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ABSTRACT  

   

The origin and function of color in animals has been a subject of great interest for 

taxonomists and ecologists in recent years. Coloration in animals is useful for many 

important functions like species identification, camouflage and understanding 

evolutionary relationships. Quantitative measurements of color signal and patch size in 

mammals, birds and reptiles, to name a few are strong indicators of sexual selection cues 

and individual health. These measurements provide valuable insights into the impact of 

environmental conditions on habitat and breeding of mammals, birds and reptiles. Recent 

advances in the area of digital cameras and sensors have led to a significant increase in 

the use of digital photography as a means of color quantification in animals. Although a 

significant amount of research has been conducted on ways to standardize image 

acquisition conditions and calibrate cameras for use in animal color quantification, almost 

no work has been done on designing automated methods for animal color quantification.  

This thesis presents a novel perceptual-based framework for the automated 

extraction and quantification of animal coloration from digital images with slowly 

varying (almost homogenous) background colors. This implemented framework uses a 

combination of several techniques including color space quantization using a few 

dominant colors, foreground-background identification, Bayesian classification and 

mixture Gaussian modelling of conditional densities, edge-enhanced model-based 

classification and Saturation-Brightness quantization to extract the colored patch. This 

approach assumes no prior information about the color of either the subject or the 

background and also the position of the subject in the image. The performance of the 

proposed method is evaluated for the plumage color of the wild house finches.  
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Segmentation results obtained using the implemented framework are compared with 

manually scored results to illustrate the performance of this system. The segmentation 

results show a high correlation with manually scored images. This novel framework also 

eliminates common problems in manual scoring of digital images such as low 

repeatability and inter-observer error. 
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CHAPTER 1 

INTRODUCTION 

This chapter presents the motivations behind the work in this thesis and briefly 

summarizes the contributions and organization of the thesis.  

1.1    Motivation 

The origin and function of coloration in animals has been a topic of immense interest and 

research for taxonomists and ecologists [1], [2]. Humans have always been intrigued by 

the bright color patterns observed in various animal species such as the bright plumage 

colors in most birds or the various multicolor patterns on the wings of butterflies, which 

is unlike the murky and earthen colors observed in most mammals. This coloration in 

animals serves many important functions like camouflage, mate selection during 

breeding, sexual dimorphism and species identification, to name a few [1]. 

The coloration in animals is a result of a number of different factors. For example, 

the earth tone, gray, black and brown color observed in most mammals is produced due 

to a pigment called melanin [3], while the bright plumage coloration observed in birds is 

the result of a combination of melanin based color, carotenoid pigment based color and 

structural color due to feathers. Understanding the origin of these color signals and their 

quantification helps researchers in getting a better understanding of the environmental 

conditions that affect the habitat and breeding of these animal species. For example, 

melanin and carotenoid pigments are the most prominent pigments responsible for 

coloration in birds. Melanin is responsible for the black, gray, brown and earth tone 

colors present in most birds [3]. Since melanin is produced within the body, melanin 

based color variation is not strongly correlated to environmental changes [1]. Carotenoid 
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pigments however, are not produced within the bird’s body and are actually acquired 

through the bird’s diet. Carotenoid pigments are responsible for the bright red, orange 

and yellow plumage colors observed in many birds [4]. Since the carotenoid pigments are 

derived from diets, quantitative measurements of these bright plumage colors provide 

great insights into the quality of diet, habitat and individual health of the these birds. 

Such measurements are also believed to be strong indicators of sexual selection cues [5].  

Since environmental conditions and dietary changes affect the carotenoid pigment 

concentrations in birds, plumage coloration measurement in birds is an important trait for 

ecologists, taxonomists, conservationists and sustainability scientists. These 

measurements have been also used for subspecies identification [6]. 

Animal color quantification refers to the approach of characterizing the coloration 

observed in individual animals using colorimetric values such as the hue, saturation and 

brightness in HSB space, the L*, a* and b* values in CIELAB space etc. and using 

statistical descriptors such as the mean and variance for describing the variation of these 

values across different specimens of the same species. There are two main methods 

which are widely used to measure animal color patterns: spectrophotometry and digital 

photography [7]. But before the advent of spectrometry and digital imaging based 

approaches, researchers used to measure animal color pattern using color charts [8]-[10]. 

The observer would record the color of the animal by matching it to the closest color on a 

chart consisting of different colors. The closest value of color chosen on the color chart 

was based purely on the color perception of the human observer. This method resulted in 

low intra and inter-observer repeatability and was unable to measure colors outside the 

visible spectrum of humans [7]. This approach was widely used due to its ease of use, 
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before digital cameras and spectrometers became more affordable. Spectrometry based 

approaches measure color signal information using the reflectance spectra [11]. A 

spectrometer is used to measure the intensity of light reflected over a range of 

wavelengths. A major advantage of spectrometry is that it can be used to measure color 

signals that lie outside the visible spectrum and as such cannot be measured by methods 

that rely on human visual perception [7]. Photography has been used for animal 

coloration studies for a long time now, but recent advances in digital cameras and sensors 

have led to a significant increase in the use of digital photography as a means of color 

quantification in animals [1], [2]. Digital photography based approaches provide great 

benefits over traditional spectrometry, like faster data acquisition rates, ease of use and 

minimal equipment requirements [2], [7]. Also image based approaches can employ 

customized programs for simultaneously computing multiple parameters like patch size 

and colorimetric values from the same image [2].  

A lot of the work in the field of digital photography based animal color 

quantification has been focused on developing methods for measuring animal coloration 

by standardizing illumination conditions [2], linearizing sensor response curves [12] and 

camera calibration [13]. However, virtually no work has been done on developing an 

efficient automated method for extracting animal coloration values and patch sizes from 

digital images. Most current studies that involve color quantification employ time 

consuming manual processing of images [14]-[16]. This involves drawing a region 

enclosing the color patch on the animal using image editing software and analyzing the 

color values at all pixels in the outlined region by comparing them to a reference color 

control patch in the same image. Such a method may be prone to problems such as low 
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repeatability of results, inter-observer error and reduced accuracy across time (observer 

fatigue) over large datasets. As a result, there is a need for an automated framework that 

provides fast, repeatable and efficient extraction of animal coloration values in digital 

images. 

Out of the many bright colored animal species studied as a part of animal color 

quantification, the house finch (Haemorhous mexicanus) is an important one and has 

been widely studied [17]-[19]. The house finches can have widely varying plumage 

colors from bright red to orange–yellow. As stated earlier, these bright colors like red and 

yellow are the result of carotenoid based pigments which are derived from the bird’s diet 

[4]. Color measurements for the house finch can help researchers understand mating 

success [20], [21] and the impact of environment on the quality of diet [1]. Fast moving 

animal species such as the house finch need to be restrained by human hands during 

image acquisition. The plumage color of the house finch is also very similar, at times, to 

the color of the human hands holding the bird in place and this makes it much more 

challenging to segment the plumage color of these birds. For these reasons, the house 

finch is used as the main test subject in this study and its bright plumage color is used for 

evaluating the performance of the proposed system. 

1.2    Contributions 

In this thesis, a novel perceptual-based approach for the automated extraction of animal 

coloration variables such as hue, saturation, brightness, and patch size, from digital 

images with slowly varying background colors, is presented. In this proposed framework, 

the input image is first coarsely segmented into few classes using dominant colors. The 

dominant colors are identified by detecting the local peaks in the image color distribution 
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computed in a perceptually uniform color space. The required foreground class is then 

identified by eliminating the most dominant color in the color histogram of the image as 

the color of the background region. In the case of fast moving animals, the animal 

specimen is held in position by human hands. Therefore, to account for this latter case, 

the foreground region is further segmented into skin and non-skin regions to identify the 

region of human hands in the image. The skin/ non-skin classification is performed using 

a Bayesian skin color classifier, with the required skin conditional density modelled as a 

Gaussian mixture model. This is followed by an edge-enhanced model-based 

classification scheme to eliminate the outlier skin regions. Finally, a novel perceptual-

based Saturation-Brightness quantization is implemented for the removal of perceptually 

insignificant colors and only retaining the colors of interest (bright colors). The 

perceptual based Saturation-Brightness quantization helps to refine the region of interest 

by eliminating perceptually insignificant colors, such as black, gray and white while 

preserving the perceptually visible (bright) colors. This perceptual-based quantization 

step is useful for quantifying carotenoid pigment based colors and can be avoided if only 

colors such as black, gray and white need to be quantified. 

1.3    Thesis Organization 

The organization of this thesis is as follows: Chapter 2 provides the background for the 

different color spaces used for quantization, and basic concepts related to Bayes classifier 

and Gaussian mixture models used for modelling conditional densities. Chapter 3 

describes the current manual, semi-automated and automated methods that are related to 

this thesis. Chapter 4 describes the proposed animal color extraction and quantification 

framework. Chapter 5 presents performance results for a set of images, and a comparison 
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between the results produced by the proposed automated framework and manual scoring 

methods. Chapter 6 summarizes the contributions of this thesis and proposes future 

directions of research. 
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CHAPTER 2 

BACKGROUND 

This chapter provides some background information about the different color spaces used 

in this thesis, Bayes classifier and Gaussian mixture modelling of multimodal 

distributions, all of which is useful in understanding the implemented framework. Section 

2.1 describes the different color spaces used in this framework. Section 2.2 explains the 

expectation-maximization approach for deriving Gaussian mixture models. Section 2.3 

describes Bayesian decision theory for classification.  

2.1    Color Spaces 

A color space is a multi-dimensional space representation that describes every color 

produced by a color model as a unique tuple of three or four numbers called color 

components. It is basically a combination of a color model that describes how various 

observed colors can be produced and an associated mapping function that maps every 

color to a unique point in a multi-dimensional space. The co-ordinates of such a point 

represent the relative amounts of the individual color components of the considered color 

model, which combine to produce the observed color. Usually, most color spaces use a 

three-element tuple representation for colors and the 3 axes of the color space represent 

the three fundamental color components of the color model used. Since a color space is 

just a combination of a color model and a mapping function, many different combinations 

of color models and mapping functions can be used to represent the same observed color.  
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In recent years, many different color space representations have been introduced 

and the choice of a particular color space usually depends on the application. The various 

color spaces are mainly divided into the following groups [22]: 

a) Primary spaces 

The primary spaces are based on the idea that every color can be produced by 

mixing appropriate amounts of three primary colors. 

b) Luminance-chrominance spaces 

The luminance-chrominance spaces refer to color spaces in which one of the three 

color space components represents luminance information and the other two 

represent chrominance information. 

c) Perceptual spaces 

Perceptual spaces are designed to make color spaces more intuitive to humans. In 

these color spaces, a color is represented by its hue, saturation and intensity, just 

as a human would describe the same color. 

d) Independent axis spaces 

Independent axis color spaces are derived by using different statistical approaches 

to minimize the correlation between the individual components of the color space. 

In this section, we discuss the three different color spaces which are used in the 

implemented framework. The three color spaces used are the CIE (R, G, B), the CIE (L*, 

a*, b*) and the HSV color spaces. 

2.1.1    CIE (R, G, B) color space 

The CIE (R, G, B) color space is a primary color space based on the trichromatic theory, 

which assumes that every color can be expressed as a combination of appropriate  
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Fig. 1 RGB color cube. 

