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ABSTRACT

Functional magnetic resonance imaging (fMRI) has been widely used to measure the

retinotopic organization of early visual cortex in the human brain. Previous studies

have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI

signals, but the resulting geometry has not been fully characterized with mathematical

models. This thesis explores using concepts from computational conformal geometry

to create a custom software framework for examining and generating quantitative

mathematical models for characterizing the geometry of early visual areas in the

human brain. The software framework includes a graphical user interface built on top

of a selected core conformal flattening algorithm and various software tools compiled

specifically for processing and examining retinotopic data. Three conformal flattening

algorithms were implemented and evaluated for speed and how well they preserve the

conformal metric. All three algorithms performed well in preserving the conformal

metric but the speed and stability of the algorithms varied. The software framework

performed correctly on actual retinotopic data collected using the standard travelling-

wave experiment. Preliminary analysis of the Beltrami coefficient for the early data

set shows that selected regions of V1 that contain reasonably smooth eccentricity

and polar angle gradients do show significant local conformality, warranting further

investigation of this approach for analysis of early and higher visual cortex.
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Chapter 1

INTRODUCTION

In modern medicine, medical imaging is essential and vital for the proper and early

diagnosis of medical conditions. The World Health Organization’s (WHO) website

describes medical imaging as follows:

Medical imaging comprises different imaging modalities and processes to

image human body for diagnostic and treatment purposes and therefore has

an important role in the improvement of public health in all population

groups. Furthermore, medical imaging is justified also to follow the course of

a disease already diagnosed and/or treated. Area of medical imaging is very

complex and, depending on a context, requires supplementary activities of

medical doctors, medical physicists, biomedical engineers as well as

technicians. Medical imaging, especially X-ray based examinations

and ultrasonography, is crucial in every medical setting and at all

levels of heath care. In public health and preventive medicine as well

as in curative medicine, effective decisions depend on correct

diagnosis. Though medical/clinical judgment maybe sufficient in treatment

of many conditions, the use of diagnostic imaging services is paramount

in confirming, correctly assessing and documenting course of the disease

as well as in assessing response to treatment. [41]

Modern medical imaging research is focussing on using computer science and

computational conformal geometry to augment and enhance traditional imaging

data in order to provide highly detailed three dimensional representations that can

be used to more accurately visualize and detect the minor differences between

normal and the very early stages of disease progression. Novel ideas come from a

wide variety of research areas including but not limited to computer science,
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computer engineering, mathematics, and physics. Imaging modalities are combined

with image processing techniques and computational conformal geometry algorithms

to generate highly accurate and detailed anatomical data that can be used for cross

subject comparisons to study the early signs of diseases. Research from computer

science and mathematics have provided faster and better imaging algorithms while

hardware researchers have been able to continuously provide faster and more

efficient computing power. This combination of hardware and software algorithms is

making it possible for researchers to gather large amounts of quality imaging data

faster which translates to more opportunities for discoveries and progress in

medicine and biology.

Medical imaging is not only a diagnosis tool for doctors but also a valuable

research tool for researchers in biology, bioengineering, and medicine. The

noninvasive nature of medical imaging allows researchers from biology and medicine

to collect large amounts of in vivo research data which is necessary in order to study

and fully understand biological processes. Researchers have been able to confirm

known theories and also discover previously unknown facts about how the human

body works using the available in vivo data. One example research topic that

requires in vivo data is human brain mapping. Functional magnetic resonance

imaging (fMRI) technology and many new computational geometry algorithms have

profoundly change our understanding of how the brain works.

A relatively new research area that has greatly impacted the medical imaging

field is computational conformal geometry. In Computational Conformal

Geometry [12], computational conformal geometry is defined as, “an

interdisciplinary field, combining modern geometry theories from pure mathematics

with computational algorithms from computer science.” Fig. 2.2 provides some

examples of the various applications of computational conformal geometry.
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Applications for computational conformal geometry are found in many areas

because the conformal structure is both flexible and restrictive. “Roughly speaking,

conformal structure is more rigid than topological structure and more flexible than

Riemannian metric. Conformal geometry is between topology and Riemannian

geometry.” [12]. An angle preserving map is restrictive enough that dissimilar

surfaces will not generate the same mapping while allowing more flexibility than an

isometric mapping. Fig. 2.3 provides some examples of modern medical imaging

research that uses conformal geometry. Computational conformal geometry has

provided many new tools for solving a variety of geometric problems. Tasks of

identifying and matching shapes that were once thought to be capable only by a

human are now possible with computers. These tasks are grouped into what is

known as high level shape operators. They include classification, comparison,

matching, and recognition. The algorithms for performing these tasks with

efficiency and high precision rely on the following powerful concept from

computational conformal geometry:

All surfaces in real life can be deformed to three canonical shapes: the sphere,
the plane, and the disk. The deformation preserves angles and is determined
by a small number of control parameters, such as several landmarks.
Therefore, all geometric problems in three dimensional Euclidian space R3

can be converted to two dimensional problems on the plane. [12]

This concept is surprising at first because there are so many possible surfaces that

we can identify. However, as stated above, there are only three canonical shapes

that all surfaces can deform to. By deforming surfaces to their canonical domain,

the matching or categorizing problem is greatly simplified.

Computational conformal geometry is currently being used by researchers to

solve a variety of problems in medical imaging. Applications can also be found in

robotics vision, intelligent systems, and network routing. There are many biological

problems that are now being investigated due to the availability of high quality
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medical imaging data. One of these is finding a quantitative model that can fully

characterize the geometry of the human visual areas. Human retinotopic

organization has been studied using functional magnetic resonance imaging (fMRI)

in [8] and [34]. Functional magnetic resonance imaging (fMRI) uses what is known

as the blood-oxygen-level dependent (BOLD) contrast [14]. It measures the cerebral

blood flow to neurons when they are activated instead of directly measuring the

electrical activity. This indirect measurement technique works because neuronal

activation is highly dependent on the amount of blood flowing to the activation

area. Studies so far have not yielded a quantitative model that can fully

characterize the human retinotopic mapping. This thesis is looking to explore this

problem using computational conformal geometry algorithms and the Beltrami

coefficient. The goal is to study whether the application of computational conformal

geometry algorithms and Beltrami coefficient to retinotpic mapping data will yield

any new insights into finding a fully quantitative model.

1.1 Motivation and Related Works

The efficiency of the measurements and the relatively large amplitude of functional

magnetic resonance imaging (fMRI) signals in visual cortical areas have made it

possible to develop quantitative models of functional responses within specific maps

in individual subjects. Retinotopic mapping of human visual cortex generates visual

field maps by analyzing the stimulus-referred fMRI response to each of the

fragments in each voxel [7, 9, 10, 13, 29, 33]. The maps elucidate the spatial

organization of the neuronal responses to visual images on the retina

[7, 9, 10, 25, 29, 31] and have contributed greatly to our understanding of the

human visual system and the development of human cerebral cortex [35]. They also

hold great promises to further our understanding of plasticity in the human visual

cortex in normal and abnormal populations.
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Although numerous studies have been devoted to retinotopic mapping, most

of them took an experimental approach to discover various visual areas and study

the relationship between them. Missing at this time is a mathematical model that

fully considers the intrinsic geometrical features of the underlying cortical

structures. Instead most studies have focused on 2D mappings but lots of

distortions have already been introduced when the 3D cortical surface is flattened to

the 2D. Ju’s paper [17] found variations in run time and metric preservation across

the three evaluated conformal flattening methods. Therefore it is important to note

that not all conformal flattening algorithms produce the same results. More recently

Balasubramanian and Schwartz have published a paper showing that near isometric

flattening of brain surfaces reveals that the organization of the visual areas of the

brain are much more alike across subjects than has been shown before. [4] A typical

retinotopy is usually generated in three steps: (1) Flatten the cortical surfaces using

structural scans; (2) Project the functional data onto the flattened surfaces; (3)

Generate a phase map of the retina image on the flattened surface based on the

visual stimuli on the retina. However, there are a number of issues: (1) Large

distortions are usually introduced in the cortical flattening process; (2) Although the

current method generates maps, there is no concrete mathematical description of

these maps and no direct way to quantitatively compare the maps. These difficulties

made retinotopic mapping mainly an experimental study in which experimental

results obtained in small samples pose significant challenges for a population level

integration and analysis. Because of the lack of a theoretical model, research on

retinotopic mapping is strongly limited by available experimental protocols. For

example, some large veins close to fovea in many subjects significantly diminish the

fMRI response accuracy and distort the retinotopic map. This problem is alleviated

only recently with high resolution fMRI and optimized methods [23].
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Schwartz [26] proposed an analytical expression which is a conformal

mapping to describe the retinotopic map in V1. The simple and convenient

complex-log transform (or variants thereof [3, 21, 27]) has become the de facto

standard for describing the shape of human V1. Over the years, a variety of new

models have been proposed aiming to solve some counterintuitive predictions in

Schwartz’s model (e.g. [24]). An important feature of this kind of approach is to

apply multidimensional scaling method (MDS) [2, 5, 18, 19, 28, 30, 32] to compute

isometric (or near-isometric) mapping from the original brain surface to the

Euclidean plane. However, the drawback of MDS is that it does not consider any

surface geometric features and the results are only some approximation to the

isometric parameterization. Inevitably, the flattening procedure introduces lots of

distortions that make the subsequent analysis inaccurate. In [22], Qiu et al.

computed a hyperbolic conformal map of visual V1 area using the circle packing

method [15, 16]. However, the mapping was only used for visualization and no

quantitative models were developed to describe and compare the retinotopic maps.

1.2 Contribution

This thesis explores using concepts from computational conformal geometry to

create a custom software framework for examining and generating quantitative

mathematical models for characterizing the geometry of early visual areas in the

human brain. The goal for the software is to automate tedious processing tasks and

minimize human error for data processing tasks. The software framework includes a

graphical user interface built on top of a selected set of known conformal flattening

algorithm and various software tools compiled specifically for processing and

examining retinotopic data. Additional software tools created for retinotopic

mapping are also combined along with several other mesh processing tools to form a

complete software package for future research. Conformal flattening algorithms are
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implemented and studied in detail to ensure that the needs of retinotopic mapping

research are met. The conformal metric is evaluated by generating histogram plots

of the computed Beltrami coefficient between the original and the deformed mesh.

The Beltrami coefficient is explored as a possible quantitative measurement that can

be used to characterize the geometry of retinotopic organization in the visual areas.

Using the Beltrami coefficient in this way has not been done before. A preliminary

quantitative model using the Beltrami coefficient to describe the retinotopic

mapping is proposed.

1.3 Thesis Direction and Layout

This thesis will first discuss the implementation and evaluation of three

computational conformal geometry mapping algorithms: non-linear heat diffusion

spherical harmonic, harmonic and holomorphic 1-form, and discrete Ricci flow.

