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ABSTRACT  
   

Impact craters are ubiquitous throughout the Solar System, formed by one of the 

principal processes responsible for surface modification of terrestrial planets and solid 

bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, 

particularly on the Moon and Mercury, where the results remain uncomplicated by 

atmospheric effects, plate tectonics, or interactions with water and ices. Crater 

measurements, used to determine relative and absolute ages for geologic units by relating 

the cumulative crater frequency per unit area to radiometrically-determined ages from 

returned samples, are sensitive to the solar incidence angle of images used for counts. 

Earlier work is quantitatively improved by investigating this important effect and 

showing that absolute model ages are most accurately determined using images with 

incidence angles between 65° and 80°, and equilibrium crater diameter estimates are most 

accurate at ~80° incidence angle.  

A statistical method is developed using crater size-frequencies to distinguish lunar 

mare age units in the absence of spectral differences. Applied to the Moon, the resulting 

areal crater densities confidently identify expansive units with >300–500 my age 

differences, distinguish non-obvious secondaries, and determine that an area >1×104 km2 

provides statistically robust crater measurements. This areal crater density method is also 

applied to the spectrally-homogeneous volcanic northern smooth plains (NSP) on 

Mercury. Although crater counts and observations of embayed craters indicate that the 

NSP experienced at least two resurfacing episodes, no observable age units are observed 

using areal crater density measurements, so smooth plains emplacement occurred over a 

relatively short timescale (<500 my).  



ii 

For the first time, the distribution of impact melt on Mercury and the Moon are 

compared at high resolution. Mercurian craters with diameters ≥30 km have a greater 

areal extent of interior melt deposits than similarly sized lunar craters, a result consistent 

with melt-generation model predictions.  

The effects of shaking on compositional sorting within a granular regolith are 

experimentally tested, demonstrating the possibility of mechanical segregation of 

particles in the lunar regolith. These results provide at least one explanation toward 

understanding the inconsistencies between lunar remote sensing datasets and are 

important for future spacecraft sample return missions. 
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CHAPTER 1 

INTRODUCTION 

Impact cratering is one of four dominant geologic surface processes that occurs 

throughout the Solar System (including volcanism, tectonism, and gradation, Figure 1.1; 

Greeley, 1994). Airless terrestrial objects such as the Moon and Mercury (Figure 1.2) 

provide excellent test sites to investigate the surface modification and products resulting 

from the impact cratering process. Unlike craters on Earth, impact craters on the Moon 

and Mercury are not affected by plate tectonics (although tectonic activity may modify 

the final crater form, Figure 1.3), interactions with water (either during impact or 

subsequent crater modification), or aeolian erosion (which also strongly affects crater 

morphologies on Mars). Thus, investigating the morphology and characteristics of lunar 

and mercurian impact craters provides unique insight into the impact cratering process. 

Learning about the geologic processes and history of one planet enables increased 

understanding and comparison to other planets, and comparative planetology focused on 

impact cratering provides a means to address key science questions related to terrestrial 

planetary evolution. The Moon and Mercury are two of the most accessible planets for 

impact cratering investigations, because new high-resolution data allow specific 

observations to be made to test existing hypotheses and to make significant progress 

toward answering basic questions related to the evolution of the terrestrial planets over 

geologic time. 

Requested by NASA, scientifically important concepts and questions pertaining to 

planetary geoscience are presented in documents prepared by the Space Studies Board of 

the National Research Council (NRC). These documents are intended to serve as 
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roadmaps for future scientific research and exploration, relying on input from the 

planetary science community who are best prepared to discuss and identify outstanding 

hypotheses related to the workings of the Solar System and planetary processes through 

time. The Scientific Context for Exploration of the Moon (SCEM) (2007; hereafter “NRC, 

2007”) lists fundamental concepts related to lunar science in addition to testable science 

hypotheses to support the Vision for Space Exploration (NASA, 2004). The work 

presented in this dissertation addresses key aspects of the SCEM Science Goals identified 

for the following SCEM Science Concepts: (1) The Moon reveals the inner Solar System 

bombardment history (Science Concept 1), (2) The Moon is ideal for investigating the 

impact process at the planetary scale (Science Concept 6), and (3) The Moon is ideal for 

investigations of regolith processes (Science Concept 7) (NRC, 2007). Similarly, the 

recent Planetary Decadal Survey (2011; hereafter “NRC, 2011”) provides 

recommendations to NASA that address crucial science objectives for the 2013–2022 

decade, and a crosscutting theme focuses on the workings of solar systems, specifically 

“revealing planetary processes through time” (NRC, 2011, p. 69). An important question 

identified is: “What are the major surface features and modification processes on each of 

the inner planets?” (NRC, 2011, p. 117). The significance of better understanding the 

planetary impact record and impact fluxes is also emphasized as essential science to 

pursue in the next decade, because examining the impact history of the terrestrial planets 

and icy satellites is dependent on the lunar chronology (NRC, 2011). The research 

presented here contributes to questions raised in the Planetary Decadal Survey (2011) by 

using measured crater frequencies to better understand the lunar and mercurian impact 

records and observations of impact cratering products (i.e., impact melt) to gain insight 
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into the impact cratering process. I also investigate the history of volcanic emplacement 

using crater size-frequency measurements for specific regions on the Moon and Mercury 

to address the question: “What are the distribution and timescale of volcanism on the 

inner planets?” (NRC, 2011, p. 117). 

In Chapter 2 of this dissertation I examine the effects of different illumination 

conditions on crater identification and provide a description of the techniques used to 

analyze measured crater frequencies and derive absolute model ages. Previous studies 

(Soderblom, 1972; Young, 1975; Wilcox et al., 2005) determined that consistent 

identification of craters is affected by incidence angle and fewer craters are visible in 

images with smaller incidence angles. Therefore, identification of craters in images taken 

at small incidence angles may affect identification of the small crater population (<1 km 

in diameter) and subsequent crater size-frequency analyses. Accurate small crater 

measurements are crucial to investigations pertaining to determination of recent lunar 

cratering rates and determination of absolute model ages (e.g., Neukum et al., 1975; 

Schultz et al., 1977; Neukum, 1983; Hiesinger et al., 2012) as well as estimations of 

regolith depths (Quaide and Oberbeck, 1968; Shoemaker et al., 1969; Wilcox et al., 

2005). Utilizing Apollo Metric and Lunar Reconnaissance Orbiter Narrow Angle Camera 

(LROC NAC) images taken at different incidence angles, I estimate the equilibrium 

crater diameter for a region in Mare Imbrium and at the Apollo 11 Landing Site and 

derive absolute model ages that are consistent with published ages (Hiesinger et al., 2000; 

Hiesinger et al., 2003). Absolute model ages derived from crater counts (>700 m 

diameter) on LROC Wide Angle Camera (WAC) mosaics for western Mare Serenitatis 

confirm that more craters are identified at larger incidence angles. This chapter furthers 
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the SCEM Science Goal 1c, “Establish a precise absolute chronology” (NRC, 2007), by 

determining an optimal incidence angle range of ~65°–80° to use when completing crater 

counts for relative and absolute age dating. SCEM Science Goal 1d, “Assess the recent 

impact flux” (NRC, 2007), is also addressed by confirming that Mare Imbrium, Mare 

Tranquillitatis, and Mare Serenitatis are too old (~3.5–3.6 Ga) to use to investigate the  

<3 Ga impact flux. 

In Chapter 3 and Chapter 4, areal crater density (ACD) analysis is used as a 

novel approach to identify resurfacing boundaries in lunar and mercurian volcanic 

smooth plains. ACD analysis provides a reliable technique to distinguish relative ages 

among geologic units when spectral information is not available or units do not exhibit 

spectral contrasts. These chapters address questions posed in the Planetary Decadal 

Survey (2011) related to the impact record and timing of volcanic emplacement for the 

Moon and Mercury. 

In Chapter 3, the ACD methodology is developed and tested in Mare Imbrium 

using crater counts on LROC WAC mosaics, where previously reported age units defined 

with multispectral data (Hiesinger et al., 2000; Bugiolacchi and Guest, 2008) are 

distinguished for age contrasts >300–500 million years and spatial extents >1 × 104 km2. 

Non-obvious secondary craters are identified in ACD maps with diameters between  

500 m and ~850 m and comprise a significant portion of the crater population, further 

supporting the use of craters ≥1 km in diameter for absolute model age determination in 

agreement with e.g., Neukum et al., 1975a; Neukum, 1983; McEwen and Bierhaus, 2006 

and in support of Science Goal 1c (NRC, 2007). ACD measurements in Mare Imbrium 
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enable discussion of SCEM Science Goal 1e, “Study the role of secondary impact craters 

on crater counts” (NRC, 2007). 

In Chapter 4, I test hypotheses concerning the timing of smooth plains 

emplacement for the northern smooth plains (NSP) on Mercury with measured crater 

frequencies and ACD measurements. Using newly acquired orbital image data from the 

MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) 

spacecraft, I define the local stratigraphy for the northern polar region of Mercury, 

complementing previous studies for other regions (e.g., Trask, 1975; Strom, 1977; Spudis 

and Guest, 1988; Strom and Neukum, 1988; Strom et al., 2008, 2011; Fassett et al., 2009; 

Denevi et al., 2013a), to provide insight into the global stratigraphic record and the 

relative ages of key geologic units on Mercury. Crater size-frequency and ACD analyses 

reveal evidence for multiple resurfacing of the NSP over a short geologic timescale, and 

stratigraphic relations among buried craters demonstrate that at least two periods of 

volcanic modification occurred prior to the formation of the post-plains crater population. 

From buried crater rim height estimates, the minimum regional NSP volume is between 

4.08 × 106 km3 and 9.84 × 106 km3. The results presented add to the understanding of the 

volcanic history of Mercury by comparing the relative ages of the NSP to the volcanic 

smooth plains located elsewhere (Spudis and Guest, 1988; Strom and Neukum, 1988; 

Strom et al., 2008; Fassett et al., 2009; Denevi et al., 2013a). Thus, this chapter provides 

new information related to the impact record and volcanic history of Mercury (NRC, 

2011). 

Chapter 5 diverges from observations of natural impact processes to investigate 

the mechanical sorting of an analog lunar regolith that results from seismic shaking in a 
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controlled laboratory setting. Seismic shaking induced by nearby impacts, ejecta 

emplacement, or shallow moonquakes may explain discrepancies between remotely 

sensed compositional datasets. Ilmenite is a titanium-rich mineral abundant in some 

returned lunar samples (e.g., Heiken, 1975; Papike et al., 1982), and titanium abundance 

estimates derived from Clementine UV-VIS spectral reflectance (CSR) and Lunar 

Prospector Gamma Ray Spectrometer (LP GRS) orbital measurements for the nearside 

maria do not match everywhere (e.g., Prettyman et al., 2006). Using an experimental 

bimodal mixture of different bulk densities to simulate a physical regolith subjected to 

vertical and horizontal shaking vibrations, I find that denser ilmenite particles sink into a 

less-dense matrix regardless of the size contrast between ilmenite and the matrix 

particles. These results imply that mechanical sorting due to seismic shaking is a possible 

explanation for some regions on the Moon where titanium abundance estimates differ 

between CSR and LP GRS. These findings further support SCEM Science Concept 7 

(NRC, 2007), which focuses on better understanding regolith processes and the lunar 

environment, in addition to exploring a potential modification process to the lunar surface 

(Schultz and Gault, 1975; NRC, 2011).  

Using new global datasets obtained by LROC and MESSENGER, Chapter 6 

investigates the occurrence and distribution of impact melt within lunar and mercurian 

impact craters. For Mercury (11.6 × 106 km2 area) and the Moon (8.8 × 106 km2 area), I 

identified craters ≥8 km in diameter with ponded impact melt deposits, mapped the extent 

of those interior deposits, and calculated melt pond area to use as an approximation for 

melt pond volume. Both the Moon and Mercury show the expected increase in melt 

deposit area with increasing crater diameter. For craters ≥30 km in diameter, mercurian 
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craters contain larger areal extents of interior ponded impact melt than their lunar 

counterparts, which is consistent with models that predict more impact melt in mercurian 

craters than similarly-sized lunar craters (e.g., Gault et al., 1975; Grieve and Cintala, 

1997; Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b). My results improve 

understanding of the impact process (NRC, 2011) through comparative planetology, in 

addition to indirectly relating to SCEM Science Goal 6c, “Quantify the effects of 

planetary characteristics…on crater formation and morphology” (NRC, 2007). 

Chapter 7 summarizes the results of this dissertation and presents possible 

opportunities for future work. 
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Figure 1.1. Lunar examples of the four primary geologic surface processes occurring on 
terrestrial planets. (A) Impact cratering; ~270 m diameter crater on the farside (25.88°S, 
136.08°E), LROC NAC M159059694R, image width 855 m. (B) Volcanism; a sinuous 
rille located on the floor of Ulugh Beigh A crater exhibits oxbow bends (white arrows; 
33.85°N, 81.05°E), LROC NAC M102672335L, image width 1.56 km. (C) Tectonism; a 
lobate scarp (thrust fault) formed in the wall material of Schrödinger basin (79.30°S, 
126.50°E), LROC NAC M159099396R, image width 1.1 km. (D) Gradation; a granular 
debris flow on the wall of Stevinus A crater (8 km diameter, 31.75°S, 51.55°E, downhill 
to the right), LROC NAC M154893929R, image is 500 m across. Images courtesy of 
NASA/GSFC/Arizona State University and used in LROC Featured Images 
(www.lroc.sese.asu.edu) written by the author (Appendix A).  
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Figure 1.2. (A) Nearside LROC WAC 643 nm normalized reflectance map of the Moon 
(centered 0°N, 0°E), with natural shading added using the WAC Digital Terrain Model; 
lunar radius ~1737 km. Image credit: NASA/GSFC/Arizona State University.  
(B) Hemispherical monochrome mosaic (749 nm) of Mercury imaged by MESSENGER 
(centered 0°N, 75°E, Rembrandt basin in lower right and Caloris basin at upper right on 
the eastern limb); mercurian radius ~2440 km. Image credit: NASA/Johns Hopkins 
University Applied Physics Laboratory/Carnegie Institute of Washington. 

 
Figure 1.3. Tectonic modifications to craters. (A) A wrinkle ridge cross-cuts and deforms 
an ~330 m diameter impact crater in Mare Imbrium (44.41°N, 357.19°E), LROC NAC 
M104540211R, image width is 1.7 km. (B) Bürg crater (41 km diameter, located at 
45.07°N, 28.21°E) is a complex crater with terraced walls that formed post-impact as a 
result of fracturing and faulting of the target rock, LROC WAC monochrome mosaic. 
Image credit: NASA/GSFC/Arizona State University; images used in LROC Featured 
Images written by the author (Appendix A). 
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CHAPTER 2 

EFFECTS OF INCIDENCE ANGLE ON RELATIVE AND ABSOLUTE AGE 

DATING 

2.1. Introduction 

Solar incidence angle (measured from the surface normal, noontime is 0°; Figure 

2.1) affects consistent identification and measurement of craters on a planetary surface 

(Moore, 1972; Soderblom, 1972; Young, 1975; Wilcox et al., 2005). In smaller incidence 

angle images morphologic details are diminished and thus craters are difficult to identify 

and measure, particularly for smaller (<1 km diameter) craters and even more so for 

degraded craters with shallower slopes (Wilcox et al., 2005). At larger incidence angles, 

subtle topography is enhanced and shadowing of the surface can remove small craters 

from the observed distribution (Moore, 1972; Soderblom, 1972; Wilcox et al., 2005). 

Accurate small crater population statistics are necessary in determination of relative and 

absolute model ages (AMAs) of younger units (e.g., Neukum et al., 1975a; Schultz et al., 

1977; Neukum, 1983; Hiesinger et al., 2012) as well as estimations of regolith depths 

(Quaide and Oberbeck, 1968; Shoemaker et al., 1969; Wilcox et al., 2005).  

Determining the equilibrium crater diameter is also useful for estimating the depth 

of the lunar regolith; crater density should relate to regolith thickness. The equilibrium 

diameter represents the steady-state between the formation of new craters and the 

removal of older craters (Shoemaker et al., 1969; Gault, 1970; Soderblom, 1970), and the 

maximum average regolith thickness for an area is equal to the initial depth of the 

equilibrium crater diameter minus the rim height (e.g., Shoemaker et al., 1969). Using 

higher resolution image data, Wilcox et al. (2005) investigated previous hypotheses that 
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the number of craters identified in an image is dependent on the incidence angle and that 

more craters would be detected at larger incidence (Soderblom, 1972; Young, 1975). 

Using scanned Lunar Orbiter and Apollo Metric images for three different mare regions 

(AMAs agreed within uncertainty) imaged at different incidence angles, Wilcox et al. 

(2005) showed that fewer craters were visible at smaller incidence angles and proposed 

that illumination influences equilibrium diameter estimates of the counted crater 

population. Oberbeck (2008) disputed this finding, that an equilibrium crater population 

was observed by Wilcox et al. (2005), and suggested that a sharp kink, as opposed to a 

gradual rollover, in the cumulative size-frequency distribution (SFD) is necessary to 

define the equilibrium crater population.  

The Lunar Reconnaissance Orbiter Narrow Angle Camera (LROC NAC) and 

Wide Angle Camera (WAC) images, in addition to scanned Apollo Metric images, 

provide the necessary data to follow up on these earlier studies and more accurately 

examine the effects of incidence angle on crater measurements. Using Apollo Metric 

images of the same area taken at different incidence angles, crater SFDs for a region in 

Mare Imbrium are measured to identify the equilibrium crater population and estimate 

equilibrium crater diameter (if equilibrium is observed). LROC NAC images of the 

Apollo 11 Landing Site taken at different incidence angles are also used to measure crater 

SFDs, which extend to diameters smaller than those measured in Apollo Metric images. 

Furthermore, crater SFDs are measured in Mare Serenitatis using LROC WAC mosaics 

to characterize differences in crater distribution resulting from illumination at larger 

diameters (>500 m to several km). 
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Figure 2.1. Cartoon sketch illustrating the measurement of solar incidence angle as 
defined in this work. Incidence angle is measured from the surface normal of the 
spheroid, where noontime is 0° incidence. 

 

2.2. Background 

Determining relative and absolute model ages for planetary surfaces relies on 

observed superposition relationships (to define geologic units) and on measurements of 

crater SFDs. Superposition relationships observed around the Copernicus crater region 

were used to derive a global stratigraphic time scale for the Moon (Shoemaker, 1962; 

Shoemaker and Hackman, 1962), and subsequent mapping using this time scale indicated 

that the mare materials were formed during the Imbrian and Eratosthenian systems (e.g., 

Wilhelms, 1987 and references therein). Therefore, SFD analysis is the primary technique 

used to distinguish relative ages for different mare units (frequently determined on the 
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basis of multispectral differences, e.g., Schaber, 1973; Charette et al., 1974; Johnson et 

al., 1977; Pieters, 1978; Hiesinger et al., 2000; 2003; 2010), and the measured crater 

frequencies are then translated into absolute age estimates (Section 2.3.3).  

Discussions of crater diameter measurements involve terminology that is 

sometimes ambiguous because different terms have been adopted to explain similar 

aspects of crater SFDs. Hartmann et al. (1981) and Melosh (1989) provide in-depth 

discussions of vocabulary often used by planetary scientists, and to limit confusion the 

following terms used throughout this chapter are defined: 

• Primary impact crater: A crater formed by impact of a meteoroid on 

the planetary surface. Also referred to as a “primary crater” or 

“primary”. 

• Secondary impact crater: A crater formed from the impact of ejected 

material resulting from a primary impact. Referred to as “secondary 

crater” or “secondaries”. Secondary craters usually are categorized as 

“obvious” or “non-obvious”, and obvious secondaries form in 

connected crater chains, herringbone patterns, or overlapping clusters 

of craters, and these morphologies may help determine the parent 

primary crater (e.g., Shoemaker, 1962; Oberbeck and Morrison, 1973). 

Non-obvious secondaries are not easily distinguished from the primary 

crater population and frequently form many kilometers from their 

parent primary (e.g., Wilhelms, 1976a; Wilhelms et al., 1978; McEwen 

and Bierhaus, 2006). 

• Production function: The theoretical crater SFD resulting from all 

primary impacts over time in the absence of erosion (e.g., volcanic 

embayment, ejecta emplacement). Measured (real) crater SFDs will 

reflect the effects of erosion on the production population for a 

planetary surface. The production function is used to determine 

absolute model ages of a surface (Section 2.3.3). In the cumulative SFD 
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plot (Section 2.3.2), the production function slope can range between  

-1.8 to -4 depending on the diameter range (e.g., Baldwin, 1964; Trask, 

1966; Baldwin, 1969; Shoemaker et al., 1969; Soderblom, 1970; 

Baldwin, 1971; Neukum et al., 1975a) but is usually between -3.3 and  

-4.0 for diameters <1 km (Soderblom, 1970). 

• Equilibrium or equilibrium distribution: The crater density reflecting 

the maximum number of craters possible on the surface such that for 

each new crater formed, an older crater is destroyed  (e.g., Trask, 1966; 

Gault, 1970). Equilibrium conditions reflect between 1% and 10% of 

the theoretical saturation conditions (Gault, 1970), and are 

mathematically represented by the discrete equation  

 N(D)=10-1.1D-2 (Equation 2.1) 

where N(D) is the cumulative number of craters greater than or equal to 

a given diameter per km2 and D is the diameter in km (Trask, 1966). In 

the cumulative SFD plot (Section 2.3.2), the equilibrium slope is 

usually -2 for diameters <300–500 m (e.g., Trask, 1966; Soderblom, 

1970). AMAs cannot be determined from an equilibrium distribution. 

Also referred to as “steady-state” or “equilibrium function”. 

• Saturation: Theoretical maximum number of craters that can be 

hexagonally packed, so that the surface area covered by craters is 

90.5% of the total area studied (Gault, 1970). Alternative terms such as 

“geometric saturation”, “cookie-cutter saturation”, and “empirical 

saturation” (e.g., Woronow, 1977; Hartmann et al., 1981; Hartmann, 

1984; Melosh, 1989; Richardson, 2009) reflect adaptations to Gault’s 

(1970) original definition and are not used here. 

• Equilibrium crater diameter (Deq): The diameter at which the 

cumulative SFD transitions from production to equilibrium for a 

surface (Gault, 1970; Soderblom, 1970; Schultz et al., 1977). For 

smaller craters (<1 km diameter), the cumulative SFD deviates from a 

slope of about -3.4 (production) to -2 (equilibrium) (Trask, 1966; 
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Soderblom, 1970), and for the maria, Deq is ~150–250 m (e.g., 

Shoemaker et al., 1969; Soderblom, 1970; Soderblom and Lebofsky, 

1972; Young, 1975; Schultz et al., 1977; Wilcox et al., 2005). 

Equilibrium crater diameter estimates can be employed to determine 

regolith depth (Shoemaker et al., 1969; Gault, 1970; Soderblom, 1970; 

Wilcox et al., 2005). 

A key principle of crater SFD analysis is that impact cratering is a random process 

and that the accumulation of craters over time for a given surface reflects the age of that 

surface (e.g., Neukum et al., 1975a; McGill, 1977; Hartmann et al., 1981; Neukum, 1983; 

Neukum and Ivanov, 1994). However, relative and absolute model ages derived from 

crater SFDs are sensitive to several factors. The region in question should be comprised 

of an area of uniform age, which is assumed to consist of one geologic unit (e.g., Neukum 

et al., 1975a; 1975b; McGill, 1977; Hartmann et al., 1981; Neukum, 1983; Neukum and 

Ivanov, 1994). Only primary impact craters should be considered for the measurement 

region; volcanically embayed or partially flooded craters, in addition to obvious 

secondary craters and volcanic craters, should be ignored and removed from the 

measurement region and crater statistics when possible (e.g., Neukum et al., 1975a; 

Hartmann et al., 1981; Neukum, 1983). However, isolated secondaries occurring at great 

distances from their parent primary are difficult (if not impossible) to discern from 

primary craters (e.g., McEwen et al., 2005; McEwen and Bierhaus, 2006; Dundas and 

McEwen, 2007; also discussed in Chapter 3), but their presence in crater counts is 

argued to have a negligible effect on the SFD measurements (Neukum et al., 1975a; 

Werner et al., 2009). In an attempt to reduce uncertainty in measuring crater diameters, 

particularly between different individuals, a set of crater counting techniques were 
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codified by Greeley and Gault (1970), Neukum et al. (1975a), König (1977), Hartmann et 

al. (1981), Neukum (1983), and Neukum and Ivanov (1994) (Section 2.3.1). Furthermore, 

for the study areas in Mare Imbrium, Mare Serenitatis, and Mare Tranquillitatis, potential 

uncertainties in measurements of crater size due to target differences (e.g., Schultz et al., 

1977; van der Bogert et al., 2010) are unlikely because only lunar basalts were studied, 

and it is reasonable to assume that the study regions have similar physical properties 

(e.g., well-developed regolith lacking the competency of bedrock or recent impact melts).  

There is continuing debate whether equilibrium conditions are observed on 

planetary surfaces, particularly for the old, heavily cratered terrains (e.g., Marcus, 1970; 

Woronow, 1977; Hartmann, 1984; Chapman and McKinnon, 1986; Neukum and Ivanov, 

1994; Richardson, 2009). For studies of the maria, which focus primarily on craters  

≤4 km in diameter, there is agreement among workers that the small craters reach 

equilibrium near diameters of 100–300 m (e.g., Trask, 1966; Gault, 1970; Marcus, 1970; 

Soderblom, 1970; 1972; Young, 1975; Schultz et al., 1977; Hartmann, 1984; Wilcox et 

al., 2005; Richardson, 2009). Theoretical and schematic cumulative SFD plots that 

frequently illustrate the transition from production to equilibrium as a distinct inflection 

point or kink (Figure 11 in Gault, 1970; Figure 10.5 in Melosh, 1989) in the cumulative 

SFD slope, where the kink equals the equilibrium crater diameter. Nonetheless, in 

practice the transition to equilibrium is not necessarily described by a sharp kink and 

instead is sometimes observed as a gradual rolling over of the cumulative SFD as the 

production function transitions to the equilibrium (e.g., Trask, 1966; Shoemaker et al., 

1969; Gault, 1970; Young, 1975; Melosh, 1989; Wilcox et al., 2005).  
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Wilcox et al. (2005) observed a gradual rollover in cumulative SFDs measured on 

Lunar Orbiter and Apollo Metric images (resolutions ranging from 6.4–9 meter pixel 

scale), results that were called into question by Oberbeck (2008). Oberbeck (2008) 

argued that Wilcox et al. (2005) did not demonstrate the presence of an equilibrium 

population and thus that the equilibrium crater diameter estimates were not valid, 

referencing Melosh’s (1989) explanation for determining the presence of an equilibrium 

distribution and the equilibrium crater diameter. However, Oberbeck’s assertion is based 

on a misinterpretation of Melosh’s explanation, which states: “The inflection point 

between these two curves is at diameter De(1) where the production curve crosses the 

equilibrium line” (Melosh, 1989, p.194), and the description that follows refers to 

idealized illustrations (Figure 10.5, Melosh, 1989) in which a kink or inflection point is 

emphasized. Subsequently, Melosh (1989) refers to a cumulative SFD where measured 

crater data are plotted (adapted from Gault, 1970), and while there is a noticeable change 

in slope indicating the equilibrium crater diameter, the inflection is less of a kink and 

more of a gradual rollover similar to that observed by Wilcox et al. (2005). Therefore, 

Oberbeck (2008) may not have grounds to assert that the equilibrium population and 

related equilibrium crater diameter estimates identified by Wilcox et al. (2005) are 

incorrect.  

Oberbeck (2008) attributes the gradual rollover in the cumulative SFDs to factors 

other than equilibrium, such as crater loss due to shadowing, effects of image resolution, 

missed craters during counting, or “certain types of geologic processes”. Wilcox et al. 

(2005) discussed the effects of shadowing on crater identification, emphasizing that the 

large incidence angle image would promote hiding of smaller craters in shadow, but that 
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such a result would promote flattening of the cumulative SFD slope at the smallest 

diameters, first described by Soderblom (1972). Slope flattening at small diameters is 

observed in the cumulative SFDs only for those bins below a reasonable resolution 

threshold (5–7 pixels); slope fits are not computed for diameters <65 m, which is equal to 

the 7 pixel threshold multiplied by the coarsest resolution image (9 meter pixel scale) 

(Wilcox et al., 2005). Moreover, the individual performing the counts was trained in the 

technique of crater SFD measurements (Denevi, 2010, personal communication), so 

while it is possible that craters were missed during counting, it is unlikely that the number 

of craters missed comprised a statistically significant portion of the craters counted. 

Lastly, geological processes, such as ejecta emplacement and volcanic flooding, can 

affect the measured SFD (Neukum et al., 1975a). Resurfacing events may result in kinks 

observed in the cumulative SFD (e.g., Neukum and Horn, 1976), but such resurfacing 

effects are unlikely for this case because of the youth of the mare in which the study areas 

were selected (Hiesinger et al., 2003; Wilcox et al., 2005) as well as the location of the 

measurement area away from recent craters with ejecta blankets (Denevi, 2010, personal 

communication). Therefore, although Oberbeck (2008) presents valid alternative 

explanations to the gradual rollover in the cumulative SFD, crater loss due to these 

factors in the Wilcox et al. (2005) work will be minimal. 

Finally, Oberbeck (2008) criticizes the method by which Wilcox et al. (2005) 

completed slope fits to the cumulative SFDs, declaring that the least squares fit method 

used to determine the break from a -3.4 to a -2 slope was invalid. This criticism is rooted 

in the argument that he interprets there is no equilibrium distribution present due to the 

gradual rollover in the cumulative SFD, in addition to the use of “as few as three data 
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points” used to determine the slope fits (Oberbeck, 2008). Since it is well established that 

the inflection between production and equilibrium can be poorly defined (e.g., Trask, 

1966; Shoemaker et al., 1969; Gault, 1970; Young, 1975; Melosh, 1989; Wilcox et al., 

2005) and the slope fitting procedure employed by Wilcox et al. (2005) is similar to the 

simple application of the cumulative SFD equilibrium function, Equation 2.1 (Trask, 

1966), Oberbeck’s (2008) argument is not substantiated.  

The statement criticizing the use of few data points is valid; the method of binning 

data affects the presentation in the cumulative SFD and may influence subsequent 

analyses. Standard plotting techniques were suggested in 1978–1979 (Crater Analysis 

Techniques Working Group, 1979), when it became clear that the different methods of 

data binning and plotting were so varied that comparisons between published data were at 

times impossible (Trask, 1966; Gault, 1970; Greeley and Gault, 1970; Young, 1975; 

Neukum et al., 1975a; Hartmann et al., 1981 all use different binning methods). 

However, Wilcox et al. (2005) used the suggested standardized presentation method 

(cumulative SFD, root-2 binning with ±one standard deviation uncertainty), which limits 

the number of data points available for slope fits. By considering a larger count area to 

improve the statistics of the smallest craters (i.e., those with slopes that tend to flatten as 

a result of shadowing), further tests of the validity of these fits could be completed. 

Consequently, Oberbeck’s (2008) invalidation of Wilcox et al.’s (2005) results is not well 

founded. 

Here, I continue the investigation of the effects of incidence angle on crater 

identification and determination of equilibrium crater diameter (c.f., Young, 1975; 

Wilcox et al., 2005) by using Apollo Metric, LROC NAC, and LROC WAC images. 
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2.3. Technique 

2.3.1. Crater Counts 

Initially, crater rims were digitized in each image using an interactive monitor-

cursor program written in IDL (http://www.exelisvis.com/ProductsServices/IDL.aspx) 

named “Circle” (P.C. Thomas and M.S. Robinson, unpublished). Circle fits a circle to 

three analyst-defined points on a crater rim, recording the crater center in pixel space 

(lines, samples) and calculating the crater radius, which are later converted to the 

appropriate geo-referenced center latitude, longitude, and crater diameter. Later, crater 

measurements for the Apollo 11 Landing Site in LROC NAC images were made using 

the CraterTools extension (Kneissl et al., 2011) for the ESRI ArcMap 10 geographical 

information system (GIS) program. The CraterTools program computes a best-fit circle to 

three analyst-defined points on a crater rim and records the center latitude, longitude, and 

diameter to a project database. Obvious secondary craters, identified by their occurrence 

in chains, herringbone patterns, or clustered groups, were excluded from the 

measurements and the areas containing obvious secondaries were excluded from the final 

count area.  

Three individuals (A, L–the author, and S) were trained to complete crater counts 

and at least two individuals digitized each Apollo Metric image (over 17,500 craters 

total). Only one individual (L) digitized craters in the LROC NAC and WAC images 

(over 10,500 craters total). To limit false identification of craters and maintain 

consistency between individuals, all analysts were trained on the same portion of Apollo 

Metric image AS15-M-1010 (not the area used in this investigation), and count statistics 

are expected to vary by up to a factor of two between trained individuals (Greeley and 

http://www.exelisvis.com/ProductsServices/IDL.aspx
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Gault, 1970; Robbins et al., 2013a; 2013b). A 7 pixel identification threshold was 

selected because craters 7 pixels and larger were confidently and consistently identified 

in images by all individuals. Only craters ≥7 pixels in diameter were used to derive crater 

statistics (e.g., cumulative SFD slopes, AMAs; Appendix B), but all craters identified are 

plotted to emphasize the differences in crater identification between individuals as the 

pixel threshold was approached. Individuals were not required to digitize the images in a 

particular manner beyond appropriate primary crater identification (e.g., circular 

depression versus circular positive-relief feature) and marking of the crater rim; that is, a 

systematic digitizing approach whereby the images were digitized along the length or 

width of the image was recommended but not required.  

From these crater counts, crater frequencies are plotted in cumulative SFD plots 

(Crater Analysis Techniques Working Group, 1979; Section 2.3.2). Absolute model ages 

were derived using the CraterStats software (Michael and Neukum, 2010) by employing 

the Neukum et al. (2001a) chronology function to the data (Section 2.3.3). Crater 

equilibrium diameters were estimated by determining the diameter at which the 

production function and the equilibrium with a -2 slope intersect (method after Wilcox et 

al., 2005). To determine the production function, a least squares fitting routine was 

applied to the cumulative SFDs to determine the slope of the steeply sloped portion of the 

cumulative SFD (~-3.0 to -4.0; e.g., Trask, 1966; Shoemaker et al., 1969; Soderblom, 

1970), usually for diameter bins between 100 m to 1 km. However, cumulative SFDs for 

smaller incidence angle images began to roll over at diameters <150 m in the Apollo 

Metric images and the LROC NAC images of the Apollo 11 Landing Site rolled over at 

diameters <170 m. To determine the equilibrium function, a least squares fitting routine 
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with a constant -2 slope (Trask, 1966) was applied to the less steeply sloped portion of 

the SFD; in some cases, the best fit was the standard equilibrium function (Trask, 1966; 

Gault, 1970).  

Simple craters, <15–20 km in diameter, generally are bowl-shaped (e.g., Melosh, 

1989), and relationships between crater depth and diameter were derived from Lunar 

Orbiter shadow-length measurements and topographic maps created from Apollo Metric 

images (e.g., Pike, 1974; 1976; 1977). In this investigation, maximum regolith depth was 

estimated using the depth to diameter ratio for simple craters, where maximum crater 

depth is 20% of the measured crater diameter (Pike, 1974). This estimate includes 

excavation and compression, so an approximation of average crater depth that 

incorporates crater shallowing and removal of rim height (above the original surface) was 

also made. For an idealized bowl-shaped crater with a depth/diameter ratio of 0.2, the 

average crater depth is 14% of the diameter (e.g., Pike, 1974; 1976; Wilcox et al., 2005). 

2.3.2. Crater Data Presentation 

Two methods are commonly used to present crater data; the cumulative SFD plot 

and the relative SFD plot (R-plot) (Crater Analysis Techniques Working Group, 1979). 

All of the measured crater data presented here are plotted as cumulative SFDs because 

AMAs and measures of production and equilibrium slopes are traditionally determined 

from the cumulative distribution (e.g., Trask, 1966; Gault, 1970; Greeley and Gault, 

1970; Neukum et al., 1975a; 1975b; Neukum and König, 1976; Neukum and Ivanov, 

1994; Hiesinger et al., 2000; Neukum et al., 2001a; Hiesinger et al., 2003; 2011). 

Derivation of the R-plot is presented in Chapter 4, where R-plots are used in analyses of 

the crater populations of the north polar region of Mercury. Both plots use double 
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logarithmic axes with the same scale and consistent units, and uncertainties estimating 

±one standard deviation are calculated from the square root of the number of craters for a 

given bin (Crater Analysis Techniques Working Group, 1979). Crater counts are 

frequently binned, often using root-2 binning (e.g., Crater Analysis Techniques Working 

Group, 1979; Hartmann et al., 1981) or “pseudo-log” binning, where 18 bins per diameter 

decade are designated (e.g., for 1 km ≤ D ≤ 10 km, the bin steps are 1.0, 1.1, 1.2, 1.3, 1.4, 

1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0; e.g., Neukum et al., 1975a; 

König, 1977; Neukum, 1983; Hiesinger et al., 2000; Neukum et al., 2001a; Hiesinger et 

al., 2012). The small steps in pseudo-log binning reflect the observations that for a count 

region, there are significantly more small craters than large ones (e.g., Neukum et al., 

1975a; Neukum, 1983; Neukum and Ivanov, 1994). A limitation to the cumulative SFD 

plot is that the cumulative number of craters at a given diameter depends on the number 

of craters at all larger diameters. Once the data are binned, the crater frequencies are 

plotted. 

The cumulative SFD plot represents the cumulative distribution of the measured 

crater frequencies (Crater Analysis Techniques Working Group, 1979), reflecting the 

number of craters larger than or equal to a given diameter per measured area, usually  

1 km2 or 106 km2. Measured crater frequencies between 4–100 km in diameter for a 

variety of locations including different mare regions, Apollo landing sites, ejecta blankets 

for young, large craters (e.g., Greeley and Gault, 1970; Neukum et al., 1975a; König, 

1977; Neukum, 1983) and for diameters ≤1 km (e.g., Shoemaker, 1971) indicate that the 

cumulative distribution of craters approximates a power law function dependent on crater 

diameter,  
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N(D) or Ncum= cDb   (Equation 2.2) 

where Ncum
 (or N(D)) is the cumulative number of craters greater than or equal to a given 

diameter per unit area (usually 1 km2), D is the diameter in km, c is a coefficient that 

varies depending on surface age, and b, sometimes called the slope index (Crater 

Analysis Techniques Working Group, 1979), is the slope of the crater diameter 

distribution (e.g., Neukum et al., 1975a; 1975b; Hartmann et al., 1981; Melosh, 1989). 

Least square fits to measured crater data indicate that at D <300 m, the crater population 

is approximated using b = -2; for 300 m < D < 4 km, the crater population is best fit with 

b = -3.4; and for D > 4 km, the crater population is approximated with b = -1.8 (Figure 

2.2; e.g., Shoemaker et al., 1970; Shoemaker, 1971; Baldwin, 1971; Neukum et al., 

1975a; Hartmann et al., 1981).  

 
Figure 2.2. Cumulative SFD plot for average lunar mare. Three curves are fitted to the 
crater counts on the basis of observed trends over specific diameters and serve as the 
basis for the cumulative SFD power law (data from Hartmann et al., 1981, page 1114, 
plot 11; calculated uncertainties not plotted).  
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2.3.3. The Lunar Chronology Function 

Analyses of crater frequencies are the primary means of determining time-

stratigraphic relationships. Interpretation of geology is aided by an understanding of the 

relative ages of surface units derived from crater statistics, which can then be converted 

into absolute age estimates by application of a chronology function. From measured 

crater frequencies of maria and Apollo landing sites (e.g., Greeley and Gault, 1970; 

Shoemaker et al., 1970; Shoemaker, 1971; Neukum et al., 1975a; König, 1977) it was 

determined that one general cumulative SFD describes all crater populations (Neukum et 

al., 1975a; 1975b; Neukum and Ivanov, 1994). This complex continuous curve is called 

the lunar production function (e.g., Neukum, 1983; Neukum and Ivanov, 1994; Neukum 

et al., 2001a) and is represented by an 11th order polynomial  

log(N(D)) = a0+ ∑ ak( log(D) )k11
k=1    (Equation 2.3) 

where a0 is the time that the unit has been exposed to meteorite bombardment (Neukum 

et al., 1975b; Neukum, 1983; Neukum and Ivanov, 1994; Neukum et al., 2001a). The 

work by Neukum et al. (2001a) provides the coefficients for the lunar production 

function, which is valid for crater diameters between 10 m and 100 km, and Neukum and 

Ivanov (1994) present a discussion of how the coefficients have changed through 

analyses of new crater measurements. The standard lunar production function thus allows 

comparisons of crater frequencies for different crater populations over different diameter 

ranges, providing a means to determine the relative ages of these geologic units. The 

relative age of a geologic unit is determined for a given reference diameter (usually 1 km, 

10 km, or 20 km) and the cumulative crater density for a geologic unit is related to the 

exposure of the unit to meteorite bombardment. The measure of relative age is often 
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referred to as the “crater retention age” (Neukum, 1983), and older geologic units will 

have greater cumulative crater densities (greater crater retention ages) than younger ones. 

For the Moon, samples of known provenance from the Apollo and Luna landing 

sites provide the ability to correlate the radiometric ages measured from returned samples 

to measured crater frequencies (e.g., Hartmann et al., 1981; Neukum, 1983; Neukum and 

Ivanov, 1994; Neukum et al., 2001a; Stöffler and Ryder, 2001). The empirical 

relationship of the correlation between radiometrically dated samples and crater 

frequencies at the landing sites allows the derivation of a lunar chronology function that 

estimates the crater production rate as a function of absolute age (Figure 2.3; e.g., 

Hartmann et al., 1981; Neukum, 1983). A least squares fit to the crater frequencies and 

radiometric ages is mathematically expressed as 

N(D ≥ 1 km) = 5.44 × 10-14�exp(6.93 × t) – 1� + 8.38 × 10-4t   (Equation 2.4) 

where N(D ≥1 km) is the cumulative crater frequency for diameters ≥1 km per km2 and t 

is the age, with units of 109 years (Neukum, 1983; Neukum and Ivanov, 1994; Neukum et 

al., 2001a). This mathematical fit assumes that the impactor population retained a 

constant size distribution, which may not be accurate (e.g., Neukum and Ivanov, 1994; 

Neukum et al., 2001; Marchi et al., 2009; Le Feuvre and Wieczorek, 2011). Nevertheless, 

by using Equation 2.4 and solving for t it is possible to derive absolute ages for any 

geologic unit on the lunar surface once the crater SFD is measured. 

The lunar chronology represents an estimated distribution and, consequently, any 

absolute ages derived for measured crater distributions represent absolute model ages, 

and these AMAs assume that the cratering chronology does not include inherent 

uncertainty. For example, the range of radiometric ages exhibited by the returned samples 
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from each landing site (e.g., Hartmann et al., 1981; Stöffler and Ryder, 2001 and 

references therein) complicates the correlation of crater frequencies to radiometric ages. 

Neukum and coworkers (e.g., Neukum et al., 1975b; Neukum, 1983; Neukum and 

Ivanov, 1994; Neukum et al., 2001a) adopted the practice of correlating the crater SFDs 

with radiometric ages by using the mode of the radiometric age dates, arguing that the 

most frequently measured radiometric age probably reflects the major event responsible 

for “resetting” the radiometric clocks of the samples (discussed at length by Neukum and 

Ivanov, 1994). However, the nature of the chronology derivation is dependent on the 

current calibration (crater SFDs for the landing sites) and data (radiometric ages); the 

accuracy of absolute model ages determined for measured crater frequencies may be 

improved with subsequent iterations of the chronology (e.g., Marchi et al., 2009; Le 

Feuvre and Wieczorek, 2011; Robbins, 2013). While the lunar chronology (Neukum et 

al., 2001a) is well-defined for units >3 Ga (although Stöffler and Ryder (2001) 

recommend a new calibration for the ~4 to 3 Ga age range based on reexamination of the 

radiometric ages of returned samples), the chronology is less well-constrained for ages 

younger than 3 Ga due to the limited number of young units (<1 Ga) that were sampled 

and uncertainty in some cases of the provenance of the sample (i.e., Copernicus ejecta, 

sampled at the Apollo 12 landing site; e.g., Neukum, 1983; Stöffler and Ryder, 2001). 

The <1 Ga time frame is of particular interest because the absolute ages of the four young 

craters (Copernicus, Tycho, North Ray, and Cone) used as calibration points in the lunar 

chronology are critical in the derivation of AMAs for young unsampled materials across 

the whole Moon. 
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Figure 2.3. Graphical display of the lunar chronology curve for 4.5 Ga to the present. For 
ages older than ~3.2 Ga, multiple Apollo and Luna rock and regolith samples constrain 
the chronology. For ages younger than 3 Ga, but especially 1 Ga, the assigned ages are 
less well-constrained by samples.  

 

2.4. Data 

 Tabulated cumulative crater SFD measurements for all regions and analysts are 

provided in Appendix B. 

2.4.1. Mare Imbrium 

Four Apollo Metric images of the same 100 km2 study area with different 

incidence angles allow a detailed characterization of the effect of incidence angle on 

cumulative SFDs (Table 2.1). The study region was centered at 27.3°N, 341.8°E in Mare 

Imbrium east of Lambert crater (Figure 2.4), and images acquired at 87° (AS15-M-1010), 

82° (AS15-M-1152), 71° (AS15-M-1835), and 50° (AS15-M-2461) incidence angles 

(Figure 2.5) were chosen for crater measurements. Lambert crater (25.77°N, 339.01E, 

~30 km in diameter), located among young flows in southern Mare Imbrium (e.g., 
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Schaber, 1973; Boyce and Dial, 1975; Hiesinger et al., 2000), provides a location to 

measure crater frequencies that is not contaminated by secondary craters. Pixel scales of 

the scanned Apollo Metric images varied between 6.6 and 7.6 meters, and the images 

were resampled to 10 meter pixel scale for the counts. A resolution threshold of 7 pixels, 

equivalent to 70 meters, was selected as the minimum crater diameter confidently 

measured in the Apollo Metric images. 

To test if a gradual rollover in the cumulative SFDs is due to resolution effects or 

to the observation of the equilibrium crater population, craters were counted on a higher 

resolution LROC NAC image (56° incidence angle) covering a portion of the Apollo 

Metric count area (M104633604L, Figure 2.6). The NAC image was resampled to 2 

meter pixel scale and an area 4 km2 was selected for crater measurements. For the NAC 

image, the 7 pixel resolution threshold is equivalent to 14 meters.  

