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ABSTRACT  

   

Hexavalant chromium (Cr(VI)) poses an emerging concern in drinking water 

treatment with stricter regulations on the horizon. Photocatalytic reduction of Cr(VI) was 

investigated as an engineering scale option to remove hexavalent chromium from 

drinking or industrial waters via a UV/titanium dioxide (TiO2) process. Using an 

integrated UV lamp/ceramic membrane system to recirculate TiO2, both hexavalent and 

total chromium levels were reduced through photocatalytic processes without additional 

chemicals. Cr(VI) removal increased as a function of higher energy input and TiO2 

dosage, achieving above 90% removal for a 1g/L dose of TiO2. Surface analysis of 

effluent TiO2 confirmed the presence of chromium species. 
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CHAPTER 1 

INTRODUCTION 

Experimental Background 

Chromium is a drinking water contaminant with natural and industrial sources 

that poses potential human health risks. A 2010 study by the U.S. Environmental 

Working Group mapped chromium concentration data found for tap waters across the 

nation, revealing upwards of 1ppb and even 10ppb Cr(VI) concentrations found in 

drinkable waters (Sutton, 2010). A significant complication arises in water distribution 

systems, where water endures long contact times with disinfection residuals and reduced 

and released trivalent chromium, Cr(III), can re-oxidize to form Cr(VI); this necessitates 

complete removal of all chromium species (Lai and McNeill 2006).  Both hexavalent 

chromium (Cr(VI)) and trivalent chromium (Cr(III)) have been linked to negative health 

effects, including, but not limited to: increasing risk for cancers (respiratory, prostate, 

lymphoma, leukemia, bone, and stomach), gastro-intestinal system disruption, uptake, 

accumulation and toxicity  in vital organs, damage to DNA and gene mutation (Costa 

1997; Dayan and Paine 2001; Sedman, et al. 2006; Beaumont, et al. 2008). Though 

current regulation is set at 100ppb for total chromium (Barrera-Diaz, et. al 2012), with 

enforceable maximums for hexavalent chromium expected to lower significantly within 

the coming years (California EPA 2011), increasing options for complete removal of total 

chromium species in addition to hexavalent chromium is becoming critical.  

Treatment options for Cr(VI) have traditionally fallen  into five treatment 

classifications (Sharma et. al 2008): coagulation-precipitation-filtration, adsorption to 

different media, ion exchange, membrane technology and electrodialysis, and biological 
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removal. Major concerns with these methods arise in the scalability to treat and meet 

large scale demand, ranging from cost and availability of materials to operational costs, 

pH requirements, and reliability (McNeill, et al. 2012; Owlad, et. al 2009). Although 

Cr(VI) absorbs poorly to most metal oxides, an emerging sixth category are various 

catalytic reduction techniques that reduce Cr(VI) and sorb Cr(III), which is readily 

accepted by metal oxides at neutral pH. Here we propose a combined photocatalytic 

reduction followed by sorption of the by-product to the photocatalyst.  A number of 

studies have demonstrated success using uniquely synthesized and modified 

semiconductor photocatalysts for UV and visible light removal of hexavalent chromium. 

(Vignesh, et. al 2013; Chakrabarti, et. al 2009; Li, et. al 2012). Though they prove 

efficacy of using catalysts for Cr(VI) reduction and removal, many studies encountered 

pH limitations and would incur immense cost and energy demand for added chemicals 

and catalyst preparation upon scale-up.  A stable, proven, and preferable photocatalyst 

may be titanium dioxide (TiO2), known for its unique surface properties, commercial 

pricing and availability, and treatment capacity for chromium as well as successful 

photocatalytic reduction of nitrate and other oxo-anions (Doudrick, et al. 2012).  

Previous studies with TiO2 and Cr(VI) removal indicate potential interferences 

and interactions with dissolved organics (Wang, et al. 2008) and other ions, but far higher 

success in removal than other toxic metal ions (Chen and Ray 2001). This is attributable 

to the mutual oxidation and reduction potential of TiO2 under UV light. While UV/TiO2 

is usually viewed as an advanced oxidation process (AOP) because it produces hydroxyl 

radicals to oxidize pollutants, it is well known that reduction (i.e. hole scavenging) also 

occurs on TiO2 surfaces.  
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Studies on hexavalent chromium and TiO2 under UV irradiation have the highest 

rates observed at pH 4, with 10x lower rate at neutral pH (Ku and Jung, 2001).  

Increasing the Cr/Ti ratio led to diminished reaction rate ~2x in an oxygen rich system 

and ~8x in anoxic conditions (Yang, et. al, 2012). At pH greater than 4, a concern is the 

resultant fouling of TiO2 by chromium hydroxides (Gimenez, et. al, 1996).  Therefore, in 

more neutral natural waters, TiO2 fouling could greatly diminish the reduction capacity 

for hexavalent chromium. Though such studies have compiled a fundamental knowledge 

base of hexavalent chromium removal over TiO2 photocatalysts, thus far, there have been 

no published studies on the engineering implications of Cr(VI) photocatalytic reduction. 

The goal of this paper is to demonstrate the viability of photocatalytic reduction 

of Cr(VI) and removal of residual Cr(III) byproducts from drinking water using an 

integrated reactor system with UV lamps to irradiate water containing varied dosage TiO2 

slurries with recovery of TiO2 across a ceramic membrane. This was completed to (1) 

demonstrate the successful removal of aqueous hexavalent and trivalent chromium 

through varying water matrix, catalyst dosage, and energy input, (2) determine efficacy 

of a 'chemical-free' method using only commercial TiO2 and UV irradiation for removal, 

(3) distinguish between different sorbed Cr-species on the TiO2 after photocatalytic 

reduction of Cr(VI).  

Photon Generation in Hg and Xe Low and Medium Pressure Lamps 

Photocatalytic processes employ mercury and ‘mercury-free’ xenon lamps to 

provide light irradiation to activate the catalyst. Depending on the chemical constituent of 

interest, either low pressure or medium pressure lamps are utilized, the former with 

sharper peaks and singular wavelength ultraviolet (UV) outputs and the latter with a 
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broader spectrum of available wavelength in the UV and low wavelength visible range.   

The lamp properties that induce these output differences relate to the material utilized 

(Hg/Xe), the abundance of that material, as well as pressure of the system.   

 

Lamp Mechanics 

Lamps consist of four crucial elements to functionality: gaseous metal ions, 

electron current induced by a potential difference across an electrode, a noble and inert 

gas, and a light permeable/impermeable sleeve depending on the desired photonic output. 

Thus, from the AC current output from the wall, an electric current is induced across a +/- 

electrode pair within the lamp housing. This induces a flow of electrons throughout this 

sleeve.  Gaseous metal ions, most commonly mercury, exist in a mobile state within the 

sleeve, coexisting with the inert gas. The inert gas, most commonly argon, is added to 

serve as the means for pressure modification and additionally to reduce electron 

collisions with the sleeve wall.   

Thus, upon lamp turn-on, a flow of electrons driven by the potential difference 

between the two electrodes propagates through the argon-mercury media and undergoes 

collisions.  Electron-wall collisions induce a release thermal heat upon electron energy 

exchange, creating no meaningful photonic output.  Electron-argon collisions do not 

significantly degrade the energy of the electrons, while leaving the argon unchanged and 

thus represent a quasi-neutral energy transaction.  The important collisions for photon 

emission are the electron-mercury ion collisions, in which mobile electrons transfer 

energy to mobile mercury electrons.  This energy transfer leads to a promotion of an 

electron within the mercury valence to an excited state.  Upon relaxation of this electron 
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to the pre-existing state, or another quantized level of lesser energy, a photon is emitted. 

