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ABSTRACT  

Advances in implantable MEMS technology has made possible adaptive micro-robotic 

implants that can track and record from single neurons in the brain. Development of autonomous 

neural interfaces opens up exciting possibilities of micro-robots performing standard 

electrophysiological techniques that would previously take researchers several hundred hours to 

train and achieve the desired skill level. It would result in more reliable and adaptive neural 

interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and 

increased throughput. The main contribution here is validating adaptive strategies to overcome 

challenges in autonomous navigation of microelectrodes inside the brain. The following issues 

pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time 

varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, 

viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical 

and physiological events in the interface and c) the lack of visual feedback of microelectrode 

position in brain tissue. A closed loop control algorithm is proposed here for autonomous 

navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit 

neural recordings. The algorithm incorporates a quantitative understanding of constitutive 

mechanical properties of soft viscoelastic tissue like the brain and is guided by models that 

predict stresses developed in brain tissue during movement of the microelectrode. An optimal 

movement strategy is developed that achieves precise positioning of microelectrodes in the brain 

by minimizing the stresses developed in the surrounding tissue during navigation and maximizing 

the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent 

experiments validated that it was possible to achieve a consistently high quality SNR throughout 

the duration of the experiment. At the systems level, new generation of MEMS actuators for 

movable microelectrode array are characterized and the MEMS device operation parameters are 

optimized for improved performance and reliability. Further, recommendations for packaging to 

minimize the form factor of the implant; design of device mounting and implantation techniques of 

MEMS microelectrode array to enhance the longevity of the implant are also included in a top-

down approach to achieve a reliable brain interface.
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CHAPTER 1 

INTRODUCTION 

 Implantable microelectrode arrays play a crucial role in a variety of current and emerging 

biomedical prosthetic devices such as cochlear implants, visual prostheses, brain-machine 

interfaces, deep-brain stimulation devices etc. These emerging devices promise to restore 

function in patients with hearing loss, retinitis pigmentosa, patients with amputated upper-

extremities or paralyzed limbs, or Parkinsons’ disease. In all of the above applications, 

implantable microelectrode arrays are the primary portal for communication with single neurons 

or a family of neurons in a specific region of interest in the brain. Arguably, the single, biggest 

challenge to cortical (brain) prosthetic devices that remains unsolved is the unreliable brain 

tissue-microelectrode interface. Current microelectrode technologies fail after a few months or 

years, which is inadequate for brain prostheses that need to last the lifetime of the patient.  

 We propose here a novel intra-cortical microelectrode interface that will potentially 

improve the reliability, fidelity and lifetime of neural interfaces. The interface proposed here is an 

adaptive movable interface with MEMS microelectrode array that autonomously positions the 

microelectrodes to maintain optimal neural recording quality. The key innovation for realizing the 

above goal is based on the technology of MEMS movable microelectrode array. MEMS 

microelectrode arrays have been in development and have gone through several design 

iterations and testing for the past 10 years. They have been validated in long-term experiments 

by implanting the device in the somatosensory cortex of rodents where neural activity was 

recorded for a period of about 12 weeks. Electrothermal actuators in the device allows for 

bidirectional translation of the microelectrodes. Further, indigenously developed novel chip-scale 

flip-chip packaging technique for MEMS devices yields a fully functional packaged device with 

small form factor. The integration of the above MEMS device with intelligent controls makes this 

technology the first ever MEMS robotic neural implant that is capable of sensing neural signals, 
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analyzing neural data and adaptively positioning the microelectrodes in accordance with the 

quality of incoming neural data. 

 The overall goal of the control algorithm will be to establish a reliable interface. Reliable 

interface is defined here as one that which is able to achieve high-quality, long-term recordings 

consistently. A functional neuron-electrode interface is where the neural signal recordings are of 

high fidelity with signal-to-noise levels above acceptable thresholds. The control objective is to 

move the electrode in a one-dimensional search for optimal signal-to-noise values along the 

electrode track. Three main challenges exist in developing the autonomous system: i) the sources 

of variability in a recorded signal are largely undefined ranging from immune response, surgical 

issues, physical displacements of the brain tissue due to breathing, biological variations in neural 

activity etc. ii) the mechanical properties of brain tissue are unknown and hence an accurate 

model of the plant (3D space of brain tissue populated with neurons) cannot be defined iii). The 

brain tissue is a hyperelastic and viscoelastic medium and has a time varying response to 

microelectrode displacement. Further, directional anisotropies are present in the 

microenvironment immediately around the microelectrode. Knowledge of the precise position of 

the microelectrode is difficult due to the complex relaxation behavior of the compressed tissue. 

Hence the algorithm will incorporate a quantitative understanding of the constitutive mechanical 

properties of the brain to estimate the position of the electrode. The objective of the control 

algorithm – is to optimize the signal-to-noise ratio (SNR) of the neural recording by moving the 

microelectrode. The control algorithm is guided by models that infer the microelectrode position 

and adapt to the dynamic tissue response. 

 While an adaptive control system will establish an optimal interface for recording, there 

are engineering challenges at the system level that also impact the reliability of the interface. 

Reliable neural data recording by implantable MEMS electrodes is dependent on two critical 

factors: (1) reliability of the interface between the microelectrodes and the brain tissue (2) reliable 

functioning of the device that is microelectrodes and microactuators over the lifetime of the 

implant. The latter concern can be mitigated by improved design of the MEMS actuators and 
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microelectrode system. Failure analysis of the actuators after a few million cycles of actuation is 

done to determine the operational space for reliable function of the microactuators, 

microelectrodes and other micromechanical structures associated with them. Further the 

parameters of activation of the microelectrodes are optimized so that microelectrode can move 

consistently in both forward and backward direction. The position of the microelectrode in the 

brain can be then reliably estimated (without taking into account the viscoelastic properties of the 

brain tissue). Another significant challenge is surgical implantation and mounting of the MEMS 

device. Mounting is highly customized for different medical applications and devices. For the 

long-term brain implant, such mounting techniques must accommodate for the animal skull 

growth, re-growth of skin, and other meningeal layers on the brain etc. Mounting must also be 

robust enough to protect the packaged MEMS devices from the mechanical impacts due to 

behavior. Improved packaging and mounting structures can enhance the longevity of the brain 

implant by creating a stable interface at the surgical site (between the implant and the 

craniotomy) and inside the brain tissue.  

 It is our hypothesis that a reliable, high-throughput interface between the brain and 

implanted electrodes can be realized by using the MEMS movable microelectrode system 

controlled by an adaptive algorithm that maintains optimal signal quality. At the system 

level, reliability studies on device operation, recommendations for packaging and surgical 

implantation are also incorporated in a top-down approach to achieve a reliable interface. 

 In order to test the stated hypothesis and address the challenges described the following 

specific aims are proposed: 

Specific Aim 1:  

Characterization of an optimal electrothermal microactuator and microelectrode for a 

reliable microelectrode implant: a) determining the optimal parameter set for activation of the 

microactuators to ensure maximum accuracy in positioning the microelectrodes b) failure analysis 

to determine the lifetime of operation of the microactuators  c) evaluation of design space for 
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optimal performance i) force requirements at different times after implant ii) structural  reliability 

(with minimal overlapping structures) iii) minimal current consumption and power requirements 

Specific Aim 2:  

Design and development of adaptive algorithms for establishing a reliable electrode-

neuron interface by (a) defining the non-stationarities present in microelectrode recordings over 

24-hour duration (b) adapt to signal changes by optimizing movement of microelectrode 

according to the time-varying constitutive properties of the electrode-tissue interface (c) regulating 

signal-to-noise by optimal positioning of microelectrodes  

Specific Aim 3:  

Implementation of adaptive algorithms and in vivo testing (a) packaging, surgery and 

mounting techniques for MEMS implants (b) software implementation of algorithm for 

autonomous control (c) in vivo experiments in rodents for validation of control algorithm and 

characterizing signal quality obtained from adaptive controls 

 The proposed aims will address the key need of establishing a reliable, high-throughput 

interface with neurons in the brain. The main contribution of this thesis would be validating 

strategies to overcome challenges in autonomous navigation of microelectrodes inside a brain 

tissue that is both functionally and structurally dynamic. The proposed controller will greatly 

facilitate current ‘data deprived’ neural signal decoding algorithms that command robotic limbs 

whose efficiency is largely dependent on good quality neuronal recordings. The adaptive robotic 

neural recording system will act as an enabling technology that shall provide the means to 

effectively and reliably link the brain with external devices. 

Outline 

The rest of the dissertation is organized as follows. Chapter 2 has the results of 

characterization of the improved peg drive linear ratcheting microactuators. The operating 

parameters of the MEMS based system that control the dynamics of microelectrode movement 

were optimized for precise operation in a closed loop control paradigm. Further, analysis of 
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reliability of the MEMS system for long-term brain implant applications are included. In Chapter 3, 

experimental observations of the variability in microelectrode recordings over 24-hour duration 

are presented and the putative causes for such variability in signal quality and the need for 

developing a control algorithm are discussed. Chapter 4 discusses the rationale, challenges and 

background for design of control algorithm for autonomous positioning of microelectrodes, 

presents the proposed approach and a framework for the algorithm. Chapter 5 describes a novel 

movement paradigm guided by a mechanical model of brain tissue for precise positioning and 

navigation that adapts to the viscoelastic properties of brain tissue. The mechanical model is 

incorporated in the feedback loop of the control scheme to minimize the change in relative 

displacement between the microelectrode and neuron. Chapter 6 discusses the closed loop 

control scheme with the mechanical model incorporated and the results of testing this control 

strategy for recording neural activity in the brain. The platforms for software and hardware 

implementation of the control algorithm are also outlined. Chapter 7 details the challenges in 

packaging and implantation of MEMS microelectrode arrays over a long term and the progress 

made so far. In Chapter 8, directions for future research are discussed.  
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CHAPTER 2 

IMPROVED PERFORMANCE AND RELIABILITY OF LINEAR RATCHETING 

MICROACTUATORS 

Introduction 

Several MEMS microactuators have been designed and developed for biological 

applications (N. Jackson et al., 2010; Mukundan & Pruitt, 2009; Muthuswamy, Okandan, Jain, & 

Gilletti, 2005a, 2005b; Receveur, Lindemans, & de Rooij, 2007). Detailed reviews of a range of 

MEMS microactuators used for micro and nano-scale manipulations, their capabilities in terms of 

maximum force, displacement, resolution and frequency can be found in earlier reports (Bell, Lu, 

Fleck, & Spearing, 2005; Sahu, Taylor, & Leang, 2010). MEMS microactuators with the 

appropriate design specifications can therefore be chosen based on the requirements of an 

application. For instance, a polymer V-shaped electrothermal microactuator array was fabricated 

to measure mechanical compliance of cell in biological media (W. Y. Zhang et al., 2008). Kim et 

al. (Kim, Liu, Zhang, & Sun, 2008) have demonstrated single cell manipulation using 

electrothermally activated microgripper with force resolution in the nanonewton range. These 

examples demonstrate the potential of electrothermal microactuators for precise positioning and 

manipulation in biological applications. However, several challenges exist in the design, 

development and performance characterization of these actuators so that they perform with a 

high degree of repeatability, accuracy and reliability (Baker, Epp, Serrano, Gorby, & Phinney, 

2009; Cheng, Chan, Cheng, Hsu, & Lai, 2008; de Boer et al., 2004; Geisberger, Sarkar, Ellis, & 

Skidmore, 2003; McLain, Lott, Harb, & Howell, 2002; Olney, 2010; J. S. Park, Chu, Oliver, & 

Gianchandani, 2001). The demands on the microactuator performance are quite varied 

depending on the specific biological application in question. For instance, long-term implantable 

applications are significantly more challenging both for the microactuators and the packaging than 

short-term implantable applications; applications involving cell cultures are typically more 

controllable than applications involving implantation in vivo. This report focuses on microactuators 



 

 7 

specifically designed and developed for brain prosthetic applications in which the microactuators 

were used to move microelectrodes and monitor electrical activity of single neurons in the brain of 

awake, behaving animals. The above application demands that such MEMS devices perform 

reliably over the life-time of a patient, typically 70 years (Kruger, Caruana, Volta, & Rizzolatti, 

2010). The longevity of current microelectrode implants in the brain is highly variable (Chestek et 

al., 2011; Nicolelis et al., 2003) and there is significant degradation in neural signal quality after a 

few weeks of implantation (Kipke, Vetter, Williams, Hetke, & Nunamaker, 2004; Suner, Fellows, 

Vargas-Irwin, Nakata, & Donoghue, 2005). Most current microelectrode arrays are fixed, with no 

capability to re-position them once implanted. Movable microelectrodes in combination with 

automatic closed loop controls (Cham et al., 2005) are a powerful technology that gives the ability 

to position the electrode automatically, provide good quality signal-to-noise ratios (N. Jackson et 

al., 2010) and improve the yield of neuronal units recorded per electrode (Fee & Leonardo, 

2001b) potentially extending the lifetime of microelectrode implants. Earlier reports have 

consistently demonstrated an improved performance using motorized movable microelectrodes 

for neuronal recording applications in the brain (Battaglia et al., 2009a; Eliades & Wang, 2008; 

Fee & Leonardo, 2001b; Gray, Goodell, & Lear, 2007a; Haiss, Butovas, & Schwarz, 2010a; A. 

Jackson & Fetz, 2007; Venkateswaran, Boldt, Parthasarathy, et al., 2005; Wolf et al., 2009; 

Yamamoto & Wilson, 2008; Yang et al., 2011). However, the above technologies to move 

microelectrodes do not readily allow for scaling up the number of microelectrodes to record from 

ensembles of neurons in the brain, which is often a requirement in brain monitoring applications. 

Surface micromachining of MEMS (Bustillo, Howe, & Muller, 1998) enables creation of complex, 

microscale, movable systems that can be batch-fabricated using high throughput standard MEMS 

fabrication processes. Over the past 10 years, the authors have developed in collaboration with 

Sandia National Labs, novel MEMS based moveable microelectrode arrays fabricated using the 

SUMMiT-VTM process (N. Jackson et al., 2010; Muthuswamy et al., 2005a, 2005b). It is a unique 

technology that gives the ability to precisely position the microelectrode array after implantation 

while maintaining comparable chip size and weight as that of the conventional microelectrodes.  
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The most recent MEMS electrothermal actuators were developed to translate the 

microelectrode using a Chevron-latch type of mechanism (Muthuswamy et al., 2005b). These 

devices were successfully implanted in rodents and were able to record neural signal activity for 

over 13 weeks. The above study revealed some important design requirements for the MEMS 

movable microelectrodes for successful operation in long-term experiments in the brain. 

Microelectrode movement consistently led to a significant improvement in the quality of the 

neuronal signal during the first 3 weeks after implantation. However, after three weeks, in 5 out of 

11 cases microelectrode movement did not lead to significant improvement in the quality of the 

signal recorded (N. Jackson et al., 2010). It was suspected that the most likely reason for this 

degradation in performance was that the microactuators were not effective in moving the 

microelectrodes past the glial sheath (a fibrous tissue encapsulation) (Bellamkonda, McConnell, 

Schneider, & Owens, 2007; Reichert, Polikov, & Tresco, 2005) that typically begins to envelop the 

implants beyond 3 weeks. Consequently, microactuators with greater force capabilities than the 

current microactuators are expected to be more effective in moving past the glial sheath.  

Furthermore, implants in the previous study (N. Jackson et al., 2010) using Chevron-latch 

electrothermal microactuators contained bulky moving structures like the release locks and the V-

shaped central drive shuttle. The drive actuators that moved the microelectrode and the actuators 

that controlled the release mechanism were overlaid in two different polysilicon layers of the 5-

layer SUMMiT-VTM process, separated only by 2 µm. As a result, their mechanical structures 

were complex with potential for failure in the long-term. One of the eight MEMS devices in the 

previous study that were actuated after implantation in rodents experienced structural failures at 

multiple places. Thus, a new actuation mechanism where complex mechanical structures were 

not overlaid on top of each other was desirable to reduce the likelihood for failure in long-term 

experiments with awake, behaving animals. It is also preferable for a biomedical implant to have 

minimal power requirements to minimize the number of battery recharges. Thus, the chronic 

experiments with Chevron-latch microactuator based movable microelectrodes indicated the need 
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for a newer actuation mechanism that can generate higher forces, have less complex mechanical 

structures and consume less power.  

In addition, the distance moved by the microelectrode after several actuation cycles 

needs to be predictable in order to accurately determine the location of the implanted 

microelectrode in the brain at any given time. This is important as the microactuators are further 

incorporated in a closed-loop control to automate the actuation of the microelectrode implant in 

the brain (Cham et al., 2005; Wolf et al., 2009) for autonomous prosthetic systems. For a MEMS 

based system, the microactuator operating parameters (such as voltage levels, frequency of 

pulses and time-period of activation) directly impact the dynamics of microelectrode movement. 

Given the inertial and frictional forces inherent in the design of these MEMS devices, different 

operating parameters can lead to varying degrees of accuracy in the microelectrode 

displacement. Therefore, an optimization exercise (Montgomery, 2009) is done in the current 

study to analyze the movement of the microelectrode and determine the optimal parameter set 

required to operate the microactuator for minimal error in microelectrode displacement.  

Finally, factors like mechanical wear, fracture/fatigue, humidity of the environment etc. 

can cause considerable change in the material properties which affects function of MEMS 

devices (S. L. Miller et al., 1998; Pal & Huikai, 2009; van Spengen, 2003). Prior studies have 

reported on the reliability of MEMS electrothermal chevron actuators fabricated using the 

SUMMiT-VTM process (Plass, Baker, & Walraven, 2004; Sivakumar, Johns, Nava, & Dallas, 2010; 

Tanner, 2009). In this current study, we report and compare lifetime analysis of the MEMS 

devices (the earlier Chevron-latch microactuators and the new linear ratcheting microactuators) 

using resistance measurements across the electrothermal microactuators while in operation. 

Scanning Electron Microscopy (SEM) analysis of both MEMS devices after four million actuation 

cycles was done to assess failure mechanisms.
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Methods 

The MEMS devices reported here were 3mm X 7mm chips that accommodate three 

microelectrodes capable of bidirectional (forward and backward) movement as shown in Figure 1. 

Each microelectrode is a polysilicon shank, 50µm wide, 4µm thick and 5mm long. There were 

four electrothermal microactuators coupled with each microelectrode that operate and control its 

movement. Spring-type leads make the electrical connection between the moving microelectrode 

and the stationary bond pad.  

In both of the MEMS technologies (Chevron-latch microactuator and the linear ratcheting 

microactuator) reported here, the microelectrodes were moved using electrothermal actuation. 

The electrothermal actuators were in-plane ‘Chevron’ type of actuators. Chevron or bent-beam 

actuators are used extensively in high force applications and are popular in integrated sensor-

actuator MEMS devices (Sinclair, 2000). The basic structure consists of a V-shaped beam 

anchored at the two ends and connected to a central shuttle at its apex. When an electric current 

is passed through the beam, it expands due to Joule heating and pushes the apex forward. The 

displacement is dependent on the length of the beams and the angle of orientation. The force 

generated at the central shuttle is linearly related to the displacement. An important advantage of 

this type of actuator is that an array of beams when attached to a single central shuttle can cause 

a linear increase in the force output. 

Chevron-latch actuation 

The earlier generation of MEMS microelectrode array was actuated by a Chevron-latch 

mechanism and is illustrated in Fig. 1. A detailed description of this actuation mechanism was 

provided in an earlier report (Muthuswamy et al., 2005b). Briefly, there were four disengage 

actuators that activate the ‘release up’ and ‘release down’ locks respectively. The locks hold the 

electrode in position in the inactive state and release the electrode for movement during the 

active state. The electrode has two rows of teeth on successive layers of polysilicon constituting 

the microelectrode, to which the locks latch onto. The electrode was moved stepwise by the 
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‘move down’ and ‘move up’ actuators moving it in the forward and backward direction 

respectively. The electrothermal heat strips of the ‘release’ actuators and the ‘move’ actuators 

were fabricated in two different polysilicon layers and placed one above the other and they 

intersected perpendicularly.  

Overall, each microelectrode was coupled to six microactuators and failure of even one 

microactuator can lead to failure in electrode movement. The release latches were large 

structures tethered to the polysilicon beams at hinge joints (refer to Fig. 1) and hence were 

susceptible for failure at these joints. Structurally, the design had multiple overlying mechanical 

microstructures as shown in Fig. 1C which impact the overall reliability and functioning of the 

device in the long term. 
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Figure 1. Previous generation of electrothermal actuators. A) A CAD diagram of the electrode 
actuated by the Chevron-latch type of actuation mechanism. B) SEM image of a microelectrode 
actuated by Chevron-latch mechanism. The microelectrode is capable of bi-directional movement 
and a pair of disengage actuators activate the ‘release down’ actuator that frees the electrode 
which is moved down by the ‘move down’ actuator. The electrode moves up by a similar 
mechanism. The broken arrows indicate the direction of displacement of the actuators. C) SEM 
image of the Chevron-latch mechanism showing the complex structures of dual counter 
translation latches and an overlying layer of bulky drive actuators. Enlarged portion shows two 
rows of teeth (pointing in opposite directions) realized on successive layers of polysilicon 
constituting the microelectrode to allow bi-directional movement and the point of contact between 
the latch and the microelectrode. 
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Linear ratcheting type actuator 

The current generation of MEMS microelectrode array reported here for the first time was 

actuated by a linear ratcheting type mechanism that attempts to address some of the 

shortcomings of the earlier Chevron-type actuators identified by long-term in vivo testing (N. 

Jackson et al., 2010). The microelectrode has a linear array of teeth spaced 6.5 µm apart at the 

edges. The ‘pawl’, a peg-like structure engages the teeth of the electrode and locks it in position, 

preventing displacement in rest conditions. The new actuators have a simplified movement 

mechanism with only one ‘pawl’ that engages with the microelectrode teeth as shown in the inset 

in Fig. 2C. A SEM of the drive system with the four microactuators and the microelectrodes are 

shown in Fig. 2C. It has two pairs of electrothermal Chevron actuators that perform identical 

function. ‘Forward drive’ actuator and ‘disengage forward drive’ actuator control the forward 

movement of the microelectrode and ‘reverse drive’ and ‘disengage reverse drive’ actuator 

control the backward movement of the electrode. The central shuttle of the drive and disengage 

actuators are both connected in an L-shape arrangement to a ‘pawl’ that engages the 

microelectrode. A set of timed pulse waveforms was applied to these actuators to operate the 

pawl and move the linear ratchet/microelectrode in a given direction.  
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Figure 2. New generation of peg drive microactuators. A) A CAD diagram of the new generation 
of MEMS microelectrode device with an array of three microelectrodes actuated by linear 
ratcheting microactuators. The electrodes are electrically connected to the recording bond pad via 
spring type leads. B) A CAD diagram showing an enlarged image of the electrode actuated by the 
linear ratcheting type of actuation mechanism with a pair of disengage and drive actuators placed 
opposed to each other.  C) SEM image of microelectrode actuated by linear ratcheting type of 
actuation. The microelectrode has maximum displacement of 5 mm in steps of about 6.5µm. The 
inset shows the encircled region that is the contact between the pawl/peg and a single row of 
teeth on the microelectrode. 

Design of waveforms for activating the linear ratcheting microactuators  

The transient response of the electrothermal actuators to a step of voltage is modeled 

and is shown that the actuator takes finite time to reach steady state displacement (Geisberger et 

al., 2003). The time taken by the actuator to reach the steady state displacement is called its 

‘thermal time constant’. This time constant is based on the actuator design, length of the beams, 

polysilicon resistivity and thermal conductivity, gap size to the substrate, air gap conduction, etc. 

microelectrode 

pawl/peg 

Disengage reverse drive 
actuator causes ‘pawl’ 
engaged at the teeth of the 
electrode to move in the ‘+X’ 
direction and unlock the 
electrode for movement in 
forward direction 

Polysilicon microelectrode 

(ratchet) 

C 

Ag-epoxy 
interconnect bumps 
on Al bond pads 

Disengage forward drive 
actuator causes ‘pawl’ 
engaged at the teeth of the 
electrode to move in the ‘-
X’ direction and unlock the 
electrode for movement in 
reverse direction 

Forward drive 
actuator causes ‘pawl’ 
engaged at the teeth of 
the electrode to exert 
force and push forward 
by 6.5 µm 

A B 

Reverse drive actuator 
causes ‘pawl’ engaged at 
the teeth of the electrode to 
exert force and pull 
backward by 6.5 µm 



 

 15 

The activation waveforms for the microactuators are therefore designed such that each time a 

voltage is turned on or off for an actuator, there is a delay time that is at least equal to the thermal 

time constant (labeled ‘t’ in Fig. 3, and henceforth referred to as a ‘time period’) before the next 

voltage is applied to activate any of the other microactuators.  This ‘time-period’ ensures the 

actuator reaches thermal equilibrium and is fully extended or fully retracted due to a change in 

voltage.  

