
 Natural Desert and Human Controlled Landscapes:  

Remote Sensing of LULC Response to Drought 

by 

Shai Kaplan 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved December 2013 by the 

Graduate Supervisory Committee:  

 

Soe W. Myint, Chair 

Anthony J. Brazel 

Matei Georgescu 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2014  



  i 

ABSTRACT  

   

Droughts are a common phenomenon of the arid South-west USA climate. 

Despite water limitations, the region has been substantially transformed by agriculture 

and urbanization. The water requirements to support these human activities along with 

the projected increase in droughts intensity and frequency challenge long term 

sustainability and water security, thus the need to spatially and temporally characterize 

land use/land cover response to drought and quantify water consumption is crucial.  

This dissertation evaluates changes in ‘undisturbed’ desert vegetation in response 

to water availability to characterize climate-driven variability. A new model coupling 

phenology and spectral unmixing was applied to Landsat time series (1987-2010) in order 

to derive fractional cover (FC) maps of annuals, perennials, and evergreen vegetation. 

Results show that annuals FC is controlled by short term water availability and 

antecedent soil moisture. Perennials FC follow wet-dry multi-year regime shifts, while 

evergreen is completely decoupled from short term changes in water availability. Trend 

analysis suggests that different processes operate at the local scale. Regionally, evergreen 

cover increased while perennials and annuals cover decreased.   

Subsequently, urban land cover was compared with its surrounding desert. A 

distinct signal of rain use efficiency and aridity index was documented from remote 

sensing and a soil-water-balance model. It was estimated that a total of 295 mm of water 

input is needed to sustain current greenness.  

Finally, an energy balance model was developed to spatio-temporally estimate 

evapotranspiration (ET) as a proxy for water consumption, and evaluate land use/land 

cover types in response to drought. Agricultural fields show an average ET of 9.3 
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mm/day with no significant difference between drought and wet conditions, implying 

similar level of water usage regardless of climatic conditions. Xeric neighborhoods show 

significant variability between dry and wet conditions, while mesic neighborhoods retain 

high ET of 400-500 mm during drought due to irrigation. Considering the potentially 

limited water availability, land use/land cover changes due to population increases, and 

the threat of a warming and drying climate, maintaining large water-consuming, irrigated 

landscapes challenges sustainable practices of water conservation and the need to provide 

amenities of this desert area for enhancing quality of life. 
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CHAPTER 1:  INTRODUCTION 

“Drought is a condition of moisture deficit sufficient to have an adverse effect on 

vegetation, animals, and man over a sizeable area" (Warwick, 1975). 

Droughts are common phenomena of the highly variable climate of drylands. The 

impacts of climate variability on the dynamics of physical and biological systems and 

their socioeconomic implications are critical for decision makers and society in general 

(Vitousek and Mooney 1997). Due to its various causes, wide geographical extent, and 

multidimensional impacts, drought is considered one of the most complex and least 

understood climate-related hazards. 

Drylands ecosystems, including arid, semi-arid, and dry sub-humid regions, are 

the largest terrestrial biomes, composing about 41% of the Earth’s landmass and 

containing 38% of the global population (Reynolds et al. 2003). Characterized by low 

(<250mm for arid and 250–500mm for semi-arid) and highly variable precipitation, arid 

ecosystems are susceptible to structural changes due to the sensitive balance among 

vegetation structure, soils, and climates (Rodriguez-Iturbe et al.1999). Even small 

perturbations in water availability can impact vegetation distribution and landscape 

functionality over the long term (Whilhite 2000; Newman et al. 2006). Changes in 

vegetation may lead to a positive feedback with the climate system by impacting on both 

the surface energy- and moisture- balance. For example, land degradation in the form of 

reduced vegetation cover will result in less evapotranspiration and higher sensible heat 

flux. These changes may result in higher temperature and reduced precipitation that, in 

turn, could result in further vegetation degradation and accelerate the rate of change. 
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 In addition to climate-driven changes, human activities such as herding practices, 

agriculture, deforestation, and more recently urbanization, have transformed many of the 

world drylands (Vitousek and Mooney 1997; Grimm et al, 2008; Imhoff et al. 2004). 

These land transformations are all associated with changes in vegetation and have been 

identified as first-order human climate forcing (Mahmood et al. 2010). Thus, vegetation 

is an indicator of ecosystem condition and can indicate magnitude of change. Identifying 

vegetation changes and understanding the dynamics of human-controlled and natural 

landscape vegetation patterns in response to climate variability (specifically drought) and 

their relationships with ecosystem functions need to be based upon detailed 

spatiotemporal data analysis over wide regions. An examination of detailed 

spatiotemporal data can help us distinguish between human-induced and natural climatic 

impacts on vegetation.  

  This dissertation focuses upon the arid and semi-arid deserts of the Southwest: the 

Mojave and Sonora. The Intergovernmental Panel on Climate Change (IPCC 2007) 

concluded that, for most arid regions, new climate conditions are evolving. Based on 

these new conditions, most scenarios for the Southwest predict drier, warmer, and more 

extreme climate (Archer and Predick 2008; CLIMAS 2012). With predictions of 

increased drought intensity and frequency, it is important to quantify the responses of 

different landscapes to drought.  

  In addition, changes in drought intensity and frequency have societal implications. 

Human activities, specifically agricultural practices and, more recently, rapid 

urbanization, have greatly modified the Southwest. Agriculture and cities add vegetation 

to an already water-stressed environment. Because water supplies are limited and 
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vulnerable, population growth and intensification of human activities, coupled with a 

drier climate, will result in increased competition among industrial, agricultural, and 

residential sectors. Regional water security (i.e., the ability of the water system to meet 

environmental and societal needs) will invariably decline. Furthermore, Barnett et al. 

(2008) showed that over 60% of climate-related trends in the Southwest are human-

induced, amplifying the need for better understanding of the interactions between land-

use/land-cover changes (LULCC) and climate as well as the implications of drought on 

both natural and human-controlled landscapes. 

    Using remote sensing methodologies, this dissertation characterize LULC 

response to drought, exploring the three main landscapes in the Southwest: Natural desert 

(the Mojave Preserve), agricultural (around Phoenix), and urban (Phoenix metro-politan 

area) (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of selected study areas. The Mojave National Preserve represents 

natural desert environment, and Phoenix represents human-controlled landscapes, i.e., 

urban and agriculture.  
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  In the natural desert (i.e., the Mojave National Preserve), human impacts on the 

landscape have been minimal and restricted to specific areas within the preserve, in an 

attempt to maintain the natural ecological balance. Thus, any observed changes in 

vegetation should be climate-driven. Despite a large body of literature on landscape 

response to climate variability (e.g., Huxman et al. 2004; Hereford et al. 2006; 

Pennington and Collins 2007; McAuliffe and Hamerlynck 2010), there is a paucity of 

spatiotemporally explicit information on changes at the level of vegetation functional 

types, (i.e., annuals, perennials, and evergreens). Filling the gap in the spatiotemporal 

pattern and dynamics of vegetation will help us understand the driving forces of change 

at the functional-type level and the severity of corresponding effects.  

 Thus, the first part of this research involved developing and evaluating new 

remote-sensing methods to delineate functional types and describe their spatiotemporal 

distribution. The monitoring of long-term changes in this distribution will reveal the 

natural landscape’s response to climate variability, specifically drought. 

  Irrigation using collected surface water and groundwater sustains human activity 

in the arid climate of the Southwest. These water sources are limited, vulnerable and, in 

the long run, depend on climate as well as societal factors such as population growth, 

technological change, culture, and policy. Given projected climate and limited water 

sources, and likely continued population growth, we expect less water will be available 

for irrigation. Thus, this research will seek to quantify the spatiotemporal water 

consumption of human-controlled landscapes and their sensitivity to drought. 

Quantifying the evolving consumption of water is key for better water management and 
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long-term sustainability of urban and agriculture environments in this region (Gober et al. 

2011).  

    Several factors strongly recommend the use of remote-sensing data to quantify 

land-cover response to climate variability over time and space. Remote sensing allows for 

fast, efficient monitoring of land-surface processes at different scales, from local to 

global (Anyamba and Tucker 2005; Bastiaanssen et al. 1999). Remote sensing enables 

researchers to monitor the large spatial extent of the Southwest over the long term. 

Finally, remote sensing is well-suited to detecting changes in vegetation, which is 

important considering the role vegetation dynamics play in both natural-desert and 

human-controlled environments. Comparing the response of these environments to 

climate variability at different scales will reveal the climate–ecosystem-hydrology 

feedback. This feedback mechanism influences nutrient, water, and energy allocation at 

the land surface (Troch et al. 2009) and thus has significant implications for land 

degradation, water security, and sustainability.  

 

1.1 Dissertation Format 

  There are six chapters in this dissertation: an introduction, a conclusion, and four 

chapters that each serves as a first-authored manuscript. Three of these manuscripts have 

been submitted to peer-reviewed journals. 

  The first manuscript (Chapter 2) views the Mojave National Preserve as a window 

to undisturbed desert environment. The chapter’s approach combines phenology, remote 

sensing, and trend analysis to delineate, quantify, and monitor the spatiotemporal 

distribution of vegetation functional types (evergreen, perennials, annuals) in arid 
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environments. The main goal of this approach is to estimate the fractional cover of the 

different functional types and to examine long-term temporal changes related to 

precipitation variability. 

  The second manuscript (Chapter 3) examines the differences between arid urban 

landscapes and their surrounding natural ecosystems in terms of their phenology and 

response to summer water inputs. I use a remote sensing and a soil-water balance model 

to analyze rain-use efficiency (RUE), interannual and intraannual vegetation phenology, 

and above-ground net primary production (ANPP) of the two land-cover types. These 

results are then used to simulate the Horton index (H) as a measure of land-cover 

response to climate variability. This chapter was published in the Journal of the Arizona 

Nevada Academy of Science in 2012.  

 The third manuscript (Chapter 4) develops and evaluates a simplified energy 

balance model: S-RESET, which is used to estimate the region’s agricultural water 

consumption. By comparing water consumption in wet versus drought years, the 

manuscript examines agriculture sensitivity to drought and farmers’ resilience in the 

context of water usage. This manuscript was published in a special issue of 

Photogrammetric Engineering and Remote Sensing journal in August 2012.  

  The fourth paper (Chapter 5) uses the S-RESET model developed in Chapter 4 to 

model evapotranspiration (ET) over the urban area of Phoenix as a proxy for outdoor water 

consumption. The objectives of this chapter were to estimate outdoor water consumption 

for various LULC types and determine their sensitivity to drought and implications for 

regional water security. The chapter was submitted to Environmental Management in 

November 2013. 
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  A short, concluding chapter summarizes the methods, results, and contributions of 

this dissertation to the debate on the roles of climate vs. humans in LULC response to 

drought and the implications therein. 
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CHAPTER 2: MONITORING LONG-TERM ECOSYSTEM RESPONSE TO 

DROUGHT: A CASE STUDY FROM THE MOJAVE DESERT 

2.1: Abstract 

Scientists typically classify arid vegetation into three main functional types: annuals, 

perennials, and evergreens. The aim of this study is to delineate these three types with 

remote sensing and evaluate their response to drought. We focus on the Mojave National 

Preserve as a window to the undisturbed natural desert environment where most changes 

can be attributed to climate. This study applies multi-date adaptive unmixing to Landsat 5 

TM time-series data from 1987–2010. Using this method, we produced new maps of 

yearly annuals, perennials, and evergreen cover at the subpixel level. Results attribute the 

spatiotemporal variability of annuals to short-term winter precipitation, underlying soil 

and geomorphology, and preceding soil moisture. We identified no regional change in the 

response of annuals to drought conditions. Perennial cover was highly variable spatially, 

yet consistent over a period of several years, following a multi-year regime shift between 

wet and dry conditions. Evergreen vegetation has the highest and most spatially 

consistent fractional cover, with many areas showing high fractional cover (>30%) even 

during drought years, indicating its decoupling from the short-term climate variability. 

We then analyzed the linear trends in the resulting dataset to characterize the 

spatiotemporal dynamics of each functional type. Results indicated both upward and 

downward monotonic trends, suggesting different processes dominate at the local scale. 

Regionally, evergreen shows a positive trend, while perennials and annuals show a 

negative trend. Although changes in most areas are insignificant, the existence of a 

monotonic trend may point to the overall direction of each functional type (rehabilitation 
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vs. degradation). The resulting functional types and trend maps enhance ecosystem 

monitoring and efforts to identify where local forces operate. Furthermore, the proposed 

method allows us to look simultaneously at both local and regional scales and offers 

insights into the relationship among different functional types. 

 

2.2: Introduction 

Drylands ecosystems—including arid, semi-arid, and dry sub-humid—are the 

largest terrestrial biome, composing about 41% of the Earth’s landmass. These 

ecosystems are typically fragile and highly sensitive to any form of change, (i.e., even 

small perturbations may affect vegetation distribution and landscape functionality over 

the long term [Whilhite 2000; Newman et al. 2006]). For the arid Southwest, the 2007 

Intergovernmental Panel on Climate Change (IPCC 2007) concluded that new climate 

conditions are evolving. Based upon these new conditions, most scenarios for the 

Southwest predict drier, warmer, and more extreme climate (Archer and Predick 2008; 

CLIMAS 2012). 

Vegetation in arid landscapes varies in response to precipitation (Pennington and 

Collins 2007; Buyantuyev and Wu 2009) and across general geographic regions 

(McAluiffe and Hamerlynck 2010). Over the short term, vegetation can adapt to climate 

variations (Troch et al. 2009). Nevertheless, changes in seasonal and annual precipitation 

patterns can have a dramatic spatial effect that may lead to changes in ecosystem 

structure and functioning. Such changes in vegetation can feed back to climate and 

accelerate change, potentially triggering degradation. Several studies have shown the 

importance of precipitation pulses—their timing, depth, and duration (Beatley 1979; Ogle 
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and Reynolds 2004). Other studies indicated a strong relationship between precipitation 

variability on the one hand and vegetation cover and above-ground net primary 

productivity (ANPP) on the other (Hereford et al. 2006). Although these relationships are 

believed to hold true over long periods, most studies were carried out during periods of 

above-normal precipitation and have yet to be confirmed during periods of low 

precipitation. Monitoring long-term gradual changes in arid ecosystems is therefore 

important. 

To better understand, predict, and simplify ecosystem processes, organisms are 

usually generalized into functional type groups. Functional types are groups of species 

that are similar in their role within the community or ecosystem processes. The concept 

of functional types uses structural, physiological, and/or phenological differences to 

group species in response to environmental conditions. Resource limitations such as 

water availability (i.e., precipitation and soil moisture) link, in predictable ways, 

adaptation and response. Gain or loss of functional types can permanently change the 

ecosystem characteristics through changes in resource distribution, nutrient supply, 

and/or disturbance regime (Chapin et al. 2002). The general functional types in arid 

environments are perennials, annuals, and evergreens (woody vegetation/shrubs). Bonan 

et al. (2002) concluded that mapping the spatially continuous distribution of functional 

types is critical for linking climate and ecosystem models.  

Functional type estimations at the landscape scale are required to evaluate 

wildfire risk, endangered species, soil erosion, and ecosystem health. Quantitative 

approaches to monitoring functional type abundance at high resolution are few. Most 

studies use point data from fieldwork or low-resolution satellite data. As a result, there is 
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a paucity of spatiotemporally explicit information on changes at the vegetation 

functional-type level. In addition, many studies refer to perennials and evergreen 

vegetation as a single group (Wallace et al. 2008; McAuliffe and Hamerlynck, 2010; 

Guida et al. 2013). A gap remains between ecological theory and spatiotemporal studies 

of vegetation patterns and dynamics on the driving forces of change and the severity of 

corresponding effects. The need for long-term monitoring—as well as greater 

understanding of the scale of changes and the role of vegetation dynamics in the feedback 

mechanism—suggest that only remote sensing data can fill the gap.  

In this chapter, we combine phenology, remote sensing, and trend analyses to 

quantify and monitor the spatiotemporal distribution of vegetation functional types in arid 

environments. The first objective is to develop a framework to derive and quantify the 

abundance of plant functional types. This framework requires three steps. First, we use 

multiple end-member spectral mixture analysis (MESMA) to quantify vegetation 

fractional cover at different times of the year. We then define functional types based on 

phenology and quantify annual growth. Finally, we use a non-parametric trend analysis to 

evaluate temporal changes.  

Remote sensing offers retrospective monitoring and continuous assessment, as 

well as future predictions when combined with modeling. It is well suited to measuring 

vegetation functional types, in that Ustin and Gamon (2009) referred to functional types 

as “optical types” and reviewed the spectral information and methods for identifying 

them. They recommended using temporal images of vegetation indices to capture the 

landscape greenness and incorporating phenology to identify vegetation functional types. 

Wallace and Thomas (2008) and Wallace (2008) used phenological metrics as proxies for 
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growth of annuals and perennials in the Mojave Desert.  Roderick et al. (1999) used 

NDVI time series analysis to estimate cover of different functional types. Recently, 

Casady et al. (2013) used time series analysis based on the MODIS Enhanced Vegetation 

Index (EVI) combined with field observation to estimate winter annuals in the Mojave 

and Sonora deserts. All these studies rely upon high temporal resolution satellites such as 

the MODIS or AVHRR. Yet, while capturing the entire phenological cycle, the spatial 

resolution of these sensors is often too coarse to detect subtle land-cover changes. 

Furthermore, they capture only the greenness of the landscape as a whole, which means 

they must infer biophysical indicators such as biomass and cover.  

The Landsat system constitutes the longest time series of imagery worldwide and 

fulfills both spatial and temporal prerequisites combined with an adequate spectral 

resolution to monitor and analyze long-term changes in ecosystem processes and land-

cover change. Hostert et al. (2003) and Sonnenschien et al. (2011) used Landsat time 

series and linear trends to model vegetation fractional cover and analyze spatio-temporal 

changes. Although Landsat offers a long time series, the number of observations for each 

location is limited, and the noise level in the data tends to be high, especially for arid 

environments. A non-parametric trend analysis is more robust to noise and more suitable 

to use with limited number of observations/images.  

By incorporating vegetation fractional cover as a biophysical indicator from the 

Landsat time series with phenological differences, one may differentiate among these 

functional types (Shoshany and Svoray 2002; Ustin and Gamon 2010). Analyzing long-

term changes in the pattern of each functional type may indicate subtle environmental 
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changes and help identify the ecohydrological implications of climate-driven, land-cover 

changes.  

 

2.3: Study Area 

Our test site is the Mojave National Preserve (MNP), CA (Figure 2). Established 

as a national preserve in 1994, the MNP covers 6475 km
2
, most of which are designated as 

wilderness and critical habitat for the desert tortoise. Human activities include mining, 

roads/rail tracks, and grazing—all controlled to minimize impact on natural resources 

(Mojave National Preserve 2002). 

