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ABSTRACT

Identifying important variation patterns is a key step tentifying root causes of pro-
cess variability. This gives rise to a number of challengést, the variation patterns might
be non-linear in the measured variables, while the existsgarch literature has focused
on linear relationships. Second, it is important to removise from the dataset in order
to visualize the true nature of the underlying patternsrd;hin addition to visualizing the
pattern (preimage), it is also essential to understandedleyant features that define the
process variation pattern.

This dissertation considers these variation challengdsage kernel principal compo-
nent analysis (KPCA) algorithm transforms the measuresiena high-dimensional fea-
ture space where non-linear patterns in the original measant can be handled through
linear methods. However, the principal component subspaéeature space might not
be well estimated (especially from noisy training data). éasemble procedure is con-
structed where the final preimage is estimated as the avé@gdbagged samples drawn
from the original dataset to attenuate noise in kernel satEsestimation. This improves
the robustness of any base KPCA algorithm.

In a second method, successive iterations of denoising wegarombination of the
training data and the corresponding denoised preimagesackta produce a more accurate
estimate of the actual denoised preimage for noisy traidatg. The number of primary
eigenvectors chosen in each iteration is also decreased@istant rate. An efficient

stopping rule criterion is used to reduce the number oftit@na.



A feature selection procedure for KPCA is constructed totledset of relevant features
from noisy training data. Data points are projected ontospeaandom vectors. Pairs of
such projections are then matched, and the differencesriatiea patterns within pairs
are used to identify the relevant features. This approachiges robustness to irrelevant
features by calculating the final variation pattern from aseenble of feature subsets.

Experiments are conducted using several simulated as wedla-life data sets. The

proposed methods show significant improvement over the etitiyve methods.
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CHAPTER 1
INTRODUCTION

Faced with the challenge of rapidly evolving customer desmanmanufacturing com-
panies strive to improve upon their existing line of produckhis requires a fundamental
understanding of different operations involved in mantifeng products. There is consid-
erable interest in reducing the variance in the dimensiéfis@ products so as to ensure
a higher proportion of them confirm to the desired specificetiand are defect-free. Thus,
the need is to identify the sources of variation in the prasluc

Automation in manufacturing processes was introduced lip dehieve mass produc-
tion of goods at an economical rate. With more and more custermemanding a high
level of performance from the products they use, it has becomperative to improve our
manufacturing processes which in turn neccesitates thefusetomated monitoring and
inspection systems. Many organizations now collect masaimounts of in-process data
with the foresight of potentially using information hiddenit to identify root causes of
product or process variation. Advances in measurementaadstbrage technologies have
made it possible to track hundreds, or even thousands ofrdilmeal characteristics with
a 100% sample rate. Datasets in the form of a spatial or timessas well as images
are common in modern manufacturing. Semiconductor prowgs®r example, involves
inputs from multiple variables; each represented by a fimte series. Thus, each run is

characterized by thousands of measurements.



Machine-vision systems (MVS) are widely used in many indestincluding medical,
transportation, construction, and other industrial aygions. In particular, [12] provide
an in-depth survey on industrial applications which in€imentification of structural, sur-
face, and operational defects. A key aspect of any MVS is iaitiun and analysis of
images. [15] discuss about the acquisition of grayscaleirary images for MVS. Our
proposed methodology deals with analysis of such images.

More recently, [25] show how 3D laser scanners have becomel@oin scanning com-
plex manufactured part geometries. The data generatedsinomscanners is referred to as
point cloud data. The point cloud represent a set of poinssmed in three-dimensional
cartesian coordinate system. The point cloud data provideeurate representation of the
scanned object.

In addition to image and point cloud data, profile data is algtely prevalent in man-
ufacturing industry, especially in paper processing andlady assemblies. The profiles
represent measurements taken at several points along adch p two-dimensional plot.
We present an example of the profile data in manufacturingnaotive engine gaskets. One
critical-to-quality feature is a bead on the gasket, th@pse of which is to create a tight
seal. Figure 1(a) shows a set of profiles measured acrossasb@tgoeads. Each profile
is obtained by scanning a stylus across the gasket bead.p&afile in Figure 1 has been
discretized into 50 points evenly spaced over the horizaxia. Hence, the measurement
vectorx for each part consists of the vertical axis profile heighthat50 locations. We
can see that the raw data collected by sensors is inheramily, rbut buried in the noise
is a pronounced systematic part-to-part variation patteyrwhich the gasket bead is flat-
tening and elongating by varying amounts on each part. Hleeepattern in the data (as

represented by the relationships between the differenmesiés ofx) is non-linear. For ex-
2



ample, consider the scatterplot between the sensor regsrdit position 10 and position
22 (denoted by10 andx22, respectively) as shown in Figure 1(b). It is clear from pitot
that there are non-linear relationships between the seasordings (features) in the data.
For simplicity, we showed the plot between two features,thatactual non-linear pattern
can involve more than only two features.

The gasket example shows a pattern when a single sourcaatiearcorresponding to
bead flattening/elongation) is present in the process.datime, multiple variation sources
and their corresponding effects on process and productcteaistics are embedded in
the collected data. Each variation source and its intemaatiith other sources results in
a unique non-linear pattern in the data. Identifying andesgafing important variation
patterns from the irrelevant ones is then a key step to ify@mgi root causes of process
variability. Thus, in order to diagnose and control procasproduct quality problems, a
method is required to identify the sources of variabilitys@irrelevant features, in addition
to noise in the data, tend to make it harder for the underlpiitern to be recognized and
visualized. Therefore, we face two challenges. First ingortant to remove noise from the
dataset in order to visualize the true nature of the undeglpiatterns. Second in addition
to visualizing the pattern, it is also essential to undedténe relevant process features.
More specifically, the process inherently manifests itse#f small number of features out
of the overall set of features that are recorded. It is, floeee crucial to discern this set of
relevant features that define the process variation pattern

Principal component analysis (PCA) [10] is a widely usedchiggue in identifying
patterns in the data. Givenpadimensional random vectar signals often tend to locate on
somed-dimensional manifold irp-dimensional spacel(< p) while noise tends to be less

structured. PCA patrtitions thedimensional space intodzdimensional signal space and a
3
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Figure 1. Left: profile measurements for 100 gaskets. Each gaskehhisigneasured at
50 equally-spaced positions. Right: scatterplot betwesis@ recordings at positions 10
and 22 (denoted by10 andx22, respectively)
(p—d) dimensional noise space. A drawback of PCA is in its assiomgitat the variation
pattern is formed by linear combination of variables. PCAdteto lose its effectiveness in
identifying patterns when the resultant pattern is nomina nature [22]. One approach
to nonlinear PCA is based on principal curves [7]. Apéal [3] used principal curves to
identify and visualize nonlinear patterns in data. Scbopflet al [22] extended the linear
PCA framework to account for nonlinear structures in thedat through kernel principal
component analysis (KPCA). KPCA works on the principle opmiag the data in the input
space to a higher dimensional feature space via a nonlineppmRP — R™ wherem is
the number of features and the feature space is also dermEedlanear PCA is applied
to the mapped points in the feature space to extract compoiteat are nonlinear in the
original input space. Because the feature space can havglasge number of dimensions,
such explicit mapping can be computationally expensivaear PCA in the feature space

depends on the data only through inner products of the featectors. Scholkopét al

used kernel functions to compute the inner products in thife space without carrying
4



out the mapping explicitly [1]. Similar to linear PCA, prej&éons onto a smaller subset of
principal component directions in the feature space carsbd to denoise signals.

To interpret the denoised signal, it is valuable to visuaiizn the original input space.
However, because the projections in feature space are dospate that might not corre-
spond to the manifold of the original space, such an inveasestormation from the feature
space to the input space does not typically exist [16]. Diyedsualizing an exact pattern
denoised in the feature space is therefore not possibléedtisan approximate preimage
is typically sought. In other words, the preimage approxesdahe reverse mapping of
P@(x) to the original space whereis a test point in input space. This is referred to as the
preimage problem in KPCA literature and this is the focuswfresearch. The preimage

problem is represented graphically in Figure 2.
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Figure 2. A test pointx is transformed to feature space@s) and projected to the PCA
plane aP@(x). The preimage approximates the reverse transforRpgf) to the original
space.

Previous work by Mikaet al [16] defined this as a nonlinear optimization problem
and approached it using standard gradient descent. A dchvdbaising standard gradient
descent methods is convergence to local minima. As a resililttions obtained using this

method are sensitive to choices of initial starting valu€a:ok and Tsang [11] used the
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relationship between the feature space distance and tl space distance derived by
Williams [26] for commonly used kernels along with multicemsional scaling (MDS) to
find approximate preimages. This method was an improvememttbe one suggested by
Mika et al. Kernel regression was applied by [4] to the preimage probidere the inverse
mapping from feature space to input space is posed as a segrggoblem. The problem
of estimating a better preimage by adding penalty termsd@tkimage learning process
was discussed by [30]. Recently, [8] pointed out limitaanherent in the orthogonal
projection operation in any KPCA algorithm , and proposethtaify it by incorporating
information about the local geometry in the neighborhooa tfst point in feature space so
that the projection of the corresponding preimage remdosec to the full manifold. The
full manifold was defined by [8] to be the set of all points iafiere space that have exact
preimages. Another approach suggested by [9] was to estithatpreimage of a point
by doing a line search in input space along the steepestmedicection of the objective
loss function evaluated at that point. The loss functionenéd as the squared distance
between the projected point on the principal componentmadesin feature space and the
preimage point mapped to the feature space.

The above approaches in literature assume that a noiserdneimg data set is available
for learning. This is not true in many settings for instangemanufacturing variation
analysis which we are working on. In our research, we proplasee methodologies to
address the above issues.

In Chapter 3, we apply a procedure similar to bagging [5] tpriowe the estimate of the
preimage. The PCA plane in feature space might not be weathattd from the training
data (especially with noisy training data). Instead of glarestimate of the preimage from

one single training dataset, we resample the training seapply a base KPCA algorithm
6



to each sample. Thus, we estimate the final preimage as thegaviom bagged samples
drawn from the original dataset to attenuate noise in kesumespace estimation. We expect
to improve the estimate from an average over several samplesalso found that the
improvement is most pronounced when the parameters ditben those that minimize
the error rate. Consequently, our approach improves thestobss of any base KPCA
algorithm.

In Chapter 4, we propose another method to tackle the problérandling noisy train-
ing data. The idea is that the initial estimate of the actwalaised test set obtained by
a KPCA preimage estimation algorithm may not be accurate¢diesuccessive iterations
of denoising a convex combination of the test set and theespanding denoised set can
lead us to a more accurate estimate of the actual denoisesktes/Ve also decrease the
number of top eigenvectors chosen in each iteration at d@aanste. The intuition is that
we initially retain all eigenvectors so as not to loose arfgrimation about the pattern in
data, and as we approach towards the final denoised preimvagmly retain the top most
eigenvectors that will account for the structure in datagetdid of the noise. We also pro-
pose a simple and efficient stopping rule criteria to obthendesirable preimage in fewer
number of iterations. Our approach can easily be appliedyd<@CA algorithm.

In addition to handling noise in training data, we also neethke care of the fact that
there are many irrelevant features collected in the trgidizta. Thus, we need to find the
set of features relevant to the pattern in training data. Hapgfer 5, we propose a feature
selection procedure that augments KPCA to obtain impoetastimates of the features
given noisy training data. Our feature selection strategglves projecting the data points
onto sparse random vectors. We then match pairs of suchcgionjs, and determine the

preimages of the data with and without a feature, therebgdrto identify the importance
7



of that feature. Thus, preimages’ differences within pansused to identify the relevant
features. Our approach above provides robustness toviargldeatures in the data by
being able to project only on a small random subset of featate time, and calculating
the final mapped data matrix in input space from an ensembeabdre subsets. Thus, an
advantage of our method is it can be used with any suitableAXX&@gorithm. Moreover,
the computations can be parallelized easily leading tafsegnt speedup.

This dissertation is arranged as follows. Chapter 1 pr@/lde introduction. Chapter 2
provides the background behind the methodologies disduedais dissertation. Chapter
3 discusses our approach of applying resampling (boofstigptechnique to improve the
preimage estimation. Chapter 4 provides a serial appraaestimate the preimage. Chap-
ter 5 provides a feature selection methodology to identify rielevant subset of features.

Finally, we conclude in Chapter 6.



CHAPTER 2
BACKGROUND
In this chapter, we provide the background behind the metlogies discussed in the
dissertation. We also provide the relevant background failden each of the subsequent

chapters.
1 Understanding Variation Patterns

Measurement data on multiple process variables contaiengat information about
the sources of variation that result in complex, non-lineaation patterns. The task
here is to visualize the non-linear patterns in the noisa.d&CA [10] is a widely used
technique in manufacturing process literature. Howeveram identify linear patterns in
the data. Subsequently, we briefly discuss about PCA pgintinits limitation in handling
non-linear patterns, and discuss how KPCA was developedrdla this issue. We next

discuss about visualizing non-linear patterns in datagusmeimage in KPCA.

1.1 Brief Review of PCA

Principal component analysis (PCA) [10] finds the directialong which the projected
data results in largest variance. Retbe aN x p data matrix withN data points and each
column representing a variable. et € RP be the column vector for projection. Assume
that w1 is normalized to length 1 impIyinngwl = 1. The variance of the data after
projecting ontows is WIATAwl. Thus, the problem reduces to findimg that maximizes

this variance.



Note that the above finds the primary direction for maxingziariance. In general,
PCA finds a series of direction vectarg, wo, . . ., wq that maximize the variance after pro-
jection where each direction vector is orthogonal to theaéthe direction vectors. It can
be shown that these direction vectors correspond to theig@meectors of the covariance
matrix AT A. Also the direction vectors/i, wo, . .., wqy form an orthonormal basis reducing
the dimensionality of the original data matrix fropto d.

As can be seen previously, PCA involves projecting the dat&ironto direction vec-
tors. Thus, it can only identify patterns in the data thatregpond to linear combination
of the variables. To overcome this limitation of PCA, KPCAsanaroposed by [22]. Es-
sentially KPCA involves transforming the data from the ora input space to a high-

dimensional feature space and performing PCA in the feajpaee.

