
Non-Linear Variation Patterns and Kernel Preimages

by

Anshuman Sahu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2013 by the
Graduate Supervisory Committee:

George C. Runger, Chair
Teresa Wu
Rong Pan

Ross Maciejewski

ARIZONA STATE UNIVERSITY

December 2013

ABSTRACT

Identifying important variation patterns is a key step to identifying root causes of pro-

cess variability. This gives rise to a number of challenges.First, the variation patterns might

be non-linear in the measured variables, while the existingresearch literature has focused

on linear relationships. Second, it is important to remove noise from the dataset in order

to visualize the true nature of the underlying patterns. Third, in addition to visualizing the

pattern (preimage), it is also essential to understand the relevant features that define the

process variation pattern.

This dissertation considers these variation challenges. Abase kernel principal compo-

nent analysis (KPCA) algorithm transforms the measurements to a high-dimensional fea-

ture space where non-linear patterns in the original measurement can be handled through

linear methods. However, the principal component subspacein feature space might not

be well estimated (especially from noisy training data). Anensemble procedure is con-

structed where the final preimage is estimated as the averagefrom bagged samples drawn

from the original dataset to attenuate noise in kernel subspace estimation. This improves

the robustness of any base KPCA algorithm.

In a second method, successive iterations of denoising a convex combination of the

training data and the corresponding denoised preimage are used to produce a more accurate

estimate of the actual denoised preimage for noisy trainingdata. The number of primary

eigenvectors chosen in each iteration is also decreased at aconstant rate. An efficient

stopping rule criterion is used to reduce the number of iterations.

i

A feature selection procedure for KPCA is constructed to findthe set of relevant features

from noisy training data. Data points are projected onto sparse random vectors. Pairs of

such projections are then matched, and the differences in variation patterns within pairs

are used to identify the relevant features. This approach provides robustness to irrelevant

features by calculating the final variation pattern from an ensemble of feature subsets.

Experiments are conducted using several simulated as well as real-life data sets. The

proposed methods show significant improvement over the competitive methods.

ii

To my beloved

iii

ACKNOWLEDGMENTS

I want to express my utmost gratitude to my advisor, Professor George Runger, for his

strong belief in me. He instilled a spirit to discover practical solutions to problems. I am

deeply grateful to him for his kind support as well as insightful discussions through out my

study at ASU that have shaped me as a researcher.

My sincere thanks to the esteemed members of my dissertationcommittee-Professor

Teresa Wu, Professor Rong Pan, and Professor Ross Maciejewski-for providing valuable

comments and sharing their nuggets of wisdom for both my dissertation as well as my

future life.

I owe everything to my parents for raising me with strong values. Whatever good is in

me is because of them. I will always be indebted to them for their unconditional love. They

have given me their best gift in the form of my brother who strongly believes in me. His

unflinching support gives me strength. I cannot ask for a better brother than him. I always

look forward to the affections showered on me by my grandma. Also I miss my grandpa

from whom I would have learnt a lot.

I am blessed with a wonderful lady whose elegance is superlative. She has brought a

constant influx of togetherness into my life. You are mine andI am yours sweetheart.

My labmates in ASU have been very supportive. I am grateful tomy current labmates

Bahar and Erik for useful discussions on a lot of topics. My former labmates Houtao,

Mustafa, Anirudh, and Amit have provided many useful insights. Also Houtao and Kabir

have given me invaluable advice. It has been a nice experience to be a part of the gang. It

iv

is difficult to enlist the names of all of my friends in ASU withwhom I spent quality time.

I am thankful to everyone of them. I will always remember my enjoyable trip to Sonora

with Billi. I am also thankful to Brint for providing prompt technical support for software

installation as well as troubleshooting whenever the need arose. Outside academic circle,

Priyesh, Sree, Minith, and Ninad shared fun-filled hours of camaraderie. Special thanks

to my friends outside Arizona- Sheru, Maddy, Yash, Payoj, and Deepak- with whom I

spent memorable time during my vacations. All these people conspired to make my stay

worthwhile.

Finally, my obeisance to my God who is always with me. He neverforgets me, and

blesses me with everything I achieve.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 9

1 Understanding Variation Patterns .. . 9

1.1 Brief Review of PCA . 9

1.2 Brief Review of KPCA . 10

1.3 Preimage Definition . 13

2 Existing Methods for Finding Preimages 14

3 Feature Selection in Kernel Feature Space 16

3 PREIMAGES FOR VARIATION PATTERNS FROM KERNEL PCA AND

BAGGING . 19

1 Introduction . 19

2 Brief Review of KPCA . 24

2.1 Nonlinear PCA . 26

2.2 Using Kernels . 27

3 Problem Definition . 28

4 Existing Methods for Finding Preimages 30

5 Preimages from Bagging . 31

vi

CHAPTER Page

6 Experimental Results . 34

6.1 Subspace Stability Evaluation . 36

6.2 Digit Images Denoised . 37

6.3 Face Data . 50

7 Conclusions . 59

4 A SERIAL APPROACH TO VARIATION PATTERNS IN KERNEL PCA 62

1 Introduction . 62

2 Background on Preimages in KPCA . 65

3 Preimages from Serial Denoising .68

3.1 Serial Denoising . 68

3.2 Eigen Denoising . 70

4 Experimental Results . 71

4.1 Experiment Results for Serial Denoising on USPS Digits Dataset . 71

4.2 Results of Serial Denoising on Face Data76

4.3 Experiment Results for Eigen Denoising 79

5 Conclusion . 80

5 FEATURE SELECTION FOR KERNEL PRINCIPAL COMPONENT ANALYSIS 84

1 Introduction . 84

2 Background on Preimages in KPCA . 88

3 Feature Selection Using Sparse Random Vectors with Matched Pairs . . . 90

4 Experimental Results . 92

vii

CHAPTER Page

5 Conclusion . 96

6 CONCLUSIONS AND FUTURE WORK . 107

1 Conclusions . 107

2 Future Work . 109

REFERENCES . 111

viii

LIST OF TABLES

Table Page

1 Eigenvalues of covariance matrix in input space. 24

2 Eigenvectors of covariance matrix in input space. 25

3 Eigenvalues of covariance matrix in feature space 25

4 Eigenvectors of covariance matrix in feature space 25

5 Average time in seconds required to denoise a data point from the USPS

digits data set. The standard error is reported within parenthesis. 59

6 Average time in seconds required to denoise a data point from the face

image data set. The standard error is reported within parenthesis. 59

7 List of symbols used in Chapter 1 . 61

8 Average time in seconds required to denoise a data point from the USPS

digits data set. The standard error is reported within parenthesis. 79

9 Average time in seconds required to denoise a data point from the face

image data set. The standard error is reported within parenthesis. 80

ix

LIST OF FIGURES

Figure Page

1 Left: profile measurements for 100 gaskets. Each gasket height is mea-

sured at 50 equally-spaced positions. Right: scatterplot between sensor

recordings at positions 10 and 22 (denoted byx10 andx22, respectively) . . 4

2 A test pointx is transformed to feature space asφ(x) and projected to the

PCA plane asPφ(x). The preimage approximates the reverse transform of

Pφ(x) to the original space. 5

3 Left: profile measurements for 100 gaskets. Each gasket height is mea-

sured at 50 equally-spaced positions. Right: scatterplot between sensor

recordings at positions 10 and 22 (denoted byx10 andx22, respectively) . . 21

4 Scatter plot of input space variables 24

5 A test pointx is transformed to feature space asφ(x) and projected to the

PCA plane asPφ(x). The preimage approximates the reverse transform of

Pφ(x) to the original space. 29

6 Plot showing variation in preimages for a profile learned from each of the

B= 50 bootstrap samples from the gasket data. Each profile has been dis-

cretized into 200 points. 38

x

Figure Page

7 RSS values of KMDS versus bagging (denoted as BKMDS) for dig-

its 0-4 for the high-noise case with the number of leading eigenvectors

l ∈ {50,100}, 10 nearest neighbors and noiseσG = 0.5. The RSS is shown

for different parameter settings ofσ where the horizontal axis scale is

log(σ). 39

8 RSS values of KMDS versus bagging (denoted as BKMDS) for dig-

its 5-9 for the high-noise case with the number of leading eigenvectors

l ∈ {50,100}, 10 nearest neighbors and noiseσG = 0.5. The RSS is shown

for different parameter settings ofσ where the horizontal axis scale is log(σ). 40

9 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the high-noise case with the number of leading eigenvectorsl ∈

{50,100}, 10 nearest neighbors, noiseσG = 1. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 41

10 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the high-noise case with the number of leading eigenvectorsl ∈

{50,100}, 25 nearest neighbors, noiseσG = 0.5. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 41

11 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the high-noise case with the number of leading eigenvectorsl ∈

{50,100}, 25 nearest neighbors, noiseσG = 1. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 42

xi

Figure Page

12 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the low-noise case with the number of leading eigenvectorsl ∈

{50,100}, 25 nearest neighbors, noiseσG = 0.5. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 42

13 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the low-noise case with the number of leading eigenvectorsl ∈

{50,100}, 10 nearest neighbors, noiseσG = 1. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 43

14 RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7

and 9 for the low-noise case with the number of leading eigenvectorsl ∈

{50,100}, 25 nearest neighbors, noiseσG = 1. The RSS is shown for

different parameter settings ofσ where the horizontal axis scale is log(σ). . 43

15 RSS values of the gradient descent approach versus baggedapproach for

digits 0-4 for the high-noise case with noiseσG = 1. 44

16 RSS values of the gradient descent approach versus baggedapproach for

digits 5-9 for the high-noise case with noiseσG = 1. 45

17 RSS values of penalized preimage approach versus bagged approach for

digits 0-4 for the high-noise case with noiseσG = 1. 46

18 RSS values of penalized preimage approach versus bagged approach for

digits 5-9 for the high-noise case with noiseσG = 1. 47

xii

Figure Page

19 Boxplot of RSS values for digit 7 for BKPCA approach versuspenalized

preimage approach for different values of energy to be preserved andB.

Independent Gaussian noiseµ= 0 andσG = 1 was added. 48

20 Boxplot of RSS values for digit 9 for BKPCA approach versuspenalized

preimage approach for different values of energy to be preserved andB.

Independent Gaussian noiseµ= 0 andσG = 1 was added. 49

21 Boxplot of RSS values for digit 7 for BKPCA approach versusgradient

descent approach for different values ofl andB. Independent Gaussian

noiseµ= 0 andσG = 1 was added. 50

22 Boxplot of RSS values for digit 9 for BKPCA approach versusgradient

descent approach for different values ofl andB. Independent Gaussian

noiseµ= 0 andσG = 1 was added. 51

23 RSS values of penalized preimage approach on digits 7 and 9for different

energy levels with added Gaussian noiseσG = 1. For each energy levels,

results are shown with and without bagging. 52

24 RSS values of penalized preimage approach on digits 7 and 9for different

energy levels with added Gaussian noiseσG = 0.7. For each energy levels,

results are shown with and without bagging. 52

25 RSS values of the gradient descent algorithm on digits 7 and 9 for different

numbers of eigenvalues (l) with added Gaussian noiseσG = 1. For eachl ,

results are shown with and without bagging. 53

xiii

Figure Page

26 RSS values of the gradient descent algorithm on digits 7 and 9 for different

numbers of eigenvalues (l) with added Gaussian noiseσG = 0.7. For each

l , results are shown with and without bagging. 53

27 RSS values of KMDS algorithm on digits 7 and 9 for differentnumbers of

eigenvalues (l) with added Gaussian noiseσG = 1. For eachl , results are

shown with and without bagging. 54

28 RSS values of KMDS algorithm on digits 7 and 9 for differentnumbers of

eigenvalues (l) with added Gaussian noiseσG = 0.7. For eachl , results are

shown with and without bagging. 54

29 Results for digits 0 through 9 withl = 50 andn = 10. First row shows

noiseless reference images. Second row shows noisy test images (Gaussian

noiseµ= 0 andσG = 1). Third row shows denoised preimages from the

KMDS method. Fourth row shows denoised preimages from our BKPCA

method. The improved results from BKPCA can be seen. 55

30 Face data RSS values of penalized preimage approach versus the bagged

approach for different energy levels with added Gaussian noise (µ= 0 and

σG = 1). 55

31 Face data RSS values of the gradient descent algorithm versus the bagged

approach for different numbers of eigenvalues (l) with added Gaussian

noise (µ= 0 andσG = 1). 56

xiv

Figure Page

32 Face data RSS values of KMDS algorithm versus the bagged approach for

different numbers of eigenvalues (l) with added Gaussian noise (µ= 0 and

σG = 1). 57

33 Results for selected face images withl = 150 andn= 10. First row shows

noiseless reference images. Second row shows noisy test images (Gaussian

noiseµ= 0 andσG = 0.7). Third row shows denoised preimages from the

KMDS method. Fourth row shows denoised preimages from our BKPCA

method. The improved results from BKPCA can be seen. 58

34 KPCA and the preimage problem. Training data are transformed to feature

space and used to learn a principal component plane. A test point x is

transformed and projected to the plane asPϕ(x). The inverse transform of

Pϕ(x) may not exist, and an approximate preimage ˆx is computed. 67

35 Effect ofα on serial denoising of digit 9 withσ = 50, l = 100, n = 10,

Nmax= 200, andσG = 1 . 73

36 Comparison of RSS values achieved by KMDS method with serial denois-

ing for digits 0-4 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1;

n= 10;Nmax= 200; Gaussian noise withµ= 0 andσG = 1 74

37 Comparison of RSS values achieved by KMDS method with serial denois-

ing for digits 5-9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1;

n= 10;Nmax= 200; Gaussian noise withµ= 0 andσG = 1 75

xv

Figure Page

38 Plot of the iteration number at which the ORACLERSS is attained versus

the iteration number at which the serial denoising stops dueto stopping rule

for all digits 0-9 settingσ = 50, l = 100,n= 10,Nmax= 10,α = 0.1 76

39 Comparison of RSS values achieved by KMDS method with serial de-

noising for digits 7 and 9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100};

α = 0.1; n= 25; Nmax= 200; Gaussian noise withµ= 0 andσG = 1 76

40 Comparison of RSS values achieved by gradient descent algorithm with the

serial denoising procedure for digits 6 and 8 forl ∈ {50,200}; Gaussian

noise withµ= 0 andσG = 1 . 77

41 Comparison of RSS values for the face image data set with Gaussian noise

(µ= 0 andσG = 0.7). The parameters other thanl (the number of eigen-

values) is set to the values as described in the respective references 78

42 Results for selected face images withl = 150. First row shows noiseless

reference images. Second row shows noisy test images (Gaussian noiseµ=

0 andσG = 0.7). Third row shows denoised preimages from the gradient

descent method. Fourth row shows denoised preimages from our serial

denoising method. The improved results from serial denoising can be seen. 79

43 Comparison of RSS values achieved by KMDS method with eigen denois-

ing for digits 0-4 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1;

n= 10;δ = 1; Gaussian noise withµ= 0 andσG = 1 81

xvi

Figure Page

44 Comparison of RSS values achieved by KMDS method with eigen denois-

ing for digits 5-9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1;

n= 10;δ = 1; Gaussian noise withµ= 0 andσG = 1 82

45 Comparison of RSS values achieved by KMDS method with eigen de-

noising for digits 7 and 9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100};

α = 0.1; n= 25; δ = 1; Gaussian noise withµ= 0 andσG = 1 83

46 Comparison of RSS values achieved by gradient descent method with serial

denoising for digits 4, 6, and 8 settingδ = 1; Gaussian noise withµ= 0

andσG = 1 . 83

47 KPCA and the preimage problem. Training data are transformed to feature

space and used to learn a principal component plane. A test point x is

transformed and projected to the plane asPϕ(x). The inverse transform of

Pϕ(x) may not exist, and an approximate preimage ˆx is computed. 89

48 Feature importance plots for our algorithm applied to theLine2data set for

selected values of noiseσG. 95

49 Feature importance plots for our algorithm applied to thePlane5data set

for selected values of noiseσG. 95

50 Feature importance plots for our algorithm applied to theCurve3data set

for selected values of noiseσG. 96

51 Feature importance plots for our algorithm applied to theSphere3dataset

for selected values of noiseσG. 96

xvii

Figure Page

52 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ with kernel parameterσ = 0.1 applied to theLine2

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 97

53 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 1 applied to theLine2data

set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 98

54 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 5 applied to theLine2data

set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 99

xviii

Figure Page

55 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 10 applied to theLine2

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 100

56 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 50 applied to theLine2

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 101

57 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ with kernel parameterσ = 0.1 applied to thesphere3

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 102

xix

Figure Page

58 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 1 applied to thesphere3

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 103

59 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 5 applied to thesphere3

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 104

60 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 10 applied to thesphere3

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 105

xx

Figure Page

61 Feature importance plots to illustrate the sensitivity of our algorithm to

sparseness paramterγ and kernel parameterσ = 50 applied to thesphere3

data set for different values of noiseσG. The mean importance of all noise

features is set to zero (baseline), and the relative importance scores of the

other features are calculated by subtracting the mean importance of all the

noise features. 106

62 Feature importance plots for the algorithm by [17] forLine2andSphere3

data sets. 106

xxi

CHAPTER 1

INTRODUCTION

Faced with the challenge of rapidly evolving customer demand, manufacturing com-

panies strive to improve upon their existing line of products. This requires a fundamental

understanding of different operations involved in manufacturing products. There is consid-

erable interest in reducing the variance in the dimensions of final products so as to ensure

a higher proportion of them confirm to the desired specifications and are defect-free. Thus,

the need is to identify the sources of variation in the products.

Automation in manufacturing processes was introduced to help achieve mass produc-

tion of goods at an economical rate. With more and more customers demanding a high

level of performance from the products they use, it has become imperative to improve our

manufacturing processes which in turn neccesitates the useof automated monitoring and

inspection systems. Many organizations now collect massive amounts of in-process data

with the foresight of potentially using information hiddenin it to identify root causes of

product or process variation. Advances in measurement and data storage technologies have

made it possible to track hundreds, or even thousands of dimensional characteristics with

a 100% sample rate. Datasets in the form of a spatial or time series as well as images

are common in modern manufacturing. Semiconductor processing, for example, involves

inputs from multiple variables; each represented by a finitetime series. Thus, each run is

characterized by thousands of measurements.

1

Machine-vision systems (MVS) are widely used in many industries including medical,

transportation, construction, and other industrial applications. In particular, [12] provide

an in-depth survey on industrial applications which include identification of structural, sur-

face, and operational defects. A key aspect of any MVS is acquisition and analysis of

images. [15] discuss about the acquisition of grayscale or binary images for MVS. Our

proposed methodology deals with analysis of such images.

More recently, [25] show how 3D laser scanners have become popular in scanning com-

plex manufactured part geometries. The data generated fromsuch scanners is referred to as

point cloud data. The point cloud represent a set of points measured in three-dimensional

cartesian coordinate system. The point cloud data provide an accurate representation of the

scanned object.

In addition to image and point cloud data, profile data is alsowidely prevalent in man-

ufacturing industry, especially in paper processing and autobody assemblies. The profiles

represent measurements taken at several points along each part in a two-dimensional plot.

We present an example of the profile data in manufacturing automotive engine gaskets. One

critical-to-quality feature is a bead on the gasket, the purpose of which is to create a tight

seal. Figure 1(a) shows a set of profiles measured across 100 gasket beads. Each profile

is obtained by scanning a stylus across the gasket bead. Eachprofile in Figure 1 has been

discretized into 50 points evenly spaced over the horizontal axis. Hence, the measurement

vectorx for each part consists of the vertical axis profile heights atthe 50 locations. We

can see that the raw data collected by sensors is inherently noisy, but buried in the noise

is a pronounced systematic part-to-part variation pattern, by which the gasket bead is flat-

tening and elongating by varying amounts on each part. Here,the pattern in the data (as

represented by the relationships between the different elements ofx) is non-linear. For ex-
2

ample, consider the scatterplot between the sensor recordings at position 10 and position

22 (denoted byx10 andx22, respectively) as shown in Figure 1(b). It is clear from the plot

that there are non-linear relationships between the sensorrecordings (features) in the data.