The Mojave Desert has cold winters and hot summers, with average temperatures 

ranging from 11°C in winter to over 30°C in summer. Precipitation is highly variable 

(Figure 3), with no significant change over time. Climate variability has two main forcing 

processes: (1) El-Nino southern oscillation (ENSO), which controls interannual up to 

decadal variability, and (2) Pacific Decadal Oscillation (POD), which modulates decadal 

to multi-decadal variability.  At a regional scale, ENSO conditions promote wetter 

winters across the Southwest, with spatially homogenous precipitation events. La-Nina 

typically results in dry winters (Bonan 2002). Hereford et al. (2006) identified three 

patterns of regime shift for the Mojave Desert, corresponding to 35, 5, and 2.2 years. The 

35- and 5-year shifts correspond to PDO and ENSO, respectively. The 2.2-year cycle 

corresponds to the quasi-biannual oscillation, a periodic change in the direction of the 

equatorial zonal wind between easterlies and westerlies (Baldwin et al. 2001).  The 

analysis of Hereford et al suggested that interannual and multi-decadal climate variation 

affect vegetation. We thus need long-term analysis to identify trends and changes in plant 
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phenology and productivity that, in turn, emphasize the need to use remote-sensing data 

over long periods. 

Figure 2. The MNP study area within the Mojave Desert ecosystem, field sample 

locations, and the three weather stations used to characterize the climate. 

 

 

Beatley (1974) showed that, for the Mojave Desert, the autumn-winter 

precipitation is the critical pulse that triggers biological activity for the following spring and 

summer. Winter precipitations replenish shallow and deep soil moisture and produce a 

relatively uniform phenology pattern (Loik et al. 2004). Figure 4 shows a long-term 

analysis of the percentage of precipitation.  
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Figure 3. Annual water-year precipitation at three weather stations around the MNP. 

Note the high temporal variability. The 2001-2, 2005-6, and 2006-7 were extremely dry 

where as 1990-1 to 1992-3, and 2004-5 had high annual precipitation (Data source: 

Western Regional Climate Center, http://www.wrcc.dri.edu/). 

 

  

Figure 4. The percentage of precipitation falling during autumn and winter (October-

March). On average, over 67% of precipitations fall during this period. 
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2.4: Data and Methods 

2.4.1: Climate 

Although meteorological stations provide accurate observations of climate 

variables, their spatial coverage is limited and thus may be insufficient to represent the 

spatial variability of climate. To examine climatic change over the study’s time period in 

conjunction with vegetation changes, we use the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) data. PRISM is an interpolation method used to 

create continuous climate data at 4km resolution across the United States for 

precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) (PRISM 

Climate Group, 2011). In addition to its continuous coverage, PRISM also accounts for 

elevation, slope and proximity to a coastline. Areas with large variations in terrain such 

as the MNP are relatively well modeled by PRISM. Furthermore, Hereford et al. (2006) 

highlighted the importance of long-term climactic conditions to evaluate changes in 

desert vegetation. Following figure 7 and Beatley (1974) we considered annual 

precipitation, winter precipitation (January-March), annual Tmax, and annual Tmin. For 

each variable we performed trend analysis as mentioned in section 2.4.5. 

 

2.4.2: Imagery and spectral data 

A long time series of Landsat-5 TM images (70) was acquired for the MNP study 

area, covering the period between 1987 and 2010. This period covers a wet period (1987-

1998) followed by a regime shift into a current dry period (Hereford et al. 2006). For 

each year, we used three images: beginning of spring, end of spring and end of summer. 

We selected these acquisition dates based on climate analysis to reflect the optimal 
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conditions (i.e., minimum competition for resources) for each functional type (see next 

section for details). The specific dates were also a function of cloud free image 

availability (Table 1). Image analysis was preceded by geometric registration. 

Radiometric and atmospheric calibrations following the procedure elaborated by Chavez 

(1996) were applied to improve the image quality and accuracy. This step also insures an 

adequate consistency between multi-temporal data sets, a critical consideration when 

referring to vegetation fractional cover. 

To account for the variety of land-cover types, we collected spectral signatures for 

dominant photosynthetic active vegetation functional types (PV), non-photosynthetic 

vegetation (NPV), and soils during two field trips in September 2012 and March 2013. 

We used a FieldSpec 4 Hi-Res Spectroradiometer, measuring reflectance from 350 to 

2500 nm in 2151 bands and a Spectralon panel as spectral white reference. All samples 

were taken under natural illumination conditions on site. We then resampled the spectra 

to match the spectral resolution of the Landsat TM and create a spectral library.  Figure 5 

shows a Landsat scene of the study area. Figure 6 shows the spectral library developed 

from field measurements. 

Final analysis included only areas with slope <10° because elevation is a 

significant determinant of climatic patterns in the MNP. Ranging from 270m to 2417m, 

elevation differences lead to significant differences in slope and aspect, affecting water 

and light availability and resulting in different vegetation communities and patterns. 

Histogram analysis indicated that 85% of the area has slope <10°. Additionally, snow 

often persists at higher elevations late into spring. 
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Table 1. Acquisition dates for Landsat 5 TM images used (day/month) 

Year 
End of winter  

(max. vegetation) 
End of spring 

End of summer  

(min. vegetation) 

1987 22/4 11/7 29/9 

1988 08/4 03/6 15/9 

1989 11/4 14/6 18/9 

1990 09/2 03/7 23/10 

1991 17/4 20/6 24/9 

1992 03/4 14/6 09/8 

1993 21/3 09/6 29/9 

1994 08/3 12/6 16/9 

1995 27/3 01/7 19/9 

1996 29/3 17/6 20/8 

1997 17/4 20/6 23/8 

1998 19/3 07/6 25/7 

1999 22/3 10/6 13/8 

2000 25/4 12/6 16/9 

2001 28/4 15/6 18/8 

2002 30/3 18/6 21/8 

2003 18/4 21/6 08/8 

2005 06/3 25/5 29/8 

2006 10/4 28/5 16/8 

2007 12/3 16/6 03/8 

2008 14/3 18/6 06/9 

2009 17/3 21/6 25/9 

2010 16/2 24/6 27/8 
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Figure 5. A false color composite of Landsat-TM 30m resolution data over the MNP 

(March 2003) by displaying channel 4 (0.750-0.900 μm), channel 3 (0.630-0.690 μm), 

and channel 2 (0.525-0.605 μm) in red, green, and blue respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The endmember spectra used for the MESMA. The use of multiple end-

members allows variation of solution on a pixel basis therefore minimizes the error. The 

distinct signature of green vegetation is noted as well as the lower reflectance of bushes 

in the Near Infra-Red (837nm) band. 
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2.4.3: Multiple end-member spectral mixture analysis 

Elmore et al. (2000) have demonstrated the superiority of a subpixel approach 

over vegetation indices for arid regions with sparse vegetation. To account for diversity 

of vegetation and soil components, we employed the Multiple Endmember Spectral 

Mixture Analysis algorithm using the VIPER tool extension in ENVI software. The 

MESMA allows the number and type of end-members to vary for each pixel within an 

image, thus minimizing error. It provides a quantitative measure in the form of fractional 

cover—a biophysical indicator for ecosystem status and land degradation at the subpixel 

level.   

We used the spectral library derived from field measurements as end-members 

(EM) input to MESMA. We considered the following combinations: 

2EM = soil+shade; PV+shade; NPV+shade 

3EM =  soil+NPV+shade; soil+PV+shade; NPV+PV+shade 

4EM = soil+NPV+PV+shade 

The shade end-member was included in all models to account for illumination variation 

(Dennison and Roberts 2003). For each pixel, we applied two constraints: fraction values 

between -0.1 and 1.1 and a threshold of RMS<0.05. We then normalized the resulting 

fractional cover maps for shade following Myint and Okin (2009). The final vegetation 

fraction maps were produced by saving the model that minimizes both number of EM and 

the RMS for each pixel.  
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2.4.4: Delineating Functional Types 

To map the different functional types, we applied an adaptive spectral mixture 

analysis approach (Svoray and Shoshany 2002).  We developed a new algorithm, based 

on the differences in the vegetation fractional (Fv) cover between dates and used it to 

delineate the different functional types as follows:  

- Evergreen = Fv (end of the summer ~ September).  

- Annuals = Fv (beginning of spring ~ March) – Fv (late spring ~ May-June).  

- Perennials = Fv (end of spring ~ May-June) – Fv (end of summer ~ September).  

This algorithm follows a conceptual model of plant competition for resources (Figure 7), 

especially water. Immediately following winter water input, and when temperatures start 

to rise, annuals start to grow, reaching their peak biomass and greenness. As the season 

progress, environmental stress increases (i.e., water input decreases and temperature 

increases), leading to annuals wilting as topsoil dries out. Perennial vegetation growth 

also starts following winter water input, but reaches its peak growth later in the season. 

Evergreen vegetation has a deeper rooting system that uses water from deeper soil levels 

(Reynolds et al. 2004); thus, it can survive the dry period and maintain consistent 

greenness throughout the year. These growth strategies reduce competition between the 

different functional types and maximized use of resources. 
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Figure 7. The conceptual model of plant competition for resources. Each curve 

represents the response of plant carbon gain to increased environmental stress during the 

growing season (decrease in precipitation and increased temperature). Adapted from 

Ehleringter (1985).  

 

2.4.5: Trend analysis 

To determine change over time, we used the Mann-Kendall (MK) test. The MK is 

a nonparametric trend analysis robust to outliers. It tests for the existence of a monotonic 

trend, (i.e., it measures the degree to which a trend is consistently increasing or 

decreasing by evaluating the slopes between all pair-wise combinations). The test values 

range from -1 to +1, where positive values indicate an increasing trend, and negative 

values indicate a decreasing trend. Values closer to +1 and -1 indicate more direct or 

inverse correlation, respectively, between the ranking of vegetation cover and time, while 

a value of 0 indicates no consistent trend. We conducted the analysis on a pixel-by- pixel 

basis using the IDRISI software Earth trend Modeler.  To determine the magnitude of the 

trend, we used Theil’s regression approach that estimated the slope of the trend line as the 

median of the slopes calculated between all pair-wise time steps. Similar to the MK test, 

the Theil’s approach is robust to outliers (Daniel 1990). 
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2.5: Results and Discussion 

2.5.1: Climate change 

 Resampling of the PRISM data and performing trend analysis show no regionally 

consistent significant change in climate during 1987-2010 over the MNP at the P-

value=0.05. At the P-value=0.1, annual precipitation analysis show that the higher 

elevations experienced significant decrease. Similar results were reported by to Guida et 

al. (2013), who compared climate decadal averages between 1970-1979s and 1999-2008.  

The decrease in precipitation over the mountains may lead to changes in water 

availability due to reduced flow in channels, which in its turn reduces vegetation cover, 

specifically annuals. 

Trend analysis for Tmax showed most of the MNP did not experience significant 

changes. For Tmin, the analysis indicate that the western parts the MNP experienced an 

increase in Tmin, while the areas east of the Providence mountains show a decrease of 

0.1°C/yr over the 1987-2010 period. These results are within the range reported by Guida 

et al. (2013) for temperature difference between 1970s and 2000s. The maps of 

significant trend and its direction are shown in appendix B. The increase in Tmin with no 

change in Tmax may suggest human impact. However, given the low density of weather 

stations in the region from which the dataset is derived, the methodology used to create 

the dataset, and the high variability of temperatures between years, we conclude that 

regional temperatures have been fairly stable over the MNP over the last 3 decades.  
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2.5.2: Model evaluation 

To validate our model’s results, we compared annuals and evergreen vegetation to 

field estimations. We compared the annuals’ fractional cover results to field data 

collected by Wallace and Thomas (2008) during April 2003 and 2005. Annuals are the 

most sensitive functional type of the three evaluated and the most difficult to capture 

from a remote-sensing perspective. Figure 8 presents the relationship between the field 

estimates and model values. The R
2
 for this relationship was 0.72, based on 42 samples 

taken throughout the MNP, with root mean square error (RMSE) of 4.06% fractional 

cover. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Relationship between 2003 and 2005 field estimated annuals cover and the 

annuals cover derived from our algorithm (n=42) 

 

Evergreen fractional cover was compared to field data from 1997 provided by 

K.A. Thomas (USGS, unpublished data) (Figure 9). In this field dataset, evergreen 

vegetation included shrubs (mainly creosote bush) and trees (mainly juniper).  The study 
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year 1997 had close to average precipitation, with less than 40% falling during autumn-

winter, which means that the vegetation signal can be attributed mainly to evergreen 

vegetation that survived the dry period (Beatley 1974).  Generally there is a good 

agreement between our model estimations and Thomas’s field observations, with R
2
=0.8 

and RMSE=2.59% fractional cover. The high correlation for both evergreen and annuals 

confirms that our algorithm performs reasonably well. 

 

 

 

 

 

 

 

 

Figure 9. Relationship between 1997 evergreen field measurements and the evergreen 

cover derived from our algorithm (n=32) 

 

 

2.5.3: Annuals 

Winter annuals play an important role in Mojave ecosystem: they are a food 

source for livestock and native wildlife, and they impact disturbance regime (fire) and 

soil erosion (wind and water). Figure 10 presents fractional cover maps for annuals 

grouped into 11 categories with 5% intervals. As can be seen from Figure 10, annuals are 

highly variable spatially and temporally. 
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Temporal variability is controlled mainly by annual precipitation (Beatley, 1974; 

Reynolds 2004). Despite an overall low cover and high spatial variability, statistical 

analysis indicated that annuals average fractional cover is correlated to water year 

precipitation (R
2
=0.31, p-value< 0.01), and to precipitation between January to March 

(R
2
=0.29, p-value<0.01). Reynolds et al. (2004),  Beatley (1974), and Rundel and Gibson  

(1996) reported similar results. They attributed intraannual spatial variability to the 

spatial pattern of precipitation and to the underlying soil and geomorphology. Spatially, 

annuals fractional cover is <5%. They identified areas showing high annual cover as 

alluvial terraces/piedmonts, and channels, coming down from the Providence Mountains 

(sout east of the MNP). Another area with high fractional cover during wet years is the 

Cinder Cone lava field, northwest of the MNP. In both cases, the high annuals cover 

during wet years is likely due to higher water availability at the upper soil level 

(Reynolds et al. 2004) and nutrient availability. Nimmo et al. (2009) supported these 

findings; he concluded that the water infiltration depth is smaller in Quaternary soils that 

characterize the upper parts of alluvial terraces typical to the MNP.  

To evaluate annuals response to drought conditions, we selected one image from 

each decade to represent wet and dry conditions: drought years 1994 and 2007 and wet 

years 1992 and 2005 (Figures 11 and 12). We selected these years because they have 

extremely low/high annual precipitation with a high percentage falling from October to 

March. Drought conditions reduce spatial heterogeneity of annuals cover. During drought 

years, over 80% of the area has <5% annuals fractional cover, compared with less than 

40% during wet years. We identified no change in histogram shape between the two 

decades (Figure 12), which suggests no change in the landscape response to drought. In 
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other words, annuals’ fractional cover, though highly variable, has not changed over the 

last two decades. The fact that 2007 was a second consecutive year with extreme drought 

conditions (see Figure 2 and 3) further supports this conclusion, yet 2008 and 2009 show 

an increase in annuals fractional cover in response to moderate rainfall when antecedent 

soil water is low, consistent with Reynolds et al.’s (2004) earlier findings. We attribute 

the positive response to the seed bank of annuals within the soil that enables them to 

recover after long prevailing drought conditions when a minimum water availability 

threshold is met. In summary, annuals fractional cover is highly variable spatially and 

temporally. Similar to other arid regions (Pennington and Collins 2007), during drought 

conditions a more homogenous and lower fractional cover was observed. Annuals have 

adapted to the climate variability that characterize the MNP. Fractional cover follows the 

short-term (seasonal/annual) climatic conditions, and responds positively to precipitation 

pulses during wet years. The lack of long-term change in annuals’ response to 

precipitation suggests the Mojave ecosystem is highly resilient to drought. 
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Figure 10. Yearly fractional cover of annuals. The dynamics closely follow the winter 

precipitation regime: wet years show high growth (e.g., 1992, 1993) and drought years 

show low growth (e.g. 2006, 2007). 
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Figure 11. Fractional cover of annuals in wet and dry conditions. 

 

 

Figure 12. Fractional cover histogram for wet (2005, 1992) and dry (1994, 2007) years. 

 

2.5.3.1: Annuals Trend Analysis: 

Figure 13 shows the Mann-Kandel monotonic trend for annuals, and the cluster of 

statistically significant areas. Overall, 29% of the MNP area shows increase of annuals 

fractional cover, while 71% show a decrease. Regionally, the negative trend is dominant 
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in the southeast part of the MNP, while the rest of the MNP show a mix of positive and 

negative trends.  

 

 

Figure 13. Left – 1987-2010 Monotonic trend for annuals fractional cover in the MNP. 

Green indicates upward trend; red indicate downward trend. Right - Areas of statistically 

significant change (active washes and piedmonts). 

 

The co-existence of both upward and downward trend suggest difference 

processes are dominant in different areas within the MNP. Many factors could have 

contributed to this trend. For example, the positive-trend linear feature in the center of the 

image (going SW to NE) is attributed to the road and railway crossing the MNP. Water 

availability is higher alongside roads as runoff diverts to roadsides. Another area showing 

an upward monotonic trend is the Cima Dome volcanic field, which we attribute to richer 

soil nutrients and the higher runoff. On the other hand, the SE corner of the MNP shows a 

negative trend. The negative trend may be attributed to reduced precipitation at high 

elevation. 

The magnitude of change evaluated by Theil’s regression ranges from -1.15% to 

1.82%, for areas with downward and upward trends respectively. At the regional scale, 
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this further suggests that annuals cover has not changed dramatically over the past three 

decades.   

Statistically, the trend for most pixels was not significant.  Annuals respond to 

short-term water availability in the form of individual or seasonal pulses (Beatley 1974; 

Reynolds et al. 2004), and thus are highly variable between years. We identified several 

statistically significant clusters of negative trends (Figure 13 – right). Clusters correspond 

to active washes and parts of their alluvial piedmonts (on the edges of the washes). 

Precipitation analysis using the PRISM data indicated significant reduced precipitation at 

high elevations.  The reduction of precipitation on the mountaintop reduces water flow in 

the channels which may lead to reduced annual growth. Other possible expansion may be 

changes in the runoff regime or pattern due to changes in frequency and intensity of rain 

events or due to emotional/fluvial processes that changes actual flow location. Another 

explanation may be a change in the soil properties as erosion increased over time. Nimmo 

et al. (2009) concluded that active washes have little ability to retain water with time, and 

that heterogeneity in water retention potential is likely to cause shallow rooted plants 

(annuals) to distribute themselves near the edges of the active wash. The spatial pattern of 

our results supports this and indicates reduced water availability in the upper soil horizon 

of these areas. As these areas show high fractional cover during wet years, the significant 

decrease in cover may suggest land degradation.   

Geomorphology and soil play significant roles in addition to precipitation. 