1.2 Brief Review of KPCA

Letxi,i=1,...,N, xx € RPrepresent a set &f centered observations in the input space
i.e.zi’\‘zlxi = 0. To handle nonlinear structures, [22] suggested usinghnear mapp to
transform the data from input spacéo a higher-dimensional feature spadegh : RP — F.
Also assume that the set of points mapped in the feature ggaceare centered. Let

represent the covariance matrixdo(; )

1N ,
C= Ni;d)(xi)d)(xi) (2.1)

A new coordinate system is obtained by the eigen decompogifithe covariance matrix
C. Here, we find the eigenvaludsand eigenvectors € F of matrix C, whereF is the
kernel feature space satisfying

Av =Cv (2.2)

10



The above equation (2.2) can be equivalently written as
A< O(Xj)-v>=<¢(Xj) -Cv> (2.3)

forall j=1,...,N. For a non-zero eigenvalue the corresponding eigenvedtes in the

span ofp(x1),...,p(xn). Thus, there exist coefficients (i = 1,...,N) such that

N
V= ;aitb(xi) (2.4)

Substitute equation (2.4) into equation (2.3), forja# 1,..., N, and simplify by intro-

ducing anN x N matrix K whose entries are given by
Kij :=<¢(xi) - d(xj) > (2.5)
The final equation can be written in matrix form as
NAK a = K?a (2.6)

wherea denotes a column vector with entrias,...,ayN. Also, becaus& is a positive,
semi-definite matrix, all eigenvaluesiéfare non-negative. Let; > A2 > ... > Ay >0 de-
note the eigenvalues awd, . .., aN the corresponding set of eigenvectorsoiin equation
(2.6). We select the greatdshon-zero eigenvalues and their corresponding eigenwector
which account for most of the variance in the data. In praclits a tunable parameter. We
also assume, without loss of generality, that eakhfor k = 1,...,1 is normalized. The

normalization conditions fOl!k are
[l I J

afa*Kij =< ak - Kak >= A < ok ak >

11



1.2.1 Using KernelsExplicitly mapping the input space points into a higher dime
sional space can prove to be computationally expensiveo, Algte that each element of
the kernel matriX< is computed as the inner product af(x;) - ¢(x;) >. [1] showed
that inner products in the feature space can be computedtfreriginal input space data
points (known as the kernel trick). For example, Xetandx; represent two data points
in input spacex;,X; € RP. Let$(x;) andd(x;) represent their corresponding map in the
feature space. Using a kernel functibnwe can obtain the inner product in the feature
space by computing inner product in input space. This ugtnalds for feature spaces
defined in terms of some positive definite kernel. One pderdype of kernel function is

the polynomial kernel of ordes; expressed as
K(Xi,Xj) =< 0 (xi) - §(x)) >= (< Xi-Xj > +1)° (2.7)

This kernel function implicitly maps the input space if88"°. For example, using the
above kernel with degree tw = 2), a two dimensional input spadg = 2) will be
mapped into a six dimensional feature space. The corregmpiidature space map is
(1,v/2x1, V2%, %2, %5, \/2x1%2). This kernel was used to demonstrated the circle example

earlier. Another commonly used kernel function is the Geunskernel of the form

2
bt bt o e Xl
K(xi,Xj) =< §(xi) - §(x}) >=exp| —— - (28)
whereo is a parameter related to the width of the kernel.
We have assumed that we are dealing with a set of data poistsait centered in
the feature space. Because we never explicitly map to tharéeapace, it is difficult to

compute the mean of the mapped observations in the featace spiowever, the kernel

matrix can be modified to provide the inner product of cemten@apped observations. This
12



matrix, sayK can be defined in terms &f as follows
K=K-OK-KO+0OKO (2.9)
whereO is a matrix with all elements/N

1.3 Preimage Definition

Given a projected point on the principal component subspafeature space, the task
is to learn the point it would map back to in the input space.sT$ called preimage
learning in KPCA literature. Lek be a test point in input space with a corresponding
centered map(x) in the feature space. In order to extract nonlinear prin@peponents
for the d—image of a test poink, we compute its projections on &' component for

k=1,...,1 as follows

B =< VK- 0(x) >= _iaik < O(xi) - §(x) >= _ia?k(x,xo (2.10)

where the last equality follows from the definition of a kdrfumction.

Eachpy is the length of the projection onto the normalized eigetareand equals the
K" score for data instanoe As in linear PCA, each nonlinear score obtained using equa-
tion (2.10) represents a unique measure of variation in #te.dThe importance of each
nonlinear score (variable) and its corresponding pattambe measured by its associated
eigenvalue which describes the amount of variation expthitJsing this information, an
appropriate number of variables can be used to summariziathe Theoretically, we can
compute as many scores as there are dimensions in the fepage. However, practically,
this is limited to the rank of the kernel matrik. Similar to linear PCA, we projedi(x)
onto a subspace spanned by the lt@igenvectors. This projected point exists in the fea-

ture space. In order to interpret this poinigit is valuableisualize it in the original input



space. This necessitates an inverse mapping from the éegppace to the input space. As
mentioned, such an inverse map is not always defined [16]lIUkirate this, consider an
input space point (1,1). Using a polynomial kernel of de@gecan be mapped to the fea-
ture space afl,v/2,v/2,1,1,4/2). This feature space point can be inverse mapped into the
input space point (1,1). However, consider a feature spairt {1, v/2,v/2,5,5,7). There

is no exact preimage for this point. Thus, we need to settl@aficapproximate preimage

X, whered(X) = R (x). This is referred to as the preimage problem and is repredent
graphically in Figure 2.

2 Existing Methods for Finding Preimages

A brief overview of the more popular methods to obtain pregewis provided. To

estimate the preimage 8f¢(x), [16] proposed minimizing the squared distance

) =R

x>

P = [lo(
= [[6(R)]>=2R0(x)'d(X) +Q (2.11)

whereQ represents all terms independengoEquation (2.11) is minimized using standard
gradient descent. An extremum can be obtained by settindettineative of Equation (2.11)
to zero. Because this method uses standard gradient deaadmawback is that one can
converge to a local minima. Hence, the preimage obtaineensitve to starting values.
Also, the iteration scheme can fail to converge in certajpeexnents even after choosing
different starting values [11].

In another approach, [11] computed the Euclidean distaetedenR ¢ (x) and all
feature space training pointgxj). Then,n-nearest neighbors in the feature space are
identified based on this distance metric. For commonly ugedets such as Gaussian and

polynomial kernel, there exists a relationﬂip betweetadrs in the feature space and dis-



tance in the input space [26]. Using this relationship, @gponding input space distances
between the desired preimageand then-nearest input space pointgs are computed.
These input space distances are preserved Whgix) is embedded back into the input
space. [11] then proposed using multi-dimensional scdMiQS) [6] as a tool to visualize
the preimage (and denoted the method as KMDS). Given dissabetween points in a
high-dimensional feature space, MDS attempts to find a laliveensional approximation
of the data so as to preserve the pairwise distances as mpdssible. A new coordinate
system is defined in input space by singular value decomposif the n-nearest neigh-
bors. MDS is then used to projeRtd (x) into this new coordinate system. Approximate
preimages are found using eigenvectors of the new coosdgyastem.

For aN x p input matrix, the computational complexity of SVD &(cN?p + ¢’ p3),
wherec andc’ are constants. Therefore, [11] proposed uskimgarest neighbors to reduce
computational time.

A penalized strategy to guide the preimage learning prosasgpresented by [30]. The
preimage is modeled by a weighted combination of the obdesamples where the weights
are learned by an optimization function. Under this framiyva penalized methodology is
developed by integrating two types of penalties. First,ravegity constraint is imposed for
learning the combination weights to generate a well-defprednage. Second, a penalized
function is used as part of the optimization to guide therpegje learning process.

Recently, [8] pointed out limitations inherent in the orffomal projection operation in
any KPCA algorithm , and proposed to modify it by incorpangtinformation about the
local geometry in the neighborhood of a test point in feagpace so that the projection
of the corresponding preimage remains closer to the fullifolah The full manifold was

defined by [8] to be the set of all points in feature space taet lexact preimages. Another
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approach suggested by [9] was to estimate the preimage afelgyodoing a line search in

input space along the steepest descent direction of thetolgeoss function evaluated at
that point. The loss function is defined as the squared distbatween the projected point
on the principal component subspace in feature space arpre¢iraage point mapped to

the feature space.
3 Feature Selection in Kernel Feature Space

The task here is to identify the relevant subset of the oaiget of features over which
the pattern exists (a feature selection task). The diffiaglto handle the non-linear re-
lationships between features in input space. Because #teréespace in KPCA already
provides an avenue to consider higher-order interactietwden features, it is more ap-
pealing to apply a feature selection procedure in featueeesjitself. However, it is not
always possible to obtain the feature representation iturfeapace (for example, in the
case of a Gaussian kernel) because the data are not eypheiiped. Therefore, the chal-
lenge here is to perform feature selection in the featureespa

Some work has considered feature selection in feature dpaseipervised learning.
[2] provided a weighted feature approach where weights ssgaed to features while
computing the kernel. This feature weighting is incorpedainto the loss function corre-
sponding to classification or regression problem and a lpsealty is put on the weights.
The features corresponding to non-zero weights obtainied afinimizing the objective
(loss function with penalty) are considered the importamtso Similarly, recent work
([14] and [13]) also employed feature weighting for the sagseSupport Vector Machine
(SVM) classification and regression, respectively. Fohlibe cases, an anisotropic Gaus-
sian kernel was used to supply weights to features. Spdbyfife4] provided an iterative

algorithm for solving the feature selectio%)roblem by edtheg the feature weighting in



the dual formulation of SVM problem. The algorithm beginshnan initial set of weights.
At each iteration, it solves the SVM problem for the givenaeieature weights, updates
the weights using the gradient of the objective functiord esmoves the features that are
below a certain given threshold. This procedure is repe@tembnvergence. Finally, the
features obtained with non-zero weights are considereditapt.

Consider feature selection in feature space for unsupshisarning. One common
aspect of all these algorithms, similar to their countdspar supervised setting, is they
involve some kind of feature weighting mechanism, and theveat features are obtained
by regularizing (shrinking) the weights of irrelevant fegs using some criteria. A method
for feature selection in Local Learning-Based Clusteriag] jwas proposed by [29]. This
involved regularizing the weights assigned to features.

A method to measure variable importance in KPCA was propbgdd7]. They com-
puted the kernel between two data points as weighted sundivfdual kernels where each
individual kernel is computed on a single feature of eacthefttvo data points, and the
weights assigned to each kernel serve as a measure of impexéthe feature involved in
computing the kernel. They formulated a loss function wlzel@sso penalty was imposed
on the weights to determine the non-zero weights (and thegeonding relevant features).

We discuss the approach given by [17]. leedenote the direction of maximum vari-
ance, andb denote the vector of feature weights that shows the impoetaheach feature.
We assume that each entrylois non-negative, anld is normalized to length 1. We do the
following

max b"Pb—A|b||; (2.12)

whereP; | = %aTI{iRjTa, K is the centered kernel matrix is a small positive constant

for regularization defined by the user. ﬁlch entryKofs calculated by computing the



kernel between two data points as sum of individual kerndisres each individual kernel
is computed on a single feature of each of the two data poliftis involves optimization
over parametera andb for which [17] suggested an alternating approach (optingizine
parameter while keeping the other fixed till convergence).

The above approaches focus on the case when noise-fremdrdiata are available.
However, this is not the case in areas like manufacturintan analysis. In practice, the
data are corrupted with noise and has a lot of irrelevantifeat Thus, our approach works
with a noisy data set from which we need to find the relevanssubf the features over

which the patterns in the data exist.
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CHAPTER 3
PREIMAGES FOR VARIATION PATTERNS FROM KERNEL PCA AND
BAGGING

1 Introduction

Many manufacturing organizations collect massive amooirits-process data with the
foresight of potentially using information hidden in it teintify root causes of product or
process variation. Advances in measurement and data stteelgnologies have made it
possible to track hundreds, or even thousands of dimersibasacteristics with a 100%
sample rate. Datasets in the form of spatial or time sergesel as images are common
in modern manufacturing. Semiconductor processing, famgxte, involves inputs from
multiple variables; each represented by a finite time sefibss, each run is characterized
by thousands of measurements. We can utilize this data toder@isual insights into the
process which is crucial for engineers to make decisions.

Machine-vision systems (MVS) are widely used in many indestincluding medical,
transportation, construction, and other industrial aygions. In particular, [12] provide
an in-depth survey on industrial applications which in€ientification of structural, sur-
face, and operational defects. A key aspect of any MVS isiaitopn and analysis of
images. [15] discuss about the acquisition of grayscaleirarp images for MVS. Our

proposed methodology deals with analysis of such images.
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More recently, [25] show how 3D laser scanners have becomel@oin scanning com-
plex manufactured part geometries. The data generatedsincmscanners is referred to as
point cloud data. The point cloud represent a set of poinsswed in three-dimensional
cartesian coordinate system. The point cloud data provideeurate representation of the
scanned object. Our proposed methodology is useful in @ the point cloud data.

In addition to image and point cloud data, profile data is algtely prevalent in man-
ufacturing industry, especially in paper processing andlady assemblies. The profiles
are obtained as functional relationships between the resspwariable and independent
variable(s). We present an example of the profile data in faatwring automotive engine
gaskets. One critical-to-quality feature is a bead on tiskegfathe purpose of which is to
create a tight seal. Figure 3(a) shows a set of profiles medsaross 100 gasket beads.
Each profile is obtained by scanning a stylus across the glhaskd. Each profile in Figure
1 has been discretized into 50 points evenly spaced overdheohtal axis. Hence, the
measurement vector for each part consists of the vertical axis profile heightthat50
locations. We can see that the raw data collected by serssrisdarently noisy, but buried
in the noise is a pronounced systematic part-to-part vanigtattern, by which the gasket
bead is flattening and elongating by varying amounts on eadh idere, the pattern in the
data (as represented by the relationships between theetiffelements of) is non-linear.
For example, consider the scatterplot between the sensandiags at position 10 and po-
sition 22 (denoted by10 andx22, respectively) as shown in Figure 3(b). It is clear from
the plot that there are non-linear relationships betweersémsor recordings (features) in
the data. For simplicity, we showed the plot between twaouiest, but the actual non-linear

pattern can involve more than only two features.
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The gasket example shows a pattern when a single sourceatioaicorresponding to
bead flattening/elongation) is present in the process.datjme, multiple variation sources
and their corresponding effects on process and productcteaistics are embedded in
the collected data. Each variation source and its intemaatith other sources results in a
unique pattern in the data. Identifying and segregatingnamt variation patterns from the
irrelevant ones is then a key step to identifying root caw$@socess variability in order to
diagnose and control process or product quality problenogséNends to make it harder for
the underlying pattern to be recognized and visualizedréfbee, it is important to remove

noise from the dataset in order to visualize the true natiitiesounderlying patterns.

1.2
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Figure 3. Left: profile measurements for 100 gaskets. Each gaskehhisigneasured at

50 equally-spaced positions. Right: scatterplot betwessa recordings at positions 10
and 22 (denoted byl0 andx22, respectively)

Given a p-dimensional random vectox, signals often tend to locate on sorde
dimensional manifold ip-dimensional spaced(< p) while noise tends to be less struc-
tured. Singular value decomposition (SVD) and principahponent analysis (PCA) work

on partitioning thegp-dimensional space intodzdimensional signal space and@a d) di-
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mensional noise space. Signals can be denoised by prgjelta points onto the retained
subset of principal component directions.