For simplicity, we showed the plot between two features, butthe actual non-linear pattern

can involve more than only two features.

The gasket example shows a pattern when a single source of variation (corresponding to

bead flattening/elongation) is present in the process. In practice, multiple variation sources

and their corresponding effects on process and product characteristics are embedded in

the collected data. Each variation source and its interaction with other sources results in

a unique non-linear pattern in the data. Identifying and segregating important variation

patterns from the irrelevant ones is then a key step to identifying root causes of process

variability. Thus, in order to diagnose and control processor product quality problems, a

method is required to identify the sources of variability. Also irrelevant features, in addition

to noise in the data, tend to make it harder for the underlyingpattern to be recognized and

visualized. Therefore, we face two challenges. First it is important to remove noise from the

dataset in order to visualize the true nature of the underlying patterns. Second in addition

to visualizing the pattern, it is also essential to understand the relevant process features.

More specifically, the process inherently manifests itselfin a small number of features out

of the overall set of features that are recorded. It is, therefore, crucial to discern this set of

relevant features that define the process variation pattern.

Principal component analysis (PCA) [10] is a widely used technique in identifying

patterns in the data. Given ap-dimensional random vectorx, signals often tend to locate on

somed-dimensional manifold inp-dimensional space (d < p) while noise tends to be less

structured. PCA partitions thep-dimensional space into ad-dimensional signal space and a
3

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

fil
e

H
ei

gh
t

Discrete Locations over each Profile

(a) Profiles (b) Scatterplot

Figure 1. Left: profile measurements for 100 gaskets. Each gasket height is measured at
50 equally-spaced positions. Right: scatterplot between sensor recordings at positions 10
and 22 (denoted byx10 andx22, respectively)

(p−d) dimensional noise space. A drawback of PCA is in its assumption that the variation

pattern is formed by linear combination of variables. PCA tends to lose its effectiveness in

identifying patterns when the resultant pattern is nonlinear in nature [22]. One approach

to nonlinear PCA is based on principal curves [7]. Apleyet al [3] used principal curves to

identify and visualize nonlinear patterns in data. Schölkopf et al [22] extended the linear

PCA framework to account for nonlinear structures in the data set through kernel principal

component analysis (KPCA). KPCA works on the principle of mapping the data in the input

space to a higher dimensional feature space via a nonlinear mapϕ : Rp→ Rm wherem is

the number of features and the feature space is also denoted as F. Linear PCA is applied

to the mapped points in the feature space to extract components that are nonlinear in the

original input space. Because the feature space can have a very large number of dimensions,

such explicit mapping can be computationally expensive. Linear PCA in the feature space

depends on the data only through inner products of the feature vectors. Schölkopfet al

used kernel functions to compute the inner products in the feature space without carrying

4

out the mapping explicitly [1]. Similar to linear PCA, projections onto a smaller subset of

principal component directions in the feature space can be used to denoise signals.

To interpret the denoised signal, it is valuable to visualize it in the original input space.

However, because the projections in feature space are on a subspace that might not corre-

spond to the manifold of the original space, such an inverse transformation from the feature

space to the input space does not typically exist [16]. Directly visualizing an exact pattern

denoised in the feature space is therefore not possible. Instead an approximate preimage

is typically sought. In other words, the preimage approximates the reverse mapping of

Pφ(x) to the original space wherex is a test point in input space. This is referred to as the

preimage problem in KPCA literature and this is the focus of our research. The preimage

problem is represented graphically in Figure 2.

Figure 2. A test pointx is transformed to feature space asφ(x) and projected to the PCA
plane asPφ(x). The preimage approximates the reverse transform ofPφ(x) to the original
space.

Previous work by Mikaet al [16] defined this as a nonlinear optimization problem

and approached it using standard gradient descent. A drawback of using standard gradient

descent methods is convergence to local minima. As a result,solutions obtained using this

method are sensitive to choices of initial starting values.Kwok and Tsang [11] used the

5

relationship between the feature space distance and the input space distance derived by

Williams [26] for commonly used kernels along with multidimensional scaling (MDS) to

find approximate preimages. This method was an improvement over the one suggested by

Mika et al. Kernel regression was applied by [4] to the preimage problem where the inverse

mapping from feature space to input space is posed as a regression problem. The problem

of estimating a better preimage by adding penalty terms to the preimage learning process

was discussed by [30]. Recently, [8] pointed out limitations inherent in the orthogonal

projection operation in any KPCA algorithm , and proposed tomodify it by incorporating

information about the local geometry in the neighborhood ofa test point in feature space so

that the projection of the corresponding preimage remains closer to the full manifold. The

full manifold was defined by [8] to be the set of all points in feature space that have exact

preimages. Another approach suggested by [9] was to estimate the preimage of a point

by doing a line search in input space along the steepest descent direction of the objective

loss function evaluated at that point. The loss function is defined as the squared distance

between the projected point on the principal component subspace in feature space and the

preimage point mapped to the feature space.

The above approaches in literature assume that a noise-freetraining data set is available

for learning. This is not true in many settings for instance in manufacturing variation

analysis which we are working on. In our research, we proposethree methodologies to

address the above issues.

In Chapter 3, we apply a procedure similar to bagging [5] to improve the estimate of the

preimage. The PCA plane in feature space might not be well estimated from the training

data (especially with noisy training data). Instead of a single estimate of the preimage from

one single training dataset, we resample the training set and apply a base KPCA algorithm
6

to each sample. Thus, we estimate the final preimage as the average from bagged samples

drawn from the original dataset to attenuate noise in kernelsubspace estimation. We expect

to improve the estimate from an average over several samples. We also found that the

improvement is most pronounced when the parameters differ from those that minimize

the error rate. Consequently, our approach improves the robustness of any base KPCA

algorithm.

In Chapter 4, we propose another method to tackle the problemof handling noisy train-

ing data. The idea is that the initial estimate of the actual denoised test set obtained by

a KPCA preimage estimation algorithm may not be accurate; hence, successive iterations

of denoising a convex combination of the test set and the corresponding denoised set can

lead us to a more accurate estimate of the actual denoised test set. We also decrease the

number of top eigenvectors chosen in each iteration at a constant rate. The intuition is that

we initially retain all eigenvectors so as not to loose any information about the pattern in

data, and as we approach towards the final denoised preimage,we only retain the top most

eigenvectors that will account for the structure in data andget rid of the noise. We also pro-

pose a simple and efficient stopping rule criteria to obtain the desirable preimage in fewer

number of iterations. Our approach can easily be applied to any KPCA algorithm.

In addition to handling noise in training data, we also need to take care of the fact that

there are many irrelevant features collected in the training data. Thus, we need to find the

set of features relevant to the pattern in training data. In Chapter 5, we propose a feature

selection procedure that augments KPCA to obtain importance estimates of the features

given noisy training data. Our feature selection strategy involves projecting the data points

onto sparse random vectors. We then match pairs of such projections, and determine the

preimages of the data with and without a feature, thereby trying to identify the importance
7

of that feature. Thus, preimages’ differences within pairsare used to identify the relevant

features. Our approach above provides robustness to irrelevant features in the data by

being able to project only on a small random subset of features at a time, and calculating

the final mapped data matrix in input space from an ensemble offeature subsets. Thus, an

advantage of our method is it can be used with any suitable KPCA algorithm. Moreover,

the computations can be parallelized easily leading to significant speedup.

This dissertation is arranged as follows. Chapter 1 provides the introduction. Chapter 2

provides the background behind the methodologies discussed in this dissertation. Chapter

3 discusses our approach of applying resampling (bootstrapping) technique to improve the

preimage estimation. Chapter 4 provides a serial approach to estimate the preimage. Chap-

ter 5 provides a feature selection methodology to identify the relevant subset of features.

Finally, we conclude in Chapter 6.

8

CHAPTER 2

BACKGROUND

In this chapter, we provide the background behind the methodologies discussed in the

dissertation. We also provide the relevant background in details in each of the subsequent

chapters.

1 Understanding Variation Patterns

Measurement data on multiple process variables contain potential information about

the sources of variation that result in complex, non-linearvariation patterns. The task

here is to visualize the non-linear patterns in the noisy data. PCA [10] is a widely used

technique in manufacturing process literature. However, it can identify linear patterns in

the data. Subsequently, we briefly discuss about PCA pointing out its limitation in handling

non-linear patterns, and discuss how KPCA was developed to handle this issue. We next

discuss about visualizing non-linear patterns in data using preimage in KPCA.

1.1 Brief Review of PCA

Principal component analysis (PCA) [10] finds the directions along which the projected

data results in largest variance. LetX be aN× p data matrix withN data points and each

column representing a variable. Letw1 ∈ Rp be the column vector for projection. Assume

that w1 is normalized to length 1 implyingwT
1 w1 = 1. The variance of the data after

projecting ontow1 is wT
1 ATAw1. Thus, the problem reduces to findingw1 that maximizes

this variance.

9

Note that the above finds the primary direction for maximizing variance. In general,

PCA finds a series of direction vectorsw1,w2, . . . ,wd that maximize the variance after pro-

jection where each direction vector is orthogonal to the rest of the direction vectors. It can

be shown that these direction vectors correspond to the top eigenvectors of the covariance

matrixATA. Also the direction vectorsw1,w2, . . . ,wd form an orthonormal basis reducing

the dimensionality of the original data matrix fromp to d.

As can be seen previously, PCA involves projecting the data matrix onto direction vec-

tors. Thus, it can only identify patterns in the data that correspond to linear combination

of the variables. To overcome this limitation of PCA, KPCA was proposed by [22]. Es-

sentially KPCA involves transforming the data from the original input space to a high-

dimensional feature space and performing PCA in the featurespace.

1.2 Brief Review of KPCA

Let xi , i = 1, . . . ,N, xk∈Rp represent a set ofN centered observations in the input space

i.e.∑N
i=1xi = 0. To handle nonlinear structures, [22] suggested using a nonlinear mapϕ to

transform the data from input spacex to a higher-dimensional feature spaceF, ϕ : Rp→ F.

Also assume that the set of points mapped in the feature spaceϕ(xi) are centered. LetC

represent the covariance matrix ofϕ(xi)

C =
1
N

N

∑
i=1

ϕ(xi)ϕ(xi)
′ (2.1)

A new coordinate system is obtained by the eigen decomposition of the covariance matrix

C. Here, we find the eigenvaluesλ and eigenvectorsv ∈ F of matrix C, whereF is the

kernel feature space satisfying

λv = Cv (2.2)

10

The above equation (2.2) can be equivalently written as

λ < ϕ(x j) ·v >=< ϕ(x j) ·Cv > (2.3)

for all j = 1, . . . ,N. For a non-zero eigenvalue the corresponding eigenvectorv lies in the

span ofϕ(x1), . . . ,ϕ(xN). Thus, there exist coefficientsαi (i = 1, . . . ,N) such that

v =
N

∑
i=1

αiϕ(xi) (2.4)

Substitute equation (2.4) into equation (2.3), for allj = 1, . . . ,N, and simplify by intro-

ducing anN×N matrixK whose entries are given by

K i j :=< ϕ(xi) ·ϕ(x j)> (2.5)

The final equation can be written in matrix form as

NλKααα = K2ααα (2.6)

whereααα denotes a column vector with entriesα1, . . . ,αN. Also, becauseK is a positive,

semi-definite matrix, all eigenvalues ofK are non-negative. Letλ1≥ λ2≥ . . .≥ λN ≥ 0 de-

note the eigenvalues andααα1, . . . ,αααN the corresponding set of eigenvectors ofK in equation

(2.6). We select the greatestl non-zero eigenvalues and their corresponding eigenvectors

which account for most of the variance in the data. In practice, l is a tunable parameter. We

also assume, without loss of generality, that eachαααk, for k = 1, . . . , l is normalized. The

normalization conditions forαααk are

1 =
N

∑
i, j=1

αk
i αk

j < ϕ(xi) ·ϕ(x j)>

=
N

∑
i, j=1

αk
i αk

jK i j =< αααk ·Kαααk >= λk < αααk ·αααk >

11

1.2.1 Using KernelsExplicitly mapping the input space points into a higher dimen-

sional space can prove to be computationally expensive. Also, note that each element of

the kernel matrixK is computed as the inner product of< ϕ(xi) ·ϕ(x j) >. [1] showed

that inner products in the feature space can be computed fromthe original input space data

points (known as the kernel trick). For example, letxi andx j represent two data points

in input space,xi ,x j ∈ Rp. Let ϕ(xi) andϕ(x j) represent their corresponding map in the

feature space. Using a kernel functionk, we can obtain the inner product in the feature

space by computing inner product in input space. This usually holds for feature spaces

defined in terms of some positive definite kernel. One particular type of kernel function is

the polynomial kernel of orders, expressed as

k(xi ,x j) =< ϕ(xi) ·ϕ(x j)>= (< xi ·x j >+1)s (2.7)

This kernel function implicitly maps the input space intoCp+s
s . For example, using the

above kernel with degree two(s= 2), a two dimensional input space(p = 2) will be

mapped into a six dimensional feature space. The corresponding feature space map is

(1,
√

2x1,
√

2x2,x2
1,x

2
2,
√

2x1x2). This kernel was used to demonstrated the circle example

earlier. Another commonly used kernel function is the Gaussian kernel of the form

k(xi ,x j) =< ϕ(xi) ·ϕ(x j)>= exp

(

−
∥

∥xi−x j
∥

∥

2
F

σ

)

(2.8)

whereσ is a parameter related to the width of the kernel.

We have assumed that we are dealing with a set of data points that are centered in

the feature space. Because we never explicitly map to the feature space, it is difficult to

compute the mean of the mapped observations in the feature space. However, the kernel

matrix can be modified to provide the inner product of centered mapped observations. This
12

matrix, sayK̃ can be defined in terms ofK as follows

K̃ = K - OK - KO + O K O (2.9)

whereO is a matrix with all elements 1/N

1.3 Preimage Definition

Given a projected point on the principal component subspacein feature space, the task

is to learn the point it would map back to in the input space. This is called preimage

learning in KPCA literature. Letx be a test point in input space with a corresponding

centered mapϕ(x) in the feature space. In order to extract nonlinear principal components

for the ϕ−image of a test pointx, we compute its projections on thekth component for

k= 1, . . . , l as follows

βk =< vk ·ϕ(x)>=
N

∑
i=1

αk
i < ϕ(xi) ·ϕ(x)>=

N

∑
i=1

αk
i k(x,xi) (2.10)

where the last equality follows from the definition of a kernel function.

Eachβk is the length of the projection onto the normalized eigenvector and equals the

kth score for data instancex. As in linear PCA, each nonlinear score obtained using equa-

tion (2.10) represents a unique measure of variation in the data. The importance of each

nonlinear score (variable) and its corresponding pattern can be measured by its associated

eigenvalue which describes the amount of variation explained. Using this information, an

appropriate number of variables can be used to summarize thedata. Theoretically, we can

compute as many scores as there are dimensions in the featurespace. However, practically,

this is limited to the rank of the kernel matrixK . Similar to linear PCA, we projectϕ(x)

onto a subspace spanned by the topl eigenvectors. This projected point exists in the fea-

ture space. In order to interpret this point, it is valuable to visualize it in the original input
13

space. This necessitates an inverse mapping from the feature space to the input space. As

mentioned, such an inverse map is not always defined [16]. To illustrate this, consider an

input space point (1,1). Using a polynomial kernel of degree2, it can be mapped to the fea-

ture space as(1,
√

2,
√

2,1,1,
√

2). This feature space point can be inverse mapped into the

input space point (1,1). However, consider a feature space point (1,
√

2,
√

2,5,5,7). There

is no exact preimage for this point. Thus, we need to settle for an approximate preimage

x̂, whereϕ(x̂) ∼= Pl ϕ(x). This is referred to as the preimage problem and is represented

graphically in Figure 2.

2 Existing Methods for Finding Preimages

A brief overview of the more popular methods to obtain preimages is provided. To

estimate the preimage ofPl ϕ(x), [16] proposed minimizing the squared distance

ρ(x̂) = ‖ϕ(x̂)−Pl ϕ(x)‖2

= ‖ϕ(x̂)‖2−2Pl ϕ(x)′ϕ(x̂)+Ω (2.11)

whereΩ represents all terms independent ofx̂. Equation (2.11) is minimized using standard

gradient descent. An extremum can be obtained by setting thederivative of Equation (2.11)

to zero. Because this method uses standard gradient descent, a drawback is that one can

converge to a local minima. Hence, the preimage obtained is sensitive to starting values.

Also, the iteration scheme can fail to converge in certain experiments even after choosing

different starting values [11].

In another approach, [11] computed the Euclidean distance betweenPl ϕ(x) and all

feature space training pointsϕ(xi). Then, n-nearest neighbors in the feature space are

identified based on this distance metric. For commonly used kernels such as Gaussian and

polynomial kernel, there exists a relationship between distance in the feature space and dis-
14

tance in the input space [26]. Using this relationship, corresponding input space distances

between the desired preimagex̂ and then-nearest input space pointsxis are computed.

These input space distances are preserved whenPlϕ(x) is embedded back into the input

space. [11] then proposed using multi-dimensional scaling(MDS) [6] as a tool to visualize

the preimage (and denoted the method as KMDS). Given distances between points in a

high-dimensional feature space, MDS attempts to find a lowerdimensional approximation

of the data so as to preserve the pairwise distances as much aspossible. A new coordinate

system is defined in input space by singular value decomposition of then-nearest neigh-

bors. MDS is then used to projectPl ϕ(x) into this new coordinate system. Approximate

preimages are found using eigenvectors of the new coordinate system.

For aN× p input matrix, the computational complexity of SVD isO(cN2p+ c′p3),

wherec andc′ are constants. Therefore, [11] proposed usingn-nearest neighbors to reduce

computational time.

A penalized strategy to guide the preimage learning processwas presented by [30]. The

preimage is modeled by a weighted combination of the observed samples where the weights

are learned by an optimization function. Under this framework, a penalized methodology is

developed by integrating two types of penalties. First, a convexity constraint is imposed for

learning the combination weights to generate a well-definedpreimage. Second, a penalized

function is used as part of the optimization to guide the preimage learning process.

Recently, [8] pointed out limitations inherent in the orthogonal projection operation in

any KPCA algorithm , and proposed to modify it by incorporating information about the

local geometry in the neighborhood of a test point in featurespace so that the projection

of the corresponding preimage remains closer to the full manifold. The full manifold was

defined by [8] to be the set of all points in feature space that have exact preimages. Another
15

approach suggested by [9] was to estimate the preimage of a point by doing a line search in

input space along the steepest descent direction of the objective loss function evaluated at

that point. The loss function is defined as the squared distance between the projected point

on the principal component subspace in feature space and thepreimage point mapped to

the feature space.

3 Feature Selection in Kernel Feature Space

The task here is to identify the relevant subset of the original set of features over which

the pattern exists (a feature selection task). The difficulty is to handle the non-linear re-

lationships between features in input space. Because the feature space in KPCA already

provides an avenue to consider higher-order interactions between features, it is more ap-

pealing to apply a feature selection procedure in feature space itself. However, it is not

always possible to obtain the feature representation in feature space (for example, in the

case of a Gaussian kernel) because the data are not explicitly mapped. Therefore, the chal-

lenge here is to perform feature selection in the feature space.

Some work has considered feature selection in feature spacefor supervised learning.

