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ABSTRACT

Quasars, the visible phenomena associated with the active accretion phase of super-

massive black holes found in the centers of galaxies, represent one of the most energetic

processes in the Universe. As matter falls into the central black hole, it is accelerated

and collisionally heated, and the radiation emitted can outshine the combined light

of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to

near-infrared wavelengths are fundamentally limited by the precision with which the

light from the central quasar accretion can be disentangled from the light of stars in

the surrounding host galaxy.

In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts

z ' 2 and z ' 6 using new data obtained with the Hubble Space Telescope. I describe

a new method for removing the point source flux using Markov Chain Monte Carlo

parameter estimation and simultaneous modeling of the point source and host galaxy.

I then discuss applications of this method to understanding the physical properties of

high-redshift quasar host galaxies including their structures, luminosities, sizes, and

colors, and inferred stellar population properties such as age, mass, and dust content.
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Chapter 1

INTRODUCTION

1.1 Quasars and Active Galactic Nuclei

Quasars were first recognized as optically-luminous extragalactic objects by Maarten

Schmidt (1963) from the optical spectrum of a variable star-like object coincident with

the radio source 3C 273. It was found to have a blue non-thermal power-law contin-

uum spectrum Fν ∝ ν0.28 (Oke 1963), where Fν is the flux density per unit frequency

and ν is the frequency. The power-law spectrum was punctuated by extremely broad

emission lines (equivalent widths of '50 Å), indicating emission from ionized gas with

extremely high velocities ('10,000 km s−1). Schmidt identified emission lines as the

Balmer series of Hydrogen, with a systematic redshift of z = 0.158, confirming its

nature as an extremely luminous extragalactic object.

It was found that the dominant optical emission in quasars comes from an ex-

tremely compact region located in the nucleus of a host galaxy, with this nuclear

emission outshining the starlight of the entire host galaxy, such that the system ap-

pears point-like in optical images (Kristian 1973). This, combined with the similarity

to spectral lines observed in Seyfert galaxies (Seyfert 1943), identified quasars as

the most luminous class of active galactic nuclei (AGN). The other AGN classes in-

clude Seyfert galaxies — spiral galaxies with luminous nuclear sources that do not

exceed the host stellar luminosity; radio galaxies — giant elliptical galaxies with

strong radio emission (e.g., Miley 1980); blazars (or BL Lac Objects) — galaxies with

strongly variable nuclear sources that show no emission or absorption features (Stein

et al. 1976; Angel & Stockman 1980); and LINERS (low-ionization nuclear emission

1



Table 1.1: Classification of Active Galactic Nuclei

AGN Class UV-Optical UV-Optical Emission Lines

Continuum

Radio-loud

Blazar Power-law None

Radio-loud Quasara Power-law Very Broad

Broad-line Radio Galaxy Power-law Broad

Narrow-line Radio Galaxy None/Stellar Narrow

Radio-quiet

Radio-quiet Quasara Power-law Very Broad

Seyfert 1 Power-law Broad

Seyfert 2 None/Stellar Narrow

LINER None/Stellar Narrow; Low-ionization
a Historically, the term quasar was limited to radio-loud sources, with the term quasi-
stellar object (QSO) used for those that were radio-quiet. A strong distinction be-
tween these terms no longer exists, so the term quasar will be used interchangeably
for radio-loud and radio-quiet sources, with radio fluxes noted when relevant.

regions) — galaxies with nuclear low-ionization emission lines from star formation,

but with emission-line ratios indicating a non-thermal contribution (Heckman 1980).

These classes are summarized in Table 1.1.

A unification scheme for AGN began to emerge as similarities and differences

among the various classes were described (e.g., Scheuer & Readhead 1979; Orr &

Browne 1982; Heckman et al. 1984b; Antonucci & Ulvestad 1985; Barthel 1989).

Summarized by Antonucci (1993), this unification model has AGN activity driven by

a central super-massive black hole (SMBH) surrounded by a torus of dusty material,

and an accretion disk of infalling material captured from the inner edge of the torus.

AGN are broadly classified as radio-loud or radio-quiet, depending upon the level of

detected flux at radio wavelengths. Other differences are then attributed primarily to

intrinsic luminosity differences and orientation effects, with various emission regions

2



or mechanisms obscured or enhanced when the SMBH-torus system is observed from

different angles. The major components of the AGN unification model are:

• Relativistic jets, which may or may not be detected, and are responsible for radio

emission in radio-loud AGN. Sometimes the jets can also be seen at optical and

x-ray wavelengths. They are beamed in a narrow opening angle and are also

responsible for the strongly variable and dominant optical continuum in blazars.

• The accretion disk, producing the strong UV-optical continuum in quasars,

Seyfert 1 galaxies, and broad-line radio galaxies. Although non-thermal in shape

(not a black body spectrum), the consensus model has the emission produced

thermally, but at a range of temperatures as a function of radius from the

SMBH (i.e., a “sum of black bodies” model, Shields 1978; Malkan & Sargent

1982; Kishimoto et al. 2008)

• The broad-line region, high-velocity clouds of ionized gas close to the SMBH.

These clouds are responsible for the broad emission lines in quasars, Seyfert 1

galaxies, and broad-line radio galaxies

• The narrow-line region, lower-velocity clouds of ionized gas farther from the

SMBH. These clouds are responsible for the prominent narrow emission lines in

Seyfert galaxies and narrow-line radio galaxies.

• An optically-thick dusty torus, which obscures the accretion disk and broad-line

region when the torus is viewed from significantly off-axis, as occurs for Seyfert

2 galaxies and narrow-line radio galaxies. The inner surface of the torus also

reflects some emission from the broad-line region and disk, causing the polarized

spectra of Seyfert 2 nuclei to resemble Seyfert 1 nuclei.

3



Relativistic jets in this scheme are the only optional component, with all the other

components assumed to be present in all AGN, and dominant or obscured based on

the viewing angle and luminosity. Quasars are then intrinsically luminous AGN that

are viewed nearly face-on (unobscured), marked by strong, very broad emission lines

and a nuclear point source continuum that is more luminous than the integrated

starlight of the host galaxy.

1.2 Black Hole Growth and Mass Estimates

An outstanding question in AGN research is the mechanism by which the SMBH

gains its mass. In the local Universe, there is a strong correlation between SMBH

mass and the stellar mass of the kinematically hot spheroid component of the host

(the central bulge in spiral galaxies, or the entire galaxy in elliptical galaxies): the

so-called MBH−Mbulge relation (Kormendy & Richstone 1995; Magorrian et al. 1998;

Marconi & Hunt 2003; Häring & Rix 2004; Peterson et al. 2004). This suggests a

physical relation between bulge star formation and black hole mass buildup, i.e., the

black hole and bulge may be coeval and grow in lockstep.

The physical process causing this relation remains uncertain, with several mech-

anisms suggested that assume a direct physical link. The buildup of stellar mass in

the bulge requires gas for star formation, so it has been suggested that the same gas

source may also feed the SMBH (e.g., Sanders et al. 1988). Other possible sources of

black hole growth include cold mode accretion, where cold gas from the intergalactic

medium is accreted directly (Dekel et al. 2009), and black hole mergers (Volonteri &

Rees 2006; Li et al. 2007). It has even been recently suggested that the local relation-

ship may arise from an initially uncoupled population (Peng 2007; Jahnke & Macciò

2011). It is likely that all of the above processes play some role in black hole mass

buildup, whether or not they are directly responsible for the MBH −Mbulge relation.
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The physical accretion happens via the thin accretion disk, which is limited by the

Eddington rate, where radiation pressure from the accreting gas balances gravitational

infall. The maximum black hole growth rate is then proportional to the black hole

mass, with the total mass growing exponentially with time (Springel et al. 2005a). For

seed black holes with masses 102 − 104 M�, the growth time for a 109 M� black hole

ranges from 0.45−2.0 Gyr depending upon the radiative efficiency (Volonteri & Rees

2006). Schwarzschild black holes have lower efficiencies and shorter growth times,

while disk-accreting black holes with angular momentum have higher efficiencies and

longer growth times.

Black hole masses for local AGN are measured using a technique known as re-

verberation mapping, currently the most broadly-applicable technique for accurately

measuring SMBH masses (Blandford & McKee 1982; Peterson et al. 2004). Reverber-

ation mapping uses time delays between continuum and emission-line variability to

measure the spatial extent of the line-emitting ionization regions, from which rotation

curves can be calculated. These masses have been further used to calibrate scaling

relationships between AGN emission-line widths and SMBH masses, allowing estima-

tion of so-called “virial masses” from single-epoch spectra (Wandel 1999; Vestergaard

2002; McLure & Jarvis 2002; McLure & Dunlop 2004; Greene & Ho 2005; Vestergaard

& Peterson 2006; McGill et al. 2008; Vestergaard & Osmer 2009; Wang et al. 2009).

Since the bulge represents the old stellar component of nearby galaxies, obser-

vations at high redshift have the unique ability to distinguish between theoretical

models for the MBH−Mbulge relation. Studies of quasar spectra at high redshift (e.g.,

Barth et al. 2003; Iwamuro et al. 2004; Shen et al. 2011; Mortlock et al. 2011) have

inferred black hole masses of & 109 M� for the most luminous objects. In the current

concordance ΛCDM cosmology (e.g., Komatsu et al. 2011; Hinshaw et al. 2013), this

means that these billion solar mass black holes have been built up in a few hundred
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million years following the formation of the first stars (Bromm et al. 2002). Hierar-

chical formation models (Volonteri & Rees 2006; Li et al. 2007) are just barely able to

reproduce these black hole masses within the required time, with the stellar masses

of their host galaxies exceeding 1012 M�, roughly matching the local MBH −Mbulge

relation. If the host galaxies truly have as much stellar mass as predicted, they should

be among the brightest galaxies at z = 6.

1.3 The Quasar-Merger Connection

There is reason to suspect gas-rich galaxy mergers in particular as the trigger

for quasar activity. Quasar hosts undergoing mergers are well-documented in the

literature (e.g., Brotherton et al. 1999; Stockton et al. 1999; Canalizo et al. 2000;

Canalizo & Stockton 2000a,b; Bennert et al. 2008). The collision of two galaxies

significantly disturbs their gravitational potentials, which provides a mechanism for

large amounts of gas to lose angular momentum, and fall toward the nucleus where

it can subsequently accrete onto the SMBH (e.g., Toomre & Toomre 1972; Heckman

et al. 1984a; Di Matteo et al. 2005; Springel et al. 2005b). Models for AGN accretion

generally have their absolute luminosity be a function of accretion rate (Springel et al.

2005b), so quasars, as the most luminous AGN class, require the highest accretion

rates and thus largest quantities of infalling gas. Triggered star formation is also

well-documented in gas-rich mergers (e.g., Larson & Tinsley 1978; Soifer et al. 1984;

Keel et al. 1985; Lawrence et al. 1989; Duc et al. 1997), providing a mechanism for

the buildup of stellar mass in lockstep with the black hole.

Similarities have particularly been noted between quasar host galaxies and ultra-

luminous infrared galaxies (ULIRGs), those galaxies with integrated far-infrared lu-

minosities > 1012 L� (rest-frame 8 − 1000 µm, Sanders et al. 1988). All ten of the

ULIRGs studied by Sanders et al. (1988) were found to be strongly interacting merger
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systems with non-thermal ionization and near-infrared colors characteristic of AGNs,

suggesting that they may represent obscured or early-stage AGNs. More recent stud-

ies, such as the Quasar and ULIRG Evolution Study (QUEST, Schweitzer et al. 2006;

Netzer et al. 2007; Schweitzer et al. 2008; Veilleux et al. 2009), have strengthened

this connection, finding significant indications of star formation in local quasar hosts,

especially those with the largest FIR luminosities.

1.4 Direct Imaging of Quasar Host Galaxies

Ground-based studies have successfully detected the host galaxies of the nearest

quasars (e.g., Boroson & Oke 1982; McLeod & Rieke 1994; Taylor et al. 1996; Jahnke

et al. 2004a, 2007), but are limited by atmospheric seeing and show that observing

the underlying stellar populations of high-redshift quasars is not trivial. The highest

redshift for which underlying stellar populations have been unambiguously identi-

fied in data obtained from ground-based telescopes is z ' 4 (McLeod & Bechtold

2009; Targett et al. 2012). Targett et al. (2012) found that these galaxies are ex-

tremely compact (half-light radii of '1.8 kpc), much smaller than quasar hosts at

lower redshift (e.g., Dunlop et al. 2003). While providing important data regarding

the integrated host stellar populations and luminosities, the hosts in high-redshift

ground-based studies are generally marginally resolved and do not provide detailed

structural information.

The Hubble Space Telescope (HST), with its high on-orbit angular resolution and

stable point spread function, has been instrumental in examining the detailed spatial

distributions of quasar host stellar populations. These studies have led to important

constraints on the morphology, luminosity, and stellar populations of quasar hosts

(e.g., Bahcall et al. 1994, 1995b,a; Disney et al. 1995; McLeod & Rieke 1995; Bahcall

et al. 1997; McLure et al. 1999; Keeton et al. 2000; Kukula et al. 2001; McLeod
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& McLeod 2001; Percival et al. 2001; Ridgway et al. 2001; Hutchings et al. 2002;

Dunlop et al. 2003; Marble et al. 2003; Floyd et al. 2004; Jahnke et al. 2004a,b;

Kuhlbrodt et al. 2004; Peng et al. 2006; Zakamska et al. 2006; Urrutia et al. 2008;

Cales et al. 2011). The high sensitivity of HST’s newest imaging camera, the Wide

Field Camera 3 (WFC3), and low on-orbit near-infrared sky background make it the

ideal instrument for extending detailed structural studies of quasar host galaxies to

high redshifts.

There are several techniques that may be employed for high-contrast imaging,

the general term for attempting to detect flux from a relatively faint source that is

spatially close to a relatively bright source. The classic method for doing this is with

a coronagraph, where a Lyot stop physically blocks incoming light from the bright

source. This technique has seen limited use for quasar host galaxy studies (Martel

et al. 2003), since the stop size must be extremely small or the quasar nearby to avoid

blocking a significant fraction of the host galaxy light as well. For recent studies

of stellar companion objects such as exoplanets, the LOCI algorithm developed by

Lafrenière et al. (2007) has proven effective at finding faint companions. However, this

algorithm relies upon multiple matched PSFs (such as from multiple roll angles) and

thus is generally too costly in observing time for use in high-redshift quasar studies.

The preferred method for most quasar host studies is then direct subtraction, where a

reference star is observed to characterize the instrument point spread function (PSF),

then used to subtract a model of the quasar point source. There are many details

that must be considered when choosing the best PSF star; these will be discussed

briefly in Chapter 2 and in-depth in Chapter 3.
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1.5 Overview of the Studies Presented Herein

The main goals of the new studies described in this Dissertation are twofold.

First: to search for signatures of stellar emission from the host galaxies of z ' 6

quasars, to better understand mechanisms for SMBH growth and how star formation

relates to AGN activity at the cosmic dawn, from the epoch of first light to the end

of reionization. Second: to examine quasar feeding mechanisms by measuring the

merger fraction for quasar host galaxies at z ' 2, currently the oldest cosmic epoch

for which rest-frame optical emission can be imaged at HST resolution.

Chapter 2 presents a first attempt to image a z ' 6 quasar host with WFC3IR,

and constraints placed on the host galaxy SED, confirming high UV extinction like

in local ULIRGs. Chapter 3 introduces a new Markov Chain Monte Carlo approach

to modeling AGN+host galaxy light distributions, unique in its careful handling of

uncertainty in the supplied PSF. Chapter 4 introduces a sample of nineteen z '

2 quasars imaged with WFC3IR, and a study of the host galaxy merger fraction,

finding a merger fraction almost double that of galaxies at z ' 2 not hosting quasars.

Chapter 5 introduces a continuing study of quasar hosts at z ' 6, including detection

of a candidate major-merger host system for the quasar NDWFS J1425+3254. Finally,

Chapter 6 presents concluding remarks and a discussion of avenues for future work.

Throughout this Dissertation, a concordance ΛCDM cosmology is adopted with

H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7 (Komatsu et al. 2011; Hinshaw et al.

2013). Unless otherwise stated, all magnitudes use the AB system (Oke 1974) and

have been corrected for Galactic extinction using the map of Schlegel et al. (1998).

The work presented in Chapter 2 has been previously published in the Astrophys-

ical Journal Letters. It appeared as Mechtley, M., et al. 2012, ApJ, 756, L38, c© and

published by the American Astronomical Society.

9



Chapter 2

DIRECT IMAGING OF THE HOST GALAXY OF SDSS J1148+5251

2.1 Background and Introduction

This chapter describes near-infrared imaging and analysis of the z = 6.42 quasar

SDSS J114816.64+525150.3 (hereafter J1148+5251) with the Hubble Space Telescope

(HST) Wide Field Camera 3 (WFC3) infrared channel, and methods for character-

izing and subtracting the instrument and telescope Point Spread Function (PSF).