Wallace and Thomas (2008) concluded that both Cima Dome and the SE corner of the MNP 

have high potential for annuals’ growth. These areas experience different direction of 

changes presumably due to the discrepancies in geomorphology and other soil properties 
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such as nutrient availability.  Additionally, Joshua trees dominate the Cima Dome area as 

the evergreen component, while creosote bush dominates the southeast region and its 

alluvial piedmonts and washes. Whether these plants create favorable soil characteristics 

for the growth of annuals or take advantage of existing soil conditions remains an open 

question beyond the scope of this paper. 

 

2.5.4: Perennials 

In most studies, perennial vegetation refers to a combination of short-lived 

deciduous plants and evergreen shrubs. In this paper, perennials are short-lived, drought-

deciduous plants, mostly dwarf shrubs. Shoshany and Svorary (2002) demonstrated the 

importance of this functional type in other arid ecosystems and transition zones in 

Mediterranean climate. Visual estimation during both the March and September 2012 

field visits showed that perennials comprise over 20% of total cover. Note that fractional 

cover as measured here refers to green canopies, whereas many perennials are dormant 

for 6–8 months. During dormancy, above-ground biomass dries up, increasing the fuel 

load and fire potential. This emphasizes the need to estimate perennial cover as a separate 

ecosystem component. 

Figure 14 shows the dynamics of perennial fractional cover over the study period. 

Perennial cover is highly variable spatially. We identified two areas of high fractional 

cover in the southwest and center of the MNP. The southwest area is the lower part of an 

alluvial piedmont where runoff from the mountains is slowed, which allows infiltration to 

deeper soil horizons (Nimmo et al. 2009) that contain higher clay content and thus retains 

higher moisture content that lasts through the dry periods (McAuliffe and Hamerlynck 
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2010). In addition, the relatively large stones on the surface act as an evaporation barrier 

further keeping the relative higher soil moisture (Smith et al. 1995; McAuliffe and 

Hamerlynck 2010). The area in the center of the MNP is identified as the gentle slope 

piedmont coming down from the volcanic field, bounded by the Cima Dome geological 

structure. The high fractional cover during wet periods is a result of both high local 

precipitation and additional runoff generated by the local topography, i.e., Cima Dome 

(Ludwig et al. 2005).  

Temporally, perennials fractional cover appears to be consistent over periods 

lasting several years.  A relatively high fractional cover characterizes 1987 to 1994, with 

the exception of 1992. The latter may be a lagged response to the 1989–1991 drought 

(Hereford et al. 2006). Following that, 1995 to 2007 features low perennial fractional 

cover, generally <5%.  McAuliffe and Hamerlynck (2010) reported considerable 

mortality of small, drought-deciduous perennial sub-shrubs during this period, caused by 

the late 1990s to early 2000s episodic drought.  From 2008 to 2010 is highly variable, 

which may suggest another regime shift between wet and dry conditions.  In summary, 

the long-term pattern of perennial fractional cover corresponds to the decadal variability 

and regime shift between wet and dry conditions.  

 

2.5.4.1: Perennials Trend Analysis 

 Figure 15 shows the monotonic trend for perennial fractional cover and the 

statistically significant pixels. Overall, 32% of the MNP show increase in perennial 

fractional cover and 68% show a decrease. The magnitude of change ranges from -3.06% 

to 1.73% for negative and positive trends, respectively. Areas showing a positive trend 
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are not significant, whereas 11.8% of pixels with negative trends are statistically 

significant. The latter include the two areas showing relatively high fractional cover.  

Several reasons may contribute to the negative trend identified in these areas: (1) Our 

algorithm considers only green canopies, whereas many of the short-lived perennial 

appear grayish in the field; (2) the overall low cover identified by our algorithm for most 

years; (3) the relative high cover in 1987 (beginning point of our analysis), followed by 

the climate transition into a dry period; and (4) images might not represent the peak of 

greenness for every year.  

   In addition to water availability, temperature plays a significant role in the 

phenology of perennial sub-shrubs (Reynolds et al. 2004). The long-term increased 

temperature from the 1970s to the 2000s (Guida et al. 2013), coupled with the dry 

precipitation regime (Hereford et al. 2006), may have lead to reduced soil moisture, 

including from the 20–40cm depth layer where most perennials roots are located 

(Reynolds et al. 2004). Over the long-term, this feedback mechanism leads to mortality of 

perennials that shows as a negative trend. 
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Figure 14. Yearly perennials fractional cover. Arrows represent areas characterized by 

high fractional cover during favorable conditions. Dynamics follows long term decadal 

climate and regime shifts identified by Hereford et al. (2006). 
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Figure 15. Up – 1987-2010 MK trend for perennial vegetation; down – areas with 

statistically significant changes at the 0.05 level. Note that similar to annual 

vegetation, areas with significant changes are located at piedmont and alluvial 

terraces. 
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2.5.5: Evergreens 

As the dominant vegetative component of the MNP ecosystem, evergreen 

fractional cover is an indicator of the ecosystem health. Evergreen cover affects soil 

moisture availability, potential evapotranspiration, soil-crust development, erosion 

potential, and condition of wildlife habitat (Wallace et al. 2008).   

As expected, evergreen vegetation has the highest and most stable fractional cover 

amongst all different vegetation functional types (Figure 16).  Reynolds et al. (2004) 

concluded that a consistent aboveground biomass enables evergreen vegetation to take 

advantage of winter precipitation. Most of the MNP has an evergreen fractional cover 

above 10%, with many areas consistently above 20% cover. Examples of high fractional 

cover are the Cima Dome and Cinder Cone volcanic fields, as well as the alluvial 

piedmonts around the Providence Mountains. Field visits and data indicate that Joshua 

trees and Yucca dominate the Cima Dome, and creosote dominates the cinder cone and 

piedmonts. These are the main species from which the end-members for evergreen 

vegetation were derived, and they have been found to have relatively large, dense, and 

green canopies with a strong signal. For many widely spread species, such as creosote 

bush, Miriti et al. (2007) and Guida et al. (2013) reported little distribution changes over 

the last three decades in the Mojave. It should be noted that a cluster of low cover (<5%) 

in the center of the MNP appeared in 2005. This cluster is attributed to the Midhills 

campground fire that occurred in June 2005. The fire was a result of lightning and the 

high vegetation cover (Juniper and Pinyon) following the wet winter of that year. The fire 

scar is consistent for 2005 through 2008, with signs of rehabilitation appearing in 2009–

2010. 
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2.5.5.1: Evergreen Trend Analysis 

Most of the MNP show increase in evergreen fractional cover over time (Figure 

17). Overall, 68% show a positive trend, and 32% show a negative trend. Theil’s trend 

slope indicate magnitude of changes ranges -1.87% to 3.6%. Statistical analysis showed 

23.6% areas with positive changes to be significant. These areas show a consistent 

average change of ~1% per year, and their majority is located along active washes. We 

hypothesize that low slope and high water availability due to the proximity to the wash 

promote water infiltration. The deeper rooting system of the evergreen vegetation enables 

it to use this moisture to maintain and even increase their canopy during the current 

prevailing dry regime conditions (Hereford et al. 2006). Other areas with similar 

geomorphic characteristics, however, are not significant, indicating that need a more in-

depth analysis at the local scale to determine the driving force for these changes.  

Most areas with negative trends are comparable to those identified by Wallace et 

al. (2008) as having high evergreen/perennial cover. Analysis of Figures 16 suggests 

these areas had relatively high evergreen cover at the beginning of our time series (end of 

1980s), and that they are highly variable.  In summary, our results suggest little change in 

evergreen fractional cover over the last three decades. The long life span, high drought 

tolerance, and consistent aboveground biomass enable evergreen vegetation to maintain 

itself in the highly variable desert climate. 



  39 

 

Figure 16. Yearly evergreen fractional cover.   
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Figure 17. Top - 1987-2010 monotonic (MK) trend for evergreen fractional cover; 

bottom – areas of statistically significant change (in red). 
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2.6: Remaining Uncertainties 

Technical uncertainties relate to pre-processing, MESMA, and trend analysis 

steps. While all images were radiometrically and atmospherically calibrated, uncertainties 

due to miscalibration in single band or for single images cannot be ruled out entirely in 

the pre-processing scheme. The MESMA algorithm minimizes error by accounting for 

the different number and type of end-members, yet some uncertainties still exist related to 

the representation of vegetation and soil components by spectral signatures: different 

signatures might give different results.  Hostert et al. (2003) pointed out the uncertainties 

associated with dead biomass and nonlinearity. Part of this was overcome by including 

NPV as an end-member in MESMA.  The nonlinear relationship between vegetation 

cover and reflectance remains an uncertainty and may result in slightly different 

vegetation fraction estimates (Elvidge 1990).  Our results show good agreement with 

field data; we need more field observations to fully validate and calibrate the model. The 

trend analysis used in this paper is nonparametric and thus is robust to outliers. Yet, the 

magnitude of change as evaluated by Thiel’s regression is smaller than the model’s 

RMSE. In addition, the first point (first image) of the time series may influence the 

direction of the trend, however. We selected acquisition times based upon a conceptual 

model and high quality availability. Some images do not necessarily represent the peak 

cover for each functional type. Some growth of perennials and evergreen may still occur 

during early spring, and some annuals may grow during wet summers. 
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2.7: Summary and Conclusions 

In this study, we quantified and characterizing natural desert vegetation spatio-

temporal variability and changes in response to climate at the functional-type level using 

remote sensing. Methodologically, this study represents a proof of concept for applying 

MESMA, phenology, and non-parametric trend analysis to estimate functional type cover 

and changes at local-to-regional scale throughout the Mojave Desert. The resulting 

functional types and trend maps enhance vegetation distribution and ecosystem 

monitoring efforts by identifying areas where local forces operate. Identifying areas 

where different forces operate can inform ongoing and future scientific investigation and 

management efforts related to preserving the natural desert environment. Furthermore, 

the method proposed here allows us to look simultaneously at both local and regional 

scales and provide insight on the relationship between changes of different functional 

types. This approach can be extended to other arid regions and other vegetation 

associations, adding to our knowledge of their phenology.  

We conclude that the spatiotemporal variability of vegetation functional types during 

the period of 1987-2010 is attributed to patterns of water availability, which, in turn, is 

determined by precipitation spatiotemporal patterns, local soil properties, and underlying 

geomorphology. Annuals’ cover was consistently low and highly variable, both spatially 

and temporally. We identified no regional change in the response of annuals to drought 

over time. Perennials’ cover was found to be highly variable spatially, with two areas 

showing increased cover due to local geomorphology and soil characteristics that 

promote higher soil moisture content in the 20-40cm horizon. Temporally, perennials are 

consistent on a time scale of several years to decades, following climate regime shifts 
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between wet and drought conditions. Evergreen vegetation is the dominant functional 

type and has the highest (>30%) and most spatially consistent fractional cover. With 

regard to climate, we concluded evergreen growth is disconnected from short-term 

climate variability. 

Regionally, evergreen shows a dominance of positive trend while perennials and 

annuals show a negative trend, suggesting land degradation in the form of shrub 

encroachment. For most areas, the changes are not significant over time; however, the 

existence of a monotonic trend may distinguish between rehabilitation and degradation. 

No relationship was found between clusters of significant vegetation trend to clusters of 

significant climate trend. To fully understand the local driving forces and why some 

locations change while others do not requires additional fieldwork. 
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CHAPTER 3: RESPONSE OF URBAN AND NON-URBAN LAND-COVER IN SEMI-

ARID ECOSYSTEM TO SUMMER PRECIPITATION VARIABILITY
1
 

3.1: Abstract 

Vegetation response to precipitation variability is an important climate-

ecosystem-hydrology feedback. Anthropogenic impacts coupled by changes in seasonal 

and annual precipitation patterns can have a dramatic and large spatial effect on 

ecosystem structure and functioning, especially in water limited environments. While the 

natural Sonoran desert is water limited, Phoenix metropolitan area is constantly being 

irrigated to support human activities. The aim of this research is to study how urban areas 

differ from their natural surroundings ecosystems in their phenology and response to 

summer water inputs. Rain use efficiency (RUE), inter-annual and intra-annual 

vegetation phenology and above-ground net primary production (ANPP) of the two land 

cover types and their response to summer precipitation have been analyzed. In addition, a 

soil water balance model is used to simulate the Horton index (H) as a measure land 

cover response to climate variability. Results show that the urban environment has a year 

round constant, high productivity with high variability in RUE. The desert has lower 

productivity and responds strongly to summer water. Furthermore, the desert ecosystem 

convergences towards H=1 and RUE ~ 133 MJ/m
2
*hour mm

-1
. Based on the RUE and 

ANPP it was calculated that 295 mm of water input are necessary to sustain the urban 

tree biomass. Unlike natural ecosystems, urban areas RUE do not converges to a common 

                                                 
1
 This manuscript was submitted to Journal of the Arizona-Nevada Academy of Science in October 2011 

and published in March 2012. 
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maximum value, suggesting that inter annual variability in hydrological partitioning over 

urban and desert land-cover is consisted with the water use efficiency concept. 

 

3.2: Introduction 

The scope of human’s role as major ecological and climatic agents of Earth’s 

ecosystems change is gaining recognition, and it is important to understand how specific 

forms of human-induced land transformation affect the dynamics of Earth’s physical and 

biological systems (Vitousek and Mooney, 1997). Recently, more attention has been paid 

to urbanization as it is constitutes one of the more ecologically disturbing land 

transformation processes (Grimm et al. 2008; Imhoff et al 2000). This is especially 

important in water limited environment, as they have been shown to be highly sensitive 

to any form of change (Whilhite, 2000; Newman et al. 2006) and contain fast growing 

urban centers.  

One of the most important components of arid and semi-arid ecosystems is 

vegetation. Ecosystem processes in arid landscape such as vegetation productivity, 

measured as the above-ground net primary production (ANPP), vary in response to 

precipitation (Buyantuyev and Wu, 2009; Pennington and Collins 2007).  Changes in 

vegetation response to precipitation changes are an important climate-ecosystem-

hydrology feedback as they influence carbon, water and energy allocation at the land 

surface (Troch et al. 2009).Webb et al. (1986) showed ANPP and evapotranspiration are 

strongly correlated, and since evapotranspiration is considered the largest component of 

the water balance, its inter-annual variability is strongly related to ecosystem function 

and productivity. Over the short timescale vegetation can adapt to climate variations 
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(Troch et al. 2009). Nevertheless, changes in seasonal and annual precipitation patterns 

can have a dramatic and large spatial effect, that coupled by anthropogenic impacts (i.e. 

Irrigation, temperature, higher CO2) can change ecosystem structure and functioning. 

While this is true for natural vegetation, Buyantuyev and wu, (2010) have shown urban 

and agriculture vegetation dynamics do not respond to temporal and spatial precipitation 

patterns due to irrigation and fertilization. Furthermore, Neil et al. (2010) demonstrated 

that natural desert vegetaion has higher inter-annual variability in response to 

precipitation amount and timing compare to the non-native urban vegetation.  

One of the indicators to measure vegetation response to climate changes is the 

Rain Use Efficiency (RUE) which is defined as the ratio between ANPP and 

precipitation, thus informs us on evapotranspiration. Huxman et al. (2004) showed all 

ecosystems persist within some range of climate variability and that under dry conditions 

(drought) the ecosystem Rain Use Efficiency (RUE) converges toward 0.42gm
-2

yr
-1

 – the 

value of semi-arid ecosystems. Troch et al. 2009 demonstrated the same concept by 

plotting RUE versus the Horton index (H),which is defined as the ratio between actual 

evapotranspiration and catchment wetting (precipitation minus infiltration excess runoff). 

Result from Troch et al. (2009) showed that in water limited regions, vegetation is more 

efficient in its water use and H approaches 1, meaning all the water available for 

evaporation were vaporized through soil evaporation, interception and vegetation 

evapotranspiration.  Following these results, the authors concluded the use of Horton 

index will help refine the partitioning of precipitation between soil and vegetation 

processes. However, Huxman et al. (2004) and Troch et al. (2009) studies refer to natural 

ecosystems at the catchment scale. They do not take into account land-use land cover 
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changes, such as urbanization – an ecosystem shaped and controlled at all of its parts, 

especially vegetation, by human activities. 

Urban vegetation often varies substantially from native ecosystems surrounding 

the city. In recent decades many of the world’s drylands experienced high rate of 

urbanization (Brazel et al. 2000). Given the water limitation of the natural desert on the 

one hand and the constant availability of water via irrigation in the city, the overall aim of 

the research is to study how urban areas differ from their natural surroundings 

ecosystems in terms of their phenology and response to summer water inputs as a first 

step in understanding the ecohydrological consequences of land cover changes in general, 

and specifically urbanization. To achieve this and outline implications to vegetation water 

use efficiency, inter-annual and intra-annual vegetation phenology and ANPP of the 

different land cover types and their response to summer precipitation have been analyzed.  

Driven by the paper of Troch et al. (2009), two hypotheses are offered: 

1. Urban landscape will have lower variability in the NPP response to precipitation 

compare to the desert.  

2. The desert RUE will vary, and as drought condition develops, it will follow the Troch 

et al. (2009) convergence towards H=1. The RUE over the urban landscape, on the 

other hand, will not change during drought years thus will not converge to the semi 

arid RUE and will stay constant due to irrigation.  

The analysis of the urban vegetation compare to the natural vegetation will enable us to 

test the effect of irrigation and can lead to a more sustainable management of the water 

resources.  
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3.3: Study Area 

This study will focus on the Phoenix metropolitan region (Figure 18); An area that 

has undergone extensive modification to its landscape during the 20
th

 century, following 

rapid population growth and expansion of the urban land cover on the account of semi 

arid natural desert shrubland. As urbanization in this region is predicted to continue and 

increase, the influence of land cover changes on the hydrological cycle and ecological 

system in these regions will also intensify (Imhoff et al 2000). 

Figure 18. Map of the study area land cover (Buyantuyev and Wu, 2009). Black arrows 

point the locations selected for comparison. Gray arrow indicates the meteorological 

station location.  
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Climatologically, the region is classified as a semi-arid hot desert. Mean summer 

temperature is 30.8°C with mean summer high temperature of 40°C. Mean annual 

precipitation is 193 mm, falling in two distinct wet seasons: one in the winter and the 

other in summer Over 40% of rainfall occurs during spring and summer (May - October) 

as a result of the influence of the southwest monsoon (Shepherd, 2006). Soils are a 

mixture of clay-loam and sandy loam (USDA soil survey; 

http://websoilsurvey.nrcs.usda.gov). The region has two main ecosystems, which are 

subdivisions of the sonorant Desert scrub: (1) Arizona upland – characterized by a mix of 

Palo-Verde trees and cacti series; and (2) lower Colorado River with creosote bush series. 

This study will focus on a comparison of the vegetation response to climate variability 

between the core urban area with high density vegetation (trees) and the lower Colorado 

River ecosystem (figure 18) for the period of 2000-2009. 