Forward movement of electrode 

 

Figure 3. Activation waveforms applied to the four electrothermal actuators to move the 
microelectrode. The amplitzude of the waveform depends on the operating voltage defined for the 
particular actuator. The microelectrode moves by one step i.e. 6.5 µm in one complete actuation 
cycle. The time taken for one complete actuation cycle to achieve one forward or one backward 
step is six time periods or ‘6t’. 

Movement of the microelectrode towards the external environment that is off the edge of 

the die was referred to as ‘forward’ movement. Fig. 3A shows the timing of the waveform for 

actuating the electrode in the forward direction. The waveform was split into six time periods that 

constitutes a full cycle of operation. The position of the actuators at the beginning of each time 

period is illustrated in Fig. 4. At the beginning of time period t=1, a step voltage was applied to the 

‘disengage reverse’ actuator that retracts the pawl from the microelectrode. It takes one time 

period for the actuator to fully retract. The second step voltage was applied at the beginning of 

t=2, to the ‘forward drive’ actuator and it was displaced proportional to the applied voltage. The 

pawl attached to the central shuttle of the actuator caused the microelectrode to move forward in 

 

 
Forward actuation waveform Backward actuation waveform A B 
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the direction of the actuator displacement. Further, at the beginning of t=3, the ‘disengage 

reverse’ actuator began to cool down and the pawl tethered to the next teeth on the 

microelectrode. The pawl attached to the ‘disengage forward’ actuator was angled and still 

anchored to the electrode. At t=4 a pulse was applied to the ‘disengage forward’ actuator to 

release the pawl and after period t=5, the actuator cooled down to re-anchor at the next teeth. 

Thus, in one full actuation cycle the microelectrode moved one step which is a distance equal to 

6.5 µm.  

 

 

Figure 4. Illustration of microactuator positions in a linear-ratcheting type of actuation mechanism 
where each panel corresponds to individual time periods in one full actuation cycle waveform. 
Refer to Figure 3 for the sequence of voltages applied during the respective time period in the 
actuation waveform. At the end of the cycle, the pawl ratchets over one tooth of the 
microelectrode moving it forward by one step. 

Reverse Movement of the microelectrode 

Retracting the electrode towards the die was referred to as the ‘reverse’ movement. The 

waveforms for reverse movement were symmetrical to those of the forward movement and follow 

the same sequence of operation as shown in Fig. 3B. A critical difference is that the forward 

motion was achieved with the actuator operating in hot condition and the reverse motion was 

achieved with the actuator operating in cold condition. The reverse drive actuator was placed 

opposed to the forward drive actuator and hence the pawl pulled on the electrode as the actuator 
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cooled down.  At any point of time in the actuation cycle, there was always one peg anchoring the 

microelectrode and keeping the spring-leads in tension.  

Optimal parameters for the waveform 

Operating voltage  

Operating voltages for the actuators were determined experimentally. The voltage 

applied is proportional to the displacement of the actuators and is also proportional to the force 

output. On the drive actuators, the voltage applied should be sufficient to move the peg to the 

next tooth location. On the disengage actuators it should be sufficient to fully retract the peg from 

the teeth in order to allow for the free movement of the electrode. There is a lower threshold 

voltage level below which the actuator shows no displacement. Voltages were stepped up from 

4V in increments of 0.5V until optimal displacements for both kinds of actuators were observed. 

Observations of peg location and actuator displacements were made using a video recording set-

up described below. Voltages above a maximum upper threshold value can cause the actuators 

to melt. Operating the actuators close to the upper threshold voltage can accelerate the failure of 

the device and increase chances for wear-out and failure. Hence the actuation voltages were 

determined based on an optimal voltage level between the lower and upper thresholds of 

operation. 

Operating frequency and time period 

The operating frequency of the actuator depends on the time constant of the actuator. 

When a voltage is applied across the actuator, it reaches a state of thermal equilibrium where the 

heat loss from the actuator equals the heat generation and the actuator will be at its steady state 

displacement. Typically, it takes 0.5-1 ms to heat up and about 0.7-1 ms to cool down. Hence, a 

conservative estimate of the time constant was taken as t=1 ms, so the period for a full cycle was 

T=6 ms with an operating frequency of 167 Hz.  At time constant of t=0.5 ms, a full cycle 

operation would take 3 ms. Hence, 333 Hz can be the upper bound for the operating frequency of 

this design. However, for the purpose of actuating the electrodes in the brain, much lower 
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operating speeds are adequate and arguably even desired. Once the actuator reaches steady 

state displacement at 1 ms after activation, holding the voltage levels high will have no effect on 

the actuator displacement and it will remain at steady state.  

The electrode can be operated at different speeds in the following ways: a) Increasing the 

time period ‘t’ for which a voltage is applied to the actuator. Here, the electrode operates slowly 

as the same actuation cycle would take longer time to execute. Movement efficiency is tested 

with an increase in time period to t=10 ms that results in full actuation cycle operation time of 

T=60 ms. The increased period of operation could possibly play a role in overcoming stiction 

issues. b) The actuation waveforms can be applied at different pulse repetition rates (referred to 

as ‘frequencies’ here and in the rest of the report). In this case, although one full actuation cycle 

takes the same amount of time to complete i.e 6*t where t is the time period, the delay between 

consecutive actuation cycles is varied. Movement efficiency of the microelectrode is tested for 

frequencies of 0.1 Hz (1 actuation cycle/10s), 1 Hz (1 actuation cycle/s) and 10 Hz (10 actuation 

cycles/s), that includes the range of speeds required for successful penetration of the brain tissue 

after the removal of the outer dura mater layer. At these operating frequencies, the electrode is 

expected to move 6.5 µm every 10 s, 6.5 µm every second or 65 µm every second respectively. 

Reliability in movement of the electrode  

In order to optimize the operating parameters for the activating waveforms a design of 

experiment analysis was done. A general, full factorial design was used with frequency, time 

period and direction of movement as the main factors. Frequency has three continuous levels of 

operation – 0.1 Hz (slow), 1 Hz (medium) and 10 Hz (fast), and time period has two levels of 

operation – 1ms (fast) and 10 ms (slow). It is also necessary to characterize movement of the 

electrode when it moves forward versus when it moves backward. Thus, the third factor would be 

the direction of movement with two discrete values - forward and backward movement. The 

experiment is run with three replicates for each set of factor levels. Replication helps in estimating 

internally the errors due to high order interactions among factors that usually occur while 
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conducting an experiment. There were two response variables for the experiment- 1) the mean 

error between the expected movement of the electrode and the actual movement as measured by 

the optical set-up (described below) 2) the standard deviation of the error that gives us an 

estimate of how variable the error is in a given run.  

A design test matrix for the three full factorial design experiments with three replicates 

was determined. Design ExpertTM 8.0.5 was used to determine the run orders and the design 

matrix for the experiment. The experiment has a randomized test sequence. 

Optical set-up for measuring microelectrode displacement 

A custom characterization set up was built to observe movement of the electrodes under 

different actuation schemes described above. A set up with an optical microscope of 120x 

magnification and a c-mount adapter for a digital camera was used for characterizing the 

movement of the electrodes on a probe station. TTL pulses from the computer generated by 

Tucker Davis Technologies’ signal processing interface (TDT technologies, Boca Raton, FL) were 

fed into a custom drive signal generation circuit. This circuitry allowed the manipulation of voltage, 

pulse width and frequency of the drive signals as required. The movement of the electrodes was 

recorded as a video sequence with a frame rate of 3 fps. Upon completion of the runs in the 

experimental design, videos characterizing the movement of the electrodes were obtained.  The 

frames in the captured video were analyzed using a custom image processing algorithm in 

MATLAB that measured the displacement of the electrode between consecutive frames. A series 

of data points that show the displacement profile of the electrode with time is created. The error 

between the distances moved by the electrode as measured by the optical set-up and the 

expected movement of the electrode due to the given operating parameter set was examined. 

The expected waveform was calculated from the frequency of actuation. For example, at 1 Hz the 

electrode is expected to move 6.5 µm every second. An error series was calculated for each run 

and was defined by the equation below. The mean and standard deviation of this error series for 

each run was determined. 
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Force measurements 

Force measurements were made using a flip chip packaged MEMS device secured to the 

tower of a stereotactic frame. The device was then lowered by using a 5 DOF micromanipulator. 

A load cell (Wipotec, Germany, model: MTC 10/30 – ZER) was used to make the force 

measurements. It has a maximum weighing range of 2 g and has a sensitivity of 0.1 mg. The 

MEMS chip was positioned above the load cell in the vertical direction such that the edge of the 

MEMS package was at a distance of about 2 mm from the load cell surface. The microelectrodes 

were extended off the edge of the die by approximately 1 mm. The microelectrode tip and the 

load cell surface were visualized under a stereo-zoom microscope with a digital camera 

connected to a LCD screen. The microelectrode was actuated with operating voltages as 

determined above until the tip of the electrode pushed on the load cell surface. The load cell was 

connected to the computer via a serial port and force measurements were made once every 1 µs.  

Resistance measurements to test long term electrical functionality and mechanical wear 

The actuators were operated over four million cycles of actuation at 10 actuation 

cycles/second. The voltage was set at the operating voltage level at which the actuators are 

normally operated which is the safe zone of operation, lower than the level at which they undergo 

plastic deformations. The current through the actuator under displacement was measured using a 

digital multimeter (M3510A, Picotest Corp., Taiwan) connected to the computer via a serial port. 

Resistance measurements were made at randomized intervals of time during the four million 

cycles. The duration of every measurement lasted for half an hour during which a reading was 

recorded every 25 ms. Thereby; the resistance of the actuators was sampled during steady state 

displacement and zero displacement. 
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Failure analysis of microactuators 

SEMs of the MEMS device were analyzed for any structural changes or failures, 

presence of debris, oxidation etc. After four million cycles of operation, the actuator strips were 

imaged to determine mechanical wear and physical deformations that would disrupt the actuation 

mechanism. 
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Results 

The linear ratcheting actuators required lower voltages (5.8 V-6.5 V) and have finer 

displacement resolution (6.5 µm) compared to the earlier Chevron-latch electro-thermal 

microactuators which required 9 V-10 V and had displacement resolution of 9 µm. The current 

drawn by the linear ratcheting microactuator was 22 mA per cycle and hence the power 

consumption was approximately 143 mW/cycle. This was an 85% reduction in power 

consumption from the earlier Chevron microactuators which drew 100 mA per cycle of current 

and consumed power of 1W. 

Optimal parameters for the new actuation scheme 

Operating Voltage 

 The linear ratcheting actuator required approximately 5.8 V and 10 mA dc to fully 

disengage the pawl from the electrode. The forward drive actuator required approximately 6.5 V 

and 12 mA to ratchet over one peg slot, resulting in a linear displacement of 6.5 µm per actuation. 

The reverse drive actuator required 7 V to move back one step. The differences in voltage 

requirement was because the reverse drive actuator exerted force when it was cooling down and 

hence the force applied on the electrode returned to zero as the actuator returned to the zero 

displacement position. The upper threshold voltage for disengage and drive actuators was 10 V. 

This was found by increasing the activation voltage until the heat strips of the actuators burned 

out. Hence, activation voltages in the range of 6-7 V were well within the upper threshold 

decreasing the chances for wear-out and failure.  

Optimal frequency and time period of activation waveforms 

Design ExpertTM provided statistical models that captured the effect of three factors – (1) 

frequency of the activation waveform (2) time period of the activation waveform and (3) direction 

of microelectrode movement and their respective interactions on the two response variables - (1) 

mean and (2) standard deviation of error in the movement of the microelectrode. The mean and 

standard deviation values for each run followed a normal distribution as identified by the normal 
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probability plot of the studentized residuals as shown in Fig. 5. Statistical analysis using analysis 

of variance (ANOVA) was done from the factors that most significantly affect the two response 

variables. In the ANOVA table generated by Design ExpertTM, the interaction term of frequency 

and time-period had significant impact on the mean error response with a p-value of 0.0003.  

Thus, frequency or time period factors individually do not influence the error rates significantly.  In 

the ANOVA model for standard deviation response, only the direction of movement factor had 

significant impact with a p-value of 0.0331.  

 

Figure 5. Normal probability plot of studentized residuals for A) mean error responses and B) 
standard deviation responses shows that the residuals satisfy the normality assumption for the 
model generated by ANOVA. All the responses should fall in a line and satisfy the ‘fat pencil test’. 

 The model output graphs showed the effect of the significant factors on the model 

response variables. In Fig. 6, the mean error response is minimal and is approximately zero for a 

frequency of 1 Hz and time period of 1 ms. The expected and the actual waveforms for the above 

parameters of operation completely overlapped in both forward and backward direction of 

movement as shown in Fig. 7. The second model graph in Fig. 6B shows the standard deviation 

of the errors in various runs as a function of the direction of movement of the microelectrode. The 

SD of error response while the microelectrode is moving forward had lower variation when 

compared to the same while the microelectrode is moving backward. This was consistent with the 
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observation that forward movement of the microelectrode was more uniform while the backward 

movement of the microelectrode resulted in skips and jumps that makes the error variations large. 

 

Figure 6. Model output variables after ANOVA showing the effect of the most significant factors 
on the two response variables a) mean error and b) standard deviation of error. A) The interaction 
graph shows the mean error for different combinations of frequency and time period as tested in 
the experimental design. The frequency of 1 Hz and 1 ms has the least mean error. B) Only the 
direction of movement significantly affects the standard deviation where backward movement has 
larger standard deviation whereas forward movement is more consistent, with smaller standard 
deviation in errors. 

 

Figure 7. Movement profiles at optimal activation parameters. A) Forward movement profile of an 
electrode actuated at 1 Hz frequency with 1 ms time period. B)  Backward movement profile of an 
electrode actuated by the same waveform parameters. In both cases the expected and the actual 
movement profiles track each other closely. 
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The expected and actual movement profiles of an electrode actuated at 0.1 Hz with 10 

ms time period is shown in Fig. 8 that illustrates the skipping behavior observed in backward 

movement. In this case, the electrode skipped a few actuation cycles at approximately 500 s 

while the electrode was stuck. Repetition of the actuation waveforms allowed it to overcome the 

stiction at that position and it again began moving backward. Fig. 8B shows the backward 

movement profiles of an electrode where the electrode jumped more than one peg per actuation 

resulting in larger displacement than expected. The kind of movement profiles shown in Fig 8 

where the expected and actual movement significantly differed from each other were observed in 

about 1 out of every 5 trials conducted. 

  

Figure 8. Movement profile at non-optimal movement parameters. A) Backward movement profile 
of an electrode actuated at 0.1 Hz with a time period of 10ms. At 0.1 Hz the electrode is expected 
to move 6.5 µm every 10s. The electrode got stuck after being displaced by about 200 µm and 
repeated pulsing of the actuators allows it to recover movement. B) Backward movement profile 
of an electrode actuated at 0.1 Hz with a waveform of 1ms. The electrode jumps through more 
than one step per actuation cycle resulting in a faster retraction of the electrode than expected. 

B A A 
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Force output 

 

Figure 9. Force output by chevron-latch microactuators with two heat strips on the polysilicon 
microelectrode. 

 The force generated by the Chevron-latch microactuator on one microelectrode is shown 

in Fig. 10. The peaks and troughs correspond to each actuation cycle. The peak force is 

generated when the release locks are activated and the forward microactuator moves the 

microelectrode down. The trough in the force data corresponds to the instant when the release 

locks hold the electrode in position before the beginning of the next actuation cycle. As shown in 

Fig. 9, the average peak force generated by the MEMS microelectrode is approximately 99.5 ± 

7.5 µN. The MEMS devices used in the earlier chronic in vivo study (N. Jackson et al., 2010) had 

microactuators with 4 thermal strips and they generated a force of approximately 200 µN since 

the force scales linearly with the number of thermal strips on the actuator.  

 The force generated by linear ratcheting type of actuator on a microelectrode is shown in 

Fig. 9. The actuators have two thermal strips as shown in Fig 2. As the electrode is actuated, a 

peak force of 250 µN is registered when the drive actuator moves the electrode down by one step 

and the electrode tip touches the load cell. Each actuation cycle is for 60 ms as the time period 

t=10ms and the waveforms for actuation are as shown in Fig. 3. The force output varies in 

accordance with the actuation cycle and the peak is recorded every time the microactuator moves 
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the microelectrode. At the end of the actuation cycle, the microelectrode is held in position by the 

disengage microactuators and exerting a resting force of approximately 150 µN corresponding to 

the microelectrode being pressed against the load cell in the new position. After the initial twelve 

actuation cycles, the microelectrode has already moved approximately 80 µm and a marginal 

decrease in the peak output force is observed as a result of buckling in the electrodes.  

 

Figure 10. Force output of linear ratcheting type of actuation. The force varies during the 
actuation cycle and the peak force output is when the microactuator acts on the microelectrode. 
The microelectrode is actuated over a total of 20 actuation cycles and the average peak force 
output is recorded. 

Resistance measurements for lifetime analysis 

Electrical resistance measurements were made over four million cycles of operation of 

the microactuator.  Resistance across the reverse drive actuator in the linear ratcheting type 

device and release down actuator in the Chevron-latch type device were measured while the 

actuators were in operation. They were operated at 6.5V and 9V respectively. The mean and 

standard deviation of all the resistance values were calculated and plotted as shown in Fig. 11. 

The linear ratcheting type actuator showed fairly constant resistance across four million cycles of 

operation as evidenced by the smaller error bars in Fig. 11. The Chevron-latch actuator showed 

deviations in resistance across four million cycles of operation with large variations across 

individual readings. 
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Figure 11. Resistance measurements to measure reliability of operation at a frequency of 10 
actuation cycles/second. . The reverse actuator of the linear ratcheting device shows constancy 
in electrical measurements. The release down chevron actuator shows large variations in 
individual measurements that were recorded over a period of one hour while the actuator was in 
operation. 

Failure analysis in microactuators  

The linear ratcheting type of actuator remained functional even after four million cycles of 

operation.  No structural deformations were observed after 4 million cycles of operation. The 

Chevron-latch actuator failed to operate beyond four million cycles of actuation. A scanning 

electron microscope (SEM) analysis was done to determine the reasons for failure. SEM 

micrographs documenting the different mechanisms of failure in these MEMS devices are shown 

in Fig. 12. Mechanical wear was the dominant failure mode as seen here. Pin joints, substrate 

hinges/tether points and hubs were critical points of failure as observed in Fig. 12A. Failure by 

fracture due to fatigue was a dominant failure mode largely due to the tethering of the release 

lock (a large mechanical structure) by a thin beam which induces large stresses and results in 

fatigue and wears at the joint over 4 X 106 continuous actuation cycles. An enlarged view of the 

broken hinge can be seen in Fig. 12B.  Fig. 12C and Fig. 12D show failure in the electrothermal 

strips of the microactuators. Oxidation and plastic deformation of the beams can be observed in 
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the beams on the left hand side of Fig. 12C. The electrothermal strips on the right hand side have 

melted. In Fig. 12D, mechanical failure in the electrothermal strips has occurred due to creep and 

there is ductile separation. Fig. 12E illustrates deformation in the beam that orients the release 

lock with the teeth of the microelectrode, as a result of which the teeth and locking structure are 

misaligned. Each of the above failure modes can be catastrophic to the operation of the device.  
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Figure 12. SEM micrographs showing the different failure modes in Chevron actuator after 
four million cycles of operation. A) Fracture at a hinge joint due to fatigue. B) Magnified view 
of the fatigue failure in the region highlighted in A. C) Illustration of oxidation and plastic 
deformation in the electrothermal strips of the actuator. D) Creep and plastic deformation in 
the electrothermal actuator beams due to large stresses as they operate the large V-shaped 
pawl in the move down actuator. E) Plastic deformation in the beam that orients the release-
lock structure and the teeth of the microelectrode leading to misalignment that hinders the 
movement mechanism of the microelectrode.	
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Discussion  

In the new devices with linear ratcheting microactuators, the microelectrodes have a 

single set of teeth along the length on either side (compared to two successive layers of teeth on 

each side of the microelectrode in the Chevron-latch actuators) that results in more reliable 

grasping of the microelectrode by the actuators. Further, overlying thermal strips were eliminated 

and have significantly reduced the polysilicon surface areas that come in contact during 

actuation. The bulky dual counter translation latches that were prone to fatigue failure in the 

earlier actuation mechanism are replaced by a simple pin-like design in the new actuation 

mechanism.  Therefore, the new generation of microactuators and microelectrodes are expected 

to be less prone to mechanical failure in the long-term. 

The current generation of devices with the linear ratcheting actuators is a low power 

design with lower supply voltages that is preferable for long-term implantable applications. Table 

1 summarizes the design improvements in the linear ratcheting type of actuation mechanism. 

Table 1. Comparison between the two types of actuation mechanisms 

Device attributes Chevron latch mechanism Linear ratchet mechanism 
Voltage levels for actuation 9 V 5.8-6.5 V 
Actuation step 9 µm 6.5 µm 
Full stroke length 5 mm 5 mm 
Maximum frequency of 
operation 333 Hz 333 Hz 

Minimum duration of activation 
cycle 3 ms 6 ms 

Power consumption 1 W/cycle 143 mW/cycle 
Force generated per heat strip 50 µN 111 µN 

 

The linear ratcheting type of actuation produces force per heat strip that is twice as large 

as the previous Chevron-latch type of design with almost 30% decrease in the voltage levels 

applied for actuation. The average force output increases linearly with the number of actuator 

legs. The new MEMS devices have three linear ratcheting actuators as shown in Fig 2, where the 

left and the right microelectrodes have drive actuators with five heat strips each and the middle 

microelectrode has microactuators with ten heat strips. Thus, these devices are capable of 
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generating a maximum force output of approximately 550 µN (on the left and right 

microelectrodes) and 1 mN (on the middle microelectrode) respectively. We have determined that 

the force required to penetrate an ex-vivo brain using polysilicon microelectrode moved at 10µm/s 

was about 200µN (unpublished data). However, the forces required to penetrate the glial sheath 

in long term implantation are unknown and can only be estimated from acute measurements in 

the brain. (Bellamkonda et al., 2007; Kas et al., 2006; Sharp, Ortega, Restrepo, Curran-Everett, & 

Gall, 2009a). Force output in the current generation of devices has increased by approximately 3 

times on the left and right microelectrodes and 5 times on the middle microelectrode. The 

increased force is expected to enable movement in the brain for a longer duration of time.  

The results from experiments to optimize the operating parameters of the activation 

waveforms in the linear ratcheting microactuators indicate that frequency or time period alone 

does not influence the error between the actual and expected microelectrode displacement 

profiles. It is the interaction of these two factors that determines the error values. In about 2/3rd of 

the runs to test microelectrode displacement, the error values are within the 30% range. During 

forward movement of the microelectrode, the error values increase to approximately 30% error 

during the initial phase as the microelectrodes just begin to move, before settling down to a 

steady-state value. This steady-state error value is the cumulative error from the previous cycles. 

Inertial and static frictional forces appear to play a significant role in determining microelectrode 

displacement errors during the initial phase when the microelectrodes are about to move. 

However, once the microelectrode is in motion, there appears to be no further errors in 

displacement as indicated by the steady-state values for the cumulative errors. This is in contrast 

to variations in the error seen when the electrode is moving backward. Although the range of 

error percentages is comparable to the range seen during forward movement, the standard 

deviation of error is large for the runs when the electrode is moving backward. This is also verified 

by the statistical model where the standard deviation of error is only influenced by the direction of 

movement of the microelectrode and are seemingly unaffected by frequency or time period of the 

activation waveforms or their interaction.  The large variations during backward movement of the 
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electrode can be attributed to the slipping issues discussed earlier. However, the slipping issues 

are more prominent as the electrode gets retracted further into the chip. This is probably because 

of the reduction in the spring force (that acts in the direction of backward movement of the 

microelectrode) as the spring attached to the microelectrode begins to relax while the 

microelectrode is drawn into the chip, and the resistive forces due to friction become more 

dominant. The displacement error when the electrode is extended far out from the edge of the die 

is less variable. 