Based on the resonance energy of the electron excitation and return, the photon will emit 

at a particular wavelength.  Higher energy discharge corresponds to a shorter wavelength 

emission.  

The inert gas is essential to the process of buffering the electrons from the tube 

walls to prevent heat transfer upon collision.  Additionally, this gas increases the 

frequency of elastic collisions between gaseous constituents, thereby reducing the mean 

free path of electrons (and their energy upon collision).  This property can be 

manipulated to increase the number of spectral output wavelengths or to increase high 

quality low wavelength output by pressure modification. Additionally, energy loss in 

collisions with the inert gas does not diminish the electron energy level to the extent that 

the excitation of metal atoms is negated by additional collisions (Flesch 2006).    

 

Mercury Lamps 

Low pressure mercury lamps are pervasive as efficient fluorescent lamps (Wani 

1994), but are also widely implemented in photocatalytic and germicidal processes due to 

their wavelength of emission.  The emission spectrum of mercury has two high efficiency 

resonance lines of wavelength 253.7nm and 184.9nm at low pressure (Voronov 2008). 

The exclusive emission of these two wavelengths is related to the mean free path the 

electron is able to travel within the lamp.  Within a low pressure system, the mean free 

path of electrons is sufficiently large that it can gain enough velocity, and thereby kinetic 

energy (KE=1/2mv2), that collision with mercury ions produces significant electron 

excitation – velocities too high result in electron annihilation.  The baseline velocity of 
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the electrons may be altered by changing the potential difference between the electrodes.  

As discussed, the introduction of the inert gas helps to mitigate energy lost in electron-

wall collisions and maintain a desired balance of electron velocity and collision 

frequency.  If the pressure is too low, then the probability of electron-mercury collisions 

diminishes and the likelihood of annihilation increases. At a reasonably low pressure, 

however, sufficiently high energy collisions may occur resultant in the desired 63P1 to 

61S0 transition between resonance states in the mercury that provide a photonic output at 

253.7nm (Loo et al. 2004).  

At pressures between 1-10 bar, what constitutes the medium pressure range, the 

mean free path length of electrons is shortened due to heightened collision frequency 

resultant from higher mercury vapor pressure.  Thus, an increased applied voltage is 

necessary to induce electron-ion collisions of sufficient energy to produce photons.  The 

wavelength outputs of medium pressure lamps are longer than those of low pressure 

lamps due to the diminished energy transfer from electrons to the mercury valence.  Due 

to the higher non-radiative losses and wall losses, the ultraviolet efficiency of medium 

pressure lamps is lower than that of low pressure lamps (Giller 2000). 

 

Xenon Lamps 

Due to emerging environmental and health concerns from mercury residual from 

lamp disposal and failure in addition to point of use concerns with warm up time, xenon 

lamps are being pursued as alternatives (Schaefer et al. 2007). Xenon is currently the 

most promising mercury replacement due to strong resonance and excimer emissions in 

the VUV region, from 100-200nm (Jinno, et al. 2007).  Xenon lamps similarly utilize a 
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quartz envelope and electric potential between to electrodes; however, they only employ 

xenon – a noble gas – to provide excitation from electron collisions against a neon gas 

background.  Pulsed xenon-neon lamp emissions have two peaks, one during the 

discharge current and a second during the afterglow period. Depending on the partial 

pressure of xenon in the envelope, the afterglow intensity varies – it increases with 

increasing Xe content (Jinno, Korukawa and Aono 1999). Discharge wavelengths of 

pulsed xenon-neon lamps are 147nm and 172nm.  Additional output wavelengths 

between 200-300nm have been reported (Liang, et al. 2003). Xenon efficiencies and 

luminosities are generally lower than mercury lamps, although for the 147nm output 75% 

efficiencies have been obtained (Uhrlandt et al. 2005). 

 

Bandgap Influence on Photon Absorption 

Absorption of photons with greater energy than the bandgap of a photocatalyst 

generates conduction band electrons and subsequently, valence band holes. This 

‘bandgap energy’ is the threshold of energy needed for the semiconductor to undergo 

redox upon absorption of a photon.  Influent photons must meet this minimum threshold 

of energy in order to activate the photocatalyst, whereas other photonic wavelengths may 

be absorbed but with insufficient energy to promote electron-hole separation.  An 

example of successful activation for a titanium dioxide catalyst is as follows:  

𝑇𝑖𝑂2 + ℎ𝜈 → 𝑇𝑖𝑂2(𝑒𝑐𝑏
− + ℎ𝑣𝑏

+ ) 

where e-
cb represents the electron promoted to the conduction band and h+

vb represents the 

hole that theoretically remains in the valence band. Holes may also be mobile depending 

on the influent energy, structure of the lattice, and defect occurrence.  
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 In an ideal semiconductor, there are no energy states within the band gap. A 

‘fundamental absorption’ occurs if the light absorption is due only to the transfer of e- 

from the valence band to the conduction band (Seeger 2002) and not resultant in lattice 

vibrations. Because electrons can only have discrete energy values, transitions between 

energy levels can either be spontaneous or instigated by photons (Schiavello 1997).  For 

TiO2,  the band gap is well studied, and consensus values are 3.03 eV for rutile and 3.20 

eV for anatase (Scanlon et al. 2013). Thus, for a titanium dioxide nanoparticle, a 

maximum photonic wavelength (minimum energy) is required for excitation:  

𝐸 =
ℎ𝑐

𝜆
 

3.2𝑒𝑉 = 5.12𝑥10−19𝐽 =
6.62606957 × 10−34 m2 kg

s 𝑥 2.998𝑥108 𝑚
𝑠  

𝜆
  

𝜆 = 3.88𝑥10−7𝑚 = 388𝑛𝑚 

where h (Planck’s constant) = 6.62606957 × 10-34 m2 kg / s, 1 eV = 1.6×10−19 joules, c 

(speed of light) = 2.998x108 m/s, and a joule is equal to 1 kgm2/s2.  From this relationship 

of bandgap, or the energy that must be overcome to excite an electron into the conduction 

band of TiO2, and wavelength, it is shown that a maximum wavelength of 388nm can 

activate TiO2 electrons.  Due to the inverse relationship of energy and wavelength, lower 

wavelength light must be utilized to have sufficient energy to excite TiO2 electrons 

photocatalytically. 

However, impurities within the crystal lattice may introduce allowable levels for 

electrons that are within the band gap. Influent photons below the bandgap threshold 

energy cause perturbations within the vibrational modes of the crystal lattice or 
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absorption within impurities in the lattice (Elliott and Gibson 1974).  This is also 

impacted electronically in the Fermi energy.  The Fermi energy, EF, is the energy of the 

highest occupied electronic state at zero kelvin.  At 0K, the hypothetical Fermi energy 

represents the boundary of filled and unfilled electron energy states, where all states 

below EF are full, and all electronic states above EF are empty.  Upon excitation, 

electrons move to higher energy states thus creating a new and ephemeral excited 

electron configuration.  In the bulk of a perfect semiconductor, no electrons exist at the 

Fermi energy level because there are no electronic states available, i.e. the density of 

states is zero at the Fermi level. However, in a non-ideal semiconductor, structural 

defects allow for states to exist in the bandgap above zero kelvin.  

