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ABSTRACT

The study of acoustic ecology is concerned with the manner in which life interacts with

its environment as mediated through sound. As such, a central focus is that of the sound-

scape: the acoustic environment as perceived by a listener. This dissertation examines

the application of several computational tools in the realms of digital signal processing,

multimedia information retrieval, and computer music synthesis to the analysis of the

soundscape. Namely, these tools include a) an open source software library, Sirens, which

can be used for the segmentation of long environmental field recordings into individual

sonic events and compare these events in terms of acoustic content, b) a graph-based re-

trieval system that can use these measures of acoustic similarity and measures of semantic

similarity using the lexical database WordNet to perform both text-based retrieval and

automatic annotation of environmental sounds, and c) new techniques for the dynamic,

realtime parametric morphing of multiple field recordings, informed by the geographic

paths along which they were recorded.
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For Muffin.
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This dissertation involves topics relevant to multimedia information retrieval and in

so doing frequently talks about such things as the “classification,” “segmentation,” and

“discrimination” of “objects.” The term “sound” is used quite a bit to refer to short dig-

ital PCM audio recordings, and I even have the audacity at one point to quantitatively

evaluate what’s more or less an aesthetic experience. I’d feel dishonest to not point out,

however, that it’s become clear to me that in order to truly understand any matter, I

don’t need to look any further than the immediate presence of felt experience, blooming

buzzing confusion, eternal now, unspeakable, or whatever one wishes to call it which

doesn’t need a name, practice, or study. More than an esoteric apology, a necessary com-

ponent of my understanding of ecology is the intuitive awareness that, in immediate

experience, these types of boundaries don’t exist. If any of this is valuable, then listen-

ing is just as important, if not more important than, any computational analysis I could

ever hope to perform. I do, of course, enjoy contributing to the “buzzing” part of the

confusion.

Before getting into a lengthy list of “thank you”’s, I’d like to mention that this work

heavily depends on that of a group formed as part of the School of Arts, Media, and

Engineering—primarily that of Harvey Thornburg, Gordon Wichern, Alex Fink, Ji-

achen Xue, and Jinru Liu. The second chapter, which describes an open source library

called Sirens, is an implementation of the techniques described in Dr. Wichern’s disser-

tation, which I thoroughly recommend reading for background on event detection and

retrieval. Many of the ideas were also developed as a collaboration with Dr. Fink, who

developed a method of sequencing discrete sound events for soundscape synthesis that is

absent from this document but can be found in his dissertation. Dr. Thornburg was an

excellent mentor to whom I have to thank, but not blame, for most of my understanding

of digital signal processing and modeling stochastic processes.

Now, the thanks. Many thanks go to all my various friends and mentors with whom
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I’ve had the pleasure of working in the School of Arts, Media, and Engineering. Despite

all of its changes in six years, I couldn’t have asked to be part of a more delightfully eclectic

group. Special thanks go to Drs. Thanassis Rikakis, Hari Sundaram, and Andreas Spanias

for their dedication in figuring out “what to do with Brandon” and my entire committee

for putting up with my many changes in direction. Dr. Spanias provided much-needed

calm guidance to steer me toward completion, and Dr. Perry Cook couldn’t have come

at a more perfect time to help advise me on matters related to sound texture synthesis.

Finally, Dr. Gregory Shrader is to thank for encouraging me to be mindful of all my uses

of the word “just” in all its minimizing incarnations.

Most importantly, though, all my love and thanks go to my family and friends (in-

cluding Nermal, Muffin, Mochi, and Nekobasu) who have, for whatever strange reasons,

always entertained my nonsensical, “out-there” ramblings, joined me in speculative jam-

ming, and been there when I most felt like a quaking mess.
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Chapter 1

INTRODUCTION

The late 1960’s and early ’70’s, with the formation of the World Soundscape Project at

Simon Fraser University, R. Murray Schafer’s publication of The Tuning of the World [1],

and later Barry Truax’s Acoustic Communication [2], amongst others, saw the beginnings

of a new way of looking at the auditory scene known as acoustic (or “soundscape”) ecol-

ogy. An inherently interdisciplinary concept, acoustic ecology seeks to examine the rela-

tionships between life and its environmental context as mediated through sound. In the

over forty years that have passed since, acoustic ecology has supported the development

of numerous new ways of looking at our acoustic environments, inspiring work in fields

such as musical composition [3], bioacoustics [4], anthropology [5; 6], and architectural

acoustics [7], even proposing that soundscapes be seen as entities worth respecting and

preserving in their own right [1; 8]. An ecological interpretation of the acoustic scene

suggests a transactional relationship, where auditory phenomena are inseparable from

their associated physical sources and fields, and what we perceive to be separate sound

objects or events may in fact be intimately interdependent. Similar to other studies of

ecology, these interdependent relationships inspire certain prescriptive efforts in increas-

ing awareness, appreciation, and preservation of soundscapes [9; 8].

From a technological perspective, acoustic analysis has also had major breakthroughs.

In music, for example, information retrieval and machine learning have opened up such

possibilities as query-by-humming (or similarity) [10; 11; 12], automatic music transcrip-

tion [13], musical source separation [14], genre recognition [15; 16; 17], and other types

of semantic annotation [18; 19], to name but a few topics. Similarly, work in speech

coding and recognition (e.g. [20; 21]), through developing new strategies for encoding,
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compressing, and streaming speech, has assisted the creation of a global wireless telecom-

munications network, and we are beginning to see the possibilities of speech recognition

in consumer applications. Through tailoring many of these techniques toward environ-

mental audio, perhaps we can gain a better understanding of the composition and dy-

namics of soundscapes.

This document proposes a number of specific algorithms for the analysis of environ-

mental sounds that can make up a suite of computational tools for soundscape studies.

Additionally, a significant component of these tools, geographical soundscape synthesis,

will focus on assisting experiential studies, where through reflecting on the soundscape

as an auditory layer to interactive maps, listeners can intuitively explore its properties

geographically.

1.1 The soundscape

Although loosely used to describe the field of sounds representative of a particular

place, the term soundscape has many interpretations, some of which provide insight into

what tools might assist in their study. Within the context of [1], Schafer provides a

generic definition, describing a soundscape as any portion of a sonic environment re-

garded as a field of study: actual environments, musical compositions, tape montages,

and so forth. A more specific definition is used in [2], where Truax describes a model

that defines the soundscape as distinct from the sonic environment. Specifically, while a

sonic environment might describe all the acoustic energy present in a particular place,

the soundscape refers to how that environment is understood by those living in it. This

communication model has a significant psychological component, as the feedback loop

between auditory sensing and production is then the subject of analysis. This interpre-

tation is also reflected in the Handbook for Acoustic Ecology [22]. An important conse-

quence of this definition of a soundscape is that the term applies not only to open spaces,
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but also to those experiences provided by electroacoustic sources, such as loudspeakers or

even noise-canceling headphones: one way in which we actively construct soundscapes is

by deliberately replacing acoustic environments with other, more private environments.

Other uses of the term extend to music (for example, spatial compositions) and some

literature in ethnomusicology, where it can be used to describe the musical stylings of a

particular region or time period [23].

Despite the interdependent nature of a soundscape, certain classifications of sound

events and streams can be useful for description. To start with, Schafer provides the

following concepts:

1. Keynote sounds: similar to the key of a musical piece, a keynote sound can be

described as the ground, as opposed to figure, of a soundscape. Schafer states that

it may not always be consciously audible, but it nevertheless characterizes the rest

of the experience of the environment. Traffic, wahwah, wind, and other types of

longterm background dins are examples.

2. Sound signals: as the outstanding figure of a soundscape, these foreground sounds

are those events to which we tend to consciously attune. Examples include sirens,

bells, and other outstanding events.

3. Soundmark: either ground or signal, soundmarks uniquely characterize a place,

just as a particular building may characterize a city’s skyline or a lone tree may be

a landmark to a field.

Schafer also provides a detailed taxonomy of example sounds one might encounter in the

field. Krause [2] additionally presents a source-based classification:

1. Geophany: sounds initiated by geophysical phenomena such as climate and geolog-

ical events.
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2. Biophany: sounds initiated by biological life (plants and animals), not including

humans.

3. Anthrophony: sounds produced by humans or their artifacts.

1.2 Listening practice

As previously mentioned, any classification scheme, however useful, relies on the no-

tion that a soundscape is comprised of or interpreted as separate sound events. Through-

out this document, algorithms will often be discussed that treat sonic events an individ-

ual segments of single recordings of a soundscape, principally inspired by the concept of

auditory streaming, which is supported by a wealth of literature in psychoacoustics, as

surveyed by Bregman [24]. Auditory streaming proposes a model of the acoustic scene

that is interpreted as several co-occurring streams, which due to cues in sequential (sepa-

rate in time) grouping and simultaneous (overlapping in time) grouping, can merge and

divide, inspired by gestalt grouping principles in visual perception. For example, if two

simultaneous tones tend to have similar pitch dynamics, they may be interpreted as a

single stream, even if they do not originate from a single physical source: consider, for

example, the combined voice of a choir. Similarly, if multiple sound events tend to occur

at regular intervals with respect to each other, they may be grouped into a single stream,

such as the regular beating of a drum. Additional studies that attempt to examine psy-

choacoustic phenomenon in an ecological context (i.e. “in the wild”) can be found in

Neuhoff, et al. [25].

This psychoacoustic perspective has guided many of the decisions made in developing

the computational techniques described in later sections. Focusing on the psychological

interpretation of the acoustic scene is quite different from any approach that attempts

to identify specific “sounds” with individual “sources” in the material world. This focus
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also plays a fundamental role in Truax’s Acoustic Communication. While it may be true

that physical interactions transduce acoustic energy, a purely material interpretation does

not necessarily capture the experiential phenomenon of audition, possibly misleading

whatever analytical tools it informs. Speaking to acoustic ecology, Truax mentions that

acoustic communication “attempts to understand the interlocking behavior of sound, the

listener, and the environment as a system of relationships, not as isolated entities,” and

“with sound, everything interacts with everything else.” Finally, in his introduction, he

mentions that “for any argument based on perceptual experience, the only verification

and understanding will come from actual practice.” [2] This concept of listening as a

means to understanding has been the focus of many other composers and theorists.

Gaver [26; 27]mentions two types of listening: everyday listening and musical listen-

ing. Everyday listening focuses on the type of listening that is more common to everyday

life. Typically, when we hear sounds, we attempt to associate them with a specific physi-

cal source. Musical listening, on the other hand, may best be described in terms of Pierre

Schaeffer’s treatise on musique concréte, Traité des objets musicaux [28; 29], in which he de-

scribes acousmatic compositions comprised of sound objects, decontextualized from their

physical, historical, or psychological contexts. Schaeffer refers to this style of understand-

ing sound as reduced listening. Although he used different terms, the American composer

John Cage once alluded to the concepts of reduced listening and sound objects as follows:

"I love sounds just as they are, and I have no need for them to be anything

more than what they are. I don’t want them to be psychological. I don’t want

a sound to pretend that it’s a bucket or that it’s president or that it’s in love

with another sound. I just want it to be a sound." [30]

Similar styles of listening have been proposed for the experience of the soundwalk,

described by Schafer [1], which can be seen as a mindful listening practice while mov-
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ing through a space. Also of important note is the usincompositional practice of Pauline

Oliveros’s Deep Listening [31], which presents several compositions, or meditative prac-

tices, related to consciousness exploration through sound or one’s individual relationship

to sound. Many of these styles of understanding and relating to one’s environment are

inspired by or bear resemblance to mindfulness and dependent origination. From the

standpoint of Sōtō Zen, rōshi Shunryu Suzuki described an understanding of sound as

follows:

"Sound is everywhere. If you just practice it, there is sound. Do not try

to listen to it. If you do not listen to it, the sound is all over. Because you try

to hear it, sometimes there is sound, and sometimes there is no sound." [32]

Or, as Alan Watts frequently quoted rōshi Morimoto, "the sound of rain needs no transla-

tion." [33]While perhaps these practices cover far more than listening alone, they help to

describe the concept of a completely interconnected ecology of sound that is constantly

evolving with or without intellectual interpretation.

1.3 Problem statement and contributions

Schafer describes the problem of large-scale analysis of soundscapes as follows:

"To give a totally convincing image of a soundscape would involve ex-

traordinary skill and patience: thousands of recordings would have to be

made, tens of thousand of measurements would have to be taken, and a new

means of description would have to be devised." [1]

While this remark was written before many of the advances in digital audio recording

and signal processing that we have at our disposal today, the description of a “convincing

image of a soundscape” is still relevant, as it lays out many of the necessary components to

any soundscape organization project, automated or not. How one collects data, measures
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it, and describes it defines what is being communicated by any representation, as each

process introduces significant bias. By understanding what these biases are, we can better

understand what our findings do and do not tell us.

This dissertation will attempt to address the problem of providing a convincing image

of a soundscape by providing tools that answer the following questions:

1. How can we analytically decompose multiple, long field recordings into under-

standable components?

2. How can we catalog these components and learn from the relationships between

auditory features and semantic annotations?

3. How can we experientially provide a new means of reflecting on the soundscape to

help explore relationships that might be missed in computational analysis?

These questions are addressed through the following contributions:

1. An open source tool, Sirens, for the segmentation and comparison of continuous

environmental field recordings, allowing users to automatically decompose long

recordings into individual sonic events and then compare how similar they are to

each other in terms of acoustic content.

2. A unified graph-based framework that allows for the indexing of sound events and

associated semantic tags, making use of both acoustic similarity from Sirens and

WordNet-derived metrics of semantic similarity to allow for both content-based

retrieval (query by example), text-based retrieval, and automatic annotation of

sounds. Results are presented that suggest this type of associative retrieval could

greatly benefit existing large sound databases, especially in the realm of querying

databases with tags that do not yet exist in the database.

7



3. A review of existing interactive sound mapping projects, evaluating their various

features, content, and scope.

4. The evaluation of several new sound texture synthesis techniques for parametri-

cally morphing between multiple source sound textures for use in an interactive

sound map.

1.4 Outline

The remaining chapters will describe specific computational tools to assist in the

study of soundscapes and environmental sound, falling roughly into two categories: anal-

ysis and synthesis. For analysis, Chapter 2 will discuss an open-source environmental

sound analysis library, Sirens, used for segmenting continuous field recordings into dis-

crete events and evaluating the similarities between them. Chapter 3 will discuss how

these events can then be indexed into a large graph-based data structure consisting of

both the sound events and folksonomy-based tags, where acoustic similarity and semantic

similarity are used to allow both text-based and content-based retrieval and annotation.

Moving on to synthesis, Chapter 4 will provide a brief survey of nearly one hundred

existing interactive maps of field recordings, discussing their different types of content

and interaction styles. Pointing toward a new type of interactive experience of acoustic

maps, Chapter 5 will discuss a model for the automatic synthesis of soundscapes sourced

from multiple, geotagged field recordings through the parametric mixing of background

sound textures. Finally, Chapter 6 will discuss how these tools can be used as a whole and

several possible future directions in the realm of computational soundscape studies.
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Chapter 2

SIRENS: SEGMENTING AND COMPARING SOUND EVENTS

One of the central issues with analyzing entire soundscapes is sheer volume. Sound-

scapes cover vast distances and long durations. For example, a stationary field recording,

no matter how long, represents a single point in an enormous geographic region, just as a

still photograph represents a single point in time. Considering Schafer’s remarks regard-

ing providing convincing representations, multimedia retrieval and indexing paradigms

which can deal with large numbers of sounds, measurements, and annotations may pro-

vide useful ways in which to organize the soundscape. Central to these retrieval schemes

is finding suitable representations or features to index. These representations could be

explicit, such as individually recorded sound events, or they could take the form of mea-

surements, such as spatial loudness contours or even affective descriptors [34].

For the purpose of recording soundscapes, using long, continuous recordings can

greatly reduce the number of man-hours spent editing and collecting data. Addition-

ally, continuous recordings ensure that more activity in a space is recorded, rather than

just those events which one targets based on preconceptions about what should occur in

the space. These preconceptions can be seen as specific hypotheses to be tested, but they

become restrictive when performing exploratory analyses or when the potential causes

of certain phenomena are unknown. Of course, where a microphone is placed or how it

moves also biases what activity is recorded in a space, but with continuous recordings, the

process of data collection may not require as frequent of high-level decisions about what

must be recorded. Finally, once specific events are identified in a continuous recording,

one may recover the original context in which they have occurred simply by listening

to as much of the surrounding material as desired [35]. This latter idea of continuous
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recordings as an aid to thought and memory was part of the motivation behind Vannevar

Bush’s MEMEX device proposed in 1945 [36; 37].

To this end, the open source C++ library, Sirens allows for the segmentation, index-

ing, and retrieval of environmental and natural sounds. Sirens allows any developer to

automatically

1. extract feature trajectories from long recordings,

2. segment these recordings into many short, independent sound events, and

3. compare these recordings to each other in terms of acoustic content.

With these features, Sirens provides the backbone for the retrieval framework that will

be described in Chapter 3. Sirens is freely-available open-source software that is architec-

turally separate from any retrieval or synthesis platform, making it available for other

acoustic indexing applications, such as archiving sound effects or personal recordings.

Additionally, Sirens is built with interoperability with existing recording and audio anal-

ysis software in mind, so portions are also available as a collection of Vamp [38] plugins,

common to acoustic analysis software such as Sonic Visualiser [39] and Audacity [40].

Sirens also supports the use of feature trajectories provided by Vamp plugins for the seg-

mentation and comparison processes, allowing developers to choose which feature sets

they wish to use for these algorithms, such as features from the LibXtract [41] library.

This modularity may make the segmentation and retrieval algorithms within Sirens use-

ful for the analysis of other acoustic media, including music and speech.

2.1 Feature extraction

Indexing and retrieval schemes for audio clips typically start with some means of

acoustic feature extraction (for some examples, see [42], [43], and [10]) and are com-

monly known as content-based retrieval schemes. Typically, this type of analysis involves
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extracting several feature trajectories across the duration of an acoustic signal according

to a frame-based approach, whereby features are computed across a sliding window of the

original signal, as the characteristics being measured (such as loudness or pitch) are gener-

ally non-stationary over these durations. These windows typically vary from 20-100ms

and may overlap. For example, a feature calculated on a one-second sound clip with a

20ms window and half-overlap will result in a feature signal of 100 frames. For Sirens,

these features are computed over frames obtained by convolving the audio signal with a

20ms hamming window with 10ms overlap.

With Sirens, we are primarily interested in analyzing entire sound environments,

which encompass a broad variety of sounds compared to systems that are intended for

specific sources, such as recorded music [44], birdsong [45], or bat vocalizations [46].

