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ABSTRACT 

Microprocessors are the processing heart of any digital system and are central to 

all the technological advancements of the age including space exploration and 

monitoring. The demands of space exploration require a special class of microprocessors 

called radiation hardened microprocessors which are less susceptible to radiation present 

outside the earth's atmosphere, in other words their functioning is not disrupted even in 

presence of disruptive radiation. The presence of these particles forces the designers to 

come up with design techniques at circuit and chip levels to alleviate the errors which can 

be encountered in the functioning of microprocessors. Microprocessor evolution has been 

very rapid in terms of performance but the same cannot be said about its rad-hard 

counterpart. With the total data processing capability overall increasing rapidly, the clear 

lack of performance of the processors manifests as a bottleneck in any processing system. 

To design high performance rad-hard microprocessors designers have to overcome 

difficult design problems at various design stages i.e. Architecture, Synthesis, 

Floorplanning, Optimization, routing and analysis all the while maintaining circuit 

radiation hardness. The reference design ‘HERMES’ is targeted at 90nm  IBM G process 

and is expected to reach 500Mhz which is twice as fast any processor currently available. 

Chapter 1 talks about the mechanisms of radiation effects which cause upsets and 

degradation to the functioning of digital circuits. Chapter 2 gives a brief description of 

the components which are used in the design and are part of the consistent efforts at 

ASUVLSI lab culminating in this chip level implementation of the design. Chapter 3 

explains the basic digital design ASIC flow and the changes made to it leading to a  
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rad-hard specific ASIC flow used in implementing this chip. Chapter 4 talks about 

the triple mode redundant (TMR) specific flow which is used in the block 

implementation, delineating the challenges faced and the solutions proposed to make the 

flow work. Chapter 5 explains the challenges faced and solutions arrived at while using 

the top-level flow described in chapter 3. Chapter 6 puts together the results and analyzes 

the design in terms of basic integrated circuit design constraints. 
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CHAPTER 1. INTRODUCTION 

Radiation particles of concern to the operation of any digital circuit, and 

consequently to a microprocessor, mainly are alpha particles, protons and cosmic rays 

consisting of heavy ions. This chapter will explain briefly the kind of particles and 

mechanisms involved in upsetting the normal operation of processors [Bar2003], 

resulting in machine state upsets [Ngu2005]. Design techniques for hardening digital 

circuits against short-term and long-term effects are also explained below in detail. 

Design Owned by Power Voltage(v) Speed(Mhz) Hardness Tested Comments

A3300

Sandia 

National 

Labs 60mW/Mhz 4.5 10

Gamma dose of 

5Mrad , LET upset 

threshold 28 MeV/mg/cm2

16/32 bit based on National

semiconductors NS32C016

(1989)

Rad-Hard 

-H32

National Space

Agency Japan 2W total 4.5 20 total Dose of 1.3KGy(Si) 32 bit Microprocessor(1994)

RAD600 Lockheed Martin 3W total 3.3 33

Total Dose : 2Mrad @

170rad(si)/sec

LINAC:3Grad(Si)/s

Single Event: 154 Mevcm2/mg

LET

32 bit RISC Microprocessor

35 MIPS throughput

RAD750 BAE Systems 6W total 2.5 133

Total Dose 1Mrad(Si)

SEU immunity 1E-10 upsets/

bit-day

240 MIPS based on PowerPC 

750

Design Owned by Power Voltage(v) Speed(Mhz) Hardness Tested Comments

Mongoose V Synova n/a n/a 15 LET > 80 MeV- cm2 / mg 

radiation hardened MIPS R3000 

32-bit microprocessor

Hx1750 Honeywell n/a 5 40

Total Dose .1Mrad(Si)

SER < 1x10-5 Errors/1750 days 16bit microprocessor 

HXRHPPC HoneyWell 7.6W 3.3 80

TID>300Krad(Si)

SER<1.5X10-5 upsets/processor-

day

32 bit RISC microprocessor 

based

on PowerPC architechture

SPARC V8 Atmel

.7W 

8mW/MIPS 1.65-1.95 Core 100

Total Dose:>300Krad ,

Single Event : 95Mev/mg/cm2

32bit Microprocessor

90MIPS @ 100Mhz

RAD750 IBM

2.3-14.5W 

@132Mhz 2.5 200

TID=1Mrad(Si)

SEU <1.6E-10 errors/bit-day

>400MIPS @ 200Mhz , 32 bit

microprocessor , 

Research Implementations

Commercial Chips

 

Table 1.1 Available rad-hard microprocessor designs. 
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Circuit design technique tradeoffs have been studied and the reasons for choosing triple 

mode redundant (TMR) logic design techniques are also been elucidated. Table 1.1 lists 

the available radiation hardened processors where a clear lack of speed is evident.  

1.1. Radiation Environment around the Earth 

Fig. 1.1 shows the solar and galactic constituents affecting earth’s magnetosphere. 

The radiation profile around the earth comprises of 4 basic radiation sources: 

1. Plasma 

2. Trapped Particles  

3. Solar Particles 

4. Galactic Cosmic Rays 

. 

Fig. 1.1 Solar and galactic constituents of Earth's Magnetosphere. (Courtesy Nasa.gov) 



 

 3  

  

 Plasma is the neutral cloud of charges in the space which is controlled by 

earth's magnetosphere in the vicinity of earth. It contains electrons and ions at relatively 

low energy levels compared to ionizing radiation around earth. It is a discontinuous 

region with varying radiation and energy constituents. These regions are named as 

Ionosphere, Magnetosphere, Magnetosheath and Interplanetary Space. The potentials on 

these regions usually increase from a few tenths of a volt to a few volts. Plasma is hugely 

dependent on the solar cycles since the cycles can create huge magnetic fluxes that cause 

spikes in radiation levels. Plasma is not known to cause any significant radiation effects 

on the functioning of digital circuitry. 

 

Fig. 1.2 Van Allen belts around Earth consisting of proton and electron belts. 
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Trapped particles generally refer to the particles trapped in earth's Van Allen 

radiation belt [Sta1988] and primarily comprise of protons trapped in the inner belt and 

electrons trapped in the outer belt as shown in Fig. 1.2. Electrons are present in the inner 

belt but their low energy(less than 7MeV) as compared to the protons (500MeV) renders 

them less harmful. The inner and outer belts are described in terms of the radial distance 

from earth (RE). Radial distances (L) greater than 2.5RE constitute the outer belt and 

those less than that constitute the inner belt. The electron flux and energy in the outer belt 

is significantly higher than that in the inner belt and can normally be as high as 7MeV 

[Gus1996]. It can increase by several orders of magnitude during magnetic storms 

rendering them more dangerous during such events. 

Solar Particles are the byproducts of solar flare cycles [Bar2003] that follow an 

eleven year period. Earth's magnetic field provides great protection from these flares. 

Nevertheless, a variety of particles still manage to enter the earth's atmosphere. The solar 

flares are comprised chiefly of protons (around 90%) with alpha particles, heavy ions and 

electrons making up the rest. Protons from a solar flare have energies from the range of 

10Mev to 1 GeV. These high energy protons are very critical as they have high fluence 

and shielding against them is very important to reduce the total dose impact on any 

device in space. Solar activity, i.e. the concentration of protons and electrons, varies 

based on the solar cycle (solar min or max).  It is important to note that heavy ions from 

solar flares have less flux than those from galactic cosmic rays. 
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 Galactic cosmic rays (GCR) as the name suggests are particles carried to 

the solar system from external galactic sources. The atmosphere shields the earth from 

these galactic rays just as it does against solar flares, but their effects intensify as we 

reach farther from the equator in terms of inclination and also higher in altitude. The 

galactic particle concentration is inversely proportional to the solar flare based particle 

concentration because the latter is boosted by solar maximums of solar flare cycles. 

GCRs comprise of 85 % protons, 14% alpha particles and 1% nuclides as well as heavy 

ions of Hydrogen, Helium, Carbon, Oxygen of energies around 1GeV and Iron with 

energies of 10GeV [Fre1996]. Galactic particles are low flux, high energy particles, 

Hence they are much more difficult to shield against. 

1.2. Charge Deposition and Soft Error Mechanisms effecting circuits 

Radiation can cause complete malfunction, parameter degradation and momentary 

upsets in electronic devices [Ker1988]. The type and severity of the interaction depends 

on the charge, flux, energy, speed and mass of the incoming particle as well as the mass, 

density and atomic number of the target material.  The effects of radiation can be 

instantaneous, e.g., single event transients (SET) [Mav2002], single event upsets (SEU), 

multi-bit upsets (MBU), single event latch-up (SEL) or long term i.e., total ionizing dose 

(TID) [Bar2006]. 

1.2.1. SEE 

Single event effects (SEE) are non-reproducible hardware logic upsets that are 

produced by alpha particles, neutrons, protons and heavy ions, all of which are present in 
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abundance outside earth's atmosphere [Kar2004]. The charge deposited by these particles 

results in production of electron hole pairs by drift and diffusion mechanisms and if the 

amount of charge deposited is sufficient, it can result in upsetting the logic value stored 

on a storage element.  

It is also important to note that alpha particles are also present in earth's 

atmosphere. Packages that encase IC's are common sources of alpha particles, 

consequently the studies of effect of alpha particles is not an area limited to rad-hard 

applications. Neutron interactions are mostly kinetic because of the fact that they do not 

hold any charge [Sag2005]. They can still produce electron hole pairs but the probability 

of such an event is low. Whenever a particle like proton, electron or heavy ion hits the 

device material it loses its kinetic energy because of columbic interactions. The particle 

strike results in either the release of electron hole pairs or in the nucleus getting knocked 

out of the atomic lattice. Both cases produce charge to upset the node value thus 

producing a soft error [Ngu2005].  

As mentioned, Soft errors are transient and non-destructive in nature. The value 

on a storage element in architectural terms translates to the stored state of the machine. 

These states can be machine (architectural) or non-machine states. Upsetting an 

architectural state is absolutely critical whereas upsetting a non-architectural state can be 

less critical if it does not cascade into an architectural state error. The same strike can be 

destructive and permanent in nature like single event latch-up (SEL) [Dod2003] or single 

event gate rupture (SEGR), these will be explained in detail subsequently. The type of 
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effect is determined by energy of the particle striking and the physical characteristics of 

target material. 

      
 

 

  

  
         

  ⁄      (1.1.) 

The measure of this interaction is described in a terms of linear energy transfer 

(LET) or stopping power of the material given by equation (1.1), which refers to energy 

lost by the particle per unit length in the material before coming to a complete stop or 

exiting out, its unit is MeV-cm
2
/mg. LET is a function of the energy and mass of the 

particle and density of the device, where (dE/dx) is the energy lost per unit length and ρ is 

the density of the material in mg/cm
3
 . The maximum LET value near the end of 

particle’s range is called the Bragg peak [Hse1981]. Charge interaction can cause direct 

or indirect ionization. Direct ionization corresponds to generation of electron-hole pairs 

across the track of incidence. Displacement damage as a result of the displacement of the 

nucleus from the lattice because of an inelastic collision resulting in a track of charge is 

 

Fig. 1.3 Particle Strike showing track of charge funnel in a p-n junction. 
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also by product of direct ionization. Indirect Ionization is the process of neutrons 

transferring their kinetic energy to the atom in the lattice and thereby producing 

secondary electrons capable of producing ionization as they moves inside the lattice and 

lose their kinetic energy. Neutrons undergo capture by the nucleus of the lattice atom and 

result in generation of charged secondary such as alpha particles and oxygen nuclei 

which are also called secondary ions.  Single event effects are a consequence of a single 

particle strike. Most heavy ions and protons cause direct ionization whereas neutrons 

generally cause indirect ionization owing to their neutral charge. 

