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ABSTRACT

Signaling cascades transduce signals received on the cell membrane to the nucleus.

While noise filtering, ultra-sensitive switches, and signal amplification have all been

shown to be features of such signaling cascades, it is not understood why cascades

typically show three or four layers. Using singular perturbation theory, Michaelis-

Menten type equations are derived for open enzymatic systems. When these equations

are organized into a cascade, it is demonstrated that the output signal as a function

of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown

that the activation time will speed up to a point, after which more layers become

superfluous. It is shown that three layers create a reliable sigmoidal response progress

curve from a wide variety of time-dependent signaling inputs arriving at the cell

membrane, suggesting that natural selection may have favored signaling cascades as

a parsimonious solution to the problem of generating switch-like behavior in a noisy

environment.
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Chapter 1

BACKGROUND

1.1 Motivation

The goal of this research is to use mathematical tools and systems theory to further

understand why certain biochemical networks have evolved the way they have. Over

the past century, scientists have meticulously catalogued the various chemical species

that compose a living cell. However, it is still not fully understood how these molecules

interact to create life. The advent of high-throughput experiments to collect large,

genomic datasets together with more refined experiments have enabled scientists to

diagram which molecules interact with each other, but there are still many holes left

to be filled, and many open questions about quantitative values and the purpose of

certain recurring network structures.

In particular, there are certain motifs in the signaling networks of eukaryotic

organisms that are highly conserved. Understanding how these pathways operate will

not only elucidate the inner workings of the cell, but could also be used to develop

treatments for diseases. For example, it has been found that the Ras-Raf-MEK-ERK

pathway is constitutively active in many forms of cancer. It is possible that therapies

which target that pathway could provide an effective treatment [1].

Various mathematical tools for understanding systems of interacting components

have been developed for a wide variety of different disciplines, and they have been

fruitful when applied to cell biology. The use of applied mathematics to study enzyme

kinetics has been around for over a century. In 1913, Michaelis and Menten wrote

a seminal paper establishing the framework for the study of enzyme kinetics and
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introduced a simplified model in which steady-state parameters could be easily derived

experimentally. Over the years, numerous attempts to validate the Michaelis-Menten

model with mathematical rigor have been made, but it was not until a paper by Segel

and Slemrod in 1989 that the most accepted scaling of the system and error bounds

were introduced. In 1996 Borghans et al. used a change of variables to refine the

Segel and Slemrod work and improved the range of validity. This framework is based

on the total quasi-steady state assumption (tQSSA) and has been used to study more

complicated enzymatic reaction networks. One such study in 2007 by Gomez-Uribe

et al. introduced a time-dependent flux of enzymes into a common signaling cycle

motif in an effort to study the module’s filtering characteristics, and they appealed

to the tQSSA to obtain a simplified model that was easier to deal with. However,

few attempts have been made to study rigorously how the introduction of a time-

dependent term could affect the validity of the approximate model. For example, one

assumption of the tQSSA is that there is a brief transient period of complex formation,

but it can be shown that the transient can be extended depending on the flux term.

This work tries to address this issue and also demonstrates how a non-autonomous

model could be used modularly by applying it to simple signaling cascades.

1.2 Derivation of Mass-Action Model

There are many ways to model the behavior of molecular reactions. One approach

based on first-principle arguments treats each atom as a quantum mechanical object

and then tries to find a solution to Schrödinger’s Equation [2]. However, even after

numerous approximating assumptions are made to make the numerics easier, this

problem is not very tractable even when supercomputers are employed. For the most

part, the behavior of the cell is dictated by the number of molecules present and their

location. Thus, knowledge of the geometry of each molecule can be sacrificed in lieu
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of a model that is easier to deal with. In this vein, a stochastic differential equation is

one of the more detailed models. It encapsulates the stochastic nature of the reactive

events and diffusive movements. If it is assumed that the molecules diffuse rapidly

enough in a constant volume and temperature medium, then the spatial aspects can

be neglected. The system can be entirely described by an n dimensional vector over

the non-negative integers where the ith component of the vector corresponds to the

number of molecules of the ith type.

The Chemical Master Equation (CME) is a set of ordinary differential equations

(ODEs) that describe the probability distribution of each possible state over time.

Higham gives a good review of how, starting from the Chemical Master Equation,

the mass-action model of biochemical kinetics is derived [3]. The CME can be stated

as:

dP (x, t)

dt
=

M∑
j=1

(aj(x− νj)P (x− νj, t)− aj(x)P (x, t))

where P (x, t) is the probability that the system will be in state x at time t, M is the

number of reactions, νj is an integer vector that represents the reaction that takes

the state x to x − νj, and aj(x − νj) is the propensity for the jth reaction to occur.

Since the number of possible states that the system can be in is usually too large to

deal with, the CME is not useful to deal with directly.

In 1976 and 1977, Dan Gillespie wrote a pair of papers in which he detailed a

Stochastic Simulation Algorithm (SSA), which uses a kinetic Monte Carlo method to

compute sample paths the system state could take instead of computing the entire

probability distribution [4, 5]. By computing many sample paths, statistics such as

the mean and variance can be numerically estimated. Modifications to speed up

the algorithm have been suggested; however, simulating a large number of molecules

undergoing numerous reactions can still be computationally expensive [6]. The Tau-

Leaping Method is a scheme that approximates an SSA sample path by assuming that
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the propensity functions remain constant during a fixed time interval τ [7]. Then the

number of reactions for each type can be counted in the time interval τ and the

system can be updated more rapidly than going one reaction at a time. Whereas

the SSA pulls from exponential distributions, the Tau Leaping method uses Poisson

distributions with means aj(X(t))τ where X(t) is the system’s current state.

If it is assumed that the propensity functions are large, then the Poisson random

variables can be well-approximated by normal random variables. This gives rise to a

discrete time recurrence relation over the reals, and by allowing τ → 0, a stochastic

ODE known as the Chemical Langevin Equation (CLE) is derived [8]. If the approx-

imated state is given as Y , which is an n dimensional vector over the reals, then the

equation can be stated as

dY (t) =
M∑
j=1

νjaj(Y (t))dt+
M∑
j=1

νj

√
aj(Y (t))dWj(t),

where the Wj’s are independent scalar Brownian motions. The CLE can be thought of

as having both a stochastic part and a deterministic part. If the system size increases,

but the concentrations of the molecules remain the same, then the deterministic part

will dominate. By ignoring the stochastic portion, a set of ODEs emerge. The

resulting set of ODEs is the most studied model of molecular reactions. Typically,

the derivation of the ODEs is done in an ad hoc way by appealing to the law of

mass-action, which states that the rate at which a reaction occurs is proportional to

the concentrations of each reactant involved. Hence, the set of ODEs derived from

the CLE is sometimes referred to as the mass-action model.

Though the intuitive mass-action argument and the formal derivation reach the

same conclusion, the formal derivation specifies the conditions in which the mass-

action should be applied. One condition is that the number of molecules involved

should be large enough such that stochastic nature of individual molecular reactions

4



get averaged out. There has been some arguments as to whether this condition is

satisfied in a molecular environment [9, 10]. In certain cases, such as modeling a small

number of transcription factors binding to a DNA strand, the ODE model might not

work as well as a more refined model. In other cases, such as modeling a metabolic

network, the ODE model may suffice. Finding a way to connect the varying scales

in the cellular environment is still an open problem. Another condition that must be

satisfied is that the system be spatially homogenous. In the cell where the space can be

highly compartmentalized, this assumption does not always hold. One work-around

is to label the same molecule in different compartments as different chemical species

and then add a flux term between the two compartments in the mass-action model.

Even though there have been discussions as to whether the mass-action accurately

portrays cellular behavior, it serves as a good starting point in which more refined

models can be compared [9, 10, 3].

1.3 Derivation of Michaelis-Menten Equation

One of the most basic chemical reactions studied is the enzyme-substrate reaction.

Early in the 20th century, the mechanism in which an enzyme converted a substrate

into a product molecule was not fully understood. In 1913, Leonor Michaelis and

Maud Menten proposed a mass-action model where the enzyme binds to the sub-

strate to form an intermediate complex molecule [11, 12]. The complex can then

either disassociate back into an enzyme and substrate, or the enzyme can successfully

catalyze the conversion of substrate to product. The representative stoichiometry

would be

E + S
a1
�
d1

C
k1−→ E + P,
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where a1, d1, and k1 are rate constants. The corresponding system of equations is

Ė = −a1ES + (d1 + k1)C, (1.1a)

Ṡ = −a1ES + d1C, (1.1b)

Ċ = a1ES − (d1 + k1)C, (1.1c)

Ṗ = k1C, (1.1d)

E(0) = E0, S(0) = S0, C(0) = P (0) = 0 (1.1e)

where the initial conditions represent the case where there is an initial concentration

of enzymes and substrates, but no reaction has yet occurred. From a physical sense,

since no molecules are added or destroyed from the system, and also by examining

(1.1), it is clear that certain quantities are conserved. Hence, (1.1) is equivalent to a

system of two ODEs and two algebraic equations.

E = E0 − C, (1.2a)

P = S0 − (S + C), (1.2b)

Ṡ = −a1(E0 − C)S + d1C, (1.2c)

Ċ = a1(E0 − C)S − (d1 + k1)C, (1.2d)

S(0) = S0, C(0) = 0. (1.2e)

Michaelis and Menten also proposed a method in which (1.2) can be approximated

by a one dimensional ODE. In 1925, G.E. Briggs and J.B.S Haldane refined that

approach and proposed the following: suppose that the complex does not change

much during the time-scale of the substrate depletion [13]. This can be achieved if

the number of enzymes are much larger than the number of substrates since any free

enzyme will quickly bind to a free substrate. After a quick transient period in which

the substrate concentration has not decayed much, Ċ ≈ 0. This is known as the
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standard quasi-steady state assumption (sQSSA). If Ċ = 0, then C can be solved for

in (1.2d).

C =
E0S

Km + S
, (1.3)

where Km = d1+k1
a1

is the Michaelis-Menten constant. Then (1.3) can be substituted

in (1.2c) to get that

Ṡ =
−VmaxS
Km + S

, S(0) = S0, (1.4)

where Vmax = k1E0 is the maximal possible rate at which the product could be formed.

Km can also be regarded as the substrate concentration at which the formation rate of

the product is half of Vmax. The initial condition in (1.4) assumes that the substrate

has not decayed noticeably during the initial transient period. Equation (1.4) is

generally referred to as the Michaelis-Menten equation. In [14, 15] it was shown that

(1.4) has a closed form solution.