The following reason can also potentially contribute to the slipping seen during backward 

microelectrode movement. In the current design, the reverse actuator pulls the microelectrode 

back while cooling down. As the actuator cools down it pulls back to its zero displacement 

position. Consequently, the actuator exerts force with a receding profile that diminishes to zero as 

the actuator reaches its zero displacement position. Therefore, in the presence of frictional forces, 

the actuator may not fully reach its zero displacement position. This can result in slipping as the 

actuator does not pull back far enough to ratchet over the next tooth and the microelectrode will 

not move at all.  

In order to overcome slippage during backward movement, the reverse actuator could be 

operated at a higher voltage such that it extends out more than one peg each time and the 

actuator would have at least crossed one peg when resistive forces are present. Another way to 

avoid slippage during backward movement would be to operate the reverse actuator also in the 

hot condition similar to the forward actuator. However, this option is less desirable. There is 

approximately 20 MPa residual stresses in the polysilicon due to the fabrication process 

(Phinney, Spletzer, Baker, & Serrano, 2010). Packaging will add to the stresses in the die as well. 

Any stress in the actuator beams will cause the thermal actuators to have some small non-zero 

displacement even when unpowered. This might result in the reverse actuators and forward 

actuators becoming misaligned with respect to the pegs on the microelectrode resulting in failure 

of the MEMS device. Thus, arranging the actuators as in the current scheme, with one operating 

hot and the other cool fixes this problem and causes the actuators to be insensitive to stress 
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issues. An additional advantage of the symmetric placement of actuators is that it allows the 

device to function even when one of the drive actuator fails. When either one of the forward or 

reverse actuators fail, the waveforms for the disengage actuators can be switched and the 

functional actuator can be made to operate in the hot or cold condition, thus moving the 

microelectrode forward or backward.  

The resistance measurements were sampled as the actuator was in dynamic state of 

transition from steady state displacement to zero displacement in the actuation cycle. The 

actuator resistance increases significantly with heating (because resistivity of poly is a strong 

function of temperature) and the variations seen during individual measurements may be 

attributed to this. But both the linear-ratcheting and the Chevron-latch actuators were sampled at 

various points of the heating and cooling cycle. The lower variations in resistance in the linear-

ratcheting actuators could be due to better heat dissipation. Changing resistance implies change 

in the material properties of the legs of the actuator and mechanical deformations that affects it 

electrical functionality. The large variations in resistance measurements in the Chevron-latch 

microactuators could be due to two causes: i) the actuators are coupled to bulky release locks 

that could cause excessive strain and material degradation during displacement ii) a higher 

voltage is applied for actuation and the legs of the actuator are shorter, so the heat generation is 

more and the area available for heat dissipation is less. The SEM images of the Chevron-latch 

type of microactuators after four million cycles of actuation indicate wear in the actuator thermal 

strips, fracture at hinge joints and creep failure. It is known that creep rate in polysilicon increases 

as temperature increases (Tuck, Jungen, Geisberger, Ellis, & Skidmore, 2005).  The higher heat 

dissipation in the Chevron-latch actuator can further accelerate plastic deformation. The 

resistance of the actuator beams in the linear ratcheting type actuator is lower than the Chevron 

latch type actuator which lowers heat dissipation and thus decreases the possibility of failure due 

to creep. After 4 million cycles of operation, the linear ratcheting actuator was still functional. 

The mechanism for fracture due to wear is described by Spengen et. al. (van Spengen, 

2003). Polysilicon in air is always covered by a thin native oxide layer. A small crack can develop 
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on the surface of this oxide layer which propagates by stress corrosion cracking mechanism. 

When the externally applied stress is large enough, crack growth is observed leading to oxidation 

of deeper polysilicon layers. This could be the possible mechanism of failure in Fig. 12A. In the 

linear ratcheting type of actuator such joints where there is high concentration of stresses is 

eliminated by constructing a simple pin like structure that tethers to the microelectrode. 

Conclusions 

We report here a new linear ratcheting microactuator that performs better than the 

Chevron-latch microactuator for potential implantable, long-term brain prosthetic applications. The 

optimal operating parameters for activating the linear ratcheting actuators were first determined 

through an exhaustive set of experiments with different operating parameters and subsequent 

statistical analysis. Optimal parameters set for the activation waveforms to move the 

microelectrode forward and backward were determined. The new MEMS devices with linear 

ratcheting microactuators generate twice as much force per heat strip compared to the Chevron-

latch microactuator, appear to be mechanically robust due partly to less complexity in their 

mechanical structure, consume less power, and have finer movement resolution. Lifetime 

analysis using resistance measurements and SEM analysis after 4 million cycles indicate that the 

linear ratcheting microactuators may be less prone to failure than the earlier Chevron-latch 

microactuators. We therefore conclude that the MEMS movable microelectrodes with linear 

ratcheting microactuators are likely to perform better than the Chevron-latch microactuators in 

long-term brain implant applications.  
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CHAPTER 3 

VARIABILITIES IN 24 HOUR EXTRA-CELLULAR NEURAL RECORDING 

Introduction 

As mentioned in Chapter 1, a prosthetic system has to be reliable in order to be clinically 

viable. Reliability implies that it can be used consistently without degradation of performance. 

Although the latest cutting edge microelectrode technologies and implantation techniques have 

increased the life span of neural recordings, it is still a safe assumption that the number of 

electrodes with good signal quality degrades over time. Signal sorting algorithms and decoding 

techniques are being designed to either counter or adapt with this signal loss (Schwartz et al. 

2006, 205-220; Hatsopoulos and Donoghue 2009, 249; Gilja et al. 2011, 1-1; Ganguly and 

Carmena 2009, e1000153 EP -)(Andersen et al. 2004, 486-493; Lebedev and Nicolelis 2006, 

536-546; Wahnoun, He, and Helms Tillery 2006, 162)(Moritz, Perlmutter, and Fetz 2008, 639-

642). As other areas of neural prosthetics make rapid progress there is almost an urgency to 

develop reliable neural interface technology, else it risks becoming a serious bottleneck for the 

translation of human cortical prostheses. Movable electrode technology now gives us the 

opportunity to re-establish contact at failed interfaces by repositioning the electrodes (Jackson et 

al. 2010). Automation so that the electrodes can adaptively reposition themselves and seek 

functional interfaces when the quality of neural signal declines is the much needed next frontier in 

neural interface technology. Such microelectrodes that are not just passive sensors but can 

assess the recording environment and actuate to maintain a sustained signal output are the core 

of next generation of robotic neural interfaces. 

 The neural interface is highly dynamic. There are a host of physical changes and tissue 

response mechanisms that interact to affect the quality of recordings. Several reasons exist for 

non-stationarities in neural signal recordings such as brain micromotion, motion artifacts, 

physiological factors, brain tissue drifts and formation of glial sheath as a result of immune 

response to the implanted electrode etc. The above reasons for variability act over different time 
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scales ranging from seconds to weeks. In the following paragraphs we discuss in detail some of 

the observed non-stationarities and their reasons. 

Variations in signal quality due to tissue response 

 Studies regarding the evolving interface have mostly focused on tissue response around 

the microimplants. Literature from the past few decades seem to suggest tissue response as the 

predominant factor for the lack of stability in neural recordings. Brain tissue reacts to implanted 

electrodes by mounting a glial cell mediated response. A thick continuous cellular sheath is 

formed that envelops the electrode. The response occurs in broadly two phases. The acute 

phase is dominated by reaction to injury caused by implantation of the electrodes. Initially 

electrode insertion compromises the blood brain barrier as capillaries in the electrode track are 

damaged. Blood borne macrophages enter the site of injury through severed vessels. The 

electrode damages the extracellular matrix, glial and neuronal cell processes as it penetrates 

deeper into tissue. Tissue that was initially in the region of the electrode track is pushed aside 

and tissue beneath the electrode tip is compressed leading to the build-up of a high stress region 

around the electrode. Edema is observed in most cases due to the injury caused. Microglia can 

become over-activated in response to the tissue damage and proliferate at the site after about a 

day of implantation. They have been shown to secrete reactive oxygen species as well as a 

number of inflammatory cytokines, which is toxic to neighboring neurons at high concentrations 

(Block, Zecca, and Hong 2007, 57-69). Inflammation, edema responses diminish after the first 

week and microglial activation is also reduced although some studies report the presence of 

macrophages even after 4 weeks (Biran, Martin, and Tresco 2005, 115-126). However, the extent 

of this injury is limited to only path of the implant and the initial reaction is not of major 

consequence to neural recording capabilities (Biran, Martin, and Tresco 2005, 115-126). 

 The second phase is a sustained chronic response to the continued presence of the 

probe that leads to the formation of a compact sheath that extends to a several tens of 

micrometers from the electrode (Turner et al. 1999, 33-49). Gliosis displaces neurons in the 
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volume surrounding the electrode and leads to neurons migrating away from the recording sites 

(Polikov, Tresco, and Reichert 2005, 1-18). In most studies of stability of neural recordings it is 

observed that there is significant change in neural activity over the first 4-6 weeks and the signal 

stabilizes after about 8 weeks (Nicolelis et al. 2003, 11041; Liu et al. 1999, 315-326). In a 

histology study, electrodes were explanted from feline cortex, the tissue was stained and it was 

found that those electrodes that had stable recordings in fact had a large neuron in the vicinity of 

the implant track (Liu et al. 1999, 315-326). And every electrode which was unable to record any 

action potential recordings had no neurons nearby. Most neural recordings decline over a period 

of weeks in a timeline that is similar to the formation of the glial sheath indicating that the gradual 

remodeling of the tissue architecture around the electrode as one of the primary reasons for 

recording failure (Griffith and Humphrey 2006, 81-86; Winslow and Tresco 2010, 1558-1567).  

Local neurodegenaration 

 Neuronal cell loss of about 40% was found within a radius of 100µm in the cerebral 

cortex and there was a significant loss of neurofilaments as far as 230µm. It is hypothesized that 

persistence of microglia due to the continued presence of the implant leads to this cell loss (Biran, 

Martin, and Tresco 2005, 115-126; McConnell et al. 2009, 056003). Further evidence that the 

presence of the implant alters the tissue architecture surrounding it is that no electrode tracks 

were visible after several weeks when the electrode was inserted and immediately removed 

(Biran, Martin, and Tresco 2005, 115-126).This has strong implications for designing strategies 

with movable microelectrodes where the electrode can be retracted, the tissue allowed to heal 

and then reinserted to the recording region of interest. 

Increase in impedance 

 The general increase in impedance observed in chronic neural implants is attributed to 

the formation of the compact and fibrous sheath around the electrode. The sheath is very dense 

and hence reduces the space for extracellular current flow. The largest contribution from reactive 

astrocytes on the impedance spectra is within a 100µm radius from the interface, the region from 

where electrodes are mostly likely to record electrical signals (Frampton et al. 2010, 1031-1047; 
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McConnell, Butera, and Bellamkonda 2009, 055005; Otto, Johnson, and Kipke 2006, 333-340) 

Tissue response to movable microelectrodes 

 The tissue response elicited by a movable microelectrode in the brain is not well 

understood. More importantly, the extent and biology of the chronic tissue response is not known 

when the implant is non-stationary. To our knowledge this (Stice and Muthuswamy 2009, 046004) 

is the only study on tissue response due to repositioning of microelectrodes. The data from this 

study suggested that using a two-step implant procedure where the microelectrode will be moved 

to the final recording location in two stages could minimize the reactive astrocytic response to 

implanted microelectrode. Data from other groups also seems to suggest that a slow implantation 

procedure with movement steps spread over two weeks lead more stable recordings (Yamamoto 

and Wilson 2008a, 2430-2440). On the basis of these studies, it can be derived that allowing the 

microelectrode implants to remain stationary for the first two weeks allows the initial injury 

response to stabilize. Moving the microelectrode to the site of recording after this initial 'settling-in' 

period can potentially lead to good quality recordings. However, chronic tissue response to 

repeated movements of the microelectrode remains unexplored. Would such movements prevent 

the consolidation of reactive astrocytes into a dense sheath? The impact of continuous electrode 

motion on the presence of neurons around the electrode track is unknown. Also, the impact of 

parameters like the frequency and speed of movement of the microelectrode on chronic tissue 

response is also unexplored. Controlled experiments to answer these questions are required for 

long term strategies to cope with the tissue response. 

 From all the studies of tissue response a universally accepted view is that strategies to 

overcome foreign body response and glial scar formation are a critical part of any implant design. 

From the point of view of designing controls for movement of microelectrodes over a long term, 

four important messages emerge- 

• The timelines of acute and chronic inflammation and consolidation of glial sheath should 

be considered while moving the electrodes to stabilize the neural recordings 

• The distance the microelectrode has to move to seek out areas for the presence of neural 
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activity is dictated by the boundaries or physical extent of the chronic tissue response  

• For chronic implants the injury response to initial implantation trauma stabilizes after two 

weeks, moving the microelectrodes after this period can be potentially beneficial to 

sustain the quality of neural recordings  

• The fact that the tissue is restored to near pristine levels of neuronal densities when the 

implant is retracted could be used to design clever strategies of retraction and re-

implantation to seek newer electrode-neuron interfaces.  

Non-stationarities in signal recordings due to physical changes 

 Another source for variations in signal quality is the dynamic physical changes at the 

neural interface itself. During initial implantation it is often observed that the brain tissue can 

dimple over a millimeter as the tissue is pulled along with the microelectrode. An excellent 

illustration of the tissue strain caused during electrode penetration is given by the videos 

published by (Bjornsson et al. 2006, 196). Dynamic physical changes at the interface are caused 

when the microelectrode or tissue move relative to each other. The time course of the tissue 

response and how it returns to steady state is dependent on the mechanical properties of the 

material. The displacement of the tissue alters the relative position between the neuron and the 

recording site of the microelectrode. It is intuitive to expect that this change in relative distance 

causes changes in the signal amplitude and shape recorded by the microelectrode and in general 

accounts for differences seen in signal shapes due to physiological activity like breathing, blood 

pressure (Britt and Rossi 1982, 219-229; Fee 2000, 461-468), or physical movement of the 

animal and electrode drift.  

Tissue micromotion 

 Brain tissue moves relative to the microelectrode mainly because of three reasons: (i) 

pulsations in the vasculature, (ii) propagating mechanical pressure waves due to breathing (iii) 

propagating mechanical pressure waves in freely behaving animals (vigorous movements of the 

head, sneezing etc.) The level of tissue micromotion is species dependent with large relative 
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displacements observed in non-human primates and humans, and less catastrophic 

displacements observed in rodent models (Muthuswamy et al. 2011, 3B. 2.1-3B. 2.4). 

Displacements of 100–250 µm due to vascular pulsations and 300–900 µm due to breathing were 

observed in the brainstem of cats using optical interferometry measurements (Britt and Rossi 

1982, 219-229). In humans, the effect is more exaggerated; brains can displace and have 

torsional displacements over several millimeters from accelerated head movements. Anecdotal 

evidence from our own laboratory suggests approximately 20–80 µm of brain tissue displacement 

in the cortex during intra-cortical force measurements in an anesthetized adult rat. 

Review of stability of neural recordings 

 Recent studies on stability of neural recordings have published results that indicate 

change in action potential shape and amplitude or changes in the population of units being 

recorded from freely behaving animals. The data for such stability analysis is typically recorded 

from three time scales: (i) day to day recording sessions which last from a duration of minutes to 

hours (ii) continuous recording systems that monitor and store data for over 24 hour (iii) long term 

recordings over a duration of several months to years. 

Short term variations 

 Short recording sessions that last anywhere between 5 minutes to 20 minutes also show 

variabilities in spike amplitude (Fee, Mitra, and Kleinfeld 1996, 3823-3833; Williams, Rennaker, 

and Kipke 1999, 1069-1076). Variability in spike amplitude is usually modeled as a normal 

distribution in most spike sorting algorithms. Although some studies have shown that the t-

distribution is a better fit to the variations seen in the spike recordings (Chah et al. 2011, 2558-

2561). This implies that the standard deviation we observe in the data is only a conservative 

estimate and is much larger than what is normally expected. In these short timescales, changes 

in action potential amplitude can happen rather abruptly. Motion artifacts caused due to animal 

behavior that may lead to the electrode array shifting inside the brain is likely responsible for 

some of these changes.  One such illustration of abrupt changes in action potentials due to 
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vigorous head movement (Santhanam et al. 2007, 2037-2050) where an accelerometer mounted 

on the monkey's head was used to measure the head accelerations.  

 The study of stability of neural recordings needs to be extended to longer time scales to 

track gradual changes in unit activity. Ideally in a cortical prosthetic application data would be 

recorded over 24 hour duration, 7 days a week. The variability in neural signals in such scenario 

is enormous and research groups are only now beginning to characterize the associated changes 

in neural waveforms aided by wireless signal acquisition systems (Chestek et al. 2011, 045005). 

Studying of neural activity at continuous time scales over 24 hours or days are imperative to 

provide insight into the mechanisms that may cause variability in neural data over the long term. 

Moreover such studies are rarely done in rodent models and data of neural signal variability over 

24 hours in rodents is not available. 

Long term variations 

 Most long-term studies of neural stability observe that waveform data was most variable 

in the first two weeks of implantation which might be directly correlated with the injury response. 

The electrodes that were selected and tracked for stability had varying spike shapes and 

amplitudes between different recording sessions. Although some attempts were made to track the 

neural population recorded in all the sessions using statistical approaches like Bayesian 

classifiers and ascertain whether they were from the same electrode. However, on an average a 

shifting population of multi-units was captured on the arrays (Nicolelis et al. 2003, 11041; Suner 

et al. 2005, 524-541; Liu et al. 2006, 91-100; Dickey et al. 2009, 1331-1339). In these long time 

scales, the variations seen in unit waveforms could be potentially attributed to a number of 

mechanisms such as neural plasticity, degradation of the electrode insulation, or chronic 

inflammation response. A common hypothesis for recording varying unit activity is that the 

electrode array sinks into the cortical tissue slowly over time, known as electrode drift.  

 One previous study examined day-to-day stability in recordings from the Utah array in a 

feline model and saw substantial inter-day changes in neural waveforms which correlated with 

measures of inflammation (Parker et al. 2011, 145-165). In all of these studies (Nicolelis et al. 
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2003, 11041; Chestek et al. 2011, 045005; Suner et al. 2005, 524-541; Liu et al. 2006, 91-100; 

Williams, Rennaker, and Kipke 1999, 303-313; Tolias et al. 2007, 3780-3790; Taylor, Tillery, and 

Schwartz 2002, 1829; Schmitzer-Torbert and Redish 2004, 2259-2272; Rousche and Normann 

1998, 1-15; Greenberg and Wilson 2004, 1042; Gray et al. 1995, 43-54; Krüger et al. 2010; Ryu 

and Shenoy 2009, 5; Vetter et al. 2004, 896-904), a slow declining trend in action potential 

voltage across many months is observed. This may be a result of several putative factors like 

tissue response, neuron migrating away from the site, accumulated tissue micromotion, 

physiological factors. Ultimately, all of the above factors appear to have a consolidated effect of 

the electrode not being in the vicinity of active neurons.  

Freely behaving v/s head fixed experimental preparations 

 Most studies of stability analyze neural data from head fixed animals. The variations seen 

in such data may not truly represent the kind of signal variability inherent when the animal is 

freely behaving. Since microelectrode arrays are fixed to the skull it is expected that vigorous 

activity from the animal might translate to displacement in electrode position inside the brain. In 

head fixed animals, smaller variations in unit signal amplitudes were observed when compared to 

data from freely behaving animals (Santhanam et al. 2007, 2037-2050; Dickey et al. 2009, 1331-

1339; Jackson, Mavoori, and Fetz 2007, 360-374; Zanos et al. 2011, 1-1; Wilson et al. 2003a, 49-

61).  Physiologically, the activity of the neurons when concentrating on a given task in a 

restrained experimental set-up versus when engaging in free behavior might be very different. 

The background noise which is a summation of the background activity of neurons may have 

different characteristics and vary much more in a freely behaving animal versus a head fixed 

animal. This in turn will influence the calculation of signal quality metrics.  

24-hour neural recording from a freely behaving rodent implanted with a fully packaged 
MEMS microelectrode array  

 It is important to characterize the type, rate and reversibility of signal changes to be able 

to design effective adaptive control mechanisms. Neural data was observed over the course of 24 

hours in a freely behaving rodent model to document the changes in neural activity. This 
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experiment helped gain more insights into the dynamics of the plant we aim to control from a 

control systems perspective.  

 A fully packaged MEMS microelectrode array was implanted into an adult male Sprague 

Dawley rat using the standard surgical procedure described in the next chapter. The details of the 

packaging and device mounting procedure are also described in the following chapter. A single 

microelectrode was implanted into the somatosensory cortex and the microelectrode was not 

moved to obtain control recordings that were not confounded by variations that could possibly be 

caused by microelectrode movement. The MEMS device was mounted on a stereotactic frame 

and was advanced into the brain at a speed of 10 µm/second during implantation. 

Methods 

 A 16 channel headstage was connected to TDT signal acquisition system (TDT Inc., 

Alachua, FL) using lead wires that were protected by a spring casing. Neural recordings were 

sampled at 25 kHz and bandpass filtered from 300 Hz to 3 kHz. Data was analyzed using Plexon 

offline sorter (Plexon Inc., Dallas, TX). The first hour of recording began about 1 hour after the 

initial implantation only after the anesthesia effects had worn off. Recordings were taken 

approximately every half hour and each recording session lasted for about 10 minutes for the first 

eight hours. There was an eight hour break in between as the animal recovered from a prolonged 

experimental session. Recording was resumed at the 16th hour and continued up to the 24th hour.  

Spikes were detected using appropriate user defined thresholds that were greater than three 

standard deviations above noise amplitude distribution. Spikes from each recording snippet were 

manually sorted. The interspike interval histograms were inspected to check for false positives. 

Overall about 22 units were identified from the spike sorting procedure. Since we did not have 

functional correlates it was hard to uniquely determine cell identity or track single units from the 

recordings.  

 Peak to peak amplitude was calculated for all detected spikes. The average peak-peak 

amplitude of every unit was also determined. Signal-to-noise ratio (SNR) was calculated from the 
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raw signal. The standard deviation of the entire recording snippet was determined. Any signal that 

was three times above this standard deviation was classified as spikes and the rest was 

considered as noise. Signal-to-noise ratio was defined as the average power in the signal divided 

by the average power in the noise. The amplitude of all data points that were classified as signal 

was squared, summed and normalized by the number of data points in the signal. Similarly the 

average squared amplitude of noise was determined. SNR was calculated as follows: 

SNR = 10 log10 

!"!
!
!"!
!

 

where si are the signal points and S is the total number of signal points, ni are the noise values 

and N is the total number of noise points. This equation gives the SNR in dB. 

Results 

 The initial placement of the electrode next to an active neuron gave us recordings with 

distinguishable single unit.  SNR values were approximately 30 dB. In the first hour, recordings 

were made every 15 minutes for 5 minutes and the peak-peak amplitudes of all the units were 

plotted as shown in Fig. 3. Though the waveform shape remained fairly stable in the first hour, 

huge changes in action potential amplitudes were observed. The highest recorded amplitude was 

1.6 mV which indicates that the neuron was very close to the recording tip. The recording began 

approximately an hour after the initial implantation and perhaps captured a significant amount of 

signal variation due to tissue drift. The changes in waveform shapes in recordings in the first eight 

hours are shown in Figure 13. 
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Figure 13. Peak-peak amplitudes of all the units recorded by a single stationary polysilicon 
microelectrode in a freely behaving rodent over a continuous 7 hour recording session. 

After the first hour, the amplitude suddenly decreased to 100-200 µV. There could be at 

least two possible reasons for such a sudden change: the electrode could have impaled the 

neuron or the tissue relaxation could have led to the neuron moving away from the recording site. 

After approximately three hours of recording similar amplitudes, a sudden increase in amplitude 

was observed at the beginning of the 4.5 hours. However, these units did not sustain and the 

amplitudes decreased almost immediately within 15 minute. The animal was highly active and 

vigorously moving around during this period which might explain high variability in the quality of 

units recorded. The amplitudes came back up again towards the beginning of 6th hour. But the 

noise levels were very high at this period and the single units were difficult to sort from the 

background activity. The single unit action potentials were sometimes visible and sometimes not 

differentiable from the multi-unit hash, so very low number of spikes could be sorted.
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Figure 14. Average signal to noise ratio (SNR) of all recorded units over 24 hrs with stationary 
microelectrode. SNR of 10dB corresponds to the level where action potential waveforms are 
barely discernible. 

While individual unit amplitudes and waveforms did not show any systematic changes 

and had a high variability, the SNR was more consistent across time. SNR is determined from the 

power in the number of threshold crossing events divided by the power in the noise is plotted in 

Figure 14. The average peak-peak amplitudes of the signals at every hour are plotted in Figure 

15. The SNR appears more consistent than the average peak-to-peak amplitude of the single 

units. 