A drawback of PCA is in its assumption that the variation grattis formed by linear
combination of variables. PCA tends to lose its effectigsnia identifying patterns when
the resultant pattern is nonlinear in nature [22]. One aqgnd@o nonlinear PCA is based on
principal curves [7]. [3] used principal curves to identdiyd visualize nonlinear patterns in
data. [22] extended the linear PCA framework to accountdmiinear structures in the data
set through kernel principal component analysis (KPCA)CKRRvorks on the principle of
mapping the data in the input space to a higher dimensionaire space via a nonlinear
map¢ : R? — R™wheremis the number of features and the feature space is denofed as
Linear PCA is applied to the mapped points in the featureespmextract components that
are nonlinear in the original input space. Because the feafoace can have a very large
number of dimensions, such explicit mapping can be comijouaty expensive. Linear
PCA in the feature space depends on the data only through pmoducts of the feature
vectors. Scholkopét al used kernel functions to compute the inner products in thtife
space without carrying out the mapping explicitly as showiil. Similar to linear PCA,
projections onto a smaller subset of principal componearttions in the feature space can
be used to denoise signals.

To interpret the denoised signal, it is valuable to visuaiizn the original input space.
However, because the projections in feature space are dospate that might not corre-
spond to the manifold of the original space, such an inveesestormation from the feature
space to the input space does not typically exist as showé]y Directly visualizing an
exact pattern denoised in the feature space is therefopossible. Instead an approximate

preimage is typically sought. This is referred to as therpagje problem in KPCA and this
22



is the focus of this research. Previous work by [16] definézldh a nonlinear optimization
problem and approached it using standard gradient desdelnawback of using standard
gradient descent methods is convergence to local minima rsult, solutions obtained
using this method are sensitive to choices of initial stgrtralues. [11] used the relation-
ship between the feature space distance and the input sistaecg derived by [26] for
commonly used kernels along with multidimensional sca(iMdS) to find approximate
preimages. This method was an improvement over the one siegigby [16]. [18] ex-
tended the KPCA framework to handle noise, outlier and mgsdata. [30] addressed the
problem of estimating a better preimage by adding penattysdo the preimage learn-
ing process. [19] considered feature selection in kerné\ R@h sparse random vectors.
This approach can be applied prior to the preimage methadisked here to reduce the
dimensionality of the problem.

The previous methods to denoise for KPCA assume that tha@rigadata are noise-
free. In practice, many cases (such as manufacturing mMarianalysis) fail to meet this
assumption. To improve the estimate of the preimage, weyapptocedure similar to bag-
ging developed by [5]. Instead of a single estimate of thenpage from one single training
dataset, we resample the training set and apply a basetalgdo each sample. The PCA
plane in feature space might not be well estimated from taitrg data (especially with
noisy training data). We expect to improve the estimate faonaverage over several sam-
ples, and we also improve the robustness of a base algordtparameter settings. We
refer to this method as BKPCA to indicate a bagged KPCA amtrodhe remainder of
this chapter is organized as follows. Section 2 offers af beeiew of PCA and KPCA.

Section 3 formally introduces the problem of finding pre-g@a. Section 4 reviews ex-
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TABLE 1. Eigenvalues of covariance matrix in input space.

Eigenvalue| 12.979| 11.952
Proportion| 0.521 | 0.479
Cumulative| 0.521 | 1.000

isting methods for computing preimages. Section 5 intredube proposed methodology.

Section 6 provides experimental results and Section 7 gesvtonclusions.
2 Brief Review of KPCA

Letx;, i=1,...,N, xx € RP represent a set dfl centered observations in the input
space i.eZiN:lxi = 0. To handle nonlinear structures, [22] suggested linggyithe dis-
tribution by using a nonlinear magp to transform the data from the input spac¢o a
higher-dimensional feature spaée¢ : RP — F.

Consider the following example witp=2, in whichx = [x1,x2]" was generated as uni-
formly distributed over a circle in two dimensional spaceillaistrated in Figure 4. Results
from linear PCA are summarized in Table 1 and Table 2. Eigetove provide the nature
of the linear relationship betweeq andx». Since PCA was carried out in input space,
the true structure of the relationship betwegrandx. i.e. xf —|—x§ = constantis not cap-

tured by the eigenvectors. Now, consider a nonlinear mapxsa (x1,x2)" — ¢(X) =

= o i
.
e .,
4 & ~,
;" %
’ %
f
: }
S
%ﬁ /
N *
4 ‘(&)’k

Fm o

Figure 4. Scatter plot of input space variables
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TABLE 2. Eigenvectors of covariance matrix in input space.

Variable| PC; PG
X1 0.845 | 0.535
X2 -0.535| 0.845

TABLE 3. Eigenvalues of covariance matrix in feature space

Eigenvalue| 168.14| 144.79| 25.95| 23.50| 0.000
Proportion| 0.464 | 0.400 | 0.072| 0.065| 0.000
Cumulative| 0.464 | 0.864 | 0.935| 1.000| 1.000

(X2,x2,v/2X1,v/2%2, v/2X1%2). The significance of this mapping will be discussed in a later
section. Table 3 and Table 4 shows the eigenvalues and eiggens of the covariance
matrix in the feature space respectively. Note that thensigetor corresponding to the
smallest eigenvalue correctly captures the true natureeofdlationship that describes the
circle. More specifically, the equation for the circle cades with setting to zero, the vari-
ance of the linear combination of features representeddgitienvector (i.e., constraining
Refer to Taldlar & list of symbols used

the linear combination to equal a constant).

throughout the chapter.

TABLE 4. Eigenvectors of covariance matrix in feature space

Variable| PC1 | PC2 | PC3 | PC4 | PC5
X4 -0.705| -0.042| -0.002| 0.037 | 0.707
X5 0.705| 0.042 | 0.002 | -0.037| 0.707

Vv2x1 | -0.025| -0.008| -0.851| -0.525| -0.000
V2x; | -0.046| -0.001| 0.526 | -0.849| 0.000
V/2x1x2 | -0.059| 0.998 | -0.006| -0.002| 0.000
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2.1 Nonlinear PCA

We refer to [22] for more details regarding the followingdaission. Assume that the
set of points mapped in the feature spé¢e ) are centered. L& represent the covariance
matrix of ¢ (x;)

c=13 o0a000) (3.1)
NS
As in linear PCA, a new coordinate system is obtained by theredecomposition of the

covariance matrixC. Here, we find the eigenvaluasand eigenvectorg € F of matrix C,

whereF is the kernel feature space satisfying
Av =Cv (3.2)
The above equation (5.2) can be equivalently written as
A< O(Xj) v>=<d(xj)-Cv> (3.3)
forall j=1,...,N. For a non-zero eigenvalue the corresponding eigenveasor
N
v="% aid(xi) (3.4)
2

Substitute equation (4.3) into equation (3.3), forja# 1,...,N, and simplify by introduc-

ing anN x N matrix K whose entries are given by
Kij =< ¢(xi) - (X)) > (3.5)
The final equation can be written in matrix form as
NAK o = K 2a (3.6)

wherea denotes a column vector with entrias,...,ay. Also, becaus& is a positive,
semi-definite matrix, all eigenvaluesiéfare non-negative. Lety > A2 > ... > Ay > 0de-

note the eigenvalues and, ..., aN the corr2e6sponding set of eigenvectordoin equation



(3.6). We select the greatdshon-zero eigenvalues and their corresponding eigenwector
which account for most of the variance in the data. In pragclits a tunable parameter. We
also assume, without loss of generality, that eakhfor k = 1,...,| is normalized. The

normalization conditions foa* are

afal < o(xi)- d(x;) >

[N

™Mz M=z

[N

afakKij =< @ Kak >= A < a®-ak >

2.2 Using Kernels

Explicitly mapping the input space points into a higher disienal space can prove
to be computationally expensive. Also, note that each ehtmokthe kernel matrix is
computed as the inner product ef$(xi) - ¢(xj) >. [1] showed that inner products in
the feature space can be computed from the original inpaesgata points (known as the
kernel trick). For example, le¢ andx; represent two data points in input spagex; € RP.
Let$(xi) andd(x;j) represent their corresponding map in the feature spacaglaskernel
functionk, we can obtain the inner product in the feature space by ctingpmner product
in input space. This usually holds for feature spaces defimeédrms of some positive
definite kernel. One particular type of kernel function is gfolynomial kernel of ordes,
expressed as

K(Xi,Xj) =< d(%i) - 0 (X)) >= (< Xi -Xj > +1)° (3.7)

This kernel function implicitly maps the input space it@§">. For example, using the
above kernel with degree tw(s = 2), a two dimensional input spadgg = 2) will be
mapped into a six dimensional feature space. The corregpprieature space map is

(1,v/2x1, V2%, %2, %3, \/2x1%2). This kernel was used to demonstrated the circle example
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earlier. Another commonly used kernel function is the Geumskernel of the form

k(Xi, Xj) =< (xi) - §(Xj) >= exp(M) (3.8)
whereao is a parameter related to the width of the kernel.
We have assumed that we are dealing with a set of data poistsath centered in
the feature space. Because we never explicitly map to tharteapace, it is difficult to
compute the mean of the mapped observations in the featace spiowever, the kernel

matrix can be modified to provide the inner product of ceten@apped observations. This

matrix, sayK can be defined in terms &f as follows
K=K-OK-KO+0OKO (3.9)

whereO is a matrix with all elements/N
3 Problem Definition

Let x be a test point in input space with a corresponding centerapl ¢nx) in the
feature space. In order to extract nonlinear principal comepts for theb—image of a test

pointx, we compute its projections on th® component fok = 1,...,| as follows

Be=< V¥ 9() >= _iar SIORINES _iakk(x,xo (3.10)

where the last equality follows from the definition of a kdrusction.

Each k is the length of the projection onto the normalized eigetaveand equals
the ki score for data instance As in linear PCA, each nonlinear score obtained using
equation (4.5) represents a unique measure of variatidreiddta. The importance of each
nonlinear score (variable) and its corresponding pattambe measured by its associated
eigenvalue which describes the amount of variation expthitJsing this information, an

appropriate number of variables can be Eged to summariztathe Theoretically, we can



olx)

Feature Space

Figure 5. A test pointx is transformed to feature space@s) and projected to the PCA
plane aP@(x). The preimage approximates the reverse transforRpgf) to the original
space.

compute as many scores as there are dimensions in the fepage. However, practically,

this is limited to the rank of the kernel matrk. Similar to linear PCA, a denoised image

can be obtained by projectigx) onto a subspace spanned by theltefgenvectors

|
RO(X) = 5 Bk (3.11)
k=1

This denoised image exists in the feature space. In ordertéopiret this image, it is
valuable to visualize it in the original input space. Thisessitates an inverse mapping
from the feature space to the input space. As mentioned,ausiverse map is not always
defined [16]. To illustrate this, consider an input spacepdi,1). Using a polynomial ker-
nel of degree 2, it can be mapped to the feature spatk @2,v/2,1,1,1/2). This feature
space point can be inverse mapped into the input space [doint (However, consider a
feature space poiritl, v'2,1/2,5,5,7). There is no exact preimage for this point. Thus, we
need to settle for an approximate preim&gavhered (X) = B¢ (x). This is referred to as

the preimage problem and is represented graphically inr€igu
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4 Existing Methods for Finding Preimages

A brief overview of the more popular methods to obtain pregesis provided. [16]

proposed to estimate the preimagegalf(x) by minimizing the squared distance

x>

PR = [0(%) —RoO()|
= [[9([1P=2Rd(x)d(%) +Q (3.12)

whereQ represents all terms independenkoEquation (3.12) is minimized using standard
gradient descent. An extremum can be obtained by settindeitineative of Equation (3.12)
to zero. Because this method uses standard gradient deaadnawback is that one can
converge to a local minima. Hence, the preimage obtaineénsitve to starting values.
Also, the iteration scheme can fail to converge in certapeexnents even after choosing
different starting values [11].

In another approach, [11] computed the Euclidean distaetedenR ¢ (x) and all
feature space training pointgxj). Then,n-nearest neighbors in the feature space are
identified based on this distance metric. For commonly ugedets such as Gaussian and
polynomial kernel, there exists a relationship betweetadre in the feature space and dis-
tance in the input space [26]. Using this relationship, @gponding input space distances
between the desired preimageand then-nearest input space pointgs are computed.
These input space distances are preserved Whigix) is embedded back into the input
space. [11] then proposed using multi-dimensional scdMiQS) [6] as a tool to visualize
the preimage (and denoted the method as KMDS). Given dissabetween points in a
high-dimensional feature space, MDS attempts to find a laliveensional approximation
of the data so as to preserve the pairwise distances as mpcssible. A new coordinate

system is defined in input space by sin%tblar value decomposif then-nearest neigh-



bors. MDS is then used to projeltd(x) into this new coordinate system. Approximate
preimages are found using eigenvectors of the new coosdgyastem.

For aN x p input matrix, the computational complexity of SVD G{(cN?p + ¢’ p3),
wherec andc’ are constants. Therefore, [11] proposed uskimgarest neighbors to reduce
computational time.

More recently [30] presented a penalized strategy to gunidgteimage learning pro-
cess. The preimage is modeled by a weighted combinatioreaflteerved samples where
the weights are learned by an optimization function. Undies framework, a penalized
methodology is developed by integrating two types of péeslt First, a convexity con-
straint is imposed for learning the combination weightseaeayate a well-defined preim-
age. Second, a penalized function is used as part of the iaption to guide the preimage
learning process. An issue with this approach is that therks samples (training set)
should be noise-free. In case of noisy training set, theymge obtained from this model
is inherently noisy.

5 Preimages from Bagging

As stated in the previous section, most of the methods assaéhe training data
are noise-free. Some applications meet this assumptidmn fmactice many other cases
(such as manufacturing variation analysis) do not. Ourailve is to improve upon the
previous approaches. We improve the estimate of the pr&iagugh a procedure similar
to bagging [5]. Instead of a single estimate of the preimag®a bne single training dataset,
resample the training s@ttimes with replacement, with each sample size equal to that o
the original data. Use each bootstrap sample to completefahg previous methods and
obtain an estimated preimage for a test point. Finallynestie the final preimage of each

test point as the average of the obtair&nﬂ'nts. LetX (b) denote the preimage obtained



from theb®™ sample. The final estimated preima)?gds given by

X(b
? (3.13)

k-5 X
We refer to this method as BKPCA to indicate a bagged KPCAa@qgr. In bagging one
averages over several models. The intuition behind ourcagpris that the PCA plane in
feature space might not be well estimated from the trainaig;dthus, some improvement
might be expected from an average over several estimatepraVele subsequent experi-
ments to illustrate these comments. Moreover, this alscesiakir method more robust to
noisy instances in the training data set. The detailed stepg method can be summarized

in the following algorithm

1: Given atraining data s€lp and a test data sBkes;. Fix values for the kernel parameter
(such aso in a Gaussian kernel or the degree a polynomial kernel), number of
bootstrap sampld, other parameters as defined for each method by the cormisggon
authors. The objective is to estimate the denoised testséata

2: for each test data poinin Dyest do

3: forb=1toB do

4: Select a bootstrap samDg from Dg with replacement.

