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ABSTRACT 

 

 Switch mode DC/DC converters are suited for battery powered applications, due  

to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency 

PWM based converters, which are generally used for these applications offer good 

voltage regulation, low ripple and excellent efficiency at high load currents. However at 

light load currents, fixed frequency PWM converters suffer from poor efficiencies 

The PFM control offers higher efficiency at light loads at the cost of a higher ripple. The 

PWM has a poor efficiency at light loads but good voltage ripple characteristics, due to a 

high switching frequency. To get the best of both control modes, both loops are used 

together with the control switched from one loop to another based on the load current. 

Such architectures are referred to as hybrid converters. While transition from PFM to 

PWM loop can be made by estimating the average load current, transition from PFM to 

PWM requires voltage or peak current sensing. 

This theses implements a hysteretic PFM solution for a synchronous buck converter with 

external MOSFET’s, to achieve efficiencies of about 80% at light loads. As the PFM loop 

operates independently of the PWM loop, a transition circuit for automatically 

transitioning from PFM to PWM is implemented. The transition circuit is implemented 

digitally without needing any external voltage or current sensing circuit. 



ii 

 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my advisor and mentor Dr. Bertan Bakkaloglu, 

for giving me this opportunity to work on this wonderful project and for being source of 

inspiration throughout my masters.  It had been by dream to work on power management 

IC design and thanks to professor’s guidance and motivation, I am finally able to. I would 

also like to thank Dr. Hongjiang Song and Dr. UmitOgras for taking time to serve as 

panel members on my defense committee. 

I leave the research group with fond memories of working with my colleagues. My 

sincere thanks to Amit Kumar, KarthikPappu, AbhiramMumma Reddy, NavankurBeohar, 

KoushikMalladi, Debasis Mandal and Chao Fu for all the technical discussions and 

debates we had in the lab.  

I would also like to thank James Laux for his support with the cadence software. I would 

also like to thank all the professors who taught me for their knowledge sharing 

Finally, I would like to thank my parents, my brother and my entire family for supporting 

me in this endeavor. 

 

 

 

 

 

 

 



iii 

 

TABLE OF CONTENTS 

Page 

1INTRODUCTION .................................................................................................... 1 

1.1 BACKGROUND .......................................................................................................... 1 

1.2 EXISTING PFM ARCHITECTURES .............................................................................. 4 

1.2.1 Hysteretic PFM ............................................................................................... 4 

1.2.2 Constant on time PFM .................................................................................... 5 

1.2.3 Multi Pulse PFM ............................................................................................. 7 

1.3 THESIS ORGANIZATION .......................................................................................... 10 

2SURVEY OF AUTO MODE TRANSITION TECHNIQUES ................................. 11 

2.1 HIGH EFFICIENCY DC-DC CONVERTER WITH AUTO-MODE TRANSITION ............... 11 

2.2 FAST MODE-SWITCHING TECHNIQUE IN HYBRID-MODE OPERATION .................... 13 

2.3 AUTO MODE TRANSITION USING SENSEFET CURRENT SENSING .......................... 14 

3DESIGN, MODELING AND CALCULATIONS ................................................... 17 

3.1 SYSTEM MODELING USING PLECS
™

 ..................................................................... 17 

3.2 DERIVATION FOR OPERATING FREQUENCY ............................................................ 20 

3.3 HYSTERETIC STAGE DESIGN FOR COMPARATOR ..................................................... 24 

3.3.1 Calculations for hysteresis band ................................................................... 27 

3.4 CURRENT MODE COMPARATOR .............................................................................. 28 

3.5 ZERO CURRENT DETECTOR .................................................................................... 29 

3.5.1 Basis for circuit ............................................................................................. 29 



iv 

 

3.5.2 Architecture of Zero Current detector........................................................... 31 

3.5.3 Zero Voltage Comparator ............................................................................. 32 

3.6 TRANSITION FROM PFM TO PWM ......................................................................... 33 

3.6.1 Algorithm and Timing .................................................................................. 33 

3.6.2 Implementation of logic circuit ..................................................................... 36 

3.6.3 Calculations for Threshold Count ................................................................. 37 

4RESULTS .............................................................................................................. 40 

4.1 LAYOUT ................................................................................................................. 40 

4.2 HYSTERETIC PFM RESULTS ................................................................................... 41 

4.3 PLOT FOR TIME PERIOD IN PFM ............................................................................. 43 

4.4 EFFICIENCY ............................................................................................................ 44 

4.5 TRANSITION FROM PFM TO PWM PLOTS ............................................................... 49 

5CONCLUSION & FUTURE WORK ...................................................................... 50 

5.1 FUTURE WORK ...................................................................................................... 50 

5.1.1 PFM implementation .................................................................................... 50 

5.1.2 Programmability of Transition Circuit.......................................................... 50 

REFERENCES ......................................................................................................... 51 

 

 

 

 



v 

 

LIST OF TABLES 

 Page 

Table 1: Parameters for calculation of threshold current for PFM to PWM……………. 37 

Table 2: Summary of loss components………………………………………………… 46 

Table 3: Summary of results……………………………………………………………. 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

LIST OF FIGURES 

 Page 

Figure 1: PWM based switching converter ......................................................................... 1 

Figure 2: Variation of losses in a fixed frequency converter .............................................. 2 

Figure 3: Variation of losses in a variable frequency converter ......................................... 3 

Figure 4: Hysteretic Comparator architecture ..................................................................... 4 

Figure 5: Constant on time PFM architecture ..................................................................... 6 

Figure 6: Pulse bursting in COT converters ....................................................................... 7 

Figure 7: Pulse skipping architecture .................................................................................. 8 

Figure 8: Pulse skipping waveforms ................................................................................... 9 

Figure 9: Top level View of PFM architecture ................................................................. 10 

Figure 10: Block diagram of Hybrid PWM-PFM architecture ......................................... 11 

Figure 11: PFM architecture and Detection circuit ........................................................... 12 

Figure 12: Current mode PWM/PFM architecture ........................................................... 13 

Figure 13: PFM-PWM transition using one shot .............................................................. 14 

Figure 14: Tri Mode Buck Converter ............................................................................... 15 

Figure 15: SENSEFET based auto transition.................................................................... 16 

Figure 16: Hysteretic comparator ideal model .................................................................. 18 

Figure 17: Ideal Model for hysteretic PFM ...................................................................... 19 

Figure 18: Plotted waveforms from ideal model .............................................................. 20 