This pilot program represents the first attempt to apply PSF subtraction methods to

quasar host galaxies in WFC3IR images.

J1148+5251 is the best-studied member of the z ' 6 quasar population, having

been extensively observed at multiple wavelengths since its discovery by Fan et al.

(2003). Near-infrared spectroscopy by Willott et al. (2003) and Iwamuro et al. (2004)

measured the Mg ii and Fe ii features, estimating a mass of 3×109 M� for the SMBH,

an accretion rate near the Eddington limit, and an Fe ii/Mg ii ratio consistent with

quasars at lower redshifts. Radio observations of CO lines (e.g., Walter et al. 2003;

Riechers et al. 2009) indicate the presence of 2.2 − 2.4 × 1010 M� of high-excitation

molecular gas extending to ' 2.5 kpc (r = 0.′′45). Studies of the [C ii] line at 158µm

(Maiolino et al. 2005; Walter et al. 2009) provide evidence that the quasar host galaxy

is undergoing a vigorous starburst, with an estimated star formation rate density of

' 1000 M� yr−1 kpc−2 extending over kiloparsec scales. Studies of the continuum

emission at far-infrared (FIR) wavelengths indicate a warm dust component with an

AGN-corrected FIR luminosity of 9.2×1012 L� (Wang et al. 2010) and corresponding

dust mass of 4.2−7.0×108 M� (Bertoldi et al. 2003; Robson et al. 2004; Beelen et al.
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2006). Locally, this is in the range of ultra-luminous infrared galaxies (ULIRGs,

galaxies with LFIR > 1012 L�). Near- and mid-infrared Spitzer Space Telescope

observations by Jiang et al. (2006) show clear evidence for prominent hot dust within

the galaxy. All of these observations argue for a host galaxy with a significant stellar

mass component undergoing an extreme episode of star formation.

§2.2 describes new near-infrared WFC3 imaging of J1148+5251 and a nearby star,

used for PSF characterization. §2.3 describes a method for subtracting the central

point source from the quasar images. Simulations for assessing the reliability of the

subtraction method are described in §2.4. Finally, in §2.5, the implications of these

results and plans for future investigation are discussed.

2.2 Observations and Data Reduction

The HST observations of J1148+5251 were performed on 2011 January 31 (HST

Program ID 12332, PI: R. Windhorst) using the WFC3 IR channel with the F125W

(Wide J) and F160W (WFC3 H) filters. Previous programs (e.g., Hutchings et al.

2002) found that the quality of empirical quasar point source subtractions was sig-

nificantly affected by PSF time variability. This variability is mostly due to so-called

“spacecraft breathing” effects, i.e., thermally induced defocus of the HST secondary

mirror due to movement of the Optical Telescope Assembly as the telescope goes into

and out of Earth shadow (e.g., Hershey 1998). There are two primary sources of

thermal variation that were expected to affect these observations — the spacecraft

attitude and the orbital day-night cycle.

To minimize thermal variations due to spacecraft attitude, the PSF star was con-

strained to be within 5◦ of the target quasar, and we required that the quasar and

PSF star observations be collected in contiguous orbits. It was further requested (and

granted) that the observations be scheduled immediately following another observa-

11



tion near the same celestial coordinates, thus minimizing thermal equilibration time

in the first orbit. The PSF star was selected to match the quasar near-infrared colors

((J − H) = 0.55 mag, (H − K ′) = 0.72 mag) as closely as possible, to minimize

differences in wavelength-dependent PSF features. Many stars with colors similar

to the quasar also have SDSS spectra, since they were targeted by SDSS as high-

redshift quasar candidates. These spectra were examined where available, to reject

obvious spectroscopic binaries or other contaminants. After checking the resulting

candidates for HST guide stars, we selected the star 2MASS J11552259+4937342

(spectral type K7, mJ = 16.272 ± 0.079 Vega mag, (J − H) = 0.488 ± 0.158 mag,

(H −Ks) = 0.651± 0.176 mag, Skrutskie et al. 2006) as the final PSF target.

Unfortunately, there is no way to eliminate thermal variation due to the orbital

day/night cycle. Thus, the orbits were constructed to ensure the cycle was fully

sampled, and that equal fractions of the final quasar and PSF star images would

come from a given location in orbital phase. Each quasar exposure was matched

by several shorter PSF star exposures, taken at the same sub-pixel dither point and

phase within the orbit. This phase-space sampling is summarized in Figure 2.1. No

detector location was exposed beyond half-well depth in a single orbit, thus avoiding

saturation or detector persistence. The quasar was observed in this pattern for three

orbits, and the PSF star was observed for a single orbit. 1 Total exposure times

for each combination of object and filter are summarized in Table 2.2. Analysis was

performed on Multidrizzle-combined images (Koekemoer et al. 2002, 2011) with an

output pixel scale of 0.′′065, to achieve Nyquist sampling of the PSF in both filters,

enabling accurate spatial shifting. The cosmic ray rejection step of Multidrizzle was

disabled, since the MULTIACCUM readout mode provided sufficient cosmic ray rejection.

1An additional PSF star, 2MASS J11403198+5620582, was also observed for a single orbit to
allow for inter-orbit interpolation of the PSF measurement. This observation suffered from a poor
guide star acquisition and was unusable.
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Figure 2.1: PSF star and one quasar orbit, highlighting the relative phasing of corre-
sponding dither points to compensate for spacecraft breathing. Exact phase matches
are not possible due to buffer dumps and specific readout sequences. Correspond-
ing dither points were centered at similar positions on the detector to account for
field-dependent PSF variability.

Table 2.1: Exposure summary for J1148+5251

Target Filter Exp. Time (s) S/N

SDSS J1148+5251 F125W 2478 2400

SDSS J1148+5251 F160W 3646 3760

2MASS J11552259+4937342 F125W 208 1730

2MASS J11552259+4937342 F160W 335 2200

2.3 Point Source Subtraction

The software GalFit (Peng et al. 2002, 2010) was used to fit a PSF single-

component model to the quasar image. The Multidrizzle-generated weight maps

were transformed into uncertainty maps as in Dickinson et al. (2004), including the

effects of correlated noise and shot noise from the quasar, and these were supplied

to GalFit as the pixel-to-pixel uncertainty (“sigma”) image. The best-fit model was

then subtracted from the original image, and the residual inspected.

This subtraction was first attempted using the image of the PSF star as the model

PSF. The results are shown in Figure 2.2. The residuals were measured using a 0.′′5

radius aperture, obtaining upper limits of mJ > 22.8 mag, mH > 23.0 mag (2 σ).

This includes the total noise contribution from both the quasar and the empirical

PSF, measured by scaling the PSF uncertainty map by the same factor as in the fit,

and adding it in quadrature to the quasar uncertainty map. The noise contribution
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Figure 2.2: Empirical PSF subtraction. Left panels: Multidrizzle-combined
F125W (J , top) and F160W (H, bottom) WFC3 images of J1148+5251 after sky
subtraction. Pixels are 0.′′065. Middle Panels: Scaled and shifted PSF star, as fit by
GalFit. Right panels: Fit residuals, showing a net positive residual flux, but high
noise. We measured the integrated residual flux using a 0.′′5 radius aperture (gray
circle), obtaining upper limits of mJ > 22.8 mag, mH > 23.0 mag (2σ). All images
are displayed with the same logarithmic stretch.

from the subtracted PSF is comparable to that of the quasar since the two images

have comparable S/N (see Table 2.2), which leads to cosmetic defects (holes) in the

subtraction, despite the net positive residual.

We also generated a TinyTim 2 (Krist et al. 2011) model of the PSF, which was

calibrated to the PSF star observations. A 5× spatially oversampled TinyTim model

was generated for each WFC3 exposure to allow for subpixel shifting. The spectrum

of J1148+5251 obtained by Iwamuro et al. (2004) was used as the model spectrum.

The observatory pointing accuracy data (jitter files) for each exposure were included

2http://www.stsci.edu/hst/observatory/focus/TinyTim
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in the models. The HST Focus Model 3 (Cox & Niemi 2011) was used to estimate

the secondary mirror despace for each exposure, and the field-dependent coma and

astigmatism measurements built into TinyTim were included. The individual HST

detectors have different mean focus offsets in the Focus Model, but the offset for

the WFC3 IR channel has not been characterized. The mean Z4 Zernike coefficient

in TinyTim (R0
2 in the original formulation of Zernike 1934) was therefore allowed

to float as a free parameter in the optimization, which was then added to the Fo-

cus Model estimate for each exposure. These models for individual exposures were

then combined, weighted by exposure time, to produce a composite PSF for each

Multidrizzle-combined science image. GalFit also accepts a pixel response convo-

lution kernel for oversampled PSFs. This kernel was generated by drizzling copies of

the empirical WFC3 pixel response convolution kernel (modeling inter-pixel capaci-

tance and jitter, see Hartig 2008) using the same shifts applied to the real images.

The result of the TinyTim PSF subtraction, with a significantly reduced noise

floor compared to the direct subtraction, is shown in Figure 2.3. No host galaxy is

detected, to a limiting surface brightness from r = 0.′′3 to 0.′′5 radius of µJ > 23.5,

µH > 23.7 mag arcsec−2 (2σ). The inner 0.′′3 was excluded from the fit, as the

best-fit TinyTim models produce PSF cores that are consistently narrower than those

observed, despite the inclusion of the observatory pointing stability data. Visible

residual structures (diffraction spikes and spots) are also seen when subtracting this

model from the PSF star observations.

2.4 Host Galaxy Simulations

Having established no host galaxy detection using the TinyTim PSF, we sought to

quantify this subtraction method’s ability to recover the host galaxy flux as a function

3http://www.stsci.edu/hst/observatory/focus/FocusModel
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Figure 2.3: Model PSF subtraction. Left panel: Multidrizzle-combined F125W
(J , top) and F160W (H, bottom) WFC3 images of J1148+5251. Middle Panels:
TinyTim models of the quasar point source, constructed by optimizing parameters
for the PSF star observations, then scaled and shifted by GalFit. Right panel: Fit
residuals, showing no significant detection of the underlying galaxy beyond 0.′′3 radius.
The over-subtracted flux in the central 0.′′3 (inner circle) occurs because the best-fit
model PSFs have more power in the central peak than the observations, and is also
seen in residuals when modeling the PSF star. This region was excluded from the fit.
The noise floor in the residual panel is 40% that of the residual panel in Figure 2.2.
From r = 0.′′3 − 0.′′5 (between inner and outer circles) we measure a limiting surface
brightness of µJ > 23.5, µH > 23.7 mag arcsec−2 (2σ). The noise in the quasar
image and uncertainties in the PSF model contribute roughly equally within this
region. Visible residual structures (diffraction spikes and spots) are also seen when
subtracting this model from the PSF star image.
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of host galaxy parameters. To do so, GalFit was used to simulate a point source along

with a Sérsic profile host galaxy, with total flux adding up to mJ = 19.1 mag, the

measured flux in F125W. This simulated image contained no noise, so both shot noise

from the object and a Gaussian noise field drizzled in the same manner as the real

quasar image were added, to match its correlated noise properties. The same analysis

that was used on the real quasar image was then performed, using GalFit to subtract

a TinyTim-generated point source and measuring the surface brightness from r = 0.′′3

to 0.′′5 in the residual image.

A grid of 256 models was run using this technique, varying the total integrated flux

of the host galaxy from mJ = 20− 26 mag, the effective radius from re = 0.′′1− 0.′′9,

and Sérsic indexes n = 1.0 and 4.0. The magnitude range represents host galaxies

with luminosities from ' 1/2 to 1/500 of the total quasar luminosity. Fainter host

galaxies than this are undetectable due to shot noise from the point source. The

range in effective radius corresponds to re ' 0.6− 5.0 kpc at z = 6.42.

Figure 2.4 summarizes the results of these simulations, plotting the measured

surface brightness from r = 0.′′3 − 0.′′5 and contours representing the 1, 2, and 5σ

detection limits. Inspecting the residuals of these model subtractions, it was found

that bright (mJ < 22.5 mag), compact (re < 0.′′3) host galaxies cause the method

to significantly over-subtract the PSF. This would show negative residuals from the

diffraction spikes, which are not seen in Figure 2.3.

The model surface brightness from r = 0.′′3 − 0.′′5 reaches the 2σ upper limit of

µJ > 23.5 mag arcsec−2 for a host galaxy of mJ > 22 − 23 mag, depending upon

Sérsic index and effective radius.
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Figure 2.4: PSF subtraction on simulated host galaxies. Surface brightness pre-
dicted from r = 0.′′3 − 0.′′5 as a function of simulated host galaxy parameters. The
simulated observation is approximated as a PSF component along with a Sérsic profile,
with total flux adding up to the observed mJ from the WFC3 image. The integrated
magnitude (mhost), effective radius (re), and Sérsic index (n = 1.0, left panels and
n = 4.0, right panels) of the Sérsic profile are varied with each model. The 1, 2,
and 5σ detection significance levels are plotted as black lines. The measured sur-
face brightness reaches the 2 σ limit (µJ > 23.5 mag arcsec−2) for a host galaxy of
mJ > 22− 23 mag, depending upon Sérsic index and effective radius.

2.5 Discussion

Point source subtraction was performed on the z = 6.42 quasar J1148+5251, with

both empirical and modeled PSFs. Using direct subtraction, an upper limit of mJ >

22.8 mag, mH > 23.0 mag (2 σ) was measured. With the modeled PSF subtraction,

a limiting surface brightness was measured from 0.′′3− 0.′′5 of µJ > 23.5 mag arcsec−2,

µH > 23.7 mag arcsec−2 (2σ). Performing the same subtraction method on simulated

quasars, this surface brightness limit was found to correspond to a host galaxy of

mJ > 22− 23 mag, consistent with the direct subtraction limit.

Using the direct subtraction limits, the upper limits on the rest-frame monochro-

matic luminosity (λLλ) at 1700 Å and 2200 Å are L1700 < 8.4 × 1011 L� and

L2200 < 5.4 × 1011 L�, assuming a flat spectrum within each band when applying
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the K-correction (Oke & Sandage 1968). This is comparable to the most luminous

Lyman break galaxies at z ' 2− 3 (Hoopes et al. 2007).

Using the upper limits for the host galaxy flux and Equation 1 from Kennicutt

(1998), which relates Lν to star formation rate, a star formation rate of SFR <

210− 250 M� yr−1 is estimated. This estimate ignores dust attenuation and assumes

a continuous star formation rate over 108 years or longer. A younger population would

decrease this upper limit, while dust would allow for a higher (absorption-corrected)

rate. The star formation rate estimated from the AGN-corrected FIR luminosity

by Wang et al. (2010) is 2380 M� yr−1. Since J1148+5251 would be classified as a

ULIRG locally, this discrepancy is likely due to significant UV absorption by dust.

The infrared excess (IRX) of the host galaxy can also be constrained, defined as

the infrared to far-ultraviolet (FUV) luminosity ratio LIR/LFUV (e.g., Howell et al.

2010), usually expressed in logarithmic units. Using the upper limit for L1700 and

an AGN-corrected infrared luminosity LIR = 9.2 × 1012 L� (Wang et al. 2010) im-

plies log(IRX) > 1.0, consistent with local luminous infrared galaxies (LIRGs) and

ULIRGs (Howell et al. 2010), but greater than local starburst galaxies and high-

redshift Lyman break galaxies (Overzier et al. 2011).

Figure 2.5 plots broad-band measurements for J1148+5251 taken from Fan et al.

(2003); Iwamuro et al. (2004); Jiang et al. (2006); Beelen et al. (2006); Robson et al.

(2004), and Bertoldi et al. (2003). Also plotted are the upper limits for the host galaxy

flux at 1700 Å and 2200 Å from this work, and the AGN-corrected FIR measurements

of Wang et al. (2010). Also plotted are the spectral energy distributions (SEDs) of

four local galaxy systems — three LIRGs (Arp 220, IRAS 22491-1808, and IC 1623),

representing the range in IRX from Howell et al. (2010), and the star-forming spiral

NGC 4631, representing a galaxy with log(IRX) < 1.0, which is thus excluded as a

19



potential host. The photometric points for the local galaxies were taken from NED 4

and SEDs have been normalized to match the AGN-corrected emission of J1148+5251

between 40 and 200 microns.

Using the relation between the IRX flux ratio and AFUV (e.g., Overzier et al.

2011, Equation 1) provides an estimate of AFUV > 2.1 mag of UV absorption. Using

the empirical relation IRXM99,inner (AFUV = 4.54 + 2.07β ± 0.4) from Overzier et al.

(2011) gives a limit of β > −1.2 ± 0.2. This matches local (U)LIRGs (Howell et al.