[2] provided a weighted feature approach where weights are assigned to features while

computing the kernel. This feature weighting is incorporated into the loss function corre-

sponding to classification or regression problem and a lassopenalty is put on the weights.

The features corresponding to non-zero weights obtained after minimizing the objective

(loss function with penalty) are considered the important ones. Similarly, recent work

([14] and [13]) also employed feature weighting for the cases of Support Vector Machine

(SVM) classification and regression, respectively. For both the cases, an anisotropic Gaus-

sian kernel was used to supply weights to features. Specifically, [14] provided an iterative

algorithm for solving the feature selection problem by embedding the feature weighting in
16

the dual formulation of SVM problem. The algorithm begins with an initial set of weights.

At each iteration, it solves the SVM problem for the given setof feature weights, updates

the weights using the gradient of the objective function, and removes the features that are

below a certain given threshold. This procedure is repeatedtill convergence. Finally, the

features obtained with non-zero weights are considered important.

Consider feature selection in feature space for unsupervised learning. One common

aspect of all these algorithms, similar to their counterparts in supervised setting, is they

involve some kind of feature weighting mechanism, and the relevant features are obtained

by regularizing (shrinking) the weights of irrelevant features using some criteria. A method

for feature selection in Local Learning-Based Clustering [27] was proposed by [29]. This

involved regularizing the weights assigned to features.

A method to measure variable importance in KPCA was proposedby [17]. They com-

puted the kernel between two data points as weighted sum of individual kernels where each

individual kernel is computed on a single feature of each of the two data points, and the

weights assigned to each kernel serve as a measure of importance of the feature involved in

computing the kernel. They formulated a loss function wherea lasso penalty was imposed

on the weights to determine the non-zero weights (and the corresponding relevant features).

We discuss the approach given by [17]. Leta denote the direction of maximum vari-

ance, andb denote the vector of feature weights that shows the importance of each feature.

We assume that each entry ofb is non-negative, andb is normalized to length 1. We do the

following

max
a,b

bTPb−λ‖b‖1 (2.12)

wherePi, j =
1
NaTK̃ iK̃

T
j a, K̃ is the centered kernel matrix.λ is a small positive constant

for regularization defined by the user. Each entry ofK̃ is calculated by computing the
17

kernel between two data points as sum of individual kernels where each individual kernel

is computed on a single feature of each of the two data points.This involves optimization

over parametersa andb for which [17] suggested an alternating approach (optimizing one

parameter while keeping the other fixed till convergence).

The above approaches focus on the case when noise-free training data are available.

However, this is not the case in areas like manufacturing variation analysis. In practice, the

data are corrupted with noise and has a lot of irrelevant features. Thus, our approach works

with a noisy data set from which we need to find the relevant subset of the features over

which the patterns in the data exist.

18

CHAPTER 3

PREIMAGES FOR VARIATION PATTERNS FROM KERNEL PCA AND

BAGGING

1 Introduction

Many manufacturing organizations collect massive amountsof in-process data with the

foresight of potentially using information hidden in it to identify root causes of product or

process variation. Advances in measurement and data storage technologies have made it

possible to track hundreds, or even thousands of dimensional characteristics with a 100%

sample rate. Datasets in the form of spatial or time series, as well as images are common

in modern manufacturing. Semiconductor processing, for example, involves inputs from

multiple variables; each represented by a finite time series. Thus, each run is characterized

by thousands of measurements. We can utilize this data to provide visual insights into the

process which is crucial for engineers to make decisions.

Machine-vision systems (MVS) are widely used in many industries including medical,

transportation, construction, and other industrial applications. In particular, [12] provide

an in-depth survey on industrial applications which include identification of structural, sur-

face, and operational defects. A key aspect of any MVS is acquisition and analysis of

images. [15] discuss about the acquisition of grayscale or binary images for MVS. Our

proposed methodology deals with analysis of such images.

19

More recently, [25] show how 3D laser scanners have become popular in scanning com-

plex manufactured part geometries. The data generated fromsuch scanners is referred to as

point cloud data. The point cloud represent a set of points measured in three-dimensional

cartesian coordinate system. The point cloud data provide an accurate representation of the

scanned object. Our proposed methodology is useful in visualizing the point cloud data.

In addition to image and point cloud data, profile data is alsowidely prevalent in man-

ufacturing industry, especially in paper processing and autobody assemblies. The profiles

are obtained as functional relationships between the response variable and independent

variable(s). We present an example of the profile data in manufacturing automotive engine

gaskets. One critical-to-quality feature is a bead on the gasket, the purpose of which is to

create a tight seal. Figure 3(a) shows a set of profiles measured across 100 gasket beads.

Each profile is obtained by scanning a stylus across the gasket bead. Each profile in Figure

1 has been discretized into 50 points evenly spaced over the horizontal axis. Hence, the

measurement vectorx for each part consists of the vertical axis profile heights atthe 50

locations. We can see that the raw data collected by sensors is inherently noisy, but buried

in the noise is a pronounced systematic part-to-part variation pattern, by which the gasket

bead is flattening and elongating by varying amounts on each part. Here, the pattern in the

data (as represented by the relationships between the different elements ofx) is non-linear.

For example, consider the scatterplot between the sensor recordings at position 10 and po-

sition 22 (denoted byx10 andx22, respectively) as shown in Figure 3(b). It is clear from

the plot that there are non-linear relationships between the sensor recordings (features) in

the data. For simplicity, we showed the plot between two features, but the actual non-linear

pattern can involve more than only two features.

20

The gasket example shows a pattern when a single source of variation (corresponding to

bead flattening/elongation) is present in the process. In practice, multiple variation sources

and their corresponding effects on process and product characteristics are embedded in

the collected data. Each variation source and its interaction with other sources results in a

unique pattern in the data. Identifying and segregating important variation patterns from the

irrelevant ones is then a key step to identifying root causesof process variability in order to

diagnose and control process or product quality problems. Noise tends to make it harder for

the underlying pattern to be recognized and visualized. Therefore, it is important to remove

noise from the dataset in order to visualize the true nature of the underlying patterns.

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

fil
e

H
ei

gh
t

Discrete Locations over each Profile

(a) Profiles (b) Scatterplot

Figure 3. Left: profile measurements for 100 gaskets. Each gasket height is measured at
50 equally-spaced positions. Right: scatterplot between sensor recordings at positions 10
and 22 (denoted byx10 andx22, respectively)

Given a p-dimensional random vectorx, signals often tend to locate on somed-

dimensional manifold inp-dimensional space (d < p) while noise tends to be less struc-

tured. Singular value decomposition (SVD) and principal component analysis (PCA) work

on partitioning thep-dimensional space into ad-dimensional signal space and a (p−d) di-

21

mensional noise space. Signals can be denoised by projecting data points onto the retained

subset of principal component directions.

A drawback of PCA is in its assumption that the variation pattern is formed by linear

combination of variables. PCA tends to lose its effectiveness in identifying patterns when

the resultant pattern is nonlinear in nature [22]. One approach to nonlinear PCA is based on

principal curves [7]. [3] used principal curves to identifyand visualize nonlinear patterns in

data. [22] extended the linear PCA framework to account for nonlinear structures in the data

set through kernel principal component analysis (KPCA). KPCA works on the principle of

mapping the data in the input space to a higher dimensional feature space via a nonlinear

mapϕ : Rp→ Rm wherem is the number of features and the feature space is denoted asF.

Linear PCA is applied to the mapped points in the feature space to extract components that

are nonlinear in the original input space. Because the feature space can have a very large

number of dimensions, such explicit mapping can be computationally expensive. Linear

PCA in the feature space depends on the data only through inner products of the feature

vectors. Schölkopfet al used kernel functions to compute the inner products in the feature

space without carrying out the mapping explicitly as shown by [1]. Similar to linear PCA,

projections onto a smaller subset of principal component directions in the feature space can

be used to denoise signals.

To interpret the denoised signal, it is valuable to visualize it in the original input space.

However, because the projections in feature space are on a subspace that might not corre-

spond to the manifold of the original space, such an inverse transformation from the feature

space to the input space does not typically exist as shown by [16]. Directly visualizing an

exact pattern denoised in the feature space is therefore notpossible. Instead an approximate

preimage is typically sought. This is referred to as the preimage problem in KPCA and this
22

is the focus of this research. Previous work by [16] defined this as a nonlinear optimization

problem and approached it using standard gradient descent.A drawback of using standard

gradient descent methods is convergence to local minima. Asa result, solutions obtained

using this method are sensitive to choices of initial starting values. [11] used the relation-

ship between the feature space distance and the input space distance derived by [26] for

commonly used kernels along with multidimensional scaling(MDS) to find approximate

preimages. This method was an improvement over the one suggested by [16]. [18] ex-

tended the KPCA framework to handle noise, outlier and missing data. [30] addressed the

problem of estimating a better preimage by adding penalty terms to the preimage learn-

ing process. [19] considered feature selection in kernel PCA with sparse random vectors.

This approach can be applied prior to the preimage method discussed here to reduce the

dimensionality of the problem.

The previous methods to denoise for KPCA assume that the training data are noise-

free. In practice, many cases (such as manufacturing variation analysis) fail to meet this

assumption. To improve the estimate of the preimage, we apply a procedure similar to bag-

ging developed by [5]. Instead of a single estimate of the preimage from one single training

dataset, we resample the training set and apply a base algorithm to each sample. The PCA

plane in feature space might not be well estimated from the training data (especially with

noisy training data). We expect to improve the estimate froman average over several sam-

ples, and we also improve the robustness of a base algorithm to parameter settings. We

refer to this method as BKPCA to indicate a bagged KPCA approach. The remainder of

this chapter is organized as follows. Section 2 offers a brief review of PCA and KPCA.

Section 3 formally introduces the problem of finding pre-images. Section 4 reviews ex-

23

TABLE 1. Eigenvalues of covariance matrix in input space.

Eigenvalue 12.979 11.952
Proportion 0.521 0.479
Cumulative 0.521 1.000

isting methods for computing preimages. Section 5 introduces the proposed methodology.

Section 6 provides experimental results and Section 7 provides conclusions.

2 Brief Review of KPCA

Let xi , i = 1, . . . ,N, xk ∈ Rp represent a set ofN centered observations in the input

space i.e.∑N
i=1xi = 0. To handle nonlinear structures, [22] suggested linearizing the dis-

tribution by using a nonlinear mapϕ to transform the data from the input spacex to a

higher-dimensional feature spaceF , ϕ : Rp→ F .

Consider the following example withp=2, in whichx = [x1,x2]
′ was generated as uni-

formly distributed over a circle in two dimensional space, as illustrated in Figure 4. Results

from linear PCA are summarized in Table 1 and Table 2. Eigenvectors provide the nature

of the linear relationship betweenx1 andx2. Since PCA was carried out in input space,

the true structure of the relationship betweenx1 andx2 i.e. x2
1+x2

2 = constantis not cap-

tured by the eigenvectors. Now, consider a nonlinear map, say x = (x1,x2)
′ → ϕ(x) =

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 4. Scatter plot of input space variables

24

TABLE 2. Eigenvectors of covariance matrix in input space.

Variable PC1 PC2

x1 0.845 0.535
x2 -0.535 0.845

TABLE 3. Eigenvalues of covariance matrix in feature space

Eigenvalue 168.14 144.79 25.95 23.50 0.000
Proportion 0.464 0.400 0.072 0.065 0.000
Cumulative 0.464 0.864 0.935 1.000 1.000

(x2
1,x

2
2,
√

2x1,
√

2x2,
√

2x1x2). The significance of this mapping will be discussed in a later

section. Table 3 and Table 4 shows the eigenvalues and eigenvectors of the covariance

matrix in the feature space respectively. Note that the eigenvector corresponding to the

smallest eigenvalue correctly captures the true nature of the relationship that describes the

circle. More specifically, the equation for the circle coincides with setting to zero, the vari-

ance of the linear combination of features represented by the eigenvector (i.e., constraining

the linear combination to equal a constant). Refer to Table 7for a list of symbols used

throughout the chapter.

TABLE 4. Eigenvectors of covariance matrix in feature space

Variable PC1 PC2 PC3 PC4 PC5
x2

1 -0.705 -0.042 -0.002 0.037 0.707
x2

2 0.705 0.042 0.002 -0.037 0.707√
2x1 -0.025 -0.008 -0.851 -0.525 -0.000√
2x2 -0.046 -0.001 0.526 -0.849 0.000√

2x1x2 -0.059 0.998 -0.006 -0.002 0.000

25

2.1 Nonlinear PCA

We refer to [22] for more details regarding the following discussion. Assume that the

set of points mapped in the feature spaceϕ(xi) are centered. LetC represent the covariance

matrix of ϕ(xi)

C =
1
N

N

∑
i=1

ϕ(xi)ϕ(xi)
′ (3.1)

As in linear PCA, a new coordinate system is obtained by the eigen decomposition of the

covariance matrixC. Here, we find the eigenvaluesλ and eigenvectorsv ∈ F of matrix C,

whereF is the kernel feature space satisfying

λv = Cv (3.2)

The above equation (5.2) can be equivalently written as

λ < ϕ(x j) ·v >=< ϕ(x j) ·Cv > (3.3)

for all j = 1, . . . ,N. For a non-zero eigenvalue the corresponding eigenvectorv is

v =
N

∑
i=1

αiϕ(xi) (3.4)

Substitute equation (4.3) into equation (3.3), for allj = 1, . . . ,N, and simplify by introduc-

ing anN×N matrixK whose entries are given by

K i j :=< ϕ(xi) ·ϕ(x j)> (3.5)

The final equation can be written in matrix form as

NλKααα = K2ααα (3.6)

whereααα denotes a column vector with entriesα1, . . . ,αN. Also, becauseK is a positive,

semi-definite matrix, all eigenvalues ofK are non-negative. Letλ1≥ λ2≥ . . .≥ λN ≥ 0 de-

note the eigenvalues andααα1, . . . ,αααN the corresponding set of eigenvectors ofK in equation
26

(3.6). We select the greatestl non-zero eigenvalues and their corresponding eigenvectors

which account for most of the variance in the data. In practice, l is a tunable parameter. We

also assume, without loss of generality, that eachαααk, for k = 1, . . . , l is normalized. The

normalization conditions forαααk are

1 =
N

∑
i, j=1

αk
i αk

j < ϕ(xi) ·ϕ(x j)>

=
N

∑
i, j=1

αk
i αk

jK i j =< αααk ·Kαααk >= λk < αααk ·αααk >

2.2 Using Kernels

Explicitly mapping the input space points into a higher dimensional space can prove

to be computationally expensive. Also, note that each element of the kernel matrixK is

computed as the inner product of< ϕ(xi) · ϕ(x j) >. [1] showed that inner products in

the feature space can be computed from the original input space data points (known as the

kernel trick). For example, letxi andx j represent two data points in input space,xi ,x j ∈Rp.

Let ϕ(xi) andϕ(x j) represent their corresponding map in the feature space. Using a kernel

functionk, we can obtain the inner product in the feature space by computing inner product

in input space. This usually holds for feature spaces definedin terms of some positive

definite kernel. One particular type of kernel function is the polynomial kernel of orders,

expressed as

k(xi ,x j) =< ϕ(xi) ·ϕ(x j)>= (< xi ·x j >+1)s (3.7)

This kernel function implicitly maps the input space intoCp+s
s . For example, using the

above kernel with degree two(s= 2), a two dimensional input space(p = 2) will be

mapped into a six dimensional feature space. The corresponding feature space map is

(1,
√

2x1,
√

2x2,x2
1,x

2
2,
√

2x1x2). This kernel was used to demonstrated the circle example
27

earlier. Another commonly used kernel function is the Gaussian kernel of the form

k(xi ,x j) =< ϕ(xi) ·ϕ(x j)>= exp

(

−
∥

∥xi−x j
∥

∥

2
F

σ

)

(3.8)

whereσ is a parameter related to the width of the kernel.

We have assumed that we are dealing with a set of data points that are centered in

the feature space. Because we never explicitly map to the feature space, it is difficult to

compute the mean of the mapped observations in the feature space. However, the kernel

matrix can be modified to provide the inner product of centered mapped observations. This

matrix, sayK̃ can be defined in terms ofK as follows

K̃ = K - OK - KO + O K O (3.9)

whereO is a matrix with all elements 1/N

3 Problem Definition

Let x be a test point in input space with a corresponding centered map ϕ(x) in the

feature space. In order to extract nonlinear principal components for theϕ−image of a test

pointx, we compute its projections on thekth component fork= 1, . . . , l as follows

βk =< vk ·ϕ(x)>=
N

∑
i=1

αk
i < ϕ(xi) ·ϕ(x)>=

N

∑
i=1

αk
i k(x,xi) (3.10)

where the last equality follows from the definition of a kernel function.

Eachβk is the length of the projection onto the normalized eigenvector and equals

the kth score for data instancex. As in linear PCA, each nonlinear score obtained using

equation (4.5) represents a unique measure of variation in the data. The importance of each

nonlinear score (variable) and its corresponding pattern can be measured by its associated

eigenvalue which describes the amount of variation explained. Using this information, an

appropriate number of variables can be used to summarize thedata. Theoretically, we can
28

Figure 5. A test pointx is transformed to feature space asφ(x) and projected to the PCA
plane asPφ(x). The preimage approximates the reverse transform ofPφ(x) to the original
space.

compute as many scores as there are dimensions in the featurespace. However, practically,

this is limited to the rank of the kernel matrixK . Similar to linear PCA, a denoised image

can be obtained by projectingϕ(x) onto a subspace spanned by the topl eigenvectors

Pl ϕ(x) =
l

∑
k=1

βkv
k (3.11)

This denoised image exists in the feature space. In order to interpret this image, it is

valuable to visualize it in the original input space. This necessitates an inverse mapping

from the feature space to the input space. As mentioned, suchan inverse map is not always

defined [16]. To illustrate this, consider an input space point (1,1). Using a polynomial ker-

nel of degree 2, it can be mapped to the feature space as(1,
√

2,
√

2,1,1,
√

2). This feature

space point can be inverse mapped into the input space point (1,1). However, consider a

feature space point(1,
√

2,
√

2,5,5,7). There is no exact preimage for this point. Thus, we

need to settle for an approximate preimagex̂, whereϕ(x̂) ∼= Pl ϕ(x). This is referred to as

the preimage problem and is represented graphically in Figure 5.

29

4 Existing Methods for Finding Preimages

A brief overview of the more popular methods to obtain preimages is provided. [16]

proposed to estimate the preimage ofPlϕ(x) by minimizing the squared distance

ρ(x̂) = ‖ϕ(x̂)−Pl ϕ(x)‖2

= ‖ϕ(x̂)‖2−2Pl ϕ(x)′ϕ(x̂)+Ω (3.12)

whereΩ represents all terms independent ofx̂. Equation (3.12) is minimized using standard

gradient descent. An extremum can be obtained by setting thederivative of Equation (3.12)

to zero. Because this method uses standard gradient descent, a drawback is that one can

converge to a local minima. Hence, the preimage obtained is sensitive to starting values.

Also, the iteration scheme can fail to converge in certain experiments even after choosing

different starting values [11].

In another approach, [11] computed the Euclidean distance betweenPl ϕ(x) and all

feature space training pointsϕ(xi). Then, n-nearest neighbors in the feature space are

identified based on this distance metric. For commonly used kernels such as Gaussian and

polynomial kernel, there exists a relationship between distance in the feature space and dis-

tance in the input space [26]. Using this relationship, corresponding input space distances

between the desired preimagex̂ and then-nearest input space pointsxis are computed.