Table 2.1. Image Data Used for Crater Size-Frequency Distribution Measurements. 
Image  Location Pixel Scale (m) Area 

(km2) 
Incidence 
Angle 

Apollo Metric     
AS15-M-1010 M. Imbrium 10 1E+02 87° 
AS15-M-1152 M. Imbrium 10 1E+02 82° 
AS15-M-1835 M. Imbrium 10 1E+02 71° 
AS15-M-2461 M. Imbrium 10 1E+02 50° 
     
LROC NAC      
M104633604L M. Imbrium 2 2.00E+0 56° 
M116161085R Apollo 11 0.7 2.09E+0 82° 
M150368601R Apollo 11 0.7 2.17E+0 64° 
     
LROC WAC 
Mosaics 

    

Boxes 1–3 M. Serenitatis 100 4.00E+02 66° 
Boxes 1–3 M. Serenitatis 100 4.00E+02 46° 
Western Region M. Serenitatis 100 3.90E+04 66° 
Western Region M. Serenitatis 100 3.90E+04 46° 
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Figure 2.4. Context image for the Mare Imbrium count area. The black box contains the 
Apollo Metric count area, which is 100 km2 and centered at 27.30°N, 341.80°E. The 
LROC NAC count area (asterisk, Figure 2.6) is also shown. Scale bar is 30 km; Apollo 
Image AS15-M-1010, 87° incidence angle. North is up and illumination is from the right. 
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Figure 2.5. Views of the Mare Imbrium study area shown in Figure 2.4 at four different 
incidence angles. Width of each frame is 10 km2. (A) Apollo Image AS15-M-1010, taken 
at 87° incidence angle, (B) Apollo Image AS15-M-1152, taken at 82° incidence angle, 
(C) Apollo Image AS15-M-1835, taken at 71° incidence angle, and (D) Apollo Image 
AS15-M-2461, taken at 50° incidence angle.  
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Figure 2.6. Subsection of LROC NAC M104633604L (centered at 27.32°N, 342.01°E), 
resampled to 2 meter pixel scale, for a 4 km2 area within the original region studied in 
Apollo Metric Images (Figure 2.4). Incidence angle is 56°. 
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2.4.2. Apollo 11 Landing Site 

The Apollo 11 Landing Site in Mare Tranquillitatis (0.67°N, 23.47°E) has repeat 

LROC NAC coverage at different illuminations (Table 2.1) allowing another test of the 

validity of the rollover observed by Wilcox et al. (2005). NAC images taken at 82° 

incidence angle (M116161085R) and 64° incidence angle (M150368601R) were selected 

and resampled to 0.7 meter pixel scale (Figure 2.7). A count area ~2 km2 centered on the 

Lunar Module descent stage was selected for crater frequency measurements. The 7 pixel 

resolution threshold limits crater measurements to diameters ≥4.9 meters. 

 
Figure 2.7. LROC NAC images of the Apollo 11 Landing Site, centered on the Lunar 
Module descent stage (0.67°N, 23.47°E), and resampled to 0.7 meter pixel scale. Fresh 
crater in the middle right is West crater (0.67°N, 23.49°E, 190 m diameter). (A) LROC 
NAC M116161085R, 82° incidence angle with illumination from the right. Shadowed 
regions inside the largest craters were removed from the count area. (B) LROC NAC 
M150368601R, 64° incidence angle with illumination from the left. 

2.4.3. Mare Serenitatis 

Regions in Mare Serenitatis were selected in 100 meter pixel scale LROC WAC 

normalized reflectance mosaics (Speyerer et al., 2011) with average incidence angles of 

66° and 46° (Figure 2.8, Table 2.1) to characterize differences in crater distribution 
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resulting from illumination for larger diameter craters (>500 m to several km). Initially, 

three 400 km2 areas of “average” mare (i.e., no large craters nearby, no obvious 

secondaries, visually similar in appearance) were chosen within western Mare Serenitatis 

on which to perform crater counts. Later, an area ~4 × 104 km2 was selected that 

contained the three smaller count regions. Areas with obvious secondary craters were 

excluded from the measurements. The 7 pixel threshold limits crater identification in the 

LROC WAC mosaics to 700 meters. 

 
Figure 2.8. LROC WAC monochrome normalized reflectance mosaics of the western 
portion of Mare Serenitatis (centered at 27.21°N, 15.49°E), northwest of Bessel crater 
(masked by irregular black polygon in lower right corner) at 100 meter pixel scale.  
(A) LROC WAC mosaic with an average incidence angle of 66°, and (B) LROC WAC 
mosaic with an average incidence angle of 46°. Irregular polygons scattered throughout 
the mosaic are masked secondary craters, and their associated areas were removed from 
the total count area of ~4.0 × 104 km2. White boxes labeled 1–3 are 20 km in width. 
Black rectangles in the center of (A) and (B) are gores in the LROC WAC mosaic from 
incomplete coverage. 
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2.5. Results 

2.5.1. Mare Imbrium 

A minimum of two individuals counted craters for the selected region in each 

Apollo Metric image. At 87° incidence angle (AS15-M-1010, Figure 2.5A) subtle 

changes in topography are visible, thus enhancing the shallow slopes and eroded rims of 

degraded craters. An example of the count area marked with digitized craters is shown in 

Figure 2.9. The cumulative SFDs between A and L are statistically inseparable at large 

diameters but deviate at diameters <~200 m (Figure 2.10A). Both SFDs cross the 

standard equilibrium line (10% saturation, Gault, 1970), and the equilibrium crater 

diameter estimates are ~190 m (analyst A), ~175 m (analyst L). Regolith depth estimates 

are 27–38 m (analyst A) and 24–35 (analyst L) (Table 2.2). AMA fits are  

3.51 +0.03/-0.04 Ga for analyst A and 3.50 ±0.04 Ga for analyst L (Figure 2.11).  

The 82° incidence angle cumulative SFD is similar between individuals A and L 

(Figure 2.10B). The SFDs are statistically indistinguishable at the larger diameters but 

separate around 100 m diameter. Overall, the cumulative crater frequencies are lower 

than in the 82° incidence angle image. An apparent equilibrium crater diameter of  

~160 m (analyst A) and ~175 m (analyst L) is observed, and regolith depth estimates 

have a range of 22–32 m (analyst A) and 25–35 m (analyst L) (Table 2.2). The AMA fit 

is 3.48 +0.04/-0.05 Ga for analyst A and 3.53 +0.03/-0.04 Ga for analyst L (Figure 2.12). 

The surface detail in the 71° incidence angle image is less than the 87° incidence 

and many of the shallowest craters are not readily visible (Figure 2.5C). Three 

individuals (A, L, and S) counted on the 71° incidence image. As before, the SFDs 

(Figure 2.10C) are statistically indistinguishable at the larger diameters (>~200 m), but 
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the counts for analysts A and L follow the standard equilibrium slope while the count by 

analyst S begins to gradually roll over around ~150 m diameter, separating from the 

trends exhibited by the SFDs measured by analysts A and L around 100–120 m in 

diameter. The overall cumulative crater frequencies measured are less for the 71° 

incidence angle image than for either the 82° or 87° incidence angle image. Estimates of 

apparent equilibrium diameters are ~150 m for analyst A, ~150 m for analyst L, and  

~180 m for analyst S. Corresponding regolith depth estimates have ranges 21–29 m for 

analyst A, 21–30 m for analyst L, and 25–36 m for analyst S (Table 2.2). AMAs 

determined from the SFDs are 3.48 ±0.03 Ga for analyst A, 3.52 +0.03/-0.04 Ga for 

analyst L, and 3.41 +0.04/-0.05 for analyst S (Figure 2.13). Figure 2.14 shows the 

difference in number of craters digitized by analysts A and L for the 87° incidence angle 

image (AS15-M-1010) and the 71° incidence angle image (AS15-M-1835), and at 

smaller crater diameters, the difference in number of craters digitized for a given 

diameter is greater than at larger crater diameters. 

Only the larger, freshest craters are visible in the 50° incidence angle image 

(Figure 2.5D). Counting and interpreting this image is more difficult because of the 

grainy quality of the original film (poor signal to noise ratio, SNR). Individuals L and S 

digitized this image, and the overall cumulative crater frequency of measured craters is 

lower than the other three incidence angles. The SFDs (Figure 2.10D) are statistically 

inseparable above ~150 m diameter, but both exhibit a gradual rollover beginning around 

170 m. Neither SFD intersects the standard equilibrium line, but the deviation at ~170 m 

diameter is fit by a -2 slope corresponding to an equilibrium crater diameter of 200 m 

(analyst L) and 230 m (analyst S). Regolith estimates are 28–40 m for analyst L and  
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32–46 m for analyst S (Table 2.2). AMAs determined for these SFDs are 3.51 ±0.04 Ga 

and 3.39 +0.06/-0.09 Ga for the measurements by analyst L and analyst S, respectively 

(Figure 2.15). 

Similar to AS15-M-2461 (50° incidence angle), the freshest and largest craters are 

the most visible in the LROC NAC image (56° incidence angle, Figure 2.6), and the 

cumulative SFD for the 4 km2 count area plots below those of the Apollo Metric images 

but has a similar slope (Figure 2.16). The largest diameter bins in the NAC cumulative 

SFD overlap the smallest diameter bins for the Apollo Metric cumulative SFDs, 

providing a means of comparison between counts at these diameters. The upper 

uncertainties in the NAC counts approach the 56° incidence angle Apollo Metric SFD. 

The NAC SFD extends to substantially smaller diameters than the Apollo Metrics (down 

to ~5 m) due to the higher spatial resolution of the NAC. The largest diameter bins in the 

NAC SFD have a slope similar to the smaller diameter bins in the Apollo Metric SFD 

even with the large uncertainties, and the NAC SFD follows an equilibrium slope of -2, 

which cannot be properly dated with an AMA fit (Figure 2.17).  
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Table 2.2.  Equilibrium Crater Diameter and Regolith Depth Estimates. 
Image Analyst ba Deq (m) Regolith Depth (m) 
    Maximum  Average 
AS15-M-1010 A -3.8 190 38 27 
AS15-M-1010 L -3.5 175 35 24 
AS15-M-1152 A -3.5 160 32 22 
AS15-M-1152 L -3.5 175 35 25 
AS15-M-1835 A -3.1 150 29 21 
AS15-M-1835 L -3.3 150 30 21 
AS15-M-1835 S -3.7 180 36 25 
AS15-M-2461 L -3.1 200 40 28 
AS15-M-2461 S -3.9 230 46 32 
M104633604L L –* – – – 
M116161085R L -4.4 230 46 32 
M150368601R L -4.7 180 36 25 
aSlope index for the least squares fit to the production function of the measured crater 
distribution. 
*Only the equilibrium population was measured (see text for details). 

 
Figure 2.9. Example of a marked crater count in Circle for AS15-M-1010 (87° incidence 
angle). Craters digitized with diameters <70 m (equivalent to 7 pixels) were not included 
in the tabulated data (Appendix B). Image width is 10 km. 
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Figure 2.10. Cumulative SFDs for the four Apollo Metric images (100 km2 area) with 
pseudo-log binning. (A) AS15-M-1010 at 87° incidence angle, (B) AS15-M-1152 at 82° 
incidence angle, (C) AS15-M-1835 at 71° incidence angle, and (D) AS15-M-2461 at 50° 
incidence angle. The gray region represents the identification threshold (7 pixels), and 
craters with diameters less than 70 m were not included in statistical analyses. A 
minimum of two individuals performed crater counts on each Apollo Metric image, noted 
by the letters A, L (the author), and S. The standard equilibrium curve (Trask, 1966; 
Gault, 1970) is plotted as a gray line.  
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Figure 2.11. AMAs determined for AS15-M-1010 taken at 87° incidence angle (Figure 
2.5A) for analysts (A) A and (B) L. Identification threshold is grayed below 70 m 
diameter. 
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Figure 2.12. AMAs determined for AS15-M-1152 taken at 82° incidence angle (Figure 
2.5B) for analysts (A) A and (B) L. Identification threshold is grayed below 70 m 
diameter. 
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Figure 2.14. Difference in number of craters digitized on the Apollo Metric images 
AS15-M-1010 and AS15-M-1835 (incidence angles of 87° and 71°; Figure 2.5A, 2.5C) 
for analysts A and L.  

 
Figure 2.15. AMAs determined for AS15-M-2461 taken at 50° incidence angle (Figure 
2.5D) for analysts (A) L and (B) S. Identification threshold is grayed below 70 m 
diameter. 
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Figure 2.16. Cumulative SFDs measured by analyst L for all four subsections of the 
Apollo Metric images (AS15-M-1010, 87° incidence angle; AS15-M-1152, 82° incidence 
angle; AS15-M-1835, 71° incidence angle; AS15-M-2461, 50° incidence angle; Figure 
2.5) with a 100 km2 count area and the cumulative SFD for a 4 km2 count area within 
LROC NAC image M106633604L (56° incidence angle; Figure 2.6) that overlaps part of 
the Apollo Metric count area. Identification threshold is grayed below 70 m diameter for 
the Apollo Metric SFDs and below 14 m diameter for the NAC SFD. 
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Figure 2.17. AMA derived for the NAC count on M106633604L (56° incidence angle; 
Figure 2.6), which is in equilibrium (-2 slope; Trask, 1966). Identification threshold 
grayed below 14 m diameter. 

2.5.2. Apollo 11 Landing Site 

For the ~2 km2 area centered on the Apollo 11 Lunar Module descent stage 

(Figure 2.9), cumulative SFDs (analyst L) for measurements on 82° and 64° incidence 

angle images show that while more craters are identified with larger diameters at larger 

incidence angles (Figure 2.18, Appendix B Table B11, B12), the SFDs are statistically 

inseparable for most diameters and the counts deviate significantly between 5–10 m in 

diameter. The two largest bins in the SFDs represent the smallest craters present in the 

production population and have steep slopes (-4.4 for 82° incidence angle and -4.7 for 
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64° incidence angle). These largest diameters observed in the NAC count area are used to 

derive AMAs. At 82° incidence, an AMA of 3.56 +0.13/-1.50 Ga is estimated and at 64° 

incidence an AMA of 3.48 +0.12/-0.73 Ga is estimated; both ages are in agreement with 

published AMAs (Hiesinger et al., 2000) and Apollo 11 rock samples (e.g., Stöffler and 

Ryder, 2001 and references therein). Equilibrium crater diameter is estimated to be  

~230 m at 82° incidence angle and ~180 m at 64° incidence angle, with corresponding 

regolith depth estimates of 32–46 m and 25–36 m, respectively (Table 2.2). Both SFDs 

deflect below the standard equilibrium line around ~50–90 m diameter, beginning to re-

approach equilibrium as the SFD approaches the resolution threshold (Figure 2.18).  
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2.5.3. Mare Serenitatis 

Initially, three 400 km2 areas in Mare Serenitatis were selected in normalized 

reflectance WAC mosaics with average incidence angles of 66° and 46° (Figure 2.8). 

Figure 2.19 and 2.20 show digitized craters marked on the WAC mosaics. Cumulative 

SFDs for these measurements are statistically indistinguishable but have large 

uncertainties (Figure 2.21). Example isochron fits to the 66° and 46° incidence angle 

SFDs indicate that the 66° incidence angle SFD is best fit by a 3.5 Ga AMA while the 

46° incidence angle SFD could be fit either by a 3.4 Ga or 3.0 Ga AMA (Figure 2.21), 

and the difference in AMA for the 46° incidence angle SFD reflects the poor count 

statistics arising from a small area. To obtain better crater statistics (larger count area 

allowing more counted craters), the measurement area was expanded to ~4 × 104 km2 

(Figure 2.8). Similar to the Apollo Metric and NAC SFDs, the WAC SFDs are 

statistically indistinguishable for craters ≥2 km in diameter, and for craters ≤2 km in 

diameter, the 66° incidence angle cumulative SFD measurements are greater than those at 

46° incidence angle (Figure 2.22, Appendix B Table B19, B20). AMA determinations 

give an age of 3.47 ±0.01 Ga for the 66° incidence angle image and an age of  

3.41 ±0.02 Ga for the 46° incidence angle image; these AMAs are consistent with 

previously published estimates (Hiesinger et al., 2000). Figure 2.23 shows the difference 

in number of craters digitized at 66° and 46° incidence angle versus crater diameter. 

Similar to the Apollo Metric observations, there is a smaller difference in number of 

craters digitized for larger diameters. Measurements of crater diameter in the WAC 

mosaics indicate that the observed SFD is in production and determination of an 

equilibrium crater diameter is not possible. 
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Figure 2.19. LROC WAC close-up in Circle of Box 2 in Mare Serenitatis (Figure 2.8) at 
(A) 66° incidence angle and (B) 46° incidence angle. Box width is 20 km, and any craters 
less than 7 pixels in diameter (corresponding to 700 m) were removed from SFD 
analysis.  
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Figure 2.20. 4× zoom in Circle on the LROC WAC mosaics; purple circles are marked 
craters. Not all craters marked are larger than the 700 m identification threshold. (A) 66° 
incidence angle mosaic, with the center crater measured at 1.8 km in diameter, and  
(B) 46° incidence angle mosaic, with the center crater measured at 1.6 km in diameter. 
Scale bar is 2 km. 
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Figure 2.21. Three 400 km2 count regions in western Mare Serenitatis (Figure 2.8) for 
(A) 66° incidence angle and the (B) 46° incidence angle LROC WAC mosaics. (A) SFDs 
for Box 1–3 at 66° incidence angle. (B) SFDs for Box 1–3 at 46° incidence angle. In both 
(A) and (B) the uncertainties are large at larger diameters, reflecting the small numbers of 
craters counted. Identification threshold is grayed below 700 m diameter. 
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Figure 2.23. Difference in number of craters digitized at 66° and 46° incidence angles on 
LROC WAC mosaics for western Mare Serenitatis (Figure 2.8).  

 

2.6. Discussion 

2.6.1. Count Variation Between Individuals 

This work primarily focuses on testing the hypothesis that incidence angle affects 

an analyst’s ability to both detect craters and accurately measure their diameters. In this 

investigation, three individuals collected crater measurements of the same region from 

images with different incidence angles. Crater counts collected by a single individual are 

exposed to measurement errors based on their counting technique, experience, and the 

inherent statistical uncertainties, whereas the data collected by multiple individuals is 

affected by the errors and uncertainties associated with each separate measurement. The 

results from this investigation are consistent with previous investigations that employed 

multiple analysts for crater counting (e.g., Gault, 1970; Greeley and Gault, 1970; Robbins 

et al., 2013a; 2013b), but unlike some investigations (e.g., Gault, 1970; Greeley and 



54 

Gault, 1970; Young, 1975) the crater frequencies were not averaged for final analysis. 

Differences between the results of trained individuals are expected, with an estimated 

variation of ±20% when ≥50 craters are counted per size class (Gault, 1970; Greeley and 

Gault, 1970). When only 3–5 craters are counted per class, the crater frequency results 

generally agree to within a factor of two (Greeley and Gault, 1970). For this 

investigation, the three individuals were trained using the largest incidence angle Apollo 

Metric image (AS15-M-1010, 87° incidence angle) and the IDL-based Circle program. 

Although all individuals had similar amounts of training prior to commencing 

measurements, there are differences in the final counts reflecting that individuals perceive 

images in different ways and measure craters differently (i.e., click differently). The 

analysts were instructed to identify and record only those craters for which they were 

certain, so crater measurements may be prone to subjective interpretation. Moreover, all 

three analysts had little to no crater counting experience at the beginning of this 

investigation, but as the investigation progressed through the different phases, analyst L 

(primary author) gained more experience by counting craters on all the images and as a 

result, it may be that additional technical expertise affected later crater measurements. 

Another possibility influencing the count differences for individuals is the effect of time 

spent crater counting, coupled with the time of day crater counting was completed. 

Greeley and Gault (1970) limited the amount of time an analyst spent crater counting 

based on analyses of analyst fatigue; here, formal measurements to test fatigue were not 

employed. Analysts were not instructed to limit their counting time per session, although 

suggestions to take frequent breaks were recommended. Consequently, the analysts spent 

variable time counting during each session, ranging from one hour to multiple hours 
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depending on their availability (all were students) and enthusiasm. Likewise, individuals 

made crater measurements during different times of the day depending on their 

schedules, and it is possible that alertness and subjectivity varied among analysts 

depending on the time of day (e.g., beginning versus conclusion of the work day; before 

or after attending class; before or after coffee, mealtime). For example, a combination of 

some of these factors may explain why the SFDs for the 87° and 82° incidence angle 

images completed by analyst L do not show a decrease in estimated crater equilibrium 

diameter (Table 2.3), even though a decrease is observed in the SFDs measured by 

analyst A. For analyst L, the cumulative SFDs are statistically indistinguishable (Figure 

2.16) but number of craters measured per bin is different (Table 2.3). For differences 

between bins that are <10 craters, the difference likely reflects the change in detection 

owing to the smaller incidence angle in addition to a 1–2 pixel maximum uncertainty in 

measurement. The Circle program operated using a context view of the image and craters 

were marked on a 4× zoom window, and it is possible that small errors were made during 

crater rim determination, especially as incidence angle decreased and less pristine crater 

rims became more difficult to discern. A notable difference is observed for the measured 

cumulative SFDs of the 71° incidence angle Apollo Metric image (Figure 2.10C), where 

two of the individuals (A and L) measured statistically inseparable crater populations to 

provide an equilibrium crater diameter estimate of ~150 m while the third individual (S) 

measured an SFD with an equilibrium crater diameter estimated at ~180 m. The cause of 

this discrepancy is unclear, but a similar difference is observed between analysts L and S 

for the 50° incidence angle image, where the equilibrium diameter estimate again differs 

between individuals by 30 m. One explanation is that analysts L and S used different 
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strategies during counting: analyst L methodically moved the zoom window from left to 

right, moving down almost one zoom window height after completing a counting “row”, 

to simulate a grid, whereas analyst S preferred to mark the craters by moving about the 

context view window in a less-patterned or less-regular fashion.  

2.6.2. Effects of Incidence Angle on Crater Identification and Measurement 

2.6.2.1. Small Crater Population 

The cumulative SFDs for the four Apollo Metric frames exhibit the effects of 

different incidence angles on crater counts (Figure 2.10, 2.16); the overall cumulative 

frequency of measured craters decreases with decreasing incidence angle. The largest 

craters were repeatedly identified in each image whereas the smaller craters were not 

(e.g., Figure 2.10, Appendix B Table B1–B9), indicating that consistent identification of 

craters on a mare surface is influenced by solar incidence angle, findings in agreement 

with previous studies (Young, 1975; Wilcox et al., 2005). Table 2.3 presents the 

difference in number of craters per bin in the four Apollo Metric images counted by 

analyst L, and the number of craters identified generally decreases with decreasing 

incidence angle. The largest bin (1.2 km) has one crater identified in all images, but at 

400 m, five craters are identified in the 87° and 50° incidence angle images and seven 

and eight craters are identified in the 82° and 71° incidence angle images, respectively. In 

these cases, where difference in number of craters identified does not exceed 10, the 

difference is attributed primarily to the difficulty in accurately determining rim locations 

(and thus estimating diameter). None of the larger craters in the study area have fresh and 

distinct rim crests, and although the contrast between the mare surface and the crater 

interior is sharp, determining the break in ground surface slope representative of the 
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crater rim is difficult. Thus, measurement uncertainty of a few pixels in marking of the 

crater rim results in the crater moving to a larger or smaller diameter bin. Further work 

examining measurement differences for the same large craters, which are among the best 

preserved, most visible, and most consistently recorded in the images, may aid in 

determination of maximum measurement uncertainty for each individual, as well as 

statistically correlating the size variation for the same crater marked at different incidence 

angles (Figure 3 in Young, 1975).  

At the largest diameters (~≥200–300 m), the cumulative SFDs at each 

illumination are similar (Figure 2.10, 2.16); all have a steep production function slope 

ranging from -3.1 to -3.9, and the different observers counted the same, or very similar, 

cumulative numbers of craters in each diameter bin (Appendix B Table B1–B9). The 

difference in number of craters digitized at 87° incidence angle and 71° incidence angle 

versus diameter for Apollo Metric data collected by two individuals (Figure 2.14) 

suggests that at larger incidence angles, more craters are identified and recorded with 

larger diameters, but the largest craters are consistently identified at different 

illuminations. These findings are consistent with Young (1975), who found that more 

craters were visible at larger incidence angles. For an older region in Mare Imbrium, 

almost all craters identified in the 86° incidence angle image were also identified at 38° 

incidence, but at the larger incidence angles the crater diameters were measured to be 

larger (Young, 1975). 

Results from Apollo Metric crater counts for the 50° incidence angle image are 

the least consistent between two observers, perhaps owing to counting techniques (Figure 

2.10), while the SFDs for the 71° incidence angle image are most consistent between 
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observers. The small crater equilibrium and the production function are observed in all 

images, and some of the deviation between production and equilibrium may be attributed 

to the effects of incidence angle on crater detection. The similarity and consistency in 

observations between individuals and the resulting AMA agreements (~3.5 Ga for 

analysts A and L in both images) for the SFDs measured on the 82° and 71° incidence 

angle images suggests that, based on the Apollo Metric counts, ~70° to ~80° is an 

optimal incidence angle range for investigations pertaining to age determination.  

The small crater trends (~≤200 m diameter) vary significantly between and among 

observers at different illuminations (Figure 2.10, 2.16). The small crater population for all 

but one SFD (analyst S) in the 71° incidence angle image and the 50° incidence angle 

SFD are fit well with a -2 slope (>3 data points, R2>0.95–0.98) and the variation between 

numbers of craters identified in different diameter bins is large (Table 2.3). These 

observations reflect the change in visibility of the smallest craters. The smallest craters on 

a mare surface form in regolith and are the biggest contributors to regolith mixing and 

overturn (e.g., Soderblom, 1970), and because the regolith is mostly unconsolidated (at 

least at the scales necessary to form craters hundreds of meters in diameter), small craters 

are affected more strongly by impact erosion (e.g., Soderblom, 1970; 1972; Soderblom 

and Lebofsky, 1972; Schultz et al., 1977) and the effects of seismic modification due to 

larger impacts (Schultz and Gault, 1975). As a result, small craters degrade faster than 

large craters (Soderblom, 1970; Soderblom and Lebofsky, 1972) and will be more 

difficult to discern in small incidence angle illumination conditions than at larger 

incidence angles, when the subtle topography surrounding the craters is pronounced 

(Soderblom, 1972; Young, 1975). The crater equilibrium diameter is estimated to be  
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175 m (analyst L) for the 87° incidence angle image and 200 m (analyst L) for the 50° 

incidence angle image, and the increase in equilibrium crater diameter estimate between 

the larger and smaller incidence angles does not follow the trend observed for the other 

images. The equilibrium diameter estimates decrease with decreasing incidence angle for 

the 87°, 82°, and 71° incidence angle images, findings consistent with observations by 

Young (1975) and Wilcox et al. (2005), suggesting that crater measurements made on 

larger incidence angle images result in the most accurate estimate of crater diameter. 

Therefore, because the quality of the 50° incidence angle image has poor SNR (discussed 

in Section 2.4.1), the estimated equilibrium diameter is unreliable.  

The results of the LROC NAC count of a subsection of the Apollo Metric count 

area (Figure 2.4, 2.6) further suggests the 50° incidence angle Apollo Metric image 

counts are unreliable. The NAC subscene cumulative SFD has a -2 equilibrium slope, 

indicating that the equilibrium population is being sampled, but the NAC SFD plots 

lower than the Apollo Metric counts (Figure 2.16). Because the NAC SFD is measured 

from a subsection of the Apollo Metric count area, however, the NAC count should 

reflect the distribution of craters measured in the Apollo Metric images in this 

investigation (Figure 2.16). Instead, the lower cumulative crater frequencies for the NAC 

area are attributed to the small count area (4 km2) that contributes to poor crater statistics: 

two craters were identified in the largest NAC bin (200 m), while 52 craters were 

identified in the same bin for AS15-M-2461. Similarly, 111 craters were identified for the 

70 m bin in AS15-M-2461 while only four craters were identified in the same bin in the 

NAC area. Furthermore, the NAC count measured only the equilibrium population and 

cannot be used to assess the anomalous equilibrium crater diameter derived from the 50° 
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incidence angle Apollo metric image. Therefore, the next steps to resolve this 

unanticipated result can follow one of two paths (or both). First, search for and identify 

another Apollo Metric image in the 50°–70° incidence angle range (ideally closer to 50° 

than 70°, with a more favorable SNR) for the study area, recreate the count area 

boundaries, and measure the crater population. This option is ideal because the new crater 

SFD may be directly compared to the other Apollo Metric SFDs, but an image in the 

desired incidence angle range may not be available. Second, the NAC subscene can be 

expanded to a larger area (at least 10–15 km2) and focus on measuring craters ≥100 m in 

diameter (≥50 pixels at 2 meter pixel scale) to attempt to identify the production function 

and improve the crater statistics.  

LROC NAC images (0.5–2 meter pixel scales; Robinson et al., 2010), allow crater 

measurements to extend to diameters <10 m, providing an opportunity to examine the 

current cratering chronology and provide revisions to the chronology using new counts at 

the calibration sites (i.e., Apollo and Luna landing sites; e.g., Hiesinger et al., 2012; 

Robbins, 2013). Crater frequencies down to 10 m in diameter allow crater populations of 

young features with spatially limited extents, such as impact melt, to be assigned relative 

and absolute model ages (10 m is currently the smallest diameter to which the Neukum et 

al. (2001a) chronology may be fit). Equilibrium crater diameter estimates from NAC 

images with differing incidence angles (Figure 2.18) follow the trend observed by Wilcox 

et al. (2005) and those in the Apollo Metric SFDs of this investigation (Figure 2.10). In 

the two NAC images of Apollo 11, the equilibrium crater diameter decreases from 230 m 

at 82° incidence to 180 m at 64° incidence (Figure 2.18), and more craters are identified 

in the larger incidence angle image (4600 versus 4000 craters total). The largest craters 
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(with the exception of West crater) at the Apollo 11 Landing Site are heavily degraded, 

with shallowly sloping walls and poorly defined rims. The absence of well-defined rims 

on these craters leads to greater measurement uncertainty when determining the apparent 

crater diameter. At 82° incidence angle, many of the degraded craters appear bowl-

shaped; part of the crater cavity is in shadow and the remainder is illuminated so that a 

break in slope between the mare surface and the crater cavity is pronounced (Figure 2.7). 

In contrast, at 64° incidence angle (Figure 2.7), very little of the crater cavity is in 

shadow or strongly illuminated and the inflection between rim summit and the drop off to 

the interior is harder to discern. Typically, the analyst will follow what s/he interprets as a 

break in slope when marking the rim, and for smaller incidence angle images, perhaps the 

diameter is systematically underestimated by a small amount relative to that measured for 

a crater using a larger incidence angle image.  

2.6.2.2. Larger Diameter Craters  

Measurements of larger crater diameters (≥700 m) on the LROC WAC mosaics 

also exhibit a greater number of craters identified in the larger incidence angle image, but 

only the production function is observed. The cumulative SFDs for the WAC counts at 

66° and 46° incidence angles for three 400 km2 regions are not statistically separable 

(Figure 2.21), and the large uncertainties in the cumulative SFD indicate that 400 km2 is 

too small an area to derive robust crater count statistics at the WAC 100 meter pixel 

scale, an observation furthered by results presented in Chapter 3. Increasing the 

measurement area to ~4 × 104 km2 improves the count statistics and decreases 

uncertainties for all but the largest diameters measured (<10 craters total for diameters  

≥2 km). For the larger count area, the resulting difference in number of craters digitized 
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at 66° and 46° incidence angle versus crater diameter (Figure 2.23) is consistent with the 

observations from Apollo Metric and NAC images (e.g., Figure 2.14) that more craters 

are consistently identified in larger incidence angle images. 

2.6.3. Identifying the Equilibrium Diameter 

An important question to consider is whether the equilibrium crater population is 

truly reflected in the small crater slope (diameters <300 m, including the gradual rollover) 

observed in the Apollo Metric and LROC NAC cumulative SFDs (Figure 2.10, 2.16, 

2.18). A sharp kink in the SFD is not observed for either of these cases, but a least 

squares fit to the data indicate a break in slope (Appendix B Figure B1–B6). Is 

Oberbeck’s (2008) hypothesis valid, and is the gradual rollover observed in the 

cumulative SFDs due to factors such as resolution limits of the images or insufficient 

count area? 

Resolution limits are an unlikely cause for the observed gradual rollover in the 

measured SFDs. The effects of resolution on accurately measuring crater diameters are 

mitigated by designating a threshold diameter of 7 pixels, which exceeds the diameter 

range where pronounced flattening of the slope of the SFD occurs (Figure 2.10, 2.16, 

2.18). Thus, the cumulative SFDs and the transition from production to equilibrium 

(Figure 2.10, 2.18) do not reflect resolution limits. 

Inadequate areal extents of the count areas may lead to imprecise identification of 

the equilibrium diameter. However insufficient count area size is also unlikely for the 

Apollo Metric SFDs, based on the number of craters counted (>17,700 craters total, with 

a maximum of 4200 craters counted in a single image) and by comparison to an LROC 

NAC subscene (>600 craters total). The LROC NAC crater measurements in Mare 
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Imbrium (Figure 2.6, 2.16, 2.17) extend to craters 14 m in diameter, allowing 

observations well below the onset diameter of the small crater equilibrium population 

(between ~150 m and 300 m, e.g., Young, 1975; Schultz et al., 1977; Wilcox et al., 

2005). Between 70 m and ~150 m in diameter, the cumulative SFD bins of the 56° 

incidence angle NAC and 50° incidence angle Apollo Metric counts overlap (Figure 

2.16). This overlap provides a means of comparison at these diameters, where the NAC 

SFD slope at these diameters is -2 (small crater equilibrium) and is parallel to the 

equilibrium slope observed in the Apollo Metric images taken at 71°, 82°, and 87° 

incidence angles (Figure 2.16). For the NAC SFD (56° incidence angle) and  

AS15-M-2461 (50° incidence angle Apollo Metric), equilibrium conditions are met 

below the 10% geometric saturation limit, which is a common occurrence (Gault, 1970; 

Richardson, 2009).  

The results presented here do not support Oberbeck’s (2008) hypothesis that a 

sharp kink is required in the cumulative SFD to indicate the transition from production to 

equilibrium. Therefore, a gradual rollover in the cumulative SFD that reflects a change in 

slope from production (~-3.0 to -4.0; e.g., Soderblom, 1970) to equilibrium (-2; Trask, 

1966) may be considered to be the SFD inflection point indicative of equilibrium. Thus, 

equilibrium crater diameter estimates derived from the intersection of the production and 

equilibrium functions determined by a least squares fit to the measured crater frequencies 

are valid. For the Mare Imbrium region investigated in Apollo Metric images, the 

equilibrium crater diameter decreases from an average (analysts A and L) of 182 m to 

167 m to 150 m with decreasing incidence angles of 87° to 82° to 71°, respectively, as a 

direct result of the decrease in detectable craters. This trend is consistent with 
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observations by Wilcox et al. (2005). The equilibrium crater diameter estimate also 

decreases from 230 m to 180 m for the LROC NAC images of the Apollo 11 Landing 

Site, where incidence angle decreases from 82° to 64°.  

2.6.4. Regolith Depth Estimates 

Using the equilibrium diameter is one method by which regolith depths may be 

inferred (Wilcox et al., 2005). The inferred regolith depths are directly correlated to the 

equilibrium crater diameter by depth to diameter relationships (Pike, 1974), so the ability 

to accurately estimate equilibrium crater diameter is necessary for estimating regolith 

depth. Using the equilibrium crater diameters estimated from the Apollo Metric images in 

Mare Imbrium, the average regolith depth is between 21 m and 26 m (corresponding to 

150 m and 182 m equilibrium diameters). From estimates of equilibrium crater diameter 

from the NAC images of the Apollo 11 Landing Site, the average regolith depth ranges 

from 25 m to 32 m (corresponding to 180 m and 230 m equilibrium diameters). These 

estimates suggest that the Mare Tranquillitatis location (Apollo 11) is older than the Mare 

Imbrium location, agreeing with AMAs (Figure 2.11–2.13, 2.15, 2.18; Hiesinger et al., 

2000). Equilibrium conditions are not the same for surfaces of different ages (Young, 

1975), and older surfaces will have larger equilibrium crater diameters (Trask, 1966). In 

this case, crater measurements were made at the same incidence angle (82°, so no 

correction factor is necessary to compare relative surface ages, c.f., Young, 1975), and 

the larger equilibrium diameter at Apollo 11 (230 m versus 182 m) is indicative of an 

older surface age. Moreover, older surfaces should have a thicker regolith (e.g., 

Shoemaker et al., 1969), and the average regolith depth estimate for Apollo 11 is 32 m 

compared to 26 m in Mare Imbrium. 
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2.6.5. Implications for AMAs 

 Accurate equilibrium crater diameter estimates provides relative age information 

for a surface, but absolute model age dating relies on the production population of the 

measured cumulative SFD. Consequently, a sufficient distribution of craters in 

production must be measured to determine AMAs. For the mare, a sufficient number of 

craters with diameters ≥250–300 m is needed (ideally >30; e.g., Silverman, 1986; Davis, 

2002) based on the equilibrium diameter estimates presented here and previously (e.g., 

Trask, 1966; Shoemaker et al., 1969; Gault, 1970; Greeley and Gault, 1970; Young, 

1975; Neukum et al., 1975a; Schultz et al., 1977; Wilcox et al., 2005). Crater 

measurements for the production population (<50 craters with diameters ≥250–300 m) on 

Apollo Metric images used in this investigation produce different AMAs that agree 

within the statistical uncertainty (~3.5 Ga; Figure 2.11–2.13, 2.15). However, only 2–4 

craters ≥250–300 m in diameter were measured on the NAC images of the Apollo 11 

Landing Site, primarily because of the small count area. An AMA of ~3.5–3.6 Ga is fit to 

the two diameter bins, and although this AMA agrees with previous age determinations 

(Hiesinger et al., 2000), the result could be statistically improved by increasing the count 

area. By increasing the NAC count area, more craters with diameters ≥250 m would be 

measured, improving the statistical robustness of the AMA fit. Incorporating crater 

counts made on LROC WAC mosaics would further improve count statistics by including 

craters ≥500–700 m in diameter. Ideally areas large enough to include significant 

numbers of diameters ≥1 km are measured because the lunar chronology is tied to the  

1 km reference diameter and the larger diameter bins are crucial to determining a 

statistically robust AMA. Thus, utilizing counts from NAC and WAC mosaics for age 
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determination of mare surfaces estimated to be ≥3.0 Ga (i.e., most maria with the 

exception of some regions in Oceanus Procellarum; Hiesinger et al., 2003) enables 

measurement of the equilibrium (to derive regolith depth estimates) and the production 

population (to derive AMAs). Of course, for age measurements of very young features 

(e.g., impact melt, Copernican-aged craters) and spatially limited areas (e.g., highland 

ponds; Robinson et al., 2011), using only NAC images is necessary because the small 

crater population (10 m to ~500 m in diameter) is critical to age determination, and 

measurements on WAC images will not resolve craters ≤500 m in diameter. 

Table 2.3.  Number of Craters Identified for Specific Bins, Individual L.* 
D (km) AS15-M-1010 AS15-M-1152 AS15-M-1835 AS15-M-2461 
0.07 921 751 407 111 
0.08 629 503 298 80 
0.09 484 339 223 49 
0.1 326 272 171 48 
0.11 232 237 140 41 
0.12 162 136 109 38 
0.13 153 132 103 45 
0.14 107 119 84 39 
0.15 169 165 104 43 
0.17 119 132 88 61 
0.2 117 117 122 52 
0.25 39 46 38 33 
0.3 21 19 9 18 
0.35 6 9 18 8 
0.4 5 8 7 5 
0.45 4 2 3 7 
0.5 2 3 2 0 
0.6 2 1 2 3 
0.7 0 1 0 0 
1.2 1 1 1 1 
*Not cumulative. 
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2.7. Conclusions: Optimal Incidence Angle 

Previous studies investigating crater frequencies utilized images with incidence 

angles ranging from ~60° to 80° based on available image data (e.g., Shoemaker et al., 

1969; Gault, 1970; Greeley and Gault, 1970; Soderblom, 1970; Baldwin, 1971; 

Soderblom, 1972; Soderblom and Lebofsky, 1972; Boyce and Dial, 1975; Young, 1975; 

Neukum et al., 1975a; Boyce, 1976; König, 1977; Schultz et al., 1977; Baldwin, 1985; 

Hiesinger et al., 2000; 2003). However, using the same (or similar) incidence angle 

images for all measurements was not always possible (e.g., Neukum et al., 1975a; 

Neukum and König, 1976; König, 1977; Hiesinger et al., 2000). Over a 30° incidence 

angle range, Young (1975) found a 25% change in apparent measured diameter for 100 m 

craters, suggesting that crater measurements made on multiple images with different 

incidence angles could provide significantly different derived ages. The global LROC 

WAC observations (Robinson et al., 2010; Speyerer et al., 2011) provide an opportunity 

to complete crater measurements at a constant average incidence angle for large areas and 

for diameters ≥700 m (e.g., Chapter 3). Similarly, spatially limited features visible in 

LROC NAC images are often located within a single image or image pair, where 

incidence angle is nearly constant.  

The results presented here, that incidence angle (50°–87°) affects the number of 

craters counted and the sizes measured, have significant implications for different aspects 

of crater measurement analyses and improve upon previous findings (e.g., Soderblom, 

1972; Young, 1975; Schultz et al., 1977; Wilcox et al., 2005). The four Apollo Metric 

images (Figure 2.5, 2.11–2.13, 2.15) return AMAs of ~3.5 Ga for the Mare Imbrium 

study area, while estimates of the equilibrium crater diameter decrease significantly with 
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decreasing incidence angle. The SFDs at the Apollo 11 Landing Site measured on NAC 

images (64° and 82° incidence angle) are statistically inseparable, but the derived AMAs 

differ as a result of the small number of craters counted in the largest bins. Measured 

crater frequencies in Mare Serenitatis using 46° and 66° incidence angle WAC mosaics 

return AMAs of ~3.4 and ~3.5 Ga, respectively, and the AMA for the 46° incidence angle 

image reflects the underestimation of crater diameters. In this work, the difference in 

estimated equilibrium crater diameter exceeds 30 m for images taken at incidence angles 

over a range of ~20°. The range in crater equilibrium diameter in turn directly affects 

estimates of average regolith depth. 

Selecting images with an appropriate incidence angle range is dependent on the 

measurement objective (e.g., estimates of AMAs, equilibrium crater diameter, regolith 

depth). Crater frequencies measured on images acquired over incidence angles ranging 

between ~65° and 80° do have differences (Figure 2.10, 2.14, 2.16, 2.18, 2.22, 2.23). 

AMAs derived for the different regions (Mare Imbrium, Mare Tranquillitatis, and Mare 

Serenitatis) produce different ages, even though the majority of AMAs agree within the 

statistical uncertainties for each study area. Thus, AMAs for a unit or between units will 

be most consistent when SFDs are measured on images with the same or similar 

incidence angles (i.e., within a few degrees). An optimal incidence angle range for 

relative and absolute age dating studies is between ~65° and 80°. Small incidence angle 

images (<60°) are not as useful for AMA derivation because the smaller incidence angle 

promotes measurements that underestimate crater diameter and the resulting AMAs. 

Conversely, equilibrium crater diameter estimates and subsequent inferred regolith depths 

are significantly influenced by changes in incidence angle over the ~65°–87° range, 
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confirming earlier hypotheses (Soderblom, 1972; Young, 1975; Wilcox et al., 2005). 

Measurements made on smaller incidence angle (64° and 71°) images underestimate 

crater diameters relative to those made on images at larger incidence angles, leading to 

equilibrium crater diameter estimates that are too small. Instead, measurements at larger 

incidence angles (82° and 87°) suggest that the emphasis of the break in slope at the 

perceived crater rim (due to shadowing) allow a more accurate determination of crater 

diameter and thus equilibrium crater diameter, a result consistent with previous work 

(Wilcox et al., 2005). Although more craters are detected on the surface at 87° than at 71° 

incidence angle in the Apollo Metric images, the enhancement of subtle topography and 

pronounced shadows in the 87° incidence angle image hides nearby smaller craters in the 

shadows of larger craters (e.g., Moore, 1972; Soderblom, 1972; Wilcox et al., 2005). 

Consequently, crater counts on images taken at ~80° incidence angle should provide the 

most accurate equilibrium crater diameter and regolith depth estimates by detecting more 

craters than measurements made at 71° incidence angle while mitigating the effects of 

enhanced shadows observed at 87° incidence angle. 
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CHAPTER 3 

AREAL CRATER DENSITY ANALYSIS OF VOLCANIC SMOOTH PLAINS: A 

NEW APPROACH TO DISTINGUISHING AGE UNITS 

3.1. Introduction 

Unraveling relative and absolute model ages for defined geologic units on 

planetary surfaces relies on observed superposition relationships and measurements of 

crater size-frequency distributions (SFD). Of the two methods, SFD analysis is the 

primary technique used to distinguish relative ages for mare smooth plains units, which 

can then be translated into absolute age estimates. Absolute age chronologies rely on 

crater counts calibrated to radiometric ages of returned samples (e.g., Hartmann et al., 

1981; Neukum, 1983), and with the exception of the Moon, samples of known surface 

provenance from other bodies do not exist. 

The lunar maria were emplaced over an extended period of time (>2 Ga; e.g., 

Hartmann et al., 1981; Stöffler et al., 2006; Hiesinger et al., 2011), and mare units exhibit 

marked color differences in multispectral data that are interpreted to correlate with 

distinct mineralogical units and ages (e.g., Pieters, 1978; Hiesinger et al., 2000; Staid and 

Pieters, 2001; Hiesinger et al., 2011; Staid et al., 2011). Efforts using crater counts to date 

color units identified within Mare Imbrium (e.g., Schaber et al., 1975; Hiesinger et al., 

2000; Bugiolacchi and Guest, 2008; Hiesinger et al., 2011), measures of crater 

morphology and degradation (e.g., Schaber, 1973; Boyce et al., 1974; Boyce and Dial, 

1975; Boyce, 1976), and geologic mapping (Carr, 1965; Moore, 1965; Hackman, 1966; 

Schaber, 1969; Page, 1970; M’Gonigle and Schleicher, 1972) provide a relative and 

absolute timeline of lunar mare emplacement in this region. From these studies, most 
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agree that volcanic filling of the Imbrium basin occurred in three primary phases. The 

older basalts are interpreted to be Imbrian in age (e.g., Schaber, 1969) and are exposed 

mostly in the east, while the younger basalts are Eratosthenian and late Imbrian in age 

(e.g., Page, 1970) and are found in the western portion of the Imbrium basin. 

Multispectral classification was used to distinguish geologic units prior to commencing 

crater counts and deriving absolute model ages (e.g., Schaber et al., 1975; Pieters, 1978; 

Hiesinger et al., 2000; Staid and Pieters, 2001; Bugiolacchi and Guest, 2008; Staid et al., 

2011), but not all planetary bodies exhibit multispectral differences within volcanic units 

(age and composition), as is the case on Mercury (e.g., Robinson et al., 2008; Denevi et 

al., 2009; 2013a).  