These three algorithms are evaluated to study how flattening affects retinotopic

data and if flattened data is more helpful in identifying similarities across subjects

than non-flattened data. Second, the software requirements for the retinotopic

mapping tool will be presented and discussed. The software tool was created to

facilitate with data processing. Lastly, the results from processing real retinotopic

research data using the software tool will be discussed along with conclusions drawn

from the data. It is important to note that characterizing human retinotopic

mapping using fMRI data is still an open problem. As a result, it is not the goal of

this paper to fully derive and describe a complete quantitative model that can fully

characterize human retinotopic mapping. Instead, the goal is to approach the

problem by developing a software package around some well known concepts from

computational conformal geometry in order to describe the geometry of the early

visual areas. Once that has been achieved, then finding a complete quantitative

model would be more plausible.
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The layout of this thesis is structured like a science research paper. Chapter

2 is the methods section. It discusses all the computational conformal geometry

algorithms used and their code implementation. It also briefly highlights the

mathematical theory for these algorithms. Chapter 3 is the results section. The

performance and accuracy test results for these algorithms are presented in graphs

and tabular form. Chapter 4 is the discussion section. In depth analysis of the data

and plots from Chapter 3 are discussed and additional insights into the behavior of

these algorithms are also discussed. Chapter 5 is the conclusion section. Everything

is briefly reviewed and the main results are highlighted. Recommendations are

provided and future works are discussed.
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Chapter 2

METHOD

The retinotopic research data were collected and provided to our group by Professor

Alyssa Brewer and her student Brian Barton from UCI Laboratory of Visual

Neuroscience. The retinotopic data were collected using the standard

travelling-wave method as described in [8] and [34]. Fig. 2.4 and 2.5 depicts the

standard-travelling wave method. The human subject is provided visual stimuli

while fMRI data is collected. Visual stimuli consists of black and white, drifting

checkerboards comprising rotating wedges and expanding rings to measure the

cortical representations of polar angle and eccentricity, respectively. These

representations were then projected onto a three-dimensional cortical mesh of each

hemisphere. Collected retinotopic data consists of three-dimensional cortical mesh

with vertex color data attribute corresponding to eccentricity and polar angle.

Eccentricity and polar angle values can be retrieved from the data set using the

color map selected for data collection. Fig. 2.6 illustrates the decoding of the vertex

color data to retrieve the radius r and angle θ. The u, v coordinates can then be

computed as u = rcos(θ) and v = rsin(θ). Fig. 2.7 shows what a plot of the

recovered parameterization looks like.

The steps for processing the research data and applying the conformal

geometry algorithms are summarized in fig. 2.1.

Figure 2.1: Typical Processing Pipeline for Retinotopic Mapping

The initial step is to cut the visual regions, located on the occipital lobes, from the

the rest of the brain. After the cut, the original closed genus zero surface is divided

into two open genus zero surfaces. Only the genus zero surface containing the visual
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regions are retained for conformal flattening and evaluation. A diagram describing

how the conformal mapping surface matching idea is applied to retinotopic mapping

is shown in fig. 2.8. Flattening a three-dimensional surface with a conformal

parameterization changes a three-dimensional matching problem to a

two-dimensional one. The flattening step is where we apply three different

conformal geometry algorithms to see which one preserves the metric best.

The discrete Ricci flow and harmonic/holomorphic 1-form algorithms are

known to be more robust and stable than the non-linear heat diffusion algorithm

because their conformal solutions are obtained by solving several linear systems

while the non-linear heat diffusion method uses the gradient descent method which

is heavily dependent on step size selection and the initial condition choice. The

efficiency of discrete Ricci flow and harmonic/holomorphic 1-form algorithms are

dependent on the quality of the linear solver used. Matlab linear solver was used as

the backend for my research implementation of these algorithms. Efficiency

comparison of additional linear solvers can be found in Polygon Mesh Processing [6].

Another difference is the non-linear heat diffusion method requires the double

covering step to convert the open boundary genus-zero surface to a closed genus-zero

surface in order to apply the algorithm. On the other hand, the holomorphic 1-form

and the discrete Ricci flow method do not require this step because these versions of

the algorithms work directly with open boundary surfaces. Fig. 2.9, Fig. 2.10, and

Fig. 2.11 show the processing pipeline for each of the three algorithms.
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Figure 2.2: Applications in Computer Graphics. [12] [42]

Figure 2.3: Applications in Medical Imaging. [37] [38] [39] [39] [40] [36]
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Figure 2.4: Standard Travelling-wave Diagram for Eccentricity.

Figure 2.5: Standard Travelling-wave Diagram for Polar Angle.
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Figure 2.6: Decoding Eccentricity and Polar Angle from Color Map.
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Figure 2.7: Plot of Recovered Parameterization.
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Figure 2.8: Retinotopic Surface Matching Using Conformal Mapping.
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Figure 2.9: Flattening Using Non-Linear Heat Diffusion Spherical Method.

Figure 2.10: Flattening Using Harmonic and Holomorphic 1-Form Method.

2.1 Software Tool Requirements

A graphical user interface (GUI) was implemented on top of the conformal

flattening algorithms to facilitate with retinotopic data processing. The goal for

making the GUI is to simplify and minimize errors during data processing. Creation

of folders and files are automated to avoid naming collisions and provide naming

consistency. Once files are generated they can be viewed readily using any available

mesh viewer tool. Fig. 2.12 diagrams the required software functions.

2.2 Conformal Flattening Algorithms

Conformal flattening algorithms used in freely available software packages were

evaluated by Ju [17]. The paper [17] evaluated FreeSurfer, CirclePack, and LSCM

and found variations in metric preservation across all three tools. The algorithms
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Figure 2.11: Flattening Using Discrete Ricci Flow Method.

used by each of the software package all had the same goal of flattening while

preserving certain metrics. Ju’s paper [17] found significant variations in this goal

across the tools. As a result, we will implement three known algorithms ourselves

and specifically evaluate their pros and cons with respect to flattening retinotopic

data.

2.2.1 Non-Linear Heat Diffusion Spherical Harmonic Mapping

All closed genus zero surfaces can be mapped conformally onto the sphere. This

algorithm uses the nonlinear heat diffusion equation

df(t)

dt
= −∆f(t)

Each step of the algorithm only requires the computation of the normal and

tangential component of the Laplacian. This algorithm solves the harmonic map

function by slowly converging towards a specified minimum harmonic energy. The
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Figure 2.12: Functional Diagram for the Retinotopic Processing Software

solutions are not unique and differ by a Möbius transformation. A Möbius

transformation is a mapping where the following is true

φ : z → az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.

It is important to note that this algorithm works because for a sphere, “a map is

conformal if and only if it is harmonic.” [12] This is why the goal of this algorithm is

to iteratively minimize the harmonic energy. It is also important to note that in

general, it is not the case that when a mapping is harmonic that it is also

conformal. The full algorithm from [12] is as follows:

Algorithm 17: Spherical conformal mapping
input : Mesh M, step length δt, energy difference threshold δE
output : A harmonic map f : M → S2, which satisfies the zero mass-center
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constraint.

Compute a degree one map, such as Gauss map g : M → S2

Initialize f← g, compute harmonic energy E0;

repeat
forall vertex v ∈M do

Compute the Laplacian ∆f;
Compute the normal component;

∆f⊥ =< ∆f, f > f

Compute the tangential component;

∆f‖ = ∆f−∆f⊥

Update f(v) by

f(v) = f(v)− δt×∆f‖

end
Compute Möbius transformation ϕ : S2 → S2, such that the mass
center of ϕ ◦ f is the sphere center;
f← ϕ ◦ f;
E0 ← E;
Compute the harmonic energy E(f).

until Harmonic energy difference |E − E0| is less than δE;
Return f [12]

The normalization step in the algorithm above is computationally expensive and

requires an optimization for practical usage. The full algorithm from [12] to

approximate the Möbius normalization step is:

Algorithm 18: Normalization
input : Mesh M, a mapping to the sphere f : M → S2

output : Normalized mapping f̃, whose mass center is at the sphere center

Compute the the mass center of f :

c←
∫
S2 f dσ.

where dσ is the area element on the original mesh M.
forall vertex v ∈M do

f̃← f(v)− c

end
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forall vertex v ∈M do

f̃← f̃
|̃f(v)| .

end [12]

This conformal mapping method requires careful selection of the step length δt in

order for the energy to decrease and converge. This gradient descent method is not

always guaranteed to converge. The stability of the gradient descent method

depends on the step length choice and the initial map. The initial map quality will

affect the stability and speed of the convergence. The Gauss map is a good initial

choice but there are others. If a better initial map can be found that makes this

method more stable and converges faster, then this method may become a

competitive choice. Fig. 2.13 shows the spherical mapping output of the test brain

mesh.

Figure 2.13: Conformal Mapping of Brain to Sphere

2.2.2 Harmonic and Holomorphic 1-Form

This algorithm computes the harmonic and holomorphic forms for a multi-holed

annulus. The general steps for a conformal mapping of a multi-holed annuli as

described in [12] has been reduced to only two boundaries for our research need

here. The surface mesh cut that contains the visual region can be conformally
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mapped to a disk by puncturing an arbitrary hole and applying the algorithm for

conformally mapping a multi-holed annuli. It is important that the punctured hole

not include any of the visual region of interest (V1 and V2). These regions can be

traced and cut out from the unit disk after the mapping is complete. The cut region

will be conformal to the original pre-flattened mesh of that region. The full

algorithm described on page 241 in [12] has been modified for a single internal

boundary as follows.

Algorithm: Conformal Mapping for Multi-Holed Annuli
input : Genus Zero Annulus with a Single Internal Boundary mesh M
output : A conformal map to a disk f : M → S2

The set of boundaries of the annulus is ∂M = γ0 − γ1.
The outer most boundary of the annulus is taken to be γ0.
NOTE: An annulus is an outer large boundary encircling smaller
circles.

1. Compute the harmonic measures of M by solving the following Dirichlet
problem,

δfi ≡ 0, fi|γj = δij =

 1, i = j,

0, i 6= j.

The exact harmonic 1-form is

ω0 = df.

2. Find shortest path connecting inner boundary and outer boundary τ .
Generate open mesh M̄ by slicing mesh M along τ .
The cut generates two boundaries along τ , τ+ and τ−.

3. Compute harmonic function g : M̄ → R such that
g|τ+ = 1, g|τ− = 0.
Denote each edge in τ+ as e+ and τ− as e−. The differential
dg(e+) = dg(e−) = 0, so the differential is well defined on M .
Let

τ = dg,

∫
γ0

τ = 1.

Diffuse to find ω1 by solving the following
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∑
j

wij[τ([vi, vj]) + h(vj)− h(vi)] = 0

Then ω1 = τ + dh.
5. Compute holomorphic 1-form by solving the following linear system(∫

M
ω0 ∧ ∗ω0

∫
M
ω0 ∧ ∗ω1∫

M
ω1 ∧ ∗ω0

∫
M
ω1 ∧ ∗ω1

)
=

(∫
M
ω0 ∧ ω0

∫
M
ω0 ∧ ω1∫

M
ω1 ∧ ω0

∫
M
ω1 ∧ ω1

)(
λ00 λ10

λ01 λ11

)
Integrate to obtain mapping φ : M̄ → C

Choose any vertex v0 as the initial root vertex for integration.

φ(vi) =

∫ vi

v0

ω1 +
√
−1 ∗ ω1

Visualization of the holomorphic 1-form using checkboard pattern is shown in

fig. 2.14. The top left and middle picture shows the triangle punched hole and the

sliced path connecting the inner boundary and outer boundary. The top right

picture shows the applied checkerboard texture map on the mesh using the

holomorphic 1-form as (u, v) coordinates. The bottom row shows a different

holomorphic 1-form ω =
∑n

i=1 λi(ψi +
√
−1 ∗ ψi) with a different constant value λ

introduced to induce a disk mapping. The bottorm row of three images also shows a

zooming progression towards the tip of the nose. The texture pattern shows up only

when you are close enough to the tip. An example of holomorphic 1-form applied on

the visual cortical mesh is shown in fig. 2.15. The runtime to obtain this is less than

one minute compared to about forty to fifty hours using the non-linear spherical

harmonic method.

2.2.3 Surface Discrete Ricci Flow

This algorithm computes a conformal mapping for a multi-holed annulus using

discrete Ricci flow. This algorithm uses the Newton’s method for gradient descent

to optimize the convex energy. This is similar to the non-linear heat diffusion

method described above which also uses gradient descent to optimize the harmonic
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Figure 2.14: Visualization of Harmonic and Holomorphic 1-Form Using Texture
Mapping.