These input space distances are preserved whenPlϕ(x) is embedded back into the input

space. [11] then proposed using multi-dimensional scaling(MDS) [6] as a tool to visualize

the preimage (and denoted the method as KMDS). Given distances between points in a

high-dimensional feature space, MDS attempts to find a lowerdimensional approximation

of the data so as to preserve the pairwise distances as much aspossible. A new coordinate

system is defined in input space by singular value decomposition of then-nearest neigh-
30

bors. MDS is then used to projectPl ϕ(x) into this new coordinate system. Approximate

preimages are found using eigenvectors of the new coordinate system.

For aN× p input matrix, the computational complexity of SVD isO(cN2p+ c′p3),

wherec andc′ are constants. Therefore, [11] proposed usingn-nearest neighbors to reduce

computational time.

More recently [30] presented a penalized strategy to guide the preimage learning pro-

cess. The preimage is modeled by a weighted combination of the observed samples where

the weights are learned by an optimization function. Under this framework, a penalized

methodology is developed by integrating two types of penalties. First, a convexity con-

straint is imposed for learning the combination weights to generate a well-defined preim-

age. Second, a penalized function is used as part of the optimization to guide the preimage

learning process. An issue with this approach is that the observed samples (training set)

should be noise-free. In case of noisy training set, the preimage obtained from this model

is inherently noisy.

5 Preimages from Bagging

As stated in the previous section, most of the methods assumethat the training data

are noise-free. Some applications meet this assumption, but in practice many other cases

(such as manufacturing variation analysis) do not. Our objective is to improve upon the

previous approaches. We improve the estimate of the preimage through a procedure similar

to bagging [5]. Instead of a single estimate of the preimage from one single training dataset,

resample the training setB times with replacement, with each sample size equal to that of

the original data. Use each bootstrap sample to complete anyof the previous methods and

obtain an estimated preimage for a test point. Finally, estimate the final preimage of each

test point as the average of the obtainedB points. LetX̂(b) denote the preimage obtained
31

from thebth sample. The final estimated preimageX̂ is given by

X̂ =
B

∑
b=1

X̂(b)
B

(3.13)

We refer to this method as BKPCA to indicate a bagged KPCA approach. In bagging one

averages over several models. The intuition behind our approach is that the PCA plane in

feature space might not be well estimated from the training data; thus, some improvement

might be expected from an average over several estimates. Weprovide subsequent experi-

ments to illustrate these comments. Moreover, this also makes our method more robust to

noisy instances in the training data set. The detailed stepsin our method can be summarized

in the following algorithm

1: Given a training data setD0 and a test data setDtest. Fix values for the kernel parameter

(such asσ in a Gaussian kernel or the degrees in a polynomial kernel), number of

bootstrap samplesB, other parameters as defined for each method by the corresponding

authors. The objective is to estimate the denoised test dataset.

2: for each test data pointi in Dtest do

3: for b= 1 to B do

4: Select a bootstrap sampleDb from D0 with replacement.

5: Generate thel eigenvectors in kernel feature space fromDb (where we use a Gaus-

sian kernel with kernel parameterσ)

6: Transform ith point in Dtest to feature space and project it onto the subspace

spanned by chosenl eigenvectors.

7: Choose fromDb, n nearest points in feature space to the projectedith point in

Dtest.

32

8: Estimate the denoised data point for theith test point from itsn nearest neighbors

in Db.

9: end for

10: Estimate the final denoised point for theith test point as the average acrossB de-

noised points obtained above.

11: end for

Note that if we have no distinct training and test sets, but instead a single set that we want

to denoise, then the algorithm still applies directly withD0 the same asDtest.

Because the training data is noisy, a single KPCA subspace fitfrom the full training data

may not provide a reliable estimate. In order to evaluate thestability of a subspace esti-

mated from noisy training data, we consider an appropriate metric called subspace distance

that was developed by [24] to measure difference between twosubspaces. Specifically, the

subspace distancedSU between two subspaces is calculated as

dSU =

√

√

√

√l −
l

∑
i=1

l

∑
j=1

(ui
′v j)2 (3.14)

whereui ’s andv j ’s are each a set of orthonormal bases (eigenvectors) spanning the two sub-

spaces, respectively, andl is the number of leading eigenvectors chosen. [24] considered

two subspaces to be similar ifdSU <
√

l/2.

We show in our experiments that a single subspace estimated from the noisy training

data can be unstable. Since the preimage is learned from the subspace, we expect variablity

in the preimage. One approach to reduce this variability is to average across preimages

learnt from different subspaces.

In practice, however, we are provided with a single realization of the noisy training

data. Therefore, we draw bootstrap samples to obtain multiple realizations of the training
33

data. As shown in the experiments, each bootstrap sample of the training data set results

in a different kernel principal component subspace in the feature space, and each subspace

results in a different preimage learned in the input space. Essentially, bootstrapping tries to

obtain a representation of the true distribution of the preimages in input space by drawing

several samples of the training set. Since the training set is noisy, we expect variability in

the preimage learned from the full training data. Thus, by averaging across all preimages

learned from different bootstrap samples, we try to smooth out variations from different

preimages. We visually demonstrate this in Figure 6. Also using a bootstrap sample tends

to down-weight the influence of noisy instances in determining the kernel principal com-

ponent subspace thereby improving the robustness of a base KPCA algorithm.

The performance of our method against others is evaluated using the Euclidean distance

metric. The preimage residual root sum of squared error (RSS) for all the methods was

estimated by using the Euclidean distance between the obtained preimagêx and its true

imaget by

RSS=

√

N

∑
i=1

(x̂i− t i)2. (3.15)

In our experiments, the true image is known beforehand to which we add noise to generate

the noisy test images. The true image is only used for comparison purpose and not used in

any of the calculations in our algorithm.

6 Experimental Results

Images provide high-dimensional inputs and are useful to visualize the success of de-

noising. Consequently, we experiment on databases with images of handwritten digits and

faces. We currently include image examples that, even though are not from manufactur-

ing, are similar to manufacturing image data. We consider two scenarios: one when we

34

have training data which is noise-free (called the low-noise case), and a second without a

noise-free data set for training which results in learning on the noisy data set (called the

high-noise case). In both the cases, we have to denoise the given test data based on our

learning on the training data. In practice, we usually encounter the high-noise case, and our

motivation comes from this fact.

There are several parameters involved in different preimage estimation algorithms for

KPCA. The parameters common to all algorithms areσ (Gaussian kernel parameter) andl

(the number of leading eigenvalues). Next there are some parameters specific to the given

algorithm such as the number of nearest neighborsn in KMDS algorithm and the penalty

parameterλ in case of penalized learning algorithm with ridge penalty.In addition to these

parameters in any base algorithm, our BKPCA algorithm involves an additional parameter

B which is the number of bootstrap samples.

According to [16],σ is set torp times the average component variance wherep is the

dimensionality of input space, andr is a constant whose value is usually set to two. We

used the value ofσ suggested by [16] for our experiments. Additionally, we conducted

some experiments shown in Figures 7 through 14 where we chosedifferent values ofσ to

see how RSS changes. Finally we didn’t find substantial difference in results while using

the values ofσ suggested by [16] and one suggested by [11].

[30] recommended that the value ofl be chosen to preserve 95% of the energy of the

training data. For Figures 19 through 22, we also experimented with several values of the

% energy to be preserved (chosen from{ 70, 80, 90, 95}).

We now discuss about some of the parameters specific to a givenpreimage estimation

algorithm. According to [11], the number of nearest neighbors n is set to 10. [30] discuss

35

about choosing the parameters for different penalty functions depending on the application

involved. Based on their results, we chose the ridge penaltywith λ = 0.001.

For our BKPCA procedure, we have an additional parameterB. For our experiments in

Figures 19 through 22, we choseB∈ {50,100,200,500}.

We carry out our experiments to study the behavior of the algorithms extensively. We

compared our BKPCA meta-method with different base algorithms proposed in literature.

6.1 Subspace Stability Evaluation

The USPS dataset at http://yann.lecun.com/exdb/mnist/ consists of 16×16 gray scale

images of zip code digits (0-9), automatically scanned fromenvelopes by the U.S.Postal

Service. Example images are seen in the first row of Figure 29.

First we conducted the following experiments to show the instability of KPCA subspace

learned from noisy training data. We chose digits 7, 5, and 4 (from the USPS digits dataset)

for the following experiments. We generated 100 pairs of noisy data samples for each digit

where each noisy data sample was obtained by adding independent Gaussian noise with

meanµ= 0 andσG = 1 to the original data set. The kernel parameterσ was set to 2p times

the variance of data wherep is the dimensionality of input space. We chosel ∈ {50,100}.

When l = 50, we calculated the subspace distance for each pair for different digits, and

found the average subspace distance to be 6.33 (maximum value was 6.36, minimum value

was 6.29, and standard deviation was 0.012) which is higher than 3.53 (=
√

50/2). Simi-

larly whenl = 100, the average subspace distance was found to be 8.74 (maximum value

was 8.77, minimum value was 8.71, and standard deviation was0.011) which is greater

than 5 (=
√

100/2) . Since the distance between kernel principal component subspaces is

large, they are not similar.

36

In order to observe the difference in KPCA subspace learned from different bootstrap

samples, we used the parameter settings from the previous experiments except we added in-

dependent Gaussian noise with meanµ= 0 andσG = 1 to each digit data set, and generated

100 different pairs of bootstrap samples from a data set. We compared the subspace dis-

tance between different KPCA subspaces learned from different bootstrap samples. When

l = 50, we calculated the subspace distance for each pair for different digits, and found the

average subspace distance to be 5.57 (maximum value was 6.13, minimum value was 5.19,

and standard deviation was 0.15) which is higher than 3.53. Similarly when l = 100, the

average subspace distance was found to be 7.02 (maximum value was 7.41, minimum value

was 6.68, and standard deviation was 0.14) which is greater than 5. Thus, similar to results

from the experiments on noisy data sets, we see that the KPCA subspaces are different.

Each subspace is expected to result in a different preimage learned in input space. To

visually illustrate the variations in preimages learned from different bootstrap samples, we

show the results for the gasket data in Figure 6. Each profile has been discretized into 200

points, and the preimages for a profile learned from each of the B= 50 bootstrap samples

are shown. Figure 6 shows that averaging over preimages learned from several bootstrap

samples of training data can reduce the variability of the final preimage.

6.2 Digit Images Denoised

We now demonstrate our approach by denoising each of the the digits. For the low-noise

case, we randomly chose 300 images for training. Another setof mutually exclusive 300

images was taken as true data and Gaussian noise with meanµ= 0 and standard deviation

σG with values ofσG = 0.5 andσG = 1 were added to the true data to produce the noisy

test data which are to be subsequently denoised. For the high-noise case, for all digits we

37

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Discrete Locations over each Profile

P
ro

fil
e

H
ei

gh
t

Figure 6. Plot showing variation in preimages for a profile learned from each of theB= 50
bootstrap samples from the gasket data. Each profile has beendiscretized into 200 points.

randomly chose 300 images as true data and added Gaussian noiseµ= 0 andσG with values

of 0.5 and 1 to the true data to produce the noisy test data which are to be subsequently

denoised. Note that the noisy test set itself is the trainingdata here.

First consider the KMDS algorithm. When we apply BKPCA to thebase KMDS al-

gorithm we denote the procedure as BKMDS. We consider the RSSvalues for different

parameter settings for both KMDS and BKMDS for the high-noise case. Figure 7 and Fig-

ure 8 show how the RSS varies for each algorithm for differentparameter settings ofσ and

l with n = 10 and with Gaussian noiseµ= 0 andσG = 0.5. The horizontal axis scale is

log(σ) and the piece-wise linear curves illustrate KMDS and BKMDS for eitherl = 50 or

100. Digits 0 through 4 are shown in Figure 7, and digits 5 through 9 are shown in Figure 8.

To further explore parameter settings in the high-noise case, Figures 9 through 11

consider digits 7 and 9 only. Figure 9 shows how the RSS variesfor n= 10 with Gaussian

38

3 4 5 6 7 8 9
80

85

90

95

100

105

110

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 0

3 4 5 6 7 8 9
40

50

60

70

80

90

100

110

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 1

3 4 5 6 7 8 9
95

100

105

110

115

120

125

130

135

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(c) Digit 2

3 4 5 6 7 8 9
90

95

100

105

110

115

120

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(d) Digit 3

3 4 5 6 7 8 9
85

90

95

100

105

110

115

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(e) Digit 4

Figure 7. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 0-4 for the
high-noise case with the number of leading eigenvectorsl ∈{50,100}, 10 nearest neighbors
and noiseσG = 0.5. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

noiseµ= 0 andσG = 1. Figure 10 shows how the RSS varies forn = 25 with Gaussian

noiseµ= 0 andσG = 0.5. Figure 11 shows how the RSS varies forn= 25 with Gaussian

noiseµ= 0 andσG = 1.

39

3 4 5 6 7 8 9
90

95

100

105

110

115

120

125

130

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 5

3 4 5 6 7 8 9
80

85

90

95

100

105

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 6

3 4 5 6 7 8 9
75

80

85

90

95

100

105

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(c) Digit 7

3 4 5 6 7 8 9
85

90

95

100

105

110

115

120

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(d) Digit 8

3 4 5 6 7 8 9
75

80

85

90

95

100

105

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(e) Digit 9

Figure 8. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 5-9 for the
high-noise case with the number of leading eigenvectorsl ∈{50,100}, 10 nearest neighbors
and noiseσG = 0.5. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

We clearly see from the figures that BKPCA improves the KMDS algorithm for the cho-

sen parameter values for the high-noise case. The improvement is most pronounced when

the parameters differ from those that minimize the RSS. Importantly, BKPCA improves the

robustness of the base algorithm.

40

3 4 5 6 7 8 9
100

110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
100

110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 9. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the high-noise case with the number of leading eigenvectors l ∈ {50,100}, 10 nearest
neighbors, noiseσG = 1. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

3 4 5 6 7 8 9
70

75

80

85

90

95

100

105

110

115

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
75

80

85

90

95

100

105

110

115

120

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 10. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the high-noise case with the number of leading eigenvectors l ∈ {50,100}, 25 nearest
neighbors, noiseσG = 0.5. The RSS is shown for different parameter settings ofσ where
the horizontal axis scale is log(σ).

For the low-noise case, we also report the RSS values for digits 7 and 9 for different

parameter and noise settings. Figure 12 shows how the RSS varies forn= 25 with Gaussian

noiseµ= 0 andσG = 0.5. Figure 13 and Figure 14 show the RSS varies forn = 10,25,

respectively, with Gaussian noiseµ= 0 andσG = 1.

We see from the figures that both KMDS and BKPCA perform comparably in the low-

noise case, thus, confirming the fact that BKPCA performs at least as good as KMDS in the

41

3 4 5 6 7 8 9
100

110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
100

110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 11. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the high-noise case with the number of leading eigenvectors l ∈ {50,100}, 25 nearest
neighbors, noiseσG = 1. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

3 4 5 6 7 8 9
60

70

80

90

100

110

120

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
60

70

80

90

100

110

120

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 12. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the low-noise case with the number of leading eigenvectors l ∈ {50,100}, 25 nearest
neighbors, noiseσG = 0.5. The RSS is shown for different parameter settings ofσ where
the horizontal axis scale is log(σ).

best possible scenario when training data are noise-free. However, for applications where

only noisy training data are available, high-noise experiments illustrate that BKPCA can

substantially improve upon KMDS.

42

3 4 5 6 7 8 9
80

90

100

110

120

130

140

150

160

170

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
80

90

100

110

120

130

140

150

160

170

180

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 13. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the low-noise case with the number of leading eigenvectors l ∈ {50,100}, 10 nearest
neighbors, noiseσG = 1. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

3 4 5 6 7 8 9
60

80

100

120

140

160

180

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(a) Digit 7

3 4 5 6 7 8 9
80

100

120

140

160

180

200

log(sigma)

R
S

S

KMDS, l=50
KMDS, l=100
BKMDS, l=50
BKMDS, l=100

(b) Digit 9

Figure 14. RSS values of KMDS versus bagging (denoted as BKMDS) for digits 7 and 9
for the low-noise case with the number of leading eigenvectors l ∈ {50,100}, 25 nearest
neighbors, noiseσG = 1. The RSS is shown for different parameter settings ofσ where the
horizontal axis scale is log(σ).

43

We also applied our algorithm on the gradient descent method[16] and on the penalized

preimage approach [30] for the digits data in the high-noisecase. Figures 15 and 16 show

the results for the gradient descent approach. Figures 17 and 18 show the results for the

penalized preimage approach approach. In both the cases, BKPCA reduces the RSS.

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(a) Digit 0

50 100 150
120

140

160

180

200

220

240

260

280

Number of Eigenvalues

R
S

S

No Bag
Bag

(b) Digit 1

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(c) Digit 2

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(d) Digit 3

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(e) Digit 4

Figure 15. RSS values of the gradient descent approach versus bagged approach for digits
0-4 for the high-noise case with noiseσG = 1.

44

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(a) Digit 5

50 100 150
190

200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(b) Digit 6

50 100 150
170

180

190

200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(c) Digit 7

50 100 150
200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(d) Digit 8

50 100 150
180

190

200

210

220

230

240

250

260

270

Number of Eigenvalues

R
S

S

No Bag
Bag

(e) Digit 9

Figure 16. RSS values of the gradient descent approach versus bagged approach for digits
5-9 for the high-noise case with noiseσG = 1.

We also experimented with several values of the % energy to bepreserved (chosen from

{ 70, 80, 90, 95}). We chose to experiment on digits 7 and 9 (300 instances chosen from

each digit). The noisy digit images were generated by addingindependent Gaussian noise

µ= 0 andσG = 1. For each of the values of % energy preserved, we compare thepenalized

preimage approach by [30] to our BKPCA approach with values of B∈ {50,100,200,500}.
45

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
185

190

195

200

205

210

215

220

Energy Coefficient

R
S

S

No Bag
Bag

(a) Digit 0

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
90

100

110

120

130

140

150

Energy Coefficient

R
S

S

No Bag
Bag

(b) Digit 1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
195

200

205

210

215

220

225

230

235

240

Energy Coefficient

R
S

S

No Bag
Bag

(c) Digit 2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
175

180

185

190

195

200

205

210

215

220

Energy Coefficient

R
S

S

No Bag
Bag

(d) Digit 3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
175

180

185

190

195

200

205

210

215

Energy Coefficient

R
S

S

No Bag
Bag

(e) Digit 4

Figure 17. RSS values of penalized preimage approach versus bagged approach for digits
0-4 for the high-noise case with noiseσG = 1.

The results are shown in Figures 19 through 20. We see that ourBKPCA method performs

significantly better than the penalized preimage approach for each value ofB.

For the gradient descent approach suggested by [16], we find the value ofl that corre-

sponds to % of energy to be preserved. Thus, for our experiments, l ∈ {75,100,135,160}.

For each of the values ofl , we compare the gradient descent approach by [16] to our

46

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
185

190

195

200

205

210

215

220

225

230

235

Energy Coefficient

R
S

S

No Bag
Bag

(a) Digit 5

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
165

170

175

180

185

190

195

200

205

210

215

Energy Coefficient

R
S

S

No Bag
Bag

(b) Digit 6

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
145

150

155

160

165

170

175

180

185

190

Energy Coefficient

R
S

S

No Bag
Bag

(c) Digit 7

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
170

175

180

185

190

195

200

205

210

Energy Coefficient

R
S

S

No Bag
Bag

(d) Digit 8

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
150

155

160

165

170

175

180

185

190

195

200

Energy Coefficient

R
S

S

No Bag
Bag

(e) Digit 9

Figure 18. RSS values of penalized preimage approach versus bagged approach for digits
5-9 for the high-noise case with noiseσG = 1.

BKPCA approach with values ofB ∈ {50,100,200,500}. The results are shown in Fig-

ures 21 through 22. We see that our BKPCA method performs significantly better than the

gradient descent approach by [16] for each value ofB.