Figure 19: Inductor current in PFM operation .................................................................. 20 

Figure 20: Current in output capacitor .............................................................................. 21 



vii 

 

Figure 21: Waveforms for PFM operation........................................................................ 24 

Figure 22: Internal hysteresis comparator first stage ........................................................ 25 

Figure 23: Hysteresis circuit when input reaches upper triggering point ......................... 26 

Figure 24: Hysteresis circuit when input reaches lower triggering point ......................... 27 

Figure 25: Current mode comparator ................................................................................ 29 

Figure 26: Cause for negative current ............................................................................... 30 

Figure 27: Zero current detector architecture ................................................................... 31 

Figure 28: Zero Voltage comparator ................................................................................. 33 

Figure 29: Algorithm for PFM to PWM transition ........................................................... 35 

Figure 30: Timing waveforms for Transition circuitry ..................................................... 36 

Figure 31: Logic Circuit for Transition ............................................................................ 37 

Figure 32: Time Period vs. DC load current in PFM ........................................................ 39 

Figure 33: Layout .............................................................................................................. 40 

Figure 34: PFM simulated waveforms at 300mA ............................................................. 41 

Figure 35: PFM hysteresis band in output voltage ........................................................... 41 

Figure 36: PFM total ripple............................................................................................... 42 

Figure 37: PFM transient response ................................................................................... 43 

Figure 38: Time period vs. Load current in extracted simulations ................................... 43 

Figure 39: Simulated vs. Calculated time period values ................................................... 44 

Figure 40: Distribution of losses in PFM .......................................................................... 47 

Figure 41: PFM efficiency variation ................................................................................. 48 

Figure 42: PFM vs. PWM efficiency ................................................................................ 48 

file:///C:\Users\vivek\Dropbox\Theses\Thesis_first_draft.docx%23_Toc376724234


viii 

 

Figure 43: PFM to PWM transition .................................................................................. 49 



1 

 

1 Introduction 

1.1 Background 

As the market for increasingly small and portable electronic devices grows, there is a 

strong emphasis on preserving the battery charge, used to power these portable devices. 

Devices such as smart phones, PDA’s etc. are required to run longer on a single battery 

charge to preserve battery lifetime. Thus a highly efficient power management IC is 

necessary to supply to these systems. 

Switching converters are preferred to LDO’s for high current applications as they offer 

higher efficiencies.  Most of these switching converters are PWM based working at a 

high fixed switching frequency. The architecture of one such converter is shown below 

 

Figure 1: PWM based switching converter 

With a view to reduce power consumption, all portable devices come with a 

Sleep/Standby mode, where the current consumption is between µA to a few mA. The 

fixed frequency switching converters suffer from poor efficiencies at these load currents, 
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because switching losses start becoming significant. The figure below shows the 

distribution of losses in a fixed frequency converter (Erickson & Maksimovic). 

 

Figure 2: Variation of losses in a fixed frequency converter 

As illustrated in Figure 2, a conventional DC/DC converter has substantial fixed losses, 

which are independent of the load current. These fixed losses lead to significant battery 

current at no load. The total power loss in a switching power converter can be expressed 

as 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑐𝑜𝑛𝑑  𝐼𝑙𝑜𝑎𝑑 + 𝑃𝑓𝑠𝑤 + 𝑃𝑓𝑖𝑥𝑒𝑑  

wherePcond stands for the conduction loss in the MOSFET and inductor resistances. This 

is function of the load current. Pfsw is the power loss to due to turning on and off of the 

switching MOSFET’s. This is a function of the switching frequency. Pfixed is the fixed 

component of losses, which does not depend on load current or switching frequency. It is 
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usually depends on the current consumed by the power management IC to supply to the 

load.  

As the conduction losses depend on the load current, the equation suggests that at light 

load currents, the frequency dependent losses can be reduced to achieve lower losses and 

hence higher efficiency. This is illustrate in the figure below 

 

Figure 3: Variation of losses in a variable frequency converter 

If frequency is made scalable is with load current, then the switching frequency losses 

can be reduced at light load currents. This is achieved by using Pulse frequency 

modulation (PFM) control. The PFM control achieves higher efficiency at light load 

currents, at the cost of a higher ripple in the output voltage and increased harmonics due 

to the variation of the switching frequency with load current. There are three popular  

implementations of the PFM architecture, which are discussed in the following section. 
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1.2 Existing PFM architectures 

Depending on the variable being controlled, PFM architectures can be divided into three 

types 

1.2.1 Hysteretic PFM 

One implementation for achieving PFM is by using a simple hysteretic comparator as the 

feedback element. The comparator compares the feedback voltage to an upper triggering 

and a lower triggering voltage. An implementation of this is shown below. 

 

Figure 4: Hysteretic Comparator architecture 

The working of this PFM architecture can be explained as follows. If the output goes 

lower than the lower threshold voltage, the comparator trips and turns on the upper 

MOSFET. The upper MOSFET stays on till the output hits the upper threshold voltage of 

the comparator. The comparator trips again and turns off the upper MOSFET and turns 
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on the lower MOSFET after a dead time. As this is a synchronous buck architecture, zero 

current detection is required to prevent negative current i.e. current from the load to the 

switches. The basis for this negative current and implementation of the zero current 

detector is discussed in Section 3.5. The ripple in this architecture is decided by the 

hysteresis band. 

While the hysteretic PFM is simple to implement, as only a hysteretic comparator is 

needed, its efficiency at extremely light loads (in the order of µA’s to 10’s of mA’s) is 

reduced, as there is no limit put on the peak inductor current. 

1.2.2 Constant on time PFM 

In the constant on time architecture, the time for which the high side MOSFET is turned 

on is kept constant. An implementation of this shown below(Xiao, Peterchev, Zhang, & 

Sanders, 2004) 
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Figure 5: Constant on time PFM architecture 

The element used for generating the constant on time is a monostablemultivibrator or a 

one shot. The one shot, as the name suggests, generates a single pulse of a defined time 

width in response to a trigger signal. The output of the one shot is given to a S-R latch, 

whose output turns on the high side FET for the fixed on time, decided by the one shot. 