 

amounts of three primary colors. Analogous to the human eye, the three primary 

components of the CIE (R, G, B) are red, blue and green. The color space is derived from 

color matching experiments that were conducted using the three color primaries denoted 

by Rc, Gc and Bc, which are monochromatic color signals of wavelengths 700.0 nm, 

546.1 nm and 435.8 nm, respectively [22]. It is possible to obtain many different (R, G, 

B) color spaces depending on the choice of wavelengths for the primaries. However, the 

CIE (R, G, B) color space is considered as a reference (R, G, B) color space as it defines 

the standard observer, whose eye spectral response represents the average eye spectral 

response of a human observer [22]. Fig. 1 illustrates the RGB color cube which defines 

the (R, G, B) color space and the three normalized vectors 𝑅𝑐⃗⃗⃗⃗ , 𝐺𝑐⃗⃗⃗⃗  and 𝐵𝑐⃗⃗⃗⃗ , which represent 

𝐵𝑐⃗⃗⃗⃗  

Green (0, 1, 0) 

White (1, 1, 1) 

Black (0, 0, 0) 

Red (1, 0, 0) 

Blue (0, 0, 1) 

𝑅𝑐⃗⃗⃗⃗  

𝐺𝑐⃗⃗⃗⃗  

O 
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the three primaries (R, G, B). The normalized vectors  𝑅𝑐⃗⃗⃗⃗ , 𝐺𝑐⃗⃗⃗⃗  and 𝐵𝑐⃗⃗⃗⃗  form the principal 

axes of the 3D vector space and intersect at the origin of the color space denoted by point 

O. Every color is represented by a point C in the color cube and defined by a vector 𝑂𝐶⃗⃗⃗⃗  ⃗ 

with the projections of 𝑂𝐶⃗⃗⃗⃗  ⃗ on the primary axes representing the tristimulus values Rc, Gc 

and Bc , which correspond to the relative amounts of the red, green, and blue primaries, 

respectively, that combine to form the considered color. The tristimulus values for a 

particular set of primaries are defined by color mapping functions, also known as color 

matching functions. The normalized color matching functions for the CIE (R, G, B) color 

space are denoted by �̅�(𝜆),  �̅�(𝜆) and �̅�(𝜆). For a known set of color matching functions, 

the normalized tristimulus (Rc, Gc, Bc) values for a color with power spectral distribution 

I(λ) are given by [23]: 

𝑹𝒄 = ∫ 𝐼(𝜆) �̅�(𝜆)𝑑
∞

0
λ                                                   (1) 

𝑮𝒄 = ∫ 𝐼(𝜆) �̅�(𝜆)𝑑
∞

0
λ                                                   (2)                     

𝑩𝒄 = ∫ 𝐼(𝜆) �̅�(𝜆)𝑑
∞

0
λ                                                   (3)                     

The origin O with normalized tristimulus values (0, 0, 0) represents the color black and 

the color white is defined by the normalized tristimulus values (1, 1, 1). The dotted gray 

colored line in Fig.1 is known as the gray axis or the neutral color axis [22]. For every 

point on this line, the x, y, and z co-ordinates are equal and as a result each point on this 

line represents a different shade of gray between black and white. The primary colors red, 

green and blue are given by (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.  

 



  11 

2.1.2    CIE (L*, a*, b*) color space (also known as CIELAB) 

The (R, G, B) color space has a few drawbacks including the following: 

a) The tristimulus values are dependent on the luminance, which is a linear        

combination of the tristimulus values. 

b) The (R, G, B) color spaces are device dependent and it is possible to formulate 

many different (R, G, B) color spaces with different primaries and color matching 

functions. 

c) The (R, G, B) color spaces are not perceptually uniform.  

Perceptual uniformity means that equal changes in color values should correspond to an 

equal color difference perceived by a human. 

      To overcome the problem of perceptual non-uniformity and device dependence, 

the CIE formulated an alternate perceptually uniform color space known as (L*, a*, b*) 

or CIELAB. The (L*, a*, b*) color space is a luminance-chrominance space, where 

unlike the (R, G, B) color space, the luminance (brightness) component is completely 

separated from the chrominance (color) component of the input visual signal. The L* 

component represents the brightness response of the human eye to a visual stimulus, 

while the a* and b* components represent the green-red color opposition and blue-yellow 

color opposition, respectively [22]. The forward transform that converts values in CIE 

(R,G,B) color space to corresponding values in CIELAB color space is given by [24], 

[
𝑋
𝑌
𝑍
] = [

0.49018 0.30987 0.19993
0.17701 0.81232 0.01066

0 0.01007 0.98992
] [

𝑅𝑐
𝐺𝑐
𝐵𝑐

]                                   (4) 

 

L* = 116 ∗ 𝑓 (
𝑌

𝑌𝑛
) − 16                                                (5) 
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a* = 500 ∗ [𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)]                                            (6)                    

b* = 200 ∗ [𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)]                                            (7) 

𝑓(𝑡) = {
𝑡
1

3,                             𝑡 > (
6

29
)
3

1

3
(
29

6
)
2

𝑡 +
4

29
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                     (8) 

where (Rc, Gc, Bc) represents the normalized tristimulus values in CIE (R, G, B) color 

space, (X, Y, Z) represents tristimulus values in CIEXYZ color space, (Xn, Yn, Zn) 

represents tristimulus values of the reference white point in CIEXYZ color space and (L*, 

a*, b*) represents the corresponding tristimulus values in CIELAB color space. 

Similarly, the backward transform that converts values from CIELAB to CIE (R, G, B) 

color space is given by, 

𝑌 = 𝑌𝑛 ∗ 𝑓
−1 (

1

116
(𝐿∗ + 16))                                          (9) 

𝑋 = 𝑋𝑛 ∗ 𝑓
−1 (

1

116
(𝐿∗ + 16) +

1

500
𝑎∗)                                   (10) 

𝑍 = 𝑍𝑛 ∗ 𝑓
−1 (

1

116
(𝐿∗ + 16) −

1

200
𝑏∗)                                  (11) 

  𝑓−1(𝑡) = {
𝑡3,                             𝑡 > (

6

29
)

3 (
6

29
)
2

(𝑡 −
4

29
) ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                              (12) 

[

𝑅𝑐
𝐺𝑐
𝐵𝑐

] = [
2.36353 −0.89582 −0.46771
−0.51511 1.42643 0.08867
0.00524 −0.01452 1.00927

] [
X
Y
Z
]                        (13) 

 

 

2.1.3 (H, S, V) color space 

Although the CIELAB color space is perceptually uniform, it is not very intuitive and 

perceptually relevant for day-to-day applications of color systems such as graphics and 
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fine art. Even the (R, G, B) color space is not intuitive for the above mentioned 

applications as the chrominance and luminance components in the (R, G, B) color space 

are not separate and the Cartesian co-ordinate system for representing colors is not 

perceptually relevant. To make the idea of color and brightness more intuitive, 

perceptually relevant and useful for general applications, the (H, S, V ) color space was 

designed by R. Smith [25] and represents a color in terms of its hue (H), saturation (S), 

and value (V). The hue of a color represents a component of the visual stimulus that helps 

us perceive a patch of color to be similar to one of the known colors like red, blue, green, 

yellow or a combination of the two. The extent to which a pure color must be diluted with 

white to resemble a shade of perceived color can be represented by the term dilution. The 

saturation component is inversely proportional to the dilution. A high saturation value 

represents less dilution with white and vice versa. The highest saturation value represents 

a pure color without any dilution with white. The lowest saturation value represents the 

color white (maximum dilution). The value component measures how light or dark a 

particular color is in the image [25]. The (H, S, V ) color space is a cylindrical 

representation of the RGB color cube as shown in Fig. 2. 

      The (H, S, V) color space model shown in Fig. 2 can be derived by tilting the 

RGB cube and resting it on one of its corner, such that the color black is at the origin and 

the white is directly above it along the vertical axis as shown in Fig. 3. The projection of 

this cube results in a hexagonal plane with the pure primary and secondary colors located 

at the vertices as shown in Fig. 3. The neutral axis or the gray line of the RGB cube is 

mapped into the origin in the projection and the final cylindrical (H, S, V) representation 

is obtained by extending the hexagonal plane along the vertical axis and warping the 
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Fig. 2 HSV model representation using cylindrical co-ordinates. 

 

Fig. 3 Projection of tilted RGB cube on a plane. 
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hexagon into a circle. The hue is the angle of the vector formed by the projection of a 

point in the RGB cube onto the hexagonal plane, measured about the vertical axis with 

red at 0°, green at 120° and blue at 240°. The saturation is measured along the radius of 

the cylinder over a range of [0, 1] as shown in Fig. 2.  The value component forms the 

vertical axis of the cylindrical representation, with a range of values between [0, 1]. All 

points that lie on the vertical axis have a saturation component equal to zero and as a 

result have no color information associated with them. These points represent the 

different shades of gray between black and white and have no specific value of hue 

defined for them. As these points have no unique hue value defined for them, it is 

possible to identify and represent shades of gray including black and white in this color 

space by just computing the saturation and value components, independent of the hue 

component. Black can be represented by the point {S=0, V=0}, while white is 

represented by {S=0, V=1} and shades of gray are represented by points {𝑆 = 0, 0 ≤

𝑉 ≤ 1} on the vertical axis. The transformation of normalized tristimulus (Rc, Gc, Bc) 

values to (H, S, V) values is given by [25]: 

𝐶 = max(𝑅𝑐, 𝐺𝑐, 𝐵𝑐) − min (𝑅𝑐, 𝐺𝑐 , 𝐵𝑐)                                   (14) 

𝐻 =

{
 
 

 
 60

° ∗ (
𝐺𝑐−𝐵𝑐

𝐶
mod(6)) ,   if max (𝑅𝑐, 𝐺𝑐, 𝐵𝑐) = 𝑅𝑐

60° ∗ (
𝐵𝑐−𝑅𝑐

𝐶
+ 2) ,            if max (𝑅𝑐, 𝐺𝑐, 𝐵𝑐) = 𝐺𝑐

60° ∗ (
𝑅𝑐−𝐺𝑐

𝐶
+ 4) ,            if max(𝑅𝑐, 𝐺𝑐, 𝐵𝑐) = 𝐵𝑐

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                             𝐶 = 0 

                        (15) 

𝑆 = {
    0,                      𝐶 = 0
𝐶

max (𝑅𝑐,𝐺𝑐,𝐵𝑐)
,        otherwise.                                      (16) 

𝑉 = max (𝑅𝑐, 𝐺𝑐, 𝐵𝑐)                                                  (17)      
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𝑥𝑚𝑜𝑑(𝑦) = 𝑥 − ⌊
𝑥

𝑦
⌋ ∗ 𝑦                                            (18) 

where ⌊
𝑥

𝑦
⌋ represents a flooring operation in which the quotient of  

𝑥

𝑦
 is rounded 

downwards. 

2.2     Gaussian Mixture Model Estimation using Expectation-Maximization 

In most classification problems, the conditional probability densities cannot be accurately 

represented as unimodal distributions and usually take the shape of complex multi-modal 

distributions. A Gaussian Mixture Model (GMM) is a parametric probability distribution 

function that is widely used for modelling such complex shaped multi-modal 

distributions. The GMM is a weighted sum of multiple unimodal component Gaussian 

densities given by the equation, 

𝑝(𝑥) = ∑ 𝑤𝑖 
𝑚
𝑖=1 𝑔(𝑥|𝜇𝑖, Σ𝑖)                                       (19) 

where x is an N-dimensional vector, wi is the mixture weight and 𝑔(𝑥|𝜇𝑖, Σ𝑖) is the 

component density for the ith Gaussian component. The component density is given by, 

𝑔(𝑥|𝜇𝑖 , Σ𝑖) =
1

(2𝜋)𝑁/2|Σ𝑖|
1/2 exp {−

1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖)}                 (20) 

where 𝜇𝑖 and Σ𝑖 represent, respectively, the mean vector and covariance matrix of the ith 

component density. The mixture weights also satisfy the following constraint: 

∑ 𝑤𝑖
𝑚
𝑖=1 = 1                                                      (21) 

Due to the parametric nature of the model, the entire model can be accurately represented 

using just the mean vector 𝜇𝑖, covariance matrix Σ𝑖 and mixture weight wi for each 

component Gaussian density and these parameters can be estimated from a training data 

set using a maximum-likelihood approach.  
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         The GMM parameters are estimated iteratively, using a special case of the 

Expectation-Maximization algorithm [26]. Given an initial estimate of the GMM model, 

the E-M algorithm iteratively estimates a model 𝜆, such that 𝑝(𝑋|𝜆𝑡+1) ≥ 𝑝(𝑋|𝜆𝑡) at 

iteration t+1 for a given training set X={x1, x2,…..,𝑥𝑇1} with 𝑇1 training samples. 𝜆 

represents the set of component parameters {𝑤𝑖, 𝜇𝑖, Σ𝑖} for the M component densities. 