5: Generate theeigenvectors in kernel feature space frog(where we use a Gaus-

sian kernel with kernel parametey

6: Transformi™™ point in Diest to feature space and project it onto the subspace

spanned by chosdreigenvectors.

7 Choose fromDy, n nearest points in feature space to the projeifegoint in

Dtest.
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8: Estimate the denoised data point for tReest point from its1 nearest neighbors
in Dy,
9: end for
10:  Estimate the final denoised point for tHe test point as the average acr@&sle-
noised points obtained above.
11: end for
Note that if we have no distinct training and test sets, bstieiad a single set that we want
to denoise, then the algorithm still applies directly withthe same aBiest.

Because the training data is noisy, a single KPCA subspdtoerfitthe full training data
may not provide a reliable estimate. In order to evaluatesthbility of a subspace esti-
mated from noisy training data, we consider an appropri&iiocalled subspace distance
that was developed by [24] to measure difference betweerstvepaces. Specifically, the

subspace distanakyy between two subspaces is calculated as

[
dsu=,|l— Zz(uilvj>2 (3.14)
=]

whereu;’s andv;’s are each a set of orthonormal bases (eigenvectors) syaitng two sub-
spaces, respectively, ahds the number of leading eigenvectors chosen. [24] consitler
two subspaces to be similardgy < ﬂ/z.

We show in our experiments that a single subspace estimatsdthe noisy training
data can be unstable. Since the preimage is learned fromlbispace, we expect variablity
in the preimage. One approach to reduce this variability iaverage across preimages
learnt from different subspaces.

In practice, however, we are provided with a single realirabf the noisy training

data. Therefore, we draw bootstrap samples to obtain nrulgalizations of the training
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data. As shown in the experiments, each bootstrap sampledfdining data set results
in a different kernel principal component subspace in tla¢uie space, and each subspace
results in a different preimage learned in the input spasseatially, bootstrapping tries to
obtain a representation of the true distribution of therpeges in input space by drawing
several samples of the training set. Since the trainingssabisy, we expect variability in
the preimage learned from the full training data. Thus, byraging across all preimages
learned from different bootstrap samples, we try to smoathvariations from different
preimages. We visually demonstrate this in Figure 6. Alsngia bootstrap sample tends
to down-weight the influence of noisy instances in deterngrthe kernel principal com-
ponent subspace thereby improving the robustness of a iGA kalgorithm.

The performance of our method against others is evaluated the Euclidean distance
metric. The preimage residual root sum of squared error JR8Sall the methods was

estimated by using the Euclidean distance between thenglotgireimagex and its true

RSS=4 /.i (Xi —t)2. (3.15)

In our experiments, the true image is known beforehand techwwve add noise to generate

imaget by

the noisy test images. The true image is only used for compapurpose and not used in

any of the calculations in our algorithm.
6 Experimental Results

Images provide high-dimensional inputs and are usefuldoalize the success of de-
noising. Consequently, we experiment on databases witgemaf handwritten digits and
faces. We currently include image examples that, even thawg not from manufactur-
ing, are similar to manufacturing image data. We consider $aenarios: one when we
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have training data which is noise-free (called the low-eaase), and a second without a
noise-free data set for training which results in learningtwe noisy data set (called the
high-noise case). In both the cases, we have to denoiseuvée @gist data based on our
learning on the training data. In practice, we usually en¢@the high-noise case, and our
motivation comes from this fact.

There are several parameters involved in different preeresgimation algorithms for
KPCA. The parameters common to all algorithms@i&aussian kernel parameter) dnd
(the number of leading eigenvalues). Next there are sonarers specific to the given
algorithm such as the number of nearest neighhansKMDS algorithm and the penalty
parametel in case of penalized learning algorithm with ridge pendftyaddition to these
parameters in any base algorithm, our BKPCA algorithm weslan additional parameter
B which is the number of bootstrap samples.

According to [16],0 is set torp times the average component variance wheigethe
dimensionality of input space, amds a constant whose value is usually set to two. We
used the value o suggested by [16] for our experiments. Additionally, we dwocted
some experiments shown in Figures 7 through 14 where we diffseent values ob to
see how RSS changes. Finally we didn’t find substantial rdiffee in results while using
the values ot suggested by [16] and one suggested by [11].

[30] recommended that the value lobe chosen to preserve 95% of the energy of the
training data. For Figures 19 through 22, we also experigtewith several values of the
% energy to be preserved (chosen frémo, 80, 90, 9%).

We now discuss about some of the parameters specific to a gieénage estimation

algorithm. According to [11], the number of nearest neigklmois set to 10. [30] discuss
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about choosing the parameters for different penalty fonstdepending on the application
involved. Based on their results, we chose the ridge pemattyA = 0.001.

For our BKPCA procedure, we have an additional parant&t&or our experiments in
Figures 19 through 22, we choBe= {50,100,200,500}.

We carry out our experiments to study the behavior of therdalgos extensively. We

compared our BKPCA meta-method with different base algoré proposed in literature.

6.1 Subspace Stability Evaluation

The USPS dataset at http://yann.lecun.com/exdb/mnisfists of 16< 16 gray scale
images of zip code digits (0-9), automatically scanned femmelopes by the U.S.Postal
Service. Example images are seen in the first row of Figure 29.

First we conducted the following experiments to show theaiisity of KPCA subspace
learned from noisy training data. We chose digits 7, 5, arfcbn(the USPS digits dataset)
for the following experiments. We generated 100 pairs o$ydiata samples for each digit
where each noisy data sample was obtained by adding indepeGaussian noise with
meanu = 0 andog = 1 to the original data set. The kernel parametgras set to p times
the variance of data whegeis the dimensionality of input space. We chdse{50,100}.
Whenl| = 50, we calculated the subspace distance for each pair fierehit digits, and
found the average subspace distance to be 6.33 (maximumwaki6.36, minimum value
was 6.29, and standard deviation was 0.012) which is hidtar 8.53 (=/50/2). Simi-
larly whenl = 100, the average subspace distance was found to be 8.74nfmmaxvalue
was 8.77, minimum value was 8.71, and standard deviationOwsl) which is greater
than 5 (=v/100/2) . Since the distance between kernel principal compongrgaces is

large, they are not similar.
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In order to observe the difference in KPCA subspace learrad @lifferent bootstrap
samples, we used the parameter settings from the previpesiments except we added in-
dependent Gaussian noise with mean 0 andog = 1 to each digit data set, and generated
100 different pairs of bootstrap samples from a data set. &igpared the subspace dis-
tance between different KPCA subspaces learned from diftdyootstrap samples. When
| =50, we calculated the subspace distance for each pair ferditt digits, and found the
average subspace distance to be 5.57 (maximum value was@irfiBium value was 5.19,
and standard deviation was 0.15) which is higher than 3.58il&@ly when!| = 100, the
average subspace distance was found to be 7.02 (maximumwati7.41, minimum value
was 6.68, and standard deviation was 0.14) which is grdaer3. Thus, similar to results
from the experiments on noisy data sets, we see that the KlnGgpaces are different.

Each subspace is expected to result in a different preinesgadd in input space. To
visually illustrate the variations in preimages learnemhfrdifferent bootstrap samples, we
show the results for the gasket data in Figure 6. Each pradiebleen discretized into 200
points, and the preimages for a profile learned from eachedBth 50 bootstrap samples
are shown. Figure 6 shows that averaging over preimagasel@drom several bootstrap

samples of training data can reduce the variability of thal fimeimage.

6.2 Digit Images Denoised

We now demonstrate our approach by denoising each of thegite. dror the low-noise
case, we randomly chose 300 images for training. Anotheofsetutually exclusive 300
images was taken as true data and Gaussian noise withpme@nand standard deviation
oc With values ofog = 0.5 andog = 1 were added to the true data to produce the noisy

test data which are to be subsequently denoised. For thenloigle case, for all digits we
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Figure 6. Plot showing variation in preimages for a profile learnedfr@ach of thd8 = 50
bootstrap samples from the gasket data. Each profile hasdimmaetized into 200 points.
randomly chose 300 images as true data and added Gaussiap #d) andog with values
of 0.5 and 1 to the true data to produce the noisy test datahwdrie to be subsequently
denoised. Note that the noisy test set itself is the traidetg here.

First consider the KMDS algorithm. When we apply BKPCA to tiese KMDS al-
gorithm we denote the procedure as BKMDS. We consider the \&ifes for different
parameter settings for both KMDS and BKMDS for the high-eaiase. Figure 7 and Fig-
ure 8 show how the RSS varies for each algorithm for diffepemameter settings afand
| with n = 10 and with Gaussian noige= 0 andog = 0.5. The horizontal axis scale is
log(o) and the piece-wise linear curves illustrate KMDS and BKMDE&ditherl = 50 or

100. Digits 0 through 4 are shown in Figure 7, and digits 5ulgto9 are shown in Figure 8.

To further explore parameter settings in the high-noise,c&gyures 9 through 11

consider digits 7 and 9 only. Figure 9 shows how the RSS vésras= 10 with Gaussian
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Figure 7. RSS values of KMDS versus bagging (denoted as BKMDS) fotsl@#4 for the
high-noise case with the number of leading eigenvedters50, 100}, 10 nearest neighbors

and noiseog = 0.5. The RSS is shown for different parameter settings efhere the
horizontal axis scale is Idg).

noisep = 0 andog = 1. Figure 10 shows how the RSS varies floe 25 with Gaussian

noisey = 0 andog = 0.5. Figure 11 shows how the RSS varies ffice 25 with Gaussian

noisey = 0 andog = 1.
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Figure 8. RSS values of KMDS versus bagging (denoted as BKMDS) fotsl© for the
high-noise case with the number of leading eigenvedters50, 100}, 10 nearest neighbors

and noiseog = 0.5. The RSS is shown for different parameter settings efhere the
horizontal axis scale is Idg).

We clearly see from the figures that BKPCA improves the KMOgdathm for the cho-
sen parameter values for the high-noise case. The improwasost pronounced when

the parameters differ from those that minimize the RSS. mapdly, BKPCA improves the

robustness of the base algorithm.
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Figure 9. RSS values of KMDS versus bagging (denoted as BKMDS) fortsligiand 9
for the high-noise case with the number of leading eigemrsttc {50,100}, 10 nearest
neighbors, noiseg = 1. The RSS is shown for different parameter settings where the
horizontal axis scale is Idg).
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Figure 10. RSS values of KMDS versus bagging (denoted as BKMDS) foitsligiand 9
for the high-noise case with the number of leading eigemrsttc {50,100}, 25 nearest
neighbors, noiseg = 0.5. The RSS is shown for different parameter settings wfhere
the horizontal axis scale is 10g).

For the low-noise case, we also report the RSS values fotsdigand 9 for different
parameter and noise settings. Figure 12 shows how the R&S f@m = 25 with Gaussian
noisep = 0 andog = 0.5. Figure 13 and Figure 14 show the RSS variestfer 10,25,
respectively, with Gaussian noige= 0 andog = 1.

We see from the figures that both KMDS and BKPCA perform cormipigrin the low-

noise case, thus, confirming the fact that BKPCA performeaatlas good as KMDS in the
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Figure 11. RSS values of KMDS versus bagging (denoted as BKMDS) foitsligiand 9
for the high-noise case with the number of leading eigemrsttc {50,100}, 25 nearest
neighbors, noiseg = 1. The RSS is shown for different parameter settings where the
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Figure 12. RSS values of KMDS versus bagging (denoted as BKMDS) foitsligiand 9
for the low-noise case with the number of leading eigenwsdte {50,100}, 25 nearest
neighbors, noiseg = 0.5. The RSS is shown for different parameter settings wfhere
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the horizontal axis scale is 10g).

best possible scenario when training data are noise-freaiekter, for applications where

only noisy training data are available, high-noise expernits illustrate that BKPCA can

substantially improve upon KMDS.

42

RSS

RSS

190

1801

170

160

150

140+

130

120

110+

100,

—*— KMDS, =50
—%— KMDS, 1=100

—+— BKMDS, I=50
—+— BKMDS, =100

120

log(sigma)

(b) Digit 9

110

100

90F

—
%
T
.

KMDS, I=50
KMDS, 1=100
BKMDS, =50
BKMDS, 1=100

4 5 6 7
log(sigma)

(b) Digit 9




170 180

—*— KMDS, |=50 —*— KMDS, I=50
160F —#— KMDS, I=100 i 170+ —#— KMDS, I=100

—+— BKMDS, I=50 —+— BKMDS, I=50
150 —+— BKMDS, =100 160F —+— BKMDS, =100

150
140

140+
130

RSS
RSS

130
120
120
110
110

100+ 100-

90

90

80, 80,

(a) Digit 7 (b) Digit 9
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neighbors, noiseg = 1. The RSS is shown for different parameter settings where the
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We also applied our algorithm on the gradient descent mdtt&jcnd on the penalized
preimage approach [30] for the digits data in the high-no&se. Figures 15 and 16 show
the results for the gradient descent approach. Figures dd&rshow the results for the

penalized preimage approach approach. In both the cas€¥CBKeduces the RSS.
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Figure 15. RSS values of the gradient descent approach versus baggexheab for digits
0-4 for the high-noise case with noisg = 1.
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Figure 16. RSS values of the gradient descent approach versus baggezhab for digits
5-9 for the high-noise case with noisg = 1.

We also experimented with several values of the % energy podserved (chosen from
{ 70, 80, 90, 9%). We chose to experiment on digits 7 and 9 (300 instancesechioesm
each digit). The noisy digit images were generated by adididgpendent Gaussian noise
M= 0 andog = 1. For each of the values of % energy preserved, we compapettadized

preimage approach by [30] to our BKPCA approach with valdés® {50,100 200 500}.
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Figure 17. RSS values of penalized preimage approach versus baggexhapgor digits
0-4 for the high-noise case with noisg = 1.
The results are shown in Figures 19 through 20. We see th&KRCA method performs
significantly better than the penalized preimage approackdch value oB.
For the gradient descent approach suggested by [16], wehfendalue ofl that corre-
sponds to % of energy to be preserved. Thus, for our expetsyien {75,100,135 160}.