The on time in the constant on time cannot be kept too small, as a low on time leads to 

larger inductor current swings and more ripple(Wong & Man, 2008) 

The minimum on time is decided by the equation 

𝑡𝑜𝑛 _𝑚𝑖𝑛
2  

𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓

2𝐿𝐶
 + 𝑡𝑜𝑛 _𝑚𝑖𝑛  

 𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓 ∗ 𝐸𝑆𝑅

𝐿
−
𝐼𝑜𝑢𝑡

𝐶
 − 𝑉𝑦𝑠𝑡 = 0 

If on time is kept below this value, pulse bursting occurs as is seen in the figure below  
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Figure 6: Pulse bursting in COT converters 

 

1.2.3 Multi Pulse PFM 

Both constant on time and hysteretic control replenish the charge lost in the output 

capacitor with a single pulse. However, the peak inductor current is not limited in both 

these architectures. If PFM is implemented with an upper limit on the peak inductor 

current, multiple pulses are required to charge the output capacitor. These pulses increase 

with increasing load current. This architecture is popularly known as Burst Mode PFM or 

Pulse skipping(Angkititrakul & Hu, 2008). An implementation of this architecture is 

shown below 
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Figure 7: Pulse skipping architecture 

 

The current sense amplifier senses a voltage proportional to the peak current and gives 

compares this to a voltage proportional to the current limit. When the inductor current 

exceeds the this limit, the high side MOSFET switches off and low side MOSFET is 

turned on to discharge the output capacitor, till the inductor current becomes zero and 

both switches are turned off. The output capacitor now discharges through the load, and a 

higher load leads to more pulses. 

The waveforms for this multi pulse architecture are shown below for two load currents, 

50mA and 180mA respectively. 
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Figure 8: Pulse skipping waveforms 
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1.3 Thesis organization 

After reviewing the architectures mentioned above, the hysteretic PFM architecture is 

chosen for implementation, as it is simple to implement and does not suffer the pulse 

bursting problem of the constant on time PFM. The top level diagram of the PFM block 

implemented in this research is shown below 

 

Figure 9: Top level View of PFM architecture 

The following sections discuss the various components in this architecture. Chapter 2 

surveys the various automode transition techniques available to transition from PFM to 

PWM. Chapter 3 discusses the implementation of the .various blocks shown in the figure 

above as well as the derivation of the operating frequency. Chapter 4 presents the results 

from cadence implementation of the solution. Chapter 5 concludes the research and 

suggests future improvements  
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2 Survey of auto mode transition techniques 

The pulse frequency modulation loop and the pulse width modulation loop are used as 

two independent loops to have a high efficiency over a wide range of load currents. The 

control can be handed over to the pulse frequency modulation loop, when the average dc 

current drops below a predefined threshold. However the same average current sensing 

cannot be used to switch from the PFM to PWM loop. In this section, circuits which are 

used to automatically transition from PFM to the PWM loop are discussed 

2.1 High Efficiency DC-DC Converter with Auto-mode Transition 

The block diagram(Shin, Heo, Ko, & Park, 2010) shows the DC-DC converter composed 

of a PFM controller, a PWM controller, switch transistors, a loop filter, and a mode 

selector 

 

Figure 10: Block diagram of Hybrid PWM-PFM architecture 
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The PFM architecture here is implemented through hysteretic control, where the output 

voltage is compared to an upper threshold and lower threshold voltage as shown in Figure 

11. When the voltage is below the lower threshold  

 

Figure 11: PFM architecture and Detection circuit 

The transition circuit is shown above represented by Comp3.The basis for the detection is 

as follows. As the load current increases and the loop needs to transition to PWM, the 

output voltage drops and becomes lower than a threshold voltage, switching the output of 

the comparator Comp3. 

The disadvantage of the techniques is use of a tunable resistor array to   generate the 

threshold. As the resistors need to have a large value to limit the current leakage, they 

would occupy significant layout area when integrated on chip. 
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2.2 Fast Mode-Switching Technique in Hybrid-Mode Operation 

The synchronous regulator here is .realized using a current mode control along with the 

voltage mode control(Chen, Hsieh, Huang, & Chen, 2008). The entire PWM/PFM 

configuration for the converter is shown below 

 

Figure 12: Current mode PWM/PFM architecture 

The PFM loop is realized through constant on time control. The working is as follows. 

The Comparator COMP1 along with the zero current detector (signal Vzcd) generate a 

triggering signal for the one shot, which turns on the high side PMOS through the SR 

latch (S=1 & R=0). As the inductor current increases it hits the current limit and latch 

gets reset (R=1 & S=0). The inductor current decreases and once it hits zero, both FET’s 

are turned off to prevent switching losses. 

The transition from PFM to PWM loop is done by comparing the feedback to a fixed 

threshold as shown in Figure 13. The VPFM signal shown in the figure is an active high 

signal, which is high when the system is working  
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Figure 13: PFM-PWM transition using one shot 

 

When the feedback voltage drops below 98% of the Reference voltage, and the system is 

operating in PFM i.e. VPFM=1, the one shot triggers through the AND gate and 

generates a pulse with a finite on time, VPFMS.The rising edge of this signal is used to 

trigger the transition from PFM to PWM. 

The disadvantage of this technique is the generating a voltage which has a different value 

than the reference voltage. This also limits the programmability of the threshold for PFM 

to PWM transition. 

2.3 Auto Mode transition using SENSEFET current sensing 

In this architecture, three modes are used to enhance efficiency for various load ranges. 

The block diagram of the tri mode buck converter is shown below(Huang, Chen, & Kuo, 

2007). 

The converter uses PWM, PFM and a dither skip mode, in which the pulses are dithered 

to reduce output ripple. The PFM in this converter is implemented using a hysteretic 

comparator. The comparator is only powered in the PFM mode and shut down in the 

other two modes, to reduce losses. The converter also utilizes optimum width switching, 

where the width of the power MOSFET is changed, to get higher efficiencies 
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Figure 14: Tri Mode Buck Converter 

For the transition between different modes, the peak load current is sensed using a 

SENSFET as shown below 
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Figure 15: SENSEFET based auto transition 

The SENSEFET voltage Vsense is proportional to the load current and has a peak value 

given by 

𝑉𝑠𝑒𝑛𝑠𝑒𝑝𝑒𝑎𝑘 =
𝑅𝑠𝑒𝑛𝑠𝑒
1000

∗ 𝐼𝑙𝑜𝑎𝑑 +
 1 −

𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
 ∗ 𝑅𝑠𝑒𝑛𝑠𝑒

2000 ∗ 𝐿 ∗ 𝑓
∗ 𝑉𝑜𝑢𝑡 

Where Rsense is the sense resistor expressed in ohms. 