Figure 2.15: Holomorphic 1-Form of Visual Region Cortical Mesh
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energy. The full algorithm for generating a conformal mapping of a multi-holed

annuli using discrete Ricci flow from [12] is shown below. Once again we will only

be using this algorithm with annuli that have a single internal boundary. We will

puncture an arbitrary hole on a genus zero open surface to create the internal

boundary. Then we will apply the algorithm for conformally mapping a multi-holed

annuli. It is important that the punctured hole not include any of the visual region

of interest (V1 and V2). These regions can be traced and cut out from the unit disk

after the mapping is complete. The cut region will be conformal to the original

pre-flattened mesh of that region.

Algorithm 43: Newton’s method of discrete Ricci flow for multi-holed
annulus
input : A multi-holed annulus M
output : A flat circle packing metric (M,Γ,Φ) which maps the boundaries
to circles

Compute the initial circle packing metric (M,Γ0, φ);
Compute the initial curvature K.
Trace boundaries, store each boundary as a list of ordered vertices

Γ1,Γ2, . . . ,Γm.

Set Γ1 as the outer boundary,

θ1 ← 2π, θ2 ← −2π, . . . , θm ← −2π.

forall Interior Vertex v ∈M do

K̄(v)← 0.

end
forall Boundaries Γk do

forall v ∈ Γi do

k̄(v)← θk
|Γk|

end
end
repeat

Compute target metric according to K̄ using Newton’s method in
algorithm 42;
forall Boundaries Γk do
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Compute the total length of Γk under the current metric, sk;
end
forall vi ∈ Γi do

k̄(v)← θk
li−1,i+li,i+1

2sk
end

until The maximal difference of current target curvature and previous target
curvature is less than ε; [12]

The total target curvature is set to 2π for the outer boundary and −2π for the inner

boundaries. Algorithm 43 calls algorithm 42 to compute the target curvature over

and over again until the difference between the current target curvature and the

previous target curvature is less than a certain threshold ε. The full algorithm

from [12] that computes the target curvature is shown below.

Algorithm 42: Newton’s method of discrete Ricci flow
input : A mesh M embedded in R3, target curvature K̄, curvature
threshold ε
output : A circle packing metric (M,Γ,Φ) which induces K̄

Compute the initial circle packing metric (M,Γ0, φ);
Compute the initial curvature K.

u← 0.

while max|Ki − K̄i| > ε do
forall edge e = [vi, vj] ∈M do

Compute the edge weight wij(u) to form the Hessian matrix.
end

du← ∆−1(K̄ −K)
u← u + du
k← K(u).

end
ū← u [12]

Fig. 2.16 shows the test data used for the discrete Ricci flow method. The top left

figure shows the original mesh punctured at the nose with a hole. The resulting disk

from the discrete Ricci flow method is shown on the top right of the figure. Texture

mapping applied to the resulting disk is shown with the bottom image of the figure.

Zooming in is required to see the texture mapping because of the resolution of the
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Figure 2.16: Discrete Ricci Flow Output

resulting mesh. This algorithm uses the circle packing metric which are the edge

lengths between two adjacent circles and is denoted lij. Each vertex vi in the mesh

is encircled by a circle with vi as the center. The edge length of an edge [vi, vj] is

determined by lij = γi + γj. Intersecting circles form an acute angle Φ : E → [0, 2π).

The intersecting angle for an edge [vi, vj] is Φ([vi, vj]) = φij. Two circles are tangent

to each other if φij is zero. The edge length between two circles is

lij =
√
γ2
i + γ2

j + 2γiγjcosφij. The edge length satisfies the triangle inequality

lij + ljk > lki. The discrete Gaussian curvature for a vertex vi is

Ki = 2π −
∑
jk

θjki

where θjki is the corner angle at vertex vi in face [vi, vj, vk]. For boundary cases

Ki = π −
∑
jk

θjki

The Ricci flow will conformally deform the metric by transforming circles radii.

The deformation will preserve the edge weights of all the edge lengths

lij =
√
γ2
i + γ2

j + 2γiγjcosφij which is cosφij. The radii will change but the edge

weights will be preserved which in this case is the angle. The deformation is

therefore angle preserving. Let ui = logγi and the target curvature at vertex vi be

K̄i, define convex energy as

E(u) =

∫ u n∑
i=1

(K̄i −Ki)dui
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where u = (u1, u2, . . . , un)

The Hessian matrix of E is

∇E = (K̄1 −K1, K̄2 −K2, . . . , K̄n −Kn)T

It is positive definite. Each edge weight is defined to be

wij =
|ol − ok|
|vi − vj|

where ok and ol are two circle centers. These two circles are orthogonal to the three

vertex circles of a face. Fig. 2.17 shows these two circles. We can setup the

following equation

Figure 2.17: Circle Packing Weight Computation

dK = ∆du

The Laplacian is defined for all edges ij.

∆ij =

{ −wij [vi, vj] ∈M∑
k wik i = j

0 other

For each vertex vi, the differential of the curvature at vi is

dKi =
∑

[vi,vj ]∈M

wij(dui − duj)
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2.3 Supplemental Topics

Computational conformal geometry algorithms used in this thesis require knowledge

from a variety of computer science topics and mathematical areas. They have been

summarized here so that the reader has a reference point for additional research if

interested. Each topic or area is only discussed in the context of how they explain

or support the computational conformal geometry flattening algorithms. Many of

the foundations behind these topics and areas are assumed and are only briefly

discussed in some cases for clarity. Concepts from algebraic topology are only

discussed by providing examples when applicable and explaining how they are used

in the algorithms. The theory behind some of them are very abstract and difficult

to understand. These theoretical concepts will not be thorougly discussed in detail

here because of the amount of background materials that need to be presented in

order to explain them. The reader is encouraged to pick up a book on algebraic

topology if interested for additional in depth study. However, the reader is warned

that these concepts require extensive knowledge of groups, spaces, and modern

algebraic language constructs to fully understand them.

Using algebraic topology to study the geometry of surfaces is relatively new

when compared to using classical differential geometry. It is more difficult to

understand because its definitions and concepts are rigorously defined using modern

algebraic language. However, it has the advantage over classical differential

geometry in that topological concepts and theorems can be easily converted to

algorithms and used to solve topological problems. Solving topological problems

using algorithms allows us to easily describe their difficulty using computational

complexity.
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2.3.1 Differential Geometry

Differential geometry is the classical approach for studying surfaces. The concepts

and theories are formulated using the tangent space concept along with differential,

integral, and vector calculus that are familiar to many of us. It will be discussed in

detail here because retinotopic data processing is all done on three dimensional

brain surfaces. The three dimensional brain surfaces are represented using triangle

meshes that were generated from multiple slices of functional magnetic resonance

imaging (fMRI) data. Flattening these three dimensional surfaces to a plane can be

achieved easily if the surface can be parameterized. Fig. 2.18 shows a general

three-dimensional surface S and the mapping between a curve α on S to the (u, v)

domain.

Figure 2.18: General Parameterized Curves and Surfaces.

A mapping such as this preserves the local geometry of the surface. The surface

patch r(U) shown above is a regular surface patch in R3 and U = (u, v) are called

the coordinate parameters of the surface when vectors ru and rv are linearly

independent, ru ∧ rv 6= 0. Vectors ru and rv are computed by taking the partial

derivative with respect to u and v, ru = (∂x
∂u
, ∂y
∂u
, ∂z
∂u

) and rv = (∂x
∂v
, ∂y
∂v
, ∂z
∂v

) The

normal of the surface is given by n(u, v) = ru∧rv
|ru∧rv | . If we apply a parameter
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transformation to the regular surface above, then we may end up with a different

parametric representation of the same surface. Let r : S→ R3 be a surface patch

and φ : (u′, v′) ∈ S′ → (u, v) ∈ S be a parameter transformation, then φ is a

diffeomorphism. If the Jacobian is 6= 0, then another parametric representation can

be written as r(u′, v′) = r ◦ φ(u′, v′) = r(u(u′, v′), v(u′, v′)) : S′ → R3. The Jacobian

is the determinant of the Jacobian matrix

∂(u, v)

∂(u′, v′)
=

∣∣∣∣∣∣∣
∂u(u′,v′)
∂u′

∂v(u′,v′)
∂u′

∂u(u′,v′)
∂v′

∂v(u′,v′)
∂v′

∣∣∣∣∣∣∣
The first derivative vector at t = i of the curve α(t) = r(u(t), v(t)) on our surface

patch r(U) is

dr(t)

dt
|t=i = ru

du

dt
|t=i + rv

dv

dt
|t=i

The first derivative vector is tangent to the surface at r(u(i), v(i)). The set of all

tangent vectors at a point, p ∈ S, form the tangent space of S at p. The definitions

above describe the local geometry of our surface S and will be used next to describe

several theories of surfaces.

An important theorem for surfaces is Gauss’s Theorema Egregium. This

theorem is readily observable by trying the following example. Suppose you take a

flat piece of paper and fold it into a cylinder, you will notice that the surface

curvature of the flat piece of paper changes. However, suppose you shrink yourself

to the size of an ant and walk along the surface of the cylinder, you will notice that

the local change is the same as that of the flat piece of paper. In fact, they are the

same. This observation is what Gauss’s Theorema Egregium describes. This

theorem tells us that Gaussian curvature remains unchange for embedded surfaces

and only the first fundamental form is needed to determine it. In other words, this

tells us that locally the surface curvature does not change for embedded surfaces.
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We discuss several local theory of surfaces here which are fundamental and

necessary for us to show Gauss’s Theorema Egregium.

For our surface S in fig. 2.18 and its parametric representation r(u, v), we

can write the tangent vector as dr = rudu+ rvdv. Taking the inner product of dr,

< dr, dr > gives us the length of dr.

< dr, dr >= du2 < ru, ru > +2dudv < ru, rv > +dv2 < rv, rv >

We use the letters E,F , and G to represent the inner products < ru, ru >,

< ru, rv >, and < rv, rv > respectively. Substituting and rewriting into matrix form,

we get the following,

I =

(
du dv

)E(u, v) F (u, v)

F (u, v) G(u, v)


du

dv


. This is known as the first fundamental form and is denoted as I. If we change the

basis for the tangent space to (u′, v′), the transformation is directly written as du

and dv as

du =
∂u

∂u′
du′ +

∂u

∂v′
dv′

dv =
∂v

∂u′
du′ +

∂v

∂v′
dv′

The first fundamental form takes on the following form

I = Edu2 + 2Fdudv +Gdv2 = E ′du′
2

+ 2F ′du′dv′ +G′dv′
2

.

The Jacobian matrix is

J =

 ∂u
∂u′

∂v
∂u′

∂u
∂v′

∂v
∂v′
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In matrix form, we can write the followingE ′ F ′

F ′ G′

 = J

E F

F G

 JT .

Let g be the first fundamental form. If we have two tangent vectors in the tangent

plane of our surface S

v1 = rudu+ rvdv

v2 = ruδu+ rvδv

we can compute the angle θ between them as

cos−1 < v1, v2 > g
√
< v1, v1 > g

√
< v2, v2 > g

For each tangent plane on our surface S, we can compute a vector that is

perpendicular to it. This vector is call the normal vector and denoted n. The set of

all normals on our surface is also another surface, n(u, v). This parametric surface

would have the following form for its tangent vector, dn = nudu+ nvdv. The

tangent vector for our parametric surface r(u, v) from before is dr = rudu+ rvdv.