The likelihood 𝑝(𝑋|𝜆𝑡+1), posterior probability, mean vector, covariance matrix and 

mixture weight is recomputed for all components at every iteration till a stopping criteria 

that maximizes the likelihood function is reached. At every iteration, the posterior 

probability for each component and training sample is first calculated as: 

𝑃𝑖,𝑗
(𝑡)
=

𝑤𝑖
(𝑡)
𝑔(𝑥𝑗|𝜇𝑖

(𝑡)
,Σ𝑖
(𝑡)
)

∑ 𝑤𝑘
(𝑡)𝑚

𝑘=1 𝑔(𝑥𝑗|𝜇𝑘
(𝑡)
,Σ𝑘
(𝑡)
)
                                            (22) 

where t represents the iteration number, i represents the component number and xj is the 

jth training sample in X. Next, the updated mean vector, covariance matrix and mixture 

weight for the ith component are calculated as: 

𝑤𝑖
(𝑡+1)

=
1

𝑇1
∑ 𝑃𝑖,𝑗

(𝑡)𝑇1
𝑗=1                                              (23) 

𝜇𝑖
(𝑡+1)

=
∑ 𝑃𝑖,𝑗

(𝑡)
𝑥𝑗

𝑇1
𝑗=1

∑ 𝑃
𝑖,𝑗
(𝑡)𝑇1

𝑗=1

                                              (24) 

Σ𝑖
(𝑡+1)

=
∑ 𝑃𝑖,𝑗

(𝑡)
(𝑥𝑗−𝜇𝑖

(𝑡+1)
)(𝑥𝑗−𝜇𝑖

(𝑡+1)
)
𝑇𝑇1

𝑗=1

∑ 𝑃𝑖,𝑗
(𝑡)𝑇1

𝑗=1

                                   (25) 

𝐿(𝑥; 𝜆𝑡+1) = ∏ 𝑝(𝑥𝑗|𝜆𝑡+1)
𝑇1
𝑗=1                                     (26) 

 

where 𝜆𝑡+1 represents the model for iteration t+1 and 𝐿(𝑥; 𝜆𝑡+1) represents the likelihood 

function at iteration t+1. The E-M algorithm is terminated when the difference between 

ln𝐿(𝑥; 𝜆𝑡+1) and ln𝐿(𝑥; 𝜆𝑡)is lesser than a pre-decided threshold. 
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2.3     Bayesian Decision Theory 

Bayesian decision theory is an important statistical approach used in many pattern 

classification tasks. The approach uses a probability distribution to evaluate the merit of 

various classification decisions along with the cost associated with making each 

classification decision. This approach assumes that a particular classification task can be 

formulated as a problem based on probability and, given all the relevant conditional 

densities and prior probabilities, predicts the best classification rule as the one that 

minimizes the probability of error [27]. 

       For an object classification task, a classification can be performed by assigning 

the observed object to the class wi with the highest a priori probability P(wi). However, a 

measured value or feature x that represents an attribute of the object can be used to make 

a more robust decision that minimizes the probability of error. The measured value x can 

be a single value or a vector of values representing a feature. Consider a general 

classification problem where we have a measurement value x which is continuous and the 

classification scheme has to identify the class wi, i = 1, 2, 3,…..,M, that produced the 

measurement x. The a priori probabilities represented by P(wi), i = 1, 2, 3,….., M, and the 

likelihood functions or class conditional densities represented as 𝑝(𝑥|𝑤𝑖), i = 1, 2, 3,….., 

M, are assumed to be completely known. The probability of error associated with the 

object being assigned to class wj, given a measurement x is given as: 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = ∑ 𝑃(𝑤𝑖
𝑀
𝑖=1,𝑖≠𝑗 |𝑥).                                 (27) 

This can be re-written in another form as, 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 1 − 𝑃(𝑤𝑗|𝑥)                                    (28) 

due to the relation, ∑ 𝑃(𝑤𝑖|𝑥)
𝑀
𝑖=1 = 1. The average probability of error is given by: 
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𝑃(𝑒𝑟𝑟𝑜𝑟) = ∫ 𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥)𝑝(𝑥)𝑑𝑥
∞

−∞
                             (29) 

where 𝑝(𝑥) can be expressed as follows: 

𝑝(𝑥) = ∑ 𝑝(𝑥|𝑤𝑖
𝑀
𝑖=1 )𝑃(𝑤𝑖).                                   (30) 

As per Bayes’ decision theory, the best decision chooses the class that minimizes (27). 

From (28), we observe that 𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) is minimized when 𝑃(𝑤𝑗||𝑥) is maximized. Thus 

the best decision chooses the class 𝑤𝑗 for which 𝑃(𝑤𝑗|𝑥) is maximum. Using Bayes’ 

theorem, we can write 𝑃(𝑤𝑗|𝑥) as, 

𝑃(𝑤𝑗|𝑥) =
𝑝(𝑥|𝑤𝑗)𝑃(𝑤𝑗)

𝑝(𝑥)
.                                       (31) 

Since 𝑝(𝑥) is just a scaling factor and is the same for all classes, we can ignore 𝑝(𝑥) to 

get the final form of the Bayes’ decision theory. For an M class classifier, given a 

measurement x, the Bayes classifier chooses the class 𝑤𝑗 such that: 

𝑝(𝑥|𝑤𝑗)𝑃(𝑤𝑗) ≥  𝑝(𝑥|𝑤𝑖)𝑃(𝑤𝑖)         ∀𝑖 ≠ 𝑗.                    (32) 

The expression in (28) can be further simplified for a binary classifier with equal prior 

probabilities for both classes. In this latter case, for a given measurement x, we decide to 

choose class 𝑤1 if 

𝑝(𝑥|𝑤1) ≥ 𝑝(𝑥|𝑤2)                                              (33) 

and class 𝑤2 otherwise. 
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CHAPTER 3 

RELATED WORK 

This chapter summarizes the previous work related to animal coloration quantification 

methods using digital photography. Section 3.1 describes few popular manual software 

methods. Section 3.2 describes an automated approach for intensity quantification of 

animal patterns in gray scale images. 

       Digital image processing and computer vision approaches have been widely used 

for many automated image and video analysis applications such as biometrics, 

biomedical imaging, microscopy, surveillance etc. For example, automated image 

processing methods have been implemented for face, fingerprint recognition and 

matching [28], cell migration in microscopy images [29], identifying and tracking people 

and objects in videos for surveillance, computer aided lesion detection and diagnosis in 

mammography [28] etc. The range of applications for automated image analysis is ever 

expanding. 

There has been a steady increase in the use of digital photography for quantifying 

animal and plant color patterns in recent years [2], [30], [31], due to the fast data 

acquisition speeds and permanent storage capability provided by it [2]. The use of digital 

photography in coloration studies also allows for multi-parameter measurements and 

enables researches to obtain measurements in the wild without the trouble of managing 

expensive and bulky equipment. Although digital photography provides several useful 

benefits over traditional animal coloration quantification approaches like spectrometry 

[7], [2], it does have a few important limitations that affect the accurate measurement and 

quantification of coloration in animals. Digital camera sensors have non-linear intensity 
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response curves and the colors reproduced in images are device-dependent due to the 

variation in spectral responses of different camera sensors [2]. As a result, if not corrected 

for these effects, the same image acquired using different digital cameras would provide 

different color quantification results. Also, a lot of the recent digital cameras employ built 

in image pre-processing and compression algorithms that modify the initial raw intensity 

data recorded by the camera.  

        In order to better leverage the benefits of digital photography, work has been done 

on developing methods for measuring animal coloration by standardizing illumination 

conditions [2], linearizing sensor response curves [12] and camera calibration [13]. 

However, the idea of implementing an efficient and robust automated software 

framework for quantifying animal coloration has largely been unexplored [2]. 

3.1    Manual Software Methods 

The most popular and widely used current manual method involves the use of a digital 

photo editing software like Adobe Photoshop [32], GIMP [33], ImageJ [34] etc. with 

user-driven inputs to identify the region of interest (henceforth referred to as ROI) and 

quantify it [35]. The ROI is identified by using a magic wand tool that takes user-

provided locations for identifying the ROI. After an initial start location is provided in the 

image by the user, the software implements a region growing method to merge regions 

around the user-provided start location, based on the similarity of color. The sensitivity of 

the region merging process to color differences is controlled by a threshold and the ROI 

is refined by repeated readjustments of this threshold by the user. The color quantification 

is achieved using histogram based tools or external plugins provided for measuring image 

intensities in these software packages. The method illustrated in [35] can be considered as 
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a semi-automated method as opposed to the prior manual methods of actually drawing a 

contour tightly enclosing the ROI using a freehand region drawing tool [14]-[16]. 

Identifying the ROI by drawing a closed contour around it using a freehand drawing tool 

in an image editing software is an extremely cumbersome task, may provide low 

repeatability of results and the accuracy of results is largely user dependent. The semi-

automated user-driven method in [35] explained earlier, uses a user driven region 

merging process and is more robust and accurate as compared to the manual method of 

selecting the region of interest using a freehand drawing tool. However, the software 

based semi-automated method also has many limitations. The semi-automated user-

driven method can be extremely time consuming, does not provide batch processing 

capabilities and can result in low intra-photo repeatability. Also, since the region growing 

process is user controlled, the accuracy of results may be significantly reduced over large 

datasets, due to user fatigue. 

       Vortman et al. [36] developed a couple of user-driven MATLAB based software 

packages called “Hirundo” and “Hirundo feather” for measuring animal coloration and 

feather coloration. Unlike the user-driven region growing/merging method used in [35], 

the “Hirundo” tool is based on the idea of two-class quantization of the user selected 

region to measure the color values of interest. In this method, the user selects a 

rectangular region enclosing the ROI and the software tool then performs a two-class 

quantization of the selected region into foreground (ROI) and background. The authors in 

[36] claim to use a Lloyd-Max quantizer based algorithm for this quantization and a user-

defined threshold for adjusting the image region considered to be foreground. However, 

the authors in [36] do not provide any further details about their quantization scheme. 
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Given that the Lloyd-Max quantizer is used for generating optimal partitions of 

continuous geometric regions and the quantization scheme results in [36] can be adjusted 

using user-defined thresholds, it is unlikely that the Lloyd – Max quantization is being 

used in the approach in [36]. It is more likely that the quantization of the user-selected 

region in [36] is performed using just a user-defined threshold, to get the desired ROI. 

Although using the “Hirundo” tool is not as cumbersome as the method in [35], it suffers 

from the same limitations as [35]. The requirement of a user-defined region for 

quantization makes this approach both time consuming and susceptible to inter-observer 

errors. Also, if the ROI consists of more than one quantifiable color (e.g., Butterfly wing 

patterns), the two-class quantization process is unable to quantify them separately and the 

resultant chrominance values of the ROI would correspond to an average of the 

chrominance values of the quantifiable colors. Such an average value would represent a 

totally different color than the one to be quantified. For example, if the identified ROI 

consisted of red and green colored regions, then the tool would most likely provide a 

quantified chrominance value corresponding to the color yellow. These limitations 

necessitate the development of an automated framework that is able to automatically 

characterize multiple colors in the scene in a fast manner, with a high-degree of accuracy 

and avoid human and inter-observer errors. 

3.2     Automated Quantification Method 

As mentioned before, most of the research in using digital photography methods for 

quantifying animal coloration have focused on optimizing the conditions for acquiring 

images, linearizing camera sensor responses and camera calibration. Virtually no work 

has been done on implementing a flexible framework for automatically segmenting and 
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quantifying the different animal coloration patterns in digital images. A couple of 

approaches for segmenting simple animal coloration patterns in grayscale images, using 

basic image processing methods such as intensity based thresholding and edge based 

thresholding were proposed in [2]. In the first approach, the ROI is segmented by 

converting the 8-bit grayscale image into a binary image using a user-defined threshold, 

where every pixel belonging to the ROI is assigned a value of 1 and all other pixels are 

assigned a value of 0. The required threshold value is decided based on prior knowledge 

of the area to be segmented or some explicit assumption. The second approach uses 

strong edges to identify the region of interest. This approach is based on the assumption 

that the boundary of the ROI corresponds to the sharp changes in intensity in an image. 