Here, areal crater density (ACD) analysis is used as a novel approach to identify 

resurfacing boundaries within Mare Imbrium (Figure 3.1), as a test case for mercurian 

studies. ACD as a measurement tool was successfully employed to investigate variations 

in crater retention age across the lunar surface (Head et al., 2010), and to compare lunar 

and mercurian crater populations (Fassett et al., 2011). After developing a refined 

methodology, ACD measurements within Mare Imbrium show a regional boundary at the 

contact between two spectrally distinct regions. The geologic contact is confidently 

observed in ACD maps derived for a study region of ~1 × 104 km2, which should be 

considered a minimum area size to use for crater counting in the mare. In addition, I 

identify far-flung, non-obvious secondary craters with the ACD measurement technique, 

which comprise a significant portion of the crater population with diameters between  

500 m and ~850 m and indicate that absolute model dating of the mare should be limited 

to craters ≥1 km in diameter (in agreement with e.g., Neukum et al., 1975a; Neukum, 
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1983; McEwen and Bierhaus, 2006). Geologic units dated as older (3.2–3.6 Ga from 

Hiesinger et al., 2000; 3.0–3.3 Ga from Bugiolacchi and Guest, 2008) exhibit higher 

ACD (>35652 craters with diameters ≥500 m per 106 km2) and younger units (2.0–3.0 Ga 

from Hiesinger et al., 2000; 2.2 Ga from Bugiolacchi and Guest, 2008) have lower ACD 

(<25974 craters with diameters ≥500 m per 106 km2), and the ACD results are in 

agreement with other dating studies of this region (e.g., Schaber, 1973; Boyce and Dial, 

1975; Schaber et al., 1975). Furthermore, spectral units with modeled absolute age 

differences of several hundred million years (Hiesinger et al., 2000) are not observed in 

the ACD map created here, suggesting that while the reported ages are statistically 

different, the ages may not be geologically meaningful. Thus, ACD measurements 

provide a reliable technique to distinguish relative ages among geologic units when 

spectral information is not available or units do not exhibit spectral contrasts, as well as 

provide a means to explore the statistical significance of published absolute model ages.  
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Figure 3.1. Mare Imbrium study area outlined in black, covering a total area of  
2.27 × 105 km2, shown in equal area projection. Sinus Iridum, Helicon crater (H, 
40.42°N, 336.89°E, diameter ~24 km) and Le Verrier crater (LV, 40.33°N, 339.39°E, 
diameter ~21 km) identified in (A). (A) LROC WAC monochrome normalized 
reflectance mosaic with an average incidence angle of 75°, (B) LROC WAC normalized 
reflectance mosaic with an average incidence angle of 57°, and (C) Clementine 
multispectral ratio mosaic (R=750/415, G=750/950, B=415/750). 
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3.2. Methods and Data 

3.2.1. Data and Study Region 

The Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) 

100 meter pixel scale monochrome mosaics (Robinson et al., 2010; Speyerer et al., 2011) 

at large (75°) and small (57°) solar incidence angles (measured from the surface normal, 

noontime is 0°) in an equal-area map projection were used to identify an area within 

Mare Imbrium (~1145 km diameter, centered at 33°N, 345°E). In addition, a ratio 

composite mosaic was derived using Clementine UV-VIS multispectral 100 meter pixel 

scale images (Nozette et al., 1994; McEwen and Robinson, 1997). From the 415–750–

950 nm Clementine UV-VIS filters, RGB colors were mapped to red = 750/415 nm, 

green = 750/950 nm, and blue = 415/750 to enhance color variations representative of 

mineralogical variability and normalize differences in albedo (Belton et al., 1992). A 

region centered at 39.77°N, 342.99°E and encompassing 2.27 × 105 km2 (Figure 3.1) was 

selected that contained strong spectral contrasts in the Clementine multispectral data and 

also large published model age differences (Hiesinger et al., 2000; Bugiolacchi and 

Guest, 2008). The spectral boundary was approximately centered within the count area to 

promote comparable sampling areas for density analysis. 

Within the study area, there are two spatially expansive spectral units: red and 

blue, characterized primarily by differences in spectral reflectance in the visible to near-

infrared (415 nm to 1000 nm). The spectral units correspond with variations in 

composition and age of emplacement (e.g., Schaber, 1973; Boyce and Dial, 1975; 

Schaber et al., 1975; Pieters, 1978; Hiesinger et al., 2000; Staid and Pieters, 2001; 

Bugiolacchi and Guest, 2008; Staid et al., 2011). The blue unit, covering the western 
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portion of Mare Imbrium (1.08 × 105 km2), contains ~18–20 wt% FeO and ~8–10 wt% 

TiO2, estimated from Clementine multispectral reflectance (Lucey et al., 2000). 

Comparatively, the red unit, covering eastern Mare Imbrium (1.20 × 105 km2), contains 

~15–18 wt% FeO and ~1–3 wt% TiO2 derived from Clementine spectral measurements 

(Lucey et al., 2000). Previous work by Hiesinger et al. (2000) and more recent work by 

Bugiolacchi and Guest (2008) subdivided the two sizeable spectral units into several 

smaller units based on subtle spectral variations that were subsequently dated using crater 

counts. However, here only a single red unit (average model age 3.5 Ga from Hiesinger et 

al., 2000; 3.3 Ga from Bugiolacchi and Guest, 2008) and a single blue unit (average 

model age 3.0 Ga from Hiesinger et al., 2000; 2.2 Ga from Bugiolacchi and Guest, 2008) 

are considered because the primary focus is to use ACD measurements to test if crater 

density contrasts can independently discriminate two units with significant age 

differences. 

3.2.2. Crater Counting 

Interpretation of crater counts assume that cratering is a random process and that 

accumulation of craters over time for a given surface reflects the age of that surface (e.g., 

Neukum et al., 1975a; McGill, 1977; Hartmann et al., 1981; Neukum, 1983). For crater 

counting results to be valid (e.g., used to derive absolute model ages), only primary 

craters should be considered and the region in question should be comprised of an area of 

uniform age, assumed to consist of one geologic unit (e.g., Neukum et al., 1975a; 1975b; 

McGill, 1977; Hartmann et al., 1981; Neukum, 1983). Since older surfaces have 

accumulated more primary craters than younger surfaces, a measure of ACD should 
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reflect spatial variations in crater retention across volcanic plains, indicating differential 

regions of resurfacing, and thus age units. 

I utilized the CraterTools extension (Kneissl et al., 2011) to ESRI ArcMap 

Desktop 10 geographic information systems (GIS) software to count all approximately 

circular, non-overlapping craters with diameter, D ≥500 m using the LROC WAC 

mosaics. Obvious secondary craters forming crater chains, herringbone patterns, and 

overlapping clustered groupings of craters were excluded from the measurements, and the 

areas containing obvious secondaries were excluded from the final count area.  

From these crater counts, I derived absolute model ages using the CraterStats 

software (Michael and Neukum, 2010) by employing the Neukum et al. (2001) 

chronology function to the data and displayed the results in the cumulative crater size-

frequency plot (Crater Analysis Techniques Working Group, 1979). Additionally, I 

determined the crater retention age, which is the number of craters of a given diameter, 

D, normalized to 106 km2 and written as N(D). N(D) uncertainties are approximated by 

±one standard deviation, calculated as the square root of the number of craters (Crater 

Analysis Techniques Working Group, 1979). N(0.5) and N(1) values for the study area 

provide a means to assess relative ages of geologic units independent of isochron model 

age fits of the data to the lunar chronology function.  

3.2.3. Measuring Areal Crater Density 

3.2.3.1. Display 

 The ACD maps may be displayed in numerous ways (e.g., grayscale, color scale, 

color classified, discrete values, etc.), and here the ACD is displayed in a three-color 

classification scheme. Classification simplifies the presentation of the ACD map to 
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emphasize statistically significant density variation (resulting from age differences). The 

three classes are determined from Poisson probabilities, the calculation of which provided 

statistical support for appropriate neighborhood radius size selection (Section 3.2.3.2). 

The Poisson probabilities calculated for the 10th percentile of the observed crater 

population within the study region (Section 3.2.3.2) provide statistically meaningful 

bounds on which to base the color classification, and 80% of the observed population 

should be contained within the calculated range (52–70 craters per average neighborhood, 

corresponding to N(0.5) = ~25975–35651). 

3.2.3.2. Output Cell Size and Neighborhood Radius 

ACD is determined from a point density calculation and the center of each crater 

is represented as a point; geologic application of point density for spatial analyses are 

discussed in detail by Davis (2002). The point density calculation in ArcMap 10 employs 

a moving neighborhood approach, where no weighting factor is assigned to crater center 

points on the basis of crater diameter, and the output cell size and the neighborhood 

radius are user-defined. Output cell size is the measurement unit used during the density 

calculation (“pixel size” of resulting raster), and varying output cell size affects the 

density plot appearance. Figure 3.2A-C illustrates the effects of changing output cell size 

on the density calculation. With a neighborhood radius of 25 km, an output cell size of  

1 km produces a density map with fine details (Figure 3.2A). However, increasing output 

cell size to larger sizes, such as 5 km (Figure 3.2B) and 10 km (Figure 3.2C), produces a 

visibly pixelated density map without small-scale detailed structure while retaining 

regional density trends. 
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In contrast, varying neighborhood radius alters the spatial structure observed in 

the resulting density map such that smaller neighborhood sizes emphasize statistical 

variations and larger neighborhood sizes smooth real variation. Figure 3.2D-F 

demonstrate the effects of different neighborhood radii. Using an output cell size of 1 km, 

small neighborhood sizes emphasize local (small area) variations, as is the case with a  

10 km radius (Figure 3.2D). For a 10 km radius, the number of craters with D ≥500 m per 

average neighborhood, n, is 10. There is a 13% chance that the neighborhood will contain 

≤6 craters and a 14% chance that the neighborhood will contain ≥14 craters, indicating 

that most of the density variation is statistical in nature and that the neighborhood area is 

too small. Selecting a neighborhood radius of 25 km (Figure 3.2E) provides robust 

sampling across the study area (>30 craters per average neighborhood; e.g., Silverman, 

1986; Davis, 2002) that emphasizes regional density variations (distinct “high” and “low” 

density areas) while also displaying smaller local variations in density (Figure 3.3A). For 

a 25 km neighborhood radius, n = 61, and the standard deviation (estimated as n0.5 for n 

craters) is 7.8, so the calculated density map is robust at the ~13% level against the crater 

count statistics for terrain of “average” age (i.e., representative of average 

neighborhoods). There is an 11% chance that a neighborhood will contain ≤51 craters and 

≥71 craters. There is only a 2% chance that a neighborhood will contain ≤45 craters or 

≥78 craters, demonstrating that most of the variation in crater density is real as opposed 

to statistical noise. Large neighborhood sizes smooth both local and regional variation, as 

is the case with a 50 km radius (Figure 3.2F), where n = 245. There is an 11% chance that 

the neighborhood will contain ≤225 craters or ≥265 craters. Therefore, while variation in 

the density map will reflect real variations in crater frequency at the regional scale, 
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determining the influence of statistical noise will be difficult. Regional boundaries, if 

present, will be greatly smoothed, and local, small area variations that reflect surface 

geology (erasure due to ejecta emplacement, formation of non-obvious secondaries) will 

be lost, suggesting that a 50 km radius is too large for the crater population and study area 

in Mare Imbrium (Figure 3.3B).  

 

 
Figure 3.2. Effects of variation on output cell size and neighborhood radius on the 
resulting ACD measurements. Scale bar is 50 km. Neighborhood radius of 25 km:  
(A) output cell size of 1 km, (B) 5 km and (C) 10 km. Output cell size of 1 km:  
(D) 10 km radius, (E) 25 km radius, and (F) 50 km radius. Refer to text for detailed 
discussion; rainbow color ramp used to help clarify changes resulting from output cell 
and neighborhood radius differences.  
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Figure 3.3. ACD maps centered at 39.77°N, 342.99°E in Mare Imbrium. Output cell size 
is 1 km and neighborhood radius is 25 km (A) and 50 km (B). Both maps exhibit a 
northwest to southeast regional boundary; for the larger neighborhood radius, local crater 
density variations are smoothed. Color classification boundaries reflect the 10th percentile 
for the measured crater populations. Table 3.4 provides regional ACD values for (A). 
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3.2.3.3. Edge Correction 

The point density measurement in ArcMap 10 does not natively correct for edge 

effects resulting from calculations within neighborhoods near the data collection 

boundary. Within ArcMap 10, I investigated two methods to minimize edge effects on 

the final ACD. First, and easiest to employ, is a buffered approach whereby the boundary 

of the ACD map is buffered to a distance of one neighborhood radius. Thus, for a density 

map derived using a neighborhood radius of 25 km, creating a boundary by subtracting 

25 km from all edges will guarantee that the resulting ACD magnitudes include only 

neighborhoods that are within the region of data collection. While this method effectively 

removes all edge effects, it by nature reduces the size of the study area. 

To minimize data loss, I employed a second approach to correct for edge effects, 

which I call “point correction”. The point correction is a weighted edge correction 

method (e.g., Silverman, 1986; Haase, 1995; Goreaud and Pélissier, 1999; Pommerening 

and Stoyan, 2006) that determines the proportion of neighborhood area included within 

the study region (Figure 3.4; Appendix C details the procedure). When the point 

correction is applied to the measured areal point crater density, the corrected ACD map 

reflects the proportion of the study area contained within each neighborhood at each 

output cell location (Figure 3.4, 3.5). Hereafter, any term referring to density 

measurements considers the corrected areal crater point density unless otherwise 

specified. 

I assessed the effectiveness of the point correction method by comparing the 

computed corrected ACD maps for overlapping subareas of increasing size within the 

study region (Figure 3.6). Density differences, limited to within 25 km of the boundary 
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(one neighborhood radius), reflect the inclusion of data beyond the boundary and do not 

represent edge artifacts. To illustrate, a black circle with a 25 km radius was placed near 

the boundary of the subarea within the area exhibiting subarea and entire study region 

density differences (Figure 3.7; Table 3.1). The uncorrected subarea density (Figure 

3.7A) exhibits a large and small region of high magnitude (red, N(0.5) ≥35652), 

surrounded by an area of moderate magnitude (yellow, N(0.5) = 25975–35651), which is 

in turn surrounded by low magnitude (blue, N(0.5) ≤25974). The high and moderate 

uncorrected densities have rounded boundaries that do not extend to the edge of the 

subarea (Figure 3.7A). However, when the point correction (Figure 3.7B, Figure 3.8) is 

applied, the spatial extent of the low density region decreases (Figure 3.7C).  

The ACD measurement is derived from crater data contained within the defined 

study region, and therefore, expanding the study area may cause a change in the crater 

density magnitudes near the original, unexpanded boundary area. When the ACD for the 

entire study area within Mare Imbrium is compared to that of the subarea, one marked 

change between the measurements is the decrease in size of the low density region in the 

southeast corner (Figure 3.6C, 3.7B, 3.7C), and difference maps scaled to one percent 

and five percent (Figure 3.9) reveal the effect of additional data on the ACD 

measurement. A difference of <0.99 or <0.95 in the one percent and five percent 

difference maps, respectively, indicates that the subarea density values exceed the entire 

region density values, and the extent of the difference corresponds to the low density area 

surrounded by intermediate values in the subarea density map. When new data are 

included that extend beyond the subarea boundary, there is a greater measured crater 

frequency beyond the boundary and this increase in measured crater frequency influences 
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the density calculation because those data are now used for density calculations for 

neighborhoods located within 25 km of the subarea boundary. Likewise, differences 

>1.01 and >1.05 in the one percent and five percent maps (Figure 3.9) reflect a decrease 

in measured crater frequency for the area extending beyond the subarea boundary.  

This concept is further emphasized when a 30 km buffer is applied to the subarea 

to create a second, smaller region (2.16 × 104 km2, comprising ~50% of the original 

subarea, Figure 3.10). Differences are only observed between the smaller region and the 

original subarea within 25 km of the boundary (Figure 3.10C, 3.10D), reflecting the 

inclusion of data in the density calculation for the original subarea as opposed to errors 

related to improper application of the point correction. Furthermore, the smaller region 

may be considered to be a minimum area size upon which to apply the ACD 

measurement technique (Figure 3.10B) because the density values match between the 

original subarea and smaller region in the central portion of the difference map. This area, 

which is ~8800 km2 in size, exhibits the regional boundary between spectral units 

interpreted to represent two distinct crater populations. However, the large proportion of 

area contained within 25 km to the boundary in this small region suggests that larger 

measurement sizes are preferable when available, a finding further emphasized by the 

results from successive increases in study area size (discussed above).  
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Table 3.1. Density Differences at Boundary, within Example Neighborhooda. 
Dataset Minimum 

N(0.5) 
Maximum 
N(0.5) 

Average 
N(0.5)b 

N(0.5) Neighborhood 
Center 

Subarea_uncorc 17825 46855 32877 ± 181 28011 
Subarea 32859 49439 39290 ± 198 35903 
Entire Area 28011 46855 37973 ± 195 37179 
aNeighborhood centered at 44.949°N, 345.450°E. 
bUncertainty estimates were calculated from the square root of the number of average 
craters. 
cSubarea_uncor = uncorrected ACD for subarea. 

 
Figure 3.4. Point correction example for a rectangular measurement area, grid spacing is 
100 m. The map illustrates that output cells within the central region of measurement do 
not require a correction, whereas output cells located proximal to the edge will cause 
neighborhoods to contain a proportion of valid data. Scale bar is 100 km. 
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Figure 3.5. Point density for the 100 m spaced point correction applied to the observed 
ACD for the entire study region. The point correction is derived by dividing each point 
density value by the maximum value (99.9) to calculate the proportion of valid data 
within the neighborhood area. 
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Figure 3.6. (A) ACD for the entire study region (2.27 × 105 km2), subarea boundary 
(4.48 × 104 km2) overlaid for reference. (B) Subarea ACD shown in relation to entire 
study region. (C) ACDs: subarea (50% transparency) overlaid on entire study region. 
Solid colors reflect the same density measurements between the subarea and the entire 
study region. Partially transparent areas (e.g., lower right corner of the subarea) reflect 
differences in density measurements (Figure 3.9), limited to within 25 km of the subarea 
edge. 



87 

 
Figure 3.7. (A) Subarea uncorrected ACD. (B) Subarea corrected ACD. (C) ACD map 
for the entire study area, centered within the subarea. Black circle (25 km radius) is a 
representative neighborhood area used to observe differences between density 
measurements (Figure 3.9). 
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Figure 3.8. Point density for the 100 m spaced point correction applied to the observed 
ACD for the subarea within Mare Imbrium. The point correction is derived by dividing 
each point density value by the maximum value (99.9) to calculate the proportion of valid 
data within the neighborhood area. 

 
Figure 3.9. ACD difference maps created from the subarea and entire study region 
measurements (Figure 3.6, 3.7); (A) one percent and (B) five percent difference maps. 
Differences are limited to ≤25 km from the subarea boundary and reflect the addition of 
data beyond the subarea boundary for calculation of the entire study region density.  
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Figure 3.10. Measured ACD for the smallest subarea (2.16 × 104 km2), and two distinct 
density units are observed (A). (B) ACD map where the area within 25 km of the 
boundary is shadowed to show the valid measurement area of ~8800 km2 (i.e., no 
difference in density magnitude). (C) One percent and (D) five percent difference maps, 
created from the ACD measurements for the original subarea and a 30 km buffered 
smaller area and from which the valid measurement area for the smallest subarea was 
derived.  

3.2.3.4. Statistical Versus Geologic Variations  

To establish where ACD values reflect real geologic differences compared to 

variation resulting solely from poor statistics (i.e., small numbers of counted craters), 

synthetic ACD maps were generated for the study region using the measured crater 

frequencies and by employing the Create Random Points tool in ArcMap 10. This tool 

calculates a random distribution for a specified number of points within a feature, 

requiring user-input of a polygon boundary and the number of points to be distributed 

within the polygon.  
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Two different types of synthetic density maps were generated. One version 

considered the approximate crater frequency for the entire study area, to explore regional 

variations and the extent to which the measured ACD regional variations have geological 

meaning. For the study area as a whole, 7100 points, the combined measured cumulative 

crater frequency for D ≥500 m rounded to the nearest hundred, were randomly distributed 

(Figure 3.11). The second synthetic ACD map used the approximate cumulative crater 

frequency for each spectral unit, to explore the extent of local variation that is expected 

statistically within a geologic unit. Random points were generated for the separate 

spectrally red and blue geologic, with 4900 and 2200 points distributed within the unit 

boundaries (measured cumulative crater frequencies for D ≥500 m, Figure 3.12). The two 

distributions were then merged, and synthetic ACDs were calculated from these 

combined data.  
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Figure 3.11. Three different random point distributions used to create synthetic areal 
density maps, reflecting the overall crater frequency (7100 points) for the study area. 
Each point represents one crater center. Resulting density maps shown in Figure 3.24, 
ACD values presented in Table 3.8. 



92 

 
Figure 3.12. Three different random point distributions used to create the synthetic areal 
density map, reflecting the measured crater frequencies of the red (4900 points) and blue 
(2200 points) spectral units. Each point represents one crater center. Resulting synthetic 
ACD maps are shown in Figure 3.25, and ACD values are presented in Table 3.9. 
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3.3. Results 

3.3.1. Crater Counts 

 All circular, non-overlapping craters were counted within the two units defined by 

spectral differences in the Mare Imbrium study area (Figure 3.13). From the measured 

crater frequencies (Table 3.2, 3.3), N(0.5) = 40711 ± 584 and N(1) = 3037 ± 159 for the 

red unit, and N(0.5) = 20535 ± 436 and N(1) = 1852 ± 131 for the blue unit. The crater 

retention ages are statistically distinguishable, and from my crater counts, the absolute 

model age for the red unit is ~3.3 Ga (3.3 +0.05/-0.06 Ga) and the blue unit is ~2.2 Ga 

(2.2 ±0.16 Ga) when the chronology (Neukum et al., 2001a) is fit to D ≥1 km craters 

(Figure 3.14). The model ages are in agreement with previously published average age 

ranges for the regional red (3.1–3.5 Ga from Hiesinger et al., 2000; 3.0–3.3 Ga from 

Bugiolacchi and Guest, 2008) and blue spectral units (2.6–3.0 Ga from Hiesinger et al., 

2000; 2.2 Ga from Bugiolacchi and Guest, 2008). Thus, the presence of two geologic 

units of mare material located within the study region is confirmed on the basis of both 

absolute model and relative crater retention ages, and that the spectrally red unit is older 

than the spectrally blue unit. 
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Table 3.2. Mare Imbrium Cumulative Size-Frequency Distribution Data – Red Unit.* 
D (km)a Ncumb  Area (km2) Frequency Uncertaintyc 
0.50 4866 1.20E+05 4.07E-02 6.89E-04 
0.71 1378 1.20E+05 1.15E-02 3.62E-04 
1.00 363 1.20E+05 3.04E-03 1.87E-04 
1.41 99 1.20E+05 8.28E-04 1.07E-04 
2.00 39 1.20E+05 3.26E-04 7.91E-05 
2.83 22 1.20E+05 1.84E-04 5.31E-05 
4.00 10 1.20E+05 8.37E-05 5.92E-05 
5.66 8 1.20E+05 6.69E-05 3.86E-05 
8.00 5 1.20E+05 4.18E-05 2.09E-05 
11.31 1 1.20E+05 8.37E-06 8.37E-06 
aDiameter (km) for lower bin limit. 
bCumulative number of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
*Crater center points are shown in Figure 3.13; cumulative size-frequency plot shown in 
Figure 3.14. 

Table 3.3. Mare Imbrium Cumulative Size-Frequency Distribution Data – Blue Unit.* 
D (km)a Ncumb  Area (km2) Frequency Uncertaintyc 
0.50 2214 1.08E+05 2.05E-02 5.08E-04 
0.71 582 1.08E+05 5.40E-03 2.76E-04 
1.00 200 1.08E+05 1.86E-03 1.66E-04 
1.41 75 1.08E+05 6.96E-04 9.38E-05 
2.00 20 1.08E+05 1.86E-04 4.96E-05 
2.83 6 1.08E+05 5.57E-05 2.78E-05 
4.00 2 1.08E+05 1.86E-05 1.31E-05 
aDiameter (km) for lower bin limit. 
bCumulative number of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin.  
*Crater center points are shown in Figure 3.13; cumulative size-frequency plot shown in 
Figure 3.14. 
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Figure 3.13. Distribution of craters with D ≥500 m, measured on the LROC WAC 
normalized reflectance mosaics. Each point represents one crater center. Resulting ACD 
shown in Figure 3.3A. 
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Figure 3.14. Cumulative crater size-frequency distribution and absolute model ages for 
the spectrally red and blue units in Mare Imbrium, derived from the measured counts in 
this investigation using the Neukum et al. (2001a) chronology function and tied to  
D ≥1 km. Tabulated binned crater data presented in Table 3.2, 3.3. 

3.3.2. Areal Crater Density (ACD) 

Two statistically separable, expansive regional units are observed in the ACD 

map (Figure 3.3A), and the ACD ranges between N(0.5) = 5936 ± 77 (12 craters per 

neighborhood) to N(0.5) = 80530 ± 284 (158 craters per neighborhood) (Table 3.4). The 

average regional ACD is N(0.5) = 30844 ± 176 (61 craters per neighborhood). Extending 
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approximately northwest to southeast is an irregularly shaped boundary between 

contiguous regions of high and low density units that is similar to the identified boundary 

between the red and blue spectral units.  

To the west of the irregular boundary (Figure 3.3A) there is a large contiguous 

area of low density occurring within the blue spectral unit, with an average N(0.5) or 

N(0.5)avg = 15788 (Figure 3.15, 3.16A, 3.16B; Table 3.5). There are several areas with 

local, small area density variation ~50 km in width that have intermediate density 

magnitudes, and an area ~80 km in length (north-south direction) contains high density 

values at the southwestern study boundary (Figure 3.3A). High density areas within the 

low density region are observed adjacent to the irregular boundary (Figure 3.17) and 

north of Le Verrier crater (Figure 3.1A, 3.3A) and are not associated with substantial 

spectral variations (i.e., comprising a size greater than one neighborhood area). 

Higher density magnitudes are observed to the east of the irregular boundary 

(Figure 3.3A) in the spectrally red unit. Regionally expansive, the high density unit has 

an N(0.5)avg = 50768, (Figure 3.18, 3.19; Table 3.6). More so than the low density unit, 

the high density region contains spatially limited local variations in ACD. Several areas 

of intermediate to low density are present within the expansive high density area (Figure 

3.3A, 3.16C-F, 3.20). 

Intermediate ACD values range N(0.5) = 24955–35850, with N(0.5)avg = 30569. 

Intermediate values occur along the boundary between and in localized areas within the 

high and low density regions and are rarely observed in isolated occurrences (Figure 

3.3A, Table 3.7). Figures 3.21 and 3.22 show the locations for three intermediate density 

areas that are contained within a representative measurement neighborhood. 
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Table 3.4. Areal Crater Densities for Large Areas. 
Density Class Minimum N(0.5) Maximum N(0.5) Average N(0.5)a 
High 32844 80530 50768 ± 225 
Moderate 24955 35850 30569 ± 175 
Low 5936 26154 15788 ± 126 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 

Table 3.5. Areal Crater Densities: Selected Low Density Neighborhoods. 
Location Latitude 

(°N) 
Longitude 
(°E) 

Minimum 
N(0.5) 

Maximum 
N(0.5) 

Average 
N(0.5)a 

1 36.117 335.837 7130 14811 10321 ± 102 
2 44.571 336.557 13750 23428 18700 ± 137 
3 41.029 350.396 19863 35141 26018 ± 161 
4 34.220 347.523 18844 38706 25919 ± 161 
5 40.603 331.608 7130 19863 13709 ± 117 
6 38.712 341.804 12732 23672 19642 ± 140 
Range (1-6) – – 7130 38706 19044 ± 138 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 

Table 3.6. Areal Crater Densities: Selected High Density Neighborhoods. 
Location Latitude 

(°N) 
Longitude 
(°E) 

Minimum 
N(0.5) 

Maximum 
N(0.5) 

Average 
N(0.5)a 

1 45.555 342.356 47365 73339 58959 ± 243 
2 38.184 348.324 41762 74866 56696 ± 238 
3 32.191 349.144 39216 78703 66401 ± 258 
4 35.317 341.082 32595 49911 41777 ± 204 
Range (1-6) – – 32595 78703 55957 ± 237 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 

Table 3.7. Areal Crater Densities: Selected Moderate Density Neighborhoods. 
Location Latitude 

(°N) 
Longitude 
(°E) 

Minimum 
N(0.5) 

Maximum 
N(0.5) 

Average 
N(0.5)a 

1 44.692 347.096 24955 38706 38658 ± 197 
2 42.956 355.843 23428 36425 30135 ± 174 
3 34.811 343.091 30866 30135 31813 ± 178 
Range (1-6)   23428 38706 30938 ± 176 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 
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Figure 3.15. ACD map with six example neighborhoods (radius = 25 km) selected for 
the low density region. All but two example low density neighborhood areas are 
contained within the large low density region. Center coordinates for neighborhoods and 
density magnitudes within the neighborhoods are presented in Table 3.5, and close up 
views of three example neighborhoods are shown in Figure 3.16. 
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Figure 3.16. ACD map (left; same colorscale as Figure 3.15) and LROC WAC 75° 
incidence angle mosaic (right) for example neighborhood 1 within low density region (A, 
B). Example neighborhood 3, centered on a low density area within the large high density 
region (C, D). Example neighborhood 4, centered on a low density area in the 
southeastern portion of the study area (E, F). Scale bar is 25 km. Locations visually 
presented in Figure 3.15, center coordinates for each location and density values are 
provided in Table 3.5. 
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Figure 3.17. An isolated high density measurement within the low density region, 
located proximal to the spectral unit boundary (35.769°N, 341.217°E). This region is also 
shown in Figure 3.19 and density measurements are listed in Table 3.6. (A) LROC WAC 
normalized reflectance 75° incidence angle mosaic, (B) LROC WAC normalized 
reflectance 57° incidence angle mosaic, (C) Clementine multispectral ratio (R=750/415, 
G=750/950, B=415/750), (D) ACD with a 25 km neighborhood radius, (E) ACD derived 
using a 10 km neighborhood radius. 
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Figure 3.18. ACD map with four example neighborhoods (radius = 25 km) selected for 
the high density region. Center coordinates for neighborhoods and the density magnitudes 
within the neighborhoods are presented in Table 3.6. Close up view of example 
neighborhood 3 is shown in Figure 3.19. Neighborhood 1 is detailed in Figure 3.27 and 
neighborhood 2 is shown in Figure 3.28. 

 
Figure 3.19. Example neighborhood 3 for the high density region (location in study 
region shown in Figure 3.18, center coordinates and density values listed in Table 3.6). 
(A) ACD, (B) LROC WAC 75° incidence angle mosaic (C) Clementine multispectral 
ratio (R=750/415, G=750/950, B=415/750). Scale bar is 25 km. 
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Figure 3.20. Example of local variation within the high density region (42.162°N, 
351.267°E). This region is also shown in Figure 3.15, 3.16C,D, and density values are 
listed in Table 3.5. (A) LROC WAC 75° incidence angle mosaic (B) LROC WAC 57° 
incidence angle mosaic (C) Clementine multispectral ratio (R=750/415, G=750/950, 
B=415/750), (D) ACD with a 25 km neighborhood radius, (E) ACD derived using a  
10 km neighborhood radius.  
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Figure 3.21. ACD map with three example neighborhoods with 25 km radii selected for 
the intermediate density regions. Each neighborhood area was selected to contain a 
maximum of intermediate values. Center coordinates for neighborhoods and the density 
magnitudes within the neighborhoods are presented in Table 3.7. Detailed views of the 
example neighborhoods are shown in Figure 3.22. 
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Figure 3.22. ACD on the left (same colorscale as Figure 3.21), LROC WAC 75° 
incidence angle mosaic on the right for intermediate density regions selected in Figure 
3.21. (A, B) Example neighborhood 1, (C, D) example neighborhood 2, and (E, F) 
example neighborhood 3. Scale bar is 25 km. Center coordinates and density magnitudes 
are presented in Table 3.7. 
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3.4. Discussion 

3.4.1. Areal Crater Density: Statistical Versus Geologic Variations 

In the Mare Imbrium study region, the ACD map exhibits a boundary that is 

interpreted to represent the geologic contact between two previously mapped regional 

color units (Figure 3.1C). Crater density differences correspond with contiguous geologic 

units identified by strong spectral contrasts interpreted as variations in wt% FeO and 

TiO2 (e.g., Charette et al., 1974; T. V. Johnson et al., 1977; Pieters, 1978; J. R. Johnson et 

al., 1991; Lucey et al., 2000) within the extruded mare basalts. However, the boundary 

observed in the density measurement does not precisely align with that determined from 

spectral variation (Figure 3.23). There are two plausible explanations for the boundary 

mismatch. The first reflects limits to the measurement technique. The moving 

neighborhood technique promotes smoothing of sharp contacts since the resulting output 

cell considers all the data contained within one neighborhood. Thus, distinct boundaries 

are reflected as intermediate density magnitudes such that potential uncertainty 

distinguishing the spectral contact in the ACD map will be present within ±25 km of the 

spectral boundary (Figure 3.23B). This factor is likely partly responsible for the boundary 

mismatch. The second explanation concerns the observed crater frequencies for the study 

region and their representation of real age differences. The ACD maps are dependent on 

measured crater frequencies and are expected to represent a random point distribution 

since impact cratering is assumed to be a random process (e.g., McGill, 1977). Thus, 

synthetic ACD maps (Figure 3.24, 3.25) derived from random point distributions (Figure 

3.11, 3.12), with the number of points equal to the observed number of craters rounded to 

the nearest hundred, will determine if there is a geologic difference responsible for the 
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unit boundary mismatch or simply statistical variations affecting the observed crater 

population.  

Synthetic ACD maps were generated to establish where measured ACD values 

reflect real age differences compared to variations resulting poor sample sizes, in addition 

to investigate how much local variation might be expected statistically within a geologic 

unit. Three models of regional synthetic ACD exhibit widespread intermediate density 

values with localized high and low density regions distributed across the measurement 

area (Figure 3.24; Table 3.8). This result is expected based on the random distribution of 

points composing the synthesized density maps: using the Poisson probabilities for 

classification boundaries, 80% of the distribution is of intermediate density, which is also 

expected because of the nature of the Poisson distribution. The remaining 20% of the 

random distribution is naturally classified within the high or low density categories. Thus, 

the synthetic density measurement for the combined crater frequency of this region 

(Figure 3.24) confirms that the boundary observed in the measured ACD is real, 

reflecting the contact between two geologic units of different interpreted composition and 

with different crater frequencies (age). 

Three synthetic density maps were created from the cumulative crater frequencies 

of the red and blue spectral units to investigate observed statistical variation within the 

units (Figure 3.25; Table 3.9). As expected, all three maps show two distinct regions of 

high and low density, bounded by an intermediate density area. Within the high and low 

density regions, there are smaller regions of intermediate density that represent random 

variation (Figure 3.25). Consequently, while some local variation may be expected to 

occur within the measured ACD map due to the randomness of the impact cratering 
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process, significant differences between the synthetic ACD maps and the measured ACD 

map, particularly within the high or low density units, likely represent true age 

differences and are not solely explained by statistical variation.  

The observed regional ACD differences reflect two distinct periods of volcanic 

activity in Mare Imbrium. However, small area variations in regional crater density may 

not always have an obvious origin, complicating identification of resurfaced areas in 

volcanic smooth plains. With respect to impact cratering in particular, the randomness of 

the cratering process, surface modification due to large crater formation and ejecta 

emplacement (i.e., erasure of the cratering record surrounding a larger crater), and 

formation of circular, non-overlapping clustered craters that may be secondary craters 

may act as a primary means promoting variations in ACD at the small (local) scale. 

Careful observations of the surface may reveal the cause of small area density variations, 

however, an unambiguous origin may not always be apparent. 

In the low density region, there are two high density areas that do not appear in 

the synthetic ACD map (Figure 3.25) and do not follow the measured ACD trends 

surrounding the spectral unit boundary (e.g., Figure 3.23B). The first area, located in the 

southern portion of the region, is isolated but located spatially near the spectral unit 

boundary and N(0.5)avg = 66401 ± 258 (Figure 3.17). Secondary crater chains and three 

groupings of non-overlapping craters (500 m to ~1.6 km in diameter) surrounded by 

higher albedo material that I interpret to be crater ray material are observed in the LROC 

WAC mosaics. When considering the regional context, the groupings of spatially close, 

non-overlapping craters within the higher albedo rays are traced southward to Copernicus 

crater, located ~770 km to the south, and therefore represent secondary craters and ejecta 
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material. These observations are in agreement with geologic maps of Mare Imbrium 

(Carr, 1965; Moore, 1965; Hackman, 1966; Schaber, 1969; Page, 1970; M’Gonigle and 

Schleicher, 1972), which were made using Lunar Orbiter photographs with limited 

variations in solar incidence angles. A second high density area with similar attributes 

(i.e., clustered, non-overlapping 500 m to ~1.2 km diameter craters) is located north of Le 

Verrier crater, and similarly I interpret this local, small area ACD variation to result from 

secondary craters attributed to Copernicus (~1000 km distant) based on the dominant 

north-south high albedo ray elongation.  

In the high density region, a prominent small area with low density is observed in 

the northeastern portion of the study area at 42.16°N, 351.27°E (Figure 3.20). 

Observations of the area in the LROC WAC mosaics reveal secondary crater chains and 

substantial ray material extending from the southeast to northwest from Aristillus crater 

(~340 km away from this location) and possibly from Autolycus crater as well, both of 

which are located to the east. Lower albedo areas are interspersed among the higher 

albedo rays and reflect the absence of ejecta. Although few secondary crater chains are 

identified in the geologic map, extensive crater ray material is mapped at this location 

(Schaber, 1969; Page, 1970).  

Unfortunately, interpreting local, small area variation in ACD is, at times, more 

complicated. For example, the low density representative neighborhood number four 

(Figure 3.15) may reflect the superposition of the blue spectral unit onto the red spectral 

unit (Figure 3.23A), but the irregular shape and relatively small extent affects the ACD 

calculation and interpretation. Very few output cells will contain measurements from 

neighborhoods contained completely within the spectrally blue unit and this area is 
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affected by the ±25 km uncertainty at the spectral contact (Figure 3.23B). Comparison of 

the measured and synthetic ACD maps indicates that the presence of this low density area 

is not a random statistical variation and instead reflects real differences in measured 

crater frequency. Nevertheless, although the shape of the low density area in the observed 

ACD is different than in the synthetic maps, observations of the available image data and 

geologic maps suggest that secondaries and at least one, maybe two, ejecta rays from 

Copernicus contaminate this area. Unraveling the geologic and ACD relationships in this 

location therefore emphasizes the necessity of considering all available data, in addition 

to the importance of comparison to synthetic ACD maps. 

Table 3.8. Synthetic Densities: Overall Region. 
Synthetic Test # Minimum N(0.5) Maximum N(0.5) Average N(0.5)a 
Syn1ce* 13501 48781 30987 ± 176 
Syn2ce 14193 52414 31004 ± 176 
Syn3ce 13914 49787 30957 ± 176 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 
*Syn1ce = Synthetic density, example 1, corrected and masked. 

Table 3.9. Synthetic Densities: Region with Red and Blue Units Defined. 
Synthetic Test # Minimum N(0.5) Maximum N(0.5) Average N(0.5)a 
SynRB1ce* 10197 60606 30943 ± 176 
SynRB2ce 9450 60107 30935 ± 176 
SynRB3ce 7459 56778 30968 ± 176 
aUncertainty estimates were calculated from the square root of the number of average 
craters. 
*SynRB1ce = Synthetic density, Red and Blue units, example 1, corrected and masked. 
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Figure 3.23. ACD map with spectral boundary drawn in black (A). (B) ±25 km distance 
from the boundary shadowed to illustrate potential uncertainty in ACD measurements at 
the spectral contact due to smoothing. 
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Figure 3.24. Synthetic areal density maps derived from three different random point 
distributions of 7100 points (cumulative crater frequency of D ≥500 m for this region). 
Point distributions shown in Figure 3.11 and Table 3.8 lists density values. 
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Figure 3.25. Synthetic areal density maps derived for three different random point 
distributions created from the crater frequencies of the red (4900 points) and blue (2200 
points) spectral units. Point distributions shown in Figure 3.12 and density magnitudes 
are provided in Table 3.9. 
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3.4.2. Detection of Far-Flung, Non-Obvious Secondary Craters 

The ACD measurement reflects the accumulation of impact craters over time and 

includes all observed circular, non-overlapping craters with D ≥500 m. I assume that the 

circular, non-overlapping craters are primary craters, a case necessary for valid age 

determination. In some cases, the circular, non-overlapping craters are spatially clustered 

(grouped) within a higher albedo region than the surrounding terrain, indicating that these 

groupings are evidence of secondary craters and crater ray materials. Measurements of 

the crater diameters within the groupings interpreted to be secondaries range from 500 m 

to ~2 km, and at least four parent craters contribute to the expansive crater rays and 

secondary crater chains observed within the study region: Copernicus to the south 

(9.62°N, 339.92°E, D ~96 km), Aristillus (33.88°N, 1.21°E, D ~54 km) and Autolycus 

(30.68°N, 1.49°E, D ~39 km) to the east, and Aristarchus to the west (23.73°N, 312.51°E, 

D ~40 km). Therefore, it is possible that at least some portion of the grouped non-

overlapping craters represent far-flung secondaries, similar to those observed at Tycho 

crater (Dundas and McEwen, 2007) and Zunil crater on Mars (McEwen et al., 2005).  

What is the effect of including these far-flung secondaries in crater frequency 

measurements? Secondary craters that occur in chains, with the herringbone pattern, or in 

overlapping clusters are immediately recognized and excluded, along with the surface 

area they cover. However, groupings of craters described above are not as easily 

identified. Previous lunar image datasets, such as Lunar Orbiter, had limited repeat 

coverage of an area at different solar incidence angles, so identifying non-obvious 

secondaries (non-overlapping clusters of craters within a higher reflectance unit) was 

perhaps difficult. The possibility of secondary contamination is considered for the lunar 
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chronology, with an estimated <10% uncertainty for the standard distribution curve 

between 0.8–3 km (Neukum et al., 1975a; 2001a). In fact, Neukum et al. (1975a) 

estimated a <5% contribution of secondary craters (e.g., those in chains, herringbone 

pattern) to the overall crater population observed in Mare Serenitatis using Lunar Orbiter 

photographs. Moreover, for the mare, absolute ages are determined using craters with  

D ≥1 km to limit inclusion of potential secondary craters (e.g., Neukum et al., 1975a; 

Hartmann et al., 1981; Neukum, 1983; Neukum et al., 2001a; McEwen and Bierhaus, 

2006). In Mare Imbrium, the majority of measured grouped craters interpreted to be non-

obvious secondaries are between 500 m to ~850 m in diameter, suggesting that while 

non-obvious secondary craters with D ≥1 km exist on the lunar surface, their presence is 

probabilistically low (hypothetically the percentage of unrecognized secondary craters in 

crater counts is <5%; e.g., Werner et al., 2009). Thus, absolute model age determinations 

will be minimally influenced by inclusion of non-obvious secondaries, especially if the 

potential inclusion of non-obvious secondaries is minimized through reference to 

published geologic maps, use of images with multiple illumination conditions, and 

consideration of counted crater locations with local and regional geology (e.g., proximity 

of count region to Copernicus crater and presence or absence of crater rays and prominent 

secondary crater chains).  

Measures of ACD may aid in identification and determination of far-flung, non-

obvious secondary craters, particularly when small neighborhood sizes (e.g., 10 km for 

Mare Imbrium) are used. Small neighborhoods emphasize local, statistical variations, so 

systematic local trends in groupings of craters, which are expected for clusters of far-
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flung secondaries, will be visible (Figure 3.26). The resulting ACDs, in conjunction with 

image data, may assist in determination of potential origin direction.  

Within small neighborhoods, crater clusters are a primary component of the 

higher ACD values in some areas. By identifying these higher than average density 

regions, and then observing the crater and surface morphology (including associated 

regional terrain), potential secondary crater groupings are identified if they are indeed the 

source for the higher density magnitudes. For example, an “X” shaped cluster of craters 

was identified (Figure 3.27, centered at 45.09°N, 343.00°E) in the LROC WAC basemap. 

The “X” has a higher albedo than the surrounding terrain and is located entirely within 

the spectrally red unit. In the ACD map with a neighborhood radius of 25 km,  

N(0.5)avg = 58959 ± 243 for the “X” (Figure 3.18, neighborhood 1; Table 3.5), 

contributing to the overall regional high density in the northern portion of the study area. 

When a 10 km neighborhood radius is used to create an ACD map (Figure 3.26), the “X” 

observed in the LROC WAC mosaic is emphasized (Figure 3.27). A linear high density 

region extending in the northeast-southwest direction is revealed, along with the 

northwest-southeast linear portion of the “X”. These groupings of craters are mapped as 

secondary crater material and ray material in the USGS geologic map (Schaber, 1969), 

and one possible source for the northeast-southwest trending portion of the “X” is 

Aristoteles crater located ~710 km away, to the northeast of Mare Imbrium (50.24°N, 

17.32°E, D ~88 km). Should the “X” (craters and area) be removed from the 

measurement, I would expect the higher density region to remain unchanged with the 

exception of an “X”-shaped gore in the density map.  
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Similarly, at the eastern boundary of the study region (38.77°N, 348.08°E), the  

10 km neighborhood radius ACD map (Figure 3.26, 3.28) reveals high density linear 

regions (not seen in Figure 3.3A) in a portion of the regional high density unit identified 

in the 25 km neighborhood radius ACD map. Comparison of the high density linear areas 

(Figure 3.28) to LROC WAC mosaics and the geologic map (Page, 1970) indicate that 

the high density areas reflect circular, non-overlapping craters within high albedo rays 

from Copernicus, Aristillus, and Autolycus craters. While it is possible that some craters 

in these linear high density areas may superpose the crater rays, there are no 

distinguishing features indicative of later crater formation (e.g., high albedo ejecta 

surrounding a crater). 

 
Figure 3.26. ACD map created using a 10 km neighborhood radius and 1 km output cell 
from the measured crater population (Figure 3.13). 
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Figure 3.27. Portion of the high density area in the northwestern portion of the study area 
(45.091°N, 342.998°E), also shown in Figure 3.18 (neighborhood 1; associated density 
values are presented in Table 3.6). (A) LROC WAC 75° incidence angle normalized 
reflectance mosaic, (B) LROC WAC 57° incidence angle normalized reflectance mosaic, 
and (C) Clementine multispectral ratio (R=750/415, G=750/950, B=415/750) mosaics. 
This region is observed within the regional high density area in the 25 km neighborhood 
radius density map (D). On the basis of linear-like high density areas in the 10 km 
neighborhood radius ACD map (E), the “X” shape is interpreted to reflect far flung, non-
obvious secondaries.  
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Figure 3.28. (A) LROC WAC 75° incidence angle normalized reflectance mosaic,  
(B) LROC WAC 57° incidence angle normalized reflectance mosaic, and (C) Clementine 
multispectral ratio (R=750/415, G=750/950, B=415/750) mosaic of an area within the 
eastern high density region observed in the 25 km radius ACD (D; Figure 3.18, 
neighborhood 2). Linear-like high density features are more prominent in the 10 km 
neighborhood radius ACD map (E) reflect far flung, non-obvious secondaries. 
Corresponding density magnitudes are provided in Table 3.6. 

3.4.3. Potential Statistical Limitations 

As with all studies concerning crater size-frequencies, the region of interest must 

contain a statistically significant number of craters at the desired diameter sizes from 

which to derive relative and absolute ages. Integral to obtaining a statistically robust 

crater sample population is identifying a region of uniform age unit covering a 

substantially large area. On the Moon, and on other planets, different measurement area 

sizes should be considered for dating different terrain types (e.g., older highlands versus 

younger mare, older versus younger mare, older mare versus younger impact melt). 

Unfortunately, there is no simple equation or relationship to invoke as a means to define 

the ideal measurement area size. Often, measurement area size is determined by the areal 
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extent of the unit in question, for example, the spatial extent of impact melt deposits 

surrounding and within a specific crater. Nevertheless, the results of this investigation 

constrain measurement area size recommendations for relative and absolute dating of the 

lunar mare, a topic usually avoided by workers due to the difficulty of presenting 

convincing, quantitative evidence for area size-determination arguments. Initially, a  

4.48 × 104 km2 subarea was selected from the entire study region to examine the point 

correction effectiveness (Figure 3.7B), and differences in ACD between the subarea and 

the entire region reflect the addition of data beyond the subarea boundary (Section 

3.2.3.3). Even after the subarea is approximately halved, the resulting ACD map (Figure 

3.10A) displays two dominant density units in an ~8800 km2 area unaffected by boundary 

proximity. For this smallest area, N(0.5) = 35732 ± 1285 and n = 70; as the area size 

decreases, the statistical uncertainty and influence of small number statistics increase. 