As such, we have chosen a multifeatured approach, which has significant advantages

over using single features (such as solely relying on mel-frequency cepstral coefficients

(MFCCs) [47], commonly used in musical analysis), as environmental sound events tend

to vary over a large range of perceivable characteristics. We have developed a small, core

set of features that were developed with Bregman’s concept of ecological validity [24] in

mind, focusing on those characteristics which might best distinguish two sound events

from each other to a human listener, according to known psychoacoustic phenomena.

These features are as follows:

1. Loudness: We define loudness as the RMS level of a windowed frame of data in

decibels, that is:

Lt := 20l o g10(RM St ), (2.1)

where Lt and RM St denote the loudness and RMS level of the t -th windowed

frame, respectively.

Loudness has clear usefulness for indexing environmental sound events, as two ad-
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jacent sound events within the same soundscape may frequently vary in loudness.

In some cases, sounds may not be loud enough to be perceivable, and in other cases,

significantly loud sound events may event mask softer events [48]. Note that the

term “loudness” is used in this instance to refer to a simple, perceptually scaled

estimate of instantaneous loudness rather than a nuanced measure from a more

complex model.

2. Temporal sparsity: Temporal sparsity is defined as the ratio of the L∞ and L1 norms

(maximum and sum) of loudness values within a one-second sliding window over

computed loudness frames. As such, temporal sparsity responds more slowly to

sudden events than might loudness, but it computes frames at the same temporal

resolution.

T St :=
max

�

Lt−N+1, ..., Lt

�

∑t
k=t−N+1 Lk

, (2.2)

where N is the number of frames over which the sliding window is computed. For

a sliding window one second in duration and a typical frame length of 20ms with

half overlap, N = 50.

By taking a ratio of the maximum loudness value over the sum of all loudness

values, temporal sparsity provides an interesting textural, rather than spectral mea-

sure. For example, slow typing on a keyboard might have high temporal sparsity,

faster typing will have lower temporal sparsity, and a constant buzzing will have

yet lower temporal sparsity, as its textural components are of too high of frequency

for the feature to pick up, depending on the window size used for analysis.

3. Spectral centroid: Spectral centroid is defined as the centroid of the bark-weighted

frequency distribution over a single frame. Values are scaled by their levels in barks,
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a perceptually-adapted frequency measure described in [49].

SCt :=

∑M
j=1 b j

�

b j − b j−1

�

|ST F Tt , j |2
∑M

j=1

�

b j − b j−1

�

|ST F Tt , j |2
, (2.3)

where |Xt ( j )| refers to magnitude of the j -th STFT coefficient of the t -th frame and

b j refers to the bark weighting coefficient of the bin’s median frequency.

Spectral centroid can provide a rough measure of pitch for otherwise non-pitched

sounds. For some sounds, such as white noise, traffic, or even running water, this

measure will have less significance. For other features, sudden changes in spectral

centroid can be a useful indicator of sound event onsets.

4. Spectral sparsity: Spectral sparsity (inspired by the GINI index and related sparsity

metrics [50]) is the ratio between the L∞ and L1 norms of the STFT coefficients

for a particular frame:

SSt :=
max

�

|ST F Tt ,1|, ..., |ST F Tt ,M |
�

∑M
k=1 |ST F Tt ,k |

, (2.4)

Spectral sparsity will be extremely high for sources with notable harmonic compo-

nents and yet higher for pure-tone-based sounds such as those produced by sirens

or alarms. Sounds with more complex frequency structure, such as rushing water

or gusts of wind, will have much lower spectral sparsity.

5. Transient index: The transient index is defined as the overall magnitude of the

MFCC flux between two frames of data, summed over a number of frames along a

sliding window as follows:

T It :=
t
∑

k=t−(N+2)



M F C Ck −M F C Ck−1





2 , (2.5)

where M F C Ck is the fifteenth-order MFCC vector for frame k and N denotes the

number of frames over which the transient index is computed. Similar to temporal

sparsity, generally N = 50.
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High transient index indicates a rapid fluctuation in spectral content, which has

been shown to be a highly effective measure for detecting transients in acoustic

signals [51]. Sound events can vary in their abundance of transients. For example,

running water typically involves high fluctuations in spectral content, whereas a

constant pure tone, such as an alarm, will have a much lower transient index.

6. Harmonicity: Harmonicity is a a probabilistic measure of the likelihood that a

particular sound is produced from a harmonic source, such as a human voice [52]

or musical instrument. Specifically, it is defined as the maximum likelihood that

a particular fundamental frequency and its harmonics are responsible for the spec-

tral structure of a sound, obtained using an efficient approximation of Goldstein’s

algorithm [53] for pitch estimation [51]. For more information, see [35].

Environmental soundscapes can contain a large number of sounds, and whether or

not a particular sound event emanates from a harmonic source can be an important

characteristic in this space, indicating, for example, the presence of human voices

or many animal vocalizations.

2.2 Segmentation

Segmentation of audio signals is useful for applications such as browsing and annota-

tion [54], phoneme detection [21], and musical note or chord detection [55]. In the case

of environmental soundscapes, we aim to extract individual sound events. Of critical im-

portance to the task of event detection, however, is how we define the term “event.” To

obtain a useful definition of a sonic event, it is necessary to consider the types of listening

described in Chapter 1. For the purposes of the environmental soundscapes we wish to

analyze in Sirens, we concern ourselves with segmenting events using some inspiration

from auditory streaming cues.
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2.2.1 Segmenting an Individual Feature

For segmenting sound events from long environmental recordings, Sirens provides an

efficient implementation of a switching state space model developed by Wichern, et al.,

described in [35] and [19]. This technique models events as having distinct onsets and

durations that may overlap, allowing for multiple sound events to be detected at the same

time while not explicitly accounting for multiple physical sources in analysis, such as in

source separation algorithms. Additionally, the segmentation framework used in Sirens

uses a multi-feature approach as opposed to single-feature approaches based on tasks such

as transient detection [51] or novelty measures [56]. Among those described in Sec-

tion 2.1, different features are typically responsive to different types of sounds, depend-

ing on the environment in which the sound was recorded, and segmentation boundaries

for each feature may be delayed, depending upon the resolution of analysis and behavior

of the feature (for example, features calculated along a sliding window, such as temporal

sparsity and transient index, are delayed in detecting sudden activity.)

While Sirens uses a multi-feature method for segmentation, it is modular in that sep-

arate features have individual segmentation trajectories which contribute to the overall

segmentation mode. By having each feature independently contribute to the overall pre-

diction of segmentation boundaries, not all features need to be responsive to the existence

of a sound event for it to be detected. At the core of segmentation in Sirens is a switching-

state-space prediction model [57], whereby an optimal trajectory of segmentation states

is computed at the same resolution as the feature trajectories, tracking several estimations

according to a global Markov state transition model.

Starting with each individual feature, a linear prediction model is defined according

to the dynamic bayesian network depicted in Figure 2.1, whose state is estimated with a

Kalman filter, thereby modeling each feature as an underlying linear process corrupted
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Figure 2.1: Individual feature segmentation model.

by noisy measurement. From this model, we define three variables:

1. Yt ,i , the observation of feature i at time t . This corresponds to the original feature

values extracted in Section 2.1.

2. St ,i , the estimated feature value of feature i at time t . Assuming that calculated

features are observations of inherent features corrupted by Gaussian noise, this

represents the estimated feature trajectory.

3. µt ,i , the estimated segmentation state of feature i at time t , taking on values of

the set {−,O,C }, where − represents the lack of a sound event, O represents the

sudden onset of a sound event, and C represents the continuation of a sound event

that has already started. How these variables are connected will be shown shortly.

Specifically, the hidden state, St , is represented as the following recurrence relation:

St = (1−α)St−1+αqt (µt−1,µt ), (2.6)

Yt = St + rt , (2.7)
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with qt and rt modeled as Gaussian noise as follows:

qt (µt−1,µt )∼N (0,Q(µt−1,µt )) (2.8)

rt ∼N (0, R), (2.9)

where R and Q are tunable measurement and process variance, respectively. Note that

not all transitions, µt−1 → µt are possible, as will shortly be discussed, significantly

reducing the number of free parameters needing to be tuned.

With appropriately tuned covariance for each feature’s trajectory, Yt ,i and St ,i could

be used alone for the purpose of feature noise reduction using a Kalman filter if one

already knew the segmentation state. However, the switching state-space model we use

assumes that the stochastic dynamics of each feature varies with its segmentation state

(−, O, or C ). At time t , if we track the residual cost of predicting St ,i according to the

distribution assumed by state µt ,i , we can choose the state with the least cost to be the

actual segmentation state.

For example, loudness will typically encounter a higher value in the presence of a

sound event to which it is responsive, but may vary throughout, so the covariance for

− and C may differ, that for O likely being higher than either. Similarly, the transient

index will likely be quite high at the onset of an event, since a sudden change, such as a

percussive hit followed by a quieter resonance, might be represented as a transient in the

audio signal. We have also found that spectral sparsity has an interesting behavior where

the variance of its trajectory is lower during the presence of a sound event. Sound events

are typically either very spectrally sparse or not sparse at all (as in the case of harmonic

sounds or pure tones), whereas noise to which this feature is not responsive will typically

vary in sparsity.

With three states, one could imagine that this estimation will be quite combinato-

rially expensive, as there exist nine possible transitions per feature, not including their
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Pon

1

Pon
Poff

1− Pon− Poff1− Pon

Figure 2.2: Prior Markov transition probabilities for both the per-feature segmentation

mode, µt ,i and the global segmentation mode, Mt . Note that Pon and Poff form a simple

pair of parameters for tuning the global state transitions.

fusion into a global segmentation state. However, not all transitions are possible. For

example, a sound event must onset before it can continue to be detected (µt ,i = C if and

only if µt−1,i = O) and an event will not onset if it is to only turn off the next frame

without continuing to be detected (µt ,i 6= − if µt−1,i = O). We can therefore reduce

the combinatorial complexity by ensuring that only logical state transitions are allowed,

according to the Markov state transition diagram shown in Figure 2.2.

In addition to determining which state transitions are acceptable, this transition net-

work sets a prior distribution on which state transitions are more likely, which provides

a means of tuning certain features to make them more or less responsive or more or less

“sticky” in the case of ambiguities between their trajectory distributions. Pon and Poff fur-

ther simplify the parameterization, acting as tuning parameters for the prior probability

that the feature’s segmentation state will onset or turn off, respectively.

2.2.2 Multi-feature fusion

In addition to each feature’s segmentation state, there also exists a global segmentation

state, which is the primary focus of our estimation. Since not all features respond to

certain events and some respond with more delay than others, we can combine them

into a global switching state space model. Figure 2.3 shows how the global segmentation
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µt ,1 µt ,2 · · · µt ,F

Figure 2.3: Inference of global segmentation state from each feature’s segmentation state.

state is conditionally dependent upon each feature’s state.

By assuming that the global state transition probabilities behave similarly to those

of individual features, we can fuse the prediction of all feature segmentation states and

the global segmentation state into one model, which can be used to approximate the

state sequence with maximum likelihood via the Viterbi algorithm as per [57]. For full

details on the analysis of this model developed by Wichern et al., including performance

evaluations and parameter assignments, see [19].

The global mode transition probabilities, P (µt ,i |µt−1,i , Mt−1, Mt ) are listed in [19] as

follows:

Mt−1 Mt µt−1,i P
�

µt ,i =−
�

P
�

µt ,i =O
�

P
�

µt ,i =C
�

− − − 1 0 0

{−,O,C } − {O,C } 1− plag+,i 0 plag+,i

{−,O,C } {O,C } − 1− plag+,i plag+,i 0

{−,C } O {O,C } plag+,i −
�

plag+,i plag+,i

�

1− plag+,i plag+,i plag+,i

C C {O,C } 0 0 1

O C O 0 0 1

O C C plag+,i −
�

plag+,i plag+,i

�

1− plag+,i plag+,i plag+,i

Table 2.1: Transition probabilities for inferring the global state from the individual state

variables, P (µt ,i |µt−1,i , Mt−1, Mt ), where i denotes the feature index for each variable.
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In addition to limiting the segmentation transition probabilities as previously men-

tioned, the variables plag+,i and plag+,i allow for certain features to detect event changes as

lagging behind or pre-empting the global segmentation mode. Features such as temporal

sparsity, which is calculated over a long sliding window, for example, may react quite late,

having a higher lag.

To summarize, the model takes the following parameters. First, we have nine param-

eters per feature, Yi :

1. Qi (µt−1,i ,µt ,i ), where µt−1,i =−,µt ,i =−, feature variance for lack of an event.

2. Qi (µt−1,i ,µt ,i ), where µt−1,i =O,µt ,i =O, feature variance for a segment staying

on.

3. Qi (µt−1,i ,µt ,i ), where µt−1,i =O,µt ,i =−, feature variance for a segment turning

off.

4. Qi (µt−1,i ,µt ,i ), where µt−1,i = −,µt ,i = O, feature variance for an onset of a new

segment.

5. Qi (µt−1,i ,µt ,i ), where µt−1,i =O,µt ,i =O: feature variance for an onset during an

existing segment.

6. αi ∈ [0,1]: Low-pass filter coefficient for the feature.

7. ri : Observation noise for the feature.

8. plag+,i ∈ [0,1]: Probability that the feature’s segmentation mode will lag a frame

behind the global mode.

9. plag−,i ∈ [0,1]: Probability of a frame detecting onset early.
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For the global mode, we also have global priors Pon and Poff , so for F features, the

model is tuned with 9F + 2 parameters. In the case of the six primary features in Sirens,

this corresponds to 56 parameters, though often parameter values, such as those for plag+,i

and plag+,i are similar across multiple features. For the purpose of our experiments, we

manually tune the remaining parameters through inspection of the feature trajectories

against a segmentation by hand. In the future, it may prove fruitful to provide a simpler

parameterization or a more automated way to learn these parameters, such as through

expectation maximization [58; 59] or a visual interactive tool to allow labeling of states

in training data.

2.3 Sound event similarity

The second purpose of Sirens is to provide some means of comparing sound events

after they have been segmented. Given a source sound, si , and a target sound, s j , [60] de-

scribes a method whereby each feature trajectory for si is represented as a hidden Markov

model (also see [19; 59]) and the likelihood of s j being produced by the same stochas-

tic process that produced si is computed as the joint emission likelihood of the feature

trajectories of s j . This process can be summarized as follows:

1. First, each feature of si is represented as either a constant, linear, or quadratic curve

according to that which has the best fit. (Optionally, these feature trajectories are

first smoothed with a Savitzky-Golay filter [60].)

2. A hidden Markov model is constructed with states along the estimated curves (see

Figure 2.4), represented by λ(1:F )(si ).

3. The likelihood of the feature trajectories for s j , Y (1:F )
1:T
(s j ), resulting from the models

for si is calculated as:

L(si , s j ) =− log P
�

Y (1:F )
1:T
(s j )|λ

(1:F )(si )
�

, (2.10)
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Figure 2.4: Markov transition diagrams, λi , for constant (C ), linear (L), and quadratic

(Q) trajectories.

which can be computed using the forward algorithm.

One benefit of this model over other methods of computing similarity, such as by vec-

tor distance between feature trajectories or summary statistics, is that it is robust against

varying delays in the feature trajectories, similar to dynamic time warping [61]. Addi-

tionally, if we assume the sound events being compared were extracted given the segmen-

tation model from Section 2.2, then this model uses similar representations of the events

that were used to identify them. The selection of the possible curve fits is based off the

assumption that the sound events are relatively short. For longer events with more com-

plex feature dynamics, HMMs constructed from other representations, such as spline fits,

may be more appropriate.
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Chapter 3

GRAPH-BASED ACOUSTIC AND SEMANTIC RETRIEVAL

Once sound events have been segmented, it is necessary to index them in terms of relevant

features for tasks including annotation, retrieval, and re-synthesis. With this in mind, we

have developed a flexible retrieval system that allows for all these retrieval tasks to be

performed within a single framework.

Many techniques for text-based retrieval or classification of audio signals are para-

metric in nature, relying on explicit generalization, where individual classifiers are cre-

ated for each label. For example, classification systems have been built for automatic

record reviews [62], onomatopoetic labels [63], and genre [16], emotion [64], and in-

strumentation [65; 66] identification. These systems make use of techniques such as one-

versus-all discrimination [62], training each label with a support vector machine (SVM)

classifier [63; 67], and learning a separate gaussian mixture model (GMM) for each la-

bel [18; 62].

These multiclass methods benefit from constant query time complexity independent

of the number of training instances, in that it is only necessary for each query (such as

a sound, in the case of annotation) to be measured against each classifier. For specific,

relatively stationary label domains, such as musical genres, this can be quite beneficial—

especially when the number of sounds greatly exceeds the number of labels. However,

there are many cases where non-parametric models can provide additional flexibility and

robustness. One such case involves the presence of multiple types of information beyond

acoustic feature vectors and annotations. For example, [68] and [69] describe methods

where semantic similarity between tags can assist in retrieval and annotation using tags

not yet seen in training data. In large-scale systems with more complete tag sets, this may
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be less of a problem, but in live databases with incomplete tagging where no large-scale

training database exists beyond user activity, as in the case of Freesound [70], retrieval

results can often come up empty.

Non-parametric (also known as similarity- or instance-based [71; 72]) schemes com-

pare each query to instances in a live database rather than having distinct training and pro-

duction / evaluation stages. For example, [73], [74], and [75] use K-nearest-neighbors re-

trieval, where unlabeled sounds are annotated with tags belonging to their nearest neigh-

bors in an acoustic feature space. [76] and [73] build two separate hierarchical cluster

models—one for retrieval and one for annotation.

Non-parametric graph-based techniques are often used for search in semantic and

other associative networks. One technique that has seen much use is spreading activation.

In spreading activation, an initial node (a query) is labeled with some real-valued, posi-

tive weight, and this weight is spread to neighboring nodes, reduced by a decay factor.

Spreading activation has been used in textual information retrieval applications, where

nodes correspond to documents and terms [77]. Shortest paths are also of interest in

associative retrieval. In [78], we introduced a graph-based framework where sounds are

connected to tags through user activity and sounds are fully connected via acoustic sim-

ilarity estimated by the HMM-based query-by-example algorithm from Sirens described

in Chapter 2. New queries are immediately connected to other sounds or tags (either

through acoustic or semantic similarity via the WordNet::Similarity library [79]), and

shortest path distances using all nodes are used to rank retrieval results.