SEE response in Fig. 1.3 is generally characterized by three stage process of 

charge generation, charge collection and charge removal through circuit response. It is 

known through experimental data that an electron-hole pair is produced by every 3.6eV 

energy equivalent particle incidence on the silicon surface. We know that the density of 

silicon is 2328mg/cm
3
, thus we can calculate using equation (1.1) that an LET of 97MeV-

cm
2
/mg corresponds to charge deposition of 1pC/um. Hence the charge collected is 

usually formulated as 

                
  

  ⁄  .   (1.2) 

The charge produced can range from (10-100 fC) and can only be removed by 

carriers drifting in response to the applied or built-in fields in the device, through the 

diffusion mechanism under carrier gradient concentrations or through carrier 

recombination in silicon [Dod2003]. A reverse biased p-n junction is most susceptible to 

particle strikes. In terms of device characteristics, the sensitivity to an upset of a specific 



 

 9  

  

device is given by the critical charge (Qcrit), which is the amount of charge that needs to 

be deposited to upset a given node and cause a single event effect, i.e., a node state flip. 

 A single even transient (SET) is the momentary voltage spike resulting in 

logical value change of a combinational node due to a particle strike [20-22]. This spike 

can propagate and eventually dies down inside the circuit because of charge being taken 

out through the driving circuit. Propagation of the spike to a sequential element and 

subsequent capture is can upset an architectural state. This is in contrast to a single event 

upset (SEU), which is an upset on a latch or a flip-flop [Axn1986]. The same upset can 

happen within a memory cell due to the flipping of storage nodes in an SRAM [Sag2005] 

or a DRAM. The particle strike, if it has sufficient energy can also lead to a multiple bit 

upset (MBU) in a memory as the particle passes through multiple cell diffusions. To be 

described as multi-bit upset, a single strike should upset two or more bits in a single clock 

cycle [Mus1996].  

Another effect, which needs a hard reset of the device to correct, is a single event 

latch-up (SEL). SEL is activation of the parasitic silicon controlled rectifier (SCR) inside 

a CMOS device in response to a high energy particle strike, resulting in a positive 

feedback leading to high short-circuit currents in a device. This high current can lead to 

clamping of the chip to supply or ground making it dysfunctional.  

A single high energy strike directly to the gate can also lead to gate-oxide 

damage, which is called single event gate rapture (SEGR). With the shrinking of the gate 

oxides over the technologies this effect is very critical at lower technology nodes. These 
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failures are hard as the rupture is permanent. Even a reverse-biased p-n junction diffusion 

can breakdown by Zener or avalanche mechanisms due to a high-energy particle strike.  

1.2.2. TID 

Total Ionizing dose is the degradation of MOS transistor parameters, specifically 

the threshold voltage (Vth), with gradual exposure to radiation [Bar2006]. A proton dose 

produces electron hole pairs on interaction with silicon substrate, the electrons get swept 

to the interface because of higher mobility but the holes get trapped in the oxide around 

the field area and hence turn on parasitic transistors around the field oxide and silicon-on-

insulator (SOI) buried oxide. Threshold voltages of these NMOS parasitic devices 

decrease with time due to accumulation of holes in the oxide-traps. This also modifies the 

threshold voltage of the primary channel. Shift in threshold voltage and formation of 

parasitic channel results in the increase of standby current (Isb) in the MOS transistor. The 

 

Fig. 1.4 Band diagram of TID degradation mechanism. 
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Si-SiO2 band diagram is showed in Fig.1.4. The mechanism involved in creation of free 

charge that can cause oxide contamination and degradation are as follows. 

 

1. Electron-Hole pair generation due to incident radiation: 

Any incident radiation like protons, hot-electrons, heavy ions with sufficient 

energy can produce electron-hole pairs across the track of their incidence. The amount of 

charge produced depends on linear energy transfer (LET) of the incident particle and 

band gap characteristics of the target material.  

2. Recombination mechanisms of generated charge: 

The free charge produced by the mechanism above can recombine back to exhaust 

itself. The fraction of recombination depends on quantum effects like columnar and 

geminate recombination. Recombination also depends on the energy that particles acquire 

on resulting displacement from the particle strike. Holes left free after recombination 

process can produce positively charged ions that cause threshold shifts. 

3. Transport of free carriers to the Si-SiO2 interface:  

The transport of the aforementioned charged particles to the interface can result in 

either trapping of holes in the oxide defects resulting in extra charge on the oxide 

[Bar2009] thereby shifting interface potential, altering the threshold voltage. It can also 

result in breaking of Si-SiO2 bonds on the interface and release of holes that hop around 

the interface resulting in mobile traps. Since the mobility of electrons and holes are of 



 

 12  

  

different orders, the recombination time constant of holes is much longer than that of 

electrons. The accumulation of holes inside the oxide results in decrease of threshold 

voltage of NMOS transistors and increase of threshold voltage of PMOS transistors 

represented in Fig. 1.5. 

1.3. Radiation hardening to mitigate radiation upsets and failures 

Radiation hardening can be incorporated by techniques applied at the device level, 

the system level and the circuit level [Ker1988]. The basic types of radiation hardening 

techniques are as follows. 

 

1.3.1. Shielding 

  

Fig. 1.5 Cross section of Inverter showing TID effects. 
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Shielding is a basic method to shield the devices from radiation particles by 

encapsulation in a shielding material. This method is generally ineffective because most 

of the particles have energies high enough to penetrate most shields in space.  

1.3.2. Radiation hardened by process (RHBP) 

RHBP is the process of hardening the device by modifying fabrication process 

steps. Process steps are changed to modify parameters that are affected by TID and SEE. 

Care is taken to ensure that performance of device under normal operating condition does 

not change. RHBP usually involves changing integrated circuit fabrication steps to 

address TID or SEU concerns such as silicon nitride passivation layer and thinning field 

oxide for fixing oxide threshold shifts [Yos1994]. Resistive hardening [Ber2001] 

involves adding intentional resistances on to the storage nodes of sequential elements 

thus making the time constants of these circuits larger resulting in larger Qcrit of these 

circuits, and consequently making them harder to upset. The fastest commercially 

available rad-hard microprocessor [Rad750] uses 0.15µm rad hard bulk process to harden 

the design. Though RHBP is an easy method to achieve hardness it is not amenable to 

easy design fixes on the fly and it is not commercially viable owing to the lack of mass 

production, i.e., commercial demand. RHBP also lags the commercial processes by at 

least two generations in the semiconductor industry [Lac2000]. 

As the integrated circuit fabrication technology advances in terms of gate length 

nodes, the Qcrit required to upset the storage nodes decreases due to the inherent scaling 

with every new process, thus RHBP techniques become more difficult and expensive. 
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Thus, radiation hardened by design (RHBD) techniques using commercially available 

processes with no changes in process steps is increasingly attractive today.  

1.3.3. Radiation hardened by design (RHBD) 

Radiation hardened by design circuit techniques are adopted to harden the devices 

using a non-rad-hard commercially available process [Lac2000]. This minimizes the cost 

of producing radiation hardened circuitry and also gives the designer control of the 

design to harden the circuits depending on the chip functionality.  

A layout based method is to increase the sizes of transistors such that critical node 

capacitance increases thus requiring higher Qcrit charge to upset the node hence making it 

less susceptible to radiation induced errors [Dod1995].  

Copy A

Copy B

Copy C

Majority

Voter

Inputs

Output

 

Fig. 1.6 Majority Voter showing Triple mode redundancy. 
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Other widely used technique is logic based hardware redundancy using a majority 

voter gate that is the basis of a triple mode redundant (TMR) logic system [Hin2011] 

[Hin2009] shown in Fig. 1.6. In a TMR redundancy scheme the same logic is replicated 

thrice and separated spatially to protect it against a worst case scenario of a MBU. A 

majority voter votes out the wrong value and the output always has the correct value. 

Another method of filtering radiation errors is called temporal hardening 

[Mav2002] [Wea2004] shown in Fig. 1.7 where the signal is delayed twice and then 

voted against the original signal. The delayed value is greater than the experimentally 

calculated SET value so that the delay can always outlast an SET. The result of this 

combination is that even when the device has a radiation strike, there is a delayed version 

of the signal that does not get upset.  

Fig. 1.7 Temporal sampling with delta delays.  
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Therefore the design always maintains the previous value till such time that it can 

give an updated correct value. The disadvantage with temporal hardening is the delay 

penalty that must be incurred even in absence of a radiation hit and since the values of the 

delays are the order of 300-400ps, system’s maximum frequency is limited. 

Both techniques TMR and temporal need some spatial separation whereby they 

are protected against multi-node single event upset (MNSEU) [Knu2006] [Uem2010]. 

MNSEU is as the name suggests, an upset spanning multiple critical nodes because of a 

single radiation strike shown in Fig. 1.8. Critical charge collection across multiple nodes 

with and without well isolation is shown.  

 

N+N+N+N+

Ion Track

N+N+

N+N+P+P+N+N+

Ion Track
(a)

(b)
 

Fig. 1.8 Multi Node charge collection without (a) and with well separation (b). 
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The same kind of upset can also occur by multiple radiation strikes on two critical 

nodes in a circuit but the probability of such a hit is infinitesimally low. Fig. 1.9 shows 

double height cells (DHC) with a separation based on critical and cancelling areas 

produce high immunity to upsets. The DHC have an immunity of 99.3% that is much 

better than single height cells with a shared well (90%). Well spacing in Fig 1.9 clearly 

shows that critical areas are spaced apart increasing radiation soft-error immunity.  

Similar techniques are proven on both TMR [Hin2011] and temporal flip-flops 

[Knu2006] [Sha2011] where multi bit cells are interleaved in an inline or multi-height 

cell, thereby saving area. These cells can then be seamlessly used in the CAD flow. 

 

 

 

Fig. 1.9 Double height cells showing spacing between critical NMOS devices in 

comparison with a single height cell of the same area. 
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In case of TMR hardening with multi-bit, multi-height cells [Hin2011] it has been 

shown that adding a spacer cell between two groups of flip-flop pipelines is very 

effective as long as the strike cannot span the height of the spacer cell thereby protecting 

against a MNSEU as shown in Fig. 1.10. This technique has been employed in the 

reference design sequential elements and is an effective method for ensuring hardness by 

spatial separation. The performance comparison of the two techniques clearly yields that 

when performance is the target TMR logic is definitely the best option although leading 

to a clear area penalty. Power to a first order is definitely much lower in the temporal 

counterpart [Sha2011] but as voltage is scaled down there are some obvious gains in 

TMR logic as the supply voltage reduces to 0.8V [Hin2011].Such scaling is not practical 

in temporal designs owing to serious degradation of the sequential element dead times. 

 

 

Fig. 1.10 A TMR Multi-bit flip-flop interleaving with spacer for spatial separation of 

pipelines. 
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These were the key factors in the choice of TMR hardening for the reference design since 

speed with rad-hardness was the main design target.  

Dual mode redundancy [DMR] logic scheme is another error detection scheme 

which can be combined with write back features to allow error detection and subsequent 

pipeline stalls which protect against architectural upsets due to propagation through the 

pipeline in subsequent clock cycle. A DMR processor scheme with a DMR register file 

 

Fig. 1.11 A 5 stage DMR pipeline after [Cla2011]. 
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(RF) has been demonstrated in [Cla2005]. It is a DMR pipeline in a 5-stage pipeline 

microprocessor design, where DMR RF is used in conjunction with dual redundant 

ALU/bypass logic for data path error detection and correction based on parity generation 

and write back.  

This scheme demonstrates the DMR processor which in conjunction with triple 

mode redundant logic portions is the basis of the rad-hard processor architecture. Fig. 

1.11 shows the DMR pipeline described in [Cla2005] with a TMR test structure for 

validation of error correction on silicon using proton and heavy ion beam testing. 

Register file designed will be explained in detail in the second chapter. 

Processor operation works on speculative pipeline states. A speculative state is 

converted to an architectural state only after it has been ascertained that the state did not 

have an upset. In case of an upset the last know good state is restored. A combination of 

 

Fig. 1.12 Redundancy scheme using DMR (Blue), TMR (Red), crossover logic (green) and 

custom blocks (Yellow) in HERMES. 
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TMR and DMR logic in conjunction with crossover logic (DMR to TMR) and (TMR and 

DMR) is used as the RHBD implementation technique in the reference design 

‘HERMES’. Fig 1.12 highlights the logic portions in the processor which are based on 

the logic redundancy schemes explained. Chip level physical realization of these 

techniques to achieve a radiation hardened processor is the main goal of this thesis. 