Thus, on the basis of distinguishing two distinct, statistically separable crater populations 

representing two geologic units, selecting measurement areas ≥1 × 104 km2 in spatial 

extent is ideal, whenever possible, for dating mare surfaces of all ages. 

Given that some craters in the size range 500 m to ~850 m in diameter are more 

likely to be far-flung, non-obvious secondary craters on the basis of proximity to other 

craters (grouping or clustering), association with high albedo crater rays, and observation 

of an obvious source crater, it is useful to examine the ACD for Mare Imbrium when the 

crater frequencies are limited to D ≥1 km. Examining the effects of this size range on the 

ACD measurement is a helpful exercise since absolute ages for the mare are frequently 

derived for craters with D ≥1 km (Neukum et al., 1975a; Neukum, 1983; Neukum et al., 

2001a). For the entire study area, N(1) = 2476 ± 104, corresponding to an n = 5 for an 



121 

average neighborhood with a 25 km radius, but an average of 5 craters per neighborhood 

for the majority of Mare Imbrium is not statistically significant (e.g., Silverman, 1986; 

Davis, 2002). Therefore, to create a statistically meaningful ACD map using ≥1 km 

diameter craters, either a greater neighborhood radius is required or the study area size 

must be increased. However, increasing the study area size is not ideal because ejecta and 

prominent secondary crater materials (chains, disrupted terrain) from Aristillus and 

Autolycus to the east, Copernicus to the south, and Aristarchus to the west contaminate 

the mare surface. Instead, increasing the neighborhood radius is more feasible, and by 

increasing the neighborhood radius to 50 km, n = 19, and there is a 10% chance of a 

neighborhood containing ≤13 craters and an 11% chance of ≥25 craters in a 

neighborhood (Figure 3.29A). When the neighborhood radius is increased to 75 km,  

n = 44, and there is a 10% chance of a neighborhood containing ≤35 craters and a 13% 

chance of ≥52 craters in a neighborhood (Figure 3.29B). As discussed previously 

(Section 3.2.3.2), larger neighborhood sizes smooth regional variation and thus limit 

observations of local variation. The ACD map for the 50 km neighborhood radius 

exhibits several discrete regions of high and low density, bordered and surrounded by 

intermediate density values. The high density regions correspond to those observed in the 

25 km neighborhood radius map derived from D ≥500 m (Figure 3.3A), as does the 

largest low density area in the southwest, but the remainder does not correlate well. In 

contrast, the ACD derived with a 75 km neighborhood radius agrees better with the  

25 km neighborhood radius ACD map: there are larger, broader regions of high density 

separated from a large, low density region by an intermediate density area (Figure 3.29). 

Moreover, the intermediate density forms a distinct northwest-southeast division of the 
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high and low density regions that corresponds to the spectral boundary between the red 

and blue units, albeit greatly smoothed. In this case, both the neighborhood size and 

smaller statistics (n(D ≥1 km) = 44 for a 75 km neighborhood radius, n(D ≥500 m) = 61 

for a 25 km neighborhood radius) contribute to the differences in detail between the two 

ACD maps, but the overall trend of a higher density region to the east and a lower density 

region to the west remain similar. Furthermore, the locations of the large, broad high 

density regions do not change between the two maps: there is a high density region in the 

north and to the east in both. In the D ≥500 ACD map, I identified non-obvious 

secondaries that contributed in part to the high density magnitudes in these locations 

(Figure 3.3A, 3.27, 3.28), but the presence of high densities in the same locations (Figure 

3.29B) in the D ≥1 km ACD map indicates that these high densities do not solely reflect 

the inclusion of likely non-obvious secondaries. Therefore, measures of ACD determined 

using D ≥500 m provide valid information about statistically separable crater populations, 

particularly when multiple datasets (i.e., image data, geologic maps, ACD maps with 

different neighborhood sizes) are employed in analysis to identify the influence of 

potential non-obvious secondaries on the ACD measurement. 
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Figure 3.29. ACD maps derived from craters with D ≥1 km; (A) 50 km neighborhood 
radius, (B) 75 km neighborhood radius. Color classification scale determined from 10th 
percentile of measured crater population. 
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3.4.4. Absolute Model Age Assessment 

Measurements of ACD derived from measures of crater frequency provide a 

means to test the significance of accepted model ages. The ACD map (Figure 3.3A) 

reproduces two statistically separable crater populations with different relative ages 

contained within adjacent regional spectral units that correspond to a modeled age 

difference of 300–500 million years (Hiesinger et al., 2000) to ~1 billion years 

(Bugiolacchi and Guest, 2008). Within the regional spectral units identified in Mare 

Imbrium (my study area, Figure 3.1C), Hiesinger et al. (2000) identified eight geologic 

units based on subtle spectral variation recorded in the Galileo Earth/Moon Encounter 2 

images, and each individual color unit was assumed to be of uniform age. However, there 

are no obvious boundaries observed in the ACD map that correspond to the eight spectral 

units identified with model age differences less than 300–500 million years (Hiesinger et 

al., 2000). More recently, Bugiolacchi and Guest (2008) used Clementine multispectral 

data to identify geologic units in Mare Imbrium, and grouped color units according to 

compositional types (wt% FeO and TiO2) and measured crater frequencies. Their results 

are also consistent with the ACD map, separating volcanic activity into two major 

eruptive phases for my defined study area in Mare Imbrium (Bugiolacchi and Guest, 

2008). Thus, my findings suggest that while the observed spectral variations indicate 

changes in the mineralogy of the extruded mare lavas, emplacement of the eight smaller 

units identified by Hiesinger et al. (2000) occurred over a period of geologic time that 

was too short to accumulate statistically separable crater populations. The two regional 

geologic units distinguished within the ACD map and from relative crater retention ages 
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agree with the grouped geologic units (Hiesinger et al., 2000; Bugiolacchi and Guest, 

2008), both on the basis of crater frequency and absolute model age range (2.2–3.3 Ga). 

Therefore, a point to consider is whether model age differences of several 

hundred million years between spectrally determined units within the mare are 

geologically meaningful. Hiesinger et al. (2000) selected representative regions to date 

within each spectrally determined unit, assuming that each unit contained homogenous 

spectral features that were significantly different and each spectral unit represented a 

single age. However, the representative regions may not accurately represent the spectral 

unit for several reasons. First, most of the combined representative count areas are small, 

<1 × 104 km2, and as a result may not contain a statistically robust population of D ≥1 km 

craters (e.g., at least ~30; Silverman, 1986; Davis, 2002). From the N(1) values reported, 

a range of ~15 to 40 craters with D ≥1 km were measured (Hiesinger et al., 2000), and 

when statistical uncertainties are examined, there are only two, not eight, statistically 

significant crater populations (a relatively old unit and a younger one). To compare, only 

three units were smaller than 1.26 × 104 km2 in size out of the thirteen grouped units 

dated by Bugiolacchi and Guest (2008). Furthermore, when crater counts on LROC WAC 

mosaics are completed for the mapped spatial extent of the eight units identified by 

Hiesinger et al. (2000), only two of the units are <1 × 104 km2 and the measured crater 

frequencies (i.e., N(1) values) are statistically separable into only two primary age 

groupings. From these data, I am unable to reproduce either absolute model ages for the 

eight units reported by Hiesinger et al. (2000) or absolute model ages for the two 

statistically separable units created by summing the values reported by Hiesinger et al. 

(2000). In contrast, my absolute model ages for the two regional units agree with those 
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derived by Bugiolacchi and Guest (2008). In addition to problems arising from small 

count areas, disparity in model ages may also reflect differences due to crater counting 

methods, in addition to subjectivity of crater recognition resulting from the effects of 

erosion, burial, illumination, and image quality on crater identification. Therefore, 

although there may be eight or more spectrally distinct units observed within the Mare 

Imbrium study region (Hiesinger et al., 2000; Bugiolacchi and Guest, 2008), I could only 

statistically distinguish two units from crater populations, suggesting that insufficient 

geologic time passed between emplacement of spectrally distinct volcanic eruptions to 

accumulate statistically separable crater populations for many of the spectral units 

identified by Hiesinger et al. (2000) and Bugiolacchi and Guest (2008). 

3.4.5. Application to Mercury 

The observation of a large-scale volcanic resurfacing boundary using ACD 

measurements indicates that spectral data is not a prerequisite for identification of relative 

age differences between expansive volcanically modified terrain. The ACD measurement 

may be combined with crater frequency statistics (e.g., N(1)) to test relative ages of large 

regions of volcanic smooth plains. The ability of ACD analysis to distinguish age units in 

the absence of spectral data in Mare Imbrium imply that this technique may be applied to 

other bodies to distinguish between different geologic subunits such as the northern 

smooth plains on Mercury (Chapter 4; Ostrach et al., in preparation). While strong 

multispectral contrasts observed within the lunar maria are used to define units, 

Mercury’s smooth plains do not exhibit detectable spectral variation within individual 

contiguous units (e.g., Robinson et al., 2008; Denevi et al., 2009; 2013a). The utility of 

measuring ACD is that useful crater frequency information, in addition to relative age 
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relationships, may be determined independent of spectral differences and are applicable 

to expansive regions of volcanic smooth plains. 

 

3.5. Conclusions 

Using absolute model dating and determination of areal crater density, two 

spatially expansive, statistically separable mare units were determined from the measured 

crater frequencies for a large region within Mare Imbrium. The older, spectrally red unit 

is located in eastern Mare Imbrium and has an absolute model age of ~3.3 Ga old, and the 

younger, spectrally blue unit in western Mare Imbrium is ~2.2 Ga old. These ages agree 

with previous assessments of relative (e.g., Boyce and Dial, 1975; Schaber et al., 1975) 

and average absolute model (Hiesinger et al., 2000; Bugiolacchi and Guest, 2008) ages. 

However, although the ACD technique distinguishes between the two large geologic 

units with an age difference estimated between ~500 million years (Hiesinger et al., 

2000) to ~1 billion years (Bugiolacchi and Guest, 2008), I am unable to reproduce either 

the 500 million year age difference in my dating efforts or distinguish subunits within the 

two large units reported by Hiesinger et al. (2000). Further examination using cumulative 

crater frequency measurements to determine relative crater retention ages indicate that 

several of the subunits reported (Hiesinger et al., 2000) are not statistically separable, and 

when coupled with my results, suggest that small model age differences on the order of 

hundreds of millions of years likely are not geologically meaningful.  

My interpretation of areal crater densities (partly informed with spectral and 

normalized reflectance information) also reveal the presence of secondary craters of  

D ≥500 m to ~2 km with non-diagnostic morphologies, in that the secondaries are not 
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observed as typical crater chains, herringbone pattern, or overlapping clusters. In most 

cases, the origins of the far-flung, non-obvious secondaries are identified, and these non-

overlapping groupings of circular craters may be genetically associated with Copernicus, 

Aristillus, Autolycus, and Aristarchus craters, and in at least one case, Aristoteles crater. 

Therefore, although craters with D ≥1 km are used for the absolute model age derivation 

and the contribution of unrecognized secondaries to the chronology is estimated at  

<5–10% (e.g., Neukum et al., 1975a; Werner et al., 2009), recognizing the potential for 

inclusion of non-obvious secondaries into measurements is important and all available 

datasets, including geologic maps, should be considered during selection of study areas 

for crater counting.  

Measures of ACD can be used to distinguish previously reported age units that 

were defined with multispectral data within lunar mare for age contrasts >300–500 

million years and spatial extents >1 × 104 km2, and the technique described here provides 

an effective method to determine relative ages of mare units independent of color 

boundaries. By employing the moving neighborhood approach to calculate ACD, any 

sharp contacts or boundaries are smoothed and reflected as intermediate densities, and 

because the density map reflects regional variations, substantial variations in crater 

density remain observable. Consequently, the spectral contact observed in the Clementine 

multispectral mosaic is reproduced in the ACD map within error of approximately ±one 

neighborhood radius (±25 km). Comparisons of ACD results for different sized subareas 

within Mare Imbrium also suggest measurement areas for crater counting should exceed 

1 × 104 km2 whenever possible. Moreover, the ability to distinguish surface units of 

different ages from measures of crater frequencies in Mare Imbrium, without using 
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spectral data, show that the ACD technique may be applied to other planetary bodies, 

such as Mercury, to search for age boundaries within contiguous smooth plains units. For 

example, the northern smooth plains on Mercury do not exhibit resolvable spectral 

variation, so my density method can be used to test hypotheses concerning timing of 

smooth plains emplacement (Chapter 4; Denevi et al., 2013a; Ostrach et al., in 

preparation). 
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CHAPTER 4 

CONSTRAINING THE TIMESCALE OF NORTHERN SMOOTH PLAINS 

EMPLACEMENT ON MERCURY 

4.1. Introduction 

The MESSENGER spacecraft was inserted into orbit around Mercury on 18 

March 2011, and soon thereafter the Mercury Dual Imaging System (MDIS) (Hawkins et 

al., 2007) began systematic mapping of the planet. Previous Mariner 10 and 

MESSENGER flyby image coverage (e.g., Murray et al., 1974a; Danielson et al., 1975; 

Trask and Guest, 1975; Solomon et al., 2001; 2008) of the north polar region (NPR; 50°N 

to 90°N, 0°E to 360°E) at illumination (solar incidence angle ≥65°, measured from the 

surface normal) and viewing geometries favorable for morphologic studies was limited, 

but showed large regions of smooth plains surrounded by more heavily cratered terrain 

(HCT) (e.g., Danielson et al., 1975; Trask and Guest, 1975; Robinson et al., 1999; 

Solomon et al., 2008). MDIS orbital images of the NPR provide full coverage at 

resolutions higher than those attained previously, low emission angles (intersection of the 

camera boresight with the surface, measured from the surface normal), and at 

illumination favorable for morphologic assessment. 

Two major terrain units dominate the NPR: heavily cratered terrain (HCT) and 

smooth volcanic plains. The HCT is characterized by impact craters that are closely 

packed and overlapping (Murray et al., 1974b; Trask and Guest, 1975; Gault et al., 1977). 

An intercrater plains unit was mapped by Trask and Guest (1975), described as gently 

rolling ground between and around large craters of the HCT, but the relationship between 

the intercrater plains and HCT is complex; obvious superposition relations were not 
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commonly observed in Mariner 10 images (e.g., Trask and Guest, 1975; Malin, 1976; 

Leake, 1982). As a result and because of the difficulty in separating these two units, the 

intercrater plains and HCT were frequently combined into a single unit for crater 

counting purposes (Strom et al., 1975a; Trask, 1975; Guest and Gault, 1976), which I 

adopt in this investigation.  

The northern smooth plains (NSP) are relatively flat with fewer superposed 

impact craters than the HCT (Murray et al., 1974b; Strom et al., 1975b; Guest and Gault, 

1976), and are morphologically similar to the lunar maria (e.g., Murray et al., 1974a; 

1974b; Murray, 1975; Strom et al., 1975b; Head et al., 2008; 2011). Smooth plains units 

identified in the Mariner 10-based studies (e.g., Murray et al., 1974b; 1975) have a lower 

crater size-frequency distribution (SFD) than the HCT, indicating that the smooth plains 

are substantially younger. Although no diagnostic volcanic features or constructs were 

conclusively identified in the Mariner 10 images, possibly due to resolution and 

illumination limitations (Schultz, 1977; Malin, 1978; Milkovich et al., 2002), a volcanic 

origin for much of the smooth plains was favored based on their widespread distribution, 

embayment relations with surrounding topography, observations of tectonic features, 

difference in crater density relative to the HCT, and visible color properties (e.g., Murray 

et al., 1974b; Strom et al., 1975b; Trask and Strom, 1976; Kiefer and Murray, 1987; 

Spudis and Guest, 1988; Robinson and Lucey, 1997; Robinson and Taylor, 2001). 

Although a volcanic origin for the smooth plains was called into question (Wilhelms, 

1976b; Oberbeck et al., 1977), and while it is certainly possible that some smooth plains 

deposits are impact-generated products (i.e., fluidized ejecta, impact melt), the 

widespread smooth plains regions are now interpreted as volcanic effusive products, 
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much like the lunar maria (e.g., Murray et al., 1974b; 1975; Trask and Guest, 1975; 

Strom et al., 1975b; Trask and Strom, 1976; Kiefer and Murray, 1987; Robinson and 

Lucey, 1997; Head et al., 2008; 2009; 2011; Murchie et al., 2008; Robinson et al., 2008; 

Solomon et al., 2008; Denevi et al., 2009; 2013a; Ernst et al., 2010; Fassett et al., 2009; 

Kerber et al., 2009; 2011; Watters et al., 2009; Prockter et al., 2010; Freed et al., 2012; 

Goudge et al., 2012; Klimczak et al., 2012; Watters et al., 2012; Byrne et al., 2013; 

Hurwitz et al., 2013).  

Using the impact cratering record of volcanically resurfaced regions, including 

partial crater floor flooding to regional plains formation and large-scale burial of pre-

existing terrain, the extent and influence of volcanism over geologic time on Mercury is 

examined. This investigation defines the local stratigraphy for the NPR and complements 

previous studies of other regions (notably Trask, 1975; Strom, 1977; Spudis and Guest, 

1988; Strom and Neukum, 1988; Strom et al., 2008; 2011; Fassett et al., 2009; Denevi et 

al., 2013a), providing insight into the global stratigraphic record and the relative ages of 

key geologic units on Mercury. The results presented here add to the understanding of the 

volcanic history of Mercury by comparing the relative ages of the NSP to the Caloris 

smooth plains (Spudis and Guest, 1988; Strom and Neukum, 1988; Strom et al., 2008; 

Fassett et al., 2009; Denevi et al., 2013a) and the surrounding NHCT; and the NHCT are 

compared to HCT elsewhere on Mercury (e.g., Strom et al., 2008; 2011; Fassett et al., 

2011). The relative timing of NSP emplacement is explored using crater size-frequencies, 

measures of areal crater density, and stratigraphic relations, the results of which show 

evidence for multiple resurfacing of the NSP over a short geologic timescale. I also 

present regional NSP thickness and volume estimates derived from embayed craters, 
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providing a minimum approximation of volcanic material contained within this 

occurrence of smooth plains. 

 

4.2. Methods and Data 

I constructed a 400 meter pixel scale monochrome mosaic in polar stereographic 

projection from 0°E to 360°E and 50°N to 90°N from MDIS wide-angle camera (WAC) 

images (749 nm) (Hawkins et al., 2007; Figure 4.1). On the basis of morphologic 

observations, two distinct geologic units were defined in the NPR, HCT and NSP, 

comprising a total surface area of 9.26 × 106 km2 (Figure 4.1). To prevent confusion 

when relating the results of my investigation to previous work, I adopt the term “heavily 

cratered terrain” to describe the combined HCT and intercrater plains units present on 

Mercury, identifying “northern heavily cratered terrain” (NHCT) when referring to HCT 

specific to the NPR. 

The NHCT occupies 3.67 × 106 km2 of the polar region (~40% total study area; 

~5% surface area of Mercury). Impact crater morphologies in the NHCT range from 

pristine with visible ejecta ray systems and a sharp rim (Class 1 craters) to barely 

discernable and highly degraded craters (Class 4 and 5 craters; Arthur et al., 1963). 

Primary craters identified in the NHCT are as large as ~350 km in diameter, and there is a 

profusion of secondary craters intermingled with the primaries. 

There are two large areas of smooth plains within the NPR, occupying a total area 

of 5.59 × 106 km2 (~60% total study area, ~7% surface area of Mercury). The larger 

region of smooth plains (SP1 in Figure 4.1b) is 3.79 × 106 km2 in area, and extends 

beyond my study region to ~40°N between ~40°E to 80°E (Head et al., 2011). An area of 
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smooth plains occupying 2.92 × 105 km2 not previously discussed by Head et al. (2011) is 

included in SP1. The smaller region, SP2 (Figure 4.1b), extends from ~50°N to 65°N and 

~120°E to 220°E and is 1.51 × 106 km2 in area. The region SP1 is connected by flooded 

craters and a series of broad valleys filled with smooth plains material (interpreted as 

flooded impact-sculpted terrain by Byrne et al., 2013). The smaller region of smooth 

plains (SP2) has contributions of material from both the proposed lava channels and the 

Caloris exterior smooth plains (much of this region is mapped as Caloris exterior smooth 

plains by Denevi et al., 2013a), suggesting multiple source regions.  

 
Figure 4.1. (a) MESSENGER MDIS WAC orbital monochrome mosaic of the NPR at 
400 meter pixel scale in polar stereographic projection, extending from 0°E to 360°E, 
50°N to 90°N, and covering an area 9.26 × 106 km2. Eight impact craters are identified 
with capital letters: A, Abedin 61.76°N, 349.35°E, diameter (D) = 116 km; G, Goethe 
81.50°N, 306.17°E, D = 317 km; H, Hokusai 57.75°N, 16.90°E, D = 114 km; O, Oskison 
60.38°N, 145.36°E, D = 122 km; M, Mendelssohn 70.07°N, 102.55°E, D = 291 km; R, 
Rustaveli 52.55°N, 82.59°E, D = 200 km; S, Strindberg 53.21°N, 223.44°E, D = 189 km; 
T, Turgenev 65.63°N, 223.64°E, D = 136 km. (b) Sketch map denoting NPR units. SP1 
(dark gray) and SP2 (light gray) comprise the NSP (5.59 × 106 km2); NHCT is the 
northern heavily cratered terrain (3.67 × 106 km2). Select craters are marked as described 
above. A region at the pole was excluded from mapping because of difficulty determining 
stratigraphic relations. 
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4.2.1. Crater Counts 

I used the CraterTools extension (Kneissl et al., 2011) for the ESRI ArcMap 10 

geographical information system (GIS) program to collect crater density measurements. 

This extension computes a best-fit circle to three user-defined points on a crater rim and 

records the center latitude, longitude, and diameter to a project database. Primary impact 

craters were identified on the basis of having nearly to entirely contiguous, approximately 

circular shapes. Obvious secondary craters, identified by their occurrence in chains, 

herringbone patterns, or clustered groups, were excluded. Secondary craters on Mercury 

are larger in diameter with respect to primaries compared to the Moon; a distinct upturn 

in the relative SFD plot (R-plot) at diameters around 8 km to 10 km is interpreted to be 

due to these larger secondaries (e.g., Gault et al., 1975; Trask, 1975; Strom, 1977; Strom 

et al., 2008; 2011). Thus, while primary craters with smaller diameters are present on the 

NSP, I restricted the crater frequencies used in age determination to those craters ≥8 km 

in diameter to limit inclusion of secondaries in my analysis. 

A variety of plotting techniques are used to analyze crater size-frequency 

distributions; two methods are used in this investigation. I generated both cumulative 

SFD plots and R-plots to characterize crater populations using the standard root-2 binning 

and calculating uncertainties from the square root of the number of craters for a given 

bin, which represent ±one standard deviation (Crater Analysis Working Group, 1979). 

However, because cumulative SFD plots tend to look similar as a result of representing 

the cumulative distribution of craters, the R-plot is sometimes used to enhance subtle 

differences within and between crater populations. By displaying the differential size 

distribution (dN/dD, e.g., Crater Analysis Techniques Working Group, 1979) of the 
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measured crater population, the R-plot emphasizes the tendency of crater populations to 

exhibit a power law function (Chapter 2, Section 2.3.2, Equation 2.2) with a slope  

b = -3 ± 1 (Crater Analysis Techniques Working Group, 1979; Neukum and Ivanov, 

1994; Strom et al., 2005). Consequently, the R-plot essentially reflects the ratio between 

the measured crater distribution and a reference distribution with a -3 slope, 

R(D) = D-3 × dN
dD

   (Equation 4.1) 

and from Equation 4.1, R-plot values, evaluated at the geometric mean of a given bin 

(usually using root-2 bins), are calculated from the discrete equation 

R(D) = (DaDb)3 2⁄ �N(D)a–N(D)b
Db–Da

�   (Equation 4.2) 

where R(D) is the relative value and Da and Db are the bin minimum and maximum, 

respectively (Crater Analysis Techniques Working Group, 1979). Crater populations will 

plot as horizontal or moderately sloping lines in the R-plot; a differential distribution with 

b = -3 will plot as a horizontal line, a differential distribution with b = -2 will slope down 

to the left at a 45° angle, and a differential distribution with b = -4 will slope down to the 

right at a 45° angle (Crater Analysis Techniques Working Group, 1979; Neukum and 

Ivanov, 1994; Strom et al., 2005). Measured crater density is reflected by the vertical 

position of the relative values; higher relative values reflect greater crater density per unit 

area (e.g., Neukum and Ivanov, 1994; Strom et al., 2005).  

I also calculated the crater retention age, which is the cumulative number of 

craters, N, equal to or larger than a given diameter, and normalized to a unit area (usually 

106 km2). This measure of relative crater frequency allows quantitative comparison of 
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crater populations across studies and provides a means to determine relative ages of 

different geologic units. 

4.2.2. Mapping Buried Craters 

Two crater populations are observed in the NSP: superposed primary impact 

craters (referred to hereafter as “post-plains craters”) and partially to entirely embayed 

impact craters (referred to hereafter as “buried craters”). Completely buried craters were 

mapped by identifying arcuate wrinkle ridges that are thought to have nucleated above, 

and so demarcate, buried crater rims (Watters, 1993; Klimczak et al., 2012; Watters et al., 

2012), and partially buried craters were mapped when ≤25% of the crater rim was 

exposed. Although there are overlapping craters in the post-plains population, identifying 

the craters is not difficult, whereas buried craters are more susceptible to complete 

removal from the observed cratering record by the formation of post-plains craters and 

their associated ejecta deposits. As a result, the buried crater measurement area is limited 

to a subsection of SP1, comprising an area 3.79 × 106 km2 to exclude NSP modified by 

the Rustaveli impact. The SP2 region was excluded from mapping due to modification by 

recent impacts, including Oskison crater, and poor illumination conditions for discerning 

buried craters. To maintain consistency with measurements of the NHCT and post-plains 

crater populations, I used buried craters ≥8 km in diameter for age determination. 

I adopted a conservative mapping approach to promote unambiguous 

identification of relict, completely buried craters. Images with large solar incidence 

angles (>65°) typically have long shadows that emphasize subtle morphologic variations 

such that surface ridges marking buried craters are identifiable. In contrast, smaller buried 

craters (less than ~25–30 km diameters) are more difficult to unambiguously distinguish 
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on the basis of tectonic structures, even at large solar incidence angles, because of the 

widespread occurrence and complexity of wrinkle ridges and lobate scarps within the 

NSP as a whole (Head et al., 2011; Watters et al., 2012). Thus, the total number of 

identified buried craters in the region is a minimum.  

4.2.3. Estimating NSP Regional Thickness and Volume 

The thickness of the NSP was estimated using crater depth to diameter 

morphologic relationships defined by Pike (1988) (Table 4.1) and recently verified using 

MESSENGER flyby data (Barnouin et al., 2012). Buried crater diameters were measured 

using visible remnants of the crater rim, if visible, and by assuming arcuate wrinkle 

ridges represented original crater diameters. Original pre-flooding crater rim height was 

estimated assuming fresh crater morphology (Pike, 1988) and embayment with just 

enough material to cover the crater rim. Volume was then estimated by multiplying the 

rim heights for the smallest and largest fully buried craters unambiguously identified, 

representative of thickness, by the subsection of the SP1 area of the NSP study region. 

There are several limitations to using this technique. Mathematical relationships 

between crater diameter and rim height were only developed for mercurian craters 

between 2.4 km and 43 km diameter owing to limited coverage of larger partially 

shadowed craters (Pike, 1988). Although recent work revisiting crater depth to diameter 

relationships (e.g., Barnouin et al., 2012) shows that the previously derived relationships 

are valid, the Pike (1988) equations may overestimate the crater rim height because the 

ratio of diameter to depth tends to begin to flatten out for larger craters (>30 km), 

particularly for morphologic transitions between crater types (e.g., immature complex to 

mature complex) (e.g., Williams and Zuber, 1998; Baker et al., 2011; Barnouin et al., 
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2012). Moreover, because the crater preservation state at the time of embayment is 

unknown, these equations likely further overestimate crater rim heights for degraded 

craters, whose rim heights tend to be lower than pristine craters. The NHCT and post-

plains crater populations contain craters of various degradation states so it is likely that 

the buried crater population does as well. Furthermore, when a crater is completely filled 

and embayed, the thickness of the volcanic material above the crater rim is unknown; 

therefore, calculated crater rim heights will underestimate the thickness of volcanic 

material and provide minimum estimates. Nonetheless, this method was employed to 

produce first-order estimates of volcanic deposit thicknesses for the lunar maria (c.f., De 

Hon, 1974) and in this investigation. 

Table 4.1. Rim Height and Depth to Diameter Equations, Pike (1988). 
Crater Typea Rim Height  Depth to Diameter  
 Diameter (km) Equation Diameter (km) Equation 
Simple 2.4 – 12 0.052D0.930 0.2 – 14.4 0.199D0.995 
Immature Complex 13 – 43b 0.150D0.487 9.5 – 29 0.410D0.490 
Mature Complex −c −c 30 – 175 0.353D0.496 

aRefer to Pike (1988) for detailed descriptions of crater morphology. 
bExtrapolated to larger diameters, per verification by Barnouin et al. (2012). 
cEquations not derived by Pike (1988). 

4.2.4. Areal Crater Density 

I applied a measure of statistical point density to determine if individual subunits 

with the NSP were identifiable using the post-plains crater population. Since older 

surfaces have accumulated more craters than younger surfaces, a measure of areal crater 

density should reflect variations in crater retention and thus indicate regions of 

resurfacing. Using the methodology of Ostrach and Robinson (2013), I modified the 

procedure to minimize edge effects by employing a weighted edge correction. I 

determined the areal density of all circular craters ≥4 km in diameter for the NSP. 
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Although some craters ≥4 km to 8 km may be unrecognized secondaries, I limited 

possible secondary inclusion by mapping only circular, non-overlapping craters. This 

technique of extending down to diameters where non-obvious secondary craters become 

prevalent was employed successfully for measures of areal crater density on the Moon 

(Ostrach and Robinson, 2013). Moreover, measurements including craters ≥8 km in 

diameter do not provide statistically robust areal crater density results (e.g., >30 samples; 

Silverman, 1986; Davis, 2002). For this region on Mercury, I used a moving 

neighborhood radius of 250 km and an output cell size of 10 km to ensure that geological 

differences related to age were emphasized, and real spatial variations were observed. 

The moving neighborhood approach considers the number of craters within a 

defined circular region about each output cell; varying the neighborhood radius alters the 

spatial structure observed in the density plot such that small neighborhood sizes 

emphasize local (possibly statistical) variations whereas larger neighborhood sizes tend to 

smooth real variation. For the chosen neighborhood radius of 250 km, the number of 

craters per average neighborhood, n, is 53 and the standard deviation (estimated as n0.5 

for n craters) is 7.3, meaning the calculated density map is robust at the ~13% level 

against the crater count statistics (N(4)). Most of the variations in areal crater density 

reflect statistically significant differences in crater frequency, which are related to real 

relative age differences, as opposed to statistical noise. Given that impact cratering is 

assumed to be a random process (e.g., McGill, 1977), the statistical significance of the 

areal crater density measurement may be considered to be a random (Poisson) point 

distribution (e.g., Silverman, 1986; Davis, 2002). Accordingly, Poisson probabilities can 

be calculated to assess the statistical significance related to neighborhood selection. 
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When the 10th percentile is calculated for the average neighborhood (250 km radius) with 

n = 53 craters, there is a 12% chance that a neighborhood will contain ≤44 craters or ≥62 

craters, and only a 1% chance that a neighborhood will contain ≤35 craters or ≥70 craters. 

These Poisson probabilities show that 80% of average neighborhoods will contain 

between 45 and 61 craters, and because the average sample size is 53 and considered to 

be a statistically robust sampling, average neighborhoods with ≤44 or ≥62 craters are 

statistically significant. However, when the neighborhood radius is decreased to 100 km, 

n = 9 and there is a 12% chance that the neighborhood will contain ≤5 craters or ≥13 

craters, indicating that most of the density variation is statistical noise and the 

neighborhood area is too small. In contrast, when the neighborhood radius is increased to 

500 km, n = 214. There is a 10% chance that the neighborhood will contain ≤195 craters 

or ≥223 craters, and although the average sample size is statistically robust, determining 

the influence of statistical noise within the crater frequency at the regional scale will be 

difficult and regional boundaries, if present, will be overly smoothed, suggesting that a 

500 km radius is too large.  

 

4.3. Results: Mercury North Polar Crater Statistics 

4.3.1. Northern Heavily Cratered Terrain (NHCT) 

I was unable to confidentially distinguish subunits within the NHCT based on 

crater statistics, morphologic relations, or color properties. The color properties of the 

NHCT are distinct from the NSP (Figure 4.2), and a definitive color difference following 

the defined morphologic boundary is observed; this relationship is analogous to those 

between HCT and probable volcanic plains mapped elsewhere on Mercury (Robinson 
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and Lucey, 1997; Robinson and Taylor, 2001; Robinson et al., 2008; Denevi et al., 2009; 

2013a). Subtle regional color variation is difficult to determine within the NHCT because 

the current photometric correction is limited at large solar incidence angles found at high 

latitudes (>60°N) (Domingue et al., 2013), and calibration artifacts may further 

complicate determination of spectral subunits within the NHCT (Keller et al., 2013). In 

conjunction with the color observations, morphology observations identify stratigraphic 

relations at the local scale (e.g., impact crater superposition relations) within the NHCT, 

but any further attempt to define regional subunits is difficult.  

In an effort to distinguish subunits, I divided the NHCT into three arbitrary 

subareas of comparable surface area, and determined the cumulative SFDs. To provide 

robust results and minimize bias, I repeated this process twice more, shifting the areal 

boundaries. At most diameters, the NHCT cumulative SFDs are statistically 

indistinguishable (Figure 4.3, Appendix D), exhibiting similar distributions and slopes. 

At diameters ≥50 km, the cumulative frequencies of the three subareas diverge as a result 

of small number statistics, and within the largest diameter bins there may be as few as 

one crater. The broadly massive and contiguous regions (areas 1 and 2 in Figure 4.3b, 

4.3c) are statistically indistinguishable from each other as well as the cumulative 

frequency for the entire NHCT, but the dissected region of NHCT (area 3 in Figure 4.3b, 

4.3c) has an overall lower cumulative frequency. N(20) values for the subareas are 

provided in Appendix D Table D1. NHCT craters are as large as ~350 km in diameter. In 

the NHCT, N(10) = 234 ± 8 and N(20) = 104 ± 5. The NHCT cumulative SFD exhibits 

an approximately constant slope (Figure 4.4a). In the R-plot, the NHCT has similar crater 
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frequencies compared with the “average” HCT, which was determined from multiple 

regions elsewhere on Mercury and was reported by Strom et al. (2008) (Figure 4.4b). 

 
Figure 4.2. MDIS WAC principal component and ratio composite (second principal 
component in red, first principal component in green, and 430/1000 nm ratio in blue; 
Denevi et al., 2009) for the NPR. Mosaic is 665 meter pixel scale in polar stereographic 
projection, and black regions are due to gores in the color coverage. For orientation 
purposes: A, Abedin 61.76°N, 349.35°E, D = 116 km; H, Hokusai 57.75°N, 16.90°E,  
D = 114 km; O, Oskison 60.38°N, 145.36°E, D = 122 km; R, Rustaveli 52.55°N, 
82.59°E, D = 200 km.  
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Figure 4.3. Subdividing the NHCT (measurement area 3.67 × 106 km2) does not reveal 
statistically distinguishable subunits in cumulative SFD plots. Three subdivisions of the 
NHCT (a-c) and their corresponding cumulative SFD plots (d-f), plotted against the 
entire NHCT distribution for comparison. Refer to text for detailed discussion. 
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Figure 4.4. Cumulative SFD and R-plot for the NHCT (measurement area 3.67 × 106 
km2) and NSP (5.59 × 106 km2). (a) Cumulative SFD. The NHCT has higher crater 
frequencies than the NSP. (b) R-plot of NPR crater populations, with “average” HCT 
(9.04 × 106; Strom et al., 2011) and Caloris interior and exterior post-plains crater 
populations (1.94 × 106 km2 and 4.75 × 106 km2, respectively; Strom et al., 2011). 
Uncertainty estimates are calculated from the square root of the number of craters for a 
given bin, and arrows extending toward the abscissa indicate diameter bins that include a 
single crater. 
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4.3.2. Northern Smooth Plains (NSP) Post-Plains Craters 

Similar to the NHCT, I was unable to distinguish subunits within the NSP. MDIS 

color shows that the NSP exhibit a distinct color signature from the surrounding NHCT 

but are internally homogeneous (Figure 4.2). Variation in color within the NSP 

(excluding materials excavated by impact) at the regional scale is similar to the 

uncertainties remaining in the calibration (Domingue et al., 2013; Keller et al., 2013). 

Although local morphologic relations are present in the NSP (e.g., impact crater 

superposition, embayed craters), no evidence for the presence of morphologic or color 

subunits was observed. 

Of the two NSP crater populations, post-plains craters are relevant to calculating 

crater densities and determining relative ages and stratigraphic relationships. To search 

for statistically distinguishable subunits within the NSP post-plains crater population, I 

divided SP1 into four subareas covering similar areas in three separate iterations (Figure 

4.5). The SP2 area was not included because post-plains SFD comparisons between SP1 

and SP2 reveal that these two regions are statistically indistinguishable (Figure 4.6). The 

absence of ≥100 km diameter craters within SP2 is attributed to the substantially smaller 

count area than SP1, contributing to poor count statistics at larger crater diameters. The 

cumulative SFDs for all the arbitrary subareas in the NSP are statistically 

indistinguishable over all diameters (Figure 4.5) and N(10) values are nearly identical 

(Appendix D Table D2). At diameters ≥40 km, the cumulative frequencies noticeably 

diverge due to statistically small sample sizes. 

The post-plains cumulative SFD plot has a lower frequency than the NHCT and a 

constant slope for craters in bins ≤100 km diameter and does not exhibit kinks (Figure 
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4.4a). Post-plains craters are as large as ~190 km in diameter, and in the NSP,  

N(10) = 63 ± 3 and N(20) = 23 ± 2. These crater retention ages are consistent with both 

Caloris exterior and interior plains counts (Strom et al., 2008; Fassett et al., 2009; Denevi 

et al., 2013a). The R-plot is relatively flat, exhibiting a different shape and slope than the 

NHCT distribution (Figure 4b). Additionally, the post-plains crater population is 

statistically indistinguishable to the Caloris plains crater densities (Figure 4.4b) (Strom et 

al., 2008). 

 

 
Figure 4.5. Subdividing the NSP (measurement area 4.08 × 106 km2) does not reveal 
statistically distinguishable subunits in cumulative SFD plots. Three subdivisions of the 
NSP (a-c) and their corresponding cumulative SFD plots (d-f), plotted against the entire 
NSP distribution for comparison. Refer to text for detailed discussion. 
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Figure 4.6. Cumulative SFD plot and R-plot for the NSP post-plains crater population 
(measurement area 5.59 × 106 km2) plotted against the two subareas, SP1  
(4.08 × 106 km2) and SP2 (1.51 × 106 km2). (a) Cumulative SFD; SP1 and SP2 are 
statistically indistinguishable. (b) R-plot; SP1 and SP2 have subtle differences in crater 
frequencies, and although statistically indistinguishable, the SP2 crater frequencies 
exhibit large uncertainties reflecting the smaller count area. Statistical uncertainty 
estimates are calculated from the square root of the number of craters for a given bin, and 
arrows extending toward the abscissa indicate diameter bins that include a single crater. 
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4.3.3. NSP Buried Craters 

4.3.3.1. Morphologic Relations 

There is abundant evidence of embayment relations between NSP and pre-

existing craters. There are remnant crater rims (Figure 4.7, 4.8a), partially embayed 

craters and basins (e.g., Goethe, Figure 4.8a), and tectonic features interpreted to 

represent deformation caused by relict craters rims (Figure 4.8; e.g. Klimczak et al., 

2012; Watters et al., 2012). Additionally, there are partially filled craters with and 

without rim breaches within the NSP (Figure 4.7b, 4.7c) and in the NHCT near the unit 

boundary (Figure 4.7c).  

All but a small region of the Goethe basin rim (81.50°N, 306.17°E, 317 km 

diameter) was buried by smooth plains material, and well-formed arcuate wrinkle ridges 

denote the estimated buried rim location (Figure 4.8a, 4.8d). Using the morphologic 

relationships derived by Pike (1988), I estimate the Goethe basin rim height to be greater 

than 2.2 km and the basin depth to exceed 4 km. Additional wrinkle ridges deform the 

smooth plains within the basin interior, and arcuate wrinkle ridges and interior fractures 

define two buried craters located near the basin center (e.g. Klimczak et al., 2012; 

Watters et al., 2012). Using their diameters of ~45 km and ~60 km, estimates of original 

rim heights are 0.96 km to 1.1 km and crater depths are 2.3 km to 2.7 km, respectively.  

Unambiguous superposition relations are observed for many buried craters in the 

NSP and are not limited to the largest impact basins (Figure 4.8). Tung Yuan crater 

(75.22°N, 296.51°E, 60 km diameter) superposes an unnamed basin (76.21°N, 284.16°E, 

~250 km diameter), where original rim height and interior depth estimates are greater 

than 2.2 km and 4 km, respectively (Figure 4.8b, 4.8e). There are two large (~40 km and 
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~55 km diameters) craters buried near the basin rim, with estimated rim heights of  

0.93 km and 1.1 km and original crater depths of 2.3 km and 2.6 km, respectively. Within 

the basin, numerous smaller craters (~10–35 km in diameter) are partially or completely 

buried within the basin interior. I estimate these crater rim heights to range between  

0.45 km and 0.85 km and depths to be between 2.0 km and 2.1 km. Egonu crater 

(67.40°N, 60.80°E, 25 km diameter) superposes an unnamed basin (66.60°N, 60.86°E, 

~155 km diameter; Figure 4.8c, 4.8f) with an estimated original rim height of 1.8 km and 

depth greater than 4 km. The basin interior contains one large buried crater (~80 km in 

diameter), with a rim height estimate of 1.3 km and a depth of 3.1 km. The buried crater 

is offset from the basin center, and interior tectonic fractures are present within the buried 

crater.  

In addition, although I unambiguously identified the buried crater population for 

diameters ≥25 km, there is evidence for widespread burial of craters in the 4 km to 25 km 

diameter range (Figure 4.9; Figure 4 in Klimczak et al., 2012). I confidently identified 

285 buried craters in the smaller size range, although additional buried craters may exist 

(Section 4.2.2) as evidenced by the steep decrease in frequency below 10 km diameter 

that likely reflects sampling bias at these smaller diameters (Figure 4.10). Rim height and 

interior crater depth estimates for buried craters in the 4–25 km diameter range are 0.19–

0.73 km and 0.79–2.00 km, respectively. The smaller buried craters are not limited to 

flooded crater interiors (Figure 4.9, 4.10), although >50 buried craters do occur within the 

largest partially buried basin (Borealis, ~680 km in diameter, located at 69.91°N, 

280.68°E; Figure 4.9), and are frequently are observed in the NSP among and between 

the larger buried craters.  
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Figure 4.7. (a) Embayed crater in NSP (center, 77.79°N, 246.59°E, ~18 km diameter), 
with only the crater rim exposed at the surface. (b) Crater (center, 82.59°N, 274.18°E,  
~20 km diameter) in NHCT subsequently embayed by NSP. Embayed ~15 km diameter 
crater (lower right). (c) Crater located at an NHCT and NSP boundary (image center; 
61.09°N, 328.58°E, ~80 km diameter), partially embayed with smooth material within the 
crater interior. Two unnamed smaller craters (arrows, lower right) were also embayed and 
nearly buried by smooth plains material. MDIS WAC monochrome mosaic, 400 meter 
pixel scale. 
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Figure 4.8. Observations of buried craters within the interiors of larger craters and basins 
(a-c), sketch maps of buried craters (d-f), scale bars are 100 km. (a, d) Goethe basin 
(81.50°N, 306.17°E, D = 317 km) is the classic example, with a partially buried rim and 
two well-defined buried craters near the basin center (D = ~45 km and 60 km).  
(b, e) Unnamed basin (76.21°N, 284.16°E, D = ~250 km) located to the east of Goethe 
and superposed by Tung Yuan crater (75.22°N, 296.51°E, D = 60 km; T in e). Two large  
(~45 km and 60 km diameter) craters and numerous smaller craters (D = ~10 to 35 km) 
are buried within the basin interior. (c, f) Unnamed basin (66.60°N, 60.86°E,  
D = ~150 km) superposed by Egonu crater (67.40°N, 60.80°E, D = 25 km; E in f). The 
basin interior contains one large buried crater (D = ~80 km) with interior tectonic 
fractures, offset from the basin center.  
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Figure 4.9. Partially to entirely buried craters mapped in the NSP; red circles denote 
buried craters 4 km to 25 km in diameter, black circles denote buried craters >25 km in 
diameter. These small buried craters are distributed widely across the NSP and are 
evidence for a hiatus in volcanic activity. The three white boxes note the locations of the 
detailed views in Figure 4.10. Abedin (A, 61.76°N, 349.35°E, D = 116 km) and Hokusai 
(H, 57.75°N, 16.90°E, D = 114 km) craters marked for orientation purposes. 
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Figure 4.10. Detailed views of three representative NSP locations with small (4–25 km 
diameter) buried craters outlined in red. (a, b) Small buried craters to the east of Hokusai; 
centered at 54.80°N, 28.19°E, where a post-plains crater ~7 km in diameter is located 
adjacent to a buried crater ~9 km in diameter. (c, d) Substantial tectonic deformation 
deforms this area south of Grotell crater (G, 71.11°N, 328.24°E, D = 48 km), and several 
small buried craters are sharply defined by wrinkle ridges (centered at 69.16°N, 332.23°E 
on buried crater doublet, ~7 km and ~8 km diameters). (e, f) Small buried craters near the 
NSP–NHCT boundary, centered on a buried crater ~6 km in diameter with a post-plains 
crater ~5 km in diameter at 77.13°N, 252.35°E.  
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Figure 4.11. Histogram of buried craters in the 4–25 km diameter range, with 285 buried 
craters identified. The sharp drop-off below 10 km diameter reflects the increasing 
difficulty of confidently identifying buried craters. For this population, the median 
diameter is 11.1 km, the average diameter is 12.5 km, and the standard deviation is  
5.2 km. 

4.3.3.2. Buried Crater SFDs 

Buried craters are widespread and randomly distributed across the NSP. The total 

number of buried craters, particularly for smaller diameters (less than ~30 km), may be 

greater than reported here, resulting primarily from illumination conditions (discussed in 

Section 4.2.2). Furthermore, there are likely craters of variable sizes that were buried to 

depths that effectively removed the craters from observation.  