The results of [68], which will be discussed in Section 3.3, demonstrate that including

semantic similarity to account for tags foreign to the training set can assist in annotation

and text-based retrieval both for a random subset from the Freesound library, where tags

are associated to sounds in a binary manner, and a smaller comprehensive user study,

where each sound is tagged by multiple users. Further, as will be discussed in Section 3.4,
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we built upon this graph-based technique and performed a more in-depth study of its

properties. Namely, we sought to:

1. evaluate the system using both traditional cross-validation (Section 3.3) and sim-

ulations of real-world systems with complete sound and tag sets but incomplete

tagging data (Section 3.4),

2. explore variations on using shortest paths for retrieval (Sections 3.2.2 and 3.4.3),

3. demonstrate the effectiveness of adding a shortest-path algorithm to any existing

tag-based query system, regardless of the presence of acoustic and semantic similar-

ity measures (Section 3.4.3),

4. improve shortest-path retrieval performance by pruning network edges to nodes’

K nearest neighbors (Sections 3.2.3 and 3.4.4), and

5. explore the impact of assigning different weights to the importance of acoustic,

semantic, and user-provided information (Sections 3.2.4 and 3.4.5).

3.1 Graph structure

Formally, the network structure for retrieval and annotation takes the form of a

weighted, undirected graph, G = (V , E), where V = S ∪ T and S and T represent sets

of sound and tag nodes, respectively. The graph edges, E , can be partitioned into three

disjoint subsets, ESS ⊆ S× S, EST ⊆ S×T , and ET T ⊆ T ×T , representing acoustic, user-

provided, and semantic information. The weighting function is denoted by w : E →R+.

This type of network structure can be adapted to different domains, such as music or

even text documents, but for the sake of this application, we focus on the task of re-

trieving and annotating environmental sounds. We therefore assume that sounds take the
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form of short audio clips representing individual sonic events. The following sections

will discuss how the weights for ESS , EST , and ET T are calculated.

3.1.1 Sound-to-sound weights (ESS )

Sound-to-sound weights can be computed by comparing the acoustic content of each

sound. From Section 2.3, we obtain the log-likelihood of the feature trajectories of sound

s j being generated from the hidden Markov models, λ(1:F )(si ), expressed as

L(si , s j ) =− log P
�

Y (1:F )
1:T
(s j )|λ

(1:F )(si )
�

. (3.1)

For retrieval in the undirected graph, however, it is helpful to have a semi-metric be-

tween sounds that is symmetric and nonnegative. In [80], a semi-metric that holds these

properties is given:

w(si , s j ) := L(si , si )+ L(s j , s j )− L(si , s j )− L(s j , si ). (3.2)

3.1.2 Sound-to-tag weights (EST )

Letting U|S |×|T | be a votes matrix where Ui j is equal to the number of users who have

tagged sound si with tag t j , we can compute the joint probability of si and t j as

P (si , t j ) =
Ui j

∑

k ,l Uk l

(3.3)

and set the sound-to-tag weights with a similar logarithmic scaling:

w(si , t j ) :=− log P (si , t j ). (3.4)

3.1.3 Tag-to-tag weights (ET T )

For tags, we obtain a fully connected tag-to-tag similarity matrix using a similarity

metric from the WordNet::Similarity library [79]. Specifically, we have tested the jcn,
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lin, lch, res, and vector metrics. The vector metric computes the co-occurence of

two tags within the collections of words used to describe other tags (their glosses) [79] and

lch is based on the shortest-path distance between two tags in a taxonomy, while jcn,

lin, and res are all based on the information content of the terms and their ancestors

within a corpus (for a full review, see [81] and [79].)

For consistency in comparing different metrics, we compute the network distances

from the following normalization of similarities, W N S(ci , c j ):

w(ti , t j ) :=− log
� W N S(ci , c j )

maxi , j W N S(ci , c j )

�

. (3.5)

jcn, developed by Jiang and Conrath [82], has an interesting symmetry with the log-

scaled weights for ESS and EST and in some ways can be seen as joining the graph structure

with the WordNet taxonomy, as it is based on path lengths between terms weighted by

information content. Specifically, for parts of speech that form a hierarchy (e.g. nouns

and verbs), you can model the distance between a term and its parent as proportional

to the conditional probability of a term, t co-occurring in a corpus also containing its

parent, i.e. P (t |parent(t )). So, the jcn distance between a term and its parent is as follows:

jcn(t ,parent(t )) =− log P (t |parent(t )) (3.6)

= IC(t )− IC(parent(t )), (3.7)

where IC(t ) denotes the information content of t in a given corpus. Denoting lso(ta, tb )

as the nearest common parent of two terms, ta and tb , (the lowest super-ordinate or most

specific common subsumer), one can then compute the distance between any two terms

as a weighted shortest path distance between them in the taxonomy [81]:

jcn(ta, tb ) = IC(ta)+ IC(tb )− 2IC(lso(ta, tb )) (3.8)

= 2 log P (lso(ta, tb ))− (log P (ta)+ log P (tb )). (3.9)
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Figure 3.1: Two different possible query tasks with a single retrieval network. qs and

qt represent a sound query and a tag query, respectively, and t1, t2, ..., tM ∈ T and

s1, s2, ..., sN ∈ S represent tag and sound nodes already in the database. The query node

and the subset of nodes over which the user is querying is marked in bold, and on-demand

edge weights between the query and its respective class of nodes (sounds or tags) are

marked with dashed lines. Note that S forms a clique.

3.2 Path-based retrieval

3.2.1 Shortest path retrieval

Given the structure of the graph, G(V , E) and its weights, w, as defined in the pre-

vious section, we rank search results according to their shortest path lengths from the

query, q , to the target, t , in ascending order:

w∗(q , t ) = min
P=〈q ,...,t 〉

|P |−1
∑

i=1

w(Pi , Pi+1), (3.10)

which can be computed using Dijkstra’s algorithm. Figure 3.1 shows two examples of

network queries, one for text-based retrieval, which starts by connecting a foreign tag to
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the existing tags and finally retrieving over the sound tags, and annotation, which starts

out by comparing a new sound to existing sounds, querying over the entire set of tags.

3.2.2 Depth-ordered retrieval

Shortest paths may sometimes hinder retrieval results in cases where they provide

discursive paths that rely on numerous relations. For example, if sound-to-tag weights

are trained with ground truth data obtained from user studies or extensive user activity,

it would be desirable to only use these direct paths and visit no other nodes rather than

second-guessing users (who, for the purpose of evaluation, the literature often assumes

are experts).

In these cases, we can form a tuple, L, of positive integers representing desired path

depths, with an optional final element, ∗, representing shortest paths of any depth. Any

targets unconnected to the query will be returned at the end of the list in random order.

For example, L = (2,∗) will prioritize minimum-cost direct edges between the query

and targets first, only using shortest paths as a last resort in the absence of direct edges.

L= (2,3,∗)will first return all direct edges, then shortest paths visiting only three nodes,

and finally all remaining shortest paths. For the case of L = (2,3, ...,N ), where depths

are in monotonically increasing order, this algorithm works similarly to a breadth-first

search. In Section 3.4.3, we will discuss the relative performance of depth orderings.

3.2.3 Edge pruning

Shortest-path retrieval can also be quite computationally expensive. In the worst case,

Dijkstra’s algorithm has O(|E |+ |V | log |V |) time complexity. As our graph is quite well-

connected (for large numbers of sounds), we can assume the complexity of performing

a single query is O(|V |2), as |E | = O(|V |2) when the number of sounds greatly exceeds

the number of tags. In these cases, it can be beneficial to limit search to only a node’s K
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nearest neighbors, giving a complexity of O(K |V |+ |V | log |V |) =O(|V | log |V |). Using

spectral clustering to cluster sounds (as in [78] and thereby partition ESS , we can even

improve retrieval to O(log |V |) complexity. In Section 3.4.4, we will discuss the effects of

K nearest neighbor pruning, where G is converted to a directed graph with inbound and

outbound edges of ESS and ET T identical to the original undirected edges and all but the

K lowest-weight outbound edges are removed.

3.2.4 Weighting edge classes

Lastly, it should be noted that the ranking of search results can be quite sensitive

to variations in weighting between the different classes of edges, ESS , EST , and ET T , as

each assumes a different probabilistic model. If one class has particularly low weights, its

edges may be traversed more frequently than edges of other classes. In Section 3.4.5, we

examine the effects of setting class-specific weights, γC :

wγ (n1, n2) = γC w(n1, n2)

∀(n1, n2) ∈ EC ,∀EC ∈ {ESS , EST , ET T } (3.11)

3.3 Initial evaluation

3.3.1 Methodology

In the evaluation process, two datasets were used. The first, referred to as the Sound-

walks dataset, contains 178 sound files recorded by the authors. The 178 sound files were

recorded during seven separate field recording sessions, lasting anywhere from 10 to 30

minutes each and sampled at 44.1 KHz. Each session was recorded continuously and then

hand-segmented by the authors into segments lasting between 2 and 60 seconds in dura-

tion. The recordings took place at three light rail stops (75 segments), outside a stadium

during a football game (60 segments), at a skatepark (16 segments), and at a college campus
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(27 segments). To obtain tags, study participants were directed to a website containing

ten random sounds from the set and were asked to provide one or more single-word de-

scriptive tags for each sound. With 90 responses, each sound was tagged an average of

4.62 times. In this initial evaluation, we have used 88 of the most popular tags as our

vocabulary.

Because the Soundwalks dataset contains multiple subject responses per sound, a real-

valued votes matrix can be used to determine the sound-to-tag link weights. Obtaining

this votes matrix requires large amounts of subject time, thus limiting its size. So, to test

the retrieval network performance on a larger dataset, we used 2064 sound files and a

377-tag vocabulary from Freesound.org [70]. In the Freesound dataset, tags were applied

in a binary (relevant/irrelevant) manner to each sound file by users of the website. The

sound files were randomly selected from among all files on the site that contain any of the

50 most used tags and are between 3 and 60 seconds in length. Additionally, each sound

file contains between three and eight tags, and each of the 377 tags in the vocabulary were

used to describe at least five sound files.

To evaluate the performance of the retrieval network, we adopted a two-fold cross-

validation approach wherein each dataset was randomly partitioned into two non-over-

lapping subsets. One of these subsets and its associated tags was then used to build the

retrieval network. The remaining subset was then used as queries to test both the annota-

tion and text-based retrieval performance for unlabeled environmental sounds. Further-

more, an important novelty in this work is the ability of the retrieval network to handle

out-of-vocabularly tags, that is, querying with tags that are not yet tagged to any sounds.

To test the performance for out-of-vocabulary tags, a second tier of cross-validation was

employed where all tags in the vocabulary were randomly partitioned into five non-

overlapping subsets. One of these subsets was then used along with the subset of sound

files to build the retrieval network, while the remaining tags were held out of the vocab-
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Soundwalks Freesound

Number of sound files 178 2064

In network (training) 89 1032

Out of network (testing) 89 1032

Number of tags 88 377

In vocabulary 18 75

Out of vocabulary 70 302

Table 3.1: Database partitioning procedure for each cross-validation run.

ularly stored in the network. This partitioning procedure is summarized in Table 3.1 for

both the Soundwalks and Freesound datasets. Reported results are the average over these

ten (five tag partitonings and two sound partitioning) cross-validation runs. Relevance is

determined to be nonzero if a withheld sound file was actually labeled by a user with a

tag.

For each performance task, in addition to displaying precision and recall curves, we

compute mean average precision (MAP), the mean of precision values at the points where

each relevant item is returned, and mean area under the receiver operator characteristic

(MAROC), the area under the curve produced by plotting the ratio of true positives

versus false positives.

3.3.2 Semenatic similarity metrics

Table 3.2 lists MAP and MAROC values for both tasks using a variety of different se-

mantic similarity measures. The Jiang and Conrath measure [82] seems to perform best,

which is consistent with findings for other applications, such as determining word senses

in text [83]. Precision values are much lower for both tasks than corresponding tasks
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text-based retrieval annotation

Measure MAP MAROC MAP MAROC

jcn 0.2035 0.6912 0.7947 0.9045

lin 0.1801 0.7211 0.5669 0.8067

lch 0.1831 0.6823 0.5560 0.7890

res 0.1941 0.7212 0.6023 0.8371

vector 0.1720 0.6855 0.5987 0.8305

Table 3.2: MAP and MAROC performance metrics for text-based retrieval and annota-

tion using different WordNet similarity metrics. The highest values are in bold.

in [78; 18; 12], however, it should be noted that the use of foreign terms makes the tasks

inherently more difficult. MAROC is quite high in all cases, but this could be misleading,

as using the top 88 most popular tags may inflate recall significantly. However, from this

data we are able to form a clear idea of which semantic similarity measures work best

for audio annotation and retrieval. Since jcn seemed to perform best, the remainder of

results reported used this metric for setting network weights.

3.3.3 Annotation

Each query returns an ordered list of nodes (tags for annotation and sounds for re-

trieval), sorted by cumulative path weight in ascending order. An item in this list is said

to be relevant if it is connected to the query at least once in the original user tagging

data. Using this list of relevance for each item returned, we can compute mean precision,

the percentage of items returned that are relevant as more items are returned, and mean

recall, the percentage of all relevant items that have been returned. Plotting precision as

a function of recall is a useful way of comparing different schemes. Additionally, one can

compute performance metrics including MAP and MAROC values. Figures 3.2a and 3.2b
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Figure 3.2: Precision and recall curves for annotation of unlabeled sound files in the

Soundwalks dataset averaged over 10 cross-validation trials.
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Figure 3.3: Precision and recall curves for text-based retrieval of unlabeled sound files in

the Soundwalks dataset averaged over 10 cross-validation trials.

display the precision and recall curves, respectively, averaged over all sound queries and

cross-validation runs for the Soundwalks dataset. The three curves in Figure 3.2 represent
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Soundwalks Freesound

MAP MAROC MAP MAROC

In-vocabulary (upper bound) 0.4333 0.7523 0.4113 0.8422

Out-of-vocabulary (WordNet) 0.2131 0.6322 0.1123 0.6279

Out-of-vocabulary (Baseline) 0.1789 0.5353 0.1092 0.5387

Table 3.3: Annotation performance using out-of-vocabulary semantic tags. Highest MAP

and MAROC scores (out of those not including the upper bound) are in bold.

three different ways of building the retrieval network. The in-vocabulary curve can be

considered as an upper-bound of annotation performance as all tags are used in building

the network. The out-of-vocabulary (WordNet) curve uses only a subset of tags to build

the retrieval network, and the remaining tags are connected only through tag-to-tag links.

The out-of-vocabularly (Baseline) curve uses only a subset of tags to build the retrieval net-

work, and the remaining tags are returned in random order. This is a standard parametric

approach of training a classifier for each tag would behave for out-of-vocabulary tags, as it

would have no better heuristic for returning tag suggestions.

From Figures 3.2a and 3.2b, we can see that out-of-vocabulary performance is im-

proved both in terms of precision and recall when WordNet link weights are included.

Additionally, from the precision curve of Figure 3.2a, we see that approximately 15% of

the top 20 out-of-vocabulary tags are relevant, while for in-vocabulary tags, this num-

ber is 25%. Considering the difficulty of the out-of-vocabulary problem and that each

sound file is labeled with much fewer than 20 tags, this performance is quite promising.

From the recall curve of Figure 3.2b, approximately 30% of relevant out-of-vocabulary

tags are returned in the top 20, compared to approximately 60% of in-vocabulary tags.

Table 3.3 contains the MAP and MAROC values for both the Soundwalks and Freesound

datasets. We see that performance is comparable between the two datasets, despite the
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Soundwalks Freesound

MAP MAROC MAP MAROC

In-vocabulary (upper bound) 0.2725 0.6846 0.2198 0.7100

Out-of-vocabulary (WordNet) 0.1707 0.6291 0.0681 0.5788

Out-of-vocabulary (Baseline) 0.1283 0.5355 0.0547 0.5414

Table 3.4: Text-based retrieval performance using out-of-vocabulary tags. Highest MAP

and MAROC scores (out of those not including the upper bound) are in bold.

Freesound set being an order of magnitude larger. The slightly better performance on

the Soundwalks dataset is most likely due to the large amount of social information con-

tained in the real-valued votes matrix that is used to set sound-to-tag link weights. The

in-vocabulary MAP values of 0.4333 and 0.4113 compare favorably to the per-word MAP

value of 0.179 reported in [18] for annotating BBC sound effects. Benchmarking per-

formance for out-of-vocabulary tags is more difficult, however, as this task has not been

considered in the literature.

3.3.4 Text-based retrieval

In text-based retrieval, each tag is used as a query to provide an output distribution

over the test sounds. For a given query, we denote by A(qc ) the set of relevant test sounds

that are labeled with the query word, and |A| as the number of relevant test sounds for

that query. Precision, recall, MAP, and MAROC values are then computed as described

previously. Figures 3.3a and 3.3b display the precision and recall curves, respectively, av-

eraged over all sound queries and cross-validation runs for the Soundwalks dataset, while

Table 3.4 displays the MAP and MAROC values. As with annotation, text-based retrieval

with out-of-vocabulary tags is significantly more difficult than with in-vocabulary tags,

but including the tag-to-tag links based on the measure of WordNet similarity appears to
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Score Nodes in shortest path Relevant?

0.19 rail → train → 094.wav (train bell) → 165.wav (traffic/train horn) No

0.17 rail → voice → 136.wav (pa voice) → 133.wav (pa voice) Yes

0.15 rail → train → 040.wav (train brakes) → 030.wav (train bell/brakes) Yes

0.09 rail → train → 040.wav (train brakes) → 147.wav (train horn) Yes

Table 3.5: Top four results from Soundwalks dataset for text-based retrieval with out-

of-vocabulary query qc = “rail.” Parenthetical descriptions are not actual tags, but are

provided to give an idea of the content of the sound files. “pa voice” refers to a public

announcement of an approaching train.

strengthen retrieval performance.

As with any evaluation against user-provided data, however, what we assume to be

ground truth tagging data may in fact be quite variable without a significantly larger

dataset. To demonstrate that retrieval performance may be considerably better than the

reported precision, recall, MAP, and MAROC performance averaged over noisy tags con-

tributed by non-expert users, we provide the example of Table 3.5. Table 3.5 displays the

posterior probability of each of the top four results, the shortest path of nodes from the

query to the output sounds, and whether or not the output sound is relevant. The top

result is the sound mixture of automobile traffic and a train horn but is not tagged by any

users with words similar to “rail,” even though, similar to the sounds actually tagged with

“rail,” it is a recording of a train station. Although filtering these types of results would

improve quantitative performance, it would require listening to thousands of sound files

and overruling subjective decisions made by the users who listened to and labeled the

sounds. Having isolated these sound events from their soundscape contexts, the train

horn in 165.wav may not evoke the concept of a train for many listeners.
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Soundwalks Freesound

MAP MAROC MAP MAROC

With WordNet 0.2166 0.6133 0.2983 0.6670

Without WorNet 0.3744 0.6656 0.4633 0.7978

Table 3.6: Performance of retrieval tasks with the Soundwalks dataset using WordNet

connections between in-vocabulary tags. The best-scoring values are in bold.