Another method using logic redundancy is error correcting codes (ECC). One 

such method is error correction and detection scheme (EDAC) where redundant bits are 

added to the memory and the system can detect and then correct errors in the data using 

schemes like parity, Hamming codes or other such error correction codes [Che1984]. In 

the cache designed for this microprocessor implementation a parity scheme along with 

interleaving where for every 8 bits is used. Parity is calculated and this value is checked 

on each access to determine sanity of data. System level techniques are also used where 

microprocessor maintains checkpoints to monitor the system state and detect faulty states 

because of radiation hits. After detection there can be recovery of the system to a 

previously known valid state.  

TID hardening techniques are different from hardening against soft errors since 

the mechanisms are long term in nature and need to be handled differently. Edgeless 

transistors shown in Fig. 1.13 are used to protect the devices against TID susceptibility. 

All the standard cells in HERMES use edgeless NMOS transistors.  

MOS transistors have interface of source and drain to the field oxide. A particle 

strike causes the oxides to have excess charge and may invert silicon below to create a 
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parasitic channel. Edgeless transistors do not have a gate oxide/field oxide interface to the 

drain diffusion and since the diffusion on the outside has the same potential, leakage 

currents are eliminated. Along with the special annular transistor, a p+ guard ring is also 

implemented in the gates leading to creation of back to back reverse-biased diodes that 

minimize leakage current. Destructive radiation effects cannot be guarded against and 

redundancy at circuit or system level is the only possibility of correction. 

1.4. Summary 

 First chapter explained the radiation environment that is required to 

understand the need for rad-hard circuit design and demonstrated mechanisms involved 

in radiation-induced failures. Techniques used in hardening circuits to ensure their 

continued functionality in presence of radiation are also discussed. The reasons for 

choosing TMR hardening were explained with tradeoffs in comparison to temporal 

P+ Guard Ring

Annular Poly

Gate

 

Fig. 1.13 Annular Gates eliminating field oxide and drain diffusion interface after 

[Pettit 2009]. 
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hardening. DMR and TMR logic hardening techniques being used as RHBD 

methodology to harden Hermes microprocessor are elucidated. 
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CHAPTER 2. CUSTOM BLOCKS 

Any large ASIC contains macro block abstractions which either contain custom 

circuitry like memory, PLL, Serializer/Deserializer or some third party black-box 

intellectual property(IP). These design constituents limit the design performance and add 

constraints in terms of floor planning, placement, power planning and timing. For 

successful full chip implementation the physical and logical integration of these 

constituents is critical. These custom designs were implemented over the period of last 

few years are now being used as constituents in the current chip level implementation 

[Yao2011] [Cla2011] [Che2012]. In this chapter, custom blocks used in HERMES are 

explained and the constraints they impose on full chip integration are discussed. 

2.1. Cache 

Memory is an important part of any processing system. Ideally any processing 

system requires an unlimited memory at an extremely low access time. Since such a 

system is not physically realizable a memory hierarchy with multiple levels of hierarchy 

of storage varying density and speed is utilized. The density increases and the speed 

decreases as we move away from the processor core. A register file is the fastest and the 

smallest memory in such a hierarchy. A cache is the first level of memory outside of the 

core, followed by off processor main memory and finally disk memory. Memory 

hierarchy and specifically cache relies on temporal and spatial locality to facilitate 

memory access. Spatial locality means “that items whose addresses are near one another 

tend to be referenced close together in time” [Patterson]. Temporal locality implies that 
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“recently accessed items are likely to be accessed in the near future” [Patterson]. Thus a 

cache stores most recently used data and instructions.  

Soft errors in caches are of concern not only in radiation-hardened designs but 

even at ground levels. Neutrons have been identified as the major cause of cache upset, 

creating secondary ions which cause SEE induced soft errors in memories [Lambert 04]. 

Since the cache is an array, accumulation of SEE induced errors to cause a multi-bit error 

is likely. To protect against these soft errors, error correcting codes (ECC) and scrubbing 

techniques are used [Sla2005] [Muk2004]. The measure of effectiveness of these codes is 

mean time to failure (MTTF) which must be an acceptable value for a cache. EDAC is 

added to improve SER so that it becomes insignificant in the overall design MTTF in 

low-latency L1 caches and register files [Moh2006]. Fixed interval scrubbing involving 

error checkers periodically accessing cache blocks and removing single-bit errors is used 

on large caches to reduce temporal double-bit error rates [Muk2004]. Lightweight EDAC 

(LEDAC) is also employed in rad-hard memories [Moh2007]. LEDAC contains a two 

dimensional parity checking comprising of row and column check bits. Row check-bits 

flag an error in the rows and column check-bits locate and correct the bits.  

A radiation hardened cache in 90nm IBM G technology was implemented, 

fabricated and tested to show excellent hardness [Yao2011]. The design is used as 

instruction and data L1 caches in the processor design ‘HERMES’. It is a 16KB, 4-way 

set associative cache using write-through and no-write allocate policies. This gives the 

cache a reasonable hit rate without being complicated design. The cache has 1024 lines 
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with 16 bytes in each line. It is virtually-indexed and physically-tagged. Each line 

consists of four words in the same set and way. 256 cache lines and 4 ways make it a 

16kB cache.  

The block diagram of the organization is shown Fig. 2.1. The cache supports four 

operations namely lookup, read, write and global invalidation. In the lookup operation, 4 

ways of the cache are read and the tag address is compared with the physical address 

from translation look-aside buffer (TLB). In case of a match the selected way is output 

and the hit flag is set. A fetch or load operation is also supported. The read operation can 

read a given set and way specified inside the tag or data array. In case of a write 

operation a specified set or way is written into the data or tag.  

The minimum unit written is a byte but in case of a line fill the whole line is 

written. In the global invalidation operation the whole cache is invalidated. Figure 2.2 

shows the implemented floor plan screenshot of the cache design implemented, where it 

 

Fig. 2.1 Block Diagram of the Hermes 16KB, 4-way set associative cache. 
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can be seen that the data array is divided into 2 halves each storing one half word. The 

tag is in the middle to minimize the hit timing path to maximize speed and minimize 

power. In each data array half there are 4 words comprising of 4 banks. Each bank has a 

top and bottom sub-bank comprising of 32 rows and 72 columns of SRAM cells. There is 

parity protection for each byte and hence the total size is 18 bits (16 data+ 2 parity).  

Radiation hardness is achieved using layout interleaving to maintaining critical 

node spacing between cells. 28 bits of the tag are divided into four parity groups. The 

distance between the bits of same tag parity group is width of 3 SRAM cells. Valid bits 

are SEE protected by dual-redundancy. On every read, dual redundant valid bits are read 

out and checked. If they do not match the output is considered invalid. Cache uses 

multiple error detection domino circuits, such as the word line encoder, word line nor 

checker, read checker, write checker, write enable encoder and write-enable nor checker. 

 

Fig. 2.2 Floor plan of RHBD Cache designed for IBM 90nm process after 
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Most of these circuits are a combination of ones-catching domino circuits that detect 

radiation induced errors and set an error flag used by the processor to generate fault trap. 

Detailed discussion of their operation is beyond the scope of this thesis.  

Test chip ‘TC19’ with the cache defined above achieves speeds of above 1 GHz at 

irradiations of 2Mrad TID and 219MeV-cm
2
/mg

2
 LET. Its max power consumption at 

1GHz was tested on silicon to be 226.1mW at a VDD of 1.45V. 

Some issues were encountered during the integration of the cache [Yao2011]. 

Abstract timing model (.lib) for the cache was generated with multiple Hspice 

simulations. It took multiple iterations to get the timing abstract properly modeled timing 

abstract. Also, creating a physical abstract (.lef) file was a challenge owing to the huge 

size of this block. Tool runtime issues and tool specific settings had to be tweaked to get 

a proper physically accurate abstract file.  

 

Fig. 2.3 Cache abstract alignment fix. 



 

 29  

  

While physical integration in the floor plan abstract alignment issues were 

encountered and subsequently solved with iterations on the abstract (.lef) generation. To 

fix this issue, abstracts were regenerated with the width of the cache macro to be a 

multiple of the standard cell placement grid which is 0.32µm. Fig. 2.3 shows the results 

of such realignment based on lef regeneration. Rectilinear size of the macro posed some 

challenges since the macro width and height need to be an integral multiple of the 

placement grid and standard cell height (4.48µm) respectively.  

2.2. Clockspine Design 

Clocking is central to the performance of a microprocessor system. For a rad-hard 

processor not only is the performance of the clocking system important, but also its 

capability to work successfully in a radiation environment. Radiation strikes on the clock 

can cause clock SET's, which propagate and result in inadvertent clocking of the flip-

flops or latches causing SEU’s. The jitter performance of the clock may degrade 

considerably due to radiation hits. The HERMES clock spine design has been fabricated 

at 90nm processes and tested to be error-free to 100MeV LET.  

The clockspine design takes the clock from PLL, distributes it to the whole chip 

and at the same time makes use of enable signals to control clock selection and gating. 

The clock from the PLL is carried to the spine using 102 distributed buffers that are 

spatially separated. A single particle strike on any individual buffer therefore produces 

less than 1% jitter on the clock outputs. Fig 2.4 shows the physical design of the 

clockspine. 
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The spine itself is designed in two stages that provide different protection 

mechanisms namely, global clock distribution and local clock distribution. In the global 

clock distribution network, the clock at the spine input is buffered to the local clock leaf 

nodes using 5 inversion stages. Each of these global nodes is driven from the previous 

stage by 38 spatially dispersed inverters that also provide sufficient drive fan-up to 

supply the large number of local clock networks.  

The large capacitance on each of the global clock nodes makes them essentially 

immune to SET induced glitches. The local clock networks produce the clocks for each 

of the chip logic sub blocks and each may be enabled or disabled as needed to conserve 

 

Fig. 2.4 A RHBD Clockspine design on IBM 90nm process after [Che2012]. 
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power. The local clock networks cannot be capacitively hardened like the global clock 

nodes and hence, the local clock networks employs XOR based SET checkers that check 

for strikes on clocks and clock-enables, erroneous clocks and clock glitches. Once an 

error is detected, an error flag is set that tells the microprocessor that a clock upset has 

occurred and the machine state is flushed. The clock spine provides 64 output clocks that 

are spatially separated. 

2.3. Register File 

A 32-bit DMR register file (RF) has been implemented and tested to show 

successful hardening [Cla2011]. The datapath is also DMR for compatibility with the RF. 

SEE protection is provided using critical node separation combined with bit interleaving 

and parity. Interleaving protects the RF from MBU’s. Parity detects the errors and dual 

mode redundancy provides a corrected copy for SEU correction. Register file hardening 

 

Fig. 2.5 A DMR register file block diagram after [Cla2011]. 
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is challenging since it is a part of the pipeline timing critical path. Using EDAC schemes 

incur a timing and area overhead on the register file design. Moreover, EDAC cannot 

protect against erroneous data from SET’s either in the RF itself or the ALU/bypass 

circuitry which consumes the data in the RF. RF design described is part of the five stage 

pipeline processor. A DMR RF block diagram is shown in Fig. 2.5.  

The data path can be erroneous due to SEU’s in the RF or because of SET’s in the 

RF readout logic or the DMR pipeline logic. Error detection is trivial in DMR but 

correction is not because there is no way of telling instantaneously which copy is 

incorrect. The RF has parity detection on a nibble basis which requires twice as many 

parity bits compared to byte parity. When an SEU is detected the data from the copy that 

 

Fig. 2.6 (a) Register File cell schematic, (b) Cell layout (c) Critical node separation, 

after [Cla2011]. 
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is correct is written back into the register file. To correct the data the RF has an extra 

Rt/Rd read port which reads the copy of destination registers to be updated next cycle 

write-back stage. All datapath transactions which update the RF are checked for DMR 

parity and in the event that they mismatch an exception is produced in the processor. 

Therefore an overwritten RF store can be cancelled if an upset is detected and the original 

data is written back to the RF. While the incorrect data is written the processor pipeline is 

stalled to stop the erroneous data from propagating.  