We next select digits 7 and 9, and show the boxplot of RSS for all the data points. We

use the Gaussian kernel for denoising with the kernel parameter σ set to the value of 2p

47

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(a) Energy=70%

7

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(b) Energy=80%

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(c) Energy=90%

7

8

9

10

11

12

13

14

15

16

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(d) Energy=95%

Figure 19. Boxplot of RSS values for digit 7 for BKPCA approach versus penalized preim-
age approach for different values of energy to be preserved and B. Independent Gaussian
noiseµ= 0 andσG = 1 was added.

times the average component variances as specified by Schölkopf et al. The other parame-

ters for each algorithm are set to the levels as discussed by the authors of the corresponding

chapters, except we experimented with the number of eigenvalues selected (or the energy

to be preserved in the penalized preimage case). We also considered two scenarios for the

above cases where we added Gaussian noise withµ= 0 andσG = {0.7,1}. Figures 23 to

24 show the results for the penalized preimage algorithm. Figures 25 to 26 show the results

for the gradient descent algorithm. Figures 27 to 28 show theresults for KMDS algorithm.

The BKPCA algorithm consistently shows better performancefor RSS.

For the plots shown in Figures 19 through 22, we compute the difference between

RSS obtained through the original method and our BKPCA method for each of the 300

48

9

10

11

12

13

14

15

16

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(a) Energy=70%

7

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(b) Energy=80%

7

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(c) Energy=90%

7

8

9

10

11

12

13

14

15

16

17

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(d) Energy=95%

Figure 20. Boxplot of RSS values for digit 9 for BKPCA approach versus penalized preim-
age approach for different values of energy to be preserved and B. Independent Gaussian
noiseµ= 0 andσG = 1 was added.

instances for different values ofB. We then performed one-sided Wilcoxon signed-rank

test (the alternate hypothesis being the median differenceis greater than zero). The p-

values obtained for all the tests on all the plots were extremely small (smaller than 0.0001).

Thus, our method provides statistically significant improvement over the results obtained

from other methods. For other plots, similar to ones shown inFigures 19 through 22, we

obtain similar results from the one-sided Wilcoxon signed-rank test.

We also apply the methods to the digit dataset for the high-noise case with Gaussian

noiseµ= 0 andσG = 1 and show the visual preimages in Figure 29 for KMDS and BKPCA

methods where the preimages were obtained from the parameter settings in the experiments

which resulted in the minimum RSS. For reference, we also show the noiseless images (first

49

6

8

10

12

14

16

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(a) l = 75

6

8

10

12

14

16

18

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(b) l = 100

6

8

10

12

14

16

18

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(c) l = 135

6

8

10

12

14

16

18

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(d) l = 160

Figure 21. Boxplot of RSS values for digit 7 for BKPCA approach versus gradient descent
approach for different values ofl andB. Independent Gaussian noiseµ= 0 andσG = 1 was
added.

row) as well as the noisy test images (second row). We can clearly see that BKPCA method

visually improves denoised preimages from the KMDS method.

6.3 Face Data

We use the face data set available at http://isomap.stanford.edu/datasets.html. There

are 698 samples and the dimensionality of each sample is 4096. For our purpose, we took

all 698 images, added independent Gaussian noise (µ = 0 andσG = 1) to the images to

create the noisy test set, and subsequently denoised the test set. For evaluation purposes,

we compute RSS for each image. Example images are seen in the first row of Figure 33

50

6

8

10

12

14

16

18

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(a) l = 75

6

8

10

12

14

16

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(b) l = 100

6

8

10

12

14

16

18

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(c) l = 135

6

8

10

12

14

16

No Bag Bag(B=50) Bag(B=100) Bag(B=200) Bag(B=500)

R
S

S

(d) l = 160

Figure 22. Boxplot of RSS values for digit 9 for BKPCA approach versus gradient descent
approach for different values ofl andB. Independent Gaussian noiseµ= 0 andσG = 1 was
added.

Boxplots of RSS are shown for all images for the three denoising algorithms with and

without BKPCA applied. Figure 30 shows the results for the penalized preimage algorithm.

Note that the penalized preimage algorithm also allows for aweakly-supervised penalty

term in addition to the ridge and Laplacian penalty. In our applications in manufacturing

settings, information for the weakly-supervised penalty may not be available and, hence,

we only use the ridge penalty for our case. Figure 31 shows theresults for gradient descent

algorithm. Figure 32 shows the results for KMDS algorithm.

The parameters for each algorithm were set to the levels as discussed by the authors

of the corresponding chapters, except we experimented withthe number of eigenvalues

selected (or the energy to be preserved in penalized preimage approach). As specified

51

6 8 10 12 14 16

No Bag(Energy=0.3)

Bag(Energy=0.3)

No Bag(Energy=0.6)

Bag(Energy=0.6)

No Bag(Energy=0.95)

Bag(Energy=0.95)

RSS

(a) Digit 7

6 8 10 12 14 16

No Bag(Energy=0.3)

Bag(Energy=0.3)

No Bag(Energy=0.6)

Bag(Energy=0.6)

No Bag(Energy=0.95)

Bag(Energy=0.95)

RSS

(b) Digit 9

Figure 23. RSS values of penalized preimage approach on digits 7 and 9 for different
energy levels with added Gaussian noiseσG = 1. For each energy levels, results are shown
with and without bagging.

6 8 10 12 14 16 18

No Bag(Energy=0.3)

Bag(Energy=0.3)

No Bag(Energy=0.6)

Bag(Energy=0.6)

No Bag(Energy=0.95)

Bag(Energy=0.95)

RSS

(a) Digit 7

6 8 10 12 14 16

No Bag(Energy=0.3)

Bag(Energy=0.3)

No Bag(Energy=0.6)

Bag(Energy=0.6)

No Bag(Energy=0.95)

Bag(Energy=0.95)

RSS

(b) Digit 9

Figure 24. RSS values of penalized preimage approach on digits 7 and 9 for different
energy levels with added Gaussian noiseσG = 0.7. For each energy levels, results are
shown with and without bagging.

before, in addition to the parameters for each algorithm, weset atB = {50,100} for this

experimental purpose. Overall, our bagged version performs much better than the original

methods as can be seen from the plots. Results are not sensitive to the value selected forB.

52

6 8 10 12 14 16 18

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(a) Digit 7

6 8 10 12 14 16 18

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(b) Digit 9

Figure 25. RSS values of the gradient descent algorithm on digits 7 and 9for different
numbers of eigenvalues (l) with added Gaussian noiseσG = 1. For eachl , results are
shown with and without bagging.

6 8 10 12 14 16 18

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(a) Digit 7

6 8 10 12 14 16 18

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(b) Digit 9

Figure 26. RSS values of the gradient descent algorithm on digits 7 and 9for different
numbers of eigenvalues (l) with added Gaussian noiseσG = 0.7. For eachl , results are
shown with and without bagging.

53

5 10 15

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(a) Digit 7

6 8 10 12 14

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(b) Digit 9

Figure 27. RSS values of KMDS algorithm on digits 7 and 9 for different numbers of
eigenvalues (l) with added Gaussian noiseσG = 1. For eachl , results are shown with and
without bagging.

6 8 10 12 14 16

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(a) Digit 7

6 8 10 12 14

No Bag(l=50)

Bag(l=50)

No Bag(l=100)

Bag(l=100)

No Bag(l=150)

Bag(l=150)

RSS

(b) Digit 9

Figure 28. RSS values of KMDS algorithm on digits 7 and 9 for different numbers of
eigenvalues (l) with added Gaussian noiseσG = 0.7. For eachl , results are shown with and
without bagging.

54

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 29. Results for digits 0 through 9 withl = 50 andn= 10. First row shows noiseless
reference images. Second row shows noisy test images (Gaussian noiseµ= 0 andσG = 1).
Third row shows denoised preimages from the KMDS method. Fourth row shows denoised
preimages from our BKPCA method. The improved results from BKPCA can be seen.

20

25

30

35

40

No Bag Bag(B=50) Bag(B=100)

R
S

S

(a) Energy=0.95

15

20

25

30

35

40

45

50

No Bag Bag(B=50) Bag(B=100)

R
S

S

(b) Energy=0.6

15

20

25

30

35

40

45

No Bag Bag(B=50) Bag(B=100)

R
S

S

(c) Energy=0.3

Figure 30. Face data RSS values of penalized preimage approach versus the bagged ap-
proach for different energy levels with added Gaussian noise (µ= 0 andσG = 1).

55

20

25

30

35

40

45

50

No Bag Bag(B=50) Bag(B=100)

R
S

S

(a) l = 150

20

25

30

35

40

45

50

55

No Bag Bag(B=50) Bag(B=100)

R
S

S

(b) l = 300

20

25

30

35

40

45

50

55

60

No Bag Bag(B=50) Bag(B=100)

R
S

S

(c) l = 400

Figure 31. Face data RSS values of the gradient descent algorithm versus the bagged
approach for different numbers of eigenvalues (l) with added Gaussian noise (µ = 0 and
σG = 1).

56

14

16

18

20

22

24

No Bag Bag(B=50) Bag(B=100)

R
S

S

(a) l = 150

16

18

20

22

24

26

28

No Bag Bag(B=50) Bag(B=100)

R
S

S

(b) l = 300

16

18

20

22

24

26

28

No Bag Bag(B=50) Bag(B=100)

R
S

S

(c) l = 400

Figure 32. Face data RSS values of KMDS algorithm versus the bagged approach for
different numbers of eigenvalues (l) with added Gaussian noise (µ= 0 andσG = 1).

57

We also show the visual results of denoising the face image dataset by applying KMDS

algorithm as well as the bagged version BKMDS in Figure 33. The preimages were ob-

tained from the parameter settings in the experiments whichresulted in the minimum RSS.

The first row shows uncorrupted face images. The second row shows noisy faces obtained

from added Gaussian noiseµ= 0 andσ = 0.7. We can see that visually the figures obtained

from BKMDS (fourth row) are clearer than those obtained fromthe KMDS method (third

row).

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

Figure 33. Results for selected face images withl = 150 andn = 10. First row shows
noiseless reference images. Second row shows noisy test images (Gaussian noiseµ = 0
andσG = 0.7). Third row shows denoised preimages from the KMDS method.Fourth row
shows denoised preimages from our BKPCA method. The improved results from BKPCA
can be seen.

We also calculated the computational time involved in running the original methods as

well as our BKPCA procedure. The parameter settings were selected to provide the min-

imum RSS value. We choseB ∈ {50,100,200,500}. We used an Intel (R) Core (TM)2

Quad CPU Q6600 computer with 2.4 GHz clock speed and 4.00 GB RAM. For the exper-
58

TABLE 5. Average time in seconds required to denoise a data point fromthe USPS digits
data set. The standard error is reported within parenthesis.

Method Original B= 50 B= 100 B= 200 B= 500
Gradient Descent 0.14 (0.01) 4.19 (0.08) 8.32 (0.13) 16.3 (0.11) 40.5 (0.21)

KMDS 0.30 (0.01) 11.8 (0.05) 23.3 (0.09) 46.8 (0.57) 117.1 (0.8)

TABLE 6. Average time in seconds required to denoise a data point fromthe face image
data set. The standard error is reported within parenthesis.

Method Original B= 50 B= 100 B= 200 B= 500
Gradient Descent 0.28 (0.01) 23.9 (0.18) 47.0 (0.1) 93.5 (0.3) 235.5 (0.64)

KMDS 0.34 (0.01) 15.5 (0.08) 30.4 (0.2) 60.9 (0.2) 152.3 (0.23)

iments, the average time in seconds required to denoise a single data point (with standard

error) is reported for different cases in Tables 5 through 6.We observe that the time taken

by BKPCA procedure is more than the time taken by other methods. However, the im-

provement in RSS is significant. In practice, we can use a modest value ofB (B= 50) to

obtain a reasonable tradeoff between the computational time involved and the desired de-

crease in RSS. Moreover, the BKPCA procedure can be parallelized easily lowering their

computational time which is not significantly greater than the computational time for other

procedures.

7 Conclusions

A new method to approximate the preimage of a denoised signalis provided that uses

bagging to compensate for noisy training data. For applications such as manufacturing

analysis and improvement it is important to interpret and visualize results so that the

preimage problem is an important element to extend analytical methods in these domains.

However, noise-less training data can be problematic. Our BKPCA method substantially

59

improves the original methods in our experimental results on the datasets here. The im-

provement is most pronounced when the parameters differ from those that minimize the

RSS. Consequently, BKPCA improves the robustness of the base algorithm. Visual com-

parison with the true images provide evidence that the modelselected was able to identify

the underlying variation structure. Although BKPCA is slightly more computationally ex-

pensive due to the bootstrap replicates, the algorithm still ran quickly in our experiment.

Furthermore, the bagging approach easily lends itself to a parallel implementation that can

increase the speed of computations.

We currently propose an ensemble approach for estimating the preimage by averaging

over several preimage estimates obtained from different bootstrap samples from the train-

ing data. Each bootstrap sample consists of observations which are randomly drawn from

the original training set with replacement. In future, we would like to investigate whether

sampling without replacement has an effect on our preimage estimate. Finally, in addition

to randomly selecting instances from training data, we would like to randomly select fea-

tures from the training set and estimate preimages from an ensemble of feature subsets.

This is also expected to provide robustness to the noise in data.

60

TABLE 7. List of symbols used in Chapter 1

N Number of data points
p Dimension of each data point in input space
F Kernel feature space
xi Data pointi in input data matrix,i = 1,2, · · · ,N
X Input data matrix
x̂i Denoisedith point, i = 1,2, · · · ,N
X̂ Denoised matrix
x Test point
x̂ Estimated preimage of test point
t True image of test pointx
O Matrix with all elements 1/N
B Number of bootstrap samples
l Number of top nonzero eigenvalues chosen
v Eigenvectors ofC
C Covariance matrix in kernel feature spaceF
ααα Eigenvectors ofK
K Kernel matrix
X̂(b) Denoised matrix frombth bootstrapped sample,b= 1,2, . . . ,B
ϕ(·) Mapping from input space to kernel feature spaceF
K̃ Modified kernel matrix
βk Projections on thekth component fork= 1,2, . . . , l
t i ith data point in true data matrix,i = 1,2, . . . ,N
d Dimension of manifold in which true data reside
Plϕ(x) Denoised point inF
D0 Training data set in BKPCA algorithm
Dtest Test data set in BKPCA algorithm
σ Parameter for Gaussian kernel
s Parameter for Polynomial kernel
n Number of nearest neighbors
Db Bootstrap sample,b= 1,2, . . . ,B
ρ(x̂) Squared distance betweenϕ(x̂) andPlϕ(x)
Ω Terms independent of̂x in calculatingρ(x̂)

61

CHAPTER 4

A SERIAL APPROACH TO VARIATION PATTERNS IN KERNEL PCA

1 Introduction

Massive amount of in-process data is ubiquitous in many manufacturing organizations.

With advances in data acquisition and storage technologies, it is now possible to track sev-

eral thousands of dimensional characteristics. Datasets collected are in the form of spatial

profiles, images or time series. Analyzing this data to gleanuseful information is necessary

to identify root causes of product or process variation. This can provide actionable insights

to engineers to make decisions.

Consider an example for manufacturing automotive engine gaskets. A critical compo-

nent on the gasket is a bead which is used to create a seal. Using a beaded gasket distributes

the load on the gasket to the areas where the bead is applied and often removes the need

to reconfigure the flange. The data is collected by scanning a stylus across the gasket bead

to obtain a profile where each profile can be discretized into afixed number of points. For

each part, the measurement vector (data) consists of measuring the vertical axis profile

heights at each of the points. A signal is observed by the flattening and elongation of bead

on each part. This signal is the result of a systematic part-to-part variation pattern due to

application of load on the gasket. However, this signal can be obfuscated by noise. We

also note that the pattern (represented by the relationships between different elements of

the measurement vectors for all parts) is nonlinear.

62

In the above example, the non-linear pattern obtained when asingle source of variation

(corresponding to bead flattening/elongation) is present in the process. In practice, multiple

sources of variation interact with each other resulting in aunique pattern in the data. A

key step to identifying root causes of process variability is ,thus, identifying the important

variation patterns. Noise makes it harder for the underlying pattern to be recognized in real

conditions. Therefore, it is important to remove noise fromthe dataset in order to visualize

the underlying patterns.

There are many techniques proposed in literature to remove noise. Principal compo-

nent analysis (PCA) is a widely used technique in manufacturing control literature. PCA

provides a simple way to identify the variation pattern. However, PCA tends to lose its ef-

fectiveness in identifying patterns when the resultant pattern is nonlinear in nature as shown

by [22]. They extended the linear PCA framework to account for nonlinear structures in

the data set through kernel principal component analysis (KPCA). KPCA maps the data

in the input space to a higher dimensional (possibly infinite) feature space via a nonlinear

mapϕ : Rp→ Rm wherem is the number of features and the feature space is denoted asF.

Linear PCA is then applied to the mapped points in the featurespace to extract components

that are nonlinear in the original input space. Kernel trickshown by [1] is used to compute

the inner products in the feature space, thus avoiding the computational burden required to

explicitly do the same in the large dimensional feature space. Projections onto a smaller

subset of principal component directions in the feature space can be used to denoise signals.

To interpret the denoised signal, it is valuable to visualize it in the original input space.

This process of obtaining the inverse transformation is referred to as obtaining the preim-

age in KPCA literature. However, such an inverse transformation from the feature space to

the input space does not typically exist as shown by [16]. Instead an approximate preimage
63

is typically sought which is the focus of this research. Previous work by [16] defined this

as a nonlinear optimization problem and approached it usingstandard gradient descent. A

drawback of using standard gradient descent methods is their convergence to local minima.

Also this method is sensitive to choices of initial startingvalues. [11] used an algebraic

approach to find approximate preimages by exploiting the relationship between the dis-

tance in feature space and the corresponding distance in input space derived by [26] for

commonly used kernels along with multidimensional scaling(MDS). This method was an

improvement over the one suggested by [16]. [4] applied kernel regression approach to the

preimage problem by formulating the inverse mapping from feature space to input space

as a regression problem. [18] extended the KPCA framework tohandle noise, outlier and

missing data. [30] addressed the problem of estimating a better preimage by adding penalty

terms to the preimage learning process. [23] and [20] considered meta-method to improve

the preimage results through bagging. Recently [8] pointedout limitations inherent in the

orthogonal projection operation in any KPCA algorithm , andproposed to modify it by

incorporating information about the local geometry in the neighborhood of a test point in

feature space so that the projection of the corresponding preimage remains closer to the

full manifold. The full manifold was defined by [8] to be the set of all points in feature

space that have exact preimages. Finally [19] considered feature selection in kernel PCA

with sparse random vectors. This approach can be applied prior to the preimage methods

discussed here to reduce the dimensionality of the problem.

Most of the previous methods to denoise for KPCA assume that the training data are

noise-free. In practice, many cases (such as manufacturingvariation analysis) fail to meet

this assumption. We are only given a noisy training set to learn from and subsequently

denoise to observe the variation pattern. To improve the estimate of the preimage in such
64

cases, we provide a new meta approach. The idea is that the initial estimate of the actual

denoised test set obtained by a KPCA preimage estimation algorithm may not be accurate

because of the inherent noise in the data; hence, successiveiterations of denoising a con-

vex combination of the test set and the corresponding denoised set can lead us to a more

accurate estimate of the actual denoised test set. We also consider another variant of the

above approach where we decrease the number of top eigenvectors chosen in each iteration

at a constant rate. The intuition is that we initially retainall eigenvectors so as not to loose

any information about the pattern in data and as we approach towards the final denoised

preimage, we only retain the top most eigenvectors that willaccount for the structure in

data and get rid of the noise. The remainder of this chapter isorganized as follows. Section

2 offers a brief review of KPCA and the ensuing preimage estimation algorithms. Section 3

discusses our proposed methodology. Section 4 provides experimental results and Section

5 provides conclusions.