3.3.5 In-vocabulary semantic information

Effective annotation and retrieval for out-of-vocabulary tags requires some method

of relating the semantic similarity of tags, for example, the WordNet similarity metric

used in this work. In this section, we examine how the inclusion of semantic connections

between in-vocabulary tags affects annotation and text-based retrieval performance. Ta-

ble 3.6 compares the MAP and MAROC values for the Soundwalks dataset where all tags

are used in building the network both with and without semantic links connecting tags.

The result of Table 3.6 suggests that when the information connecting sounds and tags is

available (i.e. tags are in the vocabulary), the semantic links provided by WordNet con-

found the system by allowing for possibly irrelevant relationships between tags. This is

not unlike the observations of [84] where using WordNet did not significantly improve

information retrieval performance. Therefore, future studies have only used semantic

links to connect out-of-vocabulary tag queries to other tags in text-based retrieval.

3.4 Evaluation of graph and retrieval variants

3.4.1 Training data

In studies used to evaluate the variations of graph structure (edge pruning, varying

edge weights) and retrieval method (depth-ordered retrieval), reported in [85], the same
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dataset as in the previous section is used. However, in these studies, we extended the set

of tags used from the Soundwalks dataset to include all 612 subject-provided tags to more

accurately study the system’s performance. The Freesound dataset remains the same.

3.4.2 Evaluation methodology

For multi-class retrieval, where classifiers are trained for each search term, evaluation

procedures typically involve cross-validation, where the set of sounds and their associ-

ated tags are split into several (e.g. 10) random non-overlapping subsets, the classifiers are

trained with only one subset, and the remaining sounds are used as queries to test the per-

formance of the trained classifiers. With a sufficiently large training dataset, performance

results should converge to give a picture of the expected performance in a production

setting.

In the studies of Section 3.3 (as well as in [68], [78], and [69]), this evaluation tech-

nique was employed for shortest-path retrieval. For the cases of retrieval and annotation

using sounds and tags not present in the training data (thereby testing the usefulness of

both acoustic and semantic similarity), sounds and tags were split into 2 and 5 subsets,

respectively, each combination thereof (one of 2× 5 = 10) being used to build the net-

work. For annotation, out-of-network sound queries were independently introduced to

the network by computing their similarity to all other sounds in the network, and out-

of-network tags were connected only to the in-network tags. Query performance was

tested by querying each out-of-network sound using out-of-network tags. For retrieval,

tag queries were connected independently to other tags, and out-of-network sounds were

connected only to in-network sounds.

However, this method of cross-validation may not be entirely appropriate for shortest-

path retrieval or other associative retrieval algorithms, as there is no distinct training

phase. Rather than having only sounds and tags as training data, acoustic and semantic
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similarities between training instances must be considered–that is, not only the nodes,

but also the edges of the graph make up the training data. For this reason, in [85], we

chose to implement a different evaluation strategy to compare techniques. In this strat-

egy, we simulate a database where the set of sounds and tags are complete (there are

no cross-validation splits), but only a random subset of the user tagging data is available.

Specifically, for each association between a sound and a tag (for which there may be many

for a single sound-tag pair in the Soundwalks dataset), we remove it with 50% probability.

For annotation, every sound is used to query the entire set of tags, and for retrieval, every

tag is used to query the entire set of sounds. Relevance results are then averaged over each

query and over 50-100 trials with different random reductions of the tagging data. This

simulation is perhaps more appropriate than the networks built for cross-validation in

Section 3.3, as we can examine how using shortest-path retrieval can help make up for

sparse tagging data, which is oftentimes present in online tagging systems.

3.4.3 Depth-ordered retrieval

In Figures 3.4 and 3.5, we examine the effects of a) using shortest paths versus retriev-

ing items based only on their tags (as most tag-based search strategies do) and b) using

different depth ordering strategies. L = (2) corresponds to the case where only direct

tag-to-tag links are used for retrieval (the baseline case, given no acoustic similarity in-

formation), L = (∗) represents the case of ranking results based on the lengths of their

shortest paths, and L = (2,∗) and L = (2,3,∗) represent the cases of returning minimum

2- and 3-node paths before resorting to shortest paths. Results are shown for both the

Freesound and Soundwalks datasets. limit represents the theoretical upper limit on per-

formance imposed by the dataset, where the ground truth user tagging data itself is used

to order results, analogous to UpperBnd from [18]. Acoustic links were included for the

Soundwalks dataset but not the Freesound dataset, in order to study the effects of using
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(a) Soundwalks Precision/Recall

Retrieval Annotation

L MAP MAROC MAP MAROC

(2) 0.5505 0.7615 0.5920 0.7814

(∗) 0.5751 0.7910 0.5230 0.7833

(2,∗) 0.5673 0.7887 0.5964 0.7919

(2,3,∗) 0.5678 0.7849 0.6590 0.8824

(b) Soundwalks MAP/MAROC

Figure 3.4: Performance metrics for text-based retrieval and annotation of sounds, re-

spectively, for the Soundwalks dataset. Data is averaged across n = 50 trials with half the

tagging data missing. Curves are labeled according to the order of path lengths used in

sorting results, where ∗ denotes all shortest paths. limit is the absolute best performance

possible with the dataset.
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(a) Freesound Precision/Recall

Retrieval Annotation

L MAP MAROC MAP MAROC

(2) 0.5200 0.7504 0.5237 0.7506

(∗) 0.5594 0.8610 0.5628 0.8403

(2,∗) 0.5618 0.8623 0.5618 0.8399

(b) Freesound MAP/MAROC

Figure 3.5: Performance metrics for text-based retrieval and annotation of sounds, respec-

tively, for the Freesound dataset. Data is averaged across n = 50 trials with half the tagging

data missing. Curves are labeled according to the order of path lengths used in sorting

results, where ∗ denotes all shortest paths. limit is the absolute best performance possible

with the dataset.
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shortest-path retrieval as a drop-in method in an existing system, which at the time of

this writing has no acoustic similarity measure.
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Figure 3.6: Effects of pruning outbound edges to nodes’ K nearest neighbors using the

Soundwalks dataset. Both MAP (lower) and MAROC (upper) values are plotted as a

function of K and averaged across n = 100 trials with half the tagging data missing.

From these plots, we can see that, in some cases, as in annotation on the Soundwalks

dataset, using shortest paths performs worse than the baseline case, likely because known

sound-to-tag links are being circumvented in favor of paths that use acoustic similarity.

However, L = (∗) seems to perform marginally better than L = (2) for the case of re-

trieval. To account for this difference, we can see that prioritizing direct links, as in

L = (2,∗), performs best. L = (2,3,∗) is a special case, as it produces higher MAP/-

MAROC, corresponding to its better performance in the last 75% of results, but it ini-

tially performs more poorly at annotation, which may be undesirable (if, say, we were to

annotate with the first N highest-scoring tags).
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Figure 3.7: Effects of varying γSS , the global weight multiplier for sound-to-sound edges

using the Soundwalks dataset. Both MAP (lower) and MAROC (upper) values are plotted

as a function of γSS and averaged over n = 50 trials with half tagging data missing.

For the Freesound dataset, for which we provided no sound-to-sound links, we can see

that the L = (∗), and optionally L = (2,∗), methods can assist in ordering the last half

of results. This improvement is likely because, for annotation (and analogously for text-

based retrieval), a sound can be annotated with additional tags from those sounds with

which it shares a few tags. Of course, in some use cases, this increase in performance

may not be worth the extra query time. Note that L = (2,3,∗) would behave the same

as L= (2,∗) in this case, as no sound-to-tag paths with an odd number of nodes exist in a

network containing no sound-to-sound edges.
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3.4.4 Edge pruning

To test the effects of limiting search to nodes’ K nearest neighbors, we first con-

structed a network as described in Section 3.1 using the Soundwalks dataset, with sound-

to-sound and sound-to-tag links, but with half the tagging data missing at random. For

K ∈ {1,2, ..., 20}, we then annotated with each sound and retrieved with each tag, testing

relevance against the original tagging data. For each value of K , we averaged performance

metrics over 50 random trials for a total of 1000 trials per query type. As shown in Fig-

ure 3.6, it is only when K < 10 that significant losses in MAP/MAROC can be seen,

suggesting that edge pruning can drastically improve query time without having signifi-

cant effects on performance, as 10� |E |.

3.4.5 Weighting edge classes

Figure 3.7 demonstrates that, for the Soundwalks dataset, there is a clear shift in per-

formance at γSS ≈ 0.2. For γSS < 0.2, acoustic weights are used as the primary source of

similarity information at the expense of known tagging data. For the case of annotation,

there appears to be a slight increase in MAROC for L= (∗) at this point. For L= (2,∗),

there is a slight increase in performance for γSS < 0.2, which suggests that the system

performs slightly better when tagging data is used for direct links, but acoustic similar-

ity, rather than co-occurrence of tags, is primarily relied on when no direct, 2-node links

exist.
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Chapter 4

SONIC CARTOGRAPHY

To address the challenges of organizing large soundscape archives mentioned in Chap-

ter 2, a number of web-based sound maps have appeared within the last decade, perhaps

beginning with Stanza’s Soundcities [A.68] in 2000. Many of these tools are mash-ups

with online mapping tools, having an interaction style that can be described as “point,

click, and listen,” where sounds are represented visually on a map as homogenous place

marks.

While this type of representation allows one to explore a location’s distribution of

recordings and provides a convenient method of exploring large, geo-tagged audio archives,

it perhaps lacks a fluidity that allows easy exploration, as the place marks rarely indicate

any features of the sounds they represent other than location, and it may be necessary

to listen to several long recordings before finding one that is relevant or interesting to a

listener. To use a visual metaphor, it may be equivalent to clicking on individual map

markers to view photographs of a city rather than the more continuous exploration al-

lowed by satellite imagery or photo-stitching tools such as Bing Maps or Google Street

View. Of course, photographic media (including satellite imagery) have the advantage of

natural spatial properties, which are more difficult to represent with point-source record-

ings. Nevertheless, being provided with a continuous visual flow of multiple observations

makes the process of viewing visual maps highly interactive without explicit manipula-

tion, a strength that would be of great benefit to any soundscape mapping project.

The inclusion of acoustic information in cartography has many advantages, most im-

portantly those involving the depiction of activity information: that which is highly time-

dependent. If a viewer or listener is primarily interested in cultural information, for ex-
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ample, rather than relatively stationary geological features, the sounds of human activity

(anthrophony) can be very informative. Truax explains the topic as follows:

Although the sound wave reflects every detail of motion of its source,

its travel through an environment—reflecting from and being absorbed by

all objects—is influenced by the general configuration of the environment.

In a sense, the sound wave arriving at the ear is the analogue of the current

state of the physical environment, because as the wave travels, it is changed

by each interaction with the environment. Whereas vision allows us to scan

an environment for specific detail, hearing gives us a less detailed, but more

comprehensive, image of the entire environment in all directions at once. [2]

This suggests that while visual scanning allows a detailed view of specific features in an en-

vironment, it can gloss over activity that occurs over large scales. For a concrete example,

we may not be able to see past the facade of a building, but we can often hear loud activ-

ity behind it. As another example, a low-flying airplane can often be heard quite loudly

within miles of its flightpath. Several existing practices exist for plotting contour maps of

complex loudness and annoyance models, akin to those proposed in [1], but this chapter

will primarily focus on those maps that emphasize the recordings themselves, rather than

acoustic measurements, on top of a geographic map for purposes of reflection.

Some sound archives, such as Radio Aporee [A.54] and Freesound [A.84], have in-

troduced alternative ways of listening and searching, such as automatic playlist genera-

tion through random walks or folksonomy-based tag searching. Section 4.1, as reported

in [86], will examine 95 different sound maps on the web, starting in 2000, categorizing

them by their means of interaction, associated multimedia and metadata, and content

curation, speculating on what future directions might exist in each of these areas. A

complete list of these sound mapping projects is available in Appendix A.
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It is also with these considerations that Section 4.2 will present the development of

a new type of sound map, generically called Soundwalks, which attempts to extend the

amount of geospatial information available to users by communicating acoustic informa-

tion in a rich, interactive framework that will allow users to quickly gain insight into the

contents of their soundscapes.

4.1 Interactive sound maps

4.1.1 Interactive features

1. Map embeds: Of the 95 geo-tagged sound archives listed, 80 were found to at least

have some sort of point-click-and-listen interaction. Some of these are simply im-

plemented as blog entries with single-marker embedded maps, presented more as

a story of recording, focusing on the prose descriptions of the process as opposed

to geographic relationships between sounds. However, most of these tools exist

as full web sound maps, with 62 commercial mapping embeds and 5 using the

Creative Commons-licensed, crowdsourced mapping service OpenStreetMap [87].

Although some of the other maps may use more sophisticated or well-designed

custom visual layers, the prevalence of map/marker mash-ups is encouraging, as it

demonstrates the relative ease of developing these maps, showing that they are an

accessible form of archival and sharing.

2. Automatic Play and Advancement: One simple factor that can hinder interaction

with a sound map is the number of clicks necessary to explore it. Only 23 maps

marked with autoplay automatically begin playing sounds upon clicking their mark-

ers rather than having to initiate an embedded audio player, or worse, being redi-

rected to a separate website where the sound can be played. Although fast-paced

clicking is perhaps not the mindful or reflective style in which some authors wish
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their listener to engage, being able to smoothly shift from one sound to another

can make the resulting soundscape much more seamless and allow for quick com-

parison of acoustic properties between locations.

Another possibility for automatic play, referred to as autoplay next, is automatic ad-

vancement to other sounds on completion, featured in maps such as the Montréal

Sound Map [A.45], Favourite Sounds [A.19], the Brussels SoundMap [A.10], and Car-

tophonies [A.12]. This feature is most useful for maps that include sound sequences

and paths, but even queueing random walks between neighboring recordings, such

as in Radio Aporee [A.54], allows a listener to sit back and actually listen, using

the map as a visual reference rather than dedicating significant attention to mouse

movements and interaction with audio widgets.

3. Sequences and paths: Six of the maps listed allow temporal sequencing of sounds.

Sound sequences are especially interesting for the recording of the soundwalk.

Some field recordings taken during soundwalks involve several segregated sound

files. Being able to both initiate a sequence of sounds and have the player auto-

matically advance to the next in the sequence allows the author to relate a sonic

narrative. On some sound maps, such as Listen to Africa [A.32], knowledge of the

path the recordists travelled and inspection of the geographic distribution of the

place-marks is enough (they closely follow a coastline), but in dense archives such

as Freesound.org and Radio Aporee (which provides this feature, along with six other

maps), it can sometimes be necessary to organize a sequence explicitly.

An obvious extension of the sequencing feature is to visually display connections

between the sounds through GPS traces. In the simplest case, since most audio

archives record the time and date of recording, this can be as simple as drawing line

segments between sounds of the same recording session or soundwalk. In more de-

49



tailed settings, continuous GPS traces from external devices can be used, which can

easily be obtained from most smartphones. In retelling the story of a soundwalk,

in particular, these GPS traces convey important information about the walk, such

as the moment-to-moment decisions made in improvisational exploration, paths

left silent, or an overview of the spatial properties of a pre-composed soundwalk.

These traces are especially important in the presence of lengthy (e.g. several hour)

non-stationary recordings that are not segmented. As of yet, no web sound map

seems to address the issue of conflating an entire, continuous mobile field recording

onto a single point.

4. Mixing: Dynamic mixing of multiple field recordings is a particularly interesting

pattern supported by only five of the maps, namely Cinco Cidades Soundmap [A.13],

Tactical Sound Garden [A.80], Favourite Sounds, soundingD SoundMap [A.69], and

Radio Aporee. Most of these tools allow for manual selection of several record-

ings to mix, which potentially allows the map itself to be a live performance or

compositional tool, likely of interest to phonographers. One potential artifact (or

affordance, depending on one’s outlook) of these strategies is that directly mixing

multiple soundscapes can result in a cacophony of overlapping acoustic streams

that cannot be segregated psychoacoustically. Using Schafer’s terminology, this

can result in obfuscation of keynote sounds, not to mention interrupted signals

and soundmarks.

5. Mobile applications and live streaming: Two additional patterns, supported by

only a few platforms, include the presence of mobile applications and the map-

ping of live audio streams. Audioboo [A.5], a popular audio-blogging site, initially

contained a sound map of recordings as its landing page, though they have since

focused on a more social networking style, where the geographic metadata has un-
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fortunately been relegated to the page view for individual sounds. The enterprise

SoundCloud [88] can also provide GPS metadata when recordings are uploaded

from its mobile application, but as of yet, besides custom pages that position them,

it has not explored audio mapping as an official facet of its business. Two other non-

commercial tools, however, do provide mobile applications, including the sound-

scape affect research project Sound Around You [A.64] and Radio Aporee’s recent

mobile version.

Live streaming is an interesting modality that has existed for some time, and though

only three of the listed platforms [A.33, A.34, A.50], aggregate multiple streams on

a single map, a live stream does provide an excellent sense of a location’s temporal

activity patterns. Listening to the Deep Ocean Environment (LIDO) [A.33], in par-

ticular, provides real-time spectrogram of its live streams. Many other solitary live

audio streams (mostly focused on bioacoustics applications) exist and could poten-

tially be aggregated on a map as well.

4.1.2 Multimedia and metadata

1. Other forms of media: While reduced or musical listening approaches to the sound-

walk may deemphasize the context of a sound stream, providing additional media

related to a recording can be quite helpful in recording its experiential context. 16

of the maps provide one or more images alongside the recordings, and three of those

also provide video content. These additions are especially common amongst field

recording blogs. Xeno-canto [A.93], LIDO, and Freesound.org all provide spectro-

grams, which could potentially be interesting data to integrate more seamlessly into

a map. The various sound maps of the London Sound Survey [A.35, A.71, A.83]

also provide additional layers, such as historical maps.