Write word line (WWL) error detection scheme is used to detect erroneous or 

incomplete WWL assertions. The same write-back is used to restore the prior value from 

the register entry intended to be written into the RF and the previous correct architectural 

state is restored. The A and B copy parities are checked to determine which copy of data 

is sane and written back. Accumulated errors or errors originating from multi-particle hit 

at the same parity group in the A and B copy cannot be corrected by the write-back 

scheme and need background scrubbing [Cla2011]. Opportunistic scrubbing scheme is 

also implemented which uses cycles of inactivity in RF and checks parity in all the 

registers sequentially and corrects upsets that can potentially lead to accumulated strikes 

causing irrevocable errors. 

Register file cell schematic and layout are shown in fig 2.6(a) and 2.6(b) 

respectively. Annular transistors protect against TID. Annular diffusions are also shared 

to minimize the capacitive loading on the BL’s also SEU critical nodes are separated to 

minimize MNSEU probability shown in Fig 2.6(c).  
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DMR read and write wordlines are also spatially separated because matching 

incorrect assertions of the wordlines would not be detected. Interleaved RF layout is 

shown in Fig. 2.7.  

RF SEE testing was done at Berkeley labs with static and dynamic testing of the 

RF using broad beam ion testing. Heavy ion testing with Boron, oxygen, neon, argon and 

copper ions and max LET of 21.17Mev-cm
2
/mg at angles of 0 and 70 degrees was 

performed. The testing was done at speeds of 100 and 200 MHz. Proton beam testing was 

done with energies of 49.3 and 13.5 MeV at 60 MHz. All these tests produced acceptable 

error rates to prove the success of the DMR design strategy.  

 

Fig. 2.7 Register file layout with Interleaving shown. 
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2.4. Summary 

Cache, clockspine and register file are used in the microprocessor top-level 

design, and the performance of the whole system is dependent on the performance of 

these sub-blocks in terms of speed, area and radiation hardening. Since these parameters 

are proved on silicon, similar or derived design techniques have been used for hardening 

the top-level design. 
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CHAPTER 3. ASIC DESIGN FLOWS 

 A clean design flow is essential to reproducible design cycles and fast 

turn-around design times. The general ASIC design flow is defined in Fig 3.1. This 

chapter describes the basic ASIC design flow and compares it with the RHDB specific 

design flow developed in this work.  A brief introduction to the triple mode redundant 

(TMR) flow [Hin2011] is also described. This chapter also explains how these design 

flows are used in tandem to realize a complete RHBD microprocessor from register 

transfer language (RTL) to graphical data storage information interchange (GDSII). The 

design methodology described in this thesis is a combination of RHBD top-level ASIC 

flow combined with TMR level flow used to create the TMR hard logic modules.  

These modules are then used in the top-level flow to produce a complete chip, 

implementing a bottom-up design strategy. The microprocessor design is partitioned into 

logical sub-blocks that implement a MIPS core with individual instruction and data 

caches. Design is implemented as TMR blocks and DMR logic. There are crossover 

blocks which are the interface between the TMR and DMR domains. DMR logic is part 

of the top-level implementation flow whereas the TMR blocks are implemented using the 

TMR flow described in this chapter.  

TMR blocks are used to correct errors which are detected in the DMR blocks. The 

architectural functionality of these independent sub-blocks is beyond the scope of this 

thesis and is not discussed further. 
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3.1. Conventional ASIC design Flow 

3.1.1. Synthesis 

The conventional design flow shown in Fig 3.1 starts with the RTL code of the 

design implemented in a hardware description language such as VHDL or a Verilog. The 

 

Fig. 3.1 A Conventional ASIC design Flow. 
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top-level RTL describes the complete design logically. This RTL code is synthesized to 

an equivalent functional gate level design. Synthesis is the process of mapping generic 

digital logic gates to technology specific CMOS gates to implement the logical function 

specified by the RTL using a synthesis tool. The synthesis tool generates functional 

equivalents of the RTL code in terms of logic gates under timing constraints called 

standard design constraint (.sdc) and other design options. The quality of synthesis is 

determined by these design constraints and can be optimized for area, timing or power.  

Multiple design options can also be specified to the synthesis tools for 

determining the design–for- test (DFT) related design features that may be needed for 

creating a testable design. Options for hierarchical modifications and preservation of 

hierarchical designs are used to manage design hierarchies. Most of these design options 

are proprietary to the tool sets used (Cadence, Synopsys, Mentor etc.). Nevertheless 

similar features are provided. 

The output of synthesis is a gate-level netlist that instantiates technology specific 

gates from vendor provided foundry libraries that determine their process, timing and 

other physical parameters. The liberty timing (.lib) and liberty exchange format (.lef) 

views are abstract timing and physical views respectively that help in reducing design 

complexity and managing large design databases. A .lib file contains the timing, power 

and functional information of a logical gate and its behavior to input stimuli and output 

loads. The liberty exchange format (.lef) specifies abstract views of the cell layouts 
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representing only inputs, outputs, metal blockages and boundary information. Together 

they allow reduced, but significant information to the CAD tools. 

3.1.2. Physical Implementation: Floor-plan and Power-plan 

Once the gate-level netlist has been successfully generated, the design constraints 

specified by the synthesis tool are used as inputs to the next step that involves creating 

the physical database. Power-planning, which involves formulating the spatial location of 

metal lines for the power and ground supplies for the design is crucial and is 

implemented in an early phase of the physical implementation. In ASIC designs this is 

assisted by the definition of standard cell rows, meshes and rings if necessary. The actual 

layout also depends on the type of packaging used. Using wire bond packaging requires 

power provided by multiple explicit power and ground pads in the I/O ring. This means 

connections need to be made to meshes/rings from the pad pins in contrast, for flip-chip 

packaging, power and ground planes are orthogonally connected to the meshes from the 

top through vias. Power-planning needs to take into account the total current and power 

budget to calculate the width of the power lines to be able to accommodate the required 

current within the acceptable supply voltage range as per chip specifications. The power-

plan should also make sure that any macros in the design are well strapped to the power 

lines, avoiding supply IR drop issues and electro-migration issues. Having a large number 

of vias to tap in to the power grids avoids such failures and falls in the purview of design-

for-manufacturability techniques (DFM). Designs with multiple power and ground 

supplies need to be well isolated to prevent accidental shorts or coupling issues. Digital 

and analog power and ground supplies need to be spatially isolated as well to avoid noise 
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and substrate coupling. Upon successful completion of power-planning, the design floor-

plan is created.  Floor-planning is the process of efficient allocation of silicon die area 

among all the sub-modules of the design to create optimal arrangements. This is an 

iterative process that involves converging on the optimal size of core and die for the best 

possible performance under given area, speed and power constraints. Floor planning 

involves placement of macros and partitions based on connectivity in the RTL and 

architecture. Ideal floor-planning results in minimizing routing and placement congestion 

as well as meeting timing, area and power constraints. Pads for the chip and I/O's for sub-

blocks are also placed during this step. If the design is hierarchical then design 

partitioning happens at this step. Partitioning is done to manage design complexity in 

case of large designs and enable faster turn-around times and design closure.  

3.1.3. Placement 

Upon successful generation of an optimal floor plan, the design gates, instantiated 

as standard cells are placed as per the floor plan in the next step called placement. Silicon 

area for larger blocks is budgeted in the floor plan step and allocated at specified 

locations for maximum resource utilization. Such larger blocks may also be pre-placed in 

the floor plan step. The placement tool then places the standard cells using the optimizing 

placement algorithms. Macros and pad/pin placements are used as a seed to the 

algorithms for efficient placement of the cells. The emphasis during placement may be to 

optimize timing or may be congestion driven as per the design needs.  Modern tools have 

multiple options that are fine-tuned for complex design specifications that range from 

setting densities, clearances and groups to guide the placement algorithm. The placement 
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step also accommodates checking congestion statistics and timing statistics to gauge the 

quality of any placement done. A great deal of designer effort is required to produce a 

quality placement and is generally done multiple times before a satisfactory placement 

has been reached.  This step contributes heavily to the overall quality of the final design 

in term of design metrics such as power, performance or area.  

3.1.4. Pre-CTS optimization: 

The placed design from the previous stage can be further optimized for meeting 

important design aspects such as timing goals and power budgets. Timing paths across 

the chip are determined in relation to the system clock(s). Clock distribution networks, 

i.e. clock trees, are crucial to balancing skews on such clocks across all sequential 

elements in the chip and this contributes to the overall speed of operation.  Consequently 

at this stage it is crucial to optimize the design, firstly for timing and then for area and 

power if so constrained. This stage of optimization utilizes complex Boolean algorithms 

and like most steps explained here is specific to the toolsets being used. The optimization 

tool determines the worst case timing path, called the critical path, based on the worst 

case negative slack (WNS) in each path under given constraints. The optimization is then 

carried out by minimizing the total negative slack (TNS) which is the sum of all WNS in 

the design. The optimization starts with the setup timing paths at the first optimization 

step s called pre-CTS optimization. This is done prior to designing the clock trees or 

clock-tree synthesis (CTS). The CTS operation will be explained in further detail later in 

this chapter. The pre-CTS optimization engine also performs design rule violation (DRV) 

fixing to fix discrepancies in the design regarding maximum capacitance, transition and 
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fanout constraints. The pre-CTS optimization tool algorithm takes the worst critical path 

and performs operations such as remapping, upsizing and downsizing, buffering, or 

swapping pin locations to achieve the best result. Once the given primary timing 

constraints have been sufficiently met, there may be additional steps for reclaiming area.  

Pre-CTS optimization can only correct setup violations since there are no hold constraints 

with a clock tree not yet being built. After acceptable timing numbers (WNS, TNS) have 

been achieved the next phase of the design flow would be clock tree synthesis (CTS).  

3.1.5. Clock Tree Synthesis 

Clock tree synthesis (CTS) involves building a balanced clock tree to provide 

clocks to sequential elements (flip-flops, latches and macros) in the design.  Clock trees 

are mostly balanced H-tree configurations or mesh structures that are designed with 

stringent design goals to minimize skew between different leaf cells while keeping the 

overall clock delay within a desired range. The mesh structure gives a superior 

performance in terms of lower skew but consumes more power due to the large number 

of buffers, greater node capacitances and multiple driven nodes in the clock tree while the 

H–tree based clock distribution networks have larger skews at lower power costs. This 

design follows an integrated h-tree based and mesh based implementation with global 

clock distribution nodes being mesh structures confined to a dedicated clock spine that 

were balanced by hand, while H-trees fan-out from different points in the spine to 

different modules and sequential elements based on physical proximity and logical 

functionality. The clock skew generated during this phase of the design determines the 

hold time fixing requirements for subsequent steps. Clock trees are usually built with 
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buffers or inverters and may also have integrated clock gating (ICG) cells that shuts the 

clock to gated portions of the design for power saving. 

3.1.6. Post-CTS optimization 

After the clock tree has been synthesized that meets the required skew, the next 

step of the flow, called post-CTS optimization involves fixing for remaining design rule 

violations (DRV),  as well as setup and hold violations. The design is constrained with 

proper min delay constraints to achieve the best possible performance. Min-delay time, 

along with the skew between flip-flops, determines the amount of hold buffering 

required. The statistics involved in making the design decisions for this specific design 

are explained later. Once post-CTS optimization provides acceptable numbers meeting 

the setup, hold, and DRV constraints, we proceed to the actual routing of design signals.  

3.1.7. Routing 

Once CTS is completed the design has be routed. Routing in encounter uses the 

proprietary Nanoroute feature. A routing algorithm tries to find Manhattan routes for all 

the nets in the design. As it performs routing, Nanoroute has to ensure that no shorts, 

spacing, and min area violations are created. To do this it creates routing tracks called 

Gcells. The whole design is partitioned into these Gcell tracks which allow early 

calculation of congestions statistics. Based on these congestion numbers the designer can 

ascertain the routing density and congestion of the design. The likelihood of Nanoroute 

failing or creating DRCs is inversely proportional to the congestion values. Once routed 
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we can run verifyGeometry and verifyConnectivity to run encounter based design-rule-

check and layout versus schematic checks to ascertain design consistency and feasibility. 

3.1.8. Post-route Optimization 

Once the design is routed post-route optimization is carried out. Again, 

optimization algorithms optimize the design for setup, hold and DRV violations. 