2 Background on Preimages in KPCA

KPCA is equivalent to PCA in feature space ([22]). LetX denote the data set withN

instances andF features where the instances are denoted byx1,x2, · · · ,xN. We want to

find the eigenvalues and eigenvectors of the covariance matrix C in feature space. If the

corresponding set of points mapped in the feature spaceϕ(xi), i = 1,2, · · · ,N are assumed

to be centered,C can be calculated by

C =
1
N

N

∑
i=1

ϕ(xi)ϕ(xi)
′ (4.1)

The eigenvaluesλ and eigenvectorsv of matrixC are given by

Cv = λv (4.2)

65

It can be shown that an eigenvector corresponding to non-zero eigenvalue ofC can

be written as a linear combination ofϕ(x1), · · · ,ϕ(xN). Let there be coefficientsαi (i =

1, . . . ,N) such that

v =
N

∑
i=1

αiϕ(xi) (4.3)

Using the above simplification reduces the original problemof finding eigenvalues and

eigenvectors ofC to finding the corresponding eigenvalues and eigenvectors of the kernel

matrixK with entries

K i j := (ϕ(xi) ·ϕ(x j)) (4.4)

The productϕ(xi) ·ϕ(x j) is evaluated using the kernel trick [1] without explicitly comput-

ing the mappingϕ(.).

Let x be a test point in input space with a corresponding centered map ϕ(x) in the

feature space. In order to extract nonlinear principal components for theϕ−image of the

test pointx, we compute its projections on thekth component fork= 1, · · · , l as follows

βk = (vk ·ϕ(x)) =
N

∑
i=1

αk
i (ϕ(xi) ·ϕ(x)) =

N

∑
i=1

αk
i k(x,xi) (4.5)

whereαααk denotes a column vector with entriesα1, . . . ,αN for k= 1, . . . , l . The dot products

are evaluated using a kernel function.

The denoised image in feature space can be obtained by projecting ϕ(x) onto a subspace

spanned by the topl eigenvectors

Pl ϕ(x) =
l

∑
k=1

βkv
k (4.6)

Training data are used to obtain a reliable estimate of the principal component subspace

in feature space onto which the test data can be projected. The overall procedure for ob-

taining the variation pattern in test data can, thus, be summarized in four steps. The first
66

step is to map the training data from input space to feature space. The second step is to

calculate the principal component directions of the training data in feature space as shown

by [22]. The third step is to map the test datax to feature space and then project onto the

space spanned by a small subset of the principal component directions found above. This

projected test data (denoted byPϕ(x)) is also called the denoised data in feature space. In

order to observe the pattern in input space, the denoised data are mapped back from feature

space to input space in the fourth step. This last step is alsoreferred to as obtaining the

preimage ˆx in KPCA literature. The above steps can be seen in Figure 34.

Figure 34. KPCA and the preimage problem. Training data are transformed to feature
space and used to learn a principal component plane. A test point x is transformed and
projected to the plane asPϕ(x). The inverse transform ofPϕ(x) may not exist, and an
approximate preimage ˆx is computed.

The preimage can be used to visualize the variation pattern of the data in input space.

As mentioned, in general, such an inverse mapping from feature space to input space may

not exist, and the preimage cannot always be determined exactly [16]. Hence, several al-

gorithms have been proposed to estimate the preimage. [16] proposed a gradient descent

approach to numerically estimate the preimage matrix which, when mapped to the feature

space, is closest (in terms of Euclidean distance) to the denoised matrix in feature space.
67

Since the objective function (Euclidean distance) to minimize is non-convex, this approach

is sensitive to initial starting solution. [11] used the relationship between distance in input

space and the feature space, and estimated the preimage of a test point as a linear com-

bination of the training data points whose projections in feature space are closest to the

denoised data point in feature space. [11] chose only a few nearest training data points in

order to reduce the computational burden. We refer to the method used by [11] as KMDS.

[4] applied kernel regression to the preimage problem wherethe inverse mapping from fea-

ture space to input space is posed as a regression problem. Both approaches by [11] and

[4] favor noise-free training data.

3 Preimages from Serial Denoising

As discussed before, we want to improve upon the previous approaches proposed in

literature to handle the case when training data is noisy. The overall idea is that since the

training data is noisy, the principal component subspace isnot effectively learned. Thus, we

take an approach to serially learn a reliable estimate of theprincipal component subspace.

We present a method called Serial denoising and a variant of it called Eigen denoising

based on the above concept.

3.1 Serial Denoising

We consider the original test setX0. Let us denote the denoising function (any KPCA

preimage estimation algorithm) applied toX i−1 as g(X i−1) for i = 1,2, · · · ,Nmax. The

denoised data at iterationi is calculated by

X i = (α)X i−1+(1−α)g(X i−1), i = 1,2, · · · ,Nmax (4.7)

HereX i is considered the denoised data at iterationi becauseg(X i−1) is considered as a

large step for denoising. We describe the procedure below inAlgorithm 1.
68

Algorithm 1 Algorithm for serial Denoising

We consider the original test setX0. Fix values for the number of eigenvectorsl , a user-
defined constantα, kernel parameterσ, iter = 1. Fix any other KPCA algorithm specific
parameters (for instance number of nearest neighborsn in KMDS algorithm). We have
to estimate the denoised preimage.
repeat

DenoiseX iter−1 by computingg(X iter−1)
X iter = (α)X iter−1+(1−α)g(X iter−1)
The denoised matrix at stepiter is denoted byX iter

iter← iter+1
until iter = Nmax

The final denoised matrix is obtained at the iteration where RSS is the minimum, the

RSS in each iteration being defined as

RSSi = ‖X i−X∗‖F , i = 1,2, · · · ,Nmax (4.8)

whereX∗ is the true data matrix. This is easy to calculate when we knowthe true data

matrix. In practice, however, the true data matrix is not known beforehand, and thus, we

need a stopping rule to determine the final denoised matrix. Sometimes signal-to-noise

ratio (SNR) is also used for evaluation purpose where SNR (indB) for denoised matrixX

is defined as

SNR=−10log10
‖X−X∗‖2F
‖X∗‖2F

(4.9)

It can be easily verified that low values of RSS will correspond to high values of SNR.

3.1.1 Stopping Rule for serial DenoisingWe define the stopping rule as follows. Let

Li = ‖X i−X i−1‖F , i = 1,2, · · · ,Nmax (4.10)

We defineε as a small positive constant. For serial denoising, we stop at iterationi when

Li−1−Li ≤ ε; else we stop at iterationi = Nmax.

69

3.2 Eigen Denoising

We consider another variant of serial denoising called Eigen denoising (EKPCA) where

we decrease the number of eigenvectors at a constant rate in each iteration. The eigenvec-

tors are recomputed from the kernel matrix in each iteration. Also letg(.) denote any KPCA

preimage estimation function applied to the data. EKPCA is described in Algorithm 2.

Algorithm 2 Algorithm for Eigen Denoising

We consider the original test setX0. Fix values for the initial fixed number of eigenvec-
torsl , a user-defined constantα, kernel parameterσ, a user- defined constantδ, iter = 1.
Fix any other parameters used in a KPCA preimage estimation algorithm (for instance
number of nearest neighborsn in KMDS algorithm). We estimate the denoised data set
as follows.
repeat

l∗← l −δ(iter−1)
DenoiseX iter−1 by computingg(X iter−1) using eigenvectors corresponding to topl∗

eigenvalues
X iter = (α)X iter−1+(1−α)g(X iter−1)
The denoised matrix at stepiter is denoted byX iter

iter← iter+1
until l∗ ≤ 1

Note that by settingδ = 0, eigen denoising becomes equivalent to serial denoising.The

final denoised matrix is obtained at the iteration where RSS is the minimum, the RSS being

defined as

RSSi = ‖X i−X∗‖F , i = 1,2, · · · ,Nmax (4.11)

whereX∗ is the true data matrix. This is easy to calculate when we knowthe true data

matrix. In practice, however, the true data matrix is not known beforehand, and thus, we

need a stopping rule to estimate the final denoised matrix.

3.2.1 Stopping Rule for Eigen DenoisingWe define the stopping rule as follows. Let

Li = ‖X i−X i−1‖F , i = 1,2, · · · ,Nmax (4.12)

70

We defineε as a small positive constant. For eigen denoising, we stop atiterationi when

Li−1−Li ≤ ε; else we stop whenl ≤ 1, wherel is the number of eignevectors.

Basically, we can think of our parametersα for serial denoising (withδ for EKPCA)

providing some form of shrinkage that allows us to serially approach the final denoised

preimage. At each step, we re-estimate our prinicpal component subspace beased on the

denoising at the previous step. This is expected to perform better than estimating the prin-

cipal component subspace only once especially in situations when we have noisy training

data. Our stopping rule also ensures that we obtain the desired preimage in a fewer number

of iterations. Another advantage of our approach is it workswith any KPCA algorithm in

literature.

4 Experimental Results

We consider two datasets- a classical hand-written digits dataset and a face dataset for

the purpose of our experiments. We evaluate our serial denoising procedure as well as its

variant (EKPCA) on the data sets. We use a Gaussian kernel forour experiments given by

the following equation

k(xi ,x j) = exp

(

−
∥

∥xi−x j
∥

∥

2
F

σ

)

(4.13)

whereσ is a parameter related to the width of the kernel between datapointsxi ,x j .

4.1 Experiment Results for Serial Denoising on USPS Digits Dataset

We consider the USPS digits dataset at http://yann.lecun.com/exdb/mnist/. It consists

of 16×16 gray scale images of zip code digits (0-9) automatically scanned from envelopes

by the U.S.Postal Service. We initially investigate the effects of different parameters on

our results. To see the effect ofα, we chose digit 9 and setσ = 50, l = 100, n = 10,

71

andNmax= 200. 1 We added Gaussian noise withµ = 0 andσG = 1. We variedα ∈

{0.9,0.7,0.5,0.3,0.1,0}. Figure 35 shows the plots of RSS against the number of iterations

for different values ofα as specified below each subfigure. For reference, we also show

RSS obtained usingX0 (‖X0−X∗‖F) as the acronym “RAWRSS”, and the RSS obtained

from the KMDS method (‖g(X0)−X∗‖F) as the acronym“KMDSRSS”.

Based on the experiments, we found that the minimum value of RSS achieved under

differentα values is not significantly different. However, we also found that for high values

of α (α = 0.9), the RSS decreases slowly over the iterations whereas forsmall values ofα,

RSS decreases initially to the lowest value and then shows anupward trend. In practice,

therefore, we will use the stopping rule for small values ofα to obtain the denoised data

matrix as described previously. In order to show the efficacyof the stopping rule, we chose

to experiment on all digits 0-9. We choseσ = 50; l ∈ {50,100}; α = 0.1; n = 10. We

setNmax= 200 which is large enough. We added Gaussian noise withµ = 0 andσG =

1. Figures 36-37 show the results. The acronym “KMDSRSS” shows the RSS achieved

by the KMDS method; the acronym “ORACLERSS” stands for the true minimum RSS

achieved theoretically by our method; the acronym “STOPRULERSS” stands for the RSS

achieved practically using the stopping rule. We would liketo mention that the RSS cannot

be calculated in practice becasue we won’t know the true datamatix. We used the true

matrix here only to show that our stopping rule produces RSS (“STOPRULERSS”) which

is close enough (slightly higher than) to the true minimum RSS (“ORACLERSS”) while

significantly lower than the RSS achieved by the KMDS method.Also the stopping rule is

simple enough to be implemented in practice. Forα ∈ {0.1,0} and all the digits, we show

1similar results were obtained for other digits and other parameter settings also

72

0 50 100 150 200
120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(a) α = 0.9

0 50 100 150 200
120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(b) α = 0.7

0 50 100 150 200
100

120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(c) α = 0.5

0 50 100 150 200
100

120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(d) α = 0.3

0 50 100 150 200
100

120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(e) α = 0.1

0 50 100 150 200
100

120

140

160

180

200

220

240

260

280

number of iterations

R
S

S

RSS
RAWRSS
KMDSRSS

(f) α = 0

Figure 35. Effect of α on serial denoising of digit 9 withσ = 50, l = 100,n= 10,Nmax=
200, andσG = 1

the plot of the iteration number at which the ORACLERSS is attained versus the iteration

number at which the serial denoising stops due to stopping rule in Figure 38.

We did some more experiments on digits 7 and 9 by settingn = 25 and rest other

parameters as described previously. The results shown in Figure 39 are similar to the results

obtained in the previous figures.

73

3.5 4 4.5 5 5.5 6 6.5 7
120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit0
KMDSnu100digit0
ORACLEnu50digit0
ORACLEnu100digit0
STOPRULEnu50digit0
STOPRULEnu100digit0

(a) Digit 0

3.5 4 4.5 5 5.5 6 6.5 7
60

80

100

120

140

160

180

200

log(sigma)

R
S

S

KMDSnu50digit1
KMDSnu100digit1
ORACLEnu50digit1
ORACLEnu100digit1
STOPRULEnu50digit1
STOPRULEnu100digit1

(b) Digit 1

3.5 4 4.5 5 5.5 6 6.5 7
140

145

150

155

160

165

170

175

180

185

log(sigma)

R
S

S

KMDSnu50digit2
KMDSnu100digit2
ORACLEnu50digit2
ORACLEnu100digit2
STOPRULEnu50digit2
STOPRULEnu100digit2

(c) Digit 2

3.5 4 4.5 5 5.5 6 6.5 7
130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit3
KMDSnu100digit3
ORACLEnu50digit3
ORACLEnu100digit3
STOPRULEnu50digit3
STOPRULEnu100digit3

(d) Digit 3

3.5 4 4.5 5 5.5 6 6.5 7
120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit4
KMDSnu100digit4
ORACLEnu50digit4
ORACLEnu100digit4
STOPRULEnu50digit4
STOPRULEnu100digit4

(e) Digit 4

Figure 36. Comparison of RSS values achieved by KMDS method with serialdenoising
for digits 0-4 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n= 10;Nmax= 200;
Gaussian noise withµ= 0 andσG = 1

We also experimented on the digits dataset with the gradientdescent algorithm. Figure

40 shows the results of the experiments on digits 6 and 8. It can be clearly seen that

the serial denoising procedure improves upon the base algorithm. Also we see that the

74

3.5 4 4.5 5 5.5 6 6.5 7
135

140

145

150

155

160

165

170

175

180

185

log(sigma)

R
S

S

KMDSnu50digit5
KMDSnu100digit5
ORACLEnu50digit5
ORACLEnu100digit5
STOPRULEnu50digit5
STOPRULEnu100digit5

(a) Digit 5

3.5 4 4.5 5 5.5 6 6.5 7
120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit6
KMDSnu100digit6
ORACLEnu50digit6
ORACLEnu100digit6
STOPRULEnu50digit6
STOPRULEnu100digit6

(b) Digit 6

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit7
KMDSnu100digit7
ORACLEnu50digit7
ORACLEnu100digit7
STOPRULEnu50digit7
STOPRULEnu100digit7

(c) Digit 7

3.5 4 4.5 5 5.5 6 6.5 7
130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit8
KMDSnu100digit8
ORACLEnu50digit8
ORACLEnu100digit8
STOPRULEnu50digit8
STOPRULEnu100digit8

(d) Digit 8

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit9
KMDSnu100digit9
ORACLEnu50digit9
ORACLEnu100digit9
STOPRULEnu50digit9
STOPRULEnu100digit9

(e) Digit 9

Figure 37. Comparison of RSS values achieved by KMDS method with serialdenoising
for digits 5-9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n= 10;Nmax= 200;
Gaussian noise withµ= 0 andσG = 1

minimum values of RSS obtained under different values ofα are not significantly different.

75

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

ORACLERSS ITERATION

S
T

O
P

R
U

LE
R

S
S

 IT
E

R
A

T
IO

N

(a) α = 0.1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

ORACLERSS ITERATION

S
T

O
P

R
U

LE
R

S
S

 IT
E

R
A

T
IO

N

(b) α = 0

Figure 38. Plot of the iteration number at which the ORACLERSS is attained versus the
iteration number at which the serial denoising stops due to stopping rule for all digits 0-9
settingσ = 50, l = 100,n= 10,Nmax= 10,α = 0.1

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit7
KMDSnu100digit7
ORACLEnu50digit7
ORACLEnu100digit7
STOPRULEnu50digit7
STOPRULEnu100digit7

(a) Digit 7

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSnu50digit9
KMDSnu100digit9
ORACLEnu50digit9
ORACLEnu100digit9
STOPRULEnu50digit9
STOPRULEnu100digit9

(b) Digit 9

Figure 39. Comparison of RSS values achieved by KMDS method with serialdenoising for
digits 7 and 9 settingσ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n= 25;Nmax= 200;
Gaussian noise withµ= 0 andσG = 1

4.2 Results of Serial Denoising on Face Data

We also applied our serial procedure on the face image data set available at

http://isomap.stanford.edu/datasets.html.

The data set contains 698 samples and dimensionality of eachsample is 4096. For our

purpose, we randomly took 300 samples, added independent Gaussian noise (µ = 0 and

σG = 0.7) to the samples to create the noisy test set. We used KMDS andgradient descent

algorithm for denoising all images, and compare it with the respective serial denoising pro-
76

0 50 100 150 200 250 300 350
170

180

190

200

210

220

230

240

250

260

iterations for σ =3

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(a) Digit 6, l = 200

0 50 100 150 200 250 300
100

120

140

160

180

200

220

240

260

iterations for σ =3

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(b) Digit 6, l = 50

0 50 100 150 200 250 300
180

190

200

210

220

230

240

250

260

iterations for σ =3

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(c) Digit 8, l = 200

0 50 100 150 200 250 300 350
120

140

160

180

200

220

240

260

iterations for σ =3

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(d) Digit 8, l = 50

Figure 40. Comparison of RSS values achieved by gradient descent algorithm with the
serial denoising procedure for digits 6 and 8 forl ∈ {50,200}; Gaussian noise withµ= 0
andσG = 1

cedures. Figure 41 shows the boxplot results of RSS obtainedfor each method. It is clear

that the serial denoising procedure is better than the base algorithm.

For the plots shown in Figure 41, we compute the difference between RSS obtained

through the original method and our serial denoising methodfor each of the 300 instances.

We then performed one-sided Wilcoxon signed-rank test (thealternate hypothesis being the

median difference is greater than zero). The p-values obtained for all the tests on all the

plots were extremely small (smaller than 0.0001). Thus, ourmethod provides statistically

significant improvement over the results obtained from other methods.

77

10 15 20 25

Original(l=150)

Serial(l=150)

Original(l=200)

Serial(l=200)

RSS

(a) KMDS algorithm versus serial
denoising

28 30 32 34 36 38 40 42

Original(l=150)

Serial(l=150)

Original(l=200)

Serial(l=200)

RSS

(b) Gradient descent algorithm ver-
sus serial denoising

Figure 41. Comparison of RSS values for the face image data set with Gaussian noise
(µ= 0 andσG = 0.7). The parameters other thanl (the number of eigenvalues) is set to the
values as described in the respective references

We also show the visual results of denoising the face image dataset by applying the

gradient descent algorithm as well as applying the serial denoising procedure in Figure 42.

The first row shows uncorrupted face images. The second row shows noisy faces obtained

from added Gaussian noiseµ= 0 andσ = 0.7. We can see that visually the figures obtained

from serial denoising (fourth row) are clearer than those obtained from the gradient descent

method (third row).