These sharp changes in intensity can be identified by detecting the strong edges in the 

image. Both of these approaches assume some prior knowledge of the data for computing 

the threshold values and are not designed to segment complex region boundaries found in 

many animal coloration studies. In contrast, the proposed framework in this thesis 

assumes no prior knowledge of the location or color of the specimen used for color 

quantification.  
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CHAPTER 4 

IMPLEMENTED AUTOMATED COLOR QUANTIFICATION SYSTEM 

This chapter describes the proposed framework for automated animal coloration 

extraction and quantification in digital images. The developed framework consists of 4 

major steps: extracting the foreground region and excluding the background region using 

dominant colors, skin/non-skin region classification using a binary Bayesian classifier, 

removal of outlier skin pixels using an edge-enhanced model, and perceptual-based 

Saturation-Brightness quantization to refine the region of interest by eliminating 

perceptually insignificant colors, such as black, gray and white, while preserving the 

perceptually visible (bright plumage) colors. Section 4.1 presents an overview of the 

implemented automated animal coloration quantification system. The four major 

components of the proposed animal coloration quantification framework are described in 

Sections 4.2 to 4.5. Section 4.6 describes the MATLAB-based software implementation 

and summarizes the major steps of  the proposed algorithm.  

4.1    Overview of the Proposed System 

In this work, the problem of extracting the animal coloration patches is treated as a color 

segmentation problem and the proposed approach draws inspiration from the class of 

image segmentation methods that use a few representative dominant colors for 

segmenting an image into regions of perceptually homogenous colors.  

In many images used for animal color quantification, a standard color strip is 

placed alongside the bird or animal as shown in Fig. 4. The strip can be used for 

illumination correction in post-acquisition analysis. In this work, the color strip is  
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Fig. 4. Original image with the color strip present. 

 

 

Fig. 5. Binary image showing the detected color square in white, for color strip removal. 
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Fig. 6. Image obtained after removing the color strip from the image. 

 

detected by searching for the presence of a specific color present in the color strip, using 

a MMSE (minimum mean squared error) metric. Once the color strip is detected, its 

color(s) can be quantified and stored for use in color normalization to achieve an 

illumination-invariant color quantification. Since the color strip is outside the Region-of-

Interest (ROI) containing the animal, a cropped image containing the ROI is formed by 

removing the region containing the detected color strip. Fig. 4 shows the image before 

color strip removal. The binary mask showing the detected color square in white, used for 

color strip removal, is shown in Fig. 5. The image after color strip removal is shown in 

Fig. 6. After color strip removal, the cropped image is processed by the proposed 

automated animal coloration quantification algorithm (see more below) to extract and 

quantify the colors in the ROI. In the remainder of this thesis, the term input image refers 

to the image after color strip removal. Fig. 7 illustrates the block diagram of the proposed 

algorithm. After color strip removal, a coarse two-class color quantization is performed 

on the input image in order to segment the image into a background (insignificant region) 

and a foreground (region containing the object of interest) region. 
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Fig. 7 Block diagram of the proposed framework. 

 

        The extracted foreground region is then further processed in order to extract 

colors corresponding to the bird plumage area, while removing other outlier colors such 

as colors due to the presence of human hands with or without gloves. If gloves are used, 

removing the outlier colors is a relatively easy task since the color of the gloves is 

typically chosen to be significantly different than the colors of interest in the animal. The 

gloves can be removed using a coarse color quantization scheme similar to the one used 

in the aforementioned foreground extraction step. If no gloves are used, the problem 

becomes more challenging since the human skin color can be in many cases similar to the 

colors of interest in the animal. In order to eliminate the regions corresponding to the 

human skin colors while preserving the bright animal colors, we propose a novel model-

based approach combined with a Bayesian classifier. After regions corresponding to 
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human skin are removed, the remaining foreground region is subjected to a perceptual-

based saturation-brightness quantization that preserves the perceptually visible colors 

(bright colors like red, yellow, orange etc.) while removing the perceptually insignificant 

ones. The resulting ROI colors are quantified in terms of their mean hue, saturation and 

brightness values for each segmented color patch in the ROI. The size of each ROI color 

patch is also provided as an output by the proposed algorithm. Further details about the 

foreground extraction and background removal, skin/non-skin classification, edge-

enhanced model-based outlier skin pixel removal and perceptual-based Saturation-

Brightness quantization are presented in Sections 4.2 to 4.5 . 

4.2 Foreground Extraction and Background Removal using Dominant Colors 

As previously mentioned, most coloration analysis images usually include a reference 

color strip to correct for non-standard illumination conditions. Since the color strip does 

not provide any useful information to the task of segmenting the area of interest, we 

choose to detect and remove the color strip from the image by cropping it. This helps to 

improve the computation time by reducing the number of pixels used for further 

processing. After color strip removal and image cropping, a foreground extraction 

process is implemented on the input image to remove background regions. The 

foreground-background extraction is performed by assigning each pixel in the image to 

either a background or foreground region (also referred to as class or cluster) based on 

the pixel color. This process is a two-class (background/foreground) color quantization of 

the image color space and can be achieved using any of the several color space 

segmentation approaches available in the literature such as mean-shift clustering [37], 

Gaussian mixture model based classification [38], k-means clustering [38], color 
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quantization methods used in display devices [39] etc. In this proposed work, the 

foreground–background classification is performed using a k-means clustering algorithm. 

However, it is well known that using an unsupervised k-means clustering approach is 

extremely sensitive to the choice of initial seeds (initial representative color for each 

cluster). Better results can be achieved by using user-provided or intelligently derived 

initial seeds as compared to a random selection of initial seeds [40]. In this work, we are 

interested in an automatic initial seed selection process rather than user-provided seeds. 

For this purpose, we propose the use of dominant colors in the image as the initial seeds 

for the k-means clustering.  

4.2.1 Dominant color extraction in images 

Ma et al. [41] proposed the idea of using dominant colors for a concise color space 

representation for image segmentation and a number of different approaches for 

dominant color extraction have been proposed [41]-[45]. In this work, the dominant 

colors in the image are automatically identified by computing the color distribution of the 

image content. The dominant colors are determined by locating local peaks or modes in 

the image color distribution using the mean-shift mode detection as in [37]. The use of a 

few important colors to represent the image color distribution helps in merging regions of 

similar color into a single abstraction that aids the task of ROI segmentation. Before 

computing the dominant colors in the image, the input image is convolved with a 

Gaussian smoothing filter in order to remove noise and merge very small regions of color 

with the nearest larger color cluster. This helps to reduce the number of unique colors in 

the image and speed up mode detection. Another approach to reduce the number of 

unique colors is to quantize an 8 bit three channel RGB image to a 5 bit three channel 
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image by ignoring the last 3 bits of every 8 bit pixel value in the image [39]. Such a 

preprocessing step can reduce the maximum number of unique colors possible in an RGB 

image from 2563 to just 323 with very little loss in quality for the considered application.  

        An important factor that affects the color segmentation results is the choice of 

color spaces. As discussed in Chapter 2, the RGB color space is perceptually non-

uniform, i.e., a small perceptual difference between two colors can correspond to a large 

distance in the color space and vice versa [22]. Since the Euclidean distances used to 

measure color differences in these non-perceptually uniform color spaces do not 

correspond to human perceived color differences, the RGB color space is not the best 

choice for image segmentation methods aimed at emulating human visual perception. It 

has been shown that the performance of color segmentation methods is greatly improved 

by using perceptually uniform color spaces such as the ones recommended by the CIE 

[46]. In this work, the perceptually uniform L*a*b* (also known as CIELAB) color 

space, described in Section 2.1.2 of Chapter 2, is used for representing the color 

distribution of the considered images as it provides a perceptually uniform representation 

of colors [37], [42], [46]. This helps to ensure that perceptually similar colors are grouped 

in the same segmentation class. Also, since the luminance L* and chrominance a*b* 

components in the L*a*b* color space are separated, we only need to consider the a* and 

b* color components for extracting the dominant colors in the image as compared to the 

R, G and B components in the RGB color space. This reduces the complexity of the 

dominant color extraction process as well as the k-means clustering process.   
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Fig. 8. Original image containing multiple colors. 

                              

 

Fig. 9. Image Segmentation result using 14 dominant colors. 
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Fig. 10. Segmentation result using 8 dominant colors. 

 

 

Fig. 11 Segmentation result using 5 dominant colors. 
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       We first generate an L*a*b* space mapping of the colors in the image and then 

compute a 2-D color histogram of the image, where the chrominance components a* and 

b* represent the dimensions of the 2-D color histogram. The dominant colors are then 

determined by detecting modes (local peaks) in the histogram as indicated previously. 

The number of dominant colors detected also affects the accuracy of segmentation 

results. Using a large number of colors results in over-segmentation of the image, while 

using very few colors results in under-segmentation of the image and parts of the region 

of interest being assigned to the background class. In the proposed framework, the 

number of colors detected is adaptive and depends on the size of the window used for 

mode detection. The size of the window is chosen to be a factor of the total variance of 

the image color space. Fig. 8 shows the original image, while Fig. 9, Fig. 10 and Fig. 11 

show image segmentation results using different number of dominant colors such as 14, 8 

and 5 dominant colors, respectively.  

4.2.2 Foreground extraction using k-means clustering 

After extracting the dominant colors of the image, a k-means clustering operation is 

performed as described earlier, on the color values using the a* and b*component values 

for each pixel in the image to produce a multi-class abstraction of the image, with the 

number of classes produced being equal to the number of dominant colors detected 

previously. Since the background has an almost homogenous color and occupies the 

largest portion of the total image area, the background cluster is identified as the cluster 

whose center is closest to the largest peak in the image color distribution, which 

corresponds to the background dominant color. Pixels in a particular dominant color  
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Fig. 12.  Input image. 

        

Fig. 13. Foreground-background class abstraction for the image shown in Fig. 12; 

foreground region shown in white. 

 

cluster are assigned to the background cluster based on how close their cluster center is to 

the background cluster center and this is evaluated by taking the Euclidean distance 

between the candidate cluster center and the identified background cluster center. All 

pixels in a cluster are labeled as background pixels, if the Euclidean distance between 

their cluster center and the background cluster center is less than a certain threshold. The 

value of the threshold used in this work is equal to 12. The remaining pixels are labeled 

as foreground pixels. This results in the segmentation of the image into a background 

region that is ignored and a foreground region that is processed further. Fig. 13 shows the 
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resulting foreground-background segmentation mask for the input image shown in Fig. 

12, where the white and black regions correspond, respectively, to the extracted 

foreground and background regions. 

4.3 Skin/Non Skin Region Classification 

In images involving color quantification of live, fast moving animals, the specimen is 

held in position by human hands. Since we initially segment the image into just two 

classes, the region corresponding to human hands in the image may also be retained in 

the foreground class as shown in Fig. 13. Since no prior knowledge about the color of the 

ROI is assumed before the start of segmentation, a foreground - background classification 

based on dominant colors is not enough to accurately extract the ROI. In order to 

differentiate the ROI from the region corresponding to human hands in the image, the 

foreground class needs to be further segmented. We achieve this segmentation by first 

using a Bayesian skin color classifier [47], which segments the foreground class into 

candidate skin and non-skin pixels on the basis of chrominance values for each pixel.  

      In order to use the Bayesian classifier for human skin classification, we first 

need to estimate the class conditional probabilities from a sample dataset of skin and non-

skin images. The conditional probability distributions for the skin and non-skin classes 

can be modeled each in color space as single bivariate Gaussian distributions as shown in 

[47], [48], [49] and as Gaussian mixture density models as shown in [49], [50], [51]. Two 

important factors for implementing an efficient skin detector are: 

(i) The amount of overlap between the skin and non-skin distributions and the shape of 

the distributions in a given color space. 
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(ii) The ability of a probabilistic model to approximate a complex-shaped distribution in a 

given color space. 

In the proposed framework, the perceptually uniform CIELAB (L*, a*, b*) space is used 

to model the skin and non-skin conditional densities. The skin color distribution in such 

perceptually uniform spaces usually takes the shape of a complex multi-modal 

distribution. To effectively model such a complex shaped distribution, a Gaussian 

mixture model is used in this framework. The Gaussian mixture model is estimated by 

implementing the approach mentioned in Section 2.2 on a sample data set consisting of 

500 images of size 60x60 pixels each, with 250 images for the skin class and 250 images 

for the non-skin class. This results in a total of around 2 million pixel color values.  The 

images are transformed to the CIELAB space and the Expectation-Maximization 

algorithm is implemented using the entire dataset. Fig. 14 shows sample images from the 

skin dataset.   