2. Text description: 14 of the maps provide each sound with folksonomy-based single-
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term tags, some of which allow browsing or searching by these tags. 28 of the maps

provide segregated categories or taxonomies, some in particular being inspired by

the taxonomy first proposed by Schafer. More generally, 70 maps provide some

description of the sounds being played, though often these can be limited to de-

scriptive filenames. 12 maps provide all three descriptors. Social media repositories

tend to implement folksonomy-based tagging, but explicit categorization can be

quite useful, especially when a comparative study is desired. While not present on

all maps, this type of metadata is one step away from providing a more investigative

experience for listeners. Content-based search, such as techniques used in music in-

formation retrieval or speech analysis are also obvious candidates, though as of yet

unexplored in these maps.

4.1.3 Content curation

1. Community involvement: The 95 sound maps also vary drastically in how they

curate content. 69 of the maps are either now closed or limited to the contribu-

tions of the authors. The remaining 26, however, allow some sort of community

contribution, varying from automatic submission interfaces to explicit request via

email. Sound Around You has an interesting approach from a research standpoint,

where users are not only able to upload their sounds from mobile devices, but are

also able to comment on the soundscapes’ affective properties. Crowdsourced data,

of course, brings up obvious issues of licensing restrictions. It is fortunate, then,

that the larger projects, Radio Aporee, Freesound.org, and SoundCloud allow users to

choose between various licensing schemes, including Creative Commons options.

2. Other sources of audio: While field recordings largely (or solely) make up 76 of the

listed projects, there are some sound maps that focus explicitly on music or speech,

such as some of the mapping projects by The British Library. Audioboo likely has
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Figure 4.1: An example of the Soundwalks interactive synthesis interface. The cursor is

situated between two paths, where a mixture of the two field recordings will be synthe-

sized.

a similar focus on speech, with its branding as an audio blogging tool. Addition-

ally, a few of the soundmaps focus at least in part on historical data, including the

soundmaps of the London Sound Survey and efforts by The British Library, the

latter of which include recordings from historical archives.

4.2 Continuous playback with Soundwalks

Soundwalks, a new soundscape mapping tool, attempts to elaborate on some of the

features mentioned in the previous survey of web sound maps. Most importantly, it

addresses issues related to uninterrupted exploration of the soundscape and visualization

of the soundwalk path. As will be discussed in Chapter 5, uninterrupted exploration is
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addressed by parametrically mixing between multiple continuous field recordings.

4.2.1 Application architecture

In its current form, Soundwalks is a web application intended for personal archival

and reflection upon acoustic journeys, rather than a large, crowdsourced application.

Soundwalks works as an HTML5 application that uses the WebSocket API to communi-

cate to a local server running “pyo,” [89] a Python-based modular synthesis library. Op-

tionally, the server can also route messages from the browser as OSC [90]messages to be

used by other synthesis applications or interfaces such as PureData [91], Max/MSP [92],

and ChucK [93].

4.2.2 Interaction through scrubbing

The user interface shown in Figure 4.1 is sparse, showing a list of soundwalks with

associated titles and descriptions that move the map to their coordinates when clicked.

Every full GPS path, imported via GPX from a mobile application or dedicated GPS

receiver, is shown. As the user drags a cursor across the map, regardless of whether

or not a path is underlying, a continuous soundscape is played. This soundscape is a re-

synthesized audio texture resulting from a parametric blend of clips from each soundwalk

within a defined radius of the user’s cursor. This mix is constructed through a variation

of the wavelet tree learning technique in [94], which attempts to create variations on

audio textures while retaining their structural properties as opposed to more common

granular synthesis clouds or concatenative synthesis, as will be discussed in Chapter 5.

The soundwalks closest to the cursor are favored in this re-synthesis process.
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4.2.3 Implications of the synthesis model

Some benefits of a real-time mixing and scrubbing interface include the explorative

navigation more characteristic of visual maps, where the same type of instant naviga-

tional decisions can be made, as listeners have constant, immediate feedback of their ac-

tions. Additionally, explicit inclusion of continuous GPS paths for each mobile recording

allows viewers to better understand the geographic context and sequence of navigational

decisions made by the recordist in the moment. However, it should be noted that this

method is by no means meant to be an end-all-be-all solution to acoustic mapping. As has

been detailed in the survey of existing sound maps, there are a wide variety of sonic car-

tography projects, each with their own theoretical backings, artistic statements or intent,

and preferred listening style.
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Chapter 5

MULTISOURCE SOUNDSCAPE SYNTHESIS

To facilitate a more responsive, interactive experience in exploring soundscapes, Sound-

walks uses a method that allows users to continuously morph between sound sources.

While a system could repetitively loop sounds nearest a user’s cursor, it may take some

time to listen to each sound in its entirety, and the experience may be aesthetically dis-

pleasing. To this end, we wished to satisfy the following requirements:

1. Responsiveness: To facilitate realtime exploration, users should be able to hear a

change in the soundscape quickly, if not immediately, after moving the cursor.

2. Realism: The soundscape should be realistic, with few artifacts such as clipping,

interrupted sound events, etc.

3. Source relevance: The soundscape should most closely resemble the sounds recorded

nearest the cursor.

To support these requirements, we have developed a technique of synthesizing con-

tinuous, non-repetitive sound textures from several example recordings. Several meth-

ods have been devised for the purpose of synthesizing realistic sonic textures (see [95]

for a recent survey.) In many cases, these methods are inspired by techniques designed

for the analogous problem of visual texture synthesis, in which some important goals

include reducing the tiling effect, making any tiling boundaries between texture com-

ponents invisible, and preserving the overall structure of the original image [96]. For

sound textures, these goals can be thought of as minimizing the number of transients

introduced by the synthesis and preserving the audible, qualitative characteristics of the
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original sound sources. In fact, it is perhaps most important to retain those psychoa-

coustic features of the original sound that characterize it as a separate auditory stream, as

modifying these can either break the sound into two or more streams or merge it with

other streams, which can be distracting and reduce ecological validity. [97] discusses

some of these issues, classifying undesirable properties as echo, cutoff, and repetition.

5.1 Concatenative synthesis

While several methods for sound texture synthesis by example have been developed,

few have been designed for the purpose of parametric mixing between multiple sources.

[98] and [97] both describe concatenative synthesis methods where sound grains [99;

100] (or short clips) are randomly selected from a single source sound and used to con-

struct a new random texture using overlap-add. In [98], clips are overlapped using Gaus-

sian envelopes with 15% overlap and grains are sequenced in a stochastic process that

attempts to match their beginning and ending 15% of samples according to similarity.

No such ordering criteria are presented in [97], which uses cosine windows with half

overlap and instead focuses on stochastic variations in sub-clip features, such as ampli-

tude variations, and finding the optimal sub-clip duration, which, through listening tests,

they find to be approximately two seconds in length.

One application of concatenative synthesis discussed in [101] is that of cross-corpus

synthesis, where sound grains from one corpus are used to re-synthesize an input sound

with different grains. For example, Schwarz uses a violin to re-synthesize human speech

or an electronic music piece.

5.2 Wavelet tree learning

[102] demonstrates a technique for visual texture synthesis that is often used as a

benchmark for subsequent methods. This algorithm uses a multi-resolution, pyramid-
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Figure 5.1: An example 9× 9 neighborhood in an image texture. Note that pixels that

have yet to be determined (i.e. are later in the scanning order) are not part of the selected

pixel’s neighborhood.

based approach for texture re-synthesis. First, a texture is modeled as a Markov random

field, where each pixel is paired with an associated L-shaped neighborhood of the sur-

rounding K ×K pixels, excluding those pixels which have a scan order greater than itself

(see Figure 5.1 for an example). One can then construct a new texture by randomly se-

lecting a pixel from the source image and then choosing each new pixel in a row-major

scanning order according to that which has the most similar neighborhood to those pix-

els already selected, possibly with a randomization factor for the sake of diversity. In the

case of [102], this is done by selecting from a set of pixels whose neighborhoods have a

similarity to the previously-selected pixels above some threshold.

While a single-resolution scheme captures certain small features quite well, many per-

ceivable features in an image texture exist at a scale larger than the neighborhood size. To

account for this, Wei and Levoy use a pyramidal structure where, for a source texture of

size N×N where N = 2L, the source texture is down-sampled between 1 and L−1 times.

From here, the same selection process occurs consecutively for each level, beginning with

the level corresponding to the lowest resolution.

A technique similar to this was devised by Bar-Joseph, et al. [103], where instead

of downsampling using a Gaussian pyramid, a multi-resolution approach was achieved
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Figure 5.2: An example neighborhood for comparison with candidates nodes, where K =

5 predecessors are considered. The left graphic displays the scalogram that results from

a multi-resolution wavelet decomposition of a one-dimensional time-varying signal. The

right graphic shows the same coefficients represented as nodes in a binary tree on which

the wavelet tree learning algorithm operates. In both images, a selected node and its

neighborhood are shaded.

through a multi-resolution discrete wavelet transform (DWT). In this algorithm, an im-

age is convolved with a particular wavelet (in this case, the Daubechies wavelet with 5

vanishing moments, D10), down-sampled by 2, and convolved again. This process occurs

several times to construct a multi-resolution analysis (MRA) tree, a tree where each node

represents a DWT coefficient. From there, a similar candidate selection takes place, but

neighborhood similarity is calculated over the domain of DWT coefficients rather than

down-sampled pixels. The process of creating an MRA tree is demonstrated in Figure 5.2.

This technique inspired a new method of sound texture synthesis, described in [94],

where the authors apply the same multi-resolution analysis for a one-dimensional signal

in a technique they refer to as wavelet tree learning. The process of wavelet tree learning
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involves creating a new MRA tree from one devised from a source signal (in this case a

monophonic audio recording) that shares certain local properties with the original sound

texture. Starting with the root node, a candidate set of nodes is constructed from which

a coefficient will be selected at random. The candidate set is initialized with the set of all

coefficients at the same level in the tree and is then culled according to those which best

preserve temporal ordering constraints (a neighborhood of the previous K coefficients

on the same level) and hierarchical structure constraints (a neighborhood of L ancestors

of the current node). After the tree has been constructed, the original signal can be

reconstructed through successive applications of the inverse DWT.

5.2.1 Applicabality to texture morphing

Wavelet tree learning has shown to be quite effective for certain acoustic and visual

textures. However, the algorithm tends to produce poor results when transient or de-

terministic events, such as bells or horns, are present in the original recording. Wavelet

tree learning makes the assumption that the source signal has some homogeneity within

each level of decomposition, so performing the algorithm on an audio clip that includes

deterministic events or objects will frequently interrupt them, causing strange splits and

scatterings in visual textures and transients and cutoff in acoustic textures. When effort

has been taken to remove these events, such as in the case of TAPESTREA [104], the tex-

ture can be successfully synthesized, as the source material is likely to resemble a single

texture without sound events.

Additionally, wavelet tree learning can be quite computationally expensive. Perform-

ing the multi-resolution wavelet tree decomposition can be done in O(n log(n)) time,

but performing the learning can take many cycles, having a complexity of at least O(n2)

time, depending on the number of K predecessors present in a coefficient’s neighbor-

hood. Even in the case of an efficient low-level implementation, this can take longer than
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Figure 5.3: An example MRA tree of a one-dimensional signal demonstrating how a

network would be structured with full support. For an example node, predecessor nodes

are colored green and potential ancestor nodes are colored red. (a) displays the support

of a D2 or Haar wavelet, which WTL implicitly assumes, while (b) shows the support

of a longer wavelet, D4. For a neighborhood with K = 5 predecessors, one can see how

taking into consideration a wavelet’s true support can greatly increase the neighborhood

size.

realtime. Perhaps by splitting a recording into sufficiently small windows, each of which

are re-synthesized independently, this process can operate in realtime. This technique

will be discussed in Section 5.4.2.

Wavelet tree learning also makes a certain assumption about the support of wavelet

coefficients that can cause the introduction of transients, even in relatively stationary tex-

tures. Specifically, wavelet tree learning constructs a binary tree from the coefficients of

the multi-resolution decomposition. While each stage of the decomposition does down-

sample the signal by a factor of two, this does not mean that a coefficient has only been

calculated from the two coefficients that become its children in the MRA tree. Rather,

most wavelets, other than the D2 / Haar wavelet with filter length of two, are calcu-

lated from more samples. [104] and [94] use the D10 wavelet, which has a filter length
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of ten coefficients (five vanishing moments). In this case, rather than a binary tree, to

truly model the support of each node, it would have five immediate ancestors and ten

children. Figure 5.3 demonstrates this difference. In forming a new MRA tree, nodes

are selected based upon matching neighborhoods which include only single ancestors per

node, which can cause certain spectral and temporal relationships in the original sound

to be broken. One implementation of WTL, however, has suggested that considering

ancestor relationships does not particularly affect the overall quality of the synthesized

results anyway [105].

While Dubnov et al. do not specifically mention the possibility of mixing two or

more sounds, the method is explored for the purpose of video texture mixing in [96],

where candidate nodes are selected from more than one MRA tree. For a parametric ap-

proach, one can prefer nodes of the respective tree in the stochastic candidate selection,

but the paper mentions that this can lead to a certain “lock-on” effect, where early selec-

tion of a node from a particular sound can lead to large chunks sourced only from that

sound.

5.3 Comparisons

Subjective evaluations of several texture re-synthesis techniques were compared in

[104], including a random overlap-add approach comparable to that in [97], three meth-

ods that sequence the sub-clips by minimizing differences between MRA trees of sequen-

tial clips, and two methods that sequence clips according to similar RMS levels. After

finding optimal tunings for each algorithm through separate sets of subjective listening

tests, the author reports that subjects found the random overlap-add method to be most

perceptually convincing, though the source sounds tested were rather stationary textures,

which may have made structural properties, which WTL is designed to retain, less im-

portant to listeners.
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5.4 New morphing techniques

We have focused on comparing four methods for parametric sound texture morphing,

inspired by existing work in concatenative synthesis and wavelet tree learning. Two meth-

ods use concatenated grains, and two methods use a version of WTL where the grains in a

concatenative sequence are first re-synthesized. For each type of re-synthesis, one version

creates a single stream of grains of heterogenous origin—stochastically choosing grains’

sources, weighted according to the desired mix—and another version produces streams of

grains of homogenous origin, one per source, and mixes the sequences accordingly.

5.4.1 Concatenative synthesis

In all cases, streams are composed of sequences of grains, s = (g1, g2, ...gn), each of

which has a duration, Dur(gi ), source recording Src(gi ), beginning time offset within the

sequence, Pos(gi ), and beginning time offset within the source, SrcPos(gi ). Grains are

always concatenated such that they overlap by half the duration of whichever grain is

shorter, i.e.

Pos(gi ) := Pos(gi−1)+Dur(gi−1)− Fade(gi , gi−1), (5.1)

where Fade is the amount of overlap (the length of the crossfade) between grains, defined

as

Fade(gi , g j ) :=
1

2

�

min
�

Dur(gi ),Dur(g j )
�

�

. (5.2)

Overlapping grains are then finally mixed with a an equal-power crossfade. Duration and

source position are defined stochastically, with

Dur(gi )∼ U(mindur,maxdur), (5.3)

SrcPos(s1) :=
1

2

�

Dur
�

Src(g1)
�

−Dur
�

g1

�

�

, (5.4)

63



and

SrcPos(gi ) := SrcPos(gi−1)+ J (5.5)

where J , the duration to “jump,” forward or back is defined as

J := αJb +(1−α)J f , (5.6)

Jb ∼N
�

−Dur(gi ),maxdist
�

J f ∼N
�

Dur(gi−1),maxdist
�

, (5.7)

α :=
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if SrcPos
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<C ,

(5.8)

where C is the time offset in the recording corresponding to the point in its GPS path

closest to the user’s cursor. While SrcPos(gi ) could easily be sampled from a gaussian

surrounding C , this method sets up a mixture of gaussians that will minimize the amount

of overlap between successive grains from the same source, thus avoiding repetition. α is

selected such that the direction (forward or back in the source recording) will tend toward

the point closest to the cursor if it meanders too far away from maxdist. This synthesis

technique then has three free parameters: mindur, maxdur, and maxdist.

5.4.2 Windowed wavelet tree learning

In windowed WTL, the same sequence model described above is used, but each grain

undergoes an additional step of re-synthesis using WTL. WTL has three additional free

parameters, k, p, and maxlevel, which define the number of predecessor MRA nodes to

use for comparison (bk ∗ 2l c predecessors, where l is the level of the node in the tree), at

what percentile of ancestor and predecessor similarity to threshold candidate nodes, and

at what level of the MRA tree to stop the wavelet tree learning process [104].
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5.4.3 Single- or multi-stream synthesis

The sequencing model described above assumes that there is a single possible source

per stream. In the multi-stream models, these sequences are then mixed according to the

distances from the cursor to the points closest to it on the recordings’ GPS paths. In the

single-stream models, each grain’s source is randomly selected from this distribution, so

it is necessary to adjust the logic that describes the jump distance, J :

J := αJb +(1−α)J f , (5.9)

Jb ∼N
�

−Dur(gi ),maxdist
�

J f ∼N
�

Dur(gi−p),maxdist
�

, (5.10)

α :=
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if SrcPos
�
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�

<C ,

(5.11)

where gi−p is the most recent grain from the same source, i.e.

p =min
¦

j : Src(gi− j ) = Src(gi ), j ∈N
©

. (5.12)

5.5 Evaluation

5.5.1 Testing set

The morphing techniques discussed allow parametric mixing between multiple sound

sources associated with various geographic paths. For the purpose of evaluation, we have

focused on a specific case where three recordings of equal duration are associated with

paths that make up the edges of an equilateral triangle. Each vertex of the triangle repre-

sents the end of one soundwalk and the beginning of another (see Figure 5.4). We then

choose points within this triangle to affect the mixing distribution for each algorithm.
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Figure 5.4: Synthesis coordinate space. db, nb, and sg represent different five-minute

field recordings that meet along the triangle’s vertices. The vertices (labeled with their

barycentric coordinates) and equally-spaced points within are used as cursor positions at

which to evaluate the texture morphing algorithms.

The three vertices and seven evenly-spaced points within the triangle have been selected

for synthesis coordinates. This triangular parameterization was chosen over a simpler

two-sound study to show the ability of the algorithms to handle more complex mixes.