For each of the values df we compare the gradient descent approach by [16] to our
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Figure 18. RSS values of penalized preimage approach versus baggexhapgor digits
5-9 for the high-noise case with noisg = 1.
BKPCA approach with values d@ € {50,100 200,500}. The results are shown in Fig-
ures 21 through 22. We see that our BKPCA method performsfisigntly better than the
gradient descent approach by [16] for each valuB.of
We next select digits 7 and 9, and show the boxplot of RSS fdhaldata points. We

use the Gaussian kernel for denoising with the kernel paeoeset to the value of 2
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Figure 19. Boxplot of RSS values for digit 7 for BKPCA approach versusazed preim-
age approach for different values of energy to be presemddalndependent Gaussian
noisey = 0 andog = 1 was added.
times the average component variances as specified bykegiiét al. The other parame-
ters for each algorithm are set to the levels as discussduwtauthors of the corresponding
chapters, except we experimented with the number of eidgesaelected (or the energy
to be preserved in the penalized preimage case). We alsaeoed two scenarios for the
above cases where we added Gaussian noisepwitld andog = {0.7,1}. Figures 23 to
24 show the results for the penalized preimage algorithigures 25 to 26 show the results
for the gradient descent algorithm. Figures 27 to 28 showebelts for KMDS algorithm.
The BKPCA algorithm consistently shows better performdocd&RSS.

For the plots shown in Figures 19 through 22, we compute tfiereihce between

RSS obtained through the original method and our BKPCA neetbo each of the 300
48



RSS

RSS
5 &
T}

e
T}t -
T+ -
AD} .

G

S m—

Sy S——
B!

NoBag  Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500) NoBag  Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

(a) Energy=70% (b) Energy=80%

L[
%“muqﬂw -

ik
EE
Dj““
]t
},44
[t
e

(c) Energy=90% (d) Energy=95%

Figure 20. Boxplot of RSS values for digit 9 for BKPCA approach versusazed preim-
age approach for different values of energy to be presemddalndependent Gaussian
noisey = 0 andog = 1 was added.
instances for different values & We then performed one-sided Wilcoxon signed-rank
test (the alternate hypothesis being the median differenggeater than zero). The p-
values obtained for all the tests on all the plots were exg¢tgismall (smaller than 0.0001).
Thus, our method provides statistically significant imgment over the results obtained
from other methods. For other plots, similar to ones showlRigures 19 through 22, we
obtain similar results from the one-sided Wilcoxon sigmaik test.

We also apply the methods to the digit dataset for the highencase with Gaussian
noisel = 0 andog = 1 and show the visual preimages in Figure 29 for KMDS and BKPCA
methods where the preimages were obtained from the parasettiegs in the experiments

which resulted in the minimum RSS. For reference, we alsawshe noiseless images (first
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Figure 21. Boxplot of RSS values for digit 7 for BKPCA approach versuadignt descent
approach for different values bndB. Independent Gaussian nojse- 0 andog = 1 was
added.

row) as well as the noisy test images (second row). We carnlyksze that BKPCA method

visually improves denoised preimages from the KMDS method.

6.3 Face Data

We use the face data set available at http://isomap.staefiu/datasets.html. There
are 698 samples and the dimensionality of each sample is #@@@®ur purpose, we took
all 698 images, added independent Gaussian ngpise( andog = 1) to the images to
create the noisy test set, and subsequently denoised theeted-or evaluation purposes,

we compute RSS for each image. Example images are seen irsth@ of Figure 33

50



RSS

s K

+F -
I

1N;
-] b
.
il;
{1

NoBag  Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500) NoBag  Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

RSS
RSS

@)l =75 (b) | = 100
" , é :
| T + ] * i t " '
16 $ + ‘ T +

i SR S

17141 ZfE
1 T8a4 1 THBG

. | !
\ o
6 . 6 -4

|
o

()1 =135 (d)l =160
Figure 22. Boxplot of RSS values for digit 9 for BKPCA approach versusdyent descent
approach for different values bndB. Independent Gaussian nojse- 0 andog = 1 was
added.

Boxplots of RSS are shown for all images for the three dengialgorithms with and
without BKPCA applied. Figure 30 shows the results for theghbzed preimage algorithm.
Note that the penalized preimage algorithm also allows fareakly-supervised penalty
term in addition to the ridge and Laplacian penalty. In oyplEations in manufacturing
settings, information for the weakly-supervised penalgymot be available and, hence,
we only use the ridge penalty for our case. Figure 31 showsethéts for gradient descent
algorithm. Figure 32 shows the results for KMDS algorithm.

The parameters for each algorithm were set to the levelssasigBed by the authors
of the corresponding chapters, except we experimented tvtmumber of eigenvalues

selected (or the energy to be preserved in penalized preirapgroach). As specified
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Figure 23. RSS values of penalized preimage approach on digits 7 and @ifferent
energy levels with added Gaussian naige= 1. For each energy levels, results are shown
with and without bagging.
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Figure 24. RSS values of penalized preimage approach on digits 7 and @ifferent
energy levels with added Gaussian noigge= 0.7. For each energy levels, results are
shown with and without bagging.

before, in addition to the parameters for each algorithmgseteatB = {50,100} for this

experimental purpose. Overall, our bagged version pedaruch better than the original

methods as can be seen from the plots. Results are not gensithe value selected f&:
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Figure 25. RSS values of the gradient descent algorithm on digits 7 afwat lifferent
numbers of eigenvalues)(with added Gaussian noises = 1. For eacH, results are
shown with and without bagging.
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Figure 26. RSS values of the gradient descent algorithm on digits 7 afwat different
numbers of eigenvalues)(with added Gaussian noisg; = 0.7. For each, results are
shown with and without bagging.
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Figure 27. RSS values of KMDS algorithm on digits 7 and 9 for differentmhers of
eigenvaluesl] with added Gaussian noisgs = 1. For eacH, results are shown with and

without bagging.

Bag(1=150)
No Bag(I=150)
Bag(1=100)
No Bag(I=100)
Bag(1=50)

No Bag(1=50)

Figure 28. RSS values of KMDS algorithm on digits 7 and 9 for differentmhers of
eigenvaluesl with added Gaussian noisg; = 0.7. For each, results are shown with and

without bagging.
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Figure 29. Results for digits 0 through 9 with= 50 andn = 10. First row shows noiseless
reference images. Second row shows noisy test images (@aumssse = 0 andog = 1).
Third row shows denoised preimages from the KMDS methodrthaaw shows denoised
preimages from our BKPCA method. The improved results frdfPBA can be seen.

RSS

No Bag Bag(B=50) Bag(B=100) No Bag Bag(B=50) Bag(B=100)

(a) Energy=0.95 (b) Energy=0.6

45+ !

40F

351

251

20

151 .

No Bag Bag(B=50) Bag(B=100)
(c) Energy=0.3

Figure 30. Face data RSS values of penalized preimage approach veesbagged ap-
proach for different energy levels with added Gaussianenfis- 0 andog = 1).
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We also show the visual results of denoising the face imaggsdaby applying KMDS
algorithm as well as the bagged version BKMDS in Figure 33e pleimages were ob-
tained from the parameter settings in the experiments wieishlted in the minimum RSS.
The first row shows uncorrupted face images. The second rowsshoisy faces obtained
from added Gaussian noige= 0 ando = 0.7. We can see that visually the figures obtained

from BKMDS (fourth row) are clearer than those obtained fritwa KMDS method (third

row).

Figure 33. Results for selected face images with 150 andn = 10. First row shows
noiseless reference images. Second row shows noisy tegeg{&aussian noige= 0
andog = 0.7). Third row shows denoised preimages from the KMDS metkodrth row
shows denoised preimages from our BKPCA method. The impreesults from BKPCA
can be seen.

We also calculated the computational time involved in ragrihe original methods as
well as our BKPCA procedure. The parameter settings weeetsal to provide the min-
imum RSS value. We chodg € {50,100 200,500}. We used an Intel (R) Core (TM)2

Quad CPU Q6600 computer with 2.4 Glézgclock speed and 4.00 GB.HAr the exper-



TABLE 5. Average time in seconds required to denoise a data point hen SPS digits
data set. The standard error is reported within parenthesis

Method Original B=50 B =100 B =200 B =500
Gradient Descent 0.14 (0.01)| 4.19 (0.08)| 8.32 (0.13)| 16.3 (0.11)| 40.5(0.21)
KMDS 0.30 (0.01)| 11.8 (0.05)| 23.3 (0.09)| 46.8 (0.57)| 117.1 (0.8)

TABLE 6. Average time in seconds required to denoise a data point fhenface image
data set. The standard error is reported within parenthesis

Method Original B=50 B=100 | B=200 B =500
Gradient Descent 0.28 (0.01)| 23.9 (0.18)| 47.0 (0.1)| 93.5(0.3)| 235.5 (0.64)
KMDS 0.34 (0.01)| 15.5(0.08)| 30.4 (0.2)| 60.9 (0.2)| 152.3 (0.23)

iments, the average time in seconds required to denoiseyke slata point (with standard
error) is reported for different cases in Tables 5 througiWé.observe that the time taken
by BKPCA procedure is more than the time taken by other methdtbwever, the im-
provement in RSS is significant. In practice, we can use a sto@due ofB (B = 50) to
obtain a reasonable tradeoff between the computational itiwolved and the desired de-
crease in RSS. Moreover, the BKPCA procedure can be pazellietéasily lowering their
computational time which is not significantly greater thia@ tomputational time for other

procedures.
7 Conclusions

A new method to approximate the preimage of a denoised sigpabvided that uses
bagging to compensate for noisy training data. For appdinatsuch as manufacturing
analysis and improvement it is important to interpret ansualize results so that the
preimage problem is an important element to extend analytiethods in these domains.

However, noise-less training data can be problematic. ({FP®A method substantially
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improves the original methods in our experimental resutishe datasets here. The im-
provement is most pronounced when the parameters differ frmse that minimize the
RSS. Consequently, BKPCA improves the robustness of the dgsrithm. Visual com-
parison with the true images provide evidence that the meglected was able to identify
the underlying variation structure. Although BKPCA is $lity more computationally ex-
pensive due to the bootstrap replicates, the algorithrnratil quickly in our experiment.
Furthermore, the bagging approach easily lends itself tarallel implementation that can
increase the speed of computations.

We currently propose an ensemble approach for estimategrésimage by averaging
over several preimage estimates obtained from differeatdd@p samples from the train-
ing data. Each bootstrap sample consists of observatiomhwahe randomly drawn from
the original training set with replacement. In future, wewblike to investigate whether
sampling without replacement has an effect on our preimagmate. Finally, in addition
to randomly selecting instances from training data, we @adilkk to randomly select fea-
tures from the training set and estimate preimages from aareble of feature subsets.

This is also expected to provide robustness to the noiseta da

60



TABLE 7. List of symbols used in Chapter 1

T Z

X X X T

O~ XX X
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X

Number of data points

Dimension of each data point in input space
Kernel feature space

Data pointi in input data matrixi = 1,2,--- ,N
Input data matrix

Denoised™ point,i =1,2,---,N

Denoised matrix

Test point

Estimated preimage of test point

True image of test point

Matrix with all elements IN

Number of bootstrap samples

Number of top nonzero eigenvalues chosen
Eigenvectors o€

Covariance matrix in kernel feature space
Eigenvectors oK

Kernel matrix

Denoised matrix fronb" bootstrapped samplb= 1,2, ...

Mapping from input space to kernel feature spkce
Modified kernel matrix

Projections on th&" component fok=1,2,...,I
it data point in true data matrik=1,2,...,N
Dimension of manifold in which true data reside
Denoised point irF

Training data set in BKPCA algorithm

Test data set in BKPCA algorithm

Parameter for Gaussian kernel

Parameter for Polynomial kernel

Number of nearest neighbors

Bootstrap sampldy=1,2,...,B

Squared distance betweék) andR d(x)

Terms independent &fin calculatingp(X)

,B

61



CHAPTER 4
A SERIAL APPROACH TO VARIATION PATTERNS IN KERNEL PCA

1 Introduction

Massive amount of in-process data is ubiquitous in many fis&twring organizations.
With advances in data acquisition and storage technolpigjissnow possible to track sev-
eral thousands of dimensional characteristics. Datas#iected are in the form of spatial
profiles, images or time series. Analyzing this data to gleseful information is necessary
to identify root causes of product or process variationsT™ain provide actionable insights
to engineers to make decisions.

Consider an example for manufacturing automotive engis&ega. A critical compo-
nent on the gasket is a bead which is used to create a seafj &sgaded gasket distributes
the load on the gasket to the areas where the bead is appliedfi@m removes the need
to reconfigure the flange. The data is collected by scannimgussacross the gasket bead
to obtain a profile where each profile can be discretized irfiboeal number of points. For
each part, the measurement vector (data) consists of neggbe vertical axis profile
heights at each of the points. A signal is observed by theflatg and elongation of bead
on each part. This signal is the result of a systematic papiart variation pattern due to
application of load on the gasket. However, this signal camlbfuscated by noise. We
also note that the pattern (represented by the relatioadigfween different elements of

the measurement vectors for all parts) is nonlinear.
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In the above example, the non-linear pattern obtained wiseémgée source of variation
(corresponding to bead flattening/elongation) is presetita process. In practice, multiple
sources of variation interact with each other resulting imajue pattern in the data. A
key step to identifying root causes of process variabiityjthus, identifying the important
variation patterns. Noise makes it harder for the undeglpattern to be recognized in real
conditions. Therefore, it is important to remove noise fibwi@ dataset in order to visualize
the underlying patterns.

There are many techniques proposed in literature to remoige n Principal compo-
nent analysis (PCA) is a widely used technique in manufaajurontrol literature. PCA
provides a simple way to identify the variation pattern. leger, PCA tends to lose its ef-
fectiveness in identifying patterns when the resultartigpais nonlinear in nature as shown
by [22]. They extended the linear PCA framework to accountfanlinear structures in
the data set through kernel principal component analysiOK). KPCA maps the data
in the input space to a higher dimensional (possibly infyrféature space via a nonlinear
map¢ : R? — R™wheremis the number of features and the feature space is denofed as
Linear PCA is then applied to the mapped points in the feapaee to extract components
that are nonlinear in the original input space. Kernel tsbhkwn by [1] is used to compute
the inner products in the feature space, thus avoiding theatational burden required to
explicitly do the same in the large dimensional feature spd&rojections onto a smaller
subset of principal component directions in the featuresgan be used to denoise signals.

To interpret the denoised signal, it is valuable to viswelizn the original input space.
This process of obtaining the inverse transformation isrrefl to as obtaining the preim-
age in KPCA literature. However, such an inverse transftiondrom the feature space to

the input space does not typically exist as shown by [16}ebsan approximate preimage
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is typically sought which is the focus of this research. Rres work by [16] defined this
as a nonlinear optimization problem and approached it ustisgdard gradient descent. A
drawback of using standard gradient descent methods rcitr@rergence to local minima.
Also this method is sensitive to choices of initial startvajues. [11] used an algebraic
approach to find approximate preimages by exploiting thatimiship between the dis-
tance in feature space and the corresponding distance i space derived by [26] for
commonly used kernels along with multidimensional sca{(M®S). This method was an
improvement over the one suggested by [16]. [4] applieddaegression approach to the
preimage problem by formulating the inverse mapping froatuee space to input space
as a regression problem. [18] extended the KPCA framewohatulle noise, outlier and
missing data. [30] addressed the problem of estimatingtarq@eimage by adding penalty
terms to the preimage learning process. [23] and [20] censdimeta-method to improve
the preimage results through bagging. Recently [8] pointgdimitations inherent in the
orthogonal projection operation in any KPCA algorithm , gmmdposed to modify it by
incorporating information about the local geometry in tiegghborhood of a test point in
feature space so that the projection of the correspondiegnage remains closer to the
full manifold. The full manifold was defined by [8] to be thet & all points in feature
space that have exact preimages. Finally [19] considei#drie selection in kernel PCA
with sparse random vectors. This approach can be appliedtorithe preimage methods
discussed here to reduce the dimensionality of the problem.