The sensed voltage is sample and held to get the peak voltage. This voltage is converted 

into a current using a V-I converter, which drives a delay line based A/D converter. The 

code given out by the A/D converter is decoded, on basis of which a decision is made on 

the mode of operation, to achieve the highest efficiency. 

As this system uses a SENSFET based current sense, it is only useful when the power 

MOSFET’s are on the same die as the other signal processing circuits. 

For the converter, discussed in this research, the power FET’s are external to the die. 

Also there is only one reference voltage in the chip, which makes the voltage comparison 

method infeasible. 
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Therefore an indirect estimation of load current is done using a digital technique, which 

does away with the need for current or voltage sensing and can be integrated with 

systems with either an internal or external power MOSFET. 

 

 

 

 

 

 

3 Design, Modeling and calculations 

3.1 System Modeling using PLECS
™

 

The Pulse frequency modulation loop is implemented using a simple hysteresis 

comparator and zero current detector. The hysteretic comparator can be modeled using a 

window comparator and a SR flip flop which is required for memory. The modeling of 

hysteretic comparator is shown below 
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Figure 16: Hysteretic comparator ideal model 

The comparator can be represented mathematically by the following equation 

𝑉𝑜𝑢𝑡 =  
𝑉𝑑𝑑, 𝑉𝑖𝑛 < 𝑉𝑙𝑡𝑝

0, 𝑉𝑖𝑛 ≥ 𝑉𝑢𝑡𝑝
  

Where Vltp&Vutp are the lower and upper triggering points for the comparator 

The memory of the comparator i.e. preserving its previous state is represented by an S-R 

latch 

This together with the zero current detector, which prevents the flow of inductor current 

in the negative direction in the low side MOSFET, form the PFM loop 

The system modeled in PLECS is shown below 
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Figure 17: Ideal Model for hysteretic PFM 

 

The waveforms of the ideal model are as follows 
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Figure 18: Plotted waveforms from ideal model 

3.2 Derivation for Operating frequency 

As the frequency of switching is being modulated to achieve a higher efficiency at lower 

currents, the frequency has to be derived using basic current voltage relationships for the 

inductor and capacitor. The derivation is as follows 

The inductor current waveform in the PFM mode of operation is shown below 

Inductor current(in A)

Ipeak

0

High side on
Low side on

Both switches 
off

Time

 

Figure 19: Inductor current in PFM operation 

The inductor current equation, when the high side MOSFET is on can be written as 
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𝐼𝐿 𝑡 =
𝐼𝑝𝑒𝑎𝑘

𝑇𝑠
∗ 𝑡   0 ≤ 𝑡 < 𝑇𝑜𝑛 

Where Ths is the time when the high side switch is on 

From inductor Volt second balance we know that  

𝐼𝑝𝑒𝑎𝑘

𝑇𝑠
=
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
 

Where Vin is the input voltage to the buck converter, Vout is the output voltage and L is 

the value of the inductor being used 

Thus the inductor current during the high side on time can be rewritten as 

𝐼𝐿 𝑡 =
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
∗ 𝑡   0 ≤ 𝑡 < 𝑇𝑜𝑛 

The current through the output capacitor is simply the load current removed from the 

inductor current. This is shown in the figure below 

Inductor current(in A)

Capacitor current(in A)

Ipeak

0

Ipeak-Idc

-Idc

IL

ESR

C

L

Idc
IC

DCR Vout

 

  Figure 20: Current in output capacitor 

The current in the capacitor is therefore written as 

𝐼𝐶 𝑡 = 𝐼𝐿 𝑡 − 𝐼𝑑𝑐 

=> 𝐼𝐶 𝑡 =
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
∗ 𝑡 − 𝐼𝑑𝑐  0 ≤ 𝑡 ≤ 𝑇𝑠 

The output voltage can be written as 
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𝑉𝑜𝑢𝑡 𝑡 = 𝑉𝑐 𝑡 + 𝑉𝐸𝑆𝑅 𝑡  

=> 𝑉𝑜𝑢𝑡 𝑡 =
1

𝐶
∗  𝐼𝐶 𝑡 𝑑𝑡 +  𝐼𝐶 𝑡 ∗ 𝐸𝑆𝑅  0 ≤ 𝑡 ≤ 𝑇𝑠 

Due to use of a hysteretic control, the output voltage is allowed to change between the 

hysteresis band set by the comparator 

𝑉𝑜𝑢𝑡 𝑇𝑠 − 𝑉𝑜𝑢𝑡 0 = 𝑉𝑦𝑠𝑡 

𝑉𝑦𝑠𝑡 = 𝑉𝐿𝑇𝑃 − 𝑉𝑈𝑇𝑃 

Where the UTP and LTP are the upper and lower triggering point voltages for the 

comparator respectively. 

The expression for output voltage can be rewritten after substituting for IC (t) and 

integration as 

𝑉𝑜𝑢𝑡 𝑡 =
1

𝐶
 
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

2 ∗ 𝐿
∗ 𝑡2 − 𝐼𝑑𝑐 ∗ 𝑡 +  

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
∗ 𝐸𝑆𝑅 ∗ 𝑡 − 𝐼𝑑𝑐 ∗ 𝐸𝑆𝑅 + 𝑘 

Where k denotes the constant of indefinite integration 

=> 𝑉𝑜𝑢𝑡 0 = 𝑘 − 𝐼𝑑𝑐 ∗ 𝐸𝑆𝑅 

𝑉𝑜𝑢𝑡 𝑇𝑠 =
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

2𝐿𝐶
∗ 𝑇𝑠2 + 𝑇𝑠  

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
𝐸𝑆𝑅 −

𝐼𝑑𝑐

𝐶
 + 𝑘 − 𝐼𝑑𝑐 ∗ 𝐸𝑆𝑅 

Thus subtracting these two expressions and equating it to the hysteresis band we get 

𝑉𝑦𝑠𝑡 =
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

2𝐿𝐶
∗ 𝑇𝑠2 + 𝑇𝑠  

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
𝐸𝑆𝑅 −

𝐼𝑑𝑐

𝐶
  

=> 𝑇𝑠2  
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
 + 𝑇𝑠  

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
∗ 𝐶 ∗ 𝐸𝑆𝑅 −

𝐼𝑑𝑐

𝐶
 + 𝐶 ∗ 𝑉𝑦𝑠𝑡 = 0 

The on time of the high side switch can be obtained by solving this quadratic equation 