For the source sounds, we have used three five-minute recordings. The recordings

were down-mixed to monophonic 16-bit 44.1KHz versions and include

1. db, or “dog beach,” a daytime recording at a dog beach, characterized by dog barks

and yips, shouting owners, and surf;

2. nb, or “neighborhood birds,” a dawn stroll in a quiet suburban neighborhood in-

cluding sounds of footsteps, several birds, and a single passing car; and

3. sg, or “secret garden,” a nighttime recording in a small outdoor courtyard on a

university campus, isolated by surrounding buildings, including a cricket chorus,

distant traffic, and an air conditioning unit.
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5.5.2 Metrics

5.5.2.1 Perceptual convincingness

To evaluate the performance of the various algorithms, we have focused on two spe-

cific metrics that match our aforementioned requirements of realism and source rele-

vance. First, we focus on the perceptual convincingness of a sound. For each synthesized

version, we wish for it to sound realistic. Similar to studies performed in [97] and [104],

we have asked human subjects to directly compare pairs of synthesized sound textures

in a series of A/B tests with the simple prompt, “which sound is more realistic?” In

addition to “Sound 1” and “Sound 2,” we provide subjects with two more possible re-

sponses, including “Don’t know” and “No difference.” A pairwise comparison approach

was chosen over an interval scale due to the lack of a well-defined minimum and maxi-

mum ground truth for realism. While a subjective measure of realism may be difficult to

define, let alone quantify, these comparisons can give an approximate ranking of which

synthesis techniques might be best to use in a production setting. One can imagine, for

example, that a simple superposition of the three source sounds used for the mix might

sound rather unrealistic, as several competing backgrounds are placed on top of each

other. However, more complex mixes high in synthesis artifacts may also sound quite

unrealistic.

5.5.2.2 Source relevance

Perceptual convincingness alone, however, would be an insufficient evaluation of a re-

synthesis algorithm, as it does not reflect how accurately the texture mimics properties

of its sources. To account for this, we have also focused on a metric of source relevance.

In this test, 10-second clips are extracted from the original sources from positions nearest

to the coordinates used for synthesis. From two possible source recordings, the subject is
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asked to evaluate which recording is more similar to the synthesized example provided.

Each possible source recording is compared in a pairwise manner, making for three com-

parisons per synthesized version. Subjects are also provided options of “Equally similar”

and “Don’t know.” This metric is used to evaluate which technique best retains the per-

ceptual features it is trying to mix. Similarly, we can see how smooth each mixing process

is by evaluating similarity to each of the source sounds as they are used more or less in

the mix.

5.5.3 Crowdsourced survey

To obtain judgements, we used the crowdsourcing platform CrowdFlower.com. Sub-

jects were limited to native English speakers to simplify instruction. Each task consisted

of five random pairwise comparisons. Each comparison was scored by five unique work-

ers.

Tests were performed in a three-stage process in order to reduce the number of re-

sponses necessary and allow each algorithm to be evaluated in terms of its most optimal

tuning:

1. First, for each possible tuning, coordinate, and algorithm, five random versions

were compared, making for a total of ten comparisons each (in total, 36,000 judg-

ments). The most perceptually convincing sound of these five was promoted to the

second stage.

2. Second, for each possible coordinate and algorithm, the remaining sounds were

compared (1,800 judgements per algorithm). The most perceptually convincing

sounds were then promoted to the third, final stage.

3. Lastly, All remaining sounds were compared for perceptual convincingness (3,900

judgments) and evaluated for similarity to their sources (600 judgements).
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By comparing all possible sound pairs in the third stage, we were able to evaluate not only

which algorithm scored highest for each coordinate, but we were also able to visualize

how perceptual convincingness is distributed throughout the triangular coordinate space

to see if it was considered more or less convincing when the mix becomes more complex.

Paid crowdsourcing platforms are common targets for automated bots and cheating

among users for quick monetary reward, so in addition to the CAPTCHAs provided by

CrowdFlower, several checks were put into place to ensure the integrity of the collected

data. CrowdFlower uses the term “gold data” to refer to tasks with known outcomes

used for validation. In every page of tasks presented to users, at least one task is golden,

and users are required to first complete a “training page” of 5 golden tasks. Two types

of gold were constructed: identical sounds and synthetic tones. For identical sounds, in

the realism tasks, both sounds may be the exact same, requiring a response of “Don’t

know” or “No difference.” In the source relevance tasks, the test sound may be identical

to one of the possible sources provided. For synthetic tones, one of the sounds in each

task may be a series of sinusoidal tones, which is unlikely to be considered more real

than another sound, requiring that the other sound be selected as more realistic (or more

similar). In this way, subjects cannot complete tasks by always selecting a null answer or

by continually selecting sounds at random. Additionally, the sounds are presented using

an audio player that has only a play/pause button and no option for scrubbing.

5.6 Results

5.6.1 Parameter tuning

The four mixing techniques, single-stream concatenative synthesis (cs), multi-stream

concatenative synthesis (csmix), single-stream windowed wavelet tree learning (wtl), and

multi-stream windowed wavelet tree learning (wtlmix) each require a number of param-
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(mindur,maxdur)

cs csmix

(.5s , 1s) (1s , 2s) (2s , 4s) (.5s , 1s) (1s , 2s) (2s , 4s)

5s 2.68 4.27 4.83 3.81 4.16 4.29

maxdist 15s 2.47 4.60 5.16 3.63 3.84 4.27

30s 2.85 4.15 4.99 3.80 3.91 4.29

k

wtl wtlmix

0.025 0.050 0.100 0.025 0.050 0.100

0.50 4.31 3.79 3.74 4.07 3.88 3.93

p 0.75 4.01 4.18 4.18 3.90 4.03 3.99

1.00 3.87 4.07 3.85 3.93 3.99 4.14

Table 5.1: Tuning results. Values indicate average preference for each combination of

tuning parameters in terms of perceptual convincingness.

eters to be tuned in Stage 2. All methods require three parameters, mindur, maxdur,

and maxdist to be tuned. To reduce the number of parameters required to tune wtl and

wtlmix, which additionally require two more parameters, k and p, we have decided to use

the resulting tunings that have highest average preference from cs and csmix, respectively.

The maxlevel parameter for wtl and wtlmix was fixed at 10, corresponding to MRA nodes

responsible for approximately twenty milliseconds.

Wherever multiple sounds are compared, the total preference of any sound, pref (si ),

is

pref (si ) :=
∑

s j∈S,s j 6=si

n+(si , s j )+
1
2

�

n=(si , s j )+ n?(si , s j )
�

n+(si , s j )+ n−(si , s j )+ n=(si , s j )+ n?(si , s j )
, (5.13)
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where, over a set of sounds, S, against which si is being compared, n+(si , s j ) is the num-

ber of users who preferred sound si to sound s j , n−(si , s j ) is the number of users who

preferred s j to si , n=(si , s j ) is the number of users who preferred si and s j equally, and

n?(si , s j ) is the number of users who could not provide a preference for either sound. In

the case of tuning, S is the set of nine possible tunings for each coordinate and synthesis

method. The resulting average preference values for each parameter tuning are listed in

Table 5.1. Across all perceptual convincingness comparisons, an average of 3.9 of the five

subjects agreed with the most popular answer, showing reasonable inter-subject agree-

ment.

On average, it seems that longer grain lengths were preferred, which can be expected

as there will be fewer transitions between time offsets and sources. Any longer maximum

grain length, however, would reduce the responsiveness of the synthesis to user input.

A moderate maxdist of 15 seconds was preferred, perhaps because the smallest maxdist

incurred too much repetition, whereas a larger distance resulted in larger leaps in time

within each recording, resulting in larger textural differences between grains.

In wtl, it seems that selecting from more predecessors ( p = 0.50) and only requiring

short-term similarity (k = 0.025) is preferred, whereas the opposite is true for wtlmix.

The next highest score, however, is again at the least restrictive settings for candidate

selection. As will be shown in Section 5.6.2, wtlmix is preferred over wtl, so it may be

that wtl is so unconvincing that users express preference based on other criteria, such

as preferring less discernible structural properties, which would result from more lax

candidate selection.

5.6.2 Perceptual convincingness

Figure 5.5 shows the perceptual convincingness preference between methods, with

preference for a specific algorithm defined as in Equation 5.13, where the algorithms
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Figure 5.5: Perceptual convincingness rankings for each method. The shading of each

voronoi cell corresponds to the average preference of the mixing technique given its re-

spective synthesis coordinate.

themselves are compared rather than specific tunings. Each synthesis coordinate is rep-

resented by a shaded voronoi cell (the area of points closest to it). Figure 5.6 shows the

preference between coordinates, holding the synthesis method constant. This plot shows

how realism varies within the coordinate space for each method. We can see that on

average, wtlmix was most preferred. Additionally, it seems that the multi-stream meth-

ods were preferred over the single-stream methods, perhaps due to fewer large textural
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Figure 5.6: Inter-coordinate perceptual convincingness for each method. The shading of

each voronoi cell corresponds to the average preference of its respective synthesis coordi-

nate, given the specific mixing technique.

differences between grains. From Figure 5.6, we can see that csmix appeared to have the

least variance of preference between coordinates, possibly indicating a more reliable mix

throughout the coordinate space.
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(a) Mixing techniques

(b) ideal case

Figure 5.7: Source relevance. Each source recording, db, nb, and sg are colored red, green,

and blue, respectively. The color of the voronoi cell corresponding to each synthesis

point is an additive blend of the source colors given their source similarity vector, sim.

The ideal plot shows the ideal distribution, in which each cell is colored according to its

trilinear coordinates.

5.6.3 Source relevance

Figure 5.7 demonstrates how well the different synthesis algorithms morphed be-

tween the properties of their source recordings. The source recordings, db, nb, and sg are

colored red, green, and blue, respectively. Based on the distribution of similarity ratings,

the colors are additively blended. The final, ideal plot, shows the optimal case, where

each coordinate has a similarity vector proportional to the distance from each recording.

For each coordinate and synthesis method, the similarity vector is calculated as in

Equation 5.13, where S is the set of all three source clips for the given coordinate. The
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normalized similarity vector is then defined by

simi :=
pref (si )

∑3
j=1 pref (s j )

(5.14)

The mean squared error (MSE) of the similarity vectors from the ideal case is also re-

ported for each method.

Very few of the methods seem to provide a particularly smooth blending between the

sources. The algorithm that seems to perform best, csmix, seems to blend well except for

the db / nb vertex. This may be due to the content of these two recordings–perhaps the

features in nb are not particularly discernible when directly mixed with those of db.

5.7 Conclusions

This chapter has presented an evaluation of four synthesis algorithms for parametri-

cally morphing between two or more environmental audio recordings, two of which use

basic concatenative synthesis, and two of which use wavelet tree learning. While pair-

wise comparisons for perceptual convincingness seem to indicate that listeners prefer a

multi-stream concatenative synthesis where WTL is used to re-synthesize sound grains,

comparing the synthesized sounds to their original sources seems to indicate that few

of the algorithms actually mix the sources in a predictable manner. Closer study will

be needed to understand the relationship between what users consider perceptually con-

vincing and what properties of the original sources are actually representative in the mix.

Specifically, it may be interesting to do pairwise similarity comparisons between por-

tions of the source clips themselves to create a baseline for how similarity is distributed

throughout the coordinate space. Doubtless many other algorithms and versions of those

listed above can be applied to the problem of audio texture morphing, but the evaluation

platform and associated metrics provide performance baselines and a unified framework

for developing future techniques.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This dissertation has provided the following contributions toward the goal of computa-

tional soundscape analysis and synthesis:

1. An open source tool, Sirens, for the segmentation and comparison of continuous

environmental field recordings, allowing users to automatically decompose long

recordings into individual sonic events and then compare how similar they are to

each other in terms of acoustic content.

2. A unified graph-based framework that allows for the indexing of sound events and

associated semantic tags, making use of both acoustic similarity from Sirens and

WordNet-derived metrics of semantic similarity to allow for both content-based

retrieval (query by example), text-based retrieval, and automatic annotation of

sounds.

3. A review of existing interactive sound mapping projects, evaluating their various

features, content, and scope.

4. The evaluation of several new sound texture synthesis techniques for parametri-

cally morphing between multiple source sound textures for use in an interactive

sound map.

These tools are only the very beginning of potential applications of multimedia in-

formation retrieval and synthesis to soundscape studies. In addition to the individual

conclusions provided at the end of each chapter, several important future directions ex-

ist.
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To begin, the retrieval framework outlined in Chapter 3 de-contextualizes sound

events or objects from their source recordings. However, field recordings have a natu-

ral geographic component, especially in interactive sound maps. Since we have a com-

bination of acoustic, semantic, and geographic information, then, this retrieval frame-

work could be extended to the concept of geographic retrieval—that is, the study of acous-

tic or semantic content’s distribution in space. One could imagine a system where, by

querying with a particular term, the retrieval network could be used to construct a two-

dimensional heatmap or contour plot of its spatial likelihood surface, as each sound object

is associated with a latitude and longitude pair. One challenge of this extension would be

in terms of evaluation: how do we determine the “accuracy” of these heatmaps when any

assumed ground truth of spatial activity is extremely transient? Perhaps, then, the study

could be specified in terms of analysis of the recordist’s recording session rather than the

continuous activity of the space itself.

Additionally, several possible extensions exist for the re-sonification of soundscapes

from multiple source recordings. Chapter 5 explores a few possibilities, but it is clear

from human subject evaluation that much work still needs to be done to develop tech-

niques that both sound perceptually convincing and accurately blend between the sources.

One possibility is to consider a more ecologically relevant synthesis model that better re-

flects how humans perceive soundscapes. For example, a model that uses some form of

figure/ground separation to independently re-sonify extracted sonic “events” from their

background din, which is then blended, may both reduce the number of artifacts intro-

duced by the morphing technique and better reflect how any intermediate point may

have actually sounded to a hypothetical listener.

An important caveat, however, is that any technique that relies heavily on source

separation and event segmentation introduces artifacts that do not reflect the actual im-

mediate experiences of a listener, as discussed in Chapter 1. Perhaps, then, it is better to
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approach these goals from the standpoint of a composition in which there is no attempt

to hide the presence of the underlying process. From the standpoint of human-computer

interaction, this can be seen as emphasizing transparency by properly communicating to

the listener what can and cannot be assumed using these tools.
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APPENDIX A

LIST OF SOUND MAPS
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Title Authors Year Features Media Content Metadata Host

1. 12 Gates to the City
Acoustic Map

Jonathan Prior 2009 point-and-
click

field
record-
ings

descriptions Custom

Location: http://12gatestothecity.com/acoustic-map/

2. 12 Stations Softday 2011 gps traces
point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.softday.ie/wld2011/

3. Accents and dialects The British Library 2011 point-and-
click

historical
data
speech only

categories
descriptions

Custom

Location: http://sounds.bl.uk/Sound-Maps/Accents-and-Dialects

4. An Interactive
Soundmap of Wales

Community Music
Wales

2013 point-and-
click

community
field
record-
ings

descriptions Soundcloud

Location: http://www.mapsain.org.uk/

5. Audioboo Audioboo Ltd. 2011 mobile images commercial
community

categories
descriptions
tags

Custom

Location: http://www.audioboo.com/
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Title Authors Year Features Media Content Metadata Host

6. AudioBus B61 Andrea Callard and
Fred Krughoff

2006 gps traces
point-and-
click

images field
record-
ings

Custom

Location: http://www.andreacallard.com/audiobus/

7. Berlin Wall of Sound Netaudio Berlin 2009 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.netaudioberlin.de/berlin-wall-of-sound/

8. Bolognoise Ricardo Dance,
Federico Mascagni,
and Salvatore Arangio

2012 autoplay
point-and-
click

community
field
record-
ings

categories
descriptions

Custom

Location: http://bolognoise.org/

9. Broadcastr Electric Literature,
LLC

2010 Custom

Location: http://broadcastr.com/

10. Brussels SoundMap Harry + LVH 2011 autoplay
autoplay
next
point-and-
click
sequences

community
field
record-
ings

descriptions Custom

Location: http://www.bna-bbot.be/brusselssoundmap/
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Title Authors Year Features Media Content Metadata Host

11. Carleton
University Soundmap
Project (CUSP)

Carleton Sound at
Carleton University

2012 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www3.carleton.ca/clubs/carletonsound/soundmap/

12. Cartophonies Grégoire Cheikoff,
Françoise Acquier,
Julien Moisans,
Sylvie Laroche, and
Gabriel Bérubé

2012 autoplay
autoplay
next
point-and-
click
sequences

community
field
record-
ings

descriptions Custom

Location: http://www.cartophonies.fr/

13. Cinco Cidades
Soundmap

Alastair Dant,
Tom Davis, and
David Gunn

2007 autoplay
mixing
point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.cincocidades.com/

14. Citygram Tae-Hong Park 2013 field
record-
ings

Custom

Location: http://citygram.calarts.edu/

15. Davos Soundscape Jan Schacher and
Marcus Maeder

2007 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.davosoundscape.ch/
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Title Authors Year Features Media Content Metadata Host

16. Earth Ear
Soundmap

David Dunn,
Steve Feld,
Tom Lawrence,
David Monacchi,
Jay Needham,
Doug Quin,
Jason Reinier,
David Rothenberg,
Lisa Walker, and
Mariolina Zitta

point-and-
click

commercial
field
record-
ings

descriptions Custom

Location: http://earthear.com/soundmap.html

17. escoitar Berio Molina,
Chiu Longina,
Horacio González,
Juan-Gil Rodrïguez,
Julio Gómez, and
Carlos Suárez Sánchez

2006 autoplay
point-and-
click

community
field
record-
ings

categories
descriptions

Custom

Location: http://www.escoitar.org/

18. Favorite Chicago
Sounds

Lou Mallozzi,
Teresa Gale, Sarah Lu,
and Andrew Neher

2008 point-and-
click

field
record-
ings

categories
descriptions

Custom

Location: http://www.favoritechicagosounds.com/
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19. Favourite Sounds Peter Cusack,
Nigel Currie, and
Kirsten Edwards

2011 autoplay
autoplay
next
mixing
point-and-
click
sequences

field
record-
ings

categories
descriptions
tags

Custom

Location: http://favouritesounds.org/

20. Firenze Sound Map Antonella Chicory 2009 point-and-
click

images field
record-
ings

categories Custom

Location: http://www.firenzesoundmap.org/

21. Folk Songs for the
Five Points

Alastair Dant,
Tom Davis, and
David Gunn

point-and-
click

field
record-
ings

Custom

Location: http://www.tenement.org/folksongs/client/

22. GeoGraffiti Blingpost, LLC. 2011 Custom

Location: http://www.geograffiti.com/

23. Gordon
Soundscape

Pete Stollery and
Phil Marston

2005 point-and-
click

field
record-
ings

descriptions Custom

Location: http://homepages.abdn.ac.uk/wae006/gordonsoundscape.co.uk/

92



Title Authors Year Features Media Content Metadata Host

24. Hear and There Joey Rozier,
Karrie Karahalios, and
Judith Donath

1999 field
record-
ings

Custom

Location: http://smg.media.mit.edu/projects/HearAndThere/

25. Inukjuak Sound
Map

Nimalan Yoganathan
and Maxwell Stein

2010 autoplay
point-and-
click

field
record-
ings

categories
descriptions

Custom

Location: http://www.inukjuaksoundmap.com/

26. Invisible Valley
Sound Map

Miguel Isaza 2011 point-and-
click

field
record-
ings

descriptions Custom

Location: http://invisiblevalley.com/map/

27. Ipswich Sound
Map

Enquiring Ear 2013 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.suffolkbirds.co.uk/sounds/soundmap/index.html