Fully buried craters are as large as ~260 km in diameter. For the buried craters, 

N(10) = 79 ± 5 and N(20) = 42 ± 3. The cumulative SFDs of the NSP post-plains craters, 

buried craters, and NHCT are markedly different (Figure 4.12). At diameters ≤30–60 km, 

the buried crater cumulative SFD slope shallows and begins to converge with the post-

plains population at 8 to 10 km diameter (Figure 4.12a). The buried crater cumulative 

SFD slope is distinct from the post-plains and NHCT populations between ~30–100 km 

diameter, and is statistically indistinguishable from the NHCT between ~100–130 km 
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diameter. For craters ≥128 km in diameter, the buried crater cumulative SFD has a 

similar slope to NHCT. Like the post-plains crater population, the buried crater 

cumulative SFD does not exhibit kinks (Figure 4.12a). The R-plot shows that the buried 

crater population has a similar shape and slope as the NHCT crater population, 

particularly for diameters ≤60 km, but a lower overall crater density for diameters  

≤150 km (Figure 4.12b).  
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Figure 4.12. Cumulative SFD and R-plot for the NHCT (area 3.67 × 106 km2), NSP post-
plains (NSP PP, 5.59 × 106 km2), and buried crater populations (NSP B, 3.79 × 106 km2; 
selected from within SP1 to exclude Rustaveli impact materials). (a) Cumulative SFD 
shows that the buried crater population has a lower frequency than the NHCT but a 
higher frequency than the NSP for diameters ≤130 km. (b) R-plot; buried crater 
population plots lower than the NHCT with a similar slope for diameters ≤60 km. 
Uncertainties are estimated from the square root of the number of craters for a given bin, 
and arrows are used for crater diameter bins with a single crater. 
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4.3.4. NSP Thickness and Volume Estimates 

I use the diameters of buried craters to provide a first-order estimate of the depth 

of flooding in and around these craters and serving as a means to estimate smooth plains 

thickness. Rim height estimates for embayed craters with <25% rim remaining exposed 

range from 0.36–1.76 km for craters of diameters 8–157 km, respectively. For this 

diameter range, crater depth estimates are between 1.6 km to >4 km. However, although I 

identified ~300 buried craters in the 4–25 km diameter range, difficulties in confidently 

measuring the true population of these smaller craters (Section 4.2.2) prompted us to use 

25 km as a minimum diameter for thickness and volume estimates for the NSP. With  

25 km as the minimum diameter bound, the NSP are regionally on the order of 0.73 km 

to 1.76 km thick. Locally, NSP thickness may be deeper (or shallower), depending on the 

sizes of craters and depth of interior flooding.  

Volume estimates use the rim heights for the smallest and largest completely 

embayed craters unambiguously identified, corresponding to diameters of 25 km and  

157 km. The resulting rim height estimates are 0.73 km and 1.76 km, respectively. Using 

the area inclusive of all NSP units (SP1 and SP2; 5.59 × 106 km2) and assuming that SP2 

hosts a similar population of buried craters to SP1, I estimate the minimum regional NSP 

volume to be between 4.08 × 106 km3 and 9.84 × 106 km3. 

4.3.5. NSP Areal Crater Density 

The areal crater density map for the NSP is shown in Figure 4.13, and is classified 

into high, moderate, and low density regions (Section 4.2.4; Figure 4.14), where the 

“moderate” density class represents the classification of 80% of the sample population 

and both “high” and “low” density classes represent the upper and lower 10th percentile, 
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respectively. Representative neighborhoods were selected from within the three density 

types in the NSP, and Table 4.2 provides the average N(4) (N(4)avg) for high, moderate, 

and low density regions. Much of the NSP is characterized by a moderate areal crater 

density (N(4) = 214–328, or 42–64 craters per neighborhood; Figure 4.14c, 4.14d); there 

are three broadly circular regions of lower density and large, relatively isolated higher 

density regions. The measured areal crater density distribution for the NSP is similar to 

synthetic areal crater density maps derived from random point distributions created using 

the measured crater frequency of the NSP (Figure 4.15), which show widespread 

moderate density and isolated high and low density regions.  

In regions of high density, N(4)avg, is 359 (70 craters per average neighborhood), 

and in regions of low density, N(4)avg = 170 (33 craters per average neighborhood). The 

large, relatively isolated high density regions are located throughout the NSP, and no 

volcanic vents, flow fronts, or embayment relations are observed on the surface 

surrounding these high density regions (Figure 4.13, 4.14a, 4.14b). One high density 

region (centered at 56.20°N, 211.21°E) is geographically proximal to Strindberg crater 

(53.21°N, 223.44°E) and contains secondary craters that meet the mapping criteria 

(circular, non-overlapping, D ≥4 km). However, the remaining high density regions do 

not exhibit similar relationships with the surroundings. In contrast, the well-defined 

circular regions of lower crater density are geographically associated with the surface 

modification resulting from three large, relatively recent impact craters: Rustaveli 

(N(4)avg = 130), Abedin (N(4)avg = 187), and Hokusai (N(4)avg = 194). In these areas, the 

crater formation and emplacement of ejecta obliterated the adjacent NSP and removed the 

post-plains cratering record (Figure 4.14e, 4.14f).  
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Table 4.2. Average N(4) for Areal Crater Densities Identified in the NSP. 
Density Classa Minimum N(4) Maximum N(4) Average N(4) 
High 267 454 359 
Moderate 214 328 273 
Low 116 240 170 
aThree circular regions with a radius of 250 km were selected within the density class 
region to average, and each neighborhood may contain minimal output cells from other 
density classes. 

 

Figure 4.13. Areal crater density for the NSP in Lambert Azimuthal Equal-Area 
projection (neighborhood radius = 250 km, output cell = 10 km, craters D ≥4 km). Black 
circles with 250 km radius represent example neighborhood areas for low (L1), moderate 
(M1), and high (H1) densities (Figure 4.14). Color classification was determined by 
calculating Poisson probabilities for the measured crater population, in agreement with 
statistical assessment of neighborhood size selection (Section 4.2.4). 
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Figure 4.14. Examples of high, moderate, and low areal crater densities for the NSP (a-
f), identified in Figure 4.13 as H1, M1, and L1, respectively. Black circle with 250 km 
radius (one neighborhood area) in the areal crater density map (left) and the MDIS 
monochrome WAC mosaic (right) and white scale bar is 200 km. An isolated high 
density region (a, b), there are no visible geologic boundaries indicative of resurfacing. 
Moderate areal crater density (c, d) is prevalent in the NSP. Low density regions are 
attributed to the formation of impact craters, Rustaveli (e, f; 52.54°N, 82.59°E,  
D = 200 km) is the largest example in the NSP.  
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Figure 4.15. Three iterations (a-c) of synthetic areal crater density for the NSP 
determined from different random distributions each containing 1500 points. Output cell 
is 10 km, neighborhood radius is 250 km. Colors classified according to the 10th 
percentile calculated for the Poisson probabilities from the distribution. 

 

4.4. Discussion 

4.4.1. NHCT: Old, Part of Global Unit 

When divided into arbitrary subareas, some divisions of NHCT (Figure 4.3a, 

4.3d; areas 1 and 2 in Figure 4.3b, 4.3c, 4.3e, 4.3f; Appendix D Table D1) are statistically 

indistinguishable, particularly at the smaller diameters (the largest diameter bins may 

have only a single crater). However, two arbitrary divisions of NHCT create a subarea 

that has a lower crater frequency than the others (area 3 in Figure 4.3b, 4.3c, 4.3e, 4.3f). 

The lower crater frequency for area 3 compared to areas 1 and 2 (Figure 4.3b, 4.3c, 4.3e, 

4.3f).) leads to a possible interpretation that area 3 is a statistically distinguishable sub-

unit within the NHCT. While this interpretation may be valid statistically, it is unlikely 

that area 3 represents a younger NHCT region compared to areas 1 and 2 based on 

geomorphologic observations of area 3. Area 3 is more strongly affected by NSP 

embayment than areas 1 or 2. Area 3 is composed of several discontinuous regions of 

NHCT scattered throughout the NPR, as well as an NHCT area (50° to 70°N, 90° to 
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120°E) that is substantially modified by smooth plains materials. The modification of 

NHCT by NSP emplacement erased part of the NHCT crater population, evidenced by 

incompletely filled NHCT craters at the NHCT-NSP boundary, as well as flooded craters 

connected by broad valley-like pathways (Figure 4.3b, 4.3c). The dissection of the NHCT 

by NSP in area 3 results in a decrease in crater frequency for this selected subarea. 

However, when portions of the discontinuous and modified regions of NHCT are 

included with the larger contiguous units (Figure 4.3a), the cumulative SFDs for the three 

subareas are statistically indistinguishable, indicating that the cumulative SFD for area 3 

is substantially affected by the contamination of NSP embayment and NHCT crater 

burial. 

Both the cumulative SFD and R-plot show that the NHCT is older than the NSP 

(Figure 4.4). Additionally, the R-plot shows that the NHCT crater frequency for 

diameters >40 km is statistically indistinguishable from that of a global “average” of 

HCT, with the exception of the 100 km diameter bin (Figure 4.4b). However, for 

diameters <40 km, the NHCT exhibits a similar downward-sloping crater density in the 

R-plot and is statistically distinct from the global “average” of HCT (Figure 4.4b; Strom 

et al., 2008; 2011; Fassett et al., 2011). The overall trend of the NHCT in the R-plot, 

where crater density increases from D = 8 km to ~80 km and then levels off until 

beginning to decrease at D = ~110 km (Figure 4.4b), is broadly consistent with the 

presence of a globally distributed unit (Strom et al., 2011).  

The crater frequency variations of the NHCT compared to that of the “average” 

HCT in Figure 4.4b represent a unique, regional resurfacing history for the NHCT. The 

observed downturn in the NHCT curve at crater diameters <50 km represents differences 
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in the degree of resurfacing relative to the “average” HCT and not poor statistics, and is 

consistent with other observations of a downturn for counts of other portions of the HCT, 

regardless of count area size (Strom et al., 2008; 2011). Morphologic observations of 

embayed and filled craters within the NHCT support the removal of smaller craters by 

volcanic resurfacing or impact-related basin ejecta emplacement (i.e., deposits 

comparable to the Cayley Plains on the Moon; Wilhelms, 1976b; Oberbeck et al., 1977). 

These local crater frequency variations with NHCT indicate that at least one period of 

major resurfacing occurred prior to emplacement of the NSP. In this case, the term 

“period” may represent continuous or discrete volcanic activity, or basin ejecta 

emplacement (e.g., resulting from the Caloris impact), and distinguishing between these 

sources with the available data is not possible. Strom et al. (2011) interpreted crater 

density differences between HCT regions to represent intercrater plains emplacement, 

assuming that most intercrater plains are volcanic in origin.  

Furthermore, previous work using Mariner 10 data (notably Strom, 1977) and 

MESSENGER flyby data (e.g., Strom et al., 2011; Fassett et al., 2011) compared the 

crater SFDs of the Mercury HCT to the lunar highlands to show that both geologic units 

have the highest crater frequencies compared to other surfaces, although the HCT on 

Mercury is less cratered than the lunar highlands (e.g., Fassett et al., 2011). The high 

crater frequencies of these surfaces, which are dominated by Population 1 craters, 

indicate that they likely date to the Late Heavy Bombardment (Strom et al., 2005; 2008, 

2011). Additionally, the large-scale resurfacing of the NHCT, by volcanic or basin ejecta 

emplacement (or both), must have occurred during the Late Heavy Bombardment 

because the resurfaced area, represented by a slightly lower crater density at diameters 
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≤50 km, still retains the shape of Population 1 craters, in addition to the more recent 

Population 2 craters (Strom et al., 2005; 2008; 2011). 

4.4.2. NSP: Young, Regionally Distributed  

The post-plains cumulative SFD and R-plot reveal a lower crater frequency than 

the NHCT and thus the NSP represents a younger geologic unit (Figure 4.4). The SFDs 

of SP1 and SP2 are indistinguishable, enabling us to combine these two NSP regions for 

statistical treatment (Figure 4.6). No statistically separable subunits are revealed when 

arbitrary subareas are selected (Figure 4.5; Appendix D Table D2), indicating that the 

NSP may be considered as being emplaced over a brief period of geologic time.  

The relatively low frequency and flat distribution for the NSP post-plains 

population indicates that these craters are predominately Population 2 (Strom et al., 2005; 

Fassett et al., 2011). When compared to the Caloris interior and exterior post-plains crater 

populations (Figure 4.4b), the NSP post-plains population has a similar crater frequency 

and slope (and thus age) to the Caloris plains. Previous work showed that the Caloris 

plains postdate basin formation (e.g., Spudis and Guest, 1988; Murchie et al., 2008; 

Fassett et al., 2009) and were likely emplaced near the end of the Late Heavy 

Bombardment (e.g., Strom et al., 2008; 2011). More recently, mapping of additional 

major smooth plains units interpreted to be volcanic (i.e., Rudaki plains, plains south of 

Rachmaninoff, and plains within Beethoven and Rembrandt basins) revealed a limited 

range of crater retention ages (Fassett et al., 2012; Denevi et al., 2013a) that also overlap 

those of the Caloris plains (Spudis and Guest, 1988; Strom et al., 2008; Fassett et al., 

2009; Fassett et al., 2012; Denevi et al., 2013a). The overlap in uncertainty estimates for 

all major smooth plains units indicates that their relative ages are statistically 
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indistinguishable from the NSP. Thus, any further statistical variation between the 

geologic units cannot be assessed beyond concluding that the NSP, the smooth plains of 

the Rudaki plains, those south of Rachmaninoff, and those associated with Beethoven, 

Rembrandt, and Caloris basins formed contemporaneously. 

When a planetary surface is resurfaced (due to ejecta emplacement or volcanism), 

the erasure of craters of given sizes may manifest as kinks or elbows in the cumulative 

SFD for the superposed crater population (e.g., Neukum and Horn, 1976; Hiesinger et al., 

2002), particularly if the interim between initial emplacement of material and resurfacing 

comprised a substantial period of geologic time. Although designating an age difference 

between the original surface and the resurfacing event is poorly constrained and remains 

an outstanding question, recent studies suggest a time difference of ~1.5–0.5 Ga is 

observable in the SFDs (Michael and Neukum, 2010; Neukum et al., 2010). However, the 

NSP post-plains crater population cumulative SFD does not exhibit kinks (Figure 4.4a) 

even though buried craters are visible. It may be that the interval(s) between episodes 

resurfacing in the NSP were of insufficient length to allow a statistically appreciable 

number of craters with D ≥8 km to form and be observed as kinks in the cumulative SFD. 

Or, equally plausible, a late-stage volcanic emplacement episode may have near-

completely resurfaced the NSP up to the largest diameters, in which case the cumulative 

SFD records only the post-plains craters formed since the most recent resurfacing of this 

region and kinks would be unexpected. 
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4.4.3.  NSP Absolute Age 

At present, there are three principal chronologies for Mercury. Neukum et al. 

(2001a; 2001b) updated the absolute age chronology for Mercury originally derived by 

Strom and Neukum (1988) by incorporating newer data related to asteroid populations, 

cratering rate relative to the Moon, and improvements in crater scaling models. Using the 

Neukum et al. (2001b) chronology and the crater counts of this investigation, the NSP 

have an absolute model age of 3.73 ± 0.01 Ga, where the uncertainties are formal 

statistical estimates. This age for the NSP is consistent with previous results (Head et al., 

2011) and for other major regions of smooth plains with estimated ages of ~3.7–3.9 Ga 

(Denevi et al., 2013a), which were derived using the Strom and Neukum (1988) 

chronology.  

More recently, two new model production functions (MPF) were developed that 

improved upon the Neukum et al. (2001b) model by incorporating additional parameters 

(e.g., modeled relative global impact fluxes, improved crater scaling, two impactor 

populations, changing target properties) and newer data (Marchi et al., 2005; 2009; 2011; 

Le Feuvre and Wieczorek, 2011). For example, the Le Feuvre and Wieczorek (2011) 

MPF fit to crater counts for the Caloris interior plains (Fassett et al., 2009) produced a 

model age of 3.30 ± 0.3 Ga old. As the NSP crater counts are statistically 

indistinguishable from the Caloris counts, under this MPF the NSP are dated at  

3.30 ± 0.3 Ga. Finally, the MPF calculated by Marchi et al. (2009; 2011) result in model 

ages for the NSP ranging from 2.5 ± 0.3 Ga to 3.1 ± 0.6 Ga. For this younger case, the 

range in absolute model age dates is partially dependent on the crater size range chosen to 

anchor the best MPF fit. Anchoring the MPF to intermediate crater sizes produces the age 
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of 2.5 ± 0.3 Ga, compared to an age of 3.1 ± 0.6 Ga when the MPF is anchored to the 

largest crater sizes, but the χ2 test used to assess the MPF fit is not statistically favorable 

for the larger crater diameters and should not be used (Marchi, personal communication, 

2012). Table 4.3 summarizes the absolute model ages for the three MPFs.  

Although the MPFs produce model ages that are statistically distinguishable, 

differences of several hundred million years are not reflections of real geological 

meaning due to the nature of the calculation and inherent assumptions. For example, the 

range for the newest MPFs for the NSP is ~2.5 to ~3.3 Ga old, whereas the Neukum et al. 

(2001b) MPF estimates a value of ~3.7 Ga. The ages returned by these newest 

chronologies suggest that the NSP are younger than previously thought, and while no 

absolute age was derived for the NSP from Mariner 10 efforts, for the Caloris interior 

plains, a relative crater retention age of N(20) = 39 ± 12 was determined (Spudis and 

Guest, 1988) as was an absolute model age of 3.85 Ga (Strom and Neukum, 1988). Given 

that the NSP are statistically indistinguishable from the Caloris plains, an absolute model 

age of 3.85 Ga is assigned to the NSP under the Strom and Neukum (1988) MPF. Thus, 

the wide range in absolute age estimates between the three absolute model age 

chronologies indicate that more work is required, particularly since samples of known 

surface provenance do not exist for Mercury, to make certain that the assumptions 

inherent to modeling absolute ages and meaningful error bounds for Mercury are 

adequately addressed. 
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Table 4.3. Absolute Model Ages for the NSP. 
Model Production Function Model Age (Ga) 
Neukum et al. (2001b) 3.73 ± 0.01a 
Le Feuvre and Wieczorek (2011) 3.30 ± 0.03 
Marchi et al. (2009) 2.5 ± 0.3 – 3.1 ± 0.6 

aFormal statistical uncertainty estimates. 

4.4.4. Buried Craters: Evidence for Volcanic Resurfacing  

4.4.4.1. Morphologic Relations 

Embayment relations provide abundant evidence for volcanic emplacement of the 

NSP. In the NSP and near NHCT-NSP boundaries there are partially flooded craters 

(Figure 4.7c) that are morphologically similar to Archimedes crater on the Moon (Figure 

4.16). These crater embayment and infilling relations are defined by the stratigraphic 

relationships between an impact crater and nearby volcanic smooth plains units. 

Archimedes crater on the Moon is the type example (Figure 4.16), where mare materials 

within Imbrium basin embayed the Archimedes ejecta deposits and the crater interior was 

filled with mare material from a different source vent(s), as indicated by the absence of 

an obvious crater rim/wall breach (Wilhelms and McCauley, 1971; Head, 1982). 

Other relations between buried craters are observed within the NSP (Figure 4.8), 

and comparing estimates of volcanic fill thickness provides compelling evidence for a 

minimum of two periods of volcanic resurfacing. Considering the smaller, buried craters 

(≥30 km to ~70 km in diameter) located within partially to completely buried larger 

craters and basins lends support to the hypothesis for multiple phases of smooth plains 

emplacement. Estimates of original crater depths and rim heights (Pike, 1988) for three 

basins and their buried craters (Figure 4.8) produce original basin depths that likely 

exceeded 4 km, and the buried craters within the basins have original rim heights 
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between 0.5–1.3 km. By assuming that completely buried craters are flooded so that the 

rim lies just beneath the volcanic surface, an assumption required for the rim height 

estimates since I observe tectonic deformation and not remnant crater rims, a minimum 

thickness of 1.3 km of volcanic material is required to bury the craters superposed within 

the basins. Yet I estimate at least 4 km volcanic material is needed to fill the basin 

interiors. These estimates suggest that the smaller craters must have formed on a thick fill 

that modified the original basin floor. Although the deepest depth to which a crater can be 

buried by volcanic material and result in subsequent tectonic deformation of the final 

surface is unknown, the buried crater rim heights are less than half the estimated basin 

depths, and the observations of varying amounts of tectonic deformation are in agreement 

with hypothesized differences in burial depths of craters (e.g., Freed et al., 2012; Watters 

et al., 2012). The presence of polygonally-arranged graben in some flooded craters (e.g., 

those within Goethe basin, Figure 4.8a) and absence in neighboring craters of similar 

diameter (e.g., Figure 4.8b) were interpreted to suggest different amounts of volcanic 

flooding across the NSP over the course of emplacement based on the results of finite 

element models (Freed et al., 2012; Klimczak et al., 2012; Watters et al., 2012). 

Therefore, if the finite element models are truly representative of the subsurface 

geologic conditions within the NSP (Freed et al., 2012), then a first resurfacing episode 

was responsible for initial flooding of the larger basins, to an unknown depth, (e.g., 

Figure 4.8) and erasure of smaller craters within the NPR. It is plausible that basin ejecta 

was distributed within the NPR to initially resurface the region in a manner similar to the 

Imbrium basin materials on the Moon (i.e., the Fra Mauro Formation; e.g., Wilhelms, 

1987), and the most likely candidate to provide a thick, regional fill of basin material is 
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Caloris. The Odin Formation, mapped in the circum-Caloris region and composed of 

knobby plains, was interpreted as basin ejecta from Mariner 10 images (Murray et al., 

1974a; Strom et al., 1975; Trask and Guest, 1975). While stratigraphic relations suggest 

that the Odin Formation is composed of basin ejecta with portions embayed by younger 

volcanic deposits, crater size-frequency analyses are not consistent with the observed 

stratigraphic relations (Fassett et al., 2009; Denevi et al., 2013a). Moreover, the Odin 

Formation does not extend into the larger NSP region SP1 (e.g. Fassett et al., 2009) 

where the buried crater population is observed, indicating that a substantial amount of 

basin ejecta was not likely emplaced in this region. Moreover, besides Borealis and 

Goethe, there are no additional basins unambiguously identified in MLA data (Zuber et 

al., 2012; Fassett et al., 2012), and the ejecta emplaced by these basins would be spatially 

limited in extent, unable to resurface the NPR on a regional scale. Thus, I suggest that the 

initial resurfacing in the NPR was by volcanic emplacement. 

Subsequent to initial resurfacing, craters formed on the modified surface, which 

were then buried by at least one later episode of volcanic emplacement. I suggest that the 

buried craters identified in flooded basin interiors reflect a second volcanic resurfacing of 

the NSP, during which the basins were filled and interiors, including superposed craters, 

were buried. Additional evidence for at least a second volcanic resurfacing episode is the 

population of buried craters ≤25 km in diameter that are widely distributed across the 

NSP. If the smallest buried craters were spatially limited in extent, topographic variation 

beneath the NSP would explain their presence. If grouped about one location, the 

smallest buried craters may have formed on a local topographic high, but because the 

craters are dispersed within the NSP, it is improbable that all 4–25 km diameter buried 
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craters (n = 285) are perched on topographic highs. Similarly, the close proximity of 

these smaller craters to larger buried craters, particularly within Borealis basin, suggests 

stratigraphic relations inconsistent with the smallest buried craters having formed on the 

pre-NSP surface. Moreover, the morphology of surface deformation interpreted to 

represent the rims for the smallest buried craters is sharp and distinct (Figure 4.10) across 

the NSP, regardless of location (e.g., proximity to the NHCT-NSP boundary or near the 

center of the NSP), suggesting that these smallest craters are not buried to substantially 

different depths (e.g., Freed et al., 2012; Watters et al., 2012). A thickness of 0.19– 

0.73 km material, with an average of 0.54 km, is required to bury the smallest crater rims, 

and partially buried craters and kipukas near the NSP-NHCT boundary (presumably with 

thinner NSP than elsewhere; Figure 4.10c) are consistent with a burial thickness of at 

least ~0.2 km to ~0.5 km. However, the larger buried craters in the central NSP (~70°N, 

~30°E) require ~1.5 km to ~2 km of material to bury the rims, yet buried craters ≤25 km 

in diameter persist with sharp morphology. Therefore, the smallest buried craters likely 

were flooded during a late (or last) stage of emplacement over a voluminous unit. 

An alternative hypothesis to multiple phases of volcanic resurfacing may be that, 

prior to NSP emplacement, the NPR had irregular topography. However, this possibility 

is inconsistent with MESSENGER Mercury Laser Altimeter (MLA) data, which show 

that the NSP can be characterized as a lowland area ~2 km deeper than the surrounding 

NHCT, distinguished by a negative free-air gravity anomaly suggesting local isostatic 

compensation (Smith et al., 2012; Zuber et al., 2012). Unexpectedly, a broad topographic 

rise was observed, and on the basis of craters with inclined floors upon the rise that were 
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likely level-floored originally, the topographic rise formed after NSP emplacement 

concluded (e.g., Balcerski et al., 2012; Solomon et al., 2012; Zuber et al., 2012).  

 

Figure 4.16. Archimedes crater (29.72°N, 356.01°E, diameter ~80 km), located in 
eastern Mare Imbrium on the Moon, is filled with volcanic smooth plains materials (mare 
basalts). Mare basalts embayed Spurr crater (arrow; 27.92°N, 358.74°E, ~13 km 
diameter), such that only about half of the crater rim is visible. LROC WAC 
monochrome mosaic, 400 meter pixel scale, illumination from the right. 

4.4.4.2. Buried Crater SFDs 

The post-plains and buried crater populations exhibit a large range in diameters 

(as large as ~190 km, ~260 km, and ~680 km for the post-plains, fully buried, and 

partially buried crater populations, respectively; Appendix D), and the buried crater 

cumulative SFD has a shallower slope than both the NSP and NHCT cumulative SFDs 

(Figure 4.12). The shallow cumulative SFD slope suggests that volcanic resurfacing 

affected the accumulation of buried craters that now persist in the measured population, 

an interpretation furthered by morphologic observations. The absence of kinks in the 

cumulative SFD, paired with the morphology, also suggests that minimal geologic time 

separated the resurfacing episodes that affected the buried crater population.  
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The trend for the buried craters in the R-plot (Figure 4.12b) demonstrates that the 

buried crater population is composed primarily of Population 1 craters, and the deficit at 

smaller diameters (≥25–30 km) reflects resurfacing resulting from volcanic or ejecta 

emplacement or a combination of both. The crossover of the NHCT and buried crater 

cumulative SFDs at ~130 km diameter (Figure 4.12a) indicates that ≥130 km, the buried 

crater population reflects embayment of the original NHCT surface. At ~60 km diameter, 

there is a stepped decrease in the buried crater frequency in the R-plot (observed as a 

shallower slope in the cumulative SFD) that may be due to volcanic resurfacing as well 

as the constraints on definitive crater identification discussed for smaller diameters 

(Figure 4.12b, Section 4.2.2). Furthermore, assuming I unambiguously identified all 

buried craters in the 4–25 km diameter range, the dip below the NSP post-plains crater 

population frequency suggests that at diameters ≤25–30 km, Population 2 craters 

dominate the buried crater population and represent craters that formed in NSP that was 

subsequently resurfaced.  

4.4.5. Volume of NSP  

Although the cumulative SFDs do not exhibit the characteristic kinks associated 

with resurfacing events (e.g., Neukum and Horn, 1976), all buried craters must have 

formed prior to the post-plains crater population, and stratigraphic relations show that 

successive volcanic emplacement likely occurred. Using the buried crater population, I 

estimate the regional volume of the NSP to be between 4.08 × 106 km3 and  

9.84 × 106 km3. The total estimated volume for all lunar mare is ~107 km3 (e.g., Head and 

Wilson, 1992) whereas the Columbia River Flood Basalts and the Deccan Traps on Earth 

are estimated to have a volume of 1.3 × 106 km3 and 8.2 × 106 km3, respectively (e.g., 
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Coffin and Eldholm, 1994 and references therein). When compared to the largest-known 

flood basalts on the Earth and Mars, the NSP prove to be small: the Hesperian Ridged 

Plains on Mars, which cover ~30% of the planet, have an estimated volume of  

~4 × 107 km3 (Head et al., 2002), whereas the volume of the terrestrial Ontong Java 

Large Igneous Province is estimated to be ~4–8 × 107 km3 (Coffin and Eldholm, 1994).  

4.4.6. Areal Crater Density 

Ostrach and Robinson (2013) used areal crater density as a means of identifying 

resurfacing boundaries originally identified as color units within Mare Imbrium on the 

Moon. Multispectral color differences are absent (or currently undetectable) within the 

NSP, so the ability to distinguish age units with a modeled difference of ~500 million 

years to 1 billion years (Ostrach and Robinson, 2013) using statistical methods and crater 

counts show that this areal crater density mapping technique may be applied to Mercury 

to search for age subunits within the NSP.  

The NSP exhibit widespread moderate areal crater density, consistent with a 

randomly distributed sample population based on the synthetic density maps derived 

from measured crater frequencies (Figure 4.13, 4.15). Three iterations of synthetic areal 

crater density maps all exhibit patchy high and low density areas interspersed within a 

spatially extensive moderate density region, indicating that such density variations are 

expected for a random distribution. Thus, while high and low density regions observed in 

the measured areal crater density map likely represent statistically significant variations, 

visual assessment of such areas must be made to determine if the high and low density 

regions represent geological differences as opposed to statistical noise.  
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Visual observations confirm that low density values primarily result from impact-

related modification of the NSP. The low crater density regions reflect obliteration and 

modification of the surrounding area to approximately two diameters from the crater rim 

by formation, ejecta emplacement, and auto-secondary impacts (Figure 4.13, 4.14c; 

similar density trends were observed surrounding Orientale basin on the Moon in a study 

of global crater density by Head et al., 2010). In some cases, such as the areas 

surrounding the Abedin, Hokusai, Rustaveli, and Oskison impact craters, the irregular 

boundaries between the low and moderate density values reflect both the geological 

effects of distance from the craters and their ejecta and smoothing inherent in the density 

technique. For each calculation of areal crater density within one neighborhood area at a 

particular output cell position, all craters contained within the neighborhood are 

considered. Thus, the lowest density values occur within the interiors of the large impact 

craters. As the output cell position moves outward relative to the crater interior, the 

density magnitude increases, provided the surrounding region is of higher density, to 

produce moderate density values.  

Similarly, the absence of observed volcanic resurfacing contacts surrounding the 

high density areas indicates that for all but one large high density region in the NSP, 

variations in areal crater density reflect the randomness of the cratering process (e.g., 

Figure 4.13, 4.14a, 4.14b, 4.15). The single exception in high density results from the 

likely inclusion of circular, non-overlapping secondaries from Strindberg crater (53.21°N, 

223.44°E). Smaller, isolated high density patches (e.g., 72.00°N, 120.00°E) and the 

scatter of high density output cells such as those surrounding large high density regions 

(e.g., H1 in Figure 4.13) may reflect statistical noise in the areal crater density 
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measurement expected for a random population based on the results of the synthetic 

density maps. 

The spatially expansive moderate areal crater density across the NSP, coupled 

with the low density regions attributed to impact-related obliteration of the preexisting 

surface and the high density regions reflecting random impact cratering, is consistent 

with a final volcanic resurfacing over a relatively short period of time. Moreover, the 

measured areal crater density reflects a randomly distributed crater population without 

observed volcanic resurfacing boundaries as demonstrated by comparison to synthetic 

areal crater density determined from random point distributions. These results suggest 

that the most recent (and probably last) episode of large-scale volcanic resurfacing within 

the NSP encompassed nearly the entire region, an interpretation consistent with 

morphologic observations (Section 4.4.3.1). This explanation is also consistent with the 

homogeneous MDIS color observations, the presence of Archimedes-like partially 

flooded craters, absence of resurfacing kinks in the cumulative SFD for both the post-

plains and buried crater populations, and is in agreement with earlier studies (e.g., Head 

et al., 2011; Freed et al., 2012; Klimczak et al., 2012).  

 

4.5. Conclusions 

MESSENGER MDIS orbital image data provide the first complete view of 

Mercury’s NPR at favorable illumination for morphologic and crater count studies. 

Although Mariner 10 and the MESSENGER flybys imaged the full extent of the NSP, the 

illumination for similar observations of morphology was not optimal until orbital data 

from MESSENGER were acquired. The areal coverage of the smooth plains in the NPR 
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(0°E to 360°E, 50°N to 90°N) is ~7% of the surface area of Mercury and is one of two 

major occurrences of widespread smooth plains on Mercury. The two units of smooth 

plains identified in the NPR, SP1 and SP2, comprise 5% and 2% of the surface area of 

Mercury, respectively. Therefore, the NSP cover slightly less surface area than the 9% of 

the Caloris plains (interior and exterior combined). Thus, at least ~14% of Mercury’s 

surface is covered by volcanic material comprising the NSP and the Caloris plains (the 

SP2 region is genetically associated with the Caloris exterior plains), with the remaining 

~13% of smooth plains occurring elsewhere (Denevi et al., 2013a). Furthermore, 

although no conclusive volcanic edifices are identified in the NSP, the morphologic and 

structural evidence, including the presence of flow-modified channels closely associated 

with vent-like features (Head et al., 2011; Byrne et al., 2013) and extensional tectonic 

landforms hosted by impact craters and basins filled with material interpreted to be 

volcanic (Freed et al., 2012; Klimczak et al., 2012; Watters et al., 2012), supports the 

hypothesis that NSP were formed rapidly by large volumes of high-temperature, low-

viscosity lava. Using buried crater rim height estimates, the minimum regional NSP 

volume is between 4.08 × 106 km3 and 9.84 × 106 km3. 

The NSP post-plains crater frequencies, observed in both the SFDs and the areal 

crater density maps, are homogeneous. From the crater distributions I interpret that the 

NSP formed in voluminous outpouring of volcanic material over a short period of 

geologic time. In particular, the areal crater density reveals that the post-plains crater 

distribution is considered to be a statistically random population, and from the areal 

density I conclude that the last resurfacing encompassed the current NSP extent. 

Observations of buried craters and tectonic deformation associated with flooded impact 
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structures indicate that the NSP were volcanically modified and resurfaced. Stratigraphic 

relations among buried craters show that at least two periods of volcanic modification 

occurred prior to the formation of the post-plains crater population. The absence of kinks 

characteristic to volcanic resurfacing (e.g., Neukum and Horn, 1976) in the cumulative 

SFDs for the post-plains and buried crater populations, together with measures of areal 

crater density, suggest that episodes of volcanic emplacement likely occurred over a 

relatively short period of geologic time and included a hiatus between resurfacing, during 

which the dominant crater population switched from Population 1 to Population 2. The 

three current absolute age models result in ages for the NSP spanning 1.2 Ga  

(~3.7–2.5 Ga) so these models must be interpreted with care. 

Subunits within the NSP were not detected with MDIS multispectral observations, 

and coupled with the crater size-frequency distributions, these observations together 

suggest that the composition of extruded lava did not significantly change over the 

formation time of the surface upon which the post-plains crater population formed. This 

hypothesis is supported by MESSENGER X-Ray Spectrometer (XRS) measurements for 

several locations within the NSP showing that the Al/Si, Ca/Si, and Mg/Si ratios are most 

consistent with a magnesian basalt, and that the composition of the NSP does not 

appreciably vary across the sampled region (Nittler et al., 2011; Stockstill-Cahill et al., 

2012; Weider et al., 2012).  

Relative crater size-frequency distributions for the NHCT are consistent with 

those for “average” Mercury HCT, with some variation in crater density observed 

because crater SFDs on Mercury are highly sensitive to resurfacing (volcanic and impact-

related) and secondary cratering. This variation is consistent with widespread, complex 
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resurfacing that likely resulted from the emplacement of a combination of volcanic and 

impact-related basin material during the Late Heavy Bombardment through modification 

and burial of HCT (e.g., Murray et al., 1975; Strom et al., 1975b; Trask and Guest, 1975; 

Malin, 1976; Strom, 1977; Whitten et al., 2012; Denevi et al., 2013b). If further analysis 

confirms a volcanic origin for the intercrater plains, the earlier activity responsible for 

intercrater plains formation would provide additional evidence that widespread volcanism 

occurred through much of Mercury’s early history.  

The comprehensive cratering history of the mercurian NPR may now be put into 

context with other smooth plains and HCT identified on Mercury. Morphologic 

observations of two expansive regions of smooth plains units in the NPR are comparable 

to the Caloris smooth plains (interior and exterior) in both age and expanse based on 

measures of crater frequencies. Likewise, the NSP are comparable in age to regions of 

smooth plains located in other areas (e.g., Rudaki plains, plains south of Rachmaninoff, 

plains within Beethoven and Rembrandt basins; Denevi et al., 2013a). Consequently, the 

majority of smooth plains regions on Mercury are too young relative to the youngest 

large basins to be basin-generated products, disproving previous arguments against a 

volcanic origin for most of the smooth plains regions (e.g., Wilhelms, 1976b; Oberbeck 

et al., 1977). 
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CHAPTER 5 

EFFECTS OF SHAKING ON DENSITY SORTING IN GRANULAR MATERIALS: 

IMPLICATIONS FOR PLANETARY REGOLITHS 

5.1. Introduction  

The regolith of an airless body is defined as a layer of fragmental debris overlying 

largely coherent rock (e.g., Shoemaker et al., 1969; Oberbeck et al., 1973) and is formed 

by successive impact cratering events. Detailed knowledge of the lunar regolith 

(including grain size distributions, thickness variations, compositional variations with 

depth) is important because the regolith is globally distributed, and most remote sensing 

observations are of the regolith (not bedrock). Since various remote sensing techniques 

can sample different depths within the regolith, small-scale compositional variations with 

depth may bias estimates of the regolith’s bulk composition for a given technique. 

The goal of this investigation is to determine whether the lunar regolith may 

undergo compositional sorting due to seismic shaking. Seismic shaking is an active 

process on the Moon; measurements from returned drill cores and drive tubes, along with 

surface photographs, determined that the lunar regolith is compacted within the top few 

centimeters of the surface (e.g., Carrier et al., 1972; 1973). It is possible that seismic 

shaking also causes grain redistribution in the lunar regolith at the few 100 µm to 10 cm 

depth scale. For example, ilmenite (FeTiO3) is a high-density oxide that is sometimes 

abundant in returned lunar regolith samples (e.g., Heiken, 1975; Basaltic Volcanism 

Study Project, 1981; Papike et al., 1982; 1998). Compositional information derived from 

Clementine UV-VIS spectral reflectance (CSR) is based on measures of spectral 

absorptions (415 nm to 1000 nm) of the lunar surface materials (e.g., Nozette et al., 1994; 
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McEwen and Robinson, 1997), and estimates of titanium abundance (Ti or TiO2) are 

inferred to result primarily from the presence of ilmenite (e.g., Blewett et al., 1997; 

Lucey et al., 1998; Giguere et al., 2000; Lucey et al., 2000; Gillis et al., 2003). The Lunar 

Prospector Gamma Ray and Neutron Spectrometers (LP GRS and NS; Feldman et al., 

1996; 1999; 2004) measured gamma ray and neutron absorption from which TiO2 

abundance was estimated (e.g., Elphic et al., 1998; 2000; 2002; Prettyman et al., 2006). 

LP TiO2 abundance estimates do not everywhere match well with CSR values (Elphic et 

al., 2000; 2002; Prettyman et al., 2006), and CSR samples only the top few micrometers 

while LP GRS and NS sense to a depth greater than 10 cm (Feldman et al., 1999; 2004). 

Thus, it is relevant to know if ilmenite content varies in the top ten centimeters of the 

lunar regolith and whether the differences in TiO2 abundance reported by LP GRS and 

CSR studies represent true compositional vertical stratification (at the 10 cm scale) or are 

simply measures of the imprecision of one or both methods. 

To examine potential compositional vertical stratification of ilmenite occurring 

within the lunar regolith, I designed experiments modeling a bimodal granular mixture of 

materials with strong density contrasts and varying grain sizes. The experiment test bed 

was perturbed with vertical and horizontal vibrations to represent the effects of seismic 

shaking. In the experiments, particles with higher densities sink into the matrix material 

that serves as a simulated regolith, even when the denser particles are smaller than the 

particles composing the matrix. Moreover, the denser particles sank into the matrix under 

both vertical and horizontal vibration regimes. Although these experiments were not 

performed under simulated lunar conditions and are therefore not a perfect analog, the 

results represent a meaningful first order demonstration when considering compositional 
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remote sensing measurements of the lunar, and other planetary, surfaces with surficial 

regolith. 

 

5.2. Background 

5.2.1. Returned Samples and Remotely Sensed Compositions 

From the Apollo sample collection it is known that the mean grain size of lunar 

regolith, which is dependent on the degree of evolution or maturity of the soil (e.g., time 

exposed at the surface, degree of rock fragment and mineral comminution, and amount of 

fresh material introduced via impact), is ~40–800 µm (Heiken, 1975), averaging mostly 

between ~55–80 µm (McKay et al., 1974). Different minerals within the regolith are 

proposed to comminute at different rates in the lunar environment (e.g., Korotev, 1976; 

Devine et al., 1982; Papike et al., 1982; Hörz et al., 1984; Hörz and Cintala, 1997). 

Regolith samples reveal that concentrations of ferromagnesian minerals, such as ilmenite, 

decrease with decreasing grain size (Lindstrom et al., 1977; Vaniman et al., 1979; Basu et 

al., 1980; Labotka et al., 1980; Papike et al., 1982; Hörz et al., 1984; Taylor et al., 2000), 

suggesting that ilmenite may persist in larger grain size fractions than other regolith 

components. On the lunar surface, the top millimeter of regolith is considered to be the 

primary mixing zone due to the prevalence of micrometeorite bombardment (e.g., Gault 

et al., 1974), and continuous perturbation and mixing due to micrometeorite 

bombardment, in addition to ejecta deposition and seismic shaking from larger impacts, 

may promote mechanical sorting of the topmost layer where denser particles may 

preferentially sink. If particle sorting does occur, the distribution of ilmenite may vary 

within the top 10 cm (or more) depending on factors such as regolith maturity and 
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parental rock composition (bulk soil TiO2 abundances may be lower than basalt samples 

due to injection of highland components and preferential comminution, e.g., Papike et al., 

1982). Furthermore, mineral-specific comminution experiments suggest that differential 

comminution could significantly influence remote sensing compositional studies (Hörz et 

al., 1984). Comminuted fines may dominate the measurement surface and coat larger 

mineral grains and rock fragments preventing an accurate bulk regolith determination and 

thus biasing the compositional measurement (Hörz et al., 1984). 

Analyses of regolith cores indicate that the regolith at any one location reflects a 

unique stratigraphy that primarily depends on the composition of the underlying bedrock, 

but substantial variation in composition and grain size occur within sample drill cores and 

drive tubes (within a single core/drive tube, as well as from location to location at one 

site, e.g., Papike et al., 1982). Therefore, remotely sensed measurements of the optical 

surface (less than 100 μm, e.g., Morris, 1985) may not accurately represent the bulk 

regolith (meter depth scale), even at a few centimeters depth. Comparing the TiO2 

abundances derived from CSR and LP GRS allows the variability in composition 

estimated by the two datasets, which are derived from sampling different regolith depths, 

to be investigated. The 2002 PDS-released reduced 2° LP GRS titanium elemental 

abundance data resampled to 0.5° pixel scale (http://pds-

geosciences.wustl.edu/missions/lunarp/reduced_special.html) converted to TiO2 

abundance was compared to the CSR TiO2 abundance determined from the Lucey et al. 

(2000) algorithm from the five-band Clementine multispectral global mosaics resampled 

to 0.5° pixel scale. Figure 5.1, created by subtracting the LP GRS from CSR abundances, 

provides a guide to regions exhibiting significant differences in TiO2 on the Moon. 

http://pds-geosciences.wustl.edu/missions/lunarp/reduced_special.html
http://pds-geosciences.wustl.edu/missions/lunarp/reduced_special.html
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In Figure 5.1, there are regions with small TiO2 abundance differences (primarily 

the titanium-poor highlands (e.g., Papike et al., 1982; Korotev et al., 2003), with 

approximately 0 to -3 wt% TiO2 difference) and regions of significant abundance 

differences (i.e., titanium-rich maria, with >5 wt% TiO2 difference). The maximum 

difference, where CSR exceeds LP GRS values, is 13 wt% TiO2 and the minimum 

difference, where LP GRS exceeds CSR values, is -10 wt% TiO2, and both minimum and 

maximum differences in TiO2 abundance occur in the nearside maria. Figure 5.2 is a 

histogram of the CSR and LP GRS TiO2 abundances for the nearside maria, and although 

both datasets have a mean in the 4–6 wt% TiO2 bin, for <8 wt% TiO2, LP GRS 

abundances exceed the CSR estimates, and at >8 wt% TiO2, CSR abundances exceed the 

LP GRS estimates.  

Most CSR and LP GRS TiO2 abundances are between 0 and 8–10 wt% TiO2 

when the CSR and LP GRS TiO2 abundances for the nearside maria are plotted against 

their difference (Figure 5.3). The positive trend of the CSR abundance between ~10 and 

18 wt% TiO2, where the CSR–LP GRS difference increases, reflects higher CSR TiO2 

abundances than LP GRS, but CSR abundances become increasingly uncertain  

(>~1–2 wt% TiO2 uncertainty) at high values. It is possible that CSR overestimates true 

TiO2 abundance for >8–10 wt% TiO2 primarily because none of the returned soils have 

abundances in excess of 8.5 wt% TiO2 (e.g., Blewett et al., 1997), so high values are 

extrapolated by the algorithm (e.g., Blewett et al., 1997; Lucey et al., 2000). Another 

source of uncertainty in the CSR estimate of TiO2 abundance is that elemental titanium 

begins to partition into other mineral phases, such as pyroxene, at high values (e.g., 

Lucey et al., 1998). Therefore, CSR TiO2 abundance estimates >8–10 wt% may not 
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reflect real surface compositions, although the high titanium regions probably are 

enriched relative to other, lower titanium areas (e.g., Mare Tranquillitatis/Apollo 11 

Landing Site compared to Hadley Rille/Apollo 15 Landing Site; Table 5.1). 

A distinct cut-off is observed in the LP GRS data, following a negative linear 

trend (Figure 5.3). When the CSR and LP GRS TiO2 abundances of a farside highlands 

region (where TiO2 abundance is expected to be low; e.g., Korotev, 1999; Jolliff et al., 

2000; Korotev et al., 2003) are compared (Figure 5.4), CSR TiO2 values exhibit a narrow 

range, from 0–1 wt% TiO2 (uncertainty is ~±1 wt%; Lucey et al., 2000). In contrast, LP 

GRS TiO2 abundance ranges from 0–2 wt% TiO2. The range in LP GRS TiO2 abundance 

data for the highland area (Figure 5.4) is reflected as a distinct cut-off and negative trend 

in the nearside maria data (Figure 5.3). Since TiO2 abundances of returned regolith 

samples of highland lithologies are low (<1 wt% TiO2 for Apollo 16 regoliths; e.g., 

Blewett et al., 1997), it is likely that the CSR TiO2 abundance reflects the minimal TiO2 

expected to be contained in highland regoliths and that the large range in LP GRS TiO2 

values indicates noise in the system (abundance is below minimum threshold detection 

limit). Thus the uncertainty in TiO2 abundance measured by LP GRS, is ~±1–1.5 wt%. 