2010), but is redder than almost all local star-forming galaxies and z ' 6 Lyman

break galaxies (Overzier et al. 2011; Bouwens et al. 2012).

The TinyTim-based subtraction may be improved in the future with more accurate

WFC3 IR PSFs. Since uncertainties introduced by the PSF model scale with PSF

brightness, our further WFC3 observations target quasars where the contrast ratio

between point source and host galaxy is expected to be smaller, such as optically faint

z ' 6 quasars with large FIR luminosities. While J1148+5251 is too far north to be

observed with the Atacama Large Millimeter Array (ALMA), future observations

with the Combined Array for Research in Millimeter-wave Astronomy (CARMA)

or the upgraded Plateau de Bure interferometer may be able to provide additional

morphological constraints. The James Webb Space Telescope will enable use of the

PSF subtraction method at rest-frame ultraviolet and optical wavelengths with better-

sampled empirical PSFs in a more stable thermal environment.

4The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with NASA.
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Figure 2.5: Comparison of broad-band photometry for J1148+5251 to local galaxies.
Blue circles are broad-band (quasar and host) photometry of J1148+5251 taken from
Fan et al. (2003); Iwamuro et al. (2004); Jiang et al. (2006); Beelen et al. (2006);
Robson et al. (2004), and Bertoldi et al. (2003). Red squares show upper limits for
the host galaxy flux at 1700 Å and 2200 Å from this work, and the AGN-corrected
FIR measurements from Wang et al. (2010). The light gray spectrum is the average
radio-quiet quasar spectrum of Shang et al. (2011), normalized to J1148+5251 from
0.1− 1µm. The dotted purple SED is NGC 4631, a local spiral with log(IRX) < 1.0.
Other SEDs are those of the local LIRGs Arp 220 (solid red, log(IRX) = 3.423),
IRAS 22491-1808 (dashed green, log(IRX) = 2.198), and IC 1623 (dot-dashed blue,
log(IRX) = 1.379), representing high, average, and low IRX LIRGs, respectively
(Howell et al. 2010). The local galaxy SEDs have been normalized to match the
AGN-corrected emission of J1148+5251 between rest-frame 40 and 200 microns. The
constraint of log(IRX) > 1.0 (and the 2200 Å flux limit) matches most local LIRGs,
but is greater than almost all local star-forming galaxies and high-redshift Lyman
break galaxies (Howell et al. 2010; Overzier et al. 2011).
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Chapter 3

TWO-DIMENSIONAL SURFACE BRIGHTNESS MODELING WITH THE

MARKOV CHAIN MONTE CARLO METHOD

3.1 Introduction and Motivation

The experience with the J1148+5251 pilot program, as described in Chapter 2,

was particularly instructive in two respects. First, for further studies of z ' 6 quasars

with the WFC3 IR channel, the likelihood of a host galaxy detection could be im-

proved by selecting targets with intrinsically fainter AGN. This new quasar sample

and preliminary results will be detailed in Chapter 5. Second, there were fundamen-

tal limitations to currently-existing fitting algorithms for two-dimensional surface

brightness distributions, such as GalFit, when applied to the point source subtrac-

tion problem. To address the latter problem, I developed a new two-dimensional

fitting algorithm, psfMC, that is purpose-built for the quasar point source subtraction

problem. This chapter details the two-dimensional fitting algorithm.

GalFit (Peng et al. 2002, 2010) represents the current state-of-the-art for two-

dimensional fitting of galaxy surface brightness distributions. Although other software

exist for two-dimensional image modeling (e.g., Shaw & Gilmore 1989; Byun & Free-

man 1995; de Jong 1996; Simard 1998; Wadadekar et al. 1999; Pignatelli et al. 2006),

these generally use similar techniques with similar strengths and limitations. A no-

table exception is GALPHAT (Yoon et al. 2011), which uses a Markov Chain Monte

Carlo approach to galaxy modeling. It is optimized for fitting individual galaxies,

rather than quasar+host models, and still assumes error-free PSFs.
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Figure 3.1: Example of point source over-subtraction in a single-component model.
Left: WFC3 infrared image of a z = 2 quasar in the F160W filter. Middle: Single-
component PSF model, generated using GalFit from a focus- and color-matched
star. Right: residual after subtracting the point source model, showing significant
over-subtraction in the center. This is a general problem of quasar point source
subtraction, and necessitates simultaneously modeling the host galaxy flux with the
point source.

GalFit has become the software of choice among these for several reasons. It

provides many different surface brightness distribution options (e.g., various radial

profiles, generalized ellipses, Fourier modes, various spiral parameterizations, among

many others), and allows for convolution with an arbitrary user-supplied point spread

function. It implements a standard, computationally efficient algorithm (Levenberg-

Marquardt gradient descent) for parameter optimization, which allows rapid fitting of

many objects. It is also publicly available and relatively easy to use. However, there

are several reasons that GalFit is not optimal for quasar point source subtraction.

The simulations performed for J1148+5251 (§2.4) show that single-component

point source subtraction methods tend to over-subtract the point source when the

host galaxy flux is detectable. This over-subtraction is proportional to the luminosity

of the underlying galaxy, and is particularly pronounced for hosts that are comparable

in size to the point spread function, such as high-redshift galaxies. An example of

such an over-subtraction is shown in Figure 3.1.
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A solution is to simultaneously model the point source and the underlying host

galaxy. Such two-component models (e.g., a point source and a Sérsic profile model-

ing the coeval stellar population of the galaxy bulge) have fundamentally covariant

parameters. For example, the fluxes of the two components are necessarily correlated

since the total flux of the two-component model must match the measured flux from

the image being fit. GalFit does not provide a way to quantify these covariances

— error estimates are provided for each fit parameter, but these are based on an

ellipsoidal approximation of the surface of constant ∆χ2, and the largest projected

vector sums of the principal axes of that ellipsoid (see §2.6 in Peng et al. 2002).

Galfit achieves some computational efficiency by using the Levenberg-Marquardt

method of performing least-squares minimization (e.g., Press et al. 2007). This re-

duces the total number of samples required in parameter space, which means models

converge quickly. However, this particular method (and similar gradient descent

methods) find local minima of the objective function (χ2) in parameter space, rather

than the global minimum, which means they can be sensitive to the initial guess of

parameter values. 1 The method also involves calculating a gradient image during

each iteration to determine the parameter values to use for the subsequent iteration.

Extremely compact models — e.g., a Sérsic profile with small effective radius (re)

and large index (n) — have all their gradient information contained within a single

pixel, and so the Sérsic degrees of freedom are used to fit aberrant pixels due to PSF

mismatch, rather than the true host galaxy distribution. This essentially creates a

false minimum in parameter space from which the gradient descent cannot escape.

1The GIM2D two-dimensional modeling software (Simard 1998) uses the Metropolis algorithm
(Metropolis et al. 1953) rather than gradient descent, so can escape local minima and is less suscep-
tible to the initial parameter guess. In other respects described in the text, such as lack of parameter
covariance information and assuming a PSF with infinite S/N, it is similar to GalFit.

24



A related problem is that GalFit assumes that the supplied PSF is without error,

and has infinite signal-to-noise ratio. Even without systematic PSF uncertainties (i.e.,

a PSF exactly matching the telescope focal history, spectral energy distribution of

the quasar point source, etc.), the photon or shot noise from the supplied PSF can be

large enough to become significant. It is often the case that the most desirable star

has S/N comparable to the quasar, such as in the analysis of J1148+5251 presented in

Chapter 2. For a star whose S/N exceeds the quasar by a factor of 1.5−10, this means

that when performing the point source subtraction, the PSF contributes 1− 20% of

the per-pixel RMS error. This is significant when attempting to detect host galaxies

that may be 50− 100 times fainter than the point source.

3.2 Bayesian Parameter Estimation

An alternative method of modeling and parameter estimation that addresses some

of these problems is Markov Chain Monte Carlo (MCMC, e.g., Gelman et al. 2011,

Chapter 11). MCMC is one of many Bayesian simulation methods, meaning that

it is motivated by probability theory. Given a set of observed data y, and a model

described by a set of parameters θ, the goal is to make inferences about the probability

distribution of the model parameters. Bayes’ Theorem is given by Equation 3.1:

P (θ|y) =
P (θ)P (y|θ)

P (y)
(3.1)

In the above equation, P (θ|y) is the posterior probability distribution, the proba-

bility distribution of model parameters given the observed data (the eventual goal of

the simulation). P (θ) is the prior probability distribution of the model parameters,

determined e.g., from previous observations or physical first principles. P (y|θ) is the

model likelihood function, the probability of the observed data for a given set of model

parameter values. P (y) is the prior probability distribution of the observed data, a
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measure of the overall probability of measuring the particular values for y. This

can be taken as a proportionality constant since the observed data do not change as

different parameter values are tried (see discussion in Gelman et al. 2011, Chapter 1).

As a Markov chain method, MCMC works by drawing successive samples from

the model’s parameter space, where the parameter values of the next sample, θt+1,

are based only on the parameter values of the current sample, θt, i.e., the Markov

property. The selection of samples in the chain is constructed via a step method

such that with each successive sample, the distribution of sampled points becomes

closer to the true posterior distribution P (θ|y). The most common general-purpose

step method is the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings

1970). In the basic Metropolis algorithm (a particular case of Metropolis-Hastings),

a proposed sample θ∗ is drawn from a proposal distribution, such as a multivariate

normal distribution centered at the current sample θt. The ratio of the posterior

probability densities, r = P (θ∗|y)/P (θt|y), is then calculated and the proposed sample

is accepted or rejected based on the Metropolis criterion. If r ≥ 1, the sample

is accepted. Otherwise, the sample is accepted with probability r. Probabilistic

acceptance is implemented by generating a uniform random number u between 0 and

1. If u ≤ r, the sample is accepted, and if u > r, the sample is rejected. If a sample

is accepted, it is added to the chain as θt+1. If a sample is rejected, it is discarded

entirely and a new proposed sample is drawn, starting again from θt.

When the algorithm has finished (usually, when the chain reaches some pre-

determined size, or some statistical criteria are met), the result is a series of pa-

rameter samples that approximates P (θ|y), the posterior probability distribution of

parameters given the observed data (see Gelman et al. 2011, Chapter 11 for a proof).

Samples can then be analyzed statistically to provide insights about the inferred

posterior distribution, such as moments, covariance, or multi-modality.
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3.3 Description of the psfMC Software

psfMC is built upon pyMC (Patil et al. 2010), a module for performing Bayesian

stochastic modeling with the Python programming language (van Rossum & Drake

1990). The computational book-keeping tasks — such as drawing samples, proposing

new values via the Markov Chain step method, and saving sample traces — are

handled by pyMC. The psfMC software then allows the user to build models that

simultaneously model an arbitrary number of components. At this time, point sources

and Sérsic profiles are provided, though additional surface brightness distributions

may easily be added. The free parameters for each component (e.g., position, total

magnitude, Sérsic index, etc.) can either be supplied as a fixed numeric value or

as an arbitrary prior probability distribution. pyMC provides many common built-

in distributions, and additional distributions can be easily added (e.g., a Schechter

luminosity function with a faint-end cutoff as the prior for a galaxy’s integrated

magnitude). An arbitrary number of PSF images can also be supplied, with the most

likely PSF selected based on the data.

The software requires Python version ≥2.6, and depends upon only four addi-

tional Python modules: The standard scientific packages numpy (version ≥1.6) and

scipy (version ≥0.10), the pyMC module for Bayesian stochastic modeling (version

≥2.0), and the pyfits module (version ≥ 3.0) for manipulating astronomical FITS

format images. Two additional modules are optional: pyregion (version ≥1.0) to

use SAOImage ds9 region files for masking, and numexpr (version ≥2.0) to parallelize

the computation of Sérsic profiles on multi-core systems.

The user specifies the model components using a simple Python file (see Ap-

pendix A for an example), which may include numeric expressions, additional vari-

ables, etc. The user then calls the fitting function, supplying values for the following
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additional parameters. All images are supplied in the astronomical FITS format

(Wells et al. 1981; Pence et al. 2010), either as strings representing a relative path on

disk, or as pre-opened pyfits HDU objects. Multi-extension FITS (MEF) files will

use the first image extension, so it is recommended that the individual extensions be

first opened as pyfits HDU objects if the data are in MEF format.

• obs file The filename of the observed image

• obsIVM file The filename of the weight (inverse variance) map for the observed

image

• psf files The filename of the PSF image or a list of multiple filenames, in

which case the fitting process will select the most likely PSF. 2

• psfIVM files The filename(s) of the weight (inverse variance) map for the PSF

image

• model file The filename of the model definition file (see Appendix A)

• mag zeropoint The instrumental magnitude zeropoint used to convert instru-

mental magnitudes into observed magnitudes. Magnitudes supplied as param-

eters of the model components should be relative to the same zeropoint.

• mask file (optional) An image, with non-zero pixels denoting exclusion from

the fit. Alternatively, an SAOImage ds9 region file describing which pixels

should be included in the fit. Regions can have the exclude flag set to exclude

pixels from the fit. Any galaxies not intended to be modeled should be excluded

from the fit, see discussion below.

2Multiple supplied PSFs are currently experimental. The feature will work best when the PSFs
are sorted in some logical sequence, such as by estimated focus or measured full width at half maxi-
mum. Using this feature may also affect measurements of host galaxy Sérsic parameters, since there
is some degeneracy between Sérsic parameters and PSF shape when fitting the two simultaneously.
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Weight maps must be provided for both the observed quasar and the PSF. These

should be provided in inverse variance (1/σ2) form, and should include all noise and

uncertainty contributions, including detector read noise, sky noise, and Poisson or

shot noise from the object photon counts. For Multidrizzle-combined HST images,

maps produced by the “ERR” weighting scheme include all these contributions, with

the caveat that correlated noise may cause these maps to underestimate the true per-

pixel noise (see the discussion of correlated noise with respect to the model variance

map below). It should be noted that shot noise from the objects requires careful

consideration when working with non-destructive multiple-read CMOS detectors such

as the HST WFC3 infrared channel or NICMOS. These generally use an up-the-ramp

fitting routine to fit a count rate for each pixel, in order to achieve high dynamic range.

This process makes the understanding of shot noise non-trivial. One cannot simply

multiply the count rate by the exposure time to get the original counts, because for

pixels that saturated (such as the central pixels of the point source), or that were

affected by cosmic rays, count rates will be based on fewer non-destructive reads than

low count rates. The error data extensions produced by the HST pipeline take this

into account, so should be treated as the true per-pixel errors unless the images are

re-calibrated manually.

The number of samples to be drawn from the posterior distribution can be speci-

fied by the user. An arbitrary number of samples may also be discarded as a burn-in

period, allowing the Markov chain to converge to a stable region of parameter space

before samples are retained for analysis. A thinning interval can also be specified,

where only every nth sample is retained, to account for the fact that the Markov

process produces correlated samples. Since the correlation factor is rarely known a

priori, and in principal is different for each model parameter, it is recommended that

the number of effective samples instead be estimated after fitting (see discussion in
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Chapter 4). For more detailed discussions of burn-in and sample thinning in gen-

eral, see Gelman et al. (2011, Chapter 11). Samples are drawn from parameter space

using a Metropolis-Hastings algorithm that updates one parameter value at a time.

For most parameters, the basic Metropolis algorithm is used with the user-specified

prior as the proposal distribution. For (x, y) positions, the Adaptive Metropolis step

method is used (Haario et al. 2001), which quantifies covariance between the indi-

vidual vector components during the burn-in period and uses a rotated multivariate

normal distribution for proposals.

The model is constructed with a simple, flat hierarchy, with the individual pa-

rameters acting as children only of the final model images, which in turn determine

the likelihood function. Each time a proposed sample is drawn from the parameter

space, psfMC generates a model image of the intrinsic surface brightness distribution

described by the parameters (hereafter, “raw model”), without the telescope and in-

strument PSF. The raw model is composed of whichever components were specified

by the user in the model definition file (usually a point source and one or more Sérsic

components for quasars). This raw model is then used to generate two further images

— one convolved with the PSF (“convolved model”), and a model variance map that

includes the uncertainty in the supplied PSF.