S(t) = KmW

[
S0

Km

exp

(
S0

Km

− Vmaxt

Km

)]
,

where W is the Lambert-W function. Experimentally, it easier to obtain the param-

eters Km and Vmax than it is to obtain the reaction rate constants, and it is easier to

find the steady-state parameters in literature rather than the dynamic parameters.

1.4 Enzymatic and Signaling Cascades

In general, an enzymatic cascade is a sequence of chemical reactions in which

the product of one reaction serves as the enzyme in the next reaction downstream.

Enzymatic cascades are important structures in blood coagulation models. In 1964,

Davie and Ratnoff [16] and Macfarlane [17] independently proposed a waterfall se-

quence which enables a small signal to become amplified such that a large number of

fibrin molecules can be created to form a blood clot. Then in 1966, Levine studied

the enzyme amplifier kinetics by constructing a time-dependent mathematical model
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[18]. This model neglected any feedback and looked at just a sequence of linear re-

actions. A unit pulse was introduced at the first stage and this signal proliferated

for n stages. The gain of the system was defined as the ratio of the steady state of

the nth-layer versus the steady state value of the initial layer. Also, the temporal

dynamics of a 3-layered system was investigated by varying the duration of the unit

pulse. The mathematical model of [18] corroborated the amplification scheme and

also discovered sensitivities to the reaction rates.

Other types of important cascades are signaling cascades. In a signaling cascade,

information in the form of a chemical cue received at the cell membrane is proliferated

to transcription factors via a sequence of chemical reactions. Of particular importance

to eukaryotic cells are mitogen activated protein kinase (MAPK) cascades which

are involved in numerous cellular processes such as differentiation, apoptosis, and

carcinogenesis [19, 20, 1]. Since signaling cascades play important roles in certain

types of cancer cells, understanding these cascades could lead to novel therapies [1].

One important trait of MAP kinase cascades is that they typically have 3 or 4 layers

[19]. However, it is still not entirely understood why a 3 or 4-layered cascade should

be evolutionarily conserved.

In eukaryotes, there is an important and highly conserved component in signaling

pathways, a family of proteins that compose the MAPK cascade. This module is a

cascade of chemical reactions where the activated form of one protein serves as an

enzyme to activate a protein downstream. Typically, there are three to four levels in

a MAPK cascade [19].

In 1996, Huang and Ferrell constructed a mathematical model to study the dy-

namics of a 3-layered MAP kinase cascade with double phosphorylation cycles [21].

They designed a mass-action differential model for the closed system diagrammed in

Figure 1.1. The initial concentration of the input was taken as the stimulus and the
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Figure 1.1: Huang and Ferrell Model

steady-state concentration of the output was regarded as the response. They discov-

ered that the multiple layers help create an ultrasensitive signal-to-response curve.

This switch-like, ultra-sensitivity was first described by Goldbeter and Koshland in

1984 [22]. The cascade behaves like a cooperative enzyme with a steeper sigmoidal

signal-to-response curve than one sees with a traditional Michaelis-Menten reaction.

This behavior is ideal for biological mechanisms requiring a switch-like response. Qiao

et al. expanded on the work of [21] in 2007 by exploring from a wider range of pa-

rameters to see if other types of signal-to-response curves were possible [23]. They

discovered the existence of bistability and oscillations in the Huang and Ferrell model.

In 2007, Gomez-Uribe et al. analyzed the operating regimes of a single cycle of

covalent modification, one of the important components in a signaling cascade [24].

They discovered that a single cycle can exhibit 4 steady-state response regimes. By

appealing to the total quasi-steady-state assumption [25], they were able to reduce

their mass-action system into a single ordinary differential equation for the activated

protein. They use this approximated model to study the dynamic response with

respect to sinusoidal input. They find that a single cycle acts as a low-pass filter.

9



This makes the cycle of covalent modification ideal to filter out high frequency noise.

In 2007, Ventura et al. looked at a simplified version of a signaling cascade. Their

model is essentially the closed system of Figure 2.12. Using the quasi-steady state

assumption, they were able to derive a one parameter equation for each module of

a cycle of covalent modification. They then model a signaling cascade by linking

together these one parameter modules. They discover damped oscillations in the first

unit of a ten unit chain in both the mass-action description of Figure 2.12 and their

approximation model. They also consider the case where the system is in a steady-

state and one of the parameters is perturbed. This information gets propagated in

both directions of the chain, which suggests that multiple layers in the cascade struc-

ture can facilitate cross-talk between networks without the need of explicit feedback

loops.

1.5 Perturbation Analysis of Michaelis-Menten Equations

Since Equation (1.4) is an approximation, it is important to investigate is the

error in using it. One approach to answer this question has been to use singular

perturbation theory. References [26, 27] are excellent texts describing perturbation

methods and applications. One approach to this problem is to first scale Equation

(1.2) and then identify a small parameter. However, early authors scaled C by E0

and S by S0 and set their small parameter as ε = E0/S0 [27, 28]. However, in 1989,

Segel and Slemrod gave a more rigorous derivation and scaling of the system [29].
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They introduce the following scales for Equation (1.2):

s =
S

S0

,

c =
C

C̄
,

τ =
t

tC
,

T =
t

tS
,

where C̄ is an estimate of the maximal complex concentration, tC is an estimate for

the fast time scale, and tS is an estimate for the slow time scale. It is assumed that

in the initial transient period, the substrate depletion is minimal and S ≈ S0. By

substituting S0 for S in (1.2d), the authors were able to derive the following for C:

C(t) = C̄[1− exp(−kt)], (1.5)

where

C̄ =
E0S0

Km + S0

, (1.6)

k = a1(S0 +Km).

They used (1.5) to get an estimate for the fast time scale.

tC = k−1. (1.7)

The characterization of a time scale from [27] is used to estimate the slow time scale

as follows:

tS = (Smax − Smin)/

∣∣∣∣dSdt
∣∣∣∣
max

. (1.8)

They estimate ts by plugging S0 into (1.4) to obtain:

tS =
Km + S0

k1E0

. (1.9)
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The authors obtained the following dimensionless parameters:

σ =
S0

Km

, κ =
d1

k1

, ε =
E0

Km + S0

.

In the fast time scale, the governing equations for (1.2) are:

s′(τ) = ε

[
−s+

σ

σ + 1
cs+

κ

(κ+ 1)(σ + 1)
c

]
,

c′(τ) = s− σ

σ + 1
cs− 1

σ + 1
c, (1.10)

s(0) = 1, c(0) = 0.

Assuming that

s(τ) ∼ s(0)(τ) + εs(1)(τ) + · · · , c(τ) ∼ c(0)(τ) + εc(1)(τ) + · · · ,

then the O(1) solutions for (1.10) are:

s(0)(τ) = 1, c(0)(τ) = 1− e−τ . (1.11)

In the slow time scale, the governing equations are:

s′(T ) = (κ+ 1)(σ + 1)

[
−s+

σ

σ + 1
cs+

κ

(κ+ 1)(σ + 1)
c

]
, (1.12)

εc′(T ) = (κ+ 1)(σ + 1)

[
s− σ

σ + 1
cs− 1

σ + 1
c

]
.

Again, assuming that

s(T ) ∼ s0(T ) + εs1(T ) + · · · , c(T ) ∼ c0(T ) + εc1(T ) + · · · , (1.13)
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then the governing equations for (1.12) become:

s′0(T ) + εs′1(T )+ · · · = (κ+ 1)(σ + 1)

[
−s0 +

σ

σ + 1
c0s0 +

κ

(κ+ 1)(σ + 1)
c0

]
+ ε(κ+ 1)(σ + 1)

[
−s1 +

σ

σ + 1
(c0s1 + c1s0) +

κ

(κ+ 1)(σ + 1)
c1

]
+O(ε2),

0 + εc′0(T )+ · · · = (κ+ 1)(σ + 1)

[
s0 −

σ

σ + 1
c0s0 −

1

σ + 1
c0

]
+ ε(κ+ 1)(σ + 1)

[
s1 −

σ

σ + 1
(c0s1 + c1s0)− 1

σ + 1
c1

]
+O(ε2).

The O(1) equations become

c0(T ) =
(σ + 1)s0

σs0 + 1
, s′0(T ) = −c0, (1.14)

which are identical to the Michaelis-Menten equations when scaled back to the original

variables. The O(ε) equations are found to be:

c1(T ) =
s1(1 + σ)

(1 + σs0)2
+

(σ + 1)2s0

(1 + κ)(σs0 + 1)4
, (1.15a)

s′1(T ) = −c1 − c′0 = −p(T )s1 + q(T ), (1.15b)

where

p(T ) =
1 + σ

(1 + σs0)2
, q(T ) =

(σ + 1)2s0

(σs0 + 1)3

(
1− 1

(1 + κ)(σs0 + 1)

)
. (1.16)

Segel and Slemrod use the O(ε) equations to determine the range of validity of their

model. If the magnitudes of s1 and c1 are much larger than one, then the errors could

be large when using the first order approximation.

In 1996, Borghans used a change of variables to extend the sQSSA [25]. If Sc =
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S + C, then an equivalent differential model for (1.2) is:

Ṡc = −k1C, (1.17a)

Ċ = a1(E0 − C)(Sc − C)− (d1 + k1)C, (1.17b)

Sc(0) = S0, C(0) = 0. (1.17c)

The total quasi-steady state assumption states that Equation (1.17b) is approximately

equal to zero on the timescale of the total substrate depletion. By assuming Ċ = 0,

then the following quadratic equation is derived for C:

C2 − (E0 +Km + Sc)C + E0Sc = 0. (1.18)

The first Padé approximant to (1.18) is:

C =
E0Sc

E0 +Km + Sc
. (1.19)

By substituting (1.19) into (1.17a) one obtains:

Ṡc =
−VmaxSc

E0 +Km + Sc
. (1.20)

By using a similar argument as used in [29], Borghans derived the following slow

timescale:

tsc =
E0 + S0 +Km

k1E0

, (1.21)

and the following condition for the approximation to be valid is:

ε =
k1E0

a1(E0 + S0 +Km)
� 1. (1.22)

Equivalent conditions to (1.22) are:

k1

a1

� E0 + S0,

k1 � d1,

E0 � S0 +Km.
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So if the sQSSA is valid, then so too is the tQSSA. However, the tQSSA greatly

extends the regime of validity.