        The number of components in a Gaussian mixture model is usually assumed to 

be known. In general, increasing the number of parameters tends to increase the 

likelihood but also leads to over-fitting. To determine the exact number of components 

needed for a given data distribution, an information criteria such as the Akaike 

Information Criterion (AIC) or AIC with correction (AICc) can be used. Such 

information criteria assign a penalty term for the number of components to balance the 

tradeoff between maximizing the likelihood and over-fitting. The AIC gives the optimal 

number of components under asymptotic conditions. The AIC is given by the equation 

[52], 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿)                                                (34) 
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Fig. 14 Sample images from the skin dataset used to estimate the skin condition. 
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where k is the number of free parameters in the model and L is the maximized value of 

the likelihood function for the estimated model. For a Gaussian mixture model with M 

bivariate Gaussian components having symmetric non-diagonal covariance matrices, the 

number of free parameters k =(6𝑀 − 1) [53]. The AIC is computed for a set of candidate 

models and the model that produces the minimum AIC value is chosen as the model with 

the optimal number of components [52]. For the skin color dataset used in this work, an 8 

component Gaussian mixture model provided good results. As discussed in Section 2.2, 

the initial estimates for the mean vectors and covariance matrices of the Gaussian 

components are obtained by a vector quantization of the color space distribution. The 

skin class conditional can be obtained from (16) by choosing M=8 and is given by: 

𝑝(�̅�(𝑖, 𝑗)|𝑆 = 1) = ∑ 𝑤𝑖 
8
𝑖=1 𝑔(𝑥|𝜇𝑖, Σ𝑖)                                (35) 

where 𝑔(𝑥|𝜇𝑖, Σ𝑖) is a bivariate Gaussian density function as described in (17), 𝜇𝑖 and Σ𝑖 

represent, respectively, the mean vector and covariance matrix, the vector �̅� (𝑖, 𝑗) = [a*(i, 

j) b*(i, j)]T represents the chrominance values (a*,b*) for the pixel at coordinates (i, j) 

and S is used to represent the skin class for S=1 and the non-skin class for S=0. The non-

skin distribution is modelled as a single bivariate Gaussian density function and is given 

by, 

𝑝(�̅�(𝑖, 𝑗)|𝑆 = 0) = 𝑔(𝑥|𝜇𝑖, Σ𝑖)                                        (36) 

where 𝑔(𝑥|𝜇𝑖, Σ𝑖) is same as described in (17). The non-skin distribution can also be 

modelled as a Gaussian mixture model, but a single Gaussian provided good results for 

the tested images. 

      Using the class conditional densities defined earlier, a two class Bayesian classifier, 

as explained in Section 2.3 is implemented, and classifies every pixel in the foreground 
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class as skin or non-skin pixel. Given a chrominance vector �̅� ( 𝑖, 𝑗) = [a*(i, j) b*(i, j)]T 

for an image pixel at coordinates (i, j), and assuming equal prior probabilities for both the 

skin and non-skin class, the classifier classifies this pixel as a skin pixel if, 

 𝑝(�̅�(𝑖, 𝑗)|𝑆 = 1) ≥  𝑝(�̅�(𝑖, 𝑗)|𝑆 = 0)                                 (37) 

A binary mask S(i,j) is produced by the Bayesian classifier where S(i,j)=1 corresponds to 

a candidate skin pixel at location (i,j), and S(i,j)=0 corresponds to a non-skin pixel. 

4.4 Edge-Enhanced Model-Based Classification for Outlier Pixel Removal 

As mentioned in Section 4.3, the foreground region needs to be segmented into a skin and 

a non-skin class in order to remove the region corresponding to human hands in the 

foreground class. The accuracy of a human skin classifier based on chrominance only, 

largely depends on the amount of overlap between the class conditional densities of the 

skin and non-skin classes in the color space and the number of samples in each of the 

training sets for each class [49]. This thesis work focuses on a broad set of images 

consisting of different species of animals used in coloration analysis instead of a single 

species of animals. As a result, no assumption regarding the color of the specimen is 

made in this approach, except that the background is chosen to be different than the 

colors of interest of the animal. As illustrated in Fig. 12, it is possible that the color of the 

ROI is perceptually similar to the color of human hands. In such a case, the candidate 

skin pixels determined by the skin classifier might not all correspond to true skin pixels 

since some plumage colors might be similar to skin color and a skin color classifier may 

not be sufficient to effectively identify the ROI. To circumvent this problem, the 

candidate skin pixels that are obtained using the color-based Bayesian classifier are 
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further refined into skin and non-skin regions by using the edge information that is 

present in the luminance component of the considered image. Our model-based approach 

is based on the assumptions that 1) the region of human hands can be separated from an 

ROI having a perceptually similar color by using the luminance component of the image 

due to a perceivable difference in the luminance values of the hand region and the ROI, 

resulting in a significant or strong edge at the hand-ROI interface; and 2) the region of 

human hands is connected to the acquired image border as illustrated in Fig. 12. The first 

assumption helps in separating the similar colored hand region from the ROI if these are 

connected (Fig. 12). The second assumption helps in identifying and removing the hand 

region from the foreground. Removing directly the region connected to the border 

without initially separating the true hand region from the misclassified skin pixel regions 

in the ROI will result in the removal of parts of the ROI which are misclassified as skin 

pixel regions. Thus, in the proposed approach, an edge map is first generated and is used 

to separate the true hand region from the misclassified skin pixel regions in the ROI. The 

region that is connected to the image border is then determined as the true human hand 

region and removed from the foreground region in Fig. 13, resulting in the final ROI 

mask. 

              The Canny edge gradient operator [54] is used to first generate an edge gradient 

magnitude image. Other suitable edge detectors can also be used for this purpose. A 

binary edge map representing the strong edges in the image is generated from the edge 

gradient magnitude image using a thresholding operation. Pixels that form a strong edge 

are represented by a value of 1 in the binary edge map. We compute the threshold 𝑡ℎ𝑖𝑔ℎ 

for the Canny edge detector using a histogram of the edge gradient magnitudes. The 
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threshold 𝑡ℎ𝑖𝑔ℎ  is chosen such that the top 10 percent edge gradient magnitude pixels in 

the histogram are marked as strong edges. For our application, we choose the top 10 

percent pixels because we are only interested in the strong edges that are necessary to 

define object contours in the image. The low threshold 𝑡𝑙𝑜𝑤 is computed exactly as 

defined by Canny in [54].  Fig. 15 illustrates the resulting binary edge map for the 

foreground region of the image shown in Fig. 13. The resulting binary edge map is then 

inverted to produce a binary mask 𝐸(𝑖, 𝑗). A point-by-point multiplication of 𝐸(𝑖, 𝑗) 

with 𝑆(𝑖, 𝑗), the binary mask produced by the Bayesian skin classifier, helps to split skin 

(hand) regions connected to the ROI: 

𝐹(𝑖, 𝑗) = 𝐸(𝑖, 𝑗) ∗ 𝑆(𝑖, 𝑗)                                          (38) 

A refined region mask representing the human skin is generated, as illustrated in Fig. 16, 

by first removing regions connected to the image borders in F(i,j) and then subtracting 

the resultant mask from the original foreground region mask shown in Fig. 13. The final 

ROI mask (Fig. 17) can be obtained by subtracting the human skin mask (Fig. 16) from 

the original foreground mask (Fig. 13). Alternatively, the final ROI mask (Fig. 17) can be 

obtained by first removing regions connected to the image borders in F(i,j) and then 

multiplying the resultant mask with the foreground region mask (Fig. 13). 
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Fig. 15. Binary edge map. 

 

 
 

Fig. 16. Hand region mask. 

 

 
 

Fig. 17. Final generated ROI mask 
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4.5   Perceptual-based Saturation-Value Quantization 

In some plumage coloration studies such as those for the house finches, researchers are 

interested in carotenoid based coloration and, for these applications, they usually do not 

include regions of the bird plumage that have shades of white, gray and black in the ROI 

used for analysis. These studies are targeted at measuring chrominance values of regions 

having colors like red, yellow, blue, green, to name a few, whose chrominance values are 

related to the amount of color producing carotenoid pigment present in the birds [1]. As 

previously discussed in Section 2.1.3, in the HSV (H: Hue, S: Saturation; V: Value) color 

space, the colors white, black and shades of gray can be produced for any value of hue 

(H), i.e., these colors are a function of only the saturation (S) and value (V) components. 

For example, black is produced when 𝑉 = 0 and 0 ≤ 𝑆 ≤ 1 [25], the color white 

corresponds to the point (S, V) = (0, 1) in Saturation – Value space, while shades of gray 

are produced at all points along the vertical axis in HSV color space, i.e., when 𝑆 = 0 and 

0 ≤ 𝑉 ≤ 1 as shown in Fig. 18. Also the human ability to perceive vivid color diminishes 

as the brightness (V) decreases. As a result, at lower brightness levels, colors appear to be 

shades of gray or even black, even though 𝑆 ≠ 0 and 𝑉 ≠ 0. As the final step in this 

framework, a perceptual-based Saturation–Value quantization is proposed to exclude 

pixels that would be perceived to have a gray, black or white color if these colors are not 

of interest. The binary level quantization decision boundary shown in Fig. 19 is used to 

generate a binary mask as shown in Fig. 20, based on the S and V values. The binary 

mask is generated as follows: 

𝐵(𝑖, 𝑗) = {
0, 𝑆 ≤ 0.2 or 𝑉 ≤ 0.15 or 𝑉 + 𝑆 − 0.85 < 0
1, otherwise

                 (39) 
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Fig. 18. Plot of Value versus Saturation for a single hue (Hue = 6º). 

 

 

Fig. 19 Quantization decision boundary overlay on Value versus Saturation plot. 
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Fig. 20. Binary mask generated using perceptual-based Saturation-Value quantization. 

 

where B( i, j) is the binary mask, {S=Saturation, V=Value} are the Saturation and Value 

intensities at point (i, j) in the image.  

      The black region in Fig. 20, corresponds to the region of (Saturation, Value) 

value pairs in Fig. 18 that would be considered as perceptually insignificant colors in 

some coloration studies, i.e. white, black and shades of gray color, while the white region 

in Fig. 20 represents the perceptually significant colors in Fig. 18. The white line in Fig. 

19 represents the quantization decision boundary in (S, V) space. This decision level can 

be further adapted to the input image characteristics based on the range of colors and 

contrast present in the image. Fig. 21 illustrates the final ROI extracted using the 

proposed framework. 
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4.6  MATLAB-based Software Implementation. 

A MATLAB-based software package implementing the proposed framework has also 

been designed and can be found here: http://ivulab.asu.edu/software/coloration/abcot . 

The software package provides an easy to use GUI for color quantification of image 

datasets. Fig. 22 shows the GUI for the MATLAB-based software package. The user can 

analyze just a single image using the single image option or an entire dataset of images 

using the batch processing option. The user can specify the presence and orientation of 

the color strip and the software package can process both, images in which a color strip is 

present and images in which a color strip is not present. The GUI also provides several 

options to customize the algorithm as per user needs. For example, if only the colors like 

black, gray and white need to be quantified, the user can disable the option of ‘Perceptual 

Quantization’ to avoid removal of these colors from the ROI. This way the software 

package can be used to quantify both melanin-based as well as carotenoid based colors. 

The ‘Colors to Reject’ option allows the user to calibrate the software package to always 

avoid certain colors from being included in color quantification. By choosing the ‘Glove 

Reject’ option, the user can also process images in which the animal is held by a human 

wearing gloves. The software package also provides the user to save customizable 

settings of the algorithm for future reuse. The user can also choose the output format for 

the color quantification results generated. In addition to a standard excel sheet which 

contains the mean and variance measurements for hue, saturation, value and patch size 

for each ROI along with the image name, the user can also save a binary image showing 

the selected ROI as shown in Fig. 17 and an image showing the outline of the final 

extracted ROI overlayed on the input image as shown in Fig. 21. These images can be 

http://ivulab.asu.edu/software/coloration/abcot
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used to identify errors in ROI selection, which is not possible with current semi-

automated methods as no image based evidence of the selected ROI is stored. 