The model variance map is simply the square of the model image convolved with

the PSF variance map. Consider the intensity, ICM(p), of a pixel p in the convolved

model, which is given by:

ICM(p) = (IRM ∗WPSF ) (p) =
∑
q

IRM(q) ·WPSF (p− q) (3.2)

The bold-faced variables denote two-dimensional vector-valued image coordinates,

i.e., (i, j). The ∗ symbol denotes convolution, and the summation is over all pixels

q. IRM(q) is the raw model intensity, and WPSF (p − q) is the PSF weight for pixel
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p with the kernel centered at pixel q. If the kernel weights have associated variances

σ2
PSF (p− q) and are independent, then the uncertainties sum in quadrature, and the

variance of pixel p in the convolved model is given by:

σ2
CM(p) =

(
I2
RM ∗ σ2

PSF

)
(p) =

∑
q

IRM(q)2 · σ2
PSF (p− q) (3.3)

This definition assumes that the individual pixel variances in the PSF are independent

(there are no covariance terms when adding the pixel variances). For real data there is

some correlated noise between adjacent pixels, whether from charge diffusion in CCD

detectors, inter-pixel capacitance in CMOS detectors, or the resampling process in

drizzled images (such as all undistorted HST data). For charge diffusion and inter-

pixel capacitance, the degree of the correlation is generally small (a few percent of the

incident flux, e.g., Hartig 2008). For Multidrizzle-combined images, the correlation

factor will depend upon the parameters used, particularly the output linear pixel

scale and the pixfrac parameter (Koekemoer et al. 2002, 2011). Techniques exist for

quantifying correlated noise in drizzled images and propagating this estimate back

into the variance map (e.g., measuring the sky autocorrelation function as in Guo

et al. 2013). These should be used when working with drizzled data, to ensure that

correlated noise is at least understood, if not mitigated.

The conditional probability P (y(p)|θ) of each observed pixel value y(p) given the

model is then calculated as:

P (y(p)|θ) =
1√

2πσ2(p)
exp

(
(y(p)− ICM(p))2

2σ2(p)

)
; σ2(p) = σ2

y(p) + σ2
CM(p) (3.4)

That is, it is calculated using a normal distribution with mean equal to the pixel value

in the PSF-convolved model, and variance equal to the sum of the pixel variances in

the observed variance map and the model variance map. The likelihood function

P (y|θ) is then the joint probability (product) of the individual pixel probabilities.
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Models may also be built where the pixel conditional probabilities use other distribu-

tions (e.g., Poisson, Skellam, or Binomial for discrete CCD data). Since the software

has been developed for use with WFC3 infrared channel data processed by the HST

pipeline where a Poisson likelihood is not an obvious choice (see discussion of weight

maps above), Normal is the default likelihood.

The user also has full control over the prior distributions of individual parame-

ters. These quantify prior knowledge about a given parameter’s distribution, e.g.,

the distribution of Sérsic indexes or the galaxy luminosity function for a particular

population. For a given sample, the (joint) prior probability of all the parameters

P (θ) is calculated and multiplied by the likelihood function to obtain the posterior

probability P (θ|y) for that sample. Although the choice of priors is to some degree

subjective, they codify assumptions or prior knowledge explicitly, rather than the

rash and often implicit assumptions (e.g., normality) of other methods. As with all

assumptions, they should be considered carefully and stated explicitly. If there is no

reason to prefer any parameter value over another, then uniform priors spanning a

range of reasonable values can be used.

When building models, the user is encouraged to make generous use of the masking

functionality in psfMC. Any object or structure that is not explicitly treated in the

model — such as tidal tails or unrelated field galaxies — should be masked out.

The reason is two-fold: first, goodness-of-fit diagnostics will be more meaningful

if unmodeled objects are masked, and second, the MCMC process may try to fit

unmasked flux of these objects, thus affecting the best-fit parameters. Since masking

is important, I made masks simple to construct and edit, by letting the user supply

them in the SAOImage ds9 region format. Regions are interpreted as the section of

image to include; to exclude a section of pixels, the region’s “exclude” property must

be set. An example showing masked nearby galaxies is shown in Figure 3.2.
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It is also recommended that cutout or “stamp” images be used for both the quasar

and the PSF. Sérsic profiles and Fast Fourier Transform (FFT) PSF convolution in

particular are computationally expensive and can quickly become slow if the image

is large. Since FFT is used for convolution, rounding to a power-of-two image size

may also increase speed. For HST images of high-z quasars, 128×128 or 256×256 is

generally optimal. Array calculations and FFT are performed using the NumPy module

(Oliphant 2006), which uses a combination of compiled C and Fortran routines for

fast numeric computations. Generating 100,000 accepted samples of a PSF+Sérsic

model with 256 × 256 stamp images currently takes 60 − 90 minutes on a desktop

workstation (dual-core 3.6 GHz Intel i5 processor), and there is potential for further

significant optimization in the future.

Several tests are also provided with psfMC to ensure that correct output is pro-

duced at various steps in the modeling process. In particular, the surface brightness

distributions are tested by comparing the raw model to a model with the same pa-

rameters produced by GalFit. GalFit uses a more sophisticated integration scheme,

with the result that it produces more accurate results for the central pixels of very

concentrated (e.g., high Sérsic index) profiles. For well-sampled images (e.g., the HST

images described in Chapters 4 and 5), this results in a fractional error of less than

3% per pixel. Future versions of the software will use adaptive integration step sizes

to reduce this source of error.

3.4 Analyzing psfMC Output

The primary output of the fitting function is the MCMC trace database (saved

in the standard Python “Pickle” format), which allows detailed analysis of the full

posterior probability distribution. Several FITS format images are also output by the

fitting function. By default, these include the raw model, convolved model, compos-
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Figure 3.2: Example of using SAOImage ds9 region files to mask unmodeled back-
ground galaxies and bad pixels. The large outer circle is the region to include in
fitting. The smaller ellipses with a slash through the center are regions to exclude,
selected by setting their exclude flag in ds9.

34



ite inverse variance map (combined model and observation variance), an image with

all point sources subtracted, and a residual image with all modeled components sub-

tracted. A list of desired output products can be specified when the sampler is run.

Examples of these images are shown in Figure 3.3. The images output by the fitting

routine should be considered diagnostic, and should not be used without analyzing

the MCMC chain. The parameter values used to create these images are simply the

values corresponding to the sample that maximized the posterior probability. If the

model has not converged, or if the posterior distribution has multiple distinct modes,

the maximum a posteriori estimate may be an incorrect or incomplete description of

the likely parameter values. The best way to find and estimate these modes depends

upon the nature of the posterior distribution, and many techniques for analyzing high-

dimensional posteriors exist, including kernel density estimation methods, clustering

methods such as k-means, and the Patient Rule Induction Method (PRIM, Friedman

& Fisher 1999). An example of using kernel density estimation to examine parameter

covariance in a two-component point source+Sérsic model is shown in Figure 3.4.

Since the Markov chain can be run for as many samples as desired, it is important

to know when it is appropriate to stop simulating. The goal of the MCMC process is

to estimate, via sampling, the posterior parameter distribution P (θ|y). The number of

samples required to estimate this will vary as a function of the particular problem and

the accuracy required. For most quasar+Sérsic host models, this will be several tens

of thousands of samples, since these models have high-dimensional (> 10) parameter

spaces.

To assess whether samples are mixing well (providing an accurate estimate of

the posterior distribution), two techniques may be particularly useful. The first is

to run multiple chains, and see whether they have converged to the same region of

parameter space, by comparing the variance within a single chain to the variance
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Figure 3.3: Output images produced by psfMC. All images are displayed with the
same logarithmic stretch. Upper left: Raw model, the intrinsic surface brightness dis-
tribution of the maximum posterior model. Upper right: Convolved model, the raw
model after convolution with the supplied point spread function. Lower left: Point
source subtracted, the original data with all point sources from the maximum poste-
rior model subtracted. Lower right: Residual, the original data with the maximum
posterior model subtracted. Not pictured: Composite inverse variance map, including
variance contributions from both the original data and the convolved model.
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Figure 3.4: Example of parameter covariance analysis using kernel density es-
timation, for a two-component point source+Sérsic profile model of the quasar
SDSS J215954.45−002150.1. Shown is the joint two-dimensional marginalized dis-
tribution of PSF component magnitude and Sérsic component magnitude, showing
significant parameter covariance. Contours show 68% and 95% confidence levels,
based on 80,000 retained MCMC samples. The x-axis zero point is 16.84 mag, as
indicated in the lower right corner. This covariance is as expected, since the total
flux of the point source+Sérsic model must equal the observed flux of the object.
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between chains (Gelman & Rubin 1992; Gelman et al. 2011). Since this requires

running multiple chains, it may be computationally expensive if fitting many objects.

Ideally, the starting points for the individual chains should be over-dispersed, such

that they begin in significantly different regions of parameter space.

When multiple chains cannot be run, an alternative is sample time-series analysis,

such as that of Geweke (1992) which compares mean and variance of a parameter at

the beginning and end of a chain. In particular, time-series analysis can be performed

on the sample deviance, defined as D(θ) = −2(ln(P (y|θ))−C) (i.e., −2 times the log-

likelihood of the given sample), where C represents the log-likelihood of some model

being compared to, for instance the maximum posterior model from the MCMC trace.

This quantity gives some indication of the stability of sampling for the model as a

whole, rather than having to analyze traces for each individual parameter. Examples

showing an un-converged sampler and a converged sampler are shown in Figures 3.5

and 3.6. Note that if the un-converged sampler had been stopped after 100,000

samples, it would be indistinguishable from a converged sampler. This underscores

the benefit of instead using the multiple-chain method whenever possible. An example

of using multi-chain convergence diagnostics is discussed in Chapter 4.

Model selection and comparison can be performed using standard least-squares

methods on the maximum posterior model (such as reduced χ2), or using Bayesian

methods that incorporate information from the entire posterior distribution, such as

the Deviance Information Criterion (Gelman et al. 2011, Chapter 6) and Bayesian

Predictive Information Criterion (Ando 2007, 2011). These can be used, for instance,

to decide whether a PSF+Sérsic model over-fits the data with respect to a PSF-only

model. Even without performing formal model comparison analyses, it may some-

times be obvious that a two-component model does not call for the Sérsic component.

If the PSF is well-matched (see below for a description of PSF matching criteria) and
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Figure 3.5: Example of a sampler that has not yet converged, where the distribution
of deviance values at the beginning of the trace is significantly different from the
distribution at the end of the trace. The sampler rapidly finds a significantly higher-
probability region of parameter space near sample 15,000. In such a case the sampler
can be continued to ensure the desired number of posterior samples are available for
analysis, or re-run from the start with a longer burn-in period.

the observation and PSF weight maps are accurate, an effective host non-detection

will manifest as Sérsic parameters that generate profiles with low surface brightness,

such that individual pixels fall within the observed point source+PSF noise budget.

If the weight maps are inaccurate, or there are significant mismatches between the

observation and model PSFs, then host non-detections will manifest as models with

small radii and high Sérsic index, which concentrate their flux within a small number

of pixels.

39



Figure 3.6: Example of a converged sampler, where the distributions of deviance
values at the beginning and end of the trace is identical. Note the difference in
vertical scale compared to Figure 3.5. These samples are ready to be analyzed, and
are representative of the true posterior distribution.

3.5 Selecting the Best Model PSF

Selecting the proper PSF is key to enabling the high-contrast imaging necessary

for high-z quasar studies. A PSF that significantly deviates from that in the quasar

image will affect measurements of the underlying host galaxy parameters, or, in the

worst cases, make morphological assessments impossible. Selecting the best PSF

means understanding the sources of variation in the PSF and matching the conditions

between the quasar and PSF observations as much as possible. This is true whether

using a space-based instrument such as WFC3, where the variation is due primarily
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to instrumental effects, or ground-based imaging, where the variation is primarily due

to atmospheric effects. The important point is that simply stacking many stars to

obtain an average PSF is unlikely to produce the best results, especially if there is

significant PSF variation across the instrument field of view, or the observations are

short compared to the typical timescale of PSF variations. I describe the primary

sources of variability for WFC3 infrared imaging below. Imaging with other space-

based instruments will have many of the same sources, and ground-based imaging

will additionally have atmospheric effects.

As summarized in Chapter 2, a major source of variability in the HST PSF comes

from the spacecraft breathing effect, where variations in the telescope thermal envi-

ronment cause de-space of the secondary mirror, leading to variations in focus. There

are two primary sources of thermal variability: the angle of the telescope with respect

to the sun (mainly a function of season and the object being observed), and the orbital

day-night cycle as the telescope orbits the Earth every 90 minutes (Hershey 1998).

The focal variations can either be measured directly, through carefully coordinated

observations of a PSF star (such as in Chapter 2), or by estimating the secondary

mirror de-space for an exposure after the fact, using the HST Focus Model (Cox &

Niemi 2011).

For observations through broad-band filters, the spectrum of the observed star or

quasar may also significantly affect the PSF. The monochromatic instrument PSF

may change significantly across the filter bandpass, including both size (due to the

diffraction limit’s λ/D dependence), and structure (due to wavelength dependence of

optical aberrations, diffraction spikes, etc.). Thus a star with a blue spectral energy

distribution may have an integrated PSF significantly different from a star with a

red spectral energy distribution. This effect was explored by Bahcall et al. (1997),

who found that using a blue ((B − V ) = −0.07 mag) versus a red ((B − V ) =
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1.11 mag) PSF star significantly affected the cosmetics of the residual images, but

not the photometry of their bright (mF606W ' 17.5), low-redshift (z ' 0.15) quasars.

For high-redshift quasars whose hosts are fainter and smaller compared to the PSF,

large color mismatches will significantly affect both photometry and morphological

assessments.

The point spread function of the HST WFC3 infrared channel also has significant

optical aberration variations across the field of view. In particular, field-dependent fo-

cus, astigmatism, and coma have been measured (Hook & Stoehr 2008; Biretta 2012).

Figure 3.7 shows the locations of two stars near the field of view center, separated by

37 arcsec in HST dataset IBR213020. Since these two stars come from the same set of

exposures, their thermal focus history is identical. Their NIR (F110W−F160W ) col-

ors are 0.19 (psf27) and 0.23 (psf28). Thus the only significant possible source of PSF

mismatch is field-dependent PSF aberration. Figure 3.8 shows the result of fitting

one star with the other as the PSF. The spots of negative and positive residuals to

the left and right of the center are tell-tale signs of coma mismatch, and could easily

be mistaken for high-z galaxy features if the subtraction image had been a quasar.

Three example subtractions for stars that were selected only from within 0.′25 of the

field center are shown in Figure 3.9. The PSF model for each star was focus-matched

to the observation by estimating each exposure’s focus using the HST Focus Model.

The region of very poor matching is confined within the central 0.′′3 radius.

3.6 Discussion

The software presented in this chapter currently represents the most precise treat-

ment of two-dimensional surface brightness modeling for quasar host galaxies. It is

unique in its explicit treatment of uncertainties in the supplied PSF, which are not

treated by any other current modeling software. By adopting a Markov Chain Monte
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Figure 3.7: Locations of two stars used for characterizing the effect of field-
dependent PSF aberrations. The stars are separated by 37 arcsec and are marked by
the labeled circles. The image shows the entire WFC3 infrared field of view, roughly
2.′3 × 2.′1.
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Figure 3.8: Fitting residual after subtracting one of the stars in Figure 3.7 from the
other. X and Y coordinates are in pixels, with color representing the significance of
the PSF mismatch structures, using the psfMC composite variance map to measure
the noise. The over- and under-subtracted patches to the left and right of the center
could be mistaken for host galaxy structures in a real quasar subtraction. Units are
in fractional flux of the original point source, before subtraction.

Carlo approach to characterizing the posterior parameter distribution, it enables the

detailed analyses necessary to understand the complex parameter covariances and

non-gaussian parameter probability distributions inherent in quasar+host models.
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Figure 3.9: Three examples of fitting residuals after subtracting one star from an-
other, where the stars have been selected only from within 0.′25 of the WFC3 field
of view center. X and Y coordinates are in pixels, with color representing the sig-
nificance of the PSF mismatch structures. Units are in fractional flux of the original
point source, before subtraction.
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Chapter 4

QUASAR HOST GALAXY MORPHOLOGIES AT z ' 2

4.1 Introduction

An outstanding question in the study of AGN is the importance of major mergers

as triggering mechanisms for the AGN phase. As discussed in Chapter 1, there is

reason to suspect gas-rich major mergers as a triggering mechanism, and indeed many

previous studies have found signatures of such mergers in quasar hosts. However, in

a recent study of x-ray selected AGN in the Cosmic Evolution Survey (COSMOS)

field, Cisternas et al. (2011) found no evidence for an enhancement of the merger

fraction in AGN hosts at z ' 0.3− 1.0. That is, AGN hosts were no more likely to

be undergoing a major merger than galaxies without AGN. Thus, at least at z . 1.0,

other triggering mechanisms may dominate. However, this may not be true at higher

redshifts, or specifically for quasars, as the most luminous AGN with the highest

accretion rates. The HST WFC3 now allows such detailed structural studies to be

extended to z ' 2, since rest-frame optical wavelengths can now be imaged at HST

resolution using the WFC3 infrared channel.