In 2007, Gomez-Uribe et al. use the tQSSA to study the operating regimes of a

cycle of covalent modification motif, such as seen in the phosphorylation and dephos-

phorylation cycle in a MAPK cascade [24]:

E1 + S
a1
�
d1

C1
k1−→ E1 + P, (1.23)

E2 + P
a2
�
d2

C2
k1−→ E2 + S.

By applying the tQSSA, the authors derived the following approximation for (1.23):

Ṗc = k1
Ē1(S̄ − Pc(t))

Km1 + Ē1 + S̄ − Pc(t)
− k2

Ē2Pc(t)

Km2 + Ē2 + Pc(t)
, (1.24)

where

P + C2 = Pc, S + C1 + P + C2 = S̄, E1 + C1 = Ē1, E2 + C2 = Ē2,

and

Km1 =
k1 + d1

a1

, Km2 =
k2 + d2

a2

.

The authors used (1.24) to discover four different steady-state regimes. In addition,

they investigated the dynamic response of (1.23) by allowing Ē1 to be dependent on

time. To study the filtering characteristics of their model, they set

Ē1(t) = E0(1 + a sin(ωt)) (1.25)

in model (1.24). They discovered that the covalent modification cycle acts as a low-

pass filter. However, the authors do not provide a rigorous perturbation analysis of

the time-dependent model.
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Chapter 2

TIME-DEPENDENT MODELS OF ENZYMATIC AND SIGNAL

TRANSDUCTION CASCADES

2.1 Basic Model of an Enzymatic Cascade

The simplest enzymatic cascade would have the chemical network in Figure 2.1.

The enzymes at the top layer flow into the system at a rate of λ̄(t). However, to keep

Figure 2.1: A basic enzymatic cascade.

the model as general as possible, λ̄ could possibly be negative, which represents the

enzymes flowing into and out of the system with a rate that is independent of the

number of enzymes in the system. As an example, suppose there are ligands binding

to a membrane receptor and they flow across in a periodic fashion. Then the receptor

will be activated and deactivated in a similar way. These initial enzymes then convert

a substrate into a product. The product then acts as an enzyme to convert a different

substrate downstream and so forth. To analyze the basic structure of the cascade, it
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will be assumed that no intermediate complexes are formed. Then an n-stage cascade

would have the following stoichiometry:

∅ λ̄(t)−→ E,

E + S1
a1−→ E + P1,

P1 + S2
a2−→ P1 + P2,

...

Pn−1 + Sn
an−→ Pn−1 + Pn.

The corresponding set of mass-action equations is:

Ė = λ̄(t),

Ṡ1 = −a1ES1,

Ṗ1 = a1ES1,

Ṡ2 = −a2P1S2, (2.1)

Ṗ2 = a2P1S2,

...

Ṡn = −anPn−1Sn,

Ṗn = anPn−1Sn,

E(0) = Pi(0) = 0, S(0) = S̄i, for 1 ≤ i ≤ n.

To analyze system (2.1), it will be prudent to express each module as an input/output

operator. The basic module:

∅ λ̄(t)−→ E,

E + S
a1−→ E + P,

17



has the corresponding set of equations:

Ė = λ̄(t),

Ṡ = −a1ES, (2.2)

Ṗ = a1ES,

E(0) = P (0) = 0, S(0) = S̄.

Mass conservation and scaling will be used to simplify and non-dimensionalize system

(2.2). Clearly, S(t)+P (t) = S̄. Hence, system (2.2) can be reduced to one dimension.

Also, E can be solved for explicitly.

E =

∫ t

0

λ̄(x)dx =: Λ̄(t)

P = S̄ − S

Ṡ = −a1Λ̄S (2.3)

S(0) = S̄.

It can be assumed that there cannot ever be an infinite enzyme concentration, so Λ̄

should have a supremum:

sup
t∈[0,∞)

{Λ̄(t)} = Ē <∞.

To scale the system, the time-scale as characterized in [27] will be used to estimate

the time-scale that S operates on. For general λ̄,

Smax − Smin∣∣∣Ṡ∣∣∣
max

≈ 1

a1Ē
=: tS.

This estimate can be improved with more information about λ̄. The variables in

system (2.3) can be scaled as:

T =
t

tS
, s(T ) =

S(t)

S̄
, p(T ) =

P (t)

S̄
, Λ(T ) =

Λ̄(t)

Ē
.
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Then the scaled version of system (2.3) is:

Λ(T ) =
1

Ē

∫ tsT

0

λ̄(x)dx

p(T ) = 1− s(T ),

s′(T ) = −Λs, (2.4)

s(0) = 1.

The system (2.4) has an explicit solution:

s(T ) = exp

(
−
∫ T

0

Λ(x)dx

)
, p(T ) = 1− exp

(
−
∫ T

0

Λ(x)dx

)
. (2.5)

A cascade with identical modules can be modeled as a functional operator. First, it

will be useful to fully describe the function space that the operator acts on. To make

the model physically relevant, Λ, which represents the total, scaled concentration of

enzymes in the system, should be bounded, continuous, and non-negative. If the

enzymes are pumped into the system with no mechanism to escape or if the enzymes

flow into and out of the system in a periodic fashion forever, then the integral of Λ

over time will be infinite. It can also be assumed that the enzymes are introduced

into the system, so none are initially present. Finally, if Λ is initially zero for a period

of time, then nothing will happen in the system. So it can be assumed that Λ is

positive in a neighborhood about zero. To summarize, there exists a δ0 > 0 such that

Λ(T ) ∈ C0([0,∞)),

Λ(T ) ≥ 0,

sup
[0,∞)

{Λ(T )} = 1,

Λ(0) = 0, (2.6)

Λ(T ) > 0 for all 0 < T ≤ δ0,∫ ∞
0

Λ(x)dx =∞.
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Let Λset be the set of functions from [0,∞) to [0, 1] that satisfy the properties in (2.6).

Let

F : Λset → Λset,

be defined as:

F (Λ)(T ) = 1− exp

(
−
∫ T

0

Λ(x)dx

)
. (2.7)

By the properties of the exponential function, it is straightforward to show that F is

well-defined. Then the output for an n-stage cascade can be computed as:

pn(T ) = F n(Λ)(T ).

For simplicity, the dependence on T will be assumed. Hence,

pn = F n(Λ).

Defining an operator makes a few statements about the cascade structure easy to

formulate. First, a few basic lemmas will be introduced. Unless otherwise noted, it

can be assumed that all functions are real-valued and twice-differentiable.

Definition: A function f is increasing on (a, b) if f ′ ≥ 0 on (a, b). f is strictly

increasing on (a, b) if f ′ > 0 on (a, b). f is (strictly) decreasing if (−f) is (strictly)

increasing.

Lemma 2.1.1 1. Suppose that f and g are both increasing (decreasing). Then

f + g will be increasing (decreasing). If, in addition, f is strictly increasing

(decreasing), then f + g will be strictly increasing (decreasing).

2. Suppose f is non-zero and (strictly) increasing (decreasing). Then 1/f will be

(strictly) decreasing (increasing).
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3. Suppose that f and g are both positive and increasing (decreasing). Then fg will

be increasing (decreasing). If f and g are both negative and increasing (decreas-

ing), then fg will be decreasing (increasing). If f is negative and decreasing

and g is positive and increasing, then fg will be decreasing.

Proof: The proofs are straightforward by seeing that (f + g)′ = f ′ + g′, and
(

1
f

)′
=

−f ′
f2

, and (fg)′ = f ′g + g′f .

Definition: A function is concave on (a, b) if f ′′ ≤ 0 on (a, b). A function is strictly

concave if f ′′ < 0. A function f is (strictly) convex if (−f) is (strictly) concave.

The concept of log-concavity will also be useful to introduce. Most of these statements

can be found in [30].

Definition: A positive function f is log-concave on (a, b) if log(f) is concave on (a, b).

A positive function f is strictly log-concave on (a, b) if log(f) is strictly concave on

(a, b).

Remark: The strict log-concavity of f on (a, b) is equivalent to:

1. f ′/f is strictly decreasing on (a, b).

2. log(f)′′ < 0 on (a, b).

3. f can be expressed as eφ where φ is strictly concave on (a, b).

Lemma 2.1.2 Suppose f is a strictly log-concave function on (a, b). Then f is uni-

modal on (a, b).

Proof: It is easier to prove the contrapositive. Suppose f is not unimodal. Then

∃m1,m2 ∈ (a, b) such that m1 < m2 and f(m1) and f(m2) are local maxima. Since
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f ′(x) is continuous, ∃m3 ∈ (m1,m2) such that f(m3) is a local minimum. Since f is

positive f ′(m3)
f(m3)

= 0. Also, since f(m3) is a local minimum, ∃ε > 0 such that f ′(x) > 0

for all x ∈ (m3,m3 + ε). This implies f ′(x)
f(x)

> 0 on (m3,m3 + ε). Then it must be that

f ′

f
increases at some point in the interval [m3,m3 + ε] ⊂ (a, b). Therefore, f is not

strictly log-concave.

Lemma 2.1.3 Let g be a strictly monotonic function on (a, b). Suppose that g(a) = 0

or g(b) = 0. If g′ is a strictly log-concave on (a, b), then g is also strictly log-concave

on (a, b).

The proof can be found in [30]. The basic idea is to use the Cauchy Mean-Value

Theorem. Now some properties of F can be described.

Lemma 2.1.4 Suppose that Λ ∈ Λset. Then the following is true.

1. For all n ≥ 1, F n(Λ) will be an increasing function of T . Also, F (Λ) can be

extended to define a cumulative distribution function with semi-infinite support

and 1− F n(Λ) can be extended to define the corresponding survival function.

2. For all n ≥ 2, F n(Λ) will be a strictly increasing function of T . 1− F n(Λ) will

be log-concave on (0,∞).

3. For all n ≥ 3, 1− F n(Λ) will be strictly log-concave on (0,∞).

4. If Λ is strictly increasing and log-concave, then for all n ≥ 1, F n(Λ) will have

a strictly log-concave derivative. This also means that the derivative of F n(Λ)

will be unimodal and F n(Λ) will be strictly log-concave.