 

Figure 15. The average (±std. dev.) peak-peak amplitude of individual units over 24 hours. 

 

 The variations with average peak-to-peak amplitude are substantial with almost 50-100% 

signal changes per hour and the rate of changes is apparent from the abrupt changes between 

adjacent 1 hour intervals. For every individual unit in each recording snippet that lasted for about 
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6-10 minutes the peak-to-peak amplitude was normalized to the average amplitude for that unit 

so that the percentage deviations within a recording session could be examined. Peak-to-peak 

voltages of all units ranged from -80% to 100% of these mean values as shown in the Figure 16.  

 

Figure 16. Percentage change in the peak-to-peak amplitudes in all the units. The change is 
calculated compared to the mean amplitude of the unit during each recording interval that lasted 
approximately 10 minutes. 

 

Figure 17. The peak-peak amplitudes recorded from 19th hour to 24th hour and the 
corresponding waveform shapes. 
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 When the recording was resumed after 8-hour break, only units of amplitude 100-150 µV 

could be sorted from the multi-unit data as shown in Figure 17. However, the noise levels were 

significantly lower which may be a result of the settling down of tissue drift. The standard 

deviation of noise in the post 20 hour session was 10 µV as compared to the average standard 

deviation 30 µV in the first 8 hours session. The standard deviation of noise was plotted for the 

entire recording session as shown in Figure 18. The RMS value of noise is a measure of the 

background neural activity as sensed by the electrode (these spikes have too small amplitude to 

be detected above threshold because the neuron may be far away). This may reflect the effect of 

tissue relaxation and other immediate injury responses due to which there is shifting of active 

neurons in the recording sphere of the electrode tip.  

 

Figure 18. RMS values of noise over the 24 hour recording duration. Huge variations in the RMS 
values of noise are seen in the first 1 hour. The first 8 hours also saw substantial variations in 
RMS values of noise. Post 19th hour the noise levels settle down to values less than 10 µV. 

Discussion 

 The results show that amplitude variation can be up to 100 %. This variation is large and 

has important implications for developing adaptive control mechanisms to maintain reliable 

recordings. Large amplitude variations observed may be due to the head movement and 

grooming of the rat which in turn could cause significant drift in electrode position. It was 

observed that certain mechanical shocks like the rat hitting against the cage led to sudden 

appreciable changes in the signal amplitude. 

The changing amplitude and noise RMS levels also imply that the tissue compression 

due to initial electrode penetration can cause variabilities in the neuronal recordings over hours. 

Large variations in noise RMS values can possibly be indicative of massive tissue drifts. 
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Stabilization of the RMS noise values is necessary to be able to accurately detect single units and 

compute SNR values. 

Other studies of that monitored single unit recordings over continuous time durations 

show high variability in the order of 50% or more in unit amplitudes (Chah et al. 2011, 2558-2561; 

Santhanam et al. 2007, 2037-2050; Chestek et al. 2011, 045005) 

Average SNR trend of the recording appears to be a more stable measure to regulate 

due to the large variations seen in amplitudes of single units over 24 hrs.  

Further, a similar continuous recording session of 24 hours needs to be done after the electrode 

has been implanted for over two weeks and the initial injury response has stabilized to 

characterize signal variability under chronic implantation conditions. 

 All of these variabilities make the task of continuously maintaining single unit activity on 

an electrode extremely tedious. Experience from the above studies seems to suggest that the 

loss of quality of recordings from specific single neurons might have been mediated by a relative 

micromotion between the microelectrode and surrounding brain tissue.  
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CHAPTER 4 

CHALLENGES FOR AUTONOMOUS NAVIGATION OF MICROELECTRODES IN THE BRAIN 

Motivation for automated controls to position electrodes 

“Machines could simultaneously control (movement of) more than one electrode and 

monitor multiple tips, tasks which are difficult or impossible for a single operator.” (Scobey 1983, 

3-9)The idea of automating electrode movement to improve positioning accuracies and reduce 

the tedium of manual effort has been articulated for over 30 years now. The earliest of screw 

based microdrives were devised with the conceptualization that motorization and computerized 

control would lead to smart recording systems.  

It is already established that the signal recorded by the microelectrode at the region of 

implantation is highly variable.  Moveable microelectrode arrays give us the flexibility of moving 

the microelectrodes to a new location when there is failure of recording at a particular site. In 

general, when the experimenter tunes the electrode position, by moving it up and down over 

intermittent intervals so as to obtain a well isolated unit, the unit shape and amplitudes remains 

stable over the session (Yamamoto and Wilson 2008a, 2430-2440; Jackson, Mavoori, and Fetz 

2007, 360-374). Most neurophysiologists follow this classic approach to achieve stable units and 

fine tune single unit recordings at the beginning of an experimental session using microdrives to 

move electrodes.  Most microdrives constructed till date have been used in experiments where 

the electrodes are adjusted manually over a period of hours. Positioning the electrode near well 

correlated neurons while doing real time analysis can significantly enhance the efficiency of basic 

neuroscience experiments and performance of neural prosthetic decoders. Research groups in 

the past have used microdrives to position electrodes before every recording session to obtain 

the best recording quality (Eliades and Wang 2008, 201-214; Battaglia et al. 2009, 291-300; 

Bilkey, Russell, and Colombo 2003, 152-158; Dobbins et al. 2007, 101-111; Gray, Goodell, and 

Lear 2007, 527-536; Haiss, Butovas, and Schwarz 2010, 67-72; Korshunov 2006, 179-185; 

Lansink et al. 2007, 129-138; Swadlow et al. 2005, 2959-2965; Sato, Suzuki, and Mabuchi 2007, 
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45-51; Park et al. 2008; Venkateswaran et al. 2005, 1035-1040; Wilson et al. 2003b, 49-61)The 

task of manually repositioning these electrodes, especially when scaled to higher density arrays 

can be very tedious and slow to serve any practical purpose in prostheses applications.  Hence 

an adaptive algorithm to automate the process is proposed that is capable of coping with the 

variabilities inherent in a realistic recording environment. The automated controls shall provide a 

more reliable interface by ensuring high quality neural recordings all the time. Positioning 

electrodes to obtain good quality recordings in maximum number of channels would be the 

primary goal in order to establish a reliable interface. Typically, the measured variable is some 

metric of signal quality (SNR is a more stable measure as discussed before). 

Strategies for control of microelectrode movement 

Broadly, there have been three kinds of efforts so far to implement control algorithms to 

position microelectrodes: 

 (i) Manually operated or screw based microdrives where the experimenter adjusts the 

position of the microelectrode (Battaglia et al. 2009, 291-300; Bilkey, Russell, and Colombo 2003, 

152-158; Haiss, Butovas, and Schwarz 2010, 67-72; Lansink et al. 2007, 129-138; Bragin et al. 

2000, 77-82). 

 (ii) Semi-automated systems where the microelectrodes are driven by motors and the 

experimenter moves them to seek good quality recordings through external inputs (Gray, Goodell, 

and Lear 2007, 527-536; Venkateswaran et al. 2005, 1035-1040; Yamamoto and Wilson 2008b, 

2430-2440; Fee and Leonardo 2001, 83-94). 

 (iii) Fully automated systems where the microelectrodes automatically position 

themselves and are programmed to provide high quality recordings or recordings from specific 

population of neurons without any external monitoring (Wolf et al. 2009, 1240-1256). 

Manually operated microdrives 

In the manual process for detecting neural activity electrodes are typically advanced 

slowly at the rate of 5 µm/s while monitoring the electrical signal. The summation of all activity 
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from the neurons in the region surrounding the electrode tip, beyond a radius of 100-150 µm, 

appears as background noise in neural recordings. Action potentials emerge initially as positive or 

negative impulse voltages that are larger than the noise levels. Electrodes are moved until the 

action potentials are clearly distinguishable from the background noise.  Its position is then tuned 

to maximize the action potential. Classically, this process is followed by experienced 

neurophysiologists while listening to an audio monitor where action potentials sound like ‘clicks’.  

At times it is possible to detect action potentials from two different neurons with similar amplitudes 

and this is termed multi-unit activity.  

Semi-automated systems with long term control strategies for maintaining signal quality 

Fee et. al., (Fee 2000, 461-8) proposed a method to overcome variations due to 

physiological signals and stabilize intracellular recordings by using closed loop feedback control 

to control the position of electrodes. Baker et. al., (Baker et al. 1999, 5-17) demonstrated a 

control paradigm to detect pyramidal tract neurons after anti-dromic stimulation. The algorithm 

controlled an acute microdrive that autonomously advanced electrodes until target cells were 

detected. A human operator then fine tuned the position of the electrode to optimize the recorded 

signal. Microelectrodes were advanced before every recording session in a similar manner. They 

also noted that if the quality of a given recording begins to deteriorate, small movements in the 

order of 10 µm was sufficient to improve the signal amplitudes. The rationale was that such small 

movements could help compensate for the tissue slippage relative to the electrode. Jackson and 

Fetz showed in elegant experiments using motorized drives that it is possible to record 

continuously from the same neuron with definite behavioral correlates over a period of 2 weeks in 

a freely behaving animal (Jackson and Fetz 2007, 3109-3118). The recordings were very stable 

as the electrodes were repositioned only 39 times to yield 119 units over 300 days of implantation 

in the above experiment. Yamamoto and Wilson employed a unique strategy to obtain stable 

recordings that involved slow movements of the electrode to compensate for tissue compression 

and injury response. They implanted tetrodes using motorized microdrives. The tetrodes were 
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advanced by about 50-100 µm per day over a period of 3 weeks at very slow speeds of 2-5 µm/s 

and at small steps of 4 µm. The electrodes were left untouched for at least 2 days in the final 

position before they began recordings. In order to optimize the recordings, electrodes were 

moved by about 80 µm from this site and then in small increments of 8 µm to find discriminable 

units. They were able to obtain stable units for more than two weeks. Movement paradigms 

where the electrode was moved at faster speeds of 100  µm/s and steps of 30  µm yielded units 

that were stable only for a few hours (Yamamoto and Wilson 2008b, 2430-2440).  

Fully automated systems with control strategies for short term experiments 

 Rigorous controls based on stochastic models of neuronal activity patterns have been 

used to position the microelectrodes at the start of each recording session to isolate and track 

specific units (Wolf et al. 2009, 1240-1256).  The autonomous algorithm “SpikeTrack” builds a 

strong case that autonomous control could in fact isolate single units and maintain signal quality 

during recording sessions (Chakrabarti et al. 2012, 72-85). The algorithm is built on a framework 

of finite state machines that manages the electrode's movement to optimal depth (Cham et al. 

2005, 570-579). Briefly, the electrode moves in step increments until sufficient spikes are 

detected using an unsupervised detection algorithm (Nenadic and Burdick 2006, 941-55). A 

Bayesian clustering approach is used to sort the spikes and signal quality metrics are computed 

on the sorted clusters. Additionally, a tracking feature is incorporated in the algorithm which 

keeps track of neurons from previous recording intervals and associates them with neurons found 

in the current recording interval using multiple-hypothesis tracking for clusters (Wolf and Burdick 

2009, 2649-59). Signal quality metrics such as the Mahalanobis distance and SNR are calculated 

to ensure spike detectability and discriminability. The tracked clusters are used to build a history 

of quality metrics. A gradient curve of SNR v/s position of electrode is built using optimized 

regression analysis. Once a gradient is established, an optimization routine moves the electrode 

to the maximum of the curve (Wolf et al. 2009, 1240-1256).  
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 In a recent study the “SpikeTrack” algorithm was tested on a five channel Eckhorn drive 

in macaques (Chakrabarti et al. 2012, 72-85). The algorithm's performance was compared with 

passive placement of electrodes and expert human experimenter's performance in positioning 

electrodes to obtain stable unit activity in semi-chronic experiments. The algorithm performed 

significantly better and enhanced signal quality when compared with passive placement of 

electrodes in recording sessions of 30 minute duration. The algorithm's performance was also 

comparable to expert human users in maintaining signal quality in experiments that lasted for at 

most 3 hours.   

 However, while the algorithm has been validated in semi-chronic experiments, its 

performance in a chronic implantation situation is not known. As a result of the control theory, the 

algorithm made several small movements, with less than 100 s intervals between movements on 

an average, of magnitude ~10 µm in order to maintain the quality of recordings. In an interesting 

comparison, expert human users employed assorted strategies ranging from frequent, large 

amplitude movements to rare adjustments with minimal directionality switches. However, no 

single strategy can be considered the most optimal to achieve the desired quality or stability. A 

control algorithm approach does remove individual biases. 

The fully automated systems with controls are desirable for cortical prosthetic 

applications that work in a closed-loop system along with neural signal decoders to operate a 

prosthetic device. Such prosthetic applications require on-demand, reliable neuronal signals 

typically from the motor and/or pre-motor cortical locations. An additional requirement of 

prosthetic application is that such systems operate reliably over the life-time of a patient. 

However, prosthetic systems do not necessarily require that a single unit be tracked over time. 

The decoders can be made to adapt to the best neuronal recording that is available at any given 

instant without significant loss of efficiency.  

 There is no clear consensus however, on a single control strategy to meet the 

requirements of establishing an autonomous, reliable neural interface. Rudimentary automation 

can be achieved by recording segments of neural signal, sorting the spike waveforms, identifying 
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well-isolated clusters, and maximizing the SNR of sorted units. Nevertheless, what constitutes the 

most optimal control strategy to maintain quality recordings over a long term remains an open 

question.  

Challenges and goals for a fully automated system maintain reliable neural recordings 

 As summarized earlier, one of the main causes for signal non-stationarity is a change in 

the spatial distance between electrode tip and the neuron. Hence the primary goal of the control 

algorithm implicitly is to reposition the electrode to keep the relative position of the electrode with 

respect to the neuron of interest in the tissue constant or position the electrode at a new active 

neuronal interface. An ideal control algorithm designed for movable microelectrodes would be 

broadly required to meet the following end-goals: 

 (i) Automated/remote positioning of microelectrodes over a continuous time frame with 

minimal manual intervention and handling of awake animals. 

 (ii) Stability of recordings from single neurons of interest (in basic neurobiological studies 

on learning, memory, and plasticity). Detectability and consistently good quality of recorded units 

(particularly for prosthetic applications). 

 (iii) Increase in the yield of active electrodes. 

The sources of variability in the recorded signal cannot be defined or modeled from a control 

systems perspective. Neural signal is the observable quantity and the metrics of signal quality 

can be evaluated. The control action is to move the electrode. However, the translation of this 

movement to a relative distance metric between the electrode and the neuron is the most 

significant challenge in defining a control strategy. In order to further elucidate this problem, let us 

consider an ideal recording environment. The electrode tip measures the change in the 

extracellular potential near the soma of a neuron. The amplitude of the measured signal is 

inversely proportional to the distance between the neuron and the electrode. We would ideally 

want to position the electrode as close to the neuron as possible but not too close in order to 

avoid impaling the neuron. In the brain due to shunting of currents in the extracellular matrix, it is 

theorized that the maximum distance from which an electrode can listen to a neuron is about 100-



 

 56 

150 µm before the neuronal signal becomes too weak to detect (Gold et al. 2006, 3113-3128). So 

when there is tissue slippage or movement of microelectrode due to disturbances we would need 

to reposition the electrode in this listening sphere. However, moving the electrode by a known 

distance does not always directly translate to an equivalent displacement in brain tissue. This is 

because of the mechanical properties of the brain tissue, which has a complex non-linear 

response to a step displacement. Hence in order to determine the actual displacement of the 

microelectrode in brain the mechanical properties of the brain have to be understood. In control 

systems terminology, we would need a model of the plant to translate the actuator signal to actual 

movement in the plant that in turn causes a change in the observed signal.  

 Let us assume that such a model of the plant (brain tissue and its constitutive mechanical 

properties) is available. One approach then will be to sense along with signal quality, forces 

acting on the microelectrode. The forces will be a direct measure of microelectrode movement or 

tissue micromotion. Using the mechanical model of the brain we could deconvolve the resultant 

displacement between the recorded neuron and electrode tip. The accuracy of such 

deconvolution will depend on the accuracy of the constitutive properties of brain tissue used. The 

problem is further compounded by the fact that moving the electrode in order to correct the 

change in relative distance also causes tissue compression or relaxation. Hence the control 

algorithm has to estimate and compensate for this tissue compression or relaxation using the 

constitutive model of brain tissue. Then the algorithm inputs the final control signal to the 

actuators to move the electrode to the estimated position. Adding to this complexity is the fact 

that the brain–electrode interface undergoes significant changes (in its composition, texture, and 

function) in the weeks following the implantation of the microelectrode (Polikov, Tresco, and 

Reichert 2005, 1-18; Winslow and Tresco 2010, 1558-1567). Further, a range of different 

constitutive properties of the brain have been used in mechanical models of brain tissue in prior 

studies indicating significant dependencies on experimental conditions, species etc.  
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Mechanical properties of brain tissue 

 Brain tissue is best modeled as a hyperelastic viscoelastic medium (Miller et al. 2000, 

1369-1376). The viscoelastic properties of the brain tissue are not well understood (McConnell et 

al. 2007, 1097-107; Elkin, Ilankovan, and Morrison Iii 2011; Clayton, Garbow, and Bayly 2011, 

2391-2406). Viscoelasticity is a type of a constitutive model used to explain time dependent 

behavior of materials to a history of stress or applied strain patterns. The main characteristic of 

viscoelastic materials is that they dissipate energy under loading conditions and this dissipation is 

known as hysteresis. This implies that the loading portion of the stress-strain curve would be 

higher than the unloading portion. In a purely elastic material, there is no energy dissipation and 

hence the loading portion (when strain is applied) and unloading portion (when strain in removed) 

is the same. Hence the relationship between stress and strain for a spring is linear. In a movable 

electrode context, loading of brain tissue can be considered as forward movement of the 

electrode and unloading as the backward movement of electrode. Experimental results on brain 

tissue show that there is a non-linear relationship between stress and strain rates.  A linear 

viscoelastic model thus does not fully describe the material characteristics (Miller 2000). Hence a 

hyperelastic viscoelastic model is used to describe brain tissue. Hyperelasticity is a type of a 

constitutive model used to explain non-linear stress-strain relationship in biological tissues. The 

response of such materials is dependent on temperature, strain history and strain rate.  

 Two main characteristics of viscoelastic materials are that of creep and relaxation. These 

two characteristics shall determine the response of the brain tissue to step perturbations of stress 

or strain. Creep is the characteristic of viscoelastic material to undergo deformation under 

constant stress until an asymptotic level of strain is reached. Relaxation is the behavior of the 

brain tissue where stress levels reach its peak and then relaxes over time under constant strain. 

The primary assumptions underlying the model are as follows: 

• The properties of the brain tissue are assumed to be isotropic which means that the 

mechanical properties remain the same in all directions. Considering the microscale 

movements made by the electrodes this may not be a very accurate assumption and the 
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properties could be in fact anisotropic due to the presence of microvasculature and tissue 

heterogeneity. 

• Brain tissue is assumed to be incompressible. The property of incompressibility implies 

that when the electrode penetrates through the tissue, it displaces a volume of tissue 

along the electrode track. This leads to deformation of tissue around the electrode. 

The implications of the mechanical characteristics of brain tissue on the movement of 

microelectrodes in the brain are as follows: 

 Prediction of any change in the electrical recording from single neurons due to the 

relative micromotion between the brain tissue and the recording microelectrode becomes 

complicated due to the viscoelastic (and sometimes hyperelastic) nature of the surrounding brain 

tissue. The real distance between the recording site of the microelectrode and the neuron that is 

being recorded will follow a trend as a function of time due to the movement of the electrode. A 

single step movement of the electrode can be modeled as an induced strain. Brain tissue 

compresses under forward movement of the electrode. Tensile stress acts on the tissue during 

the reverse movement of the electrode. The forward movement of the electrode causes a 

constant strain, the stress levels in the surrounding brain tissue reaches a peak value and then 

relaxes over time. The relaxation time constant R is defined here as the time taken by the stress 

levels to reach one-third of its initial value under constant strain. It depicts the time taken by the 

tissue compressed by the electrode to relax to a steady state configuration. Hence when the 

electrode moves by a step displacement, the real distance between the electrode and a neuron in 

the surrounding tissue evolves as a function of time and reaches steady state only after a time 

interval of at least 4R has elapsed. 

  This has an important consequence while mapping SNR as a function of electrode 

position in the brain tissue to find an optimal site where the SNR is above a certain threshold. If 

the relaxation time constants are not taken into account, the relative distance between the 

electrode and a neuron and hence the SNR changes with time. The electrode would have to be 

repositioned after the tissue relaxes to adjust for the change in SNR, in a cyclic effect, where the 
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neuron becomes a moving target. To find the relaxation time constants, the strain values are 

input into the mechanical model of the brain tissue, the stress response is calculated and the time 

taken to reach steady state is hence found. However, the exact viscoelastic constants of brain 

tissue in vivo under small levels of strain are not yet determined.  

Impact of brain viscoelasticity on autonomous navigation of microelectrodes 

The SpikeTrack algorithm is an example of a very rigorous stochastic approach that is 

also based on statistical modeling but incorporates a clustering and signal tracking framework to 

isolate neurons and maximize SNR. The algorithm does not factor in the mechanical properties of 

the brain tissue and the related tissue drift. Essentially, the electrode is blind to the medium it 

operates in. The algorithm builds an estimate of the SNR as a function of electrode depth using 

optimal regression analysis and then positions the electrode at the maximum of this function.  

 However, in a regression model the prediction depends on the history of the previously 

sampled number of points. Since the algorithm does not take into account the viscoelastic nature 

of the tissue the SNR at these previously sampled points would change with time. Not accounting 

for such delays can cause instability in control systems (Levine 1996). It is compensated for by 

not moving the electrode backwards and by quickly estimating the maximum of the neuron 

isolation curve with small steps of forward movements (Branchaud 2007) Nevertheless, the 

compensation mechanism is not a suitable strategy to maintain signal quality over a long term. 

Since it is a statistical based approach at its core, sufficient sampling of points is needed to 

perform regression analysis. A similar statistical approach is proposed by Natora et. al., (Natora 

2011). Frequent adjustments of electrode in the order of once every 100 s as reported in the 

study may be undesirable in chronic implantation situation (Chakrabarti et al. 2012, 72-85). 

Further, directionality switches of the electrode indicate a lack of knowledge of direction of 

movement of neuron relative to the electrode. Even with prior histories of SNR, every time the 

electrode needs to be moved, the experimenter or a statistical based approach has to 'guess' the 

direction of movement. This in turn increases the number of movements required to optimally 

position the electrode. Ideally, in a chronic implantation situation we would want to minimize the 



 

 60 

number of movements of the electrode. Thus, it can be concluded that incorporating the 

mechanical properties of tissue in the control algorithm is extremely critical to a long term strategy 

of autonomously maintaining neural signal quality. Our aim is to incorporate a sense of the 

constitutive properties of the brain tissue in the algorithm so that the movements respect the 

viscoelastic time response of the brain tissue. 

 

Figure 19. Sorted units amplitudes before and after movement of MEMS microelectrode during 
the first two weeks of implantation. A transient increase in signal amplitude due to downward 
movement of microelectrode is observed in the top panel. However, signal amplitude remains 
steady with time after moving the microelectrode upward shown in the bottom panel. 

 The change in signal amplitudes as a result of the tissue relaxation after microelectrode 

movement was also observed experimentally in a different set of long-term experiments. The 

MEMS microelectrodes were moved downward in the first week of implantation by 100 µm when 

the SNR decreased below 10 dB. The signal amplitude increased by an order of magnitude in 

response to microelectrode movement at day 3 and day 6 in both the cases shown above. There 

is hysteresis or a lag in time between electrode movements and changes in signal quality 

probably due to the relaxation of the tissue. An example can be seen in Figure 19, in which a 

transient increase in signal amplitude is observed in response to electrode movement of 100 µm. 
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It takes more than one minute to see a change in the quality of the signal and about 3 minutes for 

the amplitude to reach steady state. However, the identity of the units before and after movement 

could not be verified. So we could not confirm if the signal seen after movement was from the 

same neuron. The electrical changes observed here, where the neural recording activity ‘settles 

down’ over a transient time frame of 100-120 s is consistent with the viscoelastic relaxation time 

constants observed in the force – displacement curve. It is reasonable to assume that four times 

the relaxation time constant is the approximate time taken for the tissue to reach steady state. 