Resultant excitation depends on energy of the light, inclusive of frequency, 

wavenumber or wavelength of the photon.  If the final and initial energy state do not 

fulfill the resonance condition, photon absorption will not occur.  The absorption 

properties depend not only on the chemical identity of the substance and light 

wavelength, but also on the light’s angle of incidence and polarization.  Semiconductors 

require visible (for narrow bandgap) or ultraviolet irradiation in order to absorb photons 

due to the band gap energy requirement.  Infrared light cannot be absorbed because the 

energy is below the bandgap energy.  Whenever the photon energy is sufficient to excite 

electrons from filled valence states to the vacant conduction states, electronic excitation 

occurs as a result of the light absorption. The minimum energy for these transitions to 

produce free electrons is a quality intrinsic to materials and varies; the bandgap energy of 

TiO2 is 3.2eV. Bound electron-hole pairs, called excitons, exist below the threshold of the 

conduction band and also participate in recombination reactions. 
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The existence of a bandgap in a semiconductor has a number of important 

implications. Outright electrical conductivity is low due to the energy barrier of the 

bandgap to drive electrons in the conduction band. Additionally, electron-hole pair 

formation is limited by the input energy required to overcome the gap between the 

valence and conduction bands. These properties of semiconductors necessitate an added 

energy, perhaps significant, in order to be meaningfully employed for contaminant 

reduction.  

 

Mechanistic Assessment of Aqueous Electron/Hole Lifetimes 

Ideally, the electrons and holes generated may be utilized to induce chemical 

reactions at the surface of the metal oxide semiconductor.  Fundamental to semiconductor 

function is the behavior of the p-n junction, where a contact potential exists between the 

p-type and n-type portions of a semiconductor lattice at equilibrium; this potential 

contributes to separation of electrons and holes at the n-type and p-type sides, 

respectively (Moll 1964, 110).  If this potential is decreased by increasing the positivity 

of the p-side, charge carriers may more readily diffuse from regions of majority to 

minority along a charge gradient.  However, if the p-type becomes more negative than the 

n-type side, the barrier is increased and diffusion is greatly diminished.  Thus, to 

understand and catalyze reactions, the process of production and transport of e-/h+ pairs in 

semiconductors as well as the potential for recombination must first be assessed and 

accounted for.   
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Production 

Conduction electrons and holes are produced in pairs within a semiconductor and 

at the surface upon proper irradiation.  The rate of production (number per unit volume 

per unit time) depends on the semiconductor material (energy and momentum needed to 

produce a pair) in addition to the thermal activity of the surroundings (Adler, Smith and 

Longini 1964).  Temperature changes in the solution may produce sufficient thermal 

vibrations within the lattice to produce an electron-hole pair via the breaking of a valence 

bond.  More commonly in photocatalytic endeavors, this production is prompted by a 

light source (photon emission/absorption) that provides sufficient energy to the 

semiconductor to break a covalent lattice bond.   

 

Transport 

Transit time for holes and electrons to reach photocatalyst surface are related to 

the radius of the particle, R, and a diffusion coefficient of the excited charge carriers 𝜏 =

𝑅2/𝜋𝐷 (Gratzel and Frank 1982).  Thus, for particles between 10-20nm, a common TiO2 

nanoparticle size range, transit time from the point of origin within the structure to the 

surface is in the range of picoseconds.  Additionally, the morphology of the space-charge 

region, the near surface region of charge density that differs from the bulk solution, 

strongly influences charge carrier transport.  Distinct band bending patterns result from 

either an ohmic contact or Schottky barrier which represent electrical properties of 

semiconductor-metal interfaces (Kolansinski 2009, 42-45). The Schottky barrier may be 

defined as a carrier depletion region at the surface that is resultant from the electrical 

dipole layer rejection of majority charge carriers from the surface toward the bulk 
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(Seeger 2002, 143).  Additionally, variation in surface states (from a nonhomogeneous 

semiconductor surfaces) provide a potential for disparity between the electron density at 

the surface relative to the bulk.  This difference allows for diffusive transport of electrons 

to lower density regions.  

The valence band wavefunction of TiO2 particles has a larger curvature than that 

of the conduction band, indicating that the ‘effective’ mass of the hole is smaller than that 

of the electron; therefore, at the surface, there would likely be more photogenerated 

holes, whereas electrons would be more readily trapped in the interior (Rajh, Poluektov 

and Thurnauer 2003).  Photoactivation may occur via the surface localization of 

photogenerated charge carriers traveling from the bulk of the semiconducting material 

(Cunningham 1988). These charge carriers persist longer at the interface (Cunningham, 

Goold and Fierro 1982).  

 

Recombination, Trapping, and Surface Reactions 

Upon band gap irradiation, three primary photochemical processes occur in a 

colloidal TiO2 nanoparticle system: 1) recombination, 2) trapping, and 3) reactions with 

surface adsorbed constituents. Recombination occurs as a thermodynamic mechanism of 

restoring thermal equilibrium, and it constitutes the largest energy inefficiency of TiO2.  

Charge carriers (e-/h+) are formed due to the absorption of light into the titanium dioxide 

nanostructure. Recombination can occur as radiative or non-radiative according to the 

following equation:  𝑒𝑐𝑏 𝑂𝑅 𝑡𝑟
− + ℎ𝑣𝑏 𝑂𝑅 𝑡𝑟

+ → 𝑇𝑖𝑂2 + 𝑒𝑛𝑒𝑟𝑔𝑦, where cb represents the 

conduction band, vb represents the valence band and tr represents a trapped charge carrier 

(either electron or hole as indicated) (Bahnemann, Dillert and Robertson 2003). With 
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insufficient transportation rates and/or pathways and external reaction source, i.e., hole 

scavenger, electron-pair holes will recombine, releasing heat.  

Trapping of electrons and holes occurs within the metal oxide lattice and on the 

surface, slowing recombination rates. There is consensus that electrons prefer trapping at 

the surfaces of the TiO2, though there is some evidence and theoretical modeling efforts 

that suggest bulk trapping supersedes surface trapping (Henderson 2011).  Upon low 

temperature irradiation, a small number of electrons are trapped in the interior to produce 

Ti3+ interstitial ions. Electron paramagnetic resonance indicates two types of electron 

traps in TiO2 nanoparticles: 1) internal traps with a narrow and axially symmetric EPR 

signal, and 2) surface traps with broad EPR lines (Rajh, Poluektov and Thurnauer 2003).  

Hole trapping, however, occurs on oxygen species within and on the titanium dioxide 

lattice: 𝑇𝑖4+𝑂−∎𝑇𝑖4+𝑂𝐻− or  𝑇𝑖4+𝑂2−𝑇𝑖4+𝑂−∎ (Howe and Gratzel 1985) dependent on 

surface modifications to the TiO2 and temperature treatment. 

Recombination may be successfully deferred in through consumption of electrons 

and holes at the surface of the semiconductor. Reactive electrons available for interface 

transfer from TiO2 colloids to surface constituents occur at the surface Ti atoms that are 

coordinated with solvent molecules (Kolle, Moser and Gratzel 1985).  Reactive holes 

transfer at surface oxygen molecules that are covalently linked to titanium atoms (Micic 

and Zhang 1993).  Radical species generation are postulated as a significant acceptor of 

surface holes and electrons throughout interfacial transfer, in this case at the solid-liquid 

interface.  This provides both direct and indirect oxidation-reduction pathways.   In 

photocatalytic redox reactions over TiO2, surface trapped photogenerated holes are the 

essential to the process, most commonly oxidizing aqueous organic species.  In order to 
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maintain neutrality, a balance of oxidation-reduction reactions must exist as 

photogenerated electrons (-) and holes (+) are consumed. In order to have successful 

oxidation-reduction reactions of constituents at the surface of the photocatalyst the 

following two properties must exist: 1) for reduction, the conduction band have a more 

negative potential than the reducing species; 2) for oxidation, the valence band must have 

a more positive potential than that of the oxidizing species. Therefore, the bandgap and 

contaminant must be band-paired to undergo successful redox reaction.  