28. Jewish survivors of
the Holocaust

The British Library 2011 point-and-
click

historical
data
speech only

descriptions Custom

Location: http://sounds.bl.uk/Sound-Maps/Jewish-Holocaust-Survivors
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29. k146: cartographie
sonore autour du
Taurion

Cédric Peyronnet 2005 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.k146.org/category/cartes-maps/

30. Klaus Wachsmann
Uganda recordings

The British Library 2011 point-and-
click

music only descriptions Custom

Location: http://sounds.bl.uk/Sound-Maps/Wachsmann

31. La Ville S’onore:
Carte sonore subjective

Gwladys Déprez and
Sabine Petit

2009 point-and-
click

field
record-
ings

descriptions Custom

Location: http://lavillesonore.fr/blog/?p=174

32. Listen to Africa H. Williams and
R. Summer

2009 point-and-
click

images
videos

field
record-
ings

categories
descriptions
tags

Custom

Location: http://www.listentoafrica.com/map/

33. Listening to the
Deep Ocean
Environment

Michel André,
Mike van der Schaar,
Serge Zaugg,
Ludwig Houégnigan,
Antionio M. Sánchez,
and
Joan Vicent Castell

2011 live stream-
ing
point-and-
click

spectrogram field
record-
ings

descriptions Custom

Location: http://www.listentothedeep.net
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34. Locustream Map Locus Sonus 2006 live stream-
ing
point-and-
click

images community
field
record-
ings

descriptions Custom

Location: http://www.locusonus.org/soundmap/

35. London Sound
Survey

Ian Rawes 2011 point-and-
click

additional
map layers
images

field
record-
ings
historical
data

categories
descriptions

Custom

Location: http://www.soundsurvey.org.uk/

36. Macaulay Library The Cornell Lab of
Ornithology

2011 commercial
field
record-
ings

categories
descriptions

Custom

Location: http://macaulaylibrary.org/

37. Madrid Soundscape Berio Molina,
Chiu Longina,
Horacio González,
Juan-Gil Rodrïguez,
Julio Gómez, and
Carlos Suárez Sánchez

2008 autoplay
point-and-
click

community
field
record-
ings

categories
descriptions

Custom

Location: http://www.madridsoundscape.org/
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38. Make Sound Here James Saunders 2013 point-and-
click

field
record-
ings

descriptions Audioboo

Location: http://makesoundhere.com/wp/

39. Mapa Sonoro das
Aldeias do Concelho
de São Pedro do Sul

Luis Costa and
Manuela Barile

2013 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.aldeias-sonoras.org/mapas-de-sons/s-pedro-do-sul

40. Mapa Sonoro de
Guayaquil

Juan José Ripalda,
Fernando Alava, and
Laura San Andrés

2012 point-and-
click

images community
field
record-
ings

descriptions Custom

Location: http://mapasonorodeguayaquil.com

41. mapaSONOU Juanjo Palacios 2009 point-and-
click

community
field
record-
ings

descriptions Custom

Location: http://mapasonoru.com/

42. Memoryscape
Audio walks

Toby Butler 2005 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.memoryscape.org.uk
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43. Mississauga Sound
Map

Don Sinclair and
Hector Centeno

2008 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.yorku.ca/caseaces/soundmap/

44. MoMA Studio
Sound Map

MoMA Studio 2013 autoplay
point-and-
click

community
field
record-
ings

Soundcloud

Location: http://www.moma.org/moma_studio/soundmap

45. Montréal Sound
Map

Maxwell Stein and
Julian Stein

2008 autoplay
autoplay
next
point-and-
click

community
field
record-
ings

categories
descriptions
tags

Custom

Location: http://www.montrealsoundmap.com/

46. Morvan Auxois Cédric Peyronnet 2008 point-and-
click

field
record-
ings

descriptions Custom

Location: http://morvan-auxois.ingeos.org/

47. Music from India The British Library 2011 point-and-
click

historical
data
music only

descriptions Custom

Location: http://sounds.bl.uk/Sound-Maps/Music-From-India
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48. NOAA
Underwater Sound
Field Working Group

NOAA 2011 Custom

Location: http://www.st.nmfs.noaa.gov/cetsound/sound.html

49. Open Sound New
Orleans

Heather Booth and
Jacob Brancasi

2009 point-and-
click

images community categories
descriptions
tags

Custom

Location: http://www.opensoundneworleans.com/

50. Orcasound.net
Hydrophone Network

Salish Sea Hydrophone
Network

2011 live stream-
ing
point-and-
click

field
record-
ings

Custom

Location: http://orcasound.net/

51. Paris Sound Map Des Coulam 2011 autoplay
point-and-
click

field
record-
ings

descriptions Soundcloud

Location: http://soundlandscapes.eu/paris-sound-map

52. Passages Couverts
Sound Map

Des Coulam 2011 autoplay
point-and-
click

field
record-
ings

descriptions Soundcloud

Location: http://soundlandscapes.eu/passages-couverts-sound-map

98



Title Authors Year Features Media Content Metadata Host

53. Pod Mostom
Project

Alena Kislitsing and
Vadim Nazarov

autoplay
point-and-
click

images field
record-
ings

Custom

Location: http://www.pod-mostom-project.narod.ru/

54. radio aporee ::
maps

Udo Noll 2006 autoplay
autoplay
next
gps traces
mixing
mobile
point-and-
click
sequences

community
field
record-
ings
platform

categories
descriptions

Custom

Location: http://www.aporee.org/maps/

55. Save Our Sounds BBC World Service 2011 Custom

Location: http://www.bbc.co.uk/worldservice/specialreports/saveoursounds.shtml

56. SeoulSoundMap Sound@Media 2011 autoplay
point-and-
click

community
field
record-
ings

descriptions Custom

Location: http://som.saii.or.kr/campaign
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57. Sergiev Posad
Sounds

Vladimir Kryutchev 2012 point-and-
click

field
record-
ings

categories
descriptions

Custom

Location: http://www.oontz.ru/karta/

58. Soa-te a ISTo Rádio Zero 2008 point-and-
click

field
record-
ings

tags Custom

Location: http://soa-te.radiozero.pt/

59. Soinu Mapa Xabier Erkizia,
Iñigo Telletxea,
Txesus Garate,
Myriam Ayçaguer,
Stéphane Garin,
Mikel R. Nieto,
Aintzane Erkizia,
Oier Iruretagoiena,
Xavier Balderas, and
Enrike Hurtado

2005 autoplay
point-and-
click

field
record-
ings

categories
descriptions
tags

Custom

Location: http://www.soinumapa.net/

60. Sonic Explorers
Sound Map

Sonic Explorers 2012 autoplay
point-and-
click

images field
record-
ings

categories
descriptions

Custom

Location: http://www.sonicexplorers.org/sound-map.html
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61. Sonic Sidewalks Softday 2010 gps traces
point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.softday.ie/sonicsidewalks/

62. Sons de Barcelona Music Technology
Group of Pampeu
Fabra University

2008 point-and-
click

field
record-
ings

descriptions
tags

Freesound

Location: http://barcelona.freesound.org/

63. Sound Archives of
the CNRS - Musée de
l’Homme

Centre de Recherche
en Ethnomusicologie

2013 point-and-
click

music only categories
descriptions
spectrogram
tags
visualisations

Custom

Location: http://archives.crem-cnrs.fr/

64. Sound Around You Charlie Mydlarz 2009 mobile
point-and-
click

community
field
record-
ings

descriptions Custom

Location: http://soundaroundyou.com/

65. Sound Maps of
London Road

London Road Sounds 2010 autoplay
point-and-
click

field
record-
ings

Custom

Location: http://www.londonrdsounds.co.uk/map/
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66. Sound Tourism Trevor Cox 2011 point-and-
click

images
videos

field
record-
ings

categories
descriptions
tags

Custom

Location: http://www.sonicwonders.org/

67. Sound-Seeker Andrea Polli and
Sha Sha Feng

2004 point-and-
click

community
field
record-
ings

descriptions Custom

Location: http://www.soundseeker.org/

68. Soundcities Stanza 2000 autoplay
point-and-
click

community
field
record-
ings

categories
descriptions

Custom

Location: http://www.soundcities.com/

69. soundingD
SoundMap

Robin Minard ad
Hennig Ludger

autoplay
mixing
point-and-
click

field
record-
ings

descriptions Custom

Location: http://map.sounding-d.de/map

70. Soundmap of
Cologne

Marco Medkour 2013 point-and-
click

field
record-
ings

categories
descriptions
tags

Custom

Location: http://soundmap-cologne.de
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71. Soundmap of
London canals and
minor rivers

Ian Rawes 2012 point-and-
click

additional
map layers
images

field
record-
ings
historical
data

descriptions Custom

Location: http://www.soundsurvey.org.uk/index.php/survey/waterways/

72. Soundmap of the
Paiva River

Luis Costa and
Manuela Barile

2013 point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.aldeias-sonoras.org

73. Soundscapes The British Library 2011 point-and-
click

field
record-
ings

descriptions Custom

Location: http://sounds.bl.uk/Sound-Maps/Soundscapes

74. soundtrack Gokce Kinayoglu 2011 gps traces
point-and-
click

community
field
record-
ings

Custom

Location: http://www.dmrlab.org/402/

75. SoundTransit Derek Holzer and
and Marc Boon

2004 sequences field
record-
ings

descriptions Custom

Location: http://www.turbulence.org/soundtransit/
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76. SoundTrips SoundTrips 2011 point-and-
click

field
record-
ings

descriptions
tags

Custom

Location: http://soundtrip.org/

77. Staten Island
Sound Map

Sounds Like Staten
Island

2009 Custom

Location: http://www.soundslikestatenisland.com/map/

78. Street Sounds The Smalls 2009 Custom

Location: http://www.thesmalls.com/StreetSounds/

79. Sydney Sidetracks Australian
Broadcasting
Corporation

2011 point-and-
click

images
videos

historical
data

descriptions Custom

Location: http://www.abc.net.au/innovation/sidetracks/

80. Tactical Sound
Garden

M. Shepard,
F. Murphy, B. Diesel,
A. Flynt, A. Thomas,
V. Modi, and
A. Krishnamurthy

2007 autoplay
mixing
point-and-
click

field
record-
ings

Custom

Location: http://www.tacticalsoundgarden.net/
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81. Taiwan SoundMap
Project

Tsan-Cheng Wu point-and-
click

field
record-
ings

Radio
Aporee,
Sound-
cloud

Location: http://www.soundandtaiwan.com/soundmap/main.html

82. Telemeta Guillaume Pellerin,
Riccardo Zaccarelli,
and Olivier Guilyardi

2013 platform
point-and-
click

categories
descriptions
spectrogram
tags

Custom

Location: http://telemeta.org/

83. Thames estuary
sound map recordings

Ian Rawes 2010 point-and-
click

additional
map layers
images

field
record-
ings
historical
data

descriptions Custom

Location: http://www.soundsurvey.org.uk/index.php/survey/estuary/

84. The Freesound
Project

Universitat Pampeu
Fabra Music
Technology Group

2005 point-and-
click

spectrogram community
field
record-
ings
platform

descriptions
tags

Custom

Location: http://freesound.org/
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85. Toronto Island
Sound Map

Don Sinclair,
Diego Philips-Shea,
and Darren Copeland

2004 autoplay
point-and-
click

field
record-
ings

descriptions Custom

Location: http://www.yorku.ca/dws/tism/

86. Toronto Sound
Map

Frank Russio,
Tristan Loria,
Gabe Nespoli,
Max Stein, and
Chris Lachine

2012 point-and-
click
sequences

images field
record-
ings

categories
descriptions

Custom

Location: http://torontosoundmap.com

87. Traditional music
in England

The British Library 2011 point-and-
click

historical
data
music only

descriptions Custom

Location: http://sounds.bl.uk/Sound-Maps/Traditional-Music-In-England

88. UK Soundmap The British Library 2011 point-and-
click

community
field
record-
ings

Audioboo

Location: http://sounds.bl.uk/Sound-Maps/UK-Soundmap/

89. Urban Sound
Ecology

Urban Sound Ecology 2011 gps traces
point-and-
click

field
record-
ings

tags Custom

Location: http://missionspecialist.net/project/urban-sound-ecology
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90. Western
Soundscape Archive
Sound Maps

Western Soundscape
Archive

2011 point-and-
click

images field
record-
ings

categories
descriptions

Custom

Location: http://westernsoundscape.org/googleMap.php

91. Wildlife recordings The British Library 2011 point-and-
click

field
record-
ings

categories
descriptions

Custom

Location: http://sounds.bl.uk/Sound-Maps/Wildlife-Recordings

92. Wisconsin
Geotools Project

Janet Silbernagel,
Matthew Axler, and
Francis Eanes

point-and-
click

images
video

community
field
record-
ings
mobile

description Custom

Location: http://maps.aqua.wisc.edu/geotools/

93. xeno-canto Xeno-canto
Foundation

2005 point-and-
click

heatmap
spectrogram

community
field
record-
ings

categories
descriptions

Custom

Location: http://www.xeno-canto.org/

94. Your accents The British Library 2011 point-and-
click

community
speech only

Audioboo

Location: http://sounds.bl.uk/Sound-Maps/Your-Accents
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95. Écouter Paris Monica Fantini,
Michel Créïs,
Irène Berelowitch, and
Xavier Baudoin

2011 autoplay
point-and-
click

field
record-
ings

categories Custom

Location: http://www.ecouterparis.net/
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APPENDIX B

SIRENS AND SOUNDWALKS ARCHITECTURE

This appendix discusses the various architectural details and decisions made in the soft-

ware packages described in Chapters 2 and 4. Full API references can be found in the

most recent versions of the respective software packages—this appendix aims to provide

basic information about the reasoning behind their design.

B.1 Sirens

Sirens is made available as an open source software library and is developed with con-

currency in mind in order to efficiently extract features before performing segmentation

or comparison routines. This appendix will briefly discuss classes in the Sirens architec-

ture, split into three categories: 1) feature extraction, 2) segmentation, and 3) comparison.

At the time of this writing, Sirens is available at http://github.com/plant/sirens.

B.1.1 Feature extraction

The base set of features in Sirens consists of six low-level perceptually motivated fea-

tures including Loudness, TemporalSparsity, SpectralCentroid, SpectralSpars-

ity, TransientIndex, and Harmonicity, each of which is implemented as a class that

inherits from the class Feature. Feature can also be instantiated by itself to support us-

ing precomputed feature values. Additionally, the class FeatureSet acts as a container for

several Feature objects that need to be calculated or used for segmentation or retrieval.

FeatureSet supports adding “sample” or “spectral” features, which take in windowed

sample values or FFT bin values, respectively. Below is an example of using the six basic

features and a FeatureSet to perform feature extraction:
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// 1 . Open sound .

Sound∗ sound = new Sound ( ) ;

sound−>se tFrameLength ( 0 . 0 4 ) ; // 40ms Hamming windows .

sound−>setHopLength ( 0 . 0 2 ) ; // 20ms hops between windows .

sound−>open ( " somesound . wav" ) ;

// 2 . Output some i n f o r m a t i o n about the sound .

cout << " \ tDura t ion : "

<< double ( sound−>getSampleCount ( ) ) / sound−>ge tSampleRa te ( )

<< " s ( " << sound−>getSampleCount ( ) << " s ample s ) " << end l ;

cout << " \ tSample r a t e : " << sound−>ge tSampleRa te ( ) << " Hz" << end l ;

cout << " \ tFrame l e n g t h : " << sound−>getFrameLength ( )

<< " s ( " << sound−>getSamplesPerFrame ( ) << " s ample s ) " << end l ;

cout << " \tHop l e n g t h : " << sound−>getFrameLength ( )

<< " s ( " << sound−>getSamplesPerHop ( ) << " s ample s ) " << end l ;

cout << " \ tFFT s i z e : " << sound−>ge tFFTSize ( ) << " s ample s " << end l ;

cout << " \ tSpectrum s i z e : " << sound−>g e t S p e c t r u m S i z e ( )

<< " b i n s " << end l ;

// 3 . I n i t i a l i z e f e a t u r e s .

// The f i r s t frame of T r a n s i e n t I n d e x i s not d e f i n e d ,

// so i t doesn ’ t need to be r e c o r d e d .

i n t f r ames = sound−>getFrameCount ( ) − 1 ;

i n t s p e c t r u m _ s i z e = sound−>g e t S p e c t r u m S i z e ( ) ;

i n t s a m p l e _ r a t e = sound−>ge tSampleRa te ( ) ;
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Loudness ∗ l o u d n e s s = new Loudness ( f r ames ) ;

T r a n s i e n t I n d e x ∗ t r a n s i e n t _ i n d e x = new T r a n s i e n t I n d e x (

frames , s p e c t r u m _ s i z e , s a m p l e _ r a t e , 30 , 15

) ;

Tempora l Spa r s i ty ∗ t e m p o r a l _ s p a r s i t y = new Tempora l Spa r s i ty ( f rames , 4 9 ) ;

S p e c t r a l S p a r s i t y ∗ s p e c t r a l _ s p a r s i t y = new S p e c t r a l S p a r s i t y ( f r ames ) ;

S p e c t r a l C e n t r o i d ∗ s p e c t r a l _ c e n t r o i d = new S p e c t r a l C e n t r o i d (

frames , s p e c t r u m _ s i z e , s a m p l e _ r a t e

) ;

// Harmonicity has s e v e r a l a d d i t i o n a l p a r a m e t e r s t h a t can be tuned .

Harmonicity ∗ harmonic i ty = new Harmonicity (

frames , s p e c t r u m _ s i z e , s a m p l e _ r a t e

) ;

harmonic i ty−>s e tAbsThre sho ld ( 1 ) ;

harmonic i ty−>s e t T h r e s h o l d ( 0 . 1 ) ;

harmonic i ty−>s e t S e a r c h R e g i o n L e n g t h ( 5 ) ;

harmonic i ty−>se tMaxPeaks ( 3 ) ;

harmonic i ty−>s e t L P F C o e f f i c i e n t ( 0 . 7 ) ;

// 4 . I n i t i a l i z e a f e a t u r e s e t to hold a l l the f e a t u r e s .