However this time on detailed and most importantly, extracted routes rather than 

estimated. This stage, being rigorous and detailed has much longer run times. After post-

route optimization, usually silicon integrity (SI) optimizations for sub-90nm designs are 

carried out as they are more susceptible to noise coupling. SI optimization usually 

involves spacing critical nets farther apart, increasing their width, increasing victim net 

gate drive and decreasing aggressor net gate drive. 

3.2. RHDB Design Flow: TMR Flow 

Fig 3.1 shows a flow chart where the steps marked in bold indicate steps where 

RHBD specific design decisions play an important role. This usually involves modifying 

the general flow to perform special design functions that facilitate hardening while 

maintaining performance. The exact design decisions taken will be explained in detail in 

chapter 5. The bold boxes show the inputs of TMR flow to the top-level RHBD flow. The 

design steps necessary to generate the TMR dependent inputs to the RHDB top-level 

flow are illustrated in Fig. 3.2. These inputs are the .lib (timing abstract), .lef (physical 

abstract), GDSII (layout), Spice netlist (transistor level connectivity) and Verilog (gate 

level connectivity).  
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These inputs are used at various stages in the top-level flow for design import, 

signoff timing and signoff verification. The design steps in the TMR flow are similar to 

top-level flow with specific changes to accommodate radiation hardening. The RHBD 

flow incorporates separation for dual mode redundant (DMR) logic. Special CTS is 

performed by providing independent clock trees that are less susceptible to strikes. To 

route TMR blocks successfully, a special pin placement algorithm is incorporated into the 

TMR flow. All such modifications/improvements are described in the next two chapters. 
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Fig. 3.2 A TMR ASIC Flow. 
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3.2.1. Synthesis 

Synthesis for the TMR modules is identical to that of normal logic, where the 

RTL code and the synthesis constraints are used to create a technology specific gate level 

netlist. This gate level netlist is the input to the physical implementation. We use an in-

house tool developed here at ASU shown in Fig. 3.3 to get implement the TMR flow 

steps [Hin2011]. The aforementioned tool uses standard tools and scripts to perform 

TMR radiation hardening along with the usual design flow steps to get TMR blocks 

without compromising performance from timing standpoint.  

Run RTL Compliler

Source rtl1.tcl

Schematic

sanity

check

Source rtl2.tcl

Bitblast File

Copy Files for next step

EXIT
 

Fig. 3.3 In-house RC tool flowchart. 
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The tool reads the netlist generated by the synthesis tool and performs bitblasting, 

a post processing design step to sanitize the netlist file and also adds clockgaters based on 

sequential fan-out in the verilog file. The tool then generates an output netlist that is used 

for physical implementation. Synthesis output summary in RTL compiler from Cadence 

is shown in Fig 3.4. 

  Generated by:           Encounter(R) RTL Compiler v09.10-p104_1 

  Generated on:           Nov 16 2013  03:42:18 PM 

  Module:                 IEArchInterfaceST 

  Technology libraries:   rhbd_celllib 

rhbd_celllib_lvt 

Operating conditions:   typical (balanced_tree) 

Wireload mode:          enclosed 

  Area mode:              timing library 

============================================================ 

        Timing 

        ------ 

Tracing clock networks. 

Levelizing the circuit. 

Applying wireload models. 

Computing net loads. 

Computing delays. 

Computing arrivals and requireds. 

 

 Slack                Endpoint              Cost Group  

------------------------------------------------------------ 

-1240ps IEArchInterfaceST/IESelCP0DataLoCAH GClk 

 

        Area 

        ---- 

     Instance      Cells  Cell Area  Net Area   Wireload 

------------------------------------------------------------- 

IEArchInterfaceST   2495      28265         0     <none> (D)  

(D) = wireload is default in technology library 

        Design Rule Check 

        ----------------- 

Initializing DRC engine. 

Max_transition design rule: no violations. 

Max_capacitance design rule: no violations. 

Max_fanout design rule (violation total = 33.000) 

Worst violator: 

Pin                Fanout           Max     Violation 

----------------------------------------------------- 

g75498/o        65.000       32.000        33.000 

 

Fig. 3.4 Synthesis Output Summary. 
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3.2.2. Floorplanning 

This step involves ascertaining the area required to implement each TMR module. 

The TMR blocks only have standard cell logic including TMR flip-flops that span 

multiple cell rows. The area of the cell is determined by placing a single redundant 

version of the logic.  

Once the initial area is determined by a trial run, a new floorplan three times the 

size for the triple redundant module is created with the standard height (120.96u, 

241.92u, 362.88u high for the three copies in this case) based on the block to get a size as 

close as comfortable form factor implementable in top level flow shown in Fig. 3.5.  

These three heights are a multiple of 27 standard cell heights. The floorplan is 

then divided into three stripes of A, B and C regions of logic for the given module that 

are arranged in 3 possible combinations to provide spatial separation with  one row of 

 

Fig. 3.5 Trial placement to determine area on the left and tool generated placement on the 

right. 
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filler providing additional isolation on each stripe to protect against multi-node upsets. 

Example placement possibilities are shown in Fig. 3.6 with the help of a diagram. This 

step happens by using the ‘Spread floorplan’ program after saving the example floorplan. 

3.2.3. Placement 

During the placement stage, the design standard cells are allowed to place in a 

single redundant version of the above floorplan. As shown in Fig 3.7, cells are only 

allowed to be placed in the stripe outlined in bold. Other redundant copies are arranged 

by the custom in-house tool which copies the placement twice and merges the flip-flops 

into multi height self-correcting versions. Once the placement is done the quality of 

placement in terms of congestion and timing are checked and can be iteratively placed 

until desired goals are achieved.  
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Fig. 3.6. TMR floorplan diagram examples showing separation of 3 standard heights but 

varying widths. 



 

 51  

  

The module pins are also placed during this step. In addition to the tool’s initial 

pin placement, additional steps are carried out to guide the tool for better results as will 

be explained in the subsequent chapters. 

 At this stage, the sequential elements (flip-flops) used for these placements are 

single redundant versions that are later converted to specially designed triple redundant 

versions by a special script once clock tree synthesis has been completed. Fig 3.8 shows 

the single redundant placements of the TMR flow. 
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Fig. 3.7 Diagram showing the area highlighted (bold) available for the placement step. 
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3.2.4. Optimization 

The optimization step is unchanged from the standard ASIC flow previously 

 

Fig. 3.9 Optimization results setup histogram and critical path. 

 

Fig. 3.8 After single redundant placement stage.. 
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explained. Fig 3.9 shows pre-CTS WNS histogram and the critical path spanning the A 

placement copy. 

3.2.5. Clock Tree Synthesis 

The CTS stage is the same as in the main flow but special care was taken to get 

the skew in all the blocks to be lower than 20ps. Since the global clock routing will add 

to the total skew this is required to maintain the global skew of the chip to the +/- 75ps 

range. Again the clock tree is built for a single redundant version (the A copy) with the 

pin placed right in the center to achieve lower skew by a more perfectly balanced H-tree. 

Fig. 3.10 shows only the clock routing for one such block implemented. Sequential 

elements clearly span all the 3 stripes and hence the skew balancing has to factor this 

spacing. 

 

Fig. 3.10 Clock Tree Synthesized design with clock routing only. 
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3.2.6. Post CTS optimization 

This step is similar to that explained previously where setup, hold and design rule 

violations (DRV) related issues are fixed in postcts mode with clock tree delays taken 

into account. The extra min delay margin added during this project for TMR blocks is 

150ps. Hold buffers highlighted in bold shown in Fig. 3.11 are added to fix hold 

violations based on path skew. 

3.2.7. Triplication 

This special step is added to the conventional design flow for radiation hardening. 

It involves converting the existing design database to a TMR version of the design as 

explained previously. The script as part of the in-house tool is shown in Fig. 3.12.  

 

Fig. 3.11 Post-CTS hold fixed with buffer cells in blue 
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The tool modifies the floorplan, verilog and placement files to provide three 

redundant copies shown in Fig 3.13. Thus the outputs are the same files with a _TR 

extension. After triplication the new TMR design is loaded with the new files and we 

proceed to the next step. 

 

 

Fig. 3.12 Step 2 GUI of the in-house tool 
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3.2.8. Powerplan 

The next step is power-planning, where the meshes and standard cell rows are 

created to provide power and ground to the standard cells and TMR flip-flops. Care was 

taken while designing the power-plan to align it with the power-plan of the flip-flops.  

 This is done to provide a robust power supply to the gates so as to minimize IR 

drop without conflicting with the TMR internal routes, which provide the self-correct 

mechanism’s feedback signals. Metal 7, Metal 6, Metal 5, Metal 4 and Metal 3 are used 

to create the power-plan shown in Fig 3.14.  

 

 

Fig. 3.13 TMR placement generated from the tool and loaded with A, B and C copy and 

flip-flops highlighted in white. 
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3.2.9. Routing 

The routing step follows that described in the top-level flow. The global routes are 

converted into detail routes during this process. Clock routes are given special status and 

they are routed first. This enables then to have lowest possible delay and skew. Then, the 

rest of the nets are routed to give the best possible timing delay with no or minimal 

spacing and short violations.  

Figure 3.15 shows the routed block excluding the power routes for clarity. We can 

see that the routing is much denser in the interior owing to the placed and optimized cells 

being clustered. The bottom left skew is due to the pin placements. 

 

 

Fig. 3.14 Powerplan created for the TMR floorplan. 
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3.2.10. Extraction and Timing 

Once we have the routed database we extract the database containing parasitic 

(capacitance and resistance values) to be used for signoff timing calculation in 

Primetime. The triplicated verilog generated from the tool for the TMR module is passed 

to Primetime. The timing analysis uses the standard parasitic exchange format (.spef) to 

estimate the performance of the block, after which we also generate timing library file 

(.lib), i.e., the abstract timing model of the TMR module. This completed module will be 

instantiated as shown in the top-level design. The TMR tool provides a custom built GUI 

on which this process of timing can be facilitated [Hin2011]. 

 

Fig. 3.15 Routing shown for block with 5 metal layers. 
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3.2.11. Abstract Generation 

The GDSII is exported from Encounter and given to the Abstract Generator to 

create a lef file to be used in the input physical design implementation. The Abstract 

Generator tool shown in Fig 3.16 uses the GDSII layout and technology information to 

generate the lef file. Various options are set to generate the lef file in the required format. 

Details are explained in subsequent chapters.  

 

 

 

Fig. 3.16 Abstract generator used for creating layout abstract LEF file. 
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3.2.12. Physical Verification 

DRC and LVS for the TMR blocks are verified in the same fashion as explained 

in the basic flow. GDSII and spice netlists are used by Calibre DRC and LVS tools to run 

the required checks and verify the database physical quality. Output summary is shown in 

Fig. 3.17 and Fig. 3.18. 

 

 

Fig. 3.17 Drc verified using Calibre, Antenna violations present will be fixed at the 

top level 
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3.3. Summary 

This chapter explains the conventional ASIC design flow for digital integrated 

circuit design. Steps of the flow modified by RHBD constraints are explained. For the 

HERMES processor, the TMR flow described is used to generate 20 TMR modules that 

are used in the top-level RHBD flow. The .lef, .lib, .gds, spice netlist and verilog files are 

passed on to the top-level flow and analysis. In course of this work, a number of 

improvements were made to the original flow to ensure the TMR blocks generated were 

easy to integrate at the top-level. These improvements are explained in detail and the 

 

 

Fig. 3.18 Calibre LVS used to verify layout versus schematic. 
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impact of the changes to the top-level flow and TMR flow will be explained in next 

chapter.  
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CHAPTER 4. TMR FLOW IMPROVEMENTS. 

4.1. Pin Placement algorithm 

 Radiation hardened design is primarily obtained by redundancy, either 

spatial or temporal and in the former case results in increase in the amount of logic in a 

unit circuit. Moreover, the pin density and routing density also increase. Since the 

successful physical realization of any logic circuit is dependent on these factors, pin 

placement and routing are bottlenecks to fast design closure. A design that cannot be 

routed successfully is physically unrealizable.  