 

Metal Oxide Surface Charge and Zeta Potential 

Chemistry at the water-metal interface, i.e., of semiconductors, is determined by 

the reactivity of water on the metal, chemical reactivity changes due to the 

electrochemical potential and steric and electrostatic effects of the solvent (Taylor and 

Neurock, 2005).  Surface layers can be classified in four categories based the carrier 

densities of the n-type semiconducting surface (in comparison to the bulk): 1) 

accumulation layers (ns>nb), 2) flat band (ns=nb), 3) depletion layers (ns<nb and ps≤nb), 4) 

inversion layers (ps>nb) with n and p representing the carrier densities at the surface (Berz 

1975). The accumulation layer is charge dense, while the depletion layer has a lower 

charge density than the bulk.   

The water layer structure is influenced by the metal, but also by the presence of 

co-adsorbates, dissociation capacity, and the presence of an electric field created by the 

ionic species (which would induce a dipole alignment).  Subsequently, under varied pH 

conditions, water molecule alignment changes due to changing surface charge of the 

metal surface (Kolansinski 2009, 260).  The point of zero charge (pHpzc), also called the 
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isoelectric point, is defined as the pH at which the overall surface charge is neutral.  As 

the pH or potential changes, the net surface charge will change, most often moving more 

negative with increasing pH and vice versa. For colloidal species, this pHpzc is the point 

of zero zeta potential.  Zeta potential is defined as the potential differential between a 

surface and the surrounding bulk liquid. The pHpzc is significant because changes in the 

surface charge (dipole) cause changes in both the adjoining aqueous layer, but also the 

accessibility for adsorption of other species in solution (cations to negative surfaces and 

anions to positive surfaces). The zeta potential represents a net surface charge, and thus 

represents an aggregate sum of charges on the surface – even at very high pH or electric 

potential a mix of charges will exist on the surface, allowing for diversity of reactivity 

and surface adsorption capacity though most often the majority of charge is either 

positive or negative.  

Surface charge of metal oxides is additionally highly dependent on pH due to the 

variation of (de)protonation of surface sites with increasing or decreasing pH.  At high 

pH, the surface sites would be highly deprotonated, and thus surfaces would likely be 

more negative. A hydroxylated surface can serve as a proton donor (Bronsted acid) or a 

proton acceptor (Bronsted base). Electrochemical measurements determine the isoelectric 

point of the surface – the pH value of a solution in contact with the surface that yields an 

equal concentration of XOH2+ and XO- sites.  At this point, the surface has a net charge 

of zero.  A high isoelectric point indicates a strong surface basicity, whereas a low 

isoelectric point indicates a strong surface acidity.  These relationships pertain to the 

ability to donate or accept electrons and influence adsorbate-substrate charge transfers 

but do not directly address adsorption energy. Adsorption energy pertains mainly to the 
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electrostatic and covalent energy. TiO2 for example, would be protonated at low pH, with 

surfaces covered by –OH groups: 

≡ 𝑇𝑖𝑂𝐻2
+ ↔ ≡ 𝑇𝑖𝑂𝐻 + 𝐻+      𝑙𝑜𝑔𝑘𝑎1 =  −2.5 

≡ 𝑇𝑖𝑂𝐻 ↔ ≡ 𝑇𝑖𝑂−  + 𝐻+      𝑙𝑜𝑔𝑘𝑎1 =  −8.0 

which show deprotonation on the surface with increasing pH (Duro, Bruno and 

Honeyman 2001).  In acidic environment, the surface would reflect the first equation with 

a mix of TiOH2
+ (a very protonated species) and TiOH with excess hydrogen in solution, 

whereas in an alkaline environment, the surface would reflect the equilibrium of the 

second equation. Additionally, though the species are the majority in solution, there will 

be a mix of charges both at low pH and high pH but these equations represent the 

majority case of the surface charge: (+) at low pH due to the extra hydrogen on the 

surface and (-) at high pH due to deprotonation with increasing pH. 

 

Electrostatic Surface Complexation Models: Accounting for Ion-Metal Oxide 

Interactions 

Overview of Metal Oxide Surfaces 

Metal oxide surfaces experience a surface energy due to an imbalance of forces 

between atoms, ions and molecules at the surface. Thereby, a finely dispersed solid metal 

oxide will attempt to reduce its surface area by complexing with adjacent phase 

molecules and ions, thus decreasing its overall surface energy. In an aqueous matrix, 

these molecules may coordinate water molecules by dissociative chemisorption, most 

often leaving hydroxyl groups at the surface.  Because of the metal Ti ions in TiO2 act as 

Lewis acids (electron pair acceptor), these surface hydroxyl groups may be replaced by 
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adsorbing oxyanions (Schindler 1981). The charging of a solid surface in a liquid occurs 

as a result of three mechanisms: 1) ionization or dissociation of surface groups; 2) 

adsorption or binding of ions from solution onto a charge neutral surface (ion 

exchangeable surface); 3) charge exchange where charges (protons or electrons) shift to 

another surface and induce an electrostatic attraction in an acid-base and opposite charge 

manner (Israelachvili 2011). 

 

Solid-Liquid Interface 

 The solid-liquid interface can be divided into four regions: the bulk liquid, the 

bulk solid, the surface of the solid along with its adsorbates, and a region just above the 

adsorbed layer that is different from the bulk liquid. In aqueous solution, water will 

complex on the semiconductor surface based on the pH.  As such, pH is the master 

variable that determines the extent of adsorption of aqueous species onto the surface.  

Basic oxides exhibit a weak covalent energy with respect to the surface OH—bond, but as 

oxide acidity increases, the covalent energy increases. This is attributable to increasing 

electronegativity and decreasing ionic radius.  Electrostatic energy is more complex due 

to Coulombic interactions and adsorbate-substrate charge transfers. The overall 

adsorbate-substrate interaction is influenced by attractive and repulsive interaction with 

all substrate ions; the charge transfer at this interface is responsible for a charge decrease 

of both species as hydroxyl groups and surface oxygen lose electrons and protons and 

surface cations capture electrons (Noguera 1996). 
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Ion Adsorption 

Adsorption of anion species onto metal oxide surfaces occurs through ligand 

exchange, a common type of specific adsorption, and correlates to the pH of solution 

(Hingston 1981).  An anion and its conjugate acid will experience an increase in 

adsorption as the pH increases until dissociation is complete (Bowden, et al. 1973), i.e.:  

𝐻𝐶𝑟𝑂4
− ↔ 𝐶𝑟𝑂4

2− + 𝐻+  𝑝𝐾𝑎 = 5.9  (Brito et al. 1997) 

𝐻𝐶𝑟2𝑂7
− ↔ 𝐶𝑟2𝑂7

2− + 𝐻+  𝑝𝐾𝑎 = 1.8 (Brito et al. 1997) 

Thereafter, a decrease in adsorption will occur past the pka of the anion/conjugate acid 

pair. For chromium, it would be expected that above pH 5.9, the majority of the species 

would be deprotonated and thus experience diminished but existent adsorption rates to 

the TiO2 surface.   