The second fundamental form is defined as

II = − < dr, dn >

. Since the normal is perpendicular to the tangent plane, we have

< ru, n >= 0, < rv, n >= 0. Partial differentiation of the equations gives

< ruu, n > + < ru, nu >= 0, < ruv, n > + < ru, nv >= 0,

< rvu, n > + < rv, nu >= 0, < rvv, n > + < rv, nv >= 0.
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Again we use another set of letters L, M , and N for the inner products to get the

following,

L =< ruu, n >= − < ru, nu >,

M =< ruv, n >= − < ru, nv >= − < rv, nu >,

N =< rvv, n >= − < rv, nv > .

Substituting and rewriting in matrix form, we have

II =

(
du dv

)L(u, v) M(u, v)

M(u, v) N(u, v)


du

dv


Similar to the first fundamental form for parameter transformation (u′, v′), we have

the following L′ M ′

M ′ N ′

 = J

L M

M N

 JT .

All normal vectors of points on a surface can be mapped to the unit sphere.

This mapping is the Gauss map G : S→ S2, r(u, v)→ n(u, v). The derivative map

of the Gauss map is called the Weingarten map. Let TpS denote the tangent space

of surface S at point p and Tn(p)S2 denote the tangent space of unit sphere surface

S2 at point p, the Weingarten map is written as

W : TpS→ Tn(p)S2, dr → dn

If you notice that the TpS and Tn(p)S2 are parallel to each other in Euclidian R3,

then the Weingarten map is just mapping a plane to another plane. To find the

coefficients matrix a b

c d
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for the transformation, set up the equations using {ru, rv} as the basis

W(ru) = −nu = aru + brv

W(rv) = −nv = cru + drv

In matrix form, the equation is

−

nu
nv

(ru rv

)
=

a b

c d


ru
rv

(ru rv

)

Using the first and second fundamental form definitions, we get the followinga b

c d

 =

L M

M N


E F

F G


−1

=
1

EG− F 2

LG−MF ME − LF

MG−NF NE −MF


Solving for the roots of

k2 − LG− 2MF +NE

EG− F 2
k +

LN −M2

EG− F 2
= 0

gives us the eigen values. The eigen values give us the principal curvatures and the

eigen vectors give us the principal directions. Principal curvatures are usually

denoted as k1 and k2. The mean curvature, normally denoted as H, is

H = 1
2
(k1 + k2). The Gaussian curvature is the product of the principal curvatures,

K = k1k2. Mean curvature and Gaussian curvature using first and second

fundamental form definitions are

H =
1

2

LG− 2MF +NE

EG− F 2

K =
LN −M2

EG− F 2

The Jacobian of the Gauss map is K. It is the ratio of the surface region area to the

corresponding Gauss map image. On the surface, ru ∧ rv is the area element.
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Similarly on the Gauss unit sphere, nu ∧ nv is the area element. Therefore we can

also write K as

K =
nu ∧ nv
ru ∧ rv

Normal curvature of a surface along a tangent vector v is defined to be the

curvature of the curve γ at a point p where the curve γ is at the intersection of the

surface with a plane determined by the tangent vector v ∈ TpS and the normal

vector n. See fig. 2.19 for a general depiction of the planes and the curve γ with

respect to n and v.

Figure 2.19: Normal Curvature at Curve γ.

The equation for normal curvature along v is

kn(v) =<W(v), v >= k1cos
2θ + k2sin

2θ

Next we discuss the construction of an orthonormal moveable frame. We

begin with our surface S with parametric representation r(u, v). We arbitrarily

choose two vector fields and denote them e1 and e2. The chosen vector fields have to

satisfy the following properties < e1, e1 >=< e2, e2 >= 1, < e1, e2 >= 0, and smooth

with respect to (u, v). The unit normal field of surface S is e3 = e1 ∧ e2. Together
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r, e1, e2, e3 form the orthonormal frame field of the surface. Let ω1 and ω2 be

differential 1-forms ω1(v) =< e1, v > and ω2(v) =< e2, v >, then we can write the

equation for the tangent vector dr = rudu+ rvdv using vector fields as

dr = ω1e1 + ω2e2. The first fundamental form written using vector fields is

I =< dr, dr >= ω1ω1 + ω2ω2

The second fundamental form written using vector fields is

II = − < dr, de3 >= −ω1ω31 − ω2ω32 = ω1ω13 + ω2ω23

The differential of e3 above is de3 = ω31e1 + ω32e2 + ω33e3 where

ω3i =< de3, ej >, j ∈ {1, 2, 3}. The following definition is useful for simplification

when working with differential 1-forms

< dei, ej > + < ei, dej >= 0 where i, j ∈ {1, 2, 3}

This implies the following

ωij + ωji = 0, ωii = 0

The above equations for dr and dei together is call the motion equation of the

orthonormal frame of the surface. They are written as follows

dr = ω1e1 + ω2e2
de1

de2

de3

 =


0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0



e1

e2

e3


The first and second fundamental forms are

I = ω1ω1 + ω2ω2

II = ω1ω13 + ω2ω23
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Now suppose that we construct another orthonormal frame field for our surface. We

denote the vector fields for this new orthonormal frame field as e′1, e
′
2, e
′
3. We restrict

e′3 = e3 and call the angle between e1 and e′1 as θ(u, v).

e′1 = cosθe1 + sinθe2

e′2 = −sinθe1 + cosθe2

If we assume ω′ij where i, j = {1, 2, 3} to be the coefficients of the motion equation

for our new orthonormal frame defined by e′1, e
′
2, e
′
3, then the following results can be

directly obtained ω′1
ω′2

 =

 cosθ sinθ

−sinθ cosθ


ω1

ω2


ω′31

ω′32

 =

 cosθ sinθ

−sinθ cosθ


ω31

ω32


The following is therefore true

ω′1ω
′
1 + ω′2ω

′
2 = ω1ω1 + ω2ω2

ω′1ω
′
31 + ω′2ω

′
32 = ω1ω31 + ω2ω32

The results above show that the first and second fundamental form are independent

of what we choose as the orthonormal frame. If we write ω13 and ω23 as a linear

combination of ω1 and ω2, we get the followingω13

ω23

 =

h11 h12

h21 h22


ω1

ω2


with matrix

H =

h11 h12

h21 h22
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representing the Weingarten mapping

dr = ω1e1 + ω2e2 → −de3 = ω31e1 + ω32e2

The principal curvature, Gaussian curvature, and mean curvature can all be

computed from matrix H.

The orthonormal frame and the motion equations together defines a surface.

If we choose an orthonormal frame as parameterization r and vector fields e1, e2, e3,

then the motion equations are

dr = ω1e1 + ω2e2

dei =
3∑
j=1

ωijej, ωij + ωji = 0, i = 1, 2, 3

We can get the following equations from using the fact that d2r = 0,

ω1 ∧ ω13 + ω2 ∧ ω23 = 0

and also

(h12 − h21)ω1 ∧ ω2 = 0

We also get this set of equations

dω1 = ω2 ∧ ω21

dω2 = ω1 ∧ ω12

dω12 = ω13 ∧ ω32

dω13 = ω12 ∧ ω23

dω23 = ω21 ∧ ω13

Equation dω12 = ω13 ∧ ω32 is the Gauss equation and can be derived by using

d2ei = 0 for i = 1, 2. Equations dω13 = ω12 ∧ ω23 and dω23 = ω21 ∧ ω13 are the

Codazzi equations. Previously we discussed the H matrix when talking about
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representing ω13 and ω23 as a linear combination of ω1 and ω2. Using

ω13 = h11ω1 + h12ω2 and ω23 = h21ω1 + h22ω2, we get the following

dω12 = −(h11h22 − h2
12)ω1 ∧ ω2 = −Kω1 ∧ ω2

2.3.2 Exterior Differential Calculus

Exterior differential calculus is not completely different from regular differential and

integral calculus. The manifold in exterior differential calculus is like the tangent

planes in regular calculus. If you take all the tangent planes of a surface and placed

them side by side you would have what is called a differential atlas in exterior

differential calculus. Similarly other concepts like tangent, differential,

cross-product, integral, gradient, and Stokes theorem all have a corresponding

exterior calculus version of how to compute them. Tangent, differential, and integral

do not have different names. The cross-product is call the wedge product. The

gradient used in Stokes theorem is call the exterior derivative. The differential and

integral forms of exterior calculus are better suited for computation on discretized

meshes. Discretized meshes are more practical for real world application where data

sampling is not infinite.

A triangle mesh is a simplicial complex. It is composed of simplexes: points,

edges, and faces glued together. Functions defined on vertices, halfedges, and

oriented faces are called simplicial 0-form, 1-form, and 2-form respectively. Let v0,

v1, and v2 be the vertices of an oriented face. The differential of a 0-form is a 1-form.

df([v0, v1]) = f(v1)− f(v0)

The differential of a 1-form is a 2-form

dω([v0, v1, v2]) = ω([v0, v1]) + ω([v1, v2]) + ω([v2, v0])

This type of computation is easy to compute and can be used on discretized

surfaces. Integration for exterior calculus is also straightforward. The integral of a
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2-form will yield a 1-form and the integral of a 1-form will yield a 0-form. So the

result of integrating a connected triangle patch (2-form) will result in a closed loop

(1-form) and the integration of a loop will result in a vertex (0-form). This is like

Green’s and Stoke’s theorem for line and flux integrals.

2.3.3 Algebraic Topology

The concept of homotopy, homology, and cohomology groups from algebraic

topology will be discussed in this section. They are directly used by the harmonic

holomorphic 1-form conformal mapping algorithm used in this thesis. For these

concepts, only the theorem results and their application to the study of surfaces are

presented. The rigorous definitions are left up to the reader to explore on their own.

Homotopy and homology groups are geometric and can be easily depicted using

texture mapping on surfaces. Cohomology groups are not geometric like homotopy

and homology groups but are very useful for studying topology. They are difficult to

explain but their computation is simpler than the previous groups.

Before discussing homotopy, homology, and cohomology groups, some

concepts of topological surfaces will be reviewed here. The retinotopic data

collected for this thesis are projected onto a closed surface mesh representation of

the brain for visualization in three dimensions. The brain mesh is a topological

surface. Three dimensional surfaces in topology are treated like they are made of an

elastic rubber material. They can be stretched or compressed but not cut. These

two permitted transformations allow us to change the shape of the surface but not

its topological classification. Topological surfaces are classified according to their

genus number. This number tells us the number of handles a surface has. A sphere

has no handles and so is classified as a genus zero surface. A torus or donut shaped

surface has one handle and is therefore classified as a genus one surface. Higher

genus surfaces can be constructed by joining more than one donut together. Two
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donuts are joined together by removing a hole from each and joining them at this

location. Surfaces joined this way is call a connected sum. A connected sum of n

tori is a genus-n surface. All genus zero surfaces can be topologically deformed to a

sphere. Similarly all genus one surfaces can be deformed to a torus. However it is

not possible to deform a sphere into a donut without cutting it open. This

observation shows us that genus is a topological invariant property. Handles used in

genus classification are not boundaries. If you were to travel along the surface of a

donut, you will not notice the handle. Travelling along a surface restricts you to a

two dimensional world. You can no longer see the handle like you can in three

dimensions. A boundary on a surface is a hole cut out of the surface. Cutting a hole

in the surface allows you to see the inside of it. If you travel along a surface with a

boundary, you will be able to identify the boundary when you approach it. After

you reach a boundary, you can follow it and restrict yourself to one dimension of

freedom. Surfaces without boundaries are closed surfaces while those with

boundaries are open surfaces. A sphere and a donut are examples of closed surfaces.

