrub 0.501 0.432 0.069 1.52E-05 

Scrub Oak 0.397 0.164 0.232 < 2.2e-16 
Venturan CSS 0.438 0.363 0.075 1.33E-08 

 

Intersected Communities 

Ceanothus crassifolius 0.367 0.113 0.254 < 2.2e-16 

Ceanothus cuneatus 0.260 0.050 0.21 < 2.2e-16 

Ceanothus megacarpus 0.500 0.435 0.065 4.49E-12 

Diegan CSS 0.479 0.311 0.168 < 2.2e-16 

Northern Mixed 0.184 0.035 0.149 < 2.2e-16 

Riversidean Sage Scrub 0.377 0.211 0.166 < 2.2e-16 

Scrub Oak 0.296 0.125 0.172 < 2.2e-16 

Venturan CSS 0.260 0.022 0.238 < 2.2e-16 
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Table 5 

Sorting By Increasing Response To Averaged Climate Change Between  Mesic And Non-Mesic 
Communities 
 
Within each table, the percent change in probability sums for climate change within SMMNRA 
relative to habitat probability sums for current climate are listed in order of increasing value.   
Bolded community names are non-mesic; regular font are mesic.  The rank for percent change 
(1=least, 8 = most) for the modeled community is listed in the right-most column for each table.  
Note that changes in rank emphasize how each modeling approach picks up different trends 
based on species drought tolerance; the modeled communities sort by drought tolerance more 
coherently than the intersected models. 

 

 

 
  

GFDL A2   

Modeled  Intersected  

 

Community 
% 

Change Community 
% 

Change 

 Rank 
(Modeled) 

by 
Increasing 

% 
Change 

Diegan CSS 0.20 Diegan CSS -0.30 1 

Riv Scrub 0.05 Riv Scrub -0.32 2 

Venturan CSS -0.11 C. megacarpus -0.36 4 

C. megacarpus -0.42 C. crassifolius -0.78 5 

C. crassifolius -0.55 Scrub Oak -0.81 6 

Scrub Oak -0.75 N Mixed -0.93 8 

C. cuneatus -0.76 C. cuneatus -0.93 7 

N Mixed -0.83 Venturan CSS -0.94 3 

PCM A2 

 Modeled  Intersected    

Community 
% 

Change Community 
% 

Change 

Rank 
(Modeled) 

by 
Increasing 

% 
Change 

Diegan CSS 0.04 C. megacarpus -0.01 2 

C. megacarpus -0.06 Diegan CSS -0.28 1 

Riv Scrub -0.15 Scrub Oak -0.34 8 

C. crassifolius -0.23 Riv Scrub -0.48 3 

Venturan CSS -0.25 C. crassifolius -0.61 4 

Northern Mixed -0.34 C. cuneatus -0.63 7 

C. cuneatus -0.38 N Mixed -0.66 6 

Scrub Oak -0.42 Venturan CSS -0.91 5 
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Figure 1.  Study Area and Regional Context for SMMNRA.   The left and right diagonal cross-
hatched area combined is the California Floristic Province (CFP). The right diagonal 
crosshatched area alone is the Southwestern California (SW) region.  The Santa Monica 
Mountains National Recreation Area (SMMNRA) is represented by the black polygon. 
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Figure 2.   South West Ecoregion Modeled Distributions for CSS.  Left column: grouped species 
models; Right column: intersected species models.  Top Row: Diegan CSS; Middle Row: 
Riversidean Sage Scrub; Bottom Row: Venturan CSS.  Warmer colors indicate higher 
probabilities for suitable habitat.  SMMNRA is approximately located where black arrow is in 
Diegan CSS Modeled Community image. Note that each legend scale for suitable habitat 
probabilities is relative.  