The peak current can also be determined from this on time as 
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𝐼𝑝𝑒𝑎𝑘 =
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝐿
∗ 𝑇𝑠 

The time for which the low side switch is on can be determined from volt second balance 

for the inductor 

 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 ∗ 𝑇𝑠 = 𝑉𝑜𝑢𝑡 ∗ 𝑇𝑙𝑠 

𝑇𝑙𝑠 = 𝑇𝑠 ∗ (
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
− 1) 

From the inductor current waveform, the average value of the waveform is the total dc 

current flowing in the load 

𝐼𝑙𝑜𝑎𝑑 =
𝐴𝑟𝑒𝑎𝑢𝑛𝑑𝑒𝑟𝐼 − 𝑡𝑐𝑢𝑟𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑
 

𝐴𝑟𝑒𝑎𝑢𝑛𝑑𝑒𝑟𝐼 − 𝑡𝑐𝑢𝑟𝑣𝑒 = 0.5 ∗ 𝐼𝑝𝑒𝑎𝑘 ∗ (𝑇𝑠 + 𝑇𝑙𝑠) 

𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑 =
0.5 ∗ 𝐼𝑝𝑒𝑎𝑘 ∗ (𝑇𝑠 + 𝑇𝑙𝑠)

𝐼𝑙𝑜𝑎𝑑
 

Substituting for Tls and Ipeak we get 

𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑇𝑠2 ∗ 𝑉𝑖𝑛 ∗  𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 

2 ∗ 𝐼𝑙𝑜𝑎𝑑 ∗ 𝑉𝑜𝑢𝑡 ∗ 𝐿
 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑
=

2 ∗ 𝐼𝑙𝑜𝑎𝑑 ∗ 𝑉𝑜𝑢𝑡 ∗ 𝐿

𝑇𝑠2 ∗ 𝑉𝑖𝑛 ∗ (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)
 

Thus an expression for operating frequency in PFM is derived. It can be seen here that 

operating frequency is directly proportional to the DC load current. 

The expected waveforms for this operation are as follows 
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High side drive (in V)

Low side drive (in V)

td

Switch node (in V)

Inductor current(in A)

Output voltage(in V)
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Vdd

0

Vdd

0

Vdd

0
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0

Ipeak-Idc

-Idc
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Figure 21: Waveforms for PFM operation 

 

 

 

 

3.3 Hysteretic stage design for comparator 

The controller in the presented PFM architecture is a hysteretic comparator. The 

hysteresis is implemented internally as shown below.(Allstot, 1982) 
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VDD

M3
M4 M5

M6

M1 M2

Idc

iop iom
Vref Vfb

ISS

vop vom

 

Figure 22: Internal hysteresis comparator first stage 

The circuit uses positive feedback using the transistors M4, M5 to increase the gain of 

this stage. The working of the comparator can be explained as follows(Holberg). 

 

If the node denoted as Vfb has a voltage much lower than the other node denoted as Vref, 

then the current iop would be much larger than iom. 

This will make M3 & M4 in Figure 22 conduct more than M5 & M6( as the gate source 

voltages of M3 & M4 are set by iop while that of M5 & M6 by iom).This makes output 

node Vom to be set to Vdd. 
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As the voltage at Vfb node is increased, the current switches from one branch to the other 

so that iom increases while iop falls. This current iom, is sourced by M4 into M2.At the 

switching point where Vfb=VUTP=Vref+Vhyst/2, the output vom switches from Vdd to 

0, and transistor M6 and M5 turn on, preserving the state till the input starts going down 

VDD

M3
M4 M5

M6

M1 M2

Idc

iop iom
Vref Vfb

iom

iop

ISS

vop vom

Vdd

0

VUTP

Vref

 

Figure 23: Hysteresis circuit when input reaches upper triggering point 

 

A similar analysis can be done for when the voltage Vfb goes below the lower triggering 

point i.e. VLTP and it can be shown that the output node makes a transition from 0 to 

Vdd as is shown in the figure below 
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M1 M2

Idc

iop iom
Vref Vfb

iop

iom

ISS

vop vom

Vdd

0

VLTP
Vref

 

Figure 24: Hysteresis circuit when input reaches lower triggering point 

3.3.1 Calculations for hysteresis band 

The widths of M3 and M6 have to be set equal to each other, while the widths of M4 and 

M5 have to be equal to each other. Thus 

𝛽𝐴 = 𝛽𝑀3 = 𝛽𝑀6 

𝛽𝐵 = 𝛽𝑀4 = 𝛽𝑀5 

When Vfb = VUTP=Vref+Vhyst/2 M3 mirrors the current in M4 

𝑖𝑜𝑚 =
𝛽𝐵
𝛽𝐴

∗ 𝑖𝑜𝑝 

The currents iom and iop can be related to the input voltages Vfb&Vref as follows 

𝑔𝑚 𝑉𝑓𝑏 − 𝑉𝑟𝑒𝑓 = 𝑖𝑜𝑚 − 𝑖𝑜𝑝 
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𝑉𝑓𝑏 − 𝑉𝑟𝑒𝑓 =
𝑖𝑜𝑚 − 𝑖𝑜𝑝

𝑔𝑚
 

Also the sum of iop and iop is ISS 

𝐼𝑆𝑆 = 𝑖𝑜𝑚 + 𝑖𝑜𝑝 

From the previous equations hysteresis band can be rewritten as 

𝑉𝑟𝑒𝑓 +
𝑉𝑦𝑠𝑡

2
− 𝑉𝑟𝑒𝑓 =

𝐼𝑠𝑠

𝑔𝑚
∗
𝛽𝐵 − 𝛽𝐴
𝛽𝐵 + 𝛽𝐴

 

=>
𝑉𝑦𝑠𝑡

2
=
𝐼𝑠𝑠

𝑔𝑚
∗

𝛽𝐵

𝛽𝐴
− 1

𝛽𝐵

𝛽𝐴
+ 1

 

Thus the hysteresis band can be written as 

𝑉𝑦𝑠𝑡 =
2 ∗ 𝐼𝑠𝑠

𝑔𝑚
∗

𝛽𝐵

𝛽𝐴
− 1

𝛽𝐵

𝛽𝐴
+ 1

 

It can be seen from this equation that the necessary condition for hysteresis is  

βB> βAi.e. 