A disk is an example of a open surface. It is not possible to deform a closed surface

to an open surface without cutting. This is why boundary is also another

topological invariant property. A spherical surface has an inside and an outside. We

know this rather intuitively. Some surfaces however are not orientable like the

Möbius strip. We cannot deform a surface which is orientable and deform it so that

it is non-orientable. As a result, orientability is another topological invarian

property. These topological invariants are the same for topologically equivalent

surfaces. All closed connected surfaces are topologically equivalent to only three

types of closed surfaces. This is summed up in the classification theorem for

surfaces from Computational Conformal Geometry [12] :

Theorem 2.3 (Classification Theorem for Surfaces).
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Any closed connected surface is homeomorphic to exactly one of the following
surfaces: a sphere, a finite connected sum of tori, or a sphere with a finite
number of disjoint discs removed and with crosscaps glued in their place. The
sphere and connected sums of tori are orientable surfaces, whereas surfaces
with crosscaps are unorientable. [12]

Homotopy is used to describe the existence of a set of continuous mappings in

between two continuous mappings. A way to think about this is the morphing of

two equivalent topological surfaces. A football for example can be deformed into a

sphere since they are both closed genus zero surfaces. We write the mapping as

f0 : F → S. An intermediate shape in between the deformation could also be

deformed into a sphere. We write the mapping of this intermediate shape to a

sphere as f1 : I → S. Between the football and the intermediate shape is a set of

shapes that could also map to the sphere. This set of shapes and their mapping to a

sphere exists so the mappings f0 and f1 are considered homotopic to each other.

Homotopy equivalence is when two topological spaces can be mapped to each other

in both direction. Using the football to sphere example, the definition for their

homotopy equivalence is that there must exist continuous maps f : F → S and

g : S → F such that

g ◦ f ∼= idF : F → F

f ◦ g ∼= idS : S → S

Two closed loops on a surface are homotopic to each other if we can deform one to

the other with the restriction that the loops cannot leave the surface. The set of

homotopic closed loops that start and end at the same point p form a homotopy

group. This is important for identifying the set of loops on a surface for cutting.

Being able to identify the set of homotopic loops is useful for finding where to slice

the mesh so that we can unfold it to a plane. The harmonic and holomorphic 1-form

algorithm that we use in this thesis requires an open cut mesh as its input.
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The path on a surface mesh that when cutting along it opens up the surface

mesh and creates a simply connected patch is form from what is called the canonical

fundamental group basis. The definition from Computational Conformal

Geometry [12] is :

Definition 2.17 (Canonical Fundamental Group Basis).
A fundamental group basis {a1, b1, a2, b2, . . . , ag, bg} is canonical if
1. ai and bi intersect at the same point p.
2. ai and aj, bi and bj only touch at p. [12]

Fig. 2.20 gives a picture of what the a canonical fundamental group basis looks like

on a genus two surface. The point in the middle of the double torus where all the

line goes through is the point p mentioned in the definition above.

Figure 2.20: Canonical Fundamental Group Basis

The brain meshes processed in this thesis are triangulated meshes. The

original brain is a smooth and continuous surface whereas our data is only a discrete

approximated representation of the imaging data. A triangular mesh is a collection

of triangular simplexes glued together. A triangle simplex is a standard simplex

because it is the minimal convex set for its vertices. A triangle simplex has

orientation determined by the order of its vertices. Topological concepts like genus,

boundary, and orientability can all be detected using straightforward algorithms for

topological surfaces that have been approximated using a triangular mesh. For a
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triangular mesh surface, it is useful to extract groups of connected edges or triangle

faces. A curve on a mesh surface is a set of consecutive oriented edges. A patch on a

mesh surface is a set of adjacent oriented faces. Using chain group language, a curve

on a mesh is a 1-chain and a patch is a 2-chain. Closed 1-chain loops are those that

do not have any boundary vertices while open 1-chain loops are those with boundary

vertices. An exact 1-chain loop is a closed 1-chain loop that also encloses a patch. A

q dimensional homology group H of a chain complex M is the quotient group of the

q dimensional closed chain C group over the q dimensional boundary chain group B.

Hq(M) =
Cq(M)

Bq(M)

The cohomology group is defined also as a q dimensional quotient group where the

closed chain group and boundary chain group are substituted with cochain group

and coboundary group respectively. The cochain and coboundary group are easier

to compute than regular closed chain and boundary group. It is used when

computing harmonic and holomorphic 1-form for one of the flattening algorithms

looked at in this thesis.

2.3.4 Half-Edge Data Structure

The applications of these algorithms relies on an understanding of topology and its

discrete representation for computer processing. This section provides a brief

description of the triangle mesh discrete representation. A triangle mesh is a

simplicial complex. Simplexes found in a triangle mesh are points, lines, and

triangle. The corresponding names for them in a triangle mesh data structure are

vertices, edges, and faces. There are many different ways to store the triangle mesh

as a data structure in a computer. One of them is the half-edge data structure. The

initial setup of the structure is a little more complex than some of the simpler ones.

However the half-edge structure provides for a very efficient way to search for

44



adjacent edges and vertices. Adjacent searching for edges and vertices is used

extensively in many topological algorithms. Fig. 2.21 shows the various pointers for

the half edge data structure.

Figure 2.21: Half Edge Data Structure
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Chapter 3

RESULTS

The first part of the results section is a table summary of the flattening algorithms.

Tab. 3.1 lists the pros and cons of the three algorithms. Next are tables listing the

performance of these algorithms. The run time for each algorithm and the mesh

properties of the test data are listed in tab. 3.2, tab. 3.4, and tab. 3.6. The accuracy

of each algorithm was checked using the Beltrami coefficient and are shown using

histogram plots following the tables. The histogram plots show how conformal the

deformed shapes are compared to the original shapes. The smaller the standard

deviation of the histogram plot the better the conformal mapping. The second part

of the results section focuses on showing data from actual retinotopic data

processing. Flattened V1 region for five test data sets are shown along with the

histogram plot comparing how the the discrete Ricci flow method compared with

the non-linear heat diffusion method. The final set of histograms compares the

recovered parameterization mesh versus the actual V1 region mesh for a selected

few data sets that actually show valid results.
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Algorithm Surface Types Pros and Cons

Non-Linear Heat Dif-

fusion Spherical

Sphere Straightforware implemen-

tation. Long run time.

Mö bius computations re-

quired. Convergence not al-

ways guaranteed.

Harmonic and Holo-

morphic 1-form

Sphere, Closed or

Open Genus Zero

Surfaces, High Genus

Surfaces

Fastest. Stable. Linear

solver required. Need to

slice mesh and find bound-

aries. Minimal convergence

issues.

Directe Ricci Flow Sphere, Closed or

Open Genus Zero

Surfaces, High Genus

Surfaces

Fast and Stable. Linear

solver required. Minimal

convergence issues.

Table 3.1: Algorithm Results.

Mesh Time (Average 3 runs) Conformal

Brain 20 - 30 minutes Histogram A.1a and A.1b

Brain Subdivision 1 4 - 5 hours Histogram A.2a and A.2b

Brain Subdivision 2 40 + hours No Data

Table 3.2: Non-Linear Heat Diffusion Algorithm Results.

Mesh Vertices Faces Edges

Brain 2502 5000 7500

Brain Subdivision 1 10002 20000 30000

Brain Subdivision 2 40002 80000 120000

Table 3.3: Non-Linear Heat Diffusion Test Data.

47



Mesh Time (Average 3 runs) Conformal

Face 9 - 10 seconds N/A

Face Subdivision 1 40 - 50 seconds N/A

Face Subdivision 2 2 - 3 minutes N/A

Table 3.4: Harmonic and Holomorphic 1-form Algorithm Results.

Mesh Vertices Faces Edges

Face 5101 9999 15100

Face Subdivision 1 20201 39996 60197

Face Subdivision 2 80398 159984 240382

Table 3.5: Harmonic and Holomorphic 1-form Test Data.

Mesh Time (Average 3 runs) Conformal

Face 1 - 2 minutes Histogram B.1a and B.1b

Face Subdivision 1 3 - 4 minutes Histogram B.2a and B.2b

Face Subdivision 2 14 - 15 minutes Histogram B.3a and B.3b

Table 3.6: Discrete Ricci Flow Algorithm Results.
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Mesh Vertices Faces Edges

Face 5087 9961 15048

Face Subdivision 1 20135 39844 59979

Face Subdivision 2 80114 159376 239490

Table 3.7: Discrete Ricci Flow Test Data.

Subject Time Conformal

ABS1VFM Left 58 hours Histogram C.1a and

C.1b

BBCS3PP Right Failed N/A Failed

LLS1PP Left 8 hours Histogram C.2a and

C.2b

LLS1PP Right 60 + hours N/A Stopped after 60

hours

SADS3VFM Left 53 hours Histogram C.3a and

C.3b

SADS3VFM Right 18 hours Histogram C.4a and

C.4b

Table 3.8: Retinotopic Non-Linear Heat Diffusion Algorithm Results.
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Subject Time Conformal

ABS1VFM Left Failed N/A

BBCS3PP Right 3 min Histogram D.1a and

D.1b

LLS1PP Left Failed N/A

LLS1PP Right 4 min Histogram D.2a and

D.2b

SADS3VFM Left 3 min Histogram D.3a and

D.3b

SADS3VFM Right 2 min Histogram D.4a and

D.4b

Table 3.9: Retinotopic Discrete Ricci Flow Algorithm Results.
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Figure 3.1: Histogram A.1a: Sphere Test Non-Linear Heat Diffusion Histogram
(Complex). Vertices Count = 2502. Mean = -0.0064
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Figure 3.2: Histogram A.1b: Sphere Test Non-Linear Heat Diffusion Histogram
(Real). Vertices Count = 2502. Mean = 0.0014
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Figure 3.3: Histogram A.2a: Sphere Test Non-Linear Heat Diffusion Histogram
(Complex). Vertices Count = 10002. Mean = 0.0027
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Figure 3.4: Histogram A.2b: Sphere Test Non-Linear Heat Diffusion Histogram
(Real). Vertices Count = 10002. Mean = 0.0068
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Figure 3.5: Histogram B.1a: Face Test Discrete Ricci Flow Histogram (Complex).
Vertices Count = 5087. Mean = 0.0345
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Figure 3.6: Histogram B.1b: Face Test Discrete Ricci Flow Histogram (Real). Ver-
tices Count = 5087. Mean = -0.0322
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Figure 3.7: Histogram B.2a: Face Test Discrete Ricci Flow Histogram (Complex).
Vertices Count = 20135. Mean = 0.0091
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Figure 3.8: Histogram B.2b: Face Test Discrete Ricci Flow Histogram (Real). Ver-
tices Count = 20135. Mean = -0.0010
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Figure 3.9: Histogram B.3a: Face Test Discrete Ricci Flow Histogram (Complex).
Vertices Count = 80114. Mean = 0.0083
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Figure 3.10: Histogram B.3b: Face Test Discrete Ricci Flow Histogram (Real).
Vertices Count = 80114. Mean = -0.0094
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Figure 3.11: Histogram C.1a: AABS1VFM Left Non-Linear Heat Diffusion His-
togram (Complex). Vertices Count = 22817. Mean = 0.0053
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Figure 3.12: Histogram C.1b: AABS1VFM Left Non-Linear Heat Diffusion His-
togram (Real). Vertices Count = 22817. Mean = -0.0229
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Figure 3.13: Histogram C.2a: LLS1PP Left 3deg Non-Linear Heat Diffusion His-
togram (Complex). Vertices Count = 25586. Mean = 0.0030
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Figure 3.14: Histogram C.2b: LLS1PP Left 3deg Non-Linear Heat Diffusion His-
togram (Real). Vertices Count = 25586. Mean = -0.0222
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Figure 3.15: Histogram C.3a: SADS3VFM Leftt 3deg Non-Linear Heat Diffusion
Histogram (Complex). Vertices Count = 16523. Mean = 0.0024
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Figure 3.16: Histogram C.3b: SADS3VFM Leftt 3deg Non-Linear Heat Diffusion
Histogram (Real). Vertices Count = 16523. Mean = -0.0159
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Figure 3.17: Histogram C.4a: SADS3VFM Right 3deg Non-Linear Heat Diffusion
Histogram (Complex). Vertices Count = 13525. Mean = -0.0016
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Figure 3.18: Histogram C.4b: SADS3VFM Right 3deg Non-Linear Heat Diffusion
Histogram (Real). Vertices Count = 13525. Mean = -0.0131
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Figure 3.19: Histogram D.1a: BBCS3PP Right 3deg Discrete Ricci Flow Histogram
(Complex). Vertices Count = 16322. Mean = 0.0344
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Figure 3.20: Histogram D.1b: BBCS3PP Right 3deg Discrete Ricci Flow Histogram
(Real). Vertices Count = 16322. Mean = -0.0406