Several previous studies have examined the structural properties of galaxies not

hosting quasars at z ' 2, especially after the installation of WFC3IR. In particu-

lar, multi-wavelength data from large HST programs such as the WFC3 ERS2 field

(Early Release Science 2, Windhorst et al. 2011), the HUDF (Hubble Ultra Deep

Field, Beckwith et al. 2006; Oesch et al. 2007; Illingworth et al. 2013; Koekemoer

et al. 2013), and CANDELS (Cosmic Assembly Near-Infrared Deep Extragalactic

Legacy Survey, Grogin et al. 2011; Koekemoer et al. 2011) have enabled large-scale
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NIR structural studies for galaxies beyond z ' 1.4 with secure redshifts. Detailed

studies of the z = 1.893 galaxy FW4871 by van Dokkum & Brammer (2010) and

Ferreras et al. (2012) provided evidence for merger-induced star formation and as-

sociated young stellar populations in z ' 2 early-type galaxies. Ryan et al. (2012)

and Cassata et al. (2013) examined the properties of passively-evolving red galaxies,

finding that massive galaxies grow in size more rapidly than lower-mass galaxies at

z < 3. Targett et al. (2013) studied the structures of (sub-)mm-selected galaxies at

z ' 1− 3, finding them to be disk-dominated systems with high star-formation rates.

However, detailed structural studies of quasar hosts at z ' 2 using WFC3IR have

not yet been attempted.

In this chapter, I describe the first steps toward searching for an enhancement

to the quasar host merger fraction at z ' 2: near-infrared imaging of 19 z ' 2

quasars with the HST WFC3IR, methods for characterizing and subtracting the AGN

emission, and the rest-frame optical properties of the host galaxies. §4.2 describes

the quasar sample selection and existing data. §4.3 describes the WFC3IR imaging

and data reduction. §4.4 details how stars were selected from the HST archive to act

as PSF models for each quasar. The simultaneous two-component image modeling

with psfMC is detailed in §4.5, and the results of the fitting process in §4.6. Finally,

in §4.7, I discuss the fitting results and the inferred quasar host merger fraction.

4.2 Sample Definition and Existing Data

A sample of 115 quasars with systematic redshift z = 2.0± 0.1 was selected from

the SDSS 5th Data Release Quasar Catalog (Schneider et al. 2007) for an HST Cycle

19 SNAPshot study (Program ID 12613, PI: Jahnke). Between October 2011 and

September 2012, 19 of these quasars were observed with WFC3IR in the F160W

filter (H-band). The locations of these 19 quasars are plotted in Figure 4.1.
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Figure 4.1: All-sky map (Mollweide projection) showing the locations of the 19
z ' 2 quasars. The grayscale background is the Galactic AV extinction map of
Schlegel et al. (1998).

Shen et al. (2011) classified the spectral properties of all the SDSS Data Release

7 quasars, including the 19 in this sample. The luminosities of the 19 z ' 2 quasars

at rest-frame 3000 Å range from log(L3000) = 12.54− 13.33 L�. The virial black hole

masses, as estimated from the C iv line, range from log(MBH) = 9.3− 9.9 M�. The

continuum power-law index α at a rest-frame wavelength of 2500 Å (fν = Cν−α)

ranges from α = 0.11 − 1.1. 1 One object was flagged as a C iv broad absorption

line (BAL) quasar; examining the SDSS spectra confirms that it is the only BAL

quasar among the sample. Eighteen of the quasars are covered by the FIRST radio

survey (White et al. 1997), with one quasar having a strong 1.4 GHz radio flux (S1.4 =

878 mJy) indicating it is radio-loud, with lobe-dominant morphology (following the

classifications in Jiang et al. 2007). These properties are summarized in Table 4.2.

1Shen et al. (2011) measure this value when fitting the Mg ii line, using the parameterization
fλ = Aλαλ . These values have been converted to the frequency-dependent formalism more common
in the literature.
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Table 4.1: Summary of Spectral Properties of z ' 2 Quasars

Quasar Redshift L3000 Continuum MBH S1.4

(SDSS J) z log(L�) Index α log(M�) mJy

081518.99+103711.5 2.021 12.72 0.41 9.6 (0.98)

082510.09+031801.4 2.035 12.91 0.81 9.7 (1.80)

085117.41+301838.7 1.917 12.54 0.39 9.6 (0.92)

094737.70+110843.3a 1.905 12.66 0.66 9.8 (1.00)

102719.13+584114.3 2.020 12.67 0.26 9.7 (1.01)

113820.35+565652.8 1.917 12.76 0.74 9.8 (0.99)

120305.42+481313.1 1.988 12.79 1.10 9.3 (1.01)

123011.84+401442.9 2.049 13.17 0.82 9.6 (0.91)

124949.65+593216.9 2.052 12.88 0.97 9.5 1.69

131501.14+533314.1 1.921 12.70 0.25 9.3 (0.94)

131535.42+253643.9 1.926 12.57 0.11 9.5 (0.92)

135851.73+540805.3 2.066 12.80 0.29 9.5 (0.93)

143645.80+633637.9 2.066 13.22 0.76 9.4 877.84

145645.53+110142.6 2.017 12.79 0.64 9.4 (0.98)

155447.85+194502.7 2.091 12.71 0.95 9.9 (1.77)

215006.72+120620.6 1.993 12.66 0.25 9.8 (1.01)

215954.45−002150.1 1.963 13.33 0.54 9.5 2.85

220811.62−083235.1 1.923 12.77 0.15 9.9 (1.03)

232300.06+151002.4 1.989 12.81 0.94 9.5 —
a C iv BAL quasar

Notes: Column 1: Name, giving the full SDSS celestial coordinates; Col-
umn 2: Redshift (Schneider et al. 2010); Column 3: Continuum luminosity
at rest-frame 3000 Å (Shen et al. 2011); Column 4: Power-law index of the
continuum emission at rest-frame 2500 Å (Shen et al. 2011, re-parameterized
as fν = Cν−α, see note in text); Column 5: Virial black hole mass estimated
from the C iv line by Shen et al. (2011), using the formalism of Vestergaard
& Peterson (2006); Column 6: 1.4 GHz flux density from the FIRST catalog
(White et al. 1997). Values in parentheses are upper limits, given by the
FIRST catalog 5 σ detection limit calculated at the quasar position, including
CLEAN bias.
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4.3 Hubble Space Telescope Data

All 19 quasars were observed with WFC3IR using the F160W filter (H-band, rest-

frame 5200 Å). None of the quasars had existing HST imaging using the Wide Field

and Planetary Camera 2, Advanced Camera for Surveys, or WFC3 UVIS channel.

As a SNAP program, these observations by necessity have short exposure times of

1596 seconds per target (less than one orbit). Despite the short exposure time, the

excellent sensitivity of WFC3IR and low on-orbit near-infrared sky allow the data

to reach a 1σ limiting surface brightness of 24.47 mag arcsec−2, sufficient to identify

tidal disturbances at z ' 2, such as those described by van Dokkum & Brammer

(2010) and Ferreras et al. (2012), or the simulations in Kaviraj et al. (2012). Targets

were observed using the standard four point sub-pixel dithering pattern to improve

PSF sampling and to assist in the rejection of bad pixels and cosmic rays.

Data processing began with individual flat-fielded, flux-calibrated exposures de-

livered by the HST archive. All four exposures for each pointing were combined using

the Multidrizzle software package (Koekemoer et al. 2002, 2011) with an output

plate scale of 0.′′060 per pixel and a pixfrac parameter of 0.8. For these observations,

this provides Nyquist sampling of the PSF and relatively uniform weighting of the

individual pixels. Inverse variance weighting was used for the final image combina-

tion step. Variance maps that include all sources of noise (including shot noise from

the object flux) were generated by copying the WFC3 “ERR” arrays into the stan-

dard image arrays, and re-running the drizzle process with the same parameters and

weighting (as suggested in Gozanga et al. 2012). Accurate variance maps including

shot noise are necessary since the photon count rate from the quasar point source

is significantly higher than that of the sky, and under-estimated errors can lead to

problems with multi-component fitting, as described in Chapter 3.
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4.4 Point Spread Function Models

As a SNAP program, the HST data did not have dedicated observations of stars

to measure the instrument and telescope PSF. Few of the exposures contained high

S/N stars, and simulated PSF models are currently poor matches to observations

(e.g., Mechtley et al. 2012; Biretta 2012), so empirical PSF models were built from

HST WFC3 archival data.

The HST focus is affected by the telescope’s thermal environment, with changes in

solar illumination resulting in de-space of the secondary mirror, the so-called “space-

craft breathing” effect (Bély et al. 1993; Hershey 1998; Cox & Niemi 2011). In addi-

tion, the WFC3IR PSF has other aberrations (e.g., coma and astigmatism) that vary

with position within the field of view. To find similar exposures from which to extract

PSF models, the HST archive was searched for all single-orbit F160W observations.

Only single-orbit data were used because these provide the highest degree of pointing

stability (2− 5 milliarcsecond RMS, Gozanga et al. 2012), which matches that of the

quasar observations. Observations with fewer than four dither points were thrown

out, to ensure sub-pixel sampling equal or better than the quasar observations.

All point sources falling within 0.′25 of the WFC3 field of view center were then

selected, and those which were identified as optical quasars or radio sources in the

NASA/IPAC Extragalactic Database were excluded. The remaining PSF stars were

inspected both visually and with the IRAF task psfmeasure (part of the STSDAS

package), and those that were contaminated by background galaxies or that were

significantly elliptical (probable binary stars) were excluded. This left a library of

nine star images whose S/N exceeded the quasars, but which still had accurate count

rates in their cores (i.e., were not effectively saturated). Drizzled images of these stars

were created with the same plate scale and weighting scheme described in §4.3.
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The HST Focus Model (Cox & Niemi 2011) was then used to estimate the effective

spacecraft focus during each quasar and star observation. A cubic spline was fit to the

focus estimates for each observation (typically available at five-minute intervals), and

used to calculate the average focus value over the entire WFC3 exposure. 2 Each

quasar was then paired with the star having the closest average focus. No attempt

was made to match the spectral slope of the star within the F160W filter to that

of the quasar point source. However, most stars at high galactic latitudes are low-

mass dwarf stars subject to little reddening. Their (J −H) colors should range from

roughly 0.5 to 0.7 Vega mag (Skrutskie et al. 2006), which matches the (J−H) colors

of high-z quasars (e.g., simulation tracks in Hewett et al. 2006).

4.5 Point Source Subtraction and Host Galaxy Modeling

A two-component Sérsic+PSF fit was first attempted using the software GalFit

(Peng et al. 2002, 2010). As discussed in Chapter 3, and noted in §6.2 of Peng

et al. (2010), GalFit employs several design decisions that make it computationally

efficient, but not optimal for quasar modeling and point source subtraction. To

address these problems, I developed the Markov Chain Monte Carlo simultaneous

fitting software psfMC, described in Chapter 3.

Each quasar in the sample was modeled using psfMC to simultaneously fit two

components — a point source and a single Sérsic profile. The prior distributions

adopted for the model parameters are summarized in Table 4.5. At z = 2, the

drizzled 0.′′060 linear pixel scale corresponds to a physical size of 0.52 kpc. The

position priors correspond to a maximum separation of 6.1 kpc between the point

source and the center of the underlying galaxy. A Weibull distribution was used as

2I have made the software to query the focus database and perform the spline fit freely available
at http://github.com/mmechtley/HSTFocusModel
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Table 4.2: Adopted Prior Distributions of Fitting Parameters

Parameter Distribution Value Range

PSF Component

X,Y Position Uniform Centroid ±4 pixels

Magnitude Uniform mH
−0.2
+1.5 mag

Sérsic Component

X,Y Position Uniform Centroid ±8 pixels

Magnitude Uniform Upper: mH , Lower: 26 mag

Major/Minor Axes Uniform 3.0− 15.0 pixels (0.′′18− 0.′′90)

Index n Weibulla λ = 4, k = 1.5

Angle Uniform 0− 180 degrees
a The Weibull distribution is selected to model the empirical distri-
bution of Sérsic indexes (e.g., Ryan et al. 2012).

Notes: Ranges are for intrinsic quantities, before convolution with
the PSF. “Centroid” refers to the flux centroid of the (point-source
dominated) quasar+host galaxy in the HST image. mH is the total
measured H-band magnitude of the quasar+host system.

the prior distribution of Sérsic indexes, modeling the empirical distribution of indexes

from Ryan et al. (2012). The ranges on the other parameter priors were selected to

model the entire range of values that are both physically reasonable and detectable.

Nearby galaxies that were not coincident with the quasar point source were masked

out.

Four separate MCMC chains were run in parallel for each model, each with an

initial length of 100,000 samples, with the first 80,000 discarded as a burn-in period

and the final 20,000 retained for analysis. This resulted in a total of 80,000 retained

samples for posterior analysis (4 chains with 20,000 samples each). Convergence

was then assessed in two ways. First, each individual chain was analyzed using the

method of Geweke (1992), examining the Z-score of the difference of means between

the first 2,000 retained samples and the last 10,000, requiring |Z| < 2. This ensured

that each chain represented a stable distribution without a strong long-term trend.
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Second, the Potential Scale Reduction diagnostic (R̂, Gelman & Rubin 1992; Gelman

et al. 2011) was calculated for each parameter to compare the within-chain variance

to the between-chain variance, ensuring that all four chains had converged to the

same stationary distribution. All fitting parameters were required to have R̂ < 1.05.

Five quasars did not initially meet these criteria (i.e., had not converged after 100,000

samples), so were run for an additional 100,000 samples, again with the final 20,000

from each chain retained. Two still had not converged, although the point source

parameters had. In both cases the host galaxy was effectively too faint to constrain

its parameters (see discussion below). Figure 4.2 shows an example of diagnostic plots

used to assess convergence.

Markov Chains produce correlated samples, and the degree of correlation can vary

significantly, both for individual parameters and depending upon the particular path

the random walk takes through parameter space. This correlation is often quantified

as the effective number of samples for a given parameter, neff = n/τ , i.e., the total

number of retained samples n divided by the characteristic correlation length τ . This

length can be estimated by summing the initial positive sequence of autocorrelation

function values (Geyer 1992; Thompson 2010), i.e., the values for lags 0 to k, where

k is the first lag with negative autocorrelation. An example is shown in Figure 4.3,

estimating neff for the chains plotted in Figure 4.2. The effective number of samples

is additionally estimated using the method described by Gelman et al. (2011, Chap-

ter 11), which compares the within-chain variances to the between-chain variance.

The latter method is expected to provide a cruder estimate, since only four chains

were run, so is used for comparison only.
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Figure 4.2: Posterior distributions of Sérsic profile characteristic surface brightness
(µe) for four MCMC chains run for the same model (SDSS J081518.99+103711.5).
This is not an explicit model parameter, but rather an example of a scalar estimand
that can have its probability distribution analyzed after fitting, since thousands of
MCMC samples have been retained. Each of the four chains is represented by a differ-
ent color, with dashed vertical lines showing the values from the maximum posterior
model for each chain. R̂ is the Potential Scale Reduction diagnostic, and neff is the
effective total number of samples after accounting for Markov Chain autocorrelation,
estimated using the method of Gelman et al. (2011).
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Figure 4.3: Autocorrelation functions of the chains from Figure 4.2. Vertical lines
plot the first zero-crossing, i.e., the cutoff sample for the initial positive sequence.
This then gives an estimate for the characteristic correlation length τ in each chain,
which is used to calculate neff for each chain, and subsequently for all four chains as
a whole.

4.6 Results of MCMC Fitting

The maximum posterior models from the MCMC fitting process for each quasar

are shown in Figures 4.4−4.22. Table 4.6 summarizes the range of posterior values

for each fitting parameter. Notes on individual quasars follow.

SDSS J081518.99+103711.5: The model is well-converged, with individual pa-

rameters having > 250 effective samples each. The Sérsic profile is not significantly

offset from the point source, and the point source-subtracted residual is not signifi-

cantly asymmetric. One other galaxy falls within a 2.′′0 radius.
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SDSS J082510.09+031801.4: The model is well-converged, with individual

parameters having > 600 effective samples each. The PSF has lower S/N than the

quasar, so the limiting surface brightness is significantly brighter; the host galaxy is

effectively not detected. No additional galaxies are visible within a 2.′′0 radius.

SDSS J085117.41+301838.7: The model is well-converged, with individual

parameters having > 600 effective samples each. The point source-subtracted residual

is not significantly asymmetric. No additional galaxies are visible within a 2.′′0 radius.

SDSS J094737.70+110843.3: This quasar is the c iv BAL quasar. The model

is well-converged, with individual parameters having > 250 effective samples each.

The Sérsic profile is significantly offset from the point source (0.′′088), likely due to

asymmetry in the galaxy’s flux distribution, which has faint emission extending to

the North. In addition to this extended emission, there are two additional objects

within a 2.′′0 radius. The residual image also shows what appears to be a weak spiral

or bar-like residual pattern.