Proof: To prove 1, consider f(T ) = 1−exp(−T ). It is easy to show that f is strictly

increasing and that f(0) = 0 and limt→∞ f(T ) = 1. If Λ ∈ Λset, then f
(∫ T

0
Λ(x)dx

)
will be increasing. It can be shown by induction that F n(Λ) will be increasing. Let
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p(T ) = (F (Λ)) (T ) for T ≥ 0. Let p(T ) = 0 for all T < 0. Then p will be an

increasing function such that p(∞) = 1 and p(0) = 0. Also, since Λ is non-zero in

a half-interval about 0, it can be seen by the definition of F that p will be positive

on (0,∞). Therefore, p will be a cumulative distribution function with support on

(0,∞). By induction, pn(T ) will also be a cumulative distribution function with

support on (0,∞).

To prove 2, let p1 = F (Λ), p2 = F (p1), and s2 = 1−p2. From 1, p1 is increasing and

positive on (0,∞). Therefore,
∫ T

0
p1(x)dx is strictly increasing. Therefore, F (p1) = p2

will be strictly increasing. s2 can be expressed as eφ where φ(T ) = −
∫ T

0
p1(x)dx.

Then φ′ = −p1 and φ′′ = −p′1. Since p1 is increasing, φ′′ ≤ 0. Therefore, s2 will be

log-concave on (0,∞). By induction, F n(Λ) will be strictly increasing and 1−F n(Λ)

will be log-concave for all n ≥ 2.

To prove 3, let p3 = F 3(Λ) and s3 = 1−p3. By the same argument above, s3 = eφ

where φ′′ = −p′2. Since p2 is strictly increasing, φ′′ < 0.

Finally, to prove 4, suppose that Λ is log-concave and strictly increasing. Let

p = F (Λ), s = 1 − p, and c = p′ = −s′. From the same argument above, it can be

shown that s is strictly log-concave. It can be shown that:

c′

c
=

Λ′

Λ
+
s′

s
.

Since Λ is log-concave and s is strictly log-concave, Λ′

Λ
and s′

s
are a decreasing function

and a strictly decreasing function respectively. By Lemma 2.1.1, c′

c
will be strictly

decreasing. Therefore, c is strictly log-concave. By Lemma 2.1.2, c is unimodal. By

Lemma 2.1.3, p will be strictly log-concave and will also by strictly increasing as

argued above. By induction, this will be true for all n ≥ 1.

The following conjecture is motivated by simulations:

23



Conjecture: Suppose that Λ ∈ Λset. Then there ∃k ∈ N such that F n(Λ) will have

a strictly log-concave and unimodal derivative for all n ≥ k.

Based on Lemma 2.1.4, it would suffice to show that F k(Λ) becomes log-concave for

some k. What is interesting is that this conjecture can be naturally extended to

define a conjecture in probability theory. Similar conjectures in probability theory

have been stated that deal with the n-fold convolution of unimodal densities [31].

2.1.1 Simulation Results and Discussion

Figure 2.2 shows that even a simple enzymatic cascade can convert a wide variety

of input signals into a smooth, sigmoidal progression curve, and this is typically done

within 3 iterations. This leads to the conjecture that there exists a finite stage cascade

that can convert every signal from Λset into a sigmoidal output. The simulations also

show that multiple stages can decrease the activation time, the time it takes for the

product concentration to approach a quasi-steady state. However, this is only true up

to a point, after which increasing the number of layers will only delay the activation

time. This result is dependent on the modules being identical.

Many properties of the function operator have yet to be proven, such as: Given

an input, how many iterations would be needed for an optimal activation time, i.e.

after how many stages will the activation start moving to the right, and is the “shift”

to the right eventually constant? It appears that these questions can be answered by

examining iterating functions of the type:

1− exp

(
−
∫ t

0

Λ(x)dx

)
.
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Figure 2.2: Plots of various inputs and their outputs for a basic enzymatic cascade

with identical modules. In the first row, various input signals are plotted. In column

(a), Λ̄ = Ē (1− exp(−ωt)) with ω = 20 min−1. In column (b), Λ̄ = Ē (1− cos(ωt)) /2

with ω = 20 min−1. In column (c), Λ̄ = Ē (1− exp(−ωt)) with ω = 0.5 min−1.

Equation (2.1) was integrated for the various inputs with Ē = 0.1µM , S̄i = 0.5µM ,

and ai = 30(µM min)−1. The second row shows that various inputs have a sigmoidal

output after three layers and that the activation time moves to the left. The last

row shows what an 8, 9, and 10 layer cascade would do to the input. Eventually, the

activation time moves to the right.
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2.2 Enzymatic Cascade with Complex Formation

The enzymatic cascade seen in Figure 2.1 can be made more relevant by adding

intermediate complex formation. An n-stage cascade would have the following stoi-

chiometry:

∅ λ̄(t)−−→ E,

E + S1

a1
�
d1

C1
k1−→ E + P1,

P1 + S2

a2
�
d2

C2
k2−→ P1 + P2,

...

Pn−1 + Sn
an
�
dn

Cn
kn−→ Pn−1 + Pn.
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The corresponding set of mass-action equations is:

Ė = λ̄(t)− a1ES1 + (d1 + k1)C1,

Ṡ1 = −a1ES1 + d1C1,

Ċ1 = a1ES1 − (d1 + k1)C1,

Ṗ1 = k1C1 − a2P1S2 + (d2 + k2)C2,

Ṡ2 = −a2P1S2 + d2C2,

Ċ2 = a2P1S2 − (d2 + k2)C2, (2.8)

Ṗ2 = k2C2 − a3P2S3 + (d3 + k3)C3,

...

Ṡn = −anPn−1Sn + dnCn,

Ċn = anPn−1Sn − (dn + kn)Cn,

Ṗn = knCn,

E(0) = Ci(0) = Pi(0) = 0, S(0) = S̄i, for 1 ≤ i ≤ n.

As before, system (2.8) will be expressed as a sequence of modules given by the

stoichiometry:

∅ λ̄(t)−−→ E

E + S
a1
�
d1

C
k1−→ E + P.
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The corresponding set of mass-action equations is:

Ė = λ̄(t)− a1ES + (d1 + k1)C,

Ṡ = −a1ES + d1C,

Ċ = a1ES − (d1 + k1)C, (2.9)

Ṗ = k1C,

E(0) = C(0) = P (0) = 0, S(0) = S̄.

Mass-conservation can be used to reduce system (2.9).

SC = S + C,

E + C =

∫ t

0

λ̄(x)dx =: Λ̄(t),

P = S̄ − SC ,

ṠC = −k1C, (2.10)

Ċ = a1(Λ̄− C)(SC − C)− (d1 + k1)C,

C(0) = 0, SC(0) = S̄.

The system will be scaled to analyze the total substrate concentration SC and the

product formation P , which will provide a way to apply perturbation techniques. Λ̄,

which represents the total enzyme concentration in the system, can be assumed to be

non-negative and bounded. As before, say

sup
t∈[0,∞)

{Λ̄(t)} = Ē <∞.

To get an estimate for the maximum of C to provide a scaling parameter, it will be

necessary to first show that such a maximum exists. It can be argued physically, or
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by examining:

Ṡ = −a1(Λ̄− C)S + d1C,

Ċ = a1(Λ̄− C)S − (d1 + k1)C, (2.11)

C(0) = 0, S(0) = S̄,

that C and S will stay non-negative. If C = S = 0, then Ṡ = Ċ = 0. If S > 0 and

C = 0, then Ċ ≥ 0 since Λ̄ ≥ 0. If S = 0 and C > 0, then Ṡ > 0. The right hand

side of system (2.11) is continuous with continuous partials, so the solution set will

be unique and continuous. So solutions that start in the first quadrant will stay in

the first quadrant. Since C is bounded, it must have a supremum. Also, if Ċ(t0) > 0,

then it must be that there exists t1 > t0 such that Ċ(t1) < 0. If not, then there

would exist an ε > 0 and t2 > t0 such that C(t) > ε for all t > t2. Then that would

suggest SC < K−k1ε(t− t2) for some K > 0 and for all t > t2. t could be made large

enough such that SC < 0, which cannot happen. Therefore, there is a local maximum

of C that is arbitrarily close to the supremum. Let tmax be the point of such a local

maximum. Then

Ċ(tmax) = 0 = a1(Λ̄(tmax)− C(tmax))S(tmax)− (d1 + k1)C(tmax).

This implies

C(tmax) =
Λ̄(tmax)S(tmax)

Km + S(tmax)
≤ ĒS̄

Km + S̄
=: C̄, (2.12)

where

Km =
d1 + k1

a1

(2.13)

is the Michaelis-Menten parameter.

The timescale on which the total-substrate concentration operates on can be es-

timated by:

(SCmax − SCmin
)∣∣∣ṠC∣∣∣

max

≈ S̄

k1C̄
=
Km + S̄

k1Ē
:= tSC

. (2.14)
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The variables in system (2.10) can be scaled as:

T =
t

tSC

, sc(T ) =
SC(t)

S̄
, c(T ) =

C(t)

C̄
, p(T ) =

P (t)

S̄
, Λ(T ) =

Λ̄(t)

Ē
.

The following dimensionless parameters will be needed:

σ =
S̄

Km

, κ =
d1

k1

, ε =
Ē

Km + S̄
.

System (2.10) is equivalent to the following dimensionless system:

Λ(T ) =
1

Ē

∫ tsT

0

λ̄(x)dx,

p(T ) = 1− s(T ),

s′c(T ) = −c, (2.15)

εc′(T ) = (κ+ 1) [((σ + 1)Λ (T )− σc) (sc − εc)− c] ,

sc(0) = 1, c(0) = 0.

If it is assumed that ε << 1, then perturbation theory can be applied to approximate

system (2.15). Suppose that sc and c can be expanded in powers of ε,

sc(T ) ∼ sc0(T ) + εsc1(T ) + · · · ,

c(T ) ∼ c0(T ) + εc1(T ) + · · · .

Then the O(1) equations are:

s′c0 = −c0,

c0 =
(σ + 1)Λ (T ) sc0

σsc0 + 1
, (2.16)

sc0(0) = 1, c0(0) = 0.

The system (2.16) has an explicit solution:

sc0(T ) =
1

σ
W

[
σ exp

(
σ − (1 + σ)

∫ T

0

Λ(x)dx

)]
, (2.17)

p0(T ) = 1− 1

σ
W

[
σ exp

(
σ − (1 + σ)

∫ T

0

Λ(x)dx

)]
,
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where W is the Lambert-W function. By examining the properties of the Lambert-W

function and the exponential function, it can be shown that the functional operator:

F : (Λset,R>0)→ Λset,

defined as:

Fσ(Λ) = 1− 1

σ
W

[
σ exp

(
σ − (1 + σ)

∫ T

0

Λ(x)dx

)]
(2.18)

is well-defined. Let

F 1(Λ) = Fσ1(Λ), F 2(Λ) = Fσ2(Fσ1(Λ)), · · · .