70



Figure 3.21: Histogram D.2a: LLS1PP Right 3deg Discrete Ricci Flow Histogram
(Complex). Vertices Count = 21075. Mean = 0.0291
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Figure 3.22: Histogram D.2b: LLS1PP Right 3deg Discrete Ricci Flow Histogram
(Real). Vertices Count = 21075. Mean = -0.0386
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Figure 3.23: Histogram D.3a: SADS3VFM Leftt 3deg Discrete Ricci Flow His-
togram (Complex). Vertices Count = 16523. Mean = 0.0320
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Figure 3.24: Histogram D.3b: SADS3VFM Leftt 3deg Discrete Ricci Flow His-
togram (Real). Vertices Count = 16523. Mean = -0.0375

74



Figure 3.25: Histogram D.4a: SADS3VFM Right 3deg Discrete Ricci Flow His-
togram (Complex). Vertices Count = 13525. Mean = 0.0267
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Figure 3.26: Histogram D.4b: SADS3VFM Right 3deg Discrete Ricci Flow His-
togram (Real). Vertices Count = 13525. Mean = -0.0353
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Figure 3.27: Histogram E.1a: LLS1PP Left 3deg Parameterization Histogram V1
(Complex). Vertices Count = 1238. Mean = 0.0587
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Figure 3.28: Histogram E.1b: LLS1PP Left 3deg Parameterization Histogram V1
(Real). Vertices Count = 1238. Mean = 0.2413
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Figure 3.29: Histogram F.1a: SADS3VFM Left 3deg Parameterization Histogram
V1 (Complex). Vertices Count = 887. Mean = 0.0358
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Figure 3.30: Histogram F.1b: SADS3VFM Left 3deg Parameterization Histogram
V1 (Real). Vertices Count = 887. Mean = 0.1983
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Chapter 4

DISCUSSION

The run times collected for each of the three algorithms implemented showed a wide

gap between the linear solver based algorithms and the gradient descent method. It

was expected that the convergence times for the non-linear heat diffusion method to

be slow but not as slow as was observed. This is a really big drawback for this

method since its implementation is relatively straight forward. However it did

manage to to converge on a few of the retinotopic data that the discrete Ricci flow

method could not. The harmonic/holomorphic 1-form flattening to a disk was not

successful and therefore was not used on retinotopic data. There were issues with

the output u, v coordinates being too small or too large for the mesh viewer

program to handle. The speed of the harmonic/holomorphic 1-form is very fast

however. It is a direct computation rather than in iterative convergence algorithm

so it can be solved much more quickly than the discrete Ricci flow method.

4.1 Test Data

The algorithms all performed well using their respective test data. The non-linear

heat diffusion method convergence time went into days by the time the mesh was

subdivided a second time. As the amount of vertices increased the amount of time

required for convergence grew by a factor of about eight. Ricci flow and

harmonic/holomorphic 1-from grew by a factor of around three to four. This is

about the same factor that the vertices grew by using subdivision.

4.2 Retinotopic Data

Flattening retinotopic data results for Ricci flow and heat diffusion had significantly

different convergence rates but the conformal factor was similar. Both algorithms

had Beltrami coefficients plots that were close to zero for all retinotopic data that

each algorithm was able to flatten. Ricci flow was able to achieve a mapping for
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some cases when non-linear heat diffusion failed to finish. On the other hand, some

subject data such as ABS1VFM left retinotopic data could not be flatten using the

Ricci flow method. No matter the sizes of the punctured hole tried, the algorithm

would not converge. This needs to be further explored since the non-linear heat

diffusion method was able to successfully converge and flatten this mesh.

4.3 Beltrami Coefficient analysis

Two subjects were selected to test the parameterization retrieval method using the

color map. The resulting histogram plots of the u, v meshes versus their conformal

flattened versions reveal that the shape of the histograms are very close to each

other. More analysis of the shape and the distribution of these histograms across

subjects will be useful to determine if the human visual areas can be characterized

using this model. One of the problem that has to be addressed is the difference in

size of V1 across subjects. Subject SADS3VFM has only 887 vertices in the left V1

while subject LLS1PP has 1238 vertices.
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Chapter 5

CONCLUSION

This thesis explored using conformal geometry and Beltrami coefficient for

characterizing human retinotopic mapping. The problem was to find a function to

describe the mapping between the human visual field and the primary cortical

visual areas. The approach was to treat the problem as a shape deformation

matching problem. Matching problems in two-dimensions are simpler than

three-dimensional ones. Therefore, computational conformal geometry flattening

algorithms were implemented and evaluated. These algorithms were used to flatten

test data and retinotopic data. Beltrami coefficients were computed and plotted as

histograms between the visual field mesh and flattened cortical visual areas mesh for

two initial test subject data. Comparing the flattened visual cortical areas of the

brain across two initial test subjects revealed similar histogram shapes. This finding

demonstrates that flattening the visual cortical mesh and computing the Beltrami

coefficient gives a valid quantitative way to characterize retinotopic mapping data.

5.1 Future Work

Quasi-conformal mapping [11] [1] [20] will be looked at. Retinotopic organization

varies in cones receptor density from high to low when moving away from the

central foveal region. More visual cortical neurons are devoted to the foveal region

compared the other regions. Objects appearing in our peripheral vision do not

appear sharp as when they are focussed in our foveal region. As a result, it is

hypothesized that conformal mapping equates to clarity in our visions. We are able

to identify what angle is between two lines if we are looking at it directly instead of

indirectly. Foveal vision may explain why the histograms were more quasiconformal

than conformal.

83



REFERENCES

[1] Ahlfors, L. V., Lectures on quasiconformal mappings, vol. 38 (American
Mathematical Society, 2006), second edition edn.

[2] Balasubramanian, M., J. Polimeni and E. Schwartz, “Exact geodesics and
shortest paths on polyhedral surfaces”, IEEE Trans. Patt. Anal. Mach. Intell.
31, 6, 1006–1016 (2009).

[3] Balasubramanian, M., J. Polimeni and E. L. Schwartz, “The V1 -V2-V3
complex: quasiconformal dipole maps in primate striate and extra-striate
cortex”, Neural Netw 15, 1157–1163 (2002).

[4] Balasubramanian, M., J. R. Polimeni and E. L. Schwartz, “Near-isometric
flattening of brain surfaces”, Neuroimage 51, 2, 694–703 (2010).

[5] Balasubramanian, M., J. R. Polimeni and E. L. Schwartz, “Near-isometric
flattening of brain surfaces”, Neuroimage 51, 694–703 (2010).

[6] Botsch, M., L. Kobbelt, M. Pauly, P. Alliez and B. Levy, Polygon Mesh
Processing (A K Peters, 2010).

[7] DeYoe, E. A., G. J. Carman, P. Bandettini, S. Glickman, J. Wieser, R. Cox,
D. Miller and J. Neitz, “Mapping striate and extrastriate visual areas in human
cerebral cortex”, Proc. Natl. Acad. Sci. U.S.A. 93, 2382–2386 (1996).

[8] Engel, S. A., G. H. Glover and B. A. Wandell, “Retinotopic organization in
human visual cortex and the spatial precision of functional MRI”, Cereb.
Cortex 7, 2, 181–192 (1997).

[9] Engel, S. A., G. H. Glover and B. A. Wandell, “Retinotopic organization in
human visual cortex and the spatial precision of functional MRI”, Cereb.
Cortex 7, 181–192 (1997).

[10] Engel, S. A., D. E. Rumelhart, B. A. Wandell, A. T. Lee, G. H. Glover, E. J.
Chichilnisky and M. N. Shadlen, “fMRI of human visual cortex”, Nature 369,
525 (1994).

[11] Gardiner, F. P. and N. Lakic, Quasiconformal Teichmüller Theory, vol. 76
(American Mathematical Society, 2000).

[12] Gu, X. D. and S. T. Yau, Computational Conformal Geometry (International
Press, 2008).

[13] Hansen, K. A., S. V. David and J. L. Gallant, “Parametric reverse correlation
reveals spatial linearity of retinotopic human V1 BOLD response”, Neuroimage
23, 233–241 (2004).

[14] Huettel, S. A., A. W. Song and G. McCarthy, Functional Magnetic Resonance
Imaging (Sinauer, 2009), 2 edn.

84



[15] Hurdal, M. K. and K. Stephenson, “Cortical cartography using the discrete
conformal approach of circle packings”, NeuroImage 23, S119–S128 (2004).

[16] Hurdal, M. K. and K. Stephenson, “Discrete conformal methods for cortical
brain flattening”, NeuroImage 45, S86–S98 (2009).

[17] Ju, L., M. K. Hurdal, J. Stern, K. Rehm, K. Schaper and D. Rottenberg,
“Quantitative evaluation of three cortical surface flattening methods”,
Neuroimage 28, 4, 869–880 (2005).

[18] Kruskal, J. B., “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis”, Psychometrika 29, 1, 1–27, URL
http://www.springerlink.com/index/10.1007/BF02289565 (1964).

[19] Kruskal, J. B., “Nonmetric multidimensional scaling: A numerical method”,
Psychometrika 29, 2, 115–129, URL
http://ideas.repec.org/a/spr/psycho/v29y1964i2p115-129.html (1964).

[20] Lui, L. M., T. W. Wong, P. M. Thompson, T. Chan, X. Gu and S.-T. Yau,
“Shape-based diffeomorphic registration on hippocampal surfaces using
Beltrami holomorphic flow”, Med Image Comput Comput Assist Interv 13,
323–330 (2010).

[21] Polimeni, J. R., M. Balasubramanian and E. L. Schwartz, “Multi-area
visuotopic map complexes in macaque striate and extra-striate cortex”, Vision
Res. 46, 3336–3359 (2006).

[22] Qiu, A., B. J. Rosenau, A. S. Greenberg, M. K. Hurdal, P. Barta, S. Yantis and
M. I. Miller, “Estimating linear cortical magnification in human primary visual
cortex via dynamic programming”, Neuroimage 31, 1, 125–138 (2006).

[23] Schira, M. M., C. W. Tyler, M. Breakspear and B. Spehar, “The foveal
confluence in human visual cortex”, J. Neurosci. 29, 9050–9058 (2009).

[24] Schira, M. M., A. R. Wade and C. W. Tyler, “Two-dimensional mapping of the
central and parafoveal visual field to human visual cortex”, J. Neurophysiol.
97, 6, 4284–4295 (2007).