SDSS J102719.13+584114.3: The model is formally converged by the crite-

ria defined above (all parameters have R̂ < 1.05, and there are no long-term trends

in individual chains). The point source parameters are well-determined with > 600

effective samples. However, the Sérsic profile parameters are poorly constrained (pre-

ferring models which minimize the total flux). The host galaxy is effectively not

detected. There is one additional galaxy within a 2.′′0 radius.

SDSS J113820.35+565652.8: The model is well-converged, with individual

parameters having > 1000 effective samples each, with the exception of the Sérsic

index and effective radius. Models with large Re and low n are preferred, possibly

due to a worse than average PSF mismatch.
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SDSS J120305.42+481313.1: The model is well-converged, with individual

parameters having > 400 effective samples each. The center of the Sérsic profile is

offset significantly from the point source (0.′′231). Faint emission extends both East

and West of the host. There is one additional galaxy within a 2.′′0 radius.

SDSS J123011.84+401442.9: After 200,000 samples the model still has not

formally converged, although the PSF parameters are well-converged. The quasar is

much brighter than the others, and none of the PSF stars has sufficient S/N to model

it, and the Sérsic profile may vary without constraint due to the high noise. There

appears to be asymmetric emission in the point source-subtracted image, but without

a higher S/N star it remains uncertain.

SDSS J124949.65+593216.9: The model is well-converged, with individual

parameters having > 1300 effective samples each. The Sérsic profile is significantly

offset from the point source, likely due to the model attempting to fit the low surface

brightness emission extending asymmetrically Northeast of the point source. There

are two additional galaxies within a 2.′′0 radius, both of which are blended with the

host galaxy.

SDSS J131501.14+533314.1: The model is well-converged, with individual

parameters having > 2100 effective samples each. There is one additional galaxy

within a 2.′′0 radius.

SDSS J131535.42+253643.9: The model is formally converged by the criteria

defined above (all parameters have R̂ < 1.05, and there are no long-term trends in

individual chains). However, the Sérsic profile parameters are highly uncertain. The

host galaxy has a highly asymmetric tail visible in the point source-subtracted image

(which was masked out). Besides this tail-like structure, there is one additional galaxy

within a 2.′′0 radius, which also exhibits a tail-like structure, extending to the North.

59



SDSS J135851.73+540805.3: The model is well-converged, with individual

parameters have > 380 effective samples each. The models are compact and faint, so

the host galaxy is effectively not detected. There are no galaxies within a 2.′′0 radius.

SDSS J143645.80+633637.9: This quasar is a radio-loud quasar. The model

is well-converged, with individual parameters having > 1000 effective samples each.

The quasar is particularly bright, so the lower S/N PSF limits the surface brightness

detection limit. There are no additional galaxies within a 2.′′0 radius.

SDSS J145645.53+110142.6: The model is formally converged by the criteria

defined above (all parameters have R̂ < 1.05, and there are no long-term trends in

individual chains). However, the Sérsic profile parameters are highly uncertain. There

are three additional galaxies within a 2.′′0 radius.

SDSS J155447.85+194502.7: After 200,000 samples the model still has not for-

mally converged, although the PSF parameters are well-converged. The host galaxy

appears significantly asymmetric in the point source-subtracted image, and is blended

with two nearby galaxies that fall within a 2.′′0 radius.

SDSS J215006.72+120620.6: The model is well-converged, with individual

parameters having > 150 effective samples each. The host galaxy emission is extended

over a larger area than the other hosts (0.′′85×0.′′65 ellipse), and is disk-like (n ' 1).

The emission is slightly asymmetric, as visible in the residual image (the northern

half is slightly under-subtracted, while the southern half is slightly over-subtracted).

There are no additional galaxies within a 2.′′0 radius.

SDSS J215954.45−002150.1: The model is well-converged, with individual

parameters having > 1800 effective samples each. The quasar is brighter than the

others and consequently none of the PSF stars have sufficient S/N to model it well.

The detection limit is thus brighter than for the other quasars. No other galaxies are

visible within a 2.′′0 radius.
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Figure 4.4: Maximum posterior (MP) model for SDSS J081518.99+103711.5. All
images are displayed with the same arcsinh color stretch. Far left: Drizzled, undis-
torted F160W image with 0.′′060 pixels. Middle left: MP model from MCMC fitting
process, before convolution with the focus-matched PSF. Middle right: Residual af-
ter subtracting only the MP model’s point source from the original image. Far right:
Residual after subtracting the MP model’s point source and host galaxy from the
original image. Hatched green regions show areas that were excluded from the fit-
ting, due to saturated PSF cores, nearby galaxies, or other structures not included in
the model (e.g., spiral arms, tidal tails, etc.).

SDSS J220811.62−083235.1: The model is well-converged, with individual

parameters having > 400 effective samples each. The host emission is disk-like (n ' 1)

and has a bright knot on one side. Other than this knot, there are no additional

galaxies within a 2.′′0 radius.

SDSS J232300.06+151002.4: The model is well-converged, with individual

parameters having > 250 effective samples each, with the exception of the Sérsic

index n, which has only 77 effective samples. There is significant asymmetric extended

emission in the form of a bright trail North of the host galaxy. Other than this trail,

there are no other galaxies visible within a 2.′′0 radius.
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Figure 4.5: Maximum posterior model for SDSS J082510.09+031801.4. For a de-
scription of individual panels, see Figure 4.4.
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Figure 4.6: Maximum posterior model for SDSS J085117.41+301838.7. For a de-
scription of individual panels, see Figure 4.4.
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Figure 4.7: Maximum posterior model for SDSS J094737.70+110843.3. For a de-
scription of individual panels, see Figure 4.4.
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Figure 4.8: Maximum posterior model for SDSS J102719.13+584114.3. For a de-
scription of individual panels, see Figure 4.4.
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Figure 4.9: Maximum posterior model for SDSS J113820.35+565652.8. For a de-
scription of individual panels, see Figure 4.4.
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Figure 4.10: Maximum posterior model for SDSS J120305.42+481313.1. For a
description of individual panels, see Figure 4.4.
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Figure 4.11: Maximum posterior model for SDSS J123011.84+401442.9. For a
description of individual panels, see Figure 4.4.
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Figure 4.12: Maximum posterior model for SDSS J124949.65+593216.9. For a
description of individual panels, see Figure 4.4.
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Figure 4.13: Maximum posterior model for SDSS J131501.14+533314.1. For a
description of individual panels, see Figure 4.4.
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Figure 4.14: Maximum posterior model for SDSS J131535.42+253643.9. For a
description of individual panels, see Figure 4.4.
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Figure 4.15: Maximum posterior model for SDSS J135851.73+540805.3. For a
description of individual panels, see Figure 4.4.
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Figure 4.16: Maximum posterior model for SDSS J143645.80+633637.9. For a
description of individual panels, see Figure 4.4.
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Figure 4.17: Maximum posterior model for SDSS J145645.53+110142.6. For a
description of individual panels, see Figure 4.4.
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Figure 4.18: Maximum posterior model for SDSS J155447.85+194502.7. For a
description of individual panels, see Figure 4.4.
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Figure 4.19: Maximum posterior model for SDSS J215006.72+120620.6. For a
description of individual panels, see Figure 4.4.
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Figure 4.20: Maximum posterior model for SDSS J215954.45−002150.1. For a
description of individual panels, see Figure 4.4.
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Figure 4.21: Maximum posterior model for SDSS J220811.62−083235.1. For a
description of individual panels, see Figure 4.4.
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Figure 4.22: Maximum posterior model for SDSS J232300.06+151002.4. For a
description of individual panels, see Figure 4.4.
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4.7 Discussion

The presence of fits with very high contrast ratios (mhost − mAGN) means that

three host galaxies are too faint to detect, and reduces the number of hosts that can

have their morphologies and structures analyzed to sixteen. Two additional hosts do

not have converged Sérsic fits, however their point source fits have converged so their

structures may still be analyzed, with the caveat that the numeric values of the Sérsic

component cannot be used for these two objects.

The offset between point source component and the center of the Sérsic component

can be used as a quantitative diagnostic for gravitationally disturbed morphology. In

an undisturbed host galaxy, the SMBH should fall within the center of the host

galaxy mass (and thus flux) distribution, whether the galaxy is bulge-dominated or

disk-dominated. The point source may be significantly offset from the Sérsic profile

center for one of two reasons, either of which indicate a disturbed morphology. Either

the black hole is physically not at the center of the host gravitational potential (so

the system is not relaxed), or the host galaxy flux distribution is so significantly

asymmetric or lopsided, so that the best-fit Sérsic profile is offset to better model the

total flux distribution. For the purpose of analysis, the offset is considered significant

if it is at least one resolution element (i.e., 2 pixels or 0.′′12, corresponding to 1.0 kpc

projected distance). Six out of sixteen detected host galaxies meet this criterion,

indicating a significantly disturbed morphology. Four additional host galaxies have

neighboring companions or knots that fall within the Sérsic profile effective radius,

but were masked out prior to fitting. These result in offsets >0.′′12 if they are not

masked, bringing the total number to 10/16, for a merger fraction of fM = 0.625.

Thus, 62.5% of the detected host galaxies have some indication of an ongoing or

recent strong interaction. Comparing this to the major merger fraction for inactive
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galaxies determined by other studies is not straightforward, since the selection and

systematics of other samples are significantly different, especially due to the point

source subtraction in the quasars. Careful construction of a comparison sample of

inactive galaxies from the CANDELS survey (Grogin et al. 2011) will be the subject

of a future paper. For now, I will compare to several other studies of the z ' 2 merger

fraction for inactive galaxies.

Conselice et al. (2003) used a method that measured galaxy asymmetry to identify

mergers at z ≤ 3 in the Hubble Deep Field North. At z = 1.73, they found a

merger fraction range fM = 0.09−0.17, depending upon the rest-frame B-band galaxy

luminosities. The quasar host merger fraction as calculated above is significantly

higher than this.

Stott et al. (2013) used a morphology-based approach that identified mergers in

the HiZELS survey (Sobral et al. 2012) based on the M20 coefficient, which quantifies

the second-order moment of the brightest 20% of the pixels within a galaxy. They

find a merger fraction of fM = 0.32 at z = 2.23. Again, the z ' 2 quasar host merger

fraction is roughly double this value.

López-Sanjuan et al. (2013) measured a major merger fraction of fMM = 0.220+0.137
−0.073

from 12 star-forming galaxies at 1.5 ≤ z ≤ 1.8 in the MASSIV sample (Contini

et al. 2012). Extrapolating their fit for fMM(z) to z = 2 gives an estimate of

fMM(z = 2) = 0.484. Again, the quasar hosts have a significantly enhanced merger

rate compared to these star-forming galaxies. This represents one of the few merger

fraction estimates at z & 1.5 based entirely on galaxies with spectroscopic redshifts.

However, the merger criteria are not based on morphologies, but rather the identifica-

tion of two distinct objects with i-band magnitude difference ∆mi ≤ 1.5, a projected

distance < 20h−1 kpc, and systematic velocity offset ∆v ≤ 500 km s−1.
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Again, it is stressed that since a different diagnostic has been used in the quasar

study described in this chapter, and the point source subtractions are not perfect, a

true comparison sample based on inactive z ' 2 galaxies and using the same methods

is the best way to search for an enhancement to the quasar host merger fraction.

However, it is cautiously noted that the quasar host merger fraction found above is

significantly higher (by a factor of & 2) than all of the other studies described above.

This suggests that the most luminous AGN at z ' 2 are indeed preferentially hosted

in systems that are merger-driven.
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Chapter 5

PRELIMINARY RESULTS OF A HUBBLE SPACE TELESCOPE STUDY OF

THE HOST GALAXIES OF UV-FAINT QUASARS AT z ' 6

5.1 Introduction

Recent deep surveys have begun to find UV-faint quasars at z ' 6, with observed

rest-frame UV emission m1450 > 20.2 mag (Cool et al. 2006; Jiang et al. 2008, 2009;

Willott et al. 2007, 2009, 2010). Most of the known z ' 6 quasars have properties

consistent with low-redshift ULIRGs, including high CO luminosities, copious host

dust, high FIR luminosities, and high infrared excess (e.g., Jiang et al. 2006; Wang

et al. 2010, 2011; Mechtley et al. 2012; Wang et al. 2013). A study of the rest-

frame far-infrared (FIR) continuum emission of these systems by Wang et al. (2011)

confirmed five with FIR luminosities > 1012 L�. The faint UV emission suggests the

AGN is not the dominant source of the FIR emission (25% or less using the radio-

quiet quasar template of Elvis et al. 1994), but rather dust heated by star formation,

with inferred rates of > 500 M� yr−1 (Wang et al. 2011). Locally, such galaxies are

predominately systems undergoing major mergers (Howell et al. 2010).

Since their AGN emission is fainter than the UV-bright quasar described in Chap-

ter 2, and the host galaxy detection limit is dominated by the shot noise from the

point source, these quasars represent the best candidates for host galaxy detections.

That is, given their known FIR luminosities, the fainter point sources enable probing

fainter rest-frame UV fluxes, to levels consistent with the LFIR/LFUV ratios found in

local ULIRGs. My collaborators and I were awarded 25 orbits of HST time to observe

these five known UV-faint, FIR-bright z ' 6 quasars (GO 12974, PI: Mechtley).
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5.2 HST Data and Point Source Subtraction

Currently, WFC3IR data have been taken for two of the five targets in the HST

program: NDWFS J142516.3+325409 (z = 5.85, Cool et al. 2006, hereafter ND-

WFS J1425+3254) and SDSS J205406.49000514.8 (z = 6.06, Jiang et al. 2008, here-

after SDSS J2054−0005). The observing strategy for this program is similar to that

described for SDSS J1148+5251 in Mechtley et al. (2012) and Chapter 2. For each

quasar, a PSF star is selected that 1) is within 5◦of the quasar, to best match the

spacecraft attitude-dependent thermal environment, 2) matches the quasar (J −H)

color as closely as possible, and 3) has been pre-selected as a non-binary by ground-

based adaptive optics imaging. The PSF star is then observed in the HST orbit

directly following the quasar observations, with a matched dither pattern and expo-

sures that fully sample spacecraft breathing effects from the the orbital day-night

cycle. A four-point half-pixel stepped dither pattern is used, with inter-point spacing

of '2.′′0 (larger than the standard pattern) to avoid self-persistence from the bright

central pixels of the point source. Both PSF star and quasar are imaged in the F125W

(J) and F160W (H) bands.

The data were processed similarly to those in Chapters 2 and 4. Flux-calibrated,

flat-fielded exposures were obtained from the HST archive, then projected to a com-

mon reference grid with 0.′′060 pixels, using the Multidrizzle software with inverse

variance map weighting and a pixfrac parameter of 0.8 (Koekemoer et al. 2002,

2011). The Multidrizzle cosmic ray rejection step was turned off, since the WFC3IR

up-the-ramp count rate fitting algorithm provided sufficient cosmic ray rejection. The

ERR extensions from the HST exposures were used to generate per-pixel RMS error

maps that include all sources of error, including shot noise from the objects, and

account for correlated noise introduced in the drizzling process.
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Once calibrated images were produced, the quasar point sources were subtracted

using psfMC, first with a single-component point source model. The point source only

model used 4 chains of 20,000 samples each, with the first 10,000 of each discarded as a

burn-in period. Convergence was assessed as in Chapter 4; all models had converged.

SDSS J2054−0005 had no host galaxy detection, to a limit of mJ > 23.62 mag,

mH > 23.30 mag (2σ, 0.′′5 radius aperture).

5.3 Detection of a Candidate Host System for NDWFS J1425+3254

The point source subtraction for NDWFS J1425+3254 resulted in a successful

detection of a candidate merger system, with two components separated from the

host galaxy by 0.′′8 and 1.′′4. The psfMC MCMC fitting was re-run with a point source

plus two Sérsic profiles, to better model the blended flux from all three components

and avoid oversubtracting the point source. It should be stressed however that if the

galaxies are associated with the quasar and undergoing a merger, their rest-frame

UV emission need not be distributed in anything like a Sérsic profile. Rather, this

is simply used as a way to model their flux to avoid oversubtraction. Models for the

detected components in J and H bands, as well as their residuals after point source

subtraction, are shown in Figures 5.1 and 5.2.

The results of the fitting process for both components are compiled in Table 5.3.