 
𝑊

𝐿
 
𝑀4,𝑀5

>  
𝑊

𝐿
 
𝑀3,𝑀6

 

3.4 Current mode comparator 

The hysteresis stage by itself is not sufficient to generate a transition signal and needs to 

be connected to a comparator stage, which generates it output through a buffer. For this 

design, a current mode comparator is used, as it has higher speed and bandwidth 

compared to the conventional voltage mode comparator(Abedinpour, Bakkaloglu, & 

Kiaei) 
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Figure 25: Current mode comparator 

The current subtractor consisting of M7-M10 takes in the currents from the hysteresis 

stage and passes the difference to a series of common source amplifiers. The first 

amplifier of this series of amplifier uses a resistive feedback to reduce its input and 

output impedances. This reduction in output impedance reduces the voltage swing of the 

first amplifier, thus causing the following inverting amplifiers to be faster in the transient 

response. The resistor in this circuit should have a lower value to allow for a higher 

current to flow.(Abedinpour, Bakkaloglu, & Kiaei) 

3.5 Zero Current Detector 

3.5.1 Basis for circuit 

In a synchronous buck converter operating at low load currents, the inductor current can 

flow from load to the low side switch i.e. negative direction. This can be explained as 

follows.  
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When the low side switch is turned on, the inductor current reduces. At low load currents, 

this eventually falls to zero. When the current in the inductor is zero, the inductor is 

demagnetized completely and acts like a wire with a parasitic resistance of the coil. At 

this point, the output voltage is higher than the voltage at the switching node. As the 

output and switching node are connected by a DC resistance of the inductor (since the 

inductor is no longer magnetized), current begins to flow from the output to the switching 

node. This is shown in the figures below 

Vdd

0

L DCR
ESR

C

Vdd

IL(t)

t

IL Idc

Vdd

0

DCR
ESR

C

Vdd IL(t)

t

IL

Idc

Vdd
DCR

ESR

C

Vdd

IL(t)

t

IL Idc

Negative current 
region

0

0
0

(i) (ii)

(iii)

Vout>Vswswsw Vout

sw Vout

 

Figure 26: Cause for negative current 
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3.5.2 Architecture of Zero Current detector 

The zero current detector detects the condition when the inductor current goes negative 

and turns off the low side switch. As this similar to having a diode as the low side 

element, which only allows the unidirectional flow of current, this is also called as Diode 

Emulation Mode (DEM).  

+

-

SW

CLK

Vdd

D

RESET_N

QBAR

Q

Low side
Drive signal

ZCD out
(to Low side 

MOSFET)

IL(t)

Low side 
drive signal

ZCD
Out

Vdd

Vdd
t

SW

=-IL(t)*Rdson

 

Figure 27: Zero current detector architecture 

The zero current detector chain indirectly detects the zero current detection by detecting a 

zero voltage at the switching node. As the switching node equals 

𝑆𝑤 𝑡 = −𝐼𝐿 𝑡 ∗ 𝑅𝑑𝑠𝑜𝑛 
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the switching node voltage increases to zero as the inductor current reduces. The time 

instant when the zero current occurs coincides with the time instant when there is zero 

voltage at the switching node. If the current goes negative, the voltage at the switching 

node would become positive. The switching node voltage changing from positive to 

negative is utilized to make the zero current detector. 

The output of the zero voltage comparator, which compares the switching node voltage to 

the ground, is used as a sampling clock for a D flip flop. The data pin of the flip flop is 

always pulled high. As the zero current condition needs to be detected when the low side 

switch is on, the flip flop is only active when the low side switch is on. It is reset, when 

the low side switch is off and the high side switch is on. The output of the flip flop is then 

ANDed with the low side drive signal so that low side switch is turned off when the 

output of the D flip flop goes low. 

3.5.3 Zero Voltage Comparator 

The zero voltage comparator is the first component in the zero current detector and 

detects when the switch node voltage crosses zero and becomes positive, when the low 

side drive signal is high. The comparator consists of three stages, a high bandwidth low 

gain pre amplifier stage which is followed by a series of high gain amplifier stages. The 

output is generated by a chain of inverters(Pai, 2010) 

It can be seen inFigure 28 that a resistor Roffset has been added to the first stage. This 

resistor introduces an intentional negative offset in the inputs. This ensures that when the 

switch node is just below the ground voltage, the comparator output switches to Vdd. 
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The value of Roffset can be changed to increase or decrease this offset. A smaller value 

of Roffset will make the outputs switch when the input is a few microvolts below zero, 

while a larger value will make the comparator switch states when the input is a few 

millivolts below zero. 

Ibias

Roffset

Vplus

Vminus

Vdd

OUT

 

Figure 28: Zero Voltage comparator 

3.6 Transition from PFM to PWM 

3.6.1 Algorithm and Timing 

The transition from PFM to PWM is done using a digital counter in a predefined time 

window. The algorithm used for this transition is shown below 

For making the transition between the two loops, two signals namely PFM enable and 

PWM Handoff are used. As the names of the signals suggest, the PFM enable is an active 

high signal which switches the multiplexer input while the PWM Handoff is an active 

low signal, which is the output of the circuit used to make the transition from PFM to 
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PWM. The PWM Handoff signal controls the PFM Enable signal through a logic circuit, 

which takes the low going edge of the PWM Handoff signal as a trigger and after a 

predefined delay makes the PFM enable signal low. 
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START
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Figure 29: Algorithm for PFM to PWM transition 
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Figure 30: Timing waveforms for Transition circuitry 

It can be seen from the above waveforms that a falling edge of the clock signal  

resets the counter and the counting starts again after a wait period. When the load current 

increases above the PFM upper threshold, the final count achieved increases. As it is 

seen, if this current increase does not make the count reach the threshold count in the first 

cycle, it can be captured in the next cycle of counting. 

3.6.2 Implementation of logic circuit 

The digital circuit implemented from the algorithm is shown in the figure below. It 

consists of a 6 bit counter, a clock divider & a comparator. 
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Figure 31: Logic Circuit for Transition 

If the time period of the input clock is Ts, which is a 50% duty cycle clock, then the 

output of the clock divider after the OR Gate is given by 

𝑇𝑠𝑜𝑢𝑡𝑝𝑢𝑡 = 8 ∗ 𝑇𝑠 + 4 ∗ 𝑇𝑠 + 2 ∗ 𝑇𝑠 + 𝑇𝑠 +
𝑇𝑠

2
 

3.6.3 Calculations for Threshold Count 

The following are the input conditions for which the threshold current for PFM-PWM 

transition is calculated 

PARAMETER VALUE 

Input voltage 5V 

Output Voltage 0.9V  

Output Inductor 6.8µH 

Output Capacitor 30µF 

Equivalent series resistance (ESR) 45mΩ 

Switching Frequency in PWM 1MHz 

Hysteresis Band 46mV  

Table 1: Parameters for calculation of threshold current for PFM to PWM 
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The current for which the transition occurs should be such that the inductor current in 

PWM cannot be negative i.e. 