 

3.4: Data and Methodology 

3.4.1: Remote Sensing Data 

Satellite remote sensing techniques provide successful tools for environmental 

monitoring over long time periods and large spatial scale (Ballone et al. 2009). Taking a 

remote sensing approach, this study uses 16 day, 250m resolution MODIS-NDVI 

(MOD13A1 product) images for the 2000-2009 period were obtained from CAP-LTER 

(years 2000 -2005) and Oak Ridge National Laboratory 

(http://daac.ornl.gov/MODIS/modis.htm; years 2006 - 2009). The NDVI is defined:  

     
         

         
        (3.1) 

http://daac.ornl.gov/MODIS/modis.html
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where RED and NIR are atmospherically-corrected surface reflectance values in red and 

infrared bands, respectively.  

Based on the land-cover map presented in figure 18, two pixels, each representing 

the urban and desert land cover were selected: 

1. Urban (residential with high density vegetation) – 33
o 
32’56.07” N/112

o
 04’ 51.65”W 

2. Desert  - 33
o
 48’26.51” N/112

o 
13’ 58.17”W 

For each pixel the monthly mean NDVI was calculated and each month was averaged 

over the entire period of 2000-2009 to identify seasonality. NDVI seasonality was later 

compared to precipitation seasonality to identify vegetation response to seasonal 

precipitation. 

NDVI data were used to calculate ANPP for the growing season may 1
st
- October 

31
st
 (based on Troch et al, 2009) using the model suggested by Buyabtuyev and Wu 

(2009): 

     ∫            (3.2) 

where PAP is the fraction of incoming solar radiation between 400 and 700 nm in 

MJ/m2*hour . Following Buyantuyev and Wu a fixed value of PAR=0.47 was used. 

Because MODIS-NDVI product has a temporal resolution of 16 day, each NDVI value 

was multiplied by 16 and then by the spatial resolution (250m
2
). For example the 2005 

ANPP for the desert area is 5448.24 MJ/m
2
*hour  and the urban ANPP is 8495.16 

MJ/m
2
*hour  (Figure 19). 
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Figure 19. a) Grayscale image of the 2005 growing season ANPP. Black arrows point 

selected pixels; Gray marks Greenway meteorological station; b) Zoom of the desert 

pixel; c) Zoom of the urban pixel. Whiter and darker pixels represent higher and lower 

ANPP, respectively. 

 

3.4.2: Precipitation Data 

Precipitation data for the Phoenix Greenway meteorological station were obtained 

from CAP-LTER (http://caplter.asu.edu). This station represents climate of the northern 

part of the phoenix metropolitan area; and it is a station relatively close to the city edge 

so it can be regarded as representative for both the city and the desert. Daily data were 

transformed to monthly total and each month was averaged over the entire period of 

2000-2009 to suggest trends in seasonality. Total annual rainfall was also computed. 

 

 

 

 

 

a 

a 
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3.4.3: Horton Index Simulation 

Based on Troch et al. (2009), Horton index can be defined in modern hydrology 

terms as: 

    
 

 
     (3.3) 

Where V is the sum of vaporization, interception and plant evapotranspiration, and W is 

the total water available for vaporization. In their paper, Troch et al. (2009) derive H 

from precipitation, stream flow, base flow and runoff. Those data are not available at the 

land cover level or at the point scale. Therefore we simulated the Horton index using the 

soil water balance (SWB) model from Laio et al. (2001) coded in MATLAB by Dr. 

Enrique Vivoni. V is equal to the SWB model <et>, and W was considered as the 

difference between precipitation to runoff (Q). Leakage is assumed to be negligible. The 

SWB model and the corresponding parameters used to calculate H by Troch et al. are 

described in figure 20. 

 

 

 

 

 

 

Figure 20. The Soil Water Balance model. P – precipitation; ET -  evapotranspiration; Q 

-  runoff; L -  leakage (assumed to be zero); R= stream flow. Letters in parenthesis are the 

corresponding representation of Troch et al. 2009. 
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Input parameters for the SWB: The monthly precipitation event depth (α) and 

frequency (λ) were calculated for each month and used as input for the SWB stochastic 

rainfall generator (table 2). Soil parameters for loam were obtained from Laio et al. 

(2001). Two vegetation types were used: trees and creosote bush, representing the urban 

and desert ecosystem, respectively. The parameters used for each are listed in Table 3. 

Table 2. Monthly mean storm depth (α) and mean arrival time (λ) for the years of study. 
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Table 3. Input parameters for the Soil Water Balance model for two vegetation types 

representing desert and urban ecosystems. 

 Vegetation type 

Parameter Creosote bush (Desert) Trees (urban) 

Interception (mm) 
 

Delta_interc = 1.5 Delta_interc = 2 

rooting depth (mm) 

 
Z_r = 700 Z_r = 1200 

Maximum Evaporation rate 

(mm/day) 

 

E_max = 4.59 E_max = 4.5 

Evaporation at wilting point 

(mm/day) 
E_w = 0.1 E_w = 0.2 

 

Each year was simulated for a 10 year period with its calculated monthly α and λ 

parameters. Vegetation seasonality was not considered. Nevertheless, E_max for the 

desert land cover was varied annually based on total precipitation. Three situations were 

considered: wet, normal and dry years. Maximum value for wet years was 4.59 mm/day. 

For dry years value was based on the linear relationship of ANPP, found to be 

ANPP_min=0.75ANPP_max. Minimum (dry years) and ‘median’ (averaged 

precipitation) values for the desert were E_max=3.5 and E_max=4.05, respectively. The 

urban vegetation is always irrigated, therefore only the maximum value reported above 

was considered. The final index was calculated at the ratio: ET/W. 

 

3.5: Results and Discussion 

3.5.1: Precipitation Analysis 

Total annual rainfall time series was calculated (Figure 21). The multi-year 

average was 197mm/year with high variability (Standard deviation = 63mm; coefficient 

of variance = 32%). Range of precipitation was also large: minimum precipitation 
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occurred in 2009 – 99.8 mm, and maximum precipitation occurred in 2005 – 309.88 mm. 

5 out of the 10 years had below average precipitation with two (2002 and 2009) lower 

than 1 standard deviation less than the multi—year average. 

 

 

 

 

 

 

 

 

 

Figure 21. Yearly precipitation. Red line is the multi-year average, and dashed lines are 1 

standard deviation from that mean. 

 

Summer growing season precipitation (May – October) were also calculated 

(Figure 22). The summer rain average is 83.9 mm/year, with very high variability 

(standard deviation = 47 mm; coefficient of variance = 57%). It is important to note that 

the trends of summer precipitation do not correspond to the total annual precipitation. 

Some years (i.e. 2002) were classified as drought, yet had high summer precipitation. 

Other years experienced above average total precipitation and had low summer 

precipitation (i.e. 2003, 2004)  
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Figure 22. Yearly summer/growing season (May – October) precipitation. Red line is the 

multi-year average, and dashed lines are 1 standard deviation from that mean. 

 

To represent the trend in seasonality, monthly precipitation data were computed, 

and each month was averaged over the entire period of record (Figure 23). Monthly 

precipitation show strong bi-modal pattern with two distinct wet seasons: winter 

(December – February; 57% of precipitation) and summer (July-September; 43% of 

precipitation). The dryer period lasts from May to June, where both months have less 

than 2 mm of rain. February is the wettest winter month (28.75 mm) and August is the 

wettest summer month (25.4 mm. The average monthly rainfall calculated over all 

months was 16.4 mm with a coefficient of variation of 53%. This analysis suggests that 

the variations between years can be a result of changes in either season.  
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Figure 23. Average monthly precipitation for the Greenway meteorological station (2000 

– 2009) 

 

3.5.2: Response of Different Land-Cover Types to Seasonal Precipitation 

To see how vegetation responds to summer precipitation, monthly averaged 

NDVI was plotted over seasonal precipitation for each year. Figure 24 shows an example 

of the vegetation dynamics and precipitation for the year 2000 growing season at the two 

selected urban and desert land covers pixels. As hypothesized, the urban vegetation show 

only small variations in response to precipitation while the natural desert vegetation has a 

lagged increase in the NDVI signal in respond to precipitation input. 

Notice the response to summer precipitation is much stronger than to winter 

precipitation. A possible explanation is that temperatures during summer are more 

favorable for greenness-onset. The small lagged increase following winter precipitation 

may be attributed to plants with deeper roots such as the creosote bush. This vegetation 

functional type uses the soil moisture from winter to generate growth during the dry 

period, thus gaining competitive advantage compare to other natural desert functional 

types with shallow root system (Ogle and Reynolds, 2004). 
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Figure 24. Vegetation dynamics in response to precipitation for the year 2000. 

 

To measure different land cover sensitivity to summer precipitation, growing season 

ANPP was plotted against precipitation (Figure 25). The year of 2006 was identified as 

an outlier, therefore removed from the rest of the analysis. It can be seen from figure 25 

that the urban land-cover has a much higher ANPP and it is less sensitive to precipitation 

(smaller slope). The multi-year average ANPP for the desert was found to be 3944 

MJ/m
2
*hour (standard deviation = 876; coefficient of variance 22%). The multi-year 

average ANPP for the urban land-cover was found to be 8283 MJ/m
2
*hour (standard 

deviation = 589.5; coefficient of variance 7%). As we assume both land-cover types 

receive the same precipitation, these results indicate the impact of irrigation in the urban 

areas. 
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Figure 25. ANPP as a function of Precipitation for three land cover types. 

 

3.5.3: Rain Use Efficiency and Irrigation 

Another indicator to measure vegetation response to climate changes is the Rain 

Use Efficiency (RUE). Precipitation data and ANPP results were combined to calculate 

RUE: 

    
    

 
     (3.4) 

Comparing the RUE of the urban and desert, under the same precipitation is really just a 

comparison of ANPP and yield higher RUE for the urban area. This contradicts the basic 

concept of the RUE that environments with lower rainfall are more efficient in using it 

for biomass production. Therefore to calculate the actual RUE for the urban area, 

irrigation needs to be considered. 

 Figure 25 indicate the ANPP is relatively constant in the urban area. Giving the 

climatic conditions of the Phoenix region, we assume urban areas are always irrigated. 

Hence we can treat the city as having, for the low boundary, the RUE as the year with 
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highest precipitation in the desert. This means that the ANPP units per 1 mm of rain are 

the lowest. Using the RUE values for the best year in the desert (28) imply that in order 

to keep a relatively constant green biomass (8283 MJ/m
2
xh) there is a need for 295mm of 

water, on average, over the growing season. This means every month gets on average 

49mm of water input. Based on the seasonal precipitation analysis, and the assumption 

people irrigate regardless of specific summer rain events, irrigation scenario was assumed 

to be 3 days of irrigation per week for May and June (3.6mm/event) and twice a week for 

the remaining months.  The actual urban RUE was calculated based on the sum of daily 

irrigation and precipitation for each growing season. Figure 26 shows the differences 

between urban and desert land cover RUE. 

 

 

 

 

 

 

 

 

Figure 26. RUE for urban and desert land cover. Note the desert rain use efficiency is 

much higher and vary more, emphasizing the role of the constant fixed irrigation that 

keeps the same greenness and biomass throughout the year, thus constant RUE.   
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3.5.4: Implication for Vegetation RUE 

ANPP has been shown to be related to plant evapotranspiration (Webb et al.  1996) 

thus we can compare growing season RUE to the Horton index in order to measure each 

land cover response to climate variations. Figure 27 shows the point scale vegetation 

RUE for urban and desert land-cover versus the inter-annual variability of the Horton 

index. 

 

 

 

 

 

 

 

 

Figure 27. Vegetation rain-use efficiency vs. the Horton index variability for urban and 

dessert land cover in the Phoenix metropolitan area. 

 

The results indicate that the desert ecosystem convergences towards H=1 and 

RUE ~ 133 MJ/m
2
*hour mm

-1
. The urban land cover, however, varies considerably in its 

RUE and has a relatively constant H (~0.95).  When comparing the Horton index of each 

land cover type for each year (table 4), the values for the desert are constantly higher, 

indicating its dryness compare to the urban area. 

This analysis follows the conclusions of Troch et al. (2009) that in dryer years 

natural ecosystems tend to converge towards a common maximum RUE. Additionally, 
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the analysis imply different land cover types, have a detectable signal that may help us 

understand the role of vegetation in the hydrological partitioning across different land 

cover types, especially those controlled by man,. 

  

Table 4. Precipitation and Horton index for urban and desert land-cover 

 

 

 

 

 

 

 

 

 

 

 

3.6: Conclusions 

The analysis presented in this study focused on understanding the response of 

vegetation to seasonal summer precipitation over different land cover types, and the 

implication to RUE.  It was found that the desert vegetation responds strongly to summer 

water input compare to winter water input. Urban vegetation is not sensitive to any 

climate water input due to irrigation. Using the RUE and ANPP calculated from remote 
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sensing data it was possible to calculate that 295 mm of water input are necessary to 

sustain the urban tree biomass.  

Inter annual variability in hydrological partitioning over urban and desert land-

cover seems to be consisted with the concept of the RUE that vegetation becomes more 

efficient in its water use as water availability decreases. Results also show that unlike 

natural ecosystems, as reported by Troch et al. (2009) and Huxman et al. (2004), urban 

areas RUE do not converges to a common maximum value. 

Of course the approach presented in this study has several limitations and will 

need to be verified and tested over larger data sets (more pixels). One way to improve the 

analysis is to consider all land-cover types. Such information would provide a more 

accurate and complete spatial picture.  
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CHAPTER 4: ESTIMATING IRRIGATED AGRICULTURE WATER USE THROUGH 

LANDSAT TM AND A SIMPLIFIED SURFACE ENERGY BALANCE MODELING 

IN THE SEMI-ARID ENVIRONMENTS OF ARIZONA
2
 

4.1: Abstract 

 Quantifying evapotranspiration (ET) is a key element for achieving better water 

management, especially in regions where agriculture is the main water consumer. A 

hybrid model combining the SEBAL and ReSET models (S-ReSET) was developed to 

effectively estimate actual ET (water use) of the agriculture sector around the phoenix 

metropolitan area. To examine how irrigated agriculture water consumption varies with 

climate, the S-ReSET model was applied under wet and dry climatic conditions. Results 

show that the average ET for active agriculture is 9.3mm/day (±3.8mm/day) during the 

study period. Seasonal water use was 438 mm for 2000 (drought) and 494 mm for 2008 

(wet). Based on the seasonal ET we concluded that farmers in arid region use the same 

amount of water regardless of climatic conditions, implying that the agriculture sector as 

a whole may not be sensitive to drought as long as there is sufficient water from 

irrigation. This finding carries significant implications for the region’s water security. 

 

 

4.2: Introduction 

 Current pressure of global change, including both climatic and societal, 

continuously elevates competitions for fresh water between different uses. Monitoring 

water consumption has become a critical tool in water resources management, especially 

                                                 
2
 This manuscript was co-authored with Soe W. Myint and was published in PE&RS in August 2012. 
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in arid environments where water is scarce, droughts are frequent, and climate is 

predicted to become warmer and drier (Mariotto et al. 2011; IPCC, 2007). 

Evapotranspiration is considered to be one of the key elements in the water cycle that 

needs to be quantified to achieve better water management.  

 Evapotranspiration (ET) is defined as the sum of evaporation from soil surface, 

plant surface, and transpiration from plants. Controlled mainly by solar radiation, ET is a 

major component of the hydrological cycle and energy transport between the biosphere, 

atmosphere, and hydrosphere (Idso et al. 1975; Liu et al. 2007). Globally, ET from land 

surface accounts for 60% of average precipitation (Zhao-Liang et al. 2009). Of the water 

which falls over the continental USA, 70% - 90% is believed to return to the atmosphere 

by evapotranspiration (Rosenberg, 1974). This return replenishes atmospheric moisture 

and leads to precipitation recycling. However, ET is probably the most difficult water 

cycle components to measure due to its wide spatial variation and invisibility (Mariotto et 

al. 2011; Allen 2008). Quantifying spatial and temporal variability of ET over large areas 

is important to understand water cycle, climate dynamics and ecological processes. 

Understanding these issues can help us better manage and improve water resources 

planning, water regulations and water use efficiency; especially in regions where 

agriculture plays an important role. In such regions ET is the largest water consumer, and 

irrigation is generally a key source for ET (Bastiaanssen, 2000; Allen et al. 2007; Sun et 

al. 2009).  

 Traditional methods for ET estimations, such as lysimeter, Bowen ratio system or 

eddy covariance system, are time consuming and expensive. Moreover, these methods are 

point based. Remote sensing can estimate ET as a residual of the energy balance, thus 
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reduces the need for ground data while providing regional coverage and information on 

the spatial and temporal variability of actual consumption (Elhaddad and Garcia, 2008; 

Bastiaanssen et al 1998a; Kustas and Norman, 1996). Over the last two decades there 

have been ongoing developments of energy balance models utilizing remote sensing data 

for ET estimations. A comprehensive review of models can be found in Kustas and 

Norman (1996) and Zhao-Liang et al. (2009). 

 The most widely used models are SEBAL and METRIC - one-source models that 

consider soil and plants as a single component (Mariotto et al. 2011). They are designed 

to minimize the use of ground data by using two extreme conditions – “hot” (bare soil) 

and “cold” (full vegetation cover). Allen et al. (2007) described the procedure required to 

calculate actual ET using the surface energy balance method that employs the “hot” and 

“cold” pixel approach developed by Bastiaanssen et al. (1998a; 1998b).  SEBAL has 

been widely validated for irrigated agriculture in Egypt (Bastiaanssen et al. 1996), Spain 

(Pelgrum and Bastiaanssen, 1996), Turkey (Bastiaanssen 2000) and several others. 

Roerink et al (1997) and Bastiaanssen et al. (2001) combine SEBAL with field data to 

assess irrigation scheme, crop ET, and soil moisture and biomass growth in Argentina 

and Brazil. METRIC uses an internal calibration by utilizing daily weather station alfalfa 

reference ET (ETref). Using reference ET along with wind speed and air temperature 

from local weather stations better incorporate local/regional conditions (Allen et al. 

2007). For seasonal estimations, METRIC interpolates between different image dates, 

thus taking into account ET temporal variability. Folhes et al. (2009) reported daily ET 

estimation using METRIC averaged +12%  compared to the Eddy covariance 

measurements with values range from 0 to 9 mm. Similar results were obtained by Allen 
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et al. (2005) when comparing METRIC to lysimeter over sugar beet crop in Idaho. 

Within individual fields, spatial variability of 24h ET reached 8mm/day, emphasizing the 

benefit of using high spatial resolution satellite data.  The same study also indicates that 

during the driest and hottest months 80% of the water flowing into the fields has been 

utilized for ET, indicating the effectiveness of water use. METRIC’s ET estimations error 

were reported to be 10-25% for daily ET and 1-4% for seasonal estimates (Conrad et al. 

2007). Gowda et al. (2008) suggested that some errors could result from the assumption 

that maximum ET (at the cold pixel) is 5% more than the reference ET used for 

calibration, the assumption of a linear relationship between surface temperature (Ts) and 

the surface-air temperature difference (dT) as well as from the linear interpolation 

between dates.  