In some regions of the nearside maria, the CSR technique (Lucey et al., 2000) 

predicts higher TiO2 abundances when compared to LP GRS values, a finding in 

agreement with other LP GRS and NS studies (e.g., Elphic et al., 2000; 2002; Prettyman 

et al., 2006). CSR TiO2 abundance exceeds LP GRS estimates in 49% of the nearside 

maria, and the higher CSR TiO2 values predominantly occur in western Oceanus 

Procellarum, southern Mare Serenitatis, Mare Tranquillitatis, Mare Fecunditatis, and 

Mare Crisium (Figure 5.5). LP GRS TiO2 abundances exceed CSR estimates for 22% of 



187 

the nearside maria, and these values are found primarily in eastern Oceanus Procellarum 

and Mare Imbrium. Within the nearside maria, 29% of the TiO2 abundances are ≤1 wt% 

TiO2, and uncertainty for both the CSR and LP GRS estimates are both about 1%. 

However, the higher TiO2 abundances estimated by CSR for half of the nearside maria 

may partly result from the dependence of the CSR algorithm calibration to the lunar 

sample suite (Blewett et al., 1997; Lucey et al., 1998; 2000), where high-titanium basalt 

(9–14 wt% TiO2) samples from the Apollo 11 and Apollo 17 landing sites are well-

represented, as are low- and very low-titanium basalts (1–5 wt% and <1 wt% TiO2, 

respectively) but intermediate-titanium basalt (5–9 wt% TiO2) samples are not (e.g., 

Papike and Vaniman, 1978a; 1978b; Basaltic Volcanism Study Project, 1981; Papike et 

al., 1998; Giguere et al., 2000; Gillis et al., 2003). TiO2 abundances derived from both 

CSR and LP GRS for Apollo landing sites (Table 5.1) agree to within the factor of 

uncertainty for both methods (±1–2 wt% for CSR (Lucey et al., 1998), ~±1 wt% for LP 

GRS determined here; otherwise relative elemental LP GRS uncertainties are 4–15% 

(Lawrence et al., 2000)), with the exception of the Apollo 11 landing site in Mare 

Tranquillitatis. The 8% difference in TiO2 abundances at the Apollo 11 site (11 wt% in 

CSR, 3 wt% in LP GRS) does not have an obvious explanation (e.g., the landing site is 

situated more than 50 km from the mare-highlands boundary). My observations suggest 

that the CSR–LP GRS TiO2 abundance mismatch may result from remaining systematic 

uncertainties in the CSR algorithm calculation (e.g., Blewett et al., 1997; Lucey et al., 

1998; Gillis et al., 2003), contribution of highland components to the LP GRS footprint 

(at the equator, 1° is approximately equal to 30 km) (Feldman et al., 1999; Lawrence et 

al., 2000; 2003; 2004; Prettyman et al., 2006), or a combination of these factors. 
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Table 5.1. Apollo Landing Site TiO2 abundance in wt%. 
Landing 
Site 

Latitude Longitude 
(°E) 

Sample 
TiO2

* 
CSR TiO2 LP GRS 

TiO2 
Apollo 11 0.67°N§ 23.47 7.5 10.93 2.65 
Apollo 12 3.01°S 336.58 3.1 5.24 4.28 
Apollo 14 3.65°S 342.53 1.7 1.75 1.25 
Apollo 15 26.13°N 3.63 1.5 2.24 2.18 
Apollo 16 8.97°S 15.50 0.6 1.02 0.16 
Apollo 17 20.19°N 30.77 8.5 3.33 4.07 
Luna 16 0.51°S† 56.36 3.3 7.43 5.52 
Luna 24 12.71°N 62.21 1.0 5.23 1.28 

*TiO2 abundances for regolith samples, from Blewett et al. (1997). 
§Landing Site coordinates for the Apollo Lunar Modules (Davies and Colvin, 2000). 
†Landing Site coordinates for the Luna descent stages (Robinson et al., 2012). 
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Figure 5.2. Histogram of the CSR and LP GRS TiO2 abundances for the nearside maria, 
determined for two-value bins with the bin maximum value shown (i.e., the smallest 
value bin is -2 to 0 wt% TiO2, and 0 is shown). The means for both CSR and LP GRS 
TiO2 abundances lie within the 4–6 wt% bin (5.0 and 3.9 wt% TiO2, respectively).  
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Figure 5.3. TiO2 abundances determined for 0.5° binned data by (A) LP GRS and  
(B) CSR for the nearside maria are compared to (C) their difference (CSR – LP GRS).  
As CSR TiO2 abundance increases, the difference between the CSR and LP GRS TiO2 
abundance increases, indicating that CSR estimates exceed those of LP GRS. The 
opposite trend is true for LP GRS TiO2 abundances and as LP GRS TiO2 abundance 
increases, the difference between CSR and LP GRS wt% TiO2 decreases, indicating that 
LP GRS values exceed CSR estimates. The abrupt cut-off observed in the LP GRS data is 
the detection threshold for elemental Ti for the LP GRS system (Figure 5.4). 
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Figure 5.4. TiO2 abundances in a farside highland area (4.02°N, 158.86°E,  
~9.8 × 104 km2); determined from 0.5° binned data for CSR as a function of LP GRS. 
TiO2 abundance in the highlands should be low, and CSR TiO2 abundance ranges within 
0–1 wt%. However, LP GRS TiO2 abundances range from 0–2 wt%, exceeding the CSR 
estimates by a minimum of ±1 wt% TiO2. 
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5.2.2. Particle Size Segregation: The “Brazil-Nut Effect” 

The “Brazil-Nut Effect” (BNE) is a colloquial expression for the size segregation 

of particles during vertical shaking that results in large particles rising to the top of a 

granular mixture (Rosato et al., 1987); a process known as kinetic sieving. The effects of 

shaking on particle segregation within granular mixtures is of particular interest to 

industry, because of the granular materials involved in pharmaceuticals, building 

construction (e.g., dry cement mixtures, materials involved with road construction), 

freight transport of commodities (e.g., coal, grains), and food processing (e.g., flours, 

boxed mixes, cereals) (e.g., Rippie et al., 1964; Bridgwater, 1976; Jaeger and Nagel, 

1992; Rosato et al., 2002; Shinbrot, 2004).  

Particle and powder segregation have been topics of study since the 1960s (e.g., 

Rippie et al., 1964). Theoretical and experimental investigations have attempted to 

further explain the complicated behavior of granular particulates since that time (e.g., 

Bridgwater, 1976; Parsons, 1976; Williams, 1976; Harwood, 1977; Rosato et al., 1987; 

Devillard, 1990; Gallas et al., 1992; Jullien et al., 1992; Knight et al., 1993; Vanel et al., 

1997; Shinbrot and Muzzio, 1998; Hong et al., 2001; Möbius et al., 2001; Breu et al., 

2003; Huerta and Ruiz-Suárez, 2004; Shinbrot, 2004), and most of these works suggest 

that agitation of granular mixtures by shaking in cylindrical or rectangular containers, or 

by pouring through chutes, promotes size sorting of the particulates. Containers used in 

physical experiments usually have a base diameter or width of ≤10 cm and a material 

height of ≤20 cm, although some experiments are smaller-scale (e.g., 4 cm × 1 cm × 5 cm 

with a material depth of 2 cm; Burtally et al., 2003) (e.g., Knight et al., 1993; Möbius et 

al., 2001; Breu et al., 2003; Burtally et al., 2003; Huerta and Ruiz-Suárez, 2004). 
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Particulate materials involved in physical experiments include glass ballotini beads, 

beads and spheres made of bronze, chrome steel, aluminum, polypropylene, wood, and 

food materials such as poppy seeds, almonds, and brazil nuts, which have variable 

densities and diameters commonly ranging in size from 0.5 mm to >22 mm (e.g., Rippie 

et al., 1964; Knight et al., 1993; Möbius et al., 2001; Breu et al., 2003; Burtally et al., 

2003; Huerta and Ruiz-Suárez, 2004; Metzger et al., 2011). Early investigations found 

that among the various physical properties affecting particle segregation, including 

particle size, shape, and density, particle size differences tended to be the most influential 

during segregation (Williams, 1976), and fines tended to sift toward the bottom of the 

experimental container (e.g., Bridgwater, 1976; Parsons, 1976), but some experiments 

found that the particle density contrasts substantially influence segregation (e.g., Rippie 

et al., 1964). Later numerical simulations suggested that sorting occurred regardless of 

density contrasts in widely differing experimental systems and that the segregation 

mechanisms depended weakly on the system details (e.g., particle shape distribution; e.g., 

Rosato et al., 1987; 2002), but subsequent experiments indicate that particle density is an 

important factor in grain segregation (e.g., Jullien et al., 1993; Shinbrot and Muzzio, 

1998; Möbius et al., 2001; Breu et al., 2003; Shinbrot, 2004; Ciamarra et al., 2006; 

Schröter et al., 2006; Metzger et al., 2011). Several simulations and experiments (e.g., 

Hong et al., 2001; Möbius et al., 2001; Breu et al., 2003; Ciamarra et al., 2006) suggest 

that a threshold exists between the size and density ratios of the particles, and this 

threshold defines the cross-over between the canonical BNE, where large grains rise to 

the top of the mixture, and the “Reverse Brazil-Nut Effect” (RBNE), where large grains 

sink to the bottom. Work by Huerta and Ruiz-Suárez (2004) attributes particle behavior 
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to the frequency and amplitude of the shaking; however, the mechanisms controlling 

vibration-induced segregation remain poorly understood (e.g., Knight et al., 1993; Duran 

and Jullien, 1998; Hong et al., 2001; Schröter et al., 2006).  

In addition to industrial application, the size segregation and sorting resulting 

from shaking involved in geologic processes are also of interest, including landslides and 

avalanches (e.g., Jaeger and Nagel, 1992; Jaeger et al., 1996). From the planetary 

perspective, seismic shaking produced by impacts was used to explain observations of 

subdued topography surrounding large impact craters and basins on the Moon (Schultz 

and Gault, 1975) and later suggested as a primary means of erosion and downslope 

movement on asteroids (e.g., Cintala et al., 1978; Carr et al., 1994; Asphaug et al., 1996; 

Greenberg et al., 1996; Thomas et al., 2002; Richardson et al., 2005; Miyamoto et al., 

2007). Following the discovery of smooth ponded deposits composed of fine-grained 

(sub-centimeter) material on 433 Eros (e.g., Robinson et al., 2001; Veverka et al., 2001; 

Robinson et al., 2002), impact-induced seismic shaking was invoked as a probable 

formation mechanism for ponds on 433 Eros (e.g., Asphaug et al., 2001; Cheng et al., 

2002). Cheng et al. (2002) developed a model, based on the BNE/RBNE (e.g., Rosato et 

al., 1987; Knight et al., 1993; Shinbrot and Muzzio, 1998), to explain pond formation as a 

result of fine-grained material redistributing to form ponds on the surface of 433 Eros 

following seismic shaking by impact events. In this model, seismic agitation mobilizes 

fine-grained regolith on slopes, the regolith moves downslope in a fluidized manner to 

create ponds, and the ponds then experience size-sorting and burial of large objects so 

that the finer-grained particles remain on the surface (Cheng et al., 2002). Other workers 

(Benoit et al., 2003; Izenberg and Barnouin-Jha, 2006a; 2006b) invoked the BNE in a 



197 

physical experimental setting to investigate the possibility of grain-size sorting of an 

asteroidal regolith induced by seismic shaking. Benoit et al. (2003) experimented with an 

analog chondritic regolith composed of varying grain sizes and densities; their 

experiments consisted of a bimodal mixture of larger, less dense quartz sand particles 

mixed with smaller, denser iron-metal grains. These experiments were shaken laterally in 

a glass beaker by hand and although the mixture contained particles of different densities, 

the results were consistent with earlier simulations and experiments studying the BNE 

(large grains rising to the top) (e.g., Rosato et al., 1987; Jullien et al., 1992; Knight et al., 

1993; Möbius et al., 2001). However, the results of Benoit et al. (2003) may not 

completely represent an asteroidal or planetary surface exposed to impact gardening, 

primarily because these experiments did not test size variations among particles of 

different densities and considered only horizontal motion; regolith mixing involves “in 

situ reworking” that requires a vertical component of movement between particles 

(McKay et al., 1974). Later experiments by Izenberg and Barnouin-Jha (2006a; 2006b) 

used the vibration lab at Johns Hopkins University Applied Physics Laboratory to 

investigate vertical and horizontal agitation on slope erosion and crater degradation. 

Playground sand was used as a regolith simulant inside a 1 m × 1 m × 40 cm Plexiglas 

container, and experiments used two modes of shaking, single jolts and continuous 

shaking, with different magnitudes and directions (horizontal or vertical) (Izenberg and 

Barnouin-Jha, 2006a; 2006b). Initial results indicated that single jolts were more 

destructive on crater morphology and slopes were eroded more rapidly with large 

accelerations (Izenberg and Barnouin-Jha, 2006a; 2006b), but these experiments did not 

investigate size-sorting with respect to the effects of perturbation on different sized 
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particles or particles with different densities. To more accurately test mechanisms that 

may promote sorting of a planetary regolith, experiments should consider vertical and 

horizontal perturbations with varying particle size and density. Therefore, I designed a 

series of experiments to investigate the possibility of vibration-induced mechanical 

sorting in the lunar regolith in the context of the grain-sorting hypothesis explaining the 

observed compositional differences between Lunar Prospector and Clementine 

measurements. 

 

5.3. Methods  

To examine physical mixtures of particles representing a lunar regolith and 

promote size-sorting, I created an experimental procedure to partially mimic the process 

of seismic shaking resulting from impact events (e.g., Cintala et al., 1978; Asphaug and 

Melosh, 1993; Asphaug et al., 1996; Cheng et al., 2002; Richardson et al., 2005) and 

moonquakes (e.g., Nakamura et al., 1974; 1979; 1982). Impact events form not only 

craters and ejecta blankets but also create seismic waves. Near the surface, these seismic 

waves agitate unconsolidated regolith and may mobilize the particles, acting as a 

degradational or sorting mechanism (e.g., Schultz and Gault, 1975; Cintala et al., 1978; 

Veverka et al., 2001; Cheng et al., 2002; Richardson et al., 2005). Another scenario that 

may prove important to regolith particle segregation is the initial emplacement of ejected 

material during an impact event, which may in itself act as a mechanical sorting 

mechanism, due to ballistic sedimentation (Oberbeck, 1975). In this study, three 

experiments were designed to investigate particle size and density segregation of granular 

mixtures under different shaking conditions and in different sized containers. Measured 
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bulk densities and grain size fractions for the particulates used in the experiments are 

provided in Tables 5.2 and 5.3, and the densities for other common minerals are provided 

in Table 5.4. 

Table 5.2. Experimental materials: grain sizes. 
Material Grain size fractiona 
Basalt chips 2–8 mm 
Glass ballotini beads 80–149 μm 
Quartz sand 300–600 μm 
Anorthosite >4 mm 
 2–4 mm 
Ilmenite >4 mm 
 2–4 mm 
 600 μm – 1.18 mm 
 300–600 μm 
 150–300 μm 
 <150 μm 
aMaterials were sieved and the grain size fractions listed were used during experimental 
runs. 

Table 5.3. Experimental materials: measured bulk density. 
Material Bulk Density (g/cm3)* 
Anorthosite 1.4–1.5 
Glass ballotini beads 1.5–1.6 
Quartz sand 1.6–1.7 
Ilmenite 2.6–2.7 
*Bulk density was measured on the uncompacted dry materials, and the 300–600 μm size 
fraction was used for anorthosite, ilmenite, and quartz sand. The 80–149 μm size fraction 
was used for the glass ballotini beads.  

Table 5.4. Reported densities of common minerals and glass ballotini beads. 
Material Density (g/cm3)* 
Glass Beads ~2.46–2.49 
Flood Basalt 2.40–3.10 
Anorthite 2.76 
Enstatite 3.21–3.96 
Olivine 3.22–4.39 
Diopside 3.44–3.55 
Ilmenite 4.70–4.78 
*Mineral densities reported by Deer et al. (1966), flood basalt reported by Lide, ed. 
(2007), and glass ballotini bead density reported from the MSDS provided by McMaster-
Carr Co. 
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5.3.1. Experiment One: Vertical Tabletop Shaker 

The first experimental setup used a metal rectangular bread pan (23.5 cm ×  

13.3 cm × 7.0 cm) filled with ~80–149 µm size fraction glass ballotini beads, an abrasive 

blasting media manufactured by the McMaster-Carr Company. The pan was placed on a 

Syntron Jogger model J-1-B, an electromechanical vertical shaking table designed for 

jogging and packing of material with a load limit of 4.5 kg. The tabletop dimensions of 

the shaker were 17.8 cm × 25.4 cm and the pan was surrounded by a foam buffer to 

prohibit movement of the pan off the shaker table. The shaker provides a 60 Hz 

frequency and a 0.15 cm unloaded amplitude at its lowest setting. The shaker has a 

rheostat marked from 0 – 100 to allow changes to the unloaded amplitude, and for all 

tests the rheostat was set to 0.  

The shaker was positioned on a copy-stand with adjustable lights and a digital 

camera (Figure 5.6). A white reference image was captured first as part of the 

experimental procedure, and then the test materials were placed on the surface of the 

glass beads. An anti-static pistol was discharged above the container before the larger 

particles were placed and before the shaking began to minimize electrostatic effects. For 

each run the shaker was turned on for increments of two minutes, for a total of ten 

minutes run time. The ten minute test period was defined as an experimental run based on 

preliminary testing made while finalizing the experimental setup. Increments of two 

minutes allowed sufficient time for particle movement to take place and be recorded by 

the digital camera, but after ten minutes of run time (that is, five increments of two 

minutes), no substantial changes to the experimental media were observed in the digital 
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images. An image was shuttered between each two minute period, when the shaker was 

turned off.  

This procedure was followed for mixtures of glass beads (1.5 g/cm3; Table 5.3) 

and ilmenite chips (4.7 g/cm3; Table 5.4) and glass beads and basalt chips (2.4 g/cm3; 

Table 5.4). The ilmenite and basalt chips were irregularly shaped and ranged in size from 

~2 mm to ~8 mm across their widest dimension. Between experiment runs, all materials 

were removed from the container. The ilmenite and basalt chips were separated from the 

glass bead matrix, and the fine-grained glass beads were removed from the container and 

then replaced. This procedure effectively un-compacted, or aerated, the glass beads in 

addition to maintaining the bimodal mixture of rock chips and finer-grained glass bead 

matrix. 

Initial tests revealed significant edge effects in the experimental setup, mostly due 

to the small size of the largest container that could fit on the shaker and the mass of 

material filling the container. Tests using containers of various shapes (e.g., square, 

rectangle, circle) with various side angles showed that circular containers with side 

angles between ~45° and 60° decreased edge effects. Three circular containers were 

designed with different dimensions (base diameters 14.0, 17.8, and 25.0 cm) and side 

angles (from horizontal: 45°, 60°, and 60°, respectively) to mitigate edge effects and 

provide a large sample volume to test grain size fractions more closely matched (e.g., 

<150 μm ilmenite powder and the glass beads). The shaker table load limit (4.5 kg) 

constrained the mass of the sample and thus the size of the container, influencing the 

relationship between maximum container size and maximum glass bead depth. Similar to 

the first phase procedures, ilmenite and basalt chips ranging from ~2 mm to ~8 mm in 
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size were placed on the surface of the glass beads in the circular pan, discharged the anti-

static pistol, and captured photos at appropriate time intervals (between each two minute 

period, when the shaker was turned off). For this set of experiments, fine-grained ilmenite 

powder sieved to contain the <150 μm size fraction was also incorporated. 

 
Figure 5.6. Vertical tabletop shaker (Syntron Jogger J-1-B) experimental setup, with the 
17.8 cm diameter custom-built circular pan. A circular rubber pad was placed between 
the shaker and the circular pan to minimize pan movement during shaking. This assembly 
was placed on the lab floor during experiments to limit vibrations of the copy-stand, 
which were observed when the setup was placed on the lab counter. 
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5.3.2. Experiment Two: Vertical Large Shaker 

The experimental setup was expanded to incorporate the Syntron Jogger VP-181, 

which is a larger electromechanical vertical shaker with tabletop dimensions of 76.2 cm × 

76.2 cm and a load limit in excess of 315 kg. This larger shaker had the same frequency 

(60 Hz) and unloaded amplitude (0.15 cm) as the smaller shaker. A custom-made circular 

pan with an inner or base diameter of 71.1 cm and an outer or top diameter of 91.2 cm 

was designed for the VP-181 and could accommodate greater than 15 cm depth of fine-

grained material (Figure 5.7). For this second experimental procedure, more realistic 

geologic materials were incorporated into the experimental setup so that the finer-grained 

matrix mixture more closely resembled a lunar regolith sample (e.g., replace the spherical 

glass ballotini beads with particles of variable roundness, sphericity, and angularity). For 

the fine-grained matrix, four 100-pound bags (~182 kg) of coarse quartz sand (#30 silver 

sand from P.W. Gillibrand Co.) were sieved to acquire the 300–600 μm size fraction. The 

300–600 μm size fraction was chosen because this size fraction yielded the most volume, 

which was equivalent to a sand of ~15 cm in the custom-made. I did not formally 

measure the moisture content of the sand, ilmenite, or anorthosite samples, but all of the 

experiments were performed under similar conditions in a laboratory that was constantly 

air conditioned at the same temperature over a period of several weeks during the 

summer months in Tempe, AZ. The outside relative humidity was typically ~20% 

(climate records obtained from NOAA, http://www.ncdc.noaa.gov/) and I assume the 

inside was comparable. The digital camera was attached to a tripod and a photograph was 

recorded every two minutes. 



204 

For this set of experiments, crushed ilmenite and anorthosite samples in several 

size fractions were incorporated to characterize the mechanical sorting promoted by the 

vertical shaking. Both ilmenite and anorthosite samples exhibited similar sinking 

behavior into the sand for different size fractions, however, due to the poor contrast in 

digital images between the anorthosite particles and the quartz sand, image interpretation 

is difficult. Therefore, I focus on presenting figures and discussion for the ilmenite 

samples that display an obvious contrast with the sand. Rock chips a few mm in size are 

observed in lunar regolith samples but are not monomineralic (e.g., Papike et al., 1982), 

therefore, using smaller size fractions of ilmenite and anorthosite is more representative 

of the mineral fragments observed in the returned lunar regolith. As in previous phases, 

the container was filled with the fine-grained matrix material (sieved sand), and denser 

ilmenite or anorthosite particles of a given size fraction were selected and then distributed 

on the surface of the sand in the container. The denser particles were placed on the sand 

surface toward the center of the container to limit edge effects. 

The sand was initially gently poured into the container and then aerated between 

each test by thoroughly mixing the sand and de-compacting it post-shaking (substituting 

for removal and refilling as per the smaller experiment). A 3 cm diameter wooden dowel 

was used to manually aerate the sand by inserting the dowel into the sand at the container 

wall, making sure the dowel touched the bottom of the container, and then pulling the 

dowel through the sand to the other side. This motion was repeated across the diameter of 

the container in one direction and then again in a roughly perpendicular direction. 

Following these steps, the sand was further disturbed by creating depressions and hills 

that were then smoothed very light pressure from the experiment operator’s hands.  
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To finish the aerating process, the sand surface was smoothed to be approximately level 

and then, to smooth out any hand indentations, gently brushed with a hand-broom while 

keeping the surface as loose as possible. These methods decompacted the compacted 

sand and mixed in the small ilmenite and anorthosite grains (<600 μm) to make a more 

uniform mixture after experiment runs. 

 
Figure 5.7. Large vertical shaker (Syntron Jogger VP-181) experimental setup, with the 
custom-built circular pan (base diameter 71.1 cm, top diameter 91.1 cm) filled to ~15 cm 
depth with sand (300–600 μm size fraction). A rubber non-skid carpet pad was placed 
between the shaker and the container to minimize movement of the pan during shaking. 
A tripod was stationed to the lower left of the shaker table (out of the field of view) to 
which the camera was attached. 

 

5.3.3. Experiment Three: Horizontal Shaking  

Graduating from the observations of particle sorting influenced by vertical 

shaking movement, a wooden box was constructed to test particle sorting in a horizontal 

shaking environment. The wooden box was constructed using a sheet of plywood for the 
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base and four wood planks (3.8 cm thick and 19.0 cm tall); final dimensions of the 

“sandbox” were 112 cm × 112 cm × 20 cm. Each corner was gusseted with plywood to 

provide stability and seams were caulked to prevent sand leakage. In contrast to the 

vertical shaking experiments, the horizontal experiments were not mechanically 

controlled. Horizontal shaking was induced using a 4.5 kg sledge-hammer against one 

wall of the wooden box, and the selected wall remained constant through all shaking 

tests. To protect the sandbox wall from hammer blows, a wooden hammer cushion was 

constructed to span the length of one side of the box. The hammer cushion was also 

designed to distribute the energy transmitted by the hammer blow from a point-source to 

a line-source and was constructed using three 122 cm × 20 cm pieces: one piece was the 

length of the box and the other two pieces were attached to the ends of the first piece so 

that the central third of the hammer cushion had a void space to promote decoupling 

between the point-source hammer blow and the wall of the sandbox receiving the blow 

(Figure 5.8). Additionally, a piece of ~0.6 cm steel plate was attached where the hammer 

contacted the wood. To fill the box to a depth of ~10 cm, I mixed all previously sieved 

size fractions of sand.  

An experimental run was defined as 100 hits with the sledge-hammer. This 

method required two operators, one person held the sledge-hammer handle and the 

second person picked up the sledge head and dropped it from the same height each time, 

~45° from vertical (Figure 5.9). Another 122 cm × 20 cm plank was placed as a beam 

across the top of the box to provide a platform for the person holding the sledge-hammer 

handle. To promote regularity in the horizontal shaking experimental procedure, four 

tests were completed at once by defining four ~15 cm × ~15 cm areas in the center of the 
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sandbox, along with four “repeat” areas (away from the center of the box) designed to 

provide observations of different regions of the sandbox (Figure 5.8). As before, the anti-

static pistol was discharged above the sand surface before the test particles were placed 

and again before the hammering began. For the horizontal shaking tests, a digital video 

camera was used to continuously record the experimental procedures and observations 

over the experimental run, and stills from the videos were captured to document results. 

 
Figure 5.8. (A) Horizontal shaking experimental setup with the sandbox (112 cm ×  
112 cm × 20 cm) filled to a depth of ~10 cm and the steel plate attached to the wooden 
hammer cushion in front. (B) Sandbox setup with ilmenite particles distributed in ~15 cm 
× 15 cm areas, with the following size fractions: A, 600 μm – 1.8 mm; B, 300–600 μm; 
C, 150–300 μm; D, <150 μm; A’, 600 μm – 1.8 mm; B’, 300–600 μm; C’, 150–300 μm; 
D’, <150 μm. Steel plate and wooden hammer cushion placement as in (A). 



208 

 
Figure 5.9. Front and side view of one sledge-hammer hit to the sandbox. (A) Front view 
and (B) side view of initial placement of the sledge-hammer on the steel cushion,  
(C) front view and (D) side view of lifted sledge-hammer, and (E) front view and (F) side 
view of the sledge-hammer hitting the steel cushion. 

 

5.4. Results  

5.4.1. Experiment One: Vertical Tabletop Shaker 

Over the ten minute test period, the coarse fragments of basalt and ilmenite  

(~2–8 mm) sank into the glass beads in a rectangular container (Figure 5.10). The higher-

density ilmenite sank more completely than the basalt. In most of the tests, the majority 

of the ilmenite sank completely with only a small depression at the surface above the 

location of the buried chips. In the tests using basalt, the chips did not sink completely 
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below the surface of the glass beads. During initial tests, rock chips (basalt or ilmenite) 

placed close to the walls and corners of the rectangular container moved toward the walls 

when the shaker was turned on. During shaking, these rock chips were pushed against the 

container walls by glass bead movement. The movement of the glass beads at the 

container edges was examined by sprinkling a small amount of fine-grained ilmenite 

powder (<150 μm) on top of the glass beads. During shaking, the ilmenite powder 

completely disappeared at the container edges, revealing glass beads, while the ilmenite 

in the center of the container did not completely disappear. However, because edge 

effects dominated in the rectangular container, a larger, circular container with angled 

sides was developed. 

Similar to the previous tests, the ilmenite and basalt chips sank in the glass bead 

matrix in the three circular custom-made containers (Figure 5.11). In these tests, edge 

effects were prominent for the circular containers with base diameters 14.0 cm and  

25.0 cm, with 45° and 60° angled sides, respectively. The 17.8 cm diameter circular 

container (60° angled sides) did not exhibit enhanced edge effects; when the fine-grained 

ilmenite powder (<150 μm) was sprinkled on the surface of the glass beads, there was 

minimal observed movement of material at or toward the container walls. The 17.8 cm 

diameter container with 60° angled sides accommodated a glass bead depth of 7.0 cm at 

the center, corresponding to a volume equivalent to 4.3 kg, and during shaking the 

container sides remained rigid. In contrast, the 14.0 cm and 25.0 cm diameter custom-

made containers exhibited wall-warping during the course of the experiment runs when 

the shaker was turned on (due to the metal-work machining required to bend and affix the 

wall metal to the container base) and accommodated a glass bead depth <7.0 cm. 
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Figure 5.10. Ten minute experimental runs on the tabletop shaker for coarse-grained, 
denser (A) basalt and (B) ilmenite fragments initially placed on the surface of fine-
grained, less-dense glass beads in the rectangular pan. The greater density of the ilmenite 
fragments promoted more sinking than the basalt (Table 5.4). 
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Figure 5.11. (A) Initial setup prior to shaking on the tabletop vertical shaker using the 
17.8 cm base diameter custom-made circular container. Ilmenite chips (~2-8 mm 
diameter) distributed on the glass bead surface (80–149 μm). (B) After ten minutes of 
intermittent shaking, the ilmenite fragments partially sank into the glass beads. (C) Ratio 
image of (A) and (B); the gray background throughout the image reflects areas that are 
the same in both images, black areas represent the locations of ilmenite fragments in the 
initial setup (no shaking), and white areas represent the locations of ilmenite fragments 
after ten minutes. Black box shows the central area selected for detailed view in (D).  
(D) Close up views of the center area from (A) and (B), displaying the change in 
orientation and partial sinking of ilmenite fragments over the shaking test period. 
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5.4.2. Experiment Two: Vertical Large Shaker 

For the experiments with the large shaker table that used the custom-made 

container (71.1 cm basal diameter), ilmenite and anorthosite particles (>4 mm size 

fraction) that were much larger than the sand particles (300–600 μm size fraction) were 

selected for the first test runs. Similar to the previous tests in the small shaker, the denser, 

larger particles of ilmenite and anorthosite sank into the fine-grained sand mixture, and 

the denser ilmenite sank about twice as much as the anorthosite. A pair of fine-tipped 

tweezers was used to grab the particles at the level of sand on the particle, and the 

dimensions of the base of the chip (the part that was under the sand) to the level of the 

tweezer tip were measured, along with the whole height of the chip. This process was 

repeated for a few grains of each rock type. For a test with ilmenite and anorthosite 

particles >4 mm with sand particles 300–600 μm, ilmenite pieces sank to about half their 

height and anorthosite pieces sank to about one quarter to one third their height.  

Next, I tested ilmenite particles that were the same size as the sand particles (300–

600 μm; Figure 5.12), ilmenite particles half the grain size of the sand (150–300 μm; 

Figure 5.13 and 5.14), and superfine ilmenite particles (<150 μm; Figure 5.15 and 5.16). 

In all three cases, the majority of ilmenite particles sank completely below the surface of 

the sand. The sand surface activity in the central area of the container was similar in the 

large shaker table setup as in the small shaker table setup. In both cases, away from the 

container sides where edge effects were assumed to be absent, there was no difference in 

sinking behavior when larger pieces of denser particles (e.g., hand-samples, >4 mm 

diameter pieces) or fine-grained particles (<600 μm) were used. The large experiment 

setup had the largest center surface area and no movement of material was observed at or 
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near the container sides in the large shaker table setup. As observed previously, the fine-

grained component of the experiment compacted over the course of the experiment run. 

Moreover, in all three test cases, a circular region within the center of the large pan 

exhibited less sinking than the outer margins (Figures 5.12–5.16). 

When first vibrated, the ilmenite and sand particles made small lateral movements 

on the surface. Over the course of two minutes, the sand grains laterally moved more than 

the ilmenite grains and the ilmenite grains began sinking. However, an appreciable 

amount of sinking was not observed at the top-most, visible surface in these first two 

minutes, although it is possible that ilmenite particles in direct contact with the sand 

grains were sinking during this time (ilmenite was distributed on the surface in 

thicknesses exceeding one ilmenite particle diameter). Over several minutes, the ilmenite 

gradually sank (but did not completely disappear) from the visible surface in the 

container and, throughout descent, the more angular grains of ilmenite appeared as little 

points sticking up through the surface layer of sand. Overall, the ilmenite grains were 

more angular and platy than the sand grains at the 300–600 μm size fraction. When the 

ilmenite grains were distributed on the sand surface prior to shaking, their orientations 

were dispersed and random. After six minutes in the run (from a total ten minute time 

period), many of the ilmenite grains were visible as a pointy tip or edge sticking out of 

the sand, so it is possible that many of the grains rotated 90 degrees (or close to 90 

degrees) as they sank.  

For the finer grain size fractions of ilmenite (150–300 μm, <150 μm), after most 

of the ilmenite particles disappeared from the surface, a shadow of the finest fraction 

(<150 μm) of ilmenite particles remained on surface, adhered to sand grains. I observed a 
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distinct outline where ilmenite was present beneath the surface sand grains. At the 

conclusion of ten minutes of intermittent shaking (Section 5.3.1), the depth to the first 

ilmenite grains for the 150–300 μm and <150 μm size fractions was between three and 

six sand grain diameters (300–600 μm), and greater than six sand grain diameters to reach 

the bulk of the ilmenite originally distributed on the top surface. These values were 

determined by placing a piece of clear packing tape on the experiment mixture surface, 

gently applying pressure to attract grains, carefully removing the piece of tape, 

photographing the piece of tape, and repeating the process on the same area until little to 

no ilmenite remained (Figure 5.17). 

 
Figure 5.12. Large vertical shaker setup with custom-built circular pan (base diameter 
71.1 cm, top diameter 91.1 cm; Figure 5.7) (A) Ilmenite particles 300–600 μm dispersed 
on the sand surface (300–600 μm). (B-F) Over the course of a ten minute period, the 
ilmenite particles sank into the sand. After ten minutes (F), much of the ilmenite 
distributed on the surface is not visible; the densest distributions of ilmenite particles (i.e., 
deposited thickest on the sand surface) remain visible but also experienced particle 
sinking.  
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Figure 5.13. Large vertical shaker setup with custom-built circular pan (base diameter 
71.1 cm, top diameter 91.1 cm; Figure 5.7). (A) Ilmenite particles 150–300 μm dispersed 
on the sand surface (300–600 μm). (B-F) Over the course of a ten minute period, the 
ilmenite particles sank almost completely into the sand. Sinking occurred rapidly after the 
onset of shaking, with most sinking occurring within the first six minutes (B-D). After ten 
minutes (F), almost no ilmenite distributed on the surface was visible. Pan top diameter 
91.2 cm. 

 
Figure 5.14. Close-up view of pan center on large vertical shaker from Figure 5.13, for 
(A) initial distribution of ilmenite prior to shaking and (B) after ten minutes of shaking. 
Ilmenite particles 150–300 μm overlaid on the sand surface (300–600 μm).  
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Figure 5.15. Large vertical shaker setup with custom-built circular pan (base diameter 
71.1 cm, top diameter 91.1 cm; Figure 5.7). (A) Ilmenite particles <150 μm dispersed on 
the sand surface (300–600 μm). (B-F) Over the course of a ten minute period, a 
significant fraction of the ilmenite particles sank into the sand. As before (Figure 5.12, 
5.13), sinking occurred rapidly after the onset of shaking, with most sinking occurring 
within the first six minutes (B-D). After ten minutes (F), most of the ilmenite sank 
beneath the surface of the top layer of sand grains and an ilmenite “shadow” remained on 
the sand surface, where particles <<150 μm stuck to the much larger sand grains. 

 
Figure 5.16. Close-up view of pan center on large vertical shaker from Figure 5.15, for 
(A) initial distribution of ilmenite prior to shaking and (B) after ten minutes of shaking. 
(A) Ilmenite particles <150 μm overlaid on the sand surface (300–600 μm) before the 
onset of shaking. (B) After ten minutes, an ilmenite “shadow” remained on the sand 
surface, and visual observations of the sand grains revealed an ilmenite powder  
(<150 μm) coating. Observations of depth of ilmenite sinking were made using clear 
packing tape (Figure 5.17). 
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5.4.3. Experiment Three: Horizontal Shaking 

Two scenarios were tested in the horizontal shaking phase: the first case had the 

void of the hammer cushion centered on the sandbox front wall and the second case had a 

solid edge of the cushion centered on the sandbox front wall. In both cases, eight test 

areas were defined and contained the same material (Figure 5.8). With the void of the 

hammer cushion centered on the sandbox wall, the most ilmenite sank in the four 

“repeat” areas and a lesser amount of ilmenite sank in the four central areas (Figure 5.18). 

With the solid side of the hammer cushion against the sandbox front wall and the same 

ilmenite grain size configuration (Figure 5.8), the four central areas noticeably became 

more diffuse as ilmenite sank within ten hits of the hammer, and continued to sink over 

the experiment run of 100 hits (Figure 5.19). At the conclusion of the run, the observed 

sinking behavior was reversed from the first horizontal shake test: the “repeat” areas 

exhibited less sinking, although “repeat” areas C’ and B’ experienced some sinking, and 

the central areas exhibited the most sinking. In both hammer cushion configurations, after 

100 hammer blows, the sand was compacted, but not as much as in the vertical shake 

tests. The hammer blows to the front side of the sandbox promoted horizontal movement 

of the sand along the sandbox side walls, observed in the digital video as small changes 

in the sand height on the sides (<~1–2 cm). 
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Figure 5.18. Horizontal shaking test during which the hammer cushion was placed with 
the void space at the center of the sandbox and the sledge-hammer hit the steel plate on 
the cushion at the void space. Hammer blows were applied to the edge of the sandbox at 
the top of these images. (A) Initial distribution of ilmenite particles in ~15 cm × 15 cm 
areas prior to hammer blows, with size fractions labeled: A, 600 μm – 1.8 mm; B,  
300–600 μm; C, 150–300 μm; D, <150 μm; A’, 600 μm – 1.8 mm; B’, 300–600 μm; C’, 
150–300 μm; D’, <150 μm. (B) Distribution of ilmenite particles after 100 hammer 
blows, showing the sinking of ilmenite into the sand mixture for all grain sizes.  
(C) through (J) are close-up views of each test area, before shaking (left) and after 
shaking (right). 
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Figure 5.19. Horizontal shaking test during which the hammer cushion was placed with 
the solid end at the center of the sandbox and the sledge-hammer hit the steel plate 
attached to the cushion at the solid end. Hammer blows were applied to the edge of the 
sandbox at the top of these images. (A) Initial distribution of ilmenite particles in ~15 cm 
× 15 cm areas prior to hammer blows, with size fractions labeled: A, 600 μm – 1.8 mm; 
B, 300–600 μm; C, 150–300 μm; D, <150 μm; A’, 600 μm – 1.8 mm; B’, 300–600 μm; 
C’, 150–300 μm; D’, <150 μm. (B) Distribution of ilmenite particles after 100 hammer 
blows, showing the sinking of ilmenite into the sand mixture at all size-fractions.  
(C) through (J) are close-up views of each test area, before shaking (left) and after 
shaking (right). 

 



221 

5.5. Discussion  

All three sets of shaking experiments indicate that granular mixtures of two 

different materials with density and grain size contrasts experience density-dependent 

mechanical size-sorting when vertically or horizontally perturbed. Under three significant 

experimental conditions, the denser particle of ilmenite sank into the less-dense matrix 

material, with the exception of the finest grain size fraction (<150 μm) that coated the 

matrix particles, regardless of grain size differences. In the first test case on the small 

tabletop vertical shaker, during which ilmenite and basalt fragments were vertically 

perturbed, the denser ilmenite sank deeper into the glass bead matrix than the less-dense 

basalt (Figure 5.10; Section 5.4.1). Subsequent tests using the large vertical shaker 

exhibited similar behavior with ilmenite, anorthosite, and sand, where the ilmenite sank 

more than the anorthosite into the sand, but poor contrast between anorthosite particles 

and the sand led to difficulties in image analysis for smaller grain size fractions. When 

three different size fractions of ilmenite particles were used in the large vertical shaker 

setup, ilmenite sank in all cases (Figures 5.12–5.17), suggesting that under ambient 

laboratory conditions (similar temperatures, humidity, and air pressure), the density 

contrast between the denser particles and the matrix affects the depth of descent of the 

denser grains. After vertical shaking, ilmenite grains (150–300 μm and <150 μm size 

fractions) were first observed at depths ranging from ~0.9 mm to ~1.8 mm and the bulk 

of ilmenite grains were observed at depths greater than ~1.8 mm to ~3.6 mm.  

In all vertical shaking test cases, most of the sorting occurred in the first four to 

six minutes, suggesting rapid particle response to perturbation. It is unclear whether the 

ilmenite particles sank to their maximum depths within the first four to six minutes or 
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sank beneath the top sand grains surface during that time, sinking to deeper depths later. 

However, the matrix material (glass ballotini beads or sand) became compacted over the 

course of the experiment run, which may have influenced the depth of sinking for the 

ilmenite particles. Additionally, a circular area in the center of the large vertical shaker 

(VP-181) container remained relatively undisturbed and the ilmenite placed there did not 

exhibit as substantive sinking as the surroundings for tests of all size fractions. It is 

possible that at this location, the sand became compacted at or soon after (<2 minutes) the 

onset of shaking, preventing the sinking of ilmenite, due to the location of the vertical 

shaker table electromagnetic motor. The shaker is manufactured to distribute table 

vibrations across the entire table surface and the motor is installed directly beneath the 

center of the table. It may be that the material directly above the motor was most strongly 

affected by the vibrations and becomes compacted the fastest or, conversely, shaking 

vibrations were somehow attenuated by the experimental setup. These qualitative 

observations of particle compaction behavior resulting from shaking deserve additional 

investigation, in which quantitative measurements are made in a more lunar-like test 

setup. Analyses of regolith in returned drive tubes and drill cores, in addition to records 

of astronaut surface activities (e.g., hammer blows used to obtain a drive tube) and 

surface photographs (e.g., boot-print photographs), indicated that the density of lunar 

regolith varies vertically; that is, how the particles of the regolith are packed differs by 

location and is dependent on multiple factors, including geologic setting (proximity to 

fresh craters, location on slopes, age of surface, etc.) (e.g., Carrier et al., 1972; 1973). 

In the horizontal tests, sinking of the ilmenite particles was observed within ten 

hammer blows, and sinking continued throughout the experiment run (100 hits). With the 
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hammer cushion void centered on the sandbox wall and the hammer blow centered on the 

void, the coupling of the hammer hit was distributed along the front wall similar to a line-

source (something impacting along the length of the entire wall at one time), thus more 

evenly shaking the sandbox test bed. However, the force imparted to the experiment was 

attenuated as it traveled through the sand, and the ilmenite test areas toward the sandbox 

walls (“repeat” areas) experienced greater perturbation than the ilmenite test areas in the 

sandbox interior (center area). As a result, the central ilmenite areas exhibited a small 

amount of sinking while the “repeat” areas, particularly closest to the front wall, 

exhibited more sinking. In contrast, when the void space was removed by attaching the 

steel plate to the edge of the cushion, the hammer hit was applied directly to the cushion 

and simulated a point-source (discrete force of impact of hammer at one location). The 

coupling of the hammer hit directly to the sandbox wall at one location produced ilmenite 

test areas in the center of the sandbox that exhibited a greater amount of sinking than the 

“repeat” areas, although once again the “repeat” areas closest to the sandbox front wall 

exhibited more ilmenite sinking than those placed at the back wall. In both horizontal 

shaking tests, the ilmenite particles placed near the front wall of the sandbox (upon which 

the hammer blows fell) were affected more by the hammer perturbation so that more 

ilmenite sank in those regions than farther away. This sinking behavior is consistent with 

the attenuation of energy imparted to the sand from the front wall with increasing 

distance; the shaking is greatest closest to the hammer hit (front wall) and is least farthest 

away (sandbox back wall).  

Previous work by Huerta and Ruiz-Suárez (2004) determined that vibration-

induced segregation of particles in an experimental setting is strongly controlled by the 
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frequency and amplitude of the shaking. At higher frequencies, fluidization of the 

particulate mixture was observed, leading to a case where buoyancy dominantly 

controlled segregation (e.g., less dense particles are buoyant and denser particles sink) 

(Huerta and Ruiz-Suárez, 2004). The vertical shaker, operating at 60 Hz, is considered 

“high frequency” based on this previous work, and thus it is likely that the vertical shaker 

table experiments induced some amount of fluidization. The process of granular particle 

fluidization has frequently been applied to many geologic scenarios, especially those 

involving the transport of large volumes of material (e.g., debris flows in Vallis 

Marineris, Mars; Melosh, 1979; 1983), but there are few mentions of how fluidization 

scales to smaller geologic scenarios. However, the horizontal shaking tests were designed 

specifically to change the frequency of vibration (avoiding or mitigating fluidization) and 

to see if the same particle separation occurred as in the mechanical vertical vibration 

tests. 

Translating experimental observations from the laboratory to geologic settings is 

complicated and understanding the relevance of experimental results in light of a 

geologic process is difficult. Laboratory experiments may not be completely transferrable 

to geologic applications because the experiments are small-scale and may not simulate a 

real geologic environment. For example, many of the experiments examining the BNE 

and RBNE are centimeters in scale (e.g., Knight et al., 1993; Hong et al., 2001; Möbius et 

al., 2001; Breu et al., 2003; Burtally et al., 2003; Huerta and Ruiz-Suárez, 2004; Metzger 

et al., 2011) and probably suffer from edge effects, which do not dominate a typical 

regolith on the Moon (e.g., in a central mare area). However, many of the small-scale 

experiments carried out by other researchers are directly applicable to industry (e.g., 
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pharmaceuticals, food products), specifically addressing edge effects of packing 

containers and conveyor systems. In fact, some experimental observations focus on the 

effects of wall friction and the influence of container shape on particle sorting and 

convection (Knight et al., 1993). The experiments carried out here attempt to simulate a 

geologic environment by using as large a container size as possible, within financial and 

spatial means, to minimize edge effects. Although the large vertical shaker container 

surely experienced edge effects, the influence of the edge effects on the large container 

was minimal when compared to those observed on the small tabletop shaker. 

Furthermore, according to relationships between particle diameter and density (e.g., Hong 

et al., 2001; Breu et al., 2003), the ilmenite and sand experiments primarily fall into the 

RBNE realm, where the denser particles are expected to sink, although according to the 

particle diameter/density relationship, the shaking tests using ilmenite grains that were 

the same size as the sand grains theoretically could exhibit the BNE. The vertical shakers 

operate at frequencies much greater than shallow moonquakes measured by the Apollo 

Passive Seismic Experiments, which have frequencies commonly ranging between  

2–4 Hz (e.g., Nakamura et al., 1979), and small meteoroid impacts with frequencies up to 

8 Hz (e.g., Latham et al., 1970a). Furthermore, some terrestrial shallow nuclear 

explosions have measured frequencies of only about 0.03–1 Hz (Press et al., 1960). 