The northeastern component has magnitude mH = 24.6 mag with (J−H) = 0.1±0.1

and is separated from the quasar point source by 1.′′4, or 8 kpc projected distance

at z = 5.85. The southeastern component has magnitude mH = 25.2 mag with

(J − H) = 0.1 ± 0.1 and a separation of 0.′′8 (4.8 kpc). Unfortunately, existing

observations at sub-mm to radio wavelengths do not resolve the individual sources,

so morphological comparisons were not possible. The photometry along with existing

data for this object are plotted in Figure 5.3. The overall SED, including the rest-
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Figure 5.1: HST WFC3 IR channel F125W (J-band) modeling of the combined
surface brightness distribution. North is up, East is left, and linear pixel scale is
0.′′060 in all images. Far left: HST observation of J1452+3254. Center left: Best-
fit (maximum posterior, MP) model from Markov Chain Monte Carlo fitting, before
convolution with the PSF. Center right: Best-fit (ML) model after PSF convolution.
Far right: Residual after subtracting the point source component only. The hatched
green ellipses are regions excluded from the fitting process, due to residual flux not
included in the 3-component model.
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Figure 5.2: Same as Figure 5.1, but for HST WFC3 IR channel F160W (H-band).

frame FIR detection from Wang et al. (2011), is consistent with local ULIRGs, with

infrared excess log(IRX) = 1.3 and morphology consistent with a major merger in

progress. A third component, coincident with the point source and with higher UV

extinction, cannot be ruled out by these data. The dust extinction of local ULIRGs

is very dependent upon the line of sight (Scoville et al. 2000). If the AGN is hosted

within an extremely dusty region with very high IRX (& 2.0), then its UV flux is

below the detection limit for these data.
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Figure 5.3: Comparison of broadband photometry for NDWFS J1425+3254 with
local LIRGs. Blue circles are broad-band (quasar and host system) photometry of
J1425+3254 taken from Cool et al. (2006) and this work. Red squares show the
measurements for the combined host system components at rest-frame 1800 Å and
2300 Å. The blue, green, and red lines are the SEDs of the local LIRGs IC 1623,
IRAS 22491-1808, and Arp 220, respectively, representing LIRGs with increasingly
red UV slopes (Howell et al. 2010). Extremely red SEDs like Arp 220 are ruled out,
but the galaxy (J−H) colors are consistent with a range of internal reddening values.
The dashed grey curve, a 1 Gyr simple stellar population redshifted to z = 1.1, serves
as a fiducial model for a foreground interloper. The local LIRG SEDs have been
normalized to the rest-frame FIR emission of NDWF J1425+3254, and the z = 1.1
model has been normalized to match the HST photometry of the merger candidate
in J band.
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Table 5.1: Summary of Candidate Host System Sérsic Parameter Values

Component mtot Index n Re (arcsec) b/a

Northeast (F125W) 24.70± 0.10 3.60± 0.90 0.40± 0.06 0.7± 0.2

Southeast (F125W) 25.26± 0.08 0.56± 0.06 0.39± 0.03 0.4± 0.1

Northeast (F160W) 24.60± 0.10 2.87± 1.00 0.38± 0.06 0.6± 0.2

Southeast (F160W) 25.20± 0.08 0.63± 0.15 0.36± 0.04 0.4± 0.1

Notes: Column 1: Component and filter; Column 2: Total (integrated)
magnitude; Column 3: Sérsic index n; Column 4: Sérsic effective radius;
Column 5: Axis ratio (minor axis/major axis)

The probability that these objects are foreground interlopers can be calculated

from wide-field multi-band surveys. Using the data from the WFC3 Early Release

Science 2 (ERS2) field (Windhorst et al. 2011), the probability of finding a single

galaxy with (J − H) = 0.1 ± 0.1 within 0.′′8 of a uniform random position is 2.5%.

The probability of finding two such objects within 1.′′4 of a random position is < 1%.

If they were foreground objects, constraints can also be made from gravitational

lensing calculations. Assuming a fiducial foreground redshift of z = 1.1 (since they are

not detected in the NDWFS BW band), the fact that no quasar counter-image is seen

places a constraint on the stellar mass-to-light ratio of < 0.39 for the northeastern

component, and < 3.68 for the southeastern component (R. Barone-Nugent 2013,

priv. comm.). This provides a weaker constraint than the probabilistic argument

above, but does rule out foreground objects with high mass-to-light ratios.

The discovery spectrum (Cool et al. 2006, Figure 2) also provides evidence for the

major merger interpretation. This spectrum has a significant absorption feature at

roughly 8350 Å, 20 Å redder than Lyα at 8329.6 Å. A probable source of this feature

is foreground H i absorption from a companion galaxy, slightly redshifted because

the galaxy is infalling with respect to the quasar. This gives v/c ' 0.002, or an

infall velocity of 720 km s−1. Assuming a virialized system, and using the projected
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distance of the southeastern host system component (4.8 kpc), this corresponds to a

dynamical mass of ' 5.8 × 1011 M�. For a fiducial dynamical-to-stellar mass ratio

of 10 and an estimated star formation rate of ' 500 M� yr−1 (Wang et al. 2011),

this gives an approximate timescale for stellar mass build-up of 108 yr, within the

available time budget of 0.5− 0.7 Gyr between the epoch of first light at z ' 12− 15

and z = 5.85.

5.4 Discussion

The five z ' 6 quasars for this HST program were selected as those optically-

faint quasars with confirmed sub-mm detections, and thus the greatest rest-frame

LFIR/LUV ratios. This selects for host systems with the greatest non-AGN contri-

bution to the FIR flux, with inferred ULIRG-class FIR luminosities (> 1012 L�).

Locally, such systems are largely mergers with high inferred star formation rates

(Howell et al. 2010).

After analyzing the first of the HST WFC3IR data using the point-source subtrac-

tion method detailed above, we detected a candidate merger system around the quasar

NDWFS J1425+3254. While the HST J and H band data provide high-resolution

structural constraints, the single (J − H) color provides only limited information

about the young stellar population and internal reddening of the candidate merger

components, and does not definitively rule out low-redshift interlopers. However, the

quasar discovery spectrum does provide independent evidence for a merging system.

Follow-up observations will focus on better constraining the spectral energy distri-

butions of both components, including deep r-band imaging to rule out low-redshift

interlopers, and adaptive optics-corrected K-band imaging to attempt to better con-

strain the rest-frame UV SED.
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Chapter 6

CONCLUSIONS

6.1 Black Hole Growth and the Quasar Host Merger Fraction

The work presented in Chapters 2 and 5 addresses mechanisms for black hole

growth and the coevolution of SMBHs and their host galaxies at the earliest cosmic

epoch where AGN are currently known. The non-detection of host galaxy flux co-

incident with the quasar point sources provides additional evidence that the hosts

are starburst ULIRG-like galaxies with extreme reddening and UV extinction. Mean-

while, the merger candidates found surrounding NDWFS J1425+3254 provide a direct

example of a star-forming system undergoing mass build-up at high redshift.

The work presented in Chapter 4 is a direct measurement of the quasar host

galaxy merger fraction at z ' 2, currently the earliest epoch for which detailed

structural studies of galaxies can be made in rest-frame optical light. More than 60%

of the sixteen detected hosts show some indication of ongoing strong gravitational

interactions (mergers or tidal disruption). While a carefully selected control sample

of galaxies without quasars will be the subject of future work, comparisons with

published merger fractions from the literature indicate that this is significantly higher

(roughly double) the z ' 2 merger fraction for field galaxies. This indicates that for

the most luminous AGN at z ' 2, strong galaxy-galaxy interactions are the dominant

triggering mechanism for the AGN activity.
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6.2 The Quasar-Starburst-Merger Connection

It is clear that, at least for the currently known z ' 6 quasars, the often-proposed

model of quasar hosts as “post-starburst” systems appears too simplistic. In total

there are 12 quasars at z ' 6 with secure sub-mm measurements, as summarized

by Wang et al. (2010, 2011, 2013). These represent > 25% of the known z ' 6

quasar population, and their FIR luminosities are much too high to be driven by

AGN activity alone, especially for the UV-faint quasars described in Chapter 5. The

implied ULIRG-like reddening and FUV extinction in the three that have already

been observed with HST support this conclusion as well. So, at least at the highest

redshifts, it appears that the luminous AGN phase may coincide with, rather than

follow, the starburst phase. The true chronology of these stages is likely dependent

upon the details of the given system being studied, particularly merger geometry for

systems that are merger-driven.

The work presented in Chapter 4 seems to indicate a significant enhancement

to the merger fraction among z ' 2 quasars. Even those host galaxies from the

z ' 2 sample that most resemble giant ellipticals — large, luminous hosts with

Sérsic index & 4, such as SDSS J123011.84+401442.9, SDSS J155447.85+194502.7,

and SDSS J232300.06+151002.4 — do not resemble simple passively-evolving ellip-

tical galaxies, but show companions and/or significant disturbances. Perhaps then,

quasars, as the most luminous AGN with the highest-mass black holes, require merg-

ers with large gas-rich galaxies as the feeding mechanism for their gluttonous ap-

petites, while lower-luminosity AGN snack on smaller galaxies or the remains of

star-formation episodes.
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6.3 Future Uses for psfMC

The psfMC software presented in Chapter 3 represents the most precise treatment

of quasar PSF modeling and subtraction to date. Thus, it may potentially improve

PSF subtractions for any quasars observed with HST — both from previous and future

observations. It has also shown promise as a method for subtracting point sources in

ground-based imaging. Preliminary tests subtracting the NDWFS 1425+3254 point

source from the ground-based data used by Cool et al. (2006) have resulted in surpris-

ingly clean subtractions, which might be used put an upper limit on the host galaxy

flux in the R-, I-, and z-bands, albeit much less stringent than the limit imposed

by the higher-resolution HST data. The psfMC software also potentially has utility

subtracting point sources for stars within our own galaxy, to search for companion ob-

jects such as binary stars, exoplanets, or circum-stellar disks. This may especially be

useful when multiple-visit methods such as those described in Chapter 1 are deemed

too time-intensive, or if subtractions are done on existing data.

6.4 Future Improvements to Synthetic PSFs

The current TinyTim WFC3 model PSFs are still based on data from the ground-

based thermal vacuum tests, rather than on-orbit data. Now, four years after the

camera’s installation, there is a plethora of archival data that might be used to im-

prove these models. An improved TinyTim that includes a spacecraft breathing model

as well as better determinations of the WFC3 field-dependent aberration coefficients

could significantly improve quasar point source subtractions. This is especially true of

the z ' 2 quasars in Chapter 4, since they did not have dedicated PSF observations,

and since the observed bandpass includes a strong emission line (redshifted Hα) that

is certainly not present in any PSF star.
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6.5 Future Prospects for High-Redshift Quasar Studies

Within the next decade, high-z quasar studies should see a renaissance if not a

revolution. Two observatories in particular stand to significantly improve our un-

derstanding of high-z quasar hosts. The Atacama Large Millimeter Array provides

unprecedented sensitivity and spatial resolution of the gas and dust within high-z

quasars, and early science programs are already pursuing these studies (e.g., Wang

et al. 2013). The James Webb Space Telescope (JWST) will be able to explore new

frontiers where HST’s Wide Field Camera 3 leaves off. With unprecedented sensi-

tivity and spatial resolution at near- and mid-infrared wavelengths, JWST will be

able to observe AGN at z ' 6 and beyond at rest-frame optical wavelengths, such as

HST did for the z ' 2 quasars described in Chapter 4. JWST will also provide the

much-needed capability to take NIR spectra of the fainter objects (both quasars and

galaxies), without being limited by Earth’s atmosphere as ground-based observatories

are.
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Listing A.1 is the psfMC model definition file used for the host system of the
z = 5.85 quasar NDWFS J1425+3254 in Chapter 5. This demonstrates the inclusion
of multiple model components (one PSF component, two Sérsic components, and the
background sky as a free parameter), and the use of various probability distributions
as parameter priors (Uniform, Normal, TruncatedNormal). It also shows how the
user can create custom variables that can be used in calculations (zp, totalflux, and
center). Lines beginning with the # symbol are comments.

Listing A.1: Example psfMC Model File
from numpy import array
from psfMC.ModelComponents import Sky , PSF , Sersic
from psfMC.distributions import Normal , Uniform , TruncatedNormal

# Since the model is a Python file , we can define variables
zp = 26.2303
totalflux = -5.5 + zp

# We can treat the sky as unknown if the subtraction is uncertain
Sky(adu=Normal(mu=0, tau =100))

# Point source component
center = array ((64, 64))
PSF(xy=Normal(mu=center , tau=(1.0 , 1.0)),

mag=Uniform(lower=totalflux - 0.2, upper=totalflux + 1.5))

# First Sersic profile , modeling the first host component
center = array ((49, 83))
Sersic(xy=Uniform(lower=center -(4, 4), upper=center +(4, 4)),

mag=TruncatedNormal(mu= -1.14+zp , tau=1.0, a=19, b=28),
reff=Uniform(lower =2.0, upper =8),
reff_b=Uniform(lower =2.0, upper =8),
index=Uniform(lower =0.5, upper =8),
angle=Uniform(lower=0, upper =180) , angle_degrees=True)

# Second Sersic profile , modeling the second host component
center = array ((57, 54))
Sersic(xy=Uniform(lower=center -(4, 4), upper=center +(4, 4)),

mag=Uniform(lower=22, upper =26),
reff=Uniform(lower =2.0, upper =8),
reff_b=Uniform(lower =2.0, upper =8),
index=Uniform(lower =0.5, upper =8),
angle=Uniform(lower =155, upper =175) , angle_degrees=True)
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APPRECIATING HUBBLE AT HYPERSPEED: AN INTERACTIVE
COSMOLOGY VISUALIZATION TOOL
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We have developed a Java-based teaching tool, “Appreciating Hubble at Hyper-

speed” (“AHaH”), intended for use by students and instructors in beginning astron-

omy and cosmology courses, which we have distributed via the World Wide Web. 1

This tool lets the user hypothetically traverse the Hubble Ultra Deep Field in three

dimensions at over ∼ 500 × 1012 times the speed of light, from redshifts z = 0− 6.

Users may also view the Universe in various cosmology configurations and two differ-

ent geometry modes — standard geometry that includes expansion of the Universe,

and a static pseudo-Euclidean geometry for comparison. In this paper we detail the

mathematical formulae underlying the functions of this Java application, and provide

justification for the use of these particular formulae. These include the manner in

which angular sizes of objects are calculated in various cosmologies, as well as how

the application’s coordinate system is defined. We also briefly discuss the methods

used to select and prepare the images in the application, the data used to measure

the redshifts of the galaxies, and the qualitative implications of the visualization —

that is, what exactly users see when they “move” the virtual telescope through the

simulation.

B.1 Introduction

In beginning astronomy courses, many non-science majors appear to have a signif-

icant lack of understanding — even after taking the introductory courses — of basic

concepts such as wavelength, electro-magnetic spectrum, the speed of light, look-

back time, redshift, and expansion of the Universe. We believe this lack of concept

acquisition or retention represents a significant shortcoming of the currently available

teaching tools. While pictures, figures, and other static media are certainly effective

at communicating many concepts, they tend to be poor at showing effects in three

1http://www.asu.edu/clas/hst/www/ahah/download.html
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dimensions or that evolve over time. Since virtually all cosmological effects require

very large time or distance scales to become apparent, a different teaching medium

is preferable.

“Appreciating Hubble at Hyper-speed” is an educational tool that aims to address

these issues of concept acquisition and retention by providing a visual and interactive

learning medium. The project uses data from the HST Cycle 12 Project “GRAPES”

(Grism-ACS Program for Extragalactic Science; Pirzkal et al. 2004) to build a redshift-

sorted database of over 5000 galaxies within the Hubble Ultra Deep Field (HUDF).

These galaxies range from redshift z ' 0.05 to z ' 6, spanning nearly 90% of the

history of the Universe (Yan & Windhorst 2004; Malhotra et al. 2005; Bouwens et al.

2006). Since these data represent the deepest optical image of the Universe ever

obtained, they are uniquely suited to helping students understand the effects of the

expanding Universe and the evolution of galaxies across cosmic time.

B.2 Data Selection and Preparation

We first created a custom-balanced RGB version of the HUDF image. While

the image provided in the original press releases would have been adequate, it has

the undesirable characteristic that very bright areas, such as bulges in large spirals,

appear burnt-out and lack fine detail. The raw HUDF data consist of 56 HST orbits

each in the B-, and V -bands, and 144 orbits each in the i′-, and z′-bands (Beckwith

et al. 2006), so we created a three-channel color image by first combining the B-

and V -bands, applying weights based on the sky SNR (0.235 weight in B and 0.765

weight in V ). We then used the algorithm developed by Lupton et al. (2004) to create

the combined RGB image, with the combined B + V -bands as the blue channel, the
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i′-band as the green channel, and the z′-band as the red channel. 2 Besides showing

more detail in bright areas, this method has the added benefit that an object with

a specified astronomical color has a unique color in the composite RGB image. A

comparison of the original STScI color images and our prepared images is shown

in Figure B.1. The full HUDF image using this color preparation technique is also

available as an interactive map on the World Wide Web. 3

The galaxies represented in the AHaH application were i′-band selected using

SExtractor with a detection threshold of σ = 1.8 above sky. The i′-band dropouts

of Yan & Windhorst (2004) were later added by hand. We then created color JPEG

“stamp” images for each individual object, using the SExtractor-generated segmen-

tation map to mask as black any pixels outside the detected source. These “stamps”

were then converted pixel-for-pixel to PNG images, which employ a lossless compres-

sion algorithm — no image quality was thus lost. We then developed a transparency

map based on each pixel’s brightness, which was saved into the PNG alpha channel.