Then the output for an n-stage cascade is approximated by:

p0n = F n(Λ).

Lemma 2.2.1 The same conclusions in Lemma 2.1.4 will also be true for the oper-

ator defined in (2.18).

Proof: The proofs to show that every iterate will be increasing and every iterate

after the first will be strictly increasing are very similar to the proofs for Lemma 2.1.4

but now considering f(T, σ) = 1− 1
σ
W [σ exp (σ − (1 + σ)T )]. It is easy to show that

f(0, σ) = 0, limT→∞ f(T, σ) = 1, and f(T, σ) is strictly increasing in T .

To prove the log-concavity assertions, let p1 = F 1(Λ), p2 = F 2(Λ), and sc2 = 1−p2.

From the system (2.16),

s′c2
sc2

=
−(σ2 + 1)p1

σ2sc2 + 1
.

Since sc2 is decreasing and positive, σ2+1
σ2sc2+1

will be increasing and positive. Since p1

is increasing and positive, by Lemma 2.1.1
s′c2
sc2

will be decreasing. A similar argument

can be made to show that sc3 will be strictly log-concave.

To prove assertion 4, let p = F 1(Λ), c = p′, and sc = 1− p. It can be shown that:

c′

c
=

Λ′

Λ
+

s′c
(σ1sc + 1)sc

.
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It was argued above that sc will be log-concave, so s′c
sc

will be decreasing and negative

since s′c < 0 and sc > 0. This also implies that 1
σ1sc+1

will be increasing and positive.

By Lemma 2.1.1, c′

c
will be log-concave and unimodal. This implies p will be log-

concave by Lemma 2.1.2. Induction can then be applied.

This motivates a more general probability conjecture.

Conjecture: Suppose φ is a differentiable, log-concave cumulative distribution func-

tion with support on (0,∞). Let Λ be a cumulative distribution function with support

on (0,∞). Let F (Λ) = φ
(∫ x

0
Λ(t)dt

)
. Then there exists k ∈ N such that F n(Λ) has

a unimodal density for all n ≥ k.

2.2.1 Accuracy of the perturbation scheme

To determine the accuracy of system (2.16) to approximate system (2.15), the

O(ε) equations can be analyzed. It will be useful to note that

c′0 =
(σ + 1)sc0Λ

′

σsc0 + 1
+

(σ + 1)s′c0Λ

(σsc0 + 1)2
. (2.19)

The O(ε) equations are:

c1 =
1

1 + σsc0

(
c0(σc0 − (σ + 1)Λ) + ((σ + 1)Λ− σc0)sc1 −

c′0
κ+ 1

)
,

s′c1 = −c1,

sc1(0) = 0.

The equation for sc1 can be expressed as:

s′c1 = −P (T )sc1 +Q(T ),

32



where

P (T ) =
1

1 + σsc0
((σ + 1)Λ− σc0) =

−s′c0
sc0

+
σs′c0

1 + σsc0
,

Q(T ) =
1

1 + σsc0

(
c′0

κ+ 1
+ c0((σ + 1)Λ− σc0)

)
=

1

1 + σsc0

(
(σ + 1)sc0Λ

′

(κ+ 1)(σsc0 + 1)
+

(σ + 1)s′c0Λ

(κ+ 1)(σsc0 + 1)2
− (σ + 1)Λs′c0

+
σs′c0(σ + 1)sc0Λ

σsc0 + 1

)
.

This means

sc1 = exp

(
−
∫ T

0

P (x)dx

)∫ T

0

exp

(∫ y

0

P (x)dx

)
Q(y)dy.

The integrating factor is:

exp

(∫ T

0

P (x)dx

)
=

1 + σsc0
(σ + 1)sc0

.

Hence,

exp

(∫ T

0

P (x)dx

)
Q(T ) =

Λ′

(κ+ 1)(σsc0 + 1)

+ Λ

(
s′c0

(κ+ 1)sc0(σsc0 + 1)2
−

s′c0
sc0(σsc0 + 1)

)
.

Then∫ T

0

exp

(∫ y

0

P (x)dx

)
Q(y)dy =

∫ T

0

Λ′

(κ+ 1)(σsc0 + 1)

+ Λ

(
s′c0

(κ+ 1)sc0(σsc0 + 1)2
−

s′c0
sc0(σsc0 + 1)

)
dy.

Let u = sc0(y) and v = Λ(y). Then∫ T

0

exp

(∫ y

0

P (x)dx

)
Q(y)dy =

∫ Λ

0

1

(κ+ 1)(σu+ 1)
dv

+

∫ sc0

1

v

(κ+ 1)u(σu+ 1)2
du−

∫ sc0

1

v

u(σu+ 1)
du.
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Since 0 ≤ u, v ≤ 1,∣∣∣∣∫ T

0

exp

(∫ y

0

P (x)dx

)
Q(y)dy

∣∣∣∣
≤ 1

κ+ 1

∫ Λ

0

dv+
1

κ+ 1

∣∣∣∣∫ sc0

1

1

u(σu+ 1)2
du

∣∣∣∣+

∣∣∣∣∫ sc0

1

1

u(σu+ 1)
du

∣∣∣∣
=

Λ

κ+ 1
+

1

κ+ 1

∣∣∣∣log

(
(σ + 1)sc0
σsc0 + 1

)
+

σ(1− sc0)
(σ + 1)(σsc0 + 1)

∣∣∣∣
+

∣∣∣∣log

(
(σ + 1)sc0
σsc0 + 1

)∣∣∣∣ .
This implies the inequality:

|sc1 | ≤
(σ + 1)sc0Λ

(σsc0 + 1)(κ+ 1)
+

σsc0(1− sc0)
(κ+ 1)(σsc0 + 1)2

− (σ + 1)sc0
(κ+ 1)(σsc0 + 1)

log

(
(σ + 1)sc0
σsc0 + 1

)
− (σ + 1)sc0

σsc0 + 1
log

(
(σ + 1)sc0
σsc0 + 1

)
≤ 1

κ+ 1

(
2 +

1

e

)
+

1

e
< 3,

which implies that if ε << 1, then ε |sc1| << 1. Therefore, the perturbation scheme

is valid.

Since F is an O(1) approximation to the true output, treating a cascade as an

n-fold iteration of F has the potential to introduce additional error. It is intuitive

that one can trade the number of iterations against the smallness of ε.

We can see how perturbations in the input would propagate through the approx-

imated model. Suppose Λ is the input and Λ + εΛ1 is the perturbed input. Let sc0

be the output for Λ and s̃c0 be the output to the perturbed input. Then

log(sc0) + σsc0 = σ − (σ + 1)

∫ T

0

Λ(x)dx,

log(s̃c0) + σs̃c0 = σ − (σ + 1)

∫ T

0

Λ(x) + εΛ1(x)dx,

which implies

log(sc0)− log(s̃c0) + σ(sc0 − s̃c0) = (σ + 1)ε

∫ T

0

Λ1(x)dx.
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By the Mean Value Theorem, there exists ξ ∈ (s̃c0 , sc0) ⊂ (0, 1], such that

log(sc0)− log(s̃c0) =
1

ξ
(sc0 − s̃c0).

This implies that

|sc0 − s̃c0| =
∣∣∣∣ σ + 1

σ + 1/ξ

∣∣∣∣ ∣∣∣∣ε∫ T

0

Λ1(x)dx

∣∣∣∣ ≤ ε

∣∣∣∣∫ T

0

Λ1(x)dx

∣∣∣∣ .
This suggests that using a sequence of function compositions as a model of a signaling

cascade works well if
∣∣∫∞

0
s1(x)dx

∣∣ is bounded. Unfortunately, given the general

properties of the input Λ, it can be shown that
∣∣∫∞

0
s1(x)dx

∣∣ can be made relatively

large. It is possible to contrive counter-examples demonstrating a large error between

the outputs with inputs that are O(ε) between each other, but for most relevant

situations, the outputs tend to stay close to each other. More work is needed to

determine exactly what additional properties of Λ would guarantee close outputs.

2.2.2 Simulation Results and Discussion

As can be seen in Figure 2.4, it appears that an enzymatic cascade with complex

formation will process signals similarly to an enzymatic cascade without complex

formation. Perturbation techniques were used to prove this fact when Ē/(S̄+Km) is

small. In the process, a Michaelis-Menten type equation for open enzymatic systems

was developed and rigorously analyzed. Figure 2.5 demonstrates the validity of the

perturbation scheme even with a periodic input. Parameters derived from closed-

enzymatic experiments should be applicable to open enzyme networks under certain

conditions. It was shown that the error in the approximation to sc, and hence p, will

be small if ε is small. However, it is possible that the approximation to c could be large

depending on Λ′ and σ. If Λ′ is large, then the error in c could be large. However,

in the cascading scheme, the maximum possible slope of the output is always less

35



than one. It was shown that under certain conditions, errors in the input function

will not propagate through a simple enzymatic reaction. Figure 2.6 shows that errors

do tend to accumulate, but the rate appears linearly dependent on ε. More work is

needed to analyze the error propagation into simple and complex enzymatic systems.

It appears that iterating Equation (2.18) will convert any input into a sigmoidal

output, and usually does so in 3 iterations. This result does not depend on having

identical modules. A thousand simulations were run in which a 3-stage cascade had

3 different σ parameters randomly and uniformly sampled from 0 to 5. In all cases,

the outputs were sigmoidal. Though a counterexample can be contrived to show a

non-sigmoidal output for a 3-tier cascade, most physically relevant signals appear to

be converted into a sigmoidal output. Figure 2.3 shows that the output curve for the

counterexample is very close to being sigmoidal.
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Figure 2.3: A non-sigmoidal counterexample for a 3 layer cascade. With a brief

pulse input followed by a shock, a local maximum can be seen in the derivative of

p3. However, the output curve is essentially S-shaped. This result was generated by

iterating Equation (2.18) with σ = 1.