 

Fig. 4.1 Top level drc’s without pin placement program generated .lefs. 
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We encountered the problem of large design rule check (drc) because of the above 

reasons while dealing with TMR blocks implemented at the top-level. The number of 

drc’s at the top is directly proportional to the routing density at the lower metal layers and 

the pin density in TMR blocks. Fig 4.1 shows a snapshot of the top level routed design 

which shows more than 10000 drc’s, which makes the design unrealizable.  

Further analysis of the violations showed that the pins placed were not on the 

routing grid and thus made it harder for Encounter to route to. To solve this problem we 

devised the pin placement algorithm which created optimum pin placements at properly 

Start

Number of

Stripes

Based on the data are

sufficient locations

available ?

Width of the TMR

Block

Pin placement

grid in microns

Input placement

into Encounter

Is the design routable with

updated pin placement

.lef?

Yes

Yes

No

End

 

Fig. 4.2 Pin placement algorithm flowchart. 
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spaced routing grids thus facilitating routing. A flowchart describing the program is 

shown in fig 4.2.  

Inputs to the program are initial seed placement based on the fan-ins and fan-outs 

of the TMR block in question shown in Fig 4.3. This is written out from Encounter in a 

text format. We specify the number of stripes in the TMR block (1/2/3 as described in 

chapter 3). We also specify the grid on which these pins will be placed in microns. 

Iteratively this could be increased if the routing congestion was still high at the top level.  

The pin placement program creates optimal pin placement locations in text format. These 

pin placement are spaced apart to facilitate congestion free routing. 

The pin placement program had to be integrated into the specialized TMR flow 

since the TMR flow operates at the single and triplicated domains. Thus the input to the 

 

Fig. 4.3 Initial tool placement and initial script based placement seed input for script. 
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program was a single redundant pin placement copy which contained only the A copy 

pins. The pin placement program gives us two text files as outputs which are single and 

triple redundant pin locations for the TMR design.  

Single redundant version is used before triplication and triple redundant version 

after triplication has been achieved. This ensures that optimum placements are not 

changed between triplication. Figure 4.4 and 4.5 show the single and triple redundant pin 

placement outputs from the program.  

Figure 4.6 shows a cartoon representation of the input to and output from the 

program. We can see that the output is well spaced pin placements which proved to 

facilitate routing. 

 

 

Fig. 4.4 Single Redundant placement output from pin placement program. 
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Fig. 4.5 Figure for initial seed to the script and output from script on the right 

 

Fig. 4.6 Triple redundant pins output from pin placement algorithm 
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The blocks are then implemented and tested with these new pin locations. The 

result of the placement algorithm is that many of the TMR blocks with high pin density 

which were un-routable previously, were routable with the new .lefs generated with this 

pin placement flow.  

Fig 4.7 shows the top level routed design with very few design rule check 

violations, and these violations are not on the TMR blocks. All the TMR blocks were 

clean of design rule violations at the block and top level with this pin placement 

implementation. 

4.2. Clockgater Insertion 

Clock gating cells are inserted to reduce clock switching power in any design. 

They reduce activity factors on clock node which otherwise would switch every cycle. 

 

Fig. 4.7 Top level routed design using pin placement program generated .lefs. 
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Clock nodes are high capacitance nodes in the design hence gating the transition on them 

is an effective strategy. This results in reduction of switching power dissipation giving 

considerable power savings. The insertion is controlled by the synthesis tool which looks 

for a template containing a clock ANDed with an enable signal and a latch and then 

converts it into an integrated clock gating (ICG) cell. This happens in a seamless fashion 

but in the HERMES the clock gating cells are explicitly coded because the RTL compiler 

was unable to automatically infer these cells. Cloning of the clock gate cells, which is 

essential for fixing maximum capacitance and fanout violations is done in Encounter with 

correct clock loads in place. This ensures the best possible clock gating insertion without 

formal verification issues. Shown below is the structure of the clockgaters used in the 

design. Fig. 4.8 shows the schematic of such a clock-gating cell. 

clk

en

sc

clk

q d O

 

Fig. 4.8 Clockgater cell schematic explicitly coded in the RTL. 
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4.3. Power-plan Alignment 

In the implementation of the TMR blocks the power-plan needs to be perfectly 

aligned with the TMR flip-flop internal VDD/VSS connections. Exact overlap ensures 

the best possible power connection as opposed to the connection that happens through the 

standard cell rail. The alignment is ensured by the placing the TMR flip-flops on the 

same grid as of the power-plan, which is set to 8.96µm increments.  

Figure 4.9 shows the alignment of the power-plan to the internal power pin. The 

top-level power plan grid also needs to align with the TMR block grid on metal 7 as 

explained in the top-level flow. 

 

 

Fig. 4.9 Powerplan TMR cell alignment. 
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4.4. Antenna Fixing 

 Plasma etching process of the wafer fabrication is used.  It has a side 

effect wherein the etching results in charge collection on the metals and hence charging 

damage. The conductors, which are supposed to be connected to the poly shown in Fig. 

4.10, are not connected until later in the metallization process. The lack of a connection 

to the substrate results in the metal acting as a capacitor and the charge builds up during 

the plasma etching process.  

Charge on the metal conductors connected to a gate results in high stress fields on 

the gate oxide and can result in the damage of the oxide and eventually, a gate-oxide 

punch-through. These effects on the reliability of the circuit are called antenna effect. It 

can be fixed by either metal layer hopping when they are beyond a certain ratio given by 

equation (4.1), thus never building enough charge to destroy the gate. It can also be fixed 

by addition of an antenna diode which can provide a path to ground during a high current 

 

Fig. 4.10 Antenna violation highlighted in pink in Calibre DRC. 
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event to alleviate the antenna effect. We used both fixes in this design. The equation 

below defines a violation. 

                  
                                              

                                           
  (4.1)  

For every process the given antenna area ratio cannot be violated thus either by 

layer hopping or by insertion of the antenna diode this violation is fixed. This information 

is calculated from the technology lef file and the cell and macro lef files. Without this 

information it would not be possible for the tool to calculate these errors. The Abstract 

generator flow had to be modified to give the correct values to the fields of 

 

Fig. 4.11 ANTENNA Calculation options and setting in the abstract generator. 
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ANTENNADIFFAREA and ANTENNAGATE in the lef files, shown in fig. 4.11. Figure 

4.12 shows a portion of the lef file that shows this information. The Abstract generator 

tool options had to be tweaked to calculate the values correctly.  

4.5. Clock Tree Synthesis 

The clock tree synthesis explained in the flow section was implemented in the 

TMR blocks. A TMR clock tree as implemented in the TMR flow is different from a 

normal clock tree since the cells can sit in 3 spatially separated portions of the chip for a 

single copy of the TMR circuit.  

 

 

Fig. 4.12 Portion of Lef file with Antenna fixing information. 
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The clock tree is also implemented with very low skew target of 20ps. The clock 

pins for the TMR blocks were placed on top of the block instead of the periphery just like 

other pins, though close to the center to facilitate ideal H-tree implementation shown in 

Fig. 4.13. Clock-gates inserted during synthesis were cloned to provide best possible 

placement and skew. To this effect clock gate aware placement was run which assigns 

clock-gates based on their sequential loads. After the triplication the clocks are routed 

first to ensure shortest possible routes, consequently minimize skew.  

Non default rules were used for these routes which use double width and double 

spacing rules to provide a robust clock tree with protection against signal integrity (SI) 

issues. The triple redundant version shows three wires with almost identical clock routing 

shown in Fig. 4.14. Clock trees with less than 20 ps skews were built for all 20 TMR 

blocks and the summary is shown in the table 4.1. 

 

Fig. 4.13 CTS cells with CTS only route and CTS cells in pink. 
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Fig. 4.14 Symmetrical Clock Tree routing shown for all 3 logic copies in TMR block. 

Blocks Max Skew (+/-)(ps) Internal Stages Min Latency(ps) Max Latency(ps)

BIUInst/BICtlAdrDatCInst 15 8 220 240

C0UInst/C0CacheRegsCInst 10 6 140 160

C0UInst/C0ErrorRegsCInst 5 4 140 160

C0UInst/C0RFRegsCInst 5 4 170 190

C0UInst/C0SystemRegsCInst 5 4 120 140

C0UInst/C0TLBRegsCInst 10 6 150 170

C0UInst/C0TimerRegsCInst 10 8 180 290

DCUInst/DCFBDualTripleCrossCInst1 10 6 180 200

DCUInst/DCFBDualTripleCrossCInst2 10 6 180 200

DCUInst/DCFillBufCInst 10 6 170 190

DCUInst/DCStoreBufCInst1 10 6 170 190

DCUInst/DCStoreBufCInst2 10 6 170 190

IEUInst/IEArchInterfaceCInst 10 6 160 180

IEUInst/IEDualTripleCrossCInst1 10 6 140 160

IEUInst/IEDualTripleCrossCInst2 10 6 140 160

IEUInst/IEPCPipeCInst 10 6 150 170

IFUInst/IFDualTripleCrossCInst1 10 6 160 180

IFUInst/IFDualTripleCrossCInst2 10 6 160 180

IFUInst/IFFillBufCInst 10 6 190 210

MDUInst/MDCtlCInst 10 6 150 170

MDUInst/MDDualTripleCrossCInst1 5 4 140 160

MDUInst/MDDualTripleCrossCInst2 5 4 140 160

Table 4.1 Clock skew summary for TMR blocks 
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4.6. Summary 

Specific RHDB constraint driven improvements made to the TMR 

implementation flow and the results of such changes have been elucidated in this chapter. 

These changes enabled the successful implementation of the reference design HERMES 

and laid guidelines for future implementations.  
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CHAPTER 5. TOP LEVEL IMPLEMENTATION 

 This chapter discusses the physical implementation of the radiation hardened 

HERMES microprocessor. The HERMES hierarchy is shown below in Fig. 5.1 where 

custom blocks are shown without bold boundaries. The techniques specific to an RHBD 

flow are elucidated along with their effects on radiation hardening. Custom hard blocks 

are shown highlighted in bold. The top-level implementation is an integration of the TMR 

and DMR logic hardening methodologies.  

There are crossover circuits which check correct signaling between the DMR and 

TMR logic. Cache, clock-spine and register file blocks are the hard blocks that were 

described in detail in chapter 2. The primary goals of maximizing speed while 

maintaining rad-hardness were the primary constraints to the top level implementation. 

HERMES

IEU CMU DCU RFU C0U MMU MDU IFU BIU

IEArchitecture

IECrossover

IEDualTriple1

IEDualTriple2

IEPcPipe

DCFBDualTriple

1

DCFillBuf

DCStoreBuf1

DCStoreBuf2

DCStoreBufCtl

DCache

ClockSpine

DCFBDualTriple

2

RegisterFile

RFError

C0CacheRegs

C0ErrorRegs

C0RFRegs

C0ReadMux

C0TLBRegs

C0TimerRegs

C0SystemRegs

MDCtl

MDDualTriple1

MDDualTriple2

ICache

IFDualTriple1

IFDualTriple2

IFFillBuf

BICtrlAddrDat

Non-TMR
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Fig. 5.1 Hierarchical Modules in HERMES along with the macro blocks 
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Other ASIC chip-level constraints like area (placement and routing densities) and power 

were secondary optimization goals. Core area of Hermes (excluding the pads) is 

11.22mm
2
.  

5.1. Synthesis 

Synthesis, as explained in chapter 2, is the primary step for the ASIC flow. The 

top level RTL, along with the design constraints, are input into the synthesis tool RTL 

Compiler for synthesis. TMR and hard block library files are provided as inputs. The 

technology information is provided as standard cells’ library files, which are used to map 

Operating conditions:   typical (balanced_tree) 

Wireload mode:          enclosed 

  Area mode:              timing library 

============================================================ 

        Timing 

        ------ 

 Slack                    Endpoint                   Cost Group  

--------------------------------------------------------------------- 

 -148ps DCUInst/DCCtrlSDInstB/nWrW3B1ParitySMH_reg/d GClk 

 

        Area 

       ---- 

Instance  Cells  Cell Area  Net Area   Wireload 

---------------------------------------------------- 

HERMES    44401    3113797         0     <none> (D)  

 (D) = wireload is default in technology library 

        Design Rule Check 

        ----------------- 

 

Max_transition design rule: no violations. 