[25] Schneider, W., D. C. Noll and J. D. Cohen, “Functional topographic mapping
of the cortical ribbon in human vision with conventional MRI scanners”,
Nature 365, 150–153 (1993).

[26] Schwartz, E. L., “The development of specific visual connections in the monkey
and the goldfish: outline of a geometric theory of receptotopic structure”, J.
Theor. Biol. 69, 655–683 (1977).

[27] Schwartz, E. L., “Cortical mapping and perceptual invariance: a reply to
Cavanagh”, Vision Res. 23, 831–835 (1983).

85



[28] Schwartz, E. L., A. Shaw and E. Wolfson, “A numerical solution to the
generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces”,
IEEE Trans. Patt. Anal. Mach. Intell. 11, 9, 1005–1008 (1989).

[29] Sereno, M. I., A. M. Dale, J. B. Reppas, K. K. Kwong, J. W. Belliveau, T. J.
Brady, B. R. Rosen and R. B. Tootell, “Borders of multiple visual areas in
humans revealed by functional magnetic resonance imaging”, Science 268,
889–893 (1995).

[30] Shepard, R., “The analysis of proximities: Multidimensional scaling with an
unknown distance function. ii”, Psychometrika 27, 219–246, URL
http://dx.doi.org/10.1007/BF02289621, 10.1007/BF02289621 (1962).

[31] Tootell, R. B., J. B. Reppas, K. K. Kwong, R. Malach, R. T. Born, T. J.
Brady, B. R. Rosen and J. W. Belliveau, “Functional analysis of human MT
and related visual cortical areas using magnetic resonance imaging”, J.
Neurosci. 15, 3215–3230 (1995).

[32] Torgerson, W., “Multidimensional scaling: I. theory and method”,
Psychometrika 17, 4, 401–419, URL
http://ideas.repec.org/a/spr/psycho/v17y1952i4p401-419.html (1952).

[33] Vanni, S., L. Henriksson and A. C. James, “Multifocal fMRI mapping of visual
cortical areas”, Neuroimage 27, 95–105 (2005).

[34] Wandell, B. A., “Computational neuroimaging of human visual cortex”, Annu.
Rev. Neurosci. 22, 145–173 (1999).

[35] Wandell, B. A. and J. Winawer, “Imaging retinotopic maps in the human
brain”, Vision Res. 51, 718–737 (2011).

[36] Wang, Y., W. Dai, Y.-Y. Chou, X. Gu, T. Chan, A. Toga and P. Thompson,
“Studying brain morphometry using conformal equivalence class”, in
“Computer Vision, 2009 IEEE 12th International Conference on”, pp.
2365–2372 (2009).

[37] Wang, Y., X. Gu, T. F. Chan, P. M. Thompson and S.-T. Yau, “Intrinsic brain
surface conformal mapping using a variational method”, in “Proc. SPIE
Medical Imaging”, pp. 241–252 (2004).

[38] Wang, Y., L. M. Lui, X. Gu, K. M. Hayashi, T. F. Chan, A. W. Toga, P. M.
Thompson and S.-T. Yau, “Brain surface conformal parameterization using
Riemann surface structure”, IEEE Trans. Med. Imag. 26, 6, 853–865 (2007).

[39] Wang, Y., J. Shi, X. Yin, X. Gu, T. Chan, S.-T. Yau, A. Toga and
P. Thompson, “Brain surface conformal parameterization with the Ricci flow”,
IEEE Trans Med Imaging In Press (2011).

[40] Wang, Y., L. Yuan, J. Shi, A. Greve, J. Ye, A. W. Toga, A. L. Reiss and P. M.
Thompson, “Applying tensor-based morphometry to parametric surfaces can
improve MRI-based disease diagnosis”, Neuroimage 74, 209–230 (2013).

86



[41] WHO, W., “Medical imaging”, URL
http://www.who.int/diagnostic imaging/en/ (2013).

[42] Xianfeng, D. G., “Computational conformal geometry”, URL http:
//www.cs.sunysb.edu/∼zengwei/nsf poster/nsf poster.html#APPLICATIONS
(2010).

87



APPENDIX A

PROCESSING DETAILS AND DATA

R G B H S V

0.87451 0.07451 0.07451 0 0.914798 0.87451

0.92549 0.12549 0.12549 0 0.864407 0.92549

0.87451 0.11373 0.07451 2.9415 0.914798 0.87451

0.92549 0.16471 0.12549 2.9415 0.864407 0.92549

0.87451 0.14902 0.07451 5.58825 0.914798 0.87451

0.92549 0.2 0.12549 5.58825 0.864407 0.92549

0.87451 0.18824 0.07451 8.52975 0.914798 0.87451

0.92549 0.23922 0.12549 8.52975 0.864407 0.92549

0.92549 0.27451 0.12549 11.1765 0.864407 0.92549

0.87451 0.22745 0.07451 11.4705 0.914798 0.87451

0.87451 0.26275 0.07451 14.118 0.914798 0.87451

0.92549 0.31373 0.12549 14.118 0.864407 0.92549

0.87451 0.30196 0.07451 17.0588 0.914798 0.87451

0.92549 0.35294 0.12549 17.0588 0.864407 0.92549

0.87451 0.33725 0.07451 19.7055 0.914798 0.87451

0.92549 0.38824 0.12549 19.7063 0.864407 0.92549

Table A.1: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (1-16)
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R G B H S V

0.87451 0.37647 0.07451 22.647 0.914798 0.87451

0.92549 0.42745 0.12549 22.647 0.864407 0.92549

0.92549 0.46275 0.12549 25.2945 0.864407 0.92549

0.87451 0.41569 0.07451 25.5885 0.914798 0.87451

0.87451 0.45098 0.07451 28.2352 0.914798 0.87451

0.92549 0.50196 0.12549 28.2352 0.864407 0.92549

0.87451 0.48627 0.07451 30.882 0.914798 0.87451

0.92549 0.53725 0.12549 30.882 0.864407 0.92549

0.92549 0.57255 0.12549 33.5295 0.864407 0.92549

0.87451 0.52549 0.07451 33.8235 0.914798 0.87451

0.87451 0.56078 0.07451 36.4702 0.914798 0.87451

0.92549 0.61176 0.12549 36.4702 0.864407 0.92549

0.87451 0.6 0.07451 39.4118 0.914798 0.87451

0.92549 0.65098 0.12549 39.4118 0.864407 0.92549

0.87451 0.63529 0.07451 42.0585 0.914798 0.87451

0.92549 0.68627 0.12549 42.0585 0.864407 0.92549

Table A.2: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (17-32)
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R G B H S V

0.87451 0.67451 0.07451 45 0.914798 0.87451

0.92549 0.72549 0.12549 45 0.864407 0.92549

0.92549 0.76078 0.12549 47.6467 0.864407 0.92549

0.87451 0.71373 0.07451 47.9415 0.914798 0.87451

0.87451 0.74902 0.07451 50.5882 0.914798 0.87451

0.92549 0.8 0.12549 50.5882 0.864407 0.92549

0.87451 0.78824 0.07451 53.5298 0.914798 0.87451

0.92549 0.83922 0.12549 53.5298 0.864407 0.92549

0.87451 0.82353 0.07451 56.1765 0.914798 0.87451

0.92549 0.87451 0.12549 56.1765 0.864407 0.92549

0.87451 0.86275 0.07451 59.118 0.914798 0.87451

0.92549 0.91373 0.12549 59.118 0.864407 0.92549

0.85098 0.87451 0.07451 61.7648 0.914798 0.87451

0.90196 0.92549 0.12549 61.7648 0.864407 0.92549

0.86275 0.92549 0.12549 64.7055 0.864407 0.92549

0.81176 0.87451 0.07451 64.7062 0.914798 0.87451

Table A.3: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (33-48)
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R G B H S V

0.77647 0.87451 0.07451 67.353 0.914798 0.87451

0.82353 0.92549 0.12549 67.647 0.864407 0.92549

0.78824 0.92549 0.12549 70.2937 0.864407 0.92549

0.73725 0.87451 0.07451 70.2945 0.914798 0.87451

0.69804 0.87451 0.07451 73.2353 0.914798 0.87451

0.74902 0.92549 0.12549 73.2353 0.864407 0.92549

0.66275 0.87451 0.07451 75.882 0.914798 0.87451

0.71373 0.92549 0.12549 75.882 0.864407 0.92549

0.62353 0.87451 0.07451 78.8235 0.914798 0.87451

0.67451 0.92549 0.12549 78.8235 0.864407 0.92549

0.58824 0.87451 0.07451 81.4702 0.914798 0.87451

0.63529 0.92549 0.12549 81.765 0.864407 0.92549

0.54902 0.87451 0.07451 84.4118 0.914798 0.87451

0.6 0.92549 0.12549 84.4118 0.864407 0.92549

0.5098 0.87451 0.07451 87.3532 0.914798 0.87451

0.56078 0.92549 0.12549 87.3533 0.864407 0.92549

Table A.4: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (49-64)
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R G B H S V

0.47843 0.87451 0.07451 89.706 0.914798 0.87451

0.52549 0.92549 0.12549 90 0.864407 0.92549

0.43922 0.87451 0.07451 92.6467 0.914798 0.87451

0.4902 0.92549 0.12549 92.6467 0.864407 0.92549

0.4 0.87451 0.07451 95.5882 0.914798 0.87451

0.45098 0.92549 0.12549 95.5882 0.864407 0.92549

0.36471 0.87451 0.07451 98.235 0.914798 0.87451

0.41569 0.92549 0.12549 98.235 0.864407 0.92549

0.32549 0.87451 0.07451 101.176 0.914798 0.87451

0.37647 0.92549 0.12549 101.176 0.864407 0.92549

0.2902 0.87451 0.07451 103.823 0.914798 0.87451

0.33725 0.92549 0.12549 104.118 0.864407 0.92549

0.25098 0.87451 0.07451 106.765 0.914798 0.87451

0.30196 0.92549 0.12549 106.765 0.864407 0.92549

0.21176 0.87451 0.07451 109.706 0.914798 0.87451

0.26275 0.92549 0.12549 109.706 0.864407 0.92549

Table A.5: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (65-80)

92



R G B H S V

0.17647 0.87451 0.07451 112.353 0.914798 0.87451

0.22745 0.92549 0.12549 112.353 0.864407 0.92549

0.13725 0.87451 0.07451 115.294 0.914798 0.87451

0.18824 0.92549 0.12549 115.294 0.864407 0.92549

0.10196 0.87451 0.07451 117.941 0.914798 0.87451

0.14902 0.92549 0.12549 118.235 0.864407 0.92549

0.07451 0.87451 0.08627 120.882 0.914798 0.87451

0.12549 0.92549 0.13725 120.882 0.864407 0.92549

0.07451 0.87451 0.12549 123.824 0.914798 0.87451

0.12549 0.92549 0.17647 123.824 0.864407 0.92549

0.12549 0.92549 0.21176 126.47 0.864407 0.92549

0.07451 0.87451 0.16471 126.765 0.914798 0.87451

0.07451 0.87451 0.2 129.412 0.914798 0.87451

0.12549 0.92549 0.25098 129.412 0.864407 0.92549

0.07451 0.87451 0.23922 132.353 0.914798 0.87451

0.12549 0.92549 0.2902 132.353 0.864407 0.92549

Table A.6: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (81-96)
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R G B H S V