F e a t u r e S e t ∗ f e a t u r e _ s e t = new F e a t u r e S e t ( ) ;

f e a t u r e _ s e t −>addSampleFea ture ( l o u d n e s s ) ;

f e a t u r e _ s e t −>addSampleFea ture ( t e m p o r a l _ s p a r s i t y ) ;

f e a t u r e _ s e t −>a d d S p e c t r a l F e a t u r e ( s p e c t r a l _ s p a r s i t y ) ;

f e a t u r e _ s e t −>a d d S p e c t r a l F e a t u r e ( s p e c t r a l _ c e n t r o i d ) ;

f e a t u r e _ s e t −>a d d S p e c t r a l F e a t u r e ( t r a n s i e n t _ i n d e x ) ;

f e a t u r e _ s e t −>a d d S p e c t r a l F e a t u r e ( harmonic i ty ) ;

// 5 . E x t r a c t f e a t u r e s .

sound−>s e t F e a t u r e S e t ( f e a t u r e _ s e t ) ;
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sound−>e x t r a c t F e a t u r e s ( ) ;

f e a t u r e _ s e t −>saveCSV ( " f e a t u r e s . c s v " ) ;

Listing B.1: Example feature extraction

The above example in Listing B.1 first demonstrates the basics of opening a sound file.

The Sound class provides a wrapper around the open source library libsndfile, which

allows Sirens to handle many different audio formats. Additionally, an instance of Sound

contain methods to initiate feature extraction once a feature set has been assigned to it.

Part “2” of the code listing demonstrates some of the different methods that are available

for gathering information about the loaded sound.

In Part 3 of Listing B.1, the feature objects are initialized. Each feature object needs

to be told the size of the expected window of samples (or FFT bins, in the case of spectral

features), denoted in this example by the variable frames. Some features take additional

parameters, such as the number of MFCC bins in the case of TransientIndex and vari-

ous parameters for peak picking in the case of Harmonicity.

In Part 4, an instance of FeatureSet is constructed which will act as a container

for the features that have been created. Note that each feature is added using either

FeatureSet::addSampleFeature or FeatureSet::addSpectralFeature, depending

on the type of data the feature uses. When extractFeatures is finally called on sound

in line 63, it computes the fast fourier transform using an instance of FFT (using the FFT

library fftw) and concurrently begins computing all features at the same time, joining

their respective threads afterward to suspend until all are complete.

FeatureSet contains a method saveCSV to output the computed feature trajectories

as a comma-separated value (CSV) file, and finally, the user must deallocate the memory

used for the sound, features, and feature set. This example is contained in Sirens as a

standalone application in examples/features.cpp.
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B.1.2 Segmentation

After features have been extracted, as in Listing B.1, the classes Segmenter and Seg-

mentationParameters can be used to perform the automatic segmentation described

in Section 2.2. Every instance of Feature contains a variable parameters, which is an

instance of SegmentationParameters. The various parameters that can be set in these

objects reflect the various transition variances described in Section 2.2.

Once the segmentation parameters have been set for each feature, a new Segmenter

is created, the FeatureSet is attached to it, and segmentation can be initiated. Below is

an example code listing for setting parameters for the loudness feature constructed in

Listing B.1:

l oudne s s−>p a r a m e t e r s ( )−>a l p h a = 0 . 1 5 ;

loudne s s−>p a r a m e t e r s ( )−>r = 0 . 0 0 9 8 ;

loudne s s−>p a r a m e t e r s ( )−>cS t ayOf f = 0 . 0 0 1 5 ;

loudne s s−>p a r a m e t e r s ( )−>cTurnOn = 0 . 0 8 5 ;

loudne s s−>p a r a m e t e r s ( )−>cTurnOff = 0 . 0 8 5 ;

loudne s s−>p a r a m e t e r s ( )−>cNewSegment = 0 . 0 8 5 ;

loudne s s−>p a r a m e t e r s ( )−>cStayOn = 0 . 0 5 ;

loudne s s−>p a r a m e t e r s ( )−>pLagPlus = 0 . 7 5 ;

loudne s s−>p a r a m e t e r s ( )−>pLagMinus = 0 . 7 5 ;

Listing B.2: Example segmentation parameters for loudness.

Additionally, below is a code listing for using a subset of features in a feature set for

segmentation:

// This example r e q u i r e s s t d : : v e c t o r f o r s t o r i n g s e g m e n t a t i o n b o u n d a r i e s

.

# i n c l u d e <vec tor>

u s i n g namespace s t d ;
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/∗

. . .

Sound load ing , f e a t u r e i n i t i a l i z a t i o n ,

and f e a t u r e e x t r a c t i o n go here .

. . .

∗/

// 1 . Crea t e a f e a t u r e s e t with f e a t u r e s whose s e g m e n t a t i o n p a r a m e t e r s

// have been s e t . This can be the same f e a t u r e s e t used f o r e x t r a c t i o n .

F e a t u r e S e t f e a t u r e _ s e t ;

f e a t u r e _ s e t . addSampleFea ture (& l o u d n e s s ) ;

f e a t u r e _ s e t . a d d S p e c t r a l F e a t u r e (& s p e c t r a l _ c e n t r o i d ) ;

f e a t u r e _ s e t . a d d S p e c t r a l F e a t u r e (& s p e c t r a l _ s p a r s i t y ) ;

// 2 . Perform s e g m e n t a t i o n .

// P a ra m et e r s i n c l u d e p r i o r "on" and " o f f " p a r a m e t e r s .

Segmenter s egmenter ( 0 . 0 0 0 0 0 0 0 0 0 0 1 , 0 . 0 0 0 0 0 0 0 0 0 0 1 ) ;

s egmenter . s e t F e a t u r e S e t (& f e a t u r e _ s e t ) ;

s egmenter . segment ( ) ;

// 3 . Obtain s e g m e n t a t i o n b o u n d a r i e s .

v ec tor<vec tor<i n t> > s egment s = s egmenter . g e tS egment s ( ) ;

v e c tor<i n t> modes = s egmenter . getModes ( ) ;

// 4 . Output segment s a s CSV ( index , s t a r t sample , end sample )

f o r ( i n t i = 0 ; i < s egment s . s i z e ( ) ; i++) {

cout << i << " , " << s egment s [ i ] [0 ] << " , " << s egment s [ i ] [1 ] << " , "

<< s egment s [ i ] [0 ] ∗ sound . getSamplesPerHop ( ) << " , "

<< s egment s [ i ] [1 ] ∗ sound . getSamplesPerHop ( ) << end l ;

}

114



// 5 . Save segment s to d i s k a s WAV f i l e s .

f o r ( i n t i = 0 ; i < s egment s . s i z e ( ) ; i++) {

sound . saveSegment (

" segment " + d o u b l e _ t o _ s t r i n g ( i ) + " . wav" ,

s egment s [ i ] [ 0 ] , // Beg inn ing frame index .

s egment s [ i ] [1 ] // Ending frame index .

) ;

}

Listing B.3: Example segmentation with several pre-initialized/extracted features.

In the above example, Listing B.3, once features have been extracted, the same feature set

used for extraction or a new feature set, containing only a subset of those features, can be

assigned to a new instance of Segmenter, as shown in part 2 of the code. The segmenter

needs to be initialized with tuned parameters for poff and pon as discussed in Section 2.2.

Part 3 of the listing demonstrates two methods used to obtain segmentation bound-

aries and the segmentation state (mode) trajectory (i.e. values of −, O, and C from Sec-

tion 2.2, which can be used to output the segments as CSV or save the resulting segmented

waveforms to disk, as shown is parts 4 and 5.

An example standalone application is provided in examples/segment.cpp.

B.1.3 Comparison

Finally, individual sound files can be compared against one another as in Section 2.3,

handled through two classes, FeatureComparator and SoundComparator.

FeatureComparator instances are used by SoundComparator to compare two tra-

jectories of the same feature, and SoundComparator finally combines these to obtain

likelihood that one set of feature trajectories was constructed by processes represented by

the hidden Markov models of another. Below is an example standalone application that

demonstrates comparing two or more sounds:
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# i n c l u d e <i o s t r e am>

u s i n g namespace s t d ;

# i n c l u d e " s i r e n s // S i r e n s . h"

# i n c l u d e " s i r e n s / suppor t /m at r i x _ su p po r t . h"

# i n c l u d e " s i r e n s / suppor t / s t r i n g _ s u p p o r t . h"

u s i n g namespace S i r e n s ;

# i n c l u d e <boos t /numeric / u b l a s / i o . hpp>

i n t main ( i n t argc , char ∗∗ a rgv ) {

i f ( a r g c < 2 ) {

c e r r << " Usage : s i m i l a r i t y f i l e 1 f i l e 2 . . . f i l e N " << end l ;

r e t u r n 1 ;

} e l s e {

vec tor<s t r i n g > f i l e s ;

f o r ( i n t i = 1 ; i < a r g c ; i++)

f i l e s . push_back ( a rgv [ i ] ) ;

// 1 . I n i t i a l i z e f e a t u r e v e c t o r s and sounds .

vec tor<Sound∗> sounds ( f i l e s . s i z e ( ) ) ;

v e c tor<Loudness∗> l o u d n e s s ( f i l e s . s i z e ( ) ) ;

v e c tor<Tempora l Spa r s i ty∗> t e m p o r a l _ s p a r s i t y ( f i l e s . s i z e ( ) ) ;

v e c tor<S p e c t r a l S p a r s i t y ∗> s p e c t r a l _ s p a r s i t y ( f i l e s . s i z e ( ) ) ;

v e c tor<S p e c t r a l C e n t r o i d∗> s p e c t r a l _ c e n t r o i d ( f i l e s . s i z e ( ) ) ;

v e c tor<T r a n s i e n t I n d e x∗> t r a n s i e n t _ i n d e x ( f i l e s . s i z e ( ) ) ;

v e c tor<Harmonicity∗> harmonic i ty ( f i l e s . s i z e ( ) ) ;

v e c tor<F e a t u r e S e t∗> f e a t u r e _ s e t s ( f i l e s . s i z e ( ) ) ;

v e c tor<SoundComparator∗> compara tor s ( f i l e s . s i z e ( ) ) ;
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Sound∗ sound = new Sound ( ) ;

sound−>se tFrameLength ( 0 . 0 4 ) ;

sound−>setHopLength ( 0 . 0 2 ) ;

// 2 . I t e r a t e through each f i l e , e x t r a c t i n g f e a t u r e s .

f o r ( i n t i = 0 ; i < f i l e s . s i z e ( ) ; i++) {

// 2 . a . I n i t i a l i z e the sound f i l e .

sound−>open ( f i l e s [ i ] ) ;

i n t f r ames = sound−>getFrameCount ( ) − 1 ;

i n t s p e c t r u m _ s i z e = sound−>g e t S p e c t r u m S i z e ( ) ;

i n t s a m p l e _ r a t e = sound−>ge tSampleRate ( ) ;

// 2 . b . I n i t i a l i z e the f e a t u r e s .

l o u d n e s s [ i ] = new Loudness ( f r ames ) ;

t e m p o r a l _ s p a r s i t y [ i ] = new Tempora l Spa r s i ty ( f r ames ) ;

s p e c t r a l _ s p a r s i t y [ i ] = new S p e c t r a l S p a r s i t y ( f r ames ) ;

t r a n s i e n t _ i n d e x [ i ] = new T r a n s i e n t I n d e x (

frames ,

s p e c t r u m _ s i z e ,

s a m p l e _ r a t e

) ;

s p e c t r a l _ c e n t r o i d [ i ] = new S p e c t r a l C e n t r o i d (

frames ,

s p e c t r u m _ s i z e ,

s a m p l e _ r a t e

) ;

ha rmonic i ty [ i ] = new Harmonicity (
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f rames ,

s p e c t r u m _ s i z e ,

s a m p l e _ r a t e

) ;

// 2 . c . I n i t i a l i z e the f e a t u r e s e t .

f e a t u r e _ s e t s [ i ] = new F e a t u r e S e t ( ) ;

f e a t u r e _ s e t s [ i ]−>addSampleFea ture ( l o u d n e s s [ i ] ) ;

f e a t u r e _ s e t s [ i ]−> a d d S p e c t r a l F e a t u r e ( s p e c t r a l _ c e n t r o i d [ i ] ) ;

f e a t u r e _ s e t s [ i ]−> a d d S p e c t r a l F e a t u r e ( s p e c t r a l _ s p a r s i t y [ i ] ) ;

f e a t u r e _ s e t s [ i ]−>addSampleFea ture ( t e m p o r a l _ s p a r s i t y [ i ] ) ;

f e a t u r e _ s e t s [ i ]−> a d d S p e c t r a l F e a t u r e ( t r a n s i e n t _ i n d e x [ i ] ) ;

f e a t u r e _ s e t s [ i ]−> a d d S p e c t r a l F e a t u r e ( harmonic i ty [ i ] ) ;

// 2 . d . E x t r a c t f e a t u r e s .

sound−>s e t F e a t u r e S e t ( f e a t u r e _ s e t s [ i ] ) ;

sound−>e x t r a c t F e a t u r e s ( ) ;

sound−>c l o s e ( ) ;

// 2 . e . I n i t i a l i z e SoundComparator f o r t h i s sound .

compara tor s [ i ] = new SoundComparator ( f e a t u r e _ s e t s [ i ] ) ;

}

// 3 . F i l l a mat r ix with log−l i k e l i h o o d v a l u e s from comparison .

u b l a s : : matr ix<double> l i k e l i h o o d ( f i l e s . s i z e ( ) , f i l e s . s i z e ( ) ) ;

// Compare each sound to i t s e l f and the o the r sound .

f o r ( i n t i = 0 ; i < f i l e s . s i z e ( ) ; i++) {

f o r ( i n t j = 0 ; j < f i l e s . s i z e ( ) ; j++) {

l i k e l i h o o d ( i , j ) = compara tor s [ i ]−>compare (

compara tor s [ j ]
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) ;

}

}

// 4 . Crea t e a symmetric " a f f i n i t y " matr ix .

u b l a s : : matr ix<double> a f f i n i t y = n o r m a l i z e _ a f f i n i t y ( l i k e l i h o o d ) ;

cout << "Log−l i k e l i h o o d : " << l i k e l i h o o d << end l ;

cout << " Normalized d i s t a n c e s : " << a f f i n i t y << end l ;

// 5 . Clean up .

d e l e t e sound ;

f o r ( i n t i = 0 ; i < f i l e s . s i z e ( ) ; i++) {

d e l e t e compara tor s [ i ] ;

d e l e t e f e a t u r e _ s e t s [ i ] ;

d e l e t e l o u d n e s s [ i ] ;

d e l e t e s p e c t r a l _ s p a r s i t y [ i ] ;

d e l e t e s p e c t r a l _ c e n t r o i d [ i ] ;

d e l e t e t r a n s i e n t _ i n d e x [ i ] ;

d e l e t e harmonic i ty [ i ] ;

}

r e t u r n 0 ;

}

}

Listing B.4: Example comparison of two sounds.

Parts 1 and 2 of Listing B.4 extract features for each of the files specified by the user

as command-line arguments. Notice that no additional parameters are necessary for

comparison. In Part 3, every possible pair of sounds is compared using the method
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sounds.py

(pyo)

server.js

(node.js)

web

(HTML5 /

JavaScript)

{ soundwalk JSON files }

OSC

HTTP

socket.io

GET

Figure B.1: Soundwalks application components.

SoundComparator::compare. Note that the emission likelihood calculated and described

in Section 2.3 is not symmetrical. As it is sometimes desirable to have a symmetric affin-

ity matrix for various applications, such as the graph retrieval framework outlined in

Chapter 3, part 5 creates a symmetric matrix using the semi-metric described in 3.1.1. A

full implementation of the above application is available as examples/similarity.cpp

in Sirens.

B.2 Soundwalks

The Soundwalks contains several components that communicate with each other us-

ing a variety of network protocols. In model-view-controller (MVC) terminology, Sound-

walks can be considered to have two views: a Javascript web application and a Python-

based realtime synthesis engine. The two are controlled by a node.js backend server.

Soundwalks is distributed as open source software, available at the time of this writing

at http://github.com/plant/soundwalks. Figure B.1 shows the three major compo-

nents of Soundwalks. To run Soundwalks from the available source, one simply needs to

initialize the server (“node server.js” if node.js has been installed) and the synthesis server
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(“python sounds.py” once all dependencies have been installed). Then, the application is

available as a web application at localhost:8080, assuming the default port is used.

Once the web application is loaded, served by server.js, it will first asynchronously

load a number of JSON files that describe the Soundwalk. These files include GeoJSON

formatted GPS paths as well as basic descriptive data about the walks and their associated

audio files. An example of GeoJSON is shown below:

{

" type " : " F e a t u r e C o l l e c t i o n " ,

" f e a t u r e s " : [

{

" type " : " F e a t u r e " ,

" p r o p e r t i e s " : {

"Name" : " Path " ,

" D e s c r i p t i o n " : "Walk to Daley Park "

} ,

" geometry " : {

" type " : " L i n e S t r i n g " ,

" c o o r d i n a t e s " : [

[−111 .935155 , 3 3 . 4 2 0 1 5 6 ] ,

[−111 .934984 , 3 3 . 4 1 9 8 7 9 ] ,

. . .

[−111 .929825 , 3 3 . 4 0 7 7 4 9 ]

]

}

}

]

}

Listing B.5: Portion of an example GeoJSON file.

All communication with server.js is then handled using the socket.io library using the
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WebSocket API. server.js forwards information from the web application to the sound

synthesis engine in sounds.py as the following Open Sound Control (OSC) messages:

1. /new_walk [filename] [#coordinates]: When a new walk has been loaded,

the synthesis engine is informed of the sound filename to load it, as well as the

number of coordinates in its associated GPS path so that it can allocate the neces-

sary memory.

2. /walk_point [filename] [time offset] [latitude] [longitude]: When

a new walk has been loaded, each GPS point in its GeoJSON attachment is loaded

into the synthesis engine with the associated point in time in seconds.

3. /segments [begin time 1] [end time 1] . . . [begin time N] [end

time N]: When a new walk has been loaded, it can optionally be separated into

several independent segments, denoted by their beginning and ending times in sec-

onds. This is useful for grouping multiple recordings into one soundwalk, such as

in the case of walks that consist of a number of stationary recordings or walks that

have been edited to remove erroneous or sensitive content.

4. /cursor [latitude] [longitude]: When the user moves the on-screen cursor,

the map latitude and longitude are computed and sent on to the synthesis engine to

inform it where to begin synthesizing sounds.

Within sound.py, the Python synthesis library pyo is used, which allows for realtime

synthesis within the Python scripting environment. Python is used for the ease of man-

aging large datasets using the numerical library numpy.
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