𝐼𝑙𝑜𝑎𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ≥
∆𝐼𝐿
2 𝑖𝑛𝑃𝑊𝑀

 

∆𝐼𝐿 =
𝑉𝑜𝑢𝑡 ∗  𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 

𝑉𝑖𝑛 ∗ 𝑓𝑠𝑤𝑃𝑊𝑀 ∗ 𝐿
 

Substituting the values from Table 1 we get 

∆𝐼𝐿
2

= 54𝑚𝐴 

The current for which the transition occurs from PFM-PWM is selected as 420mA 

From the expression for total time period we have 

𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑇𝑠2 ∗ 𝑉𝑖𝑛 ∗  𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 

2 ∗ 𝐼𝑙𝑜𝑎𝑑 ∗ 𝑉𝑜𝑢𝑡 ∗ 𝐿
 

&𝑇𝑠2  
𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿
 + 𝑇𝑠  

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿
∗ 𝐶 ∗ 𝐸𝑆𝑅 −

𝐼𝑑𝑐

𝐶
 + 𝐶 ∗ 𝑉𝑦𝑠𝑡 = 0 

Substituting the values from table in these two equations and plotting against dc load 

current, we obtain a plot for Time period in PFM vs. the load current 
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Figure 32: Time Period vs. DC load current in PFM 

 

The calculations for the threshold count are as follows 

𝐼𝑛𝑝𝑢𝑡𝑐𝑙𝑜𝑐𝑘𝑡𝑜𝑐𝑙𝑜𝑐𝑘𝑑𝑖𝑣𝑖𝑑𝑒𝑟𝑐𝑎𝑖𝑛 = 1𝜇𝑠 ∗ 16 

𝑊𝑖𝑛𝑑𝑜𝑤𝑇𝑖𝑚𝑒𝑤𝑖𝑑𝑡 =  8 + 4 + 2 + 1 + 0.5 ∗ 16𝜇𝑠 = 496𝜇𝑠 

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑓𝑜𝑟 420𝑚𝐴 = 10.2𝜇𝑠 

𝑇𝑟𝑒𝑠𝑜𝑙𝑑𝐶𝑜𝑢𝑛𝑡 =
496𝜇𝑠

10.2𝜇𝑠
= 48 

Therefore if the count exceeds 48, the comparator triggers and the PWM handoff signal 

falling edge is captured by the flip flop. 
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4 RESULTS 

The results of post layout simulation with R+C+CC extraction  is presented this section 

along with calculations for efficiency with the given power stage components 

4.1 Layout 

The layout of the PFM blocks which include the hysteretic comparator, the zero current 

detector, the digital blocks for automode transition are shown, The blocks which provide 

dead time and level shifting for driving the external power MOSFET’s are also included 

in this layout. 

The total layout area is 449µm × 189µm. 

 

  
Hysteretic 
Comparator 

Zero Current 
detector 

PFM-PWM 
transition 
logic 

 

Dead Time 
& 
Level Shift  

 

Inverter 
Chain 

449µ
m 

189µ
m 

Figure 33: Layout 
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4.2 Hysteretic PFM results 

The output of the hysteretic PFM, at 300mA of dc load current is shown below 

 

Figure 34:PFM simulated waveforms at 300mA 

The three phases of PFM operation can be seen here, the high side turning on followed by 

the low side turning on and both FET’s turning off leading to a discontinuous conduction 

mode. The time period of the waveform is seen as 11.45µs while that predicted by the 

mathematical model is 11.73µs. 

The ripple of the PFM waveforms is designed to be limited by the hysteresis band. 

However the output voltage is seen to increase beyond the upper threshold of the 

hysteresis window. The hysteretic band and the total ripple are shown in the figures 

below 

 

Figure 35:PFM hysteresis band in output voltage 

The PFM hysteretic band of the comparator is designed to be 40mV. As the ratio of the 

output voltage to the feedback is 1.125, the output ripple gets scaled up by this factor and 
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is therefore 46mV. The hysteretic band observed from extracted simulations is 

approximately 47mV. 

 

 

Figure 36: PFM total ripple 

It can be seen in the above figure that when the inductor current decreases, the output 

voltage continues to rise for some time. The reason for this is as follows 

The output voltage is the sum of the voltage across the capacitor and the equivalent series 

resistance. When the inductor current reduces, the capacitor current is still positive till the 

inductor current reaches the dc current. When the low side switch is on, the equations for 

the inductor current and the capacitor current are 

𝐼𝐿𝐿𝑆 𝑡 = 𝐼𝑝𝑒𝑎𝑘 −
𝑉𝑜𝑢𝑡

𝐿
 𝑡  

=> 𝐼𝐶𝐿𝑆 𝑡 = 𝐼𝑝𝑒𝑎𝑘 −
𝑉𝑜𝑢𝑡

𝐿
 𝑡 − 𝐼𝑙𝑜𝑎𝑑 

Therefore the output voltage when the low side switch is on can be expressed as 

𝑉𝑜𝑢𝑡𝐿𝑆(𝑡) =
1

𝐶
 𝐼𝐶𝐿𝑆 𝑡 𝑑𝑡 + 𝐼𝐶𝐿𝑆 𝑡 ∗ 𝐸𝑆𝑅 

=> 𝑉𝑜𝑢𝑡𝐿𝑆 𝑡 =
 𝐼𝑝𝑒𝑎𝑘 − 𝐼𝑙𝑜𝑎𝑑 𝑡

𝐶
−
𝑉𝑜𝑢𝑡

2𝐿𝐶
𝑡2 +  𝐼𝑝𝑒𝑎𝑘 − 𝐼𝑙𝑜𝑎𝑑 𝐸𝑆𝑅 −

𝑉𝑜𝑢𝑡 ∗ 𝐸𝑆𝑅

𝐿
𝑡 
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If this equation is double differentiated with respect to time, the result is a constant 

negative number, which means that the voltage increases for some time after which it 

decreases, that is it hasalocal maxima. 