We also calculated the computational time involved in running the original methods

as well as our serial denoising procedure (without the stopping rule criterion). The pa-

rameter settings were selected to provide the minimum RSS value. We choseNmax∈

{50,100,200,500}. We used an Intel (R) Core (TM)2 Quad CPU Q6600 computer with

2.4 GHz clock speed and 4.00 GB RAM. For the experiments, the average time in seconds

required to denoise a single data point (with standard error) is reported for different cases

in Tables 8 through 9.

78

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

Figure 42. Results for selected face images withl = 150. First row shows noiseless refer-
ence images. Second row shows noisy test images (Gaussian noiseµ= 0 andσG = 0.7).
Third row shows denoised preimages from the gradient descent method. Fourth row shows
denoised preimages from our serial denoising method. The improved results from serial
denoising can be seen.

TABLE 8. Average time in seconds required to denoise a data point fromthe USPS digits
data set. The standard error is reported within parenthesis.

Method Original Nmax= 50 Nmax= 100 Nmax= 200 Nmax= 500
Gradient Descent 0.15 (0.01) 5.5 (0.08) 10.9 (0.13) 21.5 (0.15) 53.8 (0.21)

KMDS 0.31 (0.01) 13.1 (0.06) 25.9 (0.11) 52.1 (0.59) 130.2 (0.85)

4.3 Experiment Results for Eigen Denoising

Now we show our results on the data sets using Eigen denoisingprocedure. We fixδ=1

so thatl is reduced serially (this is the serialest possible rate of reduction). We demonstrate

the usefulness of the stopping rule in Figures 43-44 when we conduct experiments on all

the digits 0-9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n= 10; δ = 1. The

acronym “ORACLERSS” stands for the true minimum RSS achieved theoretically by our
79

TABLE 9. Average time in seconds required to denoise a data point fromthe face image
data set. The standard error is reported within parenthesis.

Method Original Nmax= 50 Nmax= 100 Nmax= 200 Nmax= 500
Gradient Descent 0.28 (0.01) 25.1 (0.18) 49.9 (0.1) 99.5 (0.3) 250.5 (0.64)

KMDS 0.34 (0.01) 16.8 (0.08) 33.0 (0.2) 67.8 (0.2) 165.3 (0.23)

method; the acronym “STOPRULERSS” stands for the RSS achieved practically using the

stopping rule; the acronym “KMDSdeduct” refers to the fact that the KMDS method is

evaluated at the number of eigenvalues at which the Eigen Denoising stopped (in other

words, deducting an amount (δ× iteration) from the initial number of eigenvalues chosen

whereiteration is the iteration number when Eigen Denoising stops).

We did some more experiments on digits 7 and 9 by settingn = 25 and rest other

parameters as described previously. The results shown in Figure 45 are similar to the results

obtained in the previous figures.

We also conducted some experiments on digits 4, 6, and 8 usingthe gradient descent

algorithm. We begin with 200 eigenvectors initially and decrease it by one at each iteration.

Figure 46 shows the results of our experiments.

5 Conclusion

A new method to approximate the preimage of a denoised signalis provided that uses

a serial approach for estimating preimages.

Furthermore, a variant to the above approach is also proposed that gradually discards the

irrelevant eigenvectors. We also design and employ a simplestopping rule which ensures

that we obtain the final preimage within an acceptable threshold, and the procedure is

completed in fewer iterations. Our method improves upon theoriginal methods in the

experimental results shown on the datasets here.
80

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

log(sigma)

R
S

S

KMDSdeductnu50digit0
KMDSdeductnu100digit0
ORACLEnu50digit0
ORACLEnu100digit0
STOPRULEnu50digit0
STOPRULEnu100digit0

(a) Digit 0

3.5 4 4.5 5 5.5 6 6.5 7
60

80

100

120

140

160

180

200

log(sigma)

R
S

S

KMDSdeductnu50digit1
KMDSdeductnu100digit1
ORACLEnu50digit1
ORACLEnu100digit1
STOPRULEnu50digit1
STOPRULEnu100digit1

(b) Digit 1

3.5 4 4.5 5 5.5 6 6.5 7
140

145

150

155

160

165

170

175

180

185

log(sigma)

R
S

S

KMDSdeductnu50digit2
KMDSdeductnu100digit2
ORACLEnu50digit2
ORACLEnu100digit2
STOPRULEnu50digit2
STOPRULEnu100digit2

(c) Digit 2

3.5 4 4.5 5 5.5 6 6.5 7
130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit3
KMDSdeductnu100digit3
ORACLEnu50digit3
ORACLEnu100digit3
STOPRULEnu50digit3
STOPRULEnu100digit3

(d) Digit 3

3.5 4 4.5 5 5.5 6 6.5 7
120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit4
KMDSdeductnu100digit4
ORACLEnu50digit4
ORACLEnu100digit4
STOPRULEnu50digit4
STOPRULEnu100digit4

(e) Digit 4

Figure 43. Comparison of RSS values achieved by KMDS method with eigen denoising
for digits 0-4 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n = 10; δ = 1;
Gaussian noise withµ= 0 andσG = 1

81

3.5 4 4.5 5 5.5 6 6.5 7
135

140

145

150

155

160

165

170

175

180

185

log(sigma)

R
S

S

KMDSdeductnu50digit5
KMDSdeductnu100digit5
ORACLEnu50digit5
ORACLEnu100digit5
STOPRULEnu50digit5
STOPRULEnu100digit5

(a) Digit 5

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit6
KMDSdeductnu100digit6
ORACLEnu50digit6
ORACLEnu100digit6
STOPRULEnu50digit6
STOPRULEnu100digit6

(b) Digit 6

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit7
KMDSdeductnu100digit7
ORACLEnu50digit7
ORACLEnu100digit7
STOPRULEnu50digit7
STOPRULEnu100digit7

(c) Digit 7

3.5 4 4.5 5 5.5 6 6.5 7
130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit8
KMDSdeductnu100digit8
ORACLEnu50digit8
ORACLEnu100digit8
STOPRULEnu50digit8
STOPRULEnu100digit8

(d) Digit 8

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

190

log(sigma)

R
S

S

KMDSdeductnu50digit9
KMDSdeductnu100digit9
ORACLEnu50digit9
ORACLEnu100digit9
STOPRULEnu50digit9
STOPRULEnu100digit9

(e) Digit 9

Figure 44. Comparison of RSS values achieved by KMDS method with eigen denoising
for digits 5-9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n = 10; δ = 1;
Gaussian noise withµ= 0 andσG = 1

82

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

log(sigma)

R
S

S

KMDSdeductnu50digit7
KMDSdeductnu100digit7
ORACLEnu50digit7
ORACLEnu100digit7
STOPRULEnu50digit7
STOPRULEnu100digit7

(a) Digit 7

3.5 4 4.5 5 5.5 6 6.5 7
110

120

130

140

150

160

170

180

log(sigma)

R
S

S

KMDSdeductnu50digit9
KMDSdeductnu100digit9
ORACLEnu50digit9
ORACLEnu100digit9
STOPRULEnu50digit9
STOPRULEnu100digit9

(b) Digit 9

Figure 45. Comparison of RSS values achieved by KMDS method with eigen denoising
for digits 7 and 9 settingσ ∈ {50,100,500,1000}; l ∈ {50,100}; α = 0.1; n= 25; δ = 1;
Gaussian noise withµ= 0 andσG = 1

0 20 40 60 80 100 120 140 160 180 200
100

120

140

160

180

200

220

240

260

iterations for σ =9

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(a) Digit 4

0 20 40 60 80 100 120 140 160 180 200
100

120

140

160

180

200

220

240

260

iterations for σ =9

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(b) Digit 6

0 20 40 60 80 100 120 140 160 180 200
100

120

140

160

180

200

220

240

260

iterations for σ =9

R
S

S

RAWRSS

serialeigendenoise α = 0.9

serialeigendenoise α = 0.5

serialeigendenoise α = 0

(c) Digit 8

Figure 46. Comparison of RSS values achieved by gradient descent method with serial
denoising for digits 4, 6, and 8 settingδ = 1; Gaussian noise withµ= 0 andσG = 1

83

CHAPTER 5

FEATURE SELECTION FOR KERNEL PRINCIPAL COMPONENT ANALYSIS

1 Introduction

Advances in signal acquisition and computational processing coupled with cheap stor-

age have resulted in massive multivariate data being collected in today’s processes like

semiconductor manufacturing, automobile-body assemblies, inspection systems, etc. The

data can be in form of spatial profiles, time series or images where the measurements are

recorded over several features. These features are affected by different sources of variation

which result in variation patterns in the data. The goal, therefore, is to identify these sources

of variation based on the process data collected. The variation pattern may be present in

only a small subset of the process variables that are collected. Finding this relevant subset

of features is, therefore, critical to understand the process, and is the focus of our work

presented in this chapter.

Principal Component Analysis (PCA) is a common technique toidentify variation pat-

tern in data by projecting along the directions of maximum variability in the data. However,

PCA can only identify linear relationships among features in the data. Kernel Principal

Component Analysis (KPCA) developed by [22] extends PCA to the case where data con-

tain non-linear patterns. KPCA identifies non-linear patterns in data by mapping the data

from input space to a high-dimensional (possibly infinite) feature space, and performing

PCA in the feature space. This is achieved by employing the kernel trick ([1]). Thus, only

calculations in terms of dot products in the input space are required, without an explicit

mapping to the feature space.

84

To visualize the variation pattern in input space, an inverse transform is used to map

the denoised data from feature space back to the input space.The exact preimage of a de-

noised point in feature space might not exist, so that a number of algorithms for estimating

approximate preimages have been proposed ([16], [11], [30]). A meta-method to improve

the preimage results through bagging was considered by [23]. A sequential procedure to

obtain preimage was developed by [21].

Our task now is to identify the relevant subset of the original set of features over which

the pattern exists a feature selection task). The difficultyis to handle the non-linear relation-

ships between features in input space. Because the feature space in KPCA already provides

an avenue to consider higher-order interactions between features, it is more appealing to

apply a feature selection procedure in feature space itself. However, it is not always pos-

sible to obtain the feature representation in feature space(for example, in the case of a

Gaussian kernel) because the data are not explicitly mapped. Therefore, the challenge here

is to perform feature selection in the feature space.

Some work has considered feature selection in feature spacefor supervised learning.

[2] provided a weighted feature approach where weights are assigned to features while

computing the kernel. This feature weighting is incorporated into the loss function corre-

sponding to classification or regression problem and a lassopenalty is put on the weights.

The features corresponding to non-zero weights obtained after minimizing the objective

(loss function with penalty) are considered the important ones. Similarly, recent work

([14] and [13]) also employed feature weighting for the cases of Support Vector Machine

(SVM) classification and regression, respectively. For both the cases, an anisotropic Gaus-

sian kernel was used to supply weights to features. Specifically, [14] provided an iterative

algorithm for solving the feature selection problem by embedding the feature weighting in
85

the dual formulation of SVM problem. The algorithm begins with an initial set of weights.

At each iteration, it solves the SVM problem for the given setof feature weights, updates

the weights using the gradient of the objective function, and removes the features that are

below a certain given threshold. This procedure is repeatedtill convergence. Finally, the

features obtained with non-zero weights are considered important.

Consider feature selection in feature space for unsupervised learning. One common

aspect of all these algorithms, similar to their counterparts in supervised setting, is they

involve some kind of feature weighting mechanism, and the relevant features are obtained

by regularizing (shrinking) the weights of irrelevant features using some criteria. [29]

proposed a method for feature selection in Local Learning-Based Clustering [27] by reg-

ularizing the weights assigned to features. [17] dealt withmeasuring variable importance

in KPCA. They computed the kernel between two data points as weighted sum of indi-

vidual kernels where each individual kernel is computed on asingle feature of each of the

two data points, and the weights assigned to each kernel serve as a measure of importance

of the feature involved in computing the kernel. They formulated a loss function where

a lasso penalty was imposed on the weights to determine the non-zero weights (and the

corresponding relevant features).

The approaches provided in the literature focus on the case when noise-free training

data are available. However, this is not the case in areas like manufacturing variation anal-

ysis. In practice, the data are corrupted with noise and has alot of irrelevant features. Thus,

we work with a noisy data set from which we need to find the relevant subset of the features

over which the patterns in the data exist. To this end, we propose our novel approach.

As pointed out previously, an innovative way to do feature selection in high-

dimensional feature space is to assign weights to features in input space. By using such
86

an approach, we can compute the kernel using all the featuresinstead of iteratively com-

puting it using a subset of features at a time. The goal next isto identify the weights (by

some regularization criterion) so that the non-zero weights correspond to the relevant fea-

tures. We propose an alternate approach for this feature weighting mechanism. Instead

of trying to determine the feature weights through a regularization approach, we multiply

the features by sparse random vectors whose entries are independent and identically dis-

tributed drawn from a distribution (such as Gaussian). After projecting data points onto

random subsets of features, we measure feature importance from differences in preimages,

where preimages are computed with and without a feature. Therefore, more important fea-

tures are expected to result in greater differences. The process is repeated iteratively with

different sparse random vectors and the differences are averaged to estimate the final fea-

ture importance. Our approach above provides robustness toirrelevant features in the data

by being able to project only on a small random subset of features at a time, and calculating

the final mapped data matrix in input space from an ensemble offeature subsets. Another

advantage of our approach is it works with any KPCA preimage algorithm.

We organize the remaining part of our chapter as follows. Section 2 provides a brief

description of different methods used to visualize the variation patterns in KPCA. For our

feature selection method, we can consider any one of them as the base algorithm. Section

3 presents a mathematical description of our methodology. Section 4 shows the results of

implementing our algorithm on several simulated datasets.We also compare the results

of our approach to the results obtained from the methodologydescribed by [17]. Finally

Section 5 provides conclusions.

87

2 Background on Preimages in KPCA

KPCA is equivalent to PCA in feature space ([22]). LetX denote the data set with

N instances andF features where the instances are denoted byx1,x2, · · · ,xN. Similar to

PCA, we want to find the eigenvalues and eigenvectors of the covariance matrixC in feature

space. If the corresponding set of points mapped in the feature spaceϕ(xi), i = 1,2, · · · ,N

are assumed to be centered,C can be calculated by

C =
1
N

N

∑
i=1

ϕ(xi)ϕ(xi)
′ (5.1)

The eigenvaluesλ and eigenvectorsv of matrixC are given by

Cv = λv (5.2)

It can be shown that an eigenvector corresponding to non-zero eigenvalue ofC can be

written as a linear combination ofϕ(x1), · · · ,ϕ(xN). Using this simplification reduces the

original problem of finding eigenvalues and eigenvectors ofC to finding the corresponding

eigenvalues and eigenvectors of the kernel matrixK with entries

K i j := (ϕ(xi) ·ϕ(x j)) (5.3)

The productϕ(xi) ·ϕ(x j) is evaluated using the kernel trick [1] without explicitly comput-

ing the mappingϕ(.).

Training data are used to obtain a reliable estimate of the principal component subspace

in feature space onto which the test data can be projected. The procedure for visualizing

variation pattern in test data can, thus, be summarized in four steps. The first step is to map

the training data from input space to feature space via the kernel trick [1]. The second step

is to calculate the principal component directions of the training data in feature space as
88

shown in [22]. The third step is to map the test datax to feature space and then project onto

the space spanned by a small subset of the principal component directions found above.

This projected test data (denoted byPϕ(x)) is also called the denoised data in feature space.

In order to observe the pattern in input space, the denoised data are mapped back from

feature space to input space in the fourth step. This last step is also referred to as obtaining

the preimage ˆx in KPCA literature. The above steps can be seen in Figure 47.

Figure 47. KPCA and the preimage problem. Training data are transformed to feature
space and used to learn a principal component plane. A test point x is transformed and
projected to the plane asPϕ(x). The inverse transform ofPϕ(x) may not exist, and an
approximate preimage ˆx is computed.

The preimage can be used to visualize the variation pattern of the data in input space.

As mentioned, in general, such an inverse mapping from feature space to input space may

not exist, and the preimage cannot always be determined exactly [16]. Hence, several al-

gorithms have been proposed to estimate the preimage. [16] proposed a gradient descent

approach to numerically estimate the preimage matrix which, when mapped to the feature

space, is closest (in terms of Euclidean distance) to the denoised matrix in feature space.

Since the objective function (Euclidean distance) to minimize is non-convex, this approach

is sensitive to initial starting solution. [11] used the relationship between distance in input
89

space and the feature space, and estimated the preimage of a test point as a linear com-

bination of the training data points whose projections in feature space are closest to the

denoised data point in feature space. [11] chose only a few nearest training data points

in order to reduce the computational burden. [4] applied kernel regression to the preim-

age problem where the inverse mapping from feature space to input space is posed as a

regression problem. Both approaches by [11] and [4] favor noise-free training data.

3 Feature Selection Using Sparse Random Vectors with Matched Pairs

The main idea of our approach is to understand the contribution of a feature towards the

variation pattern in the data. When we project onto a small subset of features at a time using

sparse random projections, we essentially try to capture the effect of that subset of features

in feature space. By repeating this procedure over a number of iterations, we create a

diversified ensemble of feature subsets which account for the possible interactions between

features that give rise to the variation pattern in the data.Matched pairs of projections are

created for each feature to estimate the effect of the feature on the variation pattern. We

calculate the difference in the preimage as a result of excluding the feature. Thus, important

features are expected to result in high differences.

Let w be a sparse random vector of dimensionF where⌊γF⌋ entries are non-zero.

Hereγ is a parameter that controls sparseness. The entries in the sparse random vector are

independently sampled from a distribution (such as Gaussian). LetB be a fixed number of

iterations. LetK be the kernel matrix obtained from instances in the input space. Letxi

andx j denote two instances in input space. Assume that we are usinga Gaussian kernel.

The i j th entry inK is calculated as

k(xi ,x j) = exp

(

−
∥

∥xi−x j
∥

∥

2
F

σ

)

. (5.4)

90

For the purpose of our feature selection procedure, we modify K to Kw where we obtain

the correspondingi j th entry inKw as

kw(xi ,x j) = exp

(−(wTxi−wTx j)
2

σ

)

. (5.5)

We also normalizedw to unit length in equation 5.5. Preliminary experiments, however,

didn’t show meaningful differences in results obtained from normalized and nonnormalized

w.

For eachf = 1,2, · · · ,F in each iterationb (b= 1,2, · · · ,B), we generate a sparse ran-

dom vectorw. To create matched pairs, we transformw to w∗ by the following mechanism.

Denotef th entry ofw by w(f) and the corresponding entry inw∗ asw∗(f). Then, we set

w∗(f) =

0 if w(f) 6= 0

1 otherwise

(5.6)

Thus, for every featuref at each iterationb, we generate matched pairsw andw∗ which

differ only at thef th entry. We usew to obtainKw as shown in the previous subsection and

then useKw andX in the preimage algorithm to obtain̂Xb at iterationb. Similarly, we use

w∗ to obtainK ∗w and then useK ∗w along withX to obtainX̂b(f) at iterationb.

The importance of featuref ,denoted byimpf , is calculated as

impf =
B

∑
b=1

||X̂b− X̂b(f)||F
B

(5.7)

where the Frobenious norm of the matrix is used. We summarizethe above procedure in

Algorithm 3. In Algorithm 3g(.) denotes a preimage estimation function. Note that the

functiong(.) takesKw (or K ∗w) andX as input, and outputŝXb (or X̂b(f)) at iterationb for

featuref .