From the table, during the first week of implantation it can be seen that the relaxation time 

constants are 60s and hence the time taken to reach steady state can be estimated as 240 s. 

However, transient changes in signal amplitude is not observed during upward movement of 

microelectrode in contrast to the changes seen during downward movement of microelectrode. 

The stress-strain response curve for a viscoelastic medium under unloading conditions is different 

from that of loading conditions. The force-displacement data for unloading conditions is currently 

unavailable. From the above discussion it follows that the SNR curve, as a function of depth, 

estimated under downward movement (under loading conditions) may be different or shifted 

when the electrode is retracted back (under unloading conditions). 

Uncertainty in relative position between electrode and neuron 

 Searching for a neuron along one dimensional track of the electrode is achieved in 

principle by finding a gradient of SNR and positioning the electrode at the maximum of this 

gradient. However, the relative position of the neuron in the space surrounding the electrode track 

is highly variable. Apart from tissue micromotion, neuronal drift, perturbations of tissue due to 

mechanical shocks, the movement of the electrode in the one dimensional space also causes the 

neurons to shift positions. The causes for such uncertainty in relative position from a mechanical 

perspective are: 

• Tissue deformation due to the continued presence of the electrode i.e. a constant stress 

in the tissue, a phenomenon known as 'creep' 
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• As the viscoelastic material is subjected to loading and unloading cycle i.e. forward and 

backward movements, due to energy dissipation in each cycle the tissue surrounding the 

electrode is permanently deformed. So it could be hypothesized that due to every forward 

and backward movement the relative position of the neurons in the grid surrounding the 

electrode is shifted. Though the tissue relaxes to steady state it may never returns to its 

original position. 

Acute in vivo experiments to search to optimally position the electrode in the brain tissue 

to obtain high SNR. The gradient of the SNR is estimated using a linear search optimization 

technique. The problem of finding the microelectrode position for optimal SNR is essentially a one 

dimensional linear search problem. The SNR gradient as a function of depth is known to have 

valleys and peaks corresponding to positions where the electrode is closest to neurons along the 

track.   There is evidence from experimental data to show that these peaks are typically at 

distances of 50 -100 µm apart in the macaque cortex (Branchaud 2007). So the aim of the one-

dimensional algorithm would be to find a local maximum. Several candidate linear search 

algorithms are listed here: 

• Interval bounding algorithm 

• Uniform search 

• Bisection method 

• Quadratic fit line search 

• Piecewise linear approximation 

• Inexact line search methods: quasi – newton method, bisection method, backtracking 

algorithm 

The most appropriate line search algorithm is chosen based on the data from the above three 

experiments to best suit the optimal movement speeds. The chosen algorithm should be able to 

achieve convergence with minimum number of iterations and should be implementable with the 

movement parameters obtained from the optimization experiments above. The objective is to 

obtain a stable SNR curve as a function of depth of the electrode in acute experiments. The 



 

 63 

physiological variations notwithstanding, the experiment aims to minimize signal non-stationarities 

due to tissue motion from microelectrode movement and compensate for hysteresis during 

backward movement of electrode. The electrode would be optimally positioned in such a 

procedure so that the SNR observed, as a function of time would remain fairly stable with non-

stationarities from tissue drift minimized. Hence the neuron would no longer be a moving target. 
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CHAPTER 5 

ADAPTIVE MOVEMENT STRATEGY FOR PRECISE POSITIONING OF MICROELECTRODES 

IN BRAIN TISSUE 

Introduction 

Robotization in the field of neurotechnology can bring about automation to the fine art of 

recording neural activity in the brain. Advances in this field opens up exciting possibilities of 

micro-robots performing standard electrophysiological techniques that would previously take 

researchers several hundreds of hours to train and achieve the desired skill level. Automation 

would enable researchers to devote more time to science and design more complex experimental 

paradigms as they are freed from the tedium of managing the recording set up. Innovation in 

robotic neural interfaces would result in high fidelity signals, high yield, increased throughput, and 

adaptability to higher level integrated systems, decreased manual intervention and lowers 

barriers for adoption of neurophysiological techniques. 

The field of robotic neural interfaces is still nascent. Burdick et al developed one of the 

first robotic systems that autonomously positions electrodes to record extracellular action 

potentials. The SpikeTrack algorithm controls electrode position based on stochastic models of 

neuronal activity patterns to isolate and track specific neuronal targets (Cham et al., 2005; Wolf & 

Burdick, 2009). Others have developed semi-automated systems with closed loop control 

paradigms for recording of neural activity (Fee & Leonardo, 2001a). Recently, Kodandaramaiah 

2012 et. al., (Kodandaramaiah, Franzesi, Chow, Boyden, & Forest, 2012) successfully 

demonstrated an automated in vivo patch clamping system. The robot detects a neuron by 

tracking temporal sequence of impedance changes. 

SpikeTrack algorithm's performance was comparable to expert human experimenter’s 

performance in maintaining signal quality in experiments that lasted for at most 3 hours. 

(Chakrabarti et al., 2012).The algorithm made several small movements, with less than 100 s 

intervals between movements on an average, of magnitude ~10 µm in order to maintain the 
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quality of recordings. It is likely that one of the putative causes for such short-term variation in 

signal activity is tissue drift requiring re-adjustment of the electrode. (Ainsworth & Okeefe, 1977; 

Battaglia et al., 2009b; Bilkey & Muir, 1999; Bilkey, Russell, & Colombo, 2003; deCharms, Blake, 

& Merzenich, 1999; Gray, Goodell, & Lear, 2007b; Haiss, Butovas, & Schwarz, 2010b; A. 

Jackson & Fetz, 2007; Kern, Rorup, Werthschutzky, & Tammer, 2008; Lansink et al., 2007; S. 

Park et al., 2008; Sato, Suzuki, & Mabuchi, 2007; Seidl et al., 2010; Venkatachalam, Fee, & 

Kleinfeld, 1999; Venkateswaran, Boldt, Ziaie, Erdman, & Redish, 2005; Wilson, Ma, Greenberg, 

Ryou, & Kim, 2003; Wolf et al., 2009). In an interesting comparison, expert human users 

employed assorted strategies ranging from frequent, large amplitude movements to rare 

adjustments with minimal directionality switches. However, there is no single strategy that is 

considered the most optimal to achieve the desired quality or stability.  

In order to further elucidate this problem of tissue drift, let us consider an ideal recording 

environment. The electrode tip measures the change in the extracellular potential near the soma 

of a neuron. The amplitude of the measured signal is inversely proportional to the distance 

between the neuron and the electrode. We would ideally want to position the electrode as close 

to the neuron as possible but not too close in order to avoid impaling the neuron. In the brain due 

to shunting of currents in the extracellular matrix, it is theorized that the maximum distance from 

which an electrode can listen to a neuron is about 100-150 µm before the neuronal signal 

becomes too weak to detect (Gold, Henze, Koch, & Buzsaki, 2006). So when there is tissue 

slippage or movement of microelectrode due to disturbances we would need to reposition the 

electrode in this listening sphere. However, moving the electrode by a known distance does not 

always directly translate to an equivalent displacement in brain tissue. This is because brain 

tissue has biomechanical properties that are non-linear (hyperelastic) and time varying 

(viscoelastic) (Karol Miller, Chinzei, Orssengo, & Bednarz, 2000). A step movement of the 

electrode towards a specific neuronal target exerts forces on the surrounding brain tissue causing 

it to deform and displace. The compressed brain tissue relaxes over time causing the neuronal 
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target to move away. The electrode would have to be repositioned to chase the neuron that has 

moved away resulting in a cyclic effect. Thus the neuron becomes a moving target. 

In the field of surgical robotics, the problem of controlling needle insertion in soft tissue to 

reach a specific target like a tumor or blood clot has similar challenges of tissue deformation and 

target relocation. One of the approaches used for robotic manipulation of the needle is to simulate 

the position of the target due to the tissue deformation caused by the movement of the needle. 

The system will iterate until the needle path and target converge. Visual data from intraoperative 

imaging and haptic feedback from force sensors are used to update the model parameters for 

needle deflection and tissue deformation (Elgezua, Kobayashi, & Fujie, 2013).  

Accurate positioning of an electrode in brain differs from the above problem in the 

following ways - a) does not involve targeting a specific anatomical region and the electrode has 

to be positioned in a region of high neural activity along a linear track b) absence of visual 

feedback and force feedback with the positioning mechanism guided only by electrical activity c) 

micro scale movements of the order of a few hundred microns are needed to find a region of 

acceptable neural activity as compared to millimeter scale movements made during surgical 

interventions. 

Mechanical models of tissue deformation using FEM are more accurate but they are 

computationally expensive and have limited validity range. Hence many of these models are not 

used in automating interactions with soft tissue and are used only for pre-operative planning. 

Mass-spring-damper models are not as accurate but are computationally less intense and are 

used for intra-operative needle guidance. Applicability of generic tissue parameters (Karol Miller & 

Lu, 2013; K Miller et al., 2010) to compute computational models for tissue displacement during 

electrode navigation is limited because biological tissue is known to have large inter as well as 

intra subject variability. Moreover, there is limited knowledge about translating these tissue 

parameters to micro scale movements in vivo (Sharp, Ortega, Restrepo, Curran-Everett, & Gall, 

2009b), as there is a lot more inhomogeneity in the tissue at the micro scale with blood vessels, 

variations in tissue layers due to the organization of cell bodies and processes. 
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Several techniques for needle steering are used (DiMaio & Salcudean, 2005) and it is 

shown that by reducing needle-tissue interaction forces decreases compression of soft tissue and 

potentially results in accurate positioning. Interestingly, it has been shown that rotational motion 

of the needle along its translational axis reduces insertion forces and hence tissue deformation 

(Meltsner, Ferrier, & Thomadsen, 2007). Therefore we hypothesize that minimizing the 

microelectrode tissue interaction forces minimizes the internal tissue stresses that would reduce 

tissue compression and consequently tissue drift once the electrode is positioned in a region of 

high neural activity. Potentially, this would give more stable recordings once the electrode is 

positioned by eliminating one of the putative causes of non-stationarity in neural signal 

recordings. 

A systematic study of the movement parameters of a recording electrode and its impact 

on tissue drift and hence recording stability has not been done. Our objective here is to define the 

most optimal strategy for microelectrode movement in brain tissue such that tissue deformation is 

minimized. We define a quasi steady state of stresses on surrounding tissue where the stresses 

remain at a constant level both i) in between step movements of the microelectrode and ii) after 

the final step movement on reaching the target location. Traditional approaches to microelectrode 

movement intuitively recognize that long settling times for tissue relaxation, small step sizes of 

movement, slow speed will minimize tissue drift and allow more reliable and stable recording (Fee 

& Leonardo, 2001b; A. Jackson & Fetz, 2007; Tolias et al., 2007; Yamamoto & Wilson, 2008). 

The following study investigates the rationale from a mechanics perspective to such intuitive 

strategies and aims to achieve engineering precision in developing a movement strategy for 

accurate placement of micromechanical structures in brain tissue. 

We measure the forces acting on the microelectrode as it is moved through brain tissue 

using a precision load cell. The microelectrode is moved at varying step sizes and wait times 

between movements in a series of experiments. A stress relaxation model of brain tissue is fit to 

the experimental data. Further analysis of experimental data reveals that an inchworm type 
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movement protocol achieves quasi-steady state level of stresses. The parameters for such a 

movement protocol is recommended based on the modeling results. 

Methods 

Microelectrode-tissue interaction forces during micro scale navigation inside the brain 

were measured in vivo experiments in rodents. Stresses on the surrounding brain tissue were 

estimated from these force measurements. The experiments were performed in vivo in adult 

Sprague Dawley male rats of weight 300-500g. A total of n=13 animals were used in this study. 

All animal procedures were carried out with the approval of the Institute of Animal Care and Use 

Committee (IACUC) of Arizona State University, Tempe. The experiments were performed in 

accordance with the National Institute of Health (NIH) guide for the care and use of laboratory 

animals (1996). 

Surgical procedure 

The animals were induced using a mixture of (50 mg/ml) ketamine, (5 mg/ml) xylazine, 

and (1 mg/ml) acepromazine administered intramuscularly with an initial dosage of 0.1 ml/100 g 

body weight.  The anesthesia state of the animals was monitored closely throughout the 

procedure using the toe-pinch test. Updates containing a mixture of 50 mg/ml ketamine and 5 

mg/ml xylazine were given at a dose of 0.05 ml/100 g body. The rat was attached to a stereotaxic 

frame (Kopf Instruments, Tujunga, CA, USA). The scalp was reflected by a mid-line incision.  

A small hole was drilled in the skull with a trephine drill of 3 mm diameter with the center point 

being 2 mm posterior to bregma and 3 mm lateral of the sagittal suture exposing the cerebral 

cortex in the barrel cortex area. The dura was then carefully removed with a pair of micro 

scissors. The craniotomy was drained with physiological saline to clean the area of any blood 

clots and bone debris. In all experiments the pia was also removed from the surface of the brain. 

It was found that there was significant increase in compressive forces recorded when the brain 

surface became dry. In order to avoid confounding the measured data with this effect, care was 
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taken to always keep the exposed brain surface moist by applying physiological saline on the 

craniotomy. Insertion sites were chosen such that surface blood vessels were avoided.  

Experimental set-up for force measurements 

Polysilicon microelectrodes of dimensions 50 µm width and 4 µm thickness that tapers to 

a tip over 150 µm were used. The microelectrodes were dip coated with epoxylite (48-1696 P.D. 

George Company, St. Louis, MO, USA and the coating added about 20 µm of thickness overall. 

The final dimensions of the probe were approximately 90 µm width and 44 µm thickness as 

shown in Figure 20(a). The polysilicon microelectrodes were fabricated at Sandia National 

Laboratories, Albuquerque, NM. The experimental set-up is as shown in Figure 20(b). A single 

microelectrode was attached to a connecting screw post and mounted on a precision 10 g load 

cell (Futek, LSB210, Irvine, CA). The load cell with the microelectrode set-up was held on a 

hydraulic micromanipulator (FHC#50-12-1C, Bowdoin, ME). Contact with the brain surface was 

confirmed by increase in force readings and the microelectrode was lowered into the brain at the 

rate of 10 µm /s and implanted to a depth of 1 mm below the cortical surface. Once implanted, it 

was left in place for about 90 minutes to allow the forces to settle to steady state and stabilization 

of the tissue around the microelectrode. The microelectrode was moved according to pre-defined 

movement patterns in each experiment and the resulting forces recorded. In order to drive the 

microelectrode in specific step sizes with precise intervals between steps, defined henceforth as 

the inter-movement interval (IMI) and control the direction of movement, it was necessary to 

automate the movement of the microelectrode. A hardware hack on the FHC hydraulic 

manipulator that was manually controlled was performed by interfacing the remote control pin in 

the front panel with the TTL ports of a computer that generates voltage pulses according to a 

programmed movement pattern. Specifically, a LabView based platform generates TTL pulses 

that control the step size, IMI and the direction of movement of the microelectrode. Forces were 

recorded at the rate of 32 samples per second.  
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Figure 20. Experimental setup for measuring forces in vivo during microelectrode navigation 
inside brain tissue a) The load cell with microelectrode attached mounted on a motorized 
microdrive in a stereotactic frame. b) Microelectrode graphic showing the shape, dimensions and 
coated with epoxylite insulation. 

Representative stress measurements in response to microelectrode movement  

In order to establish that stress relaxation measurements are indeed reliable measure of 

tissue drift and characterize the stresses resulting from micro scale movement of the 

microelctrode, a bi-directional movement pattern is executed as shown in Figure 21(a). 

Consecutive downward and upward movements of increasing step sizes are executed with 

random wait times between movements where the tissue is allowed to relax. This sort of 

movement pattern is typical of the “search” phase where the microelectrode is moved seeking a 

region of interest where neural activity is of acceptable quality. The forces measured are 

converted to stress values and the characteristic stress recorded for such a movement pattern is 

shown in Figure 21(b). Data recorded is smoothed using a 32-point averaging window. The 

microelectrode is moved in increasing step sizes, and held in position until steady forces are 

recorded. Time needed to achieve steady state forces varies with step size and residual stresses 
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due to prior movements in the surrounding tissue - a phenomenon known as hysteresis due to 

the time dependent mechanics of brain tissue. Forces acting on the microelectrode represent 

both shear and compressive forces during downward movement. The compressive forces register 

as negative force increments in the load cell. During upward movement of the microelectrode we 

possibly measure tensile forces with the combined effect of tissue slippage. These forces register 

as positive increments in force in the load cell. It is observed that the resulting stresses for both 

movement directions are proportional to the step size of movement.  

 

Figure 21. Stress measurement in brain tissue is a measure of tissue drift. (a) Displacement of 
microelectrode in an alternate downward and upward movement pattern with increasing step 
sizes at the rate of 100 µm/s. The microelectrode is held in place for random intervals of time for 
the tissue to relax before making the next step movement. (b) Stress measurements show tissue 
relaxation patterns in response to microelectrode  movement in both downward and upward 
movement directions. (c) Stresses due to unidirectional downward and subsequent upward 
movement of microelectrode in 30 µm steps and 1 minute IMI. The microelectrode is held in place 
after 10 steps of 30 µm movements and tissue relaxation due to the cumulative stress build up is 
seen. Similarly when the microelectrode is held in place after 10 steps of upward 30 µm 
movement, there is tissue relaxation due to tensile stresses in the tissue. 

Further, the stress relaxation response for downward movement has slow dynamics 

varying over a time scale of minutes whereas the upward movement has a fast exponential 

decrease to steady state. Figure 21(c) represents the stresses measured in brain tissue for 
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unidirectional movement of microelectrode in steps of 30 µm and IMI of 1 minute. 10 steps of 30 

µm downward movement are executed. This type of movement pattern is typical of the ‘seek’ 

phase of fine-tuning neural recordings, where once a region of interest for recording neural 

activity is reached, the microelectrode is positioned as close to the target neuron as possible to 

achieve signal quality above an acceptable threshold. Such movements are typically slow and the 

step sizes are comparable to neuron soma diameters (~ 10 - 20 µm). We choose a step size of 

30 µm as a standard for movements during the ‘seek’ phase.  Each step movement is 

characterized by an instantaneous peak stress value that decreases with time to an asymptote for 

the duration of the IMI producing a time-dependent relaxation. At consecutive step movements, 

there is a build up of stress possibly because the tissue is not given enough time to relax between 

steps to a final cumulative stress level of 4kPa. The microelectrode is left in place for about 10 

minutes and the brain tissue relaxes in a time-dependent, viscoelastic manner. The stresses relax 

to only about 50% of its maximum value in 10 minutes. A series of 10 upward movements with 

the same movement parameters are executed and there is a positive increment in stress levels 

and when the microelectrode movement is stopped, the tissue similarly settles to steady stress 

values. It can be deduced from these measurements that if the target area for neuronal activity 

were reached after 10 downward movements of 30 µm with 1 minute IMI, then the recorded 

activity would vary after 10 minutes due to tissue drift that would move the target away. Figure 22 

provides an illustration of neural activity varying due to tissue drift. 

Estimating stress 

The load cell records the force acting on the microelectrode during navigation inside the 

brain and as the brain tissue relaxes around it. Effective stresses on the microelectrode are 

estimated as force per contact area. At each time point in the force curve, the total surface area 

of the microelectrode in contact with the brain tissue is calculated in accordance with the loading 

rate. The measured force was divided by the calculated contact area to get the total stresses 

acting on the microelectrode at all time points.  
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Figure 22. Variation in signal recorded due to tissue drift. Neural signal recorded after downward 
movement of microelectrode from a depth of 1000 µm to 1090 µm. Varying signal quality is 
observed when SNR is sampled 10 minutes after movement with the microelectrode held 
stationary. The waveform templates at these time points differ in amplitude and shape from one 
another with the appearance and disappearance of an unit. The microelectrode was implanted in 
the somatosensory cortex of rodents. 

Estimation of viscoelastic parameters 

The estimated shear stresses relax in a time-dependent manner once movement is 

stopped and is characterized using conventional viscoelastic models. The generalized Maxwell 

model is the most popular in estimating the stress relaxation behavior of viscoelastic materials.  

The relaxation function G(t) is defined in terms of Prony series parameters. Microscale 

movements exert small strains, so the stress relaxation response described by a viscoelastic 

model with a 2nd order Prony series expansion was found to be the best fit (r2 >0.90): 

𝐺 𝑡 = 𝐺(0) + (1 − 𝐺!𝑒
! !
!!)

!

!!!

 

where, N=2, G(t) is the relaxation response as a function of time, G(0) is the instantaneous shear 

modulus which is the maximum peak stress value measured immediately when a microelectrode 

is moved. G1 and G2 are the short-term and long-term shear moduli that characterize the 

relaxation response of the brain tissue. τ1 and τ2 are the corresponding short-term and long-term 

relaxation time constants. This model to describe stress relaxation is extensively described in 

previous brain tissue modeling studies (Gefen, Gefen, Zhu, Raghupathi, & Margulies, 2003; 

Gefen & Margulies, 2004) . Prior studies that fit a non-linear viscoelastic model use the first 90 s 
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of the stress relaxation response of brain tissue. Similar convention was used in this study, 

however it was observed that in most cases the model fit the entire duration of the IMI.  

 

Figure 23. Modeling the viscoelastic relaxation response due to downward and upward 
movements of microelectrode. a) Stress response for 9 steps of 30 µm downward movement with 
3 min IMI followed by 10 steps of 30 µm upward movement with 3 min  Data is smoothed using 
32 point window averaging. b) First 90 s of individual stress relaxation curves for every 30 µm 
downward (left panel) and upward (right panel) movement. c) Average of the curves taken after 
normalizing all the curves in (b). Normalization was by subtracting each curve by the mean of the 
curve. Viscoelastic stress relaxation model fit the the average curve. 

Figure 23(a) shows the stresses in brain tissue when the microelectrode is moved 

downward and upward in 10 steps of 30 µm each with 3 min IMI. In order to characterize the 

individual relaxation curves after each step, the curves were split from the instance of movement 

for the duration of IMI as shown in Figure 23(b). The 10 individual stress relaxation curves in 

response to both downward and upward movements were normalized by subtracting the average 

value of the steady state response beyond the first 90 s. The normalized downward and upward 

movement relaxation curves are averaged. The short-term and long-term relaxation parameters 

of the non-linear viscoelastic model were estimated as shown in Figure 23(c). The model fitting 

exercise and simulations were run in OriginLab 8.1®. The instantaneous shear modulus was 

calculated as the magnitude of the step change in stress value at each instant of movement. The 

same analysis procedure was followed for other trials of step sizes and IMIs. While retracting the 
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microelectrode, tensile forces develop as the forces acting on the tip of the probe are released. 

The forces registered by the load cell during upward movement are largely frictional forces (Sharp 

et al., 2009b). It was found that a single exponential relaxation model provides best fit (r2>0.9) to 

characterize the stress relaxation response to a step upward movement: 

𝐺 𝑡 = 𝐺 0 + 𝐺!𝑒
! !
!! 

where G(0) is the instantaneous shear modulus, G1 is the short-term shear modulus and τ1 is the 

relaxation time constant. 

 

Figure 24. Intuitive strategies to overcome tissue drift effects result in steady stress levels. Stress 
measurements resulting from 10 movements, each with step size of 3 µm (<neuron diameter) 
with inter movement intervals of 3 min in two separate animals. Step size of 30 µm with long wait 
times of 20 min between movements also results in minimal stress levels with the peak value of 
stress at about -1.5 kPa. 
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Modeling stress response for a given movement pattern 

The next objective was to simulate the stress response to consecutive step movements. 

The asymptotic stress value at the end of the IMI from the previous step was added to the 

instantaneous shear modulus at the instant of movement of the next step. The same stress 

relaxation parameters are used to predict the time-course of relaxation at every step. The 

instantaneous shear modulus had a negative sign for downward movements to denote 

compression and positive sign for upward movements to denote tension. These simulations 

produced a stress profile versus time in response to a movement pattern and were run in 

MATLAB (Mathworks®). In order to study the difference in time course of relaxation G(t) for 

different step sizes and IMI, the relaxation coefficients in equation 1 and 2  for all trials of step 

sizes and IMIs were evaluated in a 2-factor ANOVA. Inter-animal variability for the viscoelastic 

parameters in equation 1 and 2 was evaluated for a particular step size (30 µm ) using 1-factor 

ANOVA. 