At the pHpzc of TiO2 is at pH=6.2, cationic species would more readily adsorb 

than anionic species due to the reversal in net surface charge.   Minimal cation sorption 

occurs at or below the pHpzc, but above the pHpzc, cations are adsorbed to counterbalance 

the overall negative surface charge. Part of the net surface charge is also counterbalanced 

by the exclusion of anion adsorption at higher pH.  Therefore, for metal oxides, cation 

adsorption increases with increasing pH.  Cation selectivity is also influenced by changes 

in oxidation state, which would be represented in this case as Cr(VI) to Cr(III) and their 

aqueous complexes.  With multivalent cations, small changes in pH can lead to relatively 

large changes in sorption capacity (Kinniburgh and Jackson 1981).   
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Surface Complexation Models 

Whether ions are specifically or nonspecifically adsorbed within the innermost 

layer (closest to the metal oxide) depends on the electric field strength and the chemical 

properties of the ions, while the outer Helmholtz layer includes fully solvated ions.  The 

combination of both of these layers forms the electric double layer.  The overall surface 

charge is determined by the compensation of the excess charge of the first layer at the 

surface (Kolansinski 2009). With preliminary definitions for the electric double layer and 

a conceptual framework of charge at the surface, surface complexation models will be 

explored. The diffusive layer model (two layer model), the constant capacitance model, 

and the triple layer model are utilized to describe chemical reactions at the surfaces of 

metal oxides.   

The constant capacitance model addresses scenarios when surface potentials are 

small or high ionic strength in the bulk solution compresses the solution side of the 

electric double layer. In such a case, the surface potential is proportional to the surface 

charge: 

𝛹 =
𝜎

𝐶
 

where Ψ is the potential in volts, σ is the surface charge in Coulombs/m2, and C is the 

integral capacitance in Farad/m2 (Stumm 1992). Assumptions of the constant capacitance 

model include: 1) all surface complexes are inner-surface complexes; 2) constant ionic 

medium reference state determines the activity of aqueous species meaning that no 

surface complexes are formed with background ions; 3) the surface is represented by one 

plane of charge (Goldberg 1995). This model most closely resembles the Helmholtz 

double layer because adsorbing ions are directly adjacent to the surface. The diffuse layer 
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model, also called the two-layer model, makes another set of assumptions: 1) surface 

complexes are inner-sphere complexes; 2) complexes do not form with the background 

ions; 3) the surface is represented by two planes of charge. The triple layer model was 

created with the assumptions that: 1) H+ and OH- ions form the inner-sphere complexes; 

2) outer sphere and inner sphere surface complexes are formed by ion adsorption 

reactions; 3) outer sphere surface complexes are formed by background ions; 4) three 

planes of charge represent the surface. The surface-solution interface may also be 

displayed graphically (potential versus distance from particle surface), with the constant 

capacitance model as sloped line, the two layer model a horizontal and subsequently 

curved line (the diffuse layer is the boundary), and the triple layer model a sloped line 

followed by a line of steeper slope and finally a curve representing the three layers and 

their potential v. distance relationship. 

 Surface complexation models describe the interaction of anions and metal oxide 

surfaces as undergoing a chemisorption substitution process where the anion substitutes 

for water hydrated or hydroxylated surface species (Blesa, et al. 2000).  In the constant 

capacitance or diffusive layer model this would occur in the first coordination sphere, 

whereas in the triple layer model in the outer layer. It has been shown that the electronic 

state of the metal in addition to the surrounding solution greatly influence reactivity at the 

interface, but dynamics within the double layer have not been well documented in 

literature (Taylor and Neurock 2005). 

Photocatalytic Implications 

 

 Predicting the viability of photocatalytic processes can, at least preliminarily, be 

assessed utilizing knowledge of the physics and chemistry of: lamps, semiconductors, 
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and chemical contaminants of concern.  The proper pairing of output wavelength and 

semiconductor bandgap is essential to photocatalytic functionality, for if excitation does 

not occur, the only component of change would likely be adsorption due based on the pH, 

ionic strength, and surface chemistry of the semiconductor. However, if the bandgap 

energy can be met by irradiation, both electrons and holes become available for reaction 

with adsorbed contaminants. The proximity of contaminants relates to the zeta potential 

of the surface, either creating a repulsive or attractive force for the chemical of concern.  

Additionally, with changing pH, the surface charge changes, inducing different 

preferences for surface speciation. Without sufficient surface reactivity and electron-hole 

pair evolution, recombination will dominate, resulting in loss of transformation 

productivity on the semiconductor surface.  However, if electrons (and holes) can be 

trapped at surface sites, the potential for reaction increases and oxidation-reduction 

reactions will occur.  Thus, the solid-liquid interface plays a significant role in the 

success of photocatalytic processes. These theoretical predictions can be verified through 

experimental results to better understand the mechanisms, pathways, and activities of 

contaminants with semiconductors in an aqueous environment.  
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CHAPTER 2 

MATERIALS AND METHODS 

Experimental Methods 

 

Photocatalytic experiments were performed using an integrated UV/ceramic 

membrane reactor (Photo-Cat® Serial 0700 system, Purifics ES Inc., Ontario, Canada) 

with a TiO2 slurry (Figure 1). Purifics' Photo-Cat-L system has been shown to decompose 

organic compounds (Westerhoff, et al. 2009), disinfect pathagens (Gerrity, et al. 2008), 

and transform contaminants to less harmful products and remove them from water 

(Benotti, et al. 2009). The system employs an automated control system to command the 

reactor, four 220W low pressure UV lamps (253.7nm output), and a ceramic ultrafilter to 

efficiently target species for removal while producing catalyst free effluent (Figure 1). 

Employing low pressure lamps of wavelength 253.7 nm, the device is able to target the 

bandgap of titanium dioxide (3.2 eV; Doudrick, et. al 2012). TiO2 recirculates throughout 

the reactor across the lamps during the experiment and is separated from the water at the 

effluent port through a ceramic ultrafiltration membrane. Experiments were conducted in 

batch mode, which recirculates water throughout the reactor at a recirculation rate of 

20Lpm. A flow through mode was utilized at a flow rate of 2.1Lpm for 625L of both 

100ppb and 10ppb Cr(VI) solutions. The 100ppb and 500ppb dosages were utilized such 

that reduction and removal could be observed, accounting for the high capacity for 

removal; it is acknowledged that these values are generally far in excess of natural 

systems.  The machine was purged with at least 250L of water to flush the system and 

avoid crossover contamination between experiments. 
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Experiments were run with TiO2 dosing of 0g/L, 0.01g/L, 0.1g/L and 1.0g/L P90 

(TiO2, >99.5%, Evonik, formerly Degussa). P90 has a higher surface area and 

photocatalytic activity under UV irradiation than P25 (Doudrick, et. al 2012), and was 

therefore chosen for this study. Preliminary investigations using the Photo-Cat revealed 

identical removal efficiencies both with and without an added hole scavenger (e.g., 

formic acid). Therefore, no organic hole scavengers were used, which would have also 

decreased pH.  Because up to four lamps could be powered simultaneously, experiments 

using 0, 1, 2, 3, and 4 lamps were completed to assess impact of illumination quantity in 

hexavalent and total chromium removal. Methylene blue dye tests were used to assess 

performance degradation over time as well as ongoing quality assurance; all methylene 

blue tests were allowed 15 min dark adsorption before initiating lamp warm up. 