0.07451 0.87451 0.27451 135 0.914798 0.87451

0.12549 0.92549 0.32549 135 0.864407 0.92549

0.07451 0.87451 0.31373 137.941 0.914798 0.87451

0.12549 0.92549 0.36471 137.941 0.864407 0.92549

0.12549 0.92549 0.4 140.588 0.864407 0.92549

0.07451 0.87451 0.35294 140.882 0.914798 0.87451

0.07451 0.87451 0.38824 143.53 0.914798 0.87451

0.12549 0.92549 0.43922 143.53 0.864407 0.92549

0.07451 0.87451 0.42745 146.471 0.914798 0.87451

0.12549 0.92549 0.47843 146.471 0.864407 0.92549

0.07451 0.87451 0.46275 149.118 0.914798 0.87451

0.12549 0.92549 0.51373 149.118 0.864407 0.92549

0.07451 0.87451 0.49804 151.765 0.914798 0.87451

0.12549 0.92549 0.54902 151.765 0.864407 0.92549

0.07451 0.87451 0.53725 154.705 0.914798 0.87451

0.12549 0.92549 0.58824 154.706 0.864407 0.92549

Table A.7: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (97-112)
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R G B H S V

0.07451 0.87451 0.57255 157.353 0.914798 0.87451

0.12549 0.92549 0.62353 157.353 0.864407 0.92549

0.07451 0.87451 0.61176 160.294 0.914798 0.87451

0.12549 0.92549 0.66275 160.295 0.864407 0.92549

0.12549 0.92549 0.69804 162.941 0.864407 0.92549

0.07451 0.87451 0.65098 163.235 0.914798 0.87451

0.07451 0.87451 0.68627 165.882 0.914798 0.87451

0.12549 0.92549 0.73725 165.882 0.864407 0.92549

0.07451 0.87451 0.72549 168.824 0.914798 0.87451

0.12549 0.92549 0.77647 168.824 0.864407 0.92549

0.07451 0.87451 0.76078 171.47 0.914798 0.87451

0.12549 0.92549 0.81176 171.47 0.864407 0.92549

0.07451 0.87451 0.8 174.412 0.914798 0.87451

0.12549 0.92549 0.85098 174.412 0.864407 0.92549

0.12549 0.92549 0.88627 177.059 0.864407 0.92549

0.07451 0.87451 0.83922 177.353 0.914798 0.87451

Table A.8: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (113-128)
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R G B H S V

0.07451 0.87451 0.87451 180 0.914798 0.87451

0.12549 0.92549 0.92549 180 0.864407 0.92549

0.07451 0.83922 0.87451 182.647 0.914798 0.87451

0.12549 0.88627 0.92549 182.941 0.864407 0.92549

0.07451 0.8 0.87451 185.588 0.914798 0.87451

0.12549 0.85098 0.92549 185.588 0.864407 0.92549

0.07451 0.76078 0.87451 188.53 0.914798 0.87451

0.12549 0.81176 0.92549 188.53 0.864407 0.92549

0.07451 0.72549 0.87451 191.176 0.914798 0.87451

0.12549 0.77647 0.92549 191.176 0.864407 0.92549

0.07451 0.68627 0.87451 194.118 0.914798 0.87451

0.12549 0.73725 0.92549 194.118 0.864407 0.92549

0.07451 0.65098 0.87451 196.765 0.914798 0.87451

0.12549 0.69804 0.92549 197.059 0.864407 0.92549

0.12549 0.66275 0.92549 199.705 0.864407 0.92549

0.07451 0.61176 0.87451 199.706 0.914798 0.87451

Table A.9: Color Map Used for Retinotpic Data. 256 RGB colors converted to HSV
and Sorted. Colors (129-144)
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R G B H S V

0.07451 0.57255 0.87451 202.647 0.914798 0.87451

0.12549 0.62353 0.92549 202.647 0.864407 0.92549

0.12549 0.58824 0.92549 205.294 0.864407 0.92549

0.07451 0.53725 0.87451 205.295 0.914798 0.87451

0.07451 0.49804 0.87451 208.235 0.914798 0.87451

0.12549 0.54902 0.92549 208.235 0.864407 0.92549

0.07451 0.46275 0.87451 210.882 0.914798 0.87451

0.12549 0.51373 0.92549 210.882 0.864407 0.92549

0.07451 0.42745 0.87451 213.529 0.914798 0.87451

0.12549 0.47843 0.92549 213.529 0.864407 0.92549

0.07451 0.38824 0.87451 216.47 0.914798 0.87451

0.12549 0.43922 0.92549 216.47 0.864407 0.92549

0.07451 0.35294 0.87451 219.118 0.914798 0.87451

0.12549 0.4 0.92549 219.412 0.864407 0.92549

0.07451 0.31373 0.87451 222.059 0.914798 0.87451

0.12549 0.36471 0.92549 222.059 0.864407 0.92549

Table A.10: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (145-160)
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R G B H S V

0.07451 0.27451 0.87451 225 0.914798 0.87451

0.12549 0.32549 0.92549 225 0.864407 0.92549

0.07451 0.23922 0.87451 227.647 0.914798 0.87451

0.12549 0.2902 0.92549 227.647 0.864407 0.92549

0.07451 0.2 0.87451 230.588 0.914798 0.87451

0.12549 0.25098 0.92549 230.588 0.864407 0.92549

0.07451 0.16471 0.87451 233.235 0.914798 0.87451

0.12549 0.21176 0.92549 233.53 0.864407 0.92549

0.07451 0.12549 0.87451 236.176 0.914798 0.87451

0.12549 0.17647 0.92549 236.176 0.864407 0.92549

0.07451 0.08627 0.87451 239.118 0.914798 0.87451

0.12549 0.13725 0.92549 239.118 0.864407 0.92549

0.14902 0.12549 0.92549 241.765 0.864407 0.92549

0.10196 0.07451 0.87451 242.059 0.914798 0.87451

0.13725 0.07451 0.87451 244.705 0.914798 0.87451

0.18824 0.12549 0.92549 244.706 0.864407 0.92549

Table A.11: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (161-176)
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R G B H S V

0.17647 0.07451 0.87451 247.647 0.914798 0.87451

0.22745 0.12549 0.92549 247.647 0.864407 0.92549

0.21176 0.07451 0.87451 250.294 0.914798 0.87451

0.26275 0.12549 0.92549 250.295 0.864407 0.92549

0.25098 0.07451 0.87451 253.235 0.914798 0.87451

0.30196 0.12549 0.92549 253.235 0.864407 0.92549

0.33725 0.12549 0.92549 255.882 0.864407 0.92549

0.2902 0.07451 0.87451 256.177 0.914798 0.87451

0.32549 0.07451 0.87451 258.823 0.914798 0.87451

0.37647 0.12549 0.92549 258.823 0.864407 0.92549

0.36471 0.07451 0.87451 261.765 0.914798 0.87451

0.41569 0.12549 0.92549 261.765 0.864407 0.92549

0.4 0.07451 0.87451 264.412 0.914798 0.87451

0.45098 0.12549 0.92549 264.412 0.864407 0.92549

0.43922 0.07451 0.87451 267.353 0.914798 0.87451

0.4902 0.12549 0.92549 267.353 0.864407 0.92549

Table A.12: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (177-192)
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R G B H S V

0.52549 0.12549 0.92549 270 0.864407 0.92549

0.47843 0.07451 0.87451 270.294 0.914798 0.87451

0.5098 0.07451 0.87451 272.647 0.914798 0.87451

0.56078 0.12549 0.92549 272.647 0.864407 0.92549

0.54902 0.07451 0.87451 275.588 0.914798 0.87451

0.6 0.12549 0.92549 275.588 0.864407 0.92549

0.63529 0.12549 0.92549 278.235 0.864407 0.92549

0.58824 0.07451 0.87451 278.53 0.914798 0.87451

0.62353 0.07451 0.87451 281.177 0.914798 0.87451

0.67451 0.12549 0.92549 281.177 0.864407 0.92549

0.66275 0.07451 0.87451 284.118 0.914798 0.87451

0.71373 0.12549 0.92549 284.118 0.864407 0.92549

0.69804 0.07451 0.87451 286.765 0.914798 0.87451

0.74902 0.12549 0.92549 286.765 0.864407 0.92549

0.73725 0.07451 0.87451 289.706 0.914798 0.87451

0.78824 0.12549 0.92549 289.706 0.864407 0.92549

Table A.13: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (193-208)
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0.82353 0.12549 0.92549 292.353 0.864407 0.92549

0.77647 0.07451 0.87451 292.647 0.914798 0.87451

0.81176 0.07451 0.87451 295.294 0.914798 0.87451

0.86275 0.12549 0.92549 295.294 0.864407 0.92549

0.85098 0.07451 0.87451 298.235 0.914798 0.87451

0.90196 0.12549 0.92549 298.235 0.864407 0.92549

0.87451 0.07451 0.86275 300.882 0.914798 0.87451

0.92549 0.12549 0.91373 300.882 0.864407 0.92549

0.87451 0.07451 0.82353 303.823 0.914798 0.87451

0.92549 0.12549 0.87451 303.823 0.864407 0.92549

0.87451 0.07451 0.78824 306.47 0.914798 0.87451

0.92549 0.12549 0.83922 306.47 0.864407 0.92549

0.87451 0.07451 0.74902 309.412 0.914798 0.87451

0.92549 0.12549 0.8 309.412 0.864407 0.92549

0.87451 0.07451 0.71373 312.059 0.914798 0.87451

0.92549 0.12549 0.76078 312.353 0.864407 0.92549

Table A.14: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (209-224)
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0.87451 0.07451 0.67451 315 0.914798 0.87451

0.92549 0.12549 0.72549 315 0.864407 0.92549

0.87451 0.07451 0.63529 317.941 0.914798 0.87451

0.92549 0.12549 0.68627 317.941 0.864407 0.92549

0.87451 0.07451 0.6 320.588 0.914798 0.87451

0.92549 0.12549 0.65098 320.588 0.864407 0.92549

0.87451 0.07451 0.56078 323.53 0.914798 0.87451

0.92549 0.12549 0.61176 323.53 0.864407 0.92549

0.87451 0.07451 0.52549 326.177 0.914798 0.87451

0.92549 0.12549 0.57255 326.47 0.864407 0.92549

0.87451 0.07451 0.48627 329.118 0.914798 0.87451

0.92549 0.12549 0.53725 329.118 0.864407 0.92549

0.87451 0.07451 0.45098 331.765 0.914798 0.87451

0.92549 0.12549 0.50196 331.765 0.864407 0.92549

0.87451 0.07451 0.41569 334.411 0.914798 0.87451

0.92549 0.12549 0.46275 334.706 0.864407 0.92549

Table A.15: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (225-240)
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0.87451 0.07451 0.37647 337.353 0.914798 0.87451

0.92549 0.12549 0.42745 337.353 0.864407 0.92549

0.87451 0.07451 0.33725 340.294 0.914798 0.87451

0.92549 0.12549 0.38824 340.294 0.864407 0.92549

0.87451 0.07451 0.30196 342.941 0.914798 0.87451

0.92549 0.12549 0.35294 342.941 0.864407 0.92549

0.87451 0.07451 0.26275 345.882 0.914798 0.87451

0.92549 0.12549 0.31373 345.882 0.864407 0.92549

0.87451 0.07451 0.22745 348.53 0.914798 0.87451

0.92549 0.12549 0.27451 348.823 0.864407 0.92549

0.87451 0.07451 0.18824 351.47 0.914798 0.87451

0.92549 0.12549 0.23922 351.47 0.864407 0.92549

0.87451 0.07451 0.14902 354.412 0.914798 0.87451

0.92549 0.12549 0.2 354.412 0.864407 0.92549

0.87451 0.07451 0.11373 357.059 0.914798 0.87451

0.92549 0.12549 0.16471 357.059 0.864407 0.92549

Table A.16: Color Map Used for Retinotpic Data. 256 RGB colors converted to
HSV and Sorted. Colors (241-256)
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