Experimental design 

A range of microelectrode micro scale movements of random step sizes from 3 µm to 150 

µm were made and the forces recorded from the instant of movement till they reached steady 

state. In order to test the effect of IMI, 30 µm step size was chosen as this is about the step size 

we move to search for neurons in the cortical region that were about 10 µm in diameter. IMI is 

varied in the following sequence, 30 s (approximately the secondary relaxation time constant τ2 

for the stress response curve derived from moving 30 µm and waiting for the stresses to reach 

steady state), 1 min (two times the secondary relaxation time constant τ2), 3 min (six times the 

secondary relaxation time constant τ2) and 20 min (forty times the secondary relaxation time 

constant τ2). Ten steps of 30 µm movements were made for each IMI and forces measured 

during movement and tissue relaxation after all movements. Stresses were estimated from these 

force curves and the estimate for model parameters derived. Step size of 3 µm, 3 min IMI was 
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chosen to test forces exerted while moving in small steps less than the diameter of a neuron, 

movement typically executed while optimizing neural recordings. 

Results 

Movement parameters commonly used to achieve stable neuronal recordings based on 

the experimenter’s skill, experience and intuition are generally small step movements in the order 

of 3 - 6 µm and long wait times between movements as discussed before. The stress patterns in 

brain tissue while moving the microelectrode using such intuitive movement strategies were 

measured as shown in Figure 24. Small step sizes of 3 µm movements with 3 minute IMI were 

tested in two different animals and the stress levels are represented as mean and SD of the 

stress values of the 3-minute interval after each instance of movement occurred in Figure 24. 

Similarly, 10 movements with step sizes of 30 µm movements with long wait times of 20 minutes 

were tested. The resulting stresses as shown in Figure 24 were fairly constant for both movement 

paradigms with long wait times and short IMIs and the maximum stress exerted by the brain 

tissue was 1kPa. Hence these strategies intuitively minimize the stress exerted on the 

surrounding tissue and thereby reduce the relaxation effects/tissue drift effects that lead to more 

stable neuronal recordings. The stress relaxation curves at the end of these experiments were fit 

to the 2nd order Prony series and the long-term relaxation constants were 11 s and 7 s for the 30 

µm step size - 20 min IMI and 3 µm step size - 3 min IMI movements respectively. This further 

confirms that there is minimal stress build up due to these movement paradigms, as the tissue 

relaxes zero stress levels in less than a minute. However, the time taken to move 100 µm is 70 

min (30 µm step size - 20 min IMI) and 96 min (3 µm step size - 3 min IMI) in each of these 

cases. For autonomous control applications, it is desirable to optimize the “search/seek” time to 

find stable and high fidelity neural signals and improve the efficiency of the process. 
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Figure 25. Instantaneous shear modulus for downward movement of microelectrode. a) Linear 
dependence of G(0) with step size b) Variation of G(0) with ln to exponential base of IMI. G(0) 
thus has non-linear dependencies with IMI c) Box plot of mean G(0) measured for 30 µm step 
size across n=7 animals tested d) Tukey test results for multiple comparisons of the mean G(0) 
for pairs between all animals tested. If the result of Tukey test is significant then the means of 
G(0) for 30 µm step size for the pair of animals tested is significantly different. 

Instantaneous shear modulus 

Instantaneous shear modulus is an indicator of the stiffness of the brain tissue, higher the 

modulus, stiffer the tissue. Experimentally derived instantaneous shear modulus for micro scale 

downward movements of the microelectrode show a linear relationship (r2=0.82) the step size of 

movement as shown in Figure 25(a). The slope of the fit was 33.4 +/- 1.8Pa and the y-intercept 

was 371.8 +/- 88.7 Pa. Ideally, the intercept for this linear fit should be zero. However, since this 

data is pooled across different animals and movements are recorded at different depths 

deviations from ideal values are acceptable.  
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A 95% prediction interval that predicts a range of G(0) for a given step size is also plotted 

to account for these variations. The instantaneous shear modulus has a non-linear dependence 

on the IMI, which is expected due to the viscoelastic (time-dependent stress response) nature of 

brain tissue as shown in Figure 25(b).  

 

Figure 26. Instantaneous shear modulus for upward movement of microelectrode. a) Linear 
dependence of G(0) with step size b) Variation of G(0) for 30 µm step size with the depth in the 
cortex at which the movement occurred. Pearson’s correlation coefficient of -0.187 indicates that 
there is no correlation between G(0) and depth of microelectrode in cortical brain tissue. c) Box 
plot of mean G(0) measured for 30 µm step size across n=10 animals tested d) Tukey test results 
for multiple comparisons of the mean G(0) for pairs between all animals tested. If the result of 
Tukey test is significant then the means of G(0) for 30 µm step size for the pair of animals tested 
is significantly different. 

Similarly, the instantaneous shear modulus for upward movement has a linear 

relationship with step size as in Figure 26(a). Modeling results show that the modulus values for 

downward and upward movement for the same step size are of the same order as the shear 
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modulus for downward movement. For example, for 30 µm downward and upward step, the 

predicted G(0) from the linear model is 1.3 kPa and 1.1 kPa respectively. It is important to note 

that this linearity holds true only for micro scale movements up to 100 µm tested in this study. For 

a step movement of 100 µm the forces registered are around 300 µN. For displacements in this 

range, when the microelectrode is moved downward it is compressing the tissue beneath it and 

thus there is a linear relationship between force and displacement. Sharp et. al., report that for a 

critical force that microelectrode penetrates the tissue resulting in a decrease in forces. This force 

is 328 +/- 68 µm for a flat punch probe of 100 µm diameter with a loading rate of 11 µm/s. We 

observe instantaneous increase in forces > 300 µN for displacements above 100 µm and hence 

limit the linearity regime to this step size. The maximum instantaneous shear modulus observed 

for downward displacements was 3 kPa. We estimate the elastic modulus of brain tissue as per 

equation 3 assuming a linear viscoelastic model, with Poisson’s ratio of 0.5 (ref) with 3 kPa as 

shear modulus. The elastic modulus of 4.5 kPa matches well with the elastic modulus of brain 

reported widely in literature. This is significant, as it indicates that for micro indentations within the 

brain, the tissue responds linearly and acts as a homogenous isotropic medium. 

Although we however know brain cortical tissue is an inhomogeneous structure at the 

micro scale with laminar organization, blood vessels, cell bodies and process with different 

mechanical properties. Therefore, we investigated if the values of the instantaneous shear 

modulus would vary with the location of the microelectrode in the cortex. However, as shown in 

Figure 26(b) there seems to be no correlation between depth of microelectrode and 

instantaneous shear modulus for upward movement (Pearson’s r=-0.187). A Tukey test 

comparing the mean of experimentally determined instantaneous shear modulus parameters for 

the same step size (30 µm) across pairs of all animals used in this study was conducted. The test 

revealed significant difference (p<0.05) in mean instantaneous shear modulus in 9 out of 21 pairs 

of animals for downward movement and in 23 out of 45 pairs for upward movement as shown in 

Figures 25(d) – 25(e) and 26(d) – 26(e). It can only be concluded from these results that we could 
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expect inter-animal variability in the estimation of mechanical parameters in vivo, however, the 

degree of variability varies across the population. 

Stress relaxation model 

The values of the long-term and short-term shear modulus G1 and G2 and the respective 

relaxation time constants τ1 and τ2 were determined using the bi-exponential model described in 

equation 1.  The sample size consisted of a total of 108 stress relaxation curves for downward 

movements from all the individual trials that converged to a good fit (r2>0.9) with the model. For 

upward movements, the stress relaxation curve is fitted to single exponential model and hence 

has only two fitted parameters G1 and τ1 were estimated. The sample size consisted of a total of 

60 upward stress retraction curves from all the individual trials. Two-factor ANOVA was 

conducted for testing the effect of factors step size and inter-movement interval on the model 

fitted parameters for both downward and upward movements. Results showed that the shear 

modulus G1 and the short-term relaxation time constant τ1 for the downward model are not 

dependent on both these factors (p>0.4).  

 

Figure 27. Histogram of short-term and long-term viscoelastic shear moduli and relaxation time 
constants. a) The short-term and long-term viscoelastic shear moduli from fitting the stress 
relaxation response to a 2nd order Prony series model. Model parameters were obtained after 
fitting108 stress relaxation curves in response to downward movement with different step sizes 
across n=14 animals. The values of relaxation time constants are consistent across step sizes. 
The variations of shear moduli are within the ranges of short-term and long-term shear moduli for 
brain tissue reported in literature. b) Histogram of model parameters obtained after fitting 60 
stress relaxation curves in response to upward movement with different step sizes across n=14 
animals to a single exponential model. The viscoelastic shear modulus for upward movements is 
consistent and falls in the range of 200-400 Pa across all step sizes. 
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The relaxation constant τ2 showed a dependency on step size (p<0.05) and inter-

movement interval (p<0.05). The shear modulus G2 also showed a dependency on step size of 

movement (p<0.05). The shear modulus G1 and the relaxation time constant τ1 do not vary with 

either step size or inter-movement interval.  Statistical power in each of these tests was >0.9. 

One-way ANOVA was performed for each of the model fitted parameters to test if there was 

variation across animals. However, this test was not significant (p>0.3) indicating that the model 

generalizes well across all animals (n=14). Figure 27 shows the spread of the model fitted 

parameters across all step sizes and IMIs. The variations seen are largely due to the anisotropic 

and heterogeneous nature of brain tissue as also the variability inherent to in vivo 

experimentation. Since these parameters define the constitutive material properties of the brain 

tissue, average values for all the coefficients are taken and the mean, standard deviation, lower 

and upper 95% confidence intervals are reported in Table 2.  

Table 2. Model Fitting parameters for (a) downward and (b) upward  movements 

 

 

The values of the viscoelastic shear moduli fall within these ranges but as discussed 

earlier they trend with step size as well. It was observed that the overall stress response 

prediction model for a given movement pattern however, was not sensitive to variations in 

parameters with IMIs. For a 30 µm step size, stress response model was set up with the following 

parameters - G1=460 Pa, G2=560 Pa, τ1=1.5 s, τ1=30 s and G(0)= -1300 Pa for downward 

movement. The IMI was varied as 30s, 1 min, 3 min and 20 min. Figure 28 shows that the 
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simulations of the stress response model closely follows experimental data with 30 µm step size 

and the above IMIs respectively. It is observed that the model simulations fit well with 

experimental data and are robust at predicting stress values in wide range of time scales ranging 

from 300s for 30s IMI to 6000s for 20 min.  

 

Figure 28. Stress measurements showing tissue relaxation patterns for uni-directional 
microelectrode movement at the rate of 100 µm/s. The electrode was moved in steps of a) 30 µm 
with 30 s minute inter-movement interval (at relaxation time constant) b) 30 µm with 30 s minute 
inter-movement interval (2 times relaxation time constant) c) 30 µm with 3 minute inter-movement 
interval (6 times the relaxation time constant) d) 30 µm with 20 minute inter-movement interval 
(40 times the relaxation time constant). Stress response due to these movements measured 
experimentally were compared with simulations of the stress relaxation model for the same 
movement parameters. 

While 30s is approximately the long-term relaxation time constant for this step size, the 

other IMIs are twice, 6 times and 40 times the relaxation time constant respectively. Modeling 

results indicate that for moving a total distance of 300 µm (10 steps) at the above movement 
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specifications, the asymptotic value of stress at the end of the 10th IMI were -4.8 kPa, -3.5 kPa,  -

2.78 kPa and -2.71 kPa respectively for the above IMIs. Comparing the first 5 movements 

experimentally it is seen that the asymptotic value of stress at the end of the 5th IMI were 

approximately -1.3 kPa for both 3 min and 20 min IMIs. Model simulations predict the same stress 

values as well. Interestingly, increasing the IMI to 20 min did not reduce the stress build up 

significantly at -2.71 kPa. Hence waiting for long durations between step movements while 

moving towards a target in a viscoelastic soft tissue does not prevent residual stress build up and 

eventual relaxation on reaching the target beyond 6 times the relaxation time constant. Our goal 

was to achieve quasi-steady state stresses i.e. zero or minimal residual stresses build up 

between steps and a final steady state stress value with no further tissue relaxation at end of all 

step movements. Therefore, the stress response model was further explored to predict a 

movement pattern that could result in quasi-steady state stresses. 

Bidirectional inchworm type movement results in quasi-steady state stresses 

Model simulations indicated that a bidirectional inchworm type movement pattern is 

successful in achieving quasi-steady state stress conditions in brain tissue during microelectrode 

navigation. For unidirectional movement parameters described above with 30 µm step size and 3 

min IMI, we simulated a bidirectional movement pattern that effectively moves the same step size 

in the same IMI. An inchworm type movement pattern with 60 µm downward movement, 1 min 

IMI and subsequent 30 µm upward movement, 2 min IMI resulted in an effective movement of 30 

µm in 3 min.  
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Figure 29. Quasi-steady state stresses i.e. stresses close to zero distinctly visible during 
bidirectional movement as compared to build-up of stress with every step in unidirectional 
movement. a) Model simulations of stress response to bidirectional movements resulting in 
effectively moving 30 µm in 3 min compared with unidirectional step movements of 30 µm in 3 
min. b) Bidirectional movement pattern of 60 µm downward movement, IMI1 of 1 min and 30 µm 
upward movement, IMI2 of 2 min. c) In vivo measurements of stress response to bidirectional 
movements resulting in effectively moving 30 µm in 3 min compared with unidirectional step 
movements of 30 µm in 3 min in n=2 animals. Quasi-steady state stresses are observed 
throughout the bidirectional movement sequence and at the end of all movements. d) In vivo 
measurements of stress response to four movements of bidirectional and unidirectional patterns 
described above. 
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The simulation results shown in Figure 29 (a) show that the bidirectional movement 

pattern (inset) produces near zero stress levels after every step and at end of all step 

movements. Experimental results as shown in Figure 29(b) and (c) in n=3 animals confirm near 

zero stress levels for bidirectional inchworm type movement compared to unidirectional 

movement pattern with same movement parameters. In all the trials of bidirectional movement it 

is seen that even after termination of movement, the stresses remain at steady state levels with 

no significant tissue relaxation. We investigated further into what ratio of step sizes for a 

bidirectional movement pattern would result in steady state stresses as shown above in the least 

interval of time. 

 

Figure 30. Bidirectional movements with optimal and non-optimal IMIs. a) Stress response 
measured experimentally for 30 µm downward and 20 µm upward movements with IMI1=15s and 
IMI2=15s compared with model simulations for the same movement pattern. The IMIs were 
optimized through modeling and validated experimentally. n=75 movements are made and hence 
the microelectrode moves a total of 750 µm. There is some compression of brain tissue due to 
insertion of the microelectrode deeper into the brain however, the stresses after all movements 
remain at steady state. b) Stress response measured experimentally for 10 µm downward and 5 
µm upward movements with IMI1=15s and IMI2=15s compared with model simulations for the 
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same movement pattern. Model simulations with optimized IMIs (IMI1=50 s and IMI2=10s) and 
the resulting steady state stresses are also shown. 

Optimizing IMI  

With the inchworm type movement mechanism, it is possible to have multiple ratios and 

combinations of downward and upward steps that result in a net downward movement. Three 

ratios of step sizes were explored to minimize the IMI such that microelectrode movement is 

executed in the shortest possible time while still maintaining steady state stresses. The aim of this 

optimization exercise is to find an IMI that is less than 4 times the long term relaxation time 

constant (τ2) corresponding to the step movement we execute. The optimization of IMI is 

essential as it increases the speed of movement of the microelectrode while maintaining steady 

stresses. Ratios of 2:1, 3:2 and 3:1 where the microelectrode was moved two steps downward 

and one step upward, three steps downward and two steps upward and finally three steps 

downward and one step upward were simulated. The step sizes chosen for executing this ratio of 

movements and the simulation results of IMI are shown in Table 2. IMI1 is the inter-movement 

interval between the downward and the paired upward movement. IMI2 is the inter-movement 

interval between two pairs of downward and upward movement. 

Table 3. Simulation results for bidirectional inchworm type movement for different ratio of step 
sizes and the resulting optimal IMIs 

Ratio of 
steps 

Step sizes 
(µm) 

Effective 
downward 
movement 

(µm) 

IMI1 (s) IMI2 (s) 
Time taken 

to move 
120 µm (s) 

2:1 10:5 5 50 10 1440  
2:1 60:30 30 60 20 320 
2:1 120:60 60 >180 - - 
3:2 30:20 10 15 15 360 
3:2 60:40 20 20 20 240 
3:1 30:10 20 120 15 810 

 

Results indicate 3:2 is the most optimal ratio of downward and upward steps for an 

inchworm type movement pattern that minimizes IMI. A total IMI (IMI1+IMI2) between two 

effective steps of 10 µm and 20 µm is 25s and 40s respectively for the 3:2 ratio, whereas the total 
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IMI in all the other cases is greater than 1 min. The optimization routine is meaningful only for 

step sizes below 100 µm. For example, when we tested the120 µm : 60 µm step sizes for 2:1 

ratio of movements, we found that the iterations did not converge to steady state stresses even 

after IMI1 was increased to 4 times the relaxation time constant (τ2 = 56s) for 120 µm step 

downward movement. 3:1 ratio of movements with large differences in the downward and upward 

step sizes also do not optimize the IMI effectively and result in total IMI>2 min. 3:2 ratio with 

IMI1=15s and IMI2=15s is validated experimentally with the following step sizes: 30 µm 

downward movement and 20 µm upward movement. Figure 30(a) shows experimental data with 

the stress response to the above movement pattern and the simulated results follow closely with 

experimental data for n=75 movements. The microelectrode moves a total of 750 µm and the final 

stress levels at the end of all movements are about -1 kPa. There is some tissue compression as 

the microelectrode is inserted deeper into the cortical tissue but the resulting stresses are at 

steady state at the end of all movements. When the IMIs are not optimized for the bidirectional 

movement pattern it is possible that the resulting stresses are not at steady state and there is 

significant residual stresses and tissue compression as shown in Figure 30(b). Experimental data 

shows that the movement pattern with non-optimal IMIs results in almost -10 kPa of stresses and 

eventual relaxation of brain tissue was observed  

Bidirectional movement leads to steady state stresses in a 16 week chronically implanted 

microelectrode 

Bidirectional movement strategy to obtain steady state stresses was also tested in a 16 

week chronically implanted microelectrode in rat brain tissue. The microelectrode was implanted 

to a depth of 1 mm in the cortex and left in place for a period of 16 weeks. Arati et al., 2013 

provide a detailed report of the implantation procedure and maintenance of the implant over 16 

weeks. The microelectrode was moved initially over a distance of 500 µm to move through the 

scar tissue zone seen around chronic implants (Sridharan, Rajan, & Muthuswamy, 2013). 

Bidirectional movement pattern in the most optimal ratio of 3:2 was to be tested. The mechanical 
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properties of brain tissue in chronic implants will change due to the remodeling of tissue around 

the implant over time (Sridharan et al., 2013). A step movement of 60 µm downward (n=3) was 

made and the tissue was allowed to relax to steady state. Similarly, 40 µm upward movement 

(n=3) was made and the tissue was allowed to relax to steady state. The modulus parameters in 

the viscoelastic stress relaxation model were derived as described above. A bi-exponential model 

was fit for both downward and upward movements and the following modulus values were 

determined for 60 µm downward movement, G(0) = -1280 Pa, G1 = 459 Pa G2 = 239 Pa τ1 = 5.7 s 

and τ2 = 70 s. And for 40 µm upward movement, G(0)= 518 Pa, G1 = 691 Pa G2 = 961 Pa τ1 = 1.8 

s and τ2 = 35 s. The stress relaxation model was simulated to find the most optimal IMIs for the 

above step sizes, IMI1 = 60 s and IMI2 = 60s.  

 

Figure 31. Stress response to bidirectional movement in 16 week chronic implant. Stress 
response measured experimentally for optimized movement parameters - 60 µm downward and 
40 µm upward movements with IMI1 = 60 s and IMI2 = 60 s. The IMIs were optimized through 
modeling and validated experimentally. n=7 movements were made and hence the 
microelectrode moves a total of 140 µm. The stresses remain at steady state after all movements 
validating the bidirectional inchworm type movement strategy in brain tissue with chronic 
implants. 

Therefore, the microelectrode was moved in vivo with the above optimized bidirectional 

movement parameters and the resulting stresses were as shown in Figure 31. The 

microelectrode was moved a total of 140 µm and steady state stresses are maintained at the end 
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of all movements validating the bidirectional movement strategy in brain tissue with chronic 

microscale implants. However, the modulus parameters need to be adaptive to the change in 

mechanical properties of the brain tissue around chronic implants and were re-derived. Variations 

were observed in between the consecutive step movements and these could be due to 

inhomogeneity in brain tissue. The overall magnitude of the stresses seen during bidirectional 

movements was also significantly larger than that seen during navigation in acute experiments. 

 

Figure 32. Stress response to bidirectional movement in 4-microelectrode and 16-microelectrode 
multi-electrode array. 4-microelectrode and 16-microelectrode stress response was measured 
experimentally for  the following bidirectional movement parameters - 60 µm downward and 30 
µm upward movements with IMI1 = 60 s and IMI2 = 120 s. Not that the entire array was moved 
and not individual electrodes in the array. The stress response for these multi-electrode arrays 
was compared with the stress response from  moving a single microelectrode with the same 
parameters. For both the single microelectrode case and the 4-microelectrode array with 1 mm 
spacing there are no residual stresses and the stresses remain at steady state after all 
movements. However, for the 16-microelectrode array with 500 µm spacing there is build up of 
residual stresses with final relaxation of tissue at end of all movements. 

Discussion  

For small micro scale displacements compressive forces are more dominant than shear. 

However, the modulus values derived from micro scale movements in brain tissue in this study 

compare well with values derived from large-scale indentation studies in in vivo rat and porcine 

models (Karol Miller & Chinzei, 2002; Karol Miller et al., 2000; Sridharan et al., 2013). The shear 

modulus values are also similar to previous studies of microelectrode penetration in millimeter 

scales in rat and mouse brain tissue (Sharp et al., 2009b; Sridharan et al., 2013).  
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We defined quasi-steady state of stresses where the stresses are almost constant during 

movement. The rationale for achieving such quasi-steady state stresses is multifold. Primarily, it 

achieves precise positioning in a non-visual environment with viscoelastic mechanical properties 

by overcoming tissue relaxation effects. As the target is approached, by compensating for 

deformation properties of the soft tissue, the relative distance between the probe and the target is 

always maintained and targeting accuracy increased.  

Another important consideration for minimizing the stresses created during micro scale 

navigation inside brain tissue is to keep the stresses well within the tissue thresholds for mild 

traumatic brain injury (El Sayed, Mota, Fraternali, & Ortiz, 2008; L. Zhang, Yang, & King, 2004) 

and minimize inflammation response (Bjornsson et al., 2006; Jensen, Yoshida, & Hofmann, 2006; 

Werner & Engelhard, 2007). Limited data is available on the stress magnitudes and durations that 

cause tissue injury (De et al., 2007). McConnell et. al., (McConnell, Schneider, Owens, & 

Bellamkonda, 2007) showed that increased peak extraction forces of microelectrodes correlated 

with GFAP expression in astrocytes. Zhang et. al., (L. Zhang et al., 2004) state that the threshold 

levels of shear stresses at 6 kPa could indicate mild traumatic brain injury with 25% probability. 

These limits for injury are only representative thresholds, as they may not translate accurately to 

the case of micro scale movements with very low strain rates. Therefore, by maintaining quasi-

steady state stresses close to zero with consecutive movements we would minimize the 

possibilities of inducing tissue damage and associated cellular inflammation response.  

Measurements of forces required to move micro scale displacements in brain tissue are 

in the order of a few 100 uN. If the tissue is not allowed to relax between consecutive 

movements, these forces increase to the order of mN. For bidirectional movements, the 

maximum force registered is in the range of 300 uN - 500 uN. Therefore, force requirements 

reduce by orders of magnitude for penetrating soft viscoelastic materials using optimal movement 

strategies. Particularly, for applications using MEMS based micro devices used for navigation in 

soft tissue, optimal movement parameters would lower the design requirements for force 

generated by the device.  
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The stress relaxation model accurately quantifies the effect of the movement parameters 

such as step size and IMI on the stresses developed in brain tissue. Thus, it is possible to predict 

the stresses developed given a random sequence of movements. Adhoc strategies of wait times 

ranging from 30 min to 24 hours to allow the tissue to relax before recording neural activity could 

thus be eliminated (Battaglia et al., 2009a; Eliades & Wang, 2008; Gray et al., 2007a; A. Jackson 

& Fetz, 2007; Yamamoto & Wilson, 2008). The precise quantification of factors such as how 

much to move and how long to wait to overcome tissue drift effects shall further the development 

of adaptive automated neural recording systems.  