 The recently developed remote sensing of evapotranspiration (ReSET) model 

(Elhaddad and Garcia, 2008) improves METRIC by using interpolated grids of wind run 

and calibration data from several weather stations in a consumptive model, thus taking 

into account both temporal and spatial variability of weather. The spatial variability of ET 

and the non-linear temporal interpolation affect the seasonal ET estimates. Elhaddad et al. 

(2011) compared ReSET results with lysimeter measurements, and showed that the 

difference between daily ET estimations and ReSET was within 11.16% to 13.6%. The 

same study showed that for seasonal estimations of Alfalfa the differences were reduced 

to 1.5-9.1%. However, the incorporation of interpolated wind speed might suggest a non-

constant linear relationship between surface and near-surface air temperature; a crucial 

assumption used in all surface energy balance models for estimating ET with remote 

sensing (Allen et al. 2007). Furthermore, the use of reference ET from several 
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meteorological stations already takes into account spatial variations in climate as 

reference ET at each station is calculated using local parameters including winds. The 

current study employs a SEBAL like model for daily estimates of ET and a simplified 

ReSET approach for seasonal estimations, i.e. without wind run interpolation and 

independent of a consumptive model suggested by Elhaddad and Garcia (2008); thus 

making it more applicable to a wider community. The model we introduced in this study 

is hereafter referred to as S-ReSET (simplified ReSET). 

 We focus on the agricultural sector around Phoenix, Arizona - a unique case of an 

arid region where, given the unique climatic conditions, the agricultural crop production 

is based on blue water (Thenkabail, 2010), mainly ground water and a canal system that 

delivers water from other watersheds. The overall aim of this research is to quantify the 

regional water consumption by agriculture using remote sensing and geospatial 

information technologies. More specifically: (a) quantify ETactual (water use) over active 

agricultural fields for the Central Arizona - Phoenix Long-Term Ecological Research 

(CAP-LTER) region using Landsat TM data; and (b) compare and contrast regional water 

use (ETactual) from agricultural areas between a wet year (2008) and a drought year 

(2000). By comparing water consumption of wet and drought years we were able to 

examine agriculture sensitivity to drought as well as farmers resilience in the context of 

water usage. In light of the reliance on blue water, these may have important implications 

for the region’s water security.  
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4.3: Data and Study area 

4.3.1: Study Area 

This study focuses on the Phoenix metropolitan region (CAP-LTER) (Figure 28); an area 

that has undergone extensive modification to its landscape during the 20th century, 

following rapid population growth.  As a result, large areas of the previously semi arid 

natural desert shrubland are now dominated by urban, active and non-active agriculture 

land covers (Imhoff et al. 2000). A recent study by Buyantuyev and Wu (2009) indicates 

that agriculture (both active and non-active) comprises 28% of the land cover and is used 

mainly for growing Alfalfa, Cotton, and Corn (NASS 2009).  The context for this 

rapid modification is of a desert biome - 193 mm yr
-1 

precipitation falling in two distinct 

wet seasons (~60% winter and 40% summer) and 2,000 mm yr
-1 

 potential 

evapotranspiration  (Baker et al. 2002) - in which climate change models suggest a future 

that is warmer and drier, with more extreme climatic events (IPCC 2007). Soils are a 

mixture of clay-loam and sandy loam (USDA soil survey; 

http://websoilsurvey.nrcs.usda.gov). As a result from these conditions, the only feasible 

way to support any kind of human activity is to rely on blue water use (Thenkabail, 

2010). 

According to Arizona Department of Water Resources (ADWR) irrigated 

agriculture consumes approximately 70% of Arizona’s water (ADWR, 2010). Of this 

total, on average, 49% are drawn from ground water, 25% are being diverted from the 

Colorado River (the Central Arizona Project canal), 18% are decreed, 2% are effluent, 

and 6% are from other surface water sources. Recent estimates indicate that the urban 

growth, coupled with the region’s aridity exerts pressure on agriculture, indicating the 
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need for more efficient and sustainable agricultural practice. Therefore, quantifying 

spatio-temporal evapotranspiration (ET) from active agricultural fields is important for 

water resource management in this arid region. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. The CAP-LTER study area as seen by Landsat 5. Flags represent location of the 

meteorological stations. Arrows indicate the stations used for validation. 

 

4.3.2: Data 

Landsat 5 TM image data with seven bands were used in this study. The seven bands 

include six bands ranging from blue to the short-wave IR portion of the spectrum (bands 

1-5 and 7; 0.45-2.35μm) at 30 m resolution, and a thermal band (band 6; 10.4-12.5μm) at 

120 m resolution. Landsat is the only operational satellite with a thermal band and a pixel 

size small enough to map ET for individual fields. The Landsat scenes were obtained in 
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raw format and processed using ERDAS Imagine software. Image bands 1-5 and 7 were 

atmospherically corrected and converted to reflectance values using the COS-T model 

(Chavez, 1996). The thermal band was resampled to 30 m by the United States 

Geological Survey (USGS), and converted to surface temperature following Markham 

and Barker (1986). 

 Two years were considered: 2000 as a drought year and 2008 as a wet year, with 

winter precipitation of 63mm and 114mm, respectively. Seven Landsat 5 TM images 

were acquired in order to cover the 2000 growing season between March and June. The 

March-June time span was selected for two reasons: (1) low rain frequency; and (2) the 

availability of cloud free image.  As a result we can assume most water lost to ET is from 

irrigation. For 2008, being a wet year with frequent cloud cover, only four cloud free 

images were available for the same time period. These images cover the time span of 

April 1
 
through May 19. Given image availability limitation, only the overlapping time 

was considered for comparison. Furthermore, the bi-modal rainfall distribution of the 

area indicates April-May to be the driest period of the year. Hence, any differences in 

water consumption in response to drought can be more evident during this time frame. 

  Other data used in this study were DEM of the research area, and reference ET 

data from 11 AZmet meteorological network stations within and around the study area. 

Using Kriging interpolation, reference ET grids were generated for each day during the 

growing season. These grids were used later for interpolation between dates. 
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4.4: Methodology 

4.4.1: Land Use/Land Cover Mapping 

An object oriented classification approach was used to delineate land use and land cover 

for each year using Landsat 5 TM. Four general land categories were identified: Urban, 

Desert, Active- and Non-active agriculture. The advantage of using object oriented 

approach is the ability to merge and reclassify data or pixels having similar spectral and 

spatial signatures into meaningful objects; resulting in a more homogenous classification 

across the image. The image was segmented using the multiresolution segmentation in 

Definiens Developer software. The segmentation is controlled by the values of three key 

parameters, namely shape, compactness, and scale. The shape parameter adjusts spectral 

homogeneity vs. shape of objects, whereas the compactness parameter balances the 

object shape between smooth boundaries and compact edges (Liu and Xia, 2010). 

Compactness and shape were set to 0.5 and 0.1 respectively. Scale parameter, which is an 

indicator of how big an object is allowed to grow (object size), was set to 5. Only a single 

segmentation was performed. A set of decision rules was established to identify the urban 

area, active agricultural fields, non-active fields and desert land covers.  The nearest 

neighbor algorithm was used to delineate urban and non urban areas as the two parent 

classes. All seven bands were included in the object-based analysis. 

 Proceeding a priori, active agriculture fields were classified using two parameters 

- Soil Adjusted Vegetation Index (SAVI) and object’s area. From the initial 

segmentation, merging, and growing of objects within the non-urban class was initiated 

for active and non active agriculture. The merged objects were then classified using 

membership function classifier based on their areas, where large area with SAVI > 0.4 
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corresponded to active agriculture. Similar merging and growing procedure using Albedo 

values was employed to identify non-active agricultural areas. These areas are usually 

bare soil with high Albedo and similar size to the active fields. Inactive agriculture 

proved more difficult to classify and showed some confusion with the non-urban natural 

desert. While this may lead to some errors in the land use map, for our purpose it is less 

critical as we assume inactive agriculture has ET = 0 (bare soil). 

For accuracy assessment, a stratified random sample approach was used. This 

approach assumes that the sample points selected are the true representation of the map 

being evaluated, thus an improperly gathered sample will produce meaningless 

information on the map accuracy (Congalton and Green, 1999; Jensen, 2005; Lillesand et 

al., 2008). High resolution imagery on Google earth and the original image with the local 

area knowledge were used as references. A total of 250 points with a minimum of 30 

points per class were selected. For each classification an error matrix was produced and 

the accuracy for each class was analyzed. From the error matrix, overall accuracy, 

producer’s accuracy, user’s accuracy, and the Kappa Coefficient were generated (Story 

and Congalton, 1986; Congalton, 1991). Overall accuracy for the year of 2000 was 

94.8% with Kappa 0.93. For 2008, overall accuracy was 89.2% with Kappa of 0.85. Both 

classified output maps are presented in figure 29. Histogram analysis (figure 30) indicates 

land cover percentage estimations are consistent with results reported by Buyantuyev and 

Wu (2009). The only land cover that increased is the urban; where most expansion took 

place on the account of natural desert area and non-active agriculture. Active agriculture 

shows only 1% decrease, equivalent to approximately 64km
2
.  
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Figure 29. Land use/land cover classification of the study area for 2000 (top) and 2008 

(bottom). 
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Figure 30. Changes in land cover area between 2000 and 2008. Labels indicate change in 

class cover percentage. 

 

4.4.2: The S-ReSET Model 

ET is generally determined from satellite imagery by applying an energy balance at the 

surface, where energy consumed by ET is calculated for each pixel as a residual of the 

surface energy balance: 

                  (4.1) 

Where LE = latent heat flux; ET = evapotranspiration; λ = latent heat of vaporization 

(2272*10
3
 J/kg); Rn = net radiation; G = soil heat flux; H = sensible heat flux. Parameters 

are in Wm
-2

.  Using equation 1, actual ET can be calculated so that reductions of ET 

caused by water shortage in the soil are captured.  The ET calculations are only accurate 

as the Rn, G and H estimations. The procedure used here follows the one detailed in 

Allen et al. (2007). All functions were calculated using the ERDAS spatial modeler. 
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 Net radiation (Rn) is computed by subtracting all the sum of outgoing solar 

radiation from total incoming: 

      α   
    

    
          

     (4.2) 

Where   
 =incoming short-wave radiation (Wm

-2
); α=surface albedo;   

  = incoming 

long-wave radiation (Wm
-2

);   
  = outgoing long-wave radiation (Wm

-2
);    = broadband 

surface thermal emissivity. The         
  term represents the fraction of incoming long 

wave radiation reflected from the surface. The different parameters were calculated based 

on Allen et al. (2007) for a “flat” terrain; however, this model was adjusted for turbidity 

as the Phoenix atmosphere is assumed to have higher dust content. Soil heat flux, is 

calculated using an empirical equation developed by Bastiaanssen (2000) as a function of  

  : 

                              α               (4.3) 

Where Ts = surface temperature (K); α = surface Albedo, and NDVI is the normalized 

difference vegetation index. The sensible heat flux (H) is estimated using the following 

equation: 

   
   

  
  

   
        (4.4) 

Where      = air density (kg m
-3

);    = specific heat of air at constant pressure (J kg
-1

 K
-

1
); and    =aerodynamic resistance (s m

-1
) between two near surface heights: Z1 - 

aerodynamic roughness and Z2  - 3m; and dt = near-surface temperature difference 

between Z1 and Z2.  

 Aerodynamic resistance (     is strongly affected by boundary layer buoyancy 

and driven by the sensible heat flux rate. Because both     and H are unknown at each 



  83 

pixel, an iterative solution is required. In the current study,     calculations uses wind 

speed extrapolated from a blending height of 100m above surface, and an iterative 

stability correction based on the Monin-Obukov function (As detailed in Allen et al. 

2007). During the first iteration,     is computed assuming natural stability: 

    
        ⁄  

   
        (4.5) 

Where Z1 and Z2 = heights above the zero-plane displacement of vegetation where the 

end point of dT is defined and k = von Karman’s constant (0.41). U* = friction velocity 

(m/sec), is computed using the logarithmic wind law for neutral atmospheric conditions: 

   
     

          ⁄  
       (4.6) 

Where      = wind speed at a blending height of 100m assumed to be constant for the 

image, and     = momentum roughness length.     is calculated for each pixel using 

Bastianssen (2000) equation: 

                              (4.7) 

Where SAVI= Soil Adjusted Vegetation Index.  SAVI can be independent from plant 

height; that is, different plants that are equally tall may yield different SAVI values 

depending on canopy density and structure. However, this relationship has been 

developed using several crops types (Cotton, grapes and olive trees), at various locations 

including Arizona. U100 is calculated as: 

     
             ⁄

          ⁄
        (4.8) 

Where Uw = averaged wind speed at the weather stations within the study area for the 

satellite overpass time, and     = the averaged momentum roughness for the weather 

stations surface (as calculated from eq. 4.7). Zx represents the height above the surface at 
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which wind speed is measured (usually 2-3m). By using a single value, the assumption of 

a constant linear relationship between Ts and dT can be kept (Allen et al., 2007).  

 Following Bastiaanssen (1995) the dT (K) and surface temperature (Ts) are 

assumed to have a linear relationship t: 

dT = a+bTs        (4.9) 

  The approach for determining dT and consequently H and LE that yields 

instantaneous ET is based on selecting two anchor locations: (1) a cold (wet) pixel where 

dT is minimal and water vapor is assumed to be released solely according to atmospheric 

requirement. Under such conditions, H = 0 and LE = Rn-G; (2) a hot pixel where ET is 

assumed to be zero; thus H = Rn-G. Following Allen et al. (2007), a bare soil/non-active 

agriculture field is selected as the hot pixel for each image. For the cold pixel, a well 

irrigated full cover pixel within an active agricultural field was selected. As no past actual 

ET measurements (i.e. lysimeter, eddy tower etc.) are available for this study area, we did 

not use the METRIC internal calibration of H = 1.05*ETref. This omission allows us to 

compare the S-ReSET daily estimates with the daily ETref recorded by the 

meteorological stations. Using the assumption that dT = 0 at the wet pixel, an initial dT 

function can be determined and the value of H can be calculated at the dry pixel. An 

assumed air temperature of 25°C is used to calculate the initial dT function. To account 

for the instability of air conditions an iterative solution is necessary. Stability 

characteristics influence the aerodynamic resistance, which directly influences the 

calculation of H (equation 4). The procedure for the iterative solution of     and H is 

outlined in Allen et al. (2007) and Liu et al. (2007). This procedure updates values for     

, dT and H at each iteration. The final values are determined when dT<1° and dRah/Rah 
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<0.05. On average it took 5-7 iteration for each image to converge. Once H values for 

both extreme locations are known, the value of LE can be calculated for those locations. 

The rest of the image pixels were stretched between these two values. At the next step the 

instantaneous ET fraction is computed following Elhaddad and Garcia (2008): 

                           (4.10) 

where        and G are all instantaneous. The 24h ET is computed using: 

                                       (4.11) 

Where 86,400 = time conversion from seconds to days;      = 24-h net radiation 

calculated using the Bastiaanssen (2000) equation;     = 24-h soil heat flux (assumed to 

be zero); and L = latent heat of vaporization used to convert the energy to mm of 

evaporation. 

L = (2.501-0.00236*(Ts-273.16))*10
6
    (4.12) 

where Ts = surface temperature in K.  

The cumulative seasonal ET for the defined period was calculated using the GIS 

algorithm developed by Elhaddad and Garcia (2008). Using ordinary Kriging on the 

reference ET data from the meteorological station, a daily grid of reference ET was 

created. Using the ratio between the remote sensing ET and the interpolated reference ET 

at the beginning and end of the interpolation period (scene dates), a correction factor was 

calculated. The correction factor was then used to produce a modified ET grid that 

changes from day to day depending on two variables: location of the date between the 

scenes and the daily grid of interpolated weather station ET values for that date. The 

seasonal cumulative ET is the sum of the modified ET grids. Using this methodology 

takes into account both spatial and temporal dynamics of ET. 
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4.5: Results and discussion 

4.5.1: Model Validation 

The S-ReSET empirical equations were based on the well validated SEBAL 

(Bastiaanssen , 1998) and METRIC (Allen et al. 2007). Seasonal algorithm was based on 

the ReSET model (Elahddad and Garcia, 2011). As there were no ET field measurements 

for the area, daily estimations were plotted against alfalfa reference ET from four 

meteorological stations in agricultural settings (figure 31). Because we did not use ETref 

to constrain maximum ET (LEcold = Rn-G-1.05*ETref*λ; as in METRIC) we were able to 

compare the meteorologically derived ETref with the model results. As can be seen from 

figure 31, a strong relationship was observed (R = 0.71).  

 

  

 

 

 

 

 

 

 

 

Figure 31. Comparison between S-ReSET predicted ETactual and weather stations 

reference ET. 

 



  87 

To further validate daily estimations, a statistical procedure was carried out: A 

crop map developed by NASA for 2008 (NASS 2009) was used to identify Alfalfa fields. 

For each scene date, S-ReSET ET estimates over active alfalfa fields were identified, and 

a random sample of 50 points were collected. The sample statistical distribution 

properties were compared to those of reference ET measured by the AZmet 

meteorological stations. To avoid field edge effects, points were collected from the 

middle of fields. Because only 11 weather station ET data were available, A Mann-

Whitney test was performed to compare the weather station and the samples from the 

model values distribution (H0: Mmod = Mws; H1: Mmod ≠ Mws). The Mann-Whitney is 

a non-parametric test that takes into account not only the observation location compare to 

the median but also its magnitude (Daniel, 1990). Results indicate that for all dates we do 

not have sufficient evidence to reject the null hypothesis (P-value > 0.05 for all dates), 

i.e. the S-ReSET estimations are not different from the reference ET (table 5).  

 Table 6 presents the comparison between S-ReSET estimations and seasonal 

reference ET means of the AZmet meteorological stations (Brown, 2005). As can be 

seen, for all three locations the S-ReSET underestimates actual ET. The highest 

difference is observed in Waddell. This -16% difference could be due to the fact that the 

weather station is located in a transition zone between urban and natural desert. These 

results are similar to those reported in the literature for several surface energy balance 

models (Elhaddad and Garcia 2011; Senay 2007; Conrad et al. 2007; Gowda et al. 2008). 

 The underestimation of the S-ReSET can be attributed to the scaling mechanism 

from instantaneous LE to daily ET, which is based on evaporative fraction [LE/(Rn-G)]. 

ET fraction is assumed to be the same at both the observation time and for the 24h period. 
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This method was found to be highly accurate for scaling instantaneous LE to daily ET, 

especially for arid regions (Colaizzi et. al, 2006). However, according to Allen et al. 

(2007) this assumption can lead to under-prediction of daily ET. Furthermore, the 

interpolation between the ET data across space was based on small number 

meteorological stations. The semi-variogram fitted in the Kriging might have deviated 

from the true spatial variation in some cases. Additionally, some of the stations used for 

interpolation are in urban settings, which may have caused different microclimate 

conditions that affect ET estimations. 