36



(a)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

Λ̄

(b)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

Λ̄

(c)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

Λ̄

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
1

P
2

P
3

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
1

P
2

P
3

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
1

P
2

P
3

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
8

P
9

P
10

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
8

P
9

P
10

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (min)

C
o
n
ce
n
tr
a
ti
o
n
(µ

M
)

 

 

P
8

P
9

P
10

Figure 2.4: Plots of various inputs and their outputs for a basic enzymatic cascade

with complex formation and identical modules. In the first row, various input signals

are plotted. In column (a), Λ̄ = Ē (1− exp(−ωt)) with ω = 20 min−1. In column (b),

Λ̄ = Ē (1− cos(ωt)) /2 with ω = 20 min−1. In column (c), Λ̄ = Ē (1− exp(−ωt))

with ω = 0.5 min−1. Equation (2.8) was integrated for the various inputs with

Ē = 0.1µM , S̄i = 0.5µM , ai = 30(µM min)−1, and ki = di = 60 min−1 The second

row shows that various inputs have a sigmoidal output after three layers and that

the activation time moves to the left. The last row shows what an 8, 9, and 10 layer

cascade would do to the input. Eventually, the activation time moves to the right.

The results are very similar to the results for a more basic cascade without complex

formation.

37



(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

T

S
ca

le
d
C
o
n
ce
n
tr
a
ti
o
n

 

 

Λ

(b)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

T
S
ca

le
d
C
o
n
ce
n
tr
a
ti
o
n

 

 
sc
c
sc0
c0

(c)

0 2 4 6
−1

−0.5

0

0.5

1

T

S
ca

le
d
C
o
n
ce
n
tr
a
ti
o
n

 

 

sc1

c1

(d)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

T

S
ca

le
d
C
o
n
ce
n
tr
a
ti
o
n

 

 

sc
c

sc0 + ǫsc1

c0 + ǫc1

Figure 2.5: Plots demonstrating the accuracy of the perturbation expansion. In (a),

the scaled input Λ = (1− cos(ωT ))/2 with ω = 6 is plotted. Equation (2.15) and its

O(1) and O(ε) approximations were integrated with σ = 1, κ = 1, and ε = 0.1.
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Figure 2.6: Plots demonstrating the accuracy of approximating an enzymatic cascade.

The first row shows that the same input function is used; Λ̄ = Ē (1− cos(ωt)) /2

with ω = 10 min−1. Equation (2.8) was integrated and scaled and then compared to

iterating Equation (2.18). For simplicity, the rate parameters were derived from the

parameters Ē = 0.5µM , S̄i = 0.5µM , κ = 1, and tsc = 1. In column (a), ε = 0.1. In

column (b), ε = 0.01. It appears that the errors tend to accumulate, but more work

is needed to determine exactly at what rate the accumulation occurs.
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2.3 Model of Enzymatic Cascade with Enzyme Destruction

The previous models assumed that the enzymes flowed into and out of the system

at a rate independent of the enzyme concentration. It is possible to construct a

cascade where the enzyme destruction is dependent on the enzyme concentration

as seen in Figure 2.7. Suppose that the enzyme destruction is proportional to the

Figure 2.7: A basic enzymatic cascade where the enzymes are destroyed.

concentration of enzymes and that the final product, Pn, is not destroyed. Then the
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stoichiometry is:

∅
λ̄(t)

�
d̃0

E,

E + S1
a1−→ E + P1,

P1
d̃1−→ ∅,

P1 + S2
a2−→ P1 + P2,

P2
d̃2−→ ∅,

...

Pn−1 + Sn
an−→ Pn−1 + Pn.

The corresponding set of mass-action equations is:

Ė = λ̄(t)− d̃0E,

Ṡ1 = −a1ES1,

Ṗ1 = a1ES1 − d̃1P1,

Ṡ2 = −a2P1S2,

Ṗ2 = a2P1S2 − d̃2P2, (2.20)

...

Ṡn = −anPn−1Sn,

Ṗn = anPn−1Sn,

E(0) = Pi(0) = 0, S(0) = S̄i, for 1 ≤ i ≤ n.

If this cascade is represented as a chain of modules, each module would have the

stoichiometry:

∅
λ̄(t)

�
d̃0

E,

E + S
a1−→ E + P,
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and the corresponding set of equations:

Ė = λ̄(t)− d̃0E,

Ṡ = −a1ES,

Ṗ = a1ES, (2.21)

E(0) = P (0) = 0, S(0) = S̄.

System (2.21) can be reduced to:

P = S̄ − S,

Ė = λ̄(t)− d̃0E, (2.22)

Ṡ = −a1ES,

E(0) = 0, S(0) = S̄.

Let

Λ̄ =

∫ t

0

λ̄(x)dx.

Suppose that Λ̄ is non-negative and bounded and that

sup
t∈[0,∞)

{Λ̄(t)} = Ē <∞.

Unlike the previous models, there is no guarantee that all the substrates will be

converted to products. So it will be difficult to derive a time-scale based on system

(2.22) alone. Since |Smax − Smin| ≤ S̄, the following will be used to estimate the

timescale:

|Smax − Smin|∣∣∣Ṡ∣∣∣
max

≤ S̄∣∣∣Ṡ∣∣∣
max

≈ S̄

a1ĒS̄
=

1

a1Ē
:= ts.

The variables in system (2.22) will be scaled as:

T =
t

ts
, s(T ) =

S(t)

S̄
, p(T ) =

P (t)

P̄
, m(T ) =

E(t)

Ē
, Λ(T ) =

Λ̄(t)

Ē
,
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with the following dimensionless parameter:

η =
d̃0

a1Ē
.

The scale for P , which is P̄ , will be determined later. The dimensionless system

equivalent to system (2.22) is:

m′ = Λ′(T )− ηm

s′ = −ms (2.23)

m(0) = 0, s(0) = 1.

System (2.23) can be solved explicitly.

m = Λ(T )− ηe−ηT
∫ T

0

eηxΛ(x)dx

s = exp

[
−
∫ T

0

Λ(x)− ηe−ηx
(∫ x

0

eηyΛ(y)dy

)
dx

]
.

Alternatively,

m = e−ηT
∫ T

0

eηxΛ′(x)dx

s = exp

[
−
∫ T

0

e−ηx
(∫ x

0

eηyΛ′(y)dy

)
dx

]
.

In the previous models, it was assumed that the enzymes flowed into and out of the

system at a rate independent of the concentrations of the enzymes in the system. In

this model, the destruction of the enzymes are proportional to the concentration of

enzymes. So it will be assumed that flow into the system is positive. In addition,

suppose that Λ satisfies most of the properties of (2.6). Let Λset2 be the set of

increasing functions that are in Λset. Then Λ will satisfy:

lim
T→∞

Λ(T ) = 1.
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The limiting behavior of s can be determined using a Laplace transform:

lim
T→∞

s(T ) = exp

[
−
∫ ∞

0

e−ηx
(∫ x

0

eηyΛ′(y)dy

)
dx

]
= exp

[
−Lx

{∫ x

0

eηyΛ′(y)dy

}
(η)

]
= exp

(
−Λ(∞)

η

)
= exp

(
−1

η

)
.

Therefore, the scale for the product can be determined as:

p(T ) =
P (t)

S̄ (1− e−1/η)
,

and

p =
1− s

1− e−1/η
.

One of the interesting differences between a model where the enzymes are destroyed

and the previous models is that there is no guarantee all the substrates will be con-

verted to products. In fact, it is possible that successive iterations of identical modules

could have the opposite effect of amplification. Let

γ =
a1

d̃0

.

Then the supremum of P (t) is:

lim
t→∞

P (t) = P̄ = S̄
(

1− e−γĒ
)
. (2.24)

Lemma 2.3.1 Suppose a cascade is represented by system (2.20) with identical mod-

ules and module parameters S̄ and γ. If S̄γ ≤ 1, then limn→∞ P̄n = 0. If S̄γ > 1,

then there exists Ēcrit such that Ēcrit = S̄
(
1− exp(−γĒcrit)

)
and limn→∞ P̄n = Ēcrit.

Proof: The supremum of the products at each stage can be determined by iterating

Equation (2.24), which will define a discrete dynamical system defined in reference
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[32]:

P̄n+1 = S̄
(

1− e−γP̄n

)
.

Let

f(x) = S̄
(
1− e−γx

)
.

Then the following is true:

lim
x→∞

f(x) = S̄,

f(0) = 0,

f ′(x) = S̄γe−γx > 0,

f ′(0) = S̄γ,

f ′′(x) = −S̄γ2e−γx < 0.

Hence, f starts at 0, is increasing, bounded, and concave. If f ′(0) = S̄γ ≤ 1, then 0

is the unique fixed point to the equation:

x = f(x),

and it will also be globally attracting. Therefore,

lim
n→∞

P̄n+1 = 0.

Now suppose that that f ′(0) = S̄γ > 1. Then 0 will be an unstable fixed point for

the iterative map. Since f(0) = 0 and f ′(0) > 1, there is a neighborhood about 0

such that f(x) > x. Since f is bounded, increasing, and concave, there is a unique

solution to x = f(x), which shall be called Ēcrit. So Ēcrit = S̄
(
1− exp(−γĒcrit)

)
.

Also

f ′(Ēcrit) = S̄γe−γĒ.

It is not difficult to argue using a Taylor Series expansion that:

γĒcrit < e−γĒcrit − 1 for γĒcrit > 0.
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This implies that

γĒcrite
−γĒcrit

1− e−γĒ
< 1 and f ′(Ēcrit) = S̄γe−γĒ < 1.

So Ecrit will be a globally attracting fixed point to the iterative map. Therefore,

limn→∞ P̄n = Ēcrit.

Lemma 2.3.2 Suppose a cascade is represented by system (2.20) and has alternating

modules with parameters S̄1, γ1, S̄2, and γ2. If S̄1S̄2γ1γ2 ≤ 1, then 0 will be a globally

attracting fixed point. Otherwise, 0 will be an unstable fixed point.

Proof: Let f1(x) = S̄1 (1− e−γ1x) and f2(x) = S̄2 (1− e−γ2x). Then

(f1 ◦ f2)′(0) = (f2 ◦ f1)′(0) = S̄1S̄2γ1γ2.

So limn→∞ P̄n = 0 if S̄1S̄2γ1γ2 ≤ 1, and 0 will be unstable otherwise.