Most of the previous methods to denoise for KPCA assume higatraiining data are
noise-free. In practice, many cases (such as manufactuaimgtion analysis) fail to meet
this assumption. We are only given a noisy training set tonldeom and subsequently

denoise to observe the variation pattern. To improve thenagt of the preimage in such
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cases, we provide a new meta approach. The idea is that tla @stimate of the actual
denoised test set obtained by a KPCA preimage estimatiamitdgh may not be accurate
because of the inherent noise in the data; hence, succéssatons of denoising a con-
vex combination of the test set and the corresponding dedast can lead us to a more
accurate estimate of the actual denoised test set. We atsideo another variant of the
above approach where we decrease the number of top eigers/elsbsen in each iteration
at a constant rate. The intuition is that we initially retalheigenvectors so as not to loose
any information about the pattern in data and as we appraachrdls the final denoised
preimage, we only retain the top most eigenvectors thataeitiount for the structure in
data and get rid of the noise. The remainder of this chaptagenized as follows. Section
2 offers a brief review of KPCA and the ensuing preimage ediion algorithms. Section 3
discusses our proposed methodology. Section 4 providesiexgntal results and Section

5 provides conclusions.
2 Background on Preimages in KPCA

KPCA is equivalent to PCA in feature space ([22]). Detenote the data set witk
instances and@ features where the instances are denotedbyo,--- ,xn. We want to
find the eigenvalues and eigenvectors of the covariancexr@tin feature space. If the
corresponding set of points mapped in the feature spage,i =1,2,---,N are assumed

to be centered; can be calculated by
c= 15 o) @)
=N i i .
NS
The eigenvaluea and eigenvectorg of matrix C are given by

Cv=Av (4.2)
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It can be shown that an eigenvector corresponding to nom-@igenvalue ofC can
be written as a linear combination ¢fx1),---,$(Xn). Let there be coefficients; (i =
1,...,N) such that

N
V:i;Gi(p(Xi) (4.3)
Using the above simplification reduces the original probleniinding eigenvalues and
eigenvectors o€ to finding the corresponding eigenvalues and eigenvectdisedernel
matrix K with entries
Kij := (9 (xi) - 6(x})) (4.4)
The producth(x;) - (x;) is evaluated using the kernel trick [1] without explicitlgraput-
ing the mapping(.).
Let x be a test point in input space with a corresponding centerapl ¢nx) in the

feature space. In order to extract nonlinear principal coments for theb—image of the

test pointx, we compute its projections on th& component fok = 1, - - ,| as follows
k A A
Bk = (V- (x)) = Z\O‘i (O(xi)-0(x)) = Z\O‘i k(x, i) (4.5)
1= 1=
whereaX denotes a column vector with entries, ..., oy fork=1,...,l. The dot products

are evaluated using a kernel function.
The denoised image in feature space can be obtained by tingjé¢x) onto a subspace

spanned by the topeigenvectors

I
Ro(x) = 5 B (4.6)
k=1

Training data are used to obtain a reliable estimate of timeipal component subspace
in feature space onto which the test data can be projecteel.oVérall procedure for ob-

taining the variation pattern in test data ggn thus, be samzed in four steps. The first



step is to map the training data from input space to featuaeespThe second step is to
calculate the principal component directions of the tragndata in feature space as shown
by [22]. The third step is to map the test datto feature space and then project onto the
space spanned by a small subset of the principal componeatidns found above. This
projected test data (denoted Byy)) is also called the denoised data in feature space. In
order to observe the pattern in input space, the denoisachdamapped back from feature
space to input space in the fourth step. This last step israfsored to as obtaining the

preimagexin KPCA literature. The above steps can be seen in Figure 34.
Input Space A Kernel Feature Space

Training Data

o/\\
N @ SX)

® -
T L yPe

-

o
/
Principal Component Subspace

Figure 34. KPCA and the preimage problem. Training data are transfdrtodeature
space and used to learn a principal component plane. A tést & transformed and
projected to the plane @(x). The inverse transform d?$(x) may not exist, and an
approximate preimageis computed.

=@

The preimage can be used to visualize the variation patfetimeadata in input space.
As mentioned, in general, such an inverse mapping from feapace to input space may
not exist, and the preimage cannot always be determinedlgx&6]. Hence, several al-
gorithms have been proposed to estimate the preimage. fappped a gradient descent
approach to numerically estimate the preimage matrix whidcten mapped to the feature

space, is closest (in terms of Euclidean distance) to theiged matrix in feature space.
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Since the objective function (Euclidean distance) to minems non-convex, this approach
is sensitive to initial starting solution. [11] used theatenship between distance in input
space and the feature space, and estimated the preimagesif@int as a linear com-
bination of the training data points whose projections iatfiee space are closest to the
denoised data point in feature space. [11] chose only a faresetraining data points in
order to reduce the computational burden. We refer to thodatsed by [11] as KMDS.
[4] applied kernel regression to the preimage problem wtierénverse mapping from fea-
ture space to input space is posed as a regression probletim.aporoaches by [11] and
[4] favor noise-free training data.
3 Preimages from Serial Denoising

As discussed before, we want to improve upon the previousoappes proposed in
literature to handle the case when training data is noisg dverall idea is that since the
training data is noisy, the principal component subspacetisffectively learned. Thus, we
take an approach to serially learn a reliable estimate optimeipal component subspace.
We present a method called Serial denoising and a variarttaziled Eigen denoising

based on the above concept.

3.1 Serial Denoising

We consider the original test s¥p. Let us denote the denoising function (any KPCA
preimage estimation algorithm) applied X6_1 asg(Xj_1) for i =1,2,--- /Nmax The

denoised data at iteratioms calculated by
Xi = (G)X|—1+ (1_ a)g(xi—].)v I = 17 27 Ty Nmax (47)

HereX; is considered the denoised data at iteratiblecausey(X;_1) is considered as a

large step for denoising. We describe th%grocedure beleMgaorithm 1.



Algorithm 1 Algorithm for serial Denoising

We consider the original test 9€p. Fix values for the number of eigenvectbys user-
defined constartt, kernel parametes, iter = 1. Fix any other KPCA algorithm specific
parameters (for instance number of nearest neighborKMDS algorithm). We have
to estimate the denoised preimage.
repeat

DenoiseXiier—1 by computingy(Xiter—1)

Xiter = (00)Xiter—1+ (1 — 0)9(Xiter—1)

The denoised matrix at stéger is denoted byiier

iter « iter+1
until iter = Nmax

The final denoised matrix is obtained at the iteration whe®& s the minimum, the

RSS in each iteration being defined as
RS$: ||X|_X*||F7I :1,27"‘7Nmax (48)

whereX* is the true data matrix. This is easy to calculate when we ktieamrue data
matrix. In practice, however, the true data matrix is notwndeforehand, and thus, we
need a stopping rule to determine the final denoised matromefimes signal-to-noise
ratio (SNR) is also used for evaluation purpose where SNREnfor denoised matrix

is defined as
w112
X = X*[|g

SNR= —10logq 5
(=

(4.9)

It can be easily verified that low values of RSS will corregpptmhigh values of SNR.

3.1.1 Stopping Rule for serial Denoisinge define the stopping rule as follows. Let
Li = [|Xi = Xi-1/[g ;1= 1,2, , Nmax (4.10)

We defines as a small positive constant. For serial denoising, we dtdprationi when

Li_1 —Lj <¢; else we stop at iteration= Nmax
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3.2 Eigen Denoising

We consider another variant of serial denoising called iedgnoising (EKPCA) where
we decrease the number of eigenvectors at a constant raaehnteration. The eigenvec-
tors are recomputed from the kernel matrix in each itera#tdso letg(.) denote any KPCA

preimage estimation function applied to the data. EKPCAemscdbed in Algorithm 2.

Algorithm 2 Algorithm for Eigen Denoising

We consider the original test s¥p. Fix values for the initial fixed number of eigenvec-
torsl, a user-defined constami kernel parametes, a user- defined constadititer = 1.
Fix any other parameters used in a KPCA preimage estimalgmmithm (for instance
number of nearest neighbansn KMDS algorithm). We estimate the denoised data set
as follows.
repeat

I* <1 —&(iter — 1)

DenoiseXiter—1 by computingg(Xiter—1) USing eigenvectors corresponding to t6p

eigenvalues

Xiter = (00)Xiter—1+ (1 — 0)9(Xiter—1)

The denoised matrix at stéger is denoted byiier

iter « iter+1
until 1* <1

Note that by settind = 0, eigen denoising becomes equivalent to serial denoiSimng.
final denoised matrix is obtained at the iteration where BR3Bd minimum, the RSS being
defined as

RS$: Hxi_X*HF7i :1727“‘7Nmax (411)

whereX* is the true data matrix. This is easy to calculate when we ktieamrue data
matrix. In practice, however, the true data matrix is notwndeforehand, and thus, we
need a stopping rule to estimate the final denoised matrix.

3.2.1 Stopping Rule for Eigen Denoisife define the stopping rule as follows. Let

Li = ||Xi_xi—1||F7i :172,"'7Nmax (412)
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We defines as a small positive constant. For eigen denoising, we stdprationi when
Li_1—Lj <g¢; else we stop wheh< 1, wherel is the number of eignevectors.

Basically, we can think of our parametardor serial denoising (wittd for EKPCA)
providing some form of shrinkage that allows us to seriafppr@ach the final denoised
preimage. At each step, we re-estimate our prinicpal composubspace beased on the
denoising at the previous step. This is expected to perfattiebthan estimating the prin-
cipal component subspace only once especially in situsitidren we have noisy training
data. Our stopping rule also ensures that we obtain theadigsieimage in a fewer number
of iterations. Another advantage of our approach is it wavkh any KPCA algorithm in

literature.
4 Experimental Results

We consider two datasets- a classical hand-written digitasett and a face dataset for
the purpose of our experiments. We evaluate our serial dergpprocedure as well as its
variant (EKPCA) on the data sets. We use a Gaussian kerneufaxperiments given by

the following equation

o)

AR VAR 2
K(Xi,Xj) = exp<M> (4.13)

whereo is a parameter related to the width of the kernel betweenmlatasx;, X;.

4.1 Experiment Results for Serial Denoising on USPS Digitafaset

We consider the USPS digits dataset at http://yann.lecumexdb/mnist/. It consists
of 16 x 16 gray scale images of zip code digits (0-9) automaticainsed from envelopes
by the U.S.Postal Service. We initially investigate theeef of different parameters on

our results. To see the effect af we chose digit 9 and set = 50, | = 100, n = 10,
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andNmax= 200. 1 We added Gaussian noise with= 0 andog = 1. We varieda ¢
{0.9,0.7,0.5,0.3,0.1,0}. Figure 35 shows the plots of RSS against the number ofibesat

for different values ofx as specified below each subfigure. For reference, we also show
RSS obtained usin¥o (|| Xo — X*||¢) as the acronym “RAWRSS”, and the RSS obtained
from the KMDS method|(g(Xo) — X*||) as the acronym*KMDSRSS".

Based on the experiments, we found that the minimum valueS8 Rchieved under
differenta values is not significantly different. However, we also fduhat for high values
of a (a = 0.9), the RSS decreases slowly over the iterations whereasifall values ofx,
RSS decreases initially to the lowest value and then showsasard trend. In practice,
therefore, we will use the stopping rule for small valuesxdb obtain the denoised data
matrix as described previously. In order to show the effigzdhe stopping rule, we chose
to experiment on all digits 0-9. We chose= 50; | € {50,100}; a = 0.1; n=10. We
setNmax = 200 which is large enough. We added Gaussian noise pith0 andog =
1. Figures 36-37 show the results. The acronym “KMDSRSSshilve RSS achieved
by the KMDS method; the acronym “ORACLERSS” stands for theetminimum RSS
achieved theoretically by our method; the acronym “STOPRRES” stands for the RSS
achieved practically using the stopping rule. We would tdkenention that the RSS cannot
be calculated in practice becasue we won't know the true chatiax. We used the true
matrix here only to show that our stopping rule produces RS OPRULERSS”) which
is close enough (slightly higher than) to the true minimunSRSORACLERSS”) while
significantly lower than the RSS achieved by the KMDS metlfddo the stopping rule is

simple enough to be implemented in practice. &ar {0.1,0} and all the digits, we show

Lsimilar results were obtained for other digits and otheapwter settings also
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Figure 35. Effect ofa on serial denoising of digit 9 with = 50,1 = 100,n = 10, Npax=
200, andog =1
the plot of the iteration number at which the ORACLERSS iaiattd versus the iteration
number at which the serial denoising stops due to stoppilegmurigure 38.
We did some more experiments on digits 7 and 9 by setiirg25 and rest other
parameters as described previously. The results showgumdé-89 are similar to the results

obtained in the previous figures.
73



190 T T T T T T 200

S
—%— KMDSnu50digit0 4 m@:"“fggf”ﬁl *
180 | —#- KMDSnu100digit0 P 180 | At Enusodigi -7
—— ORACLEnuS50digitd 4 - DRACLE:EIODEI it
170 | ~H ORACLEnuloOdgio ] 160} | —E— STOPRULEN 502 tL *
—B— STOPRULENUSOdigitd e O STOPRULE ”1005' 1 P
—B- - STOPRULENU100digit0| ’ R -7
1601 ¥ 1 140 -
1) - 2 -
14 - 4] =
14 _- e - -
1501 o 1 120
—
140| \/ﬁ— 100
B
130+ _z=s oo 1 80
120 ———F 60
35 4 45 5 55 6 65 7 35 4 45 5 55 6 65 7
log(sigmay) log(sigma)
185 T T T 190
*
ool —— KMDSnu50digit2 , —— KMDSnu50digit3 *
—%— - KMDSnu100digit2 / 180 —%— - KMDSnu100digit3
sl —+— ORACLENU50digit2 / —+— ORACLENU50digit3
—+— ORACLENu100digit2 ’ —+— - ORACLENU100digit3
ol —5— STOPRULENuS0digit2 / | 170l | —=— STOPRULENuSOdigits
—0- - STOPRULENu100digit2| / —O- - STOPRULENU100digit3}
- /
165} -
2 3 160 -
@ k4 IS g
160 X
pal
155 150 P
150
140
145}
140 130
35 4 45 5 55 6 65 7 35 4 45 5 55 6 65 7
log(sigma) log(sigma)
190
—— KMDSnu50digit4 *
180 | - —%— - KMDSnu100digit4
—+— ORACLEnuS0digitd
170 |~ ORACLEnu100digitd
—&— STOPRULENUS0digit4
—B- - STOPRULENU100digitd| W
1601
n
14
o
150
140
130
120
35 4 45 5 55 6 65 7

log(sigma)