        A summary of the major steps for the software implementation of the proposed 

framework is as follows: 

Step 1: Perform Gaussian smoothing on input image and transform it from RGB color 

space to the perceptually uniform CIELAB (L*,a*,b*)color space. 

Step 2: Compute the 2-D color space histogram of the image using the chrominance 

components a* and b* as the two dimensions. 

Step 3: Detect the peaks in the histogram computed in Step 2 to compute representative 

dominant colors. 

Step 4: Perform k-means clustering in color space to extract the foreground and 

background region using as initial seeds the representative colors found in Step 3. 

Step 5: Perform human skin classification using a Bayesian classifier on the foreground 

region and generate new mask representing candidate skin pixels. 

Step 6: Extract and remove skin region using edge map and boundary of image. 

Step 7: Use perceptual based Saturation-Value quantization to remove perceptually 

insignificant colors from ROI. 

Step 8: Quantify colors in the ROI for each color patch in terms of color patch size, mean 

hue, mean saturation, and mean value. 
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Fig. 21. Outline of final extracted ROI overlayed on original image 

 

 

 
 

Fig. 22. User interface for MATLAB-based implementation of proposed method. 

 

 

 

 

 

 



  50 

CHAPTER 5 

EXPERIMENTAL RESULTS 

In this chapter, the experimental results of the proposed framework for segmenting and 

quantifying animal coloration using different image sets, are presented and analyzed. 

Section 5.1 introduces the image sets used to evaluate the accuracy and repeatability of 

the implemented framework. Section 5.2 describes how the hand scored images for 

performance evaluation were obtained. Section 5.3 presents the inter-photo and intra-

photo repeatability results for the measured hue, saturation, value and patch size for 

different image sets. Section 5.4 presents performance comparison results between hand-

segmented and manually scored results and the results generated using the implemented 

framework. 

5.1      Data Set Description 

The inter-photo, intra-photo repeatability and linear correlation results are evaluated for 

two datasets, the rump image dataset and the breast image dataset. Dataset 1 (rump image 

dataset) is generated by taking images of the rump region of different specimens of the 

house finch (Haemorhous mexicanus). It consists of images of 33 different specimens, 

consisting of both juvenile and adult specimens. Two images are generated for each of 

the 33 different specimens to check for inter-photo repeatability. For each specimen, the 

two images generated differ slightly in terms of illumination, position of the bird and 

camera zoom. In total, Dataset 1 has 66 images and, in each image, the bird is held in 

place by human hands with a standardized color strip placed next to the specimen to 

correct for non-standard illumination conditions. Fig. 23 shows sample images from  
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Fig. 23 Example images from the rump dataset (Dataset 1). 
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Fig. 24 Example images from the breast dataset (Dataset 2). 
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Dataset 1. Dataset 2 (breast image dataset) is generated by taking images of the breast 

region of different specimens of the house finch (Haemorhous mexicanus). Similar to 

Dataset 1, Dataset 2 (breast image dataset) consists of images of 25 different specimens. 

Just like Dataset 1, two images are also generated for each of the 25 different specimens 

to check for inter-photo repeatability, and the two images generated differ slightly in 

terms of illumination, position of the bird and camera zoom. Dataset 2 has a total of 50 

images and in each image the bird is held in place by human hands with a standardized 

color strip placed next to the specimen to correct for non-standard illumination 

conditions. Fig. 24 shows example images from Dataset 2. 

5.2    Manual Results Generation 

In order to evaluate the performance of the proposed automated quantification method, 

hand scored results need to be generated for all images in Dataset 1 and Dataset 2. These 

hand scored results are generated by using a semi-automated software based method 

using the freely available photo editing software GIMP [33].  The photos from each 

dataset are imported in GIMP and the region of interest is selected by a user for each 

image using a custom-written plugin in GIMP. The custom-written plugin uses the fuzzy 

select region selection tool in GIMP to enable the user to select the region of interest. 

This built in region selection tool in GIMP is similar to the magic wand region selection 

tool in Adobe Photoshop [32]. This tool uses a region growing method as explained in 

3.1, where the user provides the initial seed location in the image and controls the region 

growing process by adjusting a threshold. The region growing method uses similarity of 

color to control the region growing and the user defined threshold controls how similar a 

candidate region color should be, in order to be merged with the parent region. The 
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GIMP plugin allows the user to repeatedly adjust the region growing threshold until the 

user is satisfied with the region selected. After the user is satisfied with the region 

selected, the plugin generates a binary mask of the region selection, where pixels in the 

selected region are denoted by a value of 1 and all other pixels are set to a value of zero.  

       The binary masks generated for all images in Dataset 1 and Dataset 2 are then 

imported into Matlab along with the original images in the two datasets to compute the 

average hue, average saturation, average value and patch size for each ROI. These values 

are computed by performing a point-by-point multiplication of each channel of the 

original image in HSV color space with its corresponding binary mask, followed by a 

mean computation step where all the pixels in the selected region are used to compute the 

mean hue, saturation and value. For each image, a set of four values is generated. These 

values are then further used for performance analysis as explained in 5.3 and 5.4. 

5.3      Inter-photo and Intra Photo Repeatability 

The inter-photo repeatability is evaluated by computing the repeatability of results 

between each pair of images for all 33 specimens in Dataset 1 and 25 specimens in 

Dataset 2 to judge the similarity between the regions of interest identified by the 

proposed scheme for two images of the same specimen with slightly different 

illumination conditions, position of the specimen and camera zoom. Ideally the inter-

photo repeatability value should be close to 100%, as the exact same specimen is 

photographed in both images with slight differences in image acquisition conditions, as 

explained earlier in Section 5.1. Similarly, the intra-photo repeatability is evaluated by 

computing repeatability results between a pair of exactly identical images for all 

specimens in Dataset 1 and Dataset 2. The intra-photo repeatability helps to judge the 



  55 

similarity between the regions of interest identified by the software as well as the human 

observers for a pair of identical images, which are scored a few days apart. Since, the 

same images are being scored on different days, the intra-photo repeatability should 

ideally be equal to 100% 

        The repeatability is computed as the intra class correlation coefficient as stated 

in [55]. The intra class correlation coefficient r, can be computed using most common 

statistical packages and is obtained as follows [55]: 

𝑟 =
𝑆𝐴
2

(𝑆𝑤
2+𝑆𝐴

2)
                                                          (40)   

                                                   

where, 𝑆𝐴
2 is the among-groups variance component and 𝑆𝑤

2  is the within-group variance 

component. The above mentioned variance components can be computed by using a one-

way analysis of variance (ANOVA). Here we provide the general equations to compute 

the repeatability r using ANOVA [56]: 

 𝑆𝑤
2 = 𝑀𝑆𝑤                                                       (41) 

𝑆𝐴
2 = (𝑀𝑆𝐴 −𝑀𝑆𝑤)/𝑛0                                           (42) 

𝑛0 = [
1

𝐾−1
] ∗ [∑ 𝑛𝑖 − (∑ 𝑛𝑖

2𝐾
𝑖=1 /∑ 𝑛𝑖

𝐾
𝑖=1 )𝐾

𝑖=1 ]                            (43) 

 

where, K is the total number of groups, ni is the number of samples in each group, 𝑀𝑆𝑤 

represents the mean squares within groups and 𝑀𝑆𝐴 represents the mean squares among-

groups in the ANOVA table. The mean squares are computed using the sum of squares 

measure for within groups SSW and among-groups SSA using the following equations [55], 

𝑀𝑆𝑤 =
𝑆𝑆𝑊

𝑑𝑓𝑊
                                                        (44) 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑑𝑓𝐴
                                                          (45) 
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where 𝑑𝑓𝑊 and 𝑑𝑓𝐴 represent the within group and among-group degrees of freedom. The 

mean squares in ANOVA is equal to the sum of squares measure divided by the degrees 

of freedom.  The degrees of freedom are obtained as follows, 

                                             𝑑𝑓𝐴 = 𝐾 − 1                                                       (46) 

 

                                                   𝑑𝑓𝑤 = 𝑑𝑓𝑡𝑜𝑡𝑎𝑙 − 𝑑𝑓𝐴                                                 (47) 

 

𝑑𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑁 − 1                                                      (48) 

 

where K is the number of groups and N is the total number of measurements in the 

experiment. The sum of squares are computed as shown [55], 

𝑆𝑆𝑤 = ∑ ∑  (𝑦𝑖,𝑗 − 𝜇𝑗)
2𝑛

𝑖=1
𝐾
𝑗=1                                           (49) 

 

𝑆𝑆𝐴 = ∑ 𝑛 ∗ (𝜇𝑗 − 𝜇)
2𝐾

𝑗=1                                                (50) 

 

where K is number of groups, n is the samples per group, 𝑦𝑖,𝑗 is the measurement of 

sample i in group j, 𝜇𝑗 is the mean for group j and 𝜇 is the mean of all the N 

measurements and is also called the grand mean. Using the mean squares the F ratio is 

computed as follows, 

𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝑤
                                                             (51) 

 

The total variance is computed as the sum of the within group variance component and 

the among-group variance component. 

         For our inter-photo repeatability experiment, we define 33 groups for Dataset 1 

and 25 groups for Dataset 2. Each group contains 2 images (samples) of the same 

specimen obtained under slightly different illumination conditions, position of specimen 

and camera zoom. Each group represents one specimen. So for the inter-photo 

repeatability experiment, K=33, n=2, N=66 for Dataset 1 and similarly K=25, n=2, N=50 



  57 

for Dataset 2, where K, n and N are same as defined in equation (45). Similarly, for the 

intra-photo repeatability experiment, we define 33 groups for Dataset 1 and 25 groups for 

Dataset 2. Each group contains a pair of identical images, unlike the inter-photo 

repeatability experiment. The values for parameters K, n and N are same as those for the 

inter-photo repeatability experiment. The within group variance represents the variation 

due to image acquisition conditions and software, while the among-group variance 

represents the variation due to differences in the plumage colors of the individual 

specimens. 

              Using equation (36), the repeatability is computed for results generated using the 

proposed scheme and the hand-scored results generated by three users for images of 

Dataset 1 and Dataset 2. For each group of images, the repeatability is computed for 4 

measured quantification parameters: average hue, average saturation, average value and 

patch size. The statistical analysis package JMP was used to compute the repeatability 

and generate the associated ANOVA tables. The evaluated inter-photo and intra-photo 

repeatability for the user-scored results and the results generated using the proposed 

scheme for all 4 measured quantification parameters for Dataset 1 and Dataset 2 is shown 

in Tables 1-4, respectively. The inter-photo repeatability variance components and the 

associated ANOVA tables for the measured hue, saturation, value and patch size results 

of the proposed scheme, user 1, user 2 and user 3 are shown in the Appendix A, Tables 

A1-A8, respectively, for Dataset 1. Similarly, these values for Dataset 2 are shown in 

Appendix A, Tables A9-A16. 
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Table 1. Inter-photo Repeatability of software and hand scored results for Dataset 1. 

Method Repeatability 

for hue 

Repeatability 

for 

saturation 

Repeatability 

for value 

Repeatability 

for patch size 

Proposed 

method 

99.8% 99.5% 99.8% 98.8% 

User 1 99% 89.7% 96.7% 78.8% 

User 2 98.6% 89.9% 97.3% 86.8% 

User 3 94.4% 74.4% 93.8% 39.9% 

 

 

Table 2. Inter-photo Repeatability of software and hand scored results for Dataset 2. 

Method Repeatability 

for hue 

Repeatability 

for 

saturation 

Repeatability 

for value 

Repeatability 

for patch size 

Proposed 

method 

99.98% 99.8% 100% 99.8% 

User 1 98.3% 86.3% 97.7% 70.4% 

User 2 98.2% 88.1% 98.8% 87.4% 

User 3 98.1% 84.2% 97.3% 57.6% 
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Table 3. Intra-photo Repeatability of software and hand scored results for Dataset 1. 