Max_capacitance design rule (violation total = 1072.8) 

Worst violator: 

Pin                                    Load (ff)           Max     Violation 

 

---------------------------------------------------------------------------- 

 

IFUInst/ICacheInst/TagWay2HitBCXH          168.6         100.0          68.6 

 

Max_fanout design rule: no violations. 

 

Fig. 5.2 Output summary from synthesis. 
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the design to technology specific gates. Options for high effort timing optimization are 

used. The primary synthesis objective is speed and we extensively used low voltage 

threshold (LVT) libraries that are the fastest gates but with a penalty of higher leakage. 

The synthesized design has a standard cell area of 3325494um
2
. The post-synthesis WNS 

is 1.453ns, which translates to a speed of 690Mhz. TMR block library speeds are re-

checked in the top level synthesis and excessively slow TMR blocks were re-synthesized 

to optimize the ‘input to register’ and  ‘register to output’ paths. Iteratively, the speed of 

multiple TMR blocks was improved based on multiple TMR level runs. Constraints were 

tweaked to achieve the same by constraining the ‘input to register’ and ‘register to 

output’ paths on slow blocks. Fig.5.2 gives the textual summary output from RTL 

compiler that gives statistics of area power and timing. 

 

Fig. 5.3 Floorplan showing placement of all macros in the design. 
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5.2. Floor-planning 

Floor-planning is the process of placing hard macros in Encounter to achieve an 

optimal timing and congestion performance. Since all commercial chips are expected to 

meet a speed requirement, timing is the primary driving force in floorplanning. Designs 

that cannot be routed repeatedly by the automatic place and route (APR) tools, like 

Encounter, cannot be reproduced in a given time-frame with confidence. Thus floor-

planning also concentrates on congestion alleviation aspects. In the floorplan shown in 

Fig. 5.3 we can see that clockspine (red), which is the central clock unit, is placed in the 

center to facilitate a low skew clock tree. The module BIU (green) is the bus interface 

unit and is the main I/O block; therefore it is placed on the periphery to facilitate easy bus 

access.  

The IEArchitecture block (blue) interacts with all blocks in the design and is 

placed in the center to minimize cross-chip routing. The caches are the biggest blocks on 

the chip and are placed on the sides to ensure easy data flow (yellow). This also matches 

their interfaces. These decisions were taken over a period of multiple floorplan iterations 

and placement runs to arrive at the final floorplan.   

Floorplanning cannot be done in isolation without doing placement and global 

routing to estimate timing and congestion, therefore they are inter-dependent processes. 

The floor-plan in Fig. 5.3 shown contains two fences (orange) and some other density 

screens used to guide placement. These will be explained subsequently. Power-planning 

is also part of floor-planning since the placement of hard blocks is in part driven by the 
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power-plan as well. As shown in the Fig. 5.4, the internal power-plan is on a grid that is a 

multiple of the top-level power-plan grid. The blocks get a certain number of valid 

placement locations that are multiple of the power-plan grid on metal 7 that is equal to 

38.4um.  

The alignment of power-plan serves two-fold purpose. It ensures that there is a 

robust power connection to the TMR blocks. Secondly, the top-level connections are 

determined by overlap and not by any explicit connection between the macro and power-

plan grid. 

5.3. Placement 

Placement is the process of placing standard cells. For the rad-hard 

implementation of a chip, logic functionality is of utmost importance. We have already 

 

Fig. 5.4 Shows a power-plan with TMR blocks connected by overlap and other blocks 

getting via towers for power from a Metal 8 -metal 7 grid. 



 

 82  

  

explained that the TMR logic has separation and voting to correct errors. The top level 

logic in the design is implemented as DMR logic as explained in the first chapter. DMR 

logic has two copies of the same circuit to ensure an error flag when the outputs of the 

logic do not agree.  

It is therefore important that logic be separated spatially to ensure hardness and 

protect against multiple node collection upsetting the redundant logic cone. Figure 5.3 

shows an orange fence which ensures that logic can only have restricted placement. In 

this case, they are the two redundant copies of the DMR logic. Figure 5.5 shows the two 

modules highlighted n red and blue with exclusive placement within the A and B fences. 

We can see A and B copy of the DMR module logic in Fig. 5.6 within fences that 

are separated by two rows of decoupling capacitors (decap) cells to ensure hardness. It 

 

Fig. 5.5 DMR A (red) copy and B (blue) copy separation at placement stage. 
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has been proved on silicon that two rows equivalent of cell separation by decap can be 

effective against MBU's. Other screens include buffer only screen where we can 

constrain the placer to have only buffers placed in an area.  

Placement blockage screens (dark red), which disallow placement in those region, 

 

Fig. 5.7 A (red) and B (blue) separation with 2 rows of decap(green). 

Fig. 5.6 Module segregation 
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guides the placement algorithm. Density at placement is usually maintained at 65% to 

allow sufficient area for subsequent steps. However, in HERMES we start with a fence 

density of around 50% since greater area is required for optimization and clock tree 

synthesis. 

 Logic A and B interacts with most TMR blocks and hence the routing congestion 

is higher than in a conventional design. Figure 5.7 shows the logical separation of the 

architectural modules. Based on this the quality of module placement can be ascertained.  

5.4. Pre-CTS optimization 

Pre-CTS optimization, as explained in chapter 2, involves optimizing timing of 

the design in terms of setup and hold violations. Top-level optimization adds/modifies 

around 9684 cells out of 90762 during pre-CTS optimization. Fig. 5.8 shows standard 

cells added and modified at the pre-CTS optimization stage in yellow.  

 

Fig. 5.8  Pre-CTS optimization affected cells (yellow) 
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It can be seen that the design violates the speed target of 500MHz (2ns timing 

window) by 188ps at the pre-CTS stage. There are 4879 failing critical paths. Pre-CTS 

histogram is shown in Fig 5.9.  

5.5. Clock Tree Synthesis 

Building a radiation hardened clock tree is critical for rad-hard performance. 

Setup and hold timing budgets are extracted based on the skew values for the top-level 

clock tree. The top-level clock tree implementation goal is skew minimization. To that 

end the TMR clock tree values are already known from the TMR implementation of the 

blocks. Clock trees are then built for the DMR logic at the top-level HERMES 

implementation. 

 These clock standard cell logic at the top-level and H-trees are built to the clock 

pins traced through the clock gating cells. The clock gates are already spatially separated   

 

Fig. 5.9 WNS Histogram at pre-CTS stage. 
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TMR

DMR

Clock max min levels Skew (+/-)
Gclk[14] 428 394 10 17 DCDTLBSDInstA DCErrorSS RFCtrlSDInstA  
Gclk[17] 415 364 9 25 IFCtrlSDInstA  IFITLBSDInstA IFErrorSSInst MDMACDivSD IEBypassSD
Gclk[18] 438 359 13 28 MMJTLBCAMDDInstA MMJTLBDataDDIn MMJTLBMiscSDInst IECtrlSDInstA
Gclk[48] 425 392 11 17 IECtrlSDInstB IFITLBSDInstB IFCtrlSDInstB MDMACDivSD
Gclk[49] 441 361 11 29 MMJTLBCAMDDInstB MMJTLBDataDDIn MMJTLBMiscSDInst IEBypassSDIn
Gclk[60] 431 338 10 30 RFCtrlSDInstB DCDTLBSDInstB DCCtrlSDInstB
Gclk[0] 263 256 5 5 BICtlAdrDatC C0SystemRegsC   C0TimerRegsC   IEArchInterfac
Gclk[1] 264 251 4 6 BICtlAdrDatC C0SystemRegsC   C0TimerRegsC   IEArchInterfac
Gclk[2] 258 254 4 5 BICtlAdrDatC   C0SystemRegsC   C0TimerRegsC   IEArchInterfac
Gclk[3] 267 262 4 3 BICtlAdrDatC C0ErrorRegsC IEPCPipeCInst
Gclk[4] 252 237 5 8 DCFillBufC C0TLBRegsC DCFBDualTripleCrossCInst1 DCStoreBufCInst1
Gclk[5] 275 257 5 9 DCFillBufC C0TLBRegsC  DCFBDualTripleCros DCStoreBufCI
Gclk[6] 273 263 6 5 DCFillBufC C0TLBRegsC  DCFBDualTripleCros DCStoreBufCI
Gclk[7] 234 228 4 4 C0CacheRegsC C0RFRegsC   DCFBDualTripleCros DCStoreBufCI
Gclk[8] 236 236 3 1 BICtlAdrDatC C0ErrorRegsC IEPCPipeCInst
Gclk[9] 277 263 4 5 BICtlAdrDatC  C0ErrorRegsC IEPCPipeCInst
Gclk[10] 251 239 4 5 IFDualTripleCrossCInst IFDualTripleCross IFFillBufCInst
Gclk[11] 258 242 4 8 IFDualTripleCrossCInst IFDualTripleCross IFFillBufCInst
Gclk[12] 239 228 4 5 C0CacheRegsC C0RFRegsC  DCFBDualTripleCros DCStoreBufCI
Gclk[13] 237 222 4 8 C0CacheRegsC C0RFRegsC DCFBDualTripleCros DCStoreBufCI
Gclk[16] 248 240 4 5 IFDualTripleCrossCInst IFDualTripleCross IFFillBufCInst
Gclk[19] 242 242 4 0 IcacheInst (TagGClkA1)
Gclk[23] 235 235 3 0 DcacheInst 
Gclk[24] 240 240 3 0 IcacheInst (TagGClkA2)
Gclk[25] 296 258 6 19 IFCtrlSDInstA 
Gclk[26] 253 253 4 0 IcacheInst 
Gclk[27] 275 275 2 0 IcacheInst 
Gclk[28] 231 230 4 1 DcacheInst 
Gclk[30] 220 220 3 0 DcacheInst 
Gclk[31] 242 242 2 0 DcacheInst 
Gclk[32] 240 232 3 5 IFCtrlSDInstA 
Gclk[33] 232 232 3 0 IcacheInst (TagGClkB)
Gclk[34] 260 246 5 7 IFCtrlSDInstB 
Gclk[35] 231 231 3 0 IcacheInst 
Gclk[36] 236 225 3 5 DCCtrlSDInstA 
Gclk[37] 217 217 1 0 DcacheInst (TagGClkB)
Gclk[38] 234 232 4 1 DCCtrlSDInstB 
Gclk[39] 226 226 3 0 DcacheInst 
Gclk[40] 231 231 2 0 IcacheInst 
Gclk[41] 258 239 5 10 IFCtrlSDInstB 
Gclk[44] 226 226 2 0 DcacheInst 
Gclk[45] 245 242 5 1 DCCtrlSDInstB 
Gclk[50] 267 257 3 5 MDDualTripleCrossCIns MDDualTripleCrossCInst2
Gclk[51] 271 267 3 2 MDDualTripleCrossCIns MDDualTripleCrossCInst2 
Gclk[56] 276 264 3 5 MDDualTripleCrossCIns MDDualTripleCrossCInst2 
Gclk[57] 256 245 4 5 IEDualTripleCrossCInst MDCtlCInst
Gclk[58] 264 259 4 2 IEDualTripleCrossCInst MDCtlCInst
Gclk[59] 259 253 4 3 IEDualTripleCrossCInst MDCtlCInst
Gclk[61] 212 212 5 0 IEDualTripleCrossCInst1
Gclk[62] 208 208 2 0 IEDualTripleCrossCInst1
Gclk[63] 236 236 3 0 IEDualTripleCrossCInst1

Blocks Connected

 

Table. 5.1. DMR and TMR clock tree statistics at the top level.  
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based on their A or B copy association. DMR clock trees are built first and a constraint 

on the total latencies are reached for the whole design since global not local skew 

minimization is the goal. 

The shorter clock H-trees to the TMR and other hard blocks comprehend the total 

latency of the DMR clock trees as shown in the cartoon in Fig. 5.10. Ttmri subtracted from 

Tdmr is the resulting latency to which clock trees should be built to the TMR blocks. 

Latency values of clock tree and the skew numbers are also shown in Table 5.1.  

ClockSpine

TMR block 1

TMR block 2

DMR A copy

DMR B copy

TMR CTS=Ttmre

Tdmr=Ttmre+Ttmri

 

Fig. 5.10 Clock spine CTS cartoon for skew balancing. 