Methylene blue dye testing proved comparable performance for all lamps individually as 

well as similar trends for runs with 1, 2, 3, and 4 lamps. It was found that there is a 9 

minute ‘delay’ for the lamps to fully warm up and begin removal, after which time 

reduction of methylene blue occurred. This time was factored into experimental design 

and data energy analysis. 

Temperature was regulated to 27.5oC +/- 2.5oC by running cooling water across 

the lamps. pH was controlled between 8.5 and 8.7  for experiments using deionized water 

by addition of 5mM NaHCO3, whereas pH for ultrapure (without a buffer) experiments 

ranged from 6.5 to 7.1. Dechlorinated tap experiments were unbuffered and pH values 

ranged between 7.7 and 7.9.  City of Tempe tap water is hard (220mg/L as CaCO3) (City 

of Tempe, 2012), and contains primarily carbonate alkalinity. Temperature and pH 

readings were taken using a Beckman-Coulter pH meter, calibrated before each 
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experiment.  Conductivity readings were taken using a VWR conductivity meter; average 

conductivity for tap water was 0.9-1.1 mS/cm.  

Data Processing 

All experiments run were conducted using equivalent energy sampling times to 

normalize data across experiments.  A manufacturer spreadsheet was provided to 

determine the energy output based on the volume of water being recirculated, number of 

lamps utilized and the amount of time the lamps were running. Manual calculations of 

energy were conducted to ensure that the spreadsheet was providing accurate energy 

inputs.  The fundamental equation utilized in this calculation is as follows: 

𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =  
0.22𝑘𝑊×𝑁×𝑡 ×1000

60×𝑉
 , 

where 0.22kW represents the amount of power output from each 220W lamp in kW, N 

represents the number of lamps operational from zero to four, t represents the time the 

sample was taken in minutes, and V is the recirculation volume utilized in liters.  These 

‘power required’ values are the ‘energy’ portrayed on the x-axes in graphical displays of 

data.  

Upon completion of experiments, an electrical energy per order removal (EE/O) 

calculation was undertaken to determine energy efficiency of the system. EE/O is defined 

as the number of kilowatt hours of electrical energy required to reduce the concentration 

of a pollutant by 1 order of magnitude (90%) in a unit volume of contaminated water 

(Behnajady, et. al 2009; Behnajady, et. al, 2011; Daneshvar, et. al, 2005). This is 

represented mathematically: 

𝐸𝐸𝑂 =
𝑃𝑒𝑙 ×𝑡×1000

𝑉×60×log(
[Co]

[C]
)  , 
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where Pel is the input power in kWh of the lamps, t is the irradiation time in minutes, V is 

the volume of water in the reactor in liters, and Co and C represent the contaminant 

concentration at time t=0 (initial) and final time under investigation, respectively. For this 

investigation, this equation can be simplified due to the preliminary calculations for 

power required (in kWh/m3) which then simplifies the EE/O calculation to:  

𝐸𝐸𝑂 =
𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

log(
[Co]

[C]
)  . 

An EE/O value of less than 0.265kWh/m3 is both cost and energy ‘efficient’ and 

could be reasonably scaled to full scale treatment (Crittenden 2012, 1468).   

Chemicals and Materials 

 

Water samples were prepared by spiking 500μg/L hexavalent chromium to either 

1) buffered deionized water with 5mM sodium bicarbonate (NaHCO3, Polystormor AR 

(ACS), >99.7%), 2) 18MΩ deionized nanopure water or 3) dechlorinated tap water 

(220ppm hardness, 615ppm total dissolved solids on average in Tempe tap water; Tempe, 

2012). Potassium dichromate (K2Cr2O7, >99%, Sigma Aldrich) was used as the source of 

the hexavalent chromium. Chromium (III) chloride hexahydrate (CrCl3·H2O, >98%, 

Sigma-Aldrich) was used as the source of trivalent chromium.  P90 (TiO2, >99.5%, 

Evonik, formerly Degussa) was used as the commercial TiO2 photocatalyst and was 

obtained in powder form. P90 contains both anatase (88%, 12nm) and rutile (12%, 18nm) 

crystal structures, has a surface area of 104m2/g, and has an average isoelectic point (IEP) 

of 6.4 (Doudrick, et al. 2012; Doudrick, et al 2013).  
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Analytical Methods 

Aqueous Concentrations and Analysis 

All aqueous concentrations were determined from 40mL samples taken from the 

effluent port after the ceramic membrane.  These samples were filtered with 0.45μm filter 

into a smaller sample volume for analysis on IC or ICP-MS as described below.  

Preparation for the instruments consisted of adding 2-3% nitric acid (ULTREX, Sigma 

Aldrich) for the ICP-MS or adding 1% of an ammonium hydroxide buffer for the IC.  

Hexavalent chromium concentrations were measured using ion chromatography 

(Dionex ICS 2000) following a manufacturer recommended modification of EPA Method 

218.6 (Sensitive Determination of Hexavalent Chromium in Drinking Water, Thermo 

Scientific). This method utilizes colorimetric 1,5 diphenylcarbazide post-column reageant 

and ammonium sulfate eluent to specifically determine the concentration of hexavalent 

chromium.  

Total chromium concentrations were measured using a Thermo Fisher Scientific 

XSeries 2 quadrapole ICP-MS and Cetac ASX-520 autosampler. Sample introduction 

consisted of a conical spray chamber with impact bead and concentric nebulizer with a 

flow of 1ml/min. The spray chamber was cooled to 3 °C by a Peltier cooling system. 

Collision Cell Technology (CCT) mode was utilized to reduce interferences by the argon 

gas used to generate the plasma by using a mixture of 7% hydrogen/93% helium. The 

differential between total chromium and hexavalent chromium was determined to be 

trivalent chromium.  

Samples for aqueous titanium analysis were collected from a sample port (Figure 

1) on the reactor as the permeate from the ultrafiltration membrane. Single particle ICP-
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MS (spICP-MS), an emerging nanoparticle quantification and size characterization 

technique (Degueldre, et al. 2005; Mitrano, et al. 2012), was used to evaluated the 

particulate TiO2 equivalents amount in the effluent of photocatalyst reactor. Effluent 

samples were introduced into the ICP-MS directly and the instrument signal in counts per 

second (cps) was documented versus time.  Dwell time, i.e. the unit time interval in 

which one reading was integrated, was set as 10ms and the sample flow rate was set as 

0.69 ml/min.  Nebulizer transport efficiency was determined based on previous research 

(Pace, et al. 2011) as 1.58% to be used in Ti quantification.  Total Ti concentration was 

evaluated by taking account of the elevated baseline relative to the blank and counting the 

pulses that stand for the detectable particle signals.  

Slurry Analysis: Characterizing the Surface 

TiO2 from the effluent slurry of the ceramic membrane was dried at 100oC and 

then prepared for analysis on scanning electron microscopy (SEM), Fourier transform 

infrared spectroscopy (FTIR), and x-ray photoelectron spectroscopy (XPS). For SEM 

analysis, about 0.1 g of sample was put on the surface of the stub. Prepared samples were 

dried in the air at room temperature (22 °C) before electron microscopy work. Scanning 

electron microscopy equipped with an energy dispersive X-ray microanalysis system 

(SEM/EDX) (Philips XL30) was used to locate and characterize chromium on the surface 

of titanium dioxide.  