 

Table 5. Median, standard error and Mann-Whitney P-value for comparison of model 

and weather station ET estimations. P-values indicate that results are not significantly 

different 

  1/4/2008 17/4/2008 3/5/2008 19/5/2008 

  S-ReSET WS S-ReSET WS S-ReSET WS S-ReSET WS 

median 3.52 5.72 6.81 7.11 7.74 7.75 6.31 9.27 

SE 0.20 0.15 0.35 0.14 0.39 0.15 0.34 0.23 

P-value 0.09 0.27 0.34 0.06 

 

Table 6. Comparison between the seasonal ET estimated by S-ReSET and the AZmet 

report by Brown (2005). 

Location 

Seasonal ET from 

S-ReSET 

(mm/50day) 

Seasonal ET from 

Azmet report 

(mm/50day) 

Difference     

(%) 

Buckeye 320.4 341.7 -6.64 

Litchfield 328.3 335.3 -2.14 

Waddle 276.5 321.6 -16.3 
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 As the main water source for the region is ground water, we also utilized ground-

water pump data from the Buckeye, Roosevelt, Adman and Maricopa irrigation districts 

(ADWR, 2010) as an additional validation. Data on water quantity drawn from the wells 

are collected once a year; therefore, we calculated the daily average and multiplied by 50 

to make it comparable to the S-ReSET seasonal estimations. Two complications arise 

from this method: other water sources may contribute to irrigation and ground-water can 

be drawn for non-irrigation purposes. However, results at all four locations indicate a 

very strong correlation and predictive power (Figure 32). 

Similar to the way all energy balance models function, some biases result from 

the use of empirical functions to estimates some components. The most important ones 

are net radiation calculations, the surface temperature from the thermal band and its 

associated temperature gradient function used to calculate the sensible heat flux (The 

sensible heat flux is sensitive to radiometric temperature errors that are non-linear in true 

kinetic temperature) (Mariotto et al. 2011).  

Additional biases and uncertainties may result from the use of satellite imagery as 

the primary spatial information resource. While most satellites are 700km above 

Earth, the heat and vapor transport occur close to the surface, and are influenced by 

aerodynamic processes including turbulence and buoyancy. Other uncertainties and 

limitations may be related to the cold and hot pixels selection and availability of several 

meteorological stations in a region. 
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Figure 32: S-ReSET seasonal ET estimations compared to ground water wells data at 

four different irrigation and water districts across the region. 

 

4.5.2: Water Consumption and Drought Effect 

Desert and non-active agriculture land covers were characterized by daily ET < 5.4 

mm/day. Active agriculture showed an average ET of 9.3 mm/day, ranging from 2 to 17+ 

mm/day. This high variability was due to two factors, irrigation schedule and soil and 

crop characteristics (e.g., crop type, height, growth-stage). Figure 33 shows the S-ReSET 

daily estimates for May 19, 2008. 

To evaluate the effect of crop type on water consumption, data for the Roosevelt 

irrigation district were analyzed. Following Teixeira (2010) approach, the NASS (2009) 

crop map was overplayed with the seasonal ET image for 2008. 
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Figure 33. Daily ET for the Central Arizona Phoenix Long Term Ecological Research 

area, and a subset depicting agricultural areas (active and fallow). 

 

Table 7 shows a summary of statistics for Alfalfa, Cotton, and Corn - the three 

main irrigated crops in the region. These data follow the data in USDA (1982) and 

Masoner et al. (2003). Table 7 also suggests that Cotton consumes similar amount of 

water per area compare to Alfalfa. This result is supported by Masoner et al. (2003) who 

reported Cotton and Alfalfa to have comparable water requirements in semi arid 

environments (Oklahoma and Texas). However, considering that Alfalfa is harvested 

every few months while cotton and corn are restricted to a single season, it can be 

concluded that Alfalfa consumed more water per area than Cotton and Corn.  

 

 

 

5.2 mm/day 

17  mm/day 
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Table 7. Area of the main irrigated crops and seasonal actual ET in 2008 for the 

Roosevelt irrigation district. 

Crop 
Area 

(ha) 

ΣET (mm/50 

days) 

Average ET 

(mm/km2) 

Alfalfa 3003 10475697 3488 

Cotton 2540 1563416 3217 

Corn 643 8,171,067 2428 

 

Comparing the seasonal (April 1
st
 – May 19

th
) ET estimations (figure 34) revealed 

the effect of drought. Because our objective was to estimate water use for agriculture, 

only those objects classified as active agricultural fields were considered for comparison. 

Although crop type is highly important for estimating water consumption, no spatially 

referenced crop map exists for Arizona prior to the year 2008. Therefore we focused our 

drought sensitivity analysis on the agricultural sector as a whole, and not specific crops. 

While most active agricultural fields show seasonal ET of over 400 mm for both years, 

the desert and urban land cover experienced lower ET during drought (<300 mm). 

Drought effect was also seen in some of the inactive agricultural field where in wet years 

ET was slightly higher. This is possibly explained by annual plants growth on the 

exposed soil.  
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Figure 34. Seasonal ET for drought year (top) and wet year (bottom). 

 

 
 

Within each year, active agricultural fields showed high variability in their ET. 

The S-ReSET was able to identify individual fields where high water consumption was 

identified (ET>700 mm /50 days ~ 7000 m
3
 /ha). Total water usage of the entire 
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agricultural sector was 117x10
6 

m
3
 and 103 x10

6
 m

3
 for 2000 and 2008, respectively. 

However, considering land use changes, the precipitation equivalent water addition was 

336 mm/m
2
 during 2000 and 354 mm/m

2  
during 2008. Statistical analysis (F-test: P-

value=0.19) indicates water usage distribution across active fields is not significantly 

different between drought and wet years. A possible explanation is that farmers use the 

same amount of water regardless of climate conditions during the previous season. The 

small difference of 18 mm/m
2
 over 50 days, can be attributed to the difference in 

precipitation timing and amount (114.5 mm in October 2007 – May 2008 winter vs. 62.5 

mm in October 1999 – May 2000), leading to higher soil water content on April 1
st
 of the 

wet year. This could probably be due to the fact that the study period is relatively short. 

Other factors such as wind speed and temperature can also contribute. The decision to use 

the same water input to the field regardless of climatic conditions is not surprising given 

the high variance of precipitation between years and the desire to maximize yield. 

 The comparison to wells data of ground water suggests that although other 

sources of water have been developed to address water issue with regards to climate 

conditions (CAP canal brings water from the Colorado river, Salt and Verde rivers 

project), ground water are still a main source for irrigation. Other sources are used mainly 

by municipal, industrial, and other sectors to support population growth and activities. 

Given the low precipitation and the consequence low recharge of ground water, our 

analysis indicates an ongoing depletion of the region’s only local source. As more 

droughts are projected, urbanization taking over agriculture, and the Colorado discharge 

decreasing, ground water is crucial for sustainable development of the region. 
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4.6: Conclusions 

At a time water supply and security are major national and global concerns, the 

ability to monitor actual evapotranspiration (ETactual) or water use over time and space by 

agricultural crops provides critical information and new insights on water consumption. 

A hybrid model combining the SEBAL and ReSET models (S-ReSET) was developed 

and applied to estimate the agriculture sector water consumption in the Central Arizona 

Phoenix Long Term Ecological Research region. The images covered a period of 50 days 

(April 1 – May 19) for two years - 2000 (drought) and 2008 (wet). For the wet year, the 

S-ReSET was able to explain 0.7 to 0.87 of the variance of ground water usage in four 

irrigation districts within the region. These results indicate that the S-ReSET model can 

effectively quantify the spatio-temporal distribution of ETactual, providing there are 

number of meteorological stations with reference ET data. For the drought year, S-

ReSET underestimates ETactual of agricultural crops by 2-16% when compared with 

alfalfa ETreference. These errors were similar to those reported in the literature for remote 

sensing surface energy balance models (Bastiaanssen et al. 1998a; Allen et al. 2007; 

Elhaddad et al. 2011). The results were rather encouraging considering that only remote 

sensing derived parameters together with interpolated data of reference ET are necessary, 

without the need of crop classification. Nevertheless, additional evaluation is needed over 

longer time periods, with field measurements under various climatic conditions and 

different crop types to fully assess the S-ReSET capability to accurately estimate spatially 

distributed water consumption. 

This study focusing on the Phoenix metro area showed that for the period of April 

– May, desert lands and fallow agricultural fields are characterized by water use or 
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ETactual< 5.4 mm/day during drought years. During wet years, ET for these land covers 

can reach to about 7 mm/day, suggesting high variability between drought and wet years 

for the desert lands and fallow croplands. In contrast, agricultural cropland water use 

(ETactual) was on average 8.8 mm/day (±3.9) during drought and 9.9 mm/day (±3.6) 

during the wet year. Agricultural water use, however, remains constant during dry and 

wet years, because the water requirements of crops are met by adequate irrigation.  Of all 

the crops Alfalfa consumes most water with as high as 17 mm/day during its peak 

growth.  

Seasonal estimations yielded water input to the fields equivalent to 438 mm/m
2
 

during the year of 2000 (drought) and 494 mm/m
2
 during the year of 2008 (wet). 

Although we expect that under drought condition farmers will use more water for 

irrigation, our results indicate that the plants consumed less water during the year of 2000 

compare to the year of 2008. Lower water consumption during drought year may have 

simply meant that the crops had less available water. Thus, we concluded that there is no 

variation in ET estimates between drought and wet years for the entire agriculture as a 

whole and that farmers use similar amount of water regardless of climatic conditions 

(drought/wet) during the study period. This implies that the agriculture sector as a whole 

may not be drought sensitive. Although further analysis considering all the different 

sectors is needed, this research has shown that one significant way to protect the region’s 

water security is to encourage the agricultural sector to adjust their irrigation schemes to 

climatic conditions. The S-ReSET approach proposed in this study is computationally 

simple, conceptually straight forward, and easy to handle. We have demonstrated that the 

S-ReSET model is effective and has potential for global application to determine 
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agricultural crop water use. The model can also help us make an historical evaluation of 

the ETactual, identify cropland areas that consume different amounts of water and thus 

inform water management decision makers and promote regional and global water 

security.  
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CHAPTER 5: QUANTIFYING OUTDOOR WATER CONSUMPTION OF URBAN 

LAND USE/LAND COVER: SENSETIVITY TO DROUGHT
3
 

5.1: Abstract 

 Outdoor water use is a key component in arid city water systems for achieving 

sustainable water use and ensuring water security. Using evapotranspiration (ET) 

calculations as a proxy for outdoor water consumption, the objectives of this research are 

to quantify outdoor water consumption of different land use and land cover types, and 

compare the spatio-temporal variation of water consumption between drought and wet 

years. An energy balance model was applied to Landsat 5 TM time series images to 

estimate daily and seasonal ET for the Central Arizona Phoenix – Long Term Ecological 

Research region (CAP-LTER). Modeled ET estimations were correlated with water use 

data in 49 parks within CAP-LTER and showed good agreement (r
2
=0.77), indicating 

model effectiveness to capture the variations across park water consumption. Seasonally, 

active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the 

desert and urban land cover types experienced lower ET during drought (<300 mm). 

Within urban locales of CAP-LTER, xeric neighborhoods show significant differences 

from year to year, while mesic neighborhoods retain their ET values (400-500 mm) 

during drought, implying considerable use of irrigation to sustain their greenness.  

Considering the potentially limiting water availability of this region in the future due to 

large population increases and the threat of a warming and drying climate, maintaining 

large water-consuming, irrigated landscapes challenges sustainable practices of water 
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conservation and the need to provide amenities of this desert area for enhancing quality 

of life. 

 

5.2: Introduction 

      Many of the world arid regions contain fast growing urban centers- one of the 

most disturbing land transformation processes, as it alters natural biophysical processes 

including local surface energy balances and the hydrological cycle (Imhoff et al 2000; 

Pielke, 2001; Grimm et al. 2008).  As a result, the urban environment tends to be hotter 

than its surroundings - a phenomenon known as the urban heat island effect (UHI). The 

UHI phenomenon has been well documented in the scientific literature and is attributed 

to impervious surfaces and built structures (e.g.,, Balling & Brazel 1987; Brazel et al. 

2000; Baker et al. 2002; Hawkins et al. 2004; Fast et al. 2005). Implications of the UHI 

effect for urban residents, particularly in arid regions, are manifold: increasing energy 

demand for air conditioning, aggravating air pollution, reducing human comfort, and 

augmenting vulnerability to extreme heat events (Harlan et al. 2006, Sarrat et al. 2006, 

Grimmond 2007, Hart & Sailor 2009). Using water for outdoor irrigation allows the 

population to sustain a ‘greener’ landscape and mitigate the effects of the urban heat 

island (UHI). However, adding vegetation in water stressed arid regions comes with a cost of 

increased irrigation requirements.  

 Water availability and land use/land cover (LULC) properties in urban areas are 

driven by socio-economic conditions and human forces (Buyantuyev and Wu 2010; 

Brazel et al. 2007). In Phoenix, 45% of the city’s municipal total water deliveries are for 

outdoor usage, i.e., irrigation to support landscaping (City of Phoenix 2011). For 
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residential water consumption it is estimated that between 60 and 74% is used for the 

outdoors. This water is sensitive to climate variations (Mayer and DeOreo, 1999). 

Residential landscapes can be generally characterized as mesic and xeric or some mixture 

of each. The former refers to the use of non-native vegetation (e.g., Bermuda grass and 

broad-leaf trees) that requires intensive irrigation, while the latter refers to landscaping 

that reduces water usage through best practices (i.e., desert vegetation that requires little 

or no irrigation such as Palo-Verde, Cactai and Mesquite trees). Irrigated mesic 

landscapes reduce temperature through evaporative cooling and shading from vegetation 

making plants an important cooling agent in arid environments (Bonan, 2000). The 

magnitude of the cooling effect depends on local climate, water availability, and land 

cover properties – specifically the extent of vegetation cover and vegetation composition 

(Buyantuyev and Wu, 2010; Gober et al. 2012).  Increased outdoor water usage raises 

concerns about production of cooling as an ecosystem service, and long term 

sustainability of the urban environment in an arid climate, specifically water security 

(Gober et al. 2011).  

  In the absence of direct observation, evapotranspiration (ET) can be used to provide 

a measure of outdoor water usage. ET is the sum of evaporation from soil surface and 

transpiration from plants. ET is the second most important (after precipitation) 

component of the water cycle and a controlling factor of energy transport between the 

biosphere, atmosphere and hydrosphere (Idso et al. 1975). By definition, ET is a measure 

of the plants water uptake/consumption and can be regarded as a lower boundary for 

outdoor water usage. In this paper, actual ET (hereafter referred to as ET) derived from a 

surface energy balance model is used as a proxy for water consumption. Using ET 



  105 

enables us to quantify outdoor water consumption of different LULC types within the 

Central Arizona Phoenix Long-Term Ecological Region (CAP-LTER). Quantifying ET 

over areas undergoing bio-physical changes (e.g., urban expansion) is important in 

understanding the water cycle, climate dynamics and ecological processes. 

Understanding these can influence water resources planning, water regulations and water 

use efficiency, especially in water limited areas where atmospheric demand is high and 

ET is the largest water consumer (Bastiaanssen, 2000; Allen et al. 2007; Sun et al. 2009). 

The spatio-temporal variation of ET can help us understand the role of vegetation in the 

hydrological partitioning across different LULC types, especially types dominated by 

human impacts. 

  Traditional methods for ET estimation such as the use of eddy flux towers and 

lysimeters, are time consuming, require large amounts of field data that is often 

unavailable, expensive and point based. These issues are even more critical considering 

the highly heterogeneous LULC in urban environments (Liu et al. 2010). Remote sensing 

methods often include estimates of ET as a residual of the energy balance, thus reducing 

the need for ground data while providing information on critical hydrological 

components such as vegetation, soil, and topographic data.  Furthermore, remote sensing 

provides regional coverage information on the spatial and temporal variability of ET 

(Bastiaanssen et al 1998; Elhaddad and Garcia, 2008).  While remote sensing surface 

energy balance studies minimize the use of ground data, they were designed and applied 

almost specifically for agricultural use and natural vegetation (e.g., Teixeira, 2010; 

Hankenrson et al. 2012; Ruhoff et al. 2012). Several studies (e.g., Liu et al. 2007; Liu et 

al. 2010) used a remote sensing based energy balance approach to map ET over 
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heterogeneous surfaces. These studies, focusing on daily temporal scale, show that 

different LULC experience significantly different ET in urban regions and that the higher 

the ET the lower the development level in urban regions. More recently, Jenerette et al. 

(2011) used a simplified energy balance model where the sensible heat flux was 

estimated by the temperature differential between canopy and air. The authors used Sky-

Harbor airport as the sole source for meteorological data whereas these can vary 

considerably over the metropolitan area. Here, we extend their approach by taking into 

consideration the spatial variability of meteorological conditions, aerodynamics 

resistance and surface roughness variation across the landscape. The current study takes a 

direct observation approach utilizing remote sensing data and readily available weather 

data needed to apply the S-ReSET model (Kaplan and Myint, 2012) and overcome some 

of the above limitations.  

  Given recent decade’s urban growth in Phoenix metropolitan area, coupled with 

the region’s climatic conditions and water sources, the overall aim of this study is to 

explore different outdoor water consumption patterns associated with various LULC 

types and how the results vary under drought and wet conditions. In the past, water 

development focused on the supply in order to support economic development. Recently 

more attention has been given to studying water demand, more specifically water usage. 

Gober (2010) identified outdoor water usage as a critical component for the region’s 

water security. In the tradeoffs between outdoor and indoor water usage under different 

climatic scenarios, some of the outcomes can be reduced by changing outdoor lifestyle 

toward a dense urban environment with xeric landscape and pool usage limitations.  
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  This paper thus considers the effect of urbanization on ET by comparing different 

LULC to the surrounding natural desert ecosystem that represent the baseline conditions. 

Our specific objectives are to: (a) estimate ETa as an indicator for outdoor water usage, 

and determine its variation across different LULC types within urban settings; (b) explore 

LULC sensitivity to drought; and (c) identify changes in outdoor water usage driven by 

climate. In the arid southwest United States of America, where water resources are scarce 

and finite, temperatures are high and are expected to continue rising (Kunkel et al. 2013), 

information on sensitivity to drought and outdoor water consumption will support more 

knowledgeable decisions for water use and urban planning. Illustrating the effect of 

drought on water consumption can provide additional insight on the long term 

sustainability of different urban landscapes and regional water security. Generally, water 

security is defined as the ability of a water system to meet environmental and societal 

needs. In the context of this paper, as per the case of Phoenix, water security means 

supporting the quality of life and standard of living without diminishing over time. 