 

 88  

  

A, B and C clocks to single TMR blocks cannot be shared but they can be 

grouped with other TMR clocks. Also, any clock with a unique enable has to be 

separately connected,  as is the case with the cache clock pins. The TMR block clocks 

are also grouped together, based on proximity, to drive the clock from one of the 64 

clockspine pins. The assignment to the TMR and DMR clocks is based on the enables 

that control the 64 clock outputs; therefore not all clocks can be mixed. 

Fig. 5.11 shows the relatively low number of buffers added to build the top level 

clock tree. As explained earlier clocks are routed first to ensure that they get the largest 

share of routing resources to ensure lowest possible skew and lowest possible capacitive 

coupling. Fig 5.12 shows the clock-only routing shown in the HERMES core. 

 

Fig. 5.11  Clock Tree synthesis cells used in the design. 
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DMR and the design clock tree latency histograms are shown in Fig. 5.13 and Fig 

5.14. These show the excellent latency spread achieved by the aforementioned CTS 

strategy. The spread for the DMR clock tree is from 440 to 540 ps resulting in a +/- 50ps 

 

Fig. 5.12 DMR Clock Tree latency histogram. 
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Fig. 5.13 All the clock routing shown (DMR and TMR).  
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skew. The same number for all clocks in the design is 430 to 580 ps with a resulting skew 

of +/- 75ps. 

 

5.6. Post-CTS optimization 

 Once the clock tree synthesis is completed, post-CTS hold and setup 

optimizations fix timing violations. Setup violations are fixed before hold violations to 

make sure that fixing setup does not degrade the more important hold fixes. Fixing hold 

violations can lead to degradation of setup margin but that is acceptable since hold 

violations, unlike setup violations, cannot be fixed post fabrication by reducing the chip 

clock frequency. The hold margin fixed for this design is 150ps, based on a global skew 

 

Fig. 5.14 Design Clock Tree latency histogram. 
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on the order of +/- 75ps providing a net margin of 50ps. The number of hold buffers 

added and the timing statistics are described in the final chapter. The TMR blocks have 

100ps hold margin. Hence, the net 250 ps of hold margin in the TMR paths make them 

more robust. The post-CTS hold fixing cells are shown below in Fig. 5.15. 

5.7. Routing Phase 

After the post-CTS optimization, HERMES was routed using the detailed router, 

in this case Nanoroute ultra in Encounter. It takes into consideration of the total 

congestion statistics of the chip by analyzing routes available to the router and then routes 

the design.  

 

Fig. 5.15 PostCTS hold cells highlighted in orange. 
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There were no RHBD specific constraints given to the router, except for the CTS 

routing that are routed on priority with double width double spacing rules.  

 

Fig. 5.16 Metal density in the routing phase. 
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In the initial runs the router had over 100000 DRC errors after routing because of 

the TMR pin congestion and macro alignment. These issues were resolved with the pin 

placement algorithm described in the TMR flow improvements chapter. The router also 

fixed antenna violations by layer hopping. Remaining violations needed antenna diode 

cells to be rectified. The routed database with all the metal layer routing is shown in Fig. 

5.16. Metal 1 and Metal 8 are not fully utilized, latter because of restriction placed on the 

router and former because of lower routing congestion in the design. Note that post-Route 

optimization stage will increase the density of the routing further.  

5.8. Post-Route Optimization 

Post-Route optimization is run after the routing phase. It involves near sign-off 

level timing calculations using high effort extraction using ICE caps extraction files and 

turbo-QRC (TQRC) feature in Encounter. The resulting slews and clock delays are the 

most accurate possible using this tool. Comparison of these values with the pre-route 

numbers is a worthwhile exercise at this level to figure out the correlation in the tool. 

Large variations imply that there could be inaccuracies in input extraction files and tool 

settings on extraction and timing modes.  

The final pre-CTS congestion numbers were 0 for horizontal and 0.03 for vertical 

congestion at pre-CTS stage. This correlated well with the very low drc (~600) count at 

postroute, most of which were antenna violations. Tool options on slew propagation and 

clock propagation should be double checked at this stage to guarantee accuracy. Fig. 5.17 



 

 94  

  

shows the summary of optimization based setup and hold cell additions along with A and 

B copy cell modifications. 

Post-route optimization runs the same algorithms with more accurate values to 

minimize setup and hold WNS and TNS based on the constraints provided. Signal 

integrity optimization was not run. A copy and B copy cells are placed within their 

respective fences even after optimization, though there is an issue with cells from other 

hierarchies or cells added by the tool that do not explicitly get attached to the A or B 

fences. This clearly shows that though very hard from a separation point of view, some 

 

Fig. 5.17 Cells added by optimization and the corresponding A and B separation 
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buffers or other optimized cells added might not be in a good placement location from a 

DMR separation standpoint. Nonetheless, the probability of a particle striking a critical 

path in A copy and its corresponding B equivalent is very low. In the next chapter we will 

discuss the results in terms of area, speed and power. Techniques used for hardening are 

also summarized and their efficacy will be discussed with emphasis on possibilities for 

further improvement.  

5.9. Summary 

Top level implementation of HERMES is explained in this chapter. Design 

decisions which enabled successful implementation of HERMES in terms of constraints 

of area, timing, power and radiation hardness have been discussed. 
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CHAPTER 6. CONCLUSIONS 

 HERMES is implemented and the summary of the design parameters is 

shown below in table 6.1. Progression of the design from floorplanning to postroute 

optimization is compared. Density of the design clearly increases between steps 

gradually, owing to cells that are added and upsized for timing fixing.  

The design has an operational frequency of 450Mhz, which is a 10% degradation 

on the expected design target frequency of 500Mhz. Loss of speed can be attributed to 

speed of some individual TMR blocks and their physical placement that was sub-optimal 

owing to area and routing constraints shown in Fig. 6.1. TMR block placements were 

Stage Setup Hold Area(density %)

WNS TNS violating paths WNS TNS violating paths Total InstA InstB

Out of 15243 Out of 15243 2276489 um^2 560727 um^2618749 um^2

Synthesis 557.000 0.000 0.000 n/a n/a n/a n/a n/a

Placement -79.574 -49583.100 8930.000 n/a n/a n/a 27.000 52.400 47.500

Pre-CTS -0.188 -45.827 671 n/a n/a n/a 48.000 59.900 55.800

CTS -0.718 -283.169 1610 -0.236 -15.144 109 51.320 64.300 60.900

Post-CTS -0.220 -56.679 558 -0.049 -0.110 13 52.300 66.100 61.300

Route -0.399 -188.878 1538 -0.039 -0.767 95 52.700 67.100 61.500

Postroute -0.248 -56.361 667 -0.003 -0.006 4 52.300 67.100 61.500

WNS

TNS Total Negative Slack

Worst Negative Slack

 
 

Table. 6.1. Table showing timing and Area summary 
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restricted because of power-plan constraints and area bottleneck. In hindsight, the aspect 

ratios of the blocks were also sub-optimal. 

Routing density was consistent except for metal 1. Metal 1 was used minimally 

 

Fig. 6.2 Worst timing critical path spanning multiple blocks. 

 

Fig. 6.1 Pie chart showing cell distribution 
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for routing owing to high metal 1 pin density in standard cells and decoupling capacitors. 

 The pie chart in Fig. 6.2 gives the standard cell distribution in the design based 

on their design timing functionality. About 40% of the cells were added for 

optimizations.  

Area comparison is shown in Fig. 6.3 and 6.4. Design density grows gradually 

and saturates around 54% after routing. The A and the B DMR logic show slightly more 

168573

8739

48210

19396

1957

90271

Setup Optimized

Hold optimized

Clock Tree

Other Combinational Cells

Total Standard cells

Sequential

 

Table. 6.2. Standard cell distribution  

 

Fig. 6.3 Design overall density by stage. 
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abrupt increase since they have the largest number of timing critical paths that need to be 

optimized. 

 A and B DMR logic density is shown below in Fig. 6.4. They grow at a different 

rate in spite of having the same redundant logic because of the non-symmetrical logic 

around them that interacts with both copies.  

Worst negative slack (WNS), Total negative slack (TNS) and failing endpoints 

per implementation stage have been plotted in Fig. 6.5-6.10. Fig 6.6 shows that the 

synthesis timing achieves a much higher frequency than the physical implementation.  

 

Fig. 6.4 DMR A and B copy density growth by stage. 
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Physical implementation is typically slower but the magnitude of this difference 

shows that there was a drastic speed-down owing to placement, routing and TMR 

complexity.  

 

Fig. 6.6 . Failing endpoints for setup violations. 
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Fig. 6.5 Setup WNS for each stage. 
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Hold timing violations were successfully fixed with an extra margin of 150ps. 

Quality of the clock tree is the reason for low numbers of clock buffers required to fix 

existing post-CTS violations. Placement TNS is disproportionately large because of the 

 

Fig. 6.8 Setup TNS by stage. 
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Fig. 6.7 Hold endpoints by stage. 
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fact that no design rule violations are fixed, thereby resulting in larger slews and delays 

that manifest inside the design. Hold timing statistics are shown in Fig 6.8- 6.10.  

Relatively few hold buffers (~20K) were introduced owing to the low skew clock 

tree built. Hold failing endpoints and WNS increase after routing because of extraction 

and timing difference between global and detail routing. 

 

Fig. 6.9 Hold TNS by stage. 
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Fig. 6.10 Hold WNS by stage 

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

CTS Post-CTS Route Postroute
W

N
S

(n
s
) 

Hold WNS by stage 

WNS



 

 103  

  

Distinct A and B copy separation was one of the main design goals and it has 

been achieved as explained in chapter 5. It can also be shown that same paths from A and 

B logic copies are spatially separated by more than 500u. This shows that path shown in 

Fig. 6.11 has 0 probability of getting upset by a single particle hit. Path from  

IFUInst/IFITLBSDInstA/B/InstrVPNSEL_reg[18]/q to 

IFUInst/IFITLBSDInstA/B/CacheableSIH_reg/d is shown. 

 

Fig. 6.11 A and B copy of a same critical path highlighted separated by 500um. 
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Power was measured using Primetime-PX and the numbers are summarized in 

table 6.3. Power was calculated using Dhrystone generated vectors for anticipated worst-

case instructions. Power budget of the chip was 1W and results achieved are well within 

that estimate. The cache power is estimated from [Yao2010] at 400 MHz to be ~75mW. 

This means that the total power is less than 500mW, which is half the estimated number.  

Total power numbers show that IEU (Instruction Execution Unit), as expected, 

dissipated the most power. IEU contains the highly dense IEArchitechture block that has 

logic which interacts the most with other blocks in the design. It can also be inferred that 

hierarchical clock-gating has been a very effective strategy and the total switching power 

is reduced as a consequence. 

 

Fig. 6.12 Switching power density map from primetime showing module contributions. 

Average Power(Watts) Peak Power(Watts)

Total 0.3692 0.5236

Switching 0.1395

Internal 0.1946

Leakage 0.0351  

Table. 6.3. Power statistics at 400MHz using Dhrystone vectors. 
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Switching power density has CMU module as the major contributor since this 

block controls the clocking to the whole design and has high capacitance, high activity 

factor nodes. Snapshots from Primetime are shown in Fig. 6.12 to Fig. 6.14.  

 

Fig. 6.14 Total Power map from primetime showing module contributions. 

 

Fig. 6.13 Leakage Power map from primetime showing module contributions. 
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6.1. Summary 

We may conclude that most of the design targets in terms of speed, power, area 

and radiation hardness have been met with slight degradations in speed. A cursory look at 

the top level path in Fig. 6.1 proves that an improvement in speed can be achieved if the 

quality of placement can be improved. To pursue this, future work comprising of 

improved placement algorithms and techniques are already being developed and tested. 

Improvements to the current implementation in terms of the ASIC RHBD flow and 

design techniques to speed-up the design, while making it lower power (pulsed clock 

latches), are also being analyzed and will be subsequently implemented. Additionally, 

work on temporal hardening based flows with special placement algorithms and pipeline 

based TMR design strategies are also being done to provide complete RHBD ASIC 

design methodology.  
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