(e) Digit4
Figure 36. Comparison of RSS values achieved by KMDS method with sdaabising
for digits 0-4 settingy € {50,100 500 1000}; | € {50,100}; a = 0.1; n= 10; Nmax= 200;
Gaussian noise with= 0 andog =1
We also experimented on the digits dataset with the gradiestent algorithm. Figure

40 shows the results of the experiments on digits 6 and 8. nitbeaclearly seen that

the serial denoising procedure improves upon the baseithigor Also we see that the
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Figure 37. Comparison of RSS values achieved by KMDS method with sdaabising
for digits 5-9 settingy € {50,100 500 1000}; | € {50,100}; a = 0.1; n= 10; Nmax= 200;
Gaussian noise with= 0 andog =1

minimum values of RSS obtained under different values afe not significantly different.
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Figure 38. Plot of the iteration number at which the ORACLERSS is a@tdimersus the
iteration number at which the serial denoising stops duédppsng rule for all digits 0-9
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Figure 39. Comparison of RSS values achieved by KMDS method with séeiabising for
digits 7 and 9 setting € {50,100 500 1000}; | € {50,100}; a = 0.1; n = 25; Nmax= 200;
Gaussian noise with= 0 andog =1

4.2 Results of Serial Denoising on Face Data

We also applied our serial procedure on the face image ddtaasslable at
http://isomap.stanford.edu/datasets.html.
The data set contains 698 samples and dimensionality of sawiple is 4096. For our
purpose, we randomly took 300 samples, added independersistaa noise(= 0 and
oc = 0.7) to the samples to create the noisy test set. We used KMD§ranient descent

algorithm for denoising all images, and compare it with tgpective serial denoising pro-
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Figure 40. Comparison of RSS values achieved by gradient descentithligowith the
serial denoising procedure for digits 6 and 8 ffar {50, 200}; Gaussian noise with = 0

andog =1
cedures. Figure 41 shows the boxplot results of RSS obtd&mezhch method. It is clear
that the serial denoising procedure is better than the bgeatam.

For the plots shown in Figure 41, we compute the differendevéen RSS obtained
through the original method and our serial denoising methodach of the 300 instances.
We then performed one-sided Wilcoxon signed-rank testitieenate hypothesis being the
median difference is greater than zero). The p-values ddafor all the tests on all the
plots were extremely small (smaller than 0.0001). Thus,neethod provides statistically

significant improvement over the results obtained from iothethods.
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Figure 41. Comparison of RSS values for the face image data set with SBausoise
(u=0andog = 0.7). The parameters other thithe number of eigenvalues) is set to the
values as described in the respective references

We also show the visual results of denoising the face imaggsdaby applying the
gradient descent algorithm as well as applying the seriabidéng procedure in Figure 42.
The first row shows uncorrupted face images. The second rowsshoisy faces obtained
from added Gaussian noige= 0 ando = 0.7. We can see that visually the figures obtained
from serial denoising (fourth row) are clearer than thogaioled from the gradient descent
method (third row).

We also calculated the computational time involved in ragnihe original methods
as well as our serial denoising procedure (without the stappule criterion). The pa-
rameter settings were selected to provide the minimum R3&vaWe choseéNmax €
{50,100,200,500}. We used an Intel (R) Core (TM)2 Quad CPU Q6600 computer with
2.4 GHz clock speed and 4.00 GB RAM. For the experiments,\teeage time in seconds
required to denoise a single data point (with standard eisaeported for different cases

in Tables 8 through 9.
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Figure 42. Results for selected face images wita 150. First row shows noiseless refer-
ence images. Second row shows noisy test images (Gausssauno 0 andog = 0.7).
Third row shows denoised preimages from the gradient déseetinod. Fourth row shows
denoised preimages from our serial denoising method. Tipeowed results from serial
denoising can be seen.

TABLE 8. Average time in seconds required to denoise a data point hen SPS digits
data set. The standard error is reported within parenthesis

Gradient Descent 0.15 (0.01)] 5.5 (0.08) | 10.9 (0.13)| 21.5 (0.15)| 53.8 (0.21)
KMDS 0.31 (0.01)| 13.1 (0.06)| 25.9 (0.11)| 52.1 (0.59)| 130.2 (0.85)

4.3 Experiment Results for Eigen Denoising

Now we show our results on the data sets using Eigen denqsiegdure. We fix =1
so that is reduced serially (this is the serialest possible rateddiction). We demonstrate
the usefulness of the stopping rule in Figures 43-44 whenomelact experiments on all
the digits 0-9 setting € {50,100, 500,1000}; | € {50,100}; a =0.1;n=10;6=1. The

acronym “ORACLERSS” stands for the true minimum RSS aclddbeoretically by our
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TABLE 9. Average time in seconds required to denoise a data point fhenfiace image
data set. The standard error is reported within parenthesis

MethOd Or|g|nal Nmax: 50 Nmax: 100 Nma)(: 200 Nma)(: 500
Gradient Descent 0.28 (0.01)| 25.1 (0.18)| 49.9(0.1) | 99.5(0.3) | 250.5 (0.64)
KMDS 0.34 (0.01)| 16.8 (0.08)| 33.0(0.2) | 67.8(0.2) | 165.3(0.23)

method; the acronym “STOPRULERSS” stands for the RSS aetlipractically using the
stopping rule; the acronym “KMDSdeduct” refers to the fdwttthe KMDS method is
evaluated at the number of eigenvalues at which the EigeroiBiey stopped (in other
words, deducting an amourd k iteration) from the initial number of eigenvalues chosen
whereiterationis the iteration number when Eigen Denoising stops).

We did some more experiments on digits 7 and 9 by setiirg25 and rest other
parameters as described previously. The results showgumd-45 are similar to the results
obtained in the previous figures.

We also conducted some experiments on digits 4, 6, and 8 tisngradient descent
algorithm. We begin with 200 eigenvectors initially and ib=se it by one at each iteration.

Figure 46 shows the results of our experiments.
5 Conclusion

A new method to approximate the preimage of a denoised sigpabvided that uses
a serial approach for estimating preimages.
Furthermore, a variant to the above approach is also prdpbhse gradually discards the
irrelevant eigenvectors. We also design and employ a sistplgping rule which ensures
that we obtain the final preimage within an acceptable tloeshand the procedure is
completed in fewer iterations. Our method improves uponatiginal methods in the

experimental results shown on the datasets here.
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Figure 43. Comparison of RSS values achieved by KMDS method with eiggmoiging

for digits 0-4 settingo € {50,100,500,1000}; | € {50,100}; a = 0.1; n=10; 6 = 1;
Gaussian noise with= 0 andog =1
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Figure 44. Comparison of RSS values achieved by KMDS method with eiggmoiging

for digits 5-9 settingo € {50,100,500,1000}; | € {50,100}; a = 0.1; n=10; 6 = 1;
Gaussian noise with= 0 andog =1
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CHAPTER 5
FEATURE SELECTION FOR KERNEL PRINCIPAL COMPONENT ANALYSIS

1 Introduction

Advances in signal acquisition and computational procgssoupled with cheap stor-
age have resulted in massive multivariate data being ¢etlein today’s processes like
semiconductor manufacturing, automobile-body assemblspection systems, etc. The
data can be in form of spatial profiles, time series or imagesravthe measurements are
recorded over several features. These features are affegwifferent sources of variation
which result in variation patterns in the data. The goakdfore, is to identify these sources
of variation based on the process data collected. The \@rigattern may be present in
only a small subset of the process variables that are cetle&inding this relevant subset
of features is, therefore, critical to understand the pgscand is the focus of our work
presented in this chapter.

Principal Component Analysis (PCA) is a common techniquedeatify variation pat-
tern in data by projecting along the directions of maximumiaklity in the data. However,
PCA can only identify linear relationships among featureshie data. Kernel Principal
Component Analysis (KPCA) developed by [22] extends PCAodase where data con-
tain non-linear patterns. KPCA identifies non-linear patsen data by mapping the data
from input space to a high-dimensional (possibly infiniteattire space, and performing
PCA in the feature space. This is achieved by employing theekerick ([1]). Thus, only
calculations in terms of dot products in the input space ageired, without an explicit

mapping to the feature space.
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To visualize the variation pattern in input space, an invdéransform is used to map
the denoised data from feature space back to the input spaeeexact preimage of a de-
noised point in feature space might not exist, so that a nuwiftagorithms for estimating
approximate preimages have been proposed ([16], [11]).[30ineta-method to improve
the preimage results through bagging was considered by R3fquential procedure to
obtain preimage was developed by [21].

Our task now is to identify the relevant subset of the oribged of features over which
the pattern exists a feature selection task). The diffiagalty handle the non-linear relation-
ships between features in input space. Because the fepage ;1 KPCA already provides
an avenue to consider higher-order interactions betwesnres, it is more appealing to
apply a feature selection procedure in feature space.itslevever, it is not always pos-
sible to obtain the feature representation in feature sffaceexample, in the case of a
Gaussian kernel) because the data are not explicitly magpentefore, the challenge here
is to perform feature selection in the feature space.

Some work has considered feature selection in feature dpaseipervised learning.
[2] provided a weighted feature approach where weights ssegaed to features while
computing the kernel. This feature weighting is incorpedainto the loss function corre-
sponding to classification or regression problem and a lpssalty is put on the weights.
The features corresponding to non-zero weights obtainid afinimizing the objective
(loss function with penalty) are considered the importamtso Similarly, recent work
([14] and [13]) also employed feature weighting for the sasESupport Vector Machine
(SVM) classification and regression, respectively. Fohlibée cases, an anisotropic Gaus-
sian kernel was used to supply weights to features. Spdbjfifed] provided an iterative

algorithm for solving the feature selection problem by edtheg the feature weighting in
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the dual formulation of SVM problem. The algorithm beginshnan initial set of weights.
At each iteration, it solves the SVM problem for the givenaeieature weights, updates
the weights using the gradient of the objective functiord esmoves the features that are
below a certain given threshold. This procedure is repe@tembnvergence. Finally, the
features obtained with non-zero weights are considereditapt.

Consider feature selection in feature space for unsupshisarning. One common
aspect of all these algorithms, similar to their countdspar supervised setting, is they
involve some kind of feature weighting mechanism, and theveat features are obtained
by regularizing (shrinking) the weights of irrelevant fes using some criteria. [29]
proposed a method for feature selection in Local Learniagel Clustering [27] by reg-
ularizing the weights assigned to features. [17] dealt witrasuring variable importance
in KPCA. They computed the kernel between two data points @igiwed sum of indi-
vidual kernels where each individual kernel is computed simgle feature of each of the
two data points, and the weights assigned to each kerned asra measure of importance
of the feature involved in computing the kernel. They foratatl a loss function where
a lasso penalty was imposed on the weights to determine theem@ weights (and the
corresponding relevant features).

The approaches provided in the literature focus on the céss woise-free training
data are available. However, this is not the case in areasri&nufacturing variation anal-
ysis. In practice, the data are corrupted with noise and hathirrelevant features. Thus,
we work with a noisy data set from which we need to find the @aiegubset of the features
over which the patterns in the data exist. To this end, wegseur novel approach.

As pointed out previously, an innovative way to do featuréect®n in high-

dimensional feature space is to assign weights to feataragut space. By using such
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an approach, we can compute the kernel using all the featust=ad of iteratively com-
puting it using a subset of features at a time. The goal next identify the weights (by
some regularization criterion) so that the non-zero weigbtrespond to the relevant fea-
tures. We propose an alternate approach for this featurghtieg mechanism. Instead
of trying to determine the feature weights through a regzddion approach, we multiply
the features by sparse random vectors whose entries angeindent and identically dis-
tributed drawn from a distribution (such as Gaussian). Afi®jecting data points onto
random subsets of features, we measure feature importammedffferences in preimages,
where preimages are computed with and without a featurereidre, more important fea-
tures are expected to result in greater differences. Theepsois repeated iteratively with
different sparse random vectors and the differences aragee to estimate the final fea-
ture importance. Our approach above provides robustnegglevant features in the data
by being able to project only on a small random subset of featat a time, and calculating
the final mapped data matrix in input space from an ensembteatiire subsets. Another
advantage of our approach is it works with any KPCA preimdgerdghm.

We organize the remaining part of our chapter as follows.ti&e@ provides a brief
description of different methods used to visualize theatayn patterns in KPCA. For our
feature selection method, we can consider any one of thehedsase algorithm. Section
3 presents a mathematical description of our methodologgti® 4 shows the results of
implementing our algorithm on several simulated dataséfs.also compare the results
of our approach to the results obtained from the methodotlaggribed by [17]. Finally

Section 5 provides conclusions.
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2 Background on Preimages in KPCA

KPCA is equivalent to PCA in feature space ([22]). Rétdenote the data set with
N instances an® features where the instances are denotediby,,--- ,xn. Similar to
PCA, we want to find the eigenvalues and eigenvectors of ther@mnce matrixC in feature
space. If the corresponding set of points mapped in thereapace(x;),i=1,2,--- N

are assumed to be center€can be calculated by
c=15 oo 5.
v | | .
NS
The eigenvaluea and eigenvectorg of matrix C are given by
Cv=Av (5.2)

It can be shown that an eigenvector corresponding to namegenvalue ofC can be
written as a linear combination d@f(x1),---,$(Xn). Using this simplification reduces the
original problem of finding eigenvalues and eigenvectorS & finding the corresponding

eigenvalues and eigenvectors of the kernel madrixith entries

Kij == (¢(Xi) - d(X;j)) (5.3)

The producth(x;) - ¢ (x;) is evaluated using the kernel trick [1] without explicitlgraput-
ing the mapping(.).

Training data are used to obtain a reliable estimate of tineipal component subspace
in feature space onto which the test data can be projecteel piidtedure for visualizing
variation pattern in test data can, thus, be summarizediinsieps. The first step is to map
the training data from input space to feature space via theekérick [1]. The second step

is to calculate the principal component directions of tlening data in feature space as
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shown in [22]. The third step is to map the test data feature space and then project onto
the space spanned by a small subset of the principal compdirentions found above.
This projected test data (denotedmyy)) is also called the denoised data in feature space.
In order to observe the pattern in input space, the denoiata ate mapped back from
feature space to input space in the fourth step. This lasist&so referred to as obtaining

the preimage in KPCA literature. The above steps can be seen in Figure 47.