XPS was used to determine surface elemental composition and chemical state of 

the chromium and titanium dioxide. XPS was performed on a ESCALAB 220i-XL 

(Vacuum Generators, USA) with a monochromatic Al Kα source at hν = 1486 eV and a 

base pressure = 7×10−10 mbar.   
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FTIR was run on two different instruments, a Thermo Nicolet 6700 FTIR and 

Continuum Microscope System available in Arizona State University Biodesign Institute 

and a Bruker FT-IR/FT-Raman IFS 66V/S from the LeRoy Eyring Center for Solid State 

Science.   Both instruments utilize liquid nitrogen for cooling.  The Nicolet FTIR utilizes 

transmittance measurements from a diamond and directly analyzes powdered samples 

placed on the stage. The Bruker FT-IR set up uses mid-IR wavelengths to target 

absorbance of sample constituents in KBr pellets. 
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CHAPTER 3 

RESULTS 

Model Water Testing 

  Cr(VI) was slowly removed  by direct photolysis, without TiO2 (Figure 2). A 

1g/L dosage was found to be the most effective in removing hexavalent chromium, 

achieving removal to non-detect levels in a very short time, and therefore the low energy 

input. An unexpected finding was that photolysis (no added TiO2) was more effective at 

removal than adding a very low dosage of 0.01g/L. It is likely that the low TiO2 dosages 

reduced UV transmittance, thus limiting direct photolysis of Cr(VI), while providing 

minimal surface for electron transfer to Cr(VI).  EE/O calculations were performed to 

provide a normalized assessment of removal on an energy out of the wall basis (Figure 

3). The highest titanium dioxide dose (1.0g/L TiO2) had an EE/O value of 0.36kWh/m3, 

which is within the range suggested to be cost effective (Crittenden, 2012).  EE/O values 

for photolysis and 0.01 g/L TiO2 are extremely high (22 kWh/m3 and 54kWh/m3, 

respectively), with 0.1g/L TiO2 also in a very high range (8.3kWh/m3). Based upon these 

findings, two TiO2 dosages (0.1g/L and 1.0g/L) were tested for varied water matrix and 

under different irradiance conditions.    

Tandem Hexavalent Chromium Reduction and Total Chromium Removal 

For experiments using dechlorinated tap water spiked with different initial Cr(VI) 

concentrations, both the hexavalent and total chromium concentrations decreased at the 

same rate, indicating that both hexavalent and total chromium were simultaneously 

removed from the aqueous solution (Figure 4). For inputs of 1g/L TiO2, it was found that 

removals varied between 89% and 98% for initial concentrations of 500ppb Cr(VI).  Only 
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4% dark adsorption of Cr(VI) onto TiO2 was found for recirculation under zero irradiance 

for 1 hour.  Thus, all removals above 4% are attributed to photocatalytic processes. With 

only 0.1g/L TiO2 added and 100ppb Cr(VI), removals varied from 45% to 70% with 

around 6.5% dark adsorption.  

After Cr(VI) concentrations in the ceramic membrane permeate water decreased 

to below detection levels, continued and prolonged UV irradiation indicate “reformation” 

of Cr(VI).  This likely occurred as a surface-bound Cr(III) was oxidized to Cr(VI).  

Reformation potential was tested using an initial input of trivalent chromium instead of 

hexavalent chromium.  Experiments were conducted with 0.1g/L P90 at 100ppb initially 

available Cr(III) and 1.0g/L P90 at 500ppb initially available Cr(III). Figure 5 shows that 

in both cases, Cr(VI) evolved from the Cr(III) initial solution, though at a significantly 

lower rate and extent than that of hexavalent chromium reduction in other tests. This may 

be due to both the high sorption of Cr(III) to TiO2 and precipitation of Cr(OH)3(s) at 

neutral pH.  

Characterization and Bonding of Titanium Dioxide and Removed Chromium 

Analyses conducted on slurry effluent samples taken after experiments showed 

accumulation of Cr on the surface. While virgin P90 is a pure white, the dried titanium 

samples from experiments were visually mint green, an indicator of chromium species on 

the surface of the titanium dioxide.  

SEM was conducted on both virgin P90 and a Photo-Cat® slurry effluent from a 

dechlorinated tap water experiment of 1g/L P90 and 500ppb Cr(VI) to determine 

presence and quantity of chromium on the surface of titanium dioxide after 

photocatalysis. SEM analysis results are shown in Figure 6. For the case of virgin P90, 
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SEM showed only Ti and O present at the surface, with a carbon response from the stub 

on which the P90 was mounted.  The surface of the effluent titanium from the Photo-

Cat® was found to have chromium in addition to a number of common tap water 

constituents (Na, Mg, S, Cl, K, Ca). Though chromium represents a relatively low atomic 

weight percentage of surface coverage, detection shows that it is present and attached to 

the surface in some manner.  

XPS results from virgin and photocatalytic effluent TiO2 indicate the presence of 

chromium on the surface of the TiO2. Due to charging of the chromium, the exact 

bonding state and energy state were indeterminable. FTIR conducted on virgin and 

photocatalytic effluent TiO2 revealed differences in absorbance response at 1383.4 and 

1508.0cm-1. 

Water Matrix and Removal Impact 

Water matrix experiments were performed using 18.3MΩ/cm3 nanopure water 

(Figure 2), buffered deionized water (5mM NaHCO3,) and dechlorinated tap water. 

Varying the dose of P90 in the reactor slurry under constant illumination conditions 

revealed the presence a threshold of titanium needed in order to see significant reduction 

(Figure 7). For doses less than 1g/L, it was found that the reduction potential was 

diminished greatly due to a combination of the following: insufficient reaction sites or 

electron evolution, matrix interferences, or irradiation shielding of the lamps. At 1.0 g/L 

TiO2 and only one lamp providing illumination, a more typical removal curve is 

achieved. Nanopure water was found to have complete removal at 1g/L dosing as 

previously discussed.  Dechlorinated tap water consistently performed better than 5mM 

NaHCO3 buffered deionized water, with removal differentials ranging up to 62% for the 



  32 

highest TiO2 dose as shown in Figure 7. Adding 5mM NaHCO3 increases pH almost one 

unit, which creates less thermodynamically favorable conditions for Cr(VI) reduction. 

Additionally, calcium is more likely to complex with titanium dioxide and form 

aggregates, which decreases removal capacity.   

Energy Dosage and Removal Impact 

Figure 8 shows hexavalent chromium removal in dechlorinated tap water with 

respect to time and energy input.  Portraying the 1.0g/L TiO2 data in terms of time reveals 

typical removal plots, decreasing quickly at first and tapering off as concentrations reach 

low levels (~20% remaining). The time plot also shows 90% removal occurring within 

the first 30 minutes for all varieties of lamps. Looking only at this data, it would be 

assumed that all lamps combinations greater than zero (1, 2, 3, or 4) perform almost 

equally over time.  