2.3.1 Simulation Results and Discussion

Depending on the enzyme destruction rate, a cascade with enzyme destruction

can behave differently than a cascade without. There is no guarantee that all the

substrates will converted into products. Column (a) of Figure 2.8 shows that if the

enzyme destruction rate is small, then the steady-states of the outputs will approach

an Ēcrit value with each additional layer. The shapes of the curves are sigmoidal and

tend to shift to the right with each additional layer as seen in a basic enzymatic cas-

cade. Column (b) of Figure 2.8 shows that if the enzyme destruction rate is high, then

each additional layer in the cascade will actually cause the steady-states to decrease

until they approach zero. To prove this and determine the relevant parameters, an

iterative map was formulated. Figure 8 displays cobweb plots of different iterative

schemes. Figure 8 (a) shows that if S̄γ < 1, then the steady states will approach
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a non-zero fixed point, which suggests the outputs can be amplified. Figure 8 (b)

shows that if S̄ > 1, then zero will be a global attractor of the iterative map. Figure

8 (c) shows that if two different modules are alternated with S̄1S̄2γ1γ2 > 1, then the

steady-states will eventually switch between two different non-zero values. Figure 8

(d) shows that if S̄1S̄2γ1γ2 < 1, then zero will again be a global attractor.
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Figure 2.8: Plots of the output of an enzymatic cascade with enzyme destruction.

In (a), the enzyme destruction rate is low, γS̄ = 3. In (b), the enzyme destruction

rate is high, γS̄ = 0.75. To generate the results, Equation (2.20) was integrated with

the parameters Ē = 0.1µM , S̄i = 0.5µM , and ai = 30(µM min)−1. In column (a),

d̃i = 5min−1. In column (b), d̃i = 20min−1. The input function for both columns is

Λ̄ = Ē (1− exp(−ωt)) with ω = 20 min−1.
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Figure 2.9: Cobweb plots of the limiting behavior of the output for an n-stage enzy-

matic cascade with enzyme destruction. The steady-state for an n+1 stage cascade is

plotted against the steady-state of an n stage cascade. In (a), the enzyme destruction

rate is low, γS̄ = 3. In (b), the enzyme destruction rate is high, γS̄ = 0.75. In (c),

the module parameters alternate between γS̄ = 3 and γS̄ = 0.75. In (d), the module

parameters alternate between γS̄ = 1.5 and γS̄ = 0.6.

2.4 Enzymatic Cascade with Complex Formation and Enzyme Destruction

The model seen in Figure 2.7 can be made more relevant with the addition of

complex formation.
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The stoichiometry looks like:

∅
λ̄(t)

�
d̃0

E,

E + S1

a1
�
d1

C1
k1−→ E + P1,

P1
d̃1−→ ∅,

P1 + S2

a2
�
d2

C2
k2−→ P1 + P2,

P2
d̃2−→ ∅,

...

Pn−1 + Sn
an
�
dn

Cn
kn−→ Pn−1 + Pn.

The corresponding set of mass-action equations is:

Ė = λ̄(t)− d̃0E − a1ES1 + (d1 + k1)C1,

Ṡ1 = −a1ES1 + d1C1,

Ċ1 = a1ES1 − (d1 + k1)C1,

Ṗ1 = k1C1 − d̃1P1 − a2P1S2 + (d2 + k2)C2,

Ṡ2 = −a2P1S2 + d2C2,

Ċ2 = a2P1S2 − (d2 + k2)C2,

Ṗ2 = k2C2 − d̃2P2 − a3P2S3 + (d3 + k3)C3,

... (2.25)

Ṡn = −anPn−1Sn + dnCn,

Ċn = anPn−1Sn − (dn + kn)Cn,

Ṗn = knCn,

E(0) = Ci(0) = Pi(0) = 0, S(0) = S̄i, for 1 ≤ i ≤ n.
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A module will have the form:

Ė = λ̄(t)− d̃0E − a1ES + (d1 + k1)C,

Ṡ = −a1ES + d1C,

Ċ = a1ES − (d1 + k1)C, (2.26)

Ṗ = k1C,

E(0) = C(0) = P (0) = 0, S(0) = S̄.

System (2.26) can be reduced one dimension using the mass conservation equation:

S + C + P = S̄.

Let

SC = S + C,

EC = E + C.

Then system (2.26) is equivalent to

ĖC = λ̄(t)− d̃0(EC − C),

ṠC = −k1C, (2.27)

Ċ = a1(EC − C)(SC − C)− (d1 + k1)C,

E(0) = C(0) = 0, S(0) = S̄.

There are multiple time-scales that system (2.27) operates on. Let

Λ̄(t) =

∫ t

0

λ̄(x)dx,

and suppose that

sup{λ̄} = Ēω, sup{Λ̄} = Ē.
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Then the timescale that EC operates on can be estimated by:

ECmax − ECmin∣∣∣ĖC∣∣∣
max

≈ Ē

Ēω
=

1

ω
:= tE.

The argument for the supremum of C is similar to that given in the derivation of

Equation (2.12). Let

τ =
t

tE
, λI(τ) =

λ̄(t)

Ēω
, ΛI(τ) =

Λ̄(t)

Ē
,

mI(τ) =
EC(t)

Ē
, scI (τ) =

SC(t)

S̄
, cI(τ) =

C(t)

C̄
.

A few dimensionless parameters can be defined:

γ =
a1

d̃0

, κ =
d1

k1

, α1 =
d̃0

ω
, α2 =

k1

ω
, σ =

S̄

Km

, ε =
Ē

S̄ +Km

. (2.28)

Km and C̄ are defined in Equations (2.12) and (2.13). Then system (2.27) is equivalent

to the scaled system:

m′I(τ) = λI(τ)− α1

(
mI −

σ

σ + 1
cI

)
,

s′cI = −α2εcI ,

c′I(τ) = α2(κ+ 1) [((σ + 1)mI − σcI)(scI − εcI)− cI ] , (2.29)

mI(0) = cI(0) = 0, scI (0) = 1.

Suppose that ε � 1 and that mI , cI , and scI can be expanded in powers of ε as

follows:

mI = mI0 + εmI1 + ε2mI2 + · · · ,

scI = scI0 + εscI1 + ε2scI2 + · · · ,

cI = cI0 + εcI1 + ε2cI2 + · · · .
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The O(1) approximation of (2.29) is

scI0(τ) = 1,

m′I0(τ) = λI − α1

(
mI0 −

σ

σ + 1
cI0

)
, (2.30)

c′I0(τ) = α2(κ+ 1)(σ + 1)(mI0 − cI0),

mI0 = cI0 = 0.

Let a = σ
σ+1

and b = (σ + 1)(κ+ 1). Then system (2.30) can be expressed as follows:m′I0(τ)

c′I0(τ)

 = A

mI0(τ)

cI0(τ)

+

λI(τ)

0


where

A =

−α1 α1a

α2b −α2b

 .
It can be shown that both eigenvalues of A will be real and negative. mI0 and cI0

can be solved explicitly using Variation of Parameters.

However, to capture the limiting behavior of system (2.26), it will be necessary to

derive an estimate for the timescale that SC operates on. It is difficult to estimate

the timescale of SC in general, but a similar argument to the derivation of Equation

(2.14) can be used. Let

tSC
=
S̄ +Km

k1Ē
,

and

T =
t

tSC

, λo(T ) =
λ̄(t)

Ēω
, Λo(T ) =

Λ̄(t)

Ē
,

mo(T ) =
EC(t)

Ē
, sco(T ) =

SC(t)

S̄
, co(T ) =

C(t)

C̄
.

Let the dimensionless parameters be defined as in Equation (2.28). Then system
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(2.26) is equivalent to:

α2εm
′
o(T ) = λ(T )− α1

(
mo(T )− σ

σ + 1
co(T )

)
,

s′co(T ) = −c,

εc′o(T ) = (κ+ 1) [((σ + 1)mo − σco)(sco − εco)− c] , (2.31)

mo(0) = c(0) = 0, sco(0) = 1.

If ε � 1 and mo, sco , and co can be expressed as a power series in ε, then the O(1)

approximation to system (2.31) is

0 = λ(T )− α1

(
(mo0 −

σ

σ + 1
co0

)
,

s′co0(T ) = −co0,

0 = ((σ + 1)mo0 − σco0)sco0 − co0,

sco0(0) = 1.

sco0 can be solved explicitly as

sco0(T ) = exp

(
−σ + 1

α1

∫ T

0

λ(x)dx

)
= exp

(
−(σ + 1)

α1tSC
ω

Λ(T )

)
.

Therefore,

lim
t→∞

SC(t) ≈ lim
T→∞

S̄sco0(T ) = S̄ exp

(
−γ
κ+ 1

Ē

)
,

and

P̄ = lim
t→∞

P (t) ≈ lim
T→∞

S̄ − S̄sco0(T ) = S̄

(
1− exp

(
−γ
κ+ 1

Ē

))
.

So if all the modules are identical, then the limiting behavior of the product formation

can be determined iteratively as follows:

P̄n+1 = S̄

(
1− exp

(
−γ
κ+ 1

P̄n

))
.

The results from the previous section can be extended to a model with complex

formation. Mainly,
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Lemma 2.4.1 Suppose a cascade is represented by system (2.25) with identical mod-

ules and module parameters S̄ and γ and κ. If S̄ γ
κ+1
≤ 1, then limn→∞ P̄n = 0.

If S̄ γ
κ+1

> 1, then there exists Ēcrit such that Ēcrit = S̄
(
1− exp(− γ

κ+1
Ēcrit)

)
and

limn→∞ P̄n = Ēcrit.

The proof follows the same as the proof for Lemma 2.3.1.

2.4.1 Simulation Results and Discussion

To study the behavior of a cascade with complex formation and enzyme destruc-

tion, singular perturbation was used to approximate the system when Ē/(S̄+Km) is

small. The approximation for the total enzyme concentration appears to work well if

the time is scaled by tE. The limiting behavior of sc is approximated well by the O(1)

equations when the time is scaled by tSC
, but this approximation does not appear to

capture the beginning behavior of sc. More than likely, this is the result of approxi-

mating SCmax − SCmin
as S̄. Figure 2.10 demonstrates the results of the perturbation

scheme.

Figure 2.11 demonstrates that an enzymatic cascade with complex formation and

enzyme destruction behaves similarly to the simpler model without complex forma-

tion. The familiar sigmoidal shape and shift to the right appears in Column (a) where

the enzyme destruction rate is low. In Column (b), the steady-state of the output

diminishes with the addition of extra layers when the destruction rate is high. The

relevant parameter that determines whether zero will be an attractor is γS̄/(κ + 1).