The resulting images can thus be displayed as semi-transparent, allowing objects in

the distance to show through the dim regions of objects in the foreground. This is to

illustrate that the outskirts of galaxies — beyond a few effective radii — are in fact

semi-transparent (see e.g. Keel & Wehrle (1993)).

Photometric redshifts for the galaxies were measured with HyperZ (Bolzonella

et al. 2000), using a combination of the original HST-ACS four-band (BV i′z′) data

from the HUDF, along with J- and H-band data from HST-NICMOS (Thomp-

son et al. 2005). We have supplemented the photometric redshifts with spectro-

photometric redshifts measured by Ryan et al. (2007), which incorporate the afore-

mentioned BV i′z′JH data as well as grism spectra from GRAPES (Pirzkal et al.

2The channels were first scaled as follows, proportional to the data zero points — Red: 716.474,
Green: 345.462, Blue: 254.449

3http://www.asu.edu/clas/hst/www/jwst/clickonHUDF/
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2004), U -band observations from CTIO-MOSAIC II, and Ks-band data from VLT-

ISAAC. For a summary of all these data and the quality of the spectro-photometric

redshifts, see Ryan et al. (2007). When available, we have chosen to use the more

reliable spectro-photometric redshifts.

B.3 Development of Formulae

As previously discussed by Wright (2006), there are a number of different methods

for calculating distances in cosmology. For our purposes, the most meaningful of these

is the comoving radial distance, DR, representing the spatial separation of an object

and an observer with zero peculiar velocity at a common time. This distance takes

into account the expansion of the Universe, and so is more useful when dealing with

distances on very large scales (and thus very large look-back times), as is the case

with galaxies in the HUDF. Henceforth, we shall adopt the convention of referring

to the comoving radial distance from Earth to a galaxy as DR, and the comoving

coordinate distance between two arbitrary points in the coordinate system as rij.

We also wish to calculate the angular sizes of objects as they would be observed

from redshifts other than zero. To do so, we need a formula for the angular size

distance, DA. That is, the distance which satisfies the equation d = θDA for an

object with transverse diameter d subtending an angle θ in the field of view. In a

simple Euclidean space, this is the same as the radial distance, but again we must

take into account the expansion (and possible curvature) of the Universe, so we must

use a separate equation in the AHaH tool.

Additionally, we need to consider how we wish to define the coordinate system for

the HUDF objects within the Java tool. Although we have very deep HST imaging

data that allow us to show how the Universe has changed over time, all of these
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data were collected at a common time. 4 Moreover, the principal distance measure

that we have available, DR, also assumes a common time. Thus the most sensible

coordinate system is one with three spatial dimensions that makes all calculations

for a common time, viz. when the data were collected. We can then contract the

distances in this “comoving coordinate system” as necessary to simulate observations

from redshifts other than zero. The question remains of how we should derive such

coordinates from the data that we have in such a way that they will be useful to us

— this is discussed in §B.3.3 below, prior to deriving the equations.

B.3.1 Comoving Radial Distance

To begin, we need the comoving radial distance, DR, from the Earth to an object

at redshift z, derived from the Robertson-Walker metric, as discussed previously by

e.g. Longair (1998, Ch. 7), Ryden (2003, Eq. 6.8), and Wright (2006, Eq. 6). We

express this as the integral:

DR(z) =

∫ t0

t

c · dt
a

=

∫ 1

1
1+z

c · da
aȧ

=
c

H0

∫ z

0

dz

(1 + z)ȧ
(B.1)

Here the scale factor is a = 1/(1 + z). The derivative of a with respect to time, ȧ, is

given by the expression:

ȧ = (ΩM/a+ ΩR/a
2 + ΩΛ · a2 + ΩK)1/2 (B.2)

ΩM , ΩR, and ΩΛ are energy density parameters, corresponding to the fractions of

the Universe’s average energy density that are attributable to matter, radiation, and

dark energy, respectively. ΩK is the term arising from the curvature of the Universe’s

spatial geometry, and is defined as 1− ΩM − ΩΛ − ΩR, thus assuming that these are

the only meaningful contributions to the total energy density.

4Sep. 2003–Jan. 2004 For a summary of the HUDF epochs, see Cohen et al. (2006)
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We evaluate this integral in steps of 0.05 in z from z = 0 to z = 20 to create

a look-up table, interpolating linearly to find the value for any arbitrary redshift.

This is because we must make the calculation frequently and for many objects, so

computing the integral manually every time would be computationally prohibitive.

The resultant error in this method is generally small enough that it translates to less

than one pixel’s difference even on high-resolution displays, so it can safely be ignored

for the purposes of the application. We evaluate the integral using the simple mid-

point method, which is not the most accurate solution, but was simple to implement

and adequately efficient. As with the linear interpolation, higher-accuracy numerical

integration would result in less than one pixel’s difference when displayed.

B.3.2 Angular Size Distance

To develop the angular size distance, DA, we first need to develop a generalized

form of DR, to express the distance measure to an object at redshift zj as measured

by an observer at redshift zi. This distance is given by the formula:

DR(zi, zj) =


<i sin(ri/<i) if ΩK < 0

ri if ΩK = 0

<i sinh(ri/<i) if ΩK > 0

(B.3)

where <i is the radius of curvature of the spatial geometry at redshift zi and ri is

the value of the comoving coordinate distance at the same redshift (Longair 1998;

Wright 2006). These correspond to the cases where the spatial geometry is positively

curved, flat, and negatively curved, respectively. Recalling that both ri and <i scale

as 1/(1 + zi), and that <0 = (c/H0)/
√
|ΩK |, we next define an intermediate quantity

U , representing the argument of sin and sinh in Equation B.3 above:

U = ri/<i = r0/<0 = (H0/c)
√
|ΩK |r0 (B.4)
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We note that since U now depends only upon the cosmology selected by the user and

the object’s redshift, we may calculate U once per object and re-use it, thus saving

CPU time. Using this quantity, we may now rewrite DR as:

DR(zi, zj) =
δ(U)

1 + zi
r0 (B.5)

Here, δ(U) is simply some function of U . By substituting U into Equation B.3 above,

we get the following expression for δ(U):

δ(U) =


sin(U)
U

if ΩK < 0

1 if ΩK = 0
sinh(U)
U

if ΩK > 0

(B.6)

Note that δ(U) expressly depends upon r0. The case where ΩK = 0 comes from the

limit of both sin(U)/U and sinh(U)/U as ΩK → 0 — one may observe that in this

case Equation B.5 simplifies to r0/(1 + zi), which is precisely ri as in Equation B.3.

Thus, using our Equation B.5 and the equation relating the angular size distance

and the distance measure as developed by Longair (1998, Eq. 7.50), the angular size

distance from redshift zi to zj is given by:

DA(zi, zj) = DR(zi, zj)
1 + zi
1 + zj

=
δ(U)

1 + zj
r0 (B.7)

B.3.3 Comoving Coordinate System

Now that we have developed formulae for any DR and DA, we can consider the

best way to create a coordinate system for the Java application. The data we start

with are the redshift of an object (with which we can calculate DR) and four angular

measurements: the object’s angular size (from the height and width of its image) and

the angular separation between the object and the x and y axes, which we define as

lines going through the center of the original image. These angles are calculated by

100



taking the corresponding size in pixels and multiplying by the scale in arcsec/pixel

of the original HST image. 5

We would like to use this information to create a coordinate system with the

original telescope position at the origin. In a Euclidean space this would present

no problem, but we have already remarked that the observed angular sizes are not

the same in an expanding Universe as they would be in a Euclidean space. Further,

it would be desirable for the Euclidean coordinate distance to correspond to the

comoving radial distance, as this would make calculations significantly simpler. We

can accomplish this, but when we create coordinates for each object as such, we need

to “correct” the angles. That is, we want a “Euclidean angular size” associated with

the angular size of an object at redshift zj as viewed by an observer at redshift zi. We

will call this θE. Using the small-angle approximation and Equation B.7, an object’s

angular size is related to its physical transverse diameter, d, by the following equation:

d = θDA = θ
δ(U)

1 + zj
r0 = θE

1

1 + zi
r0 (B.8)

Note that in the Euclidean case we must contract r0 by a factor of 1/(1 + zi) to get

the comoving distance from zi to zj as measured from zi (ri in Equation B.3 above).

This is because the spatial separation between any two points in the current epoch is

stretched with respect to the spatial separation at redshift zi, so when this separation

is observed from redshift zi, it must be scaled appropriately. Hence, the equivalent

Euclidean distance between any two points is DE = r0/(1 + zi), in which case we get

the Euclidean small-angle approximation, d = θEDE.

5The drizzled HUDF image scale is 0.′′03 per pixel
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Now, canceling r0, we get the following expression for θE:

θE = θδ(U)
1 + zi
1 + zj

(B.9)

In our initial HUDF data zi is simply zero, so we create coordinates (X, Y , Z) for an

object at redshift z like:

X = sin

(
δ(U)θX
1 + z

)
cos

(
δ(U)θY
1 + z

)
DR(0, z), (B.10)

and similarly for Y and Z. We have thus developed a coordinate system of X, Y ,

and Z in comoving Mpc with the original telescope position at the origin.

B.3.4 Simulating Observations From Vantage Points Other Than z = 0

Now, when we “move” the camera, we do so by some Xc, Yc, and Zc in the

coordinate space. By construction, the distance measure here is just the Euclidean

coordinate distance:

DE = ((X −Xc)
2 + (Y − Yc)2 + (Z − Zc)2)1/2 (B.11)

Now, to determine where to display an object with redshift zo after we have moved

the camera back in time to some redshift zc (zc < zo), we simply contract all the

position coordinates by 1 + zc.

For an object’s angular size, we know that in the Euclidean case:

d = θ0DR = θEDE (B.12)

where θ0 is the Euclidean angular size from redshift zero, and DE is the radial coor-

dinate distance from the camera to the object. We then solve for θE and substitute

into Equation B.9 to obtain an expression for the desired angular size θ as observed

from zc:

θ = θ0

(
DR

DE

)
1 + zo

δ(U)(1 + zc)
(B.13)
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B.4 Standard Display Mode

We believe it is very instructive to consider the qualitative implications of these

equations’ use — that is, a description of what exactly we see when we hypothetically

“move” the camera in the Java application. For the sake of completeness, we will also

detail a number of cosmological effects that have been omitted from the application

due to technical limitations. An example of the standard AHaH display mode is

shown in Figure B.3.

When we move the camera to a certain redshift position in the HUDF data cube,

we are in general viewing the Universe as it would appear from that point and at

that cosmic epoch. We must qualify this statement by noting that the simulation

accounts only for geometrical cosmological effects of changing the camera position

— no dynamical, lensing, evolutionary, or other effects are simulated. In this sense,

AHaH thus truly, though hypothetically, allows the user to travel through the Universe

at “hyper-speed,” but with the cosmic clock ticking normally, so that far-away galaxies

are only seen as they appeared long ago.

The somewhat counterintuitive relationship between an object’s angular size and

its redshift is readily apparent in the standard display mode. If a user slowly increases

the redshift of the camera, high redshift objects will begin to decrease in angular size,

eventually reach a minimum angular size around z = 1.65 in WMAP year 1 cosmology

(Spergel et al. 2007), and then increase in angular size. Also visible are the effects

of galaxy evolution and merging over time. For example, when viewing the Universe

from redshift z = 0.5 as in Figure B.3, there are many large spiral and elliptical

galaxies visible. However, when viewing the Universe from redshift z = 1.5 as in

Figure B.4, the Universe is dominated by small and compact blue galaxies. This is

a well-known phenomenon established by HST, that the population of elliptical and
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spiral galaxies seen today transitions into the population of actively star-forming and

merging galaxies seen at z ≥ 1 − 2 (Driver et al. 1995, 1998; Abraham et al. 1996;

Glazebrook et al. 1995).
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It should be noted that the application does not make calculations for cosmo-

logical surface brightness dimming or changes in color due to redshift or spectral

evolution. While certainly feasible to simulate, performing such image manipulation

techniques on large numbers of galaxies in real-time is currently too difficult for con-

sumer computers. Moreover, we must also recall that the HUDF data are limited in

both apparent magnitude and effective horizon by what could be observed from low

Earth orbit. When we view the data from redshifts other than zero, we would expect

to see more galaxies overall — including fainter galaxies — than are represented in

the current HUDF data. We could choose to simulate these objects as extensions

of our data set if we desired, but we felt this would not be particularly instructive,

and could lead to potential confusion. Moreover, such simulations have a high degree

of uncertainty and, by significantly increasing the size of the data set, would add

prohibitively to the computation times. Likewise, we have chosen not to simulate

galaxies outside of the original field, which would of course enter the camera’s field

of view as the user pans around.

B.5 Static Geometry Mode

When a user presses the “G” key in the Java tool, they are told that they are

viewing the simulation with “static geometry” turned on. What this means is that

angular sizes as derived above are no longer affected by the scale factor or curvature

of the Universe — after we develop our original coordinates, as in Equation B.10, all

calculations for angles are simply done with θ = θE. This has the visual effect of all

galaxies appearing smaller, since all initial angles have been contracted by a factor

of 1 + z (when ΩK is zero). In this static case, galaxies will also simply increase in

angular size as we approach them, as opposed to the angular sizes of objects in the

real Universe, which decrease, reach a minimum around z = 1.65, and then increase.
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This static mode of viewing the simulation has no physical analog — it is simply

meant to convey to the user that there are non-Euclidean aspects of the Universe’s

geometry, and that the angular sizes we observe in the present have been made

larger due to the Universe’s expansion. One should note that this display mode

only considers expansion as it relates to angular size — the comoving radial distance

is still calculated using the redshift and curvature factors that would not be present

in a strictly Euclidean Universe. That is, in the static display mode, we assume

that the Hubble Law distance, D = v/H0 = (c/H0)z, is simply a Euclidean distance

unrelated to expansion. This is primarily because our method of calculating the

comoving radial distance relies upon redshift, which is a phenomenon specific only to

an expanding Universe, and is therefore the only way we could calculate distances for

all the galaxies, even in the Euclidean case.

B.6 Conclusion

We believe that this software provides students and instructors with an unprece-

dented ability to interactively visualize many of the effects of an expanding Universe,

among its other capabilities. The application should help clarify these concepts, and

allow students to develop a deeper intuitive understanding of the material. Cer-

tain cosmological effects — such as bandpass shifting, k-correction, surface brightness

dimming, evolutionary effects, gravitational lensing, and the effects of the magnitude

limit and object sizes on the sample completeness limit — have been omitted due to

computational or dataset limitations, but we believe these to be inessential for the

understanding of the included effects. For a discussion of most of these effects, see

e.g. Windhorst et al. (2008).

For the convenience of those who wish to see or modify the particular imple-

mentation of the above formulae within the Java software, we have provided source

106



Figure B.1: A comparison of three images of HUDF galaxy 7556. The left image
is that from the original STScI release, clearly showing the bright, burnt-out knots
characteristic of the standard logarithmic image stretch. The center image is our
prepared image using the arcsinh stretch described by Lupton et al. (2004), as it
appears in the AHaH application. The right image is our prepared image against
an artificially imposed chessboard pattern, showing the included transparency. Note
that pixels outside the source are all completely transparent, since they have been
removed entirely using the SExtractor segmentation map. The outskirts of the
galaxy — beyond a few effective radii — are semi-transparent, as in real galaxies.

code with the standard distribution of the tool. It is included in the src/ directory

of ahah.jar and may be extracted using the java jar utility or any zlib-compatible

de-compressor such as unzip. The release version of the tool may be downloaded for

Windows, Macintosh, or Linux computers from the AHaH website. 6

6http://www.asu.edu/clas/hst/www/ahah/
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Figure B.2: Our prepared images of three galaxies from the HUDF, using the arcsinh
stretch described by Lupton et al. (2004). Shown are galaxy 3180 (left), galaxy 5805
(center), and galaxy 6974 (right).
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Figure B.3: The HUDF data as viewed from redshift z = 0.5 in the AHaH applica-
tion, using standard geometry mode, which properly calculates angular sizes. Note
how the image is dominated by luminous red early-type galaxies.
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Figure B.4: The HUDF data as viewed from redshift z = 1.5 in the AHaH appli-
cation, using standard geometry mode. Note how this image is dominated by blue
irregular and merging star-forming galaxies.
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