Method Repeatability 

for hue 

Repeatability 

for 

saturation 

Repeatability 

for value 

Repeatability 

for patch size 

Proposed 

method 

100% 100% 100% 100% 

User 1 98.9% 92.2% 97.7% 97% 

User 2 98.9% 87.3% 97.9% 87.6% 

User 3 97.7% 85.5% 95.3% 89.9% 

 

 

Table 4. Intra-photo Repeatability of software and hand scored results for Dataset 2. 

Method Repeatability 

for hue 

Repeatability 

for 

saturation 

Repeatability 

for value 

Repeatability 

for patch size 

Proposed 

method 

100% 100% 100% 100% 

User 1 99.2% 95.7% 99.5% 96.1% 

User 2 98.6% 77.8% 98.2% 75.6% 

User 3 97.9% 81.4% 96.6% 77.3% 

 

        The inter-photo repeatability values for Dataset 1 and Dataset 2 in Table 1 and 

Table 2 clearly show that the automated software framework generates results that 

provide much more repeatable values of the 4 measured quantification parameters as 

compared to hand scored results generated using current manual methods. The inter-

photo repeatability of the proposed scheme is very close to the ideal value of 100% as 

compared to the user scored results. The intra-photo repeatability values in Table 3 and 
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Table 4 show that the proposed method produces results that are identical for pairs of 

identical images scored a few days apart. However, the user scored results for the same 

pairs of identical images are not identical and this proves that the proposed method 

produces much more repeatable results as compared to manual scoring methods. 

5.4     Correlation Analysis of the Proposed Framework 

The correlation analysis of the proposed framework is evaluated by computing the linear 

correlation coefficient between results generated using proposed method and user-scored 

results. The Pearson’s correlation coefficient is computed for quantifying the correlation 

between the results generated using the proposed framework and user scored results. The 

correlation coefficient between two random variables X and Y with means 𝜇𝑥 , 𝜇𝑦 and 

variances 𝜎𝑥
2 , 𝜎𝑦

2  respectively is given as, 

𝜌(𝑋, 𝑌) =
𝐸[(𝑋−𝜇𝑥)(𝑌−𝜇𝑦)]

𝜎𝑋𝜎𝑌
                                               (52) 

Hand segmented ROIs are generated for all 33 specimens in dataset 1 and 25 specimens 

in dataset 2 by three different users as explained in 5.2. The correlation coefficient is 

computed between proposed method and user 1, proposed method and user 2 and 

proposed method and user 3, for all the four measured quantification parameters. The 

correlation coefficients for dataset 1 and dataset 2 are shown in Table 5 and Table 6 

respectively. The proposed framework shows very strong correlation with all user scored 

results for the measured hue and value of the region of interest. The correlation between 

the proposed automated method and the manual scoring method is weaker for the 

measured saturation and patch size. This is due to the low inter-photo and intra-photo 

repeatability of manual scored results for saturation and patch size as compared to the  
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Table 5. Linear correlation of proposed method with user scored results for Dataset 1. 

Correlation Pair Hue  Saturation Value Patch size 

Proposed method to 

user 1 

0.9975 0.9063 0.9729 0.7768 

Proposed method to 

user 2 

0.9711 0.8160 0.9807 0.4832 

Proposed method to 

user 3 

0.9863 0.8364 0.9738 0.7023 

User 1 to User 2 0.9699 0.8863 0.9816 0.6976 

User 2 to User 3 0.9844 0.9024 0.9759 0.7120 

User 1 to User 3 0.9864 0.8911 0.9807 0.8242 

 

 

Table 6. Linear correlation of proposed method with user scored results for Dataset 2. 

Correlation Pair Hue  Saturation Value Patch size 

Proposed method to 

user 1 

0.9887 0.8335 0.9668 0.8124 

Proposed method to 

user 2 

0.9845 0.8227 0.9710 0.8301 

Proposed method to 

user 3 

0.9903 0.8969 0.9744 0.8764 

User 1 to User 2 0.9870 0.8840 0.9861 0.8747 

User 2 to User 3 0.9898 0.9120 0.9858 0.9292 

User 1 to User 3 0.9864 0.8795 0.9893 0.8543 
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(a) Correlation Coefficient 𝜌 = 0.9975 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.9711 
 

 
 

(c) Correlation Coefficient 𝜌 = 0.9863 

Fig. 25  Correlation scatter plots for measured hue of Dataset 1. (a) Relation 

between proposed method and user 1. (b) Relation between proposed method and 

user 2. (c) Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.9063 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.8160 
 

 
 

(c) Correlation Coefficient 𝜌 = 0.8364 

 

Fig.26 Correlation scatter plots for measured saturation of Dataset 1. (a) Relation 

between proposed method and user 1. (b) Relation between proposed method and user 2. 

(c) Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.9729 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.9807 
 

 
 

(c) Correlation Coefficient 𝜌 = 0.9738 

 

Fig. 27 Correlation scatter plots for measured value of Dataset 1. (a) Relation between 

proposed method and user 1. (b) Relation between proposed method and user 2. (c) 

Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.7768 

 

(b) Correlation Coefficient 𝜌 = 0.4832 

 

(c) Correlation Coefficient 𝜌 = 0.7023 

Fig. 28 Correlation scatter plots for measured patch size of Dataset 1. (a) Relation 

between proposed method and user 1. (b) Relation between proposed method and user 2. 

(c) Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.9887 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.9845 
 

 
 

(c) Correlation Coefficient 𝜌 = 0.9903 

 

 

Fig. 29 Correlation scatter plots for measured hue of Dataset 2. (a) Relation between 

proposed method and user 1. (b) Relation between proposed method and user 2. (c) 

Relation between proposed method and user 3. 

 



  67 

 
 

(a) Correlation Coefficient 𝜌 =  0.8335 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.8227 
 

 
 

(c)  Correlation Coefficient 𝜌 = 0.8969 

 

Fig. 30 Correlation scatter plots for measured saturation of Dataset 2. (a) Relation 

between proposed method and user 1. (b) Relation between proposed method and user 2. 

(c) Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.9668 

 

 
(b) Correlation Coefficient 𝜌 = 0.9710 

 

 
(c) Correlation Coefficient 𝜌 = 0.9774 

 

Fig. 31 Correlation scatter plots for measured value of Dataset 2. (a)  Relation between 

proposed method and user 1. (b) Relation between proposed method and user 2. (c) 

Relation between proposed method and user 3. 
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(a) Correlation Coefficient 𝜌 = 0.8124 
 

 
 

(b) Correlation Coefficient 𝜌 = 0.8301 
 

 
 

(c) Correlation Coefficient 𝜌 = 0.8764 

 

Fig. 32 Correlation scatter plots for measured patch size of Dataset 2. (a) Relation 

between proposed method and user 1. (b) Relation between proposed method and user 2. 

(c) Relation between proposed method and user 3. 
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Fig. 33 Performance relationship between results generated using proposed scheme and 

user scored results for dataset 1 and dataset 2. 

 

repeatability of the automated method for the same. The low repeatability of measured 

saturation is directly related to the low repeatability of measured patch size. Human 

observers tend to include pixels in the ROI based on the difference between the perceived 

color, brightness of a small region of pixels and its neighborhood in the image. There can 

be significant variation in the way the human visual system identifies such a region of 

pixels and its corresponding neighborhood depending on the image zoom during ROI 

selection and this results in the variation observed in the measured patch size. The 

variance of the saturation value of all pixels in the plumage region of the birds is much 
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higher than the variance of the hue and value of the same pixels. As a result, a variation 

in the measured patch size produces a much higher variation in the average saturation 

measurement for the ROI as compared to the average hue and value measurement for the 

same ROI. This reduces the repeatability of the measured saturation. On the other hand, 

the proposed framework relies on local pixel level color and brightness differences to 

identify the pixels in the ROI. This helps to reduce variation in the patch size of the 

selected ROI and in turn improves the repeatability of hue, saturation and value 

measurements.  

       Figs. 25-28 illustrate the relation between the proposed method and user scored 

results of images in dataset 1, for all the four measured parameters. Similarly, Figs. 29-32 

illustrate the relation between the proposed method and user scored results of images in 

dataset 2, for all the four measured parameters. The performance relationship of the 

proposed method with user scored results for dataset 1 and dataset 2 is shown in Fig. 33. 
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CHAPTER 6 

CONCLUSION 

This thesis implements a framework for automated quantification of animal coloration in 

digital images. This work contributes to the field of image segmentation in general and to 

the area of animal color quantification in particular.  This chapter summarizes the 

contributions of this thesis and proposes several directions for future research. 

6.1      Contributions 

In this thesis, a novel method that automatically segments and quantifies an animal color 

region of interest in digital images, is developed and implemented. The contributions of 

the thesis can be summarized as follows: 

 A novel perceptual-based approach for the segmentation of animal coloration and its 

quantification using variables such as hue, saturation, brightness, patch size etc., in 

digital images with slowly varying background colors is presented. 

 A novel perceptual-based Saturation-Brightness quantization is implemented for the 

removal of perceptually insignificant colors and only retaining the bright  colors of 

interest 

 This work develops a framework for segmenting the animal color region of interest 

by coarsely segmenting the image into foreground and background regions using 

dominant color quantization and then refining the foreground using skin pixel 

classification and a perceptual based Saturation-Brightness quantization scheme. 
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 The proposed framework produces much more repeatable and accurate results as 

compared to existing user-driven manual methods and also avoids the inter-observer 

error produced during manual scoring of results. 

 The proposed method is much faster than existing user-based manual approaches and 

also produces results that are consistent with hand scored results. It takes an observer 

around 2-3 minutes to select an ROI using the manual methods while the software 

produces the result in less than 20 sec. 

6.2     Future Research Directions 

Possible enhancements to the proposed approach and future directions of research include 

the following: 

 Incorporate robust background subtraction – The current work focuses on using 

images that have slowly varying background color. The work needs to be extended in 

the future to be able to process images acquired out in the field with variation in 

background illumination and presence of texture and other structures in background. 

 Use of non-human color spaces – The color space used for color quantification in the 

proposed framework (H, S, V) is human based. Since, humans cannot perceive colors 

that lie outside the visible spectrum, human-based color spaces may not be a good 

choice for color quantification in certain applications. Although, humans are unable 

to perceive colors that lie in the UV spectrum, many animal species, especially birds 

have the ability to perceive colors in the UV spectrum. Since color signals are used by 

animals to attract prey, produce camouflage to hide from predators or attract mates 
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for breeding, it is important to incorporate non-human animal-based color spaces of 

the target receivers to understand the role of animal colors in these applications. 

 Improve the algorithm to incorporate some sort of prior information about the 

specimen in the image to be able to segment complex color traits such as those found 

in chameleons, butterflies etc. and extend the scope of the algorithm to even perform 

recognition or classification based on such traits. 

 Implement an adaptive Saturation-Brightness quantization scheme that assigns a pixel 

to the ROI by considering not only its own Saturation and Brightness values but also 

of the neighboring pixels. 

 The proposed method is currently being used to extract color traits of birds, butterflies 

and reptiles. This work can be extended to target more difficult challenges like 

disease detection in animal species and population/species classification. 
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APPENDIX A 

ANOVA TABLES AND VARIANCE COMPONENT TABLES 
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       Table A1. Inter-photo repeatability ANOVA table for measured hue in  Dataset 1. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

32 3517.907 109.935 

807.676 
Within groups 

for software 

33 4.4917 0.13611 

Total variation 

for software 

65 3522.398 54.1907 

  

Among groups 

for user 1 

32 3400.399 109.69 

203.451 
Within groups 

for user 1 

33 17.2527 0.5391 

Total variation 

for user 1 

65 3417.652 54.2484 

 

Among groups 

for user 2 

33 3574.499 108.318 

137.959 Within group 

for user 2 

32 26.695 0.7851 

Total variation 

for user 2 

65 3601.194 53.749 

 

Among groups 

for user 3 

33 3079.166 96.2239 

34.5172 
Within group 

for user 3 

32 91.994 2.78771 

Total variation 

for user 3 

65 3171.16 48.7871 
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Table A2. Inter-photo repeatability variance components for measured hue in Dataset 1. 