So the addition of complex formation will only have a detrimental effect on these

types of cascades. If κ is large, then zero will have a greater chance of becoming an

attractor. This makes intuitive sense since κ = d1/k1. If κ � 1, then the products

are less likely to form.
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Figure 2.10: Perturbation approximation to an enzymatic cascade with complex for-

mation and enzyme destruction. In (a), the solution on the time scale tE is plotted.

In (b), the limiting behavior of sc can be approximated by scaling by tSC
. Equa-

tions (2.29) and (2.31) were integrated using the parameters Ē = 0.1µM , S̄ = 0.5µM ,

a1 = 30(µM min)−1, k1 = d1 = 60 min−1, and d̃0 = 5 min−1. The input function is

Λ̄ = Ē (1− exp(−ωt)) with ω = 5min−1.
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Figure 2.11: Plots of the output of an enzymatic cascade with enzyme destruction and

complex formation. In column (a), the enzyme destruction rate is low. In column

(b), the enzyme destruction rate is high. The same parameters used to generate

Figure 2.10 were used to generate these results. However, in column (a) d̃i = 5min−1,

and in column (b) d̃i = 10min−1.
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2.5 Signaling Cascade with Opposing Covalently Modified Proteins

Figure 2.12: A basic signaling cascade.

In a typical signaling cascade, a phosphatase will convert a product back into a

substrate, as seen in Figure 2.12. The stoichiometry governing the reactions looks

like:

∅ λ̄(t)−−→ E,

E +M1

a1
�
d1

C1
k1−→ E +M∗

1 ,

PPT1 +M∗
1

ã1
�
d̃1

X1
k̃1−→ PPT1 +M1,

M∗
1 +M2

a2
�
d2

C2
k2−→M∗

1 +M∗
2 ,

PPT2 +M∗
2

ã2
�
d̃2

X2
k̃2−→ PPT2 +M2,

...

where for every level i, the variables Mi, M
∗
i , Ci, PPTi, Xi denote the protein, its

activated form, the intermediate complex between the kinase and the protein it acts

on, the phosphatase and the intermediate complex between the phosphatase and the
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protein it acts on, respectively. The corresponding set of mass-action equations is:

Ė = λ̄(t)− a1EM1 + (d1 + k1)C1,

Ṁ1 = −a1EM1 + d1C1 + k̃1X1,

Ċ1 = a1EM1 − (d1 + k1)C1,

Ṁ∗
1 = k1C1 − ã1PPT1M

∗
1 + d̃1X1 − a2M

∗
1M2 + (d2 + k2)C2,

˙PPT 1 = −ã1PPT1M
∗
1 + (d̃1 + k̃1)X1,

Ẋ1 = ã1PPT1M
∗
1 − (d̃1 + k̃1)X1,

... (2.32)

Ṁn = −anM∗
nMn + dnCn + k̃nXn,

Ċn = anM
∗
nMn − (dn + kn)Cn,

Ṁ∗
n = knCn − ãnPPTnM∗

n + d̃nXn

˙PPT n = −ãnPPTnM∗
n + (d̃n + k̃n)Xn,

Ẋn = ãnPPTnM
∗
n − (d̃n + k̃n)Xn,

E(0) = M∗
i (0) = Ci(0) = Xi(0) = 0,

Mi(0) = M̄i, and PPTi(0) = PPT i for 1 ≤ i ≤ n.

2.5.1 Simulation Results and Discussion

Figure 2.13 demonstrates that the signaling cascade can convert many different

types of input signals into a smooth, sigmoidal output. The addition of extra layers

can decrease the activation time up to a point, after which the addition of more layers

will only cause a delay. With identical modules, the number of layers needed to reach

an optimal activation time depends on the rate that the input signal is coming in.

Some previous studies have examined the noise-filtering properties of signaling cas-

cades [24, 33]. A previous paper looked at the noise-filtering characteristics of a simple
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module of a protein with opposing covalent modifications. The parameters used to

generate Figure 2.13 were taken from the range listed in [23]. Since the behavior of

the signaling cascade is also observed in the most basic model, this strongly suggests

that the cascade architecture is also responsible for the noise-filtering properties.

Figure 2.14 shows what happens when the phosphatase concentration is too high.

Each additional layer will only cause the steady-state value of the output to diminish.

This behavior was also observed in a basic model with enzyme destruction. It may

be possible to derive an iterative map for the steady-state values. Figure 2.15 shows

another interesting property of multi-layered signaling cascades. If the phosphatase

concentration is low, than each additional layer will extend the time that the proteins

remain in an active state in response to a brief pulse. If the phosphatase concentration

is too high, then a brief pulse will not elicit a response.
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Figure 2.13: Plots of various inputs and their outputs for a basic signaling cascade

with identical modules. In the first row, various input signals are plotted. In column

(a), Λ̄ = Ē (1− exp(−ωt)) with ω = 5 min−1. In column (b), Λ̄ = Ē (1− cos(ωt)) /2

with ω = 10 min−1. In column (c), Λ̄ = Ē (1− exp(−ωt)) with ω = 0.1 min−1.

Equation (2.32) was integrated for the various inputs with Ē = 0.1µM , S̄i = 0.5µM ,

PPT i = 0.024µM , ai = 200(µM min)−1, and ki = di = 30 min−1. The second

row shows that various inputs have a sigmoidal output after three layers and that

the activation time moves to the left. The last row shows what an 8, 9, and 10

layer cascade would do to the input. Eventually, the activation time moves to the

right. The results are very similar to the results for a basic cascade without complex

formation.
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Figure 2.14: Plots of various inputs and their outputs for a basic signaling cascade

with identical modules. In the first row, various input signals are plotted. In column

(a), Λ̄ = Ē (1− exp(−ωt)) with ω = 5 min−1. In column (b), Λ̄ = Ē (1− cos(ωt)) /2

with ω = 10 min−1. In column (c), Λ̄ = Ē (1− exp(−ωt)) with ω = 0.1 min−1.

Equation (2.32) was integrated for the various inputs with Ē = 0.1µM , S̄i = 0.5µM ,

PPT i = 0.5µM , ai = 200(µMmin)−1, and ki = di = 30min−1. The results show that

a high phosphatase concentration can prevent the output from activating. The results

are similar to the results for a basic enzymatic cascade with enzyme destruction and

a high destruction rate.
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Figure 2.15: Plots of the output with a pulse input. In (a), the phosphatase concen-

tration is an order lower than the substrate concentration. In (b), the phosphatase

concentration is the same as the substrate concentration. The same parameters used

to generate Figure 2.14 were used to generate these results. However, the input

function is Λ̄ = Ē (1− exp(−ωt)) exp(−ωt) with ω = 5 min−1.

62



Chapter 3

CONCLUSION AND FUTURE OUTLOOK

Much work has been done over the years in analyzing mass-action models of en-

zymatic reactions. Numerous studies have been made that examined the Michaelis-

Menten approximation of closed enzymatic systems, and some studies have been

made towards analyzing perturbation approximations of open-enzymatic reactions;

however, this is the first work to rigorously show that Michaelis-Menten parameters

derived from closed experiments are applicable to open-enzymatic systems under cer-

tain conditions. It was argued in [34] that many researchers use the Michaelis-Menten

approximation without first validating the conditions under which the approximation

is valid. One such situation that has not been looked at in detail is the use of the

Michaelis-Menten approximation for enzyme-substrate reactions when those reactions

are embedded in larger chemical networks. This will be a major boon to systems

biologists since most parameters for enzymatic reactions are derived from isolated

experiments, but since these parameters are available in the literature, they are used

in networked modules.

This work validated the approximation when ε = Ē/(S̄+Km)� 1 and for systems

with an influx of enzymes. More work can be done to see what happens when ε = O(1)

or when ε � 1. Models with feedback, an influx of substrate, and a combination of

other tweaks, can also be examined in the future.

This research also highlighted the issue of error accumulation, but more work

needs to be done to examine how errors will propagate and accumulate through a

complicated network of chemical reactions. This is an interesting problem, but it is

not immediately obvious whether doing a parameter sensitivity analysis and error
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analysis on individual modules will be useful in general models. Studying a chain

of simple modules is a starting point, but more complicated networks may need a

different approach.

As stated in [19], MAPK cascades typically have three or four layers. The benefits

of a multi-stage cascade have been studied before, but this work is the first to rig-

orously examine the time-dependent properties of the cascade architecture. Previous

authors have looked at the noise-filtering characteristics of signaling cascades, but

this is the first work to argue that the noise-filtering is inherent in the basic cascade

architecture, regardless of whether the modules have an opposing covalently modi-

fied protein. Three stages are needed to filter out noise and transmit the relevant

information downstream, and too many identical layers may actually cause a delay

in the activation time, which suggests an evolutionary benefit to limiting the number

of tiers of a cascade to just a few. The basic versions of the cascades exhibit these

same behaviors as do their more complicated counterparts.

As stated in [35], the phosphatase concentrations in signaling cascades are rela-

tively small compared to the other constituent reactants. If the phosphatase concen-

tration is low, signaling cascades will behave similarly to a basic enzymatic cascade

without complex formation. This involved iterating functions of the type:

1− exp

(
−
∫ T

0

Λ(x)dx

)
.

Though several properties of the function operator were proven, there is still an inter-

esting, open conjecture about whether signals from Λset will turn sigmoidal eventually.

Given the properties of Λset, the operator involves iterating functions that define dis-

tribution functions, so tools from probability theory can be employed to answer the

question.

High phosphatase concentrations can be detrimental to the output of signaling
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cascades. By examining a simple cascade with enzyme destruction, it was shown

that if the phosphatase concentration is too high relative to the other constituent

reactants, then the steady-state value of the output will drop with each additional

layer of the cascade; zero becomes an attracting fixed point. This behavior was also

seen in more complicated models. A high phosphatase concentration can also destroy

another dynamical property of signaling cascades, the ability to sustain a signal after

a brief input. More work needs to be done to examine precisely why the cascade

architecture will sustain a signal in such a way. It is believed that the framework of

examining simple modules will be a fruitful avenue.

An interesting future research project would be to verify experimentally the prop-

erties observed in the iterative models of signaling cascades. A more comprehensive

study of the rate parameters seen in signaling cascades can be undertaken. The fil-

tering properties are dependent on the phosphatase concentrations, and the increase

or delay of the activation time is dependent on the model parameters. It would be

interesting to see if actual cascades are tuned to compensate for these effects. It

would be beneficial to collaborate with wet-lab researchers in the future.
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