Plotting this same data with respect to energy input reveals different efficiencies 

of removal due to lamp warm up and energy cost. All concentrations reach a 1-log 

removal between 16kWh/m3 and 21kWh/m3. There is an inverted pattern of hexavalent 

chromium removal over energy input, with efficiency decreasing as follows: 1 lamp >2 

lamps > 3 lamps > 4 lamps >0 lamps.  This is most likely due to the energy accounting 

issue with the 9 minute delay, in which four times the amount of energy is used for the 

four lamp scenario in comparison to the one lamp scenario.  Equivalence occurs when all 

removals approach the same value at the same energy, at approximately 21kWh/m3 and 

90% removal.  
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Titanium Dioxide Presence in Membrane Permeate 

Figure 9 shows the concentration of TiO2 in the ceramic membrane permeate for 

0.1g/L TiO2 in 5mM NaHCO3 deionized water as well as in dechlorinated tap water; all 

samples were taken at a run-time of 15 minutes and analyzed by SP-ICP-MS.  The 

permeate concentrations show a trend based on water matrix, with TiO2 concentrations 

from dechlorinated tap water higher for the samples taken with three and four lamps 

operating but lower for the two lamps and zero lamps operating conditions. In 5mM 

NaHCO3 buffered deionized water, increased illumination may result in a higher 

incidence of ionic complexing with titanium, increasing the size of the particles and 

preventing breakthrough. Overall, the concentrations in the effluent were significantly 

higher in runs using zero or two lamps than those found in three or four lamp runs. Up to 

100g/L TiO2 was found in the permeate (zero lamps, buffered deionized water), having 

passed through the ultrafiltration membrane.  Average particle size of dispersed P90 

ranges from 12-18nm, whereas ultrafiltration membranes range from 0.1 to 0.001m, or 

1 to 100nm. Reasons for observed variations may be TiO2 aggregation patterns upon 

illumination, pH and ionic strength differences (Tong, et. al, 2013; Domingos, et. al 

2009) or decreased ability to escape the ultrafiltration membrane upon higher chromium 

surface loading onto TiO2 and thus, increased size of TiO2 particles.  

Efficacy as a Flow-Through System 

A 625L flow through experiment was completed to assess TiO2 saturation 

potential and continuous loading removal capacity for both 10ppb and 100ppb Cr(VI) 

solutions (Figure 10). The influent concentration was initially decreased, but this removal 
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steadily declined over the first hour to reach an ongoing pseudo-steady state at ~12% 

removal, maintained for the duration of the tests. Though TiO2 appears to reach a 

saturation point (~125L treated), hexavalent and total chromium were still reduced 

thereafter.  The mechanisms involved in this process include a cycling between Cr(VI) 

and Cr(III) at saturation, necessitating a TiO2 recycling and regeneration step to prevent 

the oxidation and desorption of Cr(III) species on the surface of the TiO2 (Figure 11).  

A threshold of removal capacity is reached when TiO2 surface sites become 

saturated.  However, this can be overcome, as Purifics designed a TiO2 recirculation and 

regeneration pathway that allows all TiO2 to be reused well beyond a single saturation 

through desorption via a strong acid (Purifics, 2012). At full scale, one log removal is 

achievable with a reported EE/O of 1.8 for an influent concentration of 440ppb Cr(VI) 

(Purifics, personal correspondence 2013).  Therefore, it is possible to have a 

photocatalyst-driven reaction activated by UV lamps that has zero by-products and 

demands no additional chemicals without immense catalyst demand.   
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CHAPTER 4 

CONCLUSION 

The removal capacity of hexavalent chromium was investigated under varied 

water matrix, titanium dioxide dosage, and energy input using an engineering-scale 

photocatalytic reactor system. The integrated UV-TiO2-ceramic membrane system 

successfully reduces Cr(VI) and removes all aqueous chromium species.  Catalyst dosage 

was the most impactful quality investigated, with the most successful dosage of 1g/L. 

Water matrix was found have an effect on removal, but UV-TiO2 photocatalysis can 

overcome ion interaction and competition with sufficient catalyst and increased energy 

input. Energy input reaches a threshold of necessity, above which further illumination 

may cause oxidation of Cr(III) surface species to aqueous Cr(VI).  Surface analysis 

confirmed chromium species are on the surface of the TiO2 in the effluent slurry. 

Mechanisms for Cr(VI) reduction and Cr(III) removal were outlined and determined as 

hexavalent chromium was reduced to trivalent chromium onto titanium dioxide 

photocatalytically with a conceptual model (Figure 11).  

An application of this method would be for utilities or industry that discharge 

water and need to meet hexavalent chromium permitting standards. A UV-photocatalytic 

reactor like the one investigated could allow seasonal and on-demand intervention to 

reduce discharge levels instead of instituting a year-round additional step in the water 

treatment process for satisfactory removal and reduction.  With increasing interest and 

technology investment in UV applications for water treatment, this intervention method 

could become more prevalent on a large scale. 
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Figure 1 - Schematic of pilot-scale photocatalytic reactor, Photo-Cat L®, by Purifics.  
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Figure 2 - Hexavalent chromium removal as a function of four P90 TiO2 catalyst dosages in 

model water matrix (18.3MΩ nanopure deionized water) with one of four operational lamps 

running in recirculation mode. pH ranged from 6.5 to 7.1 (initial to final) and temperature was 

maintained between 25-30oC.  
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Figure 3 - Electrical energy per order EE/O comparison between varied TiO2 dosages in a model 

water (18.3MΩ nanopure deionized water). 
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Figure 4 - Removal efficiencies for hexavalent and total chromium in dechlorinated tap water 

with initial Cr(VI) concentration of 500g/L. The Y-axis represents calculated removal of either 

hexavalent or total chromium, while the x axis represents the number of lamps utilized. Zero 

lamp data represents runtime of one hour of dark adsorption. All other data sets are using 

removal values normalized to an equivalent energy input (31kWh/m3). 
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Figure 5 - Evolution of Cr(VI) from starting concentration of only Cr(III) in dechlorinated tap 

water. pH increased over the course of the experiment (7.5 to 7.75 and 7.85 to 7.95 for 1.0 g/L 

TiO2 and 0.1g/L TiO2, respectively). 
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Figure 6 - SEM results indicating the presence of chromium species on the surface of the 

catalyst. 
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Figure 7 - Effluent chromium concentrations based on initial input P90 dosage. Initial 

concentrations were 500ug/L Cr(VI) with added 0.0g/L, 0.01g/L, 0.1g/L, 1.0g/L added P90 

titanium dioxide. Experiments above were conducted using buffered deionized water (5mM 

NaHCO3, pH 8.5 to 8.7), unless otherwise noted in the legend. pH for dechlorinated tap matrix 

ranged from 7.7 to 7.9  from Cin (at t=0) to Cf  (final sampling); pH for ultrapure ranged from 

6.5-7.1.  Temperature was controlled to remain between 25oC and 30oC for all experiments. 
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Figure 8 - Comparative assessment of energy dosage for a constant P90 dosage: 1.0g/L P90. 

Variability across both time and energy input (inset) are shown to show contrasting results 

between catalyst dosage in dechlorinated tap water matrix. 
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Figure 9 - Titanium dioxide concentration in membrane permeate samples taken at t=15min as a 

function of lamps and water matrix. pH for 5mM NaHCO3 buffered DI matrix ranged from 8.5 to 

8.7 from Cin to Cf; pH for dechlorinated tap ranged from 7.7 to 7.9.  Temperature was controlled 

to remain between 25oC and 30oC for all experiments. 
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Figure 10 – Hexavalent chromium concentration as a function of time in a flow through (2.1Lpm 

in/out) mode with a constant 14L internal volume. pH ranged 7.2 (initial) to 7.8 (final) and 

temperature was maintained at 28oC +/- 1oC for both runs (100ppb Cr(VI) and 10ppb Cr(VI) 

with 1g/L TiO2). 
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Figure 11 - Conceptualization of mechanisms involved in the reduction of hexavalent chromium 

and removal from aqueous solution of total chromium species via reduction and sorption 

processes. Upon significant reaction progression, oxidation and desorption of trivalent species on 

the surface of titanium yield hexavalent species. The TiO2 recycle segment advantageously 

desorbs trivalent chromium after reduction of hexavalent chromium to trivalent chromium using 

acidic solution. Trivalent chromium is extracted to a ‘waste’ before it can be oxidized back to 

aqueous Cr(VI).  
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