While recording extracellular activity in the brain multi-electrode movable array it is 

observed that moving one electrode affects the activity recorded in the neighboring electrodes. 

When quasi-steady state stresses are maintained, there is minimal compression and the stresses 

do not propagate to the neighboring electrodes. Thus this technique could possibly ensure that 

with multiple electrodes, movement of one electrode does not affect the signal quality at the other 

electrodes. Further extensions to this study with multiple electrodes could investigate the optimal 

spacing to mechanically isolate electrodes in a multi-electrode movable array. Preliminary data to 

support this hypothesis is presented in Figure 32. Bidirectional movements of 60 µm downward 

movement and 30 µm upward movement were made with a 16-channel array with an inter-

electrode spacing of 500 µm and a 4-channel array with an inter-electrode spacing of 1 mm. The 

entire array was mounted on the micromanipulator and moved inside the brain tissue in an 

experimental setup as described above. It is observed that quasi-steady state stresses are 

maintained during movement of the 4-channel array with 1 mm electrode spacing similar to the 

single electrode case. However, movement of the 16-channel array shows a build-up of stress 

due to tissue compression indicating that in closely spaced arrays there might be second order 

effects due to overlapping mechanical spheres of influence around individual electrodes. A 

mechanical model that incorporates the effect of the spacing between the electrodes on the 

resulting stresses in tissue during movement is necessary. Such a model could be used to design 

for optimal spacing between electrodes in a multi-electrode array. 
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The force curves measured at different regions and depths of the brain had some minor 

and localized variations but the overall trend is predictable and consistent. In some trials, the 

measured curves would not fit the viscoelastic model because of noisy data that could be a result 

of the microelectrode severing a blood vessel, changes in intra-cranial pressure or tissue drying 

effects due to an open craniotomy. The probe used in the experiments here is a planar structure 

but it is coated with brain epoxy and hence can be considered as an incompressible material that 

does not deflect on insertion into the brain. Hence the modeling analysis applies only for rigid, 

incompressible probes and does not take into account the effects of deflection. The data 

presented here was measured from the cortical regions of adult rats; thus, mechanical properties 

of the deeper structures of the brain and differences in gray matter and white matter tracts are not 

studied. The response of the stress relaxation model for consecutive microelectrode movements 

is sensitive to the viscoelastic parameters chosen. Although the model has greater tolerance to 

G1 and τ1 values, the values of G2 and τ2 are critical to determine response. Thus in order to 

improve model predictions in micro scale navigation and targeting in a viscoelastic medium, 

subject-specific characterization of the viscoelastic parameters in vivo would enhance the 

accuracy of the model (Henken, Van Gerwen, Dankelman, & Van Den Dobbelsteen, 2012; Karol 

Miller & Lu, 2013; van Gerwen, Dankelman, & van den Dobbelsteen, 2012). This technique also 

has applications in navigation and placement of micromanipulation tools during robotic surgeries. 

For example, robotic micro scale needle manipulation in clinical procedures like targeting tumors 

for ablation and biosensing where it is critical to reach the specified anatomical target with 

minimal error margins.  

Conclusion 

The goal of the study was firstly, to evaluate the magnitude of stresses that would result 

in the surrounding brain tissue and tissue relaxation dynamics given a microelectrode movement 

pattern. Secondly, to optimize the movement pattern, step size and IMI such that movement of 

the microelectrode results in quasi-steady state stresses in the tissue. A viscoelastic stress 

relaxation model was developed that predicts the stress response in brain tissue to a microscale 
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movement pattern. An optimal bidirectional movement strategy was proposed that would maintain 

stress levels close to zero and was validated in vivo. This results in detailed quantification of the 

parameters for navigation inside soft viscoelastic brain tissue that would induce minimal stresses 

in brain tissue and minimize the time taken for movement. Finally, the bidirectional movement 

pattern was also validated in a 16 week chronically implanted animal and steady state stresses 

were obtained.  

In conclusion, the bidirectional inchworm type movement technique results in precise 

targeting and positioning of microelectrode in brain tissue while overcoming tissue drift effects.  
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CHAPTER 6 

CLOSED-LOOP CONTROL FOR ADAPTIVE MICRO-SCALE ROBOTIC INTERFACES 

Introduction 

 This chapter describes the closed loop control algorithm for autonomously positioning a 

microelectrode to monitor neural activity. Signal quality of the neural activity is monitored and the 

microelectrode position is adjusted based while optimizing the signal quality.  

Signal quality metrics 

 The question of how to achieve high quality recordings through such adaptive controls is 

dependent on the signal quality metrics that are to be optimized.  The signal quality metrics 

chosen should be objective measures of robust/reliable control. In general, three global signal 

properties are recognized: i) SNR and baseline noise level ii) spike waveform statistics such as 

peak-peak amplitude, waveform statistics and spike train statistics iii) impedance measurements.  

 Changes in electrode impedance give us a clue to the underlying causes that result in a 

changing interface. Impedance spectroscopy measures the flow of current between electrodes in 

a electrolytic medium, allowing the resistive and capacitive circuit elements of the electrodes and 

the medium between the electrodes to be characterized. But studies have not been able to 

provide a definite explanation linking changes in waveform shapes to observed electrode 

impedances (Suner et al. 2005, 524-41; Williams et al. 2007, 410). Hence although electrode 

impedance does provide an observable measure of the microenvironment around electrodes it 

cannot predict signal quality.  Also, in a BMI paradigm, there is now an emerging consensus 

among researchers that spike sorting leads to very little improvement in the performance of the 

decoding algorithm (Fraser et al. 2009, 055004; Herzfeld and Beardsley 2010, 046012). In fact, 

high performance studies recently reported have used only ‘threshold-crossing’ events, in which 

the firing rate of one unit per electrode is determined regardless of whether this activity results 

from more than one neuron (Chestek et al. 2011, 045005). The signal to noise ratio (SNR) is 
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taken as the objective measure that is controlled in the proposed algorithm. Apart from the above, 

one of the other reasons for choosing SNR was already described above, as it proved to be a 

more stable measure of neural activity when compared to the spike shapes or amplitudes.  

 SNR will be computed from the time-continuous data and independent of any spike 

sorting. The time-continuous data will be full-wave rectified (by squaring the signal to enhance the 

signal and reduce the noise floor), and data exceeding mean plus three times the standard 

deviation will be classified as signal and the rest as noise. The threshold for signal and noise 

detection will be computed in a time-resolved fashion to account for temporal changes in noise 

levels and signal variance, which could be expected. SNR will be computed using the following 

formula: 

𝑆𝑁𝑅 = 10  𝑙𝑜𝑔!"
(𝑠𝑖𝑔𝑛𝑎𝑙)!

(𝑛𝑜𝑖𝑠𝑒)!
 

where, the signal and noise are the average amplitude of signal and noise taken over the length 

of each time window.  

Modes for control algorithm 

A conceptual diagram of the proposed control algorithm is shown below in Figure 33. The 

proposed closed loop control algorithm has four modes: 

1. Maintain - The microelectrode is held stationary at the site of interest as long as the 

neural activity recorded is above the set threshold value. 

2. Linear Search - If neural activity is below the set threshold the control algorithm is in the 

linear search phase. A uniform linear search routine searches for neural activity above a 

set threshold. The microelectrode moves along a linear track with 30 µm step size with 

the optimal movement strategy described above such that quasi steady state stresses 

are maintained in brain tissue. Once the microelectrode is positioned at a location where 

the SNR is above the threshold value the linear search routine is terminated and the 

microelectrode moves to the optimization phase. 

3. Optimization – The SNR is optimized by moving the microelectrode along the gradient of 
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the SNR curve in increments of 10 µm. Here as well, quasi steady state is maintained by 

determining an apriori optimal movement pattern. The SNR as well as peak-peak 

amplitude of the maximum spike detected is monitored and the microelectrode position is 

optimized to maximize the amplitude of the maximum unit detected.  

4. Wait - In order to account for non-linearities such as when a neuron stops firing or when 

the signal amplitudes diminish suddenly due to possible mechanical shocks, the control 

algorithm is put on a wait cycle to allow the system to regain equilibrium. 

 

Figure 33. Schematic representing an overview of the proposed control system 

 Closed-loop control algorithm proposed by Burdick’s group referenced before is as 

shown in Figure 35 (b) where the feedback element is only the signal quality metric. The control 

scheme has an outer feedback loop that continuously monitors action potential data and 

optimizes the SNR as shown in Figure 34. The inner feedback loop translates the microelectrode 

displacement commands from the controller to stress values in the brain and provides an optimal 

inter-movement interval that would keep the stresses at quasi steady state. In the previous 

chapter, we determined the stress values and thereby the optimal movement pattern for a range 

of step sizes of movement of the microelectrode. In this chapter, a predetermined bidirectional 
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inchworm type movement pattern with the inter-movement interval and step sizes optimized to 

produce quasi-steady state stress was employed. Hence, the mechanical model introduces a 

delay before moving the microelectrode to the next step to minimize the residual stresses in the 

brain. In the degenerate case, the mechanical model simply reduces to a delay element, where 

an extended period of wait time between movement steps of microelectrode shall also maintain 

steady state stresses in the brain as shown in Figure 35 (a). 

 

Figure 34. Block diagram of control scheme with the viscoelastic stress relaxation model of brain 
tissue incorporated for optimal navigation of microelectrode in brain tissue. 

  

Figure 35. a) Block diagram of the control scheme with a simple delay element incorporated for 
navigation of microelectrode in brain tissue. b) Block diagram of the control scheme with no 
regulator and only SNR as feedback for microelectrode movement. 

Estimating the direction of movement 

 Every time there is a decrease in the signal amplitude, there is an ambiguity about the 

direction of movement of the neuron with respect to the electrode. Although repositioning of the 

electrode by a small distance may correct the problem, since the direction of movement is 

unknown we may end up moving the electrode away from the neuron. After passing a set 

threshold, a gradient can be determined by a uniform linear search method. When an increasing 

gradient is detected the electrode is positioned at a sub-optimal spot that is not necessarily at the 
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peak of the SNR curve. When tissue relaxation occurs or the neuron moves away from the 

electrode the direction of movement of the neuron is known by its movement along the gradient 

denoted by a drop or rise in SNR. This helps in resolving the direction of movement while trying to 

maintain neural signal quality and the decision to move forward or backward can be taken. 

However, the map of SNR vs. depth is transient. So if the microelectrode is moved back to the 

same spot the SNR value may not be the same as before due to the rearrangement of the 

neuronal matrix in the tissue around the electrode.  

Software implementation of algorithm 

 This part of the specific aim involves the real time implementation of the control 

algorithm. The neural signals will be acquired through the Tucker Davis Technologies® (TDT) 

signal acquisition system. The raw signal will be sampled at 25 kHz and filtered from 500 Hz to 3 

kHz. A MATLAB routine is called from the TDT interface that does the signal detection and 

computes the signal-to-noise ratio (SNR). The methodology to do this is already described in the 

previous chapter. The SNR is then used as input to the control algorithm. The algorithm will be 

implemented in MATLAB. A graphical user interface will be built that gives the user control over 

the algorithm parameters and positioning of the microelectrode. The movement commands will be 

sent from MATLAB to TDT, which would then initiate the waveforms necessary for the electrode 

to move. A block diagram of the full system in which the microelectrodes are positioned 

autonomously is shown in Figure 36. It is a feedback control system with the components 

identified as follows. The plant includes the microelectrode and the neural tissue interface. The 

microelectrodes are the sensors. The controller is the software implementation of the algorithm of 

the previous chapter. The recorded neural signal activity is the sensor inputs to the signal 

processing block. The signal-to-noise ratio is the input to the controller. The output (actuating 

signal) of this controller is an electrode movement command for each electrode being controlled. 

These commands are typically sent to actuation signal generation circuit which translates the 

movement commands into the proper voltages to move the electrodes, closing the feedback loop. 
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Figure 36. Block diagram showing the implementation of the feedback control system that 
autonomously positions microelectrodes in the brain. 

Potential pitfalls: When controlling multiple channels the analysis of the computational 

times required for each of the processing blocks is critical to prevent overlap in real time 

implementation of the algorithm. The programs could be multi-threaded so that different programs 

run simultaneously in the background and some of the data processing can be pipelined.  

In vivo experiments were conducted to quantify how the signal improves due to such 

movements, which are based on tissue properties and the characterization of the signal quality 

from such adaptive controls is shown below. 

Results 

The microelectrode was implanted at 1 µm/s speed to a depth of 560 µm in animal A and 1 mm in 

animal B to examine the effect of tissue drift post implantation on neural activity. A single unit was 

isolated in both the cases and the variation in amplitude of both the units is distinctly observed in 

Figure 37. Depending on the relative position of the neuron around the microelectrode listening 

sphere, the activity modulates with tissue drift. Unit B shows a steady decrease with time over the 

span of 6-7 minutes completely disappearing at about 12 minutes. The microelectrode was 

implanted to a depth of 590 µm with the optimal movement strategy determined in the previous 

chapter using a bidirectional 60 µm downward and 30 µm upward inchworm type movement 

pattern. A single unit was isolated at this depth and the microelectrode was left in place and 
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neural activity recorded. It was observed that the unit remained stable for more than an hour 

before the amplitude began to decrease. The change in amplitude due to tissue drift in the time 

scale of 10 minutes as observed in the 1 µm/s was not seen indicating that tissue might have 

indeed been at steady state stresses. The causes for change in activity beyond could be due to a 

number of putative causes outlined in Chapter 3.  

 

Figure 37. Average peak-peak amplitude variation of unit isolated at 10 µm/s implantation. 
Activity of unit A changes on isolation after the first 2 min and there is change in activity 
subsequently as well. A single unit was isolated in animals A and B respectively. 
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Figure 38. Average peak-peak amplitude variation of unit isolated  with bidirectional inchworm 
type movement pattern. The unit remains stable for more than an hour. 
 

During the optimization phase, if the microelectrode moves past a point of local maxima 

of the SNR, it can retrace its step back. However, as shown in Figure, the SNR values may not 

be the same when the microelectrode retracts back to the same depth. The same observation 

was made while estimating the direction of movement of the microelectrode above. An illustration 

of this case is shown in Figure 39. The microelectrode is moved forward in the optimal 

bidirectional movement pattern to depth of 1600 µm and retracted back.  

 

Figure 39. SNR variation when microelectrode is traced back to the same depths. SNR values as 
the microelectrode is advanced forward (shown in blue) and retraced back through the same 
depths (shown in red) using a bidirectional inchworm type movement pattern. The SNR values do 
not exactly match up when the microelectrode re-visits the same recording sites.  
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Further, long periods of silence are observed in the activity of a single neuron being 

recorded. The neuron maybe absent in consecutive observation windows of 1 minute and then 

reappears again in the next window. In Figure 40, two single units were simultaneously recorded 

from the microelectrode. The raw extracellular recording is shown on the left and the sorted units 

are shown on the right. The neurons isolated had peak-to-peak voltage of about 3.5 mV with a 

long latency period of about 3 min. During such a period if the controller tries to optimize the 

position of the microelectrode there is a possibility of damaging the neuron and losing the signal 

altogether. Therefore, a trade-off exists while designing a control scheme for an automated 

system between consistently good quality recordings versus tolerance for periods of inactivity. In 

our control scheme we define a wait time of 3 min before the controller considers the activity lost 

and switches to the linear search mode. 

 

Figure 40. Wait time before responding to decrease in SNR. (a) Sorted units of amplitude 3.5 mV 
were isolated (b) Illustration of intermittent neural activity of the isolated units observed with a 
period of latency lasting for about 3 min. A trade-off exists while designing a control scheme for 
an automated system between consistently good quality recordings versus tolerance for periods 
of inactivity. 

The closed loop control algorithm was tested for with the non-optimal control scheme with 

the control being blind to mechanics of brain tissue. The results of autonomous control of neural 

activity are as shown in Figure 41.  
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The controller isolates three single units during the duration of the experiment; however, 

each unit remains stable only for a span of 6-10 minutes. The controller attempts to re-isolate the 

unit by finding local maxima of the peak of the SNR/peak-peak amplitude curve. Upon 

examination of extracelluar activity and the units isolated in this experiment, evidence of tissue 

drift as observed by the changing signal activity was clearly visible as shown in Figure 42. The 

microelectrode chases a neuron that is a moving target as the microelectrode tries to position 

close to the neuron. Tissue relaxation over a period of 6-7 minutes post microelectrode 

positioning drives the neuron away.  
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Figure 41. Algorithm performance with a conventional regulator with only SNR as feedback.  
There was no wait time between movement except to estimate SNR over a 9s window and 
mechanics of brain tissue was not taken into account. The microelectrode responds to every 
change in SNR. From the SNR and peak-peak amplitude plots it is seen that three units were 
isolated and lost during a 35-minute duration experiment. 
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Figure 42. Variation of extracellular activity with tissue drift during non-optimal autonomous 
control of microelectrode movement. A unit is isolated at depth 1252 um and activity is lost within 
minutes possibly due to tissue drift. Microelectrode moves forward and regains the unit at depth 
1342 um. However, activity is again lost and the microelectrode tracks the unit at depth 1372 um. 
The target neuron moves away from this site as well and the microelectrode is unable to track the 
neuron again through subsequent movements. 
 

The microelectrode is able to track the same neuron over a distance of 120 µm. This 

gives us an estimate of the range of change in relative distance between microelectrode and 

neuron during and the magnitude of tissue drift due to relaxation of brain tissue around the 

microelectrode. The results of algorithm performance with the knowledge of tissue mechanics 

incorporated in the regulator to control the positioning of the microelectrode is shown in Figure 

43. The algorithm isolates a single unit once through the duration of the experiment and 

maintains a stable unit for nearly 90 minutes. 
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Figure 43. Algorithm performance by closed loop control with an optimal regulator with SNR as 
feedback and a predetermined optimal movement strategy that maintains quasi steady state 
stresses.  The microelectrode was moved with the optimal bidirectional movement strategy 
determined in the previous chapter with step size of 30 µm and IMI of 3min. The microelectrode 
isolates a single unit, from the SNR and peak-peak amplitude plots it is seen that it attempts to 
maximize both these signal quality measures and holds a steady unit for approximately 90 
minutes. 
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A step-by-step illustration of the isolation of the unit during closed loop control adaptive to 

tissue mechanics is shown in Figures 44, 45 and 46. In Figure 44, the microelectrode moves bi-

directionally in the linear search phase  

 

Figure 44. Isolation of single unit activity during linear search phase of control with regulator 
adaptive to tissue mechanics. A single unit is isolated in three effective step movements of 30 µm 
each as the microelectrode is moved bidirectionally over a total distance of 90 µm. The threshold 
for SNR was set to 17 in this experiment to isolate large single unit activity.  

Once the microelectrode locates unit activity and the SNR is above the set threshold the 

algorithm switches to the optimization phase. In the optimization phase the microelectrode is 

moved bidrectionally with 10 µm effective step size (steps of 20 µm forward and 10 µm backward) 

and IMI optimized as described earlier.  
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Figure 45. Optimization of single unit activity as the microelectrode is moved in steps of 10 µm bi-
directionally around the site of interest found during linear search. The microelectrode is moved 
both in forward and backward directions to determine the direction of increase in gradient of 
peak-peak amplitude. The amplitude of unit activity is optimized and long as there is an 
increasing gradient in peak-peak amplitude. 
  

The algorithm switches to maintain phase once unit activity is optimized and the 

microelectrode remains stationary. SNR is monitored in windows of 1 minute continuously to 

ensure that the signal quality remains above the desired threshold. The algorithm was able to 

maintain a steady unit for more than 90 minutes after isolation in the maintain mode as shown in 

Figure 46.  
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Figure 46. Steady unit post isolation in maintain mode of control with adaptive regulator. 
The unit remains stable for about 90 minutes before losing the unit altogether. 

 

It could be concluded that by optimally positioning the microelectrode one of the putative 

causes of change in signal quality i.e. tissue drift is eliminated. Tissue drift as seen from results 

above causes changes within the first 10 minutes of positioning of the microelectrode. Thus, the 

mechanical properties of the tissue will help in determining a more optimal strategy for long-term 

placement of electrodes. However, non-stationarities that cause signal changes over long term 

still do exist and the control algorithm has to counter for that variability by repositioning the 

microelectrode. In Figure 47, the peak-peak amplitudes of unit activity in 6 different trials (n=3 

animals) of non-optimal autonomous control with conventional regulator and 1 trial (n=1 animal) 

optimal control with regulator adaptive to tissue mechanics is presented.  
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Figure 47. Variation of peak-peak amplitude with non-optimal control and modes of the control 
algorithm in 6 different trials (n=3 animals). Total time of control from all 6 trials = 216 minutes. 
Below panel - Variation of peak-peak amplitude with non-optimal control and modes of the control 
algorithm in 1 trial (n=1 animal). Total time of control = 180 minutes. 

 

The modes of the control algorithm during the duration of the experiment are also 

presented. During non-optimal control the algorithm is mostly in the search phase or waiting to 

recover activity due to instability in the unit isolated. The main reason for this instability is tissue 

drift due to non-optimal microelectrode positioning post the linear search/optimization phase. The 

algorithm continuously isolates several units over the duration of the experiment in an effort to 

keep the SNR above threshold value. As seen in Figure 48, the microelectrode traces three 

neuron isolation curves during duration of 35-minute experiment. In the optimal control routine 

where quasi-steady state stresses are maintained and hence there is no tissue relaxation. Thus 

the units remain steady post isolation as shown in the bottom panel of Figure 47 with the control 

in maintain mode for the most duration of the experiment. Only a single unit isolation curve of 

SNR is traced by the microelectrode as shown in Figure 49. However, the maximum peak-peak 
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amplitude curve for the same experiment shows three peaks. The control is blind to this metric in 

the linear search phase and perhaps does not detect the large unit activity that shows up in the 

peak-peak amplitude curve but is missing in the SNR curve possibly due to lower firing rate or 

long latency periods. Thus the control based only on SNR as a measure of signal quality is 

biased to high firing rate neurons with large amplitudes. Maximum peak-peak amplitude could be 

used as an alternate or additional metric for control. In some cases spikes were spotted when the 

microelectrode was moved 60 µm down but did not appear after consecutive 60 µm -30 µm 

movements. 

 

 

Figure 48. SNR versus depth curve showing the neuron isolation curve during the non-optimal 
control routine. Multiple isolation curves are traced as the controller attempts to re-isolate lost 
neurons due to tissue drift for the duration of the experiment. Maximum peak-peak amplitude 
versus depth curve showing multiple neuron isolation peaks. The SNR and maximum peak-peak 
amplitude were calculated over a 1 minute window. 

 
Figure 49. SNR versus depth curve showing the neuron isolation curve during the optimal control 
routine. A single isolation curve is traced and the neuron is held stable for the duration of the 
experiment. Maximum peak-peak amplitude versus depth curve showing multiple neuron isolation 
peaks that were missed in the SNR curve possibly due to low firing rate neurons that do not 
increase the SNR substantially in a 1 minute window. 
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Figure 50. Histogram of inter-movement intervals between microelectrode movements in non-
optimal and optimal control strategies. With optimal control adaptive to mechanics the number of 
movements are much lesser. The two peaks seen at 60 s and 120  are the IMIs of the 
bidirectional movement pattern during the linear search phase. In non-optimal control large 
number is IMIs less than 50s are seen as the controller is mostly in linear search phase 
attempting to isolate the neuron. The duration of experiments in both cases are comparable at 
216 min and 180 min with non-optimal and optimal control experiments respectively. 

   
Table 4. Summary of algorithm performance for non-optimal and optimal control strategies 

 

In order to evaluate the performance of a controller that is blind to tissue mechanics and 

a controller that adapts to tissue mechanics we compare the following performance metrics as 

shown in Table 4.  
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The IMIs are compared in Figure 50 and it can be concluded that with the adaptive 

control strategy the frequency of interventions needed to restore activity are less indicating more 

stable isolation of unit activity. This figure presents strong evidence that for comparable 

experiment times, the optimal controller by adapting to the viscoelastic behavior of brain tissue 

leads to more stable unit activity by eliminating tissue drift as one of the putative causes of non-

stationarity. 
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CHAPTER 7 

PACKAGING AND IMPLANTATION TECHNIQUES FOR INCREASING LONGEVITY OF MEMS 

IMPLANTS 

The goal is to assemble an autonomous robotic implant that is capable of maintaining neural 

signal quality. Specifically we would want to implement the control strategy developed in the 

previous aim on a MEMS microelectrode array platform.  