Thus it is the ESR and the output capacitor which cause the output ripple to be higher 

than the hysteresis band. 

The Hysteretic architecture has a fast transient response as the control element is a 

comparator, which quickly corrects for any changes in the output voltage. The transient 

response of the hysteretic PFM is shown for a 50% load step. 

 

Figure 37: PFM transient response 

4.3 Plot for time period in PFM 

A parametric sweep of the extracted simulation results is performed by varying the load 

current from 100mA to 500mA with a step of 50mA. The time period is swept with the 

load current and is shown below 

 

Figure 38: Time period vs. Load current in extracted simulations 
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The results from the extracted simulations are compared with that from the calculations 

done for the PFM. The graphs are superimposed and shown here 

 

Figure 39: Simulated vs. Calculated time period values 

The current for which transition from PFM to PWM is done is chosen as 400mA from 

these plots. 

4.4 Efficiency 

PFM enhances efficiency at light loads by reducing the switching losses. 

The description of the loss components is as follows 

1. The High side switching loss is the loss associated with the high side MOSFET 

when it turns on and turns off respectively. 

2. The diode reverse recovery loss is associated with the reverse recovery of the 

body diode in the low side switch. 

3. Gate drive losses are due to both the high and low side switches and can be 

attributed to the power lost when charging the gate of a MOSFET 
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4. During each switching cycle, the Coss (lumped output capacitance of the 

MOSFET’s) must be charged. The Coss losses are due to this 

5. When the high side FET turns on before the low side FET turns on, a dead time is 

allowed when both switches are off, to prevent cross conduction of the switches. 

If the dead time is too long, the body diode of the low side FET can be forward 

biased causing losses. In PFM, the dead time losses are only calculated when the 

low side turns. The dead time losses when the high side switch turns would be 

close to zero as the inductor current has reduced to zero before the high side 

switch is turned on. 

6. The conduction losses are the ohmic losses , contributed by the current flowing 

through the  on resistance of the switches and the DC resistance of the output 

inductor 

7. Fixed losses are the losses seen in the control POL IC and the driver IC. A major 

contributor to these is the quiescent current consumed in the LDO, used to 

provide the supply to the various blocks in the control POL IC. 

A table summarizing these losses and the equation used to calculate these is shown 

below. 

 

.  
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Loss component Description Equation 

High side switching loss Switching loss when high side 

MOSFET is turned on 

𝑉𝑖𝑛 ∗ 𝐼𝑜𝑢𝑡

2
∗ 𝑓𝑠𝑤 ∗ (𝑡𝑠𝐿𝐻

+ 𝑡𝑠𝐻𝐿) 

Diode Reverse recovery loss Reverse recovery of Low side 

body diode 

𝑄𝑅𝑅 ∗ 𝑉𝑖𝑛 ∗ 𝑓𝑠𝑤 

Gate drive losses Losses contributed by the gate 

charge 

2 ∗ 𝑄𝐺 ∗ 𝑉𝑖𝑛 ∗ 𝑓𝑠𝑤 

Coss Losses Losses due to charging and 

discharging of the MOSFET 

output capacitance 

𝐶𝑜𝑠𝑠 ∗ 𝑉𝑖𝑛2 ∗ 𝑓𝑠𝑤 

Conduction Losses Losses in DCR and on 

resistance of FET 

𝐼𝑜𝑢𝑡𝑟𝑚𝑠
2 ∗ (𝐷𝐶𝑅 + 𝑅𝑑𝑠𝑜𝑛 ) 

Dead Time losses Losses which occur during the 

dead time in the low side body 

diode 

𝐷𝑇 ∗ 𝑉𝑑𝑖𝑜𝑑𝑒 ∗ 𝑓𝑠𝑤 ∗ 𝐼𝑜𝑢𝑡 

Fixed Losses Quiescent losses in the IC  N/A 

Table 2: Summary of loss components 

A bar graph which shows the contribution of each of these components to the total losses 

is shown below, for PFM mode at 100mA of load current. 
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Figure 40: Distribution of losses in PFM 

The major contributors to the loss at this load current are the diode recovery and the gate 

charge losses, both of which are frequency dependent. 

The PFM efficiency curve plotted over a load current range of 100mA to 500mA with 

0.9V output voltage and 5V input voltage is plotted in Figure 41. The maximum 

efficiency is 93% at 500mA while the efficiency at 100mA of load current is 82%. 

The PFM and PWM efficiencies are compared in Figure 42. The PWM efficiency is 

plotted from 100mA to 10A while the PFM efficiency is plotted over 100mA to 500mA  
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Figure 41: PFM efficiency variation 

 

Figure 42: PFM vs. PWM efficiency 

It can be seen in the above figure that for 330mA load current, PWM offers a efficiency 

of about 50% while the corresponding efficiency for PFM is 90%. 
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4.5 Transition from PFM to PWM plots 

Transition from PFM back to the PWM is done in Ultrasim (without using extracted 

circuit) with an ideal PWM loop, so as to accelerate the time taken for the simulations. 

The current for which the transition will occur is 400mA and the count for which 

transition happens is 400mA. The transition plots are shown below. 

 

Figure 43: PFM to PWM transition 

In the above figure, it can be seen that when the count reaches 48 the condition for PWM 

is detected and control is transferred. Also, the jump to the final count is not immediate 

and it takes a few counting cycles for the count to reach the threshold i.e. 48. If the 

increase in load current is not picked up in one window it will be in the next. 
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5 CONCLUSION & FUTURE WORK 

A PFM hysteretic converter has been implemented in IBM 0.18 micron technology. The 

following are the specifications met for the design 

Input Voltage 5V 

Output Voltage 0.9V 

Power MOSFET used  Sis376DN 

Switching Frequency in PWM 1 MHz 

Maximum Current in PWM 10A 

Load Current Range in PFM 100mA-420mA 

 Minimum Efficiency 82% @100mA 

Current for transition for PFM to PWM 420mA 

Ripple in PFM < 75mV 

Table 3: Summary of results 

5.1 Future Work 

5.1.1 PFM implementation 

It can be seen that while PFM offers good efficiency at low loads, the ripple is large. One 

can achieve good ripple characteristics and good efficiency by adding peak current 

limiting in PFM.  

5.1.2 Programmability of Transition Circuit 

The digital circuit has been currently implemented using standard cells. The threshold 

count is fixed at 48. The circuit can be made programmable by implementing it in RTL 

and making the threshold count programmable through SPI write. 
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