SMMNRA 
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Figure 3.   Spatial Bias of Species Occurrences.   The distribution of all 13,849 data points for the 
targeted species within the SW region (indicated by black border).  Of these, 11,886 points are 
within SMMNRA (indicated by the red border). 
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Figure 4.   Results Demonstrating Environmental Bias in the Occurrence Data Using Null a Model 
Comparative Procedure (Raes and ter Steege, 2007).  The lower collection of grouped points 
represents the AUC values of 99 SDMs built with randomly drawn locations from one 
representative environmental grid used in the study, BIO12 (Annual Precipitation). The upper 
point represents the AUC value for the real SDM for each community using the actual occurrence 
locations.  The SDMs built with randomly drawn environmental data were run with the same 
settings as the real SDM.     
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Figure 5.  Target Group Background Versus Background From The Entire SW Region.  On the 
top is the predicted distribution for Venturan CSS over the study area using a random sample of 
points from the entire SW region for the background.  The inset is a close up of SMMNRA, 
showing little differentiation within its bounds.  On the bottom, the predicted distribution based on 
target group background points is more reasonable, shifting predictions northwestward into 
Ventura County and increasing discrimination within SMMNRA.  Note the distribution has moved 
away from the high elevation peaks and chaparral areas within SMMNRA, visible in the inset in 
the lower figure (the light blue band replacing green).  Warmer colors mean higher probabilities 
for suitable habitat.  Note that this model is a calibration-stage model, and was not the one used 
for the current climate Venturan CSS in the study  
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Figure 6.  Model for Venturan CSS with Target Group Background Overlaid with Occurrence 
Points For the Assembly.  On the lower panel is the SW regional view.  The close up of SMMNRA 
is on the upper panel.  Warmer colors indicate higher predicted probabilities for suitable habitat. 
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Figure 7.   Ceanothus cuneatus  Community Model for SMMNRA.  Mapped suitable habitat 
depicting the Ceanothus cuneatus community based on the modeled community upper left, and 
based on the intersected model upper right.  The component species models are shown below 
the blue arrow.  Species models, clockwise from left:  Quercus berberidifolia, Ceanothus 
cuneatus, Rhus ovata, Cercocarpus betuloides. The color ramp legend lower left gives the range 
of values for the probability of suitable habitat from pixels in the models, from a minimum of 0.0 to 
a maximum of 0.7, based on a scale 0.0 to 1.0.  Higher values (warmer colors) indicate where 
higher probabilities for suitable habitat are located.  Boxplots for the community distributions are 
shown in Figure 8.  
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Figure 8.  Boxplots illustrating the contrast between modeling approaches .  The boxplots 
represent the probability distributions for suitable habitat within SMMNRA’s bounds for the 
Ceanothus cuneatus community.  Their mapped distributions are depicted in Figure 7.   
In the graph series: Graphs 1-3 are the community  models (grouped species): the boxplots from 
left to right  are the distribution for current climate (PRISM graph 1),warmer and wetter (PCM A2-
graph 2) and warmer and drier GCMs(GFDL A2 graph 3).  Graphs 4-6 are for the same species 
but as intersected species models to form the community.  The y-axis is the scale for the 
probability values for suitable habitat extracted from the models.  Median values for each 
probability distribution are given in the pink boxes at the top of each graph .  The intersected 
models (Graphs 4-6) had lower median values across GCMs for most communities. 
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Figure 9.  Frequency of Variable Importance ≥ 10 Percent Permutated Value.  Frequency of 
important variables in models as calculated by MaxEnt.  Top: Community models; Bottom: 
Species models.  Topographic variables were selected as important more frequently in the 
species than in the community models.  Temperature Variation in the species models replaces 
Summer Rain as the most frequently important variable in the community models.  Note that y 
axes are different between species and community model bar charts.  
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Figure 10.  Response Curves For Temperature Seasonality (BIO4) for Modeled Scrub Oak 
Community.  Top Row: Response curves for the component species.  Bottom Graph: Response 
curve for the community.  Community curves often had a shape intermediate to the more variable 
shapes for the species models and appeared to be the average of the species’ response curves.  
The values on the y axis are probabilities for suitable habitat (ranging from 0-1) for the species as 
x (standard deviation for Temperature Seasonality) is varied. The heading ‘swe_bio_4’ refers to 
the environmental variable file name used by MaxEnt for Temperature Seasonality for the 
Southwest Ecoregion (swe).  
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Figure 11.  Community Response in SMMNRA to Climate Change as Percent Change for 
Suitable Habitat Probability Sums Relative to PRISM” (current climate).  Top graph: Modeled 
Communities; Bottom graph: Communities as intersected species models.  Projected change in 
suitable habitat within SMMNRA bounds as a percent difference relative to current climate.  
GFDL (red bars) is warmer and drier climate; PCM (blue bars) is warmer and relatively wetter.   
Labels below graphs are the community names.   