The first part of the aim deals with challenges in chronically implanting MEMS microelectrode 

arrays in vivo. The challenges involved could be split into the following subcategories:  

i) packaging of MEMS devices for chronic implantable application  

ii) mounting techniques that provides an interface for the electrodes to actuate over a long term, 

is of small form factor and ensures that the integrity of the packaged device is maintained 

iii) surgical techniques for MEMS devices with movable parts 

Packaging MEMS implantable devices 

The following section gives a brief description of the steps followed to package the 

MEMS die into a fully implantable package. The MEMS devices are fabricated at Sandia National 

Laboratories using the 5-layer SUMMIT-VTM process.  

1. Testing-The MEMS dies are checked for functionality before packaging. The microelectrodes 

are actuated forward and back on an electrical test bench. Testing has to be done with care so 

that the electrical bond pads are not damaged. Damaged bond pads can cause the silver epoxy 

to flow down to the active areas during the reflow process in the packaging process that follows. 

2. Insulation - The MEMS microelectrode array is insulated with brain probe electrical insulator 

(Epoxylite 6001, P.D. George Company, St. Louis, MO). The microelectrode are extended off the 

edge of the die by 3.5 mm. Care is taken that all the three microelectrodes are actuated by the 

same distance. The brain probe epoxy is taken in a container and the meniscus is visualized 

under a microscope to ensure that it is uniform to avoid coating the microelectrodes at different 

lengths. The die is mounted on a post fastened to a z-axis manipulator and slowly lowered. The 
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microelectrodes are dipped into the epoxy while observing under the microscope. The meniscus 

can be pulled up under surface tension and contaminate the die area. This is catastrophic for the 

functioning of the actuators. Hence the microelectrodes are dipped only to about 2.5 mm with 

about 1 mm spacing from the die edge. The tips of the microelectrode are etched using 

dicholoromethane using the same dip technique. The microelectrodes are soft baked at 99oC for 

30 minutes and then hard baked at 199oC for 30 min. The microelectrodes are tested by 

actuating them forward and backward again after insulation. 

3. Fabrication of interconnects - The second level interconnects that has leads running from the 

bond pads to the Omnetics® connector are fabricated on a glass die. Glass is used as the 

substrate to allow for visualization of the microactuators in function and the microelectrode 

movement. 1mm thick, 4 inch, glass wafer is used as the substrate. The interconnect leads are 

patterned in gold on the glass substrate using standard micro-fabrication procedures.  

4. Electrical testing and resistance measurements of interconnects- The width and thickness of 

interconnects were optimized so that the resistance of the leads is minimal to keep the power 

consumption low. The traces are of width 80-100 µm and thickness 500 µm. The average 

resistance is about 18 Ω which does not add significantly to the actuator resistance. The spacing 

between interconnects is large enough to prevent crosstalk between the electrical lines. 

5.Packaging- Packaging of MEMS devices is done by using a novel flip-chip technique using 

silver epoxy (Sutanto, Anand, Patel, & Muthuswamy, 2012).The devices are non-hermetically 

sealed using silicone gel to keep contaminants away from the device surface (Sutanto, Anand, 

Sridharan, et al., 2012). 

6. Final package testing – The Omnetics® connector serves as the final interconnect that 

interfaces with the actuation signal generation circuitry and the entire package is covered with 

epoxy for protection. The package is tested for functionality. During the development of the 

packaging process tests were done to ensure that the silicone seal prevents fluid contamination 

of the package at intra-cranial pressure levels. 
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Design of mount and surgical techniques for MEMS implantable devices 

The package will be implanted in Sprague Dawley rats. In a chronic experiment, the 

device has to be securely mounted on the skull. Further, it has to be protected against physical 

damage and mechanical shocks in awake, behaving rats. The mount has to be light and small for 

the animal to wear comfortably. The mount is made using plexiglass/ABS plastic as it is easy to 

machine and widely used in 3-D printing technology. Two rails or placeholders are designed 

inside the mount to form a snug fit with the packaged device. A CAD diagram of the mount and 

the fully packaged device are shown in Figure 51 and Figure 52. 

 

Figure 51. CAD diagram of the mount and the package.  

 

Figure 52.Fully flip-chip packaged implantable device. 
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A critical requirement is that the mount has to allow for the microelectrode to move in and 

out of the package while preventing fluid entry from the craniotomy. For this requirement, we cast 

microchannels in the craniotomy through which the microelectrodes can move. Standard surgical 

procedure up to the creation of craniotomy is followed as described before (Jackson et al. 2010). 

The microelectrodes are implanted in the somatosensory cortex and a craniotomy is made using 

trephine drill bit of 2.7 mm diameter. In order to cast the microchannels, three microneedles of 

200 µm diameter are perfectly aligned as the microelectrode array and fixed onto a glass die. The 

dura is knicked and excised. The craniotomy is covered with silicone gel and is not disturbed for a 

few hours. This is to allow all the residual bleeding from the skull and the dura excision to 

subside. The silicone gel is removed and the microneedles are positioned in the craniotomy with 

the tip of the needles touching the brain. The edges of the craniotomy are completely lined with 

gel foam to absorb any bleeding and CSF during microelectrode penetration. Kwik-cast® (World 

Precision Instruments, Inc., Sarasota, FL) is poured into the craniotomy around the microneedles. 

This has to be done quickly, seeing that no lumps are formed as the curing time of Kwik-cast is 

only 1 minute. The edges of the Kwik-cast are sealed to the skull using cyanoacrylate adhesive. 

The microneedles are removed after the cast is fully cured to form three channels.  

Potential pitfalls: Spacers made of silicone gel and of thickness 0.5 mm are glued on to either 

side of the craniotomy. The spacers serve a functional purpose. When there is blood or CSF 

exuding from the channels, if the device is held flush with the craniotomy the pressure built up 

could be large and the fluids can get into the packaged device by capillary force. The spacers 

prevent this by opening up the channels to ambient atmospheric pressure. The gel foam also 

prevents drying up of blood in the craniotomy which could potentially block the channels. The 

mount needs continuous maintenance and cleaning to avoid fluid contamination and blocking of 

the channels. An illustration of the mount on the skull is shown below in Fig. 53. The animal is 

allowed to recover from surgery for about two days. 
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Figure 53. An illustration of the mounting of the device on the skull and the interface with the 
brain. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

Neural interface technology has tremendous potential to create brain-machine 

connections that enable functions such as control limb prosthetics or computer cursors using 

thoughts or brain signals. For patients with ALS, paralytic stroke, limb amputees, such technology 

can enhance their quality of life significantly. Aforementioned application demands that sensors 

that interface with the brain perform reliably over the lifetime of a patient, typically 70 years. 

Currently sensors are fixed electrodes implanted in the brain and have serious issues with 

reliability and often fail over a period of a few months. 

Implantable microelectrodes that are currently used to monitor neuronal activity in the 

brain in vivo have serious limitations both in acute and chronic experiments. Movable 

microelectrodes that adapt their position in the brain to maximize the quality of neuronal recording 

have been suggested and tried as a potential solution to overcome the challenges with the 

current fixed implantable microelectrodes. While the results so far suggest that movable 

microelectrodes improve the quality and stability of neuronal recordings from the brain in vivo, the 

bulky nature of the technologies involved in making these movable microelectrodes limits the 

throughput (number of neurons that can be recorded from at any given time) of these implantable 

devices. Emerging technologies involving the use of microscale motors and electrodes promise to 

overcome this limitation.  

Control algorithms that search and optimize for maximum cluster separation and units in 

all recording channels can probabilistically increase the neuronal yield manifold in an implanted 

array. Thus along with miniature movable microelec-trode array technology, intelligent adaptive 

controls would enhance the reliability of the neural recording system and is a promising approach 

to ensure the stability, consistency, yield, and longevity of neural recordings from implanted 

micro-electrodes. With simultaneous developments in novel packaging and interconnect 

microtechnologies that will allow these microtechnologies to perform in challenging in vivo 
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behavioral contexts in long-term experiments, the movable micro-electrode approach will 

dramatically enhance the information throughput from single neurons in the brain. Achieving the 

elusive goal of stable long-term interfaces with single neurons will also facilitate discoveries in 

neuronal plasticity, learning, and memory studies. In the longer term, the tunable nature of these 

microelectrodes will allow the possibility of tracking specific neuronal circuits of interest and 

changes in their connectivity and synaptic strengths with time as shown in Figure 51. 

 

Figure 54. Conceptual diagram on adaptive autonomous control of movable microelectrodes 
where the controller could seek for specific neuronal activity that correlates with function for 
neuroprosthetic applications or alter neural circuits through neuromodulation to provide a specific 
response. 

The control algorithm detailed here is simple SNR feedback based and nevertheless 

shows tremendous improvement in signal stability due to the adaptive nature to tissue 

mechanics. Further, this adaptive positioning scheme could be applied for positioning any 

microscale probes and sensors in soft viscoelastic tissue. The optimal navigation strategy of 

microscale probes could find medical applications like tissue biopsy and in microscale surgery. 

Further improvement of the algorithm to track individual signal units by using rigorous statistics 

and regression based algorithms as detailed by Wolf et. al., could be incorporated. Currently, the 
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optimal movement strategy is predetermined, but with the integration of a force sensor with 

microscale probes could potentially lead to online computations of stresses in surrounding brain 

tissue and bidirectional navigation to minimize those stresses. The mechanical model parameters 

could be determined for each individual subject leading to greater prediction accuracy and more 

accurate positioning.  

Packaging of MEMS devices and surgical implantation and maintenance are areas on 

which considerable effort has been done during the course of this thesis work. Further 

development of high-density array of moveable microelectrode systems depends on the ability to 

reliably package and implant these devices over long durations of time. Tissue response to 

movement of microelectrodes over chronic implantation is currently unknown. The performance of 

the optimal control algorithm in chronic implantation conditions is also not evaluated here. These 

are some of the key areas that would drive the development of high throughput micro-scale 

robotic interfaces. 
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APPENDIX A  

MOVABLE MICROELECTRODE TECHNOLOGIES 
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Author/Vendor Size (L × W × H) 
(mm) 

Weight 
(g) 

Number of 
Channels 

Full 
stroke 
length 

Motion System 

Manual movable microelectrode systems 

Deadwyler 1979 20 (H) 2 1 5 Screw driven 
Bilkey 2003 22 (H) 0.39 1 4 Screw driven 
Swadlow 2005 35 (H) 0.5 7 5 Screw driven 
Dobbins 2007 53 (H) 12 12 10 Screw driven 
Battaglia 2009 23 (H) 1.8 6 5 Screw driven 
Thomas Recording 
Systems 

 1.5 1 5 Screw driven 

deCharms 1999 26 × 22 × 16 20 49 5 Pin push, 
Hydraulic 

Venkatachalam 
1999 

5.85 × 14.5 1.4-3.3 6 3 Gear 

Eliades 2008 17 × 12 × 8 0.8 16 2 Removable 
electrode pusher 

Neuralynx 37.5 × 52.8 16.9 28 10.5 Gear 

Automated movable microelectrode systems 

Fee and Leonardo 
2001 

6 × 17 1.5 3 3.5 Synchronous 
motor 

Venkateshwaran 
2005 

30 × 50 30 4 5 DC motor 

Charm 2005 35 × 16 40 4 5 Piezoelectric 
linear actuator 

Sato 2007 23.5 × 37 15 22 4 Hydraulic 

Gray 2007 143 (H) 129.5 8 11 Stepper motor 
and gear 

Park 2008 9 × 7 × 13 5 3 5 PZT (lead 
zirconate 
titanate) 
actuators 

Yamamoto 2008 30 (H) 29 21 7 Servo motor 
Wolf 2009 71 (H) 26.1 3 5.6 Piezo-electric 

linear actuators 
Yang 2010 24 (H) 1.82 4  Piezo motor 
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APPENDIX B 

CONTROL ALGORITHM PARTIAL CODE 
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Main Control 
 
%Electrode position 
low=500;%um 
up=3000; %um 
np=10; 
eta=30; 
Iteration=0; 
oldSNR=1; 
%elecpos=low; 
elecpos=564; 
failed=0; 
thrs=17; 
while TDT.GetSysMode ~= 0 
    while (oldSNR>0) 
        disp('In Maintain mode'); 
[SNR,Iteration,StartIndex]=maintain(TDT,StartIndex,BufSize,Iteration,elecpos,oldSNR); 
  
oldSNR=SNR; 
  
        while oldSNR<thrs 
            disp('Waiting to recover SNR'); 
          %  Before going to linear search mode wait and record SNR for 
          %  three more cycles 
          %  Cycle 1 
            [SNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
            oldSNR=SNR; 
             if oldSNR>thrs 
                 break; 
             end 
            %Cycle 2 
            [SNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
            oldSNR=SNR; 
             if oldSNR>thrs 
                 break 
             end 
             %Cycle 3 
            [SNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
            oldSNR=SNR; 
             if oldSNR>thrs 
                 break; 
             end 
             
            disp('In Linear Search mode'); 
[StartIndex,trackSNR,Iteration,elecpos,failed,up,low]=linearsearch(TDT,StartIndex,BufSize,Iterati
on,elecpos,up,low,np,eta,thrs); 
  
oldSNR=trackSNR; 
if failed==1 
    break 
end 
disp('In Optimization mode'); 
[Iteration,elecpos,newSNR]=optimization(TDT,StartIndex,BufSize,Iteration,elecpos,oldSNR); 
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Maintain 
function [SNR,Iteration,StartIndex]=maintain(TDT,StartIndex,BufSize,Iteration,elecpos,oldSNR) 
%%%%%Monitor phase %Monitor SNR before beginning control%%%%% 
    
    for i=1:6 
   pause(9); %Grab and plot data every half a second. 
   CurrentIndex = TDT.GetTargetVal('Sindhu3c.sWave'); 
    
   if CurrentIndex > StartIndex %Check to make sure that the buffer hasn't rolled over 
    StringLength = CurrentIndex-StartIndex; 
   else %If it has we have to use the size of the buffer to determine how many samples to grab 
    StringLength = BufSize - StartIndex + CurrentIndex; 
   end; 
    
   data = TDT.ReadTargetVEX('Sindhu3c.dWave~1',StartIndex,StringLength,'F32','F32'); 
  
   StartIndex = CurrentIndex; %Next loop start where we left off 
    
   %plot(data); 
    
   Iteration = Iteration + 1 ; 
    
    %Calculation of SNR 
    rawdata=data; 
    %Std=std(rawdata) %takes the standard deviation 
    Std=10e-6; 
    avg=mean(rawdata); 
    posthreshold=avg+(3*Std);  
    negthreshold=avg-(3*Std); 
    signaldata=(rawdata>posthreshold | rawdata<negthreshold);  
    sigdata_ts=find(signaldata==1); 
    sigdata=rawdata(signaldata); 
    g=size(sigdata); 
    h=max(g); 
  
    noisedata=(rawdata<posthreshold & rawdata>negthreshold);   %cutoff for what is noise 
    noidata=rawdata(noisedata); 
    e=size(noidata); 
    f=max(e); 
    spower=sum(sigdata.^2)/h; %takes the signal data squares it and sums it  
    %up then divides by the number of signal data points 
    npower=sum(noidata.^2)/f; %same as above except it does it for noise 
    ratio=spower/npower; 
    SNRiter(i)=10*LOG10(ratio); %this calculates the signal to noise ratio 
    
   %Find peak-peak amplitude 
    sigbegin=sigdata_ts-25; 
    sigbegin(sigbegin<26)=26; 
    sigend=sigdata_ts+25; 
    for j=1:size(sigdata_ts) 
    p_p(j)=max(rawdata(sigbegin:sigend))-min(rawdata(sigbegin:sigend)); 
    end 
    ppmaxiter(i)=max(p_p); 
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    end 
       
    %Max SNR over 54 second duration 
    SNR=max(SNRiter(i)); 
    clk=clock; 
     
    %Average peak-peak amplitude 
    ppmax=mean(ppmaxiter); 
     
Linear Search 
function 
[StartIndex,trackSNR,Iteration,elecpos,failed,up,low]=linearsearch(TDT,StartIndex,BufSize,Iterati
on,elecpos,up,low,np,eta,thrs) 
    failed=0; 
    cnt=0; 
    x=zeros(np,1); 
    f=zeros(np,1); 
     
    for c1=1:np/2 
        mp=(up+low)/2; 
        b=mp-eta; 
%Setting direction of movement 
        if elecpos<b 
            movedist=b-elecpos; 
            d=1; %move forward 
        else 
            movedist=elecpos-b; 
            d=0; %move backward 
        end 
    clk=clock; 
    disp(clk(4:6));     
    disp('Upper and lower limits'); 
    disp([up low]); 
    disp('Midpoint'); 
    disp(mp); 
  
    %Moving electrode in 30 micrometer steps at 3 min intervals 
    while (abs(elecpos-b)>30) 
    k = 1;n=6; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    pause(60); 
    if d==1 
        d=0; 
    else 
        d=1; 
    end 
    k = 1;n=3; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    if d==1 
        d=0; 
    else 
        d=1; 
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    end 
        
     
   %Updating electrode position 
   if d==1 
    elecpos=elecpos+30; 
   else 
    elecpos=elecpos-30; 
   end 
     
 
   pause(60);%Waiting only 1 min instead of 3 as SNR recording takes about 1 min. 
    
    
   %Calculate SNR after every movement 
   [SNRb,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
   clk=clock; 
   disp(clk(4:6)); 
   disp('Calculated SNR after movement');  disp(SNRb); 
    trackSNR=SNRb; 
    if SNRb>=thrs 
        disp('SNR>thrs achieved'); 
        return 
    end 
     
    end 
  
 
Optimization 
function 
[Iteration,elecpos,newSNR]=optimization(TDT,StartIndex,BufSize,Iteration,elecpos,oldSNR) 
  
maxSNR=0;  
[oldSNR,Iteration,StartIndex,oldppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
  
%Move electrode 30um step forward 
    d=1; 
    k = 1;n=6; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    pause(60); 
    d=0; 
    k = 1;n=3; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    clk=clock; 
    disp(clk(4:6)); 
     
    %Update electrode position 
    elecpos=elecpos+30; 
    disp('Electrode moved fwd by 30um to position-');disp(elecpos); 
    fid = fopen('movement_log.txt','at'); 
    fprintf(fid,'%d\t %d\n',clk(4:6),elecpos); 
    fclose(fid); 
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    pause(60); 
       
 [newSNR,Iteration,StartIndex,newppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
  
 %Direction of movement of electrode 
    %Optimization in forward direction 
    if (newSNR>1.1*oldSNR && newppmax>1.2*oldppmax) 
        oldSNR=newSNR; 
        d=1; %Continue moving forward 
        disp('Optimize moving forward'); 
        disp ('New and old SNR'); 
        disp ([newSNR oldSNR]); 
    else 
        pause(60); %Wait for a minute 
        
        %Move electrode 30um step forward 
        d=1; 
        k = 1;n=6; %Micromotor set at 10 um/s speed 
        moveelectrode(d,k,n,TDT); 
        pause(60); 
        d=0; 
        k = 1;n=3; %Micromotor set at 10 um/s speed 
        moveelectrode(d,k,n,TDT); 
        clk=clock; 
        disp(clk(4:6)); 
  
        %Update electrode position 
        elecpos=elecpos+30; 
        disp('Electrode moved fwd by 30um to position-');disp(elecpos); 
        fid = fopen('movement_log.txt','at'); 
        fprintf(fid,'%d\t %d\n',clk(4:6),elecpos); 
        fclose(fid); 
     
        pause(60); 
       
        [newSNR,Iteration,StartIndex,newppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos);    
    end 
     
    if (newSNR>1.1*oldSNR && newppmax>1.2*oldppmax) 
        oldSNR=newSNR; 
        d=1; %Continue moving forward 
        disp('Optimize moving forward'); 
        disp ('New and old SNR'); 
        disp ([newSNR oldSNR]); 
    else 
        d=0; %Move backward by two steps 
        disp('Optimization in forward direction failed - move back to original position'); 
         
     
  
        [newSNR,Iteration,StartIndex,newppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
        clk=clock; 
        disp(clk(4:6)); 
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        disp ('New and old SNR'); %SNR at same position as where oldSNR was calculated 
        disp ([newSNR oldSNR]); 
         
        d=0;  disp('Optimize moving backward'); 
     end 
         
   while(maxSNR==0) 
    k = 1;n=2; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    pause(60); 
    if d==1 
        d=0; 
    else 
        d=1; 
    end 
    k = 1;n=1; %Micromotor set at 10 um/s speed 
    moveelectrode(d,k,n,TDT); 
    if d==1 
        d=0; 
    else 
        d=1; 
    end 
     
    %Update electrode position 
    if d==1 
        elecpos=elecpos+10; 
    else 
        elecpos=elecpos-10; 
    end 
     
    clk=clock; 
    disp(clk(4:6)); 
    disp('Electrode moved by 10um to position-'); 
    disp(elecpos); 
    fid = fopen('movement_log.txt','at'); 
    fprintf(fid,'%d\t %d\n',clk(4:6),elecpos); 
    fclose(fid); 
     
    pause(60); 
  
    [newSNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
     
    if  newSNR>oldSNR 
        oldSNR=newSNR; 
        clk=clock; 
        disp(clk(4:6)); 
        disp('Moving along the optimization curve'); 
        disp ('New and old SNR'); 
        disp ([newSNR oldSNR]); 
    else 
        maxSNR=1; 
        clk=clock; 
        disp(clk(4:6)); 
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        disp('Probably at optimal SNR - move to previous elecpos'); 
        disp ('New and old SNR'); 
        disp ([newSNR oldSNR]); 
    end 
     
   end 
     
  
    %Recalculate SNR 
    [newSNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos); 
    clk=clock; 
    disp(clk(4:6)); 
    disp('Recalculating SNR at optimal location'); 
    disp(newSNR); 
    disp('Electrode position'); 
    disp(elecpos); 
   
SNR 
function [SNR,Iteration,StartIndex,ppmax]=snr(TDT,StartIndex,BufSize,Iteration,elecpos) 
%%%%%Monitor phase %Monitor SNR before beginning control%%%%% 
    
    for i=1:6 
   pause(9); %Grab and plot data every half a second. 
   CurrentIndex = TDT.GetTargetVal('Sindhu3c.sWave'); 
    
   if CurrentIndex > StartIndex %Check to make sure that the buffer hasn't rolled over 
    StringLength = CurrentIndex-StartIndex; 
   else %If it has we have to use the size of the buffer to determine how many samples to grab 
    StringLength = BufSize - StartIndex + CurrentIndex; 
   end; 
    
   data = TDT.ReadTargetVEX('Sindhu3c.dWave~1',StartIndex,StringLength,'F32','F32'); 
  
   StartIndex = CurrentIndex; %Next loop start where we left off 
    
   %plot(data); 
    
   Iteration = Iteration + 1 ; 
    
    %Calculation of SNR 
    rawdata=data; 
    %Std=std(rawdata) %takes the standard deviation 
    Std=10e-6; 
    avg=mean(rawdata); 
    posthreshold=avg+(3*Std);  
    negthreshold=avg-(3*Std); 
    signaldata=(rawdata>posthreshold | rawdata<negthreshold);  
    sigdata_ts=find(signaldata==1); 
    sigdata=rawdata(signaldata); 
    g=size(sigdata); 
    h=max(g); 
  
    noisedata=(rawdata<posthreshold & rawdata>negthreshold);   %cutoff for what is noise 
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    noidata=rawdata(noisedata); 
    e=size(noidata); 
    f=max(e); 
    spower=sum(sigdata.^2)/h; %takes the signal data squares it and sums it  
    %up then divides by the number of signal data points 
    npower=sum(noidata.^2)/f; %same as above except it does it for noise 
    ratio=spower/npower; 
    SNRiter(i)=10*LOG10(ratio); %this calculates the signal to noise ratio 
     
    %Find peak-peak amplitude 
    sigbegin=sigdata_ts-25; 
    sigend=sigdata_ts+25; 
    sigbegin(sigbegin<26)=26; 
    for j=1:size(sigdata_ts) 
    p_p=max(rawdata(sigbegin:sigend))-min(rawdata(sigbegin:sigend)); 
    end 
    ppmaxiter(i)=max(p_p); 
     
    end 
       
    %Max SNR over 54 second duration 
    SNR=max(SNRiter(i)); 
    clk=clock; 
     
    %Average peak-peak amplitude 
    ppmax=mean(ppmaxiter); 
            
    fid = fopen('snr.txt','at'); 
    fprintf(fid,'%d\t %d\t %d\t %d\t %d\t %d\t %d\n',Iteration,elecpos,clk(4:6),SNR,ppmax); 
    fclose(fid); 
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the co-authors.
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