However, although the energy of the experimental system may be much greater than 

those observed geologically, the particle size and density sorting process is simulated in a 

manner that may be applicable to the Moon. While the experiments were conducted 

under terrestrial conditions (i.e., gravity, atmosphere, temperatures, humidity), the 

ilmenite sorting observations at all grain sizes do not solely reflect the presence of air-
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driven separation due to pore space in the sand matrix (e.g., Burtally et al., 2002). 

Consequently, it is plausible to suggest that a similar size and density sorting mechanism 

may be occurring in the regolith of the lunar maria. Moreover, if such a sorting 

mechanism is active on the Moon, removing fine-grained ilmenite from the surface via 

seismic shaking will be efficient because the Moon’s low seismic attenuation allows 

seismic energy to propagate for long distances and with great clarity (Latham et al., 

1970b; e.g., 1970a; Dorman et al., 1978; Nakamura et al., 1982).  

Two key shaking mechanisms should be considered when examining how 

particles may mechanically sort within the lunar regolith: sorting that occurs during 

impact ejecta emplacement and seismic shaking that results from either moonquakes or 

nearby impacts. When ejecta from an impact is initially emplaced on the lunar surface, 

ballistic sedimentation contributes to fragmentation of surface material (if the impact 

excavates through the regolith layer) and mixing of the upper regolith surface (Oberbeck, 

1975). Micrometeorite bombardment over time comminutes particles at the regolith 

surface into smaller fragments in addition to jostling particles on a small scale (e.g., 

McKay et al., 1974). The mixing of the upper regolith surface by ejecta from larger 

impacts and micrometeorite bombardment redistributes mineral grains and may promote 

sorting by density as the minerals are churned, comminuted, and shaken. Moonquakes or 

nearby impacts may promote sorting in much the same way as observed in the vertical 

and horizontal shaking experiments because the seismic energy transmitted from shallow 

moonquakes or impacts will propagate through the lunar crust to shake the regolith. It is 

possible that such seismic activity promotes mechanical sorting, particularly because of 

the degradational landforms (subdued topography, morphology) surrounding and related 
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to lunar craters that are interpreted to result from seismic modification (Schultz and 

Gault, 1975).  

Although completed under terrestrial conditions, the results of the vertical and 

horizontal shaking experiments suggest that size and density sorting may occur in the 

lunar regolith. If these experiments reproduce a sorting mechanism that is active on the 

Moon, then it is plausible that ilmenite content can vary in the top ten centimeters of the 

lunar regolith. CSR and LP GRS titanium abundance estimates agree within uncertainty 

for 29% of the nearside maria, and it is probable that in these regions, the reported TiO2 

abundances reflect ilmenite surface abundance that is observed at the optical surface by 

CSR (0.5° pixel scale) and at depth from LP GRS (0.5° pixel scale). However, the 

abundance differences for the remainder of the nearside maria (49% have higher CSR 

values, 22% have higher LP GRS values) may reflect contamination of the mare regolith 

by highland material, the competing effects of particle sorting and coating of surface 

grains by the smallest size fraction of ilmenite, imprecision of one or both titanium 

estimates, or a combination of the three, possibly with other unknown factors.  

To investigate the disparity in TiO2 abundance estimates between CSR and LP 

GRS, the 2° (natively collected) LP GRS titanium elemental abundance data were used, 

and CSR was resampled to 2° pixel scale. There is no evidence of a simple calibration 

error for either CSR or the LP GRS derived titanium values (Figure 5.20) that explains 

the differences between the two datasets. If the CSR and LP GRS titanium abundances 

agreed, the data would cluster along the unity line in Figure 5.20, but there is not a 

statistical correlation (R2 = 0.14). Furthermore, a best-fit linear regression does not 

indicate a strong statistical correlation (R2 = 0.4) between the 2° data. The locations 



228 

where CSR and LP GRS estimates agree (ranging from low to high titanium abundance; 

Figure 5.21) are scattered throughout the nearside maria and are not associated with 

particular geologic features (i.e. contacts, shield volcanoes, superposed impact craters, 

rays, etc.).  

For low CSR titanium abundances (~0–2 wt% TiO2), LP GRS titanium 

abundances range between 0 wt% and ~4 wt% TiO2 (Figure 5.21D, 5.21E) and thus the 

differences are close to the expected range from the uncertainties in the two methods 

(regions with TiO2 <2 wt% in both CSR and LP GRS datasets (cyan in Figure 5.21D, 

5.21E; part of northwest Oceanus Procellarum, small areas in Sinus Iridum and northeast 

Mare Imbrium, much of Lacus Somniorum, and patches of maria surrounding Mare 

Crisium) and regions where CSR is <2 wt% TiO2 and LP GRS is ~2–4 wt% TiO2, 

(magenta in Figure 5.21D, 5.21E; remainder of northwest Oceanus Procellarum, Sinus 

Iridum, northeastern Mare Imbrium, Lacus Somniorum, and a small area of Lacus 

Mortis)). Although the differences in CSR and LP GRS for these regions may primarily 

reflect measurement uncertainties, lower CSR than LP GRS titanium abundances  

(e.g., 1 wt% compared to 4 wt% TiO2, respectively; Figure 5.21D, 5.21E, 5.22A) may 

reflect real compositional differences resulting from contamination of the optical surface 

by highland components. Lateral (horizontal) transport of material on the Moon occurs 

through emplacement of impact crater ejecta that creates a thin blanketing (covering and 

mixing materials in the optical surface) of compositionally distinct materials (i.e., 

anorthositic highland material on the mafic maria). The absence of visible ejecta rays 

from highland impact craters superposed on the maria in northeastern Mare Imbrium, 

Sinus Iridum, and northwest Oceanus Procellarum weakens, but does not exclude, the 
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possibly for contamination of mare regolith by highland materials. For example, an 

anorthositic component attributed to highland materials was discovered in the Apollo 11 

bulk regolith samples, and rays from Theophilus and Alfraganus craters are observed 

near (but not at) the landing site in Mare Tranquillitatis (e.g., Wood et al., 1970). It is 

thus possible to observe highland contamination of mare basalts without visible crater 

rays extending across the region. Furthermore, the absence of visible crater rays may also 

be explained by ballistic sedimentation (Oberbeck, 1975) coupled with the effects of 

space weathering (e.g., Hapke, 2001 and references therein) that churn and darken the 

regolith over time to promote the gradual disappearance of visible ejecta rays over time. 

For some areas with moderate CSR titanium abundance (~2–5 wt% TiO2), LP 

GRS titanium abundance is high (>5 wt% TiO2; Figure 5.21D, 5.21E, 5.22B); these areas 

occur primarily within Mare Insularum and Oceanus Procellarum in locations 

geographically close to irregular mare boundaries. Regions such as the Aristarchus 

Plateau exhibit distinct compositional contacts, and lateral transport of highlands material 

to the maria via ejecta emplacement is one simple explanation for lower CSR titanium 

estimates than those measured by LP GRS. Similarly, the partially embayed highland 

regions within Mare Insularum will contribute anorthositic material laterally via impact 

crater ejecta emplacement to depress the CSR titanium estimates of the mare basalts 

(Figure 5.21D, 5.21E). Oceanus Procellarum may also have decreased CSR titanium 

abundance due to contribution of titanium-poor materials from Aristarchus and Kepler 

crater ejecta (relative to the surroundings; Figure 5.21D, 5.21E). However, observations 

of moderate CSR abundance and high LP GRS abundance may also be explained by the 

sinking of denser ilmenite grains as a result of seismic shaking (Figure 5.22B). Over time 
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and successive seismic shaking events, the ilmenite grains sink to increase the ilmenite 

content measured within the upper few centimeters of regolith relative to the optical 

surface (Figure 5.22B). Even if fine-grained ilmenite particles are stranded at the optical 

surface through the shaking process, promoting a moderate measure of ilmenite by CSR, 

the enrichment in coarser-grained ilmenite below the optical surface is detectable and will 

be reflected by high LP GRS abundance measurements.   

Lastly, areas with high CSR titanium abundances (~5–10 wt% TiO2) correlated 

with low to moderate LP GRS values (0 to ~5 wt% TiO2) are primarily located either 

near mare boundaries or within Mare Crisium and Mare Fecunditatis (Figure 5.21D, 

5.21E). The 2° pixel scale binning of LP GRS (footprint of ~45 km, Figure 27 in 

Prettyman et al., 2006) often results in portions of two or more geologic units within a 

pixel (“mixed-pixels”). Therefore near mare boundaries, particularly western Oceanus 

Procellarum, Mare Humorum, and Mare Nubium, high CSR and low–moderate LP GRS 

titanium abundances likely reflect contamination of LP GRS measurements by highland 

materials included within the footprint (Figure 5.21D, 5.21E). However, the disparate 

titanium abundances in Mare Crisium and Mare Fecunditatis (Figure 5.21D, 5.21E) 

cannot be explained by such mixed-pixels. Mare Crisium and Mare Fecunditatis contain 

the most discrepant geologic units on the Moon; neither CSR nor LP GRS titanium 

abundances match returned Luna 16 and 24 regolith samples (Table 5.1). Revisions to the 

location of the Luna 24 landing site in Mare Crisium using Lunar Reconnaissance Orbiter 

Camera Narrow Angle Camera (LROC NAC) images indicate that Luna 24 landed on the 

continuous ejecta blanket of a 65 m diameter crater (Robinson et al., 2012), and therefore, 

the returned sample is not representative of the regolith optical surface measured by CSR. 



231 

However, the Luna 24 regolith sample indicates the presence of a different compositional 

unit, further attesting to the complexity of the lunar regolith and changing volcanic 

compositions on the Moon over time. The higher CSR titanium estimates in Mare 

Crisium and Mare Fecunditatis are not consistent with the simple model of seismic 

shaking (Figure 5.22B) explored in the experiments, where the coarse-grained ilmenite 

particles sank into the sand matrix (Section 5.4, Figure 5.12–5.14). However, it may be 

that the higher CSR titanium estimate is due to a grain separation effect of the fine-

grained ilmenite size fraction, similar to that seen in the shaking experiments (Section 

5.4, Figure 5.15–5.17). In the experimental setup, as fine-grained (<150 μm) ilmenite 

particles sank into the bed of larger (300–600 μm), less-dense sand particles, an ilmenite 

“shadow” remained at the surface, coating the sand particles. This scenario, shown in 

Figure 5.22C, provides an explanation for high CSR, low–moderate LP GRS regions, 

where the finest of the fine-grained ilmenite particles are stranded in the optical surface 

as a result of seismic shaking. The experimental results suggest that seismic shaking 

promotes sinking of the fine-grained ilmenite until the pore space in between the sand 

grains are filled, and because there is more fine-grained ilmenite than can be 

accommodated by the available pore space, ilmenite is stranded within the optical 

surface. Although possible, this explanation is less likely because in the shaking 

experiments, all the coarse-grained, and most of the fine-grained, ilmenite sank, except 

for the finest of the fine-fraction that remained stranded at the surface coating sand 

grains. 

The results presented here provide plausible explanations for the nearside maria 

differences between CSR and LP GRS titanium abundances, but intelligent acquisition of 
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additional samples is required to solve this problem. Sampling techniques that accurately 

capture the optical surface of the regolith, a depth of a few centimeters, and a depth to 

~10 cm (or more) are desirable to better calibrate multispectral observations of the lunar 

surface and remotely sensed measurements of bulk regolith composition. For example, 

optical surface sampling could employ an adhesive surface, much like the tape pulls in 

my shaking experiments (Figure 5.17), to collect the top layers of the regolith in specific 

locations. Samples from different depths (e.g., a few cm, ~10 cm) are easily obtained in 

drive tube cores (e.g., McKay et al., 1974; Heiken, 1975; Papike et al., 1982) whereby the 

regolith is preserved in a vertical cross-section. Ideally, samples from each region 

discussed above should be obtained, so that the regions exhibiting the greatest disparities 

in titanium abundances (especially Mare Crisium and Mare Fecunditatis), in addition to a 

location where CSR and LP GRS agree, are represented.  

Investigating the strengths and limitations of remotely sensed compositional 

measurements is integral to studies of small bodies, because sampling opportunities are 

few. For example, subtle color and compositional differences between the smooth ponds 

and the surrounding regolith are observed on 433 Eros (Robinson et al., 2001; 2002; 

Riner et al., 2008). Differences in regolith maturity, variations in grain size, and 

compositional variations due to sorting processes are invoked to explain the color 

properties of ponds, specifically focusing on a depletion of Fe–Ni metal (Robinson et al., 

2001; 2002). Impact-induced seismic shaking was invoked as the primary process for 

smooth ponds formation on 433 Eros (e.g., Asphaug et al., 2001; Cheng et al., 2002), but 

little thought was previously given to seismic shaking as a compositional sorting 

mechanism. The results of this study raise the possibility that mechanical sorting 
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resulting from both size and density variations may account for a pond composition that 

is different than the surrounding terrain. Removing Fe–Ni from the regolith by density 

sorting of the regolith will decrease the spectral slope so that ponds are “less red”, as long 

as the silicate particle sizes remaining at the surface are <50 μm, (Riner et al., 2008). 

Although the compositional properties of ponds can be explained by multiple factors 

(Robinson et al., 2001; Riner et al., 2008), the results of my experiments indicate that 

seismic shaking density and size sorting of the Eros regolith is plausible.   

 
Figure 5.20. TiO2 abundance derived from CSR compared to LP GRS. If the datasets 
were in agreement, the points would plot along the unity reference line (red; R2 = 0.14). 
A best-fit linear regression is shown in yellow, and R2 = 0.40. 
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Figure 5.21. View of nearside lunar maria (centered at 0°N, 0°E); (A) LROC WAC 
normalized reflectance mosaic, (B) Clementine multispectral ratio mosaic (R=750/415, 
G=750/950, B=415/750). In (A), maria are named: Co, Cognitum; Cr, Crisium;  
F, Fecunditatis; H, Humorum; Im, Imbrium; In, Insularum; LM, Lacus Mortis; LS, Lacus 
Somniorum; P, Procellarum; Ne, Nectaris; Nu, Nubium; S, Serenitatis; T, Tranquillitatis; 
V, Vaporum. 
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Figure 5.21, continued. View of nearside lunar maria (centered at 0°N, 0°E); (C) 2° 
pixel scale CSR–LP GRS difference map overlaid on LROC WAC normalized 
reflectance mosaic, (D) Color-classified 2° pixel scale CSR map created by selection of 
regions of interest in the CSR versus LP GRS wt% TiO2 scatterplot (Figure 5.21E, 
below) overlaid on LROC WAC normalized reflectance mosaic.  
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Figure 5.21, continued. (E) CSR titanium abundance as a function of LP GRS titanium 
abundance for 2° pixel scale measurements. Selected regions of interest shown in Figure 
5.21D: red = approximate unity between CSR and LP GRS where the measurements 
agree; cyan = ~0–2 wt% TiO2 in CSR and LP GRS (both low); magenta = ~0–2 wt% 
TiO2 in CSR, ~2–4 wt% TiO2 in LP GRS (CSR low, LP GRS moderate);  
green = ~2–5 wt% TiO2 in CSR, >5 wt% TiO2 in LP GRS (CSR moderate, LP GRS 
high); yellow = ~5–10 wt% TiO2 in CSR, ~0–5 wt% TiO2 in LP GRS (CSR high, LP 
GRS low to moderate).  
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Figure 5.22. Cartoon illustrations, informed by the experimental results, depicting three 
scenarios for CSR and LP GRS titanium abundances observed in Figure 5.21D, 5.21E; 
black dots represent ilmenite grains, grayed area represents the finest size fraction of 
ilmenite occurring in the regolith. Due to the difference in measurement scales, the 
optical surface (<100 μm) measured by CSR is shown in the top rectangle and a 
measurement depth of ~10 cm for the LP GRS is shown in the bottom rectangle, although 
the depth to which ilmenite sinks is unknown. An arrow indicates that the optical surface 
comprises the top-most portion of the LP GRS measurement depth. (A) Low CSR  
(~1 wt% TiO2), low–moderate LP GRS (~4 wt% TiO2); measurements of the optical 
surface are similar to those in the top 10 cm. (B) Moderate CSR (~2.5 wt% TiO2), high 
LP GRS (~7 wt% TiO2); seismic shaking removes ilmenite from the optical surface, 
where it becomes concentrated in the top few centimeters and sampled by LP GRS.  
(C) High CSR (~6 wt% TiO2), low–moderate LP GRS (~2.5 wt% TiO2); the finest grain 
size fraction of ilmenite is stranded at the optical surface due to seismic shaking, 
enhancing the CSR abundance estimate. 

 

5.6. Conclusions  

Constraining the mechanical mixing properties, including grain size sorting, 

density sorting, and depth of sorting of a regolith, is essential to accurately interpreting 

remotely sensed measurements. Vertical and horizontal shaking experiments were 

conducted to simulate the effects of seismic shaking on a regolith mixture. Although 

completed under terrestrial conditions, the results of these experiments are relevant for 

the Moon and other airless planetary bodies with regoliths. Returned lunar regolith 

samples have a broad range of grain sizes, compositions, and densities, and the regolith 

for a location is genetically related to the underlying bedrock (e.g., Papike et al., 1982). 

Varying densities of minerals within a regolith may result in density-driven mechanical 

sorting, perhaps regardless of size. Two-component physical mixtures containing 
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particles of different size fractions and different densities were used to study the effects 

of shaking on particle sorting. In all cases, under vertical and horizontal perturbation, the 

denser materials sank into the less dense matrix material, even when there were small 

density differences. More importantly, all size fractions of the denser particles sank, even 

when the denser particles were smaller than the matrix. These experimental results 

indicate that the Brazil Nut Effect (e.g., Rosato et al., 1987) cannot directly be applied to 

explain most geologic features on planetary surfaces with regoliths, because experimental 

investigations of the Brazil Nut Effect (e.g., Knight et al., 1993; Möbius et al., 2001; Breu 

et al., 2003; Burtally et al., 2003; Huerta and Ruiz-Suárez, 2004) and the Reverse Brazil 

Nut Effect (e.g., Hong et al., 2001) were completed in small containers (≤10 cm diameter 

or width; Knight et al., 1993; Hong et al., 2001; Möbius et al., 2001; Breu et al., 2003; 

Burtally et al., 2003) that cannot be accurately scaled to larger dimensions and are prone 

to significant edge-effects. Future seismic shaking investigations would benefit from 

shaking tables with variable amplitudes, frequencies, and motion, such as that used by 

Izenberg and Barnouin-Jha (2006a; 2006b). The ability to change amplitudes and 

frequencies would enable better simulations of lunar-like seismic events by setting the 

shaker to approximate moonquakes and impact events of different magnitudes. Using 

both vertical and horizontal motion during a single test run might improve the 

experimental results by more realistically simulating a planetary surface affected by 

seismic shaking. In addition to using larger shaker tables with more advanced shaking 

settings, future investigations into seismic shaking as a planetary process should logically 

incorporate numerical models to appropriately apply the experimental results at the 
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planetary scale (such as those presented by Asphaug et al., 1996; Richardson et al., 

2005).  

The experiments undertaken in this investigation demonstrate the possibility of 

mechanical segregation of particles in the regolith and provide plausible explanations 

toward understanding the three types of inconsistencies between compositional remote 

sensing datasets. For example, my experimental results suggest that for some locations a 

simple model of seismic shaking, where ilmenite grains sink below the optical surface, is 

plausible. In other regions, there may be a competing effect between the dense ilmenite 

particles sinking (regardless of size) and the coating of surface particles by the finest of 

the fine size fraction of ilmenite, which may lead to incorrect interpretation of remotely 

sensed composition. Titanium abundance estimates derived from CSR and LP GRS agree 

for only 29% of the nearside maria, indicating that in these regions the different remote 

sensing methods are likely accurately determining composition (within the measurement 

uncertainties). However, the remaining 71% of the nearside maria exhibit higher titanium 

abundances in either the CSR or the LP GRS estimates. Both measurement techniques 

have limitations, and my observations suggest that while some regions exhibit low CSR 

and higher LP GRS titanium abundances due to density separation of ilmenite promoted 

by seismic shaking, the mismatch between datasets results primarily from remaining 

uncertainties in the CSR algorithm (e.g., Blewett et al., 1997; Lucey et al., 1998; Gillis et 

al., 2003) and contribution of highland components to the LP GRS footprint (Feldman et 

al., 1999; Lawrence et al., 2000; 2003; 2004; Prettyman et al., 2006).  

Seismic shaking is likely an active process on all asteroids (e.g., Asphaug et al., 

1993; 1996; Richardson, 2005), and the effects of compositional sorting resulting from 
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perturbation should be considered. Compositional remote sensing measurements may not 

always provide accurate information below the optical surface, so future sample return 

missions relying on these compositional data should acquire multiple samples from 

different depths on the asteroid whenever possible. The OSIRIS-REx mission to asteroid 

(101955) 1999 RQ36 is a perfect opportunity to compare the compositional information 

acquired by remote sensing to that of a collected sample. Ground- and space-based 

telescopic studies have extensively characterized asteroid (101955) 1999 RQ36, and the 

OSIRIS-REx current mission plan includes mapping the asteroid with multiple imagers 

and spectrometers (X-Ray, visible, infrared, and thermal) at different scales, and 

collection of >60 g regolith from the asteroid surface (Lauretta and Team, 2012). The 

OSIRIS-REx mission thus provides a unique opportunity to investigate discrepancies 

between surface and subsurface measurements, and intelligent sampling paired with 

remotely sensed compositional will improve understanding of potential disparity between 

remotely sensed compositions and samples of asteroidal regolith.  
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CHAPTER 6 

DISTRIBUTION OF IMPACT MELT ON MERCURY AND THE MOON 

6.1. Introduction 

The surfaces of both Mercury and the Moon show evidence of substantial surface 

modification from the impact cratering process. Images taken by the camera instruments 

aboard the recent Lunar Reconnaissance Orbiter (LRO) mission to the Moon and the 

MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) 

mission to Mercury provide key data to complete an investigation of impact craters and 

their products such as impact melt, formed by the vaporization and melting of target rock 

during impact. Impact melt is a particularly important product of the impact cratering 

process because it has no geological counterpart; impact melts form as a result of the 

nearly instantaneous melting of the target rocks soon after impact (e.g., French, 1998). 

Comparison of the distribution and extent of impact melt produced by the impact process 

on Mercury and the Moon should reveal significant clues pertaining to the formation and 

emplacement of impact melt in and around craters, in addition to providing quantitative 

measurements with which to assess melt-generation models. Determining the presence, 

spatial extent, and volume of impact melt on Mercury was difficult until March 2011, 

when MESSENGER entered orbit about Mercury and began a global mapping campaign, 

as the Mariner 10 or MESSENGER flybys did not acquire global coverage and few 

images were taken at favorable illumination and resolution for morphologic studies. 

Similarly, global maps acquired by LRO enable a more comprehensive investigation of 

impact melt distribution and examination of morphologic characteristics to improve upon 

previous studies of lunar impact melt. 
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Comparisons between lunar and mercurian craters were made following the 

Mariner 10 flybys (Murray et al., 1974; Gault et al., 1975; Murray et al., 1975; Gault et 

al., 1977; Guest and O’Donnell, 1977; Oberbeck et al., 1977; Strom, 1979), and many 

morphologic similarities were observed between the craters on both planets. Differences 

were also noted: craters on Mercury form wall terraces at smaller diameters than on the 

Moon, secondary craters are larger on Mercury yet secondary crater fields are located 

closer to the crater rims than their lunar counterparts, and continuous ejecta blankets have 

a restricted spatial extent on the innermost planet (e.g., Murray et al., 1974; Gault et al., 

1975; Oberbeck et al., 1977). Many of these differences are attributed to the greater 

gravitational acceleration on Mercury than the Moon (3.7 m/s2 vs. 1.6 m/s2; e.g., Gault et 

al., 1975). As a result, the average impact velocity is ~2 times higher on Mercury than the 

Moon (e.g., Wetherill, 1974; Le Feuvre and Wieczorek, 2008), which substantially 

increases the volume of impact melt (Gault et al., 1975).  

Previous studies of impact melt deposits discussed the presence of material 

interpreted to be impact melt in and around lunar craters (Shoemaker et al., 1968; El-Baz, 

1972; Howard, 1972; Howard and Wilshire, 1975; Hawke and Head, 1977a; 1977b). 

However, on the basis of available data, these studies were not able to compile a 

comprehensive global dataset of craters with impact melt deposits; for example, Hawke 

and Head (1977a) examined exterior impact melt flows for 55 craters using Lunar Orbiter 

and Apollo Metric images. Moreover, impact melt studies of Mercury using the Mariner 

10 data were sparse, with the exception of an abstract by Hawke and Cintala (1977) that 

mentioned the occurrence of smooth ponded deposits in several mercurian craters similar 

to ponded lunar impact melt. Crater scaling relationships and impact melt-generation 
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models predict that for similar sizes, craters on Mercury should produce greater volumes 

of impact melt due to the greater impact velocities than on the Moon (e.g., Gault et al., 

1975; Grieve and Cintala, 1992; 1997). Previous workers were unable to quantitatively 

test these predictions due to the available data, but measurements from LRO and 

MESSENGER facilitate acquisition of comprehensive datasets to test these theoretical 

models. 

Here I present initial results of a comparison between Mercury and the Moon 

regarding the distribution and areal extent of impact melt deposits within craters with 

diameters between 8 to ~160 km. Leveraging new data from LRO and MESSENGER, I 

selected two regions on the Moon and one region on Mercury for comparative study. The 

two lunar regions were chosen in order to sample both nearside terrain and farside 

highlands, and the mercurian region was selected to encompass heavily cratered terrain 

and exclude volcanically modified impact basins (e.g., Caloris, Beethoven, Rembrandt). 

For each of these regions, craters with ponded impact melt deposits were identified, the 

extent of those interior deposits were mapped, and melt pond area was calculated and 

used as an approximation for volume.  

 

6.2. Methods and Data 

Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) 

(Robinson et al., 2010; Speyerer et al., 2011) and MESSENGER Mercury Dual Imaging 

System (MDIS) WAC and Narrow Angle Camera (NAC) (Hawkins et al., 2007)  

200 meter pixel scale monochrome mosaics were made using images with favorable 

illumination for morphology (average 60° to 77° incidence angle). On Mercury, a region 
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centered at 0°N and 0°E extending ±30° latitude and ±60° longitude was selected in 

heavily cratered terrain, covering a surface area of 11.6 × 106 km2 (~16% of the planet). 

On the Moon, two areas were selected (~23% of the planet): a region on the nearside 

centered at 0°N and 0°E extending ±30° latitude and ±60° longitude and covering an area 

of 6.3 × 106 km2, and a region on the farside centered at 0°N and 145°E extending ±20° 

latitude and ±35° longitude with a surface area of 2.5 × 106 km2. 

ESRI ArcMap 10 and the CraterTools extension (Kneissl et al., 2011) were used 

to identify craters with ponded impact melt and to map the extent of these deposits. 

CraterTools computes a best-fit circle to three user-defined points on a crater rim and 

records the center latitude, longitude, and diameter to a project database. The deposit 

extents were mapped using the standard editing tools included with the ArcMap 10 

software. An 8 km minimum diameter was defined for crater identification because 

secondaries can commonly be as large as 8 to 10 km on Mercury (Chapter 4; Strom et 

al., 2008). Craters with diameters >200 km were excluded because photogeological 

studies suggest that on Mercury, basins this size frequently have volcanic smooth plains 

associated with interior impact melt deposits (e.g., Prockter et al., 2010; Marchi et al., 

2011).  

Definitive identification of impact melt on Mercury is challenged by poor image 

resolution, so only the youngest age-groups of craters (Kuiperian/Mansurian on Mercury, 

and Copernican/Eratosthenian on the Moon) are included in the investigation, on the 

assumption that the youngest craters have interior deposits most easily identified due to a 

lack of substantial erosion and crater degradation. Such young craters were identified 

primarily on the basis of morphology, augmented by existing geologic maps. Improving 
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upon criteria used to identify impact melt in earlier detailed studies (c.f., Howard and 

Wilshire, 1975; Hawke and Head, 1977a; 1977b) by examining larger regions at 

consistent illumination for morphologic interpretation, melt deposits were distinguished 

on the basis of (1) Interior pond morphology (a smooth texture, few superposed craters, 

and a distinct fill-wall contact; e.g., Shoemaker et al., 1968; El-Baz, 1972; Howard, 1974; 

Howard and Wilshire, 1975), (2) The presence of exterior flows, ponds, and veneers 

(Howard, 1972; Howard and Wilshire, 1975; Hawke and Head, 1977a), and (3) The 

absence of embayed craters within the crater interior (indicative of a length of time 

between crater formation and infill, consistent with subsequent volcanism; e.g., Strom et 

al., 1975; Wilhelms, 1976b) (Figure 6.1). Furthermore, volcanic infill of lunar craters is 

often indicated by the presence of lower albedo material and compositional variation 

within the crater compared to outside; similar albedo and compositional variations are 

absent on Mercury (e.g., Robinson et al., 2008; Denevi et al., 2009). 

Only interior impact melt deposits were included in mapping and area 

measurements. Exterior melt deposits were excluded from this investigation because 

confidently identifying the spatial extents of exterior melt was difficult. As topography 

data were not yet available, the spatial extents of interior melt pond areas were measured 

as an approximate proxy for volume. The volume of impact melt produced should scale 

with crater diameter (e.g., Grieve and Cintala, 1992; 1997; Cintala and Grieve, 1998a; 

1998b), a hypothesis that is tested in this investigation. Thus, more melt should be 

retained in larger impact events (e.g., Grieve and Cintala, 1997) and for similarly sized 

craters, disparities in interior melt areal extents are assumed to reflect volumetric 

differences in melt produced. 



246 

 
Figure 6.1. Representative craters illustrating distinguishing criteria for impact melt 
mapping: (1) Young craters with smooth deposits and well-defined contacts, (A) Tycho 
crater (43.41°S, 339.92°E, ~85 km diameter) and (B) Debussy cater (33.93°S, 12.55°E, 
~80 km diameter); (2) Presence of exterior ponds or flows and perched ponds on crater 
wall terraces, (C) King crater (5.04°N, 120.43°E, ~78 km diameter) and (D) Sibelius 
crater (49.54°S, 214.75°E, ~94 km diameter), arrows note exterior ponds; and  
(3) Absence of embayed or filled craters (arrows) within smooth floor deposits, (E) Pauli 
crater (45.24°S, 137.52°E, ~100 km crater) and (F) Machaut crater (2.03°S, 277.74°E, 
~104 km diameter), arrows note embayed craters. 
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6.3. Results 

Ponded impact melt deposits were identified in 488 mercurian craters and 495 

lunar craters for diameters ranging from 8 km to ~160 km. From the measured 

population, the average mercurian crater diameter with identifiable impact melt deposits 

is 24 km, with a maximum of 125 km and a median diameter of 17 km. The 

corresponding average lunar crater diameter is 16 km for the nearside, with a maximum 

of 100 km and a median diameter of 12 km; the average diameter is 19 km for the farside, 

with a maximum of 158 km and a median diameter of 13 km. Figure 6.2 is a histogram of 

craters containing ponded interior impact melt for diameters 8–53 km in 5 km bins, 

normalized to 106 km2, and the general trend observed is the presence of high frequencies 

of melt-flooded craters in smaller bins that gradually decrease at larger crater diameters. 

For all three regions, the two smallest bins (8–13 km, 13–18 km) contain the highest 

crater frequencies per 106 km2 (Figure 6.2). At 8–13 km, the lunar frequencies exceed 

those for mercurian craters by a factor of two (lunar nearside) or more (lunar farside), and 

for most bins, the lunar farside frequencies exceed those for Mercury (Figure 6.2). At 

diameters >13 km, the mercurian frequencies exceed the lunar nearside frequencies 

(Figure 6.2). 

Both Mercury and the Moon show an increase in interior melt deposit area with 

increasing crater diameter (Figure 6.3). There is considerable variation in melt pond areas 

for craters 8 to ~30 km in diameter in all three regions (Figure 6.3). The average interior 

melt area is 219 km2 on Mercury, with a maximum of 6517 km2, a minimum of 0.5 km2, 

and a median area of 27 km2. On the lunar nearside, the average melt area is 52 km2, with 

a maximum of 2320 km2, a minimum of 0.6 km2, and a median area of 6 km2. On the 
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lunar farside, the average melt area is 112 km2, with a maximum of 6515 km2, a 

minimum of 0.3 km2, and a median area of 7 km2. At diameters <30 km, all three study 

areas overlap and have a range of estimated interior melt areas that is an order of 

magnitude; at 8 km diameter, the melt area ranges from 0.3 km2 to ~10 km2, at 25 km 

diameter, the melt area ranges from ~5 km2 to ~100 km2 (Figure 6.3). For craters ≥30 km 

in diameter, mercurian craters contain larger areal extents of interior ponded impact melt 

than their lunar counterparts (Figure 6.3). The craters measured on the lunar nearside and 

farside display a trend of increasing melt pond area with increasing diameter but do not 

exhibit a separation such as that observed between the mercurian and lunar data (Figure 

6.3). 

When the percent of crater area covered by impact melt is calculated, melt-

covered interior pond percentages are clustered between 0–20% for craters <30 km 

diameter (Figure 6.4). Although the mercurian and lunar craters are densely clustered 

between 0–10%, some mercurian and lunar farside craters have melt ponds proportional 

to ~20% of the crater area. At diameters ≥30 km the mercurian and lunar craters trends 

separate. For ≥30 km diameter, mercurian craters have greater percentages of the crater 

area (~15–45%) covered by impact melt than lunar craters (~3–25%; Figure 6.4). 



249 

 
Figure 6.2. Distribution of craters with interior impact melt for 8–53 km, normalized to a 
unit area (106 km2). In the largest bin, I measured 8 mercurian craters (normalized value 
is 0.69) and 5 lunar farside craters (normalized value is 1.99). 

 
Figure 6.3. Impact melt area as a function of crater diameter for measured interior 
deposits. Including exterior deposits may change the distribution, especially for larger 
craters. 
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Figure 6.4. Percentage of the crater area (interior) that is covered in impact melt as a 
function of crater diameter. At diameters ≥30 km, mercurian craters exhibit a greater 
percentage of melt-covered areas than lunar craters.  

 

6.4. Discussion 

In this investigation, hundreds of craters are identified and mapped with interior 

impact melt deposits on Mercury and the Moon. More craters per unit area are identified 

with impact melt on the lunar farside than on Mercury for most crater diameter bins 

shown in Figure 6.2. This finding agrees with previous comparisons of global crater 

densities (Strom, 1977; Fassett et al., 2011; Strom et al., 2011) and is observed because 

the relative global impact flux on Mercury is 1.9 times that of the Moon (Cintala, 1992; 

Le Feuvre and Wieczorek, 2008). In this investigation, only craters interpreted to be 

young (Kuiperian/Mansurian on Mercury, Copernican/Eratosthenian on the Moon) on the 
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basis of sharp morphology were identified and mapped on Mercury and the Moon, and 

these results suggest that Mercury is deficient in young, impact melt-filled craters 

compared to the Moon. Future efforts to extend impact melt identification to older craters 

may provide insight, but currently an explanation for the observed deficiency remains 

elusive. If older crater populations on Mercury and the Moon exhibit the same 

relationship (deficiency in impact melt filled craters on Mercury relative to the Moon), it 

may be that resurfacing (e.g., volcanism, basin ejecta emplacement) removed an 

unknown portion of the global population of older craters with impact melt on Mercury. 

Observations of lunar craters suggest a relationship between the impact melting 

process and crater morphology (e.g., Cintala and Grieve, 1998a; 1998b), which may 

explain the trends in the measured areal extents of interior impact melt (Figure 6.3, 6.4). 

A range of size-dependent morphologies were first identified and described for lunar 

craters (e.g., Shoemaker, 1962; 1971; Howard, 1974; Pike, 1977; Melosh, 1989), and the 

progression of crater morphologies with size are also observed and well-studied on 

Mercury (e.g., Gault et al., 1975; Oberbeck et al., 1977; Pike, 1988; Xiao et al., 

accepted). Morphologic descriptions and observations of impact melt for lunar craters are 

presented below, along with a discussion of my observations and examples of lunar 

impact melt. Simple craters (usually <15 km diameter) have a distinct bowl-shape, are 

parabolic to trapezoidal in profile, and may have a flat floor with blocky debris (Figure 

6.5; e.g., Howard, 1974; Pike, 1977; Melosh, 1989). Impact melt observed in simple 

craters usually occurs as veneers covering most of the floor and on portions of the rim 

(Howard and Wilshire, 1975; Hawke and Head, 1977b); external melt flows and interior 

melt ponds are rare (Howard and Wilshire, 1975; Hawke and Head, 1977a; 1977b). 
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Therefore for craters <15 km, substantial ponded interior impact melt would not be 

expected and are, indeed, not generally observed in the measurements of melt pond areal 

extent (Figure 6.3). The range in distribution of measured pond areas reflects differences 

in melt produced (perhaps as a result of differences in target material) or potential 

measurement uncertainties (misidentification of eroded debris that appear smooth at the 

200 meter pixel scale resolution or a 2–3 pixel analyst error in mapping). Transitional 

craters (usually 15–20 km diameter) exhibit some simple crater structures while 

beginning to develop features observed in complex craters such as crater wall terracing 

and central peaks (Figure 6.6; e.g., Howard, 1974; Melosh, 1989). Impact melt in 

transitional craters is observed as veneers and occasional ponds on the rim, and coalesced 

channels and flows terminate at ponds on the crater floor or perched on the poorly-

formed wall terraces (Howard and Wilshire, 1975; Hawke and Head, 1977b). The 

increase in predicted impact melt volume is observed as increasing melt pond areas as 

diameter increases (Figure 6.3). The fairly broad range in mapped melt pond areas 

primarily reflects differences in melt produced for these craters, which may experience 

small- to large-scale wall slumping that can modify or bury interior impact melt ponds. 

Complex craters (usually >20 km diameter) have distinct terraced crater walls and a 

central peak or central peak cluster (Figure 6.1, 6.7; e.g., Howard, 1974; Hale and Head, 

1979; Melosh, 1989). Impact melt is present at all scales in complex craters: thin veneers 

coating the continuous ejecta, flows and coalesced ponds exterior to the crater and on the 

crater rim, and ponds on the wall terraces and crater floor (e.g., Howard and Wilshire, 

1975; Hawke and Head, 1977b). At diameters ≥30 km, the lunar and mercurian data 

separate and no distinction is observed between lunar nearside and farside measurements 
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(Figure 6.3). Mercurian craters have greater areal extents of impact melt when compared 

to lunar craters at the same sizes, verifying previous visual observations (e.g., Howard, 

1974; Howard and Wilshire, 1975; Hawke and Head, 1977a). Furthermore, these findings 

confirm the results of calculations that predict greater volumes of melt relative to crater 

volume and more retained melt in crater interiors for increasing crater sizes (e.g., Gault et 

al., 1975; Cintala, 1992; Grieve and Cintala, 1992; 1997; Pierazzo et al., 1997; Cintala 

and Grieve, 1998a; 1998b; Barr and Citron, 2011).  

Conversely, smaller craters (<30 km diameter) have a larger range of melt pond 

areas (Figure 6.3, 6.4). The measured impact melt pond areas for mercurian and lunar 

craters overlap in the 8–30 km diameter region, indicating that there is not an obvious 

distinction between lunar and mercurian craters at these diameters. These results are 

consistent with calculations that predict smaller volumes of melt at smaller crater 

diameters, where the volume of melt produced scales as a function of transient crater 

diameters (Cintala and Grieve, 1998a; 1998b). The volume of melt generated during 

impact is primarily a function of impact velocity, but the projectile density and size as 

well as the target density will influence the amount of melt produced for a given impact 

velocity (e.g., Grieve and Cintala, 1992). Thus, the range in measured impact melt pond 

areas for diameters 8–30 km likely result from a combination of several of these factors 

(e.g., melt pond area for a 10 km diameter crater is expected to differ for impact into a 

lunar nearside basalt compared to a lunar farside anorthosite). Flow features and ponded 

deposits are not commonly observed within simple crater interiors (Hawke and Head, 

1977b), implying that impact melt within small craters (<10–15 km diameter) solidified 

relatively quickly. Veneers are observed on the walls smaller craters (<10–15 km 
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diameter; Hawke and Head, 1977a; 1977b), as are low-reflectance rays crossing crater 

walls and rims that are interpreted as sprays of solidified, glassy (melt-rich) ejecta 

(Howard, 1974). The floors of simple and transitional craters are often chaotic, and burial 

or mixture of impact melt with debris slumped from the crater walls may explain the 

varying measurements of interior impact melt pond area. Moreover, for smaller craters 

there is a greater opportunity for the entire volume of impact melt to interact with clastic 

debris in the crater cavity. If a thin layer of impact melt incorporated debris from the 

crater wall, the incorporation of debris would rapidly cool the impact melt. Depending on 

the volume of melt produced and the amount of entrained debris, the resulting deposit 

(melt plus clasts) may not morphologically resemble other instances of identified impact 

melt. Incorporating high-resolution LROC and MESSENGER NAC images to examine 

and map detailed impact melt morphology is necessary to continue this investigation, 

particularly for craters <30 km in diameter. 

Interpreting crater morphology and observations of impact melt with respect to 

crater size for Mercury or the Moon, followed by comparisons between the two planets, 

requires additional calculations of impact melting and inclusion of crater scaling 

relationships (O’Keefe and Ahrens, 1977; Holsapple and Schmidt, 1982; Croft, 1985; 

Cintala, 1992; Grieve and Cintala, 1992; Holsapple, 1993; O’Keefe and Ahrens, 1993; 

Grieve and Cintala, 1997; Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b; Barr 

and Citron, 2011). Crater scaling uses mathematical equations to derive quantitative 

relations for specific parameters (i.e., balancing equations of mass, momentum, and 

energy) and is necessary to investigations of the impact cratering process at a planetary 

scale (e.g., Holsapple, 1993). To continue this investigation, relations between impact 
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melt volume and transient crater cavity diameter are fundamental (e.g., O’Keefe and 

Ahrens, 1977; Holsapple and Schmidt, 1987; Grieve and Cintala, 1992; O’Keefe and 

Ahrens, 1993; Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b); crater scaling 

must be incorporated before additional interpretation of differences in impact melt 

distribution for Mercury and the Moon are made.  

 
Figure 6.5. Alpetragius B, located in Mare Nubium (15.12°S, 353.25°E; ~10 km in 
diameter) is an example of a simple lunar crater. LROC WAC monochrome mosaic, 
asterisk notes granular debris flow visible in the LROC NAC Featured Image “Debris 
Channels” (Appendix A), image credit [NASA/GSFC/Arizona State University]. 



256 

 
Figure 6.6. Green M, located southeast of Mendeleev crater (0.34°N, 133.12°E; ~35 km 
in diameter) is an example of a larger transitional lunar crater. LROC WAC monochrome 
mosaic, asterisk notes eroding impact melt visible in the LROC NAC Featured Image 
“On the floor of Green M” (Appendix A), image credit [NASA/GSFC/Arizona State 
University]. 

 
Figure 6.7. Anaxagoras crater, located on the lunar farside (73.46°N, 349.93°E; ~52 km 
in diameter) is an example of a complex lunar crater. LROC WAC monochrome mosaic, 
asterisk notes overlapping melt lobes visible in the LROC NAC Featured Image “Melt 
Overlap” (Appendix A), image credit [NASA/GSFC/Arizona State University]. 
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6.5. Conclusions 

This chapter presents the first exploration of how the distributions and areal 

extents of impact melt deposits compare between Mercury and the Moon. Utilizing new 

high-resolution global datasets obtained by LROC and MESSENGER, the criteria for 

distinguishing impact melt defined in previous studies (e.g., Howard and Wilshire, 1975; 

Hawke and Head, 1977a; 1977b) are revised. By examining larger regions at 

illuminations favorable for morphologic interpretation, impact melt deposits were 

identified on the basis of:  

(1) Interior pond morphology (a smooth texture, few superposed craters, and a 

distinct fill-wall contact),  

(2) Presence of exterior flows, ponds, and veneers, and  

(3) Absence of embayed craters within the crater interior (indicating passage of 

time between crater formation and infill, consistent with subsequent 

volcanism). 

Applying these criteria to three regions on Mercury and the Moon, more craters 

per normalized unit area were identified with impact melt on the lunar farside than on 

Mercury, a result consistent with studies of global crater densities (Strom, 1977; Fassett 

et al., 2011; Strom et al., 2011) and assessments of an increased impact flux and higher 

impact velocities on Mercury relative to the Moon (e.g., Wetherill, 1974; Gault et al., 

1975; Cintala, 1992; Le Feuvre and Wieczorek, 2008). Considering the melt-filled crater 

population as a proportion of the global crater population, in addition to comparison of 

the melt-filled crater population to other defined crater populations (e.g., volcanic-filled, 

stratigraphically older, and for a particular size range) may provide additional insight into 
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the deficiency of young craters with impact melt on Mercury compared to the Moon. 

Greater areal extents of impact melt were mapped for craters ≥30 km in diameter on 

Mercury than on the Moon. For this initial investiation, area was used as an 

approximation for volume, and from the areal measurements, greater volumes of melt are 

inferred for larger-diameter craters on Mercury than on the Moon. These findings 

confirm theoretical melt-generation models (e.g., O’Keefe and Ahrens, 1977; Grieve and 

Cintala, 1992; 1997; Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b; Barr and 

Citron, 2011) that predict greater melt production for mercurian craters compared to 

similar sized lunar craters (due to the twice larger average impact velocity on Mercury 

than on the Moon). A range in areal extents of impact melt were mapped for craters  

8–30 km in diameter, and mapping using high-resolution LROC and MESSENGER NAC 

images in an attempt to account for measured differences (e.g., burial of melt by 

slumping, incorporation of clasts into the melt) is required. The next step toward a 

quantitative comparison of impact melt volume estimates and assessment of melt-

generation models is incorporation of crater scaling laws to account for planetary 

variables influencing the impact cratering process (Holsapple and Schmidt, 1982; Housen 

et al., 1983; Croft, 1985; Holsapple and Schmidt, 1987; Holsapple, 1993; O’Keefe and 

Ahrens, 1993).  

Over the course of my two-year postdoctoral program, I will continue these 

investigations. By examining the areal extent and distribution of impact melt within and 

around craters, estimating melt volumes, and characterizing melt deposit morphologies, a 

global dataset will be compiled. Differential crater scaling to account for planetary 

differences in melt production (e.g., Cintala and Grieve, 1998a; 1998b), topography data 
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from orbiting laser altimeters aboard LRO and MESSENGER, and high-resolution NAC 

images will be incorporated into future measurements. Using quantitative measurements, 

this research will improve understanding of the effects of planetary variables during the 

impact process and can be used to test accepted melt-generation models (Cintala, 1992; 

Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b; Barr and Citron, 2011). 
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CHAPTER 7 

CONCLUDING THOUGHTS 

The work presented in this dissertation contributes to understanding the impact 

cratering process on the terrestrial planets. Fundamental concepts related to planetary 

science are addressed, focusing on SCEM Science Concepts (1) The Moon reveals the 

inner Solar System bombardment history, (6) The Moon is ideal for investigating the 

impact process at the planetary scale, and (7) The Moon is ideal for investigations of 

regolith processes (NRC, 2007). This work also investigates key science questions posed 

in the Planetary Decadal Survey (2011) by using crater measurements to improve 

understanding of the lunar and mercurian impact records, gain insight into the impact 

cratering process through observations of impact melt, and investigate the history of 

volcanic emplacement for specific regions on Mercury and the Moon.  