Input Space A Kernel Feature Space
Training Data
. @\ (%)
s —>0 @

O
/
Principal Component Subspace

Figure 47. KPCA and the preimage problem. Training data are transfdrtoadeature
space and used to learn a principal component plane. A tést & transformed and
projected to the plane @p(x). The inverse transform dP$(x) may not exist, and an
approximate preimageis computed.

The preimage can be used to visualize the variation patfetimealata in input space.
As mentioned, in general, such an inverse mapping from feapace to input space may
not exist, and the preimage cannot always be determinedlgXa6]. Hence, several al-
gorithms have been proposed to estimate the preimage. [@ppped a gradient descent
approach to numerically estimate the preimage matrix whidcten mapped to the feature
space, is closest (in terms of Euclidean distance) to theided matrix in feature space.
Since the objective function (Euclidean distance) to min@s non-convex, this approach

is sensitive to initial starting solution. [11] used theat@nship between distance in input
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space and the feature space, and estimated the preimagesif@oint as a linear com-
bination of the training data points whose projections iatfiee space are closest to the
denoised data point in feature space. [11] chose only a fewesetraining data points
in order to reduce the computational burden. [4] appliech&keregression to the preim-
age problem where the inverse mapping from feature spaagtd space is posed as a

regression problem. Both approaches by [11] and [4] faviserbree training data.
3 Feature Selection Using Sparse Random Vectors with MatckePairs

The main idea of our approach is to understand the contabuti a feature towards the
variation pattern in the data. When we project onto a smalstof features at a time using
sparse random projections, we essentially try to captweffiect of that subset of features
in feature space. By repeating this procedure over a numbigerations, we create a
diversified ensemble of feature subsets which account égpdissible interactions between
features that give rise to the variation pattern in the distatched pairs of projections are
created for each feature to estimate the effect of the feainrthe variation pattern. We
calculate the difference in the preimage as a result of exatithe feature. Thus, important
features are expected to result in high differences.

Let w be a sparse random vector of dimenskorwhere |yF | entries are non-zero.
Hereyis a parameter that controls sparseness. The entries ipaingesrandom vector are
independently sampled from a distribution (such as Gan}sliaet B be a fixed number of
iterations. LetK be the kernel matrix obtained from instances in the inputspa.etx;
andx;j denote two instances in input space. Assume that we are asgayssian kernel.

Theij™ entry inK is calculated as

AR VAR 2
K(xi,Xj) = exp(M) . (5.4)
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For the purpose of our feature selection procedure, we médifo K, where we obtain

the correspondinij " entry inK, as

(5.5)

—(WTx; —wTx;)?
S )

kw(Xi,Xj) = exp(
We also normalizedv to unit length in equation 5.5. Preliminary experimentsyéeer,
didn’t show meaningful differences in results obtainedrfreormalized and nonnormalized
w.
Foreachf =1,2 --- F in each iteratiorb (b =1,2,--- ,B), we generate a sparse ran-

dom vectow. To create matched pairs, we transfasno w* by the following mechanism.

Denotef™ entry ofw by w( f) and the corresponding entrywi asw*(f). Then, we set

0 ifw(f)+£0
wH(f) = (5.6)

1 otherwise
Thus, for every featurd at each iteratiom, we generate matched pawsandw* which
differ only at thef!" entry. We usav to obtainK, as shown in the previous subsection and
then useK, andX in the preimage algorithm to obta¥y, at iterationb. Similarly, we use
w* to obtainK , and then us&, along withX to obtainXp( f) at iterationb.
The importance of featuré,denoted bymps, is calculated as

S || Xo—Xb( )]l

imps =
PR

(5.7)

where the Frobenious norm of the matrix is used. We summé#reabove procedure in
Algorithm 3. In Algorithm 3g(.) denotes a preimage estimation function. Note that the
functiong(.) takesK, (or K) andX as input, and outputé;, (or Xp( f)) at iterationb for
featuref.

An advantage of working with an ensemble of feature subsetsely tend to be more

robust towards noisy and irrelevant feaétires in the datais iBhimportant in our case



Algorithm 3 Feature Selection Algorithm

Initializeb=1,f =1,M =0
Initialize feature importance vectonpwith F zeros indexed bymps,f =1,2,--- ,F
for b=1— Bdo
for f=1—Fdo
Generate sparse random veator
Usew to calculateK
Xp  g(Kw, X)
if w[f] == 0then
Setw[f] = 1 to generatev*
else
Setw[f] = 0 to generatev*
end if
Usew" to obtainKy,
Xo(f) < 9K X)
imps < imps + [|Xp — Xp(f) ||
MM +Xp
ff+1
end for
b«b+1
end for
X =i
for f =1—F do
imps < % {importance off " feature is given bymps }
end for

because we don’t have noise-free training data for our glgor This enables us to work

with any preimage estimation algorithm for KPCA in the lagrre.
4 Experimental Results

To evaluate our method, we generate several simulated eetaBach data set has a
pattern (linear or non-linear) embedded into it. The patigonly over a subset of relevant
features out of the total set of features, and we want to fioddlrelevant features. For
actual data, relevant features are not usually known. Quresgly, we use simulated data
to construct such features. Our feature selection metbggatan work with any KPCA

algorithm. For the purpose of this chapter, we use the algorproposed in [11] as the
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base algorithm. The number of leading eigenvectors is c¢haseording to the criterion
proposed by [11]. Preliminary experiments did not show seitg to B. We setB = 50
for all the experiments. For the experiments we set the Gaugernel parametey = 1,
and the sparseness paramater 1/+/F, whereF is the total number of features in the
data. We also vary the noise level in the data through thelatdrdeviatiorog of added
Gaussian noise.

The first data set is thieine2 data set which refers to the fact that the pattern is linear
only over two features. More specifically, the data set @iasif 50 instances and 70 fea-
tures generated as follows; = 0.1t fort =1,2,--- ,50,x, = 0.5(1—X3 ), andxs, Xs, - - - ,X70
are independent Gaussian noise with mean 0 and var@dedependent Gaussian noise
with mean 0 and varianoa%zG are also added tg andx,. Figure 48 shows the variable
importance as a function of the variable index, along widindard error bars obtained by
repeating the feature selection procedure 10 times.

The second data sBtanebrefers to the fact that the pattern is a plane over five feature
The data set consists of 50 instances and 70 features gathasafollows:x; = 0.1t, t =
1,2,---,50, Xy, X3,X4 are independently, Gaussian distributed with mean 0 andnae 1,
x5 = 1—0.2X1 + 3x2 + 2x3+ 0.5x4, andxg, X7, - - - , X70 are independent, Gaussian noise with
mean 0 and varianceZ. Independent Gaussian noise with mean 0 and variagcare
added toxy, X2, X3, X4 andxs. The results are shown in Figure 49 (standard errors from
generating differemnt,, x3, X4 10 times).

The third data seCurve3refers to the fact that the pattern is a curve over three featu
The data set consists of 50 data points and 70 features getiers follows:x; = 0.1t,
t=12---,50, X is Gaussian distributed with mean 0 and variancesl: x%/xl, and

Xa,Xs, -+ ,X70 are independent, Gaussian noise with mean 0 and var'cz@‘ncmdependent
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Gaussian noise with = 0 and variancer(z3 are added txq, X, x3. Figure 50 shows the
results (standard errors from generating diffesentO times).

The fourth data seSphere3refers to the fact that the pattern is spherical over three
features. The data set consists of 50 data points and 70rdeagenerated as follows.
The pattern is of the form? -+ x3 +x3 = 25 wherex; = 5sint) cogt), x; = 5sin(t) sin(t),
xg =5cogt), fort =1,2,--- .50, andxs,Xs, - - - ,X70 are independent, Gaussian noise with
mean 0 and varianagZ. Independent, Gaussian noise noise with mean 0 and variggnce
are added tay, X2, x3. Figure 51 shows the results (standard errors from 10 rapkg.

We see that for almost all datasets corrupted with a mediueh g noise, our algorithm
is able to detect the important features. However, when wease the noise level to high
(o = 3), the algorithm cannot detect all the relevant featurdsisT our algorithm works
well for cases with moderate noise levels.

We also conduct some experiments to evaluate the sensiivdur results to the pa-
rameters involvedd andy). We conducted experiments &wme2 and Sphere3datasets

setting 6 € {1,2,3}), 0 € {0.1,1,5,10,50} andy € {\/%), }. Figures 52-61 in

3 5
V70’ /70
the appendix show the results. We see that our algorithre#slglable to detect the impor-
tant features under small to medium noise levels over a vaidige of parameters. However,
as noise level increases, the ability to detect these femtliminishes.

We show the results from experiments conducted to studyethgitivity of our feature
selection algorithm to different parameters.All the pkitsw the relative importance scores
of the relevant features compared to the noise featuresr wageral values of noisec.
The relevant features are designated as V1, V2, and V3 inaf&ghere3lataset, and V1,

and V2 in case oLine2 dataset. The noise features are designated by “otherst theal

cases. Furthermore, the mean importance of all noise &=aisiset to zero (baseline), and
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Figure 48. Feature importance plots for our algorithm applied to lthee2 data set for
selected values of noisgs.
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Figure 49. Feature importance plots for our algorithm applied to P@ne5data set for
selected values of noisr;.

the relative importance scores of the other features acelledd by subtracting the mean
importance of all the noise features.

To compare our approach, we tested the algorithm in [17] erLihe2 and Sphere3
data sets witlog = 0.9. Figure 62 shows the results. In both cases, it is not abhtetdify
the relevant features.

We also calculated the computational time involved in ragnour feature selection
procedure. We chod® € {50,100}. We used an Intel (R) Core (TM)2 Quad CPU Q6600
computer with 2.4 GHz clock speed and 4.00 GB RAM. Bot 50, we found that the
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Figure 50. Feature importance plots for our algorithm applied to @heve3data set for
selected values of noisgs.
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Figure 51. Feature importance plots for our algorithm applied to $phere3ataset for
selected values of noisg;.
average time was 271.17 seconds with a standard error d.0E24B = 100, the average

time taken was 542.68 seconds with a standard error of 0.23.
5 Conclusion

A new feature selection algorithm for KPCA for the case ofsydiraining data are
presented. The data points are projected onto multiplesspandom subsets of features,
and then a feature importance measure is calculated by slegdhe data matrix using
matched pairs of projections (with and without a featurei). adlvantage of working with

an ensemble of feature subsets is they tend to be more rabuestds noisy and irrelevant
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Figure 52. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey with kernel parameteo = 0.1 applied to thdLine2 data set for different
values of nois@g. The mean importance of all noise features is set to zereljba$, and
the relative importance scores of the other features acelledéd by subtracting the mean
importance of all the noise features.

features in the data. Also, our feature selection methagyotan used with any suitable

KPCA algorithm available in the literature.
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Figure 53. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parametes = 1 applied to theLine2 data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean

importance of all the noise features.
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Figure 54. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parametes = 5 applied to theLine2 data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 55. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 10 applied to the.ine2 data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 56. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 50 applied to the.ine2 data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 57. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramterwith kernel parameter = 0.1 applied to thesphere3ata set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 58. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 1 applied to thesphere3data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 59. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 5 applied to thesphere3data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 60. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 10 applied to thesphere3data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features aceledkd by subtracting the mean
importance of all the noise features.
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Figure 61. Feature importance plots to illustrate the sensitivity af algorithm to sparse-
ness paramtey and kernel parameter = 50 applied to thesphere3data set for different
values of nois@s. The mean importance of all noise features is set to zerelipa$, and
the relative importance scores of the other features acelledéd by subtracting the mean
importance of all the noise features.
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Figure 62. Feature importance plots for the algorithm by [17] Eane2 and Sphere3lata
sets.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

1 Conclusions

This dissertation proposes meta-approaches to improvetiyecestimate of the preim-
age obtained from using KPCA algorithms in literature. Ie thist method, we apply a
procedure similar to bagging shown in [5] to improve theraate of the preimage. The
PCA plane in feature space might not be well estimated frartridining data (especially
with noisy training data). Instead of a single estimate effireimage from one single train-
ing dataset, we resample the training set and apply a bas@kR©rithm to each sample.
Thus, we estimate the final preimage as the average from taggeples drawn from the
original dataset to attenuate noise in kernel subspace&sdn. We expect to improve
the estimate from an average over several samples. We alad that the improvement
is most pronounced when the parameters differ from thogentir@mize the error rate.
Consequently, our approach improves the robustness ofasg/WPCA algorithm.

We propose another method to tackle the problem of handbigyrraining data. The
idea is that the initial estimate of the actual denoisedgesbbtained by a KPCA preim-
age estimation algorithm may not be accurate; hence, ssigedgerations of denoising
a convex combination of the test set and the correspondingisied set can lead us to a
more accurate estimate of the actual denoised test set.9¢/el@trease the number of top
eigenvectors chosen in each iteration at a constant rate.inthition is that we initially
retain all eigenvectors so as not to loose any informati@utaithe pattern in data, and as
we approach towards the final denoised preimage, we onlyitbiatop most eigenvectors

that will account for the structure in data and get rid of tloésa. We also propose a sim-
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ple and efficient stopping rule criteria to obtain the dddegreimage in fewer number of

iterations. Our approach can easily be applied to any KP@QArdahm.
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In addition to handling noise in training data, we also neethke care of the fact that
there are many irrelevant features collected in the trgidata. Thus, we need to find the set
of features relevant to the pattern in training data. In durdtstudy, we propose a feature
selection procedure that augments KPCA to obtain impoetastimates of the features
given noisy training data. Our feature selection strategglves projecting the data points
onto sparse random vectors. We then match pairs of suchcfimje, and determine the
preimages of the data with and without a feature, therebgdrto identify the importance
of that feature. Thus, preimages’ differences within pansused to identify the relevant
features. Our approach above provides robustness toviargldeatures in the data by
being able to project only on a small random subset of featate time, and calculating
the final mapped data matrix in input space from an ensembiabire subsets. Thus, an
advantage of our method is it can be used with any suitableAK&Ggorithm. Moreover,

the computations can be parallelized easily leading tafsignt speedup.
2 Future Work

In future, we plan to investigate kernel principal compdrsmbspace estimation from
noisy training data. We emperically investigated the disgabetween principal compo-
nent subspaces learned from bagged samples taken fromtrairsng data. This served
as a measure of difference between subpaces. Fundametitallgrincipal component
subspace is defined by the set of orthonormal eigenvectatspan it. Thus, it would be
interesting to see how the eigenvectors of the principalpmment subspace change as a
result of learning from noisy data points. To understansl @imalytically, we plan to extend
the methods developed by [28] to our problem.

Another interesting aspect would be to understand thetedfieiaput features in esti-

mating kernel principal component subegge. Since theimgadata might contain a lot of



irrelevant features, we can investigate if this advers#gces the eigenvector computation

in feature space. Feature selection can then be incorpdrdatethe analysis.
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