Component Component variance % of Total 

Among groups for 

software 

54.8992 99.8 

Within groups for 

software 

0.1361 0.2473 

Total variance for 

software 

55.0353 100 

 

Among groups for  

user 1 

54.5755 99.02 

Within groups for  

user 1 

0.5391 0.9782 

Total variance for 

user 1 

55.1147 100 

 

Among groups for  

user 2 

53.7665 98.6 

Within groups for  

user 2 

0.7851 1.4 

Total variance for 

user 2 

54.5516 100 

 

Among groups for  

user 3 

46.7181 94.4 

Within groups for  

user 3 

2.7877 5.6 

Total variance for 

user 3 

49.5058 100 
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Table A3. Inter-photo repeatability ANOVA table for measured saturation in Dataset 1. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean 

squares 

F ratio 

Among groups 

for software 

32 1147.982 35.8744 

373.633 
Within groups 

for software 

33 3.1685 0.0960 

Total variation 

for software 

65 1151.151 17.71 

 

Among groups 

for user 1 

32 2345.693 75.6675 

18.4060 

 

Within groups 

for user 1 

33 131.5525 4.1110 

Total variation 

for user 1 

65 2477.246 39.3214 

 

Among groups 

for user 2 

32 2318.172 70.2476 

18.7744 Within groups 

for user 2 

33 127.216 3.7416 

Total variation 

for user 2 

65 2445.389 36.4983 

 

Among groups 

for user 3 

32 2820.612 88.1441 

6.8004 
Within groups 

for user 3 

33 427.755 12.9623 

Total variation 

for user 3 

65 3248.368 49.9749 
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Table A4. Inter-photo repeatability variance components of measured saturation in 

Dataset 1. 

Component Component variance % of Total 

Among groups for 

software 

17.8892 99.5 

Within groups for 

software 

0.0960 0.5339 

Total variance for 

software 

17.9852 100 

 

Among groups for  

user 1 

35.7782 89.7 

Within groups for  

user 1 

4.1110 10.3 

Total variance for 

user 1 

39.8892 100 

 

Among groups for  

user 2 

33.2529 89.9 

Within groups for  

user 2 

3.7416 10.1 

Total variance for 

user 2 

36.9946 100 

 

Among groups for  

user 3 

37.5909 74.4 

Within groups for  

user 3 

12.9622 25.6 

Total variance for 

user 3 

50.5532 100 
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Table A5. Inter-photo repeatability ANOVA table for measured value of Dataset 1. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

32 2563.382 80.1057 

1103.70 
Within groups 

for software 

33 2.3951 0.0725 

Total variation 

for software 

65 2565.77 39.4735 

 

Among groups 

for user 1 

32 4012.874 129.448 

59.5332 
Within groups 

for user 1 

33 69.5800 2.1743 

Total variation 

for user 1 

65 4082.454 64.8009 

 

Among groups 

for user 2 

32 3789.824 114.843 

73.3448 Within group 

for user 2 

33 53.237 1.565 

Total variation 

for user 2 

65 3842.061 57.359 

 

Among groups 

for user 3 

32 4462.188 139.443 

31.1564 

 

Within group 

for user 3 

33 147.6947 4.4756 

Total variation 

for user 3 

65 4609.883 70.9213 
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Table A6. Inter-photo repeatability variance components for measured value in Dataset 1. 

Component Component variance % of Total 

Among groups for 

software 

40.0165 99.8 

Within groups for 

software 

0.0725 0.181 

Total variance for 

software 

40.0891 100 

 

Among groups for  

user 1 

67.4838 96.7 

Within groups for  

user 1 

4.4755 3.3 

Total variance for 

user 1 

71.9594 100 

 

Among groups for 

user 2 

56.6386 97.3 

Within groups for 

user 2 

1.5657 2.7 

Total variance for 

user 2 

58.2044 100 

 

Among groups for  

user 3 

63.6365 93.8 

Within groups for  

user 3 

2.1743 6.2 

Total variance for 

user 3 

65.8109 100 
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Table A7. Inter-photo repeatability ANOVA table for measured patch size in Dataset 1. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

32 1.22e+11 3.82e+9 

168.347 
Within groups 

for software 

33 7.496e+8 2.27e+7 

Total variation 

for software 

65 1.23e+11 1.89e+9 

 

Among groups 

for user 1 

32 1.47e+11 4.76e+9 

8.42087 
Within groups 

for user 1 

33 1.81e+11 5.65e+8 

Total variation 

for user 1 

65 1.66e+11 2.63e+9 

 

Among groups 

for user 2 

32 7.26e+11 2.2e+10 

14.0992 Within group 

for user 2 

33 5.3e+10 1.56e+9 

Total variation 

for user 2 

65 7.79e+11 1.2e+10 

 

Among groups 

for user 3 

32 3.49e+11 1.1e+10 

2.3250 
Within group 

for user 3 

33 1.55e+11 4.69e+9 

Total variation 

for user 3 

65 5.04e+11 7.76e+9 
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Table A8. Inter-photo repeatability variance components for measured patch size in 

Dataset 1. 

Component Component variance % of Total 

Among groups for 

software 

1.90e+9 98.8 

Within groups for 

software 

2.27e+9 1.2 

Total variance for 

software 

1.92e+9 100 

 

Among groups for  

user 1 

3.10e+9 78.8 

Within groups for  

user 1 

4.69e+9 21.2 

Total variance for 

user 1 

7.80e+9 100 

 

Among groups for  

user 2 

1.02e+10 86.8 

Within groups for  

user 2 

1.55e+9 13.2 

Total variance for 

user 2 

1.17e+10 100 

 

Among groups for  

user 3 

2.09e+9 39.9 

Within groups for  

user 3 

5.64e+8 60.1 

Total variance for 

user 3 

2.66e+9 100 
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Table A9. Inter-photo repeatability ANOVA table for the measured hue in Dataset 2. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

24 2889.127 120.38 

12479.3 
Within groups 

for software 

25 0.2411 0.00965 

Total variation 

for software 

49 2889.368 58.9667 

 

Among groups 

for user 1 

24 3155.518 131.48 

114.562 
Within groups 

for user 1 

25 28.6918 1.1476 

Total variation 

for user 1 

49 3184.21 64.9839 

 

Among groups 

for user 2 

24 3263.93 135.997  

 

111.935 Within groups 

for user 2 

25 30.3741 1.2149 

Total variation 

for user 2 

49 3294.313 67.2309 

 

Among groups 

for user 3 

24 3203.294 133.471 

101.698 
Within group 

for user 3 

25 32.8104 1.3124 

Total variation 

for user 3 

49 3236.104 66.0429 
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Table A10. Inter-photo repeatability variance components for measured hue in Dataset 2. 

Component Component variance % of Total 

Among groups for 

software 

60.1853 99.98 

Within groups for 

software 

0.0096 0.02 

Total variance for 

software 

60.1949 100 

 

Among groups for  

user 1 

65.1661 98.3 

Within groups for  

user 1 

1.1476 1.7 

Total variance for 

user 1 

66.3137 100 

 

Among groups for  

user 2 

67.3912 98.2 

Within groups for  

user 2 

1.2149 1.8 

Total variance for 

user 2 

68.6062 100 

 

Among groups for  

user 3 

66.0790 98.1 

Within groups for  

user 3 

1.3124 1.9 

Total variance for 

user 3 

67.3914 100 
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Table A11.  Inter-photo repeatability ANOVA table for measured saturation in Dataset 2. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

24 617.085 25.7119 

1042.93 
Within groups 

for software 

25 0.6163 0.02465 

Total variation 

for software 

49 617.70 12.6062 

 

Among groups 

for user 1 

24 1228.33 51.1804 

13.6175 
Within groups 

for user 1 

25 93.9608 3.7584 

Total variation 

for user 1 

49 1322.291 26.9855 

 

Among groups 

for user 2 

24 1434.365 59.7652 

15.7884 Within groups 

for user 2 

25 94.6345 3.7853 

Total variation 

for user 2 

49 1528.99 31.2041 

 

Among groups 

for user 3 

24 1214.123 50.5884 

11.6292 
Within group 

for user 3 

25 108.7534 4.3501 

Total variation 

for user 3 

49 1322.876 26.9975 
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Table A12. Inter-photo repeatability variance components for measured saturation in 

Dataset 2. 

Component Component variance % of Total 

Among groups for 

software 

12.8436 99.8 

Within groups for 

software 

0.0246 0.2 

Total variance for 

software 

12.8682 100 

 

Among groups for  

user 1 

23.7109 86.3 

Within groups for  

user 1 

3.7584 13.7 

Total variance for 

user 1 

27.4694 100 

 

Among groups for  

user 2 

27.9899 88.1 

Within groups for  

user 2 

3.7853 11.9 

Total variance for 

user 2 

31.7752 100 

 

Among groups for  

user 3 

23.1191 84.2 

Within groups for  

user 3 

4.3501 15.8 

Total variance for 

user 3 

27.4692 100 
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Table A13. Inter-photo repeatability ANOVA table for measured value in Dataset 2. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean squares F ratio 

Among groups 

for software 

24 1509.457 62.8941 

87790 
Within groups 

for software 

25 0.0179 0.0007 

Total variation 

for software 

49 1509.475 30.8056 

 

Among groups 

for user 1 

24 2291.522 95.4801 

87.6520 
Within groups 

for user 1 

25 27.2327 1.0893 

Total variation 

for user 1 

49 2318.755 47.3215 

 

Among groups 

for user 2 

24 2364.833 98.5347 

159.941 Within group 

for user 2 

25 15.401 0.6160 

Total variation 

for user 2 

49 2380.234 48.5762 

 

Among groups 

for user 3 

24 2250.799 93.7833 

72.4267 
Within group 

for user 3 

25 32.3718 1.2948 

Total variation 

for user 3 

49 2283.17 46.5953 
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Table A14. Inter-photo repeatability variance components for measured value in 

Dataset 2. 

Component Component variance % of Total 

Among groups for 

software 

31.4466 100 

Within groups for 

software 

0.0007 0.0023 

Total variance for 

software 

31.4473 100 

 

Among groups for  

user 1 

47.1953 97.7 

Within groups for  

user 1 

1.0893 2.3 

Total variance for 

user 1 

48.2846 100 

 

Among groups for  

user 2 

48.9593 98.8 

Within groups for  

user 2 

0.6160 1.2 

Total variance for 

user 2 

49.5753 100 

 

Among groups for  

user 3 

46.2442 97.3 

Within groups for  

user 3 

1.2948 2.7 

Total variance for 

user 3 

47.5390 100 
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Table A15. Inter-photo repeatability ANOVA table for measured patch size in Dataset 2. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean 

squares 

F ratio 

Among groups 

for software 

24 5.41e+11 2.3e+10 

1075.22 
Within groups 

for software 

25 5.241e+8 2.1e+7 

Total variation 

for software 

49 5.41e+11 1.1e+10 

 

Among groups 

for user 1 

24 4.04e+11 1.7e+10 

5.7628 
Within groups 

for user 1 

25 7.31e+10 2.92e+9 

Total variation 

for user 1 

49 4.77e+11 9.74e+9 

 

Among groups 

for user 2 

24 8.31e+11 3.5e+10 

14.8202 Within group 

for user 2 

25 5.84e+10 2.34e+9 

Total variation 

for user 2 

49 8.9e+11 1.8e+10 

 

Among groups 

for user 3 

24 3.92e+11 1.6e+10 

3.7172 
Within group 

for user 3 

25 1.1e+11 4.4e+9 

Total variation 

for user 3 

49 5.02e+11 1e+10 
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Table A16. Inter-photo repeatability variance components for measured patch size in 

Dataset 2. 

Component Component variance % of Total 

Among groups for 

software 

1.126e+10 99.8 

Within groups for 

software 

2.09e+7 0.2 

Total variance for 

software 

1.12e+10 100 

 

Among groups for  

user 1 

6.96e+9 70.4 

Within groups for  

user 1 

2.93e+9 29.6 

Total variance for 

user 1 

9.88e+9 100 

 

Among groups for  

user 2 

1.61e+10 87.4 

Within groups for  

user 2 

2.33e+9 12.6 

Total variance for 

user 2 

1.84e+10 100 

 

Among groups for  

user 3 

5.97e+9 57.6 

Within groups for  

user 3 

4.39e+9 42.4 

Total variance for 

user 3 

1.03e+10 100 

 

 

 

 

 