An advantage of working with an ensemble of feature subsets is they tend to be more

robust towards noisy and irrelevant features in the data. This is important in our case
91

Algorithm 3 Feature Selection Algorithm

Initialize b= 1, f = 1, M̂ = 0
Initialize feature importance vectorimpwith F zeros indexed byimpf , f = 1,2, · · · ,F
for b= 1→ B do

for f = 1→ F do
Generate sparse random vectorw
Usew to calculateKw

X̂b← g(Kw,X)
if w [f] == 0 then

Setw[f] = 1 to generatew∗

else
Setw[f] = 0 to generatew∗

end if
Usew∗ to obtainK ∗w
X̂b(f)← g(K ∗w,X)
impf ← impf + ||X̂b− X̂b(f)||F
M̂ ← M̂ + X̂b

f ← f +1
end for
b← b+1

end for
X̂ = M̂

B×F
for f = 1→ F do

impf ← impf
B {importance off th feature is given byimpf }

end for

because we don’t have noise-free training data for our algorithm. This enables us to work

with any preimage estimation algorithm for KPCA in the literature.

4 Experimental Results

To evaluate our method, we generate several simulated data sets. Each data set has a

pattern (linear or non-linear) embedded into it. The pattern is only over a subset of relevant

features out of the total set of features, and we want to find those relevant features. For

actual data, relevant features are not usually known. Consequently, we use simulated data

to construct such features. Our feature selection methodology can work with any KPCA

algorithm. For the purpose of this chapter, we use the algorithm proposed in [11] as the

92

base algorithm. The number of leading eigenvectors is chosen according to the criterion

proposed by [11]. Preliminary experiments did not show sensitivity to B. We setB = 50

for all the experiments. For the experiments we set the Gaussian kernel parameterσ = 1,

and the sparseness parameterγ = 1/
√

F , whereF is the total number of features in the

data. We also vary the noise level in the data through the standard deviationσG of added

Gaussian noise.

The first data set is theLine2data set which refers to the fact that the pattern is linear

only over two features. More specifically, the data set consists of 50 instances and 70 fea-

tures generated as follows:x1= 0.1t for t = 1,2, · · · ,50,x2= 0.5(1−x1), andx3,x4, · · · ,x70

are independent Gaussian noise with mean 0 and varianceσ2
G, Independent Gaussian noise

with mean 0 and varianceσ2
G are also added tox1 andx2. Figure 48 shows the variable

importance as a function of the variable index, along with standard error bars obtained by

repeating the feature selection procedure 10 times.

The second data setPlane5refers to the fact that the pattern is a plane over five features.

The data set consists of 50 instances and 70 features generated as follows:x1 = 0.1t, t =

1,2, · · · ,50, x2,x3,x4 are independently, Gaussian distributed with mean 0 and variance 1,

x5 = 1−0.2x1+3x2+2x3+0.5x4, andx6,x7, · · · ,x70 are independent, Gaussian noise with

mean 0 and varianceσ2
G. Independent Gaussian noise with mean 0 and varianceσ2

G are

added tox1, x2, x3, x4 andx5. The results are shown in Figure 49 (standard errors from

generating differentx2,x3,x4 10 times).

The third data setCurve3refers to the fact that the pattern is a curve over three features.

The data set consists of 50 data points and 70 features generated as follows:x1 = 0.1t,

t = 1,2, · · · ,50, x2 is Gaussian distributed with mean 0 and variance 1,x3 = x2
2/x1, and

x4,x5, · · · ,x70 are independent, Gaussian noise with mean 0 and varianceσ2
G. Independent

93

Gaussian noise withµ= 0 and varianceσ2
G are added tox1,x2,x3. Figure 50 shows the

results (standard errors from generating differentx2 10 times).

The fourth data setSphere3refers to the fact that the pattern is spherical over three

features. The data set consists of 50 data points and 70 features generated as follows.

The pattern is of the formx2
1+x2

2+x2
3 = 25 wherex1 = 5sin(t)cos(t), x2 = 5sin(t)sin(t),

x3 = 5cos(t), for t = 1,2, · · · ,50, andx4,x5, · · · ,x70 are independent, Gaussian noise with

mean 0 and varianceσ2
G. Independent, Gaussian noise noise with mean 0 and varianceσ2

G

are added tox1,x2,x3. Figure 51 shows the results (standard errors from 10 replicates).

We see that for almost all datasets corrupted with a medium level of noise, our algorithm

is able to detect the important features. However, when we increase the noise level to high

(σG = 3), the algorithm cannot detect all the relevant features. Thus, our algorithm works

well for cases with moderate noise levels.

We also conduct some experiments to evaluate the sensitivity of our results to the pa-

rameters involved (σ and γ). We conducted experiments onLine2 andSphere3datasets

setting (σG ∈ {1,2,3}), σ ∈ {0.1,1,5,10,50} andγ ∈ { 2√
70
, 3√

70
, 5√

70
}. Figures 52-61 in

the appendix show the results. We see that our algorithm is clearly able to detect the impor-

tant features under small to medium noise levels over a wide range of parameters. However,

as noise level increases, the ability to detect these features diminishes.

We show the results from experiments conducted to study the sensitivity of our feature

selection algorithm to different parameters.All the plotsshow the relative importance scores

of the relevant features compared to the noise features under several values of noiseσG.

The relevant features are designated as V1, V2, and V3 in caseof Sphere3dataset, and V1,

and V2 in case ofLine2 dataset. The noise features are designated by “others” in all the

cases. Furthermore, the mean importance of all noise features is set to zero (baseline), and
94

0 10 20 30 40 50 60 70 80
4

6

8

10

12

14

16

Features

F
ea

tu
re

 Im
po

rt
an

ce

(a) σG = 0.9

0 10 20 30 40 50 60 70 80
15

16

17

18

19

20

21

22

23

Features

F
ea

tu
re

 Im
po

rt
an

ce

(b) σG = 3

Figure 48. Feature importance plots for our algorithm applied to theLine2 data set for
selected values of noiseσG.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Features

F
ea

tu
re

 Im
po

rt
an

ce

(a) σG = 0.9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Features

F
ea

tu
re

 Im
po

rt
an

ce

(b) σG = 3

Figure 49. Feature importance plots for our algorithm applied to thePlane5data set for
selected values of noiseσG.

the relative importance scores of the other features are calculated by subtracting the mean

importance of all the noise features.

To compare our approach, we tested the algorithm in [17] on the Line2 andSphere3

data sets withσG = 0.9. Figure 62 shows the results. In both cases, it is not able toidentify

the relevant features.

We also calculated the computational time involved in running our feature selection

procedure. We choseB∈ {50,100}. We used an Intel (R) Core (TM)2 Quad CPU Q6600

computer with 2.4 GHz clock speed and 4.00 GB RAM. ForB = 50, we found that the

95

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Features

F
ea

tu
re

 Im
po

rt
an

ce

(a) σG = 0.9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Features

F
ea

tu
re

 Im
po

rt
an

ce

(b) σG = 3

Figure 50. Feature importance plots for our algorithm applied to theCurve3data set for
selected values of noiseσG.

0 10 20 30 40 50 60 70 80
4

6

8

10

12

14

16

18

Features

F
ea

tu
re

 Im
po

rt
an

ce

(a) σG = 0.9

0 10 20 30 40 50 60 70 80
14

15

16

17

18

19

20

21

22

Features

F
ea

tu
re

 Im
po

rt
an

ce

(b) σG = 3

Figure 51. Feature importance plots for our algorithm applied to theSphere3dataset for
selected values of noiseσG.

average time was 271.17 seconds with a standard error of 0.249. ForB= 100, the average

time taken was 542.68 seconds with a standard error of 0.23.

5 Conclusion

A new feature selection algorithm for KPCA for the case of noisy training data are

presented. The data points are projected onto multiple sparse random subsets of features,

and then a feature importance measure is calculated by denoising the data matrix using

matched pairs of projections (with and without a feature). An advantage of working with

an ensemble of feature subsets is they tend to be more robust towards noisy and irrelevant

96

V1 V2 Others
−2

0

2

4

6

8

10

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 0.1

V1 V2 Others
−4

−2

0

2

4

6

8

10

12

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 0.1

V1 V2 Others
−3

−2

−1

0

1

2

3

4

5

6

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 0.1

Figure 52. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ with kernel parameterσ = 0.1 applied to theLine2 data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

features in the data. Also, our feature selection methodology can used with any suitable

KPCA algorithm available in the literature.

97

V1 V2 Others
−2

0

2

4

6

8

10

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 1

V1 V2 Others
−2

0

2

4

6

8

10

Features
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 1

V1 V2 Others
−2

−1

0

1

2

3

4

5

6

7

8

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 1

Figure 53. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 1 applied to theLine2 data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

98

V1 V2 Others
−4

−2

0

2

4

6

8

10

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 5

V1 V2 Others
−2

0

2

4

6

8

10

Features
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 5

V1 V2 Others
−6

−4

−2

0

2

4

6

8

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 5

Figure 54. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 5 applied to theLine2 data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

99

V1 V2 Others
−2

0

2

4

6

8

10

12

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 10

V1 V2 Others
−4

−2

0

2

4

6

8

Features
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 10

V1 V2 Others
−4

−2

0

2

4

6

8

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 10

Figure 55. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 10 applied to theLine2 data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

100

V1 V2 Others
−2

0

2

4

6

8

10

12

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 50

V1 V2 Others
−4

−2

0

2

4

6

8

10

Features
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 50

V1 V2 Others
−4

−2

0

2

4

6

8

10

12

14

Features

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 50

Figure 56. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 50 applied to theLine2 data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

101

V1 V2 V3 Others
−1

0

1

2

3

4

5

6

7

8

9

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 0.1

V1 V2 V3 Others
−2

0

2

4

6

8

10

Features
R

el
at

iv
e

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 0.1

V1 V2 V3 Others
−2

−1

0

1

2

3

4

5

6

7

8

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 0.1

Figure 57. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ with kernel parameterσ = 0.1 applied to thesphere3data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

102

V1 V2 V3 Others
−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 1

V1 V2 V3 Others
−2

0

2

4

6

8

10

Features
R

el
at

iv
e

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 1

V1 V2 V3 Others
−2

0

2

4

6

8

10

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 1

Figure 58. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 1 applied to thesphere3data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

103

V1 V2 V3 Others
−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 5

V1 V2 V3 Others
−2

0

2

4

6

8

10

Features
R

el
at

iv
e

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 5

V1 V2 V3 Others
−4

−2

0

2

4

6

8

10

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 5

Figure 59. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 5 applied to thesphere3data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

104

V1 V2 V3 Others
−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 10

V1 V2 V3 Others
−6

−4

−2

0

2

4

6

8

10

12

Features
R

el
at

iv
e

F
ea

tu
re

 Im
po

rt
an

ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 10

V1 V2 V3 Others
−4

−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 10

Figure 60. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 10 applied to thesphere3data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

105

V1 V2 V3 Others
−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(a) γ = 2√
70
,σ = 50

V1 V2 V3 Others
−4

−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(b) γ = 3√
70
,σ = 50

V1 V2 V3 Others
−4

−2

0

2

4

6

8

10

12

Features

R
el

at
iv

e
F

ea
tu

re
 Im

po
rt

an
ce

σG = 1

σG = 2

σG = 3

(c) γ = 5√
70
,σ = 50

Figure 61. Feature importance plots to illustrate the sensitivity of our algorithm to sparse-
ness paramterγ and kernel parameterσ = 50 applied to thesphere3data set for different
values of noiseσG. The mean importance of all noise features is set to zero (baseline), and
the relative importance scores of the other features are calculated by subtracting the mean
importance of all the noise features.

0 10 20 30 40 50 60 70
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Features

F
ea

tu
re

 Im
po

rt
an

ce

(a) Line2dataset

0 10 20 30 40 50 60 70
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Features

F
ea

tu
re

 Im
po

rt
an

ce

(b) Sphere3dataset

Figure 62. Feature importance plots for the algorithm by [17] forLine2andSphere3data
sets.

106

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

1 Conclusions

This dissertation proposes meta-approaches to improve upon the estimate of the preim-

age obtained from using KPCA algorithms in literature. In the first method, we apply a

procedure similar to bagging shown in [5] to improve the estimate of the preimage. The

PCA plane in feature space might not be well estimated from the training data (especially

with noisy training data). Instead of a single estimate of the preimage from one single train-

ing dataset, we resample the training set and apply a base KPCA algorithm to each sample.

Thus, we estimate the final preimage as the average from bagged samples drawn from the

original dataset to attenuate noise in kernel subspace estimation. We expect to improve

the estimate from an average over several samples. We also found that the improvement

is most pronounced when the parameters differ from those that minimize the error rate.

Consequently, our approach improves the robustness of any base KPCA algorithm.

We propose another method to tackle the problem of handling noisy training data. The

idea is that the initial estimate of the actual denoised testset obtained by a KPCA preim-

age estimation algorithm may not be accurate; hence, successive iterations of denoising

a convex combination of the test set and the corresponding denoised set can lead us to a

more accurate estimate of the actual denoised test set. We also decrease the number of top

eigenvectors chosen in each iteration at a constant rate. The intuition is that we initially

retain all eigenvectors so as not to loose any information about the pattern in data, and as

we approach towards the final denoised preimage, we only retain the top most eigenvectors

that will account for the structure in data and get rid of the noise. We also propose a sim-

107

ple and efficient stopping rule criteria to obtain the desirable preimage in fewer number of

iterations. Our approach can easily be applied to any KPCA algorithm.

108

In addition to handling noise in training data, we also need to take care of the fact that

there are many irrelevant features collected in the training data. Thus, we need to find the set

of features relevant to the pattern in training data. In our third study, we propose a feature

selection procedure that augments KPCA to obtain importance estimates of the features

given noisy training data. Our feature selection strategy involves projecting the data points

onto sparse random vectors. We then match pairs of such projections, and determine the

preimages of the data with and without a feature, thereby trying to identify the importance

of that feature. Thus, preimages’ differences within pairsare used to identify the relevant

features. Our approach above provides robustness to irrelevant features in the data by

being able to project only on a small random subset of features at a time, and calculating

the final mapped data matrix in input space from an ensemble offeature subsets. Thus, an

advantage of our method is it can be used with any suitable KPCA algorithm. Moreover,

the computations can be parallelized easily leading to significant speedup.

2 Future Work

In future, we plan to investigate kernel principal component subspace estimation from

noisy training data. We emperically investigated the distance between principal compo-

nent subspaces learned from bagged samples taken from noisytraining data. This served

as a measure of difference between subpaces. Fundamentally, the principal component

subspace is defined by the set of orthonormal eigenvectors that span it. Thus, it would be

interesting to see how the eigenvectors of the principal component subspace change as a

result of learning from noisy data points. To understand this analytically, we plan to extend

the methods developed by [28] to our problem.

Another interesting aspect would be to understand the effect of input features in esti-

mating kernel principal component subspace. Since the training data might contain a lot of
109

irrelevant features, we can investigate if this adversely affects the eigenvector computation

in feature space. Feature selection can then be incorporated into the analysis.

110

REFERENCES

[1] Aizerman, M., E. Braverman and L. Rozonoer, “Theoretical foundations of the
potential function method in pattern recognition learning”, Automation and Remote
Control25, 821–837 (1964).

[2] Allen, G., “Automatic feature selection via weighted kernels and regularization”,
Journal of Computational and Graphical Statistics22, 2, 284–299 (2013).

[3] Apley, D. W. and F. Zhang, “Identifying and visualizing nonlinear variation patterns
in multivariate manufacturing data”, IIE Transactions39, 6, 691–701 (2007).

[4] Bakir, G. H., J. Weston and B. Schölkopf, “Learning to find pre-images”, Advances
in neural information processing systems16, 7, 449–456 (2004).

[5] Breiman, L., “Bagging predictors”, Machine Learning24, 123–140 (1996).

[6] Cox, T. and M. Cox,Multidimensional Scaling.Monographs on Statistics and
Applied Probability 88(Chapman and Hall/CRC, 2001), second edn.

[7] Hastie, T. and W. Stuetzle, “Principal curves”, Journalof the American Statistical
Association84, 406, 502–516 (1989).

[8] Im, J. K., D. W. Apley and G. C. Runger, “Tangent hyperplane kernel principal
component analysis for denoising”, Neural Networks and Learning Systems, IEEE
Transactions on23, 4, 644–656 (2012).

[9] Im, J. K., D. W. Apley and G. C. Runger, “Contour gradient kernel principal
component analysis for denoising”, Manuscript submitted for publication (2013).

[10] Jolliffe, I., Principal component analysis(Wiley Online Library, 2005).

[11] Kwok, I., J.T.Y.and Tsang, “The pre-image problem in kernel methods”, IEEE
Transactions on Neural Networks15, 1517–1525 (2004).

[12] Malamas, E. N., E. G. M. Petrakis, M. E. Zervakis, L. Petit and J.-D. Legat, “A
survey on industrial vision systems, applications, tools”, Image Vision Comput.21,
2, 171–188 (2003).

[13] Maldonado, S. and R. Weber, “Feature selection for support vector regression via
kernel penalization”, in “IJCNN”, pp. 1–7 (2010).

[14] Maldonado, S., R. Weber and J. Basak, “Simultaneous feature selection and
classification using kernel-penalized support vector machines”, Inf. Sci.181, 1,
115–128 (2011).

[15] Megahed, F. M., W. H. Woodall and J. A. Camelio, “A reviewand perspective on
control charting with image data”, Journal of Quality Technology43, 2, 83–98
(2011).

111

[16] Mika, S., B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz and G. Rätsch,
“Kernel PCA and de-noising in feature spaces”, in “NIPS”, pp. 536–542 (1998).

[17] Muniz, V., J. V. Horebeek and R. Ramos, “Measuring the importance of variables in
kernel PCA”, in “COMPSTAT”, pp. 517–524 (2008).

[18] Nguyen, M. H. and F. D. la Torre, “Robust kernel principal component analysis”, in
“NIPS”, pp. 1185–1192 (2008).

[19] Sahu, A., D. Apley and G. Runger, “Feature selection forkernel principal component
analysis”, Submitted for publication (2012).

[20] Sahu, A., G. Runger and D. Apley, “Image denoising with amulti-phase kernel
principal component approach and an ensemble version”, in “IEEE Applied Imagery
Pattern Recognition Workshop (AIPR)”, pp. 1–7 (2011).

[21] Sahu, A., G. Runger and D. Apley, “A serial approach to preimage estimation from
variation patterns using kernel PCA”, Arizona State University Technical Report
(2013).

[22] Schölkopf, B., A. J. Smola and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem”, Neural Computation10, 5, 1299–1319 (1998).

[23] Shinde, A., A. Sahu, D. Apley and G. Runger, “Preimages for variation patterns
from kernel PCA and bagging”, IIE Transactions (To Appear).

[24] Wang, L., X. Wang and J. Feng, “Subspace distance analysis with application to
adaptive bayesian algorithm for face recognition”, Pattern Recognition39, 3,
456–464 (2006).

[25] Wells, L. J., F. M. Megahed, C. B. Niziolek, J. A. Camelioand W. H. Woodall,
“Statistical process monitoring approach for high-density point clouds”, Journal of
Intelligent Manufacturing pp. 1–13 (2012).

[26] Williams, C. K., “On a connection between kernel PCA andmetric multidimensional
scaling”, in “Advances in Neural Information Processing Systems 13”, pp. 675–681
(MIT Press, 2001).

[27] Wu, M. and B. Schölkopf, “A local learning approach forclustering”, in “NIPS”, pp.
1529–1536 (2006).

[28] Xu, Z., “Perturbation analysis for subspace decomposition with applications in
subspace-based algorithms”, Signal Processing, IEEE Transactions on50, 11,
2820–2830 (2002).

[29] Zeng, H. and Y.-m. Cheung, “Feature selection and kernel learning for local
learning-based clustering”, Pattern Analysis and MachineIntelligence, IEEE
Transactions on33, 8, 1532–1547 (2011).

112

[30] Zheng, W. S., J. Lai and P. C. Yuen, “Penalized preimage learning in kernel principal
component analysis”, IEEE Transactions on Neural Networks21, 4, 551–570 (2010).

113