 

5.3: Study Area 

  This study focuses on the Central Arizona Phoenix Long Term Ecological 

Research area (CAP-LTER) (Figure 35). The CAP-LTER Phoenix metropolitan region is 

located in the arid southwest USA and includes both natural desert environments and 

human controlled environments (urban and agriculture). The southwest region and the 

Phoenix metropolitan area in particular, have undergone extensive modification to its 

landscape during the 20th century following rapid population growth. The Phoenix 

metropolitan is comprised of 25 municipalities and diverse land use and land cover 
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classes, including urban and suburban neighborhoods (commercial, industrial, and 

residential segments with different densities) as well as desert landscape, unmanaged soil, 

and undeveloped areas. Jenerette et al. (2011) reported that approximately 40% of the 

population is ethnic minorities, and concluded that residential segregation plays a key 

factor in neighborhoods landscape design. .  

  To sustain human activities in the region, extensive water supply projects and 

large ground water reserves have been built, including the CAP canal that brings water 

from the Colorado River, and the Salt and Verde projects that collect runoff from the 

river basins in to reservoirs.  In the last decade, urban growth has increased outdoor 

water usage as more urban landscapes require irrigation. Currently, the increased usage 

for urban activities is supported by the water previously allocated to agricultural land on 

which the new urban area was built. Further growth may threaten the sustainability of 

water supply sources, especially groundwater (Gober et al. 2011). 

 

 

 

 

 

 

 

 

Figure 35. Location map for the Central Arizona Phoenix Long Term Ecological 

Research study area. Map on the right indicates the location of Arizona within the 

continental USA 
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5.4: Data and Methods 

5.4.1: Satellite and weather data 

 In this study, we used level 1G Landsat 5 Thematic Mapper (TM) images that 

have 30 m resolution with 7 channels – blue (0.42-0.52 μm), green (0.52-0.6 μm), red 

(0.63-0.69 μm), near infrared (0.75-0.90 μm), mid infrared (1.55-1.75 μm), thermal 

infrared (10.4-2.50 μm) and mid infrared (2.09-2.35 μm). The thermal infrared channel, 

which measures thermal radiation, has a 120m resolution that was resampled to 30m by 

the United States Geological Survey (USGS).  The Landsat scenes were obtained in raw 

format and processed using ERDAS Imagine® software. Image bands 1 to 5 and 7 were 

atmospherically corrected and converted to reflectance values using the COS-T model 

(Chavez, 1996). The thermal band was converted to surface temperature following 

procedures after Markham and Barker (1986).  

 A total of nine Landsat 5 TM images were acquired covering the time span of 

April- May of 2000 and 2008 (Table 8). Only the overlapping dates were considered for 

the final analysis, i.e., April 1 to May 19. The April-May time span was selected for two 

reasons: (1) Low rainfall frequency and temperatures that do not usually require 

adjustment of irrigation schedule and amount, thus we can assume most water lost to ET 

is from irrigation; (2) cloud free image availability.  ET cannot be estimated for cloud 

covered locations because clouds drop the thermal band readings considerably and lead to 

large errors in sensible heat flux calculations.  
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Table 8. Dates (Day/Month) of Landsat 5 TM used to estimate ET. Final time span 

considered only overlapping dates – April 1 to May 19. 

 

2000 2008 

26/3 1/4 

11/4 17/4 

27/4 3/5 

13/5 19/5 

29/5  

 

 Weather data were obtained from an automated and readily available Arizona 

meteorological network called AZmet. Three variables were included: air temperature, 

wind speed and reference ET.  The air temperature and wind speed were used to estimate 

the daily ET. Reference ET was used to interpolate between images, using the algorithm 

developed by Elhaddad and Garcia (2008), to obtain seasonal values. 

To evaluate the effect of drought, we examined and compared two years: 2000 as a 

drought year, and 2008 as a wet year. Due to the bi-modal rainfall distribution of the 

region, only winter precipitation (October-May) was considered for the definition of 

drought (Figure 36).   Widespread drought conditions have been recorded in the paleo 

record (Sheppard et al. 1999) and can be reasonably expected to occur again. Moreover, 

given the rainfall amount and distribution during 2000, and the consistently higher 

temperatures, these drought conditions may be considered to represent projected climate 

conditions for the southwest USA. Several scenarios project a warmer and drier climate, 

along with an increase in extreme weather events in which seasonal precipitation 

frequency decreases while their intensity increases (IPCC, 2007;  Kunkel 2013).  
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Figure 36: Monthly Precipitation and maximum average Temperature for 2000 and 

2008. Note that: (1) While temperatures trends are very similar, values for 2000 are 

consistently higher; and (2) the year of 2008 had a total of 114.5 mm of rainfall well 

distributed across the winter season, while the year of 2000 had only 62.5mm of rainfall 

most of which fell during March. 

 

5.4.2: Evapotranspiration and water use 

 In this study, a surface energy balance ET algorithm was implemented to estimate 

actual ET using Landsat 5 satellite images (30m resolution). Using the S-ReSET model 

(Kaplan and Myint, 2012), ET is calculated for each pixel as a residual of the surface 

energy balance:  

                   (5.1) 

Where LE= latent heat flux, ET=evapotranspiration, λ = latent heat of vaporization 

(2272*103 J/kg), Rn = net radiation, G= soil heat flux, H= sensible heat flux. Parameters 

are all in Wm
-2

.  
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  Most applications of the surface energy model are for monitoring agricultural 

crops water consumption. The METRIC (Allen et al. 2007) and ReSET (Elhaddad and 

Garcia 2008) use the alfalfa reference ET to calculate the seasonal water consumption 

while considering the spatio-temporal variability of weather conditions across the 

landscape. To adjust the model to the urban environment, we used the grass reference. 

The use of the grass potential ET rather than alfalfa is more suitable to the urban 

environment as most of the vegetation is grass (lawns, golf courses, parks) and desert 

vegetation which has lower potential ET due to physiological adaptation (Rundel and 

Gibson, 1996). Urban trees, though potentially can have high ET, are usually irrigated 

less then agricultural crops. Therefore our results can be considered as a lower boundary 

for trees. 

  Following Allen et al. (2007) net radiation (Rn) was calculated from remote 

sensing as the balance between incoming and outgoing solar radiation: 

          
    

    
          

       (5.2) 

Where   
 =incoming short-wave radiation (Wm

-2
), α=surface albedo,   

  = incoming long-

wave radiation (Wm
-2

),   
  = outgoing long-wave radiation (Wm

-2
),    = broadband 

surface thermal emissivity. The         
  term represents the fraction of incoming long 

wave radiation reflected from the surface, calculated using the Stephan-Boltzmann 

equation, and the surface temperature derived from Landsat band 6 (10.4-12.5µm) 

following Markham and Barker (1986). The full detailed equations used to derive the 

different parameters appear in Allen et al. (2007). Soil heat flux (G) was estimated as a 
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function of Rn, surface temperature (  ), albedo (α) and vegetation cover (represented by 

the normalized difference vegetation index- NDVI): 

                                                   (5.3) 

The NDVI is a measure of vegetation greenness, and is calculated using the red and near-

infrared 

(NIR) bands of Landsat as:     (NIR-red)/(NIR+red)            (5.4) 

The sensible heat flux (H) was estimated based on the surface - air temperature difference 

(dT) and aerodynamic resistance (    : 

        
  

   
            (5.5) 

Where     = air density (kg m
-3

),   = specific heat of air at constant pressure (J kg
-1

 K
-1

). 

Aerodynamic resistance calculations use wind speed extrapolated  from a blending height 

of 100m above surface, and an iterative stability correction based on the Monin-Obukov 

function (As detailed in Allen et al. 2007). Surface – air temperature difference was 

estimated using Bastiaanssen (1998b) approach. 

  To solve the sensible heat flux, many of the remote sensing energy balance 

models use fully vegetated, well irrigated fields as the wet edge. In this study we used 

Tempe Town Lake (33° 25’ 59’’N 111° 55’ 06’’W) as the wet edge to calibrate the 

model. The lake is within the urban environment and despite the UHI effect it is still 

expected to have dT=0. Furthermore, it is not subjected to seasonal changes or to 

irrigation and can be used as the cold pixel for all the images, providing a fixed point of 
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reference. For the hot pixel (dry edge) in each image, a different bare soil /non active 

agriculture pixel with minimum NDVI and maximum surface temperature was selected. 

For these locations we assumed there was no latent heat flux. Commercial/industrial and 

asphalt/concrete classes were masked and given a value of ET=0. We assumed there is no 

connectivity (water flow) between pixels and that water are distributed evenly across a 

pixel. 

 

5.4.3: Land use/land cover data 

  To spatially link ET with different LULC types, ET estimations were overlaid 

with the CAP-LTER mixed land use/land cover map developed by Buyantuyev (2007). 

The same map was used for both 2000 and 2008. With an overall accuracy of 83%, the 

categories used in this land use/land cover map are ecologically associated with dominant 

vegetation types and net primary production. Vegetation type and net primary production 

directly affect ET (Bonan, 2002; Buyantuyev and Wu, 2009). To account for LULC 

changes (LULCC between 2000 and 2008, areas that have undergone change were 

excluded. The distribution of land use/land cover after excluding areas undergone change 

is presented in Table 9. 

 The coefficient of variation (CV) was used to assess the heterogeneity of land 

cover and to evaluate how the spatial structure of ET in each land cover differs between 

wet and dry years. The CV was also used to compare and contrast the different land 

covers.  
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Table 9. Land Use/Land Cover classification distribution within the study area, after 

excluding areas that have undergone change (Modified from Buyantuyev, 2007). 

 

 

 

 

 

 

 

 

 

 

5.5: Results and discussion 

5.5.1: Model validation 

 The S-Reset model was developed and validated for agricultural fields in the 

CAP-LTER region (Kaplan and Myint 2012). To validate the S-Reset estimations for the 

urban environment, total ET values for the year 2008 for parks were compared against 

the park’s actual water usage data (City of Phoenix Parks and Recreation – unpublished 

data, 2011). Generally, the Phoenix city parks are a mix of desert landscaping, water 

features and turf grass. As the data do not specify the final usage of the water, we 

excluded all those parks with open water features. The average turf cover for the parks 

used for validation was 91.5%. This also supports our usage of the grass reference ET in 

Class name Area (km
2
) Percent 

Cultivated vegetation (Active Agriculture) 279.39 4.53 

Cultivated Grass 18.47 0.30 

Soil (Prior Agricultural. Use) 334.46 5.43 

Vegetation  748.15 12.14 

Commercial/Industrial 428.34 6.95 

Asphalt and Concrete 280.50 4.55 

Undisturbed (Desert) 2774.11 45.00 

Compacted soil 112.35 1.82 

Mesic Residential 400.05 6.49 

Xeric Residential 760.11 12.33 

Water 28.25 0.46 
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the model. To adjust our results to turf water use the averaged crop coefficient (Kc) for 

April and May was used, where Kc=0.765 (AZMET 2012).  

Park areas were identified using Google Earth and classified 2.4 m spatial 

resolution Quickbird imagery of the City of Phoenix (approximately 1300 km
2
). The 

classification includes 7 land covers (buildings, other impervious surfaces, grass, trees, 

soil, water and pools) with an overall accuracy of 89%. Based on the classified Quickbird 

dataset a polygon was drawn for each park. The polygons were then overlaid on the ET 

maps derived from the S-Reset in order to extract total ET values for each park. The total 

ET for a park is defined as the sum of all pixels that fall within the polygon. 

  Total ET was then plotted against actual water usage for each park (Figure 37). 

Because water use is collected in hundreds of cubic feet (CCF), while the energy balance 

models estimate ET in mm, and because the data are not normally distributed, we used 

the natural log (Ln) transformation. The correlation was found to be statistically 

significant with an R
2
=0.7 (P-value<0.001). Note that the regression suggests our model 

overestimates compared to the amount of water actually consumed by the park’s 

vegetation (mostly grass). A couple of explanations are: (a) over irrigation – given the 

climate and current water regulations, many of the parks are irrigated beyond the actual 

vegetation needs. In addition, many parks are irrigated by flooding. When using flood 

irrigation, part of the water evaporates before consumed by the plants, and some infiltrate 

without being consumed; (b) other water usage allocations - while parks with water 

bodies have been excluded, all parks have additional water usage such as  drinking water, 

toilets, and play grounds. The latter may also explain the higher disparity between water 

usage and our ET estimation in the lower part of the data range. Other factors that  
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Figure 37.  Correlation between the S-ReSET predicted ET and actual water usage from 

parks, golf courses and sports and recreation facilities across the metropolitan area 

(n=49). 

 

may contribute to the higher disparity are that our model does not account for advection, 

the effects of surrounding land cover types, difference in grass/turf and other vegetation 

types, and consequently difference in resistance and/or k-factor (we assumed both 

constant) 

The strong correlation observed indicates that the S-ReSET model can be 

effectively used to estimate outdoor water usage. Mayer and DeOreo (1999) studied 12 

cities across north America, including several cities within CAP-LTER. The authors 

found that on average, ET explains 59% of the spatial variation of outdoor water use. The 

higher R
2
 in our model is a result of Phoenix’s climate conditions, and its unique 

landscape and life style choice: wide streets, many open spaces in both the municipal 

level (i.e., parks) and private (private lawns), and the single family housing. In areas 

where high rise buildings provide shade and block the satellite view of the vegetation at 
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street level, such as the Phoenix downtown area, the model is much less effective. In 

other cities such as New York City for example, the model will not be able to detect the 

vegetation in the narrow streets. 

 

5.5.2: Seasonal ET estimates 

Seasonally accumulated ET estimations for a drought and wet year are presented 

in Figure 38 The seasonal ET estimates indicate that regionally, the cumulative ET is 

significantly higher in a wet year than that in a drought year. This is reasonable because 

both precipitation and irrigation intensify the ET process and thus lead to high ET. 

Balling and Gober (2007) concluded there is a statistically significant relationship 

between climatic conditions and water use in Phoenix and point out the importance of 

outdoor water use. Our comparison of seasonal ET estimates between the drought year 

and wet conditions revealed that LULC types have diverse drought-sensitivity patterns.  

The seasonal ET maps coupled with the land use map for 2008 suggest consistent high 

ET for controlled landscapes regardless of the climate conditions. Results indicate that 

for mesic residential, the cumulative ET was greater than 250 mm for both years and 

even greater than 450 mm for cultivated vegetation and grass. These results follow 

Balling et al. (2008) who reported greater change in outdoor water use for neighborhoods 

with a high portion of mesic landscaping.  
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The desert and xeric residential areas yield lower ET than controlled landscapes 

for both the drought year and wet year due to less vegetation and less or no irrigation. 

The desert and xeric land cover both show similar differences between wet and dry years, 

with cumulative ET less than 200 mm during drought and ~250 mm for the wet year. 

Assuming no major changes in vegetation properties (i.e., density, area, extent, type), 

these differences can be attributed to the difference in precipitation between the years: 

62.5 mm during 2000 (drought year) and 114.5 mm during 2008 (wet year).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Seasonal ET for a dry year (2000) and a wet year (2008); the effect of 

drought. 
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5.5.3: ET coefficient of variance for wet and drought years 

To analyze the variation in ET across the entire study area, according to land 

cover type, we calculated the coefficient of variance (CV). The ET CV was calculated for 

both wet and drought years for comparison purposes. Results are shown in Figure 39. 

Analysis of these results indicates that drought leads to consistently higher ET CV 

regardless of land cover types.  Note that there is no striking difference in the ET CV 

between drought and wet years for controlled (irrigated) landscapes as there is for 

undisturbed (desert) and xeric residential areas. This confirms our finding based on the 

seasonal ET estimates that controlled landscapes are not as sensitive to drought as 

unmanaged landscapes. Specifically, mesic residential and cultivated grass exhibit 

homogeneously low ET CV across years while compacted soil reveals considerably 

different patterns in ET between wet and drought conditions. 

 

 

 

 

 

 

 

Figure 39. ET coefficient of variance of wet (2008) and dry (2000) years for different 

land use/land cover types. 
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5.5.4: Water consumption for major urban land covers 

Water consumption for three major LULC types - mesic residential, xeric 

residential and cultivated grass, was further examined (Figure 40). Results show that 

drought years have consistently higher water consumption for all LULC types. It is 

noteworthy that cultivated grass is the most water-consuming land cover among the three 

and that the amount of water consumed by cultivated grass is very similar regardless of 

climatic conditions. This is mainly attributable to the irrigation routine and land use: most 

cultivated grasses are parks, recreation areas and golf courses. As such, they are kept in 

constant soil moisture levels (i.e., field capacity), thus ET is at its maximum and is 

limited by physiological properties rather than climate.    

 

 

 

 

 

 

Figure 40. Mean ET (water consumption) of main urban land covers (Apr 1 – May 19). 

 

Mesic residential areas show significantly higher water consumption during 

drought, indicating that mesic residential areas are more sensitive to drought. Xeric 

residential consumes the least amount of water for both climatic conditions and the water 
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consumption does not vary greatly between wet and dry years across the study area. 

Similar result were reported in several studies (Balling et al. 2008; Balling and Cubaque, 

2009), which showed that change in water consumption is related to percent mesic land 

use and socio-economic parameters. More recently, Buyantuyev and Wu (2010) 

demonstrated and quantified the link between land use land cover, surface temperature 

and socio-economic patterns. Martin (2001) found little differences between mesic and 

xeric outdoor water use, because residents with xeric landscapes do no adjust their water 

application to account for seasonal changes in ET. Our results suggest that in mesic 

neighborhoods, the population responds to climate variations by increasing irrigation 

during drought conditions in order to preserve a greener landscape. In contrast, during 

wet conditions, the same neighborhoods use less water for irrigation. This approach 

might be sustainable from an economic point of view where you save money during 

‘good’ times in order to spend it during ‘hardship’. However, such an approach might not 

be sustainable at the long term, especially under the assumption of increasing drought 

frequency and intensity. An increase in drought frequency and intensity can lead to a 

negative feedback chain reaction in which water supply is further decreased. For example 

– a persistent long drought with less precipitation will lead to less flow in the Verde and 

Salt basins, which in its turn lead to a drop in reservoirs levels. A more regional scale 

drought can lead, in addition to reduced runoff in the Verde and Salt basins, to a reduced 

flow in the Colorado River. As a result less water will be allocated to the Phoenix 

metropolitan areas via the CAP canal, forcing higher withdrawals from local resources 

such as ground water. Such feedback mechanism will have implications for the region’s 

water security, and will face decision makers and residents with choices on changing life 
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style and landscape practices. With only local resources, the Phoenix metropolitan area is 

highly vulnerable to drought (Morehouse et al. 2002), and probably will not be able to 

sustain itself under existing water use characteristics and population trends. 

 

5.6: Conclusions 

  Urbanization is one of the most obvious disturbances by human induced land 

transformations. In arid regions, in addition to changing land surface processes and 

characteristics, it also impacts the most important resource: water. As Phoenix 

metropolitan area population continues to grow, residential water use will increase 

especially outdoor usage to support vegetation. At the same time climate projections 

indicate an increase in drought frequency and intensity. Continuous development of the 

area depends on water availability and management, thus, a better understanding of urban 

LULC sensitivity to drought can promote a more sustainable urban development and 

mitigate effects of drought in a rapidly expanding city in an arid environment.   