The effects of solar incidence angle on consistent identification and measurement 

of craters are investigated in Chapter 2. Accurate small crater (<1 km diameter) 

population statistics are essential for determination of relative and absolute model ages 

(AMAs) of younger units (e.g., Neukum et al., 1975a; Schultz et al., 1977; Hiesinger et 

al., 2012) and estimations of regolith depths (Quaide and Oberbeck, 1968; Shoemaker et 

al., 1969; Wilcox et al., 2005). My results indicate that incidence angle affects AMA 

determinations and equilibrium crater diameter estimates. AMAs derived for three 

different study regions produce different ages, even though most AMAs agree within the 

statistical uncertainties. Using the same or similar incidence angles to measure crater 

size-frequency distributions (SFDs) is ideal for work concerned with absolute age 

comparisons between units and will provide the most consistent results, limiting 



261 

uncertainties arising from analyst interpretation (e.g., Hiesinger et al., 2012). My results 

demonstrate that an optimal incidence angle range for relative and absolute age dating 

studies is between ~65° and 80°. Conversely, equilibrium crater diameter estimates and 

inferred regolith depths are significantly influenced by changes in incidence angle over 

the ~65°–87° range used in this investigation. I find that estimates of equilibrium crater 

diameter decrease with decreasing incidence angle, which is consistent with previous 

work (Wilcox et al., 2005). The difference in estimated equilibrium crater diameter 

exceeds 30 m for images taken at incidence angles over an ~20° range, and the variation 

in crater equilibrium diameter directly influences estimates of average regolith depth. 

Measurements made on images acquired at smaller incidence angles underestimate crater 

diameters relative to those made on images at larger incidence angles, leading to 

equilibrium crater diameter estimates that are too small. Even though measurements 

made at larger incidence angles allow a more accurate measurement of the crater 

diameter (the break in slope at the perceived crater rim is emphasized) and thus a more 

accurate equilibrium crater diameter estimate, the pronounced shadows in the larger 

incidence angle images hide part of the small crater population in the shadows (e.g., 

Moore, 1972; Soderblom, 1972; Wilcox et al., 2005). Therefore, an ~80° incidence angle 

image enables equilibrium crater diameter estimates that are more accurate than crater 

measurements made at smaller incidence angles, while mitigating shadowing observed at 

larger incidence angles.  

Chapter 2 tests the hypothesis that incidence angle affects an analyst’s ability to 

both detect craters and accurately measure their diameters. In this investigation, three 

individuals collected crater measurements of the same region from images with different 
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incidence angles. Crater measurements collected by a single analyst reflect measurement 

errors based on his or her counting technique, experience, and the inherent statistical 

uncertainties. Potential differences resulting from more experience can be examined in an 

exercise where an analyst revisits an early measurement area after gaining experience; the 

ideal case would be for me to recount one of the Apollo Metric images now that I have 

several years of experience. Comparing the measurements (“early” versus “experienced”) 

will quantify the improvements in analyst crater counting ability and determine 

individual measurement error. Similarly, the data collected by multiple individuals is 

affected by the errors and uncertainties associated with each separate measurement. 

Improvements for future studies employing multiple individuals might use time limits for 

measurement sessions (c.f., Greeley and Gault, 1970), and sessions could be implemented 

at similar times each day (e.g., two hours in the morning, to be repeated for the number of 

days required to finish the measurement area). To better conduct statistical comparisons 

between analysts and their reproducibility (between one another and against themselves), 

a calibration image will be selected for the analyst to crater count prior to beginning the 

daily measurement session; the calibration image will be small, perhaps containing 20–50 

craters of different sizes. This exercise will allow analyses of variations between sessions 

and constrain the error per individual and uncertainties between individuals (similar to 

the investigation by Robbins et al., 2013a; 2013b).  

In Chapter 3, absolute model age dating and measures of areal crater density 

(ACD) from crater counts reveal two spatially expansive, statistically separable mare 

units in Mare Imbrium. The older, spectrally red eastern unit is ~3.3 Ga old, and the 

younger, spectrally blue western unit is ~2.2 Ga old. These ages agree with previous 
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assessments of relative and average absolute model ages (e.g., Schaber et al., 1975; 

Hiesinger et al., 2000; Bugiolacchi and Guest, 2008) but I am unable to distinguish 

subunits identified within the large spectral units with reported age differences of <300–

500 million years (Hiesinger et al., 2000). ACD measurements also reveal that optimal 

crater statistics result from count areas larger than 1 × 104 km2 in size on the mare. The 

age difference sensitivity of the ACD technique will be examined in future investigations 

of additional units within other mare regions that have strong spectral contrasts, smaller 

age differences, and areas exceeding 1 × 104 km2. The regional ACD map for Mare 

Imbrium reveals density units that correspond with color units, showing variations 

between density units that correspond to a previously proposed age boundary. The ACD 

maps are derived from a statistical point density calculation that considers only the spatial 

density of crater center points, neglecting the measured crater diameters. Future work will 

use statistical weighting techniques (e.g., Baddeley and Turner, 2005) to incorporate 

crater diameters on the ACD measurement. For example, the formation of one larger 

crater potentially destroys numerous smaller craters, leading to a possible low ACD that 

does not adequately reflect the relative age of the surface (more large craters accumulate 

on older surfaces).  

ACD measurements confirm the presence of probable non-obvious secondary 

craters in with diameters ≥500 m to ~2 km that may be traced to possible parent craters in 

Chapter 2. Although the lunar chronology accounts for unrecognized secondaries (e.g., 

Neukum et al., 1975a; Neukum et al., 1975b; Werner et al., 2009), my findings suggest 

that using ≥1 km diameter craters for AMA derivation limits possible inclusion of non-

obvious secondaries. Future investigations pertaining to potential secondary 
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contamination (e.g., McEwen et al., 2005; McEwen and Bierhaus, 2006; Dundas et al., 

2007; Werner et al., 2009) will examine small crater depth to diameter ratios (Pike, 1978) 

measured using LROC Digital Terrain Models (DTMs). Secondary craters have a 

shallower depth to diameter ratio than primaries at diameters <1 km (Pike, 1978); 

identifying the presence of non-obvious secondaries in the mare will be valuable to 

interpretations of ACD measurements and studies focused on refining the lunar 

chronology (e.g., Marchi et al., 2009; Le Feuvre and Wieczorek, 2011; Robbins, 2013). 

The ability to distinguish different aged units independent of spectral data has 

implications for application of this technique to Mercury, where smooth plains units do 

not have observable spectral variation (Chapter 4). 

In Chapter 4, the comprehensive cratering history of the mercurian north polar 

region (NPR) is placed into context with other smooth plains and heavily cratered terrain 

(HCT). The NPR contains ~7% of the total area of smooth plains on Mercury, and 

measures of crater frequencies indicate that the northern smooth plains (NSP) are 

comparable in age to the other regions of smooth plains, including the Caloris smooth 

plains, the Rudaki plains, plains south of Rachmaninoff, and plains within Beethoven and 

Rembrandt basins (Denevi et al., 2013a). Within the NSP are two crater populations, 

those superposed on the NSP (“post-plains”) and those partially to entirely embayed 

(“buried”). The presence of both populations provides evidence for volcanic resurfacing. 

The post-plains crater population reveals that the NSP do not exhibit statistically 

distinguishable crater SFD subunits, nor do measures of ACD reveal volcanically 

resurfaced regions within the NSP. These results suggest that either the most recent 

outpouring of volcanic material resurfaced the majority of the region and/or volcanic 
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flooding to form the NSP occurred over a short geologic time. A short timescale of 

emplacement is further supported by the absence of kinks in the crater SFDs 

(characteristic to volcanic resurfacing; e.g., Neukum and Horn, 1976) for both the post-

plains and buried crater populations. The buried crater population indicates volcanic 

flooding of originally HCT to form the NSP. Stratigraphic embayment relationships 

within the buried crater population, including partial crater flooding and the presence of 

smaller embayed craters within the filled interiors of larger craters and basins, indicate 

that a minimum of two episodes of resurfacing occurred. From embayed crater rim height 

measurements, I estimate the NSP to be regionally 0.73–1.76 km thick, with a minimum 

volume of volcanic material of 4.08–9.84 × 106 km3. AMAs for the NSP range from 

~3.7–2.5 Ga old, a span of 1.2 Ga, depending on the chronology applied. 

In Chapter 5, vertical and horizontal shaking experiments were conducted in a 

laboratory setting to simulate the effects of seismic shaking on a regolith mixture. Under 

vertical and horizontal perturbation, the denser materials sank into the less dense matrix 

material, even when the density differences were small and when the denser particles 

were smaller than those of the matrix. Completed under terrestrial conditions, the 

experimental results are nonetheless relevant for interpreting remotely sensed data of 

other planetary surfaces. The different densities of minerals may promote density- and 

size-driven mechanical sorting in planetary regoliths that may explain differences in TiO2 

abundances for some regions estimated by Clementine spectral reflectance (CSR) and 

Lunar Prospector Gamma Ray Spectrometer (LP GRS) measurements.  

Returned lunar regolith samples have a variety of grain sizes, compositions, and 

densities (e.g., Papike et al., 1982). However, the lunar sample suite is compositionally 
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limited with respect to TiO2, and the absence of samples with moderate titanium 

abundances (e.g., Blewett et al., 1997; Giguere et al., 2000; Gillis et al., 2003) may 

significantly influence the calibrations of CSR algorithms (Lucey et al., 1995; Blewett et 

al., 1997; Lucey et al., 1998; 2000) and the assumptions applied to calibrate a spectral 

mixing model used to analyze LP GRS data (e.g., Lawrence et al., 2004; Prettyman et al., 

2006). Therefore, until additional samples encompassing the range of titanium 

abundances predicted by CSR and LP GRS are obtained, the accuracy of the abundance 

estimates may not be further evaluated. A collimated gamma ray spectrometer with a 

native spatial footprint of less than ~45 km selected as an instrument on a future lunar 

lander mission is another option to provide ground truth elemental abundance in lieu of 

samples (e.g., Lawrence et al., 2004; Prettyman et al., 2006). The primary shortcoming of 

LP GRS elemental abundances is the large spatial footprint (2° pixel scale or 60 km pixel 

scale at the equator) that allows for contamination in some regions from highland 

components and limits detection of spatially limited mare units (e.g., Mare Frigoris). 

Future experimental investigations of seismic shaking investigations of density- 

and size-driven sorting would benefit from shaking tables with variable amplitudes, 

frequencies, and motion. Simulations of lunar-like seismic events would be improved by 

assigning the setup to approximate moonquakes and impact events, based on amplitudes 

and frequencies obtained from Apollo seismic experiments. Employing vertical and 

horizontal motion during a single experiment would more realistically simulate a 

planetary surface affected by seismic shaking. In addition to experimental modifications, 

incorporating numerical models is a logical next step toward scaling experimental results 

to a planetary scale (e.g., Asphaug et al., 1996; Richardson et al., 2005). 
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In Chapter 6, initial results of a comparative impact melt investigation for 

Mercury and the Moon are presented. Impact melt-generation models (e.g., Cintala and 

Grieve, 1998a; 1998b) predict that for similar sizes, craters on Mercury should produce 

greater volumes of impact melt due to the greater impact velocities than on the Moon 

(e.g., Gault et al., 1975). However, previous workers were unable to quantitatively test 

these predictions due to the available data, but LRO and MESSENGER facilitate 

acquisition of comprehensive measurements to test these theoretical models. Craters 8–

200 km in diameter with ponded impact melt deposits were identified, the interior extents 

of melt deposits were mapped, and melt pond area was calculated as a proxy for volume. 

For craters ≥30 km in diameter, mercurian craters contain larger areal extents of interior 

ponded impact melt than their lunar counterparts, findings consistent with the theoretical 

models (e.g., Grieve and Cintala, 1992; 1997; Pierazzo et al., 1997; Cintala and Grieve, 

1998a; 1998b). Further quantitative comparison to melt-generation models necessitates 

volume estimates, which will be derived from depth to diameter relationships (Pike, 

1988; Barnouin et al., 2012) and topography from both DTMs and laser altimeter 

measurements from the Lunar Orbiter Laser Altimeter and Mercury Laser Altimeter (e.g., 

Barnouin et al., 2010; 2012). Crater scaling laws (e.g., Croft, 1985; Holsapple, 1993) 

must also be applied to account for planetary-specific variables (e.g., gravity, target and 

projectile strengths, target and projectile densities, impact velocity). 

The focus of my postdoctoral research in the NASA Postdoctoral Program is 

continuing the work presented in Chapter 6. Over the course of two years I will  

(1) Compile a global catalog of craters 8 to 200 km in diameter with smooth infill 

deposits on the Moon and Mercury and then classify the deposits as “impact melt”, 
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“volcanic”, or “other”, (2) Compare the spatial extents of melt deposits and estimate 

volumes, and (3) Complete a quantitative morphologic analysis of impact melt deposits. 

This expanded investigation will facilitate the compilation of a global dataset to improve 

understanding of the effects of planetary variables during the impact process and will be 

instrumental in testing accepted melt-generation models (e.g., Grieve and Cintala, 1997; 

Pierazzo et al., 1997; Cintala and Grieve, 1998a; 1998b; Barr and Citron, 2011) using 

quantitative measurements. 
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Table A2. Apollo Image Archive Featured Images 
Date  Featured Image Name Website Link 
02/24/2009 Mysterious Gaudibert 

Crater 
http://apollo.sese.asu.edu/LIW/20090224.
html 

01/13/2009 Menelaus’ Distinctive 
Rays 

http://apollo.sese.asu.edu/LIW/20090224.
html 

http://apollo.sese.asu.edu/LIW/20090224.html
http://apollo.sese.asu.edu/LIW/20090224.html
http://apollo.sese.asu.edu/LIW/20090224.html
http://apollo.sese.asu.edu/LIW/20090224.html
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APPENDIX B  

TABULATED CRATER STATISTICS AND PRODUCTION 

FUNCTION/EQUILIBRIUM FUNCTION LEAST SQUARES FITS FOR SELECTED 

REGIONS IN MARE IMBRIUM, MARE SERENITATIS, AND MARE 

TRANQUILLITATIS 

  



301 

All tabulated cumulative size-frequency data is provided for pseudo-log bins (Chapter 2, 
Section 2.3.2) equal to or greater than the 7 pixel threshold. 
 
Table B1. Cumulative SFD Data: AS15-M-1010, 87° Incidence Angle, Analyst A. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 1072 4217 1.00E+02 4.22E+01 6.49E-01 
0.08 766 3145 1.00E+02 3.15E+01 5.61E-01 
0.09 543 2379 1.00E+02 2.38E+01 4.88E-01 
0.1 406 1836 1.00E+02 1.84E+01 4.29E-01 
0.11 319 1430 1.00E+02 1.43E+01 3.78E-01 
0.12 190 1111 1.00E+02 1.11E+01 3.33E-01 
0.13 187 921 1.00E+02 9.21E+00 3.04E-01 
0.14 133 734 1.00E+02 7.34E+00 2.71E-01 
0.15 199 601 1.00E+02 6.01E+00 2.45E-01 
0.17 185 402 1.00E+02 4.02E+00 2.01E-01 
0.2 130 217 1.00E+02 2.17E+00 1.47E-01 
0.25 46 87 1.00E+02 8.70E-01 9.33E-02 
0.3 18 41 1.00E+02 4.10E-01 6.40E-02 
0.35 6 23 1.00E+02 2.30E-01 4.80E-02 
0.4 10 17 1.00E+02 1.70E-01 4.12E-02 
0.45 3 7 1.00E+02 7.00E-02 2.65E-02 
0.5 2 4 1.00E+02 4.00E-02 2.00E-02 
0.6 1 2 1.00E+02 2.00E-02 1.41E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
  



302 

Table B2. Cumulative SFD Data: AS15-M-1010, 87° Incidence Angle, Analyst L. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 921 3499 1.00E+02 3.50E+01 5.92E-01 
0.08 629 2578 1.00E+02 2.58E+01 5.08E-01 
0.09 484 1949 1.00E+02 1.95E+01 4.42E-01 
0.1 326 1465 1.00E+02 1.47E+01 3.83E-01 
0.11 232 1139 1.00E+02 1.14E+01 3.38E-01 
0.12 162 907 1.00E+02 9.07E+00 3.01E-01 
0.13 153 745 1.00E+02 7.45E+00 2.73E-01 
0.14 107 592 1.00E+02 5.92E+00 2.43E-01 
0.15 169 485 1.00E+02 4.85E+00 2.20E-01 
0.17 119 316 1.00E+02 3.16E+00 1.78E-01 
0.2 117 197 1.00E+02 1.97E+00 1.40E-01 
0.25 39 80 1.00E+02 8.00E-01 8.94E-02 
0.3 21 41 1.00E+02 4.10E-01 6.40E-02 
0.35 6 20 1.00E+02 2.00E-01 4.47E-02 
0.4 5 14 1.00E+02 1.40E-01 3.74E-02 
0.45 4 9 1.00E+02 9.00E-02 3.00E-02 
0.5 2 5 1.00E+02 5.00E-02 2.24E-02 
0.6 2 3 1.00E+02 3.00E-02 1.73E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B3. Cumulative SFD Data: AS15-M-1152, 82° Incidence Angle, Analyst A. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 512 2132 1.00E+02 2.13E+01 4.62E-01 
0.08 300 1620 1.00E+02 1.62E+01 4.03E-01 
0.09 232 1320 1.00E+02 1.32E+01 3.63E-01 
0.1 216 1088 1.00E+02 1.09E+01 3.30E-01 
0.11 161 872 1.00E+02 8.72E+00 2.95E-01 
0.12 104 711 1.00E+02 7.11E+00 2.67E-01 
0.13 96 607 1.00E+02 6.07E+00 2.46E-01 
0.14 65 511 1.00E+02 5.11E+00 2.26E-01 
0.15 124 446 1.00E+02 4.46E+00 2.11E-01 
0.17 127 322 1.00E+02 3.22E+00 1.79E-01 
0.2 115 195 1.00E+02 1.95E+00 1.40E-01 
0.25 45 80 1.00E+02 8.00E-01 8.94E-02 
0.3 12 35 1.00E+02 3.50E-01 5.92E-02 
0.35 9 23 1.00E+02 2.30E-01 4.80E-02 
0.4 7 14 1.00E+02 1.40E-01 3.74E-02 
0.45 3 7 1.00E+02 7.00E-02 2.65E-02 
0.5 3 4 1.00E+02 4.00E-02 2.00E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B4. Cumulative SFD Data: AS15-M-1152, 82° Incidence Angle, Analyst L. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 751 2993 1.00E+02 2.99E+01 5.47E-01 
0.08 503 2242 1.00E+02 2.24E+01 4.74E-01 
0.09 339 1739 1.00E+02 1.74E+01 4.17E-01 
0.1 272 1400 1.00E+02 1.40E+01 3.74E-01 
0.11 237 1128 1.00E+02 1.13E+01 3.36E-01 
0.12 136 891 1.00E+02 8.91E+00 2.99E-01 
0.13 132 755 1.00E+02 7.55E+00 2.75E-01 
0.14 119 623 1.00E+02 6.23E+00 2.50E-01 
0.15 165 504 1.00E+02 5.04E+00 2.25E-01 
0.17 132 339 1.00E+02 3.39E+00 1.84E-01 
0.2 117 207 1.00E+02 2.07E+00 1.44E-01 
0.25 46 90 1.00E+02 9.00E-01 9.49E-02 
0.3 19 44 1.00E+02 4.40E-01 6.63E-02 
0.35 9 25 1.00E+02 2.50E-01 5.00E-02 
0.4 8 16 1.00E+02 1.60E-01 4.00E-02 
0.45 2 8 1.00E+02 8.00E-02 2.83E-02 
0.5 3 6 1.00E+02 6.00E-02 2.45E-02 
0.6 1 3 1.00E+02 3.00E-02 1.73E-02 
0.7 1 2 1.00E+02 2.00E-02 1.41E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B5. Cumulative SFD Data: AS15-M-1835, 71° Incidence Angle, Analyst A. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 326 1380 1.00E+02 1.38E+01 3.72E-01 
0.08 199 1054 1.00E+02 1.05E+01 3.25E-01 
0.09 146 855 1.00E+02 8.55E+00 2.92E-01 
0.1 120 709 1.00E+02 7.09E+00 2.66E-01 
0.11 89 589 1.00E+02 5.89E+00 2.43E-01 
0.12 80 500 1.00E+02 5.00E+00 2.24E-01 
0.13 67 420 1.00E+02 4.20E+00 2.05E-01 
0.14 43 353 1.00E+02 3.53E+00 1.88E-01 
0.15 87 310 1.00E+02 3.10E+00 1.76E-01 
0.17 65 223 1.00E+02 2.23E+00 1.49E-01 
0.2 84 158 1.00E+02 1.58E+00 1.26E-01 
0.25 31 74 1.00E+02 7.40E-01 8.60E-02 
0.3 22 43 1.00E+02 4.30E-01 6.56E-02 
0.35 8 21 1.00E+02 2.10E-01 4.58E-02 
0.4 6 13 1.00E+02 1.30E-01 3.61E-02 
0.45 3 7 1.00E+02 7.00E-02 2.65E-02 
0.5 3 4 1.00E+02 4.00E-02 2.00E-02 
1.1 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B6. Cumulative SFD Data: AS15-M-1835, 71° Incidence Angle, Analyst L. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 407 1929 1.00E+02 1.93E+01 4.39E-01 
0.08 298 1522 1.00E+02 1.52E+01 3.90E-01 
0.09 223 1224 1.00E+02 1.22E+01 3.50E-01 
0.1 171 1001 1.00E+02 1.00E+01 3.16E-01 
0.11 140 830 1.00E+02 8.30E+00 2.88E-01 
0.12 109 690 1.00E+02 6.90E+00 2.63E-01 
0.13 103 581 1.00E+02 5.81E+00 2.41E-01 
0.14 84 478 1.00E+02 4.78E+00 2.19E-01 
0.15 104 394 1.00E+02 3.94E+00 1.99E-01 
0.17 88 290 1.00E+02 2.90E+00 1.70E-01 
0.2 122 202 1.00E+02 2.02E+00 1.42E-01 
0.25 38 80 1.00E+02 8.00E-01 8.94E-02 
0.3 9 42 1.00E+02 4.20E-01 6.48E-02 
0.35 18 33 1.00E+02 3.30E-01 5.75E-02 
0.4 7 15 1.00E+02 1.50E-01 3.87E-02 
0.45 3 8 1.00E+02 8.00E-02 2.83E-02 
0.5 2 5 1.00E+02 5.00E-02 2.24E-02 
0.6 2 3 1.00E+02 3.00E-02 1.73E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B7. Cumulative SFD Data: AS15-M-1835, 71° Incidence Angle, Analyst S. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 65 682 1.00E+02 6.82E+00 2.61E-01 
0.08 82 617 1.00E+02 6.17E+00 2.48E-01 
0.09 55 535 1.00E+02 5.35E+00 2.31E-01 
0.1 50 480 1.00E+02 4.80E+00 2.19E-01 
0.11 43 430 1.00E+02 4.30E+00 2.07E-01 
0.12 48 387 1.00E+02 3.87E+00 1.97E-01 
0.13 35 339 1.00E+02 3.39E+00 1.84E-01 
0.14 46 304 1.00E+02 3.04E+00 1.74E-01 
0.15 58 258 1.00E+02 2.58E+00 1.61E-01 
0.17 65 200 1.00E+02 2.00E+00 1.41E-01 
0.2 66 135 1.00E+02 1.35E+00 1.16E-01 
0.25 35 69 1.00E+02 6.90E-01 8.31E-02 
0.3 16 34 1.00E+02 3.40E-01 5.83E-02 
0.35 9 18 1.00E+02 1.80E-01 4.24E-02 
0.4 3 9 1.00E+02 9.00E-02 3.00E-02 
0.45 3 6 1.00E+02 6.00E-02 2.45E-02 
0.5 1 3 1.00E+02 3.00E-02 1.73E-02 
0.6 2 2 1.00E+02 2.00E-02 1.41E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B8. Cumulative SFD Data: AS15-M-2461, 50° Incidence Angle, Analyst L. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 111 682 1.00E+02 6.82E+00 2.61E-01 
0.08 80 571 1.00E+02 5.71E+00 2.39E-01 
0.09 49 491 1.00E+02 4.91E+00 2.22E-01 
0.1 48 442 1.00E+02 4.42E+00 2.10E-01 
0.11 41 394 1.00E+02 3.94E+00 1.99E-01 
0.12 38 353 1.00E+02 3.53E+00 1.88E-01 
0.13 45 315 1.00E+02 3.15E+00 1.78E-01 
0.14 39 270 1.00E+02 2.70E+00 1.64E-01 
0.15 43 231 1.00E+02 2.31E+00 1.52E-01 
0.17 61 188 1.00E+02 1.88E+00 1.37E-01 
0.2 52 127 1.00E+02 1.27E+00 1.13E-01 
0.25 33 75 1.00E+02 7.50E-01 8.66E-02 
0.3 18 42 1.00E+02 4.20E-01 6.48E-02 
0.35 8 24 1.00E+02 2.40E-01 4.90E-02 
0.4 5 16 1.00E+02 1.60E-01 4.00E-02 
0.45 7 11 1.00E+02 1.10E-01 3.32E-02 
0.6 3 4 1.00E+02 4.00E-02 2.00E-02 
1.2 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B9. Cumulative SFD Data: AS15-M-2461, 50° Incidence Angle, Analyst L. 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.07 5 306 1.00E+02 3.06E+00 1.75E-01 
0.08 9 301 1.00E+02 3.01E+00 1.74E-01 
0.09 15 292 1.00E+02 2.92E+00 1.71E-01 
0.1 15 277 1.00E+02 2.77E+00 1.66E-01 
0.11 18 262 1.00E+02 2.62E+00 1.62E-01 
0.12 19 244 1.00E+02 2.44E+00 1.56E-01 
0.13 14 225 1.00E+02 2.25E+00 1.50E-01 
0.14 17 211 1.00E+02 2.11E+00 1.45E-01 
0.15 44 194 1.00E+02 1.94E+00 1.39E-01 
0.17 38 150 1.00E+02 1.50E+00 1.23E-01 
0.2 53 112 1.00E+02 1.12E+00 1.06E-01 
0.25 23 59 1.00E+02 5.90E-01 7.68E-02 
0.3 19 36 1.00E+02 3.60E-01 6.00E-02 
0.35 6 17 1.00E+02 1.70E-01 4.12E-02 
0.4 4 11 1.00E+02 1.10E-01 3.32E-02 
0.45 4 7 1.00E+02 7.00E-02 2.65E-02 
0.5 1 3 1.00E+02 3.00E-02 1.73E-02 
0.6 1 2 1.00E+02 2.00E-02 1.41E-02 
0.7 1 1 1.00E+02 1.00E-02 1.00E-02 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B10. Cumulative SFD Data: LROC NAC M104633604L, 56° Incidence Angle.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.014 92 624 4.00E+00 1.56E+02 6.25E+00 
0.015 113 532 4.00E+00 1.33E+02 5.77E+00 
0.017 118 419 4.00E+00 1.05E+02 5.12E+00 
0.02 107 301 4.00E+00 7.53E+01 4.34E+00 
0.025 44 194 4.00E+00 4.85E+01 3.48E+00 
0.03 38 150 4.00E+00 3.75E+01 3.06E+00 
0.035 26 112 4.00E+00 2.80E+01 2.65E+00 
0.04 27 86 4.00E+00 2.15E+01 2.32E+00 
0.045 11 59 4.00E+00 1.48E+01 1.92E+00 
0.05 16 48 4.00E+00 1.20E+01 1.73E+00 
0.06 13 32 4.00E+00 8.00E+00 1.41E+00 
0.07 4 19 4.00E+00 4.75E+00 1.09E+00 
0.08 1 15 4.00E+00 3.75E+00 9.68E-01 
0.09 3 14 4.00E+00 3.50E+00 9.35E-01 
0.1 1 11 4.00E+00 2.75E+00 8.29E-01 
0.11 1 10 4.00E+00 2.50E+00 7.91E-01 
0.12 3 9 4.00E+00 2.25E+00 7.50E-01 
0.13 1 6 4.00E+00 1.50E+00 6.12E-01 
0.14 3 5 4.00E+00 1.25E+00 5.59E-01 
0.2 2 2 4.00E+00 5.00E-01 3.54E-01 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B11. Cumulative SFD Data: Apollo 11 Landing Site, 82° Incidence Angle.*  
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.005 1800 4661 2.09E+00 2.23E+03 3.26E+01 
0.006 979 2861 2.09E+00 1.37E+03 2.55E+01 
0.007 580 1882 2.09E+00 8.99E+02 2.07E+01 
0.008 373 1302 2.09E+00 6.22E+02 1.72E+01 
0.009 217 929 2.09E+00 4.44E+02 1.46E+01 
0.01 131 712 2.09E+00 3.40E+02 1.27E+01 
0.011 112 581 2.09E+00 2.78E+02 1.15E+01 
0.012 65 469 2.09E+00 2.24E+02 1.03E+01 
0.013 53 404 2.09E+00 1.93E+02 9.60E+00 
0.014 60 351 2.09E+00 1.68E+02 8.95E+00 
0.015 61 291 2.09E+00 1.39E+02 8.15E+00 
0.017 69 230 2.09E+00 1.10E+02 7.24E+00 
0.02 56 161 2.09E+00 7.69E+01 6.06E+00 
0.025 24 105 2.09E+00 5.01E+01 4.89E+00 
0.03 11 81 2.09E+00 3.87E+01 4.30E+00 
0.035 17 70 2.09E+00 3.34E+01 4.00E+00 
0.04 7 53 2.09E+00 2.53E+01 3.48E+00 
0.045 10 46 2.09E+00 2.20E+01 3.24E+00 
0.05 4 36 2.09E+00 1.72E+01 2.87E+00 
0.06 4 32 2.09E+00 1.53E+01 2.70E+00 
0.07 7 28 2.09E+00 1.34E+01 2.53E+00 
0.08 1 21 2.09E+00 1.00E+01 2.19E+00 
0.09 5 20 2.09E+00 9.55E+00 2.14E+00 
0.1 1 15 2.09E+00 7.16E+00 1.85E+00 
0.11 2 14 2.09E+00 6.69E+00 1.79E+00 
0.12 1 12 2.09E+00 5.73E+00 1.65E+00 
0.13 1 11 2.09E+00 5.25E+00 1.58E+00 
0.15 2 10 2.09E+00 4.78E+00 1.51E+00 
0.17 2 8 2.09E+00 3.82E+00 1.35E+00 
0.2 4 6 2.09E+00 2.87E+00 1.17E+00 
0.25 1 2 2.09E+00 9.55E-01 6.75E-01 
0.3 1 1 2.09E+00 4.78E-01 4.78E-01 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B12. Cumulative SFD Data: Apollo 11 Landing Site, 64° Incidence Angle.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.005 1494 4002 2.17E+00 1.85E+03 2.92E+01 
0.006 869 2508 2.17E+00 1.16E+03 2.31E+01 
0.007 507 1639 2.17E+00 7.57E+02 1.87E+01 
0.008 316 1132 2.17E+00 5.23E+02 1.55E+01 
0.009 196 816 2.17E+00 3.77E+02 1.32E+01 
0.01 136 620 2.17E+00 2.86E+02 1.15E+01 
0.011 69 484 2.17E+00 2.24E+02 1.02E+01 
0.012 70 415 2.17E+00 1.92E+02 9.41E+00 
0.013 58 345 2.17E+00 1.59E+02 8.58E+00 
0.014 35 287 2.17E+00 1.33E+02 7.82E+00 
0.015 48 252 2.17E+00 1.16E+02 7.33E+00 
0.017 65 204 2.17E+00 9.42E+01 6.60E+00 
0.02 49 139 2.17E+00 6.42E+01 5.45E+00 
0.025 23 90 2.17E+00 4.16E+01 4.38E+00 
0.03 8 67 2.17E+00 3.09E+01 3.78E+00 
0.035 12 59 2.17E+00 2.73E+01 3.55E+00 
0.04 9 47 2.17E+00 2.17E+01 3.17E+00 
0.045 6 38 2.17E+00 1.76E+01 2.85E+00 
0.05 8 32 2.17E+00 1.48E+01 2.61E+00 
0.06 3 24 2.17E+00 1.11E+01 2.26E+00 
0.07 5 21 2.17E+00 9.70E+00 2.12E+00 
0.08 3 16 2.17E+00 7.39E+00 1.85E+00 
0.1 1 13 2.17E+00 6.00E+00 1.67E+00 
0.11 2 12 2.17E+00 5.54E+00 1.60E+00 
0.12 2 10 2.17E+00 4.62E+00 1.46E+00 
0.15 2 8 2.17E+00 3.69E+00 1.31E+00 
0.17 2 6 2.17E+00 2.77E+00 1.13E+00 
0.2 3 4 2.17E+00 1.85E+00 9.24E-01 
0.25 1 1 2.17E+00 4.62E-01 4.62E-01 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B13. Cumulative SFD Data: LROC WAC, 66° Incidence Angle, Box 1.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 4 7 4.00E+02 1.75E-02 6.61E-03 
0.8 1 3 4.00E+02 7.50E-03 4.33E-03 
0.9 1 2 4.00E+02 5.00E-03 3.54E-03 
1.1 1 1 4.00E+02 2.50E-03 2.50E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
Table B14. Cumulative SFD Data: LROC WAC, 66° Incidence Angle, Box 2.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 4 10 4.00E+02 2.50E-02 7.91E-03 
0.8 5 6 4.00E+02 1.50E-02 6.12E-03 
0.9 1 1 4.00E+02 2.50E-03 2.50E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
Table B15. Cumulative SFD Data: LROC WAC, 66° Incidence Angle, Box 3.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 3 5 4.00E+02 1.25E-02 5.59E-03 
0.9 2 2 4.00E+02 5.00E-03 3.54E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B16. Cumulative SFD Data: LROC WAC, 46° Incidence Angle, Box 1.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 4 8 4.00E+02 2.00E-02 7.07E-03 
0.8 2 4 4.00E+02 1.00E-02 5.00E-03 
0.9 1 2 4.00E+02 5.00E-03 3.54E-03 
1.2 1 1 4.00E+02 2.50E-03 2.50E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
Table B17. Cumulative SFD Data: LROC WAC, 46° Incidence Angle, Box 2.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 3 6 4.00E+02 1.50E-02 6.12E-03 
0.8 3 3 4.00E+02 7.50E-03 4.33E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
Table B18. Cumulative SFD Data: LROC WAC, 46° Incidence Angle, Box 3.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 1 3 4.00E+02 7.50E-03 4.33E-03 
0.8 1 2 4.00E+02 5.00E-03 3.54E-03 
0.9 1 1 4.00E+02 2.50E-03 2.50E-03 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table B19. Cumulative SFD Data: Mare Serenitatis, LROC WAC, 66° Incidence Angle.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 269 680 3.90E+04 1.74E-02 6.69E-04 
0.8 145 411 3.90E+04 1.05E-02 5.20E-04 
0.9 98 266 3.90E+04 6.82E-03 4.18E-04 
1 54 168 3.90E+04 4.31E-03 3.32E-04 
1.1 35 114 3.90E+04 2.92E-03 2.74E-04 
1.2 23 79 3.90E+04 2.03E-03 2.28E-04 
1.3 15 56 3.90E+04 1.44E-03 1.92E-04 
1.4 9 41 3.90E+04 1.05E-03 1.64E-04 
1.5 15 32 3.90E+04 8.21E-04 1.45E-04 
1.7 9 17 3.90E+04 4.36E-04 1.06E-04 
2 3 8 3.90E+04 2.05E-04 7.25E-05 
4 2 5 3.90E+04 1.28E-04 5.74E-05 
5 3 3 3.90E+04 7.69E-05 4.44E-05 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
 
 
Table B20. Cumulative SFD Data: Mare Serenitatis, LROC WAC, 46° Incidence Angle.* 
D (km)a nb Ncumc  Area (km2) Frequency Uncertaintyd 
0.7 252 613 3.90E+04 1.57E-02 6.35E-04 
0.8 144 361 3.90E+04 9.26E-03 4.87E-04 
0.9 78 217 3.90E+04 5.57E-03 3.78E-04 
1 48 139 3.90E+04 3.57E-03 3.02E-04 
1.1 27 91 3.90E+04 2.33E-03 2.45E-04 
1.2 18 64 3.90E+04 1.64E-03 2.05E-04 
1.3 9 46 3.90E+04 1.18E-03 1.74E-04 
1.4 13 37 3.90E+04 9.49E-04 1.56E-04 
1.5 12 24 3.90E+04 6.16E-04 1.26E-04 
1.7 5 12 3.90E+04 3.08E-04 8.88E-05 
2 2 7 3.90E+04 1.80E-04 6.79E-05 
4 2 5 3.90E+04 1.28E-04 5.74E-05 
5 3 3 3.90E+04 7.69E-05 4.44E-05 
*Measurements by analyst L. 
aDiameter (km) for lower bin limit. 
bNumber of craters per diameter bin. 
cCumulative number of craters per diameter bin. 
dUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Cumulative SFDs below are displayed with calculated least squares fits to production and 
equilibrium. Crater data shown without calculated uncertainties or 7 pixel threshold 
grayed out. 

 
Figure B1. Crater SFDs for AS15-M-1010 (87° incidence angle) with production 
function fit and standard equilibrium. (A) SFD measured by analyst A, (B) SFD 
measured by analyst L.  
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Figure B2. Crater SFDs for AS15-M-1152 (82° incidence angle) with production 
function fit and standard equilibrium. (A) SFD measured by analyst A, (B) SFD 
measured by analyst L. 
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Figure B4. Crater SFDs for AS15-M-2461 (50° incidence angle) with production 
function fit, equilibrium fit to a -2 slope, and standard equilibrium. (A) SFD measured by 
analyst L, (B) SFD measured by analyst S. 
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Figure B5. Crater SFD for LROC NAC M104633604L (56° incidence angle) 
equilibrium fit to a -2 slope and standard equilibrium; the production function is not 
observed.  
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Figure B6. Crater SFDs for LROC NAC (A) M116161085R (82° incidence angle) and 
(B) M150368601R (64° incidence angle) with production function fit and standard 
equilibrium.  
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APPENDIX C  

EDGE CORRECTION: POINT CORRECTION TECHNIQUE 
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A grid of evenly spaced points was created for the study area using a modification 
to the Repeating Shapes extension for ArcMap 10 (J. Jenness, 
http://www.jennesant.com). Point grid spacing was determined from the LROC WAC 
basemap (100 meter pixel scale) resolution for simplicity and ease of application.  
Increasing the spacing of the point grid will decrease the correction effectiveness because 
fewer points will be included in each neighborhood. For example, when 400 m spacing is 
used for the point correction, neighborhoods within 25 km of the boundary contain 
between 7 fewer to 11 more points than the 100 m spacing point correction (Figure C1). 
Decreasing the spacing will slightly increase the correction effectiveness because more 
points will be included in each neighborhood; 50 m point grid spacing corresponds to 2 
fewer to 1 more points contained in neighborhoods within 25 km of the boundary 
compared to the 100 m spacing point correction (Figure C2). The differences between 
point correction values near the edges for 50 m and 100 m spacing do not substantially 
alter the resulting corrected ACD map, indicating that a 100 m point grid spacing for 
studies using LROC WAC basemaps is sufficient. 

The corrected ACD map reflects the proportion of the study area contained within 
each neighborhood at each output cell location (Figure 3.4, 3.5, 3.8). When a 
neighborhood is fully contained within the study area, the point grid density will be at a 
maximum. As a sampling boundary is approached, the resulting point grid density 
magnitude will reflect the proportion of the study area contained within the 
neighborhood. For example, an output cell at a square corner will have a point correction 
of 0.25 (e.g., Figure 3.4), because 25% of the neighborhood area is contained within the 
valid study area. Once the point correction is determined for the study region (e.g., Figure 
3.4, 3.5, 3.8), the ACD magnitudes are divided by the point correction to derive a 
“corrected” ACD map with minimized edge effects and then extracted to the study region 
boundary extent (e.g., Figure 3.3, 3.6A,B, 3.7B,C). 

 
Figure C1: Point correction validation; difference between point correction of 100 m 
grid spacing and 400 m grid spacing and differences observed are within one 
neighborhood radius (25 km) of the measured edge. Scalebar is 100 km. 

http://www.jennesant.com/
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Figure C2: Point correction validation; difference between point correction of 100 m 
grid spacing and 50 m grid spacing. Differences are observed within one neighborhood 
radius (25 km) of the measured edge. Scalebar is 100 km.  
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APPENDIX D  

TABULATED CRATER STATISTICS FOR THE NORTH POLAR REGION OF 

MERCURY  
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Table D1. N(20) Values for NHCT Subareas 
Subarea Name Measurement Area (km2) N(20) 
He1a1* 1.45E+06 122 ± 9 
He1a2 1.31E+06 111 ± 9 
He1a3 9.11E+05 74 ± 9 
He2a1 1.19E+06 111 ± 10 
He2a2 1.46E+06 101 ± 8 
He2a3 1.02E+06 108 ± 10 
He3a1 1.03E+06 120 ± 11 
He3a2 1.19E+06 119 ± 10 
He3a3 1.45E+06 86 ± 8 
*He1a1 = NHCT, example 1, area 1, etc. 

Table D2. N(10) Values for NSP SP1 Subareas 
Subarea Name Measurement Area (km2) N(10)a 
Se1a1* 1.06E+06 81 ± 9 
Se1a2 8.85E+05 64 ± 9 
Se1a3 1.08E+06 69 ± 8 
Se1a4 1.06E+06 57 ± 7 
Se2a1 1.38E+06 70 ± 7 
Se2a2 1.14E+06 78 ± 8 
Se2a3 7.89E+05 68 ± 9 
Se2a4 7.51E+05 51 ± 8 
Se3a1 9.61E+05 69 ± 8 
Se3a2 1.09E+06 60 ± 7 
Se3a3 1.27E+06 75 ± 8 
Se3a4 7.58E+05 69 ± 10 
asp1 N(10) = 67 ± 4 
*Se1a1 = NSP, example 1, area 1, etc. 
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Table D3. North Polar Heavily Cratered Terrain Crater Population Data – Cumulative.  
Diametera Ncumb  Area (km2) Frequency Uncertaintyc 
8 1056 3.67E+06 2.88E-04 1.64E-05 
11.31 750 3.67E+06 2.04E-04 1.27E-05 
16 492 3.67E+06 1.34E-04 1.07E-05 
22.63 336 3.67E+06 9.16E-05 8.89E-06 
32 230 3.67E+06 6.27E-05 6.21E-06 
45.25 128 3.67E+06 3.49E-05 4.54E-06 
64 69 3.67E+06 1.88E-05 2.90E-06 
90.51 27 3.67E+06 7.36E-06 1.97E-06 
128 13 3.67E+06 3.54E-06 1.18E-06 
181 4 3.67E+06 1.09E-06 6.29E-07 
256 1 3.67E+06 2.72E-07 2.72E-07 
aDiameter in km for lower bin limit. 
bCumulative number of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 

Table D4. North Polar Heavily Cratered Terrain Crater Population Data – R-Plot.  
Diametera nb  Area (km2) Relative Value Uncertaintyc 
8 306 3.67E+06 0.021666 1.24E-03 
11.31 258 3.67E+06 0.036535 2.27E-03 
16 156 3.67E+06 0.044182 3.54E-03 
22.63 106 3.67E+06 0.060042 5.83E-03 
32 102 3.67E+06 0.115553 1.14E-02 
45.25 59 3.67E+06 0.133679 1.74E-02 
64 42 3.67E+06 0.190323 2.94E-02 
90.51 14 3.67E+06 0.126882 3.39E-02 
128 9 3.67E+06 0.163134 5.44E-02 
181 3 3.67E+06 0.108756 6.28E-02 
256 1 3.67E+06 0.072504 7.25E-02 
aDiameter in km for lower bin limit. 
bNumber of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table D5. Northern Smooth Plains Post-Plains Crater Population Data – Cumulative. 
Diametera Ncumb  Area (km2) Frequency Uncertaintyc 
8 501 5.59E+06 8.96E-05 6.17E-06 
11.31 290 5.59E+06 5.19E-05 4.95E-06 
16 180 5.59E+06 3.22E-05 3.49E-06 
22.63 95 5.59E+06 1.70E-05 2.43E-06 
32 46 5.59E+06 8.23E-06 1.68E-06 
45.25 22 5.59E+06 3.94E-06 1.24E-06 
64 12 5.59E+06 2.15E-06 8.76E-07 
90.51 6 5.59E+06 1.07E-06 4.80E-07 
128 1 5.59E+06 1.79E-07 1.79E-07 
181 1 5.59E+06 1.79E-07 1.79E-07 
aDiameter in km for lower bin limit. 
bCumulative number of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 

Table D6. Northern Smooth Plains Post-Plains Crater Population Data – R-Plot.   
Diametera nb Area (km2) Relative Value Uncertaintyc 
8 211 5.59E+06 0.009808 6.75E-04 
11.31 110 5.59E+06 0.010227 9.75E-04 
16 85 5.59E+06 0.015805 1.71E-03 
22.63 49 5.59E+06 0.018222 2.60E-03 
32 24 5.59E+06 0.017850 3.64E-03 
45.25 10 5.59E+06 0.014875 4.70E-03 
64 6 5.59E+06 0.017850 7.29E-03 
90.51 5 5.59E+06 0.029751 1.33E-02 
128 0 5.59E+06 0 0 
181 1 5.59E+06 0.023801 2.38E-02 
aDiameter in km for lower bin limit. 
bNumber of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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Table D7. Northern Smooth Plains Buried Crater Population Data – Cumulative.   
Diametera Ncumb  Area (km2) Frequency Uncertaintyc 
8 355 3.79E+06 9.37E-05 9.66E-06 
11.31 261 3.79E+06 6.89E-05 8.41E-06 
16 194 3.79E+06 5.12E-05 7.17E-06 
22.63 143 3.79E+06 3.77E-05 5.97E-06 
32 103 3.79E+06 2.72E-05 5.05E-06 
45.25 74 3.79E+06 1.95E-05 3.40E-06 
64 41 3.79E+06 1.08E-05 2.36E-06 
90.51 20 3.79E+06 5.28E-06 2.64E-06 
128 16 3.79E+06 4.22E-06 1.60E-06 
181.02 9 3.79E+06 2.37E-06 1.19E-06 
256 5 3.79E+06 1.32E-06 9.33E-07 
362.04 3 3.79E+06 7.92E-07 5.60E-07 
aDiameter in km for lower bin limit. 
bCumulative number of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 

Table D8. Northern Smooth Plains Buried Crater Population Data – R-Plot. 
Diametera nb Area (km2) Relative Value Uncertaintyc 
8 94 3.79E+06 0.007110 6.65E-04 
11.31 67 3.79E+06 0.010310 1.12E-03 
16 51 3.79E+06 0.015945 1.96E-03 
22.63 40 3.79E+06 0.025409 3.47E-03 
32 59 3.79E+06 0.073150 8.43E-03 
45.25 33 3.79E+06 0.085006 1.26E-02 
64 21 3.79E+06 0.112257 2.01E-02 
90.51 4 3.79E+06 0.052656 1.76E-02 
128 7 3.79E+06 0.169303 4.64E-02 
181.02 4 3.79E+06 0.210625 7.02E-02 
256 2 3.79E+06 0.239706 9.93E-02 
362.04 2 3.79E+06 0.479413 1.99E-01 
aDiameter in km for lower bin limit. 
bNumber of craters per diameter bin. 
cUncertainty estimates are calculated from the square root of the number of craters for a 
given bin. 
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