 We have demonstrated how a detailed spatio-temporal mapping of actual ET and 

the implications of LULCC on the surface energy balance can be obtained by remote 

sensing techniques. Results indicate that the S-ReSET provides good estimations for 

outdoor water consumption, and that its applications can be extended to the urban 

environment. The model simplicity (use of only remote sensing and weather data) makes 

it suitable for estimating water usage in urban setting with similar characteristics as 

Phoenix (single family housing, wide streets etc.), This provides a cost effective method 
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for identifying hot spots, drought resilience and effective policy outcomes – all critical in 

environmental management and decision making.  

The spatio-temporal variation of ET indicates that drought leads to higher 

variability within all land covers, especially in “unmanaged” landscapes. Results also 

indicate that undisturbed desert and xeric residential areas have lower daily and seasonal 

outdoor water usage, with high variability between drought and wet years.  On the other 

hand, landscapes supported by constant irrigation (i.e., cultivated grass and mesic 

residential areas) to sustain their greenness and conditions show high water usage 

regardless of climate conditions. Considering the limited water availability of the region 

with the projected warmer and drier climate (based on IPCC high emissions A2 scenario), 

the irrigated landscapes are not sensitive to drought and may not be sustainable. As 

urbanization continues to intensify, this may have significant implications for future 

development plans and the region’s water security. 

 

 

 

5.7: Acknowledgments 

This material is based upon work supported by the National Science Foundation under 

Grant SES-0951366, Decision Center for a Desert City II: Urban Climate Adaptation and 

Grant and DEB-0423704, Central Arizona-Phoenix Long-Term Ecological Research 

(CAP LTER).  Any opinions, findings, and conclusions or recommendations expressed in 

this material are those of the authors and do not necessarily reflect the views of the 

National Science Foundation. 



  125 

5.8: References 

Allen, R.G., M. Tasumi, A. Morse, and R. Trezza, 2007 Satellite-based energy balance 

for mapping  evapotranspiration with internalized calibration (METRIC) – model. 

Journal of Irrigation and Drainage Engineering, 133, 380-394. 

AZMET: The Arizona meteorological network (2012). 

http://ag.arizona.edu/azmet/index.html. (accessed 31 October 2012). 

Baker, L.A., A.J. Brazel, N. Selover, C. Martin, N. McIntyre, F. Steiner, A. Nelson, and 

L. Musacchio, 2002. Urbanization and warming of Phoenix (Arizona, USA): impacts, 

feedbacks, and mitigation. Urban Ecosystems, 6, 183-203. 

Balling, R.C.Jr. and P. Gober, 2007 Climate variability and residential water use in the 

city of Phoenix, Arizona. Journal of Applied Meteorology and Climatology 46, 1130-

1137. 

Balling, R.C.Jr., P. Gober, and N. Jones, 2007. Sensitivity of residential water 

consumption to variations in climate: An intraurban analysis of Phoenix, Arizona. Water 

Resources Research. doi: 10.1029/2007WR006722. 

Balling, R.C.Jr., and C. Cubaque, 2009 Estimating future residential water consumption 

in Phoenix, Arizona based on simulated changes in climate. Physical Geography, 30, 

308-323. 

Bastiaanssen, W.G.M, M. Menenti, R.A. Feddes, and A.A.M. Holtslag, 1998. Remote 

sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of 

Hydrology, 213,  198–212. 

Bastiaanssen, W.G.M., 2000. SEBAL based sensible and latent heat fluxes in the 

irrigated Gedez Basin, Turkey. Journal of Hydrology, 229, 87–100. 

Bonan, G.B., 2000. The microclimates of a suburban Colorado (USA) landscape and 

implications for planning and design. Landscape and Urban Plan ,49, 97-114 

Buyantuyev, A. 2007, Land cover classification using Landsat Enhanced Thematic 

Mapper (ETM) data - year 2005. http://caplter.asu.edu/data/?id=377  (accessed 26 Dec 

2012). 

Buyantuyev, A., and J. Wu, 2009. Urbanization alters spatiotemporal patterns of 

ecosystem primary production: a case study of the Phoenix metropolitan region, USA. 

Journal of Arid Environments, 73,  512-520.  

Buyantuyev, A., and J. Wu, 2010. Urban heat islands and landscape heterogeneity: 

linking spatiotemporal variations in surface temperatures to land-cover and 

socioeconomic patterns. Landscape Ecology, 25, 17-33 

http://ag.arizona.edu/azmet/index.html
http://caplter.asu.edu/data/?id=377


  126 

Chavez, P.S.Jr., 1996. Image-based atmospheric corrections – revised and improved. 

Photogrammetric Engineering and Remote Sensing, 62, 1025-1036. 

Elhadddad, A., and L.A. Gracia, 2008. Surface energy balance-based model for 

estimating evapotranspiration taking into account spatial variability in weather.  Journal 

of Irrigation and Drainage Engineering, 134,  681-689. 

Harlan, S, A.J. Brazel, L. Prashad, W.L. Stefanov, and L. Larsen, 2006. Neighborhood 

microclimates and vulnerability to heat stress. Social Science and  Medicine, 63, 2847-

2863 

Hart, M.A., and D.J. Sailor, 2009. Quantifying the influence of land-use and surface 

characteristics on spatial variability in the urban heat island. Theoretical and Applied 

Climatology, 95, 397-406 

Hankerson, B, J. Kjaersgaard, and C. Hay, 2012. Estimation of Evapotranspiration from 

Fields with and without cover crops using remote sensing and in situ methods. Remote 

Sensing, 4, 3796-3812. 

Gober, P., A. Brazel, R. Quay, S. Myint, S. Grossman-Clarke, A. Miller, and S. Rossi, 

2009. Using watered landscapes to manipulate urban heat island effects, how much water 

will it take to Cool Phoenix?, Journal of the American Planning Association, 76, 109-

121. 

Gober, P., 2010. Decision making under uncertainty: A new paradigm for water 

management and practice. In: Wang LK, Yang CT (ed) Handbook of Water Engineering, 

Vol. 15, Humana Press Inc, New York, 49 pp. 

Gober, P., E.A. Wentz, T. Lant, M.K. Tschudi, and C.W. Kirkwood, 2011. WaterSim: a 

simulation model for urban water planning in Phoenix, Arizona, USA. Environmental 

Planning Bulletin, 38, 197-215.  

Gober, P., A. Middel, A.J. Brazel, S.W. Myint, H. Chang, J-D. Duh, and L. House-Peters, 

2012. Tradeoffs between water conservation and temperature amelioration in Phoenix 

and Portland: implications for urban sustainability. Urban Geography, 33:1030-1054. 

Grimm, N.B., S.H. Faeth, N.E. Golubiewski, C.L. Redman, J. Wu, X. Bai, and J.M. 

Briggs, 2008. Global Change and the Ecology of Cities. Scienc,e 319, 756-760. 

Grimmond, C.S.B., and T.R. Oke, 2002. Turbulent heat fluxes in urban areas: 

Observations and a Local-Scale Urban Meteorological Parameterization Scheme 

(LUMPS). Journal of Applied Meteorology, 41, 792-810. 

Grimmond, C.S.B., 2007. Urbanization and global environmental change: Local effects 

of urban warming. The Geographical Journal, 173, 83-88 



  127 

Idso, S.B., R.D. Jackson, and R.J. Reginato, 1975. Estimating evaporation: a technique 

adaptable to remote sensing. Science 189, 991-992. 

Jenerette, D.A., S.L. Harlan, W.L. Stefanov, and C.A. Martin, 2011. Ecosystem services 

and urban heat riskcape moderation: water, green spaces and social inequality in Phoenix, 

USA. Ecological Applications, 21, 2637-2651. 

Imhoff, M.L., C.J. Tucker, W.T. Lawrence, and D.C. Stutzer, 2000. The use of 

multisource satellite and geospatial data to study the effect of urbanization on primary 

productivity in the United States. IEEE Transactions on Geoscience and Remote Sensing, 

38,  2549-2556. 

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M,  

Miller HL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA, 996 pp. 

Kaplan, S, and S. Myint, 2012. Estimating irrigated agricultural water use through 

Landsat TM and a simplified surface energy balance modeling in the semi-arid 

environments of Arizona. Photogrammetric Engineering and Remote Sensing, 78, 849-

859. 

Kunkel, K.E., L.E. Stevens, S.E. Stevens, L. Sun, E. Janssen, D. Wuebbles, K.T. 

Redmond, and J.G. Dobson, 2013. Regional Climate Trends and Scenarios for the U.S. 

National Climate Assessment. Part 5. Climate of the Southwest U.S., NOAA Technical 

Report NESDIS 142-5, 79 pp 

Liu, W., Y. Hong, S.I. Khan, M. Huang, B. Voeix, S. Caliskan, and T. Grout, 2010. 

Actual evapotranspiration estimation for different land use and land cover in urban 

regions using Landsat 5 data. Journal of Applied Remote Sensing, 

DOI:10.117/1.3525566. 

Martin, C.A., 2001. Landscape water use in Phoenix, Arizona. Desert Plants 17, 26-31. 

Middel, A., A.J. Brazel, P. Gober, S.M. Myint, H. Chang, and J. Duh, 2012. Land cover, 

climate, and the summer surface energy balance in Phoenix, AZ and Portland, OR. 

International Journal of Climatology. DOI: 10.1002/joc.2408 

Mayer, P.M., and W.B. DeOreo, 1999. Residential end uses of water. AWWA Research 

Foundation and American Water Works Association Rep., 310 pp. 

Morehouse, B.J., R.H. Carter, and P. Tschankert, 2002. Sensetivity of urban water 

resources in Phoenix, Tucson, and Sierra Vista, Arizona, to severe drought. Climate 

Research, 21, 283-297. 



  128 

Myint S.W., and G.S. Okin, 2009. Modeling land-cover types using multiple endmember 

spectral mixture analysis in a desert city. International Journal of Remote Sensing, 30,  

2237 – 2257 

Myint, S.W., P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng, 2011. Per-pixel 

versus object-based classification of urban land cover extraction using high spatial 

resolution imagery, Remote Sensing of Environment, 115, 1145-1161. 

Newman, B.D., B.P. Wilcox, S.R. Archer, D.D. Breshears, C.N. Dahm, C.J. Duffy, N.G. 

McDowell, F.M. Phillips, B.R. Scanlon, and E.R. Vivon, 2006. Ecohydrology of water-

limited environments: A scientific vision. Water Resources Research, 42,  w06302.  

City of Phoenix - water services department: 2011 water resources plan.  

http://phoenix.gov/webcms/groups/internet/@inter/@dept/@wsd/documents/web_conten

t/wsd2011wrp.pdf. (accessed Mar 7, 2013). 

Pielke, R.A., 2001. Influence of the spatial distribution of vegetation and soils on the 

prediction of cumulus convective rainfall. Review of Geophysics, 32, 151-177. 

Ruhoff, R.L., A.R. Paz, W. Collischonn, L.E.O.C. Aragao, H.R. Rocha , and Y.S. Malhi, 

2012. A MODIS-based energy valance to estimate evapotranspiration for clear-sky days 

in Brazilian tropical savannas. Remote Sensing, 4,  703-725 

Rundel P.W., and A.C. Gibson, 1996. Ecological communities and processes in the 

Mojave Desert ecosystem: Rock Valley, Nevada, pp. 55-83. 

Sarrat C., A. Lemonsu, V. Masson, and D. Guedalia, 2006. Impact of urban heat island 

on regional  atmospheric pollution. Atmospheric Environment, 40, 1743-1758 

Sheppard P.R., A.C. Comrie, G.D. Packin, K. Angersbach, and  M.K. Hughes, 1999. The 

Climate of the Southwest. CLIMAS report series CL 1-99. Institute for the Study of 

Planet Earth, The University of Arizona, Tucson, AZ. 

Sun Z., Q. Wang, B. Matsushita, T. Fukushima, Z. Quyang, and M. Watanabe, 2009. 

Development of a simple remote sensing evapotranspiration model (Sim-ReSET): 

algorithm and model test. Journal of Hydrology 376, 476-485. 

Teixeira A.H. de C., 2010. Determining regional actual evapotranspiration of irrigated 

crops and natural vegetation in the São Francisco River basin (Brazil) using remote 

sensing and Penman-Monteith equation. Remote Sensing 2, 1287-1319. 

Wilhite D.A., 2000. Drought as a nature hazard: concepts and definitions. In: Wilhite DA 

(ed) Drought - A Global Assessment. Routledge London. pp 1-18.  

http://www.mdpi.com/search?authors=Anderson+L.+Ruhoff
http://www.mdpi.com/search?authors=Adriano+R.+Paz
http://www.mdpi.com/search?authors=Walter+Collischonn
http://www.mdpi.com/search?authors=Luiz+E.O.C.+Aragao
http://www.mdpi.com/search?authors=Humberto+R.+Rocha
http://www.mdpi.com/search?authors=Yadvinder+S.+Malhi


  129 

CHAPTER 6: CONCLUSIONS 

6.1: Summary of Dissertation Results 

The overarching goal of this dissertation were to study LULC response to climate 

variability, specifically drought, and its implications for water security and sustainability 

in an arid climate. To address these goals, both natural and human controlled 

environments were considered. 

Chapter 2 examined the spatio-temporal changes of functional types of vegetation in a 

natural desert environment. It introduced a new model coupling MESMA and 

phenological knowledge to delineate annuals, perennials and evergreen vegetation. I 

applied to Landsat 5 TM time series covering 1987-2010. Results show that the spatio-

temporal variability of annuals follows short-term winter precipitation, with the highest 

annuals cover observed during years with high precipitation that followed drought years. 

No spatio-temporal difference was identified in the response of annuals to drought, and 

significant degradation was observed only at the local scale in specific locations. 

Spatially, perennials cover was highly variable, while temporally, perennials fractional 

cover appears to be consistent over a period of several years, following decadal 

variability and regime shift between wet and dry conditions. Evergreen vegetation has the 

highest and most spatially consistent fractional cover. Many areas show high fractional 

cover (>30%) even during drought years, suggesting evergreen growth is disconnected 

from short-term climate variability. Trend analysis showed both upwards- and 

downwards monotonic trends, suggesting different processes are dominant at the local 

scale. Regionally, the dominant trend for evergreens was positive, while perennials and 

annuals show a negative trend for most areas. Although for most areas the changes are 
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not significant, the existence of a monotonic trend may indicate the direction in which 

each functional type is changing (rehabilitation vs. degradation). 

Chapter 3 applied remote sensing and a soil water balance model to study the 

difference in phenology and response to summer water inputs between the urban 

environment and its surroundings desert ecosystem. Results show that the urban 

environment has a year—round, high productivity with high rain-use efficiency (RUE) 

variability. The desert has lower productivity and responds strongly to summer water 

input. During drought conditions the desert ecosystem converge toward a maximum 

aridity index (H=1), and RUE ~ 133 MJ/m
2
*hour mm

-1
. The urban area shows 

consistently lower H and higher RUE regardless of climate conditions. Based on above-

ground net primary productivity and RUE calculations, 295 mm of water input are 

necessary to sustain the urban tree biomass.  

Chapter 4 examined the impact of drought on agricultural water use in semi-arid 

environment.  I developed an energy balance model and applied it to estimate actual 

evapotranspiration (crop water use - ET) from Landsat images and meteorological data. 

Results show reasonable accuracy across different irrigation districts, indicating the 

model can effectively quantify the spatio-temporal distribution of actual ET. Desert 

landscape was characterized by daily ET <5.4 mm/day, with high variability between wet 

and dry years. Active agriculture averaged 8.8 (+/-3.9) mm/day during drought and 9.9 

(+/- 3.6) mm/day during the wet year, with alfalfa crop showing the highest ET with up to 

17 mm/day. Seasonally, active agricultural fields had high, consistent ET regardless of 

climatic conditions because the crops’ water requirements were met by adequate 

irrigation. The desert and urban land cover experienced lower ET during drought. Water 
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usage of the entire agricultural sector did not differ statistically between drought and wet 

conditions, and the total precipitation equivalent water addition was 438 mm and 494 mm 

during dry and wet conditions, respectively.  

Chapter 5 applied the model developed in Chapter 4 to estimate ET over the urban 

landscape of the Central Arizona Phoenix Long-Term Ecological Research area (CAP-

LTER) as a proxy for outdoor water consumption of different LULC types. It then 

compared the spatio-temporal variation of water consumption between drought and wet 

years. Within the urban locales of CAP-LTER, xeric neighborhoods show significant 

differences from year to year, while mesic neighborhoods retain their ET values (400-500 

mm) during drought, reinforcing the results from Chapter 3 that considerable use of 

irrigation helps sustains greenness.  Spatially, ET coefficient of variance indicated that 

drought leads to higher variability within all land covers, especially in “unmanaged” 

landscapes. Considering the potentially limiting future water availability of this region 

due to both large population increases and the threat of a warming and drying climate, 

maintaining large-scale irrigated landscapes will come in conflict with sustainable water 

conservation and the desire to provide amenities in this desert area for enhancing quality 

of life. 

 

6.2: Contribution to academic knowledge 

Each dissertation chapter has provided new contributions to existing LULC response 

to drought knowledge, as well as towards remote sensing methodology. First, this 

dissertation contributed two new models in the form of the coupled MESMA-phenology 

model to delineate functional types and the S-ReSET model to spatially and temporally 
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monitor water consumption without the need for crop classification. The S-ReSET was 

also applied to the urban environment and demonstrated how remote sensing can be used 

to monitor outdoor water consumption over a settled environment area.  

Second, the long-term analysis at the functional-type level showed how the 

natural desert environment vegetation has changed over the last three decades in 

conjunction with the moisture regime, and the geographic and temporal trend of these 

changes. The analysis suggests processes and drivers at the micro and local scales are 

involved, and influence different functional types in different ways. The pattern of water 

availability affects both the spatial and temporal variability of ecosystem processes. 

Furthermore, the method and approach developed here allows us to look simultaneously 

at both local and regional scales, and provide insight into the relationship between 

different functional types. These findings could be a useful guide to inform ongoing and 

future scientific investigation and management efforts related to conservation, 

vulnerability, and recoverability of the natural desert environment.  

 Third, comparing the irrigated urban landscape with the natural desert enabled us 

to estimate the amount of water needed to preserve current greenness and revealed new 

insights into the buffer irrigation provides against climate variability. Additionally, the 

analysis implied that different land-cover types have a detectable signal and that the 

urban environment is decoupled from the climate. Identifying these signals and how they 

change over time and space can help us understand the role of vegetation in the 

hydrological partitioning across different land cover types, especially those controlled by 

man.  
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Fourth, in natural undisturbed desert environments drought promotes spatial 

homogeneity of vegetation cover. In contrast, human—controlled landscapes vary more 

during drought. It is important to quantify this variation in order to better understand the 

impact of drought on different LULC types, and its implication for future ecological and 

societal sustainability in arid regions. The insensitivity of agriculture and mesic 

landscapes to drought threatens regional water security because of the implied need for 

increased irrigation. Increasing irrigation to sustain human activities has significant 

implications and tradeoffs that must be considered